diff options
author | law <law@138bc75d-0d04-0410-961f-82ee72b054a4> | 2005-12-12 19:59:16 +0000 |
---|---|---|
committer | law <law@138bc75d-0d04-0410-961f-82ee72b054a4> | 2005-12-12 19:59:16 +0000 |
commit | 54aceb26880f3f980cf33c2913fc2b7842233e13 (patch) | |
tree | c76d6731feeecd4ca0a01da9f4b777624a718874 /gcc/tree-ssa-reassoc.c | |
parent | 9d1e88f076eb4a08b3d0175495f2e11ee49d8ec2 (diff) | |
download | gcc-54aceb26880f3f980cf33c2913fc2b7842233e13.tar.gz |
* tree-ssa-dom.c (simplify_rhs_and_lookup_avail_expr): Remove
reassociation code.
* passes.c (init_optimization_passes): Run reassociation again
after loop optimizations.
* tree-ssa-dom.c (thread_across_edge): Canonicalize condition
if necessary.
(optimize_stmt): Ditto.
(canonicalize_comparison): New function.
* tree-ssa-operands.c (swap_tree_operands): Make external.
(get_expr_operands): Stop auto-canonicalization.
* tree-ssa-reassoc.c: Rewrite.
(init_optimization_passes):
* tree-flow.h (swap_tree_operands): Prototype.
* Makefile.in (tree-ssa-reassoc.o): Update dependencies.
* gcc.dg/tree-ssa/ssa-pre-2.c: Update due to reassociation changes.
* gcc.dg/tree-ssa/reassoc-1.c: Likewise.
* gcc.dg/tree-ssa/reassoc-2.c: Likewise.
* gcc.dg/tree-ssa/reassoc-3.c: Likewise.
* gcc.dg/tree-ssa/reassoc-4.c: Likewise.
* gcc.dg/tree-ssa/reassoc-5.c: New.
* gcc.dg/tree-ssa/reassoc-6.c: New.
* gcc.dg/tree-ssa/reassoc-7.c: New.
* gcc.dg/tree-ssa/reassoc-8.c: New.
* gcc.dg/tree-ssa/reassoc-9.c: New.
* gcc.dg/tree-ssa/reassoc-10.c: New.
* gcc.dg/tree-ssa/reassoc-11.c: New.
git-svn-id: svn+ssh://gcc.gnu.org/svn/gcc/trunk@108425 138bc75d-0d04-0410-961f-82ee72b054a4
Diffstat (limited to 'gcc/tree-ssa-reassoc.c')
-rw-r--r-- | gcc/tree-ssa-reassoc.c | 1690 |
1 files changed, 1284 insertions, 406 deletions
diff --git a/gcc/tree-ssa-reassoc.c b/gcc/tree-ssa-reassoc.c index 5514c3d355e..6f19408f0ac 100644 --- a/gcc/tree-ssa-reassoc.c +++ b/gcc/tree-ssa-reassoc.c @@ -33,249 +33,219 @@ Boston, MA 02110-1301, USA. */ #include "tree-gimple.h" #include "tree-dump.h" #include "timevar.h" -#include "hashtab.h" #include "tree-iterator.h" #include "tree-pass.h" +#include "alloc-pool.h" +#include "vec.h" +#include "langhooks.h" -/* This is a simple global reassociation pass that uses a combination - of heuristics and a hashtable to try to expose more operations to - CSE. +/* This is a simple global reassociation pass. It is, in part, based + on the LLVM pass of the same name (They do some things more/less + than we do, in different orders, etc). - The basic idea behind the heuristic is to rank expressions by - depth of the computation tree and loop depth, and try to produce - expressions consisting of small rank operations, as they are more - likely to reoccur. In addition, we use a hashtable to try to see - if we can transpose an operation into something we have seen - before. + It consists of five steps: - Note that the way the hashtable is structured will sometimes find - matches that will not expose additional redundancies, since it is - not unwound as we traverse back up one branch of the dominator - tree and down another. However, the cost of improving this is - probably not worth the additional benefits it will bring. */ + 1. Breaking up subtract operations into addition + negate, where + it would promote the reassociation of adds. -/* Statistics */ -static struct -{ - int reassociated_by_rank; - int reassociated_by_match; -} reassociate_stats; + 2. Left linearization of the expression trees, so that (A+B)+(C+D) + becomes (((A+B)+C)+D), which is easier for us to rewrite later. + During linearization, we place the operands of the binary + expressions into a vector of operand_entry_t + 3. Optimization of the operand lists, eliminating things like a + + -a, a & a, etc. + 4. Rewrite the expression trees we linearized and optimized so + they are in proper rank order. -/* Seen binary operator hashtable. */ -static htab_t seen_binops; + 5. Repropagate negates, as nothing else will clean it up ATM. -/* Binary operator struct. */ + A bit of theory on #4, since nobody seems to write anything down + about why it makes sense to do it the way they do it: -typedef struct seen_binop_d -{ - tree op1; - tree op2; -} *seen_binop_t; + We could do this much nicer theoretically, but don't (for reasons + explained after how to do it theoretically nice :P). -/* Return a SEEN_BINOP_T if we have seen an associative binary - operator with OP1 and OP2 in it. */ + In order to promote the most redundancy elimination, you want + binary expressions whose operands are the same rank (or + preferrably, the same value) exposed to the redundancy eliminator, + for possible elimination. -static seen_binop_t -find_seen_binop (tree op1, tree op2) -{ - void **slot; - struct seen_binop_d sbd; - sbd.op1 = op1; - sbd.op2 = op2; - slot = htab_find_slot (seen_binops, &sbd, NO_INSERT); - if (!slot) - return NULL; - return ((seen_binop_t) *slot); -} + So the way to do this if we really cared, is to build the new op + tree from the leaves to the roots, merging as you go, and putting the + new op on the end of the worklist, until you are left with one + thing on the worklist. -/* Insert a binary operator consisting of OP1 and OP2 into the - SEEN_BINOP table. */ + IE if you have to rewrite the following set of operands (listed with + rank in parentheses), with opcode PLUS_EXPR: -static void -insert_seen_binop (tree op1, tree op2) -{ - void **slot; - seen_binop_t new_pair = xmalloc (sizeof (*new_pair)); - new_pair->op1 = op1; - new_pair->op2 = op2; - slot = htab_find_slot (seen_binops, new_pair, INSERT); - if (*slot != NULL) - free (*slot); - *slot = new_pair; -} + a (1), b (1), c (1), d (2), e (2) -/* Return the hash value for a seen binop structure pointed to by P. - Because all the binops we consider are associative, we just add the - hash value for op1 and op2. */ -static hashval_t -seen_binop_hash (const void *p) -{ - const seen_binop_t sb = (seen_binop_t) p; - return iterative_hash_expr (sb->op1, 0) + iterative_hash_expr (sb->op2, 0); -} + We start with our merge worklist empty, and the ops list with all of + those on it. -/* Return true if two seen binop structures pointed to by P1 and P2 are equal. - We have to check the operators both ways because we don't know what - order they appear in the table. */ + You want to first merge all leaves of the same rank, as much as + possible. -static int -seen_binop_eq (const void *p1, const void *p2) -{ - const seen_binop_t sb1 = (seen_binop_t) p1; - const seen_binop_t sb2 = (seen_binop_t) p2; - return (sb1->op1 == sb2->op1 && sb1->op2 == sb2->op2) - || (sb1->op2 == sb2->op1 && sb1->op1 == sb2->op2); -} + So first build a binary op of + + mergetmp = a + b, and put "mergetmp" on the merge worklist. + + Because there is no three operand form of PLUS_EXPR, c is not going to + be exposed to redundancy elimination as a rank 1 operand. + + So you might as well throw it on the merge worklist (you could also + consider it to now be a rank two operand, and merge it with d and e, + but in this case, you then have evicted e from a binary op. So at + least in this situation, you can't win.) + + Then build a binary op of d + e + mergetmp2 = d + e + + and put mergetmp2 on the merge worklist. + + so merge worklist = {mergetmp, c, mergetmp2} + + Continue building binary ops of these operations until you have only + one operation left on the worklist. + + So we have + + build binary op + mergetmp3 = mergetmp + c + + worklist = {mergetmp2, mergetmp3} + + mergetmp4 = mergetmp2 + mergetmp3 + + worklist = {mergetmp4} + + because we have one operation left, we can now just set the original + statement equal to the result of that operation. + + This will at least expose a + b and d + e to redundancy elimination + as binary operations. + + For extra points, you can reuse the old statements to build the + mergetmps, since you shouldn't run out. -/* Value rank structure. */ + So why don't we do this? + + Because it's expensive, and rarely will help. Most trees we are + reassociating have 3 or less ops. If they have 2 ops, they already + will be written into a nice single binary op. If you have 3 ops, a + single simple check suffices to tell you whether the first two are of the + same rank. If so, you know to order it + + mergetmp = op1 + op2 + newstmt = mergetmp + op3 + + instead of + mergetmp = op2 + op3 + newstmt = mergetmp + op1 + + If all three are of the same rank, you can't expose them all in a + single binary operator anyway, so the above is *still* the best you + can do. + + Thus, this is what we do. When we have three ops left, we check to see + what order to put them in, and call it a day. As a nod to vector sum + reduction, we check if any of ops are a really a phi node that is a + destructive update for the associating op, and keep the destructive + update together for vector sum reduction recognition. */ -typedef struct valrank_d + +/* Statistics */ +static struct +{ + int linearized; + int constants_eliminated; + int ops_eliminated; + int rewritten; +} reassociate_stats; + +/* Operator, rank pair. */ +typedef struct operand_entry { - tree e; - unsigned int rank; -} *valrank_t; + unsigned int rank; + tree op; +} *operand_entry_t; + +static alloc_pool operand_entry_pool; + /* Starting rank number for a given basic block, so that we can rank operations using unmovable instructions in that BB based on the bb depth. */ static unsigned int *bb_rank; -/* Value rank hashtable. */ -static htab_t value_rank; +/* Operand->rank hashtable. */ +static htab_t operand_rank; -/* Look up the value rank structure for expression E. */ +/* Look up the operand rank structure for expression E. */ -static valrank_t -find_value_rank (tree e) +static operand_entry_t +find_operand_rank (tree e) { void **slot; - struct valrank_d vrd; - vrd.e = e; - slot = htab_find_slot (value_rank, &vrd, NO_INSERT); + struct operand_entry vrd; + + vrd.op = e; + slot = htab_find_slot (operand_rank, &vrd, NO_INSERT); if (!slot) return NULL; - return ((valrank_t) *slot); + return ((operand_entry_t) *slot); } -/* Insert {E,RANK} into the value rank hashtable. */ +/* Insert {E,RANK} into the operand rank hashtable. */ static void -insert_value_rank (tree e, unsigned int rank) +insert_operand_rank (tree e, unsigned int rank) { void **slot; - valrank_t new_pair = xmalloc (sizeof (*new_pair)); - new_pair->e = e; + operand_entry_t new_pair = pool_alloc (operand_entry_pool); + + new_pair->op = e; new_pair->rank = rank; - slot = htab_find_slot (value_rank, new_pair, INSERT); + slot = htab_find_slot (operand_rank, new_pair, INSERT); gcc_assert (*slot == NULL); *slot = new_pair; - } - -/* Return the hash value for a value rank structure */ +/* Return the hash value for a operand rank structure */ static hashval_t -valrank_hash (const void *p) +operand_entry_hash (const void *p) { - const valrank_t vr = (valrank_t) p; - return iterative_hash_expr (vr->e, 0); + const operand_entry_t vr = (operand_entry_t) p; + return iterative_hash_expr (vr->op, 0); } -/* Return true if two value rank structures are equal. */ +/* Return true if two operand rank structures are equal. */ static int -valrank_eq (const void *p1, const void *p2) +operand_entry_eq (const void *p1, const void *p2) { - const valrank_t vr1 = (valrank_t) p1; - const valrank_t vr2 = (valrank_t) p2; - return vr1->e == vr2->e; + const operand_entry_t vr1 = (operand_entry_t) p1; + const operand_entry_t vr2 = (operand_entry_t) p2; + return vr1->op == vr2->op; } -/* Initialize the reassociation pass. */ - -static void -init_reassoc (void) -{ - int i; - unsigned int rank = 2; - - tree param; - int *bbs = xmalloc ((last_basic_block + 1) * sizeof (int)); - - memset (&reassociate_stats, 0, sizeof (reassociate_stats)); - - /* Reverse RPO (Reverse Post Order) will give us something where - deeper loops come later. */ - flow_reverse_top_sort_order_compute (bbs); - bb_rank = xcalloc (last_basic_block + 1, sizeof (unsigned int)); - value_rank = htab_create (511, valrank_hash, - valrank_eq, free); - seen_binops = htab_create (511, seen_binop_hash, - seen_binop_eq, free); - - /* Give each argument a distinct rank. */ - for (param = DECL_ARGUMENTS (current_function_decl); - param; - param = TREE_CHAIN (param)) - { - if (default_def (param) != NULL) - { - tree def = default_def (param); - insert_value_rank (def, ++rank); - } - } - /* Give the chain decl a distinct rank. */ - if (cfun->static_chain_decl != NULL) - { - tree def = default_def (cfun->static_chain_decl); - if (def != NULL) - insert_value_rank (def, ++rank); - } - - /* Set up rank for each BB */ - for (i = 0; i < n_basic_blocks; i++) - bb_rank[bbs[i]] = ++rank << 16; - - free (bbs); - calculate_dominance_info (CDI_DOMINATORS); - -} - -/* Cleanup after the reassociation pass, and print stats if - requested. */ - -static void -fini_reassoc (void) -{ - - if (dump_file && (dump_flags & TDF_STATS)) - { - fprintf (dump_file, "Reassociation stats:\n"); - fprintf (dump_file, "Reassociated by rank: %d\n", reassociate_stats.reassociated_by_rank); - fprintf (dump_file, "Reassociated by match: %d\n", reassociate_stats.reassociated_by_match); - } - htab_delete (value_rank); - htab_delete (seen_binops); - free (bb_rank); -} - /* Given an expression E, return the rank of the expression. */ static unsigned int get_rank (tree e) { - valrank_t vr; + operand_entry_t vr; - /* Constants have rank 0. */ + /* Constants have rank 0. */ if (is_gimple_min_invariant (e)) return 0; - + /* SSA_NAME's have the rank of the expression they are the result of. For globals and uninitialized values, the rank is 0. @@ -290,24 +260,24 @@ get_rank (tree e) if (TREE_CODE (e) == SSA_NAME) { tree stmt; - tree rhs; + tree rhs; unsigned int rank, maxrank; int i; - + if (TREE_CODE (SSA_NAME_VAR (e)) == PARM_DECL && e == default_def (SSA_NAME_VAR (e))) - return find_value_rank (e)->rank; - + return find_operand_rank (e)->rank; + stmt = SSA_NAME_DEF_STMT (e); if (bb_for_stmt (stmt) == NULL) return 0; - + if (TREE_CODE (stmt) != MODIFY_EXPR || !ZERO_SSA_OPERANDS (stmt, SSA_OP_VIRTUAL_DEFS)) return bb_rank[bb_for_stmt (stmt)->index]; /* If we already have a rank for this expression, use that. */ - vr = find_value_rank (e); + vr = find_operand_rank (e); if (vr) return vr->rank; @@ -318,24 +288,25 @@ get_rank (tree e) rhs = TREE_OPERAND (stmt, 1); if (TREE_CODE_LENGTH (TREE_CODE (rhs)) == 0) rank = MAX (rank, get_rank (rhs)); - else + else { - for (i = 0; - i < TREE_CODE_LENGTH (TREE_CODE (rhs)) + for (i = 0; + i < TREE_CODE_LENGTH (TREE_CODE (rhs)) && TREE_OPERAND (rhs, i) - && rank != maxrank; i++) + && rank != maxrank; + i++) rank = MAX(rank, get_rank (TREE_OPERAND (rhs, i))); } - + if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Rank for "); print_generic_expr (dump_file, e, 0); fprintf (dump_file, " is %d\n", (rank + 1)); } - + /* Note the rank in the hashtable so we don't recompute it. */ - insert_value_rank (e, (rank + 1)); + insert_operand_rank (e, (rank + 1)); return (rank + 1); } @@ -343,274 +314,1179 @@ get_rank (tree e) return 0; } +DEF_VEC_P(operand_entry_t); +DEF_VEC_ALLOC_P(operand_entry_t, heap); + +/* We want integer ones to end up last no matter what, since they are + the ones we can do the most with. */ +#define INTEGER_CONST_TYPE 1 << 3 +#define FLOAT_CONST_TYPE 1 << 2 +#define OTHER_CONST_TYPE 1 << 1 + +/* Classify an invariant tree into integer, float, or other, so that + we can sort them to be near other constants of the same type. */ +static inline int +constant_type (tree t) +{ + if (INTEGRAL_TYPE_P (TREE_TYPE (t))) + return INTEGER_CONST_TYPE; + else if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (t))) + return FLOAT_CONST_TYPE; + else + return OTHER_CONST_TYPE; +} + +/* qsort comparison function to sort operand entries PA and PB by rank + so that the sorted array is ordered by rank in decreasing order. */ +static int +sort_by_operand_rank (const void *pa, const void *pb) +{ + const operand_entry_t oea = *(const operand_entry_t *)pa; + const operand_entry_t oeb = *(const operand_entry_t *)pb; + + /* It's nicer for optimize_expression if constants that are likely + to fold when added/multiplied//whatever are put next to each + other. Since all constants have rank 0, order them by type. */ + if (oeb->rank == 0 && oea->rank == 0) + return constant_type (oeb->op) - constant_type (oea->op); + + /* Lastly, make sure the versions that are the same go next to each + other. We use SSA_NAME_VERSION because it's stable. */ + if ((oeb->rank - oea->rank == 0) + && TREE_CODE (oea->op) == SSA_NAME + && TREE_CODE (oeb->op) == SSA_NAME) + return SSA_NAME_VERSION (oeb->op) - SSA_NAME_VERSION (oea->op); + + return oeb->rank - oea->rank; +} + +/* Add an operand entry to *OPS for the tree operand OP. */ + +static void +add_to_ops_vec (VEC(operand_entry_t, heap) **ops, tree op) +{ + operand_entry_t oe = pool_alloc (operand_entry_pool); + + oe->op = op; + oe->rank = get_rank (op); + VEC_safe_push (operand_entry_t, heap, *ops, oe); +} -/* Decide whether we should transpose RHS and some operand of - LHSDEFOP. - If yes, then return true and set TAKEOP to the operand number of LHSDEFOP to - switch RHS for. - Otherwise, return false. */ +/* Return true if STMT is reassociable operation containing a binary + operation with tree code CODE. */ static bool -should_transpose (tree rhs ATTRIBUTE_UNUSED, - unsigned int rhsrank, - tree lhsdefop, unsigned int *takeop) -{ - /* Attempt to expose the low ranked - arguments to CSE if we have something like: - a = <rank 2> + c (rank 1) - b = a (rank 3) + d (rank 1) - We want to transform this into: - a = c + d - b = <rank 2> + <rank 3> - - The op finding part wouldn't be necessary if - we could swap the operands above and not have - update_stmt change them back on us. - */ - unsigned int lowrankop; - unsigned int lowrank; - unsigned int highrank; - unsigned int highrankop; - unsigned int temp; - - lowrankop = 0; - *takeop = 1; - lowrank = get_rank (TREE_OPERAND (lhsdefop, 0)); - temp = get_rank (TREE_OPERAND (lhsdefop, 1)); - highrank = temp; - highrankop = 1; - if (temp < lowrank) +is_reassociable_op (tree stmt, enum tree_code code) +{ + if (!IS_EMPTY_STMT (stmt) + && TREE_CODE (stmt) == MODIFY_EXPR + && TREE_CODE (TREE_OPERAND (stmt, 1)) == code + && has_single_use (TREE_OPERAND (stmt, 0))) + return true; + return false; +} + + +/* Given NAME, if NAME is defined by a unary operation OPCODE, return the + operand of the negate operation. Otherwise, return NULL. */ + +static tree +get_unary_op (tree name, enum tree_code opcode) +{ + tree stmt = SSA_NAME_DEF_STMT (name); + tree rhs; + + if (TREE_CODE (stmt) != MODIFY_EXPR) + return NULL_TREE; + + rhs = TREE_OPERAND (stmt, 1); + if (TREE_CODE (rhs) == opcode) + return TREE_OPERAND (rhs, 0); + return NULL_TREE; +} + +/* If CURR and LAST are a pair of ops that OPCODE allows us to + eliminate through equivalences, do so, remove them from OPS, and + return true. Otherwise, return false. */ + +static bool +eliminate_duplicate_pair (enum tree_code opcode, + VEC (operand_entry_t, heap) **ops, + bool *all_done, + unsigned int i, + operand_entry_t curr, + operand_entry_t last) +{ + + /* If we have two of the same op, and the opcode is & or |, we can + eliminate one of them. + If we have two of the same op, and the opcode is ^, we can + eliminate both of them. */ + + if (last && last->op == curr->op) { - lowrankop = 1; - highrankop = 0; - *takeop = 0; - highrank = lowrank; - lowrank = temp; + switch (opcode) + { + case BIT_IOR_EXPR: + case BIT_AND_EXPR: + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "Equivalence: "); + print_generic_expr (dump_file, curr->op, 0); + fprintf (dump_file, " [&|] "); + print_generic_expr (dump_file, last->op, 0); + fprintf (dump_file, " -> "); + print_generic_stmt (dump_file, last->op, 0); + } + + VEC_ordered_remove (operand_entry_t, *ops, i); + reassociate_stats.ops_eliminated ++; + + return true; + + case BIT_XOR_EXPR: + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "Equivalence: "); + print_generic_expr (dump_file, curr->op, 0); + fprintf (dump_file, " ^ "); + print_generic_expr (dump_file, last->op, 0); + fprintf (dump_file, " -> nothing\n"); + } + + reassociate_stats.ops_eliminated += 2; + + if (VEC_length (operand_entry_t, *ops) == 2) + { + VEC_free (operand_entry_t, heap, *ops); + *ops = NULL; + add_to_ops_vec (ops, fold_convert (TREE_TYPE (last->op), + integer_zero_node)); + *all_done = true; + } + else + { + VEC_ordered_remove (operand_entry_t, *ops, i-1); + VEC_ordered_remove (operand_entry_t, *ops, i-1); + } + + return true; + + default: + break; + } } - - /* If highrank == lowrank, then we had something - like: - a = <rank 1> + <rank 1> - already, so there is no guarantee that - swapping our argument in is going to be - better. - If we run reassoc twice, we could probably - have a flag that switches this behavior on, - so that we try once without it, and once with - it, so that redundancy elimination sees it - both ways. - */ - - if (lowrank == rhsrank && highrank != lowrank) - return true; + return false; +} + +/* If OPCODE is PLUS_EXPR, CURR->OP is really a negate expression, + look in OPS for a corresponding positive operation to cancel it + out. If we find one, remove the other from OPS, replace + OPS[CURRINDEX] with 0, and return true. Otherwise, return + false. */ - /* Also, see if the LHS's high ranked op should be switched with our - RHS simply because it is greater in rank than our current RHS. */ - if (TREE_CODE (TREE_OPERAND (lhsdefop, highrankop)) == SSA_NAME) +static bool +eliminate_plus_minus_pair (enum tree_code opcode, + VEC (operand_entry_t, heap) **ops, + unsigned int currindex, + operand_entry_t curr) +{ + tree negateop; + unsigned int i; + operand_entry_t oe; + + if (opcode != PLUS_EXPR || TREE_CODE (curr->op) != SSA_NAME) + return false; + + negateop = get_unary_op (curr->op, NEGATE_EXPR); + if (negateop == NULL_TREE) + return false; + + /* Any non-negated version will have a rank that is one less than + the current rank. So once we hit those ranks, if we don't find + one, we can stop. */ + + for (i = currindex + 1; + VEC_iterate (operand_entry_t, *ops, i, oe) + && oe->rank >= curr->rank - 1 ; + i++) { - tree iop = SSA_NAME_DEF_STMT (TREE_OPERAND (lhsdefop, highrankop)); - if (TREE_CODE (iop) == MODIFY_EXPR) - iop = TREE_OPERAND (iop, 1); - if (TREE_CODE (iop) == TREE_CODE (lhsdefop)) - *takeop = 1; - if (rhsrank < get_rank (TREE_OPERAND (lhsdefop, *takeop))) - return true; - } - + if (oe->op == negateop) + { + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "Equivalence: "); + print_generic_expr (dump_file, negateop, 0); + fprintf (dump_file, " + -"); + print_generic_expr (dump_file, oe->op, 0); + fprintf (dump_file, " -> 0\n"); + } + + VEC_ordered_remove (operand_entry_t, *ops, i); + add_to_ops_vec (ops, fold_convert(TREE_TYPE (oe->op), + integer_zero_node)); + VEC_ordered_remove (operand_entry_t, *ops, currindex); + reassociate_stats.ops_eliminated ++; + + return true; + } + } + return false; } -/* Attempt to reassociate the associative binary operator BEXPR, which - is in the statement pointed to by CURRBSI. Return true if we - changed the statement. */ +/* If OPCODE is BIT_IOR_EXPR, BIT_AND_EXPR, and, CURR->OP is really a + bitwise not expression, look in OPS for a corresponding operand to + cancel it out. If we find one, remove the other from OPS, replace + OPS[CURRINDEX] with 0, and return true. Otherwise, return + false. */ static bool -reassociate_expr (tree bexpr, block_stmt_iterator *currbsi) -{ - tree lhs = TREE_OPERAND (bexpr, 0); - tree rhs = TREE_OPERAND (bexpr, 1); - tree lhsdef; - tree lhsi; - bool changed = false; - unsigned int lhsrank = get_rank (lhs); - unsigned int rhsrank = get_rank (rhs); - - /* If unsafe math optimizations we can do reassociation for non-integral - types. */ - if ((!INTEGRAL_TYPE_P (TREE_TYPE (lhs)) - || !INTEGRAL_TYPE_P (TREE_TYPE (rhs))) - && (!SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs)) - || !SCALAR_FLOAT_TYPE_P (TREE_TYPE(lhs)) - || !flag_unsafe_math_optimizations)) +eliminate_not_pairs (enum tree_code opcode, + VEC (operand_entry_t, heap) **ops, + unsigned int currindex, + operand_entry_t curr) +{ + tree notop; + unsigned int i; + operand_entry_t oe; + + if ((opcode != BIT_IOR_EXPR && opcode != BIT_AND_EXPR) + || TREE_CODE (curr->op) != SSA_NAME) return false; - - /* We want the greater ranked operand to be our "LHS" for simplicity - sake. There is no point in actually modifying the expression, as - update_stmt will simply resort the operands anyway. */ - if (lhsrank < rhsrank) + + notop = get_unary_op (curr->op, BIT_NOT_EXPR); + if (notop == NULL_TREE) + return false; + + /* Any non-not version will have a rank that is one less than + the current rank. So once we hit those ranks, if we don't find + one, we can stop. */ + + for (i = currindex + 1; + VEC_iterate (operand_entry_t, *ops, i, oe) + && oe->rank >= curr->rank - 1; + i++) { - tree temp; - unsigned int temp1; - temp = lhs; - lhs = rhs; - rhs = temp; - temp1 = lhsrank; - lhsrank = rhsrank; - rhsrank = temp1; + if (oe->op == notop) + { + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "Equivalence: "); + print_generic_expr (dump_file, notop, 0); + if (opcode == BIT_AND_EXPR) + fprintf (dump_file, " & ~"); + else if (opcode == BIT_IOR_EXPR) + fprintf (dump_file, " | ~"); + print_generic_expr (dump_file, oe->op, 0); + if (opcode == BIT_AND_EXPR) + fprintf (dump_file, " -> 0\n"); + else if (opcode == BIT_IOR_EXPR) + fprintf (dump_file, " -> -1\n"); + } + + if (opcode == BIT_AND_EXPR) + oe->op = fold_convert (TREE_TYPE (oe->op), integer_zero_node); + else if (opcode == BIT_IOR_EXPR) + oe->op = build_low_bits_mask (TREE_TYPE (oe->op), + TYPE_PRECISION (TREE_TYPE (oe->op))); + + reassociate_stats.ops_eliminated + += VEC_length (operand_entry_t, *ops) - 1; + VEC_free (operand_entry_t, heap, *ops); + *ops = NULL; + VEC_safe_push (operand_entry_t, heap, *ops, oe); + return true; + } } - /* If the high ranked operand is an SSA_NAME, and the binary - operator is not something we've already seen somewhere else - (i.e., it may be redundant), attempt to reassociate it. - - We can't reassociate expressions unless the expression we are - going to reassociate with is only used in our current expression, - or else we may screw up other computations, like so: - - a = b + c - e = a + d - - g = a + f - - We cannot reassociate and rewrite the "a = ..." , - because that would change the value of the computation of - "g = a + f". */ - if (TREE_CODE (lhs) == SSA_NAME && !find_seen_binop (lhs, rhs)) + return false; +} + +/* Use constant value that may be present in OPS to try to eliminate + operands. Note that this function is only really used when we've + eliminated ops for other reasons, or merged constants. Across + single statements, fold already does all of this, plus more. There + is little point in duplicating logic, so I've only included the + identities that I could ever construct testcases to trigger. */ + +static void +eliminate_using_constants (enum tree_code opcode, + VEC(operand_entry_t, heap) **ops) +{ + operand_entry_t oelast = VEC_last (operand_entry_t, *ops); + + if (oelast->rank == 0 && INTEGRAL_TYPE_P (TREE_TYPE (oelast->op))) { - lhsdef = SSA_NAME_DEF_STMT (lhs); - if (TREE_CODE (lhsdef) == MODIFY_EXPR) + switch (opcode) { - lhsi = TREE_OPERAND (lhsdef, 1); - if (TREE_CODE (lhsi) == TREE_CODE (bexpr)) + case BIT_AND_EXPR: + if (integer_zerop (oelast->op)) { - use_operand_p use; - tree usestmt; - if (single_imm_use (lhs, &use, &usestmt)) + if (VEC_length (operand_entry_t, *ops) != 1) { - unsigned int takeop = 0; - unsigned int otherop = 1; - bool foundmatch = false; - bool foundrank = false; - - /* If we can easily transpose this into an operation - we've already seen, let's do that. - otherwise, let's try to expose low ranked ops to - CSE. */ - if (find_seen_binop (TREE_OPERAND (lhsi, 1), rhs)) - { - takeop = 0; - otherop = 1; - foundmatch = true; - } - else if (find_seen_binop (TREE_OPERAND (lhsi, 0), - rhs)) - { - takeop = 1; - otherop = 0; - foundmatch = true; - } - else if (should_transpose (rhs, rhsrank, lhsi, - &takeop)) - { - foundrank = true; - } - if (foundmatch || foundrank) - { - block_stmt_iterator lhsbsi = bsi_for_stmt (lhsdef); - if (dump_file && (dump_flags & TDF_DETAILS)) - { - fprintf (dump_file, "Reassociating by %s\n", - foundmatch ? "match" : "rank"); - fprintf (dump_file, "Before LHS:"); - print_generic_stmt (dump_file, lhsi, 0); - fprintf (dump_file, "Before curr expr:"); - print_generic_stmt (dump_file, bexpr, 0); - } - TREE_OPERAND (bexpr, 0) = TREE_OPERAND (lhsi, takeop); - TREE_OPERAND (lhsi, takeop) = rhs; - TREE_OPERAND (bexpr, 1) = TREE_OPERAND (lhsdef, 0); - if (dump_file && (dump_flags & TDF_DETAILS)) - { - fprintf (dump_file, "After LHS:"); - print_generic_stmt (dump_file, lhsi, 0); - fprintf (dump_file, "After curr expr:"); - print_generic_stmt (dump_file, bexpr, 0); - } - bsi_move_before (&lhsbsi, currbsi); - update_stmt (lhsdef); - update_stmt (bsi_stmt (*currbsi)); - lhsbsi = bsi_for_stmt (lhsdef); - update_stmt (bsi_stmt (lhsbsi)); - - /* If update_stmt didn't reorder our operands, - we'd like to recurse on the expression we - just reassociated and reassociate it - top-down, exposing further opportunities. - Unfortunately, update_stmt does reorder them, - so we can't do this cheaply. */ - if (!foundmatch) - reassociate_stats.reassociated_by_rank++; - else - reassociate_stats.reassociated_by_match++; - return true; - } + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, "Found & 0, removing all other ops\n"); + + reassociate_stats.ops_eliminated + += VEC_length (operand_entry_t, *ops) - 1; + + VEC_free (operand_entry_t, heap, *ops); + *ops = NULL; + VEC_safe_push (operand_entry_t, heap, *ops, oelast); + return; + } + } + else if (integer_all_onesp (oelast->op)) + { + if (VEC_length (operand_entry_t, *ops) != 1) + { + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, "Found & -1, removing\n"); + VEC_pop (operand_entry_t, *ops); + reassociate_stats.ops_eliminated++; + } + } + break; + case BIT_IOR_EXPR: + if (integer_all_onesp (oelast->op)) + { + if (VEC_length (operand_entry_t, *ops) != 1) + { + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, "Found | -1, removing all other ops\n"); + + reassociate_stats.ops_eliminated + += VEC_length (operand_entry_t, *ops) - 1; + + VEC_free (operand_entry_t, heap, *ops); + *ops = NULL; + VEC_safe_push (operand_entry_t, heap, *ops, oelast); + return; + } + } + else if (integer_zerop (oelast->op)) + { + if (VEC_length (operand_entry_t, *ops) != 1) + { + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, "Found | 0, removing\n"); + VEC_pop (operand_entry_t, *ops); + reassociate_stats.ops_eliminated++; } } + break; + case MULT_EXPR: + if (integer_zerop (oelast->op)) + { + if (VEC_length (operand_entry_t, *ops) != 1) + { + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, "Found * 0, removing all other ops\n"); + + reassociate_stats.ops_eliminated + += VEC_length (operand_entry_t, *ops) - 1; + VEC_free (operand_entry_t, heap, *ops); + *ops = NULL; + VEC_safe_push (operand_entry_t, heap, *ops, oelast); + return; + } + } + else if (integer_onep (oelast->op)) + { + if (VEC_length (operand_entry_t, *ops) != 1) + { + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, "Found * 1, removing\n"); + VEC_pop (operand_entry_t, *ops); + reassociate_stats.ops_eliminated++; + return; + } + } + break; + case BIT_XOR_EXPR: + case PLUS_EXPR: + case MINUS_EXPR: + if (integer_zerop (oelast->op)) + { + if (VEC_length (operand_entry_t, *ops) != 1) + { + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, "Found [|^+] 0, removing\n"); + VEC_pop (operand_entry_t, *ops); + reassociate_stats.ops_eliminated++; + return; + } + } + break; + default: + break; + } + } +} + +/* Perform various identities and other optimizations on the list of + operand entries, stored in OPS. The tree code for the binary + operation between all the operands is OPCODE. */ + +static void +optimize_ops_list (enum tree_code opcode, + VEC (operand_entry_t, heap) **ops) +{ + unsigned int length = VEC_length (operand_entry_t, *ops); + unsigned int i; + operand_entry_t oe; + operand_entry_t oelast = NULL; + bool iterate = false; + + if (length == 1) + return; + + oelast = VEC_last (operand_entry_t, *ops); + + /* If the last two are constants, pop the constants off, merge them + and try the next two. */ + if (oelast->rank == 0 && is_gimple_min_invariant (oelast->op)) + { + operand_entry_t oelm1 = VEC_index (operand_entry_t, *ops, length - 2); + + if (oelm1->rank == 0 + && is_gimple_min_invariant (oelm1->op) + && lang_hooks.types_compatible_p (TREE_TYPE (oelm1->op), + TREE_TYPE (oelast->op))) + { + tree folded = fold_build2 (opcode, TREE_TYPE (oelm1->op), + oelm1->op, oelast->op); + + if (is_gimple_min_invariant (folded)) + { + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, "Merging constants\n"); + + VEC_pop (operand_entry_t, *ops); + VEC_pop (operand_entry_t, *ops); + + add_to_ops_vec (ops, folded); + reassociate_stats.constants_eliminated++; + + optimize_ops_list (opcode, ops); + return; + } + } + } + + eliminate_using_constants (opcode, ops); + oelast = NULL; + + for (i = 0; VEC_iterate (operand_entry_t, *ops, i, oe);) + { + bool done = false; + + if (eliminate_not_pairs (opcode, ops, i, oe)) + return; + if (eliminate_duplicate_pair (opcode, ops, &done, i, oe, oelast) + || (!done && eliminate_plus_minus_pair (opcode, ops, i, oe))) + { + if (done) + return; + iterate = true; + oelast = NULL; + continue; + } + oelast = oe; + i++; + } + + length = VEC_length (operand_entry_t, *ops); + oelast = VEC_last (operand_entry_t, *ops); + + if (iterate) + optimize_ops_list (opcode, ops); +} + +/* Return true if OPERAND is defined by a PHI node which uses the LHS + of STMT in it's operands. This is also known as a "destructive + update" operation. */ + +static bool +is_phi_for_stmt (tree stmt, tree operand) +{ + tree def_stmt; + tree lhs = TREE_OPERAND (stmt, 0); + use_operand_p arg_p; + ssa_op_iter i; + + if (TREE_CODE (operand) != SSA_NAME) + return false; + + def_stmt = SSA_NAME_DEF_STMT (operand); + if (TREE_CODE (def_stmt) != PHI_NODE) + return false; + + FOR_EACH_PHI_ARG (arg_p, def_stmt, i, SSA_OP_USE) + if (lhs == USE_FROM_PTR (arg_p)) + return true; + return false; +} + +/* Recursively rewrite our linearized statements so that the operators + match those in OPS[OPINDEX], putting the computation in rank + order. */ + +static void +rewrite_expr_tree (tree stmt, unsigned int opindex, + VEC(operand_entry_t, heap) * ops) +{ + tree rhs = TREE_OPERAND (stmt, 1); + operand_entry_t oe; + + /* If we have three operands left, then we want to make sure the one + that gets the double binary op are the ones with the same rank. + + The alternative we try is to see if this is a destructive + update style statement, which is like: + b = phi (a, ...) + a = c + b; + In that case, we want to use the destructive update form to + expose the possible vectorizer sum reduction opportunity. + In that case, the third operand will be the phi node. + + We could, of course, try to be better as noted above, and do a + lot of work to try to find these opportunities in >3 operand + cases, but it is unlikely to be worth it. */ + if (opindex + 3 == VEC_length (operand_entry_t, ops)) + { + operand_entry_t oe1, oe2, oe3; + + oe1 = VEC_index (operand_entry_t, ops, opindex); + oe2 = VEC_index (operand_entry_t, ops, opindex + 1); + oe3 = VEC_index (operand_entry_t, ops, opindex + 2); + + if ((oe1->rank == oe2->rank + && oe2->rank != oe3->rank) + || (is_phi_for_stmt (stmt, oe3->op) + && !is_phi_for_stmt (stmt, oe1->op) + && !is_phi_for_stmt (stmt, oe2->op))) + { + struct operand_entry temp = *oe3; + oe3->op = oe1->op; + oe3->rank = oe1->rank; + oe1->op = temp.op; + oe1->rank= temp.rank; + } + } + + /* The final recursion case for this function is that you have + exactly two operations left. + If we had one exactly one op in the entire list to start with, we + would have never called this function, and the tail recursion + rewrites them one at a time. */ + if (opindex + 2 == VEC_length (operand_entry_t, ops)) + { + operand_entry_t oe1, oe2; + + oe1 = VEC_index (operand_entry_t, ops, opindex); + oe2 = VEC_index (operand_entry_t, ops, opindex + 1); + + if (TREE_OPERAND (rhs, 0) != oe1->op + || TREE_OPERAND (rhs, 1) != oe2->op) + { + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "Transforming "); + print_generic_expr (dump_file, rhs, 0); + } + + TREE_OPERAND (rhs, 0) = oe1->op; + TREE_OPERAND (rhs, 1) = oe2->op; + update_stmt (stmt); + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, " into "); + print_generic_stmt (dump_file, rhs, 0); + } + } + return; } - return changed; + + /* If we hit here, we should have 3 or more ops left. */ + gcc_assert (opindex + 2 < VEC_length (operand_entry_t, ops)); + + /* Rewrite the next operator. */ + oe = VEC_index (operand_entry_t, ops, opindex); + + if (oe->op != TREE_OPERAND (rhs, 1)) + { + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "Transforming "); + print_generic_expr (dump_file, rhs, 0); + } + + TREE_OPERAND (rhs, 1) = oe->op; + update_stmt (stmt); + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, " into "); + print_generic_stmt (dump_file, rhs, 0); + } + } + /* Recurse on the LHS of the binary operator, which is guaranteed to + be the non-leaf side. */ + rewrite_expr_tree (SSA_NAME_DEF_STMT (TREE_OPERAND (rhs, 0)), + opindex + 1, ops); +} + +/* Transform STMT, which is really (A +B) + (C + D) into the left + linear form, ((A+B)+C)+D. + Recurse on D if necessary. */ + +static void +linearize_expr (tree stmt) +{ + block_stmt_iterator bsinow, bsirhs; + tree rhs = TREE_OPERAND (stmt, 1); + enum tree_code rhscode = TREE_CODE (rhs); + tree binrhs = SSA_NAME_DEF_STMT (TREE_OPERAND (rhs, 1)); + tree binlhs = SSA_NAME_DEF_STMT (TREE_OPERAND (rhs, 0)); + tree newbinrhs = NULL_TREE; + + gcc_assert (is_reassociable_op (binlhs, TREE_CODE (rhs)) + && is_reassociable_op (binrhs, TREE_CODE (rhs))); + + bsinow = bsi_for_stmt (stmt); + bsirhs = bsi_for_stmt (binrhs); + bsi_move_before (&bsirhs, &bsinow); + + TREE_OPERAND (rhs, 1) = TREE_OPERAND (TREE_OPERAND (binrhs, 1), 0); + if (TREE_CODE (TREE_OPERAND (rhs, 1)) == SSA_NAME) + newbinrhs = SSA_NAME_DEF_STMT (TREE_OPERAND (rhs, 1)); + TREE_OPERAND (TREE_OPERAND (binrhs, 1), 0) = TREE_OPERAND (binlhs, 0); + TREE_OPERAND (rhs, 0) = TREE_OPERAND (binrhs, 0); + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "Linearized: "); + print_generic_stmt (dump_file, rhs, 0); + } + + reassociate_stats.linearized++; + update_stmt (binrhs); + update_stmt (binlhs); + update_stmt (stmt); + TREE_VISITED (binrhs) = 1; + TREE_VISITED (binlhs) = 1; + TREE_VISITED (stmt) = 1; + + /* Tail recurse on the new rhs if it still needs reassociation. */ + if (newbinrhs && is_reassociable_op (newbinrhs, rhscode)) + linearize_expr (stmt); + } -/* Reassociate expressions in basic block BB and its dominator as - children , return true if any - expressions changed. */ +/* If LHS has a single immediate use that is a MODIFY_EXPR, return + it. Otherwise, return NULL. */ + +static tree +get_single_immediate_use (tree lhs) +{ + use_operand_p immuse; + tree immusestmt; + + if (TREE_CODE (lhs) == SSA_NAME + && single_imm_use (lhs, &immuse, &immusestmt)) + { + if (TREE_CODE (immusestmt) == RETURN_EXPR) + immusestmt = TREE_OPERAND (immusestmt, 0); + if (TREE_CODE (immusestmt) == MODIFY_EXPR) + return immusestmt; + } + return NULL_TREE; +} +static VEC(tree, heap) *broken_up_subtracts; + + +/* Recursively negate the value of TONEGATE, and return the SSA_NAME + representing the negated value. Insertions of any necessary + instructions go before BSI. + This function is recursive in that, if you hand it "a_5" as the + value to negate, and a_5 is defined by "a_5 = b_3 + b_4", it will + transform b_3 + b_4 into a_5 = -b_3 + -b_4. */ + +static tree +negate_value (tree tonegate, block_stmt_iterator *bsi) +{ + tree negatedef = tonegate; + tree resultofnegate; + + if (TREE_CODE (tonegate) == SSA_NAME) + negatedef = SSA_NAME_DEF_STMT (tonegate); + + /* If we are trying to negate a name, defined by an add, negate the + add operands instead. */ + if (TREE_CODE (tonegate) == SSA_NAME + && TREE_CODE (negatedef) == MODIFY_EXPR + && TREE_CODE (TREE_OPERAND (negatedef, 0)) == SSA_NAME + && num_imm_uses (TREE_OPERAND (negatedef, 0)) == 1 + && TREE_CODE (TREE_OPERAND (negatedef, 1)) == PLUS_EXPR) + { + block_stmt_iterator bsi; + tree binop = TREE_OPERAND (negatedef, 1); + + bsi = bsi_for_stmt (negatedef); + TREE_OPERAND (binop, 0) = negate_value (TREE_OPERAND (binop, 0), + &bsi); + bsi = bsi_for_stmt (negatedef); + TREE_OPERAND (binop, 1) = negate_value (TREE_OPERAND (binop, 1), + &bsi); + update_stmt (negatedef); + return TREE_OPERAND (negatedef, 0); + } + + tonegate = fold_build1 (NEGATE_EXPR, TREE_TYPE (tonegate), tonegate); + resultofnegate = force_gimple_operand_bsi (bsi, tonegate, true, + NULL_TREE); + VEC_safe_push (tree, heap, broken_up_subtracts, resultofnegate); + return resultofnegate; + +} + +/* Return true if we should break up the subtract in STMT into an add + with negate. This is true when we the subtract operands are really + adds, or the subtract itself is used in an add expression. In + either case, breaking up the subtract into an add with negate + exposes the adds to reassociation. */ static bool -reassociate_bb (basic_block bb) +should_break_up_subtract (tree stmt) +{ + + tree lhs = TREE_OPERAND (stmt, 0); + tree rhs = TREE_OPERAND (stmt, 1); + tree binlhs = TREE_OPERAND (rhs, 0); + tree binrhs = TREE_OPERAND (rhs, 1); + tree immusestmt; + + if (TREE_CODE (binlhs) == SSA_NAME + && is_reassociable_op (SSA_NAME_DEF_STMT (binlhs), PLUS_EXPR)) + return true; + + if (TREE_CODE (binrhs) == SSA_NAME + && is_reassociable_op (SSA_NAME_DEF_STMT (binrhs), PLUS_EXPR)) + return true; + + if (TREE_CODE (lhs) == SSA_NAME + && (immusestmt = get_single_immediate_use (lhs)) + && TREE_CODE (TREE_OPERAND (immusestmt, 1)) == PLUS_EXPR) + return true; + return false; + +} + +/* Transform STMT from A - B into A + -B. */ + +static void +break_up_subtract (tree stmt, block_stmt_iterator *bsi) +{ + tree rhs = TREE_OPERAND (stmt, 1); + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "Breaking up subtract "); + print_generic_stmt (dump_file, stmt, 0); + } + + TREE_SET_CODE (TREE_OPERAND (stmt, 1), PLUS_EXPR); + TREE_OPERAND (rhs, 1) = negate_value (TREE_OPERAND (rhs, 1), bsi); + + update_stmt (stmt); +} + +/* Recursively linearize a binary expression that is the RHS of STMT. + Place the operands of the expression tree in the vector named OPS. */ + +static void +linearize_expr_tree (VEC(operand_entry_t, heap) **ops, tree stmt) +{ + block_stmt_iterator bsinow, bsilhs; + tree rhs = TREE_OPERAND (stmt, 1); + tree binrhs = TREE_OPERAND (rhs, 1); + tree binlhs = TREE_OPERAND (rhs, 0); + tree binlhsdef, binrhsdef; + bool binlhsisreassoc = false; + bool binrhsisreassoc = false; + enum tree_code rhscode = TREE_CODE (rhs); + + TREE_VISITED (stmt) = 1; + + if (TREE_CODE (binlhs) == SSA_NAME) + { + binlhsdef = SSA_NAME_DEF_STMT (binlhs); + binlhsisreassoc = is_reassociable_op (binlhsdef, rhscode); + } + + if (TREE_CODE (binrhs) == SSA_NAME) + { + binrhsdef = SSA_NAME_DEF_STMT (binrhs); + binrhsisreassoc = is_reassociable_op (binrhsdef, rhscode); + } + + /* If the LHS is not reassociable, but the RHS is, we need to swap + them. If neither is reassociable, there is nothing we can do, so + just put them in the ops vector. If the LHS is reassociable, + linearize it. If both are reassociable, then linearize the RHS + and the LHS. */ + + if (!binlhsisreassoc) + { + tree temp; + + if (!binrhsisreassoc) + { + add_to_ops_vec (ops, binrhs); + add_to_ops_vec (ops, binlhs); + return; + } + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "swapping operands of "); + print_generic_expr (dump_file, stmt, 0); + } + + swap_tree_operands (stmt, &TREE_OPERAND (rhs, 0), + &TREE_OPERAND (rhs, 1)); + update_stmt (stmt); + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, " is now "); + print_generic_stmt (dump_file, stmt, 0); + } + + /* We want to make it so the lhs is always the reassociative op, + so swap. */ + temp = binlhs; + binlhs = binrhs; + binrhs = temp; + } + else if (binrhsisreassoc) + { + linearize_expr (stmt); + gcc_assert (rhs == TREE_OPERAND (stmt, 1)); + binlhs = TREE_OPERAND (rhs, 0); + binrhs = TREE_OPERAND (rhs, 1); + } + + gcc_assert (TREE_CODE (binrhs) != SSA_NAME + || !is_reassociable_op (SSA_NAME_DEF_STMT (binrhs), rhscode)); + bsinow = bsi_for_stmt (stmt); + bsilhs = bsi_for_stmt (SSA_NAME_DEF_STMT (binlhs)); + bsi_move_before (&bsilhs, &bsinow); + linearize_expr_tree (ops, SSA_NAME_DEF_STMT (binlhs)); + add_to_ops_vec (ops, binrhs); +} + +/* Repropagate the negates back into subtracts, since no other pass + currently does it. */ + +static void +repropagate_negates (void) +{ + unsigned int i = 0; + tree negate; + + for (i = 0; VEC_iterate (tree, broken_up_subtracts, i, negate); i++) + { + tree user = get_single_immediate_use (negate); + + /* The negate operand can be either operand of a PLUS_EXPR + (it can be the LHS if the RHS is a constant for example). + + Force the negate operand to the RHS of the PLUS_EXPR, then + transform the PLUS_EXPR into a MINUS_EXPR. */ + if (user + && TREE_CODE (user) == MODIFY_EXPR + && TREE_CODE (TREE_OPERAND (user, 1)) == PLUS_EXPR) + { + tree rhs = TREE_OPERAND (user, 1); + + /* If the negated operand appears on the LHS of the + PLUS_EXPR, exchange the operands of the PLUS_EXPR + to force the negated operand to the RHS of the PLUS_EXPR. */ + if (TREE_OPERAND (TREE_OPERAND (user, 1), 0) == negate) + { + tree temp = TREE_OPERAND (rhs, 0); + TREE_OPERAND (rhs, 0) = TREE_OPERAND (rhs, 1); + TREE_OPERAND (rhs, 1) = temp; + } + + /* Now transform the PLUS_EXPR into a MINUS_EXPR and replace + the RHS of the PLUS_EXPR with the operand of the NEGATE_EXPR. */ + if (TREE_OPERAND (TREE_OPERAND (user, 1), 1) == negate) + { + TREE_SET_CODE (rhs, MINUS_EXPR); + TREE_OPERAND (rhs, 1) = get_unary_op (negate, NEGATE_EXPR); + update_stmt (user); + } + } + } +} + +/* Break up subtract operations in block BB. + + We do this top down because we don't know whether the subtract is + part of a possible chain of reassociation except at the top. + + IE given + d = f + g + c = a + e + b = c - d + q = b - r + k = t - q + + we want to break up k = t - q, but we won't until we've transformed q + = b - r, which won't be broken up until we transform b = c - d. */ + +static void +break_up_subtract_bb (basic_block bb) { - bool changed = false; block_stmt_iterator bsi; basic_block son; for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi)) { tree stmt = bsi_stmt (bsi); - + + if (TREE_CODE (stmt) == MODIFY_EXPR) + { + tree lhs = TREE_OPERAND (stmt, 0); + tree rhs = TREE_OPERAND (stmt, 1); + + TREE_VISITED (stmt) = 0; + /* If unsafe math optimizations we can do reassociation for + non-integral types. */ + if ((!INTEGRAL_TYPE_P (TREE_TYPE (lhs)) + || !INTEGRAL_TYPE_P (TREE_TYPE (rhs))) + && (!SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs)) + || !SCALAR_FLOAT_TYPE_P (TREE_TYPE(lhs)) + || !flag_unsafe_math_optimizations)) + continue; + + /* Check for a subtract used only in an addition. If this + is the case, transform it into add of a negate for better + reassociation. IE transform C = A-B into C = A + -B if C + is only used in an addition. */ + if (TREE_CODE (rhs) == MINUS_EXPR) + if (should_break_up_subtract (stmt)) + break_up_subtract (stmt, &bsi); + } + } + for (son = first_dom_son (CDI_DOMINATORS, bb); + son; + son = next_dom_son (CDI_DOMINATORS, son)) + break_up_subtract_bb (son); +} + +/* Reassociate expressions in basic block BB and its post-dominator as + children. */ + +static void +reassociate_bb (basic_block bb) +{ + block_stmt_iterator bsi; + basic_block son; + + for (bsi = bsi_last (bb); !bsi_end_p (bsi); bsi_prev (&bsi)) + { + tree stmt = bsi_stmt (bsi); + if (TREE_CODE (stmt) == MODIFY_EXPR) { + tree lhs = TREE_OPERAND (stmt, 0); tree rhs = TREE_OPERAND (stmt, 1); + + /* If this was part of an already processed tree, we don't + need to touch it again. */ + if (TREE_VISITED (stmt)) + continue; + + /* If unsafe math optimizations we can do reassociation for + non-integral types. */ + if ((!INTEGRAL_TYPE_P (TREE_TYPE (lhs)) + || !INTEGRAL_TYPE_P (TREE_TYPE (rhs))) + && (!SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs)) + || !SCALAR_FLOAT_TYPE_P (TREE_TYPE(lhs)) + || !flag_unsafe_math_optimizations)) + continue; + if (associative_tree_code (TREE_CODE (rhs))) { - if (reassociate_expr (rhs, &bsi)) + VEC(operand_entry_t, heap) *ops = NULL; + + /* There may be no immediate uses left by the time we + get here because we may have eliminated them all. */ + if (TREE_CODE (lhs) == SSA_NAME && num_imm_uses (lhs) == 0) + continue; + + TREE_VISITED (stmt) = 1; + linearize_expr_tree (&ops, stmt); + qsort (VEC_address (operand_entry_t, ops), + VEC_length (operand_entry_t, ops), + sizeof (operand_entry_t), + sort_by_operand_rank); + optimize_ops_list (TREE_CODE (rhs), &ops); + + if (VEC_length (operand_entry_t, ops) == 1) { - changed = true; - update_stmt (stmt); + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "Transforming "); + print_generic_expr (dump_file, rhs, 0); + } + TREE_OPERAND (stmt, 1) = VEC_last (operand_entry_t, ops)->op; + update_stmt (stmt); + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, " into "); + print_generic_stmt (dump_file, + TREE_OPERAND (stmt, 1), 0); + } + } + else + { + rewrite_expr_tree (stmt, 0, ops); } - insert_seen_binop (TREE_OPERAND (rhs, 0), - TREE_OPERAND (rhs, 1)); + + VEC_free (operand_entry_t, heap, ops); } } } - for (son = first_dom_son (CDI_DOMINATORS, bb); + for (son = first_dom_son (CDI_POST_DOMINATORS, bb); son; - son = next_dom_son (CDI_DOMINATORS, son)) + son = next_dom_son (CDI_POST_DOMINATORS, son)) + reassociate_bb (son); +} + +void dump_ops_vector (FILE *file, VEC (operand_entry_t, heap) *ops); +void debug_ops_vector (VEC (operand_entry_t, heap) *ops); + +/* Dump the operand entry vector OPS to FILE. */ + +void +dump_ops_vector (FILE *file, VEC (operand_entry_t, heap) *ops) +{ + operand_entry_t oe; + unsigned int i; + + for (i = 0; VEC_iterate (operand_entry_t, ops, i, oe); i++) { - changed |= reassociate_bb (son); + fprintf (file, "Op %d -> rank: %d, tree: ", i, oe->rank); + print_generic_stmt (file, oe->op, 0); } - return changed; } - -static bool +/* Dump the operand entry vector OPS to STDERR. */ + +void +debug_ops_vector (VEC (operand_entry_t, heap) *ops) +{ + dump_ops_vector (stderr, ops); +} + +static void do_reassoc (void) -{ - bool changed = false; +{ + break_up_subtract_bb (ENTRY_BLOCK_PTR); + reassociate_bb (EXIT_BLOCK_PTR); +} + +/* Initialize the reassociation pass. */ + +static void +init_reassoc (void) +{ + int i; + unsigned int rank = 2; + tree param; + int *bbs = xmalloc ((last_basic_block + 1) * sizeof (int)); + + memset (&reassociate_stats, 0, sizeof (reassociate_stats)); + + operand_entry_pool = create_alloc_pool ("operand entry pool", + sizeof (struct operand_entry), 30); + + /* Reverse RPO (Reverse Post Order) will give us something where + deeper loops come later. */ + flow_depth_first_order_compute (NULL, bbs); + bb_rank = xcalloc (last_basic_block + 1, sizeof (unsigned int)); - changed = reassociate_bb (ENTRY_BLOCK_PTR); + operand_rank = htab_create (511, operand_entry_hash, + operand_entry_eq, 0); - return changed; + /* Give each argument a distinct rank. */ + for (param = DECL_ARGUMENTS (current_function_decl); + param; + param = TREE_CHAIN (param)) + { + if (default_def (param) != NULL) + { + tree def = default_def (param); + insert_operand_rank (def, ++rank); + } + } + + /* Give the chain decl a distinct rank. */ + if (cfun->static_chain_decl != NULL) + { + tree def = default_def (cfun->static_chain_decl); + if (def != NULL) + insert_operand_rank (def, ++rank); + } + + /* Set up rank for each BB */ + for (i = 0; i < n_basic_blocks; i++) + bb_rank[bbs[i]] = ++rank << 16; + + free (bbs); + calculate_dominance_info (CDI_DOMINATORS); + calculate_dominance_info (CDI_POST_DOMINATORS); + broken_up_subtracts = NULL; } +/* Cleanup after the reassociation pass, and print stats if + requested. */ + +static void +fini_reassoc (void) +{ + + if (dump_file && (dump_flags & TDF_STATS)) + { + fprintf (dump_file, "Reassociation stats:\n"); + fprintf (dump_file, "Linearized: %d\n", + reassociate_stats.linearized); + fprintf (dump_file, "Constants eliminated: %d\n", + reassociate_stats.constants_eliminated); + fprintf (dump_file, "Ops eliminated: %d\n", + reassociate_stats.ops_eliminated); + fprintf (dump_file, "Statements rewritten: %d\n", + reassociate_stats.rewritten); + } + htab_delete (operand_rank); + + free_alloc_pool (operand_entry_pool); + free (bb_rank); + VEC_free (tree, heap, broken_up_subtracts); + free_dominance_info (CDI_POST_DOMINATORS); +} /* Gate and execute functions for Reassociation. */ @@ -618,7 +1494,10 @@ static void execute_reassoc (void) { init_reassoc (); + do_reassoc (); + repropagate_negates (); + fini_reassoc (); } @@ -635,7 +1514,6 @@ struct tree_opt_pass pass_reassoc = 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ - TODO_update_ssa | TODO_dump_func - | TODO_ggc_collect | TODO_verify_ssa, /* todo_flags_finish */ + TODO_dump_func | TODO_ggc_collect | TODO_verify_ssa, /* todo_flags_finish */ 0 /* letter */ }; |