summaryrefslogtreecommitdiff
path: root/gcc/predict.c
diff options
context:
space:
mode:
authorbje <bje@138bc75d-0d04-0410-961f-82ee72b054a4>2004-09-28 07:59:54 +0000
committerbje <bje@138bc75d-0d04-0410-961f-82ee72b054a4>2004-09-28 07:59:54 +0000
commitcd665a06e2398f370313e6ec3df029d06e9dfffe (patch)
treebed4a5579487b418bb321141005a316e87e11b34 /gcc/predict.c
parent644b3b25055f2e96b6e4d7d028d3fc8eec63eb7f (diff)
downloadgcc-cd665a06e2398f370313e6ec3df029d06e9dfffe.tar.gz
2004-09-24 Ben Elliston <bje@au.ibm.com>
Steven Bosscher <stevenb@suse.de> Andrew Pinski <pinskia@physics.uc.edu> Merge from edge-vector-branch: * basic-block.h: Include vec.h, errors.h. Instantiate a VEC(edge). (struct edge_def): Remove pred_next, succ_next members. (struct basic_block_def): Remove pred, succ members. Add preds and succs members of type VEC(edge). (FALLTHRU_EDGE): Redefine using EDGE_SUCC. (BRANCH_EDGE): Likewise. (EDGE_CRITICAL_P): Redefine using EDGE_COUNT. (EDGE_COUNT, EDGE_I, EDGE_PRED, EDGE_SUCC): New. (edge_iterator): New. (ei_start, ei_last, ei_end_p, ei_one_before_end_p): New. (ei_next, ei_prev, ei_edge, ei_safe_edge): Likewise. (FOR_EACH_EDGE): New. * bb-reorder.c (find_traces): Use FOR_EACH_EDGE and EDGE_* macros where applicable. (rotate_loop): Likewise. (find_traces_1_route): Likewise. (bb_to_key): Likewise. (connect_traces): Likewise. (copy_bb_p): Likewise. (find_rarely_executed_basic_blocks_and_crossing_edges): Likewise. (add_labels_and_missing_jumps): Likewise. (fix_up_fall_thru_edges): Likewise. (find_jump_block): Likewise. (fix_crossing_conditional_branches): Likewise. (fix_crossing_unconditional_branches): Likewise. (add_reg_crossing_jump_notes): Likewise. * bt-load.c (augment_live_range): Likewise. * cfg.c (clear_edges): Likewise. (unchecked_make_edge): Likewise. (cached_make_edge): Likewise. (make_single_succ_edge): Likewise. (remove_edge): Likewise. (redirect_edge_succ_nodup): Likewise. (check_bb_profile): Likewise. (dump_flow_info): Likewise. (alloc_aux_for_edges): Likewise. (clear_aux_for_edges): Likewise. (dump_cfg_bb_info): Likewise. * cfganal.c (forwarder_block_p): Likewise. (can_fallthru): Likewise. (could_fall_through): Likewise. (mark_dfs_back_edges): Likewise. (set_edge_can_fallthru_flag): Likewise. (find_unreachable_blocks): Likewise. (create_edge_list): Likewise. (verify_edge_list): Likewise. (add_noreturn_fake_exit_edges): Likewise. (connect_infinite_loops_to_exit): Likewise. (flow_reverse_top_sort_order_compute): Likewise. (flow_depth_first_order_compute): Likewise. (flow_preorder_transversal_compute): Likewise. (flow_dfs_compute_reverse_execute): Likewise. (dfs_enumerate_from): Likewise. (compute_dominance_frontiers_1): Likewise. * cfgbuild.c (make_edges): Likewise. (compute_outgoing_frequencies): Likewise. (find_many_sub_basic_blocks): Likewise. (find_sub_basic_blocks): Likewise. * cfgcleanup.c (try_simplify_condjump): Likewise. (thread_jump): Likewise. (try_forward_edges): Likewise. (merge_blocks_move): Likewise. (outgoing_edges_match): Likewise. (try_crossjump_to_edge): Likewise. (try_crossjump_bb): Likewise. (try_optimize_cfg): Likewise. (merge_seq_blocks): Likewise. * cfgexpand.c (expand_gimple_tailcall): Likewise. (expand_gimple_basic_block): Likewise. (construct_init_block): Likewise. (construct_exit_block): Likewise. * cfghooks.c (verify_flow_info): Likewise. (dump_bb): Likewise. (delete_basic_block): Likewise. (split_edge): Likewise. (merge_blocks): Likewise. (make_forwarder_block): Likewise. (tidy_fallthru_edges): Likewise. (can_duplicate_block_p): Likewise. (duplicate_block): Likewise. * cfglayout.c (fixup_reorder_chain): Likewise. (fixup_fallthru_exit_predecessor): Likewise. (can_copy_bbs_p): Likewise. (copy_bbs): Likewise. * cfgloop.c (flow_loops_cfg_dump): Likewise. (flow_loop_entry_edges_find): Likewise. (flow_loop_exit_edges_find): Likewise. (flow_loop_nodes_find): Likewise. (mark_single_exit_loops): Likewise. (flow_loop_pre_header_scan): Likewise. (flow_loop_pre_header_find): Likewise. (update_latch_info): Likewise. (canonicalize_loop_headers): Likewise. (flow_loops_find): Likewise. (get_loop_body_in_bfs_order): Likewise. (get_loop_exit_edges): Likewise. (num_loop_branches): Likewise. (verify_loop_structure): Likewise. (loop_latch_edge): Likewise. (loop_preheader_edge): Likewise. * cfgloopanal.c (mark_irreducible_loops): Likewise. (expected_loop_iterations): Likewise. * cfgloopmanip.c (remove_bbs): Likewise. (fix_bb_placement): Likewise. (fix_irreducible_loops): Likewise. (remove_path): Likewise. (scale_bbs_frequencies): Likewise. (loopify): Likewise. (unloop): Likewise. (fix_loop_placement): Likewise. (loop_delete_branch_edge): Likewise. (duplicate_loop_to_header_edge): Likewise. (mfb_keep_just): Likewise. (create_preheader): Likewise. (force_single_succ_latches): Likewise. (loop_split_edge_with): Likewise. (create_loop_notes): Likewise. * cfgrtl.c (rtl_split_block): Likewise. (rtl_merge_blocks): Likewise. (rtl_can_merge_blocks): Likewise. (try_redirect_by_replacing_jump): Likewise. (force_nonfallthru_and_redirect): Likewise. (rtl_tidy_fallthru_edge): Likewise. (commit_one_edge_insertion): Likewise. (commit_edge_insertions): Likewise. (commit_edge_insertions_watch_calls): Likewise. (rtl_verify_flow_info_1): Likewise. (rtl_verify_flow_info): Likewise. (purge_dead_edges): Likewise. (cfg_layout_redirect_edge_and_branch): Likewise. (cfg_layout_can_merge_blocks_p): Likewise. (rtl_flow_call_edges_add): Likewise. * cse.c (cse_cc_succs): Likewise. * df.c (hybrid_search): Likewise. * dominance.c (calc_dfs_tree_nonrec): Likewise. (calc_dfs_tree): Likewise. (calc_idoms): Likewise. (recount_dominator): Likewise. * domwalk.c (walk_dominator_tree): Likewise. * except.c (emit_to_new_bb_before): Likewise. (connect_post_landing_pads): Likewise. (sjlj_emit_function_enter): Likewise. (sjlj_emit_function_exit): Likewise. (finish_eh_generation): Likewise. * final.c (compute_alignments): Likewise. * flow.c (calculate_global_regs_live): Likewise. (initialize_uninitialized_subregs): Likewise. (init_propagate_block_info): Likewise. * function.c (thread_prologue_and_epilogue_insns): Likewise. * gcse.c (find_implicit_sets): Likewise. (bypass_block): Likewise. (bypass_conditional_jumps): Likewise. (compute_pre_data): Likewise. (insert_insn_end_bb): Likewise. (insert_store): Likewise. (remove_reachable_equiv_notes): Likewise. * global.c (global_conflicts): Likewise. (calculate_reg_pav): Likewise. * graph.c (print_rtl_graph_with_bb): Likewise. * ifcvt.c (mark_loop_exit_edges): Likewise. (merge_if_block): Likewise. (find_if_header): Likewise. (block_jumps_and_fallthru_p): Likewise. (find_if_block): Likewise. (find_cond_trap): Likewise. (block_has_only_trap): Likewise. (find_if_case1): Likewise. (find_if_case_2): Likewise. * lambda-code.c (lambda_loopnest_to_gcc_loopnest): Likewise. (perfect_nestify): Likewise. * lcm.c (compute_antinout_edge): Likewise. (compute_laterin): Likewise. (compute_available): Likewise. (compute_nearerout): Likewise. * loop-doloop.c (doloop_modify): Likewise. * loop-init.c (loop_optimizer_init): Likewise. * loop-invariant.c (find_exits): Likewise. * loop-iv.c (simplify_using_initial_values): Likewise. (check_simple_exit): Likewise. (find_simple_exit): Likewise. * loop-unroll.c (peel_loop_completely): Likewise. (unroll_loop_constant_iterations): Likewise. (unroll_loop_runtime_iterations): Likewise. * loop-unswitch.c (may_unswitch_on): Likewise. (unswitch_loop): Likewise. * modulo-sched.c (generate_prolog_epilog): Likewise. (sms_schedule): Likewise. * postreload-gcse.c (eliminate_partially_redundant_load): Likewise. * predict.c (can_predict_insn_p): Likewise. (set_even_probabilities): Likewise. (combine_predictions_for_bb): Likewise. (predict_loops): Likewise. (estimate_probability): Likewise. (tree_predict_by_opcode): Likewise. (tree_estimate_probability): Likewise. (last_basic_block_p): Likewise. (propagate_freq): Likewise. (estimate_loops_at_level): Likewise. (estimate_bb_frequencies): Likewise. * profile.c (instrument_edges): Likewise. (get_exec_counts): Likewise. (compute_branch_probabilities): Likewise. (branch_prob): Likewise. * ra-build.c (live_in): Likewise. * ra-rewrite.c (rewrite_program2): Likewise. * ra.c (reg_alloc): Likewise. * reg-stack.c (reg_to_stack): Likewise. (convert_regs_entry): Likewise. (compensate_edge): Likewise. (convert_regs_1): Likewise, (convert_regs_2): Likewise. (convert_regs): Likewise. * regrename.c (copyprop_hardreg_forward): Likewise. * reload1.c (fixup_abnormal_edges): Likewise. * sbitmap.c (sbitmap_intersection_of_succs): Likewise. (sbitmap_insersection_of_preds): Likewise. (sbitmap_union_of_succs): Likewise. (sbitmap_union_of_preds): Likewise. * sched-ebb.c (compute_jump_reg_dependencies): Likewise. (fix_basic_block_boundaries): Likewise. (sched_ebbs): Likewise. * sched-rgn.c (build_control_flow): Likewise. (find_rgns): Likewise. * tracer.c (find_best_successor): Likewise. (find_best_predecessor): Likewise. (tail_duplicate): Likewise. * tree-cfg.c (make_edges): Likewise. (make_ctrl_stmt_edges): Likewise. (make_goto_expr_edges): Likewise. (tree_can_merge_blocks_p): Likewise. (tree_merge_blocks): Likewise. (cfg_remove_useless_stmts_bb): Likewise. (remove_phi_nodes_and_edges_for_unreachable_block): Likewise. (tree_block_forwards_to): Likewise. (cleanup_control_expr_graph): Likewise. (find_taken_edge): Likewise. (dump_cfg_stats): Likewise. (tree_cfg2vcg): Likewise. (disband_implicit_edges): Likewise. (tree_find_edge_insert_loc): Likewise. (bsi_commit_edge_inserts): Likewise. (tree_split_edge): Likewise. (tree_verify_flow_info): Likewise. (tree_make_forwarder_block): Likewise. (tree_forwarder_block_p): Likewise. (thread_jumps): Likewise. (tree_try_redirect_by_replacing_jump): Likewise. (tree_split_block): Likewise. (add_phi_args_after_copy_bb): Likewise. (rewrite_to_new_ssa_names_bb): Likewise. (dump_function_to_file): Likewise. (print_pred_bbs): Likewise. (print_loop): Likewise. (tree_flow_call_edges_add): Likewise. (split_critical_edges): Likewise. (execute_warn_function_return): Likewise. (extract_true_false_edges_from_block): Likewise. * tree-if-conv.c (tree_if_conversion): Likewise. (if_convertable_bb_p): Likewise. (find_phi_replacement_condition): Likewise. (combine_blocks): Likewise. * tree-into-ssa.c (compute_global_livein): Likewise. (ssa_mark_phi_uses): Likewise. (ssa_rewrite_initialize_block): Likewise. (rewrite_add_phi_arguments): Likewise. (ssa_rewrite_phi_arguments): Likewise. (insert_phi_nodes_for): Likewise. (rewrite_into_ssa): Likewise. (rewrite_ssa_into_ssa): Likewise. * tree-mudflap.c (mf_build_check_statement_for): Likewise. * tree-outof-ssa.c (coalesce_abnormal_edges): Likewise. (rewrite_trees): Likewise. * tree-pretty-print.c (dump_bb_header): Likewise. (dump_implicit_edges): Likewise. * tree-sra.c (insert_edge_copies): Likewise. (find_obviously_necessary_stmts): Likewise. (remove_data_stmt): Likewise. * tree-ssa-dom.c (thread_across_edge): Likewise. (dom_opt_finalize_block): Likewise. (single_incoming_edge_ignoring_loop_edges): Likewise. (record_equivalences_from_incoming_edges): Likewise. (cprop_into_successor_phis): Likewise. * tree-ssa-live.c (live_worklist): Likewise. (calculate_live_on_entry): Likewise. (calculate_live_on_exit): Likewise. * tree-ssa-loop-ch.c (should_duplicate_loop_header_p): Likewise. (copy_loop_headers): Likewise. * tree-ssa-loop-im.c (loop_commit_inserts): Likewise. (fill_always_executed_in): Likewise. * tree-ssa-loop-ivcanon.c (create_canonical_iv): Likewise. * tree-ssa-loop-ivopts.c (find_interesting_uses): Likewise. (compute_phi_arg_on_exit): Likewise. * tree-ssa-loop-manip.c (add_exit_phis_edge): Likewise. (get_loops_exit): Likewise. (split_loop_exit_edge): Likewise. (ip_normal_pos): Likewise. * tree-ssa-loop-niter.c (simplify_using_initial_conditions): Likewise. * tree-ssa-phiopt.c (candidate_bb_for_phi_optimization): Likewise. (replace_phi_with_stmt): Likewise. (value_replacement): Likewise. * tree-ssa-pre.c (compute_antic_aux): Likewise. (insert_aux): Likewise. (init_pre): Likewise. * tree-ssa-propagate.c (simulate_stmt): Likewise. (simulate_block): Likewise. (ssa_prop_init): Likewise. * tree-ssa-threadupdate.c (thread_block): Likewise. (create_block_for_threading): Likewise. (remove_last_stmt_and_useless_edges): Likewise. * tree-ssa.c (verify_phi_args): Likewise. (verify_ssa): Likewise. * tree_tailcall.c (independent_of_stmt_p): Likewise. (find_tail_calls): Likewise. (eliminate_tail_call): Likewise. (tree_optimize_tail_calls_1): Likewise. * tree-vectorizer.c (vect_transform_loop): Likewise. * var-tracking.c (prologue_stack_adjust): Likewise. (vt_stack_adjustments): Likewise. (vt_find_locations): Likewise. * config/frv/frv.c (frv_ifcvt_modify_tests): Likewise. * config/i386/i386.c (ix86_pad_returns): Likewise. * config/ia64/ia64.c (ia64_expand_prologue): Likewise. * config/rs6000/rs6000.c (rs6000_emit_prologue): Likewise. git-svn-id: svn+ssh://gcc.gnu.org/svn/gcc/trunk@88222 138bc75d-0d04-0410-961f-82ee72b054a4
Diffstat (limited to 'gcc/predict.c')
-rw-r--r--gcc/predict.c95
1 files changed, 55 insertions, 40 deletions
diff --git a/gcc/predict.c b/gcc/predict.c
index 18b6b90814c..8611f30d8aa 100644
--- a/gcc/predict.c
+++ b/gcc/predict.c
@@ -248,7 +248,7 @@ can_predict_insn_p (rtx insn)
{
return (JUMP_P (insn)
&& any_condjump_p (insn)
- && BLOCK_FOR_INSN (insn)->succ->succ_next);
+ && EDGE_COUNT (BLOCK_FOR_INSN (insn)->succs) >= 2);
}
/* Predict edge E by given predictor if possible. */
@@ -287,13 +287,15 @@ static void
dump_prediction (FILE *file, enum br_predictor predictor, int probability,
basic_block bb, int used)
{
- edge e = bb->succ;
+ edge e;
+ edge_iterator ei;
if (!file)
return;
- while (e && (e->flags & EDGE_FALLTHRU))
- e = e->succ_next;
+ FOR_EACH_EDGE (e, ei, bb->succs)
+ if (! (e->flags & EDGE_FALLTHRU))
+ break;
fprintf (file, " %s heuristics%s: %.1f%%",
predictor_info[predictor].name,
@@ -321,11 +323,12 @@ set_even_probabilities (basic_block bb)
{
int nedges = 0;
edge e;
+ edge_iterator ei;
- for (e = bb->succ; e; e = e->succ_next)
+ FOR_EACH_EDGE (e, ei, bb->succs)
if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
nedges ++;
- for (e = bb->succ; e; e = e->succ_next)
+ FOR_EACH_EDGE (e, ei, bb->succs)
if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
e->probability = (REG_BR_PROB_BASE + nedges / 2) / nedges;
else
@@ -430,14 +433,14 @@ combine_predictions_for_insn (rtx insn, basic_block bb)
/* Save the prediction into CFG in case we are seeing non-degenerated
conditional jump. */
- if (bb->succ->succ_next)
+ if (EDGE_COUNT (bb->succs) > 1)
{
BRANCH_EDGE (bb)->probability = combined_probability;
FALLTHRU_EDGE (bb)->probability
= REG_BR_PROB_BASE - combined_probability;
}
}
- else if (bb->succ->succ_next)
+ else if (EDGE_COUNT (bb->succs) > 1)
{
int prob = INTVAL (XEXP (prob_note, 0));
@@ -445,7 +448,7 @@ combine_predictions_for_insn (rtx insn, basic_block bb)
FALLTHRU_EDGE (bb)->probability = REG_BR_PROB_BASE - prob;
}
else
- bb->succ->probability = REG_BR_PROB_BASE;
+ EDGE_SUCC (bb, 0)->probability = REG_BR_PROB_BASE;
}
/* Combine predictions into single probability and store them into CFG.
@@ -463,11 +466,12 @@ combine_predictions_for_bb (FILE *file, basic_block bb)
struct edge_prediction *pred;
int nedges = 0;
edge e, first = NULL, second = NULL;
+ edge_iterator ei;
- for (e = bb->succ; e; e = e->succ_next)
+ FOR_EACH_EDGE (e, ei, bb->succs)
if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
{
- nedges ++;
+ nedges ++;
if (first && !second)
second = e;
if (!first)
@@ -547,7 +551,7 @@ combine_predictions_for_bb (FILE *file, basic_block bb)
int predictor = pred->predictor;
int probability = pred->probability;
- if (pred->edge != bb->succ)
+ if (pred->edge != EDGE_SUCC (bb, 0))
probability = REG_BR_PROB_BASE - probability;
dump_prediction (file, predictor, probability, bb,
!first_match || best_predictor == predictor);
@@ -651,6 +655,7 @@ predict_loops (struct loops *loops_info, bool rtlsimpleloops)
{
int header_found = 0;
edge e;
+ edge_iterator ei;
bb = bbs[j];
@@ -664,7 +669,7 @@ predict_loops (struct loops *loops_info, bool rtlsimpleloops)
/* Loop branch heuristics - predict an edge back to a
loop's head as taken. */
- for (e = bb->succ; e; e = e->succ_next)
+ FOR_EACH_EDGE (e, ei, bb->succs)
if (e->dest == loop->header
&& e->src == loop->latch)
{
@@ -675,7 +680,7 @@ predict_loops (struct loops *loops_info, bool rtlsimpleloops)
/* Loop exit heuristics - predict an edge exiting the loop if the
conditional has no loop header successors as not taken. */
if (!header_found)
- for (e = bb->succ; e; e = e->succ_next)
+ FOR_EACH_EDGE (e, ei, bb->succs)
if (e->dest->index < 0
|| !flow_bb_inside_loop_p (loop, e->dest))
predict_edge
@@ -814,18 +819,19 @@ estimate_probability (struct loops *loops_info)
{
rtx last_insn = BB_END (bb);
edge e;
+ edge_iterator ei;
if (! can_predict_insn_p (last_insn))
continue;
- for (e = bb->succ; e; e = e->succ_next)
+ FOR_EACH_EDGE (e, ei, bb->succs)
{
/* Predict early returns to be probable, as we've already taken
care for error returns and other are often used for fast paths
trought function. */
if ((e->dest == EXIT_BLOCK_PTR
- || (e->dest->succ && !e->dest->succ->succ_next
- && e->dest->succ->dest == EXIT_BLOCK_PTR))
+ || (EDGE_COUNT (e->dest->succs) == 1
+ && EDGE_SUCC (e->dest, 0)->dest == EXIT_BLOCK_PTR))
&& !predicted_by_p (bb, PRED_NULL_RETURN)
&& !predicted_by_p (bb, PRED_CONST_RETURN)
&& !predicted_by_p (bb, PRED_NEGATIVE_RETURN)
@@ -1021,12 +1027,13 @@ tree_predict_by_opcode (basic_block bb)
tree type;
tree val;
bitmap visited;
+ edge_iterator ei;
if (!stmt || TREE_CODE (stmt) != COND_EXPR)
return;
- for (then_edge = bb->succ; then_edge; then_edge = then_edge->succ_next)
+ FOR_EACH_EDGE (then_edge, ei, bb->succs)
if (then_edge->flags & EDGE_TRUE_VALUE)
- break;
+ break;
cond = TREE_OPERAND (stmt, 0);
if (!COMPARISON_CLASS_P (cond))
return;
@@ -1180,8 +1187,9 @@ apply_return_prediction (int *heads)
int phi_num_args, i;
enum br_predictor pred;
enum prediction direction;
+ edge_iterator ei;
- for (e = EXIT_BLOCK_PTR->pred; e ; e = e->pred_next)
+ FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
{
return_stmt = last_stmt (e->src);
if (TREE_CODE (return_stmt) == RETURN_EXPR)
@@ -1297,19 +1305,21 @@ tree_estimate_probability (void)
FOR_EACH_BB (bb)
{
edge e;
+ edge_iterator ei;
- for (e = bb->succ; e; e = e->succ_next)
+ FOR_EACH_EDGE (e, ei, bb->succs)
{
/* Predict early returns to be probable, as we've already taken
care for error returns and other cases are often used for
fast paths trought function. */
if (e->dest == EXIT_BLOCK_PTR
&& TREE_CODE (last_stmt (bb)) == RETURN_EXPR
- && bb->pred && bb->pred->pred_next)
+ && EDGE_COUNT (bb->preds) > 1)
{
edge e1;
+ edge_iterator ei1;
- for (e1 = bb->pred; e1; e1 = e1->pred_next)
+ FOR_EACH_EDGE (e1, ei1, bb->preds)
if (!predicted_by_p (e1->src, PRED_NULL_RETURN)
&& !predicted_by_p (e1->src, PRED_CONST_RETURN)
&& !predicted_by_p (e1->src, PRED_NEGATIVE_RETURN)
@@ -1447,8 +1457,8 @@ last_basic_block_p (basic_block bb)
return (bb->next_bb == EXIT_BLOCK_PTR
|| (bb->next_bb->next_bb == EXIT_BLOCK_PTR
- && bb->succ && !bb->succ->succ_next
- && bb->succ->dest->next_bb == EXIT_BLOCK_PTR));
+ && EDGE_COUNT (bb->succs) == 1
+ && EDGE_SUCC (bb, 0)->dest->next_bb == EXIT_BLOCK_PTR));
}
/* Sets branch probabilities according to PREDiction and
@@ -1462,6 +1472,7 @@ predict_paths_leading_to (basic_block bb, int *heads, enum br_predictor pred,
enum prediction taken)
{
edge e;
+ edge_iterator ei;
int y;
if (heads[bb->index] < 0)
@@ -1501,7 +1512,7 @@ predict_paths_leading_to (basic_block bb, int *heads, enum br_predictor pred,
if (y == last_basic_block)
return;
- for (e = BASIC_BLOCK (y)->succ; e; e = e->succ_next)
+ FOR_EACH_EDGE (e, ei, BASIC_BLOCK (y)->succs)
if (e->dest->index >= 0
&& dominated_by_p (CDI_POST_DOMINATORS, e->dest, bb))
predict_edge_def (e, pred, taken);
@@ -1557,9 +1568,10 @@ propagate_freq (struct loop *loop)
{
if (BLOCK_INFO (bb)->tovisit)
{
+ edge_iterator ei;
int count = 0;
- for (e = bb->pred; e; e = e->pred_next)
+ FOR_EACH_EDGE (e, ei, bb->preds)
if (BLOCK_INFO (e->src)->tovisit && !(e->flags & EDGE_DFS_BACK))
count++;
else if (BLOCK_INFO (e->src)->tovisit
@@ -1575,6 +1587,7 @@ propagate_freq (struct loop *loop)
last = head;
for (bb = head; bb; bb = nextbb)
{
+ edge_iterator ei;
sreal cyclic_probability, frequency;
memcpy (&cyclic_probability, &real_zero, sizeof (real_zero));
@@ -1587,12 +1600,12 @@ propagate_freq (struct loop *loop)
if (bb != head)
{
#ifdef ENABLE_CHECKING
- for (e = bb->pred; e; e = e->pred_next)
+ FOR_EACH_EDGE (e, ei, bb->preds)
if (BLOCK_INFO (e->src)->tovisit && !(e->flags & EDGE_DFS_BACK))
abort ();
#endif
- for (e = bb->pred; e; e = e->pred_next)
+ FOR_EACH_EDGE (e, ei, bb->preds)
if (EDGE_INFO (e)->back_edge)
{
sreal_add (&cyclic_probability, &cyclic_probability,
@@ -1637,15 +1650,15 @@ propagate_freq (struct loop *loop)
BLOCK_INFO (bb)->tovisit = 0;
/* Compute back edge frequencies. */
- for (e = bb->succ; e; e = e->succ_next)
+ FOR_EACH_EDGE (e, ei, bb->succs)
if (e->dest == head)
{
sreal tmp;
-
+
/* EDGE_INFO (e)->back_edge_prob
- = ((e->probability * BLOCK_INFO (bb)->frequency)
- / REG_BR_PROB_BASE); */
-
+ = ((e->probability * BLOCK_INFO (bb)->frequency)
+ / REG_BR_PROB_BASE); */
+
sreal_init (&tmp, e->probability, 0);
sreal_mul (&tmp, &tmp, &BLOCK_INFO (bb)->frequency);
sreal_mul (&EDGE_INFO (e)->back_edge_prob,
@@ -1653,7 +1666,7 @@ propagate_freq (struct loop *loop)
}
/* Propagate to successor blocks. */
- for (e = bb->succ; e; e = e->succ_next)
+ FOR_EACH_EDGE (e, ei, bb->succs)
if (!(e->flags & EDGE_DFS_BACK)
&& BLOCK_INFO (e->dest)->npredecessors)
{
@@ -1664,10 +1677,10 @@ propagate_freq (struct loop *loop)
nextbb = e->dest;
else
BLOCK_INFO (last)->next = e->dest;
-
+
last = e->dest;
}
- }
+ }
}
}
@@ -1686,7 +1699,8 @@ estimate_loops_at_level (struct loop *first_loop)
estimate_loops_at_level (loop->inner);
- if (loop->latch->succ) /* Do not do this for dummy function loop. */
+ /* Do not do this for dummy function loop. */
+ if (EDGE_COUNT (loop->latch->succs) > 0)
{
/* Find current loop back edge and mark it. */
e = loop_latch_edge (loop);
@@ -1787,7 +1801,7 @@ estimate_bb_frequencies (struct loops *loops)
mark_dfs_back_edges ();
- ENTRY_BLOCK_PTR->succ->probability = REG_BR_PROB_BASE;
+ EDGE_SUCC (ENTRY_BLOCK_PTR, 0)->probability = REG_BR_PROB_BASE;
/* Set up block info for each basic block. */
alloc_aux_for_blocks (sizeof (struct block_info_def));
@@ -1795,9 +1809,10 @@ estimate_bb_frequencies (struct loops *loops)
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
{
edge e;
+ edge_iterator ei;
BLOCK_INFO (bb)->tovisit = 0;
- for (e = bb->succ; e; e = e->succ_next)
+ FOR_EACH_EDGE (e, ei, bb->succs)
{
sreal_init (&EDGE_INFO (e)->back_edge_prob, e->probability, 0);
sreal_mul (&EDGE_INFO (e)->back_edge_prob,