summaryrefslogtreecommitdiff
path: root/gcc/libgcc2.c
diff options
context:
space:
mode:
authorrth <rth@138bc75d-0d04-0410-961f-82ee72b054a4>2005-02-12 00:26:57 +0000
committerrth <rth@138bc75d-0d04-0410-961f-82ee72b054a4>2005-02-12 00:26:57 +0000
commit0dfc45b5614725c49ee4d16ad5cd04dde5fb1912 (patch)
treed07cd0c8b8b5189a1a0ffc5396fe8bf7003febf4 /gcc/libgcc2.c
parent94a53c2d0659a2871fb6c3df953df115a1673d04 (diff)
downloadgcc-0dfc45b5614725c49ee4d16ad5cd04dde5fb1912.tar.gz
* tree-complex.c (expand_complex_libcall): New.
(expand_complex_multiplication): Use it for c99 compliance. (expand_complex_division): Likewise. * fold-const.c (fold_complex_add, fold_complex_mult): New. (fold): Call them. * builtins.c (built_in_names): Remove const. * tree.c (build_common_builtin_nodes): Build complex arithmetic builtins. * tree.h (BUILT_IN_COMPLEX_MUL_MIN, BUILT_IN_COMPLEX_MUL_MAX): New. (BUILT_IN_COMPLEX_DIV_MIN, BUILT_IN_COMPLEX_DIV_MAX): New. (built_in_names): Remove const. * c-common.c (c_common_type_for_mode): Handle complex modes. * flags.h, toplev.c (flag_complex_method): Rename from flag_complex_divide_method. * libgcc2.c (__divsc3, __divdc3, __divxc3, __divtc3, __mulsc3, __muldc3, __mulxc3, __multc3): New. * libgcc2.h: Declare them. * libgcc-std.ver: Export them. * mklibgcc.in (lib2funcs): Build them. git-svn-id: svn+ssh://gcc.gnu.org/svn/gcc/trunk@94909 138bc75d-0d04-0410-961f-82ee72b054a4
Diffstat (limited to 'gcc/libgcc2.c')
-rw-r--r--gcc/libgcc2.c203
1 files changed, 202 insertions, 1 deletions
diff --git a/gcc/libgcc2.c b/gcc/libgcc2.c
index 9d12d32c5eb..df2ecb7a4e5 100644
--- a/gcc/libgcc2.c
+++ b/gcc/libgcc2.c
@@ -1501,6 +1501,208 @@ NAME (TYPE x, Wtype m)
#endif
+#if defined(L_mulsc3) || defined(L_divsc3) \
+ || defined(L_muldc3) || defined(L_divdc3) \
+ || (LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 80 \
+ && (defined(L_mulxc3) || defined(L_divxc3))) \
+ || (LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 128 \
+ && (defined(L_multc3) || defined(L_divtc3)))
+
+#undef float
+#undef double
+#undef long
+
+#if defined(L_mulsc3) || defined(L_divsc3)
+# define MTYPE SFtype
+# define CTYPE SCtype
+# define MODE sc
+# define CEXT f
+# define NOTRUNC __FLT_EVAL_METHOD__ == 0
+#elif defined(L_muldc3) || defined(L_divdc3)
+# define MTYPE DFtype
+# define CTYPE DCtype
+# define MODE dc
+# if LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 64
+# define CEXT l
+# define NOTRUNC 1
+# else
+# define CEXT
+# define NOTRUNC __FLT_EVAL_METHOD__ == 0 || __FLT_EVAL_METHOD__ == 1
+# endif
+#elif defined(L_mulxc3) || defined(L_divxc3)
+# define MTYPE XFtype
+# define CTYPE XCtype
+# define MODE xc
+# define CEXT l
+# define NOTRUNC 1
+#elif defined(L_multc3) || defined(L_divtc3)
+# define MTYPE TFtype
+# define CTYPE TCtype
+# define MODE tc
+# define CEXT l
+# define NOTRUNC 1
+#else
+# error
+#endif
+
+#define CONCAT3(A,B,C) _CONCAT3(A,B,C)
+#define _CONCAT3(A,B,C) A##B##C
+
+#define CONCAT2(A,B) _CONCAT2(A,B)
+#define _CONCAT2(A,B) A##B
+
+/* All of these would be present in a full C99 implementation of <math.h>
+ and <complex.h>. Our problem is that only a few systems have such full
+ implementations. Further, libgcc_s.so isn't currenly linked against
+ libm.so, and even for systems that do provide full C99, the extra overhead
+ of all programs using libgcc having to link against libm. So avoid it. */
+
+#define isnan(x) __builtin_expect ((x) != (x), 0)
+#define isfinite(x) __builtin_expect (!isnan((x) - (x)), 1)
+#define isinf(x) __builtin_expect (!isnan(x) & !isfinite(x), 0)
+
+#define INFINITY CONCAT2(__builtin_inf, CEXT) ()
+#define I 1i
+
+/* Helpers to make the following code slightly less gross. */
+#define COPYSIGN CONCAT2(__builtin_copysign, CEXT)
+#define FABS CONCAT2(__builtin_fabs, CEXT)
+
+/* Verify that MTYPE matches up with CEXT. */
+extern void *compile_type_assert[sizeof(INFINITY) == sizeof(MTYPE) ? 1 : -1];
+
+/* Ensure that we've lost any extra precision. */
+#if NOTRUNC
+# define TRUNC(x)
+#else
+# define TRUNC(x) __asm__ ("" : "=m"(x) : "m"(x))
+#endif
+
+#if defined(L_mulsc3) || defined(L_muldc3) \
+ || defined(L_mulxc3) || defined(L_multc3)
+
+CTYPE
+CONCAT3(__mul,MODE,3) (MTYPE a, MTYPE b, MTYPE c, MTYPE d)
+{
+ MTYPE ac, bd, ad, bc, x, y;
+
+ ac = a * c;
+ bd = b * d;
+ ad = a * d;
+ bc = b * c;
+
+ TRUNC (ac);
+ TRUNC (bd);
+ TRUNC (ad);
+ TRUNC (bc);
+
+ x = ac - bd;
+ y = ad + bc;
+
+ if (isnan (x) && isnan (y))
+ {
+ /* Recover infinities that computed as NaN + iNaN. */
+ _Bool recalc = 0;
+ if (isinf (a) || isinf (b))
+ {
+ /* z is infinite. "Box" the infinity and change NaNs in
+ the other factor to 0. */
+ a = COPYSIGN (isinf (a) ? 1 : 0, a);
+ b = COPYSIGN (isinf (b) ? 1 : 0, b);
+ if (isnan (c)) c = COPYSIGN (0, c);
+ if (isnan (d)) d = COPYSIGN (0, d);
+ recalc = 1;
+ }
+ if (isinf (c) || isinf (d))
+ {
+ /* w is infinite. "Box" the infinity and change NaNs in
+ the other factor to 0. */
+ c = COPYSIGN (isinf (c) ? 1 : 0, c);
+ d = COPYSIGN (isinf (d) ? 1 : 0, d);
+ if (isnan (a)) a = COPYSIGN (0, a);
+ if (isnan (b)) b = COPYSIGN (0, b);
+ recalc = 1;
+ }
+ if (!recalc
+ && (isinf (ac) || isinf (bd)
+ || isinf (ad) || isinf (bc)))
+ {
+ /* Recover infinities from overflow by changing NaNs to 0. */
+ if (isnan (a)) a = COPYSIGN (0, a);
+ if (isnan (b)) b = COPYSIGN (0, b);
+ if (isnan (c)) c = COPYSIGN (0, c);
+ if (isnan (d)) d = COPYSIGN (0, d);
+ recalc = 1;
+ }
+ if (recalc)
+ {
+ x = INFINITY * (a * c - b * d);
+ y = INFINITY * (a * d + b * c);
+ }
+ }
+
+ return x + I * y;
+}
+#endif /* complex multiply */
+
+#if defined(L_divsc3) || defined(L_divdc3) \
+ || defined(L_divxc3) || defined(L_divtc3)
+
+CTYPE
+CONCAT3(__div,MODE,3) (MTYPE a, MTYPE b, MTYPE c, MTYPE d)
+{
+ MTYPE denom, ratio, x, y;
+
+ /* ??? We can get better behaviour from logrithmic scaling instead of
+ the division. But that would mean starting to link libgcc against
+ libm. We could implement something akin to ldexp/frexp as gcc builtins
+ fairly easily... */
+ if (FABS (c) < FABS (d))
+ {
+ ratio = c / d;
+ denom = (c * ratio) + d;
+ x = ((a * ratio) + b) / denom;
+ y = ((b * ratio) - a) / denom;
+ }
+ else
+ {
+ ratio = d / c;
+ denom = (d * ratio) + c;
+ x = ((b * ratio) + a) / denom;
+ y = (b - (a * ratio)) / denom;
+ }
+
+ /* Recover infinities and zeros that computed as NaN+iNaN; the only cases
+ are non-zero/zero, infinite/finite, and finite/infinite. */
+ if (isnan (x) && isnan (y))
+ {
+ if (denom == 0.0 && (!isnan (a) || !isnan (b)))
+ {
+ x = COPYSIGN (INFINITY, c) * a;
+ y = COPYSIGN (INFINITY, c) * b;
+ }
+ else if ((isinf (a) || isinf (b)) && isfinite (c) && isfinite (d))
+ {
+ a = COPYSIGN (isinf (a) ? 1 : 0, a);
+ b = COPYSIGN (isinf (b) ? 1 : 0, b);
+ x = INFINITY * (a * c + b * d);
+ y = INFINITY * (b * c - a * d);
+ }
+ else if ((isinf (c) || isinf (d)) && isfinite (a) && isfinite (b))
+ {
+ c = COPYSIGN (isinf (c) ? 1 : 0, c);
+ d = COPYSIGN (isinf (d) ? 1 : 0, d);
+ x = 0.0 * (a * c + b * d);
+ y = 0.0 * (b * c - a * d);
+ }
+ }
+
+ return x + I * y;
+}
+#endif /* complex divide */
+
+#endif /* all complex float routines */
+
/* From here on down, the routines use normal data types. */
#define SItype bogus_type
@@ -1772,4 +1974,3 @@ func_ptr __DTOR_LIST__[2];
#endif
#endif /* no INIT_SECTION_ASM_OP and not CTOR_LISTS_DEFINED_EXTERNALLY */
#endif /* L_ctors */
-