diff options
author | rth <rth@138bc75d-0d04-0410-961f-82ee72b054a4> | 2005-02-12 00:26:57 +0000 |
---|---|---|
committer | rth <rth@138bc75d-0d04-0410-961f-82ee72b054a4> | 2005-02-12 00:26:57 +0000 |
commit | 0dfc45b5614725c49ee4d16ad5cd04dde5fb1912 (patch) | |
tree | d07cd0c8b8b5189a1a0ffc5396fe8bf7003febf4 /gcc/libgcc2.c | |
parent | 94a53c2d0659a2871fb6c3df953df115a1673d04 (diff) | |
download | gcc-0dfc45b5614725c49ee4d16ad5cd04dde5fb1912.tar.gz |
* tree-complex.c (expand_complex_libcall): New.
(expand_complex_multiplication): Use it for c99 compliance.
(expand_complex_division): Likewise.
* fold-const.c (fold_complex_add, fold_complex_mult): New.
(fold): Call them.
* builtins.c (built_in_names): Remove const.
* tree.c (build_common_builtin_nodes): Build complex arithmetic
builtins.
* tree.h (BUILT_IN_COMPLEX_MUL_MIN, BUILT_IN_COMPLEX_MUL_MAX): New.
(BUILT_IN_COMPLEX_DIV_MIN, BUILT_IN_COMPLEX_DIV_MAX): New.
(built_in_names): Remove const.
* c-common.c (c_common_type_for_mode): Handle complex modes.
* flags.h, toplev.c (flag_complex_method): Rename from
flag_complex_divide_method.
* libgcc2.c (__divsc3, __divdc3, __divxc3, __divtc3,
__mulsc3, __muldc3, __mulxc3, __multc3): New.
* libgcc2.h: Declare them.
* libgcc-std.ver: Export them.
* mklibgcc.in (lib2funcs): Build them.
git-svn-id: svn+ssh://gcc.gnu.org/svn/gcc/trunk@94909 138bc75d-0d04-0410-961f-82ee72b054a4
Diffstat (limited to 'gcc/libgcc2.c')
-rw-r--r-- | gcc/libgcc2.c | 203 |
1 files changed, 202 insertions, 1 deletions
diff --git a/gcc/libgcc2.c b/gcc/libgcc2.c index 9d12d32c5eb..df2ecb7a4e5 100644 --- a/gcc/libgcc2.c +++ b/gcc/libgcc2.c @@ -1501,6 +1501,208 @@ NAME (TYPE x, Wtype m) #endif +#if defined(L_mulsc3) || defined(L_divsc3) \ + || defined(L_muldc3) || defined(L_divdc3) \ + || (LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 80 \ + && (defined(L_mulxc3) || defined(L_divxc3))) \ + || (LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 128 \ + && (defined(L_multc3) || defined(L_divtc3))) + +#undef float +#undef double +#undef long + +#if defined(L_mulsc3) || defined(L_divsc3) +# define MTYPE SFtype +# define CTYPE SCtype +# define MODE sc +# define CEXT f +# define NOTRUNC __FLT_EVAL_METHOD__ == 0 +#elif defined(L_muldc3) || defined(L_divdc3) +# define MTYPE DFtype +# define CTYPE DCtype +# define MODE dc +# if LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 64 +# define CEXT l +# define NOTRUNC 1 +# else +# define CEXT +# define NOTRUNC __FLT_EVAL_METHOD__ == 0 || __FLT_EVAL_METHOD__ == 1 +# endif +#elif defined(L_mulxc3) || defined(L_divxc3) +# define MTYPE XFtype +# define CTYPE XCtype +# define MODE xc +# define CEXT l +# define NOTRUNC 1 +#elif defined(L_multc3) || defined(L_divtc3) +# define MTYPE TFtype +# define CTYPE TCtype +# define MODE tc +# define CEXT l +# define NOTRUNC 1 +#else +# error +#endif + +#define CONCAT3(A,B,C) _CONCAT3(A,B,C) +#define _CONCAT3(A,B,C) A##B##C + +#define CONCAT2(A,B) _CONCAT2(A,B) +#define _CONCAT2(A,B) A##B + +/* All of these would be present in a full C99 implementation of <math.h> + and <complex.h>. Our problem is that only a few systems have such full + implementations. Further, libgcc_s.so isn't currenly linked against + libm.so, and even for systems that do provide full C99, the extra overhead + of all programs using libgcc having to link against libm. So avoid it. */ + +#define isnan(x) __builtin_expect ((x) != (x), 0) +#define isfinite(x) __builtin_expect (!isnan((x) - (x)), 1) +#define isinf(x) __builtin_expect (!isnan(x) & !isfinite(x), 0) + +#define INFINITY CONCAT2(__builtin_inf, CEXT) () +#define I 1i + +/* Helpers to make the following code slightly less gross. */ +#define COPYSIGN CONCAT2(__builtin_copysign, CEXT) +#define FABS CONCAT2(__builtin_fabs, CEXT) + +/* Verify that MTYPE matches up with CEXT. */ +extern void *compile_type_assert[sizeof(INFINITY) == sizeof(MTYPE) ? 1 : -1]; + +/* Ensure that we've lost any extra precision. */ +#if NOTRUNC +# define TRUNC(x) +#else +# define TRUNC(x) __asm__ ("" : "=m"(x) : "m"(x)) +#endif + +#if defined(L_mulsc3) || defined(L_muldc3) \ + || defined(L_mulxc3) || defined(L_multc3) + +CTYPE +CONCAT3(__mul,MODE,3) (MTYPE a, MTYPE b, MTYPE c, MTYPE d) +{ + MTYPE ac, bd, ad, bc, x, y; + + ac = a * c; + bd = b * d; + ad = a * d; + bc = b * c; + + TRUNC (ac); + TRUNC (bd); + TRUNC (ad); + TRUNC (bc); + + x = ac - bd; + y = ad + bc; + + if (isnan (x) && isnan (y)) + { + /* Recover infinities that computed as NaN + iNaN. */ + _Bool recalc = 0; + if (isinf (a) || isinf (b)) + { + /* z is infinite. "Box" the infinity and change NaNs in + the other factor to 0. */ + a = COPYSIGN (isinf (a) ? 1 : 0, a); + b = COPYSIGN (isinf (b) ? 1 : 0, b); + if (isnan (c)) c = COPYSIGN (0, c); + if (isnan (d)) d = COPYSIGN (0, d); + recalc = 1; + } + if (isinf (c) || isinf (d)) + { + /* w is infinite. "Box" the infinity and change NaNs in + the other factor to 0. */ + c = COPYSIGN (isinf (c) ? 1 : 0, c); + d = COPYSIGN (isinf (d) ? 1 : 0, d); + if (isnan (a)) a = COPYSIGN (0, a); + if (isnan (b)) b = COPYSIGN (0, b); + recalc = 1; + } + if (!recalc + && (isinf (ac) || isinf (bd) + || isinf (ad) || isinf (bc))) + { + /* Recover infinities from overflow by changing NaNs to 0. */ + if (isnan (a)) a = COPYSIGN (0, a); + if (isnan (b)) b = COPYSIGN (0, b); + if (isnan (c)) c = COPYSIGN (0, c); + if (isnan (d)) d = COPYSIGN (0, d); + recalc = 1; + } + if (recalc) + { + x = INFINITY * (a * c - b * d); + y = INFINITY * (a * d + b * c); + } + } + + return x + I * y; +} +#endif /* complex multiply */ + +#if defined(L_divsc3) || defined(L_divdc3) \ + || defined(L_divxc3) || defined(L_divtc3) + +CTYPE +CONCAT3(__div,MODE,3) (MTYPE a, MTYPE b, MTYPE c, MTYPE d) +{ + MTYPE denom, ratio, x, y; + + /* ??? We can get better behaviour from logrithmic scaling instead of + the division. But that would mean starting to link libgcc against + libm. We could implement something akin to ldexp/frexp as gcc builtins + fairly easily... */ + if (FABS (c) < FABS (d)) + { + ratio = c / d; + denom = (c * ratio) + d; + x = ((a * ratio) + b) / denom; + y = ((b * ratio) - a) / denom; + } + else + { + ratio = d / c; + denom = (d * ratio) + c; + x = ((b * ratio) + a) / denom; + y = (b - (a * ratio)) / denom; + } + + /* Recover infinities and zeros that computed as NaN+iNaN; the only cases + are non-zero/zero, infinite/finite, and finite/infinite. */ + if (isnan (x) && isnan (y)) + { + if (denom == 0.0 && (!isnan (a) || !isnan (b))) + { + x = COPYSIGN (INFINITY, c) * a; + y = COPYSIGN (INFINITY, c) * b; + } + else if ((isinf (a) || isinf (b)) && isfinite (c) && isfinite (d)) + { + a = COPYSIGN (isinf (a) ? 1 : 0, a); + b = COPYSIGN (isinf (b) ? 1 : 0, b); + x = INFINITY * (a * c + b * d); + y = INFINITY * (b * c - a * d); + } + else if ((isinf (c) || isinf (d)) && isfinite (a) && isfinite (b)) + { + c = COPYSIGN (isinf (c) ? 1 : 0, c); + d = COPYSIGN (isinf (d) ? 1 : 0, d); + x = 0.0 * (a * c + b * d); + y = 0.0 * (b * c - a * d); + } + } + + return x + I * y; +} +#endif /* complex divide */ + +#endif /* all complex float routines */ + /* From here on down, the routines use normal data types. */ #define SItype bogus_type @@ -1772,4 +1974,3 @@ func_ptr __DTOR_LIST__[2]; #endif #endif /* no INIT_SECTION_ASM_OP and not CTOR_LISTS_DEFINED_EXTERNALLY */ #endif /* L_ctors */ - |