diff options
author | bernds <bernds@138bc75d-0d04-0410-961f-82ee72b054a4> | 2000-12-03 19:00:00 +0000 |
---|---|---|
committer | bernds <bernds@138bc75d-0d04-0410-961f-82ee72b054a4> | 2000-12-03 19:00:00 +0000 |
commit | 7a31a7bd64c842aeb905b709a98dfb4b69c67844 (patch) | |
tree | 2f5fb2d85150f98496e9e49fe961537d6164f134 /gcc/sched-rgn.c | |
parent | 141444de826da167fd8b5a0406950cb80fc47cff (diff) | |
download | gcc-7a31a7bd64c842aeb905b709a98dfb4b69c67844.tar.gz |
Move the region scheduling code out of haifa-sched.c.
git-svn-id: svn+ssh://gcc.gnu.org/svn/gcc/trunk@37977 138bc75d-0d04-0410-961f-82ee72b054a4
Diffstat (limited to 'gcc/sched-rgn.c')
-rw-r--r-- | gcc/sched-rgn.c | 3116 |
1 files changed, 3116 insertions, 0 deletions
diff --git a/gcc/sched-rgn.c b/gcc/sched-rgn.c new file mode 100644 index 00000000000..76fb1989de5 --- /dev/null +++ b/gcc/sched-rgn.c @@ -0,0 +1,3116 @@ +/* Instruction scheduling pass. + Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, + 1999, 2000 Free Software Foundation, Inc. + Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by, + and currently maintained by, Jim Wilson (wilson@cygnus.com) + +This file is part of GNU CC. + +GNU CC is free software; you can redistribute it and/or modify it +under the terms of the GNU General Public License as published by the +Free Software Foundation; either version 2, or (at your option) any +later version. + +GNU CC is distributed in the hope that it will be useful, but WITHOUT +ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or +FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License +for more details. + +You should have received a copy of the GNU General Public License +along with GNU CC; see the file COPYING. If not, write to the Free +the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA +02111-1307, USA. */ + +/* This pass implements list scheduling within basic blocks. It is + run twice: (1) after flow analysis, but before register allocation, + and (2) after register allocation. + + The first run performs interblock scheduling, moving insns between + different blocks in the same "region", and the second runs only + basic block scheduling. + + Interblock motions performed are useful motions and speculative + motions, including speculative loads. Motions requiring code + duplication are not supported. The identification of motion type + and the check for validity of speculative motions requires + construction and analysis of the function's control flow graph. + + The main entry point for this pass is schedule_insns(), called for + each function. The work of the scheduler is organized in three + levels: (1) function level: insns are subject to splitting, + control-flow-graph is constructed, regions are computed (after + reload, each region is of one block), (2) region level: control + flow graph attributes required for interblock scheduling are + computed (dominators, reachability, etc.), data dependences and + priorities are computed, and (3) block level: insns in the block + are actually scheduled. */ + +#include "config.h" +#include "system.h" +#include "toplev.h" +#include "rtl.h" +#include "tm_p.h" +#include "hard-reg-set.h" +#include "basic-block.h" +#include "regs.h" +#include "function.h" +#include "flags.h" +#include "insn-config.h" +#include "insn-attr.h" +#include "except.h" +#include "toplev.h" +#include "recog.h" +#include "sched-int.h" + +/* Some accessor macros for h_i_d members only used within this file. */ +#define INSN_REF_COUNT(INSN) (h_i_d[INSN_UID (INSN)].ref_count) +#define FED_BY_SPEC_LOAD(insn) (h_i_d[INSN_UID (insn)].fed_by_spec_load) +#define IS_LOAD_INSN(insn) (h_i_d[INSN_UID (insn)].is_load_insn) + +#define MAX_RGN_BLOCKS 10 +#define MAX_RGN_INSNS 100 + +/* nr_inter/spec counts interblock/speculative motion for the function. */ +static int nr_inter, nr_spec; + +/* Control flow graph edges are kept in circular lists. */ +typedef struct +{ + int from_block; + int to_block; + int next_in; + int next_out; +} +haifa_edge; +static haifa_edge *edge_table; + +#define NEXT_IN(edge) (edge_table[edge].next_in) +#define NEXT_OUT(edge) (edge_table[edge].next_out) +#define FROM_BLOCK(edge) (edge_table[edge].from_block) +#define TO_BLOCK(edge) (edge_table[edge].to_block) + +/* Number of edges in the control flow graph. (In fact, larger than + that by 1, since edge 0 is unused.) */ +static int nr_edges; + +/* Circular list of incoming/outgoing edges of a block. */ +static int *in_edges; +static int *out_edges; + +#define IN_EDGES(block) (in_edges[block]) +#define OUT_EDGES(block) (out_edges[block]) + +static int is_cfg_nonregular PARAMS ((void)); +static int build_control_flow PARAMS ((struct edge_list *)); +static void new_edge PARAMS ((int, int)); + +/* A region is the main entity for interblock scheduling: insns + are allowed to move between blocks in the same region, along + control flow graph edges, in the 'up' direction. */ +typedef struct +{ + int rgn_nr_blocks; /* Number of blocks in region. */ + int rgn_blocks; /* cblocks in the region (actually index in rgn_bb_table). */ +} +region; + +/* Number of regions in the procedure. */ +static int nr_regions; + +/* Table of region descriptions. */ +static region *rgn_table; + +/* Array of lists of regions' blocks. */ +static int *rgn_bb_table; + +/* Topological order of blocks in the region (if b2 is reachable from + b1, block_to_bb[b2] > block_to_bb[b1]). Note: A basic block is + always referred to by either block or b, while its topological + order name (in the region) is refered to by bb. */ +static int *block_to_bb; + +/* The number of the region containing a block. */ +static int *containing_rgn; + +#define RGN_NR_BLOCKS(rgn) (rgn_table[rgn].rgn_nr_blocks) +#define RGN_BLOCKS(rgn) (rgn_table[rgn].rgn_blocks) +#define BLOCK_TO_BB(block) (block_to_bb[block]) +#define CONTAINING_RGN(block) (containing_rgn[block]) + +void debug_regions PARAMS ((void)); +static void find_single_block_region PARAMS ((void)); +static void find_rgns PARAMS ((struct edge_list *, sbitmap *)); +static int too_large PARAMS ((int, int *, int *)); + +extern void debug_live PARAMS ((int, int)); + +/* Blocks of the current region being scheduled. */ +static int current_nr_blocks; +static int current_blocks; + +/* The mapping from bb to block. */ +#define BB_TO_BLOCK(bb) (rgn_bb_table[current_blocks + (bb)]) + +/* Bit vectors and bitset operations are needed for computations on + the control flow graph. */ + +typedef unsigned HOST_WIDE_INT *bitset; +typedef struct +{ + int *first_member; /* Pointer to the list start in bitlst_table. */ + int nr_members; /* The number of members of the bit list. */ +} +bitlst; + +static int bitlst_table_last; +static int bitlst_table_size; +static int *bitlst_table; + +static char bitset_member PARAMS ((bitset, int, int)); +static void extract_bitlst PARAMS ((bitset, int, int, bitlst *)); + +/* Target info declarations. + + The block currently being scheduled is referred to as the "target" block, + while other blocks in the region from which insns can be moved to the + target are called "source" blocks. The candidate structure holds info + about such sources: are they valid? Speculative? Etc. */ +typedef bitlst bblst; +typedef struct +{ + char is_valid; + char is_speculative; + int src_prob; + bblst split_bbs; + bblst update_bbs; +} +candidate; + +static candidate *candidate_table; + +/* A speculative motion requires checking live information on the path + from 'source' to 'target'. The split blocks are those to be checked. + After a speculative motion, live information should be modified in + the 'update' blocks. + + Lists of split and update blocks for each candidate of the current + target are in array bblst_table. */ +static int *bblst_table, bblst_size, bblst_last; + +#define IS_VALID(src) ( candidate_table[src].is_valid ) +#define IS_SPECULATIVE(src) ( candidate_table[src].is_speculative ) +#define SRC_PROB(src) ( candidate_table[src].src_prob ) + +/* The bb being currently scheduled. */ +static int target_bb; + +/* List of edges. */ +typedef bitlst edgelst; + +/* Target info functions. */ +static void split_edges PARAMS ((int, int, edgelst *)); +static void compute_trg_info PARAMS ((int)); +void debug_candidate PARAMS ((int)); +void debug_candidates PARAMS ((int)); + +/* Bit-set of bbs, where bit 'i' stands for bb 'i'. */ +typedef bitset bbset; + +/* Number of words of the bbset. */ +static int bbset_size; + +/* Dominators array: dom[i] contains the bbset of dominators of + bb i in the region. */ +static bbset *dom; + +/* bb 0 is the only region entry. */ +#define IS_RGN_ENTRY(bb) (!bb) + +/* Is bb_src dominated by bb_trg. */ +#define IS_DOMINATED(bb_src, bb_trg) \ +( bitset_member (dom[bb_src], bb_trg, bbset_size) ) + +/* Probability: Prob[i] is a float in [0, 1] which is the probability + of bb i relative to the region entry. */ +static float *prob; + +/* The probability of bb_src, relative to bb_trg. Note, that while the + 'prob[bb]' is a float in [0, 1], this macro returns an integer + in [0, 100]. */ +#define GET_SRC_PROB(bb_src, bb_trg) ((int) (100.0 * (prob[bb_src] / \ + prob[bb_trg]))) + +/* Bit-set of edges, where bit i stands for edge i. */ +typedef bitset edgeset; + +/* Number of edges in the region. */ +static int rgn_nr_edges; + +/* Array of size rgn_nr_edges. */ +static int *rgn_edges; + +/* Number of words in an edgeset. */ +static int edgeset_size; + +/* Number of bits in an edgeset. */ +static int edgeset_bitsize; + +/* Mapping from each edge in the graph to its number in the rgn. */ +static int *edge_to_bit; +#define EDGE_TO_BIT(edge) (edge_to_bit[edge]) + +/* The split edges of a source bb is different for each target + bb. In order to compute this efficiently, the 'potential-split edges' + are computed for each bb prior to scheduling a region. This is actually + the split edges of each bb relative to the region entry. + + pot_split[bb] is the set of potential split edges of bb. */ +static edgeset *pot_split; + +/* For every bb, a set of its ancestor edges. */ +static edgeset *ancestor_edges; + +static void compute_dom_prob_ps PARAMS ((int)); + +#define ABS_VALUE(x) (((x)<0)?(-(x)):(x)) +#define INSN_PROBABILITY(INSN) (SRC_PROB (BLOCK_TO_BB (BLOCK_NUM (INSN)))) +#define IS_SPECULATIVE_INSN(INSN) (IS_SPECULATIVE (BLOCK_TO_BB (BLOCK_NUM (INSN)))) +#define INSN_BB(INSN) (BLOCK_TO_BB (BLOCK_NUM (INSN))) + +/* Parameters affecting the decision of rank_for_schedule(). + ??? Nope. But MIN_PROBABILITY is used in copmute_trg_info. */ +#define MIN_DIFF_PRIORITY 2 +#define MIN_PROBABILITY 40 +#define MIN_PROB_DIFF 10 + +/* Speculative scheduling functions. */ +static int check_live_1 PARAMS ((int, rtx)); +static void update_live_1 PARAMS ((int, rtx)); +static int check_live PARAMS ((rtx, int)); +static void update_live PARAMS ((rtx, int)); +static void set_spec_fed PARAMS ((rtx)); +static int is_pfree PARAMS ((rtx, int, int)); +static int find_conditional_protection PARAMS ((rtx, int)); +static int is_conditionally_protected PARAMS ((rtx, int, int)); +static int may_trap_exp PARAMS ((rtx, int)); +static int haifa_classify_insn PARAMS ((rtx)); +static int is_prisky PARAMS ((rtx, int, int)); +static int is_exception_free PARAMS ((rtx, int, int)); + +static void add_branch_dependences PARAMS ((rtx, rtx)); +static void compute_block_backward_dependences PARAMS ((int)); +void debug_dependencies PARAMS ((void)); + +static void init_regions PARAMS ((void)); +static void schedule_region PARAMS ((int)); +static void propagate_deps PARAMS ((int, struct deps *, int)); +static void free_pending_lists PARAMS ((void)); + +/* Functions for construction of the control flow graph. */ + +/* Return 1 if control flow graph should not be constructed, 0 otherwise. + + We decide not to build the control flow graph if there is possibly more + than one entry to the function, if computed branches exist, of if we + have nonlocal gotos. */ + +static int +is_cfg_nonregular () +{ + int b; + rtx insn; + RTX_CODE code; + + /* If we have a label that could be the target of a nonlocal goto, then + the cfg is not well structured. */ + if (nonlocal_goto_handler_labels) + return 1; + + /* If we have any forced labels, then the cfg is not well structured. */ + if (forced_labels) + return 1; + + /* If this function has a computed jump, then we consider the cfg + not well structured. */ + if (current_function_has_computed_jump) + return 1; + + /* If we have exception handlers, then we consider the cfg not well + structured. ?!? We should be able to handle this now that flow.c + computes an accurate cfg for EH. */ + if (exception_handler_labels) + return 1; + + /* If we have non-jumping insns which refer to labels, then we consider + the cfg not well structured. */ + /* Check for labels referred to other thn by jumps. */ + for (b = 0; b < n_basic_blocks; b++) + for (insn = BLOCK_HEAD (b);; insn = NEXT_INSN (insn)) + { + code = GET_CODE (insn); + if (GET_RTX_CLASS (code) == 'i') + { + rtx note; + + for (note = REG_NOTES (insn); note; note = XEXP (note, 1)) + if (REG_NOTE_KIND (note) == REG_LABEL) + return 1; + } + + if (insn == BLOCK_END (b)) + break; + } + + /* All the tests passed. Consider the cfg well structured. */ + return 0; +} + +/* Build the control flow graph and set nr_edges. + + Instead of trying to build a cfg ourselves, we rely on flow to + do it for us. Stamp out useless code (and bug) duplication. + + Return nonzero if an irregularity in the cfg is found which would + prevent cross block scheduling. */ + +static int +build_control_flow (edge_list) + struct edge_list *edge_list; +{ + int i, unreachable, num_edges; + + /* This already accounts for entry/exit edges. */ + num_edges = NUM_EDGES (edge_list); + + /* Unreachable loops with more than one basic block are detected + during the DFS traversal in find_rgns. + + Unreachable loops with a single block are detected here. This + test is redundant with the one in find_rgns, but it's much + cheaper to go ahead and catch the trivial case here. */ + unreachable = 0; + for (i = 0; i < n_basic_blocks; i++) + { + basic_block b = BASIC_BLOCK (i); + + if (b->pred == NULL + || (b->pred->src == b + && b->pred->pred_next == NULL)) + unreachable = 1; + } + + /* ??? We can kill these soon. */ + in_edges = (int *) xcalloc (n_basic_blocks, sizeof (int)); + out_edges = (int *) xcalloc (n_basic_blocks, sizeof (int)); + edge_table = (haifa_edge *) xcalloc (num_edges, sizeof (haifa_edge)); + + nr_edges = 0; + for (i = 0; i < num_edges; i++) + { + edge e = INDEX_EDGE (edge_list, i); + + if (e->dest != EXIT_BLOCK_PTR + && e->src != ENTRY_BLOCK_PTR) + new_edge (e->src->index, e->dest->index); + } + + /* Increment by 1, since edge 0 is unused. */ + nr_edges++; + + return unreachable; +} + +/* Record an edge in the control flow graph from SOURCE to TARGET. + + In theory, this is redundant with the s_succs computed above, but + we have not converted all of haifa to use information from the + integer lists. */ + +static void +new_edge (source, target) + int source, target; +{ + int e, next_edge; + int curr_edge, fst_edge; + + /* Check for duplicates. */ + fst_edge = curr_edge = OUT_EDGES (source); + while (curr_edge) + { + if (FROM_BLOCK (curr_edge) == source + && TO_BLOCK (curr_edge) == target) + { + return; + } + + curr_edge = NEXT_OUT (curr_edge); + + if (fst_edge == curr_edge) + break; + } + + e = ++nr_edges; + + FROM_BLOCK (e) = source; + TO_BLOCK (e) = target; + + if (OUT_EDGES (source)) + { + next_edge = NEXT_OUT (OUT_EDGES (source)); + NEXT_OUT (OUT_EDGES (source)) = e; + NEXT_OUT (e) = next_edge; + } + else + { + OUT_EDGES (source) = e; + NEXT_OUT (e) = e; + } + + if (IN_EDGES (target)) + { + next_edge = NEXT_IN (IN_EDGES (target)); + NEXT_IN (IN_EDGES (target)) = e; + NEXT_IN (e) = next_edge; + } + else + { + IN_EDGES (target) = e; + NEXT_IN (e) = e; + } +} + +/* BITSET macros for operations on the control flow graph. */ + +/* Compute bitwise union of two bitsets. */ +#define BITSET_UNION(set1, set2, len) \ +do { register bitset tp = set1, sp = set2; \ + register int i; \ + for (i = 0; i < len; i++) \ + *(tp++) |= *(sp++); } while (0) + +/* Compute bitwise intersection of two bitsets. */ +#define BITSET_INTER(set1, set2, len) \ +do { register bitset tp = set1, sp = set2; \ + register int i; \ + for (i = 0; i < len; i++) \ + *(tp++) &= *(sp++); } while (0) + +/* Compute bitwise difference of two bitsets. */ +#define BITSET_DIFFER(set1, set2, len) \ +do { register bitset tp = set1, sp = set2; \ + register int i; \ + for (i = 0; i < len; i++) \ + *(tp++) &= ~*(sp++); } while (0) + +/* Inverts every bit of bitset 'set'. */ +#define BITSET_INVERT(set, len) \ +do { register bitset tmpset = set; \ + register int i; \ + for (i = 0; i < len; i++, tmpset++) \ + *tmpset = ~*tmpset; } while (0) + +/* Turn on the index'th bit in bitset set. */ +#define BITSET_ADD(set, index, len) \ +{ \ + if (index >= HOST_BITS_PER_WIDE_INT * len) \ + abort (); \ + else \ + set[index/HOST_BITS_PER_WIDE_INT] |= \ + 1 << (index % HOST_BITS_PER_WIDE_INT); \ +} + +/* Turn off the index'th bit in set. */ +#define BITSET_REMOVE(set, index, len) \ +{ \ + if (index >= HOST_BITS_PER_WIDE_INT * len) \ + abort (); \ + else \ + set[index/HOST_BITS_PER_WIDE_INT] &= \ + ~(1 << (index%HOST_BITS_PER_WIDE_INT)); \ +} + +/* Check if the index'th bit in bitset set is on. */ + +static char +bitset_member (set, index, len) + bitset set; + int index, len; +{ + if (index >= HOST_BITS_PER_WIDE_INT * len) + abort (); + return (set[index / HOST_BITS_PER_WIDE_INT] & + 1 << (index % HOST_BITS_PER_WIDE_INT)) ? 1 : 0; +} + +/* Translate a bit-set SET to a list BL of the bit-set members. */ + +static void +extract_bitlst (set, len, bitlen, bl) + bitset set; + int len; + int bitlen; + bitlst *bl; +{ + int i, j, offset; + unsigned HOST_WIDE_INT word; + + /* bblst table space is reused in each call to extract_bitlst. */ + bitlst_table_last = 0; + + bl->first_member = &bitlst_table[bitlst_table_last]; + bl->nr_members = 0; + + /* Iterate over each word in the bitset. */ + for (i = 0; i < len; i++) + { + word = set[i]; + offset = i * HOST_BITS_PER_WIDE_INT; + + /* Iterate over each bit in the word, but do not + go beyond the end of the defined bits. */ + for (j = 0; offset < bitlen && word; j++) + { + if (word & 1) + { + bitlst_table[bitlst_table_last++] = offset; + (bl->nr_members)++; + } + word >>= 1; + ++offset; + } + } + +} + +/* Functions for the construction of regions. */ + +/* Print the regions, for debugging purposes. Callable from debugger. */ + +void +debug_regions () +{ + int rgn, bb; + + fprintf (sched_dump, "\n;; ------------ REGIONS ----------\n\n"); + for (rgn = 0; rgn < nr_regions; rgn++) + { + fprintf (sched_dump, ";;\trgn %d nr_blocks %d:\n", rgn, + rgn_table[rgn].rgn_nr_blocks); + fprintf (sched_dump, ";;\tbb/block: "); + + for (bb = 0; bb < rgn_table[rgn].rgn_nr_blocks; bb++) + { + current_blocks = RGN_BLOCKS (rgn); + + if (bb != BLOCK_TO_BB (BB_TO_BLOCK (bb))) + abort (); + + fprintf (sched_dump, " %d/%d ", bb, BB_TO_BLOCK (bb)); + } + + fprintf (sched_dump, "\n\n"); + } +} + +/* Build a single block region for each basic block in the function. + This allows for using the same code for interblock and basic block + scheduling. */ + +static void +find_single_block_region () +{ + int i; + + for (i = 0; i < n_basic_blocks; i++) + { + rgn_bb_table[i] = i; + RGN_NR_BLOCKS (i) = 1; + RGN_BLOCKS (i) = i; + CONTAINING_RGN (i) = i; + BLOCK_TO_BB (i) = 0; + } + nr_regions = n_basic_blocks; +} + +/* Update number of blocks and the estimate for number of insns + in the region. Return 1 if the region is "too large" for interblock + scheduling (compile time considerations), otherwise return 0. */ + +static int +too_large (block, num_bbs, num_insns) + int block, *num_bbs, *num_insns; +{ + (*num_bbs)++; + (*num_insns) += (INSN_LUID (BLOCK_END (block)) - + INSN_LUID (BLOCK_HEAD (block))); + if ((*num_bbs > MAX_RGN_BLOCKS) || (*num_insns > MAX_RGN_INSNS)) + return 1; + else + return 0; +} + +/* Update_loop_relations(blk, hdr): Check if the loop headed by max_hdr[blk] + is still an inner loop. Put in max_hdr[blk] the header of the most inner + loop containing blk. */ +#define UPDATE_LOOP_RELATIONS(blk, hdr) \ +{ \ + if (max_hdr[blk] == -1) \ + max_hdr[blk] = hdr; \ + else if (dfs_nr[max_hdr[blk]] > dfs_nr[hdr]) \ + RESET_BIT (inner, hdr); \ + else if (dfs_nr[max_hdr[blk]] < dfs_nr[hdr]) \ + { \ + RESET_BIT (inner,max_hdr[blk]); \ + max_hdr[blk] = hdr; \ + } \ +} + +/* Find regions for interblock scheduling. + + A region for scheduling can be: + + * A loop-free procedure, or + + * A reducible inner loop, or + + * A basic block not contained in any other region. + + ?!? In theory we could build other regions based on extended basic + blocks or reverse extended basic blocks. Is it worth the trouble? + + Loop blocks that form a region are put into the region's block list + in topological order. + + This procedure stores its results into the following global (ick) variables + + * rgn_nr + * rgn_table + * rgn_bb_table + * block_to_bb + * containing region + + We use dominator relationships to avoid making regions out of non-reducible + loops. + + This procedure needs to be converted to work on pred/succ lists instead + of edge tables. That would simplify it somewhat. */ + +static void +find_rgns (edge_list, dom) + struct edge_list *edge_list; + sbitmap *dom; +{ + int *max_hdr, *dfs_nr, *stack, *degree; + char no_loops = 1; + int node, child, loop_head, i, head, tail; + int count = 0, sp, idx = 0, current_edge = out_edges[0]; + int num_bbs, num_insns, unreachable; + int too_large_failure; + + /* Note if an edge has been passed. */ + sbitmap passed; + + /* Note if a block is a natural loop header. */ + sbitmap header; + + /* Note if a block is an natural inner loop header. */ + sbitmap inner; + + /* Note if a block is in the block queue. */ + sbitmap in_queue; + + /* Note if a block is in the block queue. */ + sbitmap in_stack; + + int num_edges = NUM_EDGES (edge_list); + + /* Perform a DFS traversal of the cfg. Identify loop headers, inner loops + and a mapping from block to its loop header (if the block is contained + in a loop, else -1). + + Store results in HEADER, INNER, and MAX_HDR respectively, these will + be used as inputs to the second traversal. + + STACK, SP and DFS_NR are only used during the first traversal. */ + + /* Allocate and initialize variables for the first traversal. */ + max_hdr = (int *) xmalloc (n_basic_blocks * sizeof (int)); + dfs_nr = (int *) xcalloc (n_basic_blocks, sizeof (int)); + stack = (int *) xmalloc (nr_edges * sizeof (int)); + + inner = sbitmap_alloc (n_basic_blocks); + sbitmap_ones (inner); + + header = sbitmap_alloc (n_basic_blocks); + sbitmap_zero (header); + + passed = sbitmap_alloc (nr_edges); + sbitmap_zero (passed); + + in_queue = sbitmap_alloc (n_basic_blocks); + sbitmap_zero (in_queue); + + in_stack = sbitmap_alloc (n_basic_blocks); + sbitmap_zero (in_stack); + + for (i = 0; i < n_basic_blocks; i++) + max_hdr[i] = -1; + + /* DFS traversal to find inner loops in the cfg. */ + + sp = -1; + while (1) + { + if (current_edge == 0 || TEST_BIT (passed, current_edge)) + { + /* We have reached a leaf node or a node that was already + processed. Pop edges off the stack until we find + an edge that has not yet been processed. */ + while (sp >= 0 + && (current_edge == 0 || TEST_BIT (passed, current_edge))) + { + /* Pop entry off the stack. */ + current_edge = stack[sp--]; + node = FROM_BLOCK (current_edge); + child = TO_BLOCK (current_edge); + RESET_BIT (in_stack, child); + if (max_hdr[child] >= 0 && TEST_BIT (in_stack, max_hdr[child])) + UPDATE_LOOP_RELATIONS (node, max_hdr[child]); + current_edge = NEXT_OUT (current_edge); + } + + /* See if have finished the DFS tree traversal. */ + if (sp < 0 && TEST_BIT (passed, current_edge)) + break; + + /* Nope, continue the traversal with the popped node. */ + continue; + } + + /* Process a node. */ + node = FROM_BLOCK (current_edge); + child = TO_BLOCK (current_edge); + SET_BIT (in_stack, node); + dfs_nr[node] = ++count; + + /* If the successor is in the stack, then we've found a loop. + Mark the loop, if it is not a natural loop, then it will + be rejected during the second traversal. */ + if (TEST_BIT (in_stack, child)) + { + no_loops = 0; + SET_BIT (header, child); + UPDATE_LOOP_RELATIONS (node, child); + SET_BIT (passed, current_edge); + current_edge = NEXT_OUT (current_edge); + continue; + } + + /* If the child was already visited, then there is no need to visit + it again. Just update the loop relationships and restart + with a new edge. */ + if (dfs_nr[child]) + { + if (max_hdr[child] >= 0 && TEST_BIT (in_stack, max_hdr[child])) + UPDATE_LOOP_RELATIONS (node, max_hdr[child]); + SET_BIT (passed, current_edge); + current_edge = NEXT_OUT (current_edge); + continue; + } + + /* Push an entry on the stack and continue DFS traversal. */ + stack[++sp] = current_edge; + SET_BIT (passed, current_edge); + current_edge = OUT_EDGES (child); + + /* This is temporary until haifa is converted to use rth's new + cfg routines which have true entry/exit blocks and the + appropriate edges from/to those blocks. + + Generally we update dfs_nr for a node when we process its + out edge. However, if the node has no out edge then we will + not set dfs_nr for that node. This can confuse the scheduler + into thinking that we have unreachable blocks, which in turn + disables cross block scheduling. + + So, if we have a node with no out edges, go ahead and mark it + as reachable now. */ + if (current_edge == 0) + dfs_nr[child] = ++count; + } + + /* Another check for unreachable blocks. The earlier test in + is_cfg_nonregular only finds unreachable blocks that do not + form a loop. + + The DFS traversal will mark every block that is reachable from + the entry node by placing a nonzero value in dfs_nr. Thus if + dfs_nr is zero for any block, then it must be unreachable. */ + unreachable = 0; + for (i = 0; i < n_basic_blocks; i++) + if (dfs_nr[i] == 0) + { + unreachable = 1; + break; + } + + /* Gross. To avoid wasting memory, the second pass uses the dfs_nr array + to hold degree counts. */ + degree = dfs_nr; + + for (i = 0; i < n_basic_blocks; i++) + degree[i] = 0; + for (i = 0; i < num_edges; i++) + { + edge e = INDEX_EDGE (edge_list, i); + + if (e->dest != EXIT_BLOCK_PTR) + degree[e->dest->index]++; + } + + /* Do not perform region scheduling if there are any unreachable + blocks. */ + if (!unreachable) + { + int *queue; + + if (no_loops) + SET_BIT (header, 0); + + /* Second travsersal:find reducible inner loops and topologically sort + block of each region. */ + + queue = (int *) xmalloc (n_basic_blocks * sizeof (int)); + + /* Find blocks which are inner loop headers. We still have non-reducible + loops to consider at this point. */ + for (i = 0; i < n_basic_blocks; i++) + { + if (TEST_BIT (header, i) && TEST_BIT (inner, i)) + { + edge e; + int j; + + /* Now check that the loop is reducible. We do this separate + from finding inner loops so that we do not find a reducible + loop which contains an inner non-reducible loop. + + A simple way to find reducible/natural loops is to verify + that each block in the loop is dominated by the loop + header. + + If there exists a block that is not dominated by the loop + header, then the block is reachable from outside the loop + and thus the loop is not a natural loop. */ + for (j = 0; j < n_basic_blocks; j++) + { + /* First identify blocks in the loop, except for the loop + entry block. */ + if (i == max_hdr[j] && i != j) + { + /* Now verify that the block is dominated by the loop + header. */ + if (!TEST_BIT (dom[j], i)) + break; + } + } + + /* If we exited the loop early, then I is the header of + a non-reducible loop and we should quit processing it + now. */ + if (j != n_basic_blocks) + continue; + + /* I is a header of an inner loop, or block 0 in a subroutine + with no loops at all. */ + head = tail = -1; + too_large_failure = 0; + loop_head = max_hdr[i]; + + /* Decrease degree of all I's successors for topological + ordering. */ + for (e = BASIC_BLOCK (i)->succ; e; e = e->succ_next) + if (e->dest != EXIT_BLOCK_PTR) + --degree[e->dest->index]; + + /* Estimate # insns, and count # blocks in the region. */ + num_bbs = 1; + num_insns = (INSN_LUID (BLOCK_END (i)) + - INSN_LUID (BLOCK_HEAD (i))); + + /* Find all loop latches (blocks with back edges to the loop + header) or all the leaf blocks in the cfg has no loops. + + Place those blocks into the queue. */ + if (no_loops) + { + for (j = 0; j < n_basic_blocks; j++) + /* Leaf nodes have only a single successor which must + be EXIT_BLOCK. */ + if (BASIC_BLOCK (j)->succ + && BASIC_BLOCK (j)->succ->dest == EXIT_BLOCK_PTR + && BASIC_BLOCK (j)->succ->succ_next == NULL) + { + queue[++tail] = j; + SET_BIT (in_queue, j); + + if (too_large (j, &num_bbs, &num_insns)) + { + too_large_failure = 1; + break; + } + } + } + else + { + edge e; + + for (e = BASIC_BLOCK (i)->pred; e; e = e->pred_next) + { + if (e->src == ENTRY_BLOCK_PTR) + continue; + + node = e->src->index; + + if (max_hdr[node] == loop_head && node != i) + { + /* This is a loop latch. */ + queue[++tail] = node; + SET_BIT (in_queue, node); + + if (too_large (node, &num_bbs, &num_insns)) + { + too_large_failure = 1; + break; + } + } + } + } + + /* Now add all the blocks in the loop to the queue. + + We know the loop is a natural loop; however the algorithm + above will not always mark certain blocks as being in the + loop. Consider: + node children + a b,c + b c + c a,d + d b + + The algorithm in the DFS traversal may not mark B & D as part + of the loop (ie they will not have max_hdr set to A). + + We know they can not be loop latches (else they would have + had max_hdr set since they'd have a backedge to a dominator + block). So we don't need them on the initial queue. + + We know they are part of the loop because they are dominated + by the loop header and can be reached by a backwards walk of + the edges starting with nodes on the initial queue. + + It is safe and desirable to include those nodes in the + loop/scheduling region. To do so we would need to decrease + the degree of a node if it is the target of a backedge + within the loop itself as the node is placed in the queue. + + We do not do this because I'm not sure that the actual + scheduling code will properly handle this case. ?!? */ + + while (head < tail && !too_large_failure) + { + edge e; + child = queue[++head]; + + for (e = BASIC_BLOCK (child)->pred; e; e = e->pred_next) + { + node = e->src->index; + + /* See discussion above about nodes not marked as in + this loop during the initial DFS traversal. */ + if (e->src == ENTRY_BLOCK_PTR + || max_hdr[node] != loop_head) + { + tail = -1; + break; + } + else if (!TEST_BIT (in_queue, node) && node != i) + { + queue[++tail] = node; + SET_BIT (in_queue, node); + + if (too_large (node, &num_bbs, &num_insns)) + { + too_large_failure = 1; + break; + } + } + } + } + + if (tail >= 0 && !too_large_failure) + { + /* Place the loop header into list of region blocks. */ + degree[i] = -1; + rgn_bb_table[idx] = i; + RGN_NR_BLOCKS (nr_regions) = num_bbs; + RGN_BLOCKS (nr_regions) = idx++; + CONTAINING_RGN (i) = nr_regions; + BLOCK_TO_BB (i) = count = 0; + + /* Remove blocks from queue[] when their in degree + becomes zero. Repeat until no blocks are left on the + list. This produces a topological list of blocks in + the region. */ + while (tail >= 0) + { + if (head < 0) + head = tail; + child = queue[head]; + if (degree[child] == 0) + { + edge e; + + degree[child] = -1; + rgn_bb_table[idx++] = child; + BLOCK_TO_BB (child) = ++count; + CONTAINING_RGN (child) = nr_regions; + queue[head] = queue[tail--]; + + for (e = BASIC_BLOCK (child)->succ; + e; + e = e->succ_next) + if (e->dest != EXIT_BLOCK_PTR) + --degree[e->dest->index]; + } + else + --head; + } + ++nr_regions; + } + } + } + free (queue); + } + + /* Any block that did not end up in a region is placed into a region + by itself. */ + for (i = 0; i < n_basic_blocks; i++) + if (degree[i] >= 0) + { + rgn_bb_table[idx] = i; + RGN_NR_BLOCKS (nr_regions) = 1; + RGN_BLOCKS (nr_regions) = idx++; + CONTAINING_RGN (i) = nr_regions++; + BLOCK_TO_BB (i) = 0; + } + + free (max_hdr); + free (dfs_nr); + free (stack); + free (passed); + free (header); + free (inner); + free (in_queue); + free (in_stack); +} + +/* Functions for regions scheduling information. */ + +/* Compute dominators, probability, and potential-split-edges of bb. + Assume that these values were already computed for bb's predecessors. */ + +static void +compute_dom_prob_ps (bb) + int bb; +{ + int nxt_in_edge, fst_in_edge, pred; + int fst_out_edge, nxt_out_edge, nr_out_edges, nr_rgn_out_edges; + + prob[bb] = 0.0; + if (IS_RGN_ENTRY (bb)) + { + BITSET_ADD (dom[bb], 0, bbset_size); + prob[bb] = 1.0; + return; + } + + fst_in_edge = nxt_in_edge = IN_EDGES (BB_TO_BLOCK (bb)); + + /* Intialize dom[bb] to '111..1'. */ + BITSET_INVERT (dom[bb], bbset_size); + + do + { + pred = FROM_BLOCK (nxt_in_edge); + BITSET_INTER (dom[bb], dom[BLOCK_TO_BB (pred)], bbset_size); + + BITSET_UNION (ancestor_edges[bb], ancestor_edges[BLOCK_TO_BB (pred)], + edgeset_size); + + BITSET_ADD (ancestor_edges[bb], EDGE_TO_BIT (nxt_in_edge), edgeset_size); + + nr_out_edges = 1; + nr_rgn_out_edges = 0; + fst_out_edge = OUT_EDGES (pred); + nxt_out_edge = NEXT_OUT (fst_out_edge); + BITSET_UNION (pot_split[bb], pot_split[BLOCK_TO_BB (pred)], + edgeset_size); + + BITSET_ADD (pot_split[bb], EDGE_TO_BIT (fst_out_edge), edgeset_size); + + /* The successor doesn't belong in the region? */ + if (CONTAINING_RGN (TO_BLOCK (fst_out_edge)) != + CONTAINING_RGN (BB_TO_BLOCK (bb))) + ++nr_rgn_out_edges; + + while (fst_out_edge != nxt_out_edge) + { + ++nr_out_edges; + /* The successor doesn't belong in the region? */ + if (CONTAINING_RGN (TO_BLOCK (nxt_out_edge)) != + CONTAINING_RGN (BB_TO_BLOCK (bb))) + ++nr_rgn_out_edges; + BITSET_ADD (pot_split[bb], EDGE_TO_BIT (nxt_out_edge), edgeset_size); + nxt_out_edge = NEXT_OUT (nxt_out_edge); + + } + + /* Now nr_rgn_out_edges is the number of region-exit edges from + pred, and nr_out_edges will be the number of pred out edges + not leaving the region. */ + nr_out_edges -= nr_rgn_out_edges; + if (nr_rgn_out_edges > 0) + prob[bb] += 0.9 * prob[BLOCK_TO_BB (pred)] / nr_out_edges; + else + prob[bb] += prob[BLOCK_TO_BB (pred)] / nr_out_edges; + nxt_in_edge = NEXT_IN (nxt_in_edge); + } + while (fst_in_edge != nxt_in_edge); + + BITSET_ADD (dom[bb], bb, bbset_size); + BITSET_DIFFER (pot_split[bb], ancestor_edges[bb], edgeset_size); + + if (sched_verbose >= 2) + fprintf (sched_dump, ";; bb_prob(%d, %d) = %3d\n", bb, BB_TO_BLOCK (bb), + (int) (100.0 * prob[bb])); +} + +/* Functions for target info. */ + +/* Compute in BL the list of split-edges of bb_src relatively to bb_trg. + Note that bb_trg dominates bb_src. */ + +static void +split_edges (bb_src, bb_trg, bl) + int bb_src; + int bb_trg; + edgelst *bl; +{ + int es = edgeset_size; + edgeset src = (edgeset) xcalloc (es, sizeof (HOST_WIDE_INT)); + + while (es--) + src[es] = (pot_split[bb_src])[es]; + BITSET_DIFFER (src, pot_split[bb_trg], edgeset_size); + extract_bitlst (src, edgeset_size, edgeset_bitsize, bl); + free (src); +} + +/* Find the valid candidate-source-blocks for the target block TRG, compute + their probability, and check if they are speculative or not. + For speculative sources, compute their update-blocks and split-blocks. */ + +static void +compute_trg_info (trg) + int trg; +{ + register candidate *sp; + edgelst el; + int check_block, update_idx; + int i, j, k, fst_edge, nxt_edge; + + /* Define some of the fields for the target bb as well. */ + sp = candidate_table + trg; + sp->is_valid = 1; + sp->is_speculative = 0; + sp->src_prob = 100; + + for (i = trg + 1; i < current_nr_blocks; i++) + { + sp = candidate_table + i; + + sp->is_valid = IS_DOMINATED (i, trg); + if (sp->is_valid) + { + sp->src_prob = GET_SRC_PROB (i, trg); + sp->is_valid = (sp->src_prob >= MIN_PROBABILITY); + } + + if (sp->is_valid) + { + split_edges (i, trg, &el); + sp->is_speculative = (el.nr_members) ? 1 : 0; + if (sp->is_speculative && !flag_schedule_speculative) + sp->is_valid = 0; + } + + if (sp->is_valid) + { + char *update_blocks; + + /* Compute split blocks and store them in bblst_table. + The TO block of every split edge is a split block. */ + sp->split_bbs.first_member = &bblst_table[bblst_last]; + sp->split_bbs.nr_members = el.nr_members; + for (j = 0; j < el.nr_members; bblst_last++, j++) + bblst_table[bblst_last] = + TO_BLOCK (rgn_edges[el.first_member[j]]); + sp->update_bbs.first_member = &bblst_table[bblst_last]; + + /* Compute update blocks and store them in bblst_table. + For every split edge, look at the FROM block, and check + all out edges. For each out edge that is not a split edge, + add the TO block to the update block list. This list can end + up with a lot of duplicates. We need to weed them out to avoid + overrunning the end of the bblst_table. */ + update_blocks = (char *) alloca (n_basic_blocks); + memset (update_blocks, 0, n_basic_blocks); + + update_idx = 0; + for (j = 0; j < el.nr_members; j++) + { + check_block = FROM_BLOCK (rgn_edges[el.first_member[j]]); + fst_edge = nxt_edge = OUT_EDGES (check_block); + do + { + if (! update_blocks[TO_BLOCK (nxt_edge)]) + { + for (k = 0; k < el.nr_members; k++) + if (EDGE_TO_BIT (nxt_edge) == el.first_member[k]) + break; + + if (k >= el.nr_members) + { + bblst_table[bblst_last++] = TO_BLOCK (nxt_edge); + update_blocks[TO_BLOCK (nxt_edge)] = 1; + update_idx++; + } + } + + nxt_edge = NEXT_OUT (nxt_edge); + } + while (fst_edge != nxt_edge); + } + sp->update_bbs.nr_members = update_idx; + + /* Make sure we didn't overrun the end of bblst_table. */ + if (bblst_last > bblst_size) + abort (); + } + else + { + sp->split_bbs.nr_members = sp->update_bbs.nr_members = 0; + + sp->is_speculative = 0; + sp->src_prob = 0; + } + } +} + +/* Print candidates info, for debugging purposes. Callable from debugger. */ + +void +debug_candidate (i) + int i; +{ + if (!candidate_table[i].is_valid) + return; + + if (candidate_table[i].is_speculative) + { + int j; + fprintf (sched_dump, "src b %d bb %d speculative \n", BB_TO_BLOCK (i), i); + + fprintf (sched_dump, "split path: "); + for (j = 0; j < candidate_table[i].split_bbs.nr_members; j++) + { + int b = candidate_table[i].split_bbs.first_member[j]; + + fprintf (sched_dump, " %d ", b); + } + fprintf (sched_dump, "\n"); + + fprintf (sched_dump, "update path: "); + for (j = 0; j < candidate_table[i].update_bbs.nr_members; j++) + { + int b = candidate_table[i].update_bbs.first_member[j]; + + fprintf (sched_dump, " %d ", b); + } + fprintf (sched_dump, "\n"); + } + else + { + fprintf (sched_dump, " src %d equivalent\n", BB_TO_BLOCK (i)); + } +} + +/* Print candidates info, for debugging purposes. Callable from debugger. */ + +void +debug_candidates (trg) + int trg; +{ + int i; + + fprintf (sched_dump, "----------- candidate table: target: b=%d bb=%d ---\n", + BB_TO_BLOCK (trg), trg); + for (i = trg + 1; i < current_nr_blocks; i++) + debug_candidate (i); +} + +/* Functions for speculative scheduing. */ + +/* Return 0 if x is a set of a register alive in the beginning of one + of the split-blocks of src, otherwise return 1. */ + +static int +check_live_1 (src, x) + int src; + rtx x; +{ + register int i; + register int regno; + register rtx reg = SET_DEST (x); + + if (reg == 0) + return 1; + + while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT + || GET_CODE (reg) == SIGN_EXTRACT + || GET_CODE (reg) == STRICT_LOW_PART) + reg = XEXP (reg, 0); + + if (GET_CODE (reg) == PARALLEL + && GET_MODE (reg) == BLKmode) + { + register int i; + for (i = XVECLEN (reg, 0) - 1; i >= 0; i--) + if (check_live_1 (src, XVECEXP (reg, 0, i))) + return 1; + return 0; + } + + if (GET_CODE (reg) != REG) + return 1; + + regno = REGNO (reg); + + if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno]) + { + /* Global registers are assumed live. */ + return 0; + } + else + { + if (regno < FIRST_PSEUDO_REGISTER) + { + /* Check for hard registers. */ + int j = HARD_REGNO_NREGS (regno, GET_MODE (reg)); + while (--j >= 0) + { + for (i = 0; i < candidate_table[src].split_bbs.nr_members; i++) + { + int b = candidate_table[src].split_bbs.first_member[i]; + + if (REGNO_REG_SET_P (BASIC_BLOCK (b)->global_live_at_start, + regno + j)) + { + return 0; + } + } + } + } + else + { + /* Check for psuedo registers. */ + for (i = 0; i < candidate_table[src].split_bbs.nr_members; i++) + { + int b = candidate_table[src].split_bbs.first_member[i]; + + if (REGNO_REG_SET_P (BASIC_BLOCK (b)->global_live_at_start, regno)) + { + return 0; + } + } + } + } + + return 1; +} + +/* If x is a set of a register R, mark that R is alive in the beginning + of every update-block of src. */ + +static void +update_live_1 (src, x) + int src; + rtx x; +{ + register int i; + register int regno; + register rtx reg = SET_DEST (x); + + if (reg == 0) + return; + + while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT + || GET_CODE (reg) == SIGN_EXTRACT + || GET_CODE (reg) == STRICT_LOW_PART) + reg = XEXP (reg, 0); + + if (GET_CODE (reg) == PARALLEL + && GET_MODE (reg) == BLKmode) + { + register int i; + for (i = XVECLEN (reg, 0) - 1; i >= 0; i--) + update_live_1 (src, XVECEXP (reg, 0, i)); + return; + } + + if (GET_CODE (reg) != REG) + return; + + /* Global registers are always live, so the code below does not apply + to them. */ + + regno = REGNO (reg); + + if (regno >= FIRST_PSEUDO_REGISTER || !global_regs[regno]) + { + if (regno < FIRST_PSEUDO_REGISTER) + { + int j = HARD_REGNO_NREGS (regno, GET_MODE (reg)); + while (--j >= 0) + { + for (i = 0; i < candidate_table[src].update_bbs.nr_members; i++) + { + int b = candidate_table[src].update_bbs.first_member[i]; + + SET_REGNO_REG_SET (BASIC_BLOCK (b)->global_live_at_start, + regno + j); + } + } + } + else + { + for (i = 0; i < candidate_table[src].update_bbs.nr_members; i++) + { + int b = candidate_table[src].update_bbs.first_member[i]; + + SET_REGNO_REG_SET (BASIC_BLOCK (b)->global_live_at_start, regno); + } + } + } +} + +/* Return 1 if insn can be speculatively moved from block src to trg, + otherwise return 0. Called before first insertion of insn to + ready-list or before the scheduling. */ + +static int +check_live (insn, src) + rtx insn; + int src; +{ + /* Find the registers set by instruction. */ + if (GET_CODE (PATTERN (insn)) == SET + || GET_CODE (PATTERN (insn)) == CLOBBER) + return check_live_1 (src, PATTERN (insn)); + else if (GET_CODE (PATTERN (insn)) == PARALLEL) + { + int j; + for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--) + if ((GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET + || GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER) + && !check_live_1 (src, XVECEXP (PATTERN (insn), 0, j))) + return 0; + + return 1; + } + + return 1; +} + +/* Update the live registers info after insn was moved speculatively from + block src to trg. */ + +static void +update_live (insn, src) + rtx insn; + int src; +{ + /* Find the registers set by instruction. */ + if (GET_CODE (PATTERN (insn)) == SET + || GET_CODE (PATTERN (insn)) == CLOBBER) + update_live_1 (src, PATTERN (insn)); + else if (GET_CODE (PATTERN (insn)) == PARALLEL) + { + int j; + for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--) + if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET + || GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER) + update_live_1 (src, XVECEXP (PATTERN (insn), 0, j)); + } +} + +/* Exception Free Loads: + + We define five classes of speculative loads: IFREE, IRISKY, + PFREE, PRISKY, and MFREE. + + IFREE loads are loads that are proved to be exception-free, just + by examining the load insn. Examples for such loads are loads + from TOC and loads of global data. + + IRISKY loads are loads that are proved to be exception-risky, + just by examining the load insn. Examples for such loads are + volatile loads and loads from shared memory. + + PFREE loads are loads for which we can prove, by examining other + insns, that they are exception-free. Currently, this class consists + of loads for which we are able to find a "similar load", either in + the target block, or, if only one split-block exists, in that split + block. Load2 is similar to load1 if both have same single base + register. We identify only part of the similar loads, by finding + an insn upon which both load1 and load2 have a DEF-USE dependence. + + PRISKY loads are loads for which we can prove, by examining other + insns, that they are exception-risky. Currently we have two proofs for + such loads. The first proof detects loads that are probably guarded by a + test on the memory address. This proof is based on the + backward and forward data dependence information for the region. + Let load-insn be the examined load. + Load-insn is PRISKY iff ALL the following hold: + + - insn1 is not in the same block as load-insn + - there is a DEF-USE dependence chain (insn1, ..., load-insn) + - test-insn is either a compare or a branch, not in the same block + as load-insn + - load-insn is reachable from test-insn + - there is a DEF-USE dependence chain (insn1, ..., test-insn) + + This proof might fail when the compare and the load are fed + by an insn not in the region. To solve this, we will add to this + group all loads that have no input DEF-USE dependence. + + The second proof detects loads that are directly or indirectly + fed by a speculative load. This proof is affected by the + scheduling process. We will use the flag fed_by_spec_load. + Initially, all insns have this flag reset. After a speculative + motion of an insn, if insn is either a load, or marked as + fed_by_spec_load, we will also mark as fed_by_spec_load every + insn1 for which a DEF-USE dependence (insn, insn1) exists. A + load which is fed_by_spec_load is also PRISKY. + + MFREE (maybe-free) loads are all the remaining loads. They may be + exception-free, but we cannot prove it. + + Now, all loads in IFREE and PFREE classes are considered + exception-free, while all loads in IRISKY and PRISKY classes are + considered exception-risky. As for loads in the MFREE class, + these are considered either exception-free or exception-risky, + depending on whether we are pessimistic or optimistic. We have + to take the pessimistic approach to assure the safety of + speculative scheduling, but we can take the optimistic approach + by invoking the -fsched_spec_load_dangerous option. */ + +enum INSN_TRAP_CLASS +{ + TRAP_FREE = 0, IFREE = 1, PFREE_CANDIDATE = 2, + PRISKY_CANDIDATE = 3, IRISKY = 4, TRAP_RISKY = 5 +}; + +#define WORST_CLASS(class1, class2) \ +((class1 > class2) ? class1 : class2) + +/* Non-zero if block bb_to is equal to, or reachable from block bb_from. */ +#define IS_REACHABLE(bb_from, bb_to) \ +(bb_from == bb_to \ + || IS_RGN_ENTRY (bb_from) \ + || (bitset_member (ancestor_edges[bb_to], \ + EDGE_TO_BIT (IN_EDGES (BB_TO_BLOCK (bb_from))), \ + edgeset_size))) + +/* Non-zero iff the address is comprised from at most 1 register. */ +#define CONST_BASED_ADDRESS_P(x) \ + (GET_CODE (x) == REG \ + || ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS \ + || (GET_CODE (x) == LO_SUM)) \ + && (GET_CODE (XEXP (x, 0)) == CONST_INT \ + || GET_CODE (XEXP (x, 1)) == CONST_INT))) + +/* Turns on the fed_by_spec_load flag for insns fed by load_insn. */ + +static void +set_spec_fed (load_insn) + rtx load_insn; +{ + rtx link; + + for (link = INSN_DEPEND (load_insn); link; link = XEXP (link, 1)) + if (GET_MODE (link) == VOIDmode) + FED_BY_SPEC_LOAD (XEXP (link, 0)) = 1; +} /* set_spec_fed */ + +/* On the path from the insn to load_insn_bb, find a conditional +branch depending on insn, that guards the speculative load. */ + +static int +find_conditional_protection (insn, load_insn_bb) + rtx insn; + int load_insn_bb; +{ + rtx link; + + /* Iterate through DEF-USE forward dependences. */ + for (link = INSN_DEPEND (insn); link; link = XEXP (link, 1)) + { + rtx next = XEXP (link, 0); + if ((CONTAINING_RGN (BLOCK_NUM (next)) == + CONTAINING_RGN (BB_TO_BLOCK (load_insn_bb))) + && IS_REACHABLE (INSN_BB (next), load_insn_bb) + && load_insn_bb != INSN_BB (next) + && GET_MODE (link) == VOIDmode + && (GET_CODE (next) == JUMP_INSN + || find_conditional_protection (next, load_insn_bb))) + return 1; + } + return 0; +} /* find_conditional_protection */ + +/* Returns 1 if the same insn1 that participates in the computation + of load_insn's address is feeding a conditional branch that is + guarding on load_insn. This is true if we find a the two DEF-USE + chains: + insn1 -> ... -> conditional-branch + insn1 -> ... -> load_insn, + and if a flow path exist: + insn1 -> ... -> conditional-branch -> ... -> load_insn, + and if insn1 is on the path + region-entry -> ... -> bb_trg -> ... load_insn. + + Locate insn1 by climbing on LOG_LINKS from load_insn. + Locate the branch by following INSN_DEPEND from insn1. */ + +static int +is_conditionally_protected (load_insn, bb_src, bb_trg) + rtx load_insn; + int bb_src, bb_trg; +{ + rtx link; + + for (link = LOG_LINKS (load_insn); link; link = XEXP (link, 1)) + { + rtx insn1 = XEXP (link, 0); + + /* Must be a DEF-USE dependence upon non-branch. */ + if (GET_MODE (link) != VOIDmode + || GET_CODE (insn1) == JUMP_INSN) + continue; + + /* Must exist a path: region-entry -> ... -> bb_trg -> ... load_insn. */ + if (INSN_BB (insn1) == bb_src + || (CONTAINING_RGN (BLOCK_NUM (insn1)) + != CONTAINING_RGN (BB_TO_BLOCK (bb_src))) + || (!IS_REACHABLE (bb_trg, INSN_BB (insn1)) + && !IS_REACHABLE (INSN_BB (insn1), bb_trg))) + continue; + + /* Now search for the conditional-branch. */ + if (find_conditional_protection (insn1, bb_src)) + return 1; + + /* Recursive step: search another insn1, "above" current insn1. */ + return is_conditionally_protected (insn1, bb_src, bb_trg); + } + + /* The chain does not exist. */ + return 0; +} /* is_conditionally_protected */ + +/* Returns 1 if a clue for "similar load" 'insn2' is found, and hence + load_insn can move speculatively from bb_src to bb_trg. All the + following must hold: + + (1) both loads have 1 base register (PFREE_CANDIDATEs). + (2) load_insn and load1 have a def-use dependence upon + the same insn 'insn1'. + (3) either load2 is in bb_trg, or: + - there's only one split-block, and + - load1 is on the escape path, and + + From all these we can conclude that the two loads access memory + addresses that differ at most by a constant, and hence if moving + load_insn would cause an exception, it would have been caused by + load2 anyhow. */ + +static int +is_pfree (load_insn, bb_src, bb_trg) + rtx load_insn; + int bb_src, bb_trg; +{ + rtx back_link; + register candidate *candp = candidate_table + bb_src; + + if (candp->split_bbs.nr_members != 1) + /* Must have exactly one escape block. */ + return 0; + + for (back_link = LOG_LINKS (load_insn); + back_link; back_link = XEXP (back_link, 1)) + { + rtx insn1 = XEXP (back_link, 0); + + if (GET_MODE (back_link) == VOIDmode) + { + /* Found a DEF-USE dependence (insn1, load_insn). */ + rtx fore_link; + + for (fore_link = INSN_DEPEND (insn1); + fore_link; fore_link = XEXP (fore_link, 1)) + { + rtx insn2 = XEXP (fore_link, 0); + if (GET_MODE (fore_link) == VOIDmode) + { + /* Found a DEF-USE dependence (insn1, insn2). */ + if (haifa_classify_insn (insn2) != PFREE_CANDIDATE) + /* insn2 not guaranteed to be a 1 base reg load. */ + continue; + + if (INSN_BB (insn2) == bb_trg) + /* insn2 is the similar load, in the target block. */ + return 1; + + if (*(candp->split_bbs.first_member) == BLOCK_NUM (insn2)) + /* insn2 is a similar load, in a split-block. */ + return 1; + } + } + } + } + + /* Couldn't find a similar load. */ + return 0; +} /* is_pfree */ + +/* Returns a class that insn with GET_DEST(insn)=x may belong to, + as found by analyzing insn's expression. */ + +static int +may_trap_exp (x, is_store) + rtx x; + int is_store; +{ + enum rtx_code code; + + if (x == 0) + return TRAP_FREE; + code = GET_CODE (x); + if (is_store) + { + if (code == MEM) + return TRAP_RISKY; + else + return TRAP_FREE; + } + if (code == MEM) + { + /* The insn uses memory: a volatile load. */ + if (MEM_VOLATILE_P (x)) + return IRISKY; + /* An exception-free load. */ + if (!may_trap_p (x)) + return IFREE; + /* A load with 1 base register, to be further checked. */ + if (CONST_BASED_ADDRESS_P (XEXP (x, 0))) + return PFREE_CANDIDATE; + /* No info on the load, to be further checked. */ + return PRISKY_CANDIDATE; + } + else + { + const char *fmt; + int i, insn_class = TRAP_FREE; + + /* Neither store nor load, check if it may cause a trap. */ + if (may_trap_p (x)) + return TRAP_RISKY; + /* Recursive step: walk the insn... */ + fmt = GET_RTX_FORMAT (code); + for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) + { + if (fmt[i] == 'e') + { + int tmp_class = may_trap_exp (XEXP (x, i), is_store); + insn_class = WORST_CLASS (insn_class, tmp_class); + } + else if (fmt[i] == 'E') + { + int j; + for (j = 0; j < XVECLEN (x, i); j++) + { + int tmp_class = may_trap_exp (XVECEXP (x, i, j), is_store); + insn_class = WORST_CLASS (insn_class, tmp_class); + if (insn_class == TRAP_RISKY || insn_class == IRISKY) + break; + } + } + if (insn_class == TRAP_RISKY || insn_class == IRISKY) + break; + } + return insn_class; + } +} + +/* Classifies insn for the purpose of verifying that it can be + moved speculatively, by examining it's patterns, returning: + TRAP_RISKY: store, or risky non-load insn (e.g. division by variable). + TRAP_FREE: non-load insn. + IFREE: load from a globaly safe location. + IRISKY: volatile load. + PFREE_CANDIDATE, PRISKY_CANDIDATE: load that need to be checked for + being either PFREE or PRISKY. */ + +static int +haifa_classify_insn (insn) + rtx insn; +{ + rtx pat = PATTERN (insn); + int tmp_class = TRAP_FREE; + int insn_class = TRAP_FREE; + enum rtx_code code; + + if (GET_CODE (pat) == PARALLEL) + { + int i, len = XVECLEN (pat, 0); + + for (i = len - 1; i >= 0; i--) + { + code = GET_CODE (XVECEXP (pat, 0, i)); + switch (code) + { + case CLOBBER: + /* Test if it is a 'store'. */ + tmp_class = may_trap_exp (XEXP (XVECEXP (pat, 0, i), 0), 1); + break; + case SET: + /* Test if it is a store. */ + tmp_class = may_trap_exp (SET_DEST (XVECEXP (pat, 0, i)), 1); + if (tmp_class == TRAP_RISKY) + break; + /* Test if it is a load. */ + tmp_class = + WORST_CLASS (tmp_class, + may_trap_exp (SET_SRC (XVECEXP (pat, 0, i)), 0)); + break; + case COND_EXEC: + case TRAP_IF: + tmp_class = TRAP_RISKY; + break; + default:; + } + insn_class = WORST_CLASS (insn_class, tmp_class); + if (insn_class == TRAP_RISKY || insn_class == IRISKY) + break; + } + } + else + { + code = GET_CODE (pat); + switch (code) + { + case CLOBBER: + /* Test if it is a 'store'. */ + tmp_class = may_trap_exp (XEXP (pat, 0), 1); + break; + case SET: + /* Test if it is a store. */ + tmp_class = may_trap_exp (SET_DEST (pat), 1); + if (tmp_class == TRAP_RISKY) + break; + /* Test if it is a load. */ + tmp_class = + WORST_CLASS (tmp_class, + may_trap_exp (SET_SRC (pat), 0)); + break; + case COND_EXEC: + case TRAP_IF: + tmp_class = TRAP_RISKY; + break; + default:; + } + insn_class = tmp_class; + } + + return insn_class; +} + +/* Return 1 if load_insn is prisky (i.e. if load_insn is fed by + a load moved speculatively, or if load_insn is protected by + a compare on load_insn's address). */ + +static int +is_prisky (load_insn, bb_src, bb_trg) + rtx load_insn; + int bb_src, bb_trg; +{ + if (FED_BY_SPEC_LOAD (load_insn)) + return 1; + + if (LOG_LINKS (load_insn) == NULL) + /* Dependence may 'hide' out of the region. */ + return 1; + + if (is_conditionally_protected (load_insn, bb_src, bb_trg)) + return 1; + + return 0; +} + +/* Insn is a candidate to be moved speculatively from bb_src to bb_trg. + Return 1 if insn is exception-free (and the motion is valid) + and 0 otherwise. */ + +static int +is_exception_free (insn, bb_src, bb_trg) + rtx insn; + int bb_src, bb_trg; +{ + int insn_class = haifa_classify_insn (insn); + + /* Handle non-load insns. */ + switch (insn_class) + { + case TRAP_FREE: + return 1; + case TRAP_RISKY: + return 0; + default:; + } + + /* Handle loads. */ + if (!flag_schedule_speculative_load) + return 0; + IS_LOAD_INSN (insn) = 1; + switch (insn_class) + { + case IFREE: + return (1); + case IRISKY: + return 0; + case PFREE_CANDIDATE: + if (is_pfree (insn, bb_src, bb_trg)) + return 1; + /* Don't 'break' here: PFREE-candidate is also PRISKY-candidate. */ + case PRISKY_CANDIDATE: + if (!flag_schedule_speculative_load_dangerous + || is_prisky (insn, bb_src, bb_trg)) + return 0; + break; + default:; + } + + return flag_schedule_speculative_load_dangerous; +} + +/* The number of insns from the current block scheduled so far. */ +static int sched_target_n_insns; +/* The number of insns from the current block to be scheduled in total. */ +static int target_n_insns; +/* The number of insns from the entire region scheduled so far. */ +static int sched_n_insns; + +/* Implementations of the sched_info functions for region scheduling. */ +static void init_ready_list PARAMS ((struct ready_list *)); +static int can_schedule_ready_p PARAMS ((rtx)); +static int new_ready PARAMS ((rtx)); +static int schedule_more_p PARAMS ((void)); +static const char *rgn_print_insn PARAMS ((rtx, int)); +static int rgn_rank PARAMS ((rtx, rtx)); + +/* Return nonzero if there are more insns that should be scheduled. */ + +static int +schedule_more_p () +{ + return sched_target_n_insns < target_n_insns; +} + +/* Add all insns that are initially ready to the ready list READY. Called + once before scheduling a set of insns. */ + +static void +init_ready_list (ready) + struct ready_list *ready; +{ + rtx prev_head = current_sched_info->prev_head; + rtx next_tail = current_sched_info->next_tail; + int bb_src; + rtx insn; + + target_n_insns = 0; + sched_target_n_insns = 0; + sched_n_insns = 0; + + /* Print debugging information. */ + if (sched_verbose >= 5) + debug_dependencies (); + + /* Prepare current target block info. */ + if (current_nr_blocks > 1) + { + candidate_table = (candidate *) xmalloc (current_nr_blocks + * sizeof (candidate)); + + bblst_last = 0; + /* bblst_table holds split blocks and update blocks for each block after + the current one in the region. split blocks and update blocks are + the TO blocks of region edges, so there can be at most rgn_nr_edges + of them. */ + bblst_size = (current_nr_blocks - target_bb) * rgn_nr_edges; + bblst_table = (int *) xmalloc (bblst_size * sizeof (int)); + + bitlst_table_last = 0; + bitlst_table_size = rgn_nr_edges; + bitlst_table = (int *) xmalloc (rgn_nr_edges * sizeof (int)); + + compute_trg_info (target_bb); + } + + /* Initialize ready list with all 'ready' insns in target block. + Count number of insns in the target block being scheduled. */ + for (insn = NEXT_INSN (prev_head); insn != next_tail; insn = NEXT_INSN (insn)) + { + rtx next; + + if (! INSN_P (insn)) + continue; + next = NEXT_INSN (insn); + + if (INSN_DEP_COUNT (insn) == 0 + && (SCHED_GROUP_P (next) == 0 || ! INSN_P (next))) + ready_add (ready, insn); + if (!(SCHED_GROUP_P (insn))) + target_n_insns++; + } + + /* Add to ready list all 'ready' insns in valid source blocks. + For speculative insns, check-live, exception-free, and + issue-delay. */ + for (bb_src = target_bb + 1; bb_src < current_nr_blocks; bb_src++) + if (IS_VALID (bb_src)) + { + rtx src_head; + rtx src_next_tail; + rtx tail, head; + + get_block_head_tail (BB_TO_BLOCK (bb_src), &head, &tail); + src_next_tail = NEXT_INSN (tail); + src_head = head; + + for (insn = src_head; insn != src_next_tail; insn = NEXT_INSN (insn)) + { + if (! INSN_P (insn)) + continue; + + if (!CANT_MOVE (insn) + && (!IS_SPECULATIVE_INSN (insn) + || (insn_issue_delay (insn) <= 3 + && check_live (insn, bb_src) + && is_exception_free (insn, bb_src, target_bb)))) + { + rtx next; + + /* Note that we havn't squirrled away the notes for + blocks other than the current. So if this is a + speculative insn, NEXT might otherwise be a note. */ + next = next_nonnote_insn (insn); + if (INSN_DEP_COUNT (insn) == 0 + && (! next + || SCHED_GROUP_P (next) == 0 + || ! INSN_P (next))) + ready_add (ready, insn); + } + } + } +} + +/* Called after taking INSN from the ready list. Returns nonzero if this + insn can be scheduled, nonzero if we should silently discard it. */ + +static int +can_schedule_ready_p (insn) + rtx insn; +{ + /* An interblock motion? */ + if (INSN_BB (insn) != target_bb) + { + rtx temp; + basic_block b1; + + if (IS_SPECULATIVE_INSN (insn)) + { + if (!check_live (insn, INSN_BB (insn))) + return 0; + update_live (insn, INSN_BB (insn)); + + /* For speculative load, mark insns fed by it. */ + if (IS_LOAD_INSN (insn) || FED_BY_SPEC_LOAD (insn)) + set_spec_fed (insn); + + nr_spec++; + } + nr_inter++; + + /* Find the beginning of the scheduling group. */ + /* ??? Ought to update basic block here, but later bits of + schedule_block assumes the original insn block is + still intact. */ + + temp = insn; + while (SCHED_GROUP_P (temp)) + temp = PREV_INSN (temp); + + /* Update source block boundaries. */ + b1 = BLOCK_FOR_INSN (temp); + if (temp == b1->head && insn == b1->end) + { + /* We moved all the insns in the basic block. + Emit a note after the last insn and update the + begin/end boundaries to point to the note. */ + rtx note = emit_note_after (NOTE_INSN_DELETED, insn); + b1->head = note; + b1->end = note; + } + else if (insn == b1->end) + { + /* We took insns from the end of the basic block, + so update the end of block boundary so that it + points to the first insn we did not move. */ + b1->end = PREV_INSN (temp); + } + else if (temp == b1->head) + { + /* We took insns from the start of the basic block, + so update the start of block boundary so that + it points to the first insn we did not move. */ + b1->head = NEXT_INSN (insn); + } + } + else + { + /* In block motion. */ + sched_target_n_insns++; + } + sched_n_insns++; + + return 1; +} + +/* Called after INSN has all its dependencies resolved. Return nonzero + if it should be moved to the ready list or the queue, or zero if we + should silently discard it. */ +static int +new_ready (next) + rtx next; +{ + /* For speculative insns, before inserting to ready/queue, + check live, exception-free, and issue-delay. */ + if (INSN_BB (next) != target_bb + && (!IS_VALID (INSN_BB (next)) + || CANT_MOVE (next) + || (IS_SPECULATIVE_INSN (next) + && (insn_issue_delay (next) > 3 + || !check_live (next, INSN_BB (next)) + || !is_exception_free (next, INSN_BB (next), target_bb))))) + return 0; + return 1; +} + +/* Return a string that contains the insn uid and optionally anything else + necessary to identify this insn in an output. It's valid to use a + static buffer for this. The ALIGNED parameter should cause the string + to be formatted so that multiple output lines will line up nicely. */ + +static const char * +rgn_print_insn (insn, aligned) + rtx insn; + int aligned; +{ + static char tmp[80]; + + if (aligned) + sprintf (tmp, "b%3d: i%4d", INSN_BB (insn), INSN_UID (insn)); + else + { + sprintf (tmp, "%d", INSN_UID (insn)); + if (current_nr_blocks > 1 && INSN_BB (insn) != target_bb) + sprintf (tmp, "/b%d ", INSN_BB (insn)); + } + return tmp; +} + +/* Compare priority of two insns. Return a positive number if the second + insn is to be preferred for scheduling, and a negative one if the first + is to be preferred. Zero if they are equally good. */ + +static int +rgn_rank (insn1, insn2) + rtx insn1, insn2; +{ + /* Some comparison make sense in interblock scheduling only. */ + if (INSN_BB (insn1) != INSN_BB (insn2)) + { + int spec_val, prob_val; + + /* Prefer an inblock motion on an interblock motion. */ + if ((INSN_BB (insn2) == target_bb) && (INSN_BB (insn1) != target_bb)) + return 1; + if ((INSN_BB (insn1) == target_bb) && (INSN_BB (insn2) != target_bb)) + return -1; + + /* Prefer a useful motion on a speculative one. */ + spec_val = IS_SPECULATIVE_INSN (insn1) - IS_SPECULATIVE_INSN (insn2); + if (spec_val) + return spec_val; + + /* Prefer a more probable (speculative) insn. */ + prob_val = INSN_PROBABILITY (insn2) - INSN_PROBABILITY (insn1); + if (prob_val) + return prob_val; + } + return 0; +} + +/* Used in schedule_insns to initialize current_sched_info for scheduling + regions (or single basic blocks). */ + +static struct sched_info region_sched_info = +{ + init_ready_list, + can_schedule_ready_p, + schedule_more_p, + new_ready, + rgn_rank, + rgn_print_insn, + + NULL, NULL, + NULL, NULL, + 0 +}; + +/* Add dependences so that branches are scheduled to run last in their + block. */ + +static void +add_branch_dependences (head, tail) + rtx head, tail; +{ + rtx insn, last; + + /* For all branches, calls, uses, clobbers, and cc0 setters, force them + to remain in order at the end of the block by adding dependencies and + giving the last a high priority. There may be notes present, and + prev_head may also be a note. + + Branches must obviously remain at the end. Calls should remain at the + end since moving them results in worse register allocation. Uses remain + at the end to ensure proper register allocation. cc0 setters remaim + at the end because they can't be moved away from their cc0 user. */ + insn = tail; + last = 0; + while (GET_CODE (insn) == CALL_INSN + || GET_CODE (insn) == JUMP_INSN + || (GET_CODE (insn) == INSN + && (GET_CODE (PATTERN (insn)) == USE + || GET_CODE (PATTERN (insn)) == CLOBBER +#ifdef HAVE_cc0 + || sets_cc0_p (PATTERN (insn)) +#endif + )) + || GET_CODE (insn) == NOTE) + { + if (GET_CODE (insn) != NOTE) + { + if (last != 0 + && !find_insn_list (insn, LOG_LINKS (last))) + { + add_dependence (last, insn, REG_DEP_ANTI); + INSN_REF_COUNT (insn)++; + } + + CANT_MOVE (insn) = 1; + + last = insn; + /* Skip over insns that are part of a group. + Make each insn explicitly depend on the previous insn. + This ensures that only the group header will ever enter + the ready queue (and, when scheduled, will automatically + schedule the SCHED_GROUP_P block). */ + while (SCHED_GROUP_P (insn)) + { + rtx temp = prev_nonnote_insn (insn); + add_dependence (insn, temp, REG_DEP_ANTI); + insn = temp; + } + } + + /* Don't overrun the bounds of the basic block. */ + if (insn == head) + break; + + insn = PREV_INSN (insn); + } + + /* Make sure these insns are scheduled last in their block. */ + insn = last; + if (insn != 0) + while (insn != head) + { + insn = prev_nonnote_insn (insn); + + if (INSN_REF_COUNT (insn) != 0) + continue; + + add_dependence (last, insn, REG_DEP_ANTI); + INSN_REF_COUNT (insn) = 1; + + /* Skip over insns that are part of a group. */ + while (SCHED_GROUP_P (insn)) + insn = prev_nonnote_insn (insn); + } +} + +/* Data structures for the computation of data dependences in a regions. We + keep one `deps' structure for every basic block. Before analyzing the + data dependences for a bb, its variables are initialized as a function of + the variables of its predecessors. When the analysis for a bb completes, + we save the contents to the corresponding bb_deps[bb] variable. */ + +static struct deps *bb_deps; + +/* After computing the dependencies for block BB, propagate the dependencies + found in TMP_DEPS to the successors of the block. MAX_REG is the number + of registers. */ +static void +propagate_deps (bb, tmp_deps, max_reg) + int bb; + struct deps *tmp_deps; + int max_reg; +{ + int b = BB_TO_BLOCK (bb); + int e, first_edge; + int reg; + rtx link_insn, link_mem; + rtx u; + + /* These lists should point to the right place, for correct + freeing later. */ + bb_deps[bb].pending_read_insns = tmp_deps->pending_read_insns; + bb_deps[bb].pending_read_mems = tmp_deps->pending_read_mems; + bb_deps[bb].pending_write_insns = tmp_deps->pending_write_insns; + bb_deps[bb].pending_write_mems = tmp_deps->pending_write_mems; + + /* bb's structures are inherited by its successors. */ + first_edge = e = OUT_EDGES (b); + if (e <= 0) + return; + + do + { + rtx x; + int b_succ = TO_BLOCK (e); + int bb_succ = BLOCK_TO_BB (b_succ); + struct deps *succ_deps = bb_deps + bb_succ; + + /* Only bbs "below" bb, in the same region, are interesting. */ + if (CONTAINING_RGN (b) != CONTAINING_RGN (b_succ) + || bb_succ <= bb) + { + e = NEXT_OUT (e); + continue; + } + + for (reg = 0; reg < max_reg; reg++) + { + /* reg-last-uses lists are inherited by bb_succ. */ + for (u = tmp_deps->reg_last_uses[reg]; u; u = XEXP (u, 1)) + { + if (find_insn_list (XEXP (u, 0), + succ_deps->reg_last_uses[reg])) + continue; + + succ_deps->reg_last_uses[reg] + = alloc_INSN_LIST (XEXP (u, 0), + succ_deps->reg_last_uses[reg]); + } + + /* reg-last-defs lists are inherited by bb_succ. */ + for (u = tmp_deps->reg_last_sets[reg]; u; u = XEXP (u, 1)) + { + if (find_insn_list (XEXP (u, 0), + succ_deps->reg_last_sets[reg])) + continue; + + succ_deps->reg_last_sets[reg] + = alloc_INSN_LIST (XEXP (u, 0), + succ_deps->reg_last_sets[reg]); + } + + for (u = tmp_deps->reg_last_clobbers[reg]; u; u = XEXP (u, 1)) + { + if (find_insn_list (XEXP (u, 0), + succ_deps->reg_last_clobbers[reg])) + continue; + + succ_deps->reg_last_clobbers[reg] + = alloc_INSN_LIST (XEXP (u, 0), + succ_deps->reg_last_clobbers[reg]); + } + } + + /* Mem read/write lists are inherited by bb_succ. */ + link_insn = tmp_deps->pending_read_insns; + link_mem = tmp_deps->pending_read_mems; + while (link_insn) + { + if (!(find_insn_mem_list (XEXP (link_insn, 0), + XEXP (link_mem, 0), + succ_deps->pending_read_insns, + succ_deps->pending_read_mems))) + add_insn_mem_dependence (succ_deps, &succ_deps->pending_read_insns, + &succ_deps->pending_read_mems, + XEXP (link_insn, 0), XEXP (link_mem, 0)); + link_insn = XEXP (link_insn, 1); + link_mem = XEXP (link_mem, 1); + } + + link_insn = tmp_deps->pending_write_insns; + link_mem = tmp_deps->pending_write_mems; + while (link_insn) + { + if (!(find_insn_mem_list (XEXP (link_insn, 0), + XEXP (link_mem, 0), + succ_deps->pending_write_insns, + succ_deps->pending_write_mems))) + add_insn_mem_dependence (succ_deps, + &succ_deps->pending_write_insns, + &succ_deps->pending_write_mems, + XEXP (link_insn, 0), XEXP (link_mem, 0)); + + link_insn = XEXP (link_insn, 1); + link_mem = XEXP (link_mem, 1); + } + + /* last_function_call is inherited by bb_succ. */ + for (u = tmp_deps->last_function_call; u; u = XEXP (u, 1)) + { + if (find_insn_list (XEXP (u, 0), + succ_deps->last_function_call)) + continue; + + succ_deps->last_function_call + = alloc_INSN_LIST (XEXP (u, 0), + succ_deps->last_function_call); + } + + /* last_pending_memory_flush is inherited by bb_succ. */ + for (u = tmp_deps->last_pending_memory_flush; u; u = XEXP (u, 1)) + { + if (find_insn_list (XEXP (u, 0), + succ_deps->last_pending_memory_flush)) + continue; + + succ_deps->last_pending_memory_flush + = alloc_INSN_LIST (XEXP (u, 0), + succ_deps->last_pending_memory_flush); + } + + /* sched_before_next_call is inherited by bb_succ. */ + x = LOG_LINKS (tmp_deps->sched_before_next_call); + for (; x; x = XEXP (x, 1)) + add_dependence (succ_deps->sched_before_next_call, + XEXP (x, 0), REG_DEP_ANTI); + + e = NEXT_OUT (e); + } + while (e != first_edge); +} + +/* Compute backward dependences inside bb. In a multiple blocks region: + (1) a bb is analyzed after its predecessors, and (2) the lists in + effect at the end of bb (after analyzing for bb) are inherited by + bb's successrs. + + Specifically for reg-reg data dependences, the block insns are + scanned by sched_analyze () top-to-bottom. Two lists are + maintained by sched_analyze (): reg_last_sets[] for register DEFs, + and reg_last_uses[] for register USEs. + + When analysis is completed for bb, we update for its successors: + ; - DEFS[succ] = Union (DEFS [succ], DEFS [bb]) + ; - USES[succ] = Union (USES [succ], DEFS [bb]) + + The mechanism for computing mem-mem data dependence is very + similar, and the result is interblock dependences in the region. */ + +static void +compute_block_backward_dependences (bb) + int bb; +{ + rtx head, tail; + int max_reg = max_reg_num (); + struct deps tmp_deps; + + tmp_deps = bb_deps[bb]; + + /* Do the analysis for this block. */ + get_block_head_tail (BB_TO_BLOCK (bb), &head, &tail); + sched_analyze (&tmp_deps, head, tail); + add_branch_dependences (head, tail); + + if (current_nr_blocks > 1) + propagate_deps (bb, &tmp_deps, max_reg); + + /* Free up the INSN_LISTs. */ + free_deps (&tmp_deps); + + /* Assert that we won't need bb_reg_last_* for this block anymore. */ + free (bb_deps[bb].reg_last_uses); + free (bb_deps[bb].reg_last_sets); + free (bb_deps[bb].reg_last_clobbers); + bb_deps[bb].reg_last_uses = 0; + bb_deps[bb].reg_last_sets = 0; + bb_deps[bb].reg_last_clobbers = 0; +} +/* Remove all INSN_LISTs and EXPR_LISTs from the pending lists and add + them to the unused_*_list variables, so that they can be reused. */ + +static void +free_pending_lists () +{ + int bb; + + for (bb = 0; bb < current_nr_blocks; bb++) + { + free_INSN_LIST_list (&bb_deps[bb].pending_read_insns); + free_INSN_LIST_list (&bb_deps[bb].pending_write_insns); + free_EXPR_LIST_list (&bb_deps[bb].pending_read_mems); + free_EXPR_LIST_list (&bb_deps[bb].pending_write_mems); + } +} + +/* Print dependences for debugging, callable from debugger. */ + +void +debug_dependencies () +{ + int bb; + + fprintf (sched_dump, ";; --------------- forward dependences: ------------ \n"); + for (bb = 0; bb < current_nr_blocks; bb++) + { + if (1) + { + rtx head, tail; + rtx next_tail; + rtx insn; + + get_block_head_tail (BB_TO_BLOCK (bb), &head, &tail); + next_tail = NEXT_INSN (tail); + fprintf (sched_dump, "\n;; --- Region Dependences --- b %d bb %d \n", + BB_TO_BLOCK (bb), bb); + + fprintf (sched_dump, ";; %7s%6s%6s%6s%6s%6s%11s%6s\n", + "insn", "code", "bb", "dep", "prio", "cost", "blockage", "units"); + fprintf (sched_dump, ";; %7s%6s%6s%6s%6s%6s%11s%6s\n", + "----", "----", "--", "---", "----", "----", "--------", "-----"); + for (insn = head; insn != next_tail; insn = NEXT_INSN (insn)) + { + rtx link; + int unit, range; + + if (! INSN_P (insn)) + { + int n; + fprintf (sched_dump, ";; %6d ", INSN_UID (insn)); + if (GET_CODE (insn) == NOTE) + { + n = NOTE_LINE_NUMBER (insn); + if (n < 0) + fprintf (sched_dump, "%s\n", GET_NOTE_INSN_NAME (n)); + else + fprintf (sched_dump, "line %d, file %s\n", n, + NOTE_SOURCE_FILE (insn)); + } + else + fprintf (sched_dump, " {%s}\n", GET_RTX_NAME (GET_CODE (insn))); + continue; + } + + unit = insn_unit (insn); + range = (unit < 0 + || function_units[unit].blockage_range_function == 0) ? 0 : + function_units[unit].blockage_range_function (insn); + fprintf (sched_dump, + ";; %s%5d%6d%6d%6d%6d%6d %3d -%3d ", + (SCHED_GROUP_P (insn) ? "+" : " "), + INSN_UID (insn), + INSN_CODE (insn), + INSN_BB (insn), + INSN_DEP_COUNT (insn), + INSN_PRIORITY (insn), + insn_cost (insn, 0, 0), + (int) MIN_BLOCKAGE_COST (range), + (int) MAX_BLOCKAGE_COST (range)); + insn_print_units (insn); + fprintf (sched_dump, "\t: "); + for (link = INSN_DEPEND (insn); link; link = XEXP (link, 1)) + fprintf (sched_dump, "%d ", INSN_UID (XEXP (link, 0))); + fprintf (sched_dump, "\n"); + } + } + } + fprintf (sched_dump, "\n"); +} + +/* Schedule a region. A region is either an inner loop, a loop-free + subroutine, or a single basic block. Each bb in the region is + scheduled after its flow predecessors. */ + +static void +schedule_region (rgn) + int rgn; +{ + int bb; + int rgn_n_insns = 0; + int sched_rgn_n_insns = 0; + + /* Set variables for the current region. */ + current_nr_blocks = RGN_NR_BLOCKS (rgn); + current_blocks = RGN_BLOCKS (rgn); + + init_deps_global (); + + /* Initializations for region data dependence analyisis. */ + bb_deps = (struct deps *) xmalloc (sizeof (struct deps) * current_nr_blocks); + for (bb = 0; bb < current_nr_blocks; bb++) + init_deps (bb_deps + bb); + + /* Compute LOG_LINKS. */ + for (bb = 0; bb < current_nr_blocks; bb++) + compute_block_backward_dependences (bb); + + /* Compute INSN_DEPEND. */ + for (bb = current_nr_blocks - 1; bb >= 0; bb--) + { + rtx head, tail; + get_block_head_tail (BB_TO_BLOCK (bb), &head, &tail); + + compute_forward_dependences (head, tail); + } + + /* Set priorities. */ + for (bb = 0; bb < current_nr_blocks; bb++) + rgn_n_insns += set_priorities (BB_TO_BLOCK (bb)); + + /* Compute interblock info: probabilities, split-edges, dominators, etc. */ + if (current_nr_blocks > 1) + { + int i; + + prob = (float *) xmalloc ((current_nr_blocks) * sizeof (float)); + + bbset_size = current_nr_blocks / HOST_BITS_PER_WIDE_INT + 1; + dom = (bbset *) xmalloc (current_nr_blocks * sizeof (bbset)); + for (i = 0; i < current_nr_blocks; i++) + dom[i] = (bbset) xcalloc (bbset_size, sizeof (HOST_WIDE_INT)); + + /* Edge to bit. */ + rgn_nr_edges = 0; + edge_to_bit = (int *) xmalloc (nr_edges * sizeof (int)); + for (i = 1; i < nr_edges; i++) + if (CONTAINING_RGN (FROM_BLOCK (i)) == rgn) + EDGE_TO_BIT (i) = rgn_nr_edges++; + rgn_edges = (int *) xmalloc (rgn_nr_edges * sizeof (int)); + + rgn_nr_edges = 0; + for (i = 1; i < nr_edges; i++) + if (CONTAINING_RGN (FROM_BLOCK (i)) == (rgn)) + rgn_edges[rgn_nr_edges++] = i; + + /* Split edges. */ + edgeset_size = rgn_nr_edges / HOST_BITS_PER_WIDE_INT + 1; + edgeset_bitsize = rgn_nr_edges; + pot_split = (edgeset *) xmalloc (current_nr_blocks * sizeof (edgeset)); + ancestor_edges + = (edgeset *) xmalloc (current_nr_blocks * sizeof (edgeset)); + for (i = 0; i < current_nr_blocks; i++) + { + pot_split[i] = + (edgeset) xcalloc (edgeset_size, sizeof (HOST_WIDE_INT)); + ancestor_edges[i] = + (edgeset) xcalloc (edgeset_size, sizeof (HOST_WIDE_INT)); + } + + /* Compute probabilities, dominators, split_edges. */ + for (bb = 0; bb < current_nr_blocks; bb++) + compute_dom_prob_ps (bb); + } + + /* Now we can schedule all blocks. */ + for (bb = 0; bb < current_nr_blocks; bb++) + { + rtx head, tail; + int b = BB_TO_BLOCK (bb); + + get_block_head_tail (b, &head, &tail); + + if (no_real_insns_p (head, tail)) + continue; + + current_sched_info->prev_head = PREV_INSN (head); + current_sched_info->next_tail = NEXT_INSN (tail); + + if (write_symbols != NO_DEBUG) + { + save_line_notes (b); + rm_line_notes (b); + } + + /* rm_other_notes only removes notes which are _inside_ the + block---that is, it won't remove notes before the first real insn + or after the last real insn of the block. So if the first insn + has a REG_SAVE_NOTE which would otherwise be emitted before the + insn, it is redundant with the note before the start of the + block, and so we have to take it out. + + FIXME: Probably the same thing should be done with REG_SAVE_NOTEs + referencing NOTE_INSN_SETJMP at the end of the block. */ + if (INSN_P (head)) + { + rtx note; + + for (note = REG_NOTES (head); note; note = XEXP (note, 1)) + if (REG_NOTE_KIND (note) == REG_SAVE_NOTE) + { + if (INTVAL (XEXP (note, 0)) != NOTE_INSN_SETJMP) + { + remove_note (head, note); + note = XEXP (note, 1); + remove_note (head, note); + } + else + note = XEXP (note, 1); + } + } + + /* Remove remaining note insns from the block, save them in + note_list. These notes are restored at the end of + schedule_block (). */ + rm_other_notes (head, tail); + + target_bb = bb; + + current_sched_info->queue_must_finish_empty + = current_nr_blocks > 1 && !flag_schedule_interblock; + + schedule_block (b, rgn_n_insns); + sched_rgn_n_insns += sched_n_insns; + + /* Update target block boundaries. */ + if (head == BLOCK_HEAD (b)) + BLOCK_HEAD (b) = current_sched_info->head; + if (tail == BLOCK_END (b)) + BLOCK_END (b) = current_sched_info->tail; + + /* Clean up. */ + if (current_nr_blocks > 1) + { + free (candidate_table); + free (bblst_table); + free (bitlst_table); + } + } + + /* Sanity check: verify that all region insns were scheduled. */ + if (sched_rgn_n_insns != rgn_n_insns) + abort (); + + /* Restore line notes. */ + if (write_symbols != NO_DEBUG) + { + for (bb = 0; bb < current_nr_blocks; bb++) + restore_line_notes (BB_TO_BLOCK (bb)); + } + + /* Done with this region. */ + free_pending_lists (); + + finish_deps_global (); + + free (bb_deps); + + if (current_nr_blocks > 1) + { + int i; + + free (prob); + for (i = 0; i < current_nr_blocks; ++i) + { + free (dom[i]); + free (pot_split[i]); + free (ancestor_edges[i]); + } + free (dom); + free (edge_to_bit); + free (rgn_edges); + free (pot_split); + free (ancestor_edges); + } +} + +/* Indexed by region, holds the number of death notes found in that region. + Used for consistency checks. */ +static int *deaths_in_region; + +/* Initialize data structures for region scheduling. */ + +static void +init_regions () +{ + sbitmap blocks; + int rgn; + + nr_regions = 0; + rgn_table = (region *) xmalloc ((n_basic_blocks) * sizeof (region)); + rgn_bb_table = (int *) xmalloc ((n_basic_blocks) * sizeof (int)); + block_to_bb = (int *) xmalloc ((n_basic_blocks) * sizeof (int)); + containing_rgn = (int *) xmalloc ((n_basic_blocks) * sizeof (int)); + + blocks = sbitmap_alloc (n_basic_blocks); + + /* Compute regions for scheduling. */ + if (reload_completed + || n_basic_blocks == 1 + || !flag_schedule_interblock) + { + find_single_block_region (); + } + else + { + /* Verify that a 'good' control flow graph can be built. */ + if (is_cfg_nonregular ()) + { + find_single_block_region (); + } + else + { + sbitmap *dom; + struct edge_list *edge_list; + + dom = sbitmap_vector_alloc (n_basic_blocks, n_basic_blocks); + + /* The scheduler runs after flow; therefore, we can't blindly call + back into find_basic_blocks since doing so could invalidate the + info in global_live_at_start. + + Consider a block consisting entirely of dead stores; after life + analysis it would be a block of NOTE_INSN_DELETED notes. If + we call find_basic_blocks again, then the block would be removed + entirely and invalidate our the register live information. + + We could (should?) recompute register live information. Doing + so may even be beneficial. */ + edge_list = create_edge_list (); + + /* Compute the dominators and post dominators. */ + calculate_dominance_info (NULL, dom, CDI_DOMINATORS); + + /* build_control_flow will return nonzero if it detects unreachable + blocks or any other irregularity with the cfg which prevents + cross block scheduling. */ + if (build_control_flow (edge_list) != 0) + find_single_block_region (); + else + find_rgns (edge_list, dom); + + if (sched_verbose >= 3) + debug_regions (); + + /* We are done with flow's edge list. */ + free_edge_list (edge_list); + + /* For now. This will move as more and more of haifa is converted + to using the cfg code in flow.c. */ + free (dom); + } + } + + deaths_in_region = (int *) xmalloc (sizeof (int) * nr_regions); + + /* Remove all death notes from the subroutine. */ + for (rgn = 0; rgn < nr_regions; rgn++) + { + int b; + + sbitmap_zero (blocks); + for (b = RGN_NR_BLOCKS (rgn) - 1; b >= 0; --b) + SET_BIT (blocks, rgn_bb_table[RGN_BLOCKS (rgn) + b]); + + deaths_in_region[rgn] = count_or_remove_death_notes (blocks, 1); + } + + sbitmap_free (blocks); +} + +/* The one entry point in this file. DUMP_FILE is the dump file for + this pass. */ + +void +schedule_insns (dump_file) + FILE *dump_file; +{ + sbitmap large_region_blocks, blocks; + int rgn; + int any_large_regions; + + /* Taking care of this degenerate case makes the rest of + this code simpler. */ + if (n_basic_blocks == 0) + return; + + nr_inter = 0; + nr_spec = 0; + + sched_init (dump_file); + + init_regions (); + + current_sched_info = ®ion_sched_info; + + /* Schedule every region in the subroutine. */ + for (rgn = 0; rgn < nr_regions; rgn++) + schedule_region (rgn); + + /* Update life analysis for the subroutine. Do single block regions + first so that we can verify that live_at_start didn't change. Then + do all other blocks. */ + /* ??? There is an outside possibility that update_life_info, or more + to the point propagate_block, could get called with non-zero flags + more than once for one basic block. This would be kinda bad if it + were to happen, since REG_INFO would be accumulated twice for the + block, and we'd have twice the REG_DEAD notes. + + I'm fairly certain that this _shouldn't_ happen, since I don't think + that live_at_start should change at region heads. Not sure what the + best way to test for this kind of thing... */ + + allocate_reg_life_data (); + compute_bb_for_insn (get_max_uid ()); + + any_large_regions = 0; + large_region_blocks = sbitmap_alloc (n_basic_blocks); + sbitmap_ones (large_region_blocks); + + blocks = sbitmap_alloc (n_basic_blocks); + + for (rgn = 0; rgn < nr_regions; rgn++) + if (RGN_NR_BLOCKS (rgn) > 1) + any_large_regions = 1; + else + { + sbitmap_zero (blocks); + SET_BIT (blocks, rgn_bb_table[RGN_BLOCKS (rgn)]); + RESET_BIT (large_region_blocks, rgn_bb_table[RGN_BLOCKS (rgn)]); + + /* Don't update reg info after reload, since that affects + regs_ever_live, which should not change after reload. */ + update_life_info (blocks, UPDATE_LIFE_LOCAL, + (reload_completed ? PROP_DEATH_NOTES + : PROP_DEATH_NOTES | PROP_REG_INFO)); + +#ifndef HAVE_conditional_execution + /* ??? REG_DEAD notes only exist for unconditional deaths. We need + a count of the conditional plus unconditional deaths for this to + work out. */ + /* In the single block case, the count of registers that died should + not have changed during the schedule. */ + if (count_or_remove_death_notes (blocks, 0) != deaths_in_region[rgn]) + abort (); +#endif + } + + if (any_large_regions) + { + update_life_info (large_region_blocks, UPDATE_LIFE_GLOBAL, + PROP_DEATH_NOTES | PROP_REG_INFO); + } + + /* Reposition the prologue and epilogue notes in case we moved the + prologue/epilogue insns. */ + if (reload_completed) + reposition_prologue_and_epilogue_notes (get_insns ()); + + /* Delete redundant line notes. */ + if (write_symbols != NO_DEBUG) + rm_redundant_line_notes (); + + if (sched_verbose) + { + if (reload_completed == 0 && flag_schedule_interblock) + { + fprintf (sched_dump, + "\n;; Procedure interblock/speculative motions == %d/%d \n", + nr_inter, nr_spec); + } + else + { + if (nr_inter > 0) + abort (); + } + fprintf (sched_dump, "\n\n"); + } + + /* Clean up. */ + free (rgn_table); + free (rgn_bb_table); + free (block_to_bb); + free (containing_rgn); + + sched_finish (); + + if (edge_table) + { + free (edge_table); + edge_table = NULL; + } + + if (in_edges) + { + free (in_edges); + in_edges = NULL; + } + if (out_edges) + { + free (out_edges); + out_edges = NULL; + } + + sbitmap_free (blocks); + sbitmap_free (large_region_blocks); + + free (deaths_in_region); +} |