summaryrefslogtreecommitdiff
path: root/gcc
diff options
context:
space:
mode:
authorJeff Law <law@gcc.gnu.org>1997-11-02 14:19:36 -0700
committerJeff Law <law@gcc.gnu.org>1997-11-02 14:19:36 -0700
commite9a25f70a0a7b82881b56cb3dfa7422b2968682a (patch)
tree46fe768360493f03f7282d07762e7b26c292aabd /gcc
parentbb84e66919817020267815eed4304e543688e722 (diff)
downloadgcc-e9a25f70a0a7b82881b56cb3dfa7422b2968682a.tar.gz
Update mainline egcs to gcc2 snapshot 971021.
From-SVN: r16278
Diffstat (limited to 'gcc')
-rw-r--r--gcc/ChangeLog.112727
-rw-r--r--gcc/INSTALL334
-rw-r--r--gcc/Makefile.in98
-rw-r--r--gcc/acconfig.h5
-rw-r--r--gcc/bc-optab.c3
-rw-r--r--gcc/bitmap.c2
-rw-r--r--gcc/bitmap.h4
-rw-r--r--gcc/c-decl.c75
-rw-r--r--gcc/c-lang.c2
-rw-r--r--gcc/c-lex.c35
-rw-r--r--gcc/c-parse.c38
-rw-r--r--gcc/c-typeck.c61
-rw-r--r--gcc/calls.c100
-rw-r--r--gcc/cccp.c259
-rw-r--r--gcc/collect2.c4
-rw-r--r--gcc/combine.c140
-rw-r--r--gcc/config.in11
-rwxr-xr-xgcc/config.sub11
-rw-r--r--gcc/config/alpha/alpha.c167
-rw-r--r--gcc/config/alpha/alpha.h76
-rw-r--r--gcc/config/alpha/alpha.md294
-rw-r--r--gcc/config/alpha/linux.h4
-rw-r--r--gcc/config/alpha/osf12.h4
-rw-r--r--gcc/config/alpha/osf2or3.h5
-rw-r--r--gcc/config/alpha/vms.h202
-rw-r--r--gcc/config/arc/arc.c2
-rw-r--r--gcc/config/arc/arc.h10
-rw-r--r--gcc/config/arc/arc.md2
-rw-r--r--gcc/config/i386/freebsd.h8
-rw-r--r--gcc/config/i386/i386.c1762
-rw-r--r--gcc/config/i386/i386.h1
-rw-r--r--gcc/config/i386/i386.md33
-rw-r--r--gcc/config/i386/rtems.h5
-rw-r--r--gcc/config/i386/sco5.h2
-rw-r--r--gcc/config/i960/i960.h2
-rw-r--r--gcc/config/i960/rtems.h5
-rw-r--r--gcc/config/m68k/m68k.c8
-rw-r--r--gcc/config/m68k/m68k.md80
-rw-r--r--gcc/config/m68k/rtems.h4
-rw-r--r--gcc/config/m88k/dolph.h2
-rw-r--r--gcc/config/m88k/m88k.c3
-rw-r--r--gcc/config/m88k/sysv3.h2
-rw-r--r--gcc/config/mips/iris6.h19
-rw-r--r--gcc/config/mips/mips.c72
-rw-r--r--gcc/config/mips/mips.h39
-rw-r--r--gcc/config/mips/mips.md102
-rw-r--r--gcc/config/mips/rtems64.h5
-rw-r--r--gcc/config/mn10200/mn10200.c2
-rw-r--r--gcc/config/mn10300/mn10300.c2
-rw-r--r--gcc/config/pa/pa.c2
-rw-r--r--gcc/config/pa/pa.md32
-rw-r--r--gcc/config/pa/rtems.h2
-rw-r--r--gcc/config/pa/x-pa2
-rw-r--r--gcc/config/ptx4.h2
-rw-r--r--gcc/config/rs6000/rs6000.c2
-rw-r--r--gcc/config/rs6000/rs6000.md33
-rw-r--r--gcc/config/rs6000/rtems.h1
-rw-r--r--gcc/config/rs6000/sysv4.h103
-rw-r--r--gcc/config/sh/rtems.h5
-rw-r--r--gcc/config/sh/sh.h485
-rw-r--r--gcc/config/sparc/sol2.h7
-rw-r--r--gcc/config/sparc/sparc.c6
-rw-r--r--gcc/config/sparc/sparc.md6
-rw-r--r--gcc/config/sparc/sysv4.h2
-rwxr-xr-xgcc/configure393
-rw-r--r--gcc/configure.in97
-rw-r--r--gcc/cp/ChangeLog9
-rw-r--r--gcc/cp/Make-lang.in4
-rw-r--r--gcc/cp/decl.c3
-rw-r--r--gcc/cp/parse.c6
-rw-r--r--gcc/cp/parse.h3
-rw-r--r--gcc/cp/typeck.c30
-rw-r--r--gcc/cplus-dem.c2
-rw-r--r--gcc/cpp.info75
-rw-r--r--gcc/cpp.info-11182
-rw-r--r--gcc/cpp.info-21058
-rw-r--r--gcc/cpp.info-3478
-rw-r--r--gcc/cpplib.c232
-rw-r--r--gcc/cse.c81
-rw-r--r--gcc/dbxout.c8
-rw-r--r--gcc/dwarf2.h2
-rw-r--r--gcc/dwarf2out.c25
-rw-r--r--gcc/dwarfout.c104
-rw-r--r--gcc/emit-rtl.c19
-rw-r--r--gcc/except.c4
-rw-r--r--gcc/except.h12
-rw-r--r--gcc/expmed.c12
-rw-r--r--gcc/expr.c343
-rw-r--r--gcc/expr.h7
-rw-r--r--gcc/f/Make-lang.in4
-rwxr-xr-xgcc/f/runtime/configure154
-rwxr-xr-xgcc/f/runtime/libU77/configure119
-rw-r--r--gcc/final.c45
-rwxr-xr-xgcc/fixinc.math106
-rwxr-xr-xgcc/fixincludes38
-rw-r--r--gcc/flow.c5
-rw-r--r--gcc/fold-const.c440
-rw-r--r--gcc/frame.c1
-rw-r--r--gcc/function.c336
-rw-r--r--gcc/gcc.c215
-rw-r--r--gcc/gcc.info312
-rw-r--r--gcc/gcc.info-11154
-rw-r--r--gcc/gcc.info-101079
-rw-r--r--gcc/gcc.info-111162
-rw-r--r--gcc/gcc.info-12999
-rw-r--r--gcc/gcc.info-13853
-rw-r--r--gcc/gcc.info-141161
-rw-r--r--gcc/gcc.info-151010
-rw-r--r--gcc/gcc.info-161053
-rw-r--r--gcc/gcc.info-171112
-rw-r--r--gcc/gcc.info-181031
-rw-r--r--gcc/gcc.info-191072
-rw-r--r--gcc/gcc.info-21142
-rw-r--r--gcc/gcc.info-201207
-rw-r--r--gcc/gcc.info-211028
-rw-r--r--gcc/gcc.info-22961
-rw-r--r--gcc/gcc.info-23972
-rw-r--r--gcc/gcc.info-241043
-rw-r--r--gcc/gcc.info-251143
-rw-r--r--gcc/gcc.info-26973
-rw-r--r--gcc/gcc.info-27534
-rw-r--r--gcc/gcc.info-282030
-rw-r--r--gcc/gcc.info-31198
-rw-r--r--gcc/gcc.info-41171
-rw-r--r--gcc/gcc.info-5836
-rw-r--r--gcc/gcc.info-6537
-rw-r--r--gcc/gcc.info-71100
-rw-r--r--gcc/gcc.info-81202
-rw-r--r--gcc/gcc.info-91225
-rw-r--r--gcc/gcc.texi34
-rw-r--r--gcc/genattrtab.c50
-rw-r--r--gcc/ginclude/stdarg.h2
-rw-r--r--gcc/ginclude/va-v850.h3
-rw-r--r--gcc/ginclude/varargs.h2
-rw-r--r--gcc/global.c2
-rw-r--r--gcc/install.texi39
-rw-r--r--gcc/integrate.c82
-rw-r--r--gcc/invoke.texi96
-rw-r--r--gcc/jump.c31
-rw-r--r--gcc/local-alloc.c9
-rw-r--r--gcc/loop.c94
-rw-r--r--gcc/mips-tfile.c4
-rw-r--r--gcc/objc/Make-lang.in43
-rw-r--r--gcc/objc/objc-parse.c61
-rw-r--r--gcc/obstack.h2
-rw-r--r--gcc/pexecute.c6
-rw-r--r--gcc/profile.c12
-rw-r--r--gcc/real.c10
-rw-r--r--gcc/real.h15
-rw-r--r--gcc/reg-stack.c2
-rw-r--r--gcc/regclass.c50
-rw-r--r--gcc/reload.c101
-rw-r--r--gcc/reload1.c475
-rw-r--r--gcc/reorg.c2
-rw-r--r--gcc/rtl.c6
-rw-r--r--gcc/rtl.h69
-rw-r--r--gcc/rtl.texi8
-rw-r--r--gcc/rtlanal.c61
-rw-r--r--gcc/sched.c18
-rw-r--r--gcc/sdbout.c2
-rw-r--r--gcc/stmt.c22
-rw-r--r--gcc/stor-layout.c26
-rw-r--r--gcc/tm.texi147
-rw-r--r--gcc/toplev.c59
-rw-r--r--gcc/tree.c137
-rw-r--r--gcc/tree.h5
-rw-r--r--gcc/unroll.c9
-rw-r--r--gcc/varasm.c50
-rw-r--r--gcc/version.c2
169 files changed, 8865 insertions, 36458 deletions
diff --git a/gcc/ChangeLog.11 b/gcc/ChangeLog.11
index 34d77559dfe..f770cc69c78 100644
--- a/gcc/ChangeLog.11
+++ b/gcc/ChangeLog.11
@@ -1,13 +1,2740 @@
+Mon Oct 20 17:29:55 1997 Doug Evans <dje@cygnus.com>
+
+ * sparc/sparc.h (SPARC_V9,SPARC_ARCH64): Delete.
+ (DEFAULT_ARCH32_P): New macro.
+ (TARGET_ARCH{32,64}): Allow compile time or runtime selection.
+ (enum cmodel): Declare.
+ (sparc_cmodel_string,sparc_cmodel): Declare.
+ (SPARC_DEFAULT_CMODEL): Provide default.
+ (TARGET_{MEDLOW,MEDANY}): Renamed to TARGET_CM_{MEDLOW,MEDANY}.
+ (TARGET_FULLANY): Deleted.
+ (TARGET_CM_MEDMID): New macro.
+ (CPP_CPU_DEFAULT_SPEC): Renamed from CPP_DEFAULT_SPEC.
+ (ASM_CPU_DEFAULT_SPEC): Renamed from ASM_DEFAULT_SPEC.
+ (CPP_PREDEFINES): Take out stuff now handled by %(cpp_arch).
+ (CPP_SPEC): Rewrite.
+ (CPP_ARCH{,32,64,_DEFAULT}_SPEC): New macros.
+ (CPP_{ENDIAN,SUBTARGET}_SPEC): New macros.
+ (ASM_ARCH{,32,64,_DEFAULT}_SPEC): New macros.
+ (ASM_SPEC): Add %(asm_arch).
+ (EXTRA_SPECS): Rename cpp_default to cpp_cpu_default.
+ Rename asm_default to asm_cpu_default.
+ Add cpp_arch32, cpp_arch64, cpp_arch_default, cpp_arch, cpp_endian,
+ cpp_subtarget, asm_arch32, asm_arch64, asm_arch_default, asm_arch.
+ (NO_BUILTIN_{PTRDIFF,SIZE}_TYPE): Define ifdef SPARC_BI_ARCH.
+ ({PTRDIFF,SIZE}_TYPE): Provide 32 and 64 bit values.
+ (MASK_INT64,MASK_LONG64): Delete.
+ (MASK_ARCH64): Renamed to MASK_64BIT.
+ (MASK_{MEDLOW,MEDANY,FULLANY,CODE_MODEL}): Delete.
+ (EMBMEDANY_BASE_REG): Renamed from MEDANY_BASE_REG.
+ (TARGET_SWITCHES): Always provide 64 bit options.
+ (ARCH64_SWITCHES): Delete.
+ (TARGET_OPTIONS): New option -mcmodel=.
+ (INT_TYPE_SIZE): Always 32.
+ (MAX_LONG_TYPE_SIZE): Define ifdef SPARC_BI_ARCH.
+ (INIT_EXPANDERS): sparc64_init_expanders renamed to sparc_init_....
+ (FUNCTION_{,BLOCK_}PROFILER): Delete TARGET_EMBMEDANY support.
+ (PRINT_OPERAND_PUNCT_VALID_P): Add '_'.
+ * sparc/linux-aout.h (CPP_PREDEFINES): Take out stuff handled by
+ CPP_SPEC.
+ (CPP_SUBTARGET_SPEC): Renamed from CPP_SPEC.
+ * sparc/linux.h: Likewise.
+ * sparc/linux64.h (SPARC_V9,SPARC_ARCH64): Delete.
+ (ASM_CPU_DEFAULT_SPEC): Renamed from ASM_DEFAULT_SPEC.
+ (TARGET_DEFAULT): Delete MASK_LONG64, MASK_MEDANY, add MASK_64BIT.
+ (SPARC_DEFAULT_CMODEL): Define.
+ (CPP_PREDEFINES): Take out stuff handled by CPP_SPEC.
+ (CPP_SUBTARGET_SPEC): Renamed from CPP_SPEC.
+ (LONG_DOUBLE_TYPE_SIZE): Define.
+ (ASM_SPEC): Add %(asm_arch).
+ * sparc/sol2.h (CPP_PREDEFINES): Take out stuff handled by CPP_SPEC.
+ (CPP_SUBTARGET_SPEC): Renamed from CPP_SPEC.
+ (TARGET_CPU_DEFAULT): Add ultrasparc case.
+ * sparc/sp64-aout.h (SPARC_V9,SPARC_ARCH64): Delete.
+ (TARGET_DEFAULT): MASK_ARCH64 renamed to MASK_64BIT.
+ (SPARC_DEFAULT_CMODEL): Define.
+ * sparc/sp64-elf.h (SPARC_V9,SPARC_ARCH64): Delete.
+ (TARGET_DEFAULT): MASK_ARCH64 renamed to MASK_64BIT. Delete
+ MASK_LONG64, MASK_MEDANY.
+ (SPARC_DEFAULT_CMODEL): Define.
+ (CPP_PREDEFINES): Delete.
+ (CPP_SUBTARGET_SPEC): Renamed from CPP_SPEC.
+ (ASM_SPEC): Add %(asm_arch).
+ (LONG_DOUBLE_TYPE_SIZE): Define.
+ (DWARF2_DEBUGGING_INFO): Define.
+ * sparc/splet.h (CPP_SPEC): Delete.
+ * sparc/sysv4.h (CPP_PREDEFINES): Take out stuff handled by CPP_SPEC.
+ (FUNCTION_BLOCK_PROFILER): Delete TARGET_EMBMEDANY support.
+ (BLOCK_PROFILER): Likewise.
+ * sparc/sparc.c (sparc_cmodel_string,sparc_cmodel): New globals.
+ (sparc_override_options): Handle code model selection.
+ (sparc_init_expanders): Renamed from sparc64_init_expanders.
+ * sparc/sparc.md: TARGET_<code_model> renamed to TARGET_CM_....
+ TARGET_MEDANY renamed to TARGET_CM_EMBMEDANY.
+ (sethi_di_embmedany_{data,text}): Renamed from sethi_di_medany_....
+ (sethi_di_fullany): Delete.
+
+Mon Oct 20 17:20:17 1997 Jim Wilson <wilson@cygnus.com>
+
+ * mips.c (compute_frame_size): Not a leaf function if profile_flag set.
+
+Sun Oct 19 17:46:02 1997 Douglas Rupp <rupp@gnat.com>
+
+ * cccp.c (OBJECT_SUFFIX): Add default definition.
+ (main): Use OBJECT_SUFFIX.
+ (VMS_{freopen,fopen,open}): Use instead of using macro on
+ unprefixed name.
+ (VMS_fstat): Use decc$fstat explicitly, not via macro.
+
+Sun Oct 19 09:07:38 1997 Richard Kenner <kenner@vlsi1.ultra.nyu.edu>
+
+ * prefix.c (get_key_value): Initialize prefix to null.
+ * Makefile.in (prefix.o): Properly pass in prefix.
+
+ * objc/Make-lang.in (objc.distdir): Make the objc directory.
+ * Makefile.in (distdir-start): No longer depend on objc-parse.[cy].
+ Don't copy objc files here.
+ (TAGS): Don't delete objc-parse.y
+
+ * i386/mingw32.h (LIB_SPEC): Add -ladvapi32.
+ (STARTFILE_SPEC): If -dll, use dllcrt1.o.
+ (INCOMING_RETURN_ADDR_RTX): Undefine.
+
+ * Makefile.in (float.h-nat): Avoid using /dev/null for input,
+ since it's not present on all systems.
+
+ * prefix.c : New file.
+ * Makefile.in (xgcc, cccp, cppmain, fix-header): Add prefix.o.
+ (prefix.o): New rule.
+ * cccp.c (update_path): Add extern definition.
+ (struct default_include): New field `component'.
+ (default_include): Add initializer for new field to all entries.
+ (new_include_prefix): Take new arg and call update_path;
+ all callers changed.
+ Add trailing "." before doing stat of file.
+ * cpplib.c (update_path): Add extern definition.
+ (struct default_include): New field `component'.
+ (default_include): Add initializer for new field to all entries.
+ (cpp_start_read): Call update_path.
+ * gcc.c (upate_path): Add extern definition.
+ (find_a_file): For MS-DOS-based, consider a drive spec as absolute.
+ (add_prefix): New arg component and pass to update_path;
+ all callers changed.
+ * netbsd.h (INCLUDE_DEFAULTS): Add `component' to values.
+ * i386/freebsd.h, mips/netbsd.h, winnt/win-nt.h: Likewise.
+ * i386/mingw32 (STANDARD_INCLUDE_COMPONENT): New macro.
+ * vax/vms.h (INCLUDE_DEFAULTS): New macro.
+ * vax/xm-vms.h (INCLUDE_DEFAULTS): Delete from here.
+
+ * sparc/sol2.h (WIDEST_HARDWARE_FP_SIZE): New macro.
+
+ * i386.c (ix86_prologue): Conditionalize Dwarf2 calls
+ on #ifdef INCOMING_RETURN_ADDR_RTX.
+ * i386.md (allocate_stack): Fix incorrect operand number.
+
+ * alpha.c (vmskrunch): Deleted.
+ (output_prolog, VMS): Use alloca for entry_label and don't
+ truncate to 64 characters.
+ * alpha/vms.h (vmskrunch): No longer define.
+ (ENCODE_SECTION_INFO): No longer call vmskrunch.
+ (ASM_DECLARE_FUNCTION_NAME): No longer override.
+
+ * toplev.c (output_quoted_string): Call new OUTPUT_QUOTED_STRING macro.
+ * i386/mingw32.h (OUTPUT_QUOTED_STRING): New macro.
+
+ * stmt.c (using_eh_for_cleanups_p): New variable.
+ (using_eh_for_cleanups): New function.
+ (expand_decl_cleanup): Don't call expand_eh_region_start_tree
+ unless using EH for cleanups.
+
+ * function.c (purge_addressof_1): When dealing with a
+ bare (address (mem)), verify that what's inside is valid in insn.
+ (instantiate_virtual_regs_1, case ADDRESSOF): If have MEM, just
+ do instantiation inside and leave alone here.
+
+ * fold-const.c (fold, case COND_EXPR): Allow creation
+ of {MIN,MAX}_EXPR, but preserve info on orginal comparison code.
+
+ * function.h (restore_tree_status): Update prototype.
+
+ * cse.c (cse_basic_block): Flush the hash table every 1,000 insns.
+
+Sat Oct 18 13:48:14 1997 J"orn Rennecke <amylaar@cygnus.co.uk>
+
+ * longlong.h (count_leading_zeros): Add missing casts to USItype.
+
+Sat Oct 18 13:35:09 1997 Marc Lehmann (pcg@goof.com)
+
+ * toplev.c (main): Don't execute "ps" under MSDOS.
+
+Sat Oct 18 13:26:42 1997 Richard Earnshaw (rearnsha@arm.com)
+
+ * function.c (instantiate_virtual_regs): Don't instantiate the
+ stack slots for the parm registers until after the insns have had
+ their virtuals instantiated.
+
+ * varargs.h (va_arg): For ARM systems, definition is endian-dependent.
+ * stdarg.h (va_arg): Likewise.
+
+Sat Oct 18 11:23:04 1997 Nick Clifton <nickc@cygnus.com>
+
+ * final.c (end_final): Use ASM_OUTPUT_ALIGNED_DECL_LOCAL if defined.
+ * varasm.c (assemble_static_space): Likewise.
+ (assemble_variable): Use ASM_OUTPUT_ALIGNED_DECL_{COMMON,LOCAL} if def.
+
+Sat Oct 18 11:02:19 1997 Doug Evans <dje@canuck.cygnus.com>
+
+ * expr.c (use_group_regs): Don't call use_reg unless REG.
+
+Sat Oct 18 10:39:22 1997 Jim Wilson <wilson@cygnus.com>
+
+ * cse.c (simplify_ternary_operation, case IF_THEN_ELSE): Collapse
+ redundant conditional moves to single operand.
+
+ * expmed.c (extract_bit_field): Don't make flag_force_mem disable
+ extzv for memory operands.
+
+Sat Oct 18 09:58:44 1997 Jeffrey A Law <law@cygnus.com>
+
+ * ptx4.h: Fix typo.
+
+ * integrate.c (save_for_inline_copying): Avoid undefined pointer
+ operations.
+ (expand_inline_function): Likewise.
+
+Sat Oct 18 09:49:46 1997 Jason Merrill <jason@yorick.cygnus.com>
+
+ * tree.c (restore_tree_status): Also free up temporary storage
+ when we finish a toplevel function.
+ (dump_tree_statistics): Print stats for backend obstacks.
+
+ * libgcc2.c (__throw): Don't copy the return address.
+ * dwarf2out.c (expand_builtin_dwarf_reg_size): Ignore return address.
+
+ * tree.c (expr_tree_cons, build_expr_list, expralloc): New fns.
+ * tree.h: Declare them.
+
+ * except.c (exceptions_via_longjmp): Initialize to 2 (uninitialized).
+ * toplev.c (main): Initialize exceptions_via_longjmp.
+
+ * tree.c: Add extra_inline_obstacks.
+ (save_tree_status): Use it.
+ (restore_tree_status): If this is a toplevel inline obstack and we
+ didn't want to save anything on it, recycle it.
+ (print_inline_obstack_statistics): New fn.
+ * function.c (pop_function_context_from): Pass context to
+ restore_tree_status.
+
+Sat Oct 18 09:45:22 1997 Michael Meissner <meissner@cygnus.com>
+
+ * profile.c (get_file_function_name): Remove declaration.
+ * c-lang.c (finish_file): Likewise.
+
+Sat Oct 18 09:35:40 1997 Tristan Gingold <gingold@messiaen.enst.fr>
+
+ * expr.c (expand_assignment): If -fcheck-memory-usage, add call to
+ chkr_check_addr if size not zero.
+ (expand_expr, case COMPONENT_REF): Likewise.
+ (expand_builtin): If -fcheck_memory-usage, check memory usage
+ of operands for strlen, strcpy, and memcpy or don't use builtins
+ for memcmp and strcmp.
+ * expr.h (chkr_check_str_libfunc): Declare.
+ * optabs.c (chkr_check_str_libfunc): New variable.
+ (init_optabs): Initialize it.
+
+Sat Oct 18 09:29:21 1997 J"orn Rennecke <amylaar@cygnus.co.uk>
+
+ * i386/cygwin32.h (ASM_COMMENT_START): Redefine.
+
+Sat Oct 18 09:23:54 1997 Andreas Schwab <schwab@issan.informatik.uni-dortmund.de>
+
+ * frame.c (__frame_state_for): Execute the FDE insns until the
+ current pc value is strictly bigger than the target pc value.
+
+ * expr.c (expand_expr, case TARGET_EXPR): If target and slot has
+ no DECL_RTL, then call mark_addressable again for the slot after
+ we give it RTL.
+
+Sat Oct 18 08:58:36 1997 Manfred Hollstein (manfred@lts.sel.alcatel.de)
+
+ * m88k/dolph.h (INITIALIZE_TRAMPOLINE): Delete here.
+ * m88k/sysv3.h (INITIALIZE_TRAMPOLINE): Unconditionally define.
+ * libgcc2.c (__enable_execute_stack): Check for __sysV88__ not
+ __DOLPHIN__.
+
+ * m68k/mot3300.h (ASM_OUTPUT_ALIGN): Accept any alignment.
+ * dwarf2out.c (output_call_frame_info): Call app_enable and
+ app_disable to let GNU as accept the generated comments.
+
+ * m88k.c (m88k_begin_prologue): Remove superfluous backslash.
+
+Sat Oct 18 08:50:04 1997 Philippe De Muyter <phdm@info.ucl.ac.be>
+
+ * flow.c (print_rtl_with_bb): Cast alloca return values.
+
+Sat Oct 18 08:47:46 1997 Douglas Rupp <rupp@gnat.com>
+
+ * alpha/vms.h (LITERALS_SECTION_ASM_OP, ASM_OUTPUT_DEF):
+ (EXTRA_SECTION_FUNCTIONS): Add literals_section.
+ (EXTRA_SECTIONS): Include in_literals.
+
+Sat Oct 18 08:40:55 1997 Nick Burrett <nick.burrett@btinternet.com>
+
+ * cpplib.c: (initialize_builtins): Cast all string constants for the
+ function install, to type U_CHAR *.
+ (eval_if_expression): Likewise.
+ * cppexp.c: (cpp_lex): Cast string, for cpp_lookup, to type U_CHAR *.
+
+Sat Oct 18 08:38:13 1997 Ken Raeburn <raeburn@cygnus.com>
+
+ * c-lex.c (check_newline) At `skipline', flush nextchar as well.
+
+Sat Oct 18 08:17:13 1997 Paul Russell <Paul.Russell@RustCorp.com.au>
+
+ * input.h (struct file_stack): Added indent_level.
+ * c-lex.c (check_newline): Add {}-count & balance warning.
+
+Sat Oct 18 06:54:39 1997 Richard Kenner <kenner@vlsi1.ultra.nyu.edu>
+
+ * regclass.c (record_address_regs, case PLUS): Refine how to choose
+ which is base and index.
+
+ * alpha.h (FUNCTION_VALUE): Use word_mode only for integral types,
+ not types with integral modes.
+
+ * final.c (alter_cond): Properly conditionalize forward decl.
+
+ * tree.h (SAVE_EXPR_NOPLACEHOLDER): New flag.
+ * tree.c (contains_placeholder_p, case SAVE_EXPR): Avoid
+ checking each SAVE_EXPR more than once.
+
+ * rs6000.md (nonlocal_goto_receiver): Don't test pool size.
+
+ * i386.c (load_pic_register): New function.
+ (ix86_prologue): Code to load PIC register moved to new function.
+ Don't emit blockage if not generating RTL.
+ * i386.md (nolocal_goto_receiver): New pattern.
+
+ * i386.c: Major cleanup, mostly reformatting.
+ Include dwarf2.h.
+ Remove many spurious casts.
+ (ix86_{pro,epi}logue): Use proper mode for SET rtx.
+
+Fri Oct 17 17:13:42 1997 David S. Miller <davem@tanya.rutgers.edu>
+
+ * sparc/linux64.h (LINK_SPEC): Dynamic linker is ld-linux64.so.2.
+ * sparc.h (FUNCTION_PROFILER): Fix format string when TARGET_MEDANY.
+ * sparc.c (output_double_int): Output DI mode values
+ correctly when HOST_BITS_PER_WIDE_INT is 64.
+ (output_fp_move_quad): If TARGET_V9 and not TARGET_HARD_QUAD, use
+ fmovd so it works if a quad float ends up in one of the upper 32
+ float regs.
+ * sparc.md (pic_{lo_sum,sethi}_di): New patterns for PIC support
+ on sparc64.
+
+Fri Oct 17 16:27:07 1997 Doug Evans <dje@cygnus.com>
+
+ * sparc/sp64-elf.h (TARGET_DEFAULT): Delete MASK_STACK_BIAS.
+ * sparc.h (PROMOTE_MODE): Promote small ints if arch64.
+ (PROMOTE_FUNCTION_ARGS,PROMOTE_FUNCTION_RETURN): Define.
+ (SPARC_FIRST_FP_REG, SPARC_FP_REG_P): New macros.
+ (SPARC_{OUTGOING,INCOMING}_INT_ARG_FIRST): New macros.
+ (SPARC_FP_ARG_FIRST): New macro.
+ (CONDITIONAL_REGISTER_USAGE): All v9 fp regs are volatile now.
+ (REG_ALLOC_ORDER,REG_LEAF_ALLOC_ORDER): Reorganize fp regs.
+ (NPARM_REGS): There are 32 fp argument registers now.
+ (FUNCTION_ARG_REGNO_P): Likewise.
+ (FIRST_PARM_OFFSET): Update to new v9 abi.
+ (REG_PARM_STACK_SPACE): Define for arch64.
+ (enum sparc_arg_class): Delete.
+ (sparc_arg_count,sparc_n_named_args): Delete.
+ (struct sparc_args): Redefine and use for arch32 as well as arch64.
+ (GET_SPARC_ARG_CLASS,ROUND_REG,ROUND_ADVANCE): Delete.
+ (FUNCTION_ARG_ADVANCE): Rewrite.
+ (FUNCTION_ARG,FUNCTION_INCOMING_ARG): Rewrite.
+ (FUNCTION_ARG_{PARTIAL_NREGS,PASS_BY_REFERENCE}): Rewrite.
+ (FUNCTION_ARG_CALLEE_COPIES): Delete.
+ (FUNCTION_ARG_{PADDING,BOUNDARY}): Define.
+ (STRICT_ARGUMENT_NAMING): Define.
+ (doublemove_string): Declare.
+ * sparc.c (sparc_arg_count,sparc_n_named_args): Delete.
+ (single_move_string): Use GEN_INT, and HOST_WIDE_INT.
+ (doublemove_string): New function.
+ (output_move_quad): Clean up some of the arch64 support.
+ (compute_frame_size): Add REG_PARM_STACK_SPACE if arch64.
+ Don't add 8 bytes of reserved space if arch64.
+ (sparc_builtin_saveregs): Combine arch32/arch64 versions.
+ (init_cumulative_args): New function.
+ (function_arg_slotno): New static function.
+ (function_arg,function_arg_partial_nregs): New functions.
+ (function_arg_{pass_by_reference,advance}): New functions.
+ (function_arg_padding): New function.
+ * ginclude/va-sparc.h: Rewrite v9 support.
+
+Fri Oct 17 13:21:45 EDT 1997 Philip Blundell <pb@nexus.co.uk>
+
+ * arm/netbsd.h (TYPE_OPERAND_FMT): use % not @ to avoid
+ problems with comments.
+
+Fri Oct 17 13:00:38 EDT 1997 Richard Earnshaw (rearnsha@arm.com)
+
+ * arm/aout.h (ASM_OUTPUT_LABEL): Define in place of ARM_OUTPUT_LABEL.
+ * arm/aof.h (ASM_OUTPUT_LABEL): Likewise.
+ * arm.h (ASM_OUTPUT_LABEL): Delete.
+ (ASM_OUTPUT_INTERNAL_LABEL): Call ASM_OUTPUT_LABEL directly.
+ * arm.c (arm_asm_output_label): Delete.
+
+ * arm/aout.h (ASM_OUTPUT_ALIGNED_LOCAL): Do what is needed inline.
+ * arm.c (output_lcomm_directive): Delete.
+
+ * arm.h (PUSH_ROUNDING): Delete; this is not what happens.
+ (ACCUMULATE_OUTGOING_ARGS): Define.
+ (PROMOTE_FUNCTION_ARGS): Define.
+ (INITIAL_ELIMINATION_OFFSET): Take current_function_outgoing_args_size
+ into account.
+ * arm.c (use_return_insn, output_func_epilogue,
+ arm_expand_prologue): Likewise.
+
+ * arm.c (const_ok_for_arm): If HOST_WIDE_INT more than 32 bits,
+ insist high bits are all zero or all one.
+ (output_move_double): Handle case where CONST_INT is more than 32 bits.
+
+ * arm.c (load_multiple_sequence): Support SUBREG of MEM.
+ (store_multiple_sequence): Likewise.
+
+ * arm.c (arm_gen_load_multiple): New args UNCHANGING_P and IN_STRUCT_P.
+ Use them if we create any new MEMs; all callers changed.
+ (arm_gen_store_multiple): Likewise.
+ (arm_gen_movstrqi): Preserve RTX_UNCHANGING_P and MEM_IN_STRUCT_P
+ on any MEMs created.
+
+ * arm.h (ASM_OUTPUT_MI_THUNK): Use branch instruction to jump to label.
+ (RETURN_ADDR_RTX): Use NULL_RTX rather than casting zero.
+ (output_move_double): Correct typo in prototype.
+
+ * arm.md (movsfcc): If not TARGET_HARD_FLOAT, ensure operand[3] valid.
+
+ * arm/netbsd.h (CPP_PREDEFINES): Always predefine __arm__.
+ * arm/xm-netbsd.h (SYS_SIGLIST_DECLARED, HAVE_STRERROR): Define these.
+
+ * arm/t-netbsd (CROSS_LIBGCC1, LIB1ASMSRC, LIB1ASMFUNCS) Don't define
+ these any more.
+ * configure.in (arm-*-netbsd*): Pick up t-netbsd before arm/t-netbsd.
+
+Thu Oct 16 19:31:22 1997 Jim Wilson <wilson@cygnus.com>
+
+ * v850.c (ep_memory_offset): New function.
+ (ep_memory_operand, substitute_ep_register, v850_reorg): Call it.
+
+ * v850.h (CONST_OK_FOR_*): Add and correct comments.
+ (CONSTANT_ADDRESS_P): Add comment.
+ (EXTRA_CONSTRAINT): Define 'U'.
+ * v850.md: Add comments on bit field instructions.
+ (addsi3): Delete &r/r/r alternative. Add r/r/U alternative.
+ (lshrsi3): Use N not J constraint.
+
+ * v850.md (v850_tst1+1): New define_split for tst1 instruction.
+
+ * v850.c (reg_or_0_operand): Call register_operand.
+ (reg_or_int5_operand): Likewise.
+ * v850.h (MASK_BIG_SWITCH, TARGET_BIG_SWITCH): New macros.
+ (TARGET_SWITCHES): Add "big-switch".
+ (ASM_OUTPUT_ADDR_VEC_ELT, ASM_OUTPUT_ADDR_DIFF_ELT, CASE_VECTOR_MODE,
+ ASM_OUTPUT_BEFORE_BASE_LABEL): Add support for TARGET_BIG_SWITCH.
+ (CASE_DROPS_THROUGH): Comment out.
+ (CASE_VECTOR_PC_RELATIVE, JUMP_TABLES_IN_TEXT_SECTION): Define.
+ * v850.md (cmpsi): Delete compare mode.
+ (casesi): New pattern.
+
+ * v850.h (CONST_OK_FOR_N): Delete redundant compare against zero.
+ * v850.md (ashlsi3): Use SImode not QImode for shift count.
+ (lshrsi3): Likewise.
+
+ * v850.c (print_operand): Add 'c', 'C', and 'z' support. Delete
+ unreachable switch statement after 'b' support. Remove "b" from
+ strings for 'b' support.
+ * v850.md (branch_normal, branch_invert): Change %b to b%b.
+
+Thu Oct 16 13:08:45 1997 Doug Evans <dje@cygnus.com>
+
+ * configure.in (sparc-*-elf*): New target.
+
+Wed Oct 15 22:30:37 1997 J"orn Rennecke <amylaar@cygnus.co.uk>
+
+ * h8300.h (REG_CLASS_CONTENTS): AP is a general register.
+ (REG_OK_FOR_BASE_P, ! REG_OK_STRICT case): Reject special registers.
+
+Wed Oct 15 22:00:57 1997 J"orn Rennecke <amylaar@cygnus.co.uk>
+
+ * sh.md (movhi+1): Add x/r alternative.
+
+ * sh/elf.h (HANDLE_SYSV_PRAGMA): Undefine.
+
+ * va-sh.h (va_arg): Fix big endian bugs for small integers.
+
+Wed Oct 15 21:34:45 1997 David Edelsohn <edelsohn@mhpcc.edu>
+
+ * rs6000.md (udivsi3, divsi3): Split into MQ and non-MQ cases for
+ PPC601.
+ (umulsidi3,umulsi3_highpart): Ditto.
+ (smulsi3_highpart_no_mq): Add !TARGET_POWER.
+
+Wed Oct 15 18:45:31 1997 Doug Evans <dje@cygnus.com>
+
+ * sparc/t-sp64 (LIBGCC2_CFLAGS): Delete.
+
+Wed Oct 15 17:17:33 1997 Jeffrey A Law (law@cygnus.com)
+
+ * pa.c (following_call): Fail if the CALL_INSN is an indirect
+ call.
+
+Wed Oct 1 17:52:09 1997 Douglas Rupp <rupp@gnat.com>
+
+ * vms.h (UNALIGNED_{SHORT,INT,DOUBLE_INT}_ASM_OP): Define.
+
+Wed Oct 1 16:09:42 1997 Benjamin Kosnik <bkoz@melange.gnu.ai.mit.edu>
+
+ * fixincludes: Fix sys/param.h so that MAXINT will not be redefined
+ on HPUX.
+
+Wed Oct 1 08:08:21 1997 Jeffrey A Law <law@chunks.cygnus.com>
+
+ * cse.c (this_insn_cc0_mode): Initialize.
+
+Wed Oct 1 07:22:12 1997 Richard Henderson <rth@cygnus.com>
+
+ * i386.h (RETURN_ADDR_RTX): Use FRAME arg, not ap.
+
+Tue Sep 30 19:19:58 1997 Jim Wilson <wilson@cygnus.com>
+
+ * except.c (find_exception_handler_labels): Correct argument to free.
+
+Fri Sep 26 14:06:45 1997 Mike Stump <mrs@wrs.com>
+
+ * c-decl.c (start_struct): Ensure that structs with forward
+ declarations are in fact packed when -fpack-struct is given.
+
+Wed Sep 24 11:31:24 1997 Mike Stump <mrs@wrs.com>
+
+ * stor-layout.c (layout_record): Ignore STRUCTURE_SIZE_BOUNDARY if
+ we are packing a structure. This allows a structure with only
+ bytes to be aligned on a byte boundary and have no padding on a
+ m68k.
+
+Tue Sep 30 11:00:00 1997 Brendan Kehoe <brendan@lisa.cygnus.com>
+
+ * except.c (find_exception_handler_labels): Free LABELS when we're
+ done.
+
+Tue Sep 30 10:47:33 1997 Paul Eggert <eggert@twinsun.com>
+
+ * cexp.y, cppexp.c (HOST_BITS_PER_WIDE_INT):
+ Define only if not already defined.
+
+Mon Sep 29 17:55:55 1997 Gavin Koch <gavin@cygnus.com>
+
+ * c-decl.c (warn_implicit): Deleted.
+ (warn_implicit_int, mesg_implicit_function_declaration}): New vars.
+ (c_decode_option): For -Wimplicit, set both new variables.
+ Add -Wimplicit-function-declarations, -Wimplicit-int,
+ and -Werror-implicit-function-declaration.
+ (implicitly_declare, grokdeclarator): Use new flags.
+ * toplev.c (lang_options): Add new -W options.
+
+Mon Sep 29 17:55:15 1997 Richard Kenner <kenner@vlsi1.ultra.nyu.edu>
+
+ * c-common.c (check_format_info): Add check for scanf into
+ constant object or via constant pointer type.
+
+Mon Sep 29 16:10:12 1997 Richard Henderson <rth@cygnus.com>
+
+ * alpha.md (beq): For registers and ints 0-255, use cmpeq+bne.
+ (bne): Likewise for cmpeq+beq.
+
+Mon Sep 29 15:58:22 1997 Doug Evans <dje@cygnus.com>
+
+ * reload1.c (reload_cse_simplify_set): Fix return values.
+
+Mon Sep 29 08:21:35 1997 Bruno Haible <bruno@linuix.mathematik.uni-karlsruhe.de>
+
+ * i386.c (notice_update_cc): Use reg_overlap_mentioned_p.
+
+Sun Sep 28 18:59:58 1997 Jason Merrill <jason@yorick.cygnus.com>
+
+ * libgcc2.c (__throw): Fix thinko.
+
+Sun Sep 28 12:00:52 1997 Mark Mitchell <mmitchell@usa.net>
+
+ * cplus-dem.c (demangle_template): Add new parameter. Handle new
+ template-function mangling.
+ (consume_count_with_underscores): New function.
+ (demangle_signature): Handle new name-mangling scheme.
+
+Sun Sep 28 11:19:09 1997 Richard Kenner <kenner@vlsi1.ultra.nyu.edu>
+
+ * flow.c (print_rtl_with_bb): Reformat messages about BB boundaries.
+
+ * calls.c: Include regs.h.
+ * profile.c: Likewise.
+ * Makefile.in (calls.o, profile.o): Depend on regs.h.
+ * except.h (expand_builtin_dwarf_reg_size): Put in #ifdef TREE_CODE.
+
+ * tree.h (get_file_function_name): Add decl.
+ * dwarf2out.c (output_call_frame_info): Don't cast its result.
+
+Sun Sep 28 10:58:21 1997 Manfred Hollstein <manfred@s-direktnet.de>
+
+ * Makefile.in (sub-makes): Pass value of LANGUAGES.
+
+Sun Sep 28 10:52:59 1997 Ian Dall <ian.dall@dsto.defence.gov.au>
+
+ * regs.h (SMALL_REGISTER_CLASSES): Default to 0.
+ * calls.c (prepare_call_address, expand_call):
+ Remove #if test on SMALL_REGISTER_CLASSES.
+ * combine.c (can_combine_p, combinable_i3pat, try_combine): Likewise.
+ * cse.c (canon_hash): Likewise.
+ * function.c (expand_function_start): Likewise.
+ * jump.c (jump_optimize): Likewise.
+ * local-alloc.c (optimize_reg_copy_1): Likewise.
+ * loop.c (scan_loop, valid_initial_value_p): Likewise.
+ * profile.c (output_arc_profiler): Likewise.
+ * reload.c (push_secondary_reload, push_reload): Likewise.
+ (combine_reloads): Likewise.
+ * reload1.c (reload, scan_paradoxical_subregs): Likewise.
+ (order_regs_for_reload, reload_as_needed): Likewise.
+ (choose_reload_regs): Likewise.
+ (merge_assigned_reloads): Declare unconditionally.
+
+Sat Sep 27 11:02:38 1997 Jason Merrill <jason@yorick.cygnus.com>
+
+ * c-decl.c (init_decl_processing): Add __builtin_dwarf_reg_size.
+ * tree.h (built_in_function): Likewise.
+ * expr.c (expand_builtin): Likewise.
+ * except.h: Likewise.
+ * dwarf2out.c (expand_builtin_dwarf_reg_size): New fn.
+ * libgcc2.c (copy_reg): New fn.
+ (__throw): Use it.
+
+Fri Sep 26 09:00:13 1997 Andreas Schwab <schwab@issan.informatik.uni-dortmund.de>
+
+ * frame.c (gansidecl.h): New include, for PROTO.
+ * dwarf2out.c: Move inclusion of dwarf2.h down.
+ (dwarf2out_cfi_label): Don't declare here.
+ * dwarf2.h (dwarf2out_{do_frame,cfi_label,def_cfa}): New declarations.
+ (dwarf2out_{window_save,args_size,reg_save,return_save}): Likewise.
+ (dwarf2out_{return_reg,begin_prologue,end_epilogue}): Likewise.
+ * m68k.c (dwarf2.h): Include.
+ (output_function_prologue): Add dwarf2 support.
+ * m68k.h (INCOMING_RETURN_ADDR_RTX, DWARF_FRAME_REGNUM): New macros.
+ (INCOMING_FRAME_SP_OFFSET): Likewise.
+
+ * integrate.c (copy_rtx_and_substitute, case ADDRESSOF): New case.
+
+ * integrate.c (expand_inline_function): Make sure there is at
+ least one insn that can be used as an insertion point.
+
+Fri Sep 26 08:54:59 1997 Paul Eggert <eggert@twinsun.com>
+
+ * c-typeck.c (build_binary_op): Warn about comparing signed vs
+ unsigned if -W is specified and -Wno-sign-compare is not.
+ * c-decl.c (warn_sign_compare): Initialize to -1.
+ (c_decode_option): -Wall no longer implies -Wsign-compare.
+
+Wed Sep 24 21:34:06 1997 Jason Merrill <jason@yorick.cygnus.com>
+
+ * dwarf2out.c: s/flag_verbose_asm/flag_debug_asm/
+
+Wed Sep 24 19:17:08 1997 Doug Evans <dje@cygnus.com>
+
+ * sparc.md (get_pc_via_call): Renamed from get_pc_sp32.
+ (get_pc_via_rdpc): Renamed from get_pc_sp64.
+ * sparc.c (finalize_pic): Update call to gen_get_pc_via_call.
+
+Wed Sep 24 18:38:22 1997 David S. Miller <davem@tanya.rutgers.edu>
+
+ * sparc.h (ASM_CPU_SPEC): Pass -Av9a for v8plus, ultrasparc.
+ (TARGET_OPTIONS): Add -malign-loops=, -malign-jumps=,
+ and -malign-functions=.
+ (sparc_align_{loops,jumps,funcs}_string): Declare.
+ (sparc_align_{loops,jumps,funcs}): Declare.
+ (DEFAULT_SPARC_ALIGN_FUNCS): New macro.
+ (FUNCTION_BOUNDARY): Use sparc_align_funcs.
+ (STACK_BIAS): Define.
+ (SPARC_SIMM*_P): Cast to unsigned HOST_WIDE_INT, then perform test.
+ (SPARC_SETHI_P): New macro.
+ (CONST_OK_FOR_LETTER_P): Use it.
+ (ASM_OUTPUT_ALIGN_CODE): Define.
+ (ASM_OUTPUT_LOOP_ALIGN): Define.
+ * sparc.c (sparc_align_{loops,jumps,funcs}_string): New globals.
+ (sparc_align_{loops,jumps,funcs}): New globals.
+ (sparc_override_options): Handle -malign-loops=, -malign-jumps=,
+ -malign-functions=.
+ (move_operand): Use SPARC_SETHI_P.
+ (arith_double_operand): Cast to unsigned HOST_WIDE_INT, then test.
+ (arith11_double_operand): Likewise.
+ (arith10_double_operand): Likewise.
+ (finalize_pic): Finish sparc64 support.
+ (emit_move_sequence): Use SPARC_SETHI_P. Simplify low part of
+ 64 bit constants if able.
+ (output_fp_move_quad): Don't use fmovq unless TARGET_HARD_QUAD.
+ (sparc_builtin_saveregs [sparc64]): Don't save fp regs if ! TARGET_FPU.
+ * sparc.md: Use GEN_INT instead of gen_rtx.
+ (get_pc_sp32): Use for sparc64 as well.
+ (lo_sum_di_sp{32,64}): Fix handling on 64 bit hosts.
+ (sethi_di_sp64_const): Likewise.
+ (movtf_cc_sp64): Check TARGET_HARD_QUAD.
+ (cmp_zero_extract_sp64): Use unsigned HOST_WIDE_INT in cast.
+ (ashlsi3, ashldi3, ashrsi3, ashrdi3, lshrsi3, lshrdi3): Likewise.
+
+Wed Sep 24 08:25:28 1997 Alexandre Oliva <oliva@dcc.unicamp.br>
+
+ * i386.md (allocate_stack): Fix typo in last change.
+
+Tue Sep 23 19:02:46 1997 Doug Evans <dje@cygnus.com>
+
+ * sparc/linux-aout.h (COMMENT_BEGIN): Delete.
+ * sparc/linux.h (COMMENT_BEGIN): Likewise.
+ * sparc/linux64.h (COMMENT_BEGIN): Likewise.
+
+Tue Sep 23 14:48:18 1997 David S. Miller <davem@tanya.rutgers.edu>
+
+ Add sparc64 linux support.
+ * configure.in (sparc64-*-linux*): Recognize. Add sparc/xm-sparc.h
+ to xm_file list on 32-bit sparc-linux.
+ * sparc/xm-sp64.h: New file.
+ * sparc/linux64.h: New file.
+ * sparc/xm-linux.h: Include some standard headers if not inhibit_libc.
+ Don't include xm-sparc.h.
+ * config/xm-linux.h (HAVE_PUTENV, HAVE_ATEXIT): Define.
+ * glimits.h (LONG_MAX): Handle sparc64.
+
+Tue Sep 23 08:32:51 1997 Jason Merrill <jason@yorick.cygnus.com>
+
+ * final.c (final_end_function): Also do dwarf2 thing if
+ DWARF2_DEBUGGING_INFO.
+ (final_start_function): Likewise.
+
+Tue Sep 23 06:55:40 1997 David S. Miller <davem@tanya.rutgers.edu>
+
+ * expmed.c (expand_divmod): If compute_mode is not same as mode,
+ handle case where convert_modes causes op1 to no longer be CONST_INT.
+
+Tue Sep 23 00:58:48 1997 Jim Wilson <wilson@cygnus.com>
+
+ * mips.c (save_restore_insns): Only set RTX_FRAME_RELATED_P if store_p.
+
+Mon Sep 22 18:26:25 1997 J. Kean Johnston <jkj@sco.com>
+
+ * i386/sco5.h: Make ELF default file format and add -mcoff/-melf..
+ (MULTILIB_DEFAULTS): Define.
+ (ASM_SPEC, CPP_SPEC): Handle -mcoff.
+ (STARTFILE_SPEC, ENDFILE_SPEC, LINK_SPEC): Likewise.
+ (LIBGCC_SPEC): Likewise.
+ (MASK_COFF, TARGET_COFF, TARGET_ELF): Define.
+ (SUBTARGET_SWITCHES): Add -mcoff and -melf.
+ * i386/t-sco5 (CRTSTUFF_T_CFLAGS): Add -fPIC.
+ (CRTSTUFF_T_CFLAGS_S): Tweak for COFF.
+ (EXTRA_PARTS, TAROUTOPTS): Delete.
+ (libgcc1-elf, libgcc2-elf, libgcc-elf targets): Delete.
+ (MULTILIB_OPTIONS): Define.
+ (MULTILIB_DIRNAMES, MULTILIB_EXCEPTIONS): Likewise.
+ (MULTILIB_MATCHE, MULTILIB_EXTRA_OPTS): Likewise.
+
+Mon Sep 22 14:42:11 1997 Jeffrey A Law (law@cygnus.com)
+
+ * reg-stack.c (find_blocks): Fix thinko in last change.
+
+Mon Sep 22 16:22:41 1997 David S. Miller <davem@tanya.rutgers.edu>
+
+ * combine.c (try_combine): Use NULL_RTX, not 0, in gen_rtx calls.
+ * cse.c (cse_main): Likewise.
+ * emit-rtl.c (gen_label_rtx): Likewise.
+ * expr.c (init_expr_once): Likewise.
+ * sched.c (schedule_insns): Likewise.
+ * varasm.c (immed_double_const): Likewise.
+
+ * sparc.h (INCOMING_FRAME_SP_OFFSET): Define as SPARC_STACK_BIAS.
+
+Mon Sep 22 16:13:21 1997 H.J. Lu (hjl@gnu.ai.mit.edu)
+
+ * alpha/linux.h (HANDLE_SYSV_PRAGMA): Define.
+
+Mon Sep 22 16:02:01 1997 Benjamin Kosnik <bkoz@rhino.cygnus.com>
+
+ * c-common.c (decl_attributes): Add support for TYPE_UNUSED on types.
+ * c-decl.c (finish_decl): Set TREE_USED on decls if TREE_USED on type.
+ * stmt.c (expand_end_bindings): Check DECL_NAME and DECL_ARTIFICIAL
+ before unused variable warning.
+
+Mon Sep 22 14:04:18 1997 Richard Kenner <kenner@vlsi1.ultra.nyu.edu>
+
+ * rtlanal.c (computed_jump_p): Fix typo in last change.
+
+ * clipper.md (movstrsi): Use change_addres instead of making new MEM.
+ * dsp16xx.md (movstrqi): Likewise.
+ * i370.md (movstrsi): Likewise.
+ * i860.md (movstrsi): Likewise.
+ * pa.md (movstrsi): Likewise.
+ * mips.md (movstrsi): Fix (unused) pattern in define_expand.
+ * pdp11.md (movstrhi): Likewise.
+
+ * alpha.md (allocate_stack): Use virtual_stack_dynamic for result.
+ * i386.md (allocate_stack): Likewise.
+ * rs6000.md (allocate_stack): Likewise.
+
+ * alpha.h (FLOAT_STORE_FLAG_VALUE): Different for VAX and IEEE float.
+
+ * function.c (assign_parms): Make max_parm_reg handling more
+ precise and make it agree with size of parm_reg_stack_loc.
+ * integrate.c (save_for_inline_{nocopy,copying}): Remove
+ redundant assignment of max_parm_reg.
+
+ * function.c (assign_parms): Properly set RTX_UNCHANGING_P for
+ copy of parm.
+
+ * integrate.c (copy_rtx_and_substitute, case SET): Handle
+ a SET_DEST of the virtual fp or ap specially and undo
+ the adjustment into the local area as well.
+ (mark_stores): Don't wipe out map entries for virtual fp and ap.
+
+ * alpha.h (FLOAT_STORE_FLAG_VALUE): Different for VAX and IEEE float.
+
+ * emit-rtl.c (gen_lowpart): Handle ADDRESSOF.
+
+Mon Sep 22 13:35:56 1997 Doug Evans <dje@cygnus.com>
+
+ * rtlanal.c (replace_regs): Fix up lossage in last patch.
+
+Sun Sep 21 19:28:48 1997 Jeffrey A Law (law@cygnus.com)
+
+ * flow.c (jmp_uses_reg_or_mem): Deleted unused function.
+ (find_basic_blocks): Use computed_jump_p to determine if a
+ particular JUMP_INSN is a computed jump.
+ * reg-stack.c (find_blocks): Use computed_jump_p to determine
+ if a particular JUMP_INSN is a computed jump.
+ * rtlanal.c (jmp_uses_reg_or_mem): New function.
+ (computed_jump_p): Likewise.
+ * rtl.h (computed_jump_p): Declare.
+ * genattrtab.c (pc_rtx): Define and initialize.
+
+ * cse.c (simplify_relational_operation): Set h0u just like h0s.
+ Similarly for h1u and h1s.
+
+Sun Sep 21 14:13:31 1997 Doug Evans <dje@cygnus.com>
+
+ * function.c (instantiate_virtual_regs): Fix thinko in last patch.
+
+Sun Sep 21 10:33:26 1997 Paul Eggert <eggert@twinsun.com>
+
+ * cccp.c, cpplib.c (special_symbol): If STDC_0_IN_SYSTEM_HEADERS
+ is defined, expand __STDC__ to 0 in system headers.
+ * i386/sol2.h, rs6000/sol2.h, sparc/sol2.h:
+ (STDC_0_IN_SYSTEM_HEADERS): New macro.
+ (CPP_SPEC): Remove -D__STDC__=0; it's no longer needed.
+
+ * fixinc.math (_MATH_H_WRAPPER): Define at the end of the
+ wrapper, not the start, so that if #include_next gets another
+ instance of the wrapper, this will follow the #include_next
+ chain until we arrive at the real <math.h>.
+
+ * fixproto (subdirs_made): New var, to keep track of which
+ subdirectories we've made (in reverse order). At the end,
+ attempt to rmdir them all, so that we don't create any empty
+ directories.
+
+Sun Sep 21 10:02:07 1997 Richard Kenner <kenner@vlsi1.ultra.nyu.edu>
+
+ * pa.c (move_operand): Respect -mdisable-indexing.
+ * pa.h (GO_IF_LEGITIMATE_ADDRESS): Likewise.
+
+Sun Sep 21 09:29:23 1997 Andreas Schwab <schwab@issan.informatik.uni-dortmund.de>
+
+ * function.c (purge_addressof_1): Don't convert (MEM (ADDRESSOF (REG)))
+ to (SUBREG (REG)) on big endian machines.
+ Don't fall through to substitute the inner (REG) unchanged
+ when the above conversion cannot be validated.
+
+Sat Sep 20 16:22:06 1997 Jason Merrill <jason@yorick.cygnus.com>
+
+ * frame.c (__deregister_frame): Properly check for initialized object.
+
+ * function.c (instantiate_virtual_regs): Instantiate
+ parm_reg_stack_locs.
+
+Sat Sep 20 03:07:54 1997 Doug Evans <dje@cygnus.com>
+
+ * sparc/sysv4.h (ASM_COMMENT_START): Delete.
+ * sparc.h (ASM_COMMENT_START): Define.
+ * sparc.c (output_function_prologue): Use it.
+ (sparc_flat_output_function_{epi,pro}logue): Likewise.
+
+Fri Sep 19 19:43:09 1997 Jeffrey A Law (law@cygnus.com)
+
+ * loop.c (strength_reduce): Fix typo.
+
+ * m68k/xm-mot3300.h (alloca): Properly declare if __STDC__.
+ * mips.h (alloca): Likewise.
+ * rs6000/xm-rs6000.h (alloca): Likewise.
+ * rs6000/xm-sysv4.h: Likewise.
+
+Fri Sep 19 20:10:30 1997 Doug Evans <dje@cygnus.com>
+
+ * rtl.h (find_use_as_address): Delete accidentally added decl.
+
+Fri Sep 19 08:36:16 1997 J"orn Rennecke <amylaar@cygnus.co.uk>
+
+ * jump.c (thread_jumps): Check can_reverse_comparison_p before
+ threading a reversed-condition jump.
+
+Fri Sep 19 08:16:12 1997 Andrew M. Bishop <amb@gedanken.demon.co.uk>.
+
+ * Add support for new -dI option for cxref,
+ * cccp.c (dump_includes): New variable.
+ (struct directive, directive_table): Remove members angle_brackets,
+ traditional_comments, pass_thru; all code using struct directive
+ now uses `type' member instead.
+ (IS_INCLUDE_DIRECTIVE_TYPE): New macro.
+ (main, handle_directive): Add support for new -dI option.
+ (do_ident): Avoid unnecessary alloca.
+ (do_pragma): Avoid unnecessary comparison to newline.
+
+ * cpplib.h (struct cpp_options): New member dump_includes.
+ * cpplib.c (struct directive, directive_table): Remove members
+ traditional_comments, pass_thru; all code using struct directive
+ now uses `type' member instead.
+ (IS_INCLUDE_DIRECTIVE_TYPE): New macro.
+ (handle_directive, cpp_handle_options): Add support for new -dI option.
+
+Fri Sep 19 07:57:19 1997 Pat Rankin <rankin@eql.caltech.edu>
+
+ * vax/xm-vms.h (expand_builtin_{extract,set}_return_addr): New macros.
+
+Fri Sep 19 07:47:29 1997 Nick Burrett <n.a.burrett@btinternet.com>
+
+ * cpplib.c (pcstring_used, pcfinclude): Delete unused declarations.
+ (check_preconditions, print_containing_files, pipe_closed): Likewise.
+ (dump_defn_1, dump_arg_n, make_undef): Likewise.
+ (trigraph_pcp): Pre-process out decl.
+ (quote_string): Cast CPP_PWRITTEN macro to char * for sprintf.
+ (output_line_command): Likewise.
+ (macro_expand): Likewise.
+ (do_line): Cast atoi argument to char *.
+ * genattrtab.c (simplify_by_alternatives): Pre-process out decl.
+ * genpeep.c (gen_exp): Remove decl.
+
+Fri Sep 19 07:29:40 1997 Bernd Schmidt <crux@Pool.Informatik.RWTH-Aachen.DE>
+
+ * enquire.c (basic): Elminate dangling else warning.
+ * except.h (struct function, save_eh_status, restore_eh_status):
+ Don't declare.
+ * expr.c (clear_storage): Don't return without a value.
+ * function.h ({save,restore}_machine_status): Add proper prototype.
+ ({save,restore}_{tree,eh,stmt,expr,emit,storage}_status): Declare.
+ * real.h (real_value_truncate): Add proper prototype.
+ (target_isnan, target_isinf, target_negative, debug_real): Declare.
+ (assemble_real): Likewise.
+ * recog.c (strict_memory_address_p, memory_address_p): Don't declare.
+ (find_single_use_1): Add prototype.
+ * recog.h (init_recog, init_recog_no_volatile): Declare.
+ (check_asm_operands, constrain_operands, memory_address_p): Likewise.
+ (strict_memory_address_p, validate_replace_rtx): Likewise.
+ (reg_fits_class_p, find_single_use, general_operand): Likewise.
+ (address_operand, register_operand, scratch_operand): Likewise.
+ (immediate_operand, const_int_operand, const_double_operand): Likewise.
+ (nonimmediate_operand, nonmemory_operand, push_operand): Likewise.
+ (memory_operand, indirect_operand, mode_independent_operand): Likewise.
+ (comparison_operator, offsettable_{,nonstrict_}memref_p): Likewise.
+ (offsettable_address_p, mode_dependent_address_p, recog): Likewise.
+ (add_clobbers): Likewise.
+ * reload.h (strict_memory_address_p): Don't declare here.
+ * rtl.h (struct rtvec_def): Make num_elem an integer.
+ (PUT_NUM_ELEM): Delete cast to unsigned.
+ (rtx_unstable_p, rtx_varies_p, reg_mentioned_p): Declare.
+ (reg_{referenced,used_between,referenced_between}_p: Likewise.
+ ({reg_set,modified,no_labels}_between_p, modified_in_p): Likewise.
+ (reg_set_p, refers_to_regno_p, reg_overlap_mentioned_p): Likewise.
+ (note_stores, rtx_equal_p, dead_or_set{,_regno}_p): Likewise.
+ (remove_note, side_effects_p, volatile_{refs,insn}_p): Likewise.
+ (may_trap_p, inequality_comparison_p): Likewise.
+ * rtlanal.c (note_stores, reg_set_p): Don't declare.
+ (rtx_addr_can_trap_p): Add prototype, make static.
+ (reg_set_p_1): Add declaration for parameter pat.
+ * emit-rtl.c: Include recog.h.
+ * integrate.c: Likewise.
+ * jump.c: Likewise.
+ * unroll.c: Likewise.
+ * Makefile.in (emit-rtl.o, integrate.o, jump.o, unroll.o): Depend
+ on recog.h.
+
+Fri Sep 19 06:52:22 1997 Paul Eggert <eggert@twinsun.com>
+
+ * enquire.c (SYS_FLOAT_H_WRAP): New macro.
+ Include "float.h" if SYS_FLOAT_H_WRAP is nonzero.
+ (f_define): New argument `req'.
+ (main): Output `#include_next <float.h>' if wrapping float.h.
+ (i_define, f_define): Don't output anything if wrapping float.h
+ and if the system defn is already correct. Put other value tests
+ inside `#ifdef VERIFY'.
+ (UNDEFINED): New macro.
+ (I_MAX, I_MIN, U_MAX, F_RADIX, F_MANT_DIG, F_DIG, F_ROUNDS):
+ Define even if VERIFY isn't defined, because SYS_FLOAT_H_WRAP may need
+ these values. Give them the value UNDEFINED if not already defined.
+ (F_EPSILON, F_MIN_EXP, F_MIN, F_MIN_10_EXP, F_MAX_EXP): Likewise.
+ (F_MAX, F_MAX_10_EXP): Likewise.
+ (FPROP): Prefer system float.h definition of F_ROUNDS.
+ Pass system values to f_define.
+ * Makefile.in (FLOAT_H_TEST): New var.
+ (float.h-nat): Make it empty if we can use the system float.h without
+ change.
+ (enquire.o): Define SYS_FLOAT_H_WRAP=1 if we can build a wrapper
+ around the system <float.h>. Remove include/float.h before compiling.
+ (stmp-headers): Remove include/float.h if we would just be installing
+ an empty file (which is a placeholder that stands for no file).
+
+ * fix-header.c: Don't munge headers for POSIX and XOPEN,
+ as this is too error-prone.
+ (ADD_MISSING_POSIX, ADD_MISSING_XOPEN): New macros, normally undefed.
+ (POSIX1_SYMBOL, POSIX2_SYMBOL): Now 0 unless ADD_MISSING_POSIX.
+ (XOPEN_SYMBOL, XOPEN_EXTENDED_SYMBOL): Now 0 unless ADD_MISSING_XOPEN.
+ (main): Ignore symbols whose flags are 0.
+
+Thu Sep 18 10:43:07 1997 Nick Clifton <nickc@cygnus.com>
+
+ * v850.c (compute_register_save_size): Correct register number.
+ * v850.md (save_interrupt, return_interrupt): Likewise.
+ * v850/lib1funcs.asm (save_interrupt): Likewise.
+ (return_interrupt): Use stack pointer, not element pointer.
+
+Thu Sep 18 14:22:22 1997 Jason Merrill <jason@yorick.cygnus.com>
+
+ * final.c (final_scan_insn): Hand BARRIERs to dwarf2 code.
+ * dwarf2out.c (dwarf2out_frame_debug): Pass the whole insn along.
+ (dwarf2out_stack_adjust): A BARRIER resets the args space to 0.
+
+ * except.c (end_eh_unwinder): Subtract 1 from return address.
+ * libgcc2.c (__throw): Likewise.
+ (find_exception_handler): Don't change PC here. Compare end with >.
+
+Thu Sep 18 14:01:20 1997 Brendan Kehoe <brendan@lisa.cygnus.com>
+
+ * configure.in: Make sure to create the stage* and include
+ symbolic links in each subdirectory.
+
+Thu Sep 18 13:20:37 1997 J"orn Rennecke <amylaar@cygnus.co.uk>
+
+ * sh/lib1funcs.asm (LOCAL): Define.
+ (whole file): Use it.
+
+Thu Sep 18 09:52:24 1997 Benjamin Kosnik <bkoz@beauty.cygnus.com>
+
+ * collect2.c (collect_execute): Specify name of new file when
+ redirecting stdout/stderr.
+
+Thu Sep 18 01:47:06 1997 Jeffrey A Law (law@cygnus.com)
+
+ * pa.md (reload_peepholes): Don't allow addresses with side
+ effects for the memory operand.
+
+Wed Sep 17 18:19:53 1997 Jason Merrill <jason@yorick.cygnus.com>
+
+ * libgcc2.c (find_exception_handler): Subtract one from our PC when
+ looking for a handler, to avoid hitting the beginning of the next
+ region.
+
+ * except.c (expand_builtin_set_return_addr_reg): Use force_operand.
+
+Wed Sep 17 18:23:09 1997 Jeffrey A Law (law@cygnus.com)
+
+ * mips/abi64.h (LONG_MAX_SPEC): Define.
+ * mips.h (LONG_MAX_SPEC): Define.
+ (CPP_SPEC): Include long_max_spec.
+ (EXTRA_SPECS): Include long_max_spec.
+
+Wed Sep 17 14:17:26 1997 Paul Eggert <eggert@twinsun.com>
+
+ * configure.in (AC_CHECK_HEADERS): Add inttypes.h, limits.h.
+ ({sparc,i[3456]86,powerpcle}-*-solaris2*):
+ Use fixinc.math for fixincludes.
+
+ * fixinc.math (PWDCMD, ORIGDIR, LINKS): Remove.
+ Remove duplicate test for missing $1.
+ Don't cd to $INPUT.
+ Build wrapper around system <math.h> instead of copying it;
+ this is better if the system <math.h> is updated later by a software
+ patch or upgrade.
+
+ * cccp.c (HAVE_STDLIB_H, HAVE_UNISTD_H):
+ Do not define any more; now autoconfed.
+ <limits.h>: Include if HAVE_LIMITS_H.
+ (HOST_BITS_PER_WIDE_INT): Remove.
+ (HOST_WIDE_INT): Use intmax_t or long long if available.
+ (pcfinclude): Use size_t, not HOST_WIDE_INT, for cast from pointer;
+ this is less likely to annoy the compiler.
+
+ * cexp.y (HAVE_STDLIB_H): Do not define any more; now autoconfed.
+ <limits.h>: Include if HAVE_LIMITS_H.
+ (HOST_WIDE_INT): Use intmax_t or long long if available.
+ (unsigned_HOST_WIDE_INT, CHAR_BIT): New macros.
+ (HOST_BITS_PER_WIDE_INT): Define in terms of CHAR_BIT and sizeof.
+ (MAX_CHAR_TYPE_MASK, MAX_CHAR_TYPE_MASK): Rewrite so that we don't use
+ HOST_BITS_PER_WIDE_INT in a preprocessor expression, since it now
+ uses sizeof.
+
+ * cppexp.c: <limits.h>: Include if HAVE_LIMITS_H.
+ (HOST_WIDE_INT): Use intmax_t or long long if available.
+ (CHAR_BIT): New macro.
+ (HOST_BITS_PER_WIDE_INT): Define in terms of CHAR_BIT and sizeof.
+ * cpplib.c: <limits.h>: Include if HAVE_LIMITS_H.
+ (HOST_WIDE_INT): Use intmax_t or long long if available.
+ (HOST_BITS_PER_WIDE_INT): Remove.
+
+Wed Sep 17 14:11:38 1997 Jeffrey A Law (law@cygnus.com)
+
+ * v850.c (construct_save_jarl): Fix thinko in last change.
+
+Wed Sep 17 15:04:19 1997 Doug Evans <dje@cygnus.com>
+
+ * sparc/sysv4.h (ASM_OUTPUT_{FLOAT,DOUBLE,LONG_DOUBLE}): Delete,
+ use sparc.h's copies.
+ * sparc/sparc.h (ASM_OUTPUT_{FLOAT,DOUBLE,LONG_DOUBLE}): Print
+ ascii form as well.
+
+Wed Sep 17 14:08:20 1997 Nick Burrett <nick.burrett@btinternet.com>
+
+ * explow.c (allocate_dynamic_stack_space): Make allocate_stack
+ pass 'target' as an extra operand.
+ * expr.c (expand_builtin_apply): Use allocate_dynamic_stack_space
+ to push a block of memory onto the stack.
+ * alpha.md (allocate_stack): Alter in accordance with new operand.
+ * i386.md (allocate_stack): Likewise.
+ * rs6000.md (allocate_stack): Likewise.
+
+Wed Sep 17 13:34:43 1997 Robert Lipe <robertl@dgii.com>
+
+ * i386/xm-sco5.h (sys_siglist, SYS_SYGLIST_DECLARED): Define.
+
+Wed Sep 17 13:27:05 1997 Richard Kenner <kenner@vlsi1.ultra.nyu.edu>
+
+ * Makefile.in (native): Correct dependency to auto-config.h from
+ config.h.
+
+Tue Sep 16 10:02:02 1997 Jason Merrill <jason@yorick.cygnus.com>
+
+ * libgcc2.c (find_exception_handler): Not found is -1.
+
+ * integrate.c (expand_inline_function): Move expand_start_bindings
+ after expanding the arguments.
+
+ * i386.c (ix86_prologue): Pass the SYMBOL_REF to
+ gen_prologue_{get_pc,set_got}.
+ * i386.md (prologue_set_got, prologue_get_pc): Adjust.
+
+Tue Sep 16 07:33:15 1997 Richard Kenner <kenner@vlsi1.ultra.nyu.edu>
+
+ * fold-const.c (make_range): Correctly handle cases of converting
+ from unsigned to signed type.
+
+ * function.c (flush_addressof): New function.
+
+ * combine.c (num_sign_bit_copies): If asking about wider mode,
+ treat like paradoxical subreg.
+
+Tue Sep 16 00:26:52 1997 Jeffrey A Law (law@cygnus.com)
+
+ * cse.c (simplify_relational_operation): If MODE specifies a
+ mode wider than HOST_WIDE_INT, then the high word of a CONST_INT
+ is derived from the sign bit of the low word.
+
+Tue Sep 16 00:13:20 1997 Nick Clifton <nickc@cygnus.com>
+
+ * v850.c ({register,pattern}_is_ok_for_epilogue): New functions.
+ (construct_{save,restore}_jr, pattern_is_ok_for_prologue): Likewise.
+ * v850.h (pattern_is_ok_for_{pro,epi}logue): New predicates.
+ (register_is_ok_for_epilogue): Likewise.
+ * v850.md: Replace prologue and epilogue patterns with a
+ match_parallel pattern.
+ * v850.c (output_move_single_unsigned): Cope with zero
+ extending and moving between registers at the same time.
+
+Mon Sep 15 22:02:46 1997 Jeffrey A Law (law@cygnus.com)
+
+ * fixinc.math: New file to fix math.h on some systems.
+ * configure.in (*-*-freebsd*, *-*-netbsd*): Use fixinc.math on these
+ systems.
+
+Mon Sep 15 18:58:36 1997 J"orn Rennecke <amylaar@cygnus.co.uk>
+
+ * sched.c (update_flow_info) When looking if to set found_split_dest
+ or found_orig_dest, look at all parts of a PARALLEL.
+
+ * sh.md (casesi_0): Reduce functionality, exclude insns from
+ mova onwards. Changed expander caller.
+ (casesi_worker_0): New insn.
+ (casesi_worker_0+[12]): New define_splits.
+ (casesi_worker): Need no gen_* function.
+ (casesi): Use casesi_worker_0 instead of casesi_worker.
+ * sched.c (update_flow_info): Don't pass SCRATCH to dead_or_set_p.
+
+Mon Sep 15 11:43:38 1997 Jason Merrill <jason@yorick.cygnus.com>
+
+ Support dwarf2 unwinding on PUSH_ROUNDING targets like the x86.
+ * dwarf2.h: Add DW_CFA_GNU_args_size.
+ * frame.c (execute_cfa_insn): Likewise.
+ * dwarf2out.c (dwarf_cfi_name, output_cfi): Likewise.
+ (dwarf2out_args_size, dwarf2out_stack_adjust): New fns.
+ (dwarf2out_frame_debug): If this isn't a prologue or epilogue
+ insn, hand it off to dwarf2out_stack_adjust.
+ (dwarf2out_begin_prologue): Initialize args_size.
+ * frame.h (struct frame_state): Add args_size.
+ * libgcc2.c (__throw): Use args_size.
+ * final.c (final_scan_insn): If we push args, hand off all insns
+ to dwarf2out_frame_debug.
+ * defaults.h (DWARF2_UNWIND_INFO): OK for !ACCUMULATE_OUTGOING_ARGS.
+
+ * dwarf2out.c (dwarf2out_frame_debug): Fix typo.
+ Handle epilogue restore of SP from FP.
+ * emit-rtl.c (gen_sequence): Still generate a sequence if the
+ lone insn has RTX_FRAME_RELATED_P set.
+
+ * frame.c (extract_cie_info): Handle "e" augmentation.
+ * dwarf2out.c (ASM_OUTPUT_DWARF_*): Provide definitions in the
+ absence of UNALIGNED_*_ASM_OP.
+ (UNALIGNED_*_ASM_OP): Only provide defaults if OBJECT_FORMAT_ELF.
+ (output_call_frame_info): Use "e" instead of "z" for augmentation.
+ Don't emit augmentation fields length.
+ (dwarf2out_do_frame): Move outside of #ifdefs.
+ * defaults.h (DWARF2_UNWIND_INFO): Don't require unaligned data
+ opcodes.
+
+ * sparc.h (UNALIGNED_INT_ASM_OP et al): Don't define here after all.
+ * sparc/sysv4.h (UNALIGNED_INT_ASM_OP): Define here.
+ * sparc/sunos4.h (DWARF2_UNWIND_INFO): Define to 0.
+ * sparc/sun4gas.h: New file.
+ * configure.in: Use sun4gas.h if SunOS 4 --with-gnu-as.
+
+ * collect2.c (write_c_file_stat, write_c_file_glob): Declare
+ __register_frame_table and __deregister_frame.
+
+Mon Sep 15 19:04:34 1997 Brendan Kehoe <brendan@cygnus.com>
+
+ * except.c (find_exception_handler_labels): Use xmalloc instead of
+ alloca, since MAX_LABELNO - MIN_LABELNO can be more than 1 million
+ in some cases.
+
+Sat Sep 13 23:13:51 1997 Paul Eggert <eggert@twinsun.com>
+
+ * cpplib.h (PARAMS): Fix misspelling of __STDC__.
+ (cpp_get_token): Arg is cpp_reader *, not struct parse_marker *.
+
+ * cpplib.c (cpp_fatal, cpp_file_line_for_message): New decls.
+ (ppp_hash_cleanup, cpp_message, cpp_print_containing_files): Likewise.
+ (copy_rest_of_line): Fix typo that prevented recognition of
+ C++ style comments.
+ (output_line_command, special_symbol): Use %ld for long, not %d.
+
+ * cppexp.c (xrealloc): Declare first arg as void *, not char *.
+ (cpp_lex): Cast 2nd arg of cpp_parse_escape from const char ** to
+ char **.
+
+Fri Sep 12 16:54:04 1997 Doug Evans <dje@cygnus.com>
+
+ * bitmap.h (bitmap_print): Don't use STDIO_PROTO.
+
+Fri Sep 12 13:49:58 1997 Jason Merrill <jason@yorick.cygnus.com>
+
+ * except.h: Prototype dwarf2 hooks.
+ * expr.c: Adjust.
+
+Thu Sep 11 18:36:51 1997 Jim Wilson <wilson@cygnus.com>
+
+ * local-alloc.c (contains_replace_regs): New function.
+ (update_equiv_regs): When adding a REG_EQUIV note for a set of a MEM,
+ verify that there is no existing REG_EQUIV note, and add a call to
+ contains_place_regs.
+
+ * m68k.h (MACHINE_STATE_{SAVE,RESTORE}): Add __HPUX_ASM__ versions.
+
+Wed Sep 10 21:49:38 1997 Michael Meissner <meissner@cygnus.com>
+
+ * toplev.c (rest_of_compilation): For passes starting with
+ flow_analysis, use print_rtl_with_bb instead of print_rtl.
+ * print-rtl.c (print_rtl_single): Print a single rtl value to a
+ file.
+ * flow.c (print_rtl_with_bb): Print which insns start and end
+ basic blocks. For the start of a basic block, also print the live
+ information.
+ * bitmap.h (EXECUTE_IF_AND_IN_BITMAP): New macro, to iterate over
+ two bitmaps ANDed together.
+ (bitmap_print): Declare.
+ * bitmap.c (function_obstack): Don't declare any more.
+ (bitmap_obstack): Obstack for allocating links from.
+ (bitmap_obstack_init): New static to say whether to initialize
+ bitmap_obstack.
+ (bitmap_element_allocate): Use bitmap_obstack to allocate from.
+ (bitmap_release_memory): Free all memory allocated from
+ bitmap_obstack.
+ (toplevel): Conditionally include stdlib.h.
+ (free): Provide a declaration if NEED_DECLARATION_FREE.
+
+ * basic-block.h (EXECUTE_IF_AND_IN_REG_SET): New macro, invoke
+ EXECUTE_IF_AND_IN_BITMAP.
+
+Wed Sep 10 17:53:33 1997 J"orn Rennecke <amylaar@cygnus.co.uk>
+
+ * sh.c (addr_diff_vec_adjust): Properly propagate considered
+ address changes through alignments.
+
+Wed Sep 10 13:10:52 1997 Per Bothner <bothner@cygnus.com>
+
+ * stor-layout.c (layout_type): Simplify special BOOLEAN_TYPE handling.
+
+Wed Sep 10 12:59:57 1997 Jason Merrill <jason@yorick.cygnus.com>
+
+ * expr.c (expand_builtin): Only support __builtin_dwarf_fp_regnum()
+ if DWARF2_UNWIND_INFO.
+
+Wed Sep 10 15:43:10 1997 Jason Merrill <jason@yorick.cygnus.com>
+
+ * cplus-dem.c (demangle_fund_type): Change "complex" to "__complex".
+
+Wed Sep 10 11:13:53 1997 Paul Eggert <eggert@twinsun.com>
+
+ Handle `extern int errno;' correctly when fixing <errno.h>.
+ * fix-header.c (recognized_extern): Use name_length when comparing.
+ * scan-decls.c (scan_decls): Don't ignore the first CPP_NAME in a
+ declaration, so that we see the `extern' in `extern int errno;'.
+
+Wed Sep 10 11:49:20 1997 Jason Merrill <jason@yorick.cygnus.com>
+
+ Add support for exception handling using DWARF 2 frame unwind info.
+ * libgcc2.c (get_reg, put_reg, get_return_addr, put_return_addr,
+ next_stack_level, in_reg_window): Helper fns.
+ (__throw): Implement for DWARF2_UNWIND_INFO.
+
+ * expr.c (expand_builtin): Handle builtins used by __throw.
+ * tree.h (enum built_in_function): Add builtins used by __throw.
+ * c-decl.c (init_decl_processing): Declare builtins used by __throw.
+ * dwarf2out.c (expand_builtin_dwarf_fp_regnum): Used by __throw.
+ * except.c (expand_builtin_unwind_init): Hook for dwarf2 __throw.
+ (expand_builtin_extract_return_addr): Likewise.
+ (expand_builtin_frob_return_addr): Likewise.
+ (expand_builtin_set_return_addr_reg): Likewise.
+ (expand_builtin_eh_stub): Likewise.
+ (expand_builtin_set_eh_regs): Likewise.
+ (eh_regs): Choose two call-clobbered registers for passing back values.
+
+ * frame.c, frame.h: New files for parsing dwarf 2 frame info.
+ * Makefile.in (LIB2ADD): New variable. Add $(srcdir)/frame.c.
+ (libgcc2.a): Use it instead of $(LIB2FUNCS_EXTRA) $(LANG_LIB2FUNCS)
+ (stmp-multilib): Likewise.
+ ($(T)crtbegin.o, $(T)crtend.o): Add -fno-exceptions.
+
+ * except.c: #include "defaults.h".
+ (exceptions_via_longjmp): Default depends on DWARF2_UNWIND_INFO.
+ (emit_throw): Don't defeat assemble_external if DWARF2_UNWIND_INFO.
+ (register_exception_table_p): New fn.
+ (start_eh_unwinder): Don't do anything if DWARF2_UNWIND_INFO.
+ (end_eh_unwinder): Likewise.
+
+ * crtstuff.c: Wrap .eh_frame section, use EH_FRAME_SECTION_ASM_OP,
+ call __register_frame and __deregister_frame as needed.
+ * varasm.c (eh_frame_section): New fn if EH_FRAME_SECTION_ASM_OP.
+ * dwarf2out.c (EH_FRAME_SECTION): Now a function-like macro. Check
+ EH_FRAME_SECTION_ASM_OP.
+ * sparc/sysv4.h (EH_FRAME_SECTION_ASM_OP): Define.
+ * mips/iris6.h: (EH_FRAME_SECTION_ASM_OP): Define.
+ (LINK_SPEC): Add __EH_FRAME_BEGIN__ to hidden symbols.
+
+ * dwarf2out.c (output_call_frame_info): If no support for
+ EXCEPTION_SECTION, mark the start of the frame info with a
+ collectable tag.
+ * collect2.c (frame_tables): New list.
+ (is_ctor_dtor): Recognise frame entries.
+ (scan_prog_file): Likewise.
+ (main): Pass -fno-exceptions to sub-compile. Also do collection
+ if there are any frame entries.
+ (write_c_file_stat): Call __register_frame_table and
+ __deregister_frame as needed.
+ (write_c_file_glob): Likewise.
+
+ * defaults.h (DWARF2_UNWIND_INFO): Default to 1 if supported.
+ Also require unaligned reloc support.
+ * sparc.h (UNALIGNED_SHORT_ASM_OP, UNALIGNED_INT_ASM_OP,
+ UNALIGNED_DOUBLE_INT_ASM_OP): Define here.
+ * sparc/sysv4.h: Not here.
+
+ * toplev.c (compile_file): Call dwarf2out_frame_{init,finish}.
+ * dwarf2out.c (dwarf2out_init): Don't call dwarf2out_frame_init.
+ (dwarf2out_finish): Don't call dwarf2out_frame_finish.
+
+ * libgcc2.c (L_eh): Reorganize, moving code shared by different
+ EH implementations to the top.
+ (find_exception_handler): Split out. Start from 0. Compare against
+ end with >=.
+ (__find_first_exception_table_match): Use it.
+ * except.c (output_exception_table): Don't do anything if there's
+ no table. Don't output a first entry of zeroes.
+ (eh_outer_context): Adjust properly.
+ (add_eh_table_entry): Use xrealloc.
+ * toplev.c (compile_file): Just call output_exception_table.
+
+Wed Sep 10 11:49:20 1997 Jason Merrill <jason@yorick.cygnus.com>
+
+ * varasm.c (save_varasm_status): Take the target function context.
+ * function.c (push_function_context_to): Pass it in.
+
+ * rtl.def (ADDRESSOF): Add new field for original regno.
+ * function.c (put_reg_into_stack and callers): Add original_regno
+ argument.
+ (gen_mem_addressof): Remember the original regno.
+ * rtl.def (INLINE_HEADER): Add new field for parm_reg_stack_loc.
+ * rtl.h (PARMREG_STACK_LOC): New macro.
+ (ADDRESSOF_REGNO): New macro.
+ * emit-rtl.c (gen_inline_header_rtx): Add parm_reg_stack_loc.
+ * function.c (max_parm_reg, parm_reg_stack_loc): No longer static.
+ (assign_parms): Allocate parm_reg_stack_loc on saveable obstack.
+ * integrate.c (output_inline_function): Set max_parm_reg and
+ parm_reg_stack_loc from inline header.
+ (initialize_for_inline): Pass in parm_reg_stack_loc.
+
+Wed Sep 10 11:30:36 1997 Stan Cox <coxs@dg-rtp.dg.com>
+
+ * i386.c (override_options): Don't set TARGET_SCHEDULE_PROLOGUE
+ (ix86_expand_prologue, ix86_expand_epilogue): Emit rtl by default.
+
+Wed Sep 10 11:30:36 1997 Jason Merrill <jason@cygnus.com>
+
+ * i386.c (ix86_prologue): Add dwarf2 support for !do_rtl case.
+
+Wed Sep 10 08:48:44 1997 Jeffrey A Law (law@cygnus.com)
+
+ * xm-m88k.h (USG): Only define if it hasn't already been defined.
+
+ * i386.h (CPP_CPU_DEFAULT): Avoid using #elif.
+
+ * expr.c (do_jump_by_parts_equality_rtx): Don't clobber the
+ source operand when performing an IOR of the parts.
+
+ * expr.c (emit_block_move): Always return a value.
+
+ * expr.c (clear_storage): Use CONST0_RTX instead of const0_rtx.
+ when clearing non-BLKmode data.
+
+ * final.c (shorten_branches): Remove last change for ADDR_VEC
+ alignment computation. During first pass, assume worst
+ possible alignment for ADDR_VEC and ADDR_VEC_DIFF insns.
+
+Wed Sep 10 09:33:19 1997 Kamil Iskra <iskra@student.uci.agh.edu.pl>
+
+ * explow.c (emit_stack_save, emit_stack_restore): Correctly
+ handle HAVE_{save,restore}_stack_* evaluating to 0.
+
+Wed Sep 10 09:27:45 1997 Weiwen Liu <liu@hepvms.physics.yale.edu>
+
+ * Makefile.in (sdbout.o): Add dependency on insn-config.h.
+
+Wed Sep 10 09:24:56 1997 Nick Burrett <n.a.burrett@btinternet.com>
+
+ * sched.c (birthing_insn_p): Rename prototype decl from birthing_insn.
+ * final.c (leaf_renumber_regs, alter_cond): Declare prototype only
+ if LEAF_REGISTERS is defined.
+ * reload1.c (merge_assigned_reloads): Declare prototype only if
+ SMALL_REGISTER_CLASSES is defined.
+ * loop.c (replace_call_address): Pre-process out prototype decl.
+ * real.c (dectoe, etodec, todec): Declare proto if DEC is defined
+ (ibmtoe, etoibm, toibm): Declare proto if IBM is defined
+
+Wed Sep 10 09:13:51 1997 Manfred Hollstein <manfred@s-direktnet.de>
+
+ * configure.in (out_file): Emit definition to config.status.
+
+Wed Sep 10 08:37:56 1997 J"orn Rennecke <amylaar@cygnus.co.uk>
+
+ * final.c (shorten_branches): Fix alignment calculation.
+ Don't count the lengths of deleted instructions.
+
+Wed Sep 10 08:34:11 1997 Kaveh R. Ghazi <ghazi@caip.rutgers.edu>
+
+ * cpplib.c (cpp_start_read): Make known_suffixes static.
+
+Wed Sep 10 08:27:05 1997 Andreas Schwab <schwab@issan.informatik.uni-dortmund.de>
+
+ * m68k.c (print_operand_address) [MOTOROLA]: When compiling
+ with -fpic (not -fPIC) force the GOT offset to 16 bits.
+
+Wed Sep 10 08:22:51 1997 Christian Iseli <chris@lslsun.epfl.ch>
+
+ * expr.c (convert_move): Add missing use of trunctqtf2.
+
+Wed Sep 10 08:17:10 1997 Torbjorn Granlund <tege@pdc.kth..se>
+
+ * except.c (eh_outer_context): Do masking using expand_and.
+
+Wed Sep 10 07:52:21 1997 Joel Sherrill <joel@OARcorp.com>
+
+ * pa/rtems.h (subtarget_switches): Removed -mrtems subtarget_switch.
+ * configure.in (sh*-*-rtems*): New target.
+ * sh.h (TARGET_SWITCHES: Call SUBTARGET_SWITCHES.
+ (SUBTARGET_SWITCHES): Provide default definition.
+
+Wed Sep 10 06:33:47 1997 Richard Kenner <kenner@vlsi1.ultra.nyu.edu>
+
+ * i386/mingw32.h ({LIB,LINK}_SPEC): Check for -mwindows, not -windows.
+
+ * alpha/vms.h (ASM_OUTPUT_SECTION): Clear NAME if overlaid.
+
+ * c-parse.in (unary_expr): Test DECL_C_BIT_FIELD, not DECL_BIT_FIELD.
+ * c-typeck.c (default_conversion): Likewise.
+
+ * tree.c (contains_placeholder_p, substitute_in_expr):
+ Handle placeholders inside args of CALL_EXPR (and hence in TREE_LIST).
+
+ * expr.c (expand_expr, case PLACEHOLDER_EXPR): Check all
+ expressions in placeholder_list.
+
+Tue Sep 9 18:10:30 1997 Doug Evans <dje@cygnus.com>
+
+ Add port done awhile ago for the ARC cpu.
+ * arc.h, arc.c, arc.md, t-arc, xm-arc.h: New files.
+ * arc/initfini.c, arc/lib1funcs.asm: New files.
+ * ginclude/va-arc.h: New file.
+ * ginclude/stdarg.h: Include va-arc.h ifdef __arc__.
+ * ginclude/varargs.h: Likewise.
+ * Makefile.in (USER_H): Add va-arc.h.
+ * configure.in (arc-*-elf*): Recognize.
+ * longlong.h: Add ARC support.
+
+Tue Sep 9 01:30:37 1997 Jason Merrill <jason@yorick.cygnus.com>
+
+ * mips.h (DWARF_FRAME_REGNUM): Use the same numbering regardless of
+ write_symbols.
+
+Mon Sep 8 15:15:11 1997 Nick Clifton <nickc@cygnus.com>
+
+ * v850.h (ASM_SPEC): Pass on target processor.
+ (CPP_PREDEFINES): Only define if not already specified.
+ (TARGET_VERSION): Only define if not already specified.
+ (MASK_CPU, MASK_V850, MASK_DEFAULT): Bits to specify target
+ processor.
+ (EXTRA_SWITCHES): Extra entries in the switches array.
+ (TARGET_DEFAULT): Set default target processor.
+
+Tue Sep 9 09:50:02 1997 Richard Kenner <kenner@vlsi1.ultra.nyu.edu>
+
+ * configure.in (alpha*-*-*): Support pca56 and ev6.
+
+ * varasm.c (named_section): Set in section after writing directive.
+ * dwarf2out.c (output_call_frame_info): Call named_section.
+
+Mon Sep 8 16:32:43 1997 Jason Merrill <jason@yorick.cygnus.com>
+
+ * mips.c (function_prologue): Set up the CFA when ABI_32.
+
+ * sparc.c (save_regs): Check dwarf2out_do_frame instead of DWARF2_DEBUG
+ for dwarf2 unwind info.
+ (output_function_prologue, sparc_flat_output_function_prologue): Same.
+
+ * final.c (final_end_function): Check dwarf2out_do_frame instead
+ of DWARF2_DEBUG for dwarf2 unwind info.
+ (final_scan_insn): Likewise.
+ (final_start_function): Likewise. Initialize dwarf2 frame debug here.
+ (final): Not here.
+
+ * expr.c (expand_builtin_return_addr): Only SETUP_FRAME_ADDRESSES if
+ count > 0.
+
+ * varasm.c (exception_section): Check EXCEPTION_SECTION first.
+
+Mon Sep 8 14:58:07 1997 Jim Wilson <wilson@cygnus.com>
+
+ * toplev.c (main): Change #elif to #else/#ifdef
+
+ * i386/t-sol2 (TARGET_LIBGCC2_CFLAGS): Define to -fPIC.
+
+Mon Sep 8 08:45:19 1997 Richard Kenner <kenner@vlsi1.ultra.nyu.edu>
+
+ * alpha.h (processor_type): Add EV6.
+ ({TARGET,MASK}_BWX): Renamed from _BYTE_OPS.
+ ({TARGET,MASK}_{CIX,MAX}): New macros.
+ (MASK_CPU_EV5): Change bit number.
+ (MASK_CPU_EV6, {TARGET,MASK}_SUPPORT_ARCH): New macros.
+ (TARGET_OPTIONS): Rename "byte" to "bwx" and add "cix" and "max".
+ (MINIMUM_ATOMIC_ALIGNMENT): Rename TARGET_BYTE_OPS to TARGET_BWX.
+ (SECONDARY_{INPUT,OUTPUT}_RELOAD_CLASS, ASM_FILE_START): Likewise.
+ (SECONDARY_MEMORY_NEEDED): Not needed if CIX.
+ (ASM_FILE_START): Only write if TARGET_SUPPORT_ARCH.
+ Add "pca56" and "ev6".
+ * alpha.c (input_operand): Rename TARGET_BYTE_OPS to TARGET_BWX.
+ (override_options): Likewise; also add new CPU types and subset flags.
+ * alpha.md: Rename TARGET_BYTE_OPS to TARGET_BWX.
+ (cpu attr): Add "ev6".
+ (ev5 function units): Use for ev6 as well, for now.
+ (ffsdi2): New define_expand and define_insn, for TARGET_CIX.
+ (sqrt[sd]f2): New patterns, for TARGET_CIX.
+ (s{min,max}[qh]i3): New patterns, for TARGET_MAX.
+ (movsi): Use ldf/lsf when appropriate, instead of lds/sts.
+ (mov[sd]i): Add use of ftio/itof for TARGET_CIX.
+ * configure.in (alpha*-dec-osf*): Set MASK_SUPPORT_ARCH for >= 4.0B.
+ Rename MASK_BYTE_OPS to MASK_BWX.
+
+ * i386/mingw32.h (STANDARD_INCLUDE_DIR): New macros.
+ (STARTFILE_SPEC, PATH_SEPARATOR): Likewise.
+
+ * configure.in (AC_PROG_LN_S): Remove; unneeded.
+ (*cygwin32*, *mingw32*): Default prefix to /usr.
+ (symbolic_link): Set to "cp -p" if no "ln -s"; add AC_SUBST.
+ (configure.lang call): Change remaining use of config.h to auto-conf.h.
+
+ * Makefile.in (LN): Add new symbol.
+ (FLAGS_TO_PASS): Pass it down.
+ (stage[1-4]-start): Use $(LN), not "ln -s".
+
+ * mips.h (flag_omit_frame_pointer, frame_pointer_needed, optimize):
+ Remove declarations: no longer needed.
+ * pyr.md: Remove unneeded declarations of `optimize'.
+ * h8300.md: Likewise.
+ * sparc.c (dwarf2out_cfi_label): Add declaration.
+ (save_regs, output_function_prologue): Remove cast for it.
+ (sparc_flat_{save_restore,output_function_prologue): Likewise.
+ ({save,restore}_regs): No longer inline.
+
+Mon Sep 8 03:08:35 1997 Jim Wilson <wilson@cygnus.com>
+
+ * i960.h (LINK_SPEC): Handle -mjX and -mrp switches.
+
+ * mips.md (nonlocal_goto_receiver): Define.
+
+ * unroll.c (calculate_giv_inc): Handle increment with code PLUS.
+
+ * alpha.h (PREFERRED_RELOAD_CLASS): Return NO_REGS if NO_REGS
+ is passed in.
+ * emit-rtl.c (gen_lowpart_common): Add code to convert CONST_INT to
+ SFmode for 64 bit hosts.
+
+ * profile.c (output_arc_profiler): Verify next_insert_after is an
+ INSN before and after skipping a stack pop. Check next_insert_after
+ for non NULL before deferencing it.
+ (output_func_start_profiler): Set DECL_EXTERNAL to zero.
+
+ * va-mips.h: Add _VA_MIPS_H_ENUM ifdef/define/endif.
+
+ * m68k.md (iorsi_zexthi_ashl16): Disable.
+
+ * varasm.c (mark_constants): Don't look inside CONST_DOUBLEs.
+
+Sun Sep 7 18:30:46 1997 Jason Merrill <jason@yorick.cygnus.com>
+
+ * dwarf2out.c (dwarf2out_frame_debug): Assume that in a PARALLEL
+ prologue insn, only the first elt is significant.
+ (output_call_frame_info): For exception handling, always use 4-byte
+ fields as specified by the dwarf2 spec.
+ Don't skip trivial FDEs.
+
+Sun Sep 7 03:35:28 1997 Paul Eggert <eggert@twinsun.com>
+
+ * fix-header.c (std_include_table): Remove bogus entry for popen
+ under stdio.h with ANSI_SYMBOL. popen is a POSIX2_SYMBOL.
+
+Fri Sep 5 17:19:58 1997 J"orn Rennecke <amylaar@cygnus.co.uk>
+
+ * sh.md (movsf_ie+1): Typo fix.
+
+Fri Sep 5 10:08:44 1997 Jeffrey A Law (law@cygnus.com)
+
+ * v850: New directory for v850 port.
+ * v850/lib1funcs.asm: New file.
+ * t-v850, v850.c, v850.h, v850.md, xm-v850.h: New files.
+ * ginclude/va-v850.h: New file.
+ * varargs.h, stdarg.h: Include va-mn10200.h.
+ * configure.in (mn10200-*-*): New target.
+ * Makefile.in (USER_H): Add va-mn10200.h.
+
+ * xm-svr4.h (SYS_SIGLIST_DECLARED): Define.
+ * mips/xm-news.h (SYS_SIGLIST_DECLARED): Define.
+ * mips/xm-sysv4.h (SYS_SIGLIST_DECLARED): Define.
+
+Fri Sep 5 03:50:15 1997 David Edelsohn <edelsohn@mhpcc.edu>
+
+ * rs6000/rs6000.md (fma patterns): Extend previous -mno-fused-madd
+ patch to DFmode patterns inadvertently omitted.
+
+Thu Sep 4 20:06:02 1997 Christian Kuehnke <Christian.Kuehnke@arbi.Informatik.Uni-Oldenburg.DE>
+
+ * sparc.md: Add ultrasparc scheduling support.
+ * sparc.h (RTX_COSTS): For MULT give v9 a cost of 25 insns.
+
+Wed Sep 3 20:56:24 1997 J"orn Rennecke <amylaar@cygnus.co.uk>
+
+ * sh.h (UNALIGNED_SHORT_ASM_OP, UNALIGNED_INT_ASM_OP): Define.
+
+Wed Sep 3 20:52:07 1997 Joel Sherrill <joel@OARcorp.com>
+
+ * sh/rtems.h: New file.
+
+Wed Sep 3 17:30:36 1997 Stan Cox <coxs@dg-rtp.dg.com>
+
+ * reg-stack.c (subst_stack_regs): Pop the stack register for a
+ computed goto which sets the same stack register.
+
+Wed Sep 3 17:30:36 1997 Jim Wilson <wilson@cygnus.com>
+
+ * i386.c (ix86_expand_epilogue): Emit blockage instruction when pic.
+
+Wed Sep 3 11:25:19 1997 Jeffrey A Law (law@cygnus.com)
+
+ * pa.md (reload peepholes): Fix typo in last change.
+
+Wed Sep 3 03:02:02 1997 J"orn Rennecke <amylaar@cygnus.co.uk>
+
+ * sh.md (movsi_ie): Move t/r alternative after r/r alternative.
+
+Tue Sep 2 18:41:55 1997 Jeffrey A Law (law@cygnus.com)
+
+ * cccp.c (sys_errlist): Remove special 4.4bsd declaration.
+ * collect2.c (sys_errlist): Likewise.
+ * cpplib.c (sys_errlist): Likewise.
+ * gcc.c (sys_errlist): Likewise.
+ * protoize.c (sys_errlist): Likewise.
+ * configure.in: Check for strerror.
+ * xm-freebsd.h (HAVE_STRERROR): Remove definition.
+ * xm-gnu.h (HAVE_STRERROR): Likewise.
+ * xm-linux.h (HAVE_STRERROR): Likewise.
+ * xm-netbsd.h (HAVE_STRERROR): Likewise.
+ * alpha/xm-linux.h (HAVE_STRERROR): Likewise.
+ * i386/xm-bsd386.h (HAVE_STRERROR): Likewise.
+ * i386/xm-cygwin32.h (HAVE_STRERROR): Likewise.
+ * i386/xm-dos.h (HAVE_STRERROR): Likewise.
+ * i386/xm-mingw32.h (HAVE_STRERROR): Likewise.
+ * pa/xm-pa.h (HAVE_STRERROR): Likewise.
+ * pa/xm-papro.h (HAVE_STRERROR): Likewise.
+ * rs6000/xm-cygwin32.h (HAVE_STRERROR): Likewise.
+ * rs6000/xm-sysv4.h (HAVE_STRERROR): Likewise.
+
+ * collect2.c (SYS_SIGLIST_DECLARED): Renamed from
+ DONT_DECLARE_SYS_SIGLIST.
+ * mips-tfile.c (SYS_SIGLIST_DECLARED): Likewise.
+ * xm-linux.h (DONT_DECLARE_SYS_SIGLIST): Delete definition.
+ * xm-freebsd.h (DONT_DECLARE_SYS_SIGLIST): Likewise.
+ * alpha/xm-linux.h (DONT_DECLARE_SYS_SIGLIST): Delete definition.
+ * i386/xm-bsd386.h (DONT_DECLARE_SYS_SIGLIST): Likewise.
+ * i386/xm-sysv4.h (DONT_DECLARE_SYS_SIGLIST): Likewise.
+ * mips/xm-sysv4.h (DONT_DECLARE_SYS_SIGLIST): Likewise.
+ * rs6000/xm-sysv4.h (DONT_DECLARE_SYS_SIGLIST): Likewise.
+ * sparc/xm-sol2.h (DONT_DECLARE_SYS_SIGLIST): Likewise.
+ * configure.in: Check for sys_siglist declaration.
+
+ * Makefile.in (libgcc2.a): Add missing "else true" clause.
+ (stage1-start): Likewise.
+ (stage2-start): Likewise.
+ (stage3-start): Likewise.
+ (stage4-start): Likewise.
+
+ * mn10200.h (INITIALIZE_TRAMPOLINE): PC relative instructions
+ are relative to the next instruction, not the current instruction.
+
+Tue Sep 2 14:15:32 1997 Jason Merrill <jason@yorick.cygnus.com>
+
+ * toplev.c (xrealloc): Handle null ptr.
+
+Tue Sep 2 13:42:38 1997 Paul N. Hilfinger <hilfingr@CS.Berkeley.EDU>
+
+ * fixincludes: Permits spaces between # and define. Discard C++
+ comments in sys/pci.h on HP/UX 10.20.
+
+Tue Sep 2 09:28:31 1997 Richard Kenner <kenner@vlsi1.ultra.nyu.edu>
+
+ * rs6000.h (ROUND_TYPE_ALIGN): Don't blow up if no fields in record.
+
+Tue Sep 2 00:19:01 1997 Jason Merrill <jason@yorick.cygnus.com>
+
+ * expr.c (expand_expr, case COND_EXPR): It's OK to merge two
+ SAVE_EXPRs.
+
+Mon Sep 1 23:36:45 1997 Jeffrey A Law (law@cygnus.com)
+
+ * pa.c (restore_unscaled_index_insn_codes): New function.
+ (record_unscaled_index_insn_codes): Likewise.
+ (output_function_prologue): Call restore_unscaled_index_insn_codes.
+ (output_function_epilogue): Free memory for unscaled_index_insn_codes.
+ (pa_reorg): Call record_unscaled_index_insn_codes.
+
+Mon Sep 1 14:46:09 1997 J"orn Rennecke <amylaar@cygnus.co.uk>
+
+ * sh.md (casesi_jump_1, casesi_jump2): Generate expanders.
+ (casesi_jump): Delete.
+ (casesi) Use gen_casesi_jump_1 and gen_casesi_jump2 instead of
+ gen_casesi_jump.
+
+Mon Sep 1 14:36:36 1997 Paul Eggert <eggert@twinsun.com>
+
+ * sparc/sol2.h (CPP_SPEC): Add -D__STDC__=0 unless -ansi
+ or -traditional, for compatibility with Sun's practice.
+ * i386/sol2.h (CPP_SPEC), rs6000/sol2.h (CPP_SPEC): Likewise.
+ * configure.in ({sparc,i[3456]86,powerpcle}-*-solaris2*):
+ Set fixincludes=Makefile.in.
+
+Mon Sep 1 14:08:23 1997 Andreas Schwab <schwab@issan.informatik.uni-dortmund.de>
+
+ * Makefile.in (config.status): Depend on version.c.
+
+Mon Sep 1 13:48:02 1997 Richard Kenner <kenner@vlsi1.ultra.nyu.edu>
+
+ * acconfig.h: Remove include of config2.h.
+ * configure.in: Build auto-config.h, not config.h, from autoconf data.
+ Add auto-conf.h in front of all other host_xm_file entries.
+ Make config.h, not config2.h, from host_xm_file.
+ * Makefile.in (auto-config.h): New rule; was config.h.
+ (distclean): Remove auto-config.h, not config2.h.
+
+ * expr.c (do_jump_by_parts_equality_rtx): Try to do by IOR of
+ all the words.
+
+Mon Sep 1 13:07:36 1997 Bob Manson <manson@charmed.cygnus.com>
+
+ * sparc/t-vxsparc (TARGET_LIBGCC2_CFLAGS): New definition.
+ (LIBGCC2_CFLAGS): Deleted.
+ * m68k/t-vxworks68: Likewise.
+ * i960/t-vxworks960: Likewise.
+ * a29k/t-vx29k: Likewise.
+
+Sun Aug 31 17:12:27 1997 Paul Eggert <eggert@twinsun.com>
+
+ * real.c (EMULONG): Correct typo in spelling of HOST_BITS_PER_LONGLONG.
+
+Fri Aug 29 16:13:51 1997 Jeffrey A Law (law@cygnus.com)
+
+ * mips.md (movstrsi_internal[23]): Set insn type to "store" to
+ get more accurate schedules.
+
+ * pa.md (reload_peepholes): Make sure operand is a REG before
+ examining REGNO. Allow general registers too.
+
+Thu Aug 28 12:34:56 1997 Doug Evans <dje@seba.cygnus.com>
+
+ * reload1.c (reload_cse_no_longer_dead): Don't pass incremented regno
+ to SET_HARD_REG_BIT, it can be evaluated twice.
+
+Wed Aug 27 20:15:53 1997 J"orn Rennecke <amylaar@cygnus.co.uk>
+
+ * sh/elf.h: (LINK_SPEC): Use shlelf.
+ (USER_LABEL_PREFIX, LOCAL_LABEL_PREFIX, ASM_FILE_START): Redefine.
+ * sh/lib1funcs.asm (___ashrsi3, ___ashlsi3, ___lshrsi3):
+ Truncate shift count. Use braf if not SH1.
+ * sh.c (sfunc_uses_reg): No longer static.
+ Check for SImode inside the USE.
+ (shiftcosts, expand_ashiftrt, shl_sext_kind):
+ Use SH_DYNAMIC_SHIFT_COST.
+ (sh_dynamicalize_shift_p, output_branchy_insn): New functions.
+ (output_ieee_ccmpeq, mova_p, cache_align_p, fixup_aligns): Likewise.
+ (branch_offset, short_cbranch_p, med_branch_p): Likewise.
+ (braf_branch_p, align_length, fixup_addr_diff_vecs): Likewise.
+ (addr_diff_vec_adjust, get_dest_uid, gen_far_branch): Likewise.
+ (split_branches, regs_used, gen_block_redirect): Likewise.
+ (from_compare): Can't compare non-zero DImode constant directly.
+ Emit special code for TARGET_SH3E floating point with code == GE.
+ Force 0.0 into a register for SH3E.
+ (print_operand): Add ','.
+ Emit the actual comparison instruction.
+ (sh_builtin_saveregs): Save floating point registers in order that
+ allows pre-decrement.
+ (find_barrier): New arguments num_mova and mova. Changed caller.
+ When rewinding to before a mova, also restore the last found barrier.
+ Branch is now known to be shortened.
+ Prefer barriers where no new alignment is needed.
+ More generic alignment for cache lines.
+ Add checks for pieces of code that use more table space than their
+ own size.
+ Fix up the barrier we return so that the alignment will always be
+ after the table.
+ Remove limit adjustments for table alignment.
+ Handle PARALLELs correctly.
+ (machine_dependent_reorg): Add extra pass to split insns.
+ Don't scan instructions twice for broken moves.
+ Calculate insn length, call fixup_addr_diff_vecs.
+ Call split_branches.
+ Add alignment for loops and after BARRIERs.
+ Initialize max_uid_before_fixup_addr_diff_vecs.
+ Advance mdep_reorg_phase.
+ Clear insn_addresses.
+ (output_far_jump): Use braf and/or pre-allocated scratch register
+ when possible.
+ (expand_ashiftrt): Truncate shift count.
+ (push_regs): Push PR last.
+ (sh_expand_epilogue): Pop PR first.
+ (code_for_indirect_jump_scratch, mdep_reorg_phase): New variables.
+ (uid_align, uid_align_max): Likewise.
+ (max_uid_before_fixup_addr_diff_vecs, sh_addr_diff_vec_mode): Likewise.
+ (braf_label_ref_operand): New predicate.
+ (initial_elimination_offset): calculate offset from
+ RETURN_ADDRESS_POINTER_REGNUM starting with total_saved_regs_space.
+ (output_branch): Expect out-of-range condbranches to have been split.
+ * sh.md (rotlsi3_16): Named insn.
+ (rotlsi3): Rewritten to use superoptimizer patterns.
+ (adddi3, subdi3, ashrsi2_16, ashrsi2_31): Always split.
+ (movsi_i, movsi_ie): replace t/z alternative with t/r alternative.
+ Use pcload_si and load_si insn types.
+ (adddi3+1, subdi3+1, ashrsi2_16+1, ashrsi2_31+1) New define_splits.
+ (addc, subc, ashlsi_c): New insns.
+ (attribute "type"): New values dyn_shift, load_si, pcload_si, fmove,
+ jump_ind, arith3 and arith3b.
+ (function_unit "fp"): Take fmove into account.
+ (function_unit "int"): Uses one cycle for !dyn_shift.
+ (function_unit "memory"): Special case for load_si and pcload_si.
+ (attribute "in_delay_slot): handle pcload_si.
+ (cmpgtdi_t, cmpgedi_t, cmpgeudi_t, cmpgtudi_t): Type arith3.
+ (cmpsi+1, cmpeqdi_t) Type arith3b.
+ (movsf_ie, alternatives f/fGH/X, f/y/X, y/f/X): Type fmove.
+ (extendsidi2): Delete.
+ (cmpeqsi_t-2): Delete. (Redundant with movt.)
+ (*rotlhi3_8) Name.
+ (iorsi3, rotlsi3_1, rotlsi3_31, rotlsi3_16, (*rotlhi3_8): Type arith.
+ (ashlsi3_k, ashlhi3_ki, ashrsi2_16, ashrsi2_31, lshrsi3_m): Likewise.
+ (lshrsi3_k, lshrhi3_m, lshrhi3_k, ashldi3_k, lshrdi3_k): Likewise.
+ (ashrdi3_k, xtrct_left, xtrct_right, dect, mova, movt): Likewise.
+ (movt): Likewise.
+ (ashlsi3_d, ashrsi3_d, lshrsi3_d): Type dyn_shift.
+ (indirect_jump_scratch, *casesi_jump_1, *casesi_jump_2): Type jump_ind.
+ (ashlsi3, ashlsi3_n, lshrsi3, lshrsi3_n): Use sh_dynamicalize_shift_p.
+ (movsf_ie+1, movsf_ie+2): Exchange.
+ (cmpeqdi_t-1, cmpeqdi_t, cmpgtdi_t, cmpgedi_t): New insns.
+ (cmpgeudi_t, cmpgtudi_t, movsi_i_lowpart, ieee_ccmpeqsf_t): Likewise.
+ (cmpdi, movnegt): New define_expands.
+ (movsi_ie): Add y,y alternative.
+ (sge): Use it for ! TARGET_IEEE. Use special code for TARGET_IEEE.
+ (sle): Use sge.
+ (align_4, casesi_jump): Now define_expand.
+ (casesi_0, addr_diff_vec_adjust, align_log): New patterns.
+ (*casesi_jump_[12]): Likewise.
+ (casesi): Use casesi_0 and casesi_jump.
+ (casesi_worker): Depends on the mode used for the table.
+ (define_delay for cbranches): Test TARGET_SH2.
+ Changed all callers of from_compare.
+ (attribute "length"): Take use of braf and scratch registers into
+ account.
+ (indirect_jump_scratch, block_branch_redirect): New patterns.
+ (jump): Call output_far_jump for any jump larger than 4 bytes.
+ (inverse_branch_true, inverse_branch_false): Remove.
+ (bne, blt, ble, bltu, bleu): Canonicalize.
+ (attribute "cpu"): Remove "sh0" alternative.
+ * sh.h (ADJUST_COST): Lower cost of non-address sfunc dependencies.
+ Adjust cost of load_si / pcload_si insns when not used for call.
+ (enum reg_class): Move GENERAL_REGS after FPUL_REGS.
+ (REG_CLASS_NAMES, REG_CLASS_CONTENTS): Likewise.
+ (REGISTER_MOVE_COST): Add costs for fpul <-> mac, pr moves.
+ Fix to match default cost in regclass. Move to T reg not costly.
+ When checking for GENERAL_REGS, check for R0_REGS too.
+ (INITIALIZE_TRAMPOLINE): Include code for constant parts.
+ (SHIFT_COUNT_TRUNCATED): Not true for TARGET_SH3.
+ (CPP_SPEC): Define __sh1__ if no specific cpu is selected.
+ (FUNCTION_BOUNDARY): Align to cache line boundary.
+ (optimize, sh_addr_diff_vec_mode, machine_dependent_reorg): Declare.
+ (addr_diff_vec_adjust, code_for_indirect_jump_scratch): Declare.
+ (short_cbranch_p, med_branch_p, braf_branch_p, align_length): Declare.
+ (output_ieee_ccmpeq, output_branchy_insn, sfunc_uses_reg): Declare.
+ (ASM_OUTPUT_ADDR_DIFF_ELT): Depends on sh_addr_diff_vec_mode.
+ (PREDICATE_CODES): Add braf_label_ref_operand and register_operand.
+ (IEEE_BIT, TAGET_IEEE, LOCAL_LABEL_PREFIX, ASSEMBLER_DIALECT): Define.
+ (CACHE_LOG, enum mdep_reorg_phase_e, TRAMPOLINE_ALIGNMENT): Define.
+ (SH_DYNAMIC_SHIFT_COST): Define.
+ (TARGET_SWITCHES): Remove -m0 entry. Add -mieee, -mno-ieee.
+ (OVERRIDE_OPTIONS): sh_cpu defaults to CPU_SH1.
+ Initialize sh_addr_diff_vec_mode.
+ (REG_ALLOC_ORDER): Move FP0 behind FP7.
+ Move all FP registers in front of the general registers.
+ (SECONDARY_OUTPUT_RELOAD_CLASS): Add case for MAC_REGS / PR_REGS.
+ When checking for GENERAL_REGS, check for R0_REGS too.
+ Fix direction of compares to {FIR,LA}ST_FP_REG.
+ (SECONDARY_INPUT_RELOAD_CLASS): check for fp_one_operand.
+ (ASM_OUTPUT_ALIGN_CODE, ASM_OUTPUT_LOOP_ALIGN, SH0_BIT): Delete.
+ (TARGET_SH0, PUSH_ROUNDING, TRAMPOLINE_TEMPLATE): Delete.
+ (TRAMPOLINE_ALIGN): Delete.
+ (processor_type): Remove PROCESSOR_SH0.
+ (ADJUST_INSN_LENGTH): Remove check for preceding BARRIER.
+ Adjust ADDR_DIFF_VECs. Add code for alignment instructions.
+ Check if insn needing a delay slot is already inside a SEQUENCE.
+
+ * va-sh.h (__va_rounded_size): Delete.
+ (__LITTLE_ENDIAN_P, __SCALAR_TYPE, __PASS_AS_FLOAT): Define.
+ (va_arg): Unify big and little endian code.
+ Optimization for small integers.
+
+ From Fred Fish:
+ * sh.h (INITIAL_ELIMINATION_OFFSET): Proper bracketing.
+ (REGNO_REG_CLASS, PREFERRED_RELOAD_CLASS): Likewise.
+ (SECONDARY_{OUTPUT,INPUT}_RELOAD_CLASS, LIBCALL_VALUE): Likewise.
+ (ROUND_ADVANCE, FUNCTION_ARG, FUNCTION_ARG_PARTIAL_NREGS): Likewise.
+ (FUNCTION_PROFILE, FUNCTION_EPILOGUE, RETURN_ADDR_RTX): Likewise.
+ (REGNO_OK_FOR_INDEX_P, EXTRA_CONSTRAINT_Q, MODE_DISP_OK_4): Likewise.
+ (GO_IF_LEGITIMATE_{INDEX,ADDRES}, LEGITIMIZE_ADDRESS): Likewise.
+ (CONST_COSTS, REGISTER_MOVE_COST, ASM_OUTPUT_CONSTRUCTOR): Likewise.
+ (ASM_OUTPUT_CONSTRUCTOR, ASM_OUTPUT_DESTRUCTOR): Likewise.
+ (ASM_OUTPUT_REG_PUSH, ASM_OUTPUT_REG_POP, ASM_OUTPUT_LABEL): Likewise.
+ (ASM_OUTPUT_ALIGN), ASM_DECLARE_FUNCTION_NAME): Likewise.
+ (ASM_GLOBALIZE_LABEL, ASM_OUTPUT_CASE_LABEL): Likewise.
+ (ASM_OUTPUT_ADDR_DIFF_ELT, ASM_OUTPUT_ADDR_VEC_ELT) Likewise.
+ (ASM_OUTPUT_DOUBLE, ASM_OUTPUT_FLOAT, ASM_OUTPUT_INT): Likewise.
+ (ASM_OUTPUT_SHORT, ASM_OUTPUT_CHAR, ASM_OUTPUT_BYTE): Likewise.
+ (ASM_OUTPUT_SKIP, FINAL_PRESCAN_INSN, PRINT_OPERAND): Likewise.
+ (PRINT_OPERAND_ADDRESS, HANDLE_PRAGMA, ADJUST_INSN_LENGTH): Likewise.
+ (PROMOTE_MODE): Likewise.
+ (ASM_GENERATE_INTERNAL_LABEL): Use LOCAL_LABEL_PREFIX.
+ (ASM_OUTPUT_INTERNAL_LABEL): Use %L.
+ * sh/elf.h: (ASM_OUTPUT_LABELREF): Use %U.
+ (ASM_GENERATE_INTERNAL_LABEL): Use LOCAL_LABEL_PREFIX.
+ (ASM_OUTPUT_INTERNAL_LABEL, ASM_OUTPUT_SOURCE_LINE): Use %L.
+
+Wed Aug 27 16:42:21 1997 Bob Manson (manson@cygnus.com)
+
+ * t-h8300 (TARGET_LIBGCC2_CFLAGS): New definit.
+ (LIBGCC2_CFLAGS): Deleted.
+ * t-mn10200: Likewise.
+
+Wed Aug 27 17:10:51 1997 Jim Wilson <wilson@cygnus.com>
+
+ * m68k.md (iorsi3_internal): Readd ! TARGET_5200 check lost in
+ last change.
+
+Wed Aug 27 15:19:55 1997 J"orn Rennecke <amylaar@cygnus.co.uk>
+
+ * dwarfout.c (dwarfout_start_new_source_file): Strip leading '*'s
+ from label names.
+
+Wed Aug 27 14:33:38 1997 Jim Wilson <wilson@cygnus.com>
+
+ * reload.c (find_reloads, case '0'): Reject matching a non-offsettable
+ address where an offsettable address is required.
+
+Wed Aug 27 10:38:32 1997 Jeffrey A Law (law@cygnus.com)
+
+ * reorg.c (dbr_schedule): Allow current_function_return_rtx
+ to be something other than a REG.
+ * function.c (expand_function_end): Fix current_function_return_rtx
+ if it was a pseudo.
+
+ * t-freebsd (USER_H): Include EXTRA_HEADERS and LANG_EXTRA_HEADERS.
+ * x-netbsd: Likewise
+ * x-dgux (USER_H): Include EXTRA_HEADERS and LANG_EXTRA_HEADERS
+ (INSTALL_HEADERS): Delete.
+ * x-dguxbcs: Likewise.
+ * x-hp3bsd44: Likewise
+ * x-pa: Likewise.
+
+Wed Aug 27 07:15:58 1997 Klaus Espenlaub <kespenla@hydra.informatik.uni-ulm.de>
+
+ * configure.in (AC_PROG_CC, AC_PROG_MAKE_SET): Check for gcc before
+ testing for flex.
+
+Wed Aug 27 02:24:35 1997 Jim Wilson <wilson@cygnus.com>
+
+ * dwarfout.c (dwarfout_file_scope_decl, case TYPE_DECL): Check
+ TYPE_DECL_IS_STUB instead of DECL_NAME.
+
+ * Makefile.in (install-info): Don't cd into srcdir. Add srcdir to
+ filenames. Use sed to extract base filename for install.
+
+Wed Aug 27 01:56:18 1997 Doug Evans <dje@seba.cygnus.com>
+
+ * loop.c (combine_movables): Earlier insns don't match later ones.
+
+ * c-decl.c (grokdeclarator): If array index or size calculations
+ overflow, issue an error.
+ * fold-const.c (int_const_binop): New static function.
+ (const_binop, size_binop): Call it.
+
+Tue Aug 26 17:51:56 1997 Jason Merrill <jason@yorick.cygnus.com>
+
+ * collect2.c (main): Check SCAN_LIBRARIES instead of LDD_SUFFIX
+ to decide whether to always emit init and fini handles.
+
+Tue Aug 26 13:51:10 1997 Jim Wilson <wilson@cygnus.com>
+
+ * stor-layout.c (layout_record): Test DECL_PACKED instead of
+ TYPE_PACKED to determine alignment.
+
+ * combine.c (try_combine): Distribute REG_DEAD notes created for
+ i3dest_killed similar to the ones created for i2dest_in_i2src
+ and for i1dest_in_i1src.
+
+Tue Aug 26 11:36:34 1997 Jeffrey A Law (law@cygnus.com)
+
+ * loop.c (check_final_value): Don't miss a biv increment in a
+ parallel.
+
+ * loop.c (check_dbra_loop): If the loop biv is only used
+ for counting, then normalize it so that the initial
+ value is zero.
+
+Tue Aug 26 06:19:48 1997 Jason Merrill <jason@yorick.cygnus.com>
+
+ * dwarfout.c (*_LABEL): Add initial '*'.
+
+Tue Aug 26 05:27:28 1997 Richard Henderson <rth@cygnus.com>
+
+ * alpha/elf.h (LINK_SPEC): Conditionalize on USE_GNULIBC_1.
+ * configure.in (alpha-*-linux-gnulibc1): New target.
+ (alpha-*-linux-gnu*): Don't build crtbegin/end.
+
+Mon Aug 25 19:11:38 1997 Bernd Schmidt <crux@Pool.Informatik.RWTH-Aachen.DE>
+
+ * reload1.c (reload_cse_simplify_operands): Fix typo.
+
+Mon Aug 25 19:04:42 1997 Richard Kenner <kenner@vlsi1.ultra.nyu.edu>
+
+ * c-typeck.c (common_type): Always prefer long double to double.
+
+Mon Aug 25 08:55:00 1997 Jeffrey A Law (law@cygnus.com)
+
+ * pa.c (secondary_reload_class): (mem (mem ... )) does not need
+ secondary reloads.
+
+ * pa.c (hppa_builtin_saveregs): Emit a blockage insn after the
+ store of the argument registers.
+
+Sun Aug 24 21:25:06 1997 Bernd Schmidt <crux@Pool.Informatik.RWTH-Aachen.DE>
+
+ * reload1.c (reload_cse_mem_conflict_p, case MEM): Also check
+ for conflict with the address.
+
+Sat Aug 23 18:43:22 1997 Jim Wilson <wilson@cygnus.com>
+
+ * acconfig.h (NEED_DECLARATION_CALLOC): Add.
+ * configure.in: Add GCC_NEED_DECLARATION call for calloc.
+ * rs6000/xm-rs6000.h (malloc, realloc, calloc, free): Delete
+ declarations.
+
+ * m68k/m68kemb.h (LIB_SPEC): Add missing comment end before it.
+ * m68k/next.h (GO_IF_INDEXABLE_BASE): Fix typo in undef.
+
+Sat Aug 23 00:18:22 1997 Jeffrey A Law (law@cygnus.com)
+
+ * pa.c (pa_reorg): Always put begin_brtab and end_brtab insns
+ around branch tables.
+ * pa.md (begin_brtab, end_brtab): Only emit the .begin_brtab
+ and .end_brtab directives if TARGET_GAS.
+
+Fri Aug 22 19:17:25 1997 Richard Kenner <kenner@vlsi1.ultra.nyu.edu>
+
+ * function.c (instantiate_virtual_regs_1, case ADDRESSOF):
+ New case.
+ (fix_lexical_addr): Handle (addressof (mem ...)).
+
+Thu Aug 21 17:56:06 1997 Richard Kenner <kenner@vlsi1.ultra.nyu.edu>
+
+ * reload.c (push_secondary_reload): If SECONDARY_MEM_NEEDED,
+ call get_secondary_mem for input before adding reload and
+ for output after.
+ (push_reload): Likewise.
+
+Thu Aug 21 15:57:03 1997 Jim Wilson <wilson@cygnus.com>
+
+ * stmt.c (start_cleanup_deferal, end_cleanup_deferal): Test
+ block_stack before dereferencing it.
+
+Wed Aug 20 15:45:52 1997 Dave Love <d.love@dl.ac.uk>
+
+ * dwarf2.h (enum dwarf_call_frame_info): Remove trailing comma from
+ list.
+
+Wed Aug 20 15:30:36 1997 Stan Cox <coxs@dg-rtp.dg.com>
+
+ * i386.c (ix86_prologue, ix86_epilogue): New functions.
+ ({function,ix86_expand}_{pro,epi}logue, ix86_expand_prologue):
+ Use ix86_prologue.
+
+Wed Aug 20 14:57:11 1997 Michael Meissner <meissner@cygnus.com>
+
+ * rs6000.h (ISSUE_RATE): Define instead of MACHINE_issue_rate.
+
+Tue Aug 19 17:10:56 1997 Jason Merrill <jason@yorick.cygnus.com>
+
+ * cplus-dem.c: Add 'extern' to prepends_underscore.
+
+Tue Aug 19 15:46:30 1997 Jeffrey A Law (law@cygnus.com)
+
+ * mips/r3900.h (SUBTARGET_CC1_SPEC): Remove some unnecessary stuff.
+ (MIPS_CPU_STRING_DEFAULT, MIPS_ISA_DEFAULT): Define.
+
+Mon Aug 18 21:49:02 1997 Jim Wilson <wilson@cygnus.com>
+
+ * reload.c (find_reloads): Add code to convert RELOAD_FOR_OPADDR_ADDR
+ reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
+
+Mon Aug 18 17:39:02 1997 Mike Meissner <meissner@cygnus.com>
+
+ * configure.in ({powerpc,rs6000}*-*-*, --with-cpu): Remove single
+ quotes around the name.
+
+Mon Aug 18 17:26:42 1997 Doug Evans <dje@cygnus.com>
+
+ * mips.md (movsi_ulw,movsi_usw,loadgp): Give unspec a mode.
+
+Mon Aug 18 11:05:17 1997 Jeffrey A Law (law@cygnus.com)
+
+ * mips/r3900.h (TARGET_DEFAULT): Turn on MASK_MIPS3900.
+
+Sun Aug 17 14:39:18 1997 Gavin Koch (gavin@cygnus.com)
+
+ * mips/elf.h (PREFERRED_DEBUGGING_TYPE): Only set if not already set.
+ * mips.c (TARGET_{SINGLE,SOFT}_FLOAT): Make sure both aren't set.
+ (PROCESSOR_R3900): Set flag from option.
+ * mips.h: Add m3900 option.
+ ({PROCESSOR,TARGET,MASK}_R3900): Define.
+ (GENERATE_{BRANCHLIKELY,MADD,MULT3): Likewise.
+ (debugj,MASK_DEBUG_J): Delete to make room for m3900.
+ (BRANCH_LIKELY_P): Redefine to include 3900.
+ (GAS_ASM_SPEC,CC1_SPEC): Add m3900 option.
+ (RTX_COSTS): Add 3900.
+ * mips.md: Add 3900, including three op madd and mult.
+ * configure.in (mipstx39{,el}-*-elf*): New cases.
+ * mips/r3900.h: New file.
+
+Fri Aug 15 07:34:12 1997 Richard Earnshaw (rearnsha@arm.com)
+
+ * arm.md (umulsi3_highpart, smulsi3_highpart): Add extra reloading
+ alternatives.
+
+Fri Aug 15 07:34:12 1997 Torbjorn Granlund <tege@tege.pdc.kth.se>
+
+ * arm.md (umulsi3_highpart, smulsi3_highpart): New patterns.
+ * arm.c (arm_rtx_costs, case TRUNCATE): New case.
+
+Fri Aug 15 06:40:03 1997 Richard Kenner <kenner@vlsi1.ultra.nyu.edu>
+
+ * genemit.c (main): Write an include for flags.h.
+ * genoutput.c (main): Likewise.
+
+ * alpha.c (override_options): Turn off byte insns for cpu=ev4 or ev5.
+
+ * alpha.md (allocate_stack): If stupid reg allocation, add USE
+ for loop variable.
+
+ * fold-const.c (fold, compare cases): Add calls to `fold' to
+ previous change.
+
+Wed Aug 13 17:32:38 1997 Jason Merrill <jason@yorick.cygnus.com>
+
+ * rtl.h ({SET,}ADDRESSOF_DECL): op 1 of ADDRESSOF is now the decl.
+ * function.c (put_var_into_stack, gen_mem_addressof,
+ put_addressof_into_stack): Adjust.
+
+ * expr.c (expand_expr, case TARGET_EXPR): Call mark_addressable
+ again for the slot after we give it RTL.
+ (expand_expr, case VAR_DECL): Lose gen_mem_addressof case.
+
Wed Aug 13 17:29:25 1997 J"orn Rennecke <amylaar@cygnus.co.uk>
* c-lex.c (check_newline): Pass finput again to HANDLE_PRAGMA.
+Wed Aug 13 16:51:35 1997 Bernd Schmidt <crux@Pool.Informatik.RWTH-Aachen.DE>
+
+ * reload1.c (reload_cse_simplify_operands): New function.
+ (reload_cse_no_longer_dead,reload_cse_delete_death_notes): Likewise.
+ (no_longer_dead_regs): New static variable.
+ (reload_cse_simplify_set): Now returns int.
+ Don't delete death notes on previous insns, call
+ reload_cse_no_longer_dead instead.
+ Call validate_change with nonzero value for in_group.
+ (reload_cse_noop_set_p): Don't delete death notes on previous insns,
+ call reload_cse_no_longer_dead instead.
+ (reload_cse_regs): Initialize no_longer_dead_regs and call
+ reload_cse_delete_death_notes as appropriate.
+ Call apply_change_group after calling reload_cse_simplify_set.
+ Call reload_cse_simplify_set on elements of a PARALLEL.
+ Call reload_cse_simplify_operands if reload_cse_simplify_set could
+ not simplify things.
+
+Wed Aug 13 16:18:42 1997 Douglas Rupp <rupp@gnat.com>
+
+ * vms.h (LINK_SPEC): Echo -shared, not -share, to linker.
+
+Wed Aug 13 12:51:11 1997 Richard Stallman <rms@psilocin.gnu.ai.mit.edu>
+
+ * m68k.md: Add braces to clarify nesting.
+
+Wed Aug 13 12:51:11 1997 Jason Merrill <jason@yorick.cygnus.com>
+
+ * calls.c (expand_call): Use assign_temp and mark_addressable
+ instead of calling gen_mem_addressof directly.
+
+Wed Aug 13 12:40:15 1997 Richard Kenner <kenner@vlsi1.ultra.nyu.edu>
+
+ * Makefile.in (install-man): Add missing $(exeext).
+
+ * configure.in (alpha*-dec-osf*): Merge various cases;
+ split off version-specific files in new case statement.
+ Include osf2or3.h even for OSF1.2.
+
+ * alpha.c (NUM_ARGS): New macro.
+ (CURRENT_FUNCTION_ARGS_INFO): Deleted.
+ (alpha_builtin_saveregs): Use new macro.
+ (function_arg): Deleted.
+ (alpha_arg_type, alpha_arg_info_reg_val): New functions.
+ * vms.h (enum avms_arg_type, avms_arg_info): New types.
+ (CUMULATIVE_ARGS, INIT_CUMULATIVE_ARGS): Update definitions
+ to use new types.
+ (SETUP_INCOMING_VARARGS): Likewise.
+ (FUNCTION_ARG{,_PARTIAL_NREGS}, FUNCTION_ARG_ADVANCE): Likewise.
+ Only update CUM in FUNCTION_ARG_ADVANCE.
+
+Tue Aug 12 19:27:32 1997 Philippe De Muyter <phdm@info.ucl.ac.be>
+
+ * integrate.c (save_for_inline_copying): Use 0, not NULL_PTR,
+ as initial value for real_label_map.
+ (copy_for_inline): Likewise.
+
+Tue Aug 12 16:15:36 1997 H.J. Lu (hjl@gnu.ai.mit.edu)
+
+ * rtl.h (BYTECODE_LABEL): Use XSTR, not XEXP.
+
+ * calls.c (expand_calls): Properly call any_pending_cleanups.
+
+Tue Aug 12 12:18:01 1997 Jason Merrill <jason@yorick.cygnus.com>
+
+ * function.c (purge_addressof_1): Add force argument.
+ (purge_addressof): If there are any ASM_OPERANDS in an insn, always
+ put ADDRESSOFs into the stack.
+
+ * function.c (setjmp_protect): See through addressof.
+ (setjmp_protect_args): Likewise.
+ * calls.c (expand_call): For now, only use addressof if the type
+ doesn't promote.
+ * function.c (put_var_into_stack): Likewise.
+ * expr.c (expand_expr): Likewise.
+ * toplev.c (rest_of_compilation): Check inlineable instead of
+ DECL_INLINE.
+ * function.c (purge_addressof_1): Try recognizing the insn with
+ and without the SUBREG. If it doesn't work, just put the REG into
+ the stack.
+ (gen_mem_addressof): Set the mode of the MEM to the mode of the type.
+ (put_var_into_stack): Don't be fooled by addressof in an enclosing
+ scope.
+
+Sun Aug 10 22:19:19 1997 Richard Kenner <kenner@vlsi1.ultra.nyu.edu>
+
+ * explow.c (probe_stack_range): Add USE for test_addr if -O0.
+
+Sun Aug 10 22:15:40 1997 Jason Merrill <merrill@churchy.gnu.ai.mit.edu>
+
+ * toplev.c (rest_of_compilation): Move purge_addressof before loop.
+
Sun Aug 10 15:25:51 1997 Jim Wilson <wilson@cygnus.com>
* toplev.c (main): In -g handling code, add code to set len.
+ * sdbout.c (plain_type_1, case ARRAY_TYPE): Verify that TYPE_DOMAIN
+ has integer TYPE_{MAX,MIN}_VALUE before using them.
+
* alpha.md (extendqihi2): Use HImode not QImode in force_reg call.
+Sun Aug 10 16:47:34 1997 Nick Burrett <nick.burrett@btinternet.com>
+
+ * arm/aof.h (COMMON_SECTION): New macro, define common_section.
+ (EXTRA_SECTION_FUNCTIONS): Add COMMON_SECTION.
+ (EXTRA_SECTIONS): Add in_common.
+ (ASM_OUTPUT_COMMON): Call common_section() to indicate we've
+ changed areas.
+
+Sat Aug 9 20:04:35 1997 Jim Wilson <wilson@cygnus.com>
+
+ * dwarf2out.c (gen_subprogram_die): Handle redefinition of an
+ extern inline function.
+
+Sat Aug 9 13:01:06 1997 Michael Meissner <meissner@cygnus.com>
+
+ * rs6000/sysv4.h (*_SPEC): Add support for -mads and -myellowknife.
+ Use a common crt0.o for all embedded platforms. Use --start-group
+ and --end-group instead of -( and -) to allow better cut and pasting
+ when debugging the linker. Set default start for MVME text.
+ (TARGET_SWITCHES): Add -mads and -myellowknife.
+
+Fri Aug 8 20:12:43 1997 Per Bothner <bothner@cygnus.com>
+
+ * dwarf2out.c (gen_enumeration_type_die):
+ Make code work for a tag name, without a TYPE_STUB_DECL.
+ (gen_struct_or_union_type_die): Likewise.
+
+Fri Aug 8 18:10:40 1997 Marc Lehmann <pcg@goof.com>
+
+ * i386/go32.h (HAS_INIT_SECTION, HAVE_ATEXIT): New macros.
+
+Fri Aug 8 17:30:22 1997 H.J. Lu <hjl@gnu.ai.mit.edu>
+
+ * i386.c (output_pic_addr_const, case PLUS): Emit the constant first.
+
+Fri Aug 8 17:07:36 1997 Stan Cox <coxs@dg-rtp.dg.com>
+
+ * m88k.c (m88k_expand_prologue): Set MEM_IN_STRUCT_P of va_list
+ template.
+
+ * reg-stack.c (compare_for_stack_reg): Swap only if the source and
+ destination are both on the regstack.
+ (subst_stack_regs_pat): Put the destination at the top of the regstack.
+
+Fri Aug 8 17:03:21 1997 Bernd Schmidt <crux@pool.informatik.rwth-aachen.de>
+
+ * i386.md (pop): pop increments the stack pointer.
+ (prologue_set_stack_ptr): New pattern.
+ * i386.c (ix86_expand_prologue): Use prologue_set_stack_ptr
+ instead of subsi3.
+
+Fri Aug 8 17:00:36 1997 Paul Eggert <eggert@twinsun.com>
+
+ * gansidecl.h, halfpic.h (STDIO_PROTO): Remove.
+ * bitmap.h, c-tree.h, output.h, reload.h, rtl.h (STDIO_PROTO):
+ Replace with PROTO in include files.
+ * bc-emit.c: Include <stdio.h> before include files that formerly
+ used STDIO_PROTO.
+ * bc-optab.c, c-common.c, c-decl.c, caller-save.c, calls.c: Likewise.
+ * convex.c, i860.c, mips.c, spur.c, tahoe.c, emit-rtl.c: Likewise.
+ * explow.c, expmed.c, expr.c, genattrtab.c, halfpic.c: Likewise.
+ * jump.c, optabs.c, profile.c, recog.c, regclass.c: Likewise.
+ * rtlanal.c, sdbout.c, unroll.c: Likewise.
+ * genattrtab.c (main): Generate files that include <stdio.h>
+ before including files that formerly used STDIO_PROTO.
+ * genemit.c (main), genextract.c (main), genopinit.c (main): Likewise.
+ * genoutput.c (output_prologue), genpeep.c (main): Likewise.
+ * genrecog.c (main): Likewise.
+ * halfpic.h (PROTO): Use "gansidecl.h" to define this instead.
+ (half_pic_finish): Declare without prototype; FILE isn't defined.
+
+ * bitmap.c, c-aux-info.c, c-lex.c: Include "config.h" first.
+ * c-parse.in, c-pragma.c, 1750a.c, a29k.c, alpha.c: Likewise.
+ * arm.c, clipper.c, dsp16xx.c, elxsi.c, fx80.c, gmicro.c: Likewise.
+ * h8300.c, i370.c, i386.c, i386/winnt.c, i960.c: Likewise.
+ * m32r.c, m68k.c, m88k.c, mn10200.c, mn10300.c, ns32k.c: Likewise.
+ * pa.c, pdp11.c, pyr.c, romp.c, rs6000.c, sparc.c, vax.c: Likewise.
+ * we32k.c, cppmain.c, dbxout.c, flow.c, fold-const.c: Likewise.
+ * gcc.c, gcov.c, global.c, integrate.c, local-alloc.c: Likewise.
+ * loop.c, mips-tdump.c, mips-tfile.c, objc-act.c: Likewise.
+ * real.c, reg-stack.c, reload.c, reload1.c, reorg.c, sched.c: Likewise.
+ * stupid.c, tree.c, varasm.c, xcoffout.c: Likewise.
+
+Fri Aug 8 14:52:35 1997 Jason Merrill <jason@yorick.cygnus.com>
+
+ * function.c (fixup_stack_1): Stack slots can also be relative to
+ the frame or stack pointers.
+
+Fri Aug 8 14:13:49 1997 Richard Henderson <richard@gnu.ai.mit.edu>
+
+ * dwarf2out.c (reg_loc_descriptor): Fix prototype.
+ (concat_loc_descriptor): New function.
+ (loc_descriptor): Call it.
+ (add_AT_location_description): Also elide the descriptor if both
+ halves of a CONCAT are pseudos.
+ (add_location_or_const_value_attribute): Recognize CONCAT too.
+
+Fri Aug 8 06:36:29 1997 Bernd Schmidt <crux@Pool.Informatik.RWTH-Aachen.DE>
+
+ * c-common.c (if_stack{,_space,_pointer}): New static variables.
+ (c_expand_{start_cond,start_else,end_cond}): New functions.
+ * c-parse.in (compstmt_count): New static variable.
+ (compstmt_start): New rule.
+ (compstmt): Use new rule.
+ (do_stmt_start): Update compstmt_count.
+ (simple_if, stmt): Use new versions of start_cond, start_else,
+ and end_cond.
+
+Thu Aug 7 15:35:25 1997 Jim Wilson <wilson@cygnus.com>
+
+ * mips/iris6.h (TARGET_LONG64): Don't define here.
+ * mips.c (override_options): Set MASK_LONG64 for ABI_64.
+
+ * mips.c (function_prologue): Don't emit ".ent", ".frame",
+ ".mask", ".fmask" if flag_inhibit_size_directive is true.
+ (function_epilogue): Don't emit ".end" if
+ flag_inhibit_size_directive is true.
+
+ * mips/iris6.h (STARTFILE_SPEC, LIB_SPEC): Move
+ -L/usr/lib{32,64}/mips? from STARTFILE_SPEC to LIB_SPEC.
+
+Thu Aug 7 13:14:21 1997 Torbjorn Granlund <tege@tunnis.tmg.se>
+
+ * fold-const.c (fold): Optimize unsigned x <= 0x7fffffff.
+
+Thu Aug 7 12:46:31 1997 Richard Kenner <kenner@vlsi1.ultra.nyu.edu>
+
+ * explow.c (convert_memory_address, case LABEL_REF): Copy
+ LABEL_REF_NONLOCAL_P.
+
+ * expr.c (store_constructor): Use CONST0_RTX macro, not always
+ the integer version, when clearing a register.
+
+ * varasm.c (output_constructor): Correctly check for
+ multi-word constant.
+
+Thu Aug 7 10:04:42 1997 Douglas Rupp <rupp@gnat.com>
+
+ * alpha/vms-tramp.asm: New file.
+
+ * gcc.c (execute): Don't allow -pipe on VMS.
+
+ * alpha.c (vmskrunch): Don't strip off trailing digits.
+ (vms_valid_decl_attribute_p): New function.
+ * alpha/vms.h (TRAMPOLINE_TEMPLATE): Add another quadword of zeros.
+ (TRAMPOLINE_SIZE): Now 32 bytes.
+ (INITIALIZE_TRAMPOLINE): Put FNADDR at offset 16, CXT at 24.
+ (DBX_DEBUGGING_INFO, ASM_FORMAT_PRIVATE_NAME): Always undefine.
+ (STARTFILE_SPEC): Likewise.
+ (PREFERRED_DEBUGGING_TYPE): Define to be Dwarf-2.
+ (VALID_MACHINE_DECL_ATTRIBUTE, ASM_OUTPUT_SECTION{,_NAME}): New macros.
+ (ASM_OUTPUT_ALIGN{,ED_COMMON}): Redefine.
+ (LINK_SPEC): Pass -share and -v.
+ (ENDFILE_SPEC, LIBGCC2_SPEC): Don't redefine.
+
+Thu Aug 7 06:21:47 1997 Bernd Schmidt <crux@Pool.Informatik.RWTH-Aachen.DE>
+
+ * Eliminate most -Wswitch warnings.
+ * c-common.c (binary_op_error): Add default case to switch.
+ (shorten_compare, truthvalue_conversion): Likewise.
+ * c-iterate.c (collect_iteratores): Likewise.
+ * c-typeck.c (comptypes, build_component_ref): Likewise.
+ (build_binary_op, lvalue_p, build_unary_op): Likewise.
+ (build_modify_expr, initializer_constant_valid_p): Likewise.
+ (c_expand_return): Likewise.
+ * calls.c (calls_function_1): Likewise.
+ * combine.c (find_split_point, simplify_rtx): Likewise.
+ (simplify_if_then_else, simplify_logical): Likewise.
+ (extract_left_shift, make_compound_operation, force_to_mode): Likewise.
+ (known_cond, nonzero_bits, num_sign_bit_copies): Likewise.
+ (merge_outer_ops, simplify_shift_const, simplify_comparison): Likewise.
+ (reversible_comparison_p, mark_used_regs_combine): Likewise.
+ * convert.c (convert_to_integer): Likewise.
+ * cse.c (canon_hash, exp_equiv_p): Likewise.
+ (set_nonvarying_address_components, canon_reg): Likewise.
+ (simplify_unary_operation, simplify_plus_minus): Likewise.
+ (simplify_relational_operation, fold_rtx): Likewise.
+ (cse_process_note, count_reg_usage): Likewise.
+ * dbxout.c (dbxout_symbol): Likewise.
+ * dwarf2out.c (lookup_cfa_1, print_die): Likewise.
+ * emit_rtl.c (copy_rtx_if_shared, reset_used_flags): Likewise.
+ * explow.c (plus_constant_wide, convert_memory_address): Likewise.
+ (promote_mode, emit_stack_save, emit_stack_restore): Likewise.
+ * expmed.c (expand_divmod, emit_store_flag): Likewise.
+ * expr.c (queued_subexp_p, is_zeros_p, safe_from_p): Likewise.
+ (bc_expand_expr, preexpand_calls, convert_move): Likewise.
+ * final.c (get_attr_length, final_scan_insn): Likewise.
+ (walk_alter_subreg, alter_cond): Likewise.
+ * flow.c (jmp_uses_reg_or_mem, mark_used_regs): Likewise.
+ * fold-const.c (operand_equal_p, twoval_comparison_p): Likewise.
+ (eval_subst, invert_truthvalue, range_binop): Likewise.
+ (make_range, fold): Likewise.
+ * function.c (fixup_var_refs_1, instantiate_virtual_regs_1): Likewise.
+ * genattrtab.c (attr_copy_rtx, make_canonical): Likewise.
+ (encode_units_mask, simplify_test_exp): Likewise.
+ (find_and_mark_used_attributes, write_test_expr): Likewise.
+ (simplify_with_current_value_aux, clear_struct_flag): Likewise.
+ (count_sub_rtxs, gen_insn walk_attr_value): Likewise.
+ (copy_rtx_unchanging): Likewise.
+ * genconfig.c (walk_insn_part): Likewise.
+ * genextract.c (walk_rtx): Likewise.
+ * genoutput.c (scan_operands): Likewise.
+ * genpeep.c (match_rtx): Likewise.
+ * genrecog.c (add_to_sequence): Likewise.
+ * integrate.c (copy_for_inline, copy_rtx_and_substitute): Likewise.
+ (subst_constants): Likewise.
+ * jump.c (duplicate_loop_exit_test, comparison_dominates_p): Likewise.
+ (mark_jump_label, rtx_renumbered_equal_p): Likewise.
+ (rtx_equal_for_thread_p): Likewise.
+ * local-alloc.c (memref_referenced_p): Likewise.
+ * loop.c (record_excess_regs, reg_in_basic_block_p): Likewise.
+ (get_condition, replace_call_address): Likewise.
+ (count_nonfixed_reads, find_and_verify_loops, find_mem_givs): Likewise.
+ (maybe_eliminate_biv_1, invariant_p, simplify_giv_expr): Likewise.
+ * optabs.c (emit_float_lib_cmp): Likewise.
+ * print-tree.c (print_node): Likewise.
+ * recog.c (validate_replace_rtx_1, find_single_use_1): Likewise.
+ * reload.c (subst_reg_equivs, find_reloads_address_1): Likewise.
+ (refers_to_regno_for_reload_p, find_equiv_reg): Likewise.
+ * reload1.c (set_label_offsets, eliminate_regs): Likewise.
+ (scan_paradoxical_subregs, count_occurrences): Likewise.
+ * rtl.c (copy_rtx, copy_most_rtx): Likewise.
+ * rtlanal.c (rtx_varies_p, rtx_addr_can_trap_p): Likewise.
+ (reg_mentioned_p, reg_referenced_p, modified_between_p): Likewise.
+ (modified_in_p, refers_to_regno_p, volatile_insn_p): Likewise.
+ (volatile_refs_p, side_effects_p): Likewise.
+ (inequality_comparison_p, replace_regs): Likewise.
+ * sched.c (sched_analyze_2): Likewise.
+ * stmt.c (expand_return): Likewise.
+ * tree.c (staticp, unsave_expr_now, contains_placeholder_p): Likewise.
+ (substitute_in_expr, build_type_attribute_variant): Likewise.
+ (simple_cst_equal): Likewise.
+ * unroll.c (remap_split_bivs): Likewise.
+ * varasm.c (const_hash, compare_constant_1): Likewise.
+ (decode_rtx_const, output_addressed_constants): Likewise.
+ (output_constant): Likewise.
+ * print-tree.c (print_node): Convert switch with one case into an if.
+ * sched.c (memrefs_conflict_p): Likewise.
+ * genrecog.c (write_tree_1): Output default case for every switch.
+
+ * profile.c (output_arc_profiler) [SMALL_REGISTER_CLASSES]:
+ Apply PATTERN only to insns.
+
+Thu Aug 7 06:13:20 1997 Robert Lipe <robertl@dgii.com>
+
+ * i386/t-sco5 (libgcc2-elf.a): Resync with Makefile.in.
+
+Wed Aug 6 19:28:05 1997 Jim Wilson <wilson@cygnus.com>
+
+ * dwarf2out.c (build_abbrev_table): Use xrealloc not xmalloc.
+
+Wed Aug 6 12:57:24 1997 Jason Merrill <jason@yorick.cygnus.com>
+
+ * dwarf2out.c (output_call_frame_info): Always emit the info.
+ (dwarf2out_frame_debug): We can initialize the temp reg in the
+ epilogue, too.
+
+ * rtl.def: Add ADDRESSOF.
+ * rtl.h (ADDRESSOF_TYPE, SET_ADDRESSOF_TYPE): New macros.
+ * Makefile.in (mostlyclean): Remove *.addressof.
+ * toplev.c (rest_of_compilation): Set DECL_DEFER_OUTPUT on
+ non-nested inlines. Run purge_addressof after CSE.
+ (various): Add .addressof RTL dump file.
+ * rtl.c (copy_rtx): No need to copy ADDRESSOF.
+ * reload1.c (eliminate_regs): Elide ADDRESSOF.
+ * recog.c (general_operand): (MEM (ADDRESSOF ())) is a valid operand.
+ So is (ADDRESSOF ()).
+ (memory_address_p): (ADDRESSOF ()) is a valid memory address.
+ * integrate.c (expand_inline_function): If the structure_value_addr
+ is an ADDRESSOF, we can use it as a constant.
+ (copy_rtx_and_substitute): Copy a '0' operand over unchanged.
+ * function.c (fixup_var_refs_1): Remove (ADDRESSOF (MEM ())).
+ (gen_mem_addressof): New fn.
+ (put_addressof_into_stack): New fn.
+ (purge_addressof_1): New fn.
+ (purge_addressof): New fn.
+ (instantiate_decl): Don't bother looking into an ADDRESSOF.
+ (put_var_into_stack): Call gen_mem_addressof for local REGs instead
+ of calling put_reg_into_stack.
+ * expr.c (expand_expr, case TARGET_EXPR): Put the temp in a register
+ if it will fit.
+ (expand_expr, case ADDR_EXPR): Call gen_mem_addressof to take the
+ address of a REG.
+ * explow.c (memory_address): An ADDRESSOF is a valid memory address.
+ * dwarfout.c (location_or_const_value_attribute): Handle ADDRESSOF.
+ * dwarf2out.c (add_location_or_const_value_attribute): Handle
+ ADDRESSOF.
+ * cse.c (FIXED_BASE_PLUS_P): Add ADDRESSOF.
+ (NONZERO_BASE_PLUS_P): Add ADDRESSOF.
+ (canon_hash): Ignore '0' operands.
+ (find_best_addr): Don't try to replace an ADDRESSOF.
+ (fold_rtx): If our address has a const equiv of an ADDRESSOF, use it.
+ * calls.c (expand_call): Put the struct value in a register if
+ it fits.
+
+Tue Aug 5 16:10:45 1997 Jason Merrill <jason@yorick.cygnus.com>
+
+ * mips.c (function_arg): Handle passing a struct
+ containing a double in a DFmode register without the PARALLEL.
+
+Tue Aug 5 12:27:31 1997 Doug Evans <dje@cygnus.com>
+
+ * configure.in (sparc-*-solaris2): Set float_format to i128.
+ * config/float-i128.h: New file.
+
+Mon Aug 4 17:45:19 1997 Richard Kenner <kenner@vlsi1.ultra.nyu.edu>
+
+ * combine.c (try_combine): If have PARALLEL of independent SETs
+ and have cc0, ensure insn using CC0 come first.
+
+Mon Aug 4 15:22:41 1997 Mike Meissner <meissner@cygnus.com>
+
+ * rs6000/sysv4.h (JUMP_TABLES_IN_TEXT_SECTION): Undef for System V
+ environments.
+
+Mon Aug 4 12:34:41 1997 Philip Blundell <pb@nexus.co.uk>
+
+ * configure.in (arm-*-aout): Set tmake_file correctly.
+
+Mon Aug 4 08:06:48 1997 Bernd Schmidt <crux@pool.informatik.rwth-aachen.de>
+
+ * reload.c (find_reloads_address_1): Don't pass VOIDmode for an
+ integer argument of push_reload.
+
+ * rtlanal.c (may_trap_p): Fix unintended fall-through so divisions by
+ non-zero constants are handled properly. Return 1 for FP divisions.
+
+Mon Aug 4 06:52:20 1997 Andreas Schwab <schwab@issan.informatik.uni-dortmund.de>
+
+ * c-common.c (check_format_info): Store each flag character only
+ once in the flag_chars array.
+
+Sun Aug 3 21:57:31 1997 Jim Meyering <meyering@eng.ascend.com>
+
+ * objc/Make-lang.in (objc/*.o): Depend on $(GCC_PASSES).
+
+Sun Aug 3 21:54:51 1997 Nick Burrett <n.a.burrett@btinternet.com>
+
+ * cpplib.c (cpp_start_read): Recognise suffixes 'cp' and 'c++'.
+
+Sun Aug 3 19:18:27 1997 Ralf Baechle <ralf@uni-koblenz.de>
+
+ * Makefile.in (mostlyclean): Remove libgcc1-test.
+
+Sun Aug 3 19:10:27 1997 Klaus Espenlaub <kespenla@hydra.informatik.uni-ulm.de>
+
+ * Makefile.in (T): Move to place where it can be overridden.
+ (install_common): Fix permissions of specs and EXTRA_PARTS files.
+
+Sun Aug 3 19:07:04 1997 Jan-Jaap van der Heijden <J.J.vanderHeijden@student.utwente.nl>
+
+ * gcc.c (default_compilers): Add default entries for Pascal.
+
+Sun Aug 3 18:38:41 1997 Richard Henderson <rth@cygnus.com>
+
+ * alpha.c (alpha_return_addr): New function.
+ (output_epilog): Zero alpha_return_addr_rtx.
+ * alpha.h (RETURN_ADDR_RTX): Call alpha_return_addr.
+
+Sun Aug 3 17:27:44 1997 H.J. Lu (hjl@gnu.ai.mit.edu)
+
+ * Makefile.in (INSTALL): Build in $(srcdir).
+
+ * config/linux.h (DEFAULT_VTABLE_THUNKS): New macro.
+
+Sun Aug 3 17:18:31 1997 Richard Earnshaw (rearnshaw@cambridge.arm.com)
+
+ * expr.c (expand_builtin, case BUILT_IN_RETURN_ADDRESS): Emit warning
+ if return address cannot be determined.
+
+Sun Aug 3 17:04:00 1997 Bernd Schmidt <crux@pool.informatik.rwth-aachen.de>
+
+ * stupid.c (stupid_life_analysis): If function receives non-local
+ goto, don't let any registers live across calls.
+
+ * fold-const.c (merge_ranges): Make sure that if one range is subset
+ of another, it will always be the second range. Correct (+,-) case to
+ account for this.
+
+Sun Aug 3 16:48:30 1997 Paul Eggert <eggert@twinsun.com>
+
+ * c-lex.c (yylex): Remove duplicate check on high bit before
+ invoking int_fits_type_p.
+
+Sun Aug 3 16:44:41 1997 Bernd Schmidt <crux@pool.informatik.rwth-aachen.de>
+
+ * reload.c (find_equiv_reg): If goal is a pseudo that got memory, a
+ store into memory makes it invalid. This was handled in the single
+ set case, but missing in the PARALLEL case.
+
+Sun Aug 3 09:13:47 1997 Richard Kenner <kenner@vlsi1.ultra.nyu.edu>
+
+ * expr.c (store_field): Return quickly if EXP is ERROR_MARK.
+
+ * c-typeck.c (unary_complex_lvalue): Don't warn about COMPOUND_EXPR
+ or COND_EXPR if FUNCTION_TYPE.
+
+ * alpha.h (ASM_SPEC): Add -O0.
+
+ * expr.h (clear_storage): Now returns rtx.
+ (emit_block_move): Likewise; delete duplicate declaration.
+ * expr.c (clear_storage, emit_block_move): Return address of
+ dest if calling memset/memcpy.
+ (expand_builtin, BUILT_IN_MEM{CPY,SET}): Return value from
+ clear_storage or emit_block_move if present.
+
+ * c-decl.c (start_function): Reset immediate_size_expand on
+ error return.
+
Sat Aug 2 18:50:43 1997 Paul Eggert <eggert@twinsun.com>
* tree.c (int_fits_type_p): Negative ints never fit unsigned
diff --git a/gcc/INSTALL b/gcc/INSTALL
index 8c1f7119853..0c646b83aa5 100644
--- a/gcc/INSTALL
+++ b/gcc/INSTALL
@@ -66,8 +66,7 @@ and includes all the necessary compilation tools and libraries.
aliases. For example, `sun3' stands for `m68k-sun', so
`sun3-sunos4.1' is another way to specify a Sun 3. You can also
use simply `sun3-sunos', since the version of SunOS is assumed by
- default to be version 4. `sun3-bsd' also works, since `configure'
- knows that the only BSD variant on a Sun 3 is SunOS.
+ default to be version 4.
You can specify a version number after any of the system types,
and some of the CPU types. In most cases, the version is
@@ -104,11 +103,11 @@ and includes all the necessary compilation tools and libraries.
are
`hppa1.0-ANY-ANY', `hppa1.1-ANY-ANY', `i386-ANY-sysv',
`i386-ANY-isc',
- `i860-ANY-bsd', `m68k-bull-sysv', `m68k-hp-hpux',
- `m68k-sony-bsd',
- `m68k-altos-sysv', `m68000-hp-hpux', `m68000-att-sysv',
- `ANY-lynx-lynxos', and `mips-ANY'). On any other system,
- `--with-gnu-as' has no effect.
+ `i860-ANY-bsd', `m68k-bull-sysv',
+ `m68k-hp-hpux', `m68k-sony-bsd',
+ `m68k-altos-sysv', `m68000-hp-hpux',
+ `m68000-att-sysv', `ANY-lynx-lynxos', and `mips-ANY'). On
+ any other system, `--with-gnu-as' has no effect.
On the systems listed above (except for the HP-PA, for ISC on
the 386, and for `mips-sgi-irix5.*'), if you use GAS, you
@@ -162,6 +161,16 @@ and includes all the necessary compilation tools and libraries.
`--nfp' currently has no effect, though perhaps there are
other systems where it could usefully make a difference.
+ `--enable-objcthreads=TYPE'
+ Certain systems, notably Linux-based GNU systems, can't be
+ relied on to supply a threads facility for the Objective C
+ runtime and so will default to single-threaded runtime. They
+ may, however, have a library threads implementation
+ available, in which case threads can be enabled with this
+ option by supplying a suitable TYPE, probably `posix'. The
+ possibilities for TYPE are `single', `posix', `win32',
+ `solaris', `irix' and `mach'.
+
The `configure' script searches subdirectories of the source
directory for other compilers that are to be integrated into GNU
CC. The GNU compiler for C++, called G++ is in a subdirectory
@@ -217,6 +226,17 @@ and includes all the necessary compilation tools and libraries.
different convention (not `/usr/local') for where to put
site-specific files.
+ The default value for `--local-prefix' is `/usr/local' regardless
+ of the value of `--prefix'. Specifying `--prefix' has no effect
+ on which directory GNU CC searches for local header files. This
+ may seem counterintuitive, but actually it is logical.
+
+ The purpose of `--prefix' is to specify where to *install GNU CC*.
+ The local header files in `/usr/local/include'--if you put any in
+ that directory--are not part of GNU CC. They are part of other
+ programs--perhaps many others. (GNU CC installs its own header
+ files in another directory which is based on the `--prefix' value.)
+
*Do not* specify `/usr' as the `--local-prefix'! The directory
you use for `--local-prefix' *must not* contain any of the
system's standard header files. If it did contain them, certain
@@ -224,6 +244,11 @@ and includes all the necessary compilation tools and libraries.
targets), because this would override and nullify the header file
corrections made by the `fixincludes' script.
+ Indications are that people who use this option use it based on
+ mistaken ideas of what it is for. People use it as if it specified
+ where to install part of GNU CC. Perhaps they make this assumption
+ because installing GNU CC creates the directory.
+
6. Make sure the Bison parser generator is installed. (This is
unnecessary if the Bison output files `c-parse.c' and `cexp.c' are
more recent than `c-parse.y' and `cexp.y' and you do not plan to
@@ -400,11 +425,14 @@ and includes all the necessary compilation tools and libraries.
compiler driver program looks for them. Here TARGET is the target
machine type specified when you ran `configure', and VERSION is
the version number of GNU CC. This naming scheme permits various
- versions and/or cross-compilers to coexist.
+ versions and/or cross-compilers to coexist. It also copies the
+ executables for compilers for other languages (e.g., `cc1plus' for
+ C++) to the same directory.
This also copies the driver program `xgcc' into
`/usr/local/bin/gcc', so that it appears in typical execution
- search paths.
+ search paths. It also copies `gcc.1' into `/usr/local/man/man1'
+ and info pages into `/usr/local/info'.
On some systems, this command causes recompilation of some files.
This is usually due to bugs in `make'. You should either ignore
@@ -427,23 +455,65 @@ and includes all the necessary compilation tools and libraries.
a C++ run-time library. All I/O functionality, special class
libraries, etc., are available in the libg++ distribution.
+ 17. GNU CC includes a runtime library for Objective-C because it is an
+ integral part of the language. You can find the files associated
+ with the library in the subdirectory `objc'. The GNU Objective-C
+ Runtime Library requires header files for the target's C library in
+ order to be compiled,and also requires the header files for the
+ target's thread library if you want thread support. *Note
+ Cross-Compilers and Header Files: Cross Headers, for discussion
+ about header files issues for cross-compilation.
+
+ When you run `configure', it picks the appropriate Objective-C
+ thread implementation file for the target platform. In some
+ situations, you may wish to choose a different back-end as some
+ platforms support multiple thread implementations or you may wish
+ to disable thread support completely. You do this by specifying a
+ value for the OBJC_THREAD_FILE makefile variable on the command
+ line when you run make, for example:
+
+ make CC="stage2/xgcc -Bstage2/" CFLAGS="-g -O2" OBJC_THREAD_FILE=thr-single
+
+ Below is a list of the currently available back-ends.
+
+ * thr-single Disable thread support, should work for all
+ platforms.
+
+ * thr-decosf1 DEC OSF/1 thread support.
+
+ * thr-irix SGI IRIX thread support.
+
+ * thr-mach Generic MACH thread support, known to work on
+ NEXTSTEP.
+
+ * thr-os2 IBM OS/2 thread support.
+
+ * thr-posix Generix POSIX thread support.
+
+ * thr-pthreads PCThreads on Linux-based GNU systems.
+
+ * thr-solaris SUN Solaris thread support.
+
+ * thr-win32 Microsoft Win32 API thread support.
+
Configurations Supported by GNU CC
==================================
Here are the possible CPU types:
1750a, a29k, alpha, arm, cN, clipper, dsp16xx, elxsi, h8300,
- hppa1.0, hppa1.1, i370, i386, i486, i586, i860, i960, m68000, m68k,
- m88k, mips, mipsel, mips64, mips64el, ns32k, powerpc, powerpcle,
- pyramid, romp, rs6000, sh, sparc, sparclite, sparc64, vax, we32k.
+ hppa1.0, hppa1.1, i370, i386, i486, i586, i860, i960, m32r,
+ m68000, m68k, m88k, mips, mipsel, mips64, mips64el, ns32k,
+ powerpc, powerpcle, pyramid, romp, rs6000, sh, sparc, sparclite,
+ sparc64, vax, we32k.
Here are the recognized company names. As you can see, customary
abbreviations are used rather than the longer official names.
- acorn, alliant, altos, apollo, att, bull, cbm, convergent, convex,
- crds, dec, dg, dolphin, elxsi, encore, harris, hitachi, hp, ibm,
- intergraph, isi, mips, motorola, ncr, next, ns, omron, plexus,
- sequent, sgi, sony, sun, tti, unicom, wrs.
+ acorn, alliant, altos, apollo, apple, att, bull, cbm, convergent,
+ convex, crds, dec, dg, dolphin, elxsi, encore, harris, hitachi,
+ hp, ibm, intergraph, isi, mips, motorola, ncr, next, ns, omron,
+ plexus, sequent, sgi, sony, sun, tti, unicom, wrs.
The company name is meaningful only to disambiguate when the rest of
the information supplied is insufficient. You can omit it, writing
@@ -452,9 +522,9 @@ is equivalent to `vax-dec-ultrix4.2'.
Here is a list of system types:
- 386bsd, aix, acis, amigaos, aos, aout, bosx, bsd, clix, coff,
+ 386bsd, aix, acis, amigaos, aos, aout, aux, bosx, bsd, clix, coff,
ctix, cxux, dgux, dynix, ebmon, ecoff, elf, esix, freebsd, hms,
- genix, gnu, gnu/linux, hiux, hpux, iris, irix, isc, luna, lynxos,
+ genix, gnu, linux-gnu, hiux, hpux, iris, irix, isc, luna, lynxos,
mach, minix, msdos, mvs, netbsd, newsos, nindy, ns, osf, osfrose,
ptx, riscix, riscos, rtu, sco, sim, solaris, sunos, sym, sysv,
udi, ultrix, unicos, uniplus, unos, vms, vsta, vxworks, winnt,
@@ -505,12 +575,11 @@ special things you must know:
`1750a-*-*'
MIL-STD-1750A processors.
- Starting with GCC 2.6.1, the MIL-STD-1750A cross configuration no
- longer supports the Tektronix Assembler, but instead produces
- output for `as1750', an assembler/linker available under the GNU
- Public License for the 1750A. Contact *kellogg@space.otn.dasa.de*
- for more details on obtaining `as1750'. A similarly licensed
- simulator for the 1750A is available from same address.
+ The MIL-STD-1750A cross configuration produces output for
+ `as1750', an assembler/linker available under the GNU Public
+ License for the 1750A. `as1750' can be obtained at
+ *ftp://ftp.fta-berlin.de/pub/crossgcc/1750gals/*. A similarly
+ licensed simulator for the 1750A is available from same address.
You should ignore a fatal error during the building of libgcc
(libgcc is not yet implemented for the 1750A.)
@@ -589,15 +658,27 @@ special things you must know:
DBX. DEC is now aware of this problem with the assembler and
hopes to provide a fix shortly.
-`arm'
+`arc-*-elf'
+ Argonaut ARC processor. This configuration is intended for
+ embedded systems.
+
+`arm-*-aout'
Advanced RISC Machines ARM-family processors. These are often
used in embedded applications. There are no standard Unix
configurations. This configuration corresponds to the basic
- instruction sequences and will produce a.out format object modules.
+ instruction sequences and will produce `a.out' format object
+ modules.
You may need to make a variant of the file `arm.h' for your
particular configuration.
+`arm-*-linuxaout'
+ Any of the ARM family processors running the Linux-based GNU
+ system with the `a.out' binary format (ELF is not yet supported).
+ You must use version 2.8.1.0.7 or later of the Linux binutils,
+ which you can download from `sunsite.unc.edu:/pub/Linux/GCC' and
+ other mirror sites for Linux-based GNU systems.
+
`arm-*-riscix'
The ARM2 or ARM3 processor running RISC iX, Acorn's port of BSD
Unix. If you are running a version of RISC iX prior to 1.2 then
@@ -651,82 +732,55 @@ special things you must know:
A port to the AT&T DSP1610 family of processors.
`h8300-*-*'
+ Hitachi H8/300 series of processors.
+
The calling convention and structure layout has changed in release
2.6. All code must be recompiled. The calling convention now
passes the first three arguments in function calls in registers.
Structures are no longer a multiple of 2 bytes.
`hppa*-*-*'
- There are two variants of this CPU, called 1.0 and 1.1, which have
- different machine descriptions. You must use the right one for
- your machine. All 7NN machines and 8N7 machines use 1.1, while
- all other 8NN machines use 1.0.
-
- The easiest way to handle this problem is to use `configure hpNNN'
- or `configure hpNNN-hpux', where NNN is the model number of the
- machine. Then `configure' will figure out if the machine is a 1.0
- or 1.1. Use `uname -a' to find out the model number of your
- machine.
+ There are several variants of the HP-PA processor which run a
+ variety of operating systems. GNU CC must be configured to use
+ the correct processor type and operating system, or GNU CC will
+ not function correctly. The easiest way to handle this problem is
+ to *not* specify a target when configuring GNU CC, the `configure'
+ script will try to automatically determine the right processor
+ type and operating system.
`-g' does not work on HP-UX, since that system uses a peculiar
debugging format which GNU CC does not know about. However, `-g'
will work if you also use GAS and GDB in conjunction with GCC. We
highly recommend using GAS for all HP-PA configurations.
- You should be using GAS-2.3 (or later) along with GDB-4.12 (or
+ You should be using GAS-2.6 (or later) along with GDB-4.16 (or
later). These can be retrieved from all the traditional GNU ftp
archive sites.
- Build GAS and install the resulting binary as:
-
- /usr/local/lib/gcc-lib/CONFIGURATION/GCCVERSION/as
-
- where CONFIGURATION is the configuration name (perhaps
- `hpNNN-hpux') and GCCVERSION is the GNU CC version number. Do
- this *before* starting the build process, otherwise you will get
- errors from the HPUX assembler while building `libgcc2.a'. The
- command
-
- make install-dir
+ GAS will need to be installed into a directory before `/bin',
+ `/usr/bin', and `/usr/ccs/bin' in your search path. You should
+ install GAS before you build GNU CC.
- will create the necessary directory hierarchy so you can install
- GAS before building GCC.
-
- To enable debugging, configure GNU CC with the `--with-gnu-as'
- option before building.
-
- It has been reported that GNU CC produces invalid assembly code for
- 1.1 machines running HP-UX 8.02 when using the HP assembler.
- Typically the errors look like this:
- as: bug.s @line#15 [err#1060]
- Argument 0 or 2 in FARG upper
- - lookahead = ARGW1=FR,RTNVAL=GR
- as: foo.s @line#28 [err#1060]
- Argument 0 or 2 in FARG upper
- - lookahead = ARGW1=FR
-
- You can check the version of HP-UX you are running by executing
- the command `uname -r'. If you are indeed running HP-UX 8.02 on
- a PA and using the HP assembler then configure GCC with
- "hpNNN-hpux8.02".
+ To enable debugging, you must configure GNU CC with the
+ `--with-gnu-as' option before building.
`i370-*-*'
This port is very preliminary and has many known bugs. We hope to
have a higher-quality port for this machine soon.
-`i386-*-linuxoldld'
- Use this configuration to generate a.out binaries on Linux if you
- do not have gas/binutils version 2.5.2 or later installed. This is
- an obsolete configuration.
+`i386-*-linux-gnuoldld'
+ Use this configuration to generate `a.out' binaries on Linux-based
+ GNU systems if you do not have gas/binutils version 2.5.2 or later
+ installed. This is an obsolete configuration.
-`i386-*-linuxaout'
- Use this configuration to generate a.out binaries on Linux. This
- configuration is being superseded. You must use gas/binutils
- version 2.5.2 or later.
+`i386-*-linux-gnuaout'
+ Use this configuration to generate `a.out' binaries on Linux-based
+ GNU systems. This configuration is being superseded. You must use
+ gas/binutils version 2.5.2 or later.
-`i386-*-linux'
- Use this configuration to generate ELF binaries on Linux. You must
- use gas/binutils version 2.5.2 or later.
+`i386-*-linux-gnu'
+ Use this configuration to generate ELF binaries on Linux-based GNU
+ systems. You must use gas/binutils version 2.5.2 or later.
`i386-*-sco'
Compilation with RCC is recommended. Also, it may be a good idea
@@ -736,6 +790,27 @@ special things you must know:
`i386-*-sco3.2v4'
Use this configuration for SCO release 3.2 version 4.
+`i386-*-sco3.2v5*'
+ Use this for the SCO OpenServer Release family including 5.0.0,
+ 5.0.2, 5.0.4, Internet FastStart 1.0, and Internet FastStart 1.1.
+
+ GNU CC can generate ELF binaries (if you specify `-melf') or COFF
+ binaries (the default). If you are going to build your compiler
+ in ELF mode (once you have bootstrapped the first stage compiler)
+ you *must* specify `-melf' as part of `CC', *not* `CFLAGS', for
+ example as `CC="stage1/xgcc -melf -Bstage1/" '. If you do not do
+ this, the bootstrap will generate incorrect versions of `libgcc.a'.
+
+ You must have TLS597 (from ftp.sco.com/TLS) installed for ELF
+ binaries to work correctly. Note that Open Server 5.0.2 *does*
+ need TLS597 installed.
+
+ *NOTE:* You must follow the instructions about invoking `make
+ bootstrap' because the native OpenServer compiler builds a
+ `cc1plus' that will not correctly parse many valid C++ programs.
+ You must do a `make bootstrap' if you are building with the native
+ compiler.
+
`i386-*-isc'
It may be a good idea to link with GNU malloc instead of the
malloc that comes with the system.
@@ -748,8 +823,8 @@ special things you must know:
that comes with the system.
`i386-ibm-aix'
- You need to use GAS version 2.1 or later, and and LD from GNU
- binutils version 2.2 or later.
+ You need to use GAS version 2.1 or later, and LD from GNU binutils
+ version 2.2 or later.
`i386-sequent-bsd'
Go to the Berkeley universe before compiling. In addition, you
@@ -773,7 +848,7 @@ special things you must know:
Sun systems.
`i[345]86-*-winnt3.5'
- This version requires a GAS that has not let been released. Until
+ This version requires a GAS that has not yet been released. Until
it is, you can get a prebuilt binary version via anonymous ftp from
`cs.washington.edu:pub/gnat' or `cs.nyu.edu:pub/gnat'. You must
also use the Microsoft header files from the Windows NT 3.5 SDK.
@@ -829,9 +904,13 @@ special things you must know:
You can tell GNU CC to use the GNU assembler and linker, by
specifying `--with-gnu-as --with-gnu-ld' when configuring. These
will produce COFF format object files and executables; otherwise
- GNU CC will use the installed tools, which produce a.out format
+ GNU CC will use the installed tools, which produce `a.out' format
executables.
+`m32r-*-elf'
+ Mitsubishi M32R processor. This configuration is intended for
+ embedded systems.
+
`m68000-hp-bsd'
HP 9000 series 200 running BSD. Note that the C compiler that
comes with this system cannot compile GNU CC; contact
@@ -842,6 +921,20 @@ special things you must know:
Also, you must fix a kernel bug. Details in the file
`README.ALTOS'.
+`m68k-apple-aux'
+ Apple Macintosh running A/UX. You may configure GCC to use
+ either the system assembler and linker or the GNU assembler and
+ linker. You should use the GNU configuration if you can,
+ especially if you also want to use GNU C++. You enabled that
+ configuration with + the `--with-gnu-as' and `--with-gnu-ld'
+ options to `configure'.
+
+ Note the C compiler that comes with this system cannot compile GNU
+ CC. You can fine binaries of GNU CC for bootstrapping on
+ `jagubox.gsfc.nasa.gov'. You will also a patched version of
+ `/bin/ld' there that raises some of the arbitrary limits found in
+ the original.
+
`m68k-att-sysv'
AT&T 3b1, a.k.a. 7300 PC. Special procedures are needed to
compile GNU CC with this machine's standard C compiler, due to
@@ -853,7 +946,7 @@ special things you must know:
However, the following procedure might work. We are unable to
test it.
- 1. Comment out the `#include "config.h"' line on line 37 of
+ 1. Comment out the `#include "config.h"' line near the start of
`cccp.c' and do `make cpp'. This makes a preliminary version
of GNU cpp.
@@ -1148,48 +1241,79 @@ special things you must know:
prevent the linker from producing a correct library or runnable
executable.
+ By default, AIX 4.1 produces code that can be used on either Power
+ or PowerPC processors.
+
+ You can specify a default version for the `-mcpu='CPU_TYPE switch
+ by using the configure option `--with-cpu-'CPU_TYPE.
+
`powerpc-*-elf'
`powerpc-*-sysv4'
PowerPC system in big endian mode, running System V.4.
- This configuration is currently under development.
+ You can specify a default version for the `-mcpu='CPU_TYPE switch
+ by using the configure option `--with-cpu-'CPU_TYPE.
+
+`powerpc-*-linux-gnu'
+ PowerPC system in big endian mode, running the Linux-based GNU
+ system.
+
+ You can specify a default version for the `-mcpu='CPU_TYPE switch
+ by using the configure option `--with-cpu-'CPU_TYPE.
`powerpc-*-eabiaix'
Embedded PowerPC system in big endian mode with -mcall-aix
- selected as the default. This system is currently under
- development.
+ selected as the default.
+
+ You can specify a default version for the `-mcpu='CPU_TYPE switch
+ by using the configure option `--with-cpu-'CPU_TYPE.
`powerpc-*-eabisim'
Embedded PowerPC system in big endian mode for use in running
- under the PSIM simulator. This system is currently under
- development.
+ under the PSIM simulator.
+
+ You can specify a default version for the `-mcpu='CPU_TYPE switch
+ by using the configure option `--with-cpu-'CPU_TYPE.
`powerpc-*-eabi'
Embedded PowerPC system in big endian mode.
- This configuration is currently under development.
+ You can specify a default version for the `-mcpu='CPU_TYPE switch
+ by using the configure option `--with-cpu-'CPU_TYPE.
`powerpcle-*-elf'
`powerpcle-*-sysv4'
PowerPC system in little endian mode, running System V.4.
- This configuration is currently under development.
+ You can specify a default version for the `-mcpu='CPU_TYPE switch
+ by using the configure option `--with-cpu-'CPU_TYPE.
-`powerpcle-*-sysv4'
- Embedded PowerPC system in little endian mode.
+`powerpcle-*-solaris2*'
+ PowerPC system in little endian mode, running Solaris 2.5.1 or
+ higher.
- This system is currently under development.
+ You can specify a default version for the `-mcpu='CPU_TYPE switch
+ by using the configure option `--with-cpu-'CPU_TYPE. Beta
+ versions of the Sun 4.0 compiler do not seem to be able to build
+ GNU CC correctly. There are also problems with the host assembler
+ and linker that are fixed by using the GNU versions of these tools.
`powerpcle-*-eabisim'
Embedded PowerPC system in little endian mode for use in running
under the PSIM simulator.
- This system is currently under development.
-
`powerpcle-*-eabi'
Embedded PowerPC system in little endian mode.
- This configuration is currently under development.
+ You can specify a default version for the `-mcpu='CPU_TYPE switch
+ by using the configure option `--with-cpu-'CPU_TYPE.
+
+`powerpcle-*-winnt'
+`powerpcle-*-pe'
+ PowerPC system in little endian mode running Windows NT.
+
+ You can specify a default version for the `-mcpu='CPU_TYPE switch
+ by using the configure option `--with-cpu-'CPU_TYPE.
`vax-dec-ultrix'
Don't try compiling with Vax C (`vcc'). It produces incorrect code
@@ -1380,10 +1504,10 @@ supports.
If you want to install libraries to use with the cross-compiler,
such as a standard C library, put them in the directory
-`/usr/local/TARGET/lib'; installation of GNU CC copies all all the
-files in that subdirectory into the proper place for GNU CC to find
-them and link with them. Here's an example of copying some libraries
-from a target machine:
+`/usr/local/TARGET/lib'; installation of GNU CC copies all the files in
+that subdirectory into the proper place for GNU CC to find them and
+link with them. Here's an example of copying some libraries from a
+target machine:
ftp TARGET-MACHINE
lcd /usr/local/TARGET/lib
@@ -1524,7 +1648,7 @@ from the host machine, the cross-compiler can use them also.
Otherwise, you're on your own in finding header files to use when
cross-compiling.
- When you have found suitable header files, put them in
+ When you have found suitable header files, put them in the directory
`/usr/local/TARGET/include', before building the cross compiler. Then
installation will run fixincludes properly and install the corrected
versions of the header files where the compiler will use them.
@@ -1604,6 +1728,12 @@ it by using the following command to compile GNU CC with Sun CC:
make CC="TERMCAP=x OBJS=x LIBFUNCS=x STAGESTUFF=x cc"
+ SunOS 4.1.3 and 4.1.3_U1 have bugs that can cause intermittent core
+dumps when compiling GNU CC. A common symptom is an internal compiler
+error which does not recur if you run it again. To fix the problem,
+install Sun recommended patch 100726 (for SunOS 4.1.3) or 101508 (for
+SunOS 4.1.3_U1), or upgrade to a later SunOS release.
+
Installing GNU CC on VMS
========================
diff --git a/gcc/Makefile.in b/gcc/Makefile.in
index 1188c2d4676..34c0d20b677 100644
--- a/gcc/Makefile.in
+++ b/gcc/Makefile.in
@@ -73,6 +73,7 @@ LEX = flex
LEXFLAGS =
AR = ar
AR_FLAGS = rc
+LN = @symbolic_link@
DLLTOOL = dlltool
SHELL = /bin/sh
# on sysV, define this as cp.
@@ -174,6 +175,14 @@ SYSTEM_HEADER_DIR = /usr/include
# Control whether to run fixproto.
STMP_FIXPROTO = stmp-fixproto
+# Test to see whether <float.h> exists in the system header files,
+# and is not derived from GCC.
+FLOAT_H_TEST = \
+ [ -f $(SYSTEM_HEADER_DIR)/float.h ] && \
+ if grep 'ifndef _FLOAT_H___' $(SYSTEM_HEADER_DIR)/float.h >/dev/null; \
+ then false; \
+ else :; fi
+
# Test to see whether <limits.h> exists in the system header files.
LIMITS_H_TEST = [ -f $(SYSTEM_HEADER_DIR)/limits.h ]
@@ -427,6 +436,9 @@ CRTSTUFF_T_CFLAGS =
# Extra flags to use when compiling [m]crt0.o.
CRT0STUFF_T_CFLAGS =
+# "t" or nothing, for building multilibbed versions of, say, crtbegin.o.
+T =
+
# End of variables for you to override.
# Definition of `all' is here so that new rules inserted by sed
@@ -647,9 +659,6 @@ RTL_H = rtl.h rtl.def machmode.h machmode.def
TREE_H = tree.h real.h tree.def machmode.h machmode.def
BYTECODE_H = bytecode.h bc-emit.h bc-optab.h
BASIC_BLOCK_H = basic-block.h bitmap.h
-
-# "t" or nothing, for building multilibbed versions of, say, crtbegin.o.
-T =
#
# Language makefile fragments.
@@ -702,9 +711,9 @@ $(srcdir)/config.in: $(srcdir)/cstamp-h.in
$(srcdir)/cstamp-h.in: $(srcdir)/configure.in $(srcdir)/acconfig.h
cd $(srcdir) && autoheader
echo timestamp > $(srcdir)/cstamp-h.in
-config.h: cstamp-h ; @true
+auto-config.h: cstamp-h ; @true
cstamp-h: config.in config.status
- CONFIG_HEADERS=config.h:config.in $(SHELL) config.status
+ CONFIG_HEADERS=auto-config.h:config.in $(SHELL) config.status
# Really, really stupid make features, such as SUN's KEEP_STATE, may force
# a target to build even if it is up-to-date. So we must verify that
@@ -731,7 +740,7 @@ start.encap: native xgcc specs $(LIBGCC1) xlimits.h lang.start.encap
rest.encap: stmp-headers $(LIBGCC) $(STMP_FIXPROTO) $(EXTRA_PARTS) lang.rest.encap
# This is what is made with the host's compiler
# whether making a cross compiler or not.
-native: config.status config.h cpp $(LANGUAGES) \
+native: config.status auto-config.h cpp $(LANGUAGES) \
$(EXTRA_PASSES) $(EXTRA_PROGRAMS) $(USE_COLLECT2)
# Define the names for selecting languages in LANGUAGES.
@@ -766,8 +775,9 @@ stamp-objlist: $(OBJS) $(BC_OBJS)
# We call this executable `xgcc' rather than `gcc'
# to avoid confusion if the current directory is in the path
# and CC is `gcc'. It is renamed to `gcc' when it is installed.
-xgcc: gcc.o version.o choose-temp.o pexecute.o $(LIBDEPS) $(EXTRA_GCC_OBJS)
- $(CC) $(ALL_CFLAGS) $(LDFLAGS) -o $@ gcc.o version.o \
+xgcc: gcc.o version.o choose-temp.o pexecute.o prefix.o version.o \
+ $(LIBDEPS) $(EXTRA_GCC_OBJS)
+ $(CC) $(ALL_CFLAGS) $(LDFLAGS) -o $@ gcc.o prefix.o version.o \
choose-temp.o pexecute.o $(EXTRA_GCC_OBJS) $(LIBS)
# Dump a specs file to make -B./ read these specs over installed ones.
@@ -790,8 +800,10 @@ gfloat.h: $(FLOAT_H)
cp $(FLOAT_H) gfloat.h
# Create float.h source for the native machine.
+# Make it empty if we can use the system float.h without changes.
float.h-nat: enquire
-./enquire -f > tmp-float.h
+ grep '#define [^_]' tmp-float.h >/dev/null || echo > tmp-float.h
mv tmp-float.h float.h-nat
# Create a dummy float.h source for a cross-compiler.
@@ -808,8 +820,15 @@ float.h-cross:
enquire: enquire.o $(GCC_PARTS)
$(GCC_FOR_TARGET) $(GCC_CFLAGS) $(ENQUIRE_LDFLAGS) enquire.o -o $@
enquire.o: $(srcdir)/enquire.c $(GCC_PASSES) stmp-int-hdrs
-# Breaking this line caused a problem with one version of GNU make.
- $(GCC_FOR_TARGET) $(GCC_CFLAGS) $(ALL_CPPFLAGS) $(ENQUIRE_CFLAGS) -I. -c $(srcdir)/enquire.c
+ rm -f include/float.h
+ if $(FLOAT_H_TEST); then \
+ SYS_FLOAT_H_WRAP=1; \
+ else :; \
+ SYS_FLOAT_H_WRAP=0; \
+ fi; \
+ $(GCC_FOR_TARGET) $(GCC_CFLAGS) $(ALL_CPPFLAGS) $(ENQUIRE_CFLAGS) \
+ -DSYS_FLOAT_H_WRAP=$$SYS_FLOAT_H_WRAP \
+ -I. -c $(srcdir)/enquire.c
# Build the version of limits.h that we will install.
xlimits.h: glimits.h limitx.h limity.h
@@ -1248,6 +1267,10 @@ version.o: version.c
obstack.o: obstack.c
choose-temp.o: choose-temp.c
pexecute.o: pexecute.c
+prefix.o: prefix.c $(CONFIG_H) Makefile
+ $(CC) $(ALL_CFLAGS) $(ALL_CPPFLAGS) $(INCLUDES) \
+ -DPREFIX=\"$(prefix)\" \
+ -c `echo $(srcdir)/prefix.c | sed 's,^\./,,'`
convert.o: convert.c $(CONFIG_H) $(TREE_H) flags.h convert.h
@@ -1285,7 +1308,7 @@ expr.o : expr.c $(CONFIG_H) $(RTL_H) $(TREE_H) flags.h function.h regs.h \
typeclass.h bytecode.h bc-opcode.h bc-typecd.h bc-typecd.def bc-optab.h \
bc-emit.h modemap.def hard-reg-set.h
calls.o : calls.c $(CONFIG_H) $(RTL_H) $(TREE_H) flags.h expr.h insn-codes.h \
- insn-flags.h
+ insn-flags.h regs.h
expmed.o : expmed.c $(CONFIG_H) $(RTL_H) $(TREE_H) flags.h \
insn-flags.h insn-config.h insn-codes.h expr.h recog.h real.h
explow.o : explow.c $(CONFIG_H) $(RTL_H) $(TREE_H) flags.h hard-reg-set.h \
@@ -1302,28 +1325,29 @@ dwarfout.o : dwarfout.c $(CONFIG_H) $(TREE_H) $(RTL_H) dwarf.h flags.h \
dwarf2out.o : dwarf2out.c $(CONFIG_H) $(TREE_H) $(RTL_H) dwarf2.h flags.h \
insn-config.h reload.h output.h defaults.h hard-reg-set.h regs.h expr.h
xcoffout.o : xcoffout.c $(CONFIG_H) $(TREE_H) $(RTL_H) xcoffout.h flags.h
-emit-rtl.o : emit-rtl.c $(CONFIG_H) $(RTL_H) $(TREE_H) flags.h \
- function.h regs.h insn-config.h insn-codes.h real.h expr.h bytecode.h \
- bc-opcode.h bc-typecd.h bc-typecd.def bc-optab.h bc-emit.h bc-opname.h
+emit-rtl.o : emit-rtl.c $(CONFIG_H) $(RTL_H) $(TREE_H) flags.h except.h \
+ function.h regs.h insn-config.h recog.h real.h expr.h obstack.h \
+ bytecode.h bc-opcode.h bc-typecd.h bc-typecd.def bc-optab.h bc-emit.h \
+ bc-opname.h
real.o : real.c $(CONFIG_H) $(TREE_H)
getpwd.o : getpwd.c $(CONFIG_H)
integrate.o : integrate.c $(CONFIG_H) $(RTL_H) $(TREE_H) flags.h integrate.h \
insn-flags.h insn-config.h insn-codes.h expr.h real.h regs.h function.h \
- bytecode.h
+ bytecode.h output.h recog.h except.h
jump.o : jump.c $(CONFIG_H) $(RTL_H) flags.h hard-reg-set.h regs.h \
- insn-config.h insn-flags.h insn-codes.h expr.h real.h
+ insn-config.h insn-flags.h recog.h expr.h real.h except.h
stupid.o : stupid.c $(CONFIG_H) $(RTL_H) regs.h hard-reg-set.h flags.h
cse.o : cse.c $(CONFIG_H) $(RTL_H) regs.h hard-reg-set.h flags.h real.h \
insn-config.h recog.h
profile.o : profile.c $(CONFIG_H) $(RTL_H) flags.h insn-flags.h gcov-io.h \
- tree.h output.h
+ tree.h output.h regs.h
loop.o : loop.c $(CONFIG_H) $(RTL_H) flags.h loop.h insn-config.h \
insn-flags.h insn-codes.h regs.h hard-reg-set.h recog.h expr.h real.h
-unroll.o : unroll.c $(CONFIG_H) $(RTL_H) insn-config.h insn-codes.h \
- integrate.h regs.h flags.h expr.h loop.h
+unroll.o : unroll.c $(CONFIG_H) $(RTL_H) insn-config.h integrate.h regs.h \
+ recog.h flags.h expr.h loop.h
flow.o : flow.c $(CONFIG_H) $(RTL_H) flags.h insn-config.h \
$(BASIC_BLOCK_H) regs.h hard-reg-set.h output.h
combine.o : combine.c $(CONFIG_H) $(RTL_H) flags.h \
@@ -1722,8 +1746,8 @@ bytecode.maintainer-clean: bytecode.clean
cpp: $(CCCP)
-rm -f cpp$(exeext)
$(LN) $(CCCP)$(exeext) cpp$(exeext)
-cccp: cccp.o cexp.o version.o $(LIBDEPS)
- $(CC) $(ALL_CFLAGS) $(LDFLAGS) -o $@ cccp.o cexp.o \
+cccp: cccp.o cexp.o version.o prefix.o $(LIBDEPS)
+ $(CC) $(ALL_CFLAGS) $(LDFLAGS) -o $@ cccp.o cexp.o prefix.o \
version.o $(LIBS)
cexp.o: $(srcdir)/cexp.c $(CONFIG_H)
$(CC) $(ALL_CFLAGS) $(ALL_CPPFLAGS) $(INCLUDES) -c $(srcdir)/cexp.c
@@ -1743,9 +1767,9 @@ cccp.o: cccp.c $(CONFIG_H) pcp.h version.c config.status
-c `echo $(srcdir)/cccp.c | sed 's,^\./,,'`
cppmain: cppmain.o cpplib.o cpphash.o cppalloc.o cpperror.o cppexp.o \
- version.o $(LIBDEPS)
+ prefix.o version.o $(LIBDEPS)
$(CC) $(ALL_CFLAGS) $(LDFLAGS) -o $@ cppmain.o cpplib.o cpphash.o \
- cppalloc.o cpperror.o cppexp.o version.o $(LIBS)
+ cppalloc.o cpperror.o cppexp.o prefix.o version.o $(LIBS)
cppmain.o: cppmain.c $(CONFIG_H) cpplib.h
@@ -1879,11 +1903,13 @@ stmp-int-hdrs: stmp-fixinc $(USER_H) xlimits.h
chmod a+r include/README
touch stmp-int-hdrs
-# Build the complete include directory.
+# Build the complete include directory, including float.h.
stmp-headers: stmp-int-hdrs gfloat.h
rm -f include/float.h
- cp gfloat.h include/float.h
- chmod a+r include/float.h
+ if [ -s gfloat.h ]; then \
+ cp gfloat.h include/float.h && \
+ chmod a+r include/float.h; \
+ else :; fi
touch stmp-headers
# Build fixed copies of system files.
@@ -1937,10 +1963,10 @@ xsys-protos.h: $(GCC_PASSES) $(srcdir)/sys-protos.h deduced.h gen-protos Makefil
rm -rf fixtmp.c
fix-header: fix-header.o scan-decls.o scan.o xsys-protos.h $(HOST_LIBDEPS) \
- cpplib.o cpphash.o cppalloc.o cppexp.o cpperror.o version.o
+ cpplib.o cpphash.o cppalloc.o cppexp.o cpperror.o prefix.o version.o
$(HOST_CC) $(HOST_CFLAGS) $(HOST_LDFLAGS) -o $@ fix-header.o \
- scan-decls.o scan.o cpplib.o cpphash.o cppalloc.o version.o \
- cppexp.o $(HOST_LIBS)
+ scan-decls.o scan.o cpplib.o cpphash.o cppalloc.o prefix.o \
+ version.o cppexp.o $(HOST_LIBS)
fix-header.o: fix-header.c obstack.h scan.h xsys-protos.h $(build_xm_file)
$(HOST_CC) -c $(HOST_CFLAGS) $(HOST_CPPFLAGS) $(INCLUDES) $(srcdir)/fix-header.c
@@ -2041,7 +2067,7 @@ mostlyclean: bytecode.mostlyclean lang.mostlyclean
-rm -f */stamp-* */tmp-*
# Delete debugging dump files.
-rm -f *.greg *.lreg *.combine *.flow *.cse *.jump *.rtl *.tree *.loop
- -rm -f *.dbr *.jump2 *.sched *.cse2 *.sched2 *.stack *.regmove
+ -rm -f *.dbr *.jump2 *.sched *.cse2 *.sched2 *.stack *.addressof *.regmove
-rm -f */*.greg */*.lreg */*.combine */*.flow */*.cse */*.jump */*.rtl
-rm -f */*.tree */*.loop */*.dbr */*.jump2 */*.sched */*.cse2
-rm -f */*.sched2 */*.stack */*.regmove
@@ -2088,7 +2114,7 @@ clean: mostlyclean bytecode.clean lang.clean
# Delete all files that users would normally create
# while building and installing GCC.
distclean: clean bytecode.distclean lang.distclean
- -rm -f tm.h config.h config2.h tconfig.h hconfig.h md cstamp-h
+ -rm -f tm.h config.h auto-config.h tconfig.h hconfig.h md cstamp-h
-rm -f config.status config.run config.cache config.bak
-rm -f Make-lang Make-hooks Make-host Make-target
-rm -f Makefile specs.h options.h *.oaux
@@ -2206,12 +2232,14 @@ install-common: native installdirs $(EXTRA_PARTS) lang.install-common
if [ x"$$file" != x.. ]; then \
rm -f $(libsubdir)/$$file; \
$(INSTALL_DATA) $$file $(libsubdir)/$$file; \
+ chmod a-x $(libsubdir)/$$file; \
else true; fi; \
done
# Don't mess with specs if it doesn't exist yet.
-if [ -f specs ] ; then \
rm -f $(libsubdir)/specs; \
$(INSTALL_DATA) specs $(libsubdir)/specs; \
+ chmod a-x $(libsubdir)/specs; \
fi
# Install protoize if it was compiled.
-if [ -f protoize$(exeext) ]; \
@@ -2265,7 +2293,7 @@ install-info: doc installdirs lang.install-info
# Install the man pages.
install-man: installdirs $(srcdir)/gcc.1 $(srcdir)/cccp.1 lang.install-man
- -if [ -f gcc-cross ] ; then \
+ -if [ -f gcc-cross$(exeext) ] ; then \
rm -f $(mandir)/$(GCC_CROSS_NAME)$(manext); \
$(INSTALL_DATA) $(srcdir)/gcc.1 $(mandir)/$(GCC_CROSS_NAME)$(manext); \
chmod a-x $(mandir)/$(GCC_CROSS_NAME)$(manext); \
@@ -2483,7 +2511,7 @@ check-g77: testsuite/site.exp
TAGS: force
cd $(srcdir); \
mkdir temp; \
- mv -f c-parse.[ch] objc-parse.c cexp.c =*.[chy] temp; \
+ mv -f c-parse.[ch] cexp.c =*.[chy] temp; \
etags *.y *.h *.c; \
mv temp/* .; \
rmdir temp
@@ -2507,8 +2535,7 @@ gcc.xtar: distdir
# This target exists to do the initial work before the language specific
# stuff gets done.
distdir-start: doc $(srcdir)/INSTALL $(srcdir)/c-parse.y $(srcdir)/c-gperf.h \
- $(srcdir)/objc-parse.y $(srcdir)/c-parse.c $(srcdir)/objc-parse.c \
- $(srcdir)/cexp.c
+ $(srcdir)/c-parse.c $(srcdir)/cexp.c
@if grep -s "for version ${mainversion}" gcc.texi > /dev/null; \
then true; \
else echo "You must update the version number in \`gcc.texi'"; sleep 10;\
@@ -2525,7 +2552,6 @@ distdir-start: doc $(srcdir)/INSTALL $(srcdir)/c-parse.y $(srcdir)/c-gperf.h \
mkdir tmp
mkdir tmp/config
mkdir tmp/ginclude
- mkdir tmp/objc
for file in *[0-9a-zA-Z+]; do \
$(LN) $$file tmp; \
done
diff --git a/gcc/acconfig.h b/gcc/acconfig.h
index fcc71620a0a..5240ab8f44d 100644
--- a/gcc/acconfig.h
+++ b/gcc/acconfig.h
@@ -1,8 +1,3 @@
-
-/* Include the old config.h as config2.h to simplify the transition
- to autoconf. */
-#include "config2.h"
-
/* Whether malloc must be declared even if <stdlib.h> is included. */
#undef NEED_DECLARATION_MALLOC
diff --git a/gcc/bc-optab.c b/gcc/bc-optab.c
index 939c9bd137f..18756d56980 100644
--- a/gcc/bc-optab.c
+++ b/gcc/bc-optab.c
@@ -1,5 +1,5 @@
/* Bytecode conversion definitions for GNU C-compiler.
- Copyright (C) 1993, 1994 Free Software Foundation, Inc.
+ Copyright (C) 1993, 1994, 1997 Free Software Foundation, Inc.
This file is part of GNU CC.
@@ -20,6 +20,7 @@ Boston, MA 02111-1307, USA. */
#include "config.h"
+#include <stdio.h>
#include "tree.h"
#include "rtl.h"
#include "machmode.h"
diff --git a/gcc/bitmap.c b/gcc/bitmap.c
index 58566854a21..f982f46392a 100644
--- a/gcc/bitmap.c
+++ b/gcc/bitmap.c
@@ -18,8 +18,8 @@ along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
-#include <stdio.h>
#include "config.h"
+#include <stdio.h>
#include "rtl.h"
#include "flags.h"
#include "obstack.h"
diff --git a/gcc/bitmap.h b/gcc/bitmap.h
index 343b24911c0..bdedef351a7 100644
--- a/gcc/bitmap.h
+++ b/gcc/bitmap.h
@@ -86,10 +86,10 @@ extern int bitmap_bit_p PROTO((bitmap, int));
/* Debug functions to print a bitmap linked list. */
extern void bitmap_debug PROTO((bitmap));
-extern void bitmap_debug_file STDIO_PROTO((FILE *, bitmap));
+extern void bitmap_debug_file PROTO((FILE *, bitmap));
/* Print a bitmap */
-extern void bitmap_print STDIO_PROTO((FILE *, bitmap, char *, char *));
+extern void bitmap_print PROTO((FILE *, bitmap, char *, char *));
/* Initialize a bitmap header. */
extern bitmap bitmap_initialize PROTO((bitmap));
diff --git a/gcc/c-decl.c b/gcc/c-decl.c
index e38cdb15a89..6900324c53f 100644
--- a/gcc/c-decl.c
+++ b/gcc/c-decl.c
@@ -27,12 +27,12 @@ Boston, MA 02111-1307, USA. */
line numbers. For example, the CONST_DECLs for enum values. */
#include "config.h"
+#include <stdio.h>
#include "tree.h"
#include "flags.h"
#include "output.h"
#include "c-tree.h"
#include "c-lex.h"
-#include <stdio.h>
/* In grokdeclarator, distinguish syntactic contexts of declarators. */
enum decl_context
@@ -471,9 +471,14 @@ int explicit_flag_signed_bitfields = 0;
int flag_no_ident = 0;
-/* Nonzero means warn about implicit declarations. */
+/* Nonzero means warn about use of implicit int. */
+
+int warn_implicit_int;
-int warn_implicit;
+/* Nonzero means message about use of implicit function declarations;
+ 1 means warning; 2 means error. */
+
+int mesg_implicit_function_declaration;
/* Nonzero means give string constants the type `const char *'
to get extra warnings from them. These warnings will be too numerous
@@ -648,10 +653,24 @@ c_decode_option (p)
flag_no_ident = 0;
else if (!strcmp (p, "-ansi"))
flag_no_asm = 1, flag_no_nonansi_builtin = 1;
+ else if (!strcmp (p, "-Werror-implicit-function-declaration"))
+ mesg_implicit_function_declaration = 2;
+ else if (!strcmp (p, "-Wimplicit-function-declaration"))
+ mesg_implicit_function_declaration = 1;
+ else if (!strcmp (p, "-Wno-implicit-function-declaration"))
+ mesg_implicit_function_declaration = 0;
+ else if (!strcmp (p, "-Wimplicit-int"))
+ warn_implicit_int = 1;
+ else if (!strcmp (p, "-Wno-implicit-int"))
+ warn_implicit_int = 0;
else if (!strcmp (p, "-Wimplicit"))
- warn_implicit = 1;
+ {
+ warn_implicit_int = 1;
+ if (mesg_implicit_function_declaration != 2)
+ mesg_implicit_function_declaration = 1;
+ }
else if (!strcmp (p, "-Wno-implicit"))
- warn_implicit = 0;
+ warn_implicit_int = 0, mesg_implicit_function_declaration = 0;
else if (!strcmp (p, "-Wwrite-strings"))
warn_write_strings = 1;
else if (!strcmp (p, "-Wno-write-strings"))
@@ -751,7 +770,8 @@ c_decode_option (p)
warning about not using it without also specifying -O. */
if (warn_uninitialized != 1)
warn_uninitialized = 2;
- warn_implicit = 1;
+ warn_implicit_int = 1;
+ mesg_implicit_function_declaration = 1;
warn_return_type = 1;
warn_unused = 1;
warn_switch = 1;
@@ -2467,9 +2487,15 @@ implicitly_declare (functionid)
rest_of_decl_compilation (decl, NULL_PTR, 0, 0);
- if (warn_implicit && implicit_warning)
- warning ("implicit declaration of function `%s'",
- IDENTIFIER_POINTER (functionid));
+ if (mesg_implicit_function_declaration && implicit_warning)
+ {
+ if (mesg_implicit_function_declaration == 2)
+ error ("implicit declaration of function `%s'",
+ IDENTIFIER_POINTER (functionid));
+ else
+ warning ("implicit declaration of function `%s'",
+ IDENTIFIER_POINTER (functionid));
+ }
else if (warn_traditional && traditional_warning)
warning ("function `%s' was previously declared within a block",
IDENTIFIER_POINTER (functionid));
@@ -3880,6 +3906,9 @@ finish_decl (decl, init, asmspec_tree)
else
error_with_decl (decl, "storage size of `%s' isn't constant");
}
+
+ if (TREE_USED (type))
+ TREE_USED (decl) = 1;
}
/* If this is a function and an assembler name is specified, it isn't
@@ -4361,9 +4390,9 @@ grokdeclarator (declarator, declspecs, decl_context, initialized)
For now, issue a warning if -Wreturn-type and this is a function,
or if -Wimplicit; prefer the former warning since it is more
explicit. */
- if ((warn_implicit || warn_return_type) && funcdef_flag)
+ if ((warn_implicit_int || warn_return_type) && funcdef_flag)
warn_about_return_type = 1;
- else if (warn_implicit)
+ else if (warn_implicit_int)
warning ("type defaults to `int' in declaration of `%s'", name);
}
@@ -4709,6 +4738,18 @@ grokdeclarator (declarator, declspecs, decl_context, initialized)
convert (index_type, size),
convert (index_type, size_one_node)));
+ /* If that overflowed, the array is too big.
+ ??? While a size of INT_MAX+1 technically shouldn't cause
+ an overflow (because we subtract 1), the overflow is recorded
+ during the conversion to index_type, before the subtraction.
+ Handling this case seems like an unnecessary complication. */
+ if (TREE_OVERFLOW (itype))
+ {
+ error ("size of array `%s' is too large", name);
+ type = error_mark_node;
+ continue;
+ }
+
if (size_varies)
itype = variable_size (itype);
itype = build_index_type (itype);
@@ -4884,6 +4925,13 @@ grokdeclarator (declarator, declspecs, decl_context, initialized)
/* Now TYPE has the actual type. */
+ /* Did array size calculations overflow? */
+
+ if (TREE_CODE (type) == ARRAY_TYPE
+ && TYPE_SIZE (type)
+ && TREE_OVERFLOW (TYPE_SIZE (type)))
+ error ("size of array `%s' is too large", name);
+
/* If this is declaring a typedef name, return a TYPE_DECL. */
if (specbits & (1 << (int) RID_TYPEDEF))
@@ -6211,7 +6259,10 @@ start_function (declspecs, declarator, prefix_attributes, attributes, nested)
/* If the declarator is not suitable for a function definition,
cause a syntax error. */
if (decl1 == 0)
- return 0;
+ {
+ immediate_size_expand = old_immediate_size_expand;
+ return 0;
+ }
decl_attributes (decl1, prefix_attributes, attributes);
diff --git a/gcc/c-lang.c b/gcc/c-lang.c
index e79e188e88d..b5ed3deb652 100644
--- a/gcc/c-lang.c
+++ b/gcc/c-lang.c
@@ -1,5 +1,5 @@
/* Language-specific hook definitions for C front end.
- Copyright (C) 1991, 1995 Free Software Foundation, Inc.
+ Copyright (C) 1991, 1995, 1997 Free Software Foundation, Inc.
This file is part of GNU CC.
diff --git a/gcc/c-lex.c b/gcc/c-lex.c
index fd0dd90393a..bee6ce7059d 100644
--- a/gcc/c-lex.c
+++ b/gcc/c-lex.c
@@ -1,5 +1,5 @@
/* Lexical analyzer for C and Objective C.
- Copyright (C) 1987, 88, 89, 92, 94, 95, 1996 Free Software Foundation, Inc.
+ Copyright (C) 1987, 88, 89, 92, 94-96, 1997 Free Software Foundation, Inc.
This file is part of GNU CC.
@@ -18,12 +18,12 @@ along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
+#include "config.h"
#include <stdio.h>
#include <errno.h>
#include <setjmp.h>
-#include "config.h"
#include "rtl.h"
#include "tree.h"
#include "input.h"
@@ -118,6 +118,8 @@ char *token_buffer; /* Pointer to token buffer.
Actual allocated length is maxtoken + 2.
This is not static because objc-parse.y uses it. */
+static int indent_level = 0; /* Number of { minus number of }. */
+
/* Nonzero if end-of-file has been seen on input. */
static int end_of_file;
@@ -747,6 +749,7 @@ linenum:
input_file_stack->line = old_lineno;
p->next = input_file_stack;
p->name = input_filename;
+ p->indent_level = indent_level;
input_file_stack = p;
input_file_stack_tick++;
debug_start_source_file (input_filename);
@@ -758,6 +761,14 @@ linenum:
if (input_file_stack->next)
{
struct file_stack *p = input_file_stack;
+ if (indent_level != p->indent_level)
+ {
+ warning_with_file_and_line
+ (p->name, old_lineno,
+ "This file contains more `%c's than `%c's.",
+ indent_level > p->indent_level ? '{' : '}',
+ indent_level > p->indent_level ? '}' : '{');
+ }
input_file_stack = p->next;
free (p);
input_file_stack_tick++;
@@ -816,6 +827,10 @@ linenum:
/* skip the rest of this line. */
skipline:
+#if !USE_CPPLIB
+ if (c != '\n' && c != EOF && nextchar >= 0)
+ c = nextchar, nextchar = -1;
+#endif
while (c != '\n' && c != EOF)
c = GETC();
return c;
@@ -1731,8 +1746,6 @@ yylex ()
else if (! spec_long_long)
ansi_type = long_unsigned_type_node;
else if (! spec_unsigned
- /* Verify value does not overflow into sign bit. */
- && TREE_INT_CST_HIGH (yylval.ttype) >= 0
&& int_fits_type_p (yylval.ttype,
long_long_integer_type_node))
ansi_type = long_long_integer_type_node;
@@ -2122,13 +2135,13 @@ yylex ()
break;
case '<':
if (c1 == '%')
- { value = '{'; goto done; }
+ { value = '{'; indent_level++; goto done; }
if (c1 == ':')
{ value = '['; goto done; }
break;
case '%':
if (c1 == '>')
- { value = '}'; goto done; }
+ { value = '}'; indent_level--; goto done; }
break;
}
UNGETC (c1);
@@ -2145,6 +2158,16 @@ yylex ()
value = 1;
break;
+ case '{':
+ indent_level++;
+ value = c;
+ break;
+
+ case '}':
+ indent_level--;
+ value = c;
+ break;
+
default:
value = c;
}
diff --git a/gcc/c-parse.c b/gcc/c-parse.c
index 5c1cc1bf1dc..8cfed9eb095 100644
--- a/gcc/c-parse.c
+++ b/gcc/c-parse.c
@@ -1,6 +1,6 @@
/* A Bison parser, made from c-parse.y
- by Bison version A2.5 (Andrew Consortium)
+ by GNU Bison version 1.25
*/
#define YYBISON 1 /* Identify Bison output. */
@@ -404,7 +404,7 @@ static const short yyrline[] = { 0,
#endif
-#if YYDEBUG != 0
+#if YYDEBUG != 0 || defined (YYERROR_VERBOSE)
static const char * const yytname[] = { "$","error","$undefined.","IDENTIFIER",
"TYPENAME","SCSPEC","TYPESPEC","TYPE_QUAL","CONSTANT","STRING","ELLIPSIS","SIZEOF",
@@ -1170,7 +1170,7 @@ static const short yycheck[] = { 40,
48, 49, 50, 51, 52
};
/* -*-C-*- Note some compilers choke on comments on `#line' lines. */
-#line 3 "/usr/share/bison.simple"
+#line 3 "/usr/cygnus/latest-940103/share/bison.simple"
/* Skeleton output parser for bison,
Copyright (C) 1984, 1989, 1990 Free Software Foundation, Inc.
@@ -1325,16 +1325,16 @@ int yyparse (void);
#endif
#if __GNUC__ > 1 /* GNU C and GNU C++ define this. */
-#define __yy_memcpy(FROM,TO,COUNT) __builtin_memcpy(TO,FROM,COUNT)
+#define __yy_memcpy(TO,FROM,COUNT) __builtin_memcpy(TO,FROM,COUNT)
#else /* not GNU C or C++ */
#ifndef __cplusplus
/* This is the most reliable way to avoid incompatibilities
in available built-in functions on various systems. */
static void
-__yy_memcpy (from, to, count)
- char *from;
+__yy_memcpy (to, from, count)
char *to;
+ char *from;
int count;
{
register char *f = from;
@@ -1350,7 +1350,7 @@ __yy_memcpy (from, to, count)
/* This is the most reliable way to avoid incompatibilities
in available built-in functions on various systems. */
static void
-__yy_memcpy (char *from, char *to, int count)
+__yy_memcpy (char *to, char *from, int count)
{
register char *f = from;
register char *t = to;
@@ -1363,7 +1363,7 @@ __yy_memcpy (char *from, char *to, int count)
#endif
#endif
-#line 192 "/usr/share/bison.simple"
+#line 196 "/usr/cygnus/latest-940103/share/bison.simple"
/* The user can define YYPARSE_PARAM as the name of an argument to be passed
into yyparse. The argument should have type void *.
@@ -1372,14 +1372,20 @@ __yy_memcpy (char *from, char *to, int count)
to the proper pointer type. */
#ifdef YYPARSE_PARAM
+#ifdef __cplusplus
+#define YYPARSE_PARAM_ARG void *YYPARSE_PARAM
+#define YYPARSE_PARAM_DECL
+#else /* not __cplusplus */
+#define YYPARSE_PARAM_ARG YYPARSE_PARAM
#define YYPARSE_PARAM_DECL void *YYPARSE_PARAM;
-#else
-#define YYPARSE_PARAM
+#endif /* not __cplusplus */
+#else /* not YYPARSE_PARAM */
+#define YYPARSE_PARAM_ARG
#define YYPARSE_PARAM_DECL
-#endif
+#endif /* not YYPARSE_PARAM */
int
-yyparse(YYPARSE_PARAM)
+yyparse(YYPARSE_PARAM_ARG)
YYPARSE_PARAM_DECL
{
register int yystate;
@@ -1496,12 +1502,12 @@ yynewstate:
if (yystacksize > YYMAXDEPTH)
yystacksize = YYMAXDEPTH;
yyss = (short *) alloca (yystacksize * sizeof (*yyssp));
- __yy_memcpy ((char *)yyss1, (char *)yyss, size * sizeof (*yyssp));
+ __yy_memcpy ((char *)yyss, (char *)yyss1, size * sizeof (*yyssp));
yyvs = (YYSTYPE *) alloca (yystacksize * sizeof (*yyvsp));
- __yy_memcpy ((char *)yyvs1, (char *)yyvs, size * sizeof (*yyvsp));
+ __yy_memcpy ((char *)yyvs, (char *)yyvs1, size * sizeof (*yyvsp));
#ifdef YYLSP_NEEDED
yyls = (YYLTYPE *) alloca (yystacksize * sizeof (*yylsp));
- __yy_memcpy ((char *)yyls1, (char *)yyls, size * sizeof (*yylsp));
+ __yy_memcpy ((char *)yyls, (char *)yyls1, size * sizeof (*yylsp));
#endif
#endif /* no yyoverflow */
@@ -3646,7 +3652,7 @@ case 395:
break;}
}
/* the action file gets copied in in place of this dollarsign */
-#line 487 "/usr/share/bison.simple"
+#line 498 "/usr/cygnus/latest-940103/share/bison.simple"
yyvsp -= yylen;
yyssp -= yylen;
diff --git a/gcc/c-typeck.c b/gcc/c-typeck.c
index 22843aecc82..7be030dcd1b 100644
--- a/gcc/c-typeck.c
+++ b/gcc/c-typeck.c
@@ -261,6 +261,12 @@ common_type (t1, t2)
return build_type_attribute_variant (t1, attributes);
}
+ /* Likewise, prefer long double to double even if same size. */
+ if (TYPE_MAIN_VARIANT (t1) == long_double_type_node
+ || TYPE_MAIN_VARIANT (t2) == long_double_type_node)
+ return build_type_attribute_variant (long_double_type_node,
+ attributes);
+
/* Otherwise prefer the unsigned one. */
if (TREE_UNSIGNED (t1))
@@ -507,6 +513,9 @@ comptypes (type1, type2)
if (maybe_objc_comptypes (t1, t2, 0) == 1)
val = 1;
break;
+
+ default:
+ break;
}
return attrval == 2 && val == 1 ? 2 : val;
}
@@ -1008,13 +1017,14 @@ default_conversion (exp)
type = type_for_size (MAX (TYPE_PRECISION (type),
TYPE_PRECISION (integer_type_node)),
((flag_traditional
- || TYPE_PRECISION (type) >= TYPE_PRECISION (integer_type_node))
+ || (TYPE_PRECISION (type)
+ >= TYPE_PRECISION (integer_type_node)))
&& TREE_UNSIGNED (type)));
return convert (type, exp);
}
if (TREE_CODE (exp) == COMPONENT_REF
- && DECL_BIT_FIELD (TREE_OPERAND (exp, 1)))
+ && DECL_C_BIT_FIELD (TREE_OPERAND (exp, 1)))
{
tree width = DECL_SIZE (TREE_OPERAND (exp, 1));
HOST_WIDE_INT low = TREE_INT_CST_LOW (width);
@@ -1242,6 +1252,9 @@ build_component_ref (datum, component)
(TREE_OPERAND (datum, 0),
build_component_ref (TREE_OPERAND (datum, 1), component),
build_component_ref (TREE_OPERAND (datum, 2), component));
+
+ default:
+ break;
}
/* See if there is a field or component with name COMPONENT. */
@@ -1573,6 +1586,8 @@ build_function_call (function, params)
if (coerced_params == 0)
return integer_zero_node;
return build_unary_op (ABS_EXPR, TREE_VALUE (coerced_params), 0);
+ default:
+ break;
}
{
@@ -2333,6 +2348,9 @@ build_binary_op (code, orig_op0, orig_op1, convert_p)
pedwarn ("comparison between pointer and integer");
}
break;
+
+ default:
+ break;
}
if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE || code0 == COMPLEX_TYPE)
@@ -3112,6 +3130,9 @@ build_unary_op (code, xarg, noconvert)
TREE_CONSTANT (addr) = 1;
return addr;
}
+
+ default:
+ break;
}
if (!errstring)
@@ -3180,17 +3201,16 @@ lvalue_p (ref)
case PARM_DECL:
case RESULT_DECL:
case ERROR_MARK:
- if (TREE_CODE (TREE_TYPE (ref)) != FUNCTION_TYPE
- && TREE_CODE (TREE_TYPE (ref)) != METHOD_TYPE)
- return 1;
- break;
+ return (TREE_CODE (TREE_TYPE (ref)) != FUNCTION_TYPE
+ && TREE_CODE (TREE_TYPE (ref)) != METHOD_TYPE);
case BIND_EXPR:
case RTL_EXPR:
- if (TREE_CODE (TREE_TYPE (ref)) == ARRAY_TYPE)
- return 1;
+ return TREE_CODE (TREE_TYPE (ref)) == ARRAY_TYPE;
+
+ default:
+ return 0;
}
- return 0;
}
/* Return nonzero if REF is an lvalue valid for this language;
@@ -3222,7 +3242,12 @@ unary_complex_lvalue (code, arg)
if (TREE_CODE (arg) == COMPOUND_EXPR)
{
tree real_result = build_unary_op (code, TREE_OPERAND (arg, 1), 0);
- pedantic_lvalue_warning (COMPOUND_EXPR);
+
+ /* If this returns a function type, it isn't really being used as
+ an lvalue, so don't issue a warning about it. */
+ if (TREE_CODE (TREE_TYPE (arg)) != FUNCTION_TYPE)
+ pedantic_lvalue_warning (COMPOUND_EXPR);
+
return build (COMPOUND_EXPR, TREE_TYPE (real_result),
TREE_OPERAND (arg, 0), real_result);
}
@@ -3231,6 +3256,9 @@ unary_complex_lvalue (code, arg)
if (TREE_CODE (arg) == COND_EXPR)
{
pedantic_lvalue_warning (COND_EXPR);
+ if (TREE_CODE (TREE_TYPE (arg)) != FUNCTION_TYPE)
+ pedantic_lvalue_warning (COMPOUND_EXPR);
+
return (build_conditional_expr
(TREE_OPERAND (arg, 0),
build_unary_op (code, TREE_OPERAND (arg, 1), 0),
@@ -3872,6 +3900,8 @@ build_modify_expr (lhs, modifycode, rhs)
/* But cast it to void to avoid an "unused" error. */
convert (void_type_node, rhs), cond);
}
+ default:
+ break;
}
/* If a binary op has been requested, combine the old LHS value with the RHS
@@ -3913,6 +3943,9 @@ build_modify_expr (lhs, modifycode, rhs)
pedantic_lvalue_warning (CONVERT_EXPR);
return convert (TREE_TYPE (lhs), result);
}
+
+ default:
+ break;
}
/* Now we have handled acceptable kinds of LHS that are not truly lvalues.
@@ -4426,9 +4459,10 @@ initializer_constant_valid_p (value, endtype)
return null_pointer_node;
return 0;
}
- }
- return 0;
+ default:
+ return 0;
+ }
}
/* If VALUE is a compound expr all of whose expressions are constant, then
@@ -6617,6 +6651,9 @@ c_expand_return (retval)
&& DECL_CONTEXT (inner) == current_function_decl)
warning ("function returns address of local variable");
break;
+
+ default:
+ break;
}
break;
diff --git a/gcc/calls.c b/gcc/calls.c
index 2f5c1c2cf68..a70830ce304 100644
--- a/gcc/calls.c
+++ b/gcc/calls.c
@@ -19,10 +19,12 @@ the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "config.h"
+#include <stdio.h>
#include "rtl.h"
#include "tree.h"
#include "flags.h"
#include "expr.h"
+#include "regs.h"
#ifdef __STDC__
#include <stdarg.h>
#else
@@ -232,6 +234,9 @@ calls_function_1 (exp, which)
case RTL_EXPR:
return 0;
+
+ default:
+ break;
}
for (i = 0; i < length; i++)
@@ -267,15 +272,11 @@ prepare_call_address (funexp, fndecl, call_fusage, reg_parm_seen)
/* Make a valid memory address and copy constants thru pseudo-regs,
but not for a constant address if -fno-function-cse. */
if (GET_CODE (funexp) != SYMBOL_REF)
- funexp =
-#ifdef SMALL_REGISTER_CLASSES
/* If we are using registers for parameters, force the
- function address into a register now. */
- (SMALL_REGISTER_CLASSES && reg_parm_seen)
- ? force_not_mem (memory_address (FUNCTION_MODE, funexp))
- :
-#endif
- memory_address (FUNCTION_MODE, funexp);
+ function address into a register now. */
+ funexp = ((SMALL_REGISTER_CLASSES && reg_parm_seen)
+ ? force_not_mem (memory_address (FUNCTION_MODE, funexp))
+ : memory_address (FUNCTION_MODE, funexp));
else
{
#ifndef NO_FUNCTION_CSE
@@ -695,7 +696,8 @@ expand_call (exp, target, ignore)
structure_value_addr = XEXP (target, 0);
else
{
- /* Assign a temporary on the stack to hold the value. */
+ /* Assign a temporary to hold the value. */
+ tree d;
/* For variable-sized objects, we must be called with a target
specified. If we were to allocate space on the stack here,
@@ -704,8 +706,12 @@ expand_call (exp, target, ignore)
if (struct_value_size < 0)
abort ();
- structure_value_addr
- = XEXP (assign_stack_temp (BLKmode, struct_value_size, 1), 0);
+ /* This DECL is just something to feed to mark_addressable;
+ it doesn't get pushed. */
+ d = build_decl (VAR_DECL, NULL_TREE, TREE_TYPE (exp));
+ DECL_RTL (d) = assign_temp (TREE_TYPE (exp), 1, 0, 1);
+ mark_addressable (d);
+ structure_value_addr = XEXP (DECL_RTL (d), 0);
MEM_IN_STRUCT_P (structure_value_addr)
= AGGREGATE_TYPE_P (TREE_TYPE (exp));
target = 0;
@@ -1675,13 +1681,8 @@ expand_call (exp, target, ignore)
&& GET_CODE (SUBREG_REG (args[i].value)) == REG)))
&& args[i].mode != BLKmode
&& rtx_cost (args[i].value, SET) > 2
-#ifdef SMALL_REGISTER_CLASSES
&& ((SMALL_REGISTER_CLASSES && reg_parm_seen)
- || preserve_subexpressions_p ())
-#else
- && preserve_subexpressions_p ()
-#endif
- )
+ || preserve_subexpressions_p ()))
args[i].value = copy_to_mode_reg (args[i].mode, args[i].value);
}
@@ -2038,7 +2039,7 @@ expand_call (exp, target, ignore)
/* If there are cleanups to be called, don't use a hard reg as target.
We need to double check this and see if it matters anymore. */
- if (any_pending_cleanups ()
+ if (any_pending_cleanups (1)
&& target && REG_P (target)
&& REGNO (target) < FIRST_PSEUDO_REGISTER)
target = 0;
@@ -2751,26 +2752,26 @@ emit_library_call VPROTO((rtx orgfun, int no_queue, enum machine_mode outmode,
#ifdef ACCUMULATE_OUTGOING_ARGS
#ifdef REG_PARM_STACK_SPACE
- if (save_area)
- {
- enum machine_mode save_mode = GET_MODE (save_area);
- rtx stack_area
- = gen_rtx (MEM, save_mode,
- memory_address (save_mode,
+ if (save_area)
+ {
+ enum machine_mode save_mode = GET_MODE (save_area);
+ rtx stack_area
+ = gen_rtx (MEM, save_mode,
+ memory_address (save_mode,
#ifdef ARGS_GROW_DOWNWARD
- plus_constant (argblock, - high_to_save)
+ plus_constant (argblock, - high_to_save)
#else
- plus_constant (argblock, low_to_save)
+ plus_constant (argblock, low_to_save)
#endif
- ));
+ ));
- if (save_mode != BLKmode)
- emit_move_insn (stack_area, save_area);
- else
- emit_block_move (stack_area, validize_mem (save_area),
- GEN_INT (high_to_save - low_to_save + 1),
- PARM_BOUNDARY / BITS_PER_UNIT);
- }
+ if (save_mode != BLKmode)
+ emit_move_insn (stack_area, save_area);
+ else
+ emit_block_move (stack_area, validize_mem (save_area),
+ GEN_INT (high_to_save - low_to_save + 1),
+ PARM_BOUNDARY / BITS_PER_UNIT);
+ }
#endif
/* If we saved any argument areas, restore them. */
@@ -2789,7 +2790,6 @@ emit_library_call VPROTO((rtx orgfun, int no_queue, enum machine_mode outmode,
highest_outgoing_arg_in_use = initial_highest_arg_in_use;
stack_usage_map = initial_stack_usage_map;
#endif
-
}
/* Like emit_library_call except that an extra argument, VALUE,
@@ -3345,26 +3345,26 @@ emit_library_call_value VPROTO((rtx orgfun, rtx value, int no_queue,
#ifdef ACCUMULATE_OUTGOING_ARGS
#ifdef REG_PARM_STACK_SPACE
- if (save_area)
- {
- enum machine_mode save_mode = GET_MODE (save_area);
- rtx stack_area
- = gen_rtx (MEM, save_mode,
- memory_address (save_mode,
+ if (save_area)
+ {
+ enum machine_mode save_mode = GET_MODE (save_area);
+ rtx stack_area
+ = gen_rtx (MEM, save_mode,
+ memory_address (save_mode,
#ifdef ARGS_GROW_DOWNWARD
- plus_constant (argblock, - high_to_save)
+ plus_constant (argblock, - high_to_save)
#else
- plus_constant (argblock, low_to_save)
+ plus_constant (argblock, low_to_save)
#endif
- ));
+ ));
- if (save_mode != BLKmode)
- emit_move_insn (stack_area, save_area);
- else
- emit_block_move (stack_area, validize_mem (save_area),
- GEN_INT (high_to_save - low_to_save + 1),
+ if (save_mode != BLKmode)
+ emit_move_insn (stack_area, save_area);
+ else
+ emit_block_move (stack_area, validize_mem (save_area),
+ GEN_INT (high_to_save - low_to_save + 1),
PARM_BOUNDARY / BITS_PER_UNIT);
- }
+ }
#endif
/* If we saved any argument areas, restore them. */
diff --git a/gcc/cccp.c b/gcc/cccp.c
index 8df72f28b03..2a92acb323e 100644
--- a/gcc/cccp.c
+++ b/gcc/cccp.c
@@ -51,6 +51,13 @@ typedef unsigned char U_CHAR;
#define PATH_SEPARATOR ':'
#endif
+/* By default, the suffix for object files is ".o". */
+#ifdef OBJECT_SUFFIX
+#define HAVE_OBJECT_SUFFIX
+#else
+#define OBJECT_SUFFIX ".o"
+#endif
+
#include <sys/types.h>
#include <sys/stat.h>
#include <ctype.h>
@@ -59,21 +66,13 @@ typedef unsigned char U_CHAR;
/* The following symbols should be autoconfigured:
HAVE_FCNTL_H
- HAVE_STDLIB_H
HAVE_SYS_TIME_H
- HAVE_UNISTD_H
STDC_HEADERS
TIME_WITH_SYS_TIME
In the mean time, we'll get by with approximations based
on existing GCC configuration symbols. */
#ifdef POSIX
-# ifndef HAVE_STDLIB_H
-# define HAVE_STDLIB_H 1
-# endif
-# ifndef HAVE_UNISTD_H
-# define HAVE_UNISTD_H 1
-# endif
# ifndef STDC_HEADERS
# define STDC_HEADERS 1
# endif
@@ -105,6 +104,10 @@ typedef unsigned char U_CHAR;
# include <fcntl.h>
#endif
+#if HAVE_LIMITS_H
+# include <limits.h>
+#endif
+
#include <errno.h>
#if HAVE_STDLIB_H
@@ -225,8 +228,8 @@ my_bzero (b, length)
#define fstat(fd,stbuf) VMS_fstat (fd,stbuf)
static int VMS_fstat (), VMS_stat ();
static int VMS_open ();
-static FILE * VMS_fopen ();
-static FILE * VMS_freopen ();
+static FILE *VMS_fopen ();
+static FILE *VMS_freopen ();
static void hack_vms_include_specification ();
#define INO_T_EQ(a, b) (!bcmp((char *) &(a), (char *) &(b), sizeof (a)))
#define INO_T_HASH(a) 0
@@ -248,18 +251,25 @@ static void hack_vms_include_specification ();
#define MAX(X,Y) ((X) > (Y) ? (X) : (Y))
/* Find the largest host integer type and set its size and type.
- Don't blindly use `long'; on some crazy hosts it is shorter than `int'. */
-
-#ifndef HOST_BITS_PER_WIDE_INT
-
-#if HOST_BITS_PER_LONG > HOST_BITS_PER_INT
-#define HOST_BITS_PER_WIDE_INT HOST_BITS_PER_LONG
-#define HOST_WIDE_INT long
-#else
-#define HOST_BITS_PER_WIDE_INT HOST_BITS_PER_INT
-#define HOST_WIDE_INT int
-#endif
+ Watch out: on some crazy hosts `long' is shorter than `int'. */
+#ifndef HOST_WIDE_INT
+# if HAVE_INTTYPES_H
+# include <inttypes.h>
+# define HOST_WIDE_INT intmax_t
+# else
+# if (HOST_BITS_PER_LONG <= HOST_BITS_PER_INT \
+ && HOST_BITS_PER_LONGLONG <= HOST_BITS_PER_INT)
+# define HOST_WIDE_INT int
+# else
+# if (HOST_BITS_PER_LONGLONG <= HOST_BITS_PER_LONG \
+ || ! (defined LONG_LONG_MAX || defined LLONG_MAX))
+# define HOST_WIDE_INT long
+# else
+# define HOST_WIDE_INT long long
+# endif
+# endif
+# endif
#endif
#ifndef S_ISREG
@@ -303,6 +313,7 @@ static void hack_vms_include_specification ();
/* External declarations. */
extern char *version_string;
+extern char *update_path PROTO((char *, char *));
#ifndef VMS
#ifndef HAVE_STRERROR
extern int sys_nerr;
@@ -400,6 +411,10 @@ static enum {dump_none, dump_only, dump_names, dump_definitions}
where they are defined. */
static int debug_output = 0;
+/* Nonzero means pass #include lines through to the output,
+ even if they are ifdeffed out. */
+static int dump_includes;
+
/* Nonzero indicates special processing used by the pcp program. The
special effects of this mode are:
@@ -518,7 +533,7 @@ static struct file_buf {
struct if_stack *if_stack;
/* Object to be freed at end of input at this level. */
U_CHAR *free_ptr;
- /* True if this is a header file included using <FILENAME>. */
+ /* True if this is a system header file; see is_system_include. */
char system_header_p;
} instack[INPUT_STACK_MAX];
@@ -579,6 +594,7 @@ struct file_name_list
/* The */
static struct default_include {
char *fname; /* The name of the directory. */
+ char *component; /* The component containing the directory */
int cplusplus; /* Only look here if we're compiling C++. */
int cxx_aware; /* Includes in this directory don't need to
be wrapped in extern "C" when compiling
@@ -589,40 +605,43 @@ static struct default_include {
#else
= {
/* Pick up GNU C++ specific include files. */
- { GPLUSPLUS_INCLUDE_DIR, 1, 1 },
- { OLD_GPLUSPLUS_INCLUDE_DIR, 1, 1 },
+ { GPLUSPLUS_INCLUDE_DIR, "G++", 1, 1 },
+ { OLD_GPLUSPLUS_INCLUDE_DIR, 0, 1, 1 },
#ifdef CROSS_COMPILE
/* This is the dir for fixincludes. Put it just before
the files that we fix. */
- { GCC_INCLUDE_DIR, 0, 0 },
+ { GCC_INCLUDE_DIR, "GCC", 0, 0 },
/* For cross-compilation, this dir name is generated
automatically in Makefile.in. */
- { CROSS_INCLUDE_DIR, 0, 0 },
+ { CROSS_INCLUDE_DIR, "GCC", 0, 0 },
#ifdef TOOL_INCLUDE_DIR
/* This is another place that the target system's headers might be. */
- { TOOL_INCLUDE_DIR, 0, 0 },
+ { TOOL_INCLUDE_DIR, "BINUTILS", 0, 0 },
#endif
#else /* not CROSS_COMPILE */
#ifdef LOCAL_INCLUDE_DIR
/* This should be /usr/local/include and should come before
the fixincludes-fixed header files. */
- { LOCAL_INCLUDE_DIR, 0, 1 },
+ { LOCAL_INCLUDE_DIR, 0, 0, 1 },
#endif
#ifdef TOOL_INCLUDE_DIR
/* This is here ahead of GCC_INCLUDE_DIR because assert.h goes here.
Likewise, behind LOCAL_INCLUDE_DIR, where glibc puts its assert.h. */
- { TOOL_INCLUDE_DIR, 0, 0 },
+ { TOOL_INCLUDE_DIR, "BINUTILS", 0, 0 },
#endif
/* This is the dir for fixincludes. Put it just before
the files that we fix. */
- { GCC_INCLUDE_DIR, 0, 0 },
+ { GCC_INCLUDE_DIR, "GCC", 0, 0 },
/* Some systems have an extra dir of include files. */
#ifdef SYSTEM_INCLUDE_DIR
- { SYSTEM_INCLUDE_DIR, 0, 0 },
+ { SYSTEM_INCLUDE_DIR, 0, 0, 0 },
#endif
- { STANDARD_INCLUDE_DIR, 0, 0 },
+#ifndef STANDARD_INCLUDE_COMPONENT
+#define STANDARD_INCLUDE_COMPONENT 0
+#endif
+ { STANDARD_INCLUDE_DIR, STANDARD_INCLUDE_COMPONENT, 0, 0 },
#endif /* not CROSS_COMPILE */
- { 0, 0, 0 }
+ { 0, 0, 0, 0 }
};
#endif /* no INCLUDE_DEFAULTS */
@@ -954,13 +973,10 @@ struct directive {
int (*func) DO_PROTO; /* Function to handle directive */
char *name; /* Name of directive */
enum node_type type; /* Code which describes which directive. */
- char angle_brackets; /* Nonzero => <...> is special. */
- char traditional_comments; /* Nonzero: keep comments if -traditional. */
- char pass_thru; /* Copy directive to output:
- if 1, copy if dumping definitions;
- if 2, always copy, after preprocessing. */
};
+#define IS_INCLUDE_DIRECTIVE_TYPE(t) (T_INCLUDE <= (t) && (t) <= T_IMPORT)
+
/* These functions are declared to return int instead of void since they
are going to be placed in the table and some old compilers have trouble with
pointers to functions returning void. */
@@ -987,7 +1003,7 @@ static int do_xifdef DO_PROTO;
/* Here is the actual list of #-directives, most-often-used first. */
static struct directive directive_table[] = {
- { 6, do_define, "define", T_DEFINE, 0, 1, 1},
+ { 6, do_define, "define", T_DEFINE},
{ 2, do_if, "if", T_IF},
{ 5, do_xifdef, "ifdef", T_IFDEF},
{ 6, do_xifdef, "ifndef", T_IFNDEF},
@@ -995,16 +1011,16 @@ static struct directive directive_table[] = {
{ 4, do_else, "else", T_ELSE},
{ 4, do_elif, "elif", T_ELIF},
{ 4, do_line, "line", T_LINE},
- { 7, do_include, "include", T_INCLUDE, 1},
- { 12, do_include, "include_next", T_INCLUDE_NEXT, 1},
- { 6, do_include, "import", T_IMPORT, 1},
+ { 7, do_include, "include", T_INCLUDE},
+ { 12, do_include, "include_next", T_INCLUDE_NEXT},
+ { 6, do_include, "import", T_IMPORT},
{ 5, do_undef, "undef", T_UNDEF},
{ 5, do_error, "error", T_ERROR},
{ 7, do_warning, "warning", T_WARNING},
#ifdef SCCS_DIRECTIVE
{ 4, do_sccs, "sccs", T_SCCS},
#endif
- { 6, do_pragma, "pragma", T_PRAGMA, 0, 0, 2},
+ { 6, do_pragma, "pragma", T_PRAGMA},
{ 5, do_ident, "ident", T_IDENT},
{ 6, do_assert, "assert", T_ASSERT},
{ 8, do_unassert, "unassert", T_UNASSERT},
@@ -1195,7 +1211,7 @@ static void make_undef PROTO((char *, FILE_BUF *));
static void make_assertion PROTO((char *, char *));
-static struct file_name_list *new_include_prefix PROTO((struct file_name_list *, char *, char *));
+static struct file_name_list *new_include_prefix PROTO((struct file_name_list *, char *, char *, char *));
static void append_include_chain PROTO((struct file_name_list *, struct file_name_list *));
static void deps_output PROTO((char *, int));
@@ -1414,7 +1430,8 @@ main (argc, argv)
if (!strcmp (argv[i], "-isystem")) {
struct file_name_list *dirtmp;
- if (! (dirtmp = new_include_prefix (NULL_PTR, "", argv[++i])))
+ if (! (dirtmp = new_include_prefix (NULL_PTR, NULL_PTR,
+ "", argv[++i])))
break;
dirtmp->c_system_include_path = 1;
@@ -1439,7 +1456,8 @@ main (argc, argv)
prefix[strlen (prefix) - 7] = 0;
}
- if (! (dirtmp = new_include_prefix (NULL_PTR, prefix, argv[++i])))
+ if (! (dirtmp = new_include_prefix (NULL_PTR, NULL_PTR,
+ prefix, argv[++i])))
break;
if (after_include == 0)
@@ -1463,14 +1481,15 @@ main (argc, argv)
prefix[strlen (prefix) - 7] = 0;
}
- dirtmp = new_include_prefix (NULL_PTR, prefix, argv[++i]);
+ dirtmp = new_include_prefix (NULL_PTR, NULL_PTR, prefix, argv[++i]);
append_include_chain (dirtmp, dirtmp);
}
/* Add directory to end of path for includes. */
if (!strcmp (argv[i], "-idirafter")) {
struct file_name_list *dirtmp;
- if (! (dirtmp = new_include_prefix (NULL_PTR, "", argv[++i])))
+ if (! (dirtmp = new_include_prefix (NULL_PTR, NULL_PTR,
+ "", argv[++i])))
break;
if (after_include == 0)
@@ -1641,6 +1660,9 @@ main (argc, argv)
case 'D':
dump_macros = dump_definitions;
break;
+ case 'I':
+ dump_includes = 1;
+ break;
}
}
}
@@ -1734,7 +1756,7 @@ main (argc, argv)
first_bracket_include = 0;
}
else {
- dirtmp = new_include_prefix (last_include, "",
+ dirtmp = new_include_prefix (last_include, NULL_PTR, "",
argv[i][2] ? argv[i] + 2 : argv[++i]);
append_include_chain (dirtmp, dirtmp);
}
@@ -1940,6 +1962,7 @@ main (argc, argv)
include_defaults[num_dirs].fname
= startp == endp ? "." : savestring (startp);
endp[-1] = c;
+ include_defaults[num_dirs].component = 0;
include_defaults[num_dirs].cplusplus = cplusplus;
include_defaults[num_dirs].cxx_aware = 1;
num_dirs++;
@@ -1980,7 +2003,7 @@ main (argc, argv)
if (!strncmp (p->fname, default_prefix, default_len)) {
/* Yes; change prefix and add to search list. */
struct file_name_list *new
- = new_include_prefix (NULL_PTR, specd_prefix,
+ = new_include_prefix (NULL_PTR, NULL_PTR, specd_prefix,
p->fname + default_len);
if (new) {
new->c_system_include_path = !p->cxx_aware;
@@ -1996,7 +2019,7 @@ main (argc, argv)
/* Some standard dirs are only for C++. */
if (!p->cplusplus || (cplusplus && !no_standard_cplusplus_includes)) {
struct file_name_list *new
- = new_include_prefix (NULL_PTR, "", p->fname);
+ = new_include_prefix (NULL_PTR, p->component, "", p->fname);
if (new) {
new->c_system_include_path = !p->cxx_aware;
append_include_chain (new, new);
@@ -2123,11 +2146,7 @@ main (argc, argv)
q = p + (len - 4);
/* Supply our own suffix. */
-#ifndef VMS
- strcpy (q, ".o");
-#else
- strcpy (q, ".obj");
-#endif
+ strcpy (q, OBJECT_SUFFIX);
deps_output (p, ':');
deps_output (in_fname, ' ');
@@ -2310,7 +2329,8 @@ path_include (path)
continue;
q[-1] = 0;
- dirtmp = new_include_prefix (last_include, "", p == q ? "." : p);
+ dirtmp = new_include_prefix (last_include, NULL_PTR,
+ "", p == q ? "." : p);
q[-1] = c;
append_include_chain (dirtmp, dirtmp);
@@ -3724,7 +3744,7 @@ handle_directive (ip, op)
limit = ip->buf + ip->length;
unterminated = 0;
already_output = 0;
- keep_comments = traditional && kt->traditional_comments;
+ keep_comments = traditional && kt->type == T_DEFINE;
/* #import is defined only in Objective C, or when on the NeXT. */
if (kt->type == T_IMPORT
&& !(objc || lookup ((U_CHAR *) "__NeXT__", -1, -1)))
@@ -3769,7 +3789,7 @@ handle_directive (ip, op)
/* <...> is special for #include. */
case '<':
- if (!kt->angle_brackets)
+ if (! IS_INCLUDE_DIRECTIVE_TYPE (kt->type))
break;
while (bp < limit && *bp != '>' && *bp != '\n') {
if (*bp == '\\' && bp[1] == '\n') {
@@ -3828,10 +3848,12 @@ handle_directive (ip, op)
RESUME_P is the next interesting data after the directive.
A comment may come between. */
- /* If a directive should be copied through, and -E was given,
+ /* If a directive should be copied through, and -C was given,
pass it through before removing comments. */
if (!no_output && put_out_comments
- && (dump_macros != dump_definitions) < kt->pass_thru) {
+ && (kt->type == T_DEFINE ? dump_macros == dump_definitions
+ : IS_INCLUDE_DIRECTIVE_TYPE (kt->type) ? dump_includes
+ : kt->type == T_PRAGMA)) {
int len;
/* Output directive name. */
@@ -3880,7 +3902,7 @@ handle_directive (ip, op)
/* <...> is special for #include. */
case '<':
- if (!kt->angle_brackets)
+ if (! IS_INCLUDE_DIRECTIVE_TYPE (kt->type))
break;
while (xp < bp && c != '>') {
c = *xp++;
@@ -3955,10 +3977,12 @@ handle_directive (ip, op)
/* Some directives should be written out for cc1 to process,
just as if they were not defined. And sometimes we're copying
- definitions through. */
+ directives through. */
if (!no_output && already_output == 0
- && (dump_macros < dump_names) < kt->pass_thru) {
+ && (kt->type == T_DEFINE ? dump_names <= dump_macros
+ : IS_INCLUDE_DIRECTIVE_TYPE (kt->type) ? dump_includes
+ : kt->type == T_PRAGMA)) {
int len;
/* Output directive name. */
@@ -3967,13 +3991,8 @@ handle_directive (ip, op)
bcopy (kt->name, (char *) op->bufp, kt->length);
op->bufp += kt->length;
- if ((dump_macros != dump_definitions) < kt->pass_thru) {
- /* Output arguments. */
- len = (cp - buf);
- check_expand (op, len);
- bcopy (buf, (char *) op->bufp, len);
- op->bufp += len;
- } else if (kt->type == T_DEFINE && dump_macros == dump_names) {
+ if (kt->type == T_DEFINE && dump_macros == dump_names) {
+ /* Output `#define name' only. */
U_CHAR *xp = buf;
U_CHAR *yp;
SKIP_WHITE_SPACE (xp);
@@ -3982,9 +4001,14 @@ handle_directive (ip, op)
len = (xp - yp);
check_expand (op, len + 1);
*op->bufp++ = ' ';
- bcopy (yp, op->bufp, len);
- op->bufp += len;
+ bcopy (yp, (char *) op->bufp, len);
+ } else {
+ /* Output entire directive. */
+ len = (cp - buf);
+ check_expand (op, len);
+ bcopy (buf, (char *) op->bufp, len);
}
+ op->bufp += len;
} /* Don't we need a newline or #line? */
/* Call the appropriate directive handler. buf now points to
@@ -4118,6 +4142,12 @@ special_symbol (hp, op)
case T_CONST:
buf = hp->value.cpval;
+#ifdef STDC_0_IN_SYSTEM_HEADERS
+ if (ip->system_header_p
+ && hp->length == 8 && bcmp (hp->name, "__STDC__", 8) == 0
+ && !lookup ((U_CHAR *) "__STRICT_ANSI__", -1, -1))
+ buf = "0";
+#endif
if (pcp_inside_if && pcp_outfile)
/* Output a precondition for this macro use */
fprintf (pcp_outfile, "#define %s %s\n", hp->name, buf);
@@ -5305,12 +5335,12 @@ pcfinclude (buf, limit, name, op)
/* First skip to a longword boundary */
/* ??? Why a 4-byte boundary? On all machines? */
- /* NOTE: This works correctly even if HOST_WIDE_INT
+ /* NOTE: This works correctly even if size_t
is narrower than a pointer.
Do not try risky measures here to get another type to use!
Do not include stddef.h--it will fail! */
- if ((HOST_WIDE_INT) cp & 3)
- cp += 4 - ((HOST_WIDE_INT) cp & 3);
+ if ((size_t) cp & 3)
+ cp += 4 - ((size_t) cp & 3);
/* Now get the string. */
str = (STRINGDEF *) (GENERIC_PTR) cp;
@@ -6798,7 +6828,7 @@ do_once ()
}
}
-/* #ident has already been copied to the output file, so just ignore it. */
+/* Report program identification. */
static int
do_ident (buf, limit, op, keyword)
@@ -6814,22 +6844,17 @@ do_ident (buf, limit, op, keyword)
pedwarn ("ANSI C does not allow `#ident'");
trybuf = expand_to_temp_buffer (buf, limit, 0, 0);
- buf = (U_CHAR *) alloca (trybuf.bufp - trybuf.buf + 1);
- bcopy ((char *) trybuf.buf, (char *) buf, trybuf.bufp - trybuf.buf);
- limit = buf + (trybuf.bufp - trybuf.buf);
- len = (limit - buf);
- free (trybuf.buf);
-
- /* Output directive name. */
- check_expand (op, 7);
+ buf = trybuf.buf;
+ len = trybuf.bufp - buf;
+
+ /* Output expanded directive. */
+ check_expand (op, 7 + len);
bcopy ("#ident ", (char *) op->bufp, 7);
op->bufp += 7;
-
- /* Output the expanded argument line. */
- check_expand (op, len);
bcopy ((char *) buf, (char *) op->bufp, len);
op->bufp += len;
+ free (buf);
return 0;
}
@@ -6858,7 +6883,7 @@ do_pragma (buf, limit, op, keyword)
int h;
U_CHAR *p = buf + 14, *fname;
SKIP_WHITE_SPACE (p);
- if (*p == '\n' || *p != '\"')
+ if (*p != '\"')
return 0;
fname = p + 1;
@@ -9782,7 +9807,12 @@ make_assertion (option, str)
--indepth;
}
+#ifndef DIR_SEPARATOR
+#define DIR_SEPARATOR '/'
+#endif
+
/* The previous include prefix, if any, is PREV_FILE_NAME.
+ Translate any pathnames with COMPONENT.
Allocate a new include prefix whose name is the
simplified concatenation of PREFIX and NAME,
with a trailing / added if needed.
@@ -9790,33 +9820,38 @@ make_assertion (option, str)
e.g. because it is a duplicate of PREV_FILE_NAME. */
static struct file_name_list *
-new_include_prefix (prev_file_name, prefix, name)
+new_include_prefix (prev_file_name, component, prefix, name)
struct file_name_list *prev_file_name;
+ char *component;
char *prefix;
char *name;
{
- if (!name)
+ if (name == 0)
fatal ("Directory name missing after command line option");
- if (!*name)
+ if (*name == 0)
/* Ignore the empty string. */
return 0;
- else {
+
+ prefix = update_path (prefix, component);
+ name = update_path (name, component);
+
+ {
struct file_name_list *dir
= ((struct file_name_list *)
xmalloc (sizeof (struct file_name_list)
- + strlen (prefix) + strlen (name) + 1 /* for trailing / */));
+ + strlen (prefix) + strlen (name) + 2));
size_t len;
strcpy (dir->fname, prefix);
strcat (dir->fname, name);
len = simplify_filename (dir->fname);
/* Convert directory name to a prefix. */
- if (dir->fname[len - 1] != '/') {
+ if (dir->fname[len - 1] != DIR_SEPARATOR) {
if (len == 1 && dir->fname[len - 1] == '.')
len = 0;
else
- dir->fname[len++] = '/';
+ dir->fname[len++] = DIR_SEPARATOR;
dir->fname[len] = 0;
}
@@ -9832,6 +9867,14 @@ new_include_prefix (prev_file_name, prefix, name)
#ifndef VMS
/* VMS can't stat dir prefixes, so skip these optimizations in VMS. */
+ /* Add a trailing "." if there is a filename. This increases the number
+ of systems that can stat directories. We remove it below. */
+ if (len != 0)
+ {
+ dir->fname[len] = '.';
+ dir->fname[len + 1] = 0;
+ }
+
/* Ignore a nonexistent directory. */
if (stat (len ? dir->fname : ".", &dir->st) != 0) {
if (errno != ENOENT && errno != ENOTDIR)
@@ -9840,6 +9883,9 @@ new_include_prefix (prev_file_name, prefix, name)
return 0;
}
+ if (len != 0)
+ dir->fname[len] = 0;
+
/* Ignore a directory whose identity matches the previous one. */
if (prev_file_name
&& INO_T_EQ (prev_file_name->st.st_ino, dir->st.st_ino)
@@ -10200,27 +10246,26 @@ hack_vms_include_specification (fname, vaxc_include)
"shr=nil"- Disallow file sharing while file is open. */
static FILE *
-freopen (fname, type, oldfile)
+VMS_freopen (fname, type, oldfile)
char *fname;
char *type;
FILE *oldfile;
{
-#undef freopen /* Get back the REAL fopen routine */
if (strcmp (type, "w") == 0)
- return freopen (fname, type, oldfile, "mbc=16", "deq=64", "fop=tef", "shr=nil");
- return freopen (fname, type, oldfile, "mbc=16");
+ return decc$freopen (fname, type, oldfile,
+ "mbc=16", "deq=64", "fop=tef", "shr=nil");
+ return decc$freopen (fname, type, oldfile, "mbc=16");
}
static FILE *
-fopen (fname, type)
+VMS_fopen (fname, type)
char *fname;
char *type;
{
-#undef fopen /* Get back the REAL fopen routine */
/* The gcc-vms-1.42 distribution's header files prototype fopen with two
fixed arguments, which matches ANSI's specification but not VAXCRTL's
pre-ANSI implementation. This hack circumvents the mismatch problem. */
- FILE *(*vmslib_fopen)() = (FILE *(*)()) fopen;
+ FILE *(*vmslib_fopen)() = (FILE *(*)()) decc$fopen;
if (*type == 'w')
return (*vmslib_fopen) (fname, type, "mbc=32",
@@ -10230,13 +10275,12 @@ fopen (fname, type)
}
static int
-open (fname, flags, prot)
+VMS_open (fname, flags, prot)
char *fname;
int flags;
int prot;
{
-#undef open /* Get back the REAL open routine */
- return open (fname, flags, prot, "mbc=16", "deq=64", "fop=tef");
+ return decc$open (fname, flags, prot, "mbc=16", "deq=64", "fop=tef");
}
/* more VMS hackery */
@@ -10257,14 +10301,13 @@ extern unsigned long sys$parse(), sys$search();
bad enough, but then compounding the problem by reporting the reason for
failure as "normal successful completion." */
-#undef fstat /* get back to library version */
static int
VMS_fstat (fd, statbuf)
int fd;
struct stat *statbuf;
{
- int result = fstat (fd, statbuf);
+ int result = decc$fstat (fd, statbuf);
if (result < 0)
{
diff --git a/gcc/collect2.c b/gcc/collect2.c
index 576bc74669f..f18ecfe5664 100644
--- a/gcc/collect2.c
+++ b/gcc/collect2.c
@@ -1592,9 +1592,9 @@ collect_execute (prog, argv, redir)
{
unlink (redir);
if (freopen (redir, "a", stdout) == NULL)
- fatal_perror ("redirecting stdout");
+ fatal_perror ("redirecting stdout: %s", redir);
if (freopen (redir, "a", stderr) == NULL)
- fatal_perror ("redirecting stderr");
+ fatal_perror ("redirecting stderr: %s", redir);
}
execvp (argv[0], argv);
diff --git a/gcc/combine.c b/gcc/combine.c
index 3626e48e975..20bcaf9b37e 100644
--- a/gcc/combine.c
+++ b/gcc/combine.c
@@ -970,13 +970,10 @@ can_combine_p (insn, i3, pred, succ, pdest, psrc)
inputs. */
|| (REGNO (src) < FIRST_PSEUDO_REGISTER
&& (! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src))
-#ifdef SMALL_REGISTER_CLASSES
|| (SMALL_REGISTER_CLASSES
&& ((! all_adjacent && ! REG_USERVAR_P (src))
|| (FUNCTION_VALUE_REGNO_P (REGNO (src))
- && ! REG_USERVAR_P (src))))
-#endif
- ))))
+ && ! REG_USERVAR_P (src))))))))
return 0;
}
else if (GET_CODE (dest) != CC0)
@@ -1086,7 +1083,7 @@ can_combine_p (insn, i3, pred, succ, pdest, psrc)
If I1_NOT_IN_SRC is non-zero, it means that finding I1 in the source
of a SET must prevent combination from occurring.
- On machines where SMALL_REGISTER_CLASSES is defined, we don't combine
+ On machines where SMALL_REGISTER_CLASSES is non-zero, we don't combine
if the destination of a SET is a hard register that isn't a user
variable.
@@ -1163,12 +1160,9 @@ combinable_i3pat (i3, loc, i2dest, i1dest, i1_not_in_src, pi3dest_killed)
&& REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
&& (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
GET_MODE (inner_dest))
-#ifdef SMALL_REGISTER_CLASSES
- || (SMALL_REGISTER_CLASSES
- && GET_CODE (src) != CALL && ! REG_USERVAR_P (inner_dest)
- && FUNCTION_VALUE_REGNO_P (REGNO (inner_dest)))
-#endif
- ))
+ || (SMALL_REGISTER_CLASSES && GET_CODE (src) != CALL
+ && ! REG_USERVAR_P (inner_dest)
+ && FUNCTION_VALUE_REGNO_P (REGNO (inner_dest)))))
|| (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
return 0;
@@ -1308,12 +1302,10 @@ try_combine (i3, i2, i1)
if (i1 == 0 && GET_CODE (i3) == INSN && GET_CODE (PATTERN (i3)) == SET
&& GET_CODE (SET_SRC (PATTERN (i3))) == REG
&& REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
-#ifdef SMALL_REGISTER_CLASSES
&& (! SMALL_REGISTER_CLASSES
- || GET_CODE (SET_DEST (PATTERN (i3))) != REG
- || REGNO (SET_DEST (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
- || REG_USERVAR_P (SET_DEST (PATTERN (i3))))
-#endif
+ || (GET_CODE (SET_DEST (PATTERN (i3))) != REG
+ || REGNO (SET_DEST (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
+ || REG_USERVAR_P (SET_DEST (PATTERN (i3)))))
&& find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
&& GET_CODE (PATTERN (i2)) == PARALLEL
&& ! side_effects_p (SET_DEST (PATTERN (i3)))
@@ -2066,8 +2058,21 @@ try_combine (i3, i2, i1)
&& ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
XVECEXP (newpat, 0, 1)))
{
- newi2pat = XVECEXP (newpat, 0, 1);
- newpat = XVECEXP (newpat, 0, 0);
+ /* Normally, it doesn't matter which of the two is done first,
+ but it does if one references cc0. In that case, it has to
+ be first. */
+#ifdef HAVE_cc0
+ if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
+ {
+ newi2pat = XVECEXP (newpat, 0, 0);
+ newpat = XVECEXP (newpat, 0, 1);
+ }
+ else
+#endif
+ {
+ newi2pat = XVECEXP (newpat, 0, 1);
+ newpat = XVECEXP (newpat, 0, 0);
+ }
i2_code_number
= recog_for_combine (&newi2pat, i2, &new_i2_notes, &i2_scratches);
@@ -2293,7 +2298,9 @@ try_combine (i3, i2, i1)
}
/* If I3DEST was used in I3SRC, it really died in I3. We may need to
- put a REG_DEAD note for it somewhere. Similarly for I2 and I1.
+ put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
+ I3DEST, the death must be somewhere before I2, not I3. If we passed I3
+ in that case, it might delete I2. Similarly for I2 and I1.
Show an additional death due to the REG_DEAD note we make here. If
we discard it in distribute_notes, we will decrement it again. */
@@ -2302,16 +2309,17 @@ try_combine (i3, i2, i1)
if (GET_CODE (i3dest_killed) == REG)
REG_N_DEATHS (REGNO (i3dest_killed))++;
- distribute_notes (gen_rtx (EXPR_LIST, REG_DEAD, i3dest_killed,
- NULL_RTX),
- NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
- NULL_RTX, NULL_RTX);
+ if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
+ distribute_notes (gen_rtx (EXPR_LIST, REG_DEAD, i3dest_killed,
+ NULL_RTX),
+ NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
+ else
+ distribute_notes (gen_rtx (EXPR_LIST, REG_DEAD, i3dest_killed,
+ NULL_RTX),
+ NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
+ NULL_RTX, NULL_RTX);
}
- /* For I2 and I1, we have to be careful. If NEWI2PAT exists and sets
- I2DEST or I1DEST, the death must be somewhere before I2, not I3. If
- we passed I3 in that case, it might delete I2. */
-
if (i2dest_in_i2src)
{
if (GET_CODE (i2dest) == REG)
@@ -2730,6 +2738,9 @@ find_split_point (loc, insn)
unsignedp = (code == ZERO_EXTRACT);
}
break;
+
+ default:
+ break;
}
if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
@@ -2826,6 +2837,9 @@ find_split_point (loc, insn)
SUBST (XEXP (x, 1), tem);
}
break;
+
+ default:
+ break;
}
/* Otherwise, select our actions depending on our rtx class. */
@@ -4083,6 +4097,9 @@ simplify_rtx (x, op0_mode, last, in_dest)
#endif
break;
+
+ default:
+ break;
}
return x;
@@ -4230,6 +4247,8 @@ simplify_if_then_else (x)
case LT:
case LE:
return gen_unary (NEG, mode, mode, gen_unary (ABS, mode, mode, true));
+ default:
+ break;
}
/* Look for MIN or MAX. */
@@ -4253,6 +4272,8 @@ simplify_if_then_else (x)
case LEU:
case LTU:
return gen_binary (UMIN, mode, true, false);
+ default:
+ break;
}
/* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
@@ -4943,6 +4964,9 @@ simplify_logical (x, last)
return gen_rtx_combine (reverse_condition (GET_CODE (op0)),
mode, XEXP (op0, 0), XEXP (op0, 1));
break;
+
+ default:
+ abort ();
}
return x;
@@ -5656,6 +5680,9 @@ extract_left_shift (x, count)
GEN_INT (INTVAL (XEXP (x, 1)) >> count));
break;
+
+ default:
+ break;
}
return 0;
@@ -5897,6 +5924,10 @@ make_compound_operation (x, in_code)
return newer;
}
+ break;
+
+ default:
+ break;
}
if (new)
@@ -6466,6 +6497,9 @@ force_to_mode (x, mode, mask, reg, just_select)
force_to_mode (XEXP (x, 2), mode,
mask, reg,next_select)));
break;
+
+ default:
+ break;
}
/* Ensure we return a value of the proper mode. */
@@ -6688,6 +6722,8 @@ known_cond (x, cond, reg, val)
case LT: case LE:
return gen_unary (NEG, GET_MODE (XEXP (x, 0)), GET_MODE (XEXP (x, 0)),
XEXP (x, 0));
+ default:
+ break;
}
/* The only other cases we handle are MIN, MAX, and comparisons if the
@@ -6724,6 +6760,8 @@ known_cond (x, cond, reg, val)
return unsignedp ? XEXP (x, 1) : x;
case LEU: case LTU:
return unsignedp ? XEXP (x, 0) : x;
+ default:
+ break;
}
}
}
@@ -7435,6 +7473,8 @@ nonzero_bits (x, mode)
result_width = MIN (width0, width1);
result_low = MIN (low0, low1);
break;
+ default:
+ abort ();
}
if (result_width < mode_width)
@@ -7537,6 +7577,9 @@ nonzero_bits (x, mode)
nonzero &= (nonzero_bits (XEXP (x, 1), mode)
| nonzero_bits (XEXP (x, 2), mode));
break;
+
+ default:
+ break;
}
return nonzero;
@@ -7578,13 +7621,25 @@ num_sign_bit_copies (x, mode)
return MAX (1, (num_sign_bit_copies (x, GET_MODE (x))
- (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth)));
+ if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
+ {
#ifndef WORD_REGISTER_OPERATIONS
/* If this machine does not do all register operations on the entire
register and MODE is wider than the mode of X, we can say nothing
at all about the high-order bits. */
- if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
- return 1;
+ return 1;
+#else
+ /* Likewise on machines that do, if the mode of the object is smaller
+ than a word and loads of that size don't sign extend, we can say
+ nothing about the high order bits. */
+ if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
+#ifdef LOAD_EXTEND_OP
+ && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
+#endif
+ )
+ return 1;
#endif
+ }
switch (code)
{
@@ -7824,6 +7879,10 @@ num_sign_bit_copies (x, mode)
case GEU: case GTU: case LEU: case LTU:
if (STORE_FLAG_VALUE == -1)
return bitwidth;
+ break;
+
+ default:
+ break;
}
/* If we haven't been able to figure it out by one of the above rules,
@@ -7935,6 +7994,8 @@ merge_outer_ops (pop0, pconst0, op1, const1, mode, pcomp_p)
case NEG:
op0 = NIL;
break;
+ default:
+ break;
}
}
@@ -7976,6 +8037,8 @@ merge_outer_ops (pop0, pconst0, op1, const1, mode, pcomp_p)
/* (a ^ b) & b) == (~a) & b */
*pcomp_p = 1;
break;
+ default:
+ break;
}
/* Check for NO-OP cases. */
@@ -8609,6 +8672,9 @@ simplify_shift_const (x, code, result_mode, varop, count)
continue;
}
break;
+
+ default:
+ break;
}
break;
@@ -9441,6 +9507,9 @@ simplify_comparison (code, pop0, pop1)
code = LT;
}
break;
+
+ default:
+ break;
}
/* Compute some predicates to simplify code below. */
@@ -9973,6 +10042,9 @@ simplify_comparison (code, pop0, pop1)
continue;
}
break;
+
+ default:
+ break;
}
break;
@@ -10103,9 +10175,10 @@ reversible_comparison_p (x)
x = get_last_value (XEXP (x, 0));
return (x && GET_CODE (x) == COMPARE
&& ! FLOAT_MODE_P (GET_MODE (XEXP (x, 0))));
+
+ default:
+ return 0;
}
-
- return 0;
}
/* Utility function for following routine. Called when X is part of a value
@@ -10712,8 +10785,11 @@ mark_used_regs_combine (x)
mark_used_regs_combine (XEXP (testreg, 0));
mark_used_regs_combine (SET_SRC (x));
- return;
}
+ return;
+
+ default:
+ break;
}
/* Recursively scan the operands of this expression. */
diff --git a/gcc/config.in b/gcc/config.in
index 318dadc8908..f7abfb933dd 100644
--- a/gcc/config.in
+++ b/gcc/config.in
@@ -1,9 +1,4 @@
/* config.in. Generated automatically from configure.in by autoheader. */
-
-/* Include the old config.h as config2.h to simplify the transition
- to autoconf. */
-#include "config2.h"
-
/* Whether malloc must be declared even if <stdlib.h> is included. */
#undef NEED_DECLARATION_MALLOC
@@ -28,6 +23,12 @@
/* Define if you have the strtoul function. */
#undef HAVE_STRTOUL
+/* Define if you have the <inttypes.h> header file. */
+#undef HAVE_INTTYPES_H
+
+/* Define if you have the <limits.h> header file. */
+#undef HAVE_LIMITS_H
+
/* Define if you have the <stddef.h> header file. */
#undef HAVE_STDDEF_H
diff --git a/gcc/config.sub b/gcc/config.sub
index 5e4e7ed2298..213a6d47d67 100755
--- a/gcc/config.sub
+++ b/gcc/config.sub
@@ -155,6 +155,7 @@ case $basic_machine in
| alpha | alphaev5 | alphaev56 | we32k | ns16k | clipper \
| i370 | sh | powerpc | powerpcle | 1750a | dsp16xx | pdp11 \
| mips64 | mipsel | mips64el | mips64orion | mips64orionel \
+ | mipstx39 | mipstx39el \
| sparc | sparclet | sparclite | sparc64 | v850)
basic_machine=$basic_machine-unknown
;;
@@ -179,7 +180,9 @@ case $basic_machine in
| ns16k-* | pn-* | np1-* | xps100-* | clipper-* | orion-* \
| sparclite-* | pdp11-* | sh-* | powerpc-* | powerpcle-* \
| sparc64-* | mips64-* | mipsel-* \
- | mips64el-* | mips64orion-* | mips64orionel-* | f301-*)
+ | mips64el-* | mips64orion-* | mips64orionel-* \
+ | mipstx39-* | mipstx39el-* \
+ | f301-*)
;;
# Recognize the various machine names and aliases which stand
# for a CPU type and a company and sometimes even an OS.
@@ -568,6 +571,12 @@ case $basic_machine in
basic_machine=i386-sequent
os=-dynix
;;
+ tx39)
+ basic_machine=mipstx39-unknown
+ ;;
+ tx39el)
+ basic_machine=mipstx39el-unknown
+ ;;
tower | tower-32)
basic_machine=m68k-ncr
;;
diff --git a/gcc/config/alpha/alpha.c b/gcc/config/alpha/alpha.c
index 0c5334004f4..88771b9396d 100644
--- a/gcc/config/alpha/alpha.c
+++ b/gcc/config/alpha/alpha.c
@@ -20,8 +20,8 @@ the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
-#include <stdio.h>
#include "config.h"
+#include <stdio.h>
#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
@@ -100,16 +100,12 @@ static void add_long_const PROTO((FILE *, HOST_WIDE_INT, int, int, int));
/* Compute the size of the save area in the stack. */
static void alpha_sa_mask PROTO((unsigned long *imaskP,
unsigned long *fmaskP));
-
-/* Strip type information. */
-#define CURRENT_FUNCTION_ARGS_INFO \
-(TARGET_OPEN_VMS ? current_function_args_info & 0xff \
- : current_function_args_info)
-
-/* Some helpful register info. */
-#define REG_PV 27
-#define REG_RA 26
-
+/* Get the number of args of a function in one of two ways. */
+#ifdef OPEN_VMS
+#define NUM_ARGS current_function_args_info.num_args
+#else
+#define NUM_ARGS current_function_args_info
+#endif
/* Parse target option strings. */
@@ -117,21 +113,42 @@ void
override_options ()
{
alpha_cpu
- = TARGET_CPU_DEFAULT & MASK_CPU_EV5 ? PROCESSOR_EV5 : PROCESSOR_EV4;
+ = TARGET_CPU_DEFAULT & MASK_CPU_EV6 ? PROCESSOR_EV6
+ : (TARGET_CPU_DEFAULT & MASK_CPU_EV5 ? PROCESSOR_EV5 : PROCESSOR_EV4);
if (alpha_cpu_string)
{
if (! strcmp (alpha_cpu_string, "ev4")
|| ! strcmp (alpha_cpu_string, "21064"))
- alpha_cpu = PROCESSOR_EV4;
+ {
+ alpha_cpu = PROCESSOR_EV4;
+ target_flags &= ~ (MASK_BWX | MASK_CIX | MASK_MAX);
+ }
else if (! strcmp (alpha_cpu_string, "ev5")
|| ! strcmp (alpha_cpu_string, "21164"))
- alpha_cpu = PROCESSOR_EV5;
+ {
+ alpha_cpu = PROCESSOR_EV5;
+ target_flags &= ~ (MASK_BWX | MASK_CIX | MASK_MAX);
+ }
else if (! strcmp (alpha_cpu_string, "ev56")
|| ! strcmp (alpha_cpu_string, "21164a"))
{
alpha_cpu = PROCESSOR_EV5;
- target_flags |= MASK_BYTE_OPS;
+ target_flags |= MASK_BWX;
+ target_flags &= ~ (MASK_CIX | MASK_MAX);
+ }
+ else if (! strcmp (alpha_cpu_string, "pca56")
+ || ! strcmp (alpha_cpu_string, "21164PC"))
+ {
+ alpha_cpu = PROCESSOR_EV5;
+ target_flags |= MASK_BWX | MASK_MAX;
+ target_flags &= ~ MASK_CIX;
+ }
+ else if (! strcmp (alpha_cpu_string, "ev6")
+ || ! strcmp (alpha_cpu_string, "21264"))
+ {
+ alpha_cpu = PROCESSOR_EV6;
+ target_flags |= MASK_BWX | MASK_CIX | MASK_MAX;
}
else
error ("bad value `%s' for -mcpu switch", alpha_cpu_string);
@@ -487,7 +504,7 @@ input_operand (op, mode)
return 1;
/* ... fall through ... */
case MEM:
- return ((TARGET_BYTE_OPS || (mode != HImode && mode != QImode))
+ return ((TARGET_BWX || (mode != HImode && mode != QImode))
&& general_operand (op, mode));
case CONST_DOUBLE:
@@ -1441,12 +1458,12 @@ print_operand (file, x, code)
case ',':
/* Generates single precision instruction suffix. */
- fprintf (file, "%c", (TARGET_FLOAT_VAX?'f':'s'));
+ fprintf (file, "%c", (TARGET_FLOAT_VAX ? 'f' : 's'));
break;
case '-':
/* Generates double precision instruction suffix. */
- fprintf (file, "%c", (TARGET_FLOAT_VAX?'g':'t'));
+ fprintf (file, "%c", (TARGET_FLOAT_VAX ? 'g' : 't'));
break;
case 'r':
@@ -1673,9 +1690,9 @@ alpha_builtin_saveregs (arglist)
/* Compute the current position into the args, taking into account
both registers and memory. Both of these are already included in
- current_function_args_info. */
+ NUM_ARGS. */
- argsize = GEN_INT (CURRENT_FUNCTION_ARGS_INFO * UNITS_PER_WORD);
+ argsize = GEN_INT (NUM_ARGS * UNITS_PER_WORD);
/* For Unix, SETUP_INCOMING_VARARGS moves the starting address base up by 48,
storing fp arg registers in the first 48 bytes, and the integer arg
@@ -1688,10 +1705,10 @@ alpha_builtin_saveregs (arglist)
if (TARGET_OPEN_VMS)
addr = plus_constant (virtual_incoming_args_rtx,
- CURRENT_FUNCTION_ARGS_INFO <= 5 + stdarg
+ NUM_ARGS <= 5 + stdarg
? UNITS_PER_WORD : - 6 * UNITS_PER_WORD);
else
- addr = (CURRENT_FUNCTION_ARGS_INFO <= 5 + stdarg
+ addr = (NUM_ARGS <= 5 + stdarg
? plus_constant (virtual_incoming_args_rtx,
6 * UNITS_PER_WORD)
: plus_constant (virtual_incoming_args_rtx,
@@ -1750,6 +1767,39 @@ alpha_builtin_saveregs (arglist)
}
}
+#if OPEN_VMS
+#define REG_PV 27
+#define REG_RA 26
+#else
+#define REG_RA 26
+#endif
+
+/* Find the current function's return address.
+
+ ??? It would be better to arrange things such that if we would ordinarily
+ have been a leaf function and we didn't spill the hard reg that we
+ wouldn't have to save the register in the prolog. But it's not clear
+ how to get the right information at the right time. */
+
+static rtx alpha_return_addr_rtx;
+
+rtx
+alpha_return_addr ()
+{
+ rtx ret;
+
+ if ((ret = alpha_return_addr_rtx) == NULL)
+ {
+ alpha_return_addr_rtx = ret = gen_reg_rtx (Pmode);
+
+ emit_insn_after (gen_rtx (SET, VOIDmode, ret,
+ gen_rtx (REG, Pmode, REG_RA)),
+ get_insns ());
+ }
+
+ return ret;
+}
+
/* This page contains routines that are used to determine what the function
prologue and epilogue code will do and write them out. */
@@ -2316,6 +2366,18 @@ alpha_does_function_need_gp ()
return 0;
}
+int
+vms_valid_decl_attribute_p (decl, attributes, identifier, args)
+ tree decl;
+ tree attributes;
+ tree identifier;
+ tree args;
+{
+ if (is_attribute_p ("overlaid", identifier))
+ return (args == NULL_TREE);
+ return 0;
+}
+
void
output_prolog (file, size)
FILE *file;
@@ -2646,6 +2708,8 @@ output_epilog (file, size)
/* Show that we know this function if it is called again. */
SYMBOL_REF_FLAG (XEXP (DECL_RTL (current_function_decl), 0)) = 1;
+
+ alpha_return_addr_rtx = 0;
}
#endif /* !OPEN_VMS */
@@ -3124,46 +3188,39 @@ check_float_value (mode, d, overflow)
#if OPEN_VMS
-void *
-function_arg (cum, mode, type, named)
- CUMULATIVE_ARGS *cum;
- enum machine_mode mode;
- tree type;
- int named;
-{
- int arg;
+/* Return the VMS argument type corresponding to MODE. */
- if (mode == VOIDmode) /* final call, return argument information */
+enum avms_arg_type
+alpha_arg_type (mode)
+ enum machine_mode mode;
+{
+ switch (mode)
{
- return GEN_INT (*cum);
+ case SFmode:
+ return TARGET_FLOAT_VAX ? FF : FS;
+ case DFmode:
+ return TARGET_FLOAT_VAX ? FD : FT;
+ default:
+ return I64;
}
+}
- arg = *cum & 0xff;
+/* Return an rtx for an integer representing the VMS Argument Information
+ register value. */
- switch (mode)
- {
- case SFmode:
- *cum |= (((TARGET_FLOAT_VAX)?1:4) << ((arg * 3)+8)); /* 4 = AI$K_AR_FS, IEEE single */
- break;
- case DFmode:
- *cum |= (((TARGET_FLOAT_VAX)?3:5) << ((arg * 3)+8)); /* 5 = AI$K_AR_FT, IEEE double */
- break;
- case TFmode:
- *cum |= (7 << ((arg * 3)+8)); /* 5 = AI$K_AR_FT, IEEE double */
- break;
- default:
- break;
- }
+struct rtx_def *
+alpha_arg_info_reg_val (cum)
+ CUMULATIVE_ARGS cum;
+{
+ unsigned HOST_WIDE_INT regval = cum.num_args;
+ int i;
- return (arg < 6 && ! MUST_PASS_IN_STACK (mode, type)
- ? gen_rtx(REG, mode,
- (*cum & 0xff) + 16 + ((TARGET_FPREGS
- && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
- || GET_MODE_CLASS (mode) == MODE_FLOAT))
- * 32))
- : 0);
-}
+ for (i = 0; i < 6; i++)
+ regval |= ((int) cum.atypes[i]) << (i * 3 + 8);
+ return GEN_INT (regval);
+}
+
/* Structure to collect function names for final output
in link section. */
diff --git a/gcc/config/alpha/alpha.h b/gcc/config/alpha/alpha.h
index 77020bc0e30..2618b2221be 100644
--- a/gcc/config/alpha/alpha.h
+++ b/gcc/config/alpha/alpha.h
@@ -80,7 +80,8 @@ Boston, MA 02111-1307, USA. */
enum processor_type
{PROCESSOR_EV4, /* 2106[46]{a,} */
- PROCESSOR_EV5}; /* 21164{a,} */
+ PROCESSOR_EV5, /* 21164{a,pc,} */
+ PROCESSOR_EV6}; /* 21264 */
extern enum processor_type alpha_cpu;
@@ -168,14 +169,31 @@ extern enum alpha_fp_trap_mode alpha_fptm;
#define MASK_FLOAT_VAX 512
#define TARGET_FLOAT_VAX (target_flags & MASK_FLOAT_VAX)
-/* This means that the processor has byte and half word loads and stores. */
+/* This means that the processor has byte and half word loads and stores
+ (the BWX extension). */
-#define MASK_BYTE_OPS 1024
-#define TARGET_BYTE_OPS (target_flags & MASK_BYTE_OPS)
+#define MASK_BWX 1024
+#define TARGET_BWX (target_flags & MASK_BWX)
-/* This means that the processor is an EV5 or EV56. This is defined only
- in TARGET_CPU_DEFAULT. */
-#define MASK_CPU_EV5 2048
+/* This means that the processor has the CIX extension. */
+#define MASK_CIX 2048
+#define TARGET_CIX (target_flags & MASK_CIX)
+
+/* This means that the processor has the MAX extension. */
+#define MASK_MAX 4096
+#define TARGET_MAX (target_flags & MASK_MAX)
+
+/* This means that the processor is an EV5, EV56, or PCA56. This is defined
+ only in TARGET_CPU_DEFAULT. */
+#define MASK_CPU_EV5 8192
+
+/* Likewise for EV6. */
+#define MASK_CPU_EV6 16384
+
+/* This means we support the .arch directive in the assembler. Only
+ defined in TARGET_CPU_DEFAULT. */
+#define MASK_SUPPORT_ARCH 32768
+#define TARGET_SUPPORT_ARCH (target_flags & MASK_SUPPORT_ARCH)
/* Macro to define tables used to set the flags.
This is a list in braces of pairs in braces,
@@ -196,8 +214,12 @@ extern enum alpha_fp_trap_mode alpha_fptm;
{"build-constants", MASK_BUILD_CONSTANTS}, \
{"float-vax", MASK_FLOAT_VAX}, \
{"float-ieee", -MASK_FLOAT_VAX}, \
- {"byte", MASK_BYTE_OPS}, \
- {"no-byte", -MASK_BYTE_OPS}, \
+ {"bwx", MASK_BWX}, \
+ {"no-bwx", -MASK_BWX}, \
+ {"cix", MASK_CIX}, \
+ {"no-cix", -MASK_CIX}, \
+ {"max", MASK_MAX}, \
+ {"no-max", -MASK_MAX}, \
{"", TARGET_DEFAULT | TARGET_CPU_DEFAULT} }
#define TARGET_DEFAULT MASK_FP|MASK_FPREGS
@@ -403,7 +425,7 @@ extern void override_options ();
/* For atomic access to objects, must have at least 32-bit alignment
unless the machine has byte operations. */
-#define MINIMUM_ATOMIC_ALIGNMENT (TARGET_BYTE_OPS ? 8 : 32)
+#define MINIMUM_ATOMIC_ALIGNMENT (TARGET_BWX ? 8 : 32)
/* Align all constants and variables to at least a word boundary so
we can pick up pieces of them faster. */
@@ -711,7 +733,7 @@ enum reg_class { NO_REGS, GENERAL_REGS, FLOAT_REGS, ALL_REGS,
&& (((CLASS) == FLOAT_REGS \
&& ((MODE) == SImode || (MODE) == HImode || (MODE) == QImode)) \
|| (((MODE) == QImode || (MODE) == HImode) \
- && ! TARGET_BYTE_OPS && unaligned_memory_operand (IN, MODE)))) \
+ && ! TARGET_BWX && unaligned_memory_operand (IN, MODE)))) \
? GENERAL_REGS \
: ((CLASS) == FLOAT_REGS && GET_CODE (IN) == MEM \
&& GET_CODE (XEXP (IN, 0)) == AND) ? GENERAL_REGS \
@@ -727,7 +749,7 @@ enum reg_class { NO_REGS, GENERAL_REGS, FLOAT_REGS, ALL_REGS,
&& (GET_CODE (SUBREG_REG (OUT)) == MEM \
|| (GET_CODE (SUBREG_REG (OUT)) == REG \
&& REGNO (SUBREG_REG (OUT)) >= FIRST_PSEUDO_REGISTER)))) \
- && ((((MODE) == HImode || (MODE) == QImode) && ! TARGET_BYTE_OPS \
+ && ((((MODE) == HImode || (MODE) == QImode) && ! TARGET_BWX \
|| ((MODE) == SImode && (CLASS) == FLOAT_REGS)))) \
? GENERAL_REGS \
: ((CLASS) == FLOAT_REGS && GET_CODE (OUT) == MEM \
@@ -738,9 +760,10 @@ enum reg_class { NO_REGS, GENERAL_REGS, FLOAT_REGS, ALL_REGS,
: NO_REGS)
/* If we are copying between general and FP registers, we need a memory
- location. */
+ location unless the CIX extension is available. */
-#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) ((CLASS1) != (CLASS2))
+#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
+ (! TARGET_CIX && (CLASS1) != (CLASS2))
/* Specify the mode to be used for memory when a secondary memory
location is needed. If MODE is floating-point, use it. Otherwise,
@@ -890,7 +913,7 @@ enum reg_class { NO_REGS, GENERAL_REGS, FLOAT_REGS, ALL_REGS,
#define FUNCTION_VALUE(VALTYPE, FUNC) \
gen_rtx (REG, \
- (INTEGRAL_MODE_P (TYPE_MODE (VALTYPE)) \
+ (INTEGRAL_TYPE_P (VALTYPE) \
&& TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
? word_mode : TYPE_MODE (VALTYPE), \
((TARGET_FPREGS \
@@ -1538,7 +1561,7 @@ extern void alpha_init_expanders ();
/* Define the value returned by a floating-point comparison instruction. */
-#define FLOAT_STORE_FLAG_VALUE 2.0
+#define FLOAT_STORE_FLAG_VALUE (TARGET_FLOAT_VAX ? 0.5 : 2.0)
/* Canonicalize a comparison from one we don't have to one we do have. */
@@ -1714,14 +1737,6 @@ extern void alpha_init_expanders ();
/* Control the assembler format that we output. */
-/* Emit the .arch pseudo op. This is separated out, because versions of
- OSF before 4.0 do not support it. */
-
-#define ARCH_ASM_FILE_START(FILE) \
- fprintf (FILE, "\t.arch %s\n", \
- (TARGET_BYTE_OPS ? "ev56" \
- : alpha_cpu == PROCESSOR_EV4 ? "ev4" : "ev5"));
-
/* Output at beginning of assembler file. */
#define ASM_FILE_START(FILE) \
@@ -1730,7 +1745,13 @@ extern void alpha_init_expanders ();
fprintf (FILE, "\t.set noreorder\n"); \
fprintf (FILE, "\t.set volatile\n"); \
fprintf (FILE, "\t.set noat\n"); \
- ARCH_ASM_FILE_START (FILE); \
+ if (TARGET_SUPPORT_ARCH) \
+ fprintf (FILE, "\t.arch %s\n", \
+ alpha_cpu == PROCESSOR_EV6 ? "ev6" \
+ : (alpha_cpu == PROCESSOR_EV5 \
+ ? (TARGET_MAX ? "pca56" : TARGET_BWX ? "ev56" : "ev5") \
+ : "ev4")); \
+ \
ASM_OUTPUT_SOURCE_FILENAME (FILE, main_input_filename); \
}
@@ -2268,8 +2289,9 @@ do { \
??? Stricly speaking, we only need -g if the user specifies -g. Passing
it always means that we get slightly larger than necessary object files
if the user does not specify -g. If we don't pass -g, then mips-tfile
- will need to be fixed to work in this case. */
-#define ASM_SPEC "%{!mgas:-g} -nocpp %{pg}"
+ will need to be fixed to work in this case. Pass -O0 since some
+ optimization are broken and don't help us anyway. */
+#define ASM_SPEC "%{!mgas:-g} -nocpp %{pg} -O0"
#endif
/* Specify to run a post-processor, mips-tfile after the assembler
diff --git a/gcc/config/alpha/alpha.md b/gcc/config/alpha/alpha.md
index 570ab915ae2..c12acfbc4a7 100644
--- a/gcc/config/alpha/alpha.md
+++ b/gcc/config/alpha/alpha.md
@@ -24,7 +24,7 @@
;; Processor type -- this attribute must exactly match the processor_type
;; enumeration in alpha.h.
-(define_attr "cpu" "ev4,ev5"
+(define_attr "cpu" "ev4,ev5,ev6"
(const (symbol_ref "alpha_cpu")))
;; Define an insn type attribute. This is used in function unit delay
@@ -115,66 +115,67 @@
64 59)
;; EV5 scheduling. EV5 can issue 4 insns per clock.
+;; We consider the EV6 and EV5 for now.
;; EV5 has two asymetric integer units. Model this with ebox,e0,e1.
;; Everything uses ebox, and those that require particular pipes grab
;; those as well.
(define_function_unit "ev5_ebox" 2 0
- (and (eq_attr "cpu" "ev5")
+ (and (eq_attr "cpu" "ev5,ev6")
(eq_attr "type" "iadd,ilog,icmp,st,shift,imull,imulq,imulh"))
1 1)
;; Memory takes at least 2 clocks, and load cannot dual issue with stores.
(define_function_unit "ev5_ebox" 2 0
- (and (eq_attr "cpu" "ev5")
+ (and (eq_attr "cpu" "ev5,ev6")
(eq_attr "type" "ld,ldsym"))
2 1)
(define_function_unit "ev5_e0" 1 0
- (and (eq_attr "cpu" "ev5")
+ (and (eq_attr "cpu" "ev5,ev6")
(eq_attr "type" "ld,ldsym"))
0 1
[(eq_attr "type" "st")])
;; Conditional moves always take 2 ticks.
(define_function_unit "ev5_ebox" 2 0
- (and (eq_attr "cpu" "ev5")
+ (and (eq_attr "cpu" "ev5,ev6")
(eq_attr "type" "cmov"))
2 1)
;; Stores, shifts, and multiplies can only issue to E0
(define_function_unit "ev5_e0" 1 0
- (and (eq_attr "cpu" "ev5")
+ (and (eq_attr "cpu" "ev5,ev6")
(eq_attr "type" "st"))
1 1)
;; But shifts and multiplies don't conflict with loads.
(define_function_unit "ev5_e0" 1 0
- (and (eq_attr "cpu" "ev5")
+ (and (eq_attr "cpu" "ev5,ev6")
(eq_attr "type" "shift,imull,imulq,imulh"))
1 1
[(eq_attr "type" "st,shift,imull,imulq,imulh")])
;; Branches can only issue to E1
(define_function_unit "ev5_e1" 1 0
- (and (eq_attr "cpu" "ev5")
+ (and (eq_attr "cpu" "ev5,ev6")
(eq_attr "type" "ibr,jsr"))
1 1)
;; Multiplies also use the integer multiplier.
(define_function_unit "ev5_imult" 1 0
- (and (eq_attr "cpu" "ev5")
+ (and (eq_attr "cpu" "ev5,ev6")
(eq_attr "type" "imull"))
8 4)
(define_function_unit "ev5_imult" 1 0
- (and (eq_attr "cpu" "ev5")
+ (and (eq_attr "cpu" "ev5,ev6")
(eq_attr "type" "imulq"))
12 8)
(define_function_unit "ev5_imult" 1 0
- (and (eq_attr "cpu" "ev5")
+ (and (eq_attr "cpu" "ev5,ev6")
(eq_attr "type" "imulh"))
14 8)
@@ -182,33 +183,33 @@
;; on either so we have to play the game again.
(define_function_unit "ev5_fpu" 2 0
- (and (eq_attr "cpu" "ev5")
+ (and (eq_attr "cpu" "ev5,ev6")
(eq_attr "type" "fadd,fmul,fcpys,fbr,fdivs,fdivt"))
4 1)
;; Multiplies (resp. adds) also use the fmul (resp. fadd) units.
(define_function_unit "ev5_fm" 1 0
- (and (eq_attr "cpu" "ev5")
+ (and (eq_attr "cpu" "ev5,ev6")
(eq_attr "type" "fmul"))
4 1)
(define_function_unit "ev5_fa" 1 0
- (and (eq_attr "cpu" "ev5")
+ (and (eq_attr "cpu" "ev5,ev6")
(eq_attr "type" "fadd"))
4 1)
(define_function_unit "ev5_fa" 1 0
- (and (eq_attr "cpu" "ev5")
+ (and (eq_attr "cpu" "ev5,ev6")
(eq_attr "type" "fbr"))
1 1)
(define_function_unit "ev5_fa" 1 0
- (and (eq_attr "cpu" "ev5")
+ (and (eq_attr "cpu" "ev5,ev6")
(eq_attr "type" "fdivs"))
15 1)
(define_function_unit "ev5_fa" 1 0
- (and (eq_attr "cpu" "ev5")
+ (and (eq_attr "cpu" "ev5,ev6")
(eq_attr "type" "fdivt"))
22 1)
@@ -810,7 +811,7 @@
(define_insn ""
[(set (match_operand:SI 0 "register_operand" "=r,r")
(zero_extend:SI (match_operand:QI 1 "nonimmediate_operand" "r,m")))]
- "TARGET_BYTE_OPS"
+ "TARGET_BWX"
"@
zapnot %1,1,%0
ldbu %0,%1"
@@ -819,7 +820,7 @@
(define_insn ""
[(set (match_operand:SI 0 "register_operand" "=r")
(zero_extend:SI (match_operand:QI 1 "register_operand" "r")))]
- "! TARGET_BYTE_OPS"
+ "! TARGET_BWX"
"zapnot %1,1,%0"
[(set_attr "type" "shift")])
@@ -832,7 +833,7 @@
(define_insn ""
[(set (match_operand:DI 0 "register_operand" "=r,r")
(zero_extend:DI (match_operand:QI 1 "nonimmediate_operand" "r,m")))]
- "TARGET_BYTE_OPS"
+ "TARGET_BWX"
"@
zapnot %1,1,%0
ldbu %0,%1"
@@ -841,7 +842,7 @@
(define_insn ""
[(set (match_operand:DI 0 "register_operand" "=r")
(zero_extend:DI (match_operand:QI 1 "register_operand" "r")))]
- "! TARGET_BYTE_OPS"
+ "! TARGET_BWX"
"zapnot %1,1,%0"
[(set_attr "type" "shift")])
@@ -854,7 +855,7 @@
(define_insn ""
[(set (match_operand:SI 0 "register_operand" "=r,r")
(zero_extend:SI (match_operand:HI 1 "nonimmediate_operand" "r,m")))]
- "TARGET_BYTE_OPS"
+ "TARGET_BWX"
"@
zapnot %1,3,%0
ldwu %0,%1"
@@ -863,7 +864,7 @@
(define_insn ""
[(set (match_operand:SI 0 "register_operand" "=r")
(zero_extend:SI (match_operand:HI 1 "register_operand" "r")))]
- "! TARGET_BYTE_OPS"
+ "! TARGET_BWX"
"zapnot %1,3,%0"
[(set_attr "type" "shift")])
@@ -876,7 +877,7 @@
(define_insn ""
[(set (match_operand:DI 0 "register_operand" "=r,r")
(zero_extend:DI (match_operand:HI 1 "nonimmediate_operand" "r,m")))]
- "TARGET_BYTE_OPS"
+ "TARGET_BWX"
"@
zapnot %1,3,%0
ldwu %0,%1"
@@ -953,6 +954,30 @@
"eqv %r1,%2,%0"
[(set_attr "type" "ilog")])
+;; Handle the FFS insn if we support CIX.
+
+(define_expand "ffsdi2"
+ [(set (match_dup 2)
+ (unspec [(match_operand:DI 1 "register_operand" "")] 1))
+ (set (match_dup 3)
+ (plus:DI (match_dup 2) (const_int 1)))
+ (set (match_operand:DI 0 "register_operand" "")
+ (if_then_else:DI (eq (match_dup 1) (const_int 0))
+ (const_int 0) (match_dup 3)))]
+ "TARGET_CIX"
+ "
+{
+ operands[2] = gen_reg_rtx (DImode);
+ operands[3] = gen_reg_rtx (DImode);
+}")
+
+(define_insn ""
+ [(set (match_operand:DI 0 "register_operand" "=r")
+ (unspec [(match_operand:DI 1 "register_operand" "r")] 1))]
+ "TARGET_CIX"
+ "cttz %1,%0"
+ [(set_attr "type" "shift")])
+
;; Next come the shifts and the various extract and insert operations.
(define_insn "ashldi3"
@@ -1020,7 +1045,7 @@
""
"
{
- if (TARGET_BYTE_OPS)
+ if (TARGET_BWX)
{
emit_insn (gen_extendqihi2x (operands[0],
force_reg (QImode, operands[1])));
@@ -1046,35 +1071,35 @@
(define_insn "extendqidi2x"
[(set (match_operand:DI 0 "register_operand" "=r")
(sign_extend:DI (match_operand:QI 1 "register_operand" "r")))]
- "TARGET_BYTE_OPS"
+ "TARGET_BWX"
"sextb %1,%0"
[(set_attr "type" "shift")])
(define_insn "extendhidi2x"
[(set (match_operand:DI 0 "register_operand" "=r")
(sign_extend:DI (match_operand:HI 1 "register_operand" "r")))]
- "TARGET_BYTE_OPS"
+ "TARGET_BWX"
"sextw %1,%0"
[(set_attr "type" "shift")])
(define_insn "extendqisi2x"
[(set (match_operand:SI 0 "register_operand" "=r")
(sign_extend:SI (match_operand:QI 1 "register_operand" "r")))]
- "TARGET_BYTE_OPS"
+ "TARGET_BWX"
"sextb %1,%0"
[(set_attr "type" "shift")])
(define_insn "extendhisi2x"
[(set (match_operand:SI 0 "register_operand" "=r")
(sign_extend:SI (match_operand:HI 1 "register_operand" "r")))]
- "TARGET_BYTE_OPS"
+ "TARGET_BWX"
"sextw %1,%0"
[(set_attr "type" "shift")])
(define_insn "extendqihi2x"
[(set (match_operand:HI 0 "register_operand" "=r")
(sign_extend:HI (match_operand:QI 1 "register_operand" "r")))]
- "TARGET_BYTE_OPS"
+ "TARGET_BWX"
"sextb %1,%0"
[(set_attr "type" "shift")])
@@ -1088,7 +1113,7 @@
""
"
{
- if (TARGET_BYTE_OPS)
+ if (TARGET_BWX)
{
emit_insn (gen_extendqisi2x (operands[0],
force_reg (QImode, operands[1])));
@@ -1122,7 +1147,7 @@
"
{ extern rtx get_unaligned_address ();
- if (TARGET_BYTE_OPS)
+ if (TARGET_BWX)
{
emit_insn (gen_extendqidi2x (operands[0],
force_reg (QImode, operands[1])));
@@ -1154,7 +1179,7 @@
""
"
{
- if (TARGET_BYTE_OPS)
+ if (TARGET_BWX)
{
emit_insn (gen_extendhisi2x (operands[0],
force_reg (HImode, operands[1])));
@@ -1188,7 +1213,7 @@
"
{ extern rtx get_unaligned_address ();
- if (TARGET_BYTE_OPS)
+ if (TARGET_BWX)
{
emit_insn (gen_extendhidi2x (operands[0],
force_reg (HImode, operands[1])));
@@ -1791,6 +1816,31 @@
"sub%-%)%& %R1,%R2,%0"
[(set_attr "type" "fadd")
(set_attr "trap" "yes")])
+
+(define_insn "sqrtsf2"
+ [(set (match_operand:SF 0 "register_operand" "=f")
+ (sqrt:SF (match_operand:SF 1 "reg_or_fp0_operand" "fG")))]
+ "TARGET_FP && TARGET_CIX"
+ "sqrt%, %1,%0"
+ [(set_attr "type" "fdivs")
+ (set_attr "trap" "yes")])
+
+(define_insn "sqrtdf2"
+ [(set (match_operand:DF 0 "register_operand" "=f")
+ (sqrt:DF (match_operand:DF 1 "reg_or_fp0_operand" "fG")))]
+ "TARGET_FP && TARGET_CIX"
+ "sqrt%- %1,%0"
+ [(set_attr "type" "fdivt")
+ (set_attr "trap" "yes")])
+
+(define_insn ""
+ [(set (match_operand:DF 0 "register_operand" "=f")
+ (sqrt:DF (float_extend:DF
+ (match_operand:SF 1 "reg_or_fp0_operand" "fG"))))]
+ "TARGET_FP && TARGET_CIX&& alpha_tp != ALPHA_TP_INSN"
+ "sqrt%- %1,%0"
+ [(set_attr "type" "fdivt")
+ (set_attr "trap" "yes")])
;; Next are all the integer comparisons, and conditional moves and branches
;; and some of the related define_expand's and define_split's.
@@ -2013,6 +2063,70 @@
(match_dup 0) (match_dup 1)))]
"")
+(define_insn "sminqi3"
+ [(set (match_operand:QI 0 "register_operand" "=r")
+ (smin:SI (match_operand:QI 1 "reg_or_0_operand" "%rJ")
+ (match_operand:QI 2 "reg_or_8bit_operand" "rI")))]
+ "TARGET_MAX"
+ "minsb8 %r1,%2,%0"
+ [(set_attr "type" "shift")])
+
+(define_insn "uminqi3"
+ [(set (match_operand:QI 0 "register_operand" "=r")
+ (umin:SI (match_operand:QI 1 "reg_or_0_operand" "%rJ")
+ (match_operand:QI 2 "reg_or_8bit_operand" "rI")))]
+ "TARGET_MAX"
+ "minub8 %r1,%2,%0"
+ [(set_attr "type" "shift")])
+
+(define_insn "smaxqi3"
+ [(set (match_operand:QI 0 "register_operand" "=r")
+ (smax:SI (match_operand:QI 1 "reg_or_0_operand" "%rJ")
+ (match_operand:QI 2 "reg_or_8bit_operand" "rI")))]
+ "TARGET_MAX"
+ "maxsb8 %r1,%2,%0"
+ [(set_attr "type" "shift")])
+
+(define_insn "umaxqi3"
+ [(set (match_operand:QI 0 "register_operand" "=r")
+ (umax:SI (match_operand:QI 1 "reg_or_0_operand" "%rJ")
+ (match_operand:QI 2 "reg_or_8bit_operand" "rI")))]
+ "TARGET_MAX"
+ "maxub8 %r1,%2,%0"
+ [(set_attr "type" "shift")])
+
+(define_insn "sminhi3"
+ [(set (match_operand:HI 0 "register_operand" "=r")
+ (smin:SI (match_operand:HI 1 "reg_or_0_operand" "%rJ")
+ (match_operand:HI 2 "reg_or_8bit_operand" "rI")))]
+ "TARGET_MAX"
+ "minsw4 %r1,%2,%0"
+ [(set_attr "type" "shift")])
+
+(define_insn "uminhi3"
+ [(set (match_operand:HI 0 "register_operand" "=r")
+ (umin:SI (match_operand:HI 1 "reg_or_0_operand" "%rJ")
+ (match_operand:HI 2 "reg_or_8bit_operand" "rI")))]
+ "TARGET_MAX"
+ "minuw4 %r1,%2,%0"
+ [(set_attr "type" "shift")])
+
+(define_insn "smaxhi3"
+ [(set (match_operand:HI 0 "register_operand" "=r")
+ (smax:SI (match_operand:HI 1 "reg_or_0_operand" "%rJ")
+ (match_operand:HI 2 "reg_or_8bit_operand" "rI")))]
+ "TARGET_MAX"
+ "maxsw4 %r1,%2,%0"
+ [(set_attr "type" "shift")])
+
+(define_insn "umaxhi3"
+ [(set (match_operand:HI 0 "register_operand" "=r")
+ (umax:SI (match_operand:HI 1 "reg_or_0_operand" "%rJ")
+ (match_operand:HI 2 "reg_or_8bit_operand" "rI")))]
+ "TARGET_MAX"
+ "maxuw4 %r1,%2,%0"
+ [(set_attr "type" "shift")])
+
(define_expand "smaxdi3"
[(set (match_dup 3)
(le:DI (match_operand:DI 1 "reg_or_0_operand" "")
@@ -3637,7 +3751,7 @@
(define_insn ""
[(set (match_operand:SI 0 "nonimmediate_operand" "=r,r,r,r,r,r,m,f,f,f,m")
(match_operand:SI 1 "input_operand" "r,J,I,K,L,m,rJ,f,J,m,fG"))]
- "! TARGET_WINDOWS_NT && ! TARGET_OPEN_VMS
+ "! TARGET_WINDOWS_NT && ! TARGET_OPEN_VMS && ! TARGET_CIX
&& (register_operand (operands[0], SImode)
|| reg_or_0_operand (operands[1], SImode))"
"@
@@ -3650,16 +3764,38 @@
stl %r1,%0
cpys %1,%1,%0
cpys $f31,$f31,%0
- lds %0,%1
- sts %R1,%0"
+ ld%, %0,%1
+ st%, %R1,%0"
[(set_attr "type" "ilog,ilog,ilog,iadd,iadd,ld,st,fcpys,fcpys,ld,st")])
(define_insn ""
+ [(set (match_operand:SI 0 "nonimmediate_operand" "=r,r,r,r,r,r,m,f,f,f,m,r,f")
+ (match_operand:SI 1 "input_operand" "r,J,I,K,L,m,rJ,f,J,m,fG,f,r"))]
+ "! TARGET_WINDOWS_NT && ! TARGET_OPEN_VMS && TARGET_CIX
+ && (register_operand (operands[0], SImode)
+ || reg_or_0_operand (operands[1], SImode))"
+ "@
+ bis %1,%1,%0
+ bis $31,$31,%0
+ bis $31,%1,%0
+ lda %0,%1
+ ldah %0,%h1
+ ldl %0,%1
+ stl %r1,%0
+ cpys %1,%1,%0
+ cpys $f31,$f31,%0
+ ld%, %0,%1
+ st%, %R1,%0
+ ftois %1,%0
+ itof%, %1,%0"
+ [(set_attr "type" "ilog,ilog,ilog,iadd,iadd,ld,st,fcpys,fcpys,ld,st,ld,st")])
+
+(define_insn ""
[(set (match_operand:SI 0 "nonimmediate_operand" "=r,r,r,r,r,r,r,m,f,f,f,m")
(match_operand:SI 1 "input_operand" "r,J,I,K,L,s,m,rJ,f,J,m,fG"))]
"(TARGET_WINDOWS_NT || TARGET_OPEN_VMS)
- && (register_operand (operands[0], SImode)
- || reg_or_0_operand (operands[1], SImode))"
+ && (register_operand (operands[0], SImode)
+ || reg_or_0_operand (operands[1], SImode))"
"@
bis %1,%1,%0
bis $31,$31,%0
@@ -3671,14 +3807,14 @@
stl %r1,%0
cpys %1,%1,%0
cpys $f31,$f31,%0
- lds %0,%1
- sts %R1,%0"
+ ld%, %0,%1
+ st%, %R1,%0"
[(set_attr "type" "ilog,ilog,ilog,iadd,iadd,ldsym,ld,st,fcpys,fcpys,ld,st")])
(define_insn ""
[(set (match_operand:HI 0 "nonimmediate_operand" "=r,r,r,r,f,f")
(match_operand:HI 1 "input_operand" "r,J,I,n,f,J"))]
- "! TARGET_BYTE_OPS
+ "! TARGET_BWX
&& (register_operand (operands[0], HImode)
|| register_operand (operands[1], HImode))"
"@
@@ -3693,7 +3829,7 @@
(define_insn ""
[(set (match_operand:HI 0 "nonimmediate_operand" "=r,r,r,r,r,m,f,f")
(match_operand:HI 1 "input_operand" "r,J,I,n,m,rJ,f,J"))]
- "TARGET_BYTE_OPS
+ "TARGET_BWX
&& (register_operand (operands[0], HImode)
|| reg_or_0_operand (operands[1], HImode))"
"@
@@ -3710,7 +3846,7 @@
(define_insn ""
[(set (match_operand:QI 0 "nonimmediate_operand" "=r,r,r,r,f,f")
(match_operand:QI 1 "input_operand" "r,J,I,n,f,J"))]
- "! TARGET_BYTE_OPS
+ "! TARGET_BWX
&& (register_operand (operands[0], QImode)
|| register_operand (operands[1], QImode))"
"@
@@ -3725,7 +3861,7 @@
(define_insn ""
[(set (match_operand:QI 0 "nonimmediate_operand" "=r,r,r,r,r,m,f,f")
(match_operand:QI 1 "input_operand" "r,J,I,n,m,rJ,f,J"))]
- "TARGET_BYTE_OPS
+ "TARGET_BWX
&& (register_operand (operands[0], QImode)
|| reg_or_0_operand (operands[1], QImode))"
"@
@@ -3785,8 +3921,9 @@
(define_insn ""
[(set (match_operand:DI 0 "general_operand" "=r,r,r,r,r,r,r,m,f,f,f,Q")
(match_operand:DI 1 "input_operand" "r,J,I,K,L,s,m,rJ,f,J,Q,fG"))]
- "register_operand (operands[0], DImode)
- || reg_or_0_operand (operands[1], DImode)"
+ "! TARGET_CIX
+ && (register_operand (operands[0], DImode)
+ || reg_or_0_operand (operands[1], DImode))"
"@
bis %1,%1,%0
bis $31,$31,%0
@@ -3802,6 +3939,29 @@
stt %R1,%0"
[(set_attr "type" "ilog,ilog,ilog,iadd,iadd,ldsym,ld,st,fcpys,fcpys,ld,st")])
+(define_insn ""
+ [(set (match_operand:DI 0 "general_operand" "=r,r,r,r,r,r,r,m,f,f,f,Q,r,f")
+ (match_operand:DI 1 "input_operand" "r,J,I,K,L,s,m,rJ,f,J,Q,fG,f,r"))]
+ "TARGET_CIX
+ && (register_operand (operands[0], DImode)
+ || reg_or_0_operand (operands[1], DImode))"
+ "@
+ bis %1,%1,%0
+ bis $31,$31,%0
+ bis $31,%1,%0
+ lda %0,%1
+ ldah %0,%h1
+ lda %0,%1
+ ldq%A1 %0,%1
+ stq%A0 %r1,%0
+ cpys %1,%1,%0
+ cpys $f31,$f31,%0
+ ldt %0,%1
+ stt %R1,%0
+ ftoit %1,%0
+ itoft %1,%0"
+ [(set_attr "type" "ilog,ilog,ilog,iadd,iadd,ldsym,ld,st,fcpys,fcpys,ld,st,ld,st")])
+
;; We do three major things here: handle mem->mem, put 64-bit constants in
;; memory, and construct long 32-bit constants.
@@ -4028,7 +4188,7 @@
"
{ extern rtx get_unaligned_address ();
- if (TARGET_BYTE_OPS)
+ if (TARGET_BWX)
{
if (GET_CODE (operands[0]) == MEM
&& ! reg_or_0_operand (operands[1], QImode))
@@ -4152,7 +4312,7 @@
"
{ extern rtx get_unaligned_address ();
- if (TARGET_BYTE_OPS)
+ if (TARGET_BWX)
{
if (GET_CODE (operands[0]) == MEM
&& ! reg_or_0_operand (operands[1], HImode))
@@ -4278,7 +4438,7 @@
[(parallel [(match_operand:QI 0 "register_operand" "=r")
(match_operand:QI 1 "unaligned_memory_operand" "m")
(match_operand:TI 2 "register_operand" "=&r")])]
- "! TARGET_BYTE_OPS"
+ "! TARGET_BWX"
"
{ extern rtx get_unaligned_address ();
rtx addr, scratch, seq, tmp;
@@ -4312,7 +4472,7 @@
[(parallel [(match_operand:HI 0 "register_operand" "=r")
(match_operand:HI 1 "unaligned_memory_operand" "m")
(match_operand:TI 2 "register_operand" "=&r")])]
- "! TARGET_BYTE_OPS"
+ "! TARGET_BWX"
"
{ extern rtx get_unaligned_address ();
rtx scratch, seq, tmp, addr;
@@ -4346,7 +4506,7 @@
[(parallel [(match_operand:QI 0 "any_memory_operand" "=m")
(match_operand:QI 1 "register_operand" "r")
(match_operand:TI 2 "register_operand" "=&r")])]
- "! TARGET_BYTE_OPS"
+ "! TARGET_BWX"
"
{ extern rtx get_unaligned_address ();
@@ -4394,7 +4554,7 @@
[(parallel [(match_operand:HI 0 "any_memory_operand" "=m")
(match_operand:HI 1 "register_operand" "r")
(match_operand:TI 2 "register_operand" "=&r")])]
- "! TARGET_BYTE_OPS"
+ "! TARGET_BWX"
"
{ extern rtx get_unaligned_address ();
@@ -4460,14 +4620,16 @@
(define_expand "allocate_stack"
[(set (reg:DI 30)
(plus:DI (reg:DI 30)
- (match_operand:DI 0 "reg_or_cint_operand" "")))]
+ (match_operand:DI 1 "reg_or_cint_operand" "")))
+ (set (match_operand:DI 0 "register_operand" "=r")
+ (match_dup 2))]
""
"
{
- if (GET_CODE (operands[0]) == CONST_INT
- && INTVAL (operands[0]) < 32768)
+ if (GET_CODE (operands[1]) == CONST_INT
+ && INTVAL (operands[1]) < 32768)
{
- if (INTVAL (operands[0]) >= 4096)
+ if (INTVAL (operands[1]) >= 4096)
{
/* We do this the same way as in the prologue and generate explicit
probes. Then we update the stack by the constant. */
@@ -4475,14 +4637,15 @@
int probed = 4096;
emit_insn (gen_probe_stack (GEN_INT (- probed)));
- while (probed + 8192 < INTVAL (operands[0]))
+ while (probed + 8192 < INTVAL (operands[1]))
emit_insn (gen_probe_stack (GEN_INT (- (probed += 8192))));
- if (probed + 4096 < INTVAL (operands[0]))
- emit_insn (gen_probe_stack (GEN_INT (- INTVAL(operands[0]))));
+ if (probed + 4096 < INTVAL (operands[1]))
+ emit_insn (gen_probe_stack (GEN_INT (- INTVAL(operands[1]))));
}
- operands[0] = GEN_INT (- INTVAL (operands[0]));
+ operands[1] = GEN_INT (- INTVAL (operands[1]));
+ operands[2] = virtual_stack_dynamic_rtx;
}
else
{
@@ -4493,10 +4656,10 @@
rtx memref;
emit_insn (gen_subdi3 (want, stack_pointer_rtx,
- force_reg (Pmode, operands[0])));
+ force_reg (Pmode, operands[1])));
emit_insn (gen_adddi3 (tmp, stack_pointer_rtx, GEN_INT (-4096)));
- if (GET_CODE (operands[0]) != CONST_INT)
+ if (GET_CODE (operands[1]) != CONST_INT)
{
out_label = gen_label_rtx ();
emit_insn (gen_cmpdi (want, tmp));
@@ -4510,6 +4673,9 @@
emit_insn (gen_adddi3 (tmp, tmp, GEN_INT(-8192)));
emit_insn (gen_cmpdi (tmp, want));
emit_jump_insn (gen_bgtu (loop_label));
+ if (obey_regdecls)
+ gen_rtx (USE, VOIDmode, tmp);
+
memref = gen_rtx (MEM, DImode, want);
MEM_VOLATILE_P (memref) = 1;
emit_move_insn (memref, const0_rtx);
@@ -4518,7 +4684,7 @@
emit_label (out_label);
emit_move_insn (stack_pointer_rtx, want);
-
+ emit_move_insn (operands[0], virtual_stack_dynamic_rtx);
DONE;
}
}")
diff --git a/gcc/config/alpha/linux.h b/gcc/config/alpha/linux.h
index 6a2a7aeed6d..9a8cc36aa72 100644
--- a/gcc/config/alpha/linux.h
+++ b/gcc/config/alpha/linux.h
@@ -1,6 +1,6 @@
/* Definitions of target machine for GNU compiler, for Alpha Linux,
using ECOFF.
- Copyright (C) 1996 Free Software Foundation, Inc.
+ Copyright (C) 1996, 1997 Free Software Foundation, Inc.
Contributed by Bob Manson.
This file is part of GNU CC.
@@ -65,7 +65,7 @@ the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
/* Show that we need a GP when profiling. */
#define TARGET_PROFILING_NEEDS_GP
-/* We need that too. */
+/* We support #pragma. */
#define HANDLE_SYSV_PRAGMA
#undef ASM_FINAL_SPEC
diff --git a/gcc/config/alpha/osf12.h b/gcc/config/alpha/osf12.h
index 1eba90a347e..87e21111f4d 100644
--- a/gcc/config/alpha/osf12.h
+++ b/gcc/config/alpha/osf12.h
@@ -31,7 +31,3 @@ Boston, MA 02111-1307, USA. */
#define WCHAR_TYPE "short unsigned int"
#undef WCHAR_TYPE_SIZE
#define WCHAR_TYPE_SIZE 16
-
-/* The .arch pseudo op is not supported. */
-#undef ARCH_ASM_FILE_START
-#define ARCH_ASM_FILE_START(FILE)
diff --git a/gcc/config/alpha/osf2or3.h b/gcc/config/alpha/osf2or3.h
index f62c848d18c..e6c19e5f30c 100644
--- a/gcc/config/alpha/osf2or3.h
+++ b/gcc/config/alpha/osf2or3.h
@@ -21,8 +21,3 @@ Boston, MA 02111-1307, USA. */
/* In OSF 2 or 3, linking with -lprof1 doesn't require -lpdf. */
#undef LIB_SPEC
-
-/* The .arch pseudo op is not supported. */
-#undef ARCH_ASM_FILE_START
-#define ARCH_ASM_FILE_START(FILE)
-#define LIB_SPEC "%{p:-lprof1} %{pg:-lprof1} %{a:-lprof2} -lc"
diff --git a/gcc/config/alpha/vms.h b/gcc/config/alpha/vms.h
index 857accd2f0e..241ef0bb858 100644
--- a/gcc/config/alpha/vms.h
+++ b/gcc/config/alpha/vms.h
@@ -127,19 +127,98 @@ Boston, MA 02111-1307, USA. */
if ((TO) == STACK_POINTER_REGNUM) \
(OFFSET) += ALPHA_ROUND (current_function_outgoing_args_size); \
}
+
+/* Define a data type for recording info about an argument list
+ during the scan of that argument list. This data type should
+ hold all necessary information about the function itself
+ and about the args processed so far, enough to enable macros
+ such as FUNCTION_ARG to determine where the next arg should go.
+
+ On Alpha/VMS, this is a structure that contains the number of
+ arguments and, for each argument, the datatype of that argument.
+
+ The number of arguments is a number of words of arguments scanned so far.
+ Thus 6 or more means all following args should go on the stack. */
+
+enum avms_arg_type {I64, FF, FD, FG, FS, FT};
+typedef struct {char num_args; enum avms_arg_type atypes[6];} avms_arg_info;
+
+#undef CUMULATIVE_ARGS
+#define CUMULATIVE_ARGS avms_arg_info
+
+/* Initialize a variable CUM of type CUMULATIVE_ARGS
+ for a call to a function whose data type is FNTYPE.
+ For a library call, FNTYPE is 0. */
+
+#undef INIT_CUMULATIVE_ARGS
+#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
+ (CUM).num_args = 0; \
+ (CUM).atypes[0] = (CUM).atypes[1] = (CUM).atypes[2] = I64; \
+ (CUM).atypes[3] = (CUM).atypes[4] = (CUM).atypes[5] = I64;
+
+/* Update the data in CUM to advance over an argument
+ of mode MODE and data type TYPE.
+ (TYPE is null for libcalls where that information may not be available.) */
+
+extern enum avms_arg_type alpha_arg_type ();
+
+/* Determine where to put an argument to a function.
+ Value is zero to push the argument on the stack,
+ or a hard register in which to store the argument.
+
+ MODE is the argument's machine mode (or VOIDmode for no more args).
+ TYPE is the data type of the argument (as a tree).
+ This is null for libcalls where that information may
+ not be available.
+ CUM is a variable of type CUMULATIVE_ARGS which gives info about
+ the preceding args and about the function being called.
+ NAMED is nonzero if this argument is a named parameter
+ (otherwise it is an extra parameter matching an ellipsis).
+
+ On Alpha the first 6 words of args are normally in registers
+ and the rest are pushed. */
+
+extern struct rtx_def *alpha_arg_info_reg_val ();
+#undef FUNCTION_ARG
+#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
+((MODE) == VOIDmode ? alpha_arg_info_reg_val (CUM) \
+ : ((CUM.num_args) < 6 && ! MUST_PASS_IN_STACK (MODE, TYPE) \
+ ? gen_rtx(REG, (MODE), \
+ ((CUM).num_args + 16 \
+ + ((TARGET_FPREGS \
+ && (GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT \
+ || GET_MODE_CLASS (MODE) == MODE_FLOAT)) \
+ * 32))) \
+ : 0))
#undef FUNCTION_ARG_ADVANCE
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
if (MUST_PASS_IN_STACK (MODE, TYPE)) \
- (CUM) = (CUM & ~0xff) + 6; \
+ (CUM).num_args += 6; \
else \
- (CUM) += ALPHA_ARG_SIZE (MODE, TYPE, NAMED)
+ { \
+ if ((CUM).num_args < 6) \
+ (CUM).atypes[(CUM).num_args] = alpha_arg_type (MODE); \
+ \
+ (CUM).num_args += ALPHA_ARG_SIZE (MODE, TYPE, NAMED); \
+ }
+
+/* For an arg passed partly in registers and partly in memory,
+ this is the number of registers used.
+ For args passed entirely in registers or entirely in memory, zero. */
#undef FUNCTION_ARG_PARTIAL_NREGS
#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
-((CUM & 0xff) < 6 && 6 < (CUM & 0xff) \
+((CUM).num_args < 6 && 6 < (CUM).num_args \
+ ALPHA_ARG_SIZE (MODE, TYPE, NAMED) \
- ? 6 - (CUM & 0xff) : 0)
+ ? 6 - (CUM).num_args : 0)
+
+#undef ENCODE_SECTION_INFO
+#define ENCODE_SECTION_INFO(DECL) \
+do { \
+ if (TREE_CODE (DECL) == FUNCTION_DECL && ! TREE_PUBLIC (DECL)) \
+ SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1; \
+} while (0)
/* Perform any needed actions needed for a function that is receiving a
variable number of arguments.
@@ -164,7 +243,7 @@ Boston, MA 02111-1307, USA. */
#undef SETUP_INCOMING_VARARGS
#define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
-{ if ((CUM) < 6) \
+{ if ((CUM).num_args < 6) \
{ \
if (! (NO_RTL)) \
{ \
@@ -206,11 +285,11 @@ Boston, MA 02111-1307, USA. */
}
#define LINK_SECTION_ASM_OP ".link"
-
#define READONLY_SECTION_ASM_OP ".rdata"
+#define LITERALS_SECTION_ASM_OP ".literals"
#undef EXTRA_SECTIONS
-#define EXTRA_SECTIONS in_link, in_rdata
+#define EXTRA_SECTIONS in_link, in_rdata, in_literals
#undef EXTRA_SECTION_FUNCTIONS
#define EXTRA_SECTION_FUNCTIONS \
@@ -231,6 +310,15 @@ link_section () \
fprintf (asm_out_file, "%s\n", LINK_SECTION_ASM_OP); \
in_section = in_link; \
} \
+} \
+void \
+literals_section () \
+{ \
+ if (in_section != in_literals) \
+ { \
+ fprintf (asm_out_file, "%s\n", LITERALS_SECTION_ASM_OP); \
+ in_section = in_literals; \
+ } \
}
#undef ASM_OUTPUT_ADDR_DIFF_ELT
@@ -245,10 +333,6 @@ link_section () \
#define ASM_FILE_END(FILE) alpha_write_linkage (FILE);
-#undef FUNCTION_ARG
-void *function_arg ();
-#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) function_arg (&CUM, MODE, TYPE, NAMED)
-
#undef CASE_VECTOR_MODE
#define CASE_VECTOR_MODE DImode
#undef CASE_VECTOR_PC_RELATIVE
@@ -273,46 +357,101 @@ void *function_arg ();
{ \
fprintf (FILE, "\t.quad 0\n"); \
fprintf (FILE, "\t.linkage __tramp\n"); \
+ fprintf (FILE, "\t.quad 0\n"); \
}
/* Length in units of the trampoline for entering a nested function. */
#undef TRAMPOLINE_SIZE
-#define TRAMPOLINE_SIZE 24
+#define TRAMPOLINE_SIZE 32
/* Emit RTL insns to initialize the variable parts of a trampoline.
FNADDR is an RTX for the address of the function's pure code.
CXT is an RTX for the static chain value for the function. */
#undef INITIALIZE_TRAMPOLINE
-#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
-{ \
- emit_move_insn (gen_rtx (MEM, Pmode, (TRAMP)), (FNADDR)); \
- emit_move_insn (gen_rtx (MEM, Pmode, \
- memory_address (Pmode, \
+#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
+{ \
+ emit_move_insn (gen_rtx (MEM, Pmode, \
+ memory_address (Pmode, \
plus_constant ((TRAMP), 16))), \
- (CXT)); \
+ (FNADDR)); \
+ emit_move_insn (gen_rtx (MEM, Pmode, \
+ memory_address (Pmode, \
+ plus_constant ((TRAMP), 24))), \
+ (CXT)); \
}
#undef TRANSFER_FROM_TRAMPOLINE
+#define VALID_MACHINE_DECL_ATTRIBUTE(DECL, ATTRIBUTES, NAME, ARGS) \
+ (vms_valid_decl_attribute_p (DECL, ATTRIBUTES, NAME, ARGS))
+extern int vms_valid_decl_attribute_p ();
+
#undef SDB_DEBUGGING_INFO
#undef MIPS_DEBUGGING_INFO
-
-#ifndef DBX_DEBUGGING_INFO
-#define DBX_DEBUGGING_INFO
-#endif
+#undef DBX_DEBUGGING_INFO
#define DWARF2_DEBUGGING_INFO
-#ifdef PREFERRED_DEBUGGING_TYPE
+/* This is how to output an assembler line
+ that says to advance the location counter
+ to a multiple of 2**LOG bytes. */
+
+#undef ASM_OUTPUT_ALIGN
+#define ASM_OUTPUT_ALIGN(FILE,LOG) \
+ fprintf (FILE, "\t.align %d\n", LOG);
+
+#define UNALIGNED_SHORT_ASM_OP ".word"
+#define UNALIGNED_INT_ASM_OP ".long"
+#define UNALIGNED_DOUBLE_INT_ASM_OP ".quad"
+
+#undef ASM_OUTPUT_ALIGNED_COMMON
+#define ASM_OUTPUT_ALIGNED_COMMON(FILE, NAME, SIZE, ALIGN) \
+do { \
+ fprintf ((FILE), "\t.comm\t"); \
+ assemble_name ((FILE), (NAME)); \
+ fprintf ((FILE), ",%u,%u\n", (SIZE), (ALIGN) / BITS_PER_UNIT); \
+} while (0)
+
+#define ASM_OUTPUT_SECTION(FILE,SECTION) \
+ (strcmp (SECTION, ".text") == 0) \
+ ? text_section () \
+ : named_section (NULL_TREE, SECTION, 0), \
+ ASM_OUTPUT_ALIGN (FILE, 0) \
+
+#define ASM_OUTPUT_SECTION_NAME(FILE,DECL,NAME,RELOC) \
+ do \
+ { \
+ char *flags; \
+ int ovr = 0; \
+ if (DECL && DECL_MACHINE_ATTRIBUTES (DECL) \
+ && lookup_attribute \
+ ("overlaid", DECL_MACHINE_ATTRIBUTES (DECL))) \
+ flags = ",OVR", ovr = 1; \
+ else if (strncmp (NAME,".debug", 6) == 0) \
+ flags = ",NOWRT"; \
+ else \
+ flags = ""; \
+ fputc ('\n', (FILE)); \
+ fprintf (FILE, ".section\t%s%s\n", NAME, flags); \
+ if (ovr) \
+ (NAME) = ""; \
+ } while (0)
+
+#define ASM_OUTPUT_DEF(FILE,LABEL1,LABEL2) \
+ do { literals_section(); \
+ fprintf ((FILE), "\t"); \
+ assemble_name (FILE, LABEL1); \
+ fprintf (FILE, " = "); \
+ assemble_name (FILE, LABEL2); \
+ fprintf (FILE, "\n"); \
+ } while (0)
+
#undef PREFERRED_DEBUGGING_TYPE
-#endif
-#define PREFERRED_DEBUGGING_TYPE DBX_DEBUG
+#define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
-#ifdef ASM_FORMAT_PRIVATE_NAME
#undef ASM_FORMAT_PRIVATE_NAME
-#endif
#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 12), \
sprintf ((OUTPUT), "%s___%d", (NAME), (LABELNO)))
@@ -322,9 +461,6 @@ void *function_arg ();
#undef ASM_FINAL_SPEC
-#undef LIBGCC_SPEC
-#define LIBGCC_SPEC "-lgcc2 -lgcclib"
-
#define OPTIMIZATION_OPTIONS \
{ \
write_symbols = PREFERRED_DEBUGGING_TYPE; \
@@ -340,13 +476,9 @@ void *function_arg ();
}
#undef LINK_SPEC
-#define LINK_SPEC "%{g3:-g3} %{g0:-g0}"
+#define LINK_SPEC "%{g3:-g3} %{g0:-g0} %{shared:-shared} %{v:-v}"
#undef STARTFILE_SPEC
-#define STARTFILE_SPEC ""
-
-#undef ENDFILE_SPEC
-#define ENDFILE_SPEC "gnu:[000000]crt0.obj"
/* Define the names of the division and modulus functions. */
#define DIVSI3_LIBCALL "OTS$DIV_I"
diff --git a/gcc/config/arc/arc.c b/gcc/config/arc/arc.c
index c9e5411103c..81595854e7e 100644
--- a/gcc/config/arc/arc.c
+++ b/gcc/config/arc/arc.c
@@ -1,4 +1,4 @@
-/* Subroutines used for code generation on the ARC cpu.
+/* Subroutines used for code generation on the Argonaut ARC cpu.
Copyright (C) 1994, 1995, 1997 Free Software Foundation, Inc.
This file is part of GNU CC.
diff --git a/gcc/config/arc/arc.h b/gcc/config/arc/arc.h
index d92fbdc0b98..4257efaee3b 100644
--- a/gcc/config/arc/arc.h
+++ b/gcc/config/arc/arc.h
@@ -1,4 +1,4 @@
-/* Definitions of target machine for GNU compiler, for the ARC cpu.
+/* Definitions of target machine for GNU compiler, Argonaut ARC cpu.
Copyright (C) 1994, 1995, 1997 Free Software Foundation, Inc.
This file is part of GNU CC.
@@ -27,7 +27,7 @@ Boston, MA 02111-1307, USA. */
- print active compiler options in assembler output
*/
-/* FIXME: Create elf.h and have svr4.h include it. */
+/* ??? Create elf.h and have svr4.h include it. */
#include "svr4.h"
#undef ASM_SPEC
@@ -589,7 +589,7 @@ extern enum reg_class arc_regno_reg_class[];
If you don't define this macro, the default is to return the value
of FRAMEADDR--that is, the stack frame address is also the address
of the stack word that points to the previous frame. */
-/* FIXME: unfinished */
+/* ??? unfinished */
/*define DYNAMIC_CHAIN_ADDRESS (FRAMEADDR)*/
/* A C expression whose value is RTL representing the value of the
@@ -989,7 +989,7 @@ do { \
/* local to this file */
#define RTX_OK_FOR_INDEX_P(X) \
-(0 && /*FIXME*/ REG_P (X) && REG_OK_FOR_INDEX_P (X))
+(0 && /*???*/ REG_P (X) && REG_OK_FOR_INDEX_P (X))
/* local to this file */
/* ??? Loads can handle any constant, stores can only handle small ones. */
@@ -1060,7 +1060,7 @@ arc_select_cc_mode (OP, X, Y)
/* Return non-zero if SELECT_CC_MODE will never return MODE for a
floating point inequality comparison. */
-#define REVERSIBLE_CC_MODE(MODE) 1 /*FIXME*/
+#define REVERSIBLE_CC_MODE(MODE) 1 /*???*/
/* Costs. */
diff --git a/gcc/config/arc/arc.md b/gcc/config/arc/arc.md
index 0894f79151a..328b1ebd991 100644
--- a/gcc/config/arc/arc.md
+++ b/gcc/config/arc/arc.md
@@ -1,4 +1,4 @@
-;; Machine description of the ARC cpu for GNU C compiler
+;; Machine description of the Argonaut ARC cpu for GNU C compiler
;; Copyright (C) 1994, 1997 Free Software Foundation, Inc.
;; This file is part of GNU CC.
diff --git a/gcc/config/i386/freebsd.h b/gcc/config/i386/freebsd.h
index ce2bc2ee4cc..9aeb5aebcaf 100644
--- a/gcc/config/i386/freebsd.h
+++ b/gcc/config/i386/freebsd.h
@@ -1,6 +1,6 @@
/* Definitions of target machine for GNU compiler for Intel 80386
running FreeBSD.
- Copyright (C) 1988, 1992, 1994, 1996 Free Software Foundation, Inc.
+ Copyright (C) 1988, 1992, 1994, 1996, 1997 Free Software Foundation, Inc.
Contributed by Poul-Henning Kamp <phk@login.dkuug.dk>
This file is part of GNU CC.
@@ -229,9 +229,9 @@ do { \
#ifdef FREEBSD_NATIVE
#define INCLUDE_DEFAULTS { \
- { "/usr/include", 0 }, \
- { "/usr/include/g++", 1 }, \
- { 0, 0} \
+ { "/usr/include", 0, 0, 0 }, \
+ { "/usr/include/g++", "G++", 1, 1 }, \
+ { 0, 0, 0, 0} \
}
#undef MD_EXEC_PREFIX
diff --git a/gcc/config/i386/i386.c b/gcc/config/i386/i386.c
index fafdabc91b4..8516911dd1d 100644
--- a/gcc/config/i386/i386.c
+++ b/gcc/config/i386/i386.c
@@ -1,5 +1,5 @@
/* Subroutines for insn-output.c for Intel X86.
- Copyright (C) 1988, 1992, 1994, 1995, 1996 Free Software Foundation, Inc.
+ Copyright (C) 1988, 92, 94, 95, 96, 1997 Free Software Foundation, Inc.
This file is part of GNU CC.
@@ -35,6 +35,7 @@ Boston, MA 02111-1307, USA. */
#include "flags.h"
#include "except.h"
#include "function.h"
+#include "dwarf2.h"
#ifdef EXTRA_CONSTRAINT
/* If EXTRA_CONSTRAINT is defined, then the 'S'
@@ -49,7 +50,8 @@ Boston, MA 02111-1307, USA. */
#define CHECK_STACK_LIMIT -1
#endif
-enum reg_mem /* Type of an operand for ix86_{binary,unary}_operator_ok */
+/* Type of an operand for ix86_{binary,unary}_operator_ok */
+enum reg_mem
{
reg_p,
mem_p,
@@ -58,7 +60,7 @@ enum reg_mem /* Type of an operand for ix86_{binary,unary}_operator_ok */
/* Processor costs (relative to an add) */
struct processor_costs i386_cost = { /* 386 specific costs */
- 1, /* cost of an add instruction (2 cycles) */
+ 1, /* cost of an add instruction */
1, /* cost of a lea instruction */
3, /* variable shift costs */
2, /* constant shift costs */
@@ -104,6 +106,9 @@ struct processor_costs *ix86_cost = &pentium_cost;
extern FILE *asm_out_file;
extern char *strcat ();
+static void ix86_epilogue PROTO((int));
+static void ix86_prologue PROTO((int));
+
char *singlemove_string ();
char *output_move_const_single ();
char *output_fp_cc0_set ();
@@ -150,19 +155,32 @@ char *i386_reg_alloc_order;
static char regs_allocated[FIRST_PSEUDO_REGISTER];
/* # of registers to use to pass arguments. */
-char *i386_regparm_string; /* # registers to use to pass args */
-int i386_regparm; /* i386_regparm_string as a number */
+char *i386_regparm_string;
+
+/* i386_regparm_string as a number */
+int i386_regparm;
+
+/* Alignment to use for loops and jumps: */
+
+/* Power of two alignment for loops. */
+char *i386_align_loops_string;
-/* Alignment to use for loops and jumps */
-char *i386_align_loops_string; /* power of two alignment for loops */
-char *i386_align_jumps_string; /* power of two alignment for non-loop jumps */
-char *i386_align_funcs_string; /* power of two alignment for functions */
-char *i386_branch_cost_string; /* values 1-5: see jump.c */
+/* Power of two alignment for non-loop jumps. */
+char *i386_align_jumps_string;
-int i386_align_loops; /* power of two alignment for loops */
-int i386_align_jumps; /* power of two alignment for non-loop jumps */
-int i386_align_funcs; /* power of two alignment for functions */
-int i386_branch_cost; /* values 1-5: see jump.c */
+/* Values 1-5: see jump.c */
+int i386_branch_cost;
+char *i386_branch_cost_string;
+
+/* Power of two alignment for functions. */
+int i386_align_funcs;
+char *i386_align_funcs_string;
+
+/* Power of two alignment for loops. */
+int i386_align_loops;
+
+/* Power of two alignment for non-loop jumps. */
+int i386_align_jumps;
/* Sometimes certain combinations of command options do not make
sense on a particular target machine. You can define a macro
@@ -192,8 +210,10 @@ override_options ()
{PROCESSOR_I486_STRING, PROCESSOR_I486, &i486_cost, 0, 0},
{PROCESSOR_I586_STRING, PROCESSOR_PENTIUM, &pentium_cost, 0, 0},
{PROCESSOR_PENTIUM_STRING, PROCESSOR_PENTIUM, &pentium_cost, 0, 0},
- {PROCESSOR_I686_STRING, PROCESSOR_PENTIUMPRO, &pentiumpro_cost, 0, 0},
- {PROCESSOR_PENTIUMPRO_STRING, PROCESSOR_PENTIUMPRO, &pentiumpro_cost, 0, 0}};
+ {PROCESSOR_I686_STRING, PROCESSOR_PENTIUMPRO, &pentiumpro_cost,
+ 0, 0},
+ {PROCESSOR_PENTIUMPRO_STRING, PROCESSOR_PENTIUMPRO,
+ &pentiumpro_cost, 0, 0}};
int ptt_size = sizeof (processor_target_table) / sizeof (struct ptt);
@@ -201,7 +221,7 @@ override_options ()
SUBTARGET_OVERRIDE_OPTIONS;
#endif
- /* Validate registers in register allocation order */
+ /* Validate registers in register allocation order. */
if (i386_reg_alloc_order)
{
for (i = 0; (ch = i386_reg_alloc_order[i]) != '\0'; i++)
@@ -220,16 +240,16 @@ override_options ()
}
if (regs_allocated[regno])
- fatal ("Register '%c' was already specified in the allocation order", ch);
+ fatal ("Register '%c' already specified in allocation order", ch);
regs_allocated[regno] = 1;
}
}
- if (ix86_arch_string == (char *)0)
+ if (ix86_arch_string == 0)
{
ix86_arch_string = PROCESSOR_PENTIUM_STRING;
- if (ix86_cpu_string == (char *)0)
+ if (ix86_cpu_string == 0)
ix86_cpu_string = PROCESSOR_DEFAULT_STRING;
}
@@ -237,7 +257,7 @@ override_options ()
if (! strcmp (ix86_arch_string, processor_target_table[i].name))
{
ix86_arch = processor_target_table[i].processor;
- if (ix86_cpu_string == (char *)0)
+ if (ix86_cpu_string == 0)
ix86_cpu_string = processor_target_table[i].name;
break;
}
@@ -249,16 +269,17 @@ override_options ()
ix86_arch = PROCESSOR_DEFAULT;
}
- if (ix86_cpu_string == (char *)0)
- ix86_cpu_string = PROCESSOR_DEFAULT_STRING;
+ if (ix86_cpu_string == 0)
+ ix86_cpu_string = PROCESSOR_DEFAULT_STRING;
for (j = 0; j < ptt_size; j++)
if (! strcmp (ix86_cpu_string, processor_target_table[j].name))
{
ix86_cpu = processor_target_table[j].processor;
ix86_cost = processor_target_table[j].cost;
- if (i > j && (int)ix86_arch >= (int)PROCESSOR_PENTIUMPRO)
- error ("-mcpu=%s does not support -march=%s", ix86_cpu_string, ix86_arch_string);
+ if (i > j && (int) ix86_arch >= (int) PROCESSOR_PENTIUMPRO)
+ error ("-mcpu=%s does not support -march=%s",
+ ix86_cpu_string, ix86_arch_string);
target_flags |= processor_target_table[j].target_enable;
target_flags &= ~processor_target_table[j].target_disable;
@@ -271,20 +292,23 @@ override_options ()
ix86_cpu_string = PROCESSOR_DEFAULT_STRING;
ix86_cpu = PROCESSOR_DEFAULT;
}
- /* Validate -mregparm= value */
+
+ /* Validate -mregparm= value. */
if (i386_regparm_string)
{
i386_regparm = atoi (i386_regparm_string);
if (i386_regparm < 0 || i386_regparm > REGPARM_MAX)
- fatal ("-mregparm=%d is not between 0 and %d", i386_regparm, REGPARM_MAX);
+ fatal ("-mregparm=%d is not between 0 and %d",
+ i386_regparm, REGPARM_MAX);
}
- /* The 486 suffers more from non-aligned cache line fills, and the larger code
- size results in a larger cache foot-print and more misses. The 486 has a
- 16 byte cache line, pentium and pentiumpro have a 32 byte cache line */
+ /* The 486 suffers more from non-aligned cache line fills, and the
+ larger code size results in a larger cache foot-print and more misses.
+ The 486 has a 16 byte cache line, pentium and pentiumpro have a 32 byte
+ cache line. */
def_align = (TARGET_486) ? 4 : 2;
- /* Validate -malign-loops= value, or provide default */
+ /* Validate -malign-loops= value, or provide default. */
if (i386_align_loops_string)
{
i386_align_loops = atoi (i386_align_loops_string);
@@ -295,7 +319,7 @@ override_options ()
else
i386_align_loops = 2;
- /* Validate -malign-jumps= value, or provide default */
+ /* Validate -malign-jumps= value, or provide default. */
if (i386_align_jumps_string)
{
i386_align_jumps = atoi (i386_align_jumps_string);
@@ -306,7 +330,7 @@ override_options ()
else
i386_align_jumps = def_align;
- /* Validate -malign-functions= value, or provide default */
+ /* Validate -malign-functions= value, or provide default. */
if (i386_align_funcs_string)
{
i386_align_funcs = atoi (i386_align_funcs_string);
@@ -317,7 +341,7 @@ override_options ()
else
i386_align_funcs = def_align;
- /* Validate -mbranch-cost= value, or provide default */
+ /* Validate -mbranch-cost= value, or provide default. */
if (i386_branch_cost_string)
{
i386_branch_cost = atoi (i386_branch_cost_string);
@@ -328,13 +352,9 @@ override_options ()
else
i386_branch_cost = 1;
- if (TARGET_OMIT_LEAF_FRAME_POINTER) /* keep nonleaf frame pointers */
+ /* Keep nonleaf frame pointers. */
+ if (TARGET_OMIT_LEAF_FRAME_POINTER)
flag_omit_frame_pointer = 1;
-
- /* pic references don't explicitly mention pic_offset_table_rtx */
- /* code threaded into the prologue may conflict with profiling */
- if (flag_pic || profile_flag || profile_block_flag)
- target_flags &= ~MASK_SCHEDULE_PROLOGUE;
}
/* A C statement (sans semicolon) to choose the order in which to
@@ -355,7 +375,8 @@ order_regs_for_local_alloc ()
{
int i, ch, order, regno;
- /* User specified the register allocation order */
+ /* User specified the register allocation order. */
+
if (i386_reg_alloc_order)
{
for (i = order = 0; (ch = i386_reg_alloc_order[i]) != '\0'; i++)
@@ -376,26 +397,25 @@ order_regs_for_local_alloc ()
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
{
- if (!regs_allocated[i])
+ if (! regs_allocated[i])
reg_alloc_order[order++] = i;
}
}
- /* If users did not specify a register allocation order, use natural order */
+ /* If user did not specify a register allocation order, use natural order. */
else
{
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
reg_alloc_order[i] = i;
}
}
-
void
optimization_options (level)
int level;
{
- /* For -O2, and beyond, turn off -fschedule-insns by default. It tends to
- make the problem with not enough registers even worse */
+ /* For -O2 and beyond, turn off -fschedule-insns by default. It tends to
+ make the problem with not enough registers even worse. */
#ifdef INSN_SCHEDULING
if (level > 1)
flag_schedule_insns = 0;
@@ -429,45 +449,48 @@ i386_aligned_reg_p (regno)
int regno;
{
return (regno == STACK_POINTER_REGNUM
- || (!flag_omit_frame_pointer
- && regno == FRAME_POINTER_REGNUM));
+ || (! flag_omit_frame_pointer && regno == FRAME_POINTER_REGNUM));
}
int
i386_aligned_p (op)
rtx op;
{
- /* registers and immediate operands are always "aligned" */
+ /* Registers and immediate operands are always "aligned". */
if (GET_CODE (op) != MEM)
return 1;
- /* Don't even try to do any aligned optimizations with volatiles */
+ /* Don't even try to do any aligned optimizations with volatiles. */
if (MEM_VOLATILE_P (op))
return 0;
- /* Get address of memory operand */
+ /* Get address of memory operand. */
op = XEXP (op, 0);
switch (GET_CODE (op))
{
case CONST_INT:
- if (INTVAL (op) & 3)
- break;
- return 1;
+ if (INTVAL (op) & 3)
+ break;
+ return 1;
- /* match "reg + offset" */
+ /* Match "reg + offset" */
case PLUS:
- if (GET_CODE (XEXP (op, 1)) != CONST_INT)
- break;
- if (INTVAL (XEXP (op, 1)) & 3)
- break;
- op = XEXP (op, 0);
- if (GET_CODE (op) != REG)
- break;
- /* fall through */
+ if (GET_CODE (XEXP (op, 1)) != CONST_INT)
+ break;
+ if (INTVAL (XEXP (op, 1)) & 3)
+ break;
+
+ op = XEXP (op, 0);
+ if (GET_CODE (op) != REG)
+ break;
+
+ /* ... fall through ... */
+
case REG:
- return i386_aligned_reg_p (REGNO (op));
+ return i386_aligned_reg_p (REGNO (op));
}
+
return 0;
}
@@ -478,7 +501,7 @@ int
i386_cc_probably_useless_p (insn)
rtx insn;
{
- return !next_cc0_user (insn);
+ return ! next_cc0_user (insn);
}
/* Return nonzero if IDENTIFIER with arguments ARGS is a valid machine specific
@@ -516,17 +539,17 @@ i386_valid_type_attribute_p (type, attributes, identifier, args)
if (is_attribute_p ("stdcall", identifier))
return (args == NULL_TREE);
- /* Cdecl attribute says the callee is a normal C declaration */
+ /* Cdecl attribute says the callee is a normal C declaration. */
if (is_attribute_p ("cdecl", identifier))
return (args == NULL_TREE);
/* Regparm attribute specifies how many integer arguments are to be
- passed in registers */
+ passed in registers. */
if (is_attribute_p ("regparm", identifier))
{
tree cst;
- if (!args || TREE_CODE (args) != TREE_LIST
+ if (! args || TREE_CODE (args) != TREE_LIST
|| TREE_CHAIN (args) != NULL_TREE
|| TREE_VALUE (args) == NULL_TREE)
return 0;
@@ -584,20 +607,21 @@ i386_return_pops_args (fundecl, funtype, size)
{
int rtd = TARGET_RTD && (!fundecl || TREE_CODE (fundecl) != IDENTIFIER_NODE);
- /* Cdecl functions override -mrtd, and never pop the stack */
- if (!lookup_attribute ("cdecl", TYPE_ATTRIBUTES (funtype))) {
+ /* Cdecl functions override -mrtd, and never pop the stack. */
+ if (! lookup_attribute ("cdecl", TYPE_ATTRIBUTES (funtype))) {
- /* Stdcall functions will pop the stack if not variable args */
+ /* Stdcall functions will pop the stack if not variable args. */
if (lookup_attribute ("stdcall", TYPE_ATTRIBUTES (funtype)))
rtd = 1;
if (rtd
&& (TYPE_ARG_TYPES (funtype) == NULL_TREE
- || (TREE_VALUE (tree_last (TYPE_ARG_TYPES (funtype))) == void_type_node)))
+ || (TREE_VALUE (tree_last (TYPE_ARG_TYPES (funtype)))
+ == void_type_node)))
return size;
}
- /* Lose any fake structure return argument */
+ /* Lose any fake structure return argument. */
if (aggregate_value_p (TREE_TYPE (funtype)))
return GET_MODE_SIZE (Pmode);
@@ -613,7 +637,7 @@ i386_return_pops_args (fundecl, funtype, size)
void
init_cumulative_args (cum, fntype, libname)
- CUMULATIVE_ARGS *cum; /* argument info to initialize */
+ CUMULATIVE_ARGS *cum; /* Argument info to initialize */
tree fntype; /* tree ptr for function decl */
rtx libname; /* SYMBOL_REF of library name or 0 */
{
@@ -624,12 +648,9 @@ init_cumulative_args (cum, fntype, libname)
{
fprintf (stderr, "\ninit_cumulative_args (");
if (fntype)
- {
- tree ret_type = TREE_TYPE (fntype);
- fprintf (stderr, "fntype code = %s, ret code = %s",
- tree_code_name[ (int)TREE_CODE (fntype) ],
- tree_code_name[ (int)TREE_CODE (ret_type) ]);
- }
+ fprintf (stderr, "fntype code = %s, ret code = %s",
+ tree_code_name[(int) TREE_CODE (fntype)],
+ tree_code_name[(int) TREE_CODE (TREE_TYPE (fntype))]);
else
fprintf (stderr, "no fntype");
@@ -644,6 +665,7 @@ init_cumulative_args (cum, fntype, libname)
if (fntype)
{
tree attr = lookup_attribute ("regparm", TYPE_ATTRIBUTES (fntype));
+
if (attr)
cum->nregs = TREE_INT_CST_LOW (TREE_VALUE (TREE_VALUE (attr)));
}
@@ -656,11 +678,10 @@ init_cumulative_args (cum, fntype, libname)
if (cum->nregs)
{
for (param = (fntype) ? TYPE_ARG_TYPES (fntype) : 0;
- param != (tree)0;
- param = next_param)
+ param != 0; param = next_param)
{
next_param = TREE_CHAIN (param);
- if (next_param == (tree)0 && TREE_VALUE (param) != void_type_node)
+ if (next_param == 0 && TREE_VALUE (param) != void_type_node)
cum->nregs = 0;
}
}
@@ -682,12 +703,13 @@ function_arg_advance (cum, mode, type, named)
tree type; /* type of the argument or 0 if lib support */
int named; /* whether or not the argument was named */
{
- int bytes = (mode == BLKmode) ? int_size_in_bytes (type) : GET_MODE_SIZE (mode);
+ int bytes
+ = (mode == BLKmode) ? int_size_in_bytes (type) : GET_MODE_SIZE (mode);
int words = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
if (TARGET_DEBUG_ARG)
fprintf (stderr,
- "function_adv( size=%d, words=%2d, nregs=%d, mode=%4s, named=%d )\n\n",
+ "function_adv (sz=%d, wds=%2d, nregs=%d, mode=%s, named=%d)\n\n",
words, cum->words, cum->nregs, GET_MODE_NAME (mode), named);
cum->words += words;
@@ -724,12 +746,14 @@ function_arg (cum, mode, type, named)
int named; /* != 0 for normal args, == 0 for ... args */
{
rtx ret = NULL_RTX;
- int bytes = (mode == BLKmode) ? int_size_in_bytes (type) : GET_MODE_SIZE (mode);
+ int bytes
+ = (mode == BLKmode) ? int_size_in_bytes (type) : GET_MODE_SIZE (mode);
int words = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
switch (mode)
{
- default: /* for now, pass fp/complex values on the stack */
+ /* For now, pass fp/complex values on the stack. */
+ default:
break;
case BLKmode:
@@ -745,7 +769,7 @@ function_arg (cum, mode, type, named)
if (TARGET_DEBUG_ARG)
{
fprintf (stderr,
- "function_arg( size=%d, words=%2d, nregs=%d, mode=%4s, named=%d",
+ "function_arg (size=%d, wds=%2d, nregs=%d, mode=%4s, named=%d",
words, cum->words, cum->nregs, GET_MODE_NAME (mode), named);
if (ret)
@@ -772,7 +796,6 @@ function_arg_partial_nregs (cum, mode, type, named)
{
return 0;
}
-
/* Output an insn whose source is a 386 integer register. SRC is the
rtx for the register, and TEMPLATE is the op-code template. SRC may
@@ -806,18 +829,19 @@ output_op_from_reg (src, template)
if (size > UNITS_PER_WORD)
{
rtx high;
+
if (size > 2 * UNITS_PER_WORD)
{
high = gen_rtx (REG, SImode, REGNO (src) + 2);
output_asm_insn (AS1 (push%L0,%0), &high);
}
+
high = gen_rtx (REG, SImode, REGNO (src) + 1);
output_asm_insn (AS1 (push%L0,%0), &high);
}
- output_asm_insn (AS1 (push%L0,%0), &src);
+ output_asm_insn (AS1 (push%L0,%0), &src);
output_asm_insn (template, xops);
-
output_asm_insn (AS2 (add%L3,%2,%3), xops);
}
@@ -839,6 +863,7 @@ output_to_reg (dest, dies, scratch_mem)
xops[0] = AT_SP (Pmode);
else
xops[0] = scratch_mem;
+
xops[1] = stack_pointer_rtx;
xops[2] = GEN_INT (size);
xops[3] = dest;
@@ -853,6 +878,7 @@ output_to_reg (dest, dies, scratch_mem)
else
output_asm_insn (AS1 (fist%z3,%y0), xops);
}
+
else if (GET_MODE_CLASS (GET_MODE (dest)) == MODE_FLOAT)
{
if (dies)
@@ -868,6 +894,7 @@ output_to_reg (dest, dies, scratch_mem)
output_asm_insn (AS1 (fst%z3,%y0), xops);
}
}
+
else
abort ();
@@ -888,6 +915,7 @@ output_to_reg (dest, dies, scratch_mem)
xops[3] = dest;
output_asm_insn (AS2 (mov%L0,%0,%3), xops);
}
+
if (size > 2 * UNITS_PER_WORD)
{
dest = gen_rtx (REG, SImode, REGNO (dest) + 1);
@@ -915,9 +943,7 @@ singlemove_string (operands)
return "push%L1 %1";
}
else if (GET_CODE (operands[1]) == CONST_DOUBLE)
- {
- return output_move_const_single (operands);
- }
+ return output_move_const_single (operands);
else if (GET_CODE (operands[0]) == REG || GET_CODE (operands[1]) == REG)
return AS2 (mov%L0,%1,%0);
else if (CONSTANT_P (operands[1]))
@@ -949,11 +975,11 @@ find_addr_reg (addr)
else
abort ();
}
+
if (GET_CODE (addr) == REG)
return addr;
abort ();
}
-
/* Output an insn to add the constant N to the register X. */
@@ -980,7 +1006,6 @@ asm_add (n, x)
output_asm_insn (AS2 (add%L0,%1,%0), xops);
}
}
-
/* Output assembler code to perform a doubleword move insn
with operands OPERANDS. */
@@ -1137,8 +1162,11 @@ output_move_double (operands)
latehalf[1] = operands[1];
}
}
- else /* size is not 12: */
+
+ else
{
+ /* Size is not 12. */
+
if (optype0 == REGOP)
latehalf[0] = gen_rtx (REG, SImode, REGNO (operands[0]) + 1);
else if (optype0 == OFFSOP)
@@ -1179,13 +1207,12 @@ output_move_double (operands)
{
/* If both halves of dest are used in the src memory address,
compute the address into latehalf of dest. */
-compadr:
+ compadr:
xops[0] = latehalf[0];
xops[1] = XEXP (operands[1], 0);
output_asm_insn (AS2 (lea%L0,%a1,%0), xops);
- if( GET_MODE (operands[1]) == XFmode )
+ if (GET_MODE (operands[1]) == XFmode)
{
-/* abort (); */
operands[1] = gen_rtx (MEM, XFmode, latehalf[0]);
middlehalf[1] = adj_offsettable_operand (operands[1], size-8);
latehalf[1] = adj_offsettable_operand (operands[1], size-4);
@@ -1196,17 +1223,18 @@ compadr:
latehalf[1] = adj_offsettable_operand (operands[1], size-4);
}
}
+
else if (size == 12
&& reg_mentioned_p (middlehalf[0], XEXP (operands[1], 0)))
{
/* Check for two regs used by both source and dest. */
if (reg_mentioned_p (operands[0], XEXP (operands[1], 0))
|| reg_mentioned_p (latehalf[0], XEXP (operands[1], 0)))
- goto compadr;
+ goto compadr;
/* JRV says this can't happen: */
if (addreg0 || addreg1)
- abort();
+ abort ();
/* Only the middle reg conflicts; simply put it last. */
output_asm_insn (singlemove_string (operands), operands);
@@ -1214,6 +1242,7 @@ compadr:
output_asm_insn (singlemove_string (middlehalf), middlehalf);
return "";
}
+
else if (reg_mentioned_p (operands[0], XEXP (operands[1], 0)))
/* If the low half of dest is mentioned in the source memory
address, the arrange to emit the move late half first. */
@@ -1228,12 +1257,13 @@ compadr:
such overlap can't happen in memory unless the user explicitly
sets it up, and that is an undefined circumstance. */
-/*
+#if 0
if (optype0 == PUSHOP || optype1 == PUSHOP
|| (optype0 == REGOP && optype1 == REGOP
&& REGNO (operands[0]) == REGNO (latehalf[1]))
|| dest_overlapped_low)
-*/
+#endif
+
if (optype0 == PUSHOP || optype1 == PUSHOP
|| (optype0 == REGOP && optype1 == REGOP
&& ((middlehalf[1] && REGNO (operands[0]) == REGNO (middlehalf[1]))
@@ -1251,17 +1281,17 @@ compadr:
/* Undo the adds we just did. */
if (addreg0)
- asm_add (-4, addreg0);
+ asm_add (-4, addreg0);
if (addreg1)
asm_add (-4, addreg1);
if (size == 12)
{
- output_asm_insn (singlemove_string (middlehalf), middlehalf);
- if (addreg0)
- asm_add (-4, addreg0);
- if (addreg1)
- asm_add (-4, addreg1);
+ output_asm_insn (singlemove_string (middlehalf), middlehalf);
+ if (addreg0)
+ asm_add (-4, addreg0);
+ if (addreg1)
+ asm_add (-4, addreg1);
}
/* Do low-numbered word. */
@@ -1300,7 +1330,6 @@ compadr:
return "";
}
-
#define MAX_TMPS 2 /* max temporary registers used */
@@ -1314,13 +1343,13 @@ output_move_pushmem (operands, insn, length, tmp_start, n_operands)
int tmp_start;
int n_operands;
{
-
- struct {
- char *load;
- char *push;
- rtx xops[2];
- } tmp_info[MAX_TMPS];
-
+ struct
+ {
+ char *load;
+ char *push;
+ rtx xops[2];
+ } tmp_info[MAX_TMPS];
+
rtx src = operands[1];
int max_tmps = 0;
int offset = 0;
@@ -1329,7 +1358,7 @@ output_move_pushmem (operands, insn, length, tmp_start, n_operands)
int i, num_tmps;
rtx xops[1];
- if (!offsettable_memref_p (src))
+ if (! offsettable_memref_p (src))
fatal_insn ("Source is not offsettable", insn);
if ((length & 3) != 0)
@@ -1365,7 +1394,8 @@ output_move_pushmem (operands, insn, length, tmp_start, n_operands)
{
tmp_info[num_tmps].load = AS2(mov%L0,%0,%1);
tmp_info[num_tmps].push = AS1(push%L0,%1);
- tmp_info[num_tmps].xops[0] = adj_offsettable_operand (src, offset + stack_offset);
+ tmp_info[num_tmps].xops[0]
+ = adj_offsettable_operand (src, offset + stack_offset);
offset -= 4;
}
@@ -1381,9 +1411,7 @@ output_move_pushmem (operands, insn, length, tmp_start, n_operands)
return "";
}
-
-
/* Output the appropriate code to move data between two memory locations */
char *
@@ -1394,11 +1422,12 @@ output_move_memory (operands, insn, length, tmp_start, n_operands)
int tmp_start;
int n_operands;
{
- struct {
- char *load;
- char *store;
- rtx xops[3];
- } tmp_info[MAX_TMPS];
+ struct
+ {
+ char *load;
+ char *store;
+ rtx xops[3];
+ } tmp_info[MAX_TMPS];
rtx dest = operands[0];
rtx src = operands[1];
@@ -1413,10 +1442,10 @@ output_move_memory (operands, insn, length, tmp_start, n_operands)
&& XEXP (XEXP (dest, 0), 0) == stack_pointer_rtx)
return output_move_pushmem (operands, insn, length, tmp_start, n_operands);
- if (!offsettable_memref_p (src))
+ if (! offsettable_memref_p (src))
fatal_insn ("Source is not offsettable", insn);
- if (!offsettable_memref_p (dest))
+ if (! offsettable_memref_p (dest))
fatal_insn ("Destination is not offsettable", insn);
/* Figure out which temporary registers we have available */
@@ -1424,7 +1453,7 @@ output_move_memory (operands, insn, length, tmp_start, n_operands)
{
if (GET_CODE (operands[i]) == REG)
{
- if ((length & 1) != 0 && !qi_tmp && QI_REG_P (operands[i]))
+ if ((length & 1) != 0 && qi_tmp == 0 && QI_REG_P (operands[i]))
qi_tmp = operands[i];
if (reg_overlap_mentioned_p (operands[i], dest))
@@ -1433,19 +1462,21 @@ output_move_memory (operands, insn, length, tmp_start, n_operands)
if (reg_overlap_mentioned_p (operands[i], src))
fatal_insn ("Temporary register overlaps the source", insn);
- tmp_info[ max_tmps++ ].xops[2] = operands[i];
+ tmp_info[max_tmps++].xops[2] = operands[i];
if (max_tmps == MAX_TMPS)
break;
}
}
if (max_tmps == 0)
- fatal_insn ("No scratch registers were found to do memory->memory moves", insn);
+ fatal_insn ("No scratch registers were found to do memory->memory moves",
+ insn);
if ((length & 1) != 0)
{
- if (!qi_tmp)
- fatal_insn ("No byte register found when moving odd # of bytes.", insn);
+ if (qi_tmp == 0)
+ fatal_insn ("No byte register found when moving odd # of bytes.",
+ insn);
}
while (length > 1)
@@ -1456,17 +1487,24 @@ output_move_memory (operands, insn, length, tmp_start, n_operands)
{
tmp_info[num_tmps].load = AS2(mov%L0,%1,%2);
tmp_info[num_tmps].store = AS2(mov%L0,%2,%0);
- tmp_info[num_tmps].xops[0] = adj_offsettable_operand (dest, offset);
- tmp_info[num_tmps].xops[1] = adj_offsettable_operand (src, offset);
+ tmp_info[num_tmps].xops[0]
+ = adj_offsettable_operand (dest, offset);
+ tmp_info[num_tmps].xops[1]
+ = adj_offsettable_operand (src, offset);
+
offset += 4;
length -= 4;
}
+
else if (length >= 2)
{
tmp_info[num_tmps].load = AS2(mov%W0,%1,%2);
tmp_info[num_tmps].store = AS2(mov%W0,%2,%0);
- tmp_info[num_tmps].xops[0] = adj_offsettable_operand (dest, offset);
- tmp_info[num_tmps].xops[1] = adj_offsettable_operand (src, offset);
+ tmp_info[num_tmps].xops[0]
+ = adj_offsettable_operand (dest, offset);
+ tmp_info[num_tmps].xops[1]
+ = adj_offsettable_operand (src, offset);
+
offset += 2;
length -= 2;
}
@@ -1492,7 +1530,6 @@ output_move_memory (operands, insn, length, tmp_start, n_operands)
return "";
}
-
int
standard_80387_constant_p (x)
@@ -1540,6 +1577,7 @@ output_move_const_single (operands)
if (conval == 2)
return "fld1";
}
+
if (GET_CODE (operands[1]) == CONST_DOUBLE)
{
REAL_VALUE_TYPE r; long l;
@@ -1551,6 +1589,7 @@ output_move_const_single (operands)
REAL_VALUE_TO_TARGET_SINGLE (r, l);
operands[1] = GEN_INT (l);
}
+
return singlemove_string (operands);
}
@@ -1567,11 +1606,13 @@ symbolic_operand (op, mode)
case SYMBOL_REF:
case LABEL_REF:
return 1;
+
case CONST:
op = XEXP (op, 0);
return ((GET_CODE (XEXP (op, 0)) == SYMBOL_REF
|| GET_CODE (XEXP (op, 0)) == LABEL_REF)
&& GET_CODE (XEXP (op, 1)) == CONST_INT);
+
default:
return 0;
}
@@ -1593,9 +1634,10 @@ call_insn_operand (op, mode)
&& general_operand (XEXP (op, 0), Pmode))
|| (GET_CODE (XEXP (op, 0)) == REG
&& XEXP (op, 0) != arg_pointer_rtx
- && !(REGNO (XEXP (op, 0)) >= FIRST_PSEUDO_REGISTER
- && REGNO (XEXP (op, 0)) <= LAST_VIRTUAL_REGISTER))))
+ && ! (REGNO (XEXP (op, 0)) >= FIRST_PSEUDO_REGISTER
+ && REGNO (XEXP (op, 0)) <= LAST_VIRTUAL_REGISTER))))
return 1;
+
return 0;
}
@@ -1611,9 +1653,10 @@ expander_call_insn_operand (op, mode)
&& (CONSTANT_ADDRESS_P (XEXP (op, 0))
|| (GET_CODE (XEXP (op, 0)) == REG
&& XEXP (op, 0) != arg_pointer_rtx
- && !(REGNO (XEXP (op, 0)) >= FIRST_PSEUDO_REGISTER
- && REGNO (XEXP (op, 0)) <= LAST_VIRTUAL_REGISTER))))
+ && ! (REGNO (XEXP (op, 0)) >= FIRST_PSEUDO_REGISTER
+ && REGNO (XEXP (op, 0)) <= LAST_VIRTUAL_REGISTER))))
return 1;
+
return 0;
}
@@ -1629,6 +1672,7 @@ arithmetic_comparison_operator (op, mode)
if (mode != VOIDmode && mode != GET_MODE (op))
return 0;
+
code = GET_CODE (op);
if (GET_RTX_CLASS (code) != '<')
return 0;
@@ -1659,6 +1703,7 @@ symbolic_reference_mentioned_p (op)
if (symbolic_reference_mentioned_p (XVECEXP (op, i, j)))
return 1;
}
+
else if (fmt[i] == 'e' && symbolic_reference_mentioned_p (XEXP (op, i)))
return 1;
}
@@ -1692,9 +1737,11 @@ ix86_expand_binary_operator (code, mode, operands)
}
/* If optimizing, copy to regs to improve CSE */
- if (TARGET_PSEUDO && optimize && ((reload_in_progress | reload_completed) == 0))
+ if (TARGET_PSEUDO && optimize
+ && ((reload_in_progress | reload_completed) == 0))
{
- if (GET_CODE (operands[1]) == MEM && !rtx_equal_p (operands[0], operands[1]))
+ if (GET_CODE (operands[1]) == MEM
+ && ! rtx_equal_p (operands[0], operands[1]))
operands[1] = force_reg (GET_MODE (operands[1]), operands[1]);
if (GET_CODE (operands[2]) == MEM)
@@ -1703,6 +1750,7 @@ ix86_expand_binary_operator (code, mode, operands)
if (GET_CODE (operands[1]) == CONST_INT && code == MINUS)
{
rtx temp = gen_reg_rtx (GET_MODE (operands[0]));
+
emit_move_insn (temp, operands[1]);
operands[1] = temp;
return TRUE;
@@ -1711,15 +1759,16 @@ ix86_expand_binary_operator (code, mode, operands)
if (!ix86_binary_operator_ok (code, mode, operands))
{
- /* If not optimizing, try to make a valid insn (optimize code previously did
- this above to improve chances of CSE) */
+ /* If not optimizing, try to make a valid insn (optimize code
+ previously did this above to improve chances of CSE) */
- if ((!TARGET_PSEUDO || !optimize)
+ if ((! TARGET_PSEUDO || !optimize)
&& ((reload_in_progress | reload_completed) == 0)
&& (GET_CODE (operands[1]) == MEM || GET_CODE (operands[2]) == MEM))
{
modified = FALSE;
- if (GET_CODE (operands[1]) == MEM && !rtx_equal_p (operands[0], operands[1]))
+ if (GET_CODE (operands[1]) == MEM
+ && ! rtx_equal_p (operands[0], operands[1]))
{
operands[1] = force_reg (GET_MODE (operands[1]), operands[1]);
modified = TRUE;
@@ -1734,12 +1783,13 @@ ix86_expand_binary_operator (code, mode, operands)
if (GET_CODE (operands[1]) == CONST_INT && code == MINUS)
{
rtx temp = gen_reg_rtx (GET_MODE (operands[0]));
+
emit_move_insn (temp, operands[1]);
operands[1] = temp;
return TRUE;
}
- if (modified && !ix86_binary_operator_ok (code, mode, operands))
+ if (modified && ! ix86_binary_operator_ok (code, mode, operands))
return FALSE;
}
else
@@ -1780,18 +1830,16 @@ ix86_expand_unary_operator (code, mode, operands)
&& optimize
&& ((reload_in_progress | reload_completed) == 0)
&& GET_CODE (operands[1]) == MEM)
- {
- operands[1] = force_reg (GET_MODE (operands[1]), operands[1]);
- }
+ operands[1] = force_reg (GET_MODE (operands[1]), operands[1]);
- if (!ix86_unary_operator_ok (code, mode, operands))
+ if (! ix86_unary_operator_ok (code, mode, operands))
{
- if ((!TARGET_PSEUDO || !optimize)
+ if ((! TARGET_PSEUDO || optimize == 0)
&& ((reload_in_progress | reload_completed) == 0)
&& GET_CODE (operands[1]) == MEM)
{
operands[1] = force_reg (GET_MODE (operands[1]), operands[1]);
- if (!ix86_unary_operator_ok (code, mode, operands))
+ if (! ix86_unary_operator_ok (code, mode, operands))
return FALSE;
}
else
@@ -1812,19 +1860,18 @@ ix86_unary_operator_ok (code, mode, operands)
{
return TRUE;
}
-
-
static rtx pic_label_rtx;
static char pic_label_name [256];
static int pic_label_no = 0;
/* This function generates code for -fpic that loads %ebx with
with the return address of the caller and then returns. */
+
void
asm_output_function_prefix (file, name)
- FILE * file;
- char * name;
+ FILE *file;
+ char *name;
{
rtx xops[2];
int pic_reg_used = flag_pic && (current_function_uses_pic_offset_table
@@ -1832,17 +1879,18 @@ asm_output_function_prefix (file, name)
xops[0] = pic_offset_table_rtx;
xops[1] = stack_pointer_rtx;
- /* deep branch prediction favors having a return for every call */
+ /* Deep branch prediction favors having a return for every call. */
if (pic_reg_used && TARGET_DEEP_BRANCH_PREDICTION)
{
tree prologue_node;
if (pic_label_rtx == 0)
{
- pic_label_rtx = (rtx) gen_label_rtx ();
+ pic_label_rtx = gen_label_rtx ();
sprintf (pic_label_name, "LPR%d", pic_label_no++);
LABEL_NAME (pic_label_rtx) = pic_label_name;
}
+
prologue_node = make_node (FUNCTION_DECL);
DECL_RESULT (prologue_node) = 0;
#ifdef ASM_DECLARE_FUNCTION_NAME
@@ -1853,128 +1901,106 @@ asm_output_function_prefix (file, name)
}
}
-/* Set up the stack and frame (if desired) for the function. */
+/* Generate the assembly code for function entry.
+ FILE is an stdio stream to output the code to.
+ SIZE is an int: how many units of temporary storage to allocate. */
void
function_prologue (file, size)
FILE *file;
int size;
{
- register int regno;
- int limit;
- rtx xops[4];
- int pic_reg_used = flag_pic && (current_function_uses_pic_offset_table
- || current_function_uses_const_pool);
- long tsize = get_frame_size ();
- int cfa_offset = INCOMING_FRAME_SP_OFFSET, cfa_store_offset = cfa_offset;
-
- /* pic references don't explicitly mention pic_offset_table_rtx */
if (TARGET_SCHEDULE_PROLOGUE)
{
pic_label_rtx = 0;
return;
}
- xops[0] = stack_pointer_rtx;
- xops[1] = frame_pointer_rtx;
- xops[2] = GEN_INT (tsize);
+ ix86_prologue (0);
+}
- if (frame_pointer_needed)
+/* Expand the prologue into a bunch of separate insns. */
+
+void
+ix86_expand_prologue ()
+{
+ if (! TARGET_SCHEDULE_PROLOGUE)
+ return;
+
+ ix86_prologue (1);
+}
+
+void
+load_pic_register (do_rtl)
+ int do_rtl;
+{
+ rtx xops[4];
+
+ if (TARGET_DEEP_BRANCH_PREDICTION)
{
- output_asm_insn ("push%L1 %1", xops);
- if (dwarf2out_do_frame ())
+ xops[0] = pic_offset_table_rtx;
+ if (pic_label_rtx == 0)
{
- char *l = (char *) dwarf2out_cfi_label ();
- cfa_store_offset += 4;
- cfa_offset = cfa_store_offset;
- dwarf2out_def_cfa (l, STACK_POINTER_REGNUM, cfa_offset);
- dwarf2out_reg_save (l, FRAME_POINTER_REGNUM, -cfa_store_offset);
+ pic_label_rtx = gen_label_rtx ();
+ sprintf (pic_label_name, "LPR%d", pic_label_no++);
+ LABEL_NAME (pic_label_rtx) = pic_label_name;
}
- output_asm_insn (AS2 (mov%L0,%0,%1), xops);
- if (dwarf2out_do_frame ())
- dwarf2out_def_cfa ("", FRAME_POINTER_REGNUM, cfa_offset);
- }
- if (tsize == 0)
- ;
- else if (! TARGET_STACK_PROBE || tsize < CHECK_STACK_LIMIT)
- {
- output_asm_insn (AS2 (sub%L0,%2,%0), xops);
- if (dwarf2out_do_frame ())
+ xops[1] = gen_rtx (MEM, QImode,
+ gen_rtx (SYMBOL_REF, Pmode,
+ LABEL_NAME (pic_label_rtx)));
+
+ if (do_rtl)
{
- cfa_store_offset += tsize;
- if (! frame_pointer_needed)
- {
- cfa_offset = cfa_store_offset;
- dwarf2out_def_cfa ("", STACK_POINTER_REGNUM, cfa_offset);
- }
+ emit_insn (gen_prologue_get_pc (xops[0], xops[1]));
+ emit_insn (gen_prologue_set_got (xops[0],
+ gen_rtx (SYMBOL_REF, Pmode,
+ "$_GLOBAL_OFFSET_TABLE_"),
+ xops[1]));
+ }
+ else
+ {
+ output_asm_insn (AS1 (call,%P1), xops);
+ output_asm_insn ("addl $_GLOBAL_OFFSET_TABLE_,%0", xops);
+ pic_label_rtx = 0;
}
- }
- else
- {
- xops[3] = gen_rtx (REG, SImode, 0);
- output_asm_insn (AS2 (mov%L0,%2,%3), xops);
-
- xops[3] = gen_rtx (SYMBOL_REF, Pmode, "_alloca");
- output_asm_insn (AS1 (call,%P3), xops);
}
- /* Note If use enter it is NOT reversed args.
- This one is not reversed from intel!!
- I think enter is slower. Also sdb doesn't like it.
- But if you want it the code is:
- {
- xops[3] = const0_rtx;
- output_asm_insn ("enter %2,%3", xops);
- }
- */
- limit = (frame_pointer_needed ? FRAME_POINTER_REGNUM : STACK_POINTER_REGNUM);
- for (regno = limit - 1; regno >= 0; regno--)
- if ((regs_ever_live[regno] && ! call_used_regs[regno])
- || (regno == PIC_OFFSET_TABLE_REGNUM && pic_reg_used))
- {
- xops[0] = gen_rtx (REG, SImode, regno);
- output_asm_insn ("push%L0 %0", xops);
- if (dwarf2out_do_frame ())
- {
- char *l = (char *) dwarf2out_cfi_label ();
- cfa_store_offset += 4;
- if (! frame_pointer_needed)
- {
- cfa_offset = cfa_store_offset;
- dwarf2out_def_cfa (l, STACK_POINTER_REGNUM, cfa_offset);
- }
- dwarf2out_reg_save (l, regno, -cfa_store_offset);
- }
- }
-
- if (pic_reg_used && TARGET_DEEP_BRANCH_PREDICTION)
+ else
{
xops[0] = pic_offset_table_rtx;
- xops[1] = gen_rtx (SYMBOL_REF, Pmode, LABEL_NAME (pic_label_rtx));
-
- output_asm_insn (AS1 (call,%P1), xops);
- output_asm_insn ("addl $_GLOBAL_OFFSET_TABLE_,%0", xops);
- pic_label_rtx = 0;
- }
- else if (pic_reg_used)
- {
- xops[0] = pic_offset_table_rtx;
- xops[1] = (rtx) gen_label_rtx ();
+ xops[1] = gen_label_rtx ();
- output_asm_insn (AS1 (call,%P1), xops);
- ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (xops[1]));
- output_asm_insn (AS1 (pop%L0,%0), xops);
- output_asm_insn ("addl $_GLOBAL_OFFSET_TABLE_+[.-%P1],%0", xops);
- }
-}
+ if (do_rtl)
+ {
+ emit_insn (gen_prologue_get_pc (xops[0], xops[1]));
+ emit_insn (gen_pop (xops[0]));
+ emit_insn (gen_prologue_set_got
+ (xops[0],
+ gen_rtx (SYMBOL_REF, Pmode, "$_GLOBAL_OFFSET_TABLE_"),
+ xops[1]));
+ }
+ else
+ {
+ output_asm_insn (AS1 (call,%P1), xops);
+ ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L",
+ CODE_LABEL_NUMBER (xops[1]));
+ output_asm_insn (AS1 (pop%L0,%0), xops);
+ output_asm_insn ("addl $_GLOBAL_OFFSET_TABLE_+[.-%P1],%0", xops);
+ }
+ }
-/* This function generates the assembly code for function entry.
- FILE is an stdio stream to output the code to.
- SIZE is an int: how many units of temporary storage to allocate. */
+ /* When -fpic, we must emit a scheduling barrier, so that the instruction
+ that restores %ebx (which is PIC_OFFSET_TABLE_REGNUM), does not get
+ moved before any instruction which implicitly uses the got. */
-void
-ix86_expand_prologue ()
+ if (do_rtl)
+ emit_insn (gen_blockage ());
+}
+
+static void
+ix86_prologue (do_rtl)
+ int do_rtl;
{
register int regno;
int limit;
@@ -1983,40 +2009,90 @@ ix86_expand_prologue ()
|| current_function_uses_const_pool);
long tsize = get_frame_size ();
rtx insn;
-
- if (!TARGET_SCHEDULE_PROLOGUE)
- return;
+ int cfa_offset = INCOMING_FRAME_SP_OFFSET, cfa_store_offset = cfa_offset;
xops[0] = stack_pointer_rtx;
xops[1] = frame_pointer_rtx;
xops[2] = GEN_INT (tsize);
+
if (frame_pointer_needed)
{
- insn = emit_insn
- (gen_rtx (SET, 0,
- gen_rtx (MEM, SImode,
- gen_rtx (PRE_DEC, SImode, stack_pointer_rtx)),
- frame_pointer_rtx));
- RTX_FRAME_RELATED_P (insn) = 1;
- insn = emit_move_insn (xops[1], xops[0]);
- RTX_FRAME_RELATED_P (insn) = 1;
+ if (do_rtl)
+ {
+ insn = emit_insn (gen_rtx (SET, VOIDmode,
+ gen_rtx (MEM, SImode,
+ gen_rtx (PRE_DEC, SImode,
+ stack_pointer_rtx)),
+ frame_pointer_rtx));
+
+ RTX_FRAME_RELATED_P (insn) = 1;
+ insn = emit_move_insn (xops[1], xops[0]);
+ RTX_FRAME_RELATED_P (insn) = 1;
+ }
+
+ else
+ {
+ output_asm_insn ("push%L1 %1", xops);
+#ifdef INCOMING_RETURN_ADDR_RTX
+ if (dwarf2out_do_frame ())
+ {
+ char *l = dwarf2out_cfi_label ();
+
+ cfa_store_offset += 4;
+ cfa_offset = cfa_store_offset;
+ dwarf2out_def_cfa (l, STACK_POINTER_REGNUM, cfa_offset);
+ dwarf2out_reg_save (l, FRAME_POINTER_REGNUM, - cfa_store_offset);
+ }
+#endif
+
+ output_asm_insn (AS2 (mov%L0,%0,%1), xops);
+#ifdef INCOMING_RETURN_ADDR_RTX
+ if (dwarf2out_do_frame ())
+ dwarf2out_def_cfa ("", FRAME_POINTER_REGNUM, cfa_offset);
+#endif
+ }
}
if (tsize == 0)
;
else if (! TARGET_STACK_PROBE || tsize < CHECK_STACK_LIMIT)
{
- insn = emit_insn (gen_prologue_set_stack_ptr (xops[2]));
- RTX_FRAME_RELATED_P (insn) = 1;
+ if (do_rtl)
+ {
+ insn = emit_insn (gen_prologue_set_stack_ptr (xops[2]));
+ RTX_FRAME_RELATED_P (insn) = 1;
+ }
+ else
+ {
+ output_asm_insn (AS2 (sub%L0,%2,%0), xops);
+#ifdef INCOMING_RETURN_ADDR_RTX
+ if (dwarf2out_do_frame ())
+ {
+ cfa_store_offset += tsize;
+ if (! frame_pointer_needed)
+ {
+ cfa_offset = cfa_store_offset;
+ dwarf2out_def_cfa ("", STACK_POINTER_REGNUM, cfa_offset);
+ }
+ }
+#endif
+ }
}
else
{
xops[3] = gen_rtx (REG, SImode, 0);
+ if (do_rtl)
emit_move_insn (xops[3], xops[2]);
+ else
+ output_asm_insn (AS2 (mov%L0,%2,%3), xops);
+
xops[3] = gen_rtx (MEM, FUNCTION_MODE,
gen_rtx (SYMBOL_REF, Pmode, "_alloca"));
- emit_call_insn (gen_rtx (CALL, VOIDmode,
- xops[3], const0_rtx));
+
+ if (do_rtl)
+ emit_call_insn (gen_rtx (CALL, VOIDmode, xops[3], const0_rtx));
+ else
+ output_asm_insn (AS1 (call,%P3), xops);
}
/* Note If use enter it is NOT reversed args.
@@ -2028,57 +2104,53 @@ ix86_expand_prologue ()
output_asm_insn ("enter %2,%3", xops);
}
*/
+
limit = (frame_pointer_needed ? FRAME_POINTER_REGNUM : STACK_POINTER_REGNUM);
for (regno = limit - 1; regno >= 0; regno--)
if ((regs_ever_live[regno] && ! call_used_regs[regno])
|| (regno == PIC_OFFSET_TABLE_REGNUM && pic_reg_used))
{
xops[0] = gen_rtx (REG, SImode, regno);
- insn = emit_insn
- (gen_rtx (SET, 0,
- gen_rtx (MEM, SImode,
- gen_rtx (PRE_DEC, SImode, stack_pointer_rtx)),
- xops[0]));
-
- RTX_FRAME_RELATED_P (insn) = 1;
- }
-
- if (pic_reg_used && TARGET_DEEP_BRANCH_PREDICTION)
- {
- xops[0] = pic_offset_table_rtx;
- if (pic_label_rtx == 0)
- {
- pic_label_rtx = (rtx) gen_label_rtx ();
- sprintf (pic_label_name, "LPR%d", pic_label_no++);
- LABEL_NAME (pic_label_rtx) = pic_label_name;
- }
- xops[1] = gen_rtx (MEM, QImode, gen_rtx (SYMBOL_REF, Pmode, LABEL_NAME (pic_label_rtx)));
+ if (do_rtl)
+ {
+ insn = emit_insn (gen_rtx (SET, VOIDmode,
+ gen_rtx (MEM, SImode,
+ gen_rtx (PRE_DEC, SImode,
+ stack_pointer_rtx)),
+ xops[0]));
- emit_insn (gen_prologue_get_pc (xops[0], xops[1]));
- emit_insn (gen_prologue_set_got (xops[0],
- gen_rtx (SYMBOL_REF, Pmode, "$_GLOBAL_OFFSET_TABLE_"),
- gen_rtx (CONST_INT, Pmode, CODE_LABEL_NUMBER(xops[1]))));
- }
- else if (pic_reg_used)
- {
- xops[0] = pic_offset_table_rtx;
- xops[1] = (rtx) gen_label_rtx ();
-
- emit_insn (gen_prologue_get_pc (xops[0], gen_rtx (CONST_INT, Pmode, CODE_LABEL_NUMBER(xops[1]))));
- emit_insn (gen_pop (xops[0]));
- emit_insn (gen_prologue_set_got (xops[0],
- gen_rtx (SYMBOL_REF, Pmode, "$_GLOBAL_OFFSET_TABLE_"),
- gen_rtx (CONST_INT, Pmode, CODE_LABEL_NUMBER (xops[1]))));
- }
-}
+ RTX_FRAME_RELATED_P (insn) = 1;
+ }
+ else
+ {
+ output_asm_insn ("push%L0 %0", xops);
+#ifdef INCOMING_RETURN_ADDR_RTX
+ if (dwarf2out_do_frame ())
+ {
+ char *l = dwarf2out_cfi_label ();
+
+ cfa_store_offset += 4;
+ if (! frame_pointer_needed)
+ {
+ cfa_offset = cfa_store_offset;
+ dwarf2out_def_cfa (l, STACK_POINTER_REGNUM, cfa_offset);
+ }
+
+ dwarf2out_reg_save (l, regno, - cfa_store_offset);
+ }
+#endif
+ }
+ }
-/* Restore function stack, frame, and registers. */
+ if (pic_reg_used)
+ load_pic_register (do_rtl);
-void
-function_epilogue (file, size)
- FILE *file;
- int size;
-{
+ /* If we are profiling, make sure no instructions are scheduled before
+ the call to mcount. However, if -fpic, the above call will have
+ done that. */
+ if ((profile_flag || profile_block_flag)
+ && ! pic_reg_used && do_rtl)
+ emit_insn (gen_blockage ());
}
/* Return 1 if it is appropriate to emit `ret' instructions in the
@@ -2119,14 +2191,30 @@ ix86_can_use_return_insn_p ()
return nregs == 0 || ! frame_pointer_needed;
}
-
/* This function generates the assembly code for function exit.
FILE is an stdio stream to output the code to.
SIZE is an int: how many units of temporary storage to deallocate. */
void
+function_epilogue (file, size)
+ FILE *file;
+ int size;
+{
+ return;
+}
+
+/* Restore function stack, frame, and registers. */
+
+void
ix86_expand_epilogue ()
{
+ ix86_epilogue (1);
+}
+
+static void
+ix86_epilogue (do_rtl)
+ int do_rtl;
+{
register int regno;
register int nregs, limit;
int offset;
@@ -2137,9 +2225,7 @@ ix86_expand_epilogue ()
/* Compute the number of registers to pop */
- limit = (frame_pointer_needed
- ? FRAME_POINTER_REGNUM
- : STACK_POINTER_REGNUM);
+ limit = (frame_pointer_needed ? FRAME_POINTER_REGNUM : STACK_POINTER_REGNUM);
nregs = 0;
@@ -2148,16 +2234,14 @@ ix86_expand_epilogue ()
|| (regno == PIC_OFFSET_TABLE_REGNUM && pic_reg_used))
nregs++;
- /* sp is often unreliable so we must go off the frame pointer,
- */
+ /* sp is often unreliable so we must go off the frame pointer.
- /* In reality, we may not care if sp is unreliable, because we can
- restore the register relative to the frame pointer. In theory,
- since each move is the same speed as a pop, and we don't need the
- leal, this is faster. For now restore multiple registers the old
- way. */
+ In reality, we may not care if sp is unreliable, because we can restore
+ the register relative to the frame pointer. In theory, since each move
+ is the same speed as a pop, and we don't need the leal, this is faster.
+ For now restore multiple registers the old way. */
- offset = -tsize - (nregs * UNITS_PER_WORD);
+ offset = - tsize - (nregs * UNITS_PER_WORD);
xops[2] = stack_pointer_rtx;
@@ -2168,7 +2252,8 @@ ix86_expand_epilogue ()
Alternatively, this could be fixed by making the dependence on the
PIC_OFFSET_TABLE_REGNUM explicit in the RTL. */
- if (flag_pic)
+
+ if (flag_pic || profile_flag || profile_block_flag)
emit_insn (gen_blockage ());
if (nregs > 1 || ! frame_pointer_needed)
@@ -2176,8 +2261,10 @@ ix86_expand_epilogue ()
if (frame_pointer_needed)
{
xops[0] = adj_offsettable_operand (AT_BP (QImode), offset);
- emit_insn (gen_movsi_lea (xops[2], XEXP (xops[0], 0)));
-/* output_asm_insn (AS2 (lea%L2,%0,%2), xops);*/
+ if (do_rtl)
+ emit_insn (gen_movsi_lea (xops[2], XEXP (xops[0], 0)));
+ else
+ output_asm_insn (AS2 (lea%L2,%0,%2), xops);
}
for (regno = 0; regno < limit; regno++)
@@ -2185,10 +2272,14 @@ ix86_expand_epilogue ()
|| (regno == PIC_OFFSET_TABLE_REGNUM && pic_reg_used))
{
xops[0] = gen_rtx (REG, SImode, regno);
- emit_insn (gen_pop (xops[0]));
-/* output_asm_insn ("pop%L0 %0", xops);*/
+
+ if (do_rtl)
+ emit_insn (gen_pop (xops[0]));
+ else
+ output_asm_insn ("pop%L0 %0", xops);
}
}
+
else
for (regno = 0; regno < limit; regno++)
if ((regs_ever_live[regno] && ! call_used_regs[regno])
@@ -2196,8 +2287,12 @@ ix86_expand_epilogue ()
{
xops[0] = gen_rtx (REG, SImode, regno);
xops[1] = adj_offsettable_operand (AT_BP (Pmode), offset);
- emit_move_insn (xops[0], xops[1]);
-/* output_asm_insn (AS2 (mov%L0,%1,%0), xops);*/
+
+ if (do_rtl)
+ emit_move_insn (xops[0], xops[1]);
+ else
+ output_asm_insn (AS2 (mov%L0,%1,%0), xops);
+
offset += 4;
}
@@ -2206,29 +2301,40 @@ ix86_expand_epilogue ()
/* If not an i386, mov & pop is faster than "leave". */
if (TARGET_USE_LEAVE)
- emit_insn (gen_leave());
-/* output_asm_insn ("leave", xops);*/
+ {
+ if (do_rtl)
+ emit_insn (gen_leave());
+ else
+ output_asm_insn ("leave", xops);
+ }
else
{
xops[0] = frame_pointer_rtx;
xops[1] = stack_pointer_rtx;
- emit_insn (gen_epilogue_set_stack_ptr());
-/* output_asm_insn (AS2 (mov%L2,%0,%2), xops);*/
- emit_insn (gen_pop (xops[0]));
-/* output_asm_insn ("pop%L0 %0", xops);*/
+
+ if (do_rtl)
+ {
+ emit_insn (gen_epilogue_set_stack_ptr());
+ emit_insn (gen_pop (xops[0]));
+ }
+ else
+ {
+ output_asm_insn (AS2 (mov%L2,%0,%2), xops);
+ output_asm_insn ("pop%L0 %0", xops);
+ }
}
}
+
else if (tsize)
{
/* If there is no frame pointer, we must still release the frame. */
-
xops[0] = GEN_INT (tsize);
- emit_insn (gen_rtx (SET, SImode,
- xops[2],
- gen_rtx (PLUS, SImode,
- xops[2],
- xops[0])));
-/* output_asm_insn (AS2 (add%L2,%0,%2), xops);*/
+
+ if (do_rtl)
+ emit_insn (gen_rtx (SET, VOIDmode, xops[2],
+ gen_rtx (PLUS, SImode, xops[2], xops[0])));
+ else
+ output_asm_insn (AS2 (add%L2,%0,%2), xops);
}
#ifdef FUNCTION_BLOCK_PROFILER_EXIT
@@ -2250,26 +2356,37 @@ ix86_expand_epilogue ()
{
/* ??? Which register to use here? */
xops[0] = gen_rtx (REG, SImode, 2);
- emit_insn (gen_pop (xops[0]));
-/* output_asm_insn ("pop%L0 %0", xops);*/
- emit_insn (gen_rtx (SET, SImode,
- xops[2],
- gen_rtx (PLUS, SImode,
- xops[1],
- xops[2])));
-/* output_asm_insn (AS2 (add%L2,%1,%2), xops);*/
- emit_jump_insn (xops[0]);
-/* output_asm_insn ("jmp %*%0", xops);*/
+
+ if (do_rtl)
+ {
+ emit_insn (gen_pop (xops[0]));
+ emit_insn (gen_rtx (SET, VOIDmode, xops[2],
+ gen_rtx (PLUS, SImode, xops[1], xops[2])));
+ emit_jump_insn (xops[0]);
+ }
+ else
+ {
+ output_asm_insn ("pop%L0 %0", xops);
+ output_asm_insn (AS2 (add%L2,%1,%2), xops);
+ output_asm_insn ("jmp %*%0", xops);
+ }
+ }
+ else
+ {
+ if (do_rtl)
+ emit_jump_insn (gen_return_pop_internal (xops[1]));
+ else
+ output_asm_insn ("ret %1", xops);
}
- else
- emit_jump_insn (gen_return_pop_internal (xops[1]));
-/* output_asm_insn ("ret %1", xops);*/
}
else
-/* output_asm_insn ("ret", xops);*/
- emit_jump_insn (gen_return_internal ());
+ {
+ if (do_rtl)
+ emit_jump_insn (gen_return_internal ());
+ else
+ output_asm_insn ("ret", xops);
+ }
}
-
/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
that is a valid memory address for an instruction.
@@ -2319,14 +2436,14 @@ legitimate_address_p (mode, addr, strict)
if (TARGET_DEBUG_ADDR)
{
fprintf (stderr,
- "\n==========\nGO_IF_LEGITIMATE_ADDRESS, mode = %s, strict = %d\n",
+ "\n======\nGO_IF_LEGITIMATE_ADDRESS, mode = %s, strict = %d\n",
GET_MODE_NAME (mode), strict);
debug_rtx (addr);
}
if (GET_CODE (addr) == REG || GET_CODE (addr) == SUBREG)
- base = addr; /* base reg */
+ base = addr;
else if (GET_CODE (addr) == PLUS)
{
@@ -2339,13 +2456,13 @@ legitimate_address_p (mode, addr, strict)
{
if (code1 == REG || code1 == SUBREG)
{
- indx = op0; /* index + base */
+ indx = op0; /* index + base */
base = op1;
}
else
{
- base = op0; /* base + displacement */
+ base = op0; /* base + displacement */
disp = op1;
}
}
@@ -2356,10 +2473,10 @@ legitimate_address_p (mode, addr, strict)
scale = XEXP (op0, 1);
if (code1 == REG || code1 == SUBREG)
- base = op1; /* index*scale + base */
+ base = op1; /* index*scale + base */
else
- disp = op1; /* index*scale + disp */
+ disp = op1; /* index*scale + disp */
}
else if (code0 == PLUS && GET_CODE (XEXP (op0, 0)) == MULT)
@@ -2372,7 +2489,7 @@ legitimate_address_p (mode, addr, strict)
else if (code0 == PLUS)
{
- indx = XEXP (op0, 0); /* index + base + disp */
+ indx = XEXP (op0, 0); /* index + base + disp */
base = XEXP (op0, 1);
disp = op1;
}
@@ -2386,12 +2503,12 @@ legitimate_address_p (mode, addr, strict)
else if (GET_CODE (addr) == MULT)
{
- indx = XEXP (addr, 0); /* index*scale */
+ indx = XEXP (addr, 0); /* index*scale */
scale = XEXP (addr, 1);
}
else
- disp = addr; /* displacement */
+ disp = addr; /* displacement */
/* Allow arg pointer and stack pointer as index if there is not scaling */
if (base && indx && !scale
@@ -2402,10 +2519,12 @@ legitimate_address_p (mode, addr, strict)
indx = tmp;
}
- /* Validate base register */
- /* Don't allow SUBREG's here, it can lead to spill failures when the base
+ /* Validate base register:
+
+ Don't allow SUBREG's here, it can lead to spill failures when the base
is one word out of a two word structure, which is represented internally
as a DImode int. */
+
if (base)
{
if (GET_CODE (base) != REG)
@@ -2414,16 +2533,17 @@ legitimate_address_p (mode, addr, strict)
return FALSE;
}
- if ((strict && !REG_OK_FOR_BASE_STRICT_P (base))
- || (!strict && !REG_OK_FOR_BASE_NONSTRICT_P (base)))
+ if ((strict && ! REG_OK_FOR_BASE_STRICT_P (base))
+ || (! strict && ! REG_OK_FOR_BASE_NONSTRICT_P (base)))
{
ADDR_INVALID ("Base is not valid.\n", base);
return FALSE;
}
}
- /* Validate index register */
- /* Don't allow SUBREG's here, it can lead to spill failures when the index
+ /* Validate index register:
+
+ Don't allow SUBREG's here, it can lead to spill failures when the index
is one word out of a two word structure, which is represented internally
as a DImode int. */
if (indx)
@@ -2434,17 +2554,17 @@ legitimate_address_p (mode, addr, strict)
return FALSE;
}
- if ((strict && !REG_OK_FOR_INDEX_STRICT_P (indx))
- || (!strict && !REG_OK_FOR_INDEX_NONSTRICT_P (indx)))
+ if ((strict && ! REG_OK_FOR_INDEX_STRICT_P (indx))
+ || (! strict && ! REG_OK_FOR_INDEX_NONSTRICT_P (indx)))
{
ADDR_INVALID ("Index is not valid.\n", indx);
return FALSE;
}
}
else if (scale)
- abort (); /* scale w/o index invalid */
+ abort (); /* scale w/o index invalid */
- /* Validate scale factor */
+ /* Validate scale factor: */
if (scale)
{
HOST_WIDE_INT value;
@@ -2472,8 +2592,8 @@ legitimate_address_p (mode, addr, strict)
{
if (GET_CODE (disp) == SYMBOL_REF
&& CONSTANT_POOL_ADDRESS_P (disp)
- && !base
- && !indx)
+ && base == 0
+ && indx == 0)
;
else if (!CONSTANT_ADDRESS_P (disp))
@@ -2499,7 +2619,8 @@ legitimate_address_p (mode, addr, strict)
else if (HALF_PIC_P () && HALF_PIC_ADDRESS_P (disp)
&& (base != NULL_RTX || indx != NULL_RTX))
{
- ADDR_INVALID ("Displacement is an invalid half-pic reference.\n", disp);
+ ADDR_INVALID ("Displacement is an invalid half-pic reference.\n",
+ disp);
return FALSE;
}
}
@@ -2510,7 +2631,6 @@ legitimate_address_p (mode, addr, strict)
/* Everything looks valid, return true */
return TRUE;
}
-
/* Return a legitimate reference for ORIG (an address) using the
register REG. If REG is 0, a new pseudo is generated.
@@ -2561,14 +2681,14 @@ legitimize_pic_address (orig, reg)
new = gen_rtx (PLUS, Pmode, pic_offset_table_rtx, orig);
else
new = gen_rtx (MEM, Pmode,
- gen_rtx (PLUS, Pmode,
- pic_offset_table_rtx, orig));
+ gen_rtx (PLUS, Pmode, pic_offset_table_rtx, orig));
emit_move_insn (reg, new);
}
current_function_uses_pic_offset_table = 1;
return reg;
}
+
else if (GET_CODE (addr) == CONST || GET_CODE (addr) == PLUS)
{
rtx base;
@@ -2598,12 +2718,12 @@ legitimize_pic_address (orig, reg)
base = gen_rtx (PLUS, Pmode, base, XEXP (addr, 0));
addr = XEXP (addr, 1);
}
- return gen_rtx (PLUS, Pmode, base, addr);
+
+ return gen_rtx (PLUS, Pmode, base, addr);
}
return new;
}
-
/* Emit insns to move operands[1] into operands[0]. */
void
@@ -2614,11 +2734,10 @@ emit_pic_move (operands, mode)
rtx temp = reload_in_progress ? operands[0] : gen_reg_rtx (Pmode);
if (GET_CODE (operands[0]) == MEM && SYMBOLIC_CONST (operands[1]))
- operands[1] = (rtx) force_reg (SImode, operands[1]);
+ operands[1] = force_reg (SImode, operands[1]);
else
operands[1] = legitimize_pic_address (operands[1], temp);
}
-
/* Try machine-dependent ways of modifying an illegitimate address
to be legitimate. If we find one, return the new, valid address.
@@ -2652,7 +2771,8 @@ legitimize_address (x, oldx, mode)
if (TARGET_DEBUG_ADDR)
{
- fprintf (stderr, "\n==========\nLEGITIMIZE_ADDRESS, mode = %s\n", GET_MODE_NAME (mode));
+ fprintf (stderr, "\n==========\nLEGITIMIZE_ADDRESS, mode = %s\n",
+ GET_MODE_NAME (mode));
debug_rtx (x);
}
@@ -2665,14 +2785,14 @@ legitimize_address (x, oldx, mode)
&& (log = (unsigned)exact_log2 (INTVAL (XEXP (x, 1)))) < 4)
{
changed = 1;
- x = gen_rtx (MULT, Pmode,
- force_reg (Pmode, XEXP (x, 0)),
+ x = gen_rtx (MULT, Pmode, force_reg (Pmode, XEXP (x, 0)),
GEN_INT (1 << log));
}
if (GET_CODE (x) == PLUS)
{
- /* Canonicalize shifts by 0, 1, 2, 3 into multiply */
+ /* Canonicalize shifts by 0, 1, 2, 3 into multiply. */
+
if (GET_CODE (XEXP (x, 0)) == ASHIFT
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
&& (log = (unsigned)exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) < 4)
@@ -2693,7 +2813,7 @@ legitimize_address (x, oldx, mode)
GEN_INT (1 << log));
}
- /* Put multiply first if it isn't already */
+ /* Put multiply first if it isn't already. */
if (GET_CODE (XEXP (x, 1)) == MULT)
{
rtx tmp = XEXP (x, 0);
@@ -2710,11 +2830,13 @@ legitimize_address (x, oldx, mode)
{
changed = 1;
x = gen_rtx (PLUS, Pmode,
- gen_rtx (PLUS, Pmode, XEXP (x, 0), XEXP (XEXP (x, 1), 0)),
+ gen_rtx (PLUS, Pmode, XEXP (x, 0),
+ XEXP (XEXP (x, 1), 0)),
XEXP (XEXP (x, 1), 1));
}
- /* Canonicalize (plus (plus (mult (reg) (const)) (plus (reg) (const))) const)
+ /* Canonicalize
+ (plus (plus (mult (reg) (const)) (plus (reg) (const))) const)
into (plus (plus (mult (reg) (const)) (reg)) (const)). */
else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == PLUS
&& GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT
@@ -2800,7 +2922,6 @@ legitimize_address (x, oldx, mode)
return x;
}
-
/* Print an integer constant expression in assembler syntax. Addition
and subtraction are the only arithmetic that may appear in these
@@ -2880,20 +3001,20 @@ output_pic_addr_const (file, x, code)
break;
case PLUS:
- /* Some assemblers need integer constants to appear last (eg masm). */
+ /* Some assemblers need integer constants to appear first. */
if (GET_CODE (XEXP (x, 0)) == CONST_INT)
{
- output_pic_addr_const (file, XEXP (x, 1), code);
- if (INTVAL (XEXP (x, 0)) >= 0)
- fprintf (file, "+");
output_pic_addr_const (file, XEXP (x, 0), code);
+ if (INTVAL (XEXP (x, 1)) >= 0)
+ fprintf (file, "+");
+ output_pic_addr_const (file, XEXP (x, 1), code);
}
else
{
- output_pic_addr_const (file, XEXP (x, 0), code);
- if (INTVAL (XEXP (x, 1)) >= 0)
- fprintf (file, "+");
output_pic_addr_const (file, XEXP (x, 1), code);
+ if (INTVAL (XEXP (x, 0)) >= 0)
+ fprintf (file, "+");
+ output_pic_addr_const (file, XEXP (x, 0), code);
}
break;
@@ -2908,7 +3029,7 @@ output_pic_addr_const (file, x, code)
}
}
-/* Append the correct conditional move suffix which corresponds to CODE */
+/* Append the correct conditional move suffix which corresponds to CODE. */
static void
put_condition_code (code, reverse_cc, mode, file)
@@ -2917,69 +3038,99 @@ put_condition_code (code, reverse_cc, mode, file)
enum mode_class mode;
FILE * file;
{
- int ieee;
- ieee = (TARGET_IEEE_FP && (cc_prev_status.flags & CC_IN_80387)
- && ! (cc_prev_status.flags & CC_FCOMI));
+ int ieee = (TARGET_IEEE_FP && (cc_prev_status.flags & CC_IN_80387)
+ && ! (cc_prev_status.flags & CC_FCOMI));
if (reverse_cc && ! ieee)
code = reverse_condition (code);
if (mode == MODE_INT)
- switch (code)
- {
+ switch (code)
+ {
case NE:
- if (cc_prev_status.flags & CC_Z_IN_NOT_C)
- fputs ("b", file);
- else
- fputs ("ne", file);
- return;
- case EQ:
- if (cc_prev_status.flags & CC_Z_IN_NOT_C)
- fputs ("ae", file);
- else
- fputs ("e", file);
- return;
- case GE:
- fputs ("ge", file); return;
- case GT:
- fputs ("g", file); return;
- case LE:
- fputs ("le", file); return;
- case LT:
- fputs ("l", file); return;
- case GEU:
- fputs ("ae", file); return;
- case GTU:
- fputs ("a", file); return;
- case LEU:
- fputs ("be", file); return;
- case LTU:
- fputs ("b", file); return;
- default: output_operand_lossage ("Invalid %%C operand");
- }
+ if (cc_prev_status.flags & CC_Z_IN_NOT_C)
+ fputs ("b", file);
+ else
+ fputs ("ne", file);
+ return;
+
+ case EQ:
+ if (cc_prev_status.flags & CC_Z_IN_NOT_C)
+ fputs ("ae", file);
+ else
+ fputs ("e", file);
+ return;
+
+ case GE:
+ fputs ("ge", file);
+ return;
+
+ case GT:
+ fputs ("g", file);
+ return;
+
+ case LE:
+ fputs ("le", file);
+ return;
+
+ case LT:
+ fputs ("l", file);
+ return;
+
+ case GEU:
+ fputs ("ae", file);
+ return;
+
+ case GTU:
+ fputs ("a", file);
+ return;
+
+ case LEU:
+ fputs ("be", file);
+ return;
+
+ case LTU:
+ fputs ("b", file);
+ return;
+
+ default:
+ output_operand_lossage ("Invalid %%C operand");
+ }
+
else if (mode == MODE_FLOAT)
- switch (code)
- {
+ switch (code)
+ {
case NE:
- fputs (ieee ? (reverse_cc ? "ne" : "e") : "ne", file); return;
+ fputs (ieee ? (reverse_cc ? "ne" : "e") : "ne", file);
+ return;
case EQ:
- fputs (ieee ? (reverse_cc ? "ne" : "e") : "e", file); return;
+ fputs (ieee ? (reverse_cc ? "ne" : "e") : "e", file);
+ return;
case GE:
- fputs (ieee ? (reverse_cc ? "ne" : "e") : "nb", file); return;
+ fputs (ieee ? (reverse_cc ? "ne" : "e") : "nb", file);
+ return;
case GT:
- fputs (ieee ? (reverse_cc ? "ne" : "e") : "nbe", file); return;
+ fputs (ieee ? (reverse_cc ? "ne" : "e") : "nbe", file);
+ return;
case LE:
- fputs (ieee ? (reverse_cc ? "nb" : "b") : "be", file); return;
+ fputs (ieee ? (reverse_cc ? "nb" : "b") : "be", file);
+ return;
case LT:
- fputs (ieee ? (reverse_cc ? "ne" : "e") : "b", file); return;
+ fputs (ieee ? (reverse_cc ? "ne" : "e") : "b", file);
+ return;
case GEU:
- fputs (ieee ? (reverse_cc ? "ne" : "e") : "nb", file); return;
+ fputs (ieee ? (reverse_cc ? "ne" : "e") : "nb", file);
+ return;
case GTU:
- fputs (ieee ? (reverse_cc ? "ne" : "e") : "nbe", file); return;
+ fputs (ieee ? (reverse_cc ? "ne" : "e") : "nbe", file);
+ return;
case LEU:
- fputs (ieee ? (reverse_cc ? "nb" : "b") : "be", file); return;
+ fputs (ieee ? (reverse_cc ? "nb" : "b") : "be", file);
+ return;
case LTU:
- fputs (ieee ? (reverse_cc ? "ne" : "e") : "b", file); return;
- default: output_operand_lossage ("Invalid %%C operand");
+ fputs (ieee ? (reverse_cc ? "ne" : "e") : "b", file);
+ return;
+ default:
+ output_operand_lossage ("Invalid %%C operand");
}
}
@@ -3003,8 +3154,7 @@ put_condition_code (code, reverse_cc, mode, file)
k -- likewise, print the SImode name of the register.
h -- print the QImode name for a "high" register, either ah, bh, ch or dh.
y -- print "st(0)" instead of "st" as a register.
- P -- print as a PIC constant
-*/
+ P -- print as a PIC constant */
void
print_operand (file, x, code)
@@ -3126,6 +3276,7 @@ print_operand (file, x, code)
PRINT_OPERAND (file, x, 0);
fputs (AS2C (,) + 1, file);
}
+
return;
/* This is used by the conditional move instructions. */
@@ -3133,7 +3284,7 @@ print_operand (file, x, code)
put_condition_code (GET_CODE (x), 0, MODE_INT, file);
return;
- /* like above, but reverse condition */
+ /* Like above, but reverse condition */
case 'c':
put_condition_code (GET_CODE (x), 1, MODE_INT, file); return;
@@ -3141,7 +3292,7 @@ print_operand (file, x, code)
put_condition_code (GET_CODE (x), 0, MODE_FLOAT, file);
return;
- /* like above, but reverse condition */
+ /* Like above, but reverse condition */
case 'f':
put_condition_code (GET_CODE (x), 1, MODE_FLOAT, file);
return;
@@ -3155,10 +3306,12 @@ print_operand (file, x, code)
}
}
}
+
if (GET_CODE (x) == REG)
{
PRINT_REG (x, code, file);
}
+
else if (GET_CODE (x) == MEM)
{
PRINT_PTR (x, file);
@@ -3172,25 +3325,34 @@ print_operand (file, x, code)
else
output_address (XEXP (x, 0));
}
+
else if (GET_CODE (x) == CONST_DOUBLE && GET_MODE (x) == SFmode)
{
- REAL_VALUE_TYPE r; long l;
+ REAL_VALUE_TYPE r;
+ long l;
+
REAL_VALUE_FROM_CONST_DOUBLE (r, x);
REAL_VALUE_TO_TARGET_SINGLE (r, l);
PRINT_IMMED_PREFIX (file);
fprintf (file, "0x%x", l);
}
+
/* These float cases don't actually occur as immediate operands. */
else if (GET_CODE (x) == CONST_DOUBLE && GET_MODE (x) == DFmode)
{
- REAL_VALUE_TYPE r; char dstr[30];
+ REAL_VALUE_TYPE r;
+ char dstr[30];
+
REAL_VALUE_FROM_CONST_DOUBLE (r, x);
REAL_VALUE_TO_DECIMAL (r, "%.22e", dstr);
fprintf (file, "%s", dstr);
}
+
else if (GET_CODE (x) == CONST_DOUBLE && GET_MODE (x) == XFmode)
{
- REAL_VALUE_TYPE r; char dstr[30];
+ REAL_VALUE_TYPE r;
+ char dstr[30];
+
REAL_VALUE_FROM_CONST_DOUBLE (r, x);
REAL_VALUE_TO_DECIMAL (r, "%.22e", dstr);
fprintf (file, "%s", dstr);
@@ -3247,38 +3409,35 @@ print_operand_address (file, addr)
offset = XEXP (addr, 1);
addr = XEXP (addr, 0);
}
- if (GET_CODE (addr) != PLUS) ;
+
+ if (GET_CODE (addr) != PLUS)
+ ;
else if (GET_CODE (XEXP (addr, 0)) == MULT)
- {
- reg1 = XEXP (addr, 0);
- addr = XEXP (addr, 1);
- }
+ reg1 = XEXP (addr, 0), addr = XEXP (addr, 1);
else if (GET_CODE (XEXP (addr, 1)) == MULT)
- {
- reg1 = XEXP (addr, 1);
- addr = XEXP (addr, 0);
- }
+ reg1 = XEXP (addr, 1), addr = XEXP (addr, 0);
else if (GET_CODE (XEXP (addr, 0)) == REG)
- {
- reg1 = XEXP (addr, 0);
- addr = XEXP (addr, 1);
- }
+ reg1 = XEXP (addr, 0), addr = XEXP (addr, 1);
else if (GET_CODE (XEXP (addr, 1)) == REG)
- {
- reg1 = XEXP (addr, 1);
- addr = XEXP (addr, 0);
- }
+ reg1 = XEXP (addr, 1), addr = XEXP (addr, 0);
+
if (GET_CODE (addr) == REG || GET_CODE (addr) == MULT)
{
- if (reg1 == 0) reg1 = addr;
- else reg2 = addr;
+ if (reg1 == 0)
+ reg1 = addr;
+ else
+ reg2 = addr;
+
addr = 0;
}
+
if (offset != 0)
{
- if (addr != 0) abort ();
+ if (addr != 0)
+ abort ();
addr = offset;
}
+
if ((reg1 && GET_CODE (reg1) == MULT)
|| (reg2 != 0 && REGNO_OK_FOR_BASE_P (REGNO (reg2))))
{
@@ -3299,10 +3458,8 @@ print_operand_address (file, addr)
{
if (flag_pic)
output_pic_addr_const (file, addr, 0);
-
else if (GET_CODE (addr) == LABEL_REF)
output_asm_label (addr);
-
else
output_addr_const (file, addr);
}
@@ -3333,6 +3490,7 @@ print_operand_address (file, addr)
case MULT:
{
int scale;
+
if (GET_CODE (XEXP (addr, 0)) == CONST_INT)
{
scale = INTVAL (XEXP (addr, 0));
@@ -3343,8 +3501,9 @@ print_operand_address (file, addr)
scale = INTVAL (XEXP (addr, 1));
ireg = XEXP (addr, 0);
}
+
output_addr_const (file, const0_rtx);
- PRINT_B_I_S ((rtx) 0, ireg, scale, file);
+ PRINT_B_I_S (NULL_RTX, ireg, scale, file);
}
break;
@@ -3385,16 +3544,16 @@ notice_update_cc (exp)
/* Jumps do not alter the cc's. */
if (SET_DEST (exp) == pc_rtx)
return;
+
#ifdef IS_STACK_MODE
/* Moving into a memory of stack_mode may have been moved
in between the use and set of cc0 by loop_spl(). So
old value of cc.status must be retained */
- if(GET_CODE(SET_DEST(exp))==MEM
- && IS_STACK_MODE(GET_MODE(SET_DEST(exp))))
- {
- return;
- }
+ if (GET_CODE(SET_DEST(exp)) == MEM
+ && IS_STACK_MODE (GET_MODE (SET_DEST (exp))))
+ return;
#endif
+
/* Moving register or memory into a register:
it doesn't alter the cc's, but it might invalidate
the RTX's which we remember the cc's came from.
@@ -3406,31 +3565,37 @@ notice_update_cc (exp)
if (cc_status.value1
&& reg_overlap_mentioned_p (SET_DEST (exp), cc_status.value1))
cc_status.value1 = 0;
+
if (cc_status.value2
&& reg_overlap_mentioned_p (SET_DEST (exp), cc_status.value2))
cc_status.value2 = 0;
+
return;
}
+
/* Moving register into memory doesn't alter the cc's.
It may invalidate the RTX's which we remember the cc's came from. */
if (GET_CODE (SET_DEST (exp)) == MEM
&& (REG_P (SET_SRC (exp))
|| GET_RTX_CLASS (GET_CODE (SET_SRC (exp))) == '<'))
{
- if (cc_status.value1 && GET_CODE (cc_status.value1) == MEM
- || reg_mentioned_p (SET_DEST (exp), cc_status.value1))
+ if (cc_status.value1
+ && reg_overlap_mentioned_p (SET_DEST (exp), cc_status.value1))
cc_status.value1 = 0;
- if (cc_status.value2 && GET_CODE (cc_status.value2) == MEM
- || reg_mentioned_p (SET_DEST (exp), cc_status.value2))
+ if (cc_status.value2
+ && reg_overlap_mentioned_p (SET_DEST (exp), cc_status.value2))
cc_status.value2 = 0;
+
return;
}
+
/* Function calls clobber the cc's. */
else if (GET_CODE (SET_SRC (exp)) == CALL)
{
CC_STATUS_INIT;
return;
}
+
/* Tests and compares set the cc's in predictable ways. */
else if (SET_DEST (exp) == cc0_rtx)
{
@@ -3438,14 +3603,14 @@ notice_update_cc (exp)
cc_status.value1 = SET_SRC (exp);
return;
}
+
/* Certain instructions effect the condition codes. */
else if (GET_MODE (SET_SRC (exp)) == SImode
|| GET_MODE (SET_SRC (exp)) == HImode
|| GET_MODE (SET_SRC (exp)) == QImode)
switch (GET_CODE (SET_SRC (exp)))
{
- case ASHIFTRT: case LSHIFTRT:
- case ASHIFT:
+ case ASHIFTRT: case LSHIFTRT: case ASHIFT:
/* Shifts on the 386 don't set the condition codes if the
shift count is zero. */
if (GET_CODE (XEXP (SET_SRC (exp), 1)) != CONST_INT)
@@ -3453,6 +3618,7 @@ notice_update_cc (exp)
CC_STATUS_INIT;
break;
}
+
/* We assume that the CONST_INT is non-zero (this rtx would
have been deleted if it were zero. */
@@ -3477,6 +3643,7 @@ notice_update_cc (exp)
if (SET_DEST (XVECEXP (exp, 0, 0)) == pc_rtx)
return;
if (SET_DEST (XVECEXP (exp, 0, 0)) == cc0_rtx)
+
{
CC_STATUS_INIT;
if (stack_regs_mentioned_p (SET_SRC (XVECEXP (exp, 0, 0))))
@@ -3490,6 +3657,7 @@ notice_update_cc (exp)
cc_status.value1 = SET_SRC (XVECEXP (exp, 0, 0));
return;
}
+
CC_STATUS_INIT;
}
else
@@ -3518,9 +3686,7 @@ split_di (operands, num, lo_half, hi_half)
hi_half[num] = gen_rtx (REG, SImode, REGNO (operands[num]) + 1);
}
else if (CONSTANT_P (operands[num]))
- {
- split_double (operands[num], &lo_half[num], &hi_half[num]);
- }
+ split_double (operands[num], &lo_half[num], &hi_half[num]);
else if (offsettable_memref_p (operands[num]))
{
lo_half[num] = operands[num];
@@ -3554,7 +3720,6 @@ binary_387_op (op, mode)
return 0;
}
}
-
/* Return 1 if this is a valid shift or rotate operation on a 386.
OP is the expression matched, and MODE is its mode. */
@@ -3665,12 +3830,13 @@ output_387_binary_op (insn, operands)
if (NON_STACK_REG_P (operands[1]))
{
output_op_from_reg (operands[1], strcat (buf, AS1 (%z0,%1)));
- RET;
+ return "";
}
+
else if (NON_STACK_REG_P (operands[2]))
{
output_op_from_reg (operands[2], strcat (buf, AS1 (%z0,%1)));
- RET;
+ return "";
}
if (find_regno_note (insn, REG_DEAD, REGNO (operands[2])))
@@ -3692,12 +3858,13 @@ output_387_binary_op (insn, operands)
if (NON_STACK_REG_P (operands[1]))
{
output_op_from_reg (operands[1], strcat (buf, AS1 (r%z0,%1)));
- RET;
+ return "";
}
+
else if (NON_STACK_REG_P (operands[2]))
{
output_op_from_reg (operands[2], strcat (buf, AS1 (%z0,%1)));
- RET;
+ return "";
}
if (! STACK_REG_P (operands[1]) || ! STACK_REG_P (operands[2]))
@@ -3740,8 +3907,8 @@ output_fix_trunc (insn, operands)
int stack_top_dies = find_regno_note (insn, REG_DEAD, FIRST_STACK_REG) != 0;
rtx xops[2];
- if (! STACK_TOP_P (operands[1]) ||
- (GET_MODE (operands[0]) == DImode && ! stack_top_dies))
+ if (! STACK_TOP_P (operands[1])
+ || (GET_MODE (operands[0]) == DImode && ! stack_top_dies))
abort ();
xops[0] = GEN_INT (12);
@@ -3755,6 +3922,7 @@ output_fix_trunc (insn, operands)
if (NON_STACK_REG_P (operands[0]))
output_to_reg (operands[0], stack_top_dies, operands[3]);
+
else if (GET_CODE (operands[0]) == MEM)
{
if (stack_top_dies)
@@ -3812,24 +3980,26 @@ output_float_compare (insn, operands)
`fcompp' float compare */
if (unordered_compare)
- if (cc_status.flags & CC_FCOMI)
- {
- output_asm_insn (AS2 (fucomip,%y1,%0), operands);
- output_asm_insn (AS1 (fstp, %y0), operands);
- RET;
- }
- else
- output_asm_insn ("fucompp", operands);
+ {
+ if (cc_status.flags & CC_FCOMI)
+ {
+ output_asm_insn (AS2 (fucomip,%y1,%0), operands);
+ output_asm_insn (AS1 (fstp, %y0), operands);
+ return "";
+ }
+ else
+ output_asm_insn ("fucompp", operands);
+ }
else
{
- if (cc_status.flags & CC_FCOMI)
- {
- output_asm_insn (AS2 (fcomip, %y1,%0), operands);
- output_asm_insn (AS1 (fstp, %y0), operands);
- RET;
- }
- else
- output_asm_insn ("fcompp", operands);
+ if (cc_status.flags & CC_FCOMI)
+ {
+ output_asm_insn (AS2 (fcomip, %y1,%0), operands);
+ output_asm_insn (AS1 (fstp, %y0), operands);
+ return "";
+ }
+ else
+ output_asm_insn ("fcompp", operands);
}
}
else
@@ -3856,7 +4026,7 @@ output_float_compare (insn, operands)
else if (cc_status.flags & CC_FCOMI)
{
output_asm_insn (strcat (buf, AS2 (%z1,%y1,%0)), operands);
- RET;
+ return "";
}
else
output_asm_insn (strcat (buf, AS1 (%z1,%y1)), operands);
@@ -3894,24 +4064,21 @@ output_fp_cc0_set (insn)
&& GET_CODE (PATTERN (next)) == SET
&& SET_DEST (PATTERN (next)) == pc_rtx
&& GET_CODE (SET_SRC (PATTERN (next))) == IF_THEN_ELSE)
- {
- code = GET_CODE (XEXP (SET_SRC (PATTERN (next)), 0));
- }
+ code = GET_CODE (XEXP (SET_SRC (PATTERN (next)), 0));
else if (GET_CODE (PATTERN (next)) == SET)
- {
- code = GET_CODE (SET_SRC (PATTERN (next)));
- }
+ code = GET_CODE (SET_SRC (PATTERN (next)));
else
- {
- return "sahf";
- }
- if (code == GT || code == LT || code == EQ || code == NE
- || code == LE || code == GE)
- { /* We will test eax directly */
+ return "sahf";
+
+ if (code == GT || code == LT || code == EQ || code == NE
+ || code == LE || code == GE)
+ {
+ /* We will test eax directly. */
cc_status.flags |= CC_TEST_AX;
- RET;
+ return "";
}
}
+
return "sahf";
}
@@ -3923,21 +4090,22 @@ output_fp_cc0_set (insn)
&& GET_CODE (PATTERN (next)) == SET
&& SET_DEST (PATTERN (next)) == pc_rtx
&& GET_CODE (SET_SRC (PATTERN (next))) == IF_THEN_ELSE)
- {
- code = GET_CODE (XEXP (SET_SRC (PATTERN (next)), 0));
- }
+ code = GET_CODE (XEXP (SET_SRC (PATTERN (next)), 0));
else if (GET_CODE (PATTERN (next)) == SET)
{
if (GET_CODE (SET_SRC (PATTERN (next))) == IF_THEN_ELSE)
code = GET_CODE (XEXP (SET_SRC (PATTERN (next)), 0));
- else code = GET_CODE (SET_SRC (PATTERN (next)));
+ else
+ code = GET_CODE (SET_SRC (PATTERN (next)));
}
+
else if (GET_CODE (PATTERN (next)) == PARALLEL
&& GET_CODE (XVECEXP (PATTERN (next), 0, 0)) == SET)
{
if (GET_CODE (SET_SRC (XVECEXP (PATTERN (next), 0, 0))) == IF_THEN_ELSE)
- code = GET_CODE (XEXP (SET_SRC (XVECEXP (PATTERN (next), 0, 0)), 0));
- else code = GET_CODE (SET_SRC (XVECEXP (PATTERN (next), 0, 0)));
+ code = GET_CODE (XEXP (SET_SRC (XVECEXP (PATTERN (next), 0, 0)), 0));
+ else
+ code = GET_CODE (SET_SRC (XVECEXP (PATTERN (next), 0, 0)));
}
else
abort ();
@@ -3998,7 +4166,8 @@ output_fp_cc0_set (insn)
default:
abort ();
}
- RET;
+
+ return "";
}
#define MAX_386_STACK_LOCALS 2
@@ -4073,7 +4242,6 @@ assign_386_stack_local (mode, n)
return i386_stack_locals[(int) mode][n];
}
-
int is_mul(op,mode)
register rtx op;
@@ -4088,7 +4256,6 @@ int is_div(op,mode)
{
return (GET_CODE (op) == DIV);
}
-
#ifdef NOTYET
/* Create a new copy of an rtx.
@@ -4195,7 +4362,8 @@ copy_all_rtx (orig)
}
-/* try to rewrite a memory address to make it valid */
+/* Try to rewrite a memory address to make it valid */
+
void
rewrite_address (mem_rtx)
rtx mem_rtx;
@@ -4205,76 +4373,72 @@ rewrite_address (mem_rtx)
int offset_adjust = 0;
int was_only_offset = 0;
rtx mem_addr = XEXP (mem_rtx, 0);
- char *storage = (char *) oballoc (0);
+ char *storage = oballoc (0);
int in_struct = 0;
int is_spill_rtx = 0;
in_struct = MEM_IN_STRUCT_P (mem_rtx);
is_spill_rtx = RTX_IS_SPILL_P (mem_rtx);
- if (GET_CODE (mem_addr) == PLUS &&
- GET_CODE (XEXP (mem_addr, 1)) == PLUS &&
- GET_CODE (XEXP (XEXP (mem_addr, 1), 0)) == REG)
- { /* this part is utilized by the combiner */
- ret_rtx =
- gen_rtx (PLUS, GET_MODE (mem_addr),
- gen_rtx (PLUS, GET_MODE (XEXP (mem_addr, 1)),
- XEXP (mem_addr, 0),
- XEXP (XEXP (mem_addr, 1), 0)),
- XEXP (XEXP (mem_addr, 1), 1));
+ if (GET_CODE (mem_addr) == PLUS
+ && GET_CODE (XEXP (mem_addr, 1)) == PLUS
+ && GET_CODE (XEXP (XEXP (mem_addr, 1), 0)) == REG)
+ {
+ /* This part is utilized by the combiner. */
+ ret_rtx
+ = gen_rtx (PLUS, GET_MODE (mem_addr),
+ gen_rtx (PLUS, GET_MODE (XEXP (mem_addr, 1)),
+ XEXP (mem_addr, 0), XEXP (XEXP (mem_addr, 1), 0)),
+ XEXP (XEXP (mem_addr, 1), 1));
+
if (memory_address_p (GET_MODE (mem_rtx), ret_rtx))
{
XEXP (mem_rtx, 0) = ret_rtx;
RTX_IS_SPILL_P (ret_rtx) = is_spill_rtx;
return;
}
+
obfree (storage);
}
- /* this part is utilized by loop.c */
- /* If the address contains PLUS (reg,const) and this pattern is invalid
- in this case - try to rewrite the address to make it valid intel1
- */
- storage = (char *) oballoc (0);
+ /* This part is utilized by loop.c.
+ If the address contains PLUS (reg,const) and this pattern is invalid
+ in this case - try to rewrite the address to make it valid. */
+ storage = oballoc (0);
index_rtx = base_rtx = offset_rtx = NULL;
- /* find the base index and offset elements of the memory address */
+
+ /* Find the base index and offset elements of the memory address. */
if (GET_CODE (mem_addr) == PLUS)
{
if (GET_CODE (XEXP (mem_addr, 0)) == REG)
{
if (GET_CODE (XEXP (mem_addr, 1)) == REG)
- {
- base_rtx = XEXP (mem_addr, 1);
- index_rtx = XEXP (mem_addr, 0);
- }
+ base_rtx = XEXP (mem_addr, 1), index_rtx = XEXP (mem_addr, 0);
else
- {
- base_rtx = XEXP (mem_addr, 0);
- offset_rtx = XEXP (mem_addr, 1);
- }
+ base_rtx = XEXP (mem_addr, 0), offset_rtx = XEXP (mem_addr, 1);
}
+
else if (GET_CODE (XEXP (mem_addr, 0)) == MULT)
{
index_rtx = XEXP (mem_addr, 0);
if (GET_CODE (XEXP (mem_addr, 1)) == REG)
- {
- base_rtx = XEXP (mem_addr, 1);
- }
+ base_rtx = XEXP (mem_addr, 1);
else
- {
- offset_rtx = XEXP (mem_addr, 1);
- }
+ offset_rtx = XEXP (mem_addr, 1);
}
+
else if (GET_CODE (XEXP (mem_addr, 0)) == PLUS)
{
- /* intel1 */
- if (GET_CODE (XEXP (XEXP (mem_addr, 0), 0)) == PLUS &&
- GET_CODE (XEXP (XEXP (XEXP (mem_addr, 0), 0), 0)) == MULT &&
- GET_CODE (XEXP (XEXP (XEXP (XEXP (mem_addr, 0), 0), 0), 0)) == REG &&
- GET_CODE (XEXP (XEXP (XEXP (XEXP (mem_addr, 0), 0), 0), 1)) == CONST_INT &&
- GET_CODE (XEXP (XEXP (XEXP (mem_addr, 0), 0), 1)) == CONST_INT &&
- GET_CODE (XEXP (XEXP (mem_addr, 0), 1)) == REG &&
- GET_CODE (XEXP (mem_addr, 1)) == SYMBOL_REF)
+ if (GET_CODE (XEXP (XEXP (mem_addr, 0), 0)) == PLUS
+ && GET_CODE (XEXP (XEXP (XEXP (mem_addr, 0), 0), 0)) == MULT
+ && (GET_CODE (XEXP (XEXP (XEXP (XEXP (mem_addr, 0), 0), 0), 0))
+ == REG)
+ && (GET_CODE (XEXP (XEXP (XEXP (XEXP (mem_addr, 0), 0), 0), 1))
+ == CONST_INT)
+ && (GET_CODE (XEXP (XEXP (XEXP (mem_addr, 0), 0), 1))
+ == CONST_INT)
+ && GET_CODE (XEXP (XEXP (mem_addr, 0), 1)) == REG
+ && GET_CODE (XEXP (mem_addr, 1)) == SYMBOL_REF)
{
index_rtx = XEXP (XEXP (XEXP (mem_addr, 0), 0), 0);
offset_rtx = XEXP (mem_addr, 1);
@@ -4288,6 +4452,7 @@ rewrite_address (mem_rtx)
base_rtx = XEXP (XEXP (mem_addr, 0), 1);
}
}
+
else if (GET_CODE (XEXP (mem_addr, 0)) == CONST_INT)
{
was_only_offset = 1;
@@ -4309,222 +4474,137 @@ rewrite_address (mem_rtx)
}
}
else if (GET_CODE (mem_addr) == MULT)
- {
- index_rtx = mem_addr;
- }
+ index_rtx = mem_addr;
else
{
obfree (storage);
return;
}
- if (index_rtx && GET_CODE (index_rtx) == MULT)
+
+ if (index_rtx != 0 && GET_CODE (index_rtx) == MULT)
{
if (GET_CODE (XEXP (index_rtx, 1)) != CONST_INT)
{
obfree (storage);
return;
}
+
scale_rtx = XEXP (index_rtx, 1);
scale = INTVAL (scale_rtx);
index_rtx = copy_all_rtx (XEXP (index_rtx, 0));
}
- /* now find which of the elements are invalid and try to fix them */
+
+ /* Now find which of the elements are invalid and try to fix them. */
if (index_rtx && GET_CODE (index_rtx) == CONST_INT && base_rtx == NULL)
{
offset_adjust = INTVAL (index_rtx) * scale;
- if (offset_rtx && GET_CODE (offset_rtx) == CONST &&
- GET_CODE (XEXP (offset_rtx, 0)) == PLUS)
- {
- if (GET_CODE (XEXP (XEXP (offset_rtx, 0), 0)) == SYMBOL_REF &&
- GET_CODE (XEXP (XEXP (offset_rtx, 0), 1)) == CONST_INT)
- {
- offset_rtx = copy_all_rtx (offset_rtx);
- XEXP (XEXP (offset_rtx, 0), 1) =
- gen_rtx (CONST_INT, 0, INTVAL (XEXP (XEXP (offset_rtx, 0), 1)) + offset_adjust);
- if (!CONSTANT_P (offset_rtx))
- {
- obfree (storage);
- return;
- }
- }
- }
- else if (offset_rtx && GET_CODE (offset_rtx) == SYMBOL_REF)
- {
- offset_rtx =
- gen_rtx (CONST, GET_MODE (offset_rtx),
- gen_rtx (PLUS, GET_MODE (offset_rtx),
- offset_rtx,
- gen_rtx (CONST_INT, 0, offset_adjust)));
- if (!CONSTANT_P (offset_rtx))
- {
- obfree (storage);
- return;
- }
- }
- else if (offset_rtx && GET_CODE (offset_rtx) == CONST_INT)
- {
- offset_rtx = gen_rtx (CONST_INT, 0, INTVAL (offset_rtx) + offset_adjust);
- }
- else if (!offset_rtx)
- {
- offset_rtx = gen_rtx (CONST_INT, 0, 0);
- }
+
+ if (offset_rtx != 0 && CONSTANT_P (offset_rtx))
+ offset_rtx = plus_constant (offset_rtx, offset_adjust);
+ else if (offset_rtx == 0)
+ offset_rtx = const0_rtx;
+
RTX_IS_SPILL_P (XEXP (mem_rtx, 0)) = is_spill_rtx;
XEXP (mem_rtx, 0) = offset_rtx;
return;
}
- if (base_rtx && GET_CODE (base_rtx) == PLUS &&
- GET_CODE (XEXP (base_rtx, 0)) == REG &&
- GET_CODE (XEXP (base_rtx, 1)) == CONST_INT)
+
+ if (base_rtx && GET_CODE (base_rtx) == PLUS
+ && GET_CODE (XEXP (base_rtx, 0)) == REG
+ && GET_CODE (XEXP (base_rtx, 1)) == CONST_INT)
{
offset_adjust += INTVAL (XEXP (base_rtx, 1));
base_rtx = copy_all_rtx (XEXP (base_rtx, 0));
}
+
else if (base_rtx && GET_CODE (base_rtx) == CONST_INT)
{
offset_adjust += INTVAL (base_rtx);
base_rtx = NULL;
}
- if (index_rtx && GET_CODE (index_rtx) == PLUS &&
- GET_CODE (XEXP (index_rtx, 0)) == REG &&
- GET_CODE (XEXP (index_rtx, 1)) == CONST_INT)
+
+ if (index_rtx && GET_CODE (index_rtx) == PLUS
+ && GET_CODE (XEXP (index_rtx, 0)) == REG
+ && GET_CODE (XEXP (index_rtx, 1)) == CONST_INT)
{
offset_adjust += INTVAL (XEXP (index_rtx, 1)) * scale;
index_rtx = copy_all_rtx (XEXP (index_rtx, 0));
}
+
if (index_rtx)
{
- if (!LEGITIMATE_INDEX_P (index_rtx)
- && !(index_rtx == stack_pointer_rtx && scale == 1 && base_rtx == NULL))
+ if (! LEGITIMATE_INDEX_P (index_rtx)
+ && ! (index_rtx == stack_pointer_rtx && scale == 1
+ && base_rtx == NULL))
{
obfree (storage);
return;
}
}
+
if (base_rtx)
{
- if (!LEGITIMATE_INDEX_P (base_rtx) && GET_CODE (base_rtx) != REG)
+ if (! LEGITIMATE_INDEX_P (base_rtx) && GET_CODE (base_rtx) != REG)
{
obfree (storage);
return;
}
}
+
if (offset_adjust != 0)
{
- if (offset_rtx)
- {
- if (GET_CODE (offset_rtx) == CONST &&
- GET_CODE (XEXP (offset_rtx, 0)) == PLUS)
- {
- if (GET_CODE (XEXP (XEXP (offset_rtx, 0), 0)) == SYMBOL_REF &&
- GET_CODE (XEXP (XEXP (offset_rtx, 0), 1)) == CONST_INT)
- {
- offset_rtx = copy_all_rtx (offset_rtx);
- XEXP (XEXP (offset_rtx, 0), 1) =
- gen_rtx (CONST_INT, 0, INTVAL (XEXP (XEXP (offset_rtx, 0), 1)) + offset_adjust);
- if (!CONSTANT_P (offset_rtx))
- {
- obfree (storage);
- return;
- }
- }
- }
- else if (GET_CODE (offset_rtx) == SYMBOL_REF)
- {
- offset_rtx =
- gen_rtx (CONST, GET_MODE (offset_rtx),
- gen_rtx (PLUS, GET_MODE (offset_rtx),
- offset_rtx,
- gen_rtx (CONST_INT, 0, offset_adjust)));
- if (!CONSTANT_P (offset_rtx))
- {
- obfree (storage);
- return;
- }
- }
- else if (GET_CODE (offset_rtx) == CONST_INT)
- {
- offset_rtx = gen_rtx (CONST_INT, 0, INTVAL (offset_rtx) + offset_adjust);
- }
- else
- {
- obfree (storage);
- return;
- }
- }
+ if (offset_rtx != 0 && CONSTANT_P (offset_rtx))
+ offset_rtx = plus_constant (offset_rtx, offset_adjust);
else
- {
- offset_rtx = gen_rtx (CONST_INT, 0, offset_adjust);
- }
+ offset_rtx = const0_rtx;
+
if (index_rtx)
{
if (base_rtx)
{
if (scale != 1)
{
- if (GET_CODE (offset_rtx) == CONST_INT &&
- INTVAL (offset_rtx) == 0)
- {
- ret_rtx = gen_rtx (PLUS, GET_MODE (base_rtx),
- gen_rtx (MULT, GET_MODE (index_rtx), index_rtx,
- scale_rtx),
- base_rtx);
- }
- else
- {
- ret_rtx = gen_rtx (PLUS, GET_MODE (offset_rtx),
- gen_rtx (PLUS, GET_MODE (base_rtx),
- gen_rtx (MULT, GET_MODE (index_rtx), index_rtx,
- scale_rtx),
- base_rtx),
- offset_rtx);
- }
+ ret_rtx = gen_rtx (PLUS, GET_MODE (base_rtx),
+ gen_rtx (MULT, GET_MODE (index_rtx),
+ index_rtx, scale_rtx),
+ base_rtx);
+
+ if (GET_CODE (offset_rtx) != CONST_INT
+ || INTVAL (offset_rtx) != 0)
+ ret_rtx = gen_rtx (PLUS, GET_MODE (ret_rtx),
+ ret_rtx, offset_rtx);
}
else
{
- if (GET_CODE (offset_rtx) == CONST_INT &&
- INTVAL (offset_rtx) == 0)
- {
- ret_rtx = gen_rtx (PLUS, GET_MODE (index_rtx), index_rtx, base_rtx);
- }
- else
- {
- ret_rtx = gen_rtx (PLUS, GET_MODE (offset_rtx),
- gen_rtx (PLUS, GET_MODE (index_rtx), index_rtx,
- base_rtx),
- offset_rtx);
- }
+ ret_rtx = gen_rtx (PLUS, GET_MODE (index_rtx),
+ index_rtx, base_rtx);
+
+ if (GET_CODE (offset_rtx) != CONST_INT
+ || INTVAL (offset_rtx) != 0)
+ ret_rtx = gen_rtx (PLUS, GET_MODE (ret_rtx),
+ ret_rtx, offset_rtx);
}
}
else
{
if (scale != 1)
{
- if (GET_CODE (offset_rtx) == CONST_INT &&
- INTVAL (offset_rtx) == 0)
- {
- ret_rtx = gen_rtx (MULT, GET_MODE (index_rtx), index_rtx, scale_rtx);
- }
- else
- {
- ret_rtx =
- gen_rtx (PLUS, GET_MODE (offset_rtx),
- gen_rtx (MULT, GET_MODE (index_rtx), index_rtx,
- scale_rtx),
- offset_rtx);
- }
+ ret_rtx = gen_rtx (MULT, GET_MODE (index_rtx),
+ index_rtx, scale_rtx);
+
+ if (GET_CODE (offset_rtx) != CONST_INT
+ || INTVAL (offset_rtx) != 0)
+ ret_rtx = gen_rtx (PLUS, GET_MODE (ret_rtx),
+ ret_rtx, offset_rtx);
}
else
{
- if (GET_CODE (offset_rtx) == CONST_INT &&
- INTVAL (offset_rtx) == 0)
- {
- ret_rtx = index_rtx;
- }
+ if (GET_CODE (offset_rtx) == CONST_INT
+ && INTVAL (offset_rtx) == 0)
+ ret_rtx = index_rtx;
else
- {
- ret_rtx = gen_rtx (PLUS, GET_MODE (index_rtx), index_rtx, offset_rtx);
- }
+ ret_rtx = gen_rtx (PLUS, GET_MODE (index_rtx),
+ index_rtx, offset_rtx);
}
}
}
@@ -4532,26 +4612,22 @@ rewrite_address (mem_rtx)
{
if (base_rtx)
{
- if (GET_CODE (offset_rtx) == CONST_INT &&
- INTVAL (offset_rtx) == 0)
- {
- ret_rtx = base_rtx;
- }
+ if (GET_CODE (offset_rtx) == CONST_INT
+ && INTVAL (offset_rtx) == 0)
+ ret_rtx = base_rtx;
else
- {
- ret_rtx = gen_rtx (PLUS, GET_MODE (base_rtx), base_rtx, offset_rtx);
- }
+ ret_rtx = gen_rtx (PLUS, GET_MODE (base_rtx), base_rtx,
+ offset_rtx);
}
else if (was_only_offset)
- {
- ret_rtx = offset_rtx;
- }
+ ret_rtx = offset_rtx;
else
{
obfree (storage);
return;
}
}
+
XEXP (mem_rtx, 0) = ret_rtx;
RTX_IS_SPILL_P (XEXP (mem_rtx, 0)) = is_spill_rtx;
return;
@@ -4563,10 +4639,9 @@ rewrite_address (mem_rtx)
}
}
#endif /* NOTYET */
-
-/* return 1 if the first insn to set cc before insn also sets the register
- reg_rtx - otherwise return 0 */
+/* Return 1 if the first insn to set cc before INSN also sets the register
+ REG_RTX; otherwise return 0. */
int
last_to_set_cc (reg_rtx, insn)
rtx reg_rtx, insn;
@@ -4591,7 +4666,7 @@ last_to_set_cc (reg_rtx, insn)
return (0);
}
- else if (!doesnt_set_condition_code (SET_SRC (PATTERN (prev_insn))))
+ else if (! doesnt_set_condition_code (SET_SRC (PATTERN (prev_insn))))
return (0);
}
@@ -4603,7 +4678,6 @@ last_to_set_cc (reg_rtx, insn)
return (0);
}
-
int
doesnt_set_condition_code (pat)
@@ -4613,14 +4687,13 @@ doesnt_set_condition_code (pat)
{
case MEM:
case REG:
- return (1);
+ return 1;
default:
- return (0);
+ return 0;
}
}
-
int
sets_condition_code (pat)
@@ -4640,14 +4713,12 @@ sets_condition_code (pat)
case MOD:
case UDIV:
case UMOD:
- return (1);
+ return 1;
default:
return (0);
-
}
}
-
int
str_immediate_operand (op, mode)
@@ -4655,12 +4726,10 @@ str_immediate_operand (op, mode)
enum machine_mode mode;
{
if (GET_CODE (op) == CONST_INT && INTVAL (op) <= 32 && INTVAL (op) >= 0)
- {
- return (1);
- }
- return (0);
-}
+ return 1;
+ return 0;
+}
int
is_fp_insn (insn)
@@ -4670,17 +4739,15 @@ is_fp_insn (insn)
&& (GET_MODE (SET_DEST (PATTERN (insn))) == DFmode
|| GET_MODE (SET_DEST (PATTERN (insn))) == SFmode
|| GET_MODE (SET_DEST (PATTERN (insn))) == XFmode))
- {
- return (1);
- }
+ return 1;
- return (0);
+ return 0;
}
-/*
- Return 1 if the mode of the SET_DEST of insn is floating point
- and it is not an fld or a move from memory to memory.
- Otherwise return 0 */
+/* Return 1 if the mode of the SET_DEST of insn is floating point
+ and it is not an fld or a move from memory to memory.
+ Otherwise return 0 */
+
int
is_fp_dest (insn)
rtx insn;
@@ -4692,17 +4759,14 @@ is_fp_dest (insn)
&& GET_CODE (SET_DEST (PATTERN (insn))) == REG
&& REGNO (SET_DEST (PATTERN (insn))) >= FIRST_FLOAT_REG
&& GET_CODE (SET_SRC (insn)) != MEM)
- {
- return (1);
- }
+ return 1;
- return (0);
+ return 0;
}
-/*
- Return 1 if the mode of the SET_DEST floating point and is memory
- and the source is a register.
-*/
+/* Return 1 if the mode of the SET_DEST of INSN is floating point and is
+ memory and the source is a register. */
+
int
is_fp_store (insn)
rtx insn;
@@ -4713,18 +4777,14 @@ is_fp_store (insn)
|| GET_MODE (SET_DEST (PATTERN (insn))) == XFmode)
&& GET_CODE (SET_DEST (PATTERN (insn))) == MEM
&& GET_CODE (SET_SRC (PATTERN (insn))) == REG)
- {
- return (1);
- }
+ return 1;
- return (0);
+ return 0;
}
-
-/*
- Return 1 if dep_insn sets a register which insn uses as a base
- or index to reference memory.
- otherwise return 0 */
+/* Return 1 if DEP_INSN sets a register which INSN uses as a base
+ or index to reference memory.
+ otherwise return 0 */
int
agi_dependent (insn, dep_insn)
@@ -4733,36 +4793,30 @@ agi_dependent (insn, dep_insn)
if (GET_CODE (dep_insn) == INSN
&& GET_CODE (PATTERN (dep_insn)) == SET
&& GET_CODE (SET_DEST (PATTERN (dep_insn))) == REG)
- {
- return (reg_mentioned_in_mem (SET_DEST (PATTERN (dep_insn)), insn));
- }
+ return reg_mentioned_in_mem (SET_DEST (PATTERN (dep_insn)), insn);
if (GET_CODE (dep_insn) == INSN && GET_CODE (PATTERN (dep_insn)) == SET
&& GET_CODE (SET_DEST (PATTERN (dep_insn))) == MEM
&& push_operand (SET_DEST (PATTERN (dep_insn)),
GET_MODE (SET_DEST (PATTERN (dep_insn)))))
- {
- return (reg_mentioned_in_mem (stack_pointer_rtx, insn));
- }
-
- return (0);
-}
+ return reg_mentioned_in_mem (stack_pointer_rtx, insn);
+ return 0;
+}
-/*
- Return 1 if reg is used in rtl as a base or index for a memory ref
- otherwise return 0. */
+/* Return 1 if reg is used in rtl as a base or index for a memory ref
+ otherwise return 0. */
int
reg_mentioned_in_mem (reg, rtl)
rtx reg, rtl;
{
register char *fmt;
- register int i;
+ register int i, j;
register enum rtx_code code;
if (rtl == NULL)
- return (0);
+ return 0;
code = GET_CODE (rtl);
@@ -4777,32 +4831,25 @@ reg_mentioned_in_mem (reg, rtl)
case PC:
case CC0:
case SUBREG:
- return (0);
-
-
+ return 0;
}
if (code == MEM && reg_mentioned_p (reg, rtl))
- return (1);
+ return 1;
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'E')
- {
- register int j;
- for (j = XVECLEN (rtl, i) - 1; j >= 0; j--)
- {
- if (reg_mentioned_in_mem (reg, XVECEXP (rtl, i, j)))
- return 1;
- }
- }
+ for (j = XVECLEN (rtl, i) - 1; j >= 0; j--)
+ if (reg_mentioned_in_mem (reg, XVECEXP (rtl, i, j)))
+ return 1;
else if (fmt[i] == 'e' && reg_mentioned_in_mem (reg, XEXP (rtl, i)))
return 1;
}
- return (0);
+ return 0;
}
/* Output the approprate insns for doing strlen if not just doing repnz; scasb
@@ -4831,8 +4878,10 @@ output_strlen_unroll (operands)
/* xops[6] = gen_label_rtx (); * label when aligned to 3-byte */
/* xops[7] = gen_label_rtx (); * label when aligned to 2-byte */
xops[8] = gen_label_rtx (); /* label of main loop */
- if(TARGET_USE_Q_REG && QI_REG_P (xops[1]))
+
+ if (TARGET_USE_Q_REG && QI_REG_P (xops[1]))
xops[9] = gen_label_rtx (); /* pentium optimisation */
+
xops[10] = gen_label_rtx (); /* end label 2 */
xops[11] = gen_label_rtx (); /* end label 1 */
xops[12] = gen_label_rtx (); /* end label */
@@ -4842,65 +4891,74 @@ output_strlen_unroll (operands)
xops[16] = GEN_INT (0xff0000);
xops[17] = GEN_INT (0xff000000);
- /* Loop to check 1..3 bytes for null to get an aligned pointer */
+ /* Loop to check 1..3 bytes for null to get an aligned pointer. */
- /* is there a known alignment and is it less then 4 */
+ /* Is there a known alignment and is it less than 4? */
if (GET_CODE (operands[1]) != CONST_INT || INTVAL (operands[1]) < 4)
{
- /* is there a known alignment and is it not 2 */
+ /* Is there a known alignment and is it not 2? */
if (GET_CODE (operands[1]) != CONST_INT || INTVAL (operands[1]) != 2)
{
- xops[6] = gen_label_rtx (); /* label when aligned to 3-byte */
- xops[7] = gen_label_rtx (); /* label when aligned to 2-byte */
+ xops[6] = gen_label_rtx (); /* Label when aligned to 3-byte */
+ xops[7] = gen_label_rtx (); /* Label when aligned to 2-byte */
- /* leave just the 3 lower bits */
- /* if this is a q-register, then the high part is used later */
- /* therefore user andl rather than andb */
+ /* Leave just the 3 lower bits.
+ If this is a q-register, then the high part is used later
+ therefore use andl rather than andb. */
output_asm_insn (AS2 (and%L1,%4,%1), xops);
- /* is aligned to 4-byte adress when zero */
+
+ /* Is aligned to 4-byte adress when zero */
output_asm_insn (AS1 (je,%l8), xops);
- /* side-effect even Parity when %eax == 3 */
+
+ /* Side-effect even Parity when %eax == 3 */
output_asm_insn (AS1 (jp,%6), xops);
- /* is it aligned to 2 bytes ? */
+ /* Is it aligned to 2 bytes ? */
if (QI_REG_P (xops[1]))
output_asm_insn (AS2 (cmp%L1,%3,%1), xops);
else
output_asm_insn (AS2 (cmp%L1,%3,%1), xops);
+
output_asm_insn (AS1 (je,%7), xops);
}
else
{
- /* since the alignment is 2, we have to check 2 or 0 bytes */
-
- /* check if is aligned to 4 - byte */
+ /* Since the alignment is 2, we have to check 2 or 0 bytes;
+ check if is aligned to 4 - byte. */
output_asm_insn (AS2 (and%L1,%3,%1), xops);
- /* is aligned to 4-byte adress when zero */
+
+ /* Is aligned to 4-byte adress when zero */
output_asm_insn (AS1 (je,%l8), xops);
}
xops[13] = gen_rtx (MEM, QImode, xops[0]);
- /* now, compare the bytes */
- /* compare with the high part of a q-reg gives shorter code */
+
+ /* Now compare the bytes; compare with the high part of a q-reg
+ gives shorter code. */
if (QI_REG_P (xops[1]))
{
- /* compare the first n unaligned byte on a byte per byte basis */
+ /* Compare the first n unaligned byte on a byte per byte basis. */
output_asm_insn (AS2 (cmp%B1,%h1,%13), xops);
- /* when zero we reached the end */
+
+ /* When zero we reached the end. */
output_asm_insn (AS1 (je,%l12), xops);
- /* increment the address */
+
+ /* Increment the address. */
output_asm_insn (AS1 (inc%L0,%0), xops);
- /* not needed with an alignment of 2 */
+ /* Not needed with an alignment of 2 */
if (GET_CODE (operands[1]) != CONST_INT || INTVAL (operands[1]) != 2)
{
- ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L", CODE_LABEL_NUMBER (xops[7]));
+ ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L",
+ CODE_LABEL_NUMBER (xops[7]));
output_asm_insn (AS2 (cmp%B1,%h1,%13), xops);
output_asm_insn (AS1 (je,%l12), xops);
output_asm_insn (AS1 (inc%L0,%0), xops);
- ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L", CODE_LABEL_NUMBER (xops[6]));
+ ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L",
+ CODE_LABEL_NUMBER (xops[6]));
}
+
output_asm_insn (AS2 (cmp%B1,%h1,%13), xops);
}
else
@@ -4909,22 +4967,24 @@ output_strlen_unroll (operands)
output_asm_insn (AS1 (je,%l12), xops);
output_asm_insn (AS1 (inc%L0,%0), xops);
- ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L", CODE_LABEL_NUMBER (xops[7]));
+ ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L",
+ CODE_LABEL_NUMBER (xops[7]));
output_asm_insn (AS2 (cmp%B13,%2,%13), xops);
output_asm_insn (AS1 (je,%l12), xops);
output_asm_insn (AS1 (inc%L0,%0), xops);
- ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L", CODE_LABEL_NUMBER (xops[6]));
+ ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L",
+ CODE_LABEL_NUMBER (xops[6]));
output_asm_insn (AS2 (cmp%B13,%2,%13), xops);
}
+
output_asm_insn (AS1 (je,%l12), xops);
output_asm_insn (AS1 (inc%L0,%0), xops);
}
- /* Generate loop to check 4 bytes at a time */
- /* IMHO it is not a good idea to align this loop. It gives only */
- /* huge programs, but does not help to speed up */
- /* ASM_OUTPUT_LOOP_ALIGN (asm_out_file); */
+ /* Generate loop to check 4 bytes at a time. It is not a good idea to
+ align this loop. It gives only huge programs, but does not help to
+ speed up. */
ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L", CODE_LABEL_NUMBER (xops[8]));
xops[13] = gen_rtx (MEM, SImode, xops[0]);
@@ -4937,44 +4997,46 @@ output_strlen_unroll (operands)
of both *could* be zero, otherwise none of both is zero;
this saves one instruction, on i486 this is slower
tested with P-90, i486DX2-66, AMD486DX2-66 */
- if(TARGET_PENTIUM)
+ if (TARGET_PENTIUM)
{
output_asm_insn (AS2 (test%B1,%h1,%b1), xops);
output_asm_insn (AS1 (jne,%l9), xops);
}
- /* check first byte */
+ /* Check first byte. */
output_asm_insn (AS2 (test%B1,%b1,%b1), xops);
output_asm_insn (AS1 (je,%l12), xops);
- /* check second byte */
+ /* Check second byte. */
output_asm_insn (AS2 (test%B1,%h1,%h1), xops);
output_asm_insn (AS1 (je,%l11), xops);
- if(TARGET_PENTIUM)
- ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L", CODE_LABEL_NUMBER (xops[9]));
+ if (TARGET_PENTIUM)
+ ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L",
+ CODE_LABEL_NUMBER (xops[9]));
}
+
else
{
- /* check first byte */
+ /* Check first byte. */
output_asm_insn (AS2 (test%L1,%14,%1), xops);
output_asm_insn (AS1 (je,%l12), xops);
- /* check second byte */
+ /* Check second byte. */
output_asm_insn (AS2 (test%L1,%15,%1), xops);
output_asm_insn (AS1 (je,%l11), xops);
}
- /* check third byte */
+ /* Check third byte. */
output_asm_insn (AS2 (test%L1,%16,%1), xops);
output_asm_insn (AS1 (je,%l10), xops);
- /* check fourth byte and increment address */
+ /* Check fourth byte and increment address. */
output_asm_insn (AS2 (add%L0,%5,%0), xops);
output_asm_insn (AS2 (test%L1,%17,%1), xops);
output_asm_insn (AS1 (jne,%l8), xops);
- /* now generate fixups when the compare stops within a 4-byte word */
+ /* Now generate fixups when the compare stops within a 4-byte word. */
output_asm_insn (AS2 (sub%L0,%4,%0), xops);
ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L", CODE_LABEL_NUMBER (xops[10]));
@@ -4985,5 +5047,5 @@ output_strlen_unroll (operands)
ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L", CODE_LABEL_NUMBER (xops[12]));
- RET;
+ return "";
}
diff --git a/gcc/config/i386/i386.h b/gcc/config/i386/i386.h
index 24c1d8cf218..105bce1ea80 100644
--- a/gcc/config/i386/i386.h
+++ b/gcc/config/i386/i386.h
@@ -2626,7 +2626,6 @@ extern char *qi_high_reg_name[];
we can use for operand syntax in the extended asm */
#define ASM_OPERAND_LETTER '#'
-
#define RET return ""
#define AT_SP(mode) (gen_rtx (MEM, (mode), stack_pointer_rtx))
diff --git a/gcc/config/i386/i386.md b/gcc/config/i386/i386.md
index 8ae87644505..64edb555dfb 100644
--- a/gcc/config/i386/i386.md
+++ b/gcc/config/i386/i386.md
@@ -6530,7 +6530,7 @@ byte_xor_operation:
}
else
{
- sprintf (buffer, \"addl %s+[.-.L%d],%%0\", XSTR (operands[1], 0), INTVAL (operands[2]));
+ sprintf (buffer, \"addl %s+[.-%%P2],%%0\", XSTR (operands[1], 0));
output_asm_insn (buffer, operands);
}
RET;
@@ -6547,7 +6547,7 @@ byte_xor_operation:
output_asm_insn (AS1 (call,%P1), operands);
if (! TARGET_DEEP_BRANCH_PREDICTION)
{
- ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, \"L\", INTVAL (operands[1]));
+ ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, \"L\", CODE_LABEL_NUMBER (operands[1]));
}
RET;
}")
@@ -6615,8 +6615,8 @@ byte_xor_operation:
operands[5] = addr0;
operands[6] = addr1;
- operands[0] = gen_rtx (MEM, BLKmode, addr0);
- operands[1] = gen_rtx (MEM, BLKmode, addr1);
+ operands[0] = change_address (operands[0], VOIDmode, addr0);
+ operands[1] = change_address (operands[1], VOIDmode, addr1);
}")
;; It might seem that operands 0 & 1 could use predicate register_operand.
@@ -7656,20 +7656,31 @@ byte_xor_operation:
"* return AS1(call,__alloca);")
(define_expand "allocate_stack"
- [(set (reg:SI 7)
- (minus:SI (reg:SI 7) (match_operand:SI 0 "general_operand" "")))]
- "TARGET_STACK_PROBE"
+ [(set (match_operand:SI 0 "register_operand" "=r")
+ (minus:SI (reg:SI 7) (match_operand:SI 1 "general_operand" "")))
+ (set (reg:SI 7) (minus:SI (reg:SI 7) (match_dup 1)))]
+ "TARGET_STACK_PROBE"
"
{
#ifdef CHECK_STACK_LIMIT
- if (GET_CODE (operands[0]) == CONST_INT
- && INTVAL (operands[0]) < CHECK_STACK_LIMIT)
+ if (GET_CODE (operands[1]) == CONST_INT
+ && INTVAL (operands[1]) < CHECK_STACK_LIMIT)
emit_insn (gen_subsi3 (stack_pointer_rtx, stack_pointer_rtx,
- operands[0]));
+ operands[1]));
else
#endif
emit_insn (gen_allocate_stack_worker (copy_to_mode_reg (SImode,
- operands[0])));
+ operands[1])));
+ emit_move_insn (operands[0], virtual_stack_dynamic_rtx);
+ DONE;
+}")
+
+(define_expand "nonlocal_goto_receiver"
+ [(const_int 0)]
+ "flag_pic"
+ "
+{
+ load_pic_register (1);
DONE;
}")
diff --git a/gcc/config/i386/rtems.h b/gcc/config/i386/rtems.h
index d3e53c6b4a7..ada2d9f4ff7 100644
--- a/gcc/config/i386/rtems.h
+++ b/gcc/config/i386/rtems.h
@@ -1,6 +1,5 @@
/* Definitions for rtems targetting an Intel i386 using coff.
-
- Copyright (C) 1996 Free Software Foundation, Inc.
+ Copyright (C) 1996, 1997 Free Software Foundation, Inc.
Contributed by Joel Sherrill (joel@OARcorp.com).
This file is part of GNU CC.
@@ -27,5 +26,3 @@ Boston, MA 02111-1307, USA. */
#undef CPP_PREDEFINES
#define CPP_PREDEFINES "-Di386 -Drtems -D__rtems__ \
-Asystem(rtems) -Acpu(i386) -Amachine(i386)"
-
-/* end of i386/rtems.h */
diff --git a/gcc/config/i386/sco5.h b/gcc/config/i386/sco5.h
index a7c57a521a8..14f14c497b0 100644
--- a/gcc/config/i386/sco5.h
+++ b/gcc/config/i386/sco5.h
@@ -1,5 +1,5 @@
/* Definitions for Intel 386 running SCO Unix System V 3.2 Version 5.
- Copyright (C) 1992, 1995, 1996 Free Software Foundation, Inc.
+ Copyright (C) 1992, 1995, 1996, 1997 Free Software Foundation, Inc.
Contributed by Kean Johnston (hug@netcom.com)
This file is part of GNU CC.
diff --git a/gcc/config/i960/i960.h b/gcc/config/i960/i960.h
index 77aab4569cf..af83917f073 100644
--- a/gcc/config/i960/i960.h
+++ b/gcc/config/i960/i960.h
@@ -81,7 +81,7 @@ Boston, MA 02111-1307, USA. */
#define LINK_SPEC \
"%{mka:-AKA}%{mkb:-AKB}%{msa:-ASA}%{msb:-ASB}\
%{mmc:-AMC}%{mca:-ACA}%{mcc:-ACC}%{mcf:-ACF}\
- %{mja:-AJX}%{mjd:-AJX}%{mjf:-AJX}%{mrp:-AJX}\
+ %{mja:-AJX}%{mjd:-AJX}%{mjf:-AJX}%{mrp:-AJX}\
%{mbout:-Fbout}%{mcoff:-Fcoff}\
%{mlink-relax:-relax}"
diff --git a/gcc/config/i960/rtems.h b/gcc/config/i960/rtems.h
index 3792ff207c9..0c52cef5c45 100644
--- a/gcc/config/i960/rtems.h
+++ b/gcc/config/i960/rtems.h
@@ -1,6 +1,5 @@
/* Definitions for rtems targetting an Intel i960.
-
- Copyright (C) 1996 Free Software Foundation, Inc.
+ Copyright (C) 1996, 1997 Free Software Foundation, Inc.
Contributed by Joel Sherrill (joel@OARcorp.com).
This file is part of GNU CC.
@@ -27,5 +26,3 @@ Boston, MA 02111-1307, USA. */
#undef CPP_PREDEFINES
#define CPP_PREDEFINES "-Di960 -Di80960 -DI960 -DI80960 -Drtems -D__rtems__ \
-Asystem(rtems) -Acpu(i960) -Amachine(i960)"
-
-/* end of i960/rtems.h */
diff --git a/gcc/config/m68k/m68k.c b/gcc/config/m68k/m68k.c
index ccf05126cca..c332065685e 100644
--- a/gcc/config/m68k/m68k.c
+++ b/gcc/config/m68k/m68k.c
@@ -20,8 +20,8 @@ Boston, MA 02111-1307, USA. */
/* Some output-actions in m68k.md need these. */
-#include <stdio.h>
#include "config.h"
+#include <stdio.h>
#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
@@ -3049,7 +3049,11 @@ print_operand_address (file, addr)
{
output_addr_const (file, addr);
if (flag_pic && (breg == pic_offset_table_rtx))
- fprintf (file, "@GOT");
+ {
+ fprintf (file, "@GOT");
+ if (flag_pic == 1)
+ fprintf (file, ".w");
+ }
}
fprintf (file, "(%s", reg_names[REGNO (breg)]);
if (ireg != 0)
diff --git a/gcc/config/m68k/m68k.md b/gcc/config/m68k/m68k.md
index 3a54b6d19c0..ddcac6555be 100644
--- a/gcc/config/m68k/m68k.md
+++ b/gcc/config/m68k/m68k.md
@@ -5813,28 +5813,34 @@
else
operands[3] = adj_offsettable_operand (operands[0], 4);
if (! ADDRESS_REG_P (operands[0]))
+ {
#ifdef MOTOROLA
- return \"move%.l %0,%2\;or%.l %3,%2\;jbeq %l1\";
+ return \"move%.l %0,%2\;or%.l %3,%2\;jbeq %l1\";
#else
- return \"move%.l %0,%2\;or%.l %3,%2\;jeq %l1\";
+ return \"move%.l %0,%2\;or%.l %3,%2\;jeq %l1\";
#endif
+ }
operands[4] = gen_label_rtx();
if (TARGET_68020 || TARGET_5200)
+ {
#ifdef MOTOROLA
- output_asm_insn (\"tst%.l %0\;jbne %l4\;tst%.l %3\;jbeq %l1\", operands);
+ output_asm_insn (\"tst%.l %0\;jbne %l4\;tst%.l %3\;jbeq %l1\", operands);
#else
- output_asm_insn (\"tst%.l %0\;jne %l4\;tst%.l %3\;jeq %l1\", operands);
+ output_asm_insn (\"tst%.l %0\;jne %l4\;tst%.l %3\;jeq %l1\", operands);
#endif
+ }
else
+ {
#ifdef MOTOROLA
#ifdef SGS_CMP_ORDER
- output_asm_insn (\"cmp%.w %0,%#0\;jbne %l4\;cmp%.w %3,%#0\;jbeq %l1\", operands);
+ output_asm_insn (\"cmp%.w %0,%#0\;jbne %l4\;cmp%.w %3,%#0\;jbeq %l1\", operands);
#else
- output_asm_insn (\"cmp%.w %#0,%0\;jbne %l4\;cmp%.w %#0,%3\;jbeq %l1\", operands);
+ output_asm_insn (\"cmp%.w %#0,%0\;jbne %l4\;cmp%.w %#0,%3\;jbeq %l1\", operands);
#endif
#else
- output_asm_insn (\"cmp%.w %#0,%0\;jne %l4\;cmp%.w %#0,%3\;jeq %l1\", operands);
+ output_asm_insn (\"cmp%.w %#0,%0\;jne %l4\;cmp%.w %#0,%3\;jeq %l1\", operands);
#endif
+ }
ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, \"L\",
CODE_LABEL_NUMBER (operands[4]));
return \"\";
@@ -5868,27 +5874,33 @@
else
operands[3] = adj_offsettable_operand (operands[0], 4);
if (!ADDRESS_REG_P (operands[0]))
+ {
#ifdef MOTOROLA
- return \"move%.l %0,%2\;or%.l %3,%2\;jbne %l1\";
+ return \"move%.l %0,%2\;or%.l %3,%2\;jbne %l1\";
#else
- return \"move%.l %0,%2\;or%.l %3,%2\;jne %l1\";
+ return \"move%.l %0,%2\;or%.l %3,%2\;jne %l1\";
#endif
+ }
if (TARGET_68020 || TARGET_5200)
+ {
#ifdef MOTOROLA
- return \"tst%.l %0\;jbne %l1\;tst%.l %3\;jbne %l1\";
+ return \"tst%.l %0\;jbne %l1\;tst%.l %3\;jbne %l1\";
#else
- return \"tst%.l %0\;jne %l1\;tst%.l %3\;jne %l1\";
+ return \"tst%.l %0\;jne %l1\;tst%.l %3\;jne %l1\";
#endif
+ }
else
+ {
#ifdef MOTOROLA
#ifdef SGS_CMP_ORDER
- return \"cmp%.w %0,%#0\;jbne %l1\;cmp%.w %3,%#0\;jbne %l1\";
+ return \"cmp%.w %0,%#0\;jbne %l1\;cmp%.w %3,%#0\;jbne %l1\";
#else
- return \"cmp%.w %#0,%0\;jbne %l1\;cmp%.w %#0,%3\;jbne %l1\";
+ return \"cmp%.w %#0,%0\;jbne %l1\;cmp%.w %#0,%3\;jbne %l1\";
#endif
#else
- return \"cmp%.w %#0,%0\;jne %l1\;cmp%.w %#0,%3\;jne %l1\";
+ return \"cmp%.w %#0,%0\;jne %l1\;cmp%.w %#0,%3\;jne %l1\";
#endif
+ }
} ")
(define_insn "bge0_di"
@@ -5927,17 +5939,19 @@
if (TARGET_68020 || TARGET_5200 || ! ADDRESS_REG_P (operands[0]))
output_asm_insn(\"tst%.l %0\", operands);
else
- /* On an address reg, cmpw may replace cmpl. */
+ {
+ /* On an address reg, cmpw may replace cmpl. */
#ifdef SGS_CMP_ORDER
- output_asm_insn(\"cmp%.w %0,%#0\", operands);
+ output_asm_insn(\"cmp%.w %0,%#0\", operands);
#else
- output_asm_insn(\"cmp%.w %#0,%0\", operands);
+ output_asm_insn(\"cmp%.w %#0,%0\", operands);
#endif
+ }
#ifdef MOTOROLA
- return \"jbpl %l1\";
+ return \"jbpl %l1\";
#else
- return \"jpl %l1\";
+ return \"jpl %l1\";
#endif
} ")
@@ -5977,12 +5991,14 @@
if (TARGET_68020 || TARGET_5200 || ! ADDRESS_REG_P (operands[0]))
output_asm_insn(\"tst%.l %0\", operands);
else
- /* On an address reg, cmpw may replace cmpl. */
+ {
+ /* On an address reg, cmpw may replace cmpl. */
#ifdef SGS_CMP_ORDER
- output_asm_insn(\"cmp%.w %0,%#0\", operands);
+ output_asm_insn(\"cmp%.w %0,%#0\", operands);
#else
- output_asm_insn(\"cmp%.w %#0,%0\", operands);
+ output_asm_insn(\"cmp%.w %#0,%0\", operands);
#endif
+ }
#ifdef MOTOROLA
return \"jbmi %l1\";
@@ -6732,21 +6748,23 @@
"*
if (GET_CODE (operands[1]) == MEM
&& GET_CODE (XEXP (operands[1], 0)) == SYMBOL_REF)
+ {
#ifdef MOTOROLA
#ifdef HPUX_ASM
- return \"bsr.l %1\";
+ return \"bsr.l %1\";
#else
#ifdef USE_GAS
- return \"bsr.l %1@PLTPC\";
+ return \"bsr.l %1@PLTPC\";
#else
- return \"bsr %1@PLTPC\";
+ return \"bsr %1@PLTPC\";
#endif
#endif
#else
- /* The ',a1' is a dummy argument telling the Sun assembler we want PIC
- GAS just plain ignores it. */
- return \"jbsr %1,a1\";
+ /* The ',a1' is a dummy argument telling the Sun assembler we want PIC
+ GAS just plain ignores it. */
+ return \"jbsr %1,a1\";
#endif
+ }
return \"jsr %1\";
")
@@ -6971,11 +6989,13 @@
if (TARGET_68040)
output_asm_insn (\"add%.w %1,%0\", xoperands);
else
+ {
#ifdef MOTOROLA
- output_asm_insn (\"lea (%c1,%0),%0\", xoperands);
+ output_asm_insn (\"lea (%c1,%0),%0\", xoperands);
#else
- output_asm_insn (\"lea %0@(%c1),%0\", xoperands);
+ output_asm_insn (\"lea %0@(%c1),%0\", xoperands);
#endif
+ }
}
else
output_asm_insn (\"add%.l %1,%0\", xoperands);
diff --git a/gcc/config/m68k/rtems.h b/gcc/config/m68k/rtems.h
index 45ea9cf9ea5..74723466c30 100644
--- a/gcc/config/m68k/rtems.h
+++ b/gcc/config/m68k/rtems.h
@@ -1,5 +1,5 @@
/* Definitions for rtems targetting a Motorola m68k using coff.
- Copyright (C) 1996 Free Software Foundation, Inc.
+ Copyright (C) 1996, 1997 Free Software Foundation, Inc.
Contributed by Joel Sherrill (joel@OARcorp.com).
This file is part of GNU CC.
@@ -26,5 +26,3 @@ Boston, MA 02111-1307, USA. */
#undef CPP_PREDEFINES
#define CPP_PREDEFINES "-Dmc68000 -Drtems -D__rtems__ \
-Asystem(rtems) -Acpu(mc68000) -Acpu(m68k) -Amachine(m68k)"
-
-/* end of m68k/rtems.h */
diff --git a/gcc/config/m88k/dolph.h b/gcc/config/m88k/dolph.h
index 1ebeaf76cdb..bd772273d3f 100644
--- a/gcc/config/m88k/dolph.h
+++ b/gcc/config/m88k/dolph.h
@@ -1,7 +1,7 @@
/* Definitions of target machine for GNU compiler.
Motorola m88100 running the Dolphin UNIX System V/88 Release 3.2,
Version 3.8/7.83 and 3.6/5.86
- Copyright (C) 1992, 1993 Free Software Foundation, Inc.
+ Copyright (C) 1992, 1993, 1997 Free Software Foundation, Inc.
This file is part of GNU CC.
diff --git a/gcc/config/m88k/m88k.c b/gcc/config/m88k/m88k.c
index 71457958fa6..2fd082475dd 100644
--- a/gcc/config/m88k/m88k.c
+++ b/gcc/config/m88k/m88k.c
@@ -20,13 +20,14 @@ along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
+#include "config.h"
+
#include <stdio.h>
#include <sys/types.h>
#include <time.h>
#include <ctype.h>
#include "assert.h"
-#include "config.h"
#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
diff --git a/gcc/config/m88k/sysv3.h b/gcc/config/m88k/sysv3.h
index 7fe4f9d3be6..ef351897398 100644
--- a/gcc/config/m88k/sysv3.h
+++ b/gcc/config/m88k/sysv3.h
@@ -1,6 +1,6 @@
/* Definitions of target machine for GNU compiler.
Motorola m88100 running the AT&T/Unisoft/Motorola V.3 reference port.
- Copyright (C) 1990, 1991 Free Software Foundation, Inc.
+ Copyright (C) 1990, 1991, 1997 Free Software Foundation, Inc.
Contributed by Ray Essick (ressick@mot.com)
Enhanced by Tom Wood (Tom_Wood@NeXT.com)
diff --git a/gcc/config/mips/iris6.h b/gcc/config/mips/iris6.h
index 86746d11e84..e66481f30e9 100644
--- a/gcc/config/mips/iris6.h
+++ b/gcc/config/mips/iris6.h
@@ -30,9 +30,8 @@ Boston, MA 02111-1307, USA. */
#include "mips/iris5.h"
#include "mips/abi64.h"
-/* For Irix 6, -mips3 implies TARGET_LONG64. */
-#undef TARGET_LONG64
-#define TARGET_LONG64 (mips_abi == ABI_64)
+/* For Irix 6, -mabi=64 implies TARGET_LONG64. */
+/* This is handled in override_options. */
#undef SUBTARGET_CC1_SPEC
#define SUBTARGET_CC1_SPEC "%{static: -mno-abicalls}"
@@ -500,18 +499,18 @@ do { \
%{!pg:%{p:/usr/lib32/mips3/nonshared/mcrt1.o%s \
/usr/lib32/mips3/nonshared/libprof1.a%s} \
%{!p:/usr/lib32/mips3/nonshared/crt1.o%s}}}}}} \
- %{mabi=n32: %{mips4:-L/usr/lib32/mips4} %{!mips4:-L/usr/lib32/mips3} \
+ crtbegin.o%s"
+
+#undef LIB_SPEC
+#define LIB_SPEC \
+ "%{mabi=n32: %{mips4:-L/usr/lib32/mips4} %{!mips4:-L/usr/lib32/mips3} \
-L/usr/lib32} \
%{mabi=64: %{mips4:-L/usr/lib64/mips4} %{!mips4:-L/usr/lib64/mips3} \
-L/usr/lib64} \
%{!mabi*: %{mips4:-L/usr/lib32/mips4} %{!mips4:-L/usr/lib32/mips3} \
-L/usr/lib32} \
- crtbegin.o%s"
-
-#undef LIB_SPEC
-#define LIB_SPEC "\
-%{!shared: \
- -dont_warn_unused %{p:libprof1.a%s}%{pg:libprof1.a%s} -lc -warn_unused}"
+ %{!shared: \
+ -dont_warn_unused %{p:libprof1.a%s}%{pg:libprof1.a%s} -lc -warn_unused}"
/* Avoid getting two warnings for libgcc.a everytime we link. */
#undef LIBGCC_SPEC
diff --git a/gcc/config/mips/mips.c b/gcc/config/mips/mips.c
index 28650fa6b13..85164356d88 100644
--- a/gcc/config/mips/mips.c
+++ b/gcc/config/mips/mips.c
@@ -1,5 +1,5 @@
/* Subroutines for insn-output.c for MIPS
- Copyright (C) 1989, 90, 91, 93-95, 1996 Free Software Foundation, Inc.
+ Copyright (C) 1989, 90, 91, 93-96, 1997 Free Software Foundation, Inc.
Contributed by A. Lichnewsky, lich@inria.inria.fr.
Changes by Michael Meissner, meissner@osf.org.
64 bit r4000 support by Ian Lance Taylor, ian@cygnus.com, and
@@ -27,6 +27,9 @@ Boston, MA 02111-1307, USA. */
be replaced with something better designed. */
#include "config.h"
+
+#include <stdio.h>
+
#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
@@ -42,7 +45,6 @@ Boston, MA 02111-1307, USA. */
#undef MAX /* sys/param.h may also define these */
#undef MIN
-#include <stdio.h>
#include <signal.h>
#include <sys/types.h>
#include <sys/file.h>
@@ -3208,6 +3210,8 @@ function_arg (cum, mode, type, named)
% BITS_PER_WORD == 0))
break;
+ /* If the whole struct fits a DFmode register,
+ we don't need the PARALLEL. */
if (! field || mode == DFmode)
ret = gen_rtx (REG, mode, regbase + *arg_words + bias);
else
@@ -3222,11 +3226,6 @@ function_arg (cum, mode, type, named)
/* ??? If this is a packed structure, then the last hunk won't
be 64 bits. */
- /* ??? If this is a structure with a single double field,
- it would be more convenient to return (REG:DI %fX) than
- a parallel. However, we would have to modify the mips
- backend to allow DImode values in fp registers. */
-
chunks = TREE_INT_CST_LOW (TYPE_SIZE (type)) / BITS_PER_WORD;
if (chunks + *arg_words + bias > MAX_ARGS_IN_REGISTERS)
chunks = MAX_ARGS_IN_REGISTERS - *arg_words - bias;
@@ -3479,8 +3478,10 @@ override_options ()
if (mips_abi == ABI_32)
target_flags &= ~ (MASK_FLOAT64|MASK_64BIT);
- /* In the EABI in 64 bit mode, longs and pointers are 64 bits. */
- if (mips_abi == ABI_EABI && TARGET_64BIT)
+ /* In the EABI in 64 bit mode, longs and pointers are 64 bits. Likewise
+ for the SGI Irix6 N64 ABI. */
+ if ((mips_abi == ABI_EABI && TARGET_64BIT)
+ || mips_abi == ABI_64)
target_flags |= MASK_LONG64;
/* ??? This doesn't work yet, so don't let people try to use it. */
@@ -3555,6 +3556,8 @@ override_options ()
case '3':
if (!strcmp (p, "3000") || !strcmp (p, "3k") || !strcmp (p, "3K"))
mips_cpu = PROCESSOR_R3000;
+ else if (!strcmp (p, "3900"))
+ mips_cpu = PROCESSOR_R3900;
break;
case '4':
@@ -5212,29 +5215,35 @@ function_prologue (file, size)
exactly matches the name used in ASM_DECLARE_FUNCTION_NAME. */
fnname = XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0);
- fputs ("\t.ent\t", file);
- assemble_name (file, fnname);
- fputs ("\n", file);
+ if (!flag_inhibit_size_directive)
+ {
+ fputs ("\t.ent\t", file);
+ assemble_name (file, fnname);
+ fputs ("\n", file);
+ }
assemble_name (file, fnname);
fputs (":\n", file);
#endif
- fprintf (file, "\t.frame\t%s,%d,%s\t\t# vars= %d, regs= %d/%d, args= %d, extra= %d\n",
- reg_names[ (frame_pointer_needed) ? FRAME_POINTER_REGNUM : STACK_POINTER_REGNUM ],
- tsize,
- reg_names[31 + GP_REG_FIRST],
- current_frame_info.var_size,
- current_frame_info.num_gp,
- current_frame_info.num_fp,
- current_function_outgoing_args_size,
- current_frame_info.extra_size);
-
- fprintf (file, "\t.mask\t0x%08lx,%d\n\t.fmask\t0x%08lx,%d\n",
- current_frame_info.mask,
- current_frame_info.gp_save_offset,
- current_frame_info.fmask,
- current_frame_info.fp_save_offset);
+ if (!flag_inhibit_size_directive)
+ {
+ fprintf (file, "\t.frame\t%s,%d,%s\t\t# vars= %d, regs= %d/%d, args= %d, extra= %d\n",
+ reg_names[ (frame_pointer_needed) ? FRAME_POINTER_REGNUM : STACK_POINTER_REGNUM ],
+ tsize,
+ reg_names[31 + GP_REG_FIRST],
+ current_frame_info.var_size,
+ current_frame_info.num_gp,
+ current_frame_info.num_fp,
+ current_function_outgoing_args_size,
+ current_frame_info.extra_size);
+
+ fprintf (file, "\t.mask\t0x%08lx,%d\n\t.fmask\t0x%08lx,%d\n",
+ current_frame_info.mask,
+ current_frame_info.gp_save_offset,
+ current_frame_info.fmask,
+ current_frame_info.fp_save_offset);
+ }
if (TARGET_ABICALLS && mips_abi == ABI_32)
{
@@ -5478,9 +5487,12 @@ function_epilogue (file, size)
exactly matches the name used in ASM_DECLARE_FUNCTION_NAME. */
fnname = XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0);
- fputs ("\t.end\t", file);
- assemble_name (file, fnname);
- fputs ("\n", file);
+ if (!flag_inhibit_size_directive)
+ {
+ fputs ("\t.end\t", file);
+ assemble_name (file, fnname);
+ fputs ("\n", file);
+ }
#endif
if (TARGET_STATS)
diff --git a/gcc/config/mips/mips.h b/gcc/config/mips/mips.h
index 6ea1d77448f..be5b8527cea 100644
--- a/gcc/config/mips/mips.h
+++ b/gcc/config/mips/mips.h
@@ -28,11 +28,8 @@ Boston, MA 02111-1307, USA. */
extern char *asm_file_name;
extern char call_used_regs[];
extern int current_function_calls_alloca;
-extern int flag_omit_frame_pointer;
-extern int frame_pointer_needed;
extern char *language_string;
extern int may_call_alloca;
-extern int optimize;
extern char **save_argv;
extern int target_flags;
extern char *version_string;
@@ -64,6 +61,7 @@ enum delay_type {
enum processor_type {
PROCESSOR_DEFAULT,
PROCESSOR_R3000,
+ PROCESSOR_R3900,
PROCESSOR_R6000,
PROCESSOR_R4000,
PROCESSOR_R4100,
@@ -276,6 +274,7 @@ extern void text_section ();
#define MASK_SINGLE_FLOAT 0x00020000 /* Only single precision FPU. */
#define MASK_MAD 0x00040000 /* Generate mad/madu as on 4650. */
#define MASK_4300_MUL_FIX 0x00080000 /* Work-around early Vr4300 CPU bug */
+#define MASK_MIPS3900 0x00100000 /* like -mips1 only 3900 */
/* Dummy switches used only in spec's*/
#define MASK_MIPS_TFILE 0x00000000 /* flag for mips-tfile usage */
@@ -291,7 +290,6 @@ extern void text_section ();
#define MASK_DEBUG_G 0x00800000 /* don't support 64 bit arithmetic */
#define MASK_DEBUG_H 0x00400000 /* allow ints in FP registers */
#define MASK_DEBUG_I 0x00200000 /* unused */
-#define MASK_DEBUG_J 0x00100000 /* unused */
/* r4000 64 bit sizes */
#define TARGET_INT64 (target_flags & MASK_INT64)
@@ -302,6 +300,9 @@ extern void text_section ();
/* Mips vs. GNU linker */
#define TARGET_SPLIT_ADDRESSES (target_flags & MASK_SPLIT_ADDR)
+/* generate mips 3900 insns */
+#define TARGET_MIPS3900 (target_flags & MASK_MIPS3900)
+
/* Mips vs. GNU assembler */
#define TARGET_GAS (target_flags & MASK_GAS)
#define TARGET_UNIX_ASM (!TARGET_GAS)
@@ -318,7 +319,6 @@ extern void text_section ();
#define TARGET_DEBUG_G_MODE (target_flags & MASK_DEBUG_G)
#define TARGET_DEBUG_H_MODE (target_flags & MASK_DEBUG_H)
#define TARGET_DEBUG_I_MODE (target_flags & MASK_DEBUG_I)
-#define TARGET_DEBUG_J_MODE (target_flags & MASK_DEBUG_J)
/* Reg. Naming in .s ($21 vs. $a0) */
#define TARGET_NAME_REGS (target_flags & MASK_NAME_REGS)
@@ -425,6 +425,7 @@ extern void text_section ();
{"fix4300", MASK_4300_MUL_FIX}, \
{"no-fix4300", -MASK_4300_MUL_FIX}, \
{"4650", MASK_MAD | MASK_SINGLE_FLOAT}, \
+ {"3900", MASK_MIPS3900}, \
{"debug", MASK_DEBUG}, \
{"debuga", MASK_DEBUG_A}, \
{"debugb", MASK_DEBUG_B}, \
@@ -435,7 +436,6 @@ extern void text_section ();
{"debugg", MASK_DEBUG_G}, \
{"debugh", MASK_DEBUG_H}, \
{"debugi", MASK_DEBUG_I}, \
- {"debugj", MASK_DEBUG_J}, \
{"", (TARGET_DEFAULT \
| TARGET_CPU_DEFAULT \
| TARGET_ENDIAN_DEFAULT)} \
@@ -507,10 +507,16 @@ extern void text_section ();
/* This is meant to be redefined in the host dependent files. */
#define SUBTARGET_TARGET_OPTIONS
+#define GENERATE_BRANCHLIKELY (TARGET_MIPS3900 || (mips_isa >= 2))
+#define GENERATE_MULT3 (TARGET_MIPS3900)
+#define GENERATE_MADD (TARGET_MIPS3900)
+
+
+
/* Macros to decide whether certain features are available or not,
depending on the instruction set architecture level. */
-#define BRANCH_LIKELY_P() (mips_isa >= 2)
+#define BRANCH_LIKELY_P() GENERATE_BRANCHLIKELY
#define HAVE_SQRT_P() (mips_isa >= 2)
/* CC1_SPEC causes -mips3 and -mips4 to set -mfp64 and -mgp64; -mips1 or
@@ -664,7 +670,7 @@ while (0)
/* GAS_ASM_SPEC is passed when using gas, rather than the MIPS
assembler. */
-#define GAS_ASM_SPEC "%{mcpu=*} %{m4650} %{mmad:-m4650} %{v}"
+#define GAS_ASM_SPEC "%{mcpu=*} %{m4650} %{mmad:-m4650} %{m3900} %{v}"
/* TARGET_ASM_SPEC is used to select either MIPS_AS_ASM_SPEC or
GAS_ASM_SPEC as the default, depending upon the value of
@@ -791,6 +797,7 @@ while (0)
%{mfp64:%{msingle-float:%emay not use both -mfp64 and -msingle-float}} \
%{mfp64:%{m4650:%emay not use both -mfp64 and -m4650}} \
%{m4650:-mcpu=r4650} \
+%{m3900:-mips1 -mcpu=r3900 -mfp32 -mgp32} \
%{G*} %{EB:-meb} %{EL:-mel} %{EB:%{EL:%emay not use both -EB and -EL}} \
%{pic-none: -mno-half-pic} \
%{pic-lib: -mhalf-pic} \
@@ -2980,7 +2987,8 @@ while (0)
enum machine_mode xmode = GET_MODE (X); \
if (xmode == SFmode || xmode == DFmode) \
{ \
- if (mips_cpu == PROCESSOR_R3000) \
+ if (mips_cpu == PROCESSOR_R3000 \
+ || mips_cpu == PROCESSOR_R3900) \
return COSTS_N_INSNS (2); \
else if (mips_cpu == PROCESSOR_R6000) \
return COSTS_N_INSNS (3); \
@@ -3003,6 +3011,7 @@ while (0)
if (xmode == SFmode) \
{ \
if (mips_cpu == PROCESSOR_R3000 \
+ || mips_cpu == PROCESSOR_R3900 \
|| mips_cpu == PROCESSOR_R5000) \
return COSTS_N_INSNS (4); \
else if (mips_cpu == PROCESSOR_R6000) \
@@ -3014,6 +3023,7 @@ while (0)
if (xmode == DFmode) \
{ \
if (mips_cpu == PROCESSOR_R3000 \
+ || mips_cpu == PROCESSOR_R3900 \
|| mips_cpu == PROCESSOR_R5000) \
return COSTS_N_INSNS (5); \
else if (mips_cpu == PROCESSOR_R6000) \
@@ -3024,6 +3034,8 @@ while (0)
\
if (mips_cpu == PROCESSOR_R3000) \
return COSTS_N_INSNS (12); \
+ else if (mips_cpu == PROCESSOR_R3900) \
+ return COSTS_N_INSNS (2); \
else if (mips_cpu == PROCESSOR_R6000) \
return COSTS_N_INSNS (17); \
else if (mips_cpu == PROCESSOR_R5000) \
@@ -3038,7 +3050,8 @@ while (0)
enum machine_mode xmode = GET_MODE (X); \
if (xmode == SFmode) \
{ \
- if (mips_cpu == PROCESSOR_R3000) \
+ if (mips_cpu == PROCESSOR_R3000 \
+ || mips_cpu == PROCESSOR_R3900) \
return COSTS_N_INSNS (12); \
else if (mips_cpu == PROCESSOR_R6000) \
return COSTS_N_INSNS (15); \
@@ -3048,7 +3061,8 @@ while (0)
\
if (xmode == DFmode) \
{ \
- if (mips_cpu == PROCESSOR_R3000) \
+ if (mips_cpu == PROCESSOR_R3000 \
+ || mips_cpu == PROCESSOR_R3900) \
return COSTS_N_INSNS (19); \
else if (mips_cpu == PROCESSOR_R6000) \
return COSTS_N_INSNS (16); \
@@ -3060,7 +3074,8 @@ while (0)
\
case UDIV: \
case UMOD: \
- if (mips_cpu == PROCESSOR_R3000) \
+ if (mips_cpu == PROCESSOR_R3000 \
+ || mips_cpu == PROCESSOR_R3900) \
return COSTS_N_INSNS (35); \
else if (mips_cpu == PROCESSOR_R6000) \
return COSTS_N_INSNS (38); \
diff --git a/gcc/config/mips/mips.md b/gcc/config/mips/mips.md
index 8bc70b770d8..3e4382f5d2e 100644
--- a/gcc/config/mips/mips.md
+++ b/gcc/config/mips/mips.md
@@ -88,15 +88,14 @@
;; ??? Fix everything that tests this attribute.
(define_attr "cpu"
- "default,r3000,r6000,r4000,r4100,r4300,r4600,r4650,r5000,r8000"
+ "default,r3000,r3900,r6000,r4000,r4100,r4300,r4600,r4650,r5000,r8000"
(const (symbol_ref "mips_cpu_attr")))
;; Attribute defining whether or not we can use the branch-likely instructions
-;; (MIPS ISA level 2)
(define_attr "branch_likely" "no,yes"
(const
- (if_then_else (ge (symbol_ref "mips_isa") (const_int 2))
+ (if_then_else (ne (symbol_ref "GENERATE_BRANCHLIKELY") (const_int 0))
(const_string "yes")
(const_string "no"))))
@@ -147,12 +146,12 @@
(define_function_unit "memory" 1 0
(and (eq_attr "type" "load")
- (eq_attr "cpu" "!r3000,r4600,r4650,r4100,r4300,r5000"))
+ (eq_attr "cpu" "!r3000,r3900,r4600,r4650,r4100,r4300,r5000"))
3 0)
(define_function_unit "memory" 1 0
(and (eq_attr "type" "load")
- (eq_attr "cpu" "r3000,r4600,r4650,r4100,r4300,r5000"))
+ (eq_attr "cpu" "r3000,r3900,r4600,r4650,r4100,r4300,r5000"))
2 0)
(define_function_unit "memory" 1 0 (eq_attr "type" "store") 1 0)
@@ -165,11 +164,11 @@
(define_function_unit "imuldiv" 1 0
(and (eq_attr "type" "imul")
- (eq_attr "cpu" "!r3000,r4000,r4600,r4650,r4100,r4300,r5000"))
+ (eq_attr "cpu" "!r3000,r3900,r4000,r4600,r4650,r4100,r4300,r5000"))
17 17)
(define_function_unit "imuldiv" 1 0
- (and (eq_attr "type" "imul") (eq_attr "cpu" "r3000"))
+ (and (eq_attr "type" "imul") (eq_attr "cpu" "r3000,r3900"))
12 12)
(define_function_unit "imuldiv" 1 0
@@ -207,11 +206,11 @@
(define_function_unit "imuldiv" 1 0
(and (eq_attr "type" "idiv")
- (eq_attr "cpu" "!r3000,r4000,r4600,r4650,r4100,r4300,r5000"))
+ (eq_attr "cpu" "!r3000,r3900,r4000,r4600,r4650,r4100,r4300,r5000"))
38 38)
(define_function_unit "imuldiv" 1 0
- (and (eq_attr "type" "idiv") (eq_attr "cpu" "r3000"))
+ (and (eq_attr "type" "idiv") (eq_attr "cpu" "r3000,r3900"))
35 35)
(define_function_unit "imuldiv" 1 0
@@ -264,11 +263,11 @@
;; instructions to be processed in the "imuldiv" unit.
(define_function_unit "adder" 1 1
- (and (eq_attr "type" "fcmp") (eq_attr "cpu" "!r3000,r6000,r4300,r5000"))
+ (and (eq_attr "type" "fcmp") (eq_attr "cpu" "!r3000,r3900,r6000,r4300,r5000"))
3 0)
(define_function_unit "adder" 1 1
- (and (eq_attr "type" "fcmp") (eq_attr "cpu" "r3000,r6000"))
+ (and (eq_attr "type" "fcmp") (eq_attr "cpu" "r3000,r3900,r6000"))
2 0)
(define_function_unit "adder" 1 1
@@ -276,11 +275,11 @@
1 0)
(define_function_unit "adder" 1 1
- (and (eq_attr "type" "fadd") (eq_attr "cpu" "!r3000,r6000,r4300"))
+ (and (eq_attr "type" "fadd") (eq_attr "cpu" "!r3000,r3900,r6000,r4300"))
4 0)
(define_function_unit "adder" 1 1
- (and (eq_attr "type" "fadd") (eq_attr "cpu" "r3000"))
+ (and (eq_attr "type" "fadd") (eq_attr "cpu" "r3000,r3900"))
2 0)
(define_function_unit "adder" 1 1
@@ -289,22 +288,22 @@
(define_function_unit "adder" 1 1
(and (eq_attr "type" "fabs,fneg")
- (eq_attr "cpu" "!r3000,r4600,r4650,r4300,r5000"))
+ (eq_attr "cpu" "!r3000,r3900,r4600,r4650,r4300,r5000"))
2 0)
(define_function_unit "adder" 1 1
- (and (eq_attr "type" "fabs,fneg") (eq_attr "cpu" "r3000,r4600,r4650,r5000"))
+ (and (eq_attr "type" "fabs,fneg") (eq_attr "cpu" "r3000,r3900,r4600,r4650,r5000"))
1 0)
(define_function_unit "mult" 1 1
(and (eq_attr "type" "fmul")
(and (eq_attr "mode" "SF")
- (eq_attr "cpu" "!r3000,r6000,r4600,r4650,r4300,r5000")))
+ (eq_attr "cpu" "!r3000,r3900,r6000,r4600,r4650,r4300,r5000")))
7 0)
(define_function_unit "mult" 1 1
(and (eq_attr "type" "fmul")
- (and (eq_attr "mode" "SF") (eq_attr "cpu" "r3000,r5000")))
+ (and (eq_attr "mode" "SF") (eq_attr "cpu" "r3000,r3900,r5000")))
4 0)
(define_function_unit "mult" 1 1
@@ -319,12 +318,12 @@
(define_function_unit "mult" 1 1
(and (eq_attr "type" "fmul")
- (and (eq_attr "mode" "DF") (eq_attr "cpu" "!r3000,r6000,r4300,r5000")))
+ (and (eq_attr "mode" "DF") (eq_attr "cpu" "!r3000,r3900,r6000,r4300,r5000")))
8 0)
(define_function_unit "mult" 1 1
(and (eq_attr "type" "fmul")
- (and (eq_attr "mode" "DF") (eq_attr "cpu" "r3000,r5000")))
+ (and (eq_attr "mode" "DF") (eq_attr "cpu" "r3000,r3900,r5000")))
5 0)
(define_function_unit "mult" 1 1
@@ -335,12 +334,12 @@
(define_function_unit "divide" 1 1
(and (eq_attr "type" "fdiv")
(and (eq_attr "mode" "SF")
- (eq_attr "cpu" "!r3000,r6000,r4600,r4650,r4300,r5000")))
+ (eq_attr "cpu" "!r3000,r3900,r6000,r4600,r4650,r4300,r5000")))
23 0)
(define_function_unit "divide" 1 1
(and (eq_attr "type" "fdiv")
- (and (eq_attr "mode" "SF") (eq_attr "cpu" "r3000")))
+ (and (eq_attr "mode" "SF") (eq_attr "cpu" "r3000,r3900")))
12 0)
(define_function_unit "divide" 1 1
@@ -361,12 +360,12 @@
(define_function_unit "divide" 1 1
(and (eq_attr "type" "fdiv")
(and (eq_attr "mode" "DF")
- (eq_attr "cpu" "!r3000,r6000,r4600,r4650,r4300")))
+ (eq_attr "cpu" "!r3000,r3900,r6000,r4600,r4650,r4300")))
36 0)
(define_function_unit "divide" 1 1
(and (eq_attr "type" "fdiv")
- (and (eq_attr "mode" "DF") (eq_attr "cpu" "r3000")))
+ (and (eq_attr "mode" "DF") (eq_attr "cpu" "r3000,r3900")))
19 0)
(define_function_unit "divide" 1 1
@@ -1031,7 +1030,9 @@
""
"
{
- if (TARGET_MAD)
+ if (GENERATE_MULT3)
+ emit_insn (gen_mulsi3_mult3 (operands[0], operands[1], operands[2]));
+ else if (TARGET_MAD)
emit_insn (gen_mulsi3_r4650 (operands[0], operands[1], operands[2]));
else if (mips_cpu != PROCESSOR_R4000)
emit_insn (gen_mulsi3_internal (operands[0], operands[1], operands[2]));
@@ -1040,6 +1041,19 @@
DONE;
}")
+(define_insn "mulsi3_mult3"
+ [(set (match_operand:SI 0 "register_operand" "=d")
+ (mult:SI (match_operand:SI 1 "register_operand" "d")
+ (match_operand:SI 2 "register_operand" "d")))
+ (clobber (match_scratch:SI 3 "=h"))
+ (clobber (match_scratch:SI 4 "=l"))
+ (clobber (match_scratch:SI 5 "=a"))]
+ "GENERATE_MULT3"
+ "mult\\t%0,%1,%2"
+ [(set_attr "type" "imul")
+ (set_attr "mode" "SI")
+ (set_attr "length" "1")])
+
(define_insn "mulsi3_internal"
[(set (match_operand:SI 0 "register_operand" "=l")
(mult:SI (match_operand:SI 1 "register_operand" "d")
@@ -1286,8 +1300,14 @@
(match_dup 0)))
(clobber (match_scratch:SI 3 "=h"))
(clobber (match_scratch:SI 4 "=a"))]
- "TARGET_MAD"
- "mad\\t%1,%2"
+ "TARGET_MAD || GENERATE_MADD"
+ "*
+{
+ if (TARGET_MAD)
+ return \"mad\\t%1,%2\";
+ else
+ return \"madd\\t%1,%2\";
+}"
[(set_attr "type" "imul")
(set_attr "mode" "SI")
(set_attr "length" "1")])
@@ -1350,6 +1370,20 @@
(set_attr "mode" "SI")
(set_attr "length" "1")])
+(define_insn "madd3"
+ [(set (match_operand:SI 0 "register_operand" "=d")
+ (plus:SI (mult:SI (match_operand:SI 1 "register_operand" "d")
+ (match_operand:SI 2 "register_operand" "d"))
+ (match_operand:SI 3 "register_operand" "l")))
+ (clobber (match_scratch:SI 4 "=l"))
+ (clobber (match_scratch:SI 5 "=h"))
+ (clobber (match_scratch:SI 6 "=a"))]
+ "GENERATE_MADD"
+ "madd\\t%0,%1,%2"
+ [(set_attr "type" "imul")
+ (set_attr "mode" "SI")
+ (set_attr "length" "1")])
+
;; Floating point multiply accumulate instructions.
(define_insn ""
@@ -1775,7 +1809,7 @@
if (REGNO (operands[0]) == REGNO (operands[1]))
{
- if (mips_isa >= 2)
+ if (GENERATE_BRANCHLIKELY)
return \"%(bltzl\\t%1,1f\\n\\tsubu\\t%0,%z2,%0\\n1:%)\";
else
return \"bgez\\t%1,1f%#\\n\\tsubu\\t%0,%z2,%0\\n1:\";
@@ -3175,7 +3209,7 @@ move\\t%0,%z4\\n\\
(define_insn "movsi_ulw"
[(set (match_operand:SI 0 "register_operand" "=&d,&d")
- (unspec [(match_operand:QI 1 "general_operand" "R,o")] 0))]
+ (unspec:SI [(match_operand:QI 1 "general_operand" "R,o")] 0))]
""
"*
{
@@ -3204,7 +3238,7 @@ move\\t%0,%z4\\n\\
(define_insn "movsi_usw"
[(set (match_operand:QI 0 "memory_operand" "=R,o")
- (unspec [(match_operand:SI 1 "reg_or_0_operand" "dJ,dJ")] 1))]
+ (unspec:QI [(match_operand:SI 1 "reg_or_0_operand" "dJ,dJ")] 1))]
""
"*
{
@@ -4026,7 +4060,7 @@ move\\t%0,%z4\\n\\
(define_insn "loadgp"
[(set (reg:DI 28)
- (unspec_volatile [(match_operand:DI 0 "address_operand" "")] 2))
+ (unspec_volatile:DI [(match_operand:DI 0 "address_operand" "")] 2))
(clobber (reg:DI 1))]
""
"%[lui\\t$1,%%hi(%%neg(%%gp_rel(%a0)))\\n\\taddiu\\t$1,$1,%%lo(%%neg(%%gp_rel(%a0)))\\n\\tdaddu\\t$gp,$1,$25%]"
@@ -4041,8 +4075,8 @@ move\\t%0,%z4\\n\\
;; Argument 3 is the alignment
(define_expand "movstrsi"
- [(parallel [(set (mem:BLK (match_operand:BLK 0 "general_operand" ""))
- (mem:BLK (match_operand:BLK 1 "general_operand" "")))
+ [(parallel [(set (match_operand:BLK 0 "general_operand" "")
+ (match_operand:BLK 1 "general_operand" ""))
(use (match_operand:SI 2 "arith32_operand" ""))
(use (match_operand:SI 3 "immediate_operand" ""))])]
""
@@ -4069,7 +4103,7 @@ move\\t%0,%z4\\n\\
(use (const_int 0))] ;; normal block move
""
"* return output_block_move (insn, operands, 4, BLOCK_MOVE_NORMAL);"
- [(set_attr "type" "multi")
+ [(set_attr "type" "store")
(set_attr "mode" "none")
(set_attr "length" "20")])
@@ -4128,7 +4162,7 @@ move\\t%0,%z4\\n\\
(use (const_int 1))] ;; all but last store
""
"* return output_block_move (insn, operands, 4, BLOCK_MOVE_NOT_LAST);"
- [(set_attr "type" "multi")
+ [(set_attr "type" "store")
(set_attr "mode" "none")
(set_attr "length" "20")])
diff --git a/gcc/config/mips/rtems64.h b/gcc/config/mips/rtems64.h
index c13ddac4da1..dd21562a47e 100644
--- a/gcc/config/mips/rtems64.h
+++ b/gcc/config/mips/rtems64.h
@@ -1,6 +1,5 @@
/* Definitions for rtems targetting a MIPS ORION using ecoff.
-
- Copyright (C) 1996 Free Software Foundation, Inc.
+ Copyright (C) 1996, 1997 Free Software Foundation, Inc.
Contributed by Joel Sherrill (joel@OARcorp.com).
This file is part of GNU CC.
@@ -27,5 +26,3 @@ Boston, MA 02111-1307, USA. */
#undef CPP_PREDEFINES
#define CPP_PREDEFINES "-Dmips -DMIPSEB -DR4000 -D_mips -D_MIPSEB -D_R4000 \
-Drtems -D__rtems__ -Asystem(rtems)"
-
-/* end of mips/rtems64.h */
diff --git a/gcc/config/mn10200/mn10200.c b/gcc/config/mn10200/mn10200.c
index 25d5e20b7c3..c177607fe27 100644
--- a/gcc/config/mn10200/mn10200.c
+++ b/gcc/config/mn10200/mn10200.c
@@ -19,8 +19,8 @@ along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
-#include <stdio.h>
#include "config.h"
+#include <stdio.h>
#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
diff --git a/gcc/config/mn10300/mn10300.c b/gcc/config/mn10300/mn10300.c
index 201b51d1df2..58220588010 100644
--- a/gcc/config/mn10300/mn10300.c
+++ b/gcc/config/mn10300/mn10300.c
@@ -19,8 +19,8 @@ along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
-#include <stdio.h>
#include "config.h"
+#include <stdio.h>
#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
diff --git a/gcc/config/pa/pa.c b/gcc/config/pa/pa.c
index 5729fb8220e..1d65fcb872e 100644
--- a/gcc/config/pa/pa.c
+++ b/gcc/config/pa/pa.c
@@ -19,8 +19,8 @@ along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
-#include <stdio.h>
#include "config.h"
+#include <stdio.h>
#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
diff --git a/gcc/config/pa/pa.md b/gcc/config/pa/pa.md
index 138f675af00..f5f0f131461 100644
--- a/gcc/config/pa/pa.md
+++ b/gcc/config/pa/pa.md
@@ -1,6 +1,5 @@
;;- Machine description for HP PA-RISC architecture for GNU C compiler
-;; Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997
-;; Free Software Foundation, Inc.
+;; Copyright (C) 1992, 93, 94, 95, 96, 1997 Free Software Foundation, Inc.
;; Contributed by the Center for Software Science at the University
;; of Utah.
@@ -2059,18 +2058,20 @@
;; that anything generated as this insn will be recognized as one
;; and that it will not successfully combine with anything.
(define_expand "movstrsi"
- [(parallel [(set (mem:BLK (match_operand:BLK 0 "" ""))
- (mem:BLK (match_operand:BLK 1 "" "")))
- (clobber (match_dup 0))
- (clobber (match_dup 1))
+ [(parallel [(set (match_operand:BLK 0 "" "")
+ (match_operand:BLK 1 "" ""))
+ (clobber (match_dup 7))
+ (clobber (match_dup 8))
(clobber (match_dup 4))
(clobber (match_dup 5))
+ (clobber (match_dup 6))
(use (match_operand:SI 2 "arith_operand" ""))
(use (match_operand:SI 3 "const_int_operand" ""))])]
""
"
{
int size, align;
+
/* HP provides very fast block move library routine for the PA;
this routine includes:
@@ -2103,22 +2104,25 @@
/* If size/alignment > 8 (eg size is large in respect to alignment),
then use the library routines. */
- if (size/align > 16)
+ if (size / align > 16)
FAIL;
/* This does happen, but not often enough to worry much about. */
- if (size/align < MOVE_RATIO)
+ if (size / align < MOVE_RATIO)
FAIL;
/* Fall through means we're going to use our block move pattern. */
- operands[0] = copy_to_mode_reg (SImode, XEXP (operands[0], 0));
- operands[1] = copy_to_mode_reg (SImode, XEXP (operands[1], 0));
+ operands[0]
+ = change_address (operands[0], VOIDmode,
+ copy_to_mode_reg (SImode, XEXP (operands[0], 0)));
+ operands[1]
+ = change_address (operands[1], VOIDmode,
+ copy_to_mode_reg (SImode, XEXP (operands[1], 0)));
operands[4] = gen_reg_rtx (SImode);
operands[5] = gen_reg_rtx (SImode);
- emit_insn (gen_movstrsi_internal (operands[0], operands[1], operands[4],
- operands[5], operands[2], operands[3],
- gen_reg_rtx (SImode)));
- DONE;
+ operands[6] = gen_reg_rtx (SImode);
+ operands[7] = XEXP (operands[0], 0);
+ operands[8] = XEXP (operands[1], 0);
}")
;; The operand constraints are written like this to support both compile-time
diff --git a/gcc/config/pa/rtems.h b/gcc/config/pa/rtems.h
index 892142caf13..eebfd4f5cc1 100644
--- a/gcc/config/pa/rtems.h
+++ b/gcc/config/pa/rtems.h
@@ -24,5 +24,3 @@ Boston, MA 02111-1307, USA. */
#undef CPP_PREDEFINES
#define CPP_PREDEFINES "-Dhppa -DPWB -Acpu(hppa) -Amachine(hppa) \
-Drtems -D__rtems__ -Asystem(rtems)"
-
-/* end of pa/rtems.h */
diff --git a/gcc/config/pa/x-pa b/gcc/config/pa/x-pa
index a2e22702831..4c250477358 100644
--- a/gcc/config/pa/x-pa
+++ b/gcc/config/pa/x-pa
@@ -1,3 +1,3 @@
# BSD on the PA already has ANSI include files which are c++ compatible.
-USER_H = $(EXTRA_HEADERS) $(LANG_EXTRA_HEADERS)
+USER_H = $(EXTRA_HEADERS) $(LANG_EXTRA_HEADERS)
STMP_FIXPROTO=
diff --git a/gcc/config/ptx4.h b/gcc/config/ptx4.h
index 3ed0b642752..64d5e0b5752 100644
--- a/gcc/config/ptx4.h
+++ b/gcc/config/ptx4.h
@@ -1,6 +1,6 @@
/* Operating system specific defines to be used when targeting GCC for some
generic System V Release 4 system.
- Copyright (C) 1996 Free Software Foundation, Inc.
+ Copyright (C) 1996, 1997 Free Software Foundation, Inc.
Contributed by Ron Guilmette (rfg@monkeys.com).
Renamed and changed to suit Dynix/ptx v4 and later.
Modified by Tim Wright (timw@sequent.com).
diff --git a/gcc/config/rs6000/rs6000.c b/gcc/config/rs6000/rs6000.c
index c8ddbc1bb63..aa128019dc5 100644
--- a/gcc/config/rs6000/rs6000.c
+++ b/gcc/config/rs6000/rs6000.c
@@ -19,9 +19,9 @@ along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
+#include "config.h"
#include <stdio.h>
#include <ctype.h>
-#include "config.h"
#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
diff --git a/gcc/config/rs6000/rs6000.md b/gcc/config/rs6000/rs6000.md
index 39877c0d458..29b6f22e98e 100644
--- a/gcc/config/rs6000/rs6000.md
+++ b/gcc/config/rs6000/rs6000.md
@@ -7112,8 +7112,10 @@
;; We move the back-chain and decrement the stack pointer.
(define_expand "allocate_stack"
- [(set (reg:SI 1)
- (minus:SI (reg:SI 1) (match_operand:SI 0 "reg_or_short_operand" "")))]
+ [(set (match_operand:SI 0 "register_operand" "=r")
+ (minus:SI (reg:SI 1) (match_operand:SI 1 "reg_or_short_operand" "")))
+ (set (reg:SI 1)
+ (minus:SI (reg:SI 1) (match_dup 1)))]
""
"
{ rtx chain = gen_reg_rtx (Pmode);
@@ -7122,31 +7124,32 @@
emit_move_insn (chain, stack_bot);
- /* Under Windows NT, we need to add stack probes for large/variable allocations,
- so do it via a call to the external function alloca, instead of doing it
- inline. */
+ /* Under Windows NT, we need to add stack probes for large/variable
+ allocations, so do it via a call to the external function alloca
+ instead of doing it inline. */
if (DEFAULT_ABI == ABI_NT
- && (GET_CODE (operands[0]) != CONST_INT || INTVAL (operands[0]) > 4096))
+ && (GET_CODE (operands[1]) != CONST_INT || INTVAL (operands[1]) > 4096))
{
rtx tmp = gen_reg_rtx (SImode);
emit_library_call_value (gen_rtx (SYMBOL_REF, Pmode, \"__allocate_stack\"),
- tmp, 0, SImode, 1, operands[0], Pmode);
+ tmp, 0, SImode, 1, operands[1], Pmode);
emit_insn (gen_set_sp (tmp));
+ emit_move_insn (operands[0], tmp);
DONE;
}
- if (GET_CODE (operands[0]) != CONST_INT
- || INTVAL (operands[0]) < -32767
- || INTVAL (operands[0]) > 32768)
+ if (GET_CODE (operands[1]) != CONST_INT
+ || INTVAL (operands[1]) < -32767
+ || INTVAL (operands[1]) > 32768)
{
neg_op0 = gen_reg_rtx (Pmode);
if (TARGET_32BIT)
- emit_insn (gen_negsi2 (neg_op0, operands[0]));
+ emit_insn (gen_negsi2 (neg_op0, operands[1]));
else
- emit_insn (gen_negdi2 (neg_op0, operands[0]));
+ emit_insn (gen_negdi2 (neg_op0, operands[1]));
}
else
- neg_op0 = GEN_INT (- INTVAL (operands[0]));
+ neg_op0 = GEN_INT (- INTVAL (operands[1]));
if (TARGET_UPDATE)
emit_insn ((* ((TARGET_32BIT) ? gen_movsi_update : gen_movdi_update))
@@ -7160,6 +7163,8 @@
stack_pointer_rtx),
chain);
}
+
+ emit_move_insn (operands[0], virtual_stack_dynamic_rtx);
DONE;
}")
@@ -7234,7 +7239,7 @@
(define_insn "nonlocal_goto_receiver"
[(unspec_volatile [(const_int 0)] 1)]
- "TARGET_TOC && TARGET_MINIMAL_TOC && get_pool_size () != 0"
+ "TARGET_TOC && TARGET_MINIMAL_TOC"
"*
{
rs6000_output_load_toc_table (asm_out_file, 30);
diff --git a/gcc/config/rs6000/rtems.h b/gcc/config/rs6000/rtems.h
index b252b8f73f8..287da251268 100644
--- a/gcc/config/rs6000/rtems.h
+++ b/gcc/config/rs6000/rtems.h
@@ -1,5 +1,4 @@
/* Definitions for rtems targetting a PowerPC using elf.
-
Copyright (C) 1996, 1997 Free Software Foundation, Inc.
Contributed by Joel Sherrill (joel@OARcorp.com).
diff --git a/gcc/config/rs6000/sysv4.h b/gcc/config/rs6000/sysv4.h
index 44dd686e0c5..dace38028ef 100644
--- a/gcc/config/rs6000/sysv4.h
+++ b/gcc/config/rs6000/sysv4.h
@@ -91,6 +91,8 @@ extern enum rs6000_sdata_type rs6000_sdata;
{ "sdata", 0 }, \
{ "no-sdata", 0 }, \
{ "sim", 0 }, \
+ { "ads", 0 }, \
+ { "yellowknife", 0 }, \
{ "mvme", 0 }, \
{ "emb", 0 }, \
{ "solaris-cclib", 0 }, \
@@ -327,6 +329,9 @@ do { \
#undef ASM_OUTPUT_EXTERNAL
+/* Put jump tables in read-only memory, rather than in .text. */
+#undef JUMP_TABLES_IN_TEXT_SECTION
+
/* Undefine some things which are defined by the generic svr4.h. */
#undef ASM_FILE_END
@@ -995,11 +1000,13 @@ do { \
/* Default starting address if specified */
#ifndef LINK_START_SPEC
#define LINK_START_SPEC "\
+%{mads: %(link_start_ads) } \
+%{myellowknife: %(link_start_yellowknife) } \
%{mmvme: %(link_start_mvme) } \
%{msim: %(link_start_sim) } \
%{mcall-linux: %(link_start_linux) } \
%{mcall-solaris: %(link_start_solaris) } \
-%{!mmvme: %{!msim: %{!mcall-linux: %{!mcall-solaris: %(link_start_default) }}}}"
+%{!mads: %{!myellowknife: %{!mmvme: %{!msim: %{!mcall-linux: %{!mcall-solaris: %(link_start_default) }}}}}}"
#endif
#ifndef LINK_START_DEFAULT_SPEC
@@ -1050,11 +1057,13 @@ do { \
/* Any specific OS flags */
#ifndef LINK_OS_SPEC
#define LINK_OS_SPEC "\
+%{mads: %(link_os_ads) } \
+%{myellowknife: %(link_os_yellowknife) } \
%{mmvme: %(link_os_mvme) } \
%{msim: %(link_os_sim) } \
%{mcall-linux: %(link_os_linux) } \
%{mcall-solaris: %(link_os_solaris) } \
-%{!mmvme: %{!msim: %{!mcall-linux: %{!mcall-solaris: %(link_os_default) }}}}"
+%{!mads: %{!myellowknife: %{!mmvme: %{!msim: %{!mcall-linux: %{!mcall-solaris: %(link_os_default) }}}}}}"
#endif
#ifndef LINK_OS_DEFAULT_SPEC
@@ -1105,11 +1114,13 @@ do { \
#undef CPP_SPEC
#define CPP_SPEC "%{posix: -D_POSIX_SOURCE} %(cpp_sysv) %(cpp_endian) %(cpp_cpu) \
+%{mads: %(cpp_os_ads) } \
+%{myellowknife: %(cpp_os_yellowknife) } \
%{mmvme: %(cpp_os_mvme) } \
%{msim: %(cpp_os_sim) } \
%{mcall-linux: %(cpp_os_linux) } \
%{mcall-solaris: %(cpp_os_solaris) } \
-%{!mmvme: %{!msim: %{!mcall-linux: %{!mcall-solaris: %(cpp_os_default) }}}}"
+%{!mads: %{!myellowknife: %{!mmvme: %{!msim: %{!mcall-linux: %{!mcall-solaris: %(cpp_os_default) }}}}}}"
#ifndef CPP_OS_DEFAULT_SPEC
#define CPP_OS_DEFAULT_SPEC ""
@@ -1117,22 +1128,26 @@ do { \
#undef STARTFILE_SPEC
#define STARTFILE_SPEC "\
+%{mads: %(startfile_ads) } \
+%{myellowknife: %(startfile_yellowknife) } \
%{mmvme: %(startfile_mvme) } \
%{msim: %(startfile_sim) } \
%{mcall-linux: %(startfile_linux) } \
%{mcall-solaris: %(startfile_solaris) } \
-%{!mmvme: %{!msim: %{!mcall-linux: %{!mcall-solaris: %(startfile_default) }}}}"
+%{!mads: %{!myellowknife: %{!mmvme: %{!msim: %{!mcall-linux: %{!mcall-solaris: %(startfile_default) }}}}}}"
#undef STARTFILE_DEFAULT_SPEC
#define STARTFILE_DEFAULT_SPEC ""
#undef LIB_SPEC
#define LIB_SPEC "\
+%{mads: %(lib_ads) } \
+%{myellowknife: %(lib_yellowknife) } \
%{mmvme: %(lib_mvme) } \
%{msim: %(lib_sim) } \
%{mcall-linux: %(lib_linux) } \
%{mcall-solaris: %(lib_solaris) } \
-%{!mmvme: %{!msim: %{!mcall-linux: %{!mcall-solaris: %(lib_default) }}}}"
+%{!mads: %{!myellowknife: %{!mmvme: %{!msim: %{!mcall-linux: %{!mcall-solaris: %(lib_default) }}}}}}"
#undef LIBGCC_SPEC
#define LIBGCC_SPEC "libgcc.a%s"
@@ -1143,22 +1158,74 @@ do { \
#undef ENDFILE_SPEC
#define ENDFILE_SPEC "\
+%{mads: ecrtn.o%s} \
+%{myellowknife: ecrtn.o%s} \
%{mmvme: ecrtn.o%s} \
%{msim: ecrtn.o%s} \
%{mcall-linux: } \
%{mcall-solaris: scrtn.o%s} \
-%{!mmvme: %{!msim: %{!mcall-linux: %{!mcall-solaris: %(endfile_default) }}}}"
+%{!mads: %{!myellowknife: %{!mmvme: %{!msim: %{!mcall-linux: %{!mcall-solaris: %(endfile_default) }}}}}}"
#undef ENDFILE_DEFAULT_SPEC
#define ENDFILE_DEFAULT_SPEC ""
+/* Motorola ADS support. */
+#ifndef LIB_ADS_SPEC
+#define LIB_ADS_SPEC "--start-group -lads -lc --end-group"
+#endif
+
+#ifndef STARTFILE_ADS_SPEC
+#define STARTFILE_ADS_SPEC "ecrti.o%s crt0.o%s"
+#endif
+
+#ifndef ENDFILE_ADS_SPEC
+#define ENDFILE_ADS_SPEC "ecrtn.o%s"
+#endif
+
+#ifndef LINK_START_ADS_SPEC
+#define LINK_START_ADS_SPEC "-T ads.ld%s"
+#endif
+
+#ifndef LINK_OS_ADS_SPEC
+#define LINK_OS_ADS_SPEC ""
+#endif
+
+#ifndef CPP_OS_ADS_SPEC
+#define CPP_OS_ADS_SPEC ""
+#endif
+
+/* Motorola Yellowknife support. */
+#ifndef LIB_YELLOWKNIFE_SPEC
+#define LIB_YELLOWKNIFE_SPEC "--start-group -lyk -lc --end-group"
+#endif
+
+#ifndef STARTFILE_YELLOWKNIFE_SPEC
+#define STARTFILE_YELLOWKNIFE_SPEC "ecrti.o%s crt0.o%s"
+#endif
+
+#ifndef ENDFILE_YELLOWKNIFE_SPEC
+#define ENDFILE_YELLOWKNIFE_SPEC "ecrtn.o%s"
+#endif
+
+#ifndef LINK_START_YELLOWKNIFE_SPEC
+#define LINK_START_YELLOWKNIFE_SPEC "-T yellowknife.ld%s"
+#endif
+
+#ifndef LINK_OS_YELLOWKNIFE_SPEC
+#define LINK_OS_YELLOWKNIFE_SPEC ""
+#endif
+
+#ifndef CPP_OS_YELLOWKNIFE_SPEC
+#define CPP_OS_YELLOWKNIFE_SPEC ""
+#endif
+
/* Motorola MVME support. */
#ifndef LIB_MVME_SPEC
-#define LIB_MVME_SPEC "-( -lmvme -lc -)"
+#define LIB_MVME_SPEC "--start-group -lmvme -lc --end-group"
#endif
#ifndef STARTFILE_MVME_SPEC
-#define STARTFILE_MVME_SPEC "ecrti.o%s mvme-crt0.o%s"
+#define STARTFILE_MVME_SPEC "ecrti.o%s crt0.o%s"
#endif
#ifndef ENDFILE_MVME_SPEC
@@ -1166,7 +1233,7 @@ do { \
#endif
#ifndef LINK_START_MVME_SPEC
-#define LINK_START_MVME_SPEC ""
+#define LINK_START_MVME_SPEC "%{!Wl,-T*: %{!T*: -Ttext 0x40000}}"
#endif
#ifndef LINK_OS_MVME_SPEC
@@ -1179,7 +1246,7 @@ do { \
/* PowerPC simulator based on netbsd system calls support. */
#ifndef LIB_SIM_SPEC
-#define LIB_SIM_SPEC "-( -lsim -lc -)"
+#define LIB_SIM_SPEC "--start-group -lsim -lc --end-group"
#endif
#ifndef STARTFILE_SIM_SPEC
@@ -1204,7 +1271,7 @@ do { \
/* Linux support. */
#ifndef LIB_LINUX_SPEC
-#define LIB_LINUX_SPEC "%{mnewlib: -( -llinux -lc -) } %{!mnewlib: -lc }"
+#define LIB_LINUX_SPEC "%{mnewlib: --start-group -llinux -lc --end-group } %{!mnewlib: -lc }"
#endif
#ifndef STARTFILE_LINUX_SPEC
@@ -1252,7 +1319,7 @@ do { \
#ifndef LIB_SOLARIS_SPEC
#define LIB_SOLARIS_SPEC "\
-%{mnewlib: -( -lsolaris -lc -) } \
+%{mnewlib: --start-group -lsolaris -lc --end-group } \
%{!mnewlib: \
%{ansi:values-Xc.o%s} \
%{!ansi: \
@@ -1296,16 +1363,22 @@ do { \
/* Define any extra SPECS that the compiler needs to generate. */
#undef SUBTARGET_EXTRA_SPECS
#define SUBTARGET_EXTRA_SPECS \
+ { "lib_ads", LIB_ADS_SPEC }, \
+ { "lib_yellowknife", LIB_YELLOWKNIFE_SPEC }, \
{ "lib_mvme", LIB_MVME_SPEC }, \
{ "lib_sim", LIB_SIM_SPEC }, \
{ "lib_linux", LIB_LINUX_SPEC }, \
{ "lib_solaris", LIB_SOLARIS_SPEC }, \
{ "lib_default", LIB_DEFAULT_SPEC }, \
+ { "startfile_ads", STARTFILE_ADS_SPEC }, \
+ { "startfile_yellowknife", STARTFILE_YELLOWKNIFE_SPEC }, \
{ "startfile_mvme", STARTFILE_MVME_SPEC }, \
{ "startfile_sim", STARTFILE_SIM_SPEC }, \
{ "startfile_linux", STARTFILE_LINUX_SPEC }, \
{ "startfile_solaris", STARTFILE_SOLARIS_SPEC }, \
{ "startfile_default", STARTFILE_DEFAULT_SPEC }, \
+ { "endfile_ads", ENDFILE_ADS_SPEC }, \
+ { "endfile_yellowknife", ENDFILE_YELLOWKNIFE_SPEC }, \
{ "endfile_mvme", ENDFILE_MVME_SPEC }, \
{ "endfile_sim", ENDFILE_SIM_SPEC }, \
{ "endfile_linux", ENDFILE_LINUX_SPEC }, \
@@ -1315,12 +1388,16 @@ do { \
{ "link_shlib", LINK_SHLIB_SPEC }, \
{ "link_target", LINK_TARGET_SPEC }, \
{ "link_start", LINK_START_SPEC }, \
+ { "link_start_ads", LINK_START_ADS_SPEC }, \
+ { "link_start_yellowknife", LINK_START_YELLOWKNIFE_SPEC }, \
{ "link_start_mvme", LINK_START_MVME_SPEC }, \
{ "link_start_sim", LINK_START_SIM_SPEC }, \
{ "link_start_linux", LINK_START_LINUX_SPEC }, \
{ "link_start_solaris", LINK_START_SOLARIS_SPEC }, \
{ "link_start_default", LINK_START_DEFAULT_SPEC }, \
{ "link_os", LINK_OS_SPEC }, \
+ { "link_os_ads", LINK_OS_ADS_SPEC }, \
+ { "link_os_yellowknife", LINK_OS_YELLOWKNIFE_SPEC }, \
{ "link_os_mvme", LINK_OS_MVME_SPEC }, \
{ "link_os_sim", LINK_OS_SIM_SPEC }, \
{ "link_os_linux", LINK_OS_LINUX_SPEC }, \
@@ -1329,6 +1406,8 @@ do { \
{ "cpp_endian_big", CPP_ENDIAN_BIG_SPEC }, \
{ "cpp_endian_little", CPP_ENDIAN_LITTLE_SPEC }, \
{ "cpp_endian_solaris", CPP_ENDIAN_SOLARIS_SPEC }, \
+ { "cpp_os_ads", CPP_OS_ADS_SPEC }, \
+ { "cpp_os_yellowknife", CPP_OS_YELLOWKNIFE_SPEC }, \
{ "cpp_os_mvme", CPP_OS_MVME_SPEC }, \
{ "cpp_os_sim", CPP_OS_SIM_SPEC }, \
{ "cpp_os_linux", CPP_OS_LINUX_SPEC }, \
diff --git a/gcc/config/sh/rtems.h b/gcc/config/sh/rtems.h
index 56a4aa4dd29..be9d8f2a8c4 100644
--- a/gcc/config/sh/rtems.h
+++ b/gcc/config/sh/rtems.h
@@ -1,6 +1,5 @@
/* Definitions for rtems targetting a SH using elf.
-
- Copyright (C) 1996 Free Software Foundation, Inc.
+ Copyright (C) 1997 Free Software Foundation, Inc.
Contributed by Joel Sherrill (joel@OARcorp.com).
This file is part of GNU CC.
@@ -27,5 +26,3 @@ Boston, MA 02111-1307, USA. */
#undef CPP_PREDEFINES
#define CPP_PREDEFINES "-D__sh__ -D__ELF__ -Drtems -D__rtems__ \
-Asystem(rtems) -Acpu(sh) -Amachine(sh)"
-
-/* end of sparc/rtems.h */
diff --git a/gcc/config/sh/sh.h b/gcc/config/sh/sh.h
index 5210fdc76b4..a08c125cfb7 100644
--- a/gcc/config/sh/sh.h
+++ b/gcc/config/sh/sh.h
@@ -1,5 +1,5 @@
/* Definitions of target machine for GNU compiler for Hitachi Super-H.
- Copyright (C) 1993, 1994, 1995, 1996 Free Software Foundation, Inc.
+ Copyright (C) 1993, 1994, 1995, 1996, 1997 Free Software Foundation, Inc.
Contributed by Steve Chamberlain (sac@cygnus.com).
Improved by Jim Wilson (wilson@cygnus.com).
@@ -24,6 +24,10 @@ Boston, MA 02111-1307, USA. */
#define TARGET_VERSION \
fputs (" (Hitachi SH)", stderr);
+/* Unfortunately, insn-attrtab.c doesn't include insn-codes.h. We can't
+ include it here, because hconfig.h is also included by gencodes.c . */
+extern int code_for_indirect_jump_scratch;
+
/* Generate SDB debugging information. */
#define SDB_DEBUGGING_INFO
@@ -38,7 +42,8 @@ Boston, MA 02111-1307, USA. */
%{m1:-D__sh1__} \
%{m2:-D__sh2__} \
%{m3:-D__sh3__} \
-%{m3e:-D__SH3E__}"
+%{m3e:-D__SH3E__} \
+%{!m1:%{!m2:%{!m3:%{!m3e:-D__sh1__}}}}"
#define CPP_PREDEFINES "-D__sh__ -Acpu(sh) -Amachine(sh)"
@@ -55,6 +60,7 @@ Boston, MA 02111-1307, USA. */
int regno; \
for (regno = FIRST_FP_REG; regno <= LAST_FP_REG; regno++) \
fixed_regs[regno] = call_used_regs[regno] = 1; \
+ fixed_regs[FPUL_REG] = call_used_regs[FPUL_REG] = 1; \
} \
/* Hitachi saves and restores mac registers on call. */ \
if (TARGET_HITACHI) \
@@ -71,7 +77,6 @@ Boston, MA 02111-1307, USA. */
extern int target_flags;
#define ISIZE_BIT (1<<1)
#define DALIGN_BIT (1<<6)
-#define SH0_BIT (1<<7)
#define SH1_BIT (1<<8)
#define SH2_BIT (1<<9)
#define SH3_BIT (1<<10)
@@ -82,6 +87,7 @@ extern int target_flags;
#define HITACHI_BIT (1<<22)
#define PADSTRUCT_BIT (1<<28)
#define LITTLE_ENDIAN_BIT (1<<29)
+#define IEEE_BIT (1<<30)
/* Nonzero if we should dump out instruction size info. */
#define TARGET_DUMPISIZE (target_flags & ISIZE_BIT)
@@ -89,11 +95,6 @@ extern int target_flags;
/* Nonzero to align doubles on 64 bit boundaries. */
#define TARGET_ALIGN_DOUBLE (target_flags & DALIGN_BIT)
-/* Nonzero if we should generate code using type 0 insns. */
-/* ??? Is there such a thing as SH0? If not, we should delete all
- references to it. */
-#define TARGET_SH0 (target_flags & SH0_BIT)
-
/* Nonzero if we should generate code using type 1 insns. */
#define TARGET_SH1 (target_flags & SH1_BIT)
@@ -106,6 +107,9 @@ extern int target_flags;
/* Nonzero if we should generate code using type 3E insns. */
#define TARGET_SH3E (target_flags & SH3E_BIT)
+/* Nonzero if we respect NANs. */
+#define TARGET_IEEE (target_flags & IEEE_BIT)
+
/* Nonzero if we should generate smaller code rather than faster code. */
#define TARGET_SMALLCODE (target_flags & SPACE_BIT)
@@ -130,8 +134,7 @@ extern int target_flags;
#define TARGET_LITTLE_ENDIAN (target_flags & LITTLE_ENDIAN_BIT)
#define TARGET_SWITCHES \
-{ {"0", SH0_BIT}, \
- {"1", SH1_BIT}, \
+{ {"1", SH1_BIT}, \
{"2", SH2_BIT}, \
{"3", SH3_BIT|SH2_BIT}, \
{"3e", SH3E_BIT|SH3_BIT|SH2_BIT}, \
@@ -139,8 +142,10 @@ extern int target_flags;
{"bigtable", BIGTABLE_BIT}, \
{"dalign", DALIGN_BIT}, \
{"hitachi", HITACHI_BIT}, \
+ {"ieee", IEEE_BIT}, \
{"isize", ISIZE_BIT}, \
{"l", LITTLE_ENDIAN_BIT}, \
+ {"no-ieee", -IEEE_BIT}, \
{"padstruct", PADSTRUCT_BIT}, \
{"relax", RELAX_BIT}, \
{"space", SPACE_BIT}, \
@@ -155,11 +160,10 @@ extern int target_flags;
#define PRESERVE_DEATH_INFO_REGNO_P(regno) (TARGET_RELAX || optimize)
+#define ASSEMBLER_DIALECT 0 /* will allow to distinguish b[tf].s and b[tf]/s . */
#define OVERRIDE_OPTIONS \
do { \
- sh_cpu = CPU_SH0; \
- if (TARGET_SH1) \
- sh_cpu = CPU_SH1; \
+ sh_cpu = CPU_SH1; \
if (TARGET_SH2) \
sh_cpu = CPU_SH2; \
if (TARGET_SH3) \
@@ -171,6 +175,7 @@ do { \
break global alloc, and generates slower code anyway due \
to the pressure on R0. */ \
flag_schedule_insns = 0; \
+ sh_addr_diff_vec_mode = TARGET_BIGTABLE ? SImode : HImode; \
} while (0)
/* Target machine storage layout. */
@@ -222,10 +227,14 @@ do { \
/* Boundary (in *bits*) on which stack pointer should be aligned. */
#define STACK_BOUNDARY 32
+/* The log (base 2) of the cache line size, in bytes. Processors prior to
+ SH3 have no actual cache, but they fetch code in chunks of 4 bytes. */
+#define CACHE_LOG (TARGET_SH3 ? 4 : 2)
+
/* Allocation boundary (in *bits*) for the code of a function.
32 bit alignment is faster, because instructions are always fetched as a
pair from a longword boundary. */
-#define FUNCTION_BOUNDARY (TARGET_SMALLCODE ? 16 : 32)
+#define FUNCTION_BOUNDARY (TARGET_SMALLCODE ? 16 : (1 << CACHE_LOG) * 8)
/* Alignment of field after `int : 0' in a structure. */
#define EMPTY_FIELD_BOUNDARY 32
@@ -311,11 +320,11 @@ do { \
0, 0, 0, 0, \
0, 0, 0, 1, \
1, 1, 1, 1, \
- 1, 1, 1, 1, \
+ 1, 1, 0, 1, \
+ 0, 0, 0, 0, \
0, 0, 0, 0, \
0, 0, 0, 0, \
0, 0, 0, 0, \
- 0, 0, 0, 0 \
}
/* 1 for registers not available across function calls.
@@ -335,7 +344,7 @@ do { \
1, 1, 1, 1, \
1, 1, 1, 1, \
1, 1, 1, 1, \
- 0, 0, 0, 0 \
+ 0, 0, 0, 0, \
}
/* Return number of consecutive hard regs needed starting at reg REGNO
@@ -428,7 +437,7 @@ do { \
its replacement, at the start of a routine. */
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
- OFFSET = initial_elimination_offset (FROM, TO)
+ OFFSET = initial_elimination_offset ((FROM), (TO))
/* Base register for access to arguments of the function. */
#define ARG_POINTER_REGNUM 16
@@ -476,6 +485,14 @@ do { \
be used as the destination of some of the arithmetic ops. There are
also some special purpose registers; the T bit register, the
Procedure Return Register and the Multiply Accumulate Registers. */
+/* Place GENERAL_REGS after FPUL_REGS so that it will be preferred by
+ reg_class_subunion. We don't want to have an actual union class
+ of these, because it would only be used when both classes are calculated
+ to give the same cost, but there is only one FPUL register.
+ Besides, regclass fails to notice the different REGISTER_MOVE_COSTS
+ applying to the actual instruction alternative considered. E.g., the
+ y/r alternative of movsi_ie is considered to have no more cost that
+ the r/r alternative, which is patently untrue. */
enum reg_class
{
@@ -484,8 +501,8 @@ enum reg_class
PR_REGS,
T_REGS,
MAC_REGS,
- GENERAL_REGS,
FPUL_REGS,
+ GENERAL_REGS,
FP0_REGS,
FP_REGS,
GENERAL_FP_REGS,
@@ -503,8 +520,8 @@ enum reg_class
"PR_REGS", \
"T_REGS", \
"MAC_REGS", \
- "GENERAL_REGS", \
"FPUL_REGS", \
+ "GENERAL_REGS", \
"FP0_REGS", \
"FP_REGS", \
"GENERAL_FP_REGS", \
@@ -522,8 +539,8 @@ enum reg_class
{ 0x00020000, 0x00000000 }, /* PR_REGS */ \
{ 0x00040000, 0x00000000 }, /* T_REGS */ \
{ 0x00300000, 0x00000000 }, /* MAC_REGS */ \
- { 0x0081FFFF, 0x00000000 }, /* GENERAL_REGS */ \
{ 0x00400000, 0x00000000 }, /* FPUL_REGS */ \
+ { 0x0081FFFF, 0x00000000 }, /* GENERAL_REGS */ \
{ 0x01000000, 0x00000000 }, /* FP0_REGS */ \
{ 0xFF000000, 0x000000FF }, /* FP_REGS */ \
{ 0xFF81FFFF, 0x000000FF }, /* GENERAL_FP_REGS */ \
@@ -536,7 +553,7 @@ enum reg_class
or could index an array. */
extern int regno_reg_class[];
-#define REGNO_REG_CLASS(REGNO) regno_reg_class[REGNO]
+#define REGNO_REG_CLASS(REGNO) regno_reg_class[(REGNO)]
/* When defined, the compiler allows registers explicitly used in the
rtl to be used as spill registers but prevents the compiler from
@@ -545,9 +562,12 @@ extern int regno_reg_class[];
#define SMALL_REGISTER_CLASSES 1
/* The order in which register should be allocated. */
+/* Sometimes FP0_REGS becomes the preferred class of a floating point pseudo,
+ and GENERAL_FP_REGS the alternate class. Since FP0 is likely to be
+ spilled or used otherwise, we better have the FP_REGS allocated first. */
#define REG_ALLOC_ORDER \
- { 1,2,3,7,6,5,4,0,8,9,10,11,12,13,14, \
- 24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39, \
+ { 25,26,27,28,29,30,31,24,32,33,34,35,36,37,38,39, \
+ 1,2,3,7,6,5,4,0,8,9,10,11,12,13,14, \
22,15,16,17,18,19,20,21,23 }
/* The class value for index registers, and the one for base regs. */
@@ -598,22 +618,30 @@ extern enum reg_class reg_class_from_letter[];
In general this is just CLASS; but on some machines
in some cases it is preferable to use a more restrictive class. */
-#define PREFERRED_RELOAD_CLASS(X, CLASS) CLASS
+#define PREFERRED_RELOAD_CLASS(X, CLASS) (CLASS)
-/* ??? Should make FPUL register a nn-fixed register and make it's
- use explicit in the rtl; then change this definition here to
- ... ? FPUL_REGS : NO_REGS) . */
#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS,MODE,X) \
- ((((CLASS == FP_REGS || CLASS == FP0_REGS) \
- && GET_CODE (X) == REG && REGNO (X) <= AP_REG) \
- || (CLASS == GENERAL_REGS && GET_CODE (X) == REG \
- && REGNO (X) <= FIRST_FP_REG && REGNO (X) >= LAST_FP_REG)) \
- ? /* FPUL_REGS */ NO_REGS : NO_REGS)
+ ((((((CLASS) == FP_REGS || (CLASS) == FP0_REGS) \
+ && (GET_CODE (X) == REG && REGNO (X) <= AP_REG)) \
+ || (((CLASS) == GENERAL_REGS || (CLASS) == R0_REGS) \
+ && GET_CODE (X) == REG \
+ && REGNO (X) >= FIRST_FP_REG && REGNO (X) <= LAST_FP_REG)) \
+ && MODE == SFmode) \
+ ? FPUL_REGS \
+ : ((CLASS) == FPUL_REGS \
+ && (GET_CODE (X) == MEM \
+ || GET_CODE (X) == REG && REGNO (X) >= FIRST_PSEUDO_REGISTER))\
+ ? GENERAL_REGS \
+ : (((CLASS) == MAC_REGS || (CLASS) == PR_REGS) \
+ && GET_CODE (X) == REG && REGNO (X) > 15 \
+ && (CLASS) != REGNO_REG_CLASS (REGNO (X))) \
+ ? GENERAL_REGS : NO_REGS)
#define SECONDARY_INPUT_RELOAD_CLASS(CLASS,MODE,X) \
- (((CLASS == FP_REGS || CLASS == FP0_REGS) && immediate_operand (X, MODE)\
- && ! (fp_one_operand (X) || fp_one_operand (X))) \
- ? R0_REGS : SECONDARY_OUTPUT_RELOAD_CLASS(CLASS,MODE,X))
+ ((((CLASS) == FP_REGS || (CLASS) == FP0_REGS) \
+ && immediate_operand ((X), (MODE)) \
+ && ! (fp_zero_operand (X) || fp_one_operand (X))) \
+ ? R0_REGS : SECONDARY_OUTPUT_RELOAD_CLASS((CLASS),(MODE),(X)))
/* Return the maximum number of consecutive registers
needed to represent mode MODE in a register of class CLASS.
@@ -628,7 +656,9 @@ extern enum reg_class reg_class_from_letter[];
These macros are used only in other macro definitions below. */
#define NPARM_REGS(MODE) \
- ((TARGET_SH3E && ((MODE) == SFmode)) ? 8 : 4)
+ (TARGET_SH3E && (MODE) == SFmode \
+ ? 8 \
+ : 4)
#define FIRST_PARM_REG 4
#define FIRST_RET_REG 0
@@ -652,7 +682,12 @@ extern enum reg_class reg_class_from_letter[];
/* If we generate an insn to push BYTES bytes,
this says how many the stack pointer really advances by. */
+/* Don't define PUSH_ROUNDING, since the hardware doesn't do this.
+ When PUSH_ROUNDING is not defined, PARM_BOUNDARY will cause gcc to
+ do correct alignment. */
+#if 0
#define PUSH_ROUNDING(NPUSHED) (((NPUSHED) + 3) & ~3)
+#endif
/* Offset of first parameter from the argument pointer register value. */
#define FIRST_PARM_OFFSET(FNDECL) 0
@@ -691,7 +726,7 @@ extern enum reg_class reg_class_from_letter[];
/* Define how to find the value returned by a library function
assuming the value has mode MODE. */
#define LIBCALL_VALUE(MODE) \
- gen_rtx (REG, MODE, BASE_RETURN_VALUE_REG (MODE));
+ gen_rtx (REG, (MODE), BASE_RETURN_VALUE_REG (MODE));
/* 1 if N is a possible register number for a function value. */
#define FUNCTION_VALUE_REGNO_P(REGNO) \
@@ -699,8 +734,8 @@ extern enum reg_class reg_class_from_letter[];
/* 1 if N is a possible register number for function argument passing. */
#define FUNCTION_ARG_REGNO_P(REGNO) \
- (((REGNO) >= FIRST_PARM_REG && (REGNO) < (FIRST_PARM_REG + 4)) \
- || (TARGET_SH3E \
+ (((REGNO) >= FIRST_PARM_REG && (REGNO) < (FIRST_PARM_REG + 4)) \
+ || (TARGET_SH3E \
&& (REGNO) >= FIRST_FP_PARM_REG && (REGNO) < (FIRST_FP_PARM_REG + 8)))
/* Define a data type for recording info about an argument list
@@ -725,7 +760,7 @@ struct sh_args {
((TARGET_SH3E && ((MODE) == SFmode)) ? SH_ARG_FLOAT : SH_ARG_INT)
#define ROUND_ADVANCE(SIZE) \
- ((SIZE + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
+ (((SIZE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
/* Round a register number up to a proper boundary for an arg of mode
MODE.
@@ -745,7 +780,7 @@ struct sh_args {
For a library call, FNTYPE is 0.
On SH, the offset always starts at 0: the first parm reg is always
- the same reg. */
+ the same reg for a given argument class. */
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT) \
do { \
@@ -792,9 +827,9 @@ struct sh_args {
its data type forbids. */
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
- ((PASS_IN_REG_P ((CUM), (MODE), (TYPE)) \
- && (NAMED || TARGET_SH3E)) \
- ? gen_rtx (REG, (MODE), \
+ ((PASS_IN_REG_P ((CUM), (MODE), (TYPE)) \
+ && ((NAMED) || TARGET_SH3E)) \
+ ? gen_rtx (REG, (MODE), \
(BASE_ARG_REG (MODE) + ROUND_REG ((CUM), (MODE)))) \
: 0)
@@ -806,7 +841,7 @@ struct sh_args {
#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
((PASS_IN_REG_P ((CUM), (MODE), (TYPE)) \
- && (NAMED || TARGET_SH3E) \
+ && ((NAMED) || TARGET_SH3E) \
&& (ROUND_REG ((CUM), (MODE)) \
+ (MODE != BLKmode \
? ROUND_ADVANCE (GET_MODE_SIZE (MODE)) \
@@ -830,10 +865,10 @@ extern int current_function_anonymous_args;
#define FUNCTION_PROFILER(STREAM,LABELNO) \
{ \
- fprintf(STREAM, " .align 2\n"); \
- fprintf(STREAM, " trapa #33\n"); \
- fprintf(STREAM, " .align 2\n"); \
- fprintf(STREAM, " .long LP%d\n", (LABELNO)); \
+ fprintf((STREAM), "\t.align\t2\n"); \
+ fprintf((STREAM), "\ttrapa\t#33\n"); \
+ fprintf((STREAM), "\t.align\t2\n"); \
+ asm_fprintf((STREAM), "\t.long\t%LLP%d\n", (LABELNO)); \
}
/* Define this macro if the code for function profiling should come
@@ -852,33 +887,23 @@ extern int current_function_anonymous_args;
/* Generate the assembly code for function exit
Just dump out any accumulated constant table. */
-#define FUNCTION_EPILOGUE(STREAM, SIZE) function_epilogue (STREAM, SIZE)
-
-/* Output assembler code for a block containing the constant parts
- of a trampoline, leaving space for the variable parts.
+#define FUNCTION_EPILOGUE(STREAM, SIZE) function_epilogue ((STREAM), (SIZE))
+/*
On the SH, the trampoline looks like
- 1 0000 D301 mov.l l1,r3
2 0002 DD02 mov.l l2,r13
+ 1 0000 D301 mov.l l1,r3
3 0004 4D2B jmp @r13
- 4 0006 200B or r0,r0
+ 4 0006 0009 nop
5 0008 00000000 l1: .long function
6 000c 00000000 l2: .long area */
-#define TRAMPOLINE_TEMPLATE(FILE) \
-{ \
- fprintf ((FILE), " .word 0xd301\n"); \
- fprintf ((FILE), " .word 0xdd02\n"); \
- fprintf ((FILE), " .word 0x4d2b\n"); \
- fprintf ((FILE), " .word 0x200b\n"); \
- fprintf ((FILE), " .long 0\n"); \
- fprintf ((FILE), " .long 0\n"); \
-}
/* Length in units of the trampoline for entering a nested function. */
#define TRAMPOLINE_SIZE 16
-/* Alignment required for a trampoline in units. */
-#define TRAMPOLINE_ALIGN 4
+/* Alignment required for a trampoline in bits . */
+#define TRAMPOLINE_ALIGNMENT \
+ ((CACHE_LOG < 3 || TARGET_SMALLCODE) ? 32 : 64) \
/* Emit RTL insns to initialize the variable parts of a trampoline.
FNADDR is an RTX for the address of the function's pure code.
@@ -886,6 +911,10 @@ extern int current_function_anonymous_args;
#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
{ \
+ emit_move_insn (gen_rtx (MEM, SImode, (TRAMP)), \
+ GEN_INT (TARGET_LITTLE_ENDIAN ? 0xd301dd02 : 0xdd02d301));\
+ emit_move_insn (gen_rtx (MEM, SImode, plus_constant ((TRAMP), 4)), \
+ GEN_INT (TARGET_LITTLE_ENDIAN ? 0x00094d2b : 0x4d2b0009));\
emit_move_insn (gen_rtx (MEM, SImode, plus_constant ((TRAMP), 8)), \
(CXT)); \
emit_move_insn (gen_rtx (MEM, SImode, plus_constant ((TRAMP), 12)), \
@@ -898,7 +927,7 @@ extern int current_function_anonymous_args;
can ignore COUNT. */
#define RETURN_ADDR_RTX(COUNT, FRAME) \
- ((COUNT == 0) \
+ (((COUNT) == 0) \
? gen_rtx (MEM, Pmode, gen_rtx (REG, Pmode, RETURN_ADDRESS_POINTER_REGNUM)) \
: (rtx) 0)
@@ -978,18 +1007,18 @@ extern struct rtx_def *sh_builtin_saveregs ();
/* Nonzero if X/OFFSET is a hard reg that can be used as an index. */
#define SUBREG_OK_FOR_INDEX_P(X, OFFSET) \
- (REGNO_OK_FOR_INDEX_P (REGNO (X)) && OFFSET == 0)
+ (REGNO_OK_FOR_INDEX_P (REGNO (X)) && (OFFSET) == 0)
#endif
/* The 'Q' constraint is a pc relative load operand. */
#define EXTRA_CONSTRAINT_Q(OP) \
(GET_CODE (OP) == MEM && \
- ((GET_CODE (XEXP (OP, 0)) == LABEL_REF) \
- || (GET_CODE (XEXP (OP, 0)) == CONST \
- && GET_CODE (XEXP (XEXP (OP, 0), 0)) == PLUS \
- && GET_CODE (XEXP (XEXP (XEXP (OP, 0), 0), 0)) == LABEL_REF \
- && GET_CODE (XEXP (XEXP (XEXP (OP, 0), 0), 1)) == CONST_INT)))
+ ((GET_CODE (XEXP ((OP), 0)) == LABEL_REF) \
+ || (GET_CODE (XEXP ((OP), 0)) == CONST \
+ && GET_CODE (XEXP (XEXP ((OP), 0), 0)) == PLUS \
+ && GET_CODE (XEXP (XEXP (XEXP ((OP), 0), 0), 0)) == LABEL_REF \
+ && GET_CODE (XEXP (XEXP (XEXP ((OP), 0), 0), 1)) == CONST_INT)))
#define EXTRA_CONSTRAINT(OP, C) \
((C) == 'Q' ? EXTRA_CONSTRAINT_Q (OP) \
@@ -1004,7 +1033,7 @@ extern struct rtx_def *sh_builtin_saveregs ();
#define MODE_DISP_OK_4(X,MODE) \
(GET_MODE_SIZE (MODE) == 4 && (unsigned) INTVAL (X) < 64 \
- && ! (INTVAL (X) & 3) && ! (TARGET_SH3E && MODE == SFmode))
+ && ! (INTVAL (X) & 3) && ! (TARGET_SH3E && (MODE) == SFmode))
#define MODE_DISP_OK_8(X,MODE) ((GET_MODE_SIZE(MODE)==8) && ((unsigned)INTVAL(X)<60) && (!(INTVAL(X) &3)))
#define BASE_REGISTER_RTX_P(X) \
@@ -1048,8 +1077,8 @@ extern struct rtx_def *sh_builtin_saveregs ();
do { \
if (GET_CODE (OP) == CONST_INT) \
{ \
- if (MODE_DISP_OK_4 (OP, MODE)) goto LABEL; \
- if (MODE_DISP_OK_8 (OP, MODE)) goto LABEL; \
+ if (MODE_DISP_OK_4 ((OP), (MODE))) goto LABEL; \
+ if (MODE_DISP_OK_8 ((OP), (MODE))) goto LABEL; \
} \
} while(0)
@@ -1058,14 +1087,14 @@ extern struct rtx_def *sh_builtin_saveregs ();
if (BASE_REGISTER_RTX_P (X)) \
goto LABEL; \
else if ((GET_CODE (X) == POST_INC || GET_CODE (X) == PRE_DEC) \
- && BASE_REGISTER_RTX_P (XEXP (X, 0))) \
+ && BASE_REGISTER_RTX_P (XEXP ((X), 0))) \
goto LABEL; \
- else if (GET_CODE (X) == PLUS) \
+ else if (GET_CODE (X) == PLUS && MODE != PSImode) \
{ \
- rtx xop0 = XEXP (X, 0); \
- rtx xop1 = XEXP (X, 1); \
+ rtx xop0 = XEXP ((X), 0); \
+ rtx xop1 = XEXP ((X), 1); \
if (GET_MODE_SIZE (MODE) <= 8 && BASE_REGISTER_RTX_P (xop0)) \
- GO_IF_LEGITIMATE_INDEX (MODE, xop1, LABEL); \
+ GO_IF_LEGITIMATE_INDEX ((MODE), xop1, LABEL); \
if (GET_MODE_SIZE (MODE) <= 4) \
{ \
if (BASE_REGISTER_RTX_P (xop1) && INDEX_REGISTER_RTX_P (xop0))\
@@ -1098,15 +1127,15 @@ extern struct rtx_def *sh_builtin_saveregs ();
if (GET_CODE (X) == PLUS \
&& (GET_MODE_SIZE (MODE) == 4 \
|| GET_MODE_SIZE (MODE) == 8) \
- && GET_CODE (XEXP (X, 1)) == CONST_INT \
- && BASE_REGISTER_RTX_P (XEXP (X, 0)) \
- && ! (TARGET_SH3E && MODE == SFmode)) \
+ && GET_CODE (XEXP ((X), 1)) == CONST_INT \
+ && BASE_REGISTER_RTX_P (XEXP ((X), 0)) \
+ && ! (TARGET_SH3E && (MODE) == SFmode)) \
{ \
- rtx index_rtx = XEXP (X, 1); \
+ rtx index_rtx = XEXP ((X), 1); \
HOST_WIDE_INT offset = INTVAL (index_rtx), offset_base; \
rtx sum; \
\
- GO_IF_LEGITIMATE_INDEX (MODE, index_rtx, WIN); \
+ GO_IF_LEGITIMATE_INDEX ((MODE), index_rtx, WIN); \
/* On rare occasions, we might get an unaligned pointer \
that is indexed in a way to give an aligned address. \
Therefore, keep the lower two bits in offset_base. */ \
@@ -1124,7 +1153,7 @@ extern struct rtx_def *sh_builtin_saveregs ();
prevalent. */ \
if (GET_MODE_SIZE (MODE) + offset - offset_base <= 64) \
{ \
- sum = expand_binop (Pmode, add_optab, XEXP (X, 0), \
+ sum = expand_binop (Pmode, add_optab, XEXP ((X), 0), \
GEN_INT (offset_base), NULL_RTX, 0, \
OPTAB_LIB_WIDEN); \
\
@@ -1135,7 +1164,13 @@ extern struct rtx_def *sh_builtin_saveregs ();
}
/* Go to LABEL if ADDR (a legitimate address expression)
- has an effect that depends on the machine mode it is used for. */
+ has an effect that depends on the machine mode it is used for.
+
+ ??? Strictly speaking, we should also include all indexed addressing,
+ because the index scale factor is the length of the operand.
+ However, the impact of GO_IF_MODE_DEPENDENT_ADDRESS would be to
+ high if we did that. So we rely on reload to fix things up. */
+
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
{ \
if (GET_CODE(ADDR) == PRE_DEC || GET_CODE(ADDR) == POST_INC) \
@@ -1207,14 +1242,11 @@ extern struct rtx_def *sh_builtin_saveregs ();
that the native compiler puts too large (> 32) immediate shift counts
into a register and shifts by the register, letting the SH decide what
to do instead of doing that itself. */
-/* ??? This is defined, but the library routines in lib1funcs.asm do not
- truncate the shift count. This may result in incorrect results for
- unusual cases. Truncating the shift counts in the library routines would
- make them faster. However, the SH3 has hardware shifts that do not
- truncate, so it appears that we need to leave this undefined for correct
- SH3 code. We can still using truncation in the library routines though to
- make them faster. */
-#define SHIFT_COUNT_TRUNCATED 1
+/* ??? The library routines in lib1funcs.asm truncate the shift count.
+ However, the SH3 has hardware shifts that do not truncate exactly as gcc
+ expects - the sign bit is significant - so it appears that we need to
+ leave this zero for correct SH3 code. */
+#define SHIFT_COUNT_TRUNCATED (! TARGET_SH3)
/* All integers have the same format so truncation is easy. */
#define TRULY_NOOP_TRUNCATION(OUTPREC,INPREC) 1
@@ -1241,7 +1273,7 @@ extern struct rtx_def *sh_builtin_saveregs ();
return 0; \
else if (CONST_OK_FOR_I (INTVAL (RTX))) \
return 1; \
- else if ((OUTER_CODE == AND || OUTER_CODE == IOR || OUTER_CODE == XOR) \
+ else if (((OUTER_CODE) == AND || (OUTER_CODE) == IOR || (OUTER_CODE) == XOR) \
&& CONST_OK_FOR_L (INTVAL (RTX))) \
return 1; \
else \
@@ -1307,15 +1339,12 @@ extern struct rtx_def *sh_builtin_saveregs ();
#define ADDRESS_COST(RTX) 1
/* Compute extra cost of moving data between one register class
- and another.
-
- On the SH it is hard to move into the T reg, but simple to load
- from it. */
+ and another. */
#define REGISTER_MOVE_COST(SRCCLASS, DSTCLASS) \
- (((DSTCLASS == T_REGS) || (DSTCLASS == PR_REG)) ? 10 \
- : ((DSTCLASS == FP_REGS && SRCCLASS == GENERAL_REGS) \
- || (DSTCLASS == GENERAL_REGS && SRCCLASS == FP_REGS)) ? 4 \
+ ((DSTCLASS) == PR_REG ? 10 \
+ : (((DSTCLASS) == FP_REGS && (SRCCLASS) == GENERAL_REGS) \
+ || ((DSTCLASS) == GENERAL_REGS && (SRCCLASS) == FP_REGS)) ? 4 \
: 1)
/* ??? Perhaps make MEMORY_MOVE_COST depend on compiler option? This
@@ -1381,10 +1410,10 @@ dtors_section() \
do { fprintf (FILE, ".section\t%s\n", NAME); } while (0)
#define ASM_OUTPUT_CONSTRUCTOR(FILE,NAME) \
- do { ctors_section(); fprintf(FILE,"\t.long\t_%s\n", NAME); } while (0)
+ do { ctors_section(); asm_fprintf((FILE),"\t.long\t%U%s\n", (NAME)); } while (0)
#define ASM_OUTPUT_DESTRUCTOR(FILE,NAME) \
- do { dtors_section(); fprintf(FILE,"\t.long\t_%s\n", NAME); } while (0)
+ do { dtors_section(); asm_fprintf((FILE),"\t.long\t%U%s\n", (NAME)); } while (0)
#undef DO_GLOBAL_CTORS_BODY
@@ -1414,10 +1443,10 @@ dtors_section() \
}
#define ASM_OUTPUT_REG_PUSH(file, v) \
- fprintf (file, "\tmov.l r%s,-@r15\n", v);
+ fprintf ((file), "\tmov.l\tr%s,-@r15\n", (v));
#define ASM_OUTPUT_REG_POP(file, v) \
- fprintf (file, "\tmov.l @r15+,r%s\n", v);
+ fprintf ((file), "\tmov.l\t@r15+,r%s\n", (v));
/* The assembler's names for the registers. RFP need not always be used as
the Real framepointer; it can also be used as a normal general register.
@@ -1440,7 +1469,7 @@ dtors_section() \
/* Output a label definition. */
#define ASM_OUTPUT_LABEL(FILE,NAME) \
- do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
+ do { assemble_name ((FILE), (NAME)); fputs (":\n", (FILE)); } while (0)
/* This is how to output an assembler line
that says to advance the location counter
@@ -1448,29 +1477,33 @@ dtors_section() \
#define ASM_OUTPUT_ALIGN(FILE,LOG) \
if ((LOG) != 0) \
- fprintf (FILE, "\t.align %d\n", LOG)
+ fprintf ((FILE), "\t.align %d\n", (LOG))
/* Output a function label definition. */
#define ASM_DECLARE_FUNCTION_NAME(STREAM,NAME,DECL) \
- ASM_OUTPUT_LABEL(STREAM, NAME)
+ ASM_OUTPUT_LABEL((STREAM), (NAME))
/* Output a globalising directive for a label. */
#define ASM_GLOBALIZE_LABEL(STREAM,NAME) \
- (fprintf (STREAM, "\t.global\t"), \
- assemble_name (STREAM, NAME), \
- fputc ('\n',STREAM))
+ (fprintf ((STREAM), "\t.global\t"), \
+ assemble_name ((STREAM), (NAME)), \
+ fputc ('\n', (STREAM)))
/* The prefix to add to user-visible assembler symbols. */
#define USER_LABEL_PREFIX "_"
+/* The prefix to add to an internally generated label. */
+
+#define LOCAL_LABEL_PREFIX ""
+
/* Make an internal label into a string. */
#define ASM_GENERATE_INTERNAL_LABEL(STRING, PREFIX, NUM) \
- sprintf (STRING, "*%s%d", PREFIX, NUM)
+ sprintf ((STRING), "*%s%s%d", LOCAL_LABEL_PREFIX, (PREFIX), (NUM))
/* Output an internal label definition. */
#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
- fprintf (FILE, "%s%d:\n", PREFIX, NUM)
+ asm_fprintf ((FILE), "%L%s%d:\n", (PREFIX), (NUM))
/* #define ASM_OUTPUT_CASE_END(STREAM,NUM,TABLE) */
@@ -1481,23 +1514,31 @@ dtors_section() \
/* Jump tables must be 32 bit aligned, no matter the size of the element. */
#define ASM_OUTPUT_CASE_LABEL(STREAM,PREFIX,NUM,TABLE) \
- fprintf (STREAM, "\t.align 2\n%s%d:\n", PREFIX, NUM);
+ fprintf ((STREAM), "\t.align 2\n%s%d:\n", (PREFIX), (NUM));
/* Output a relative address table. */
#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM,VALUE,REL) \
- if (TARGET_BIGTABLE) \
- fprintf (STREAM, "\t.long L%d-L%d\n", VALUE,REL); \
- else \
- fprintf (STREAM, "\t.word L%d-L%d\n", VALUE,REL); \
+ switch (sh_addr_diff_vec_mode) \
+ { \
+ case SImode: \
+ asm_fprintf ((STREAM), "\t.long\t%LL%d-%LL%d\n", (VALUE),(REL)); \
+ break; \
+ case HImode: \
+ asm_fprintf ((STREAM), "\t.word\t%LL%d-%LL%d\n", (VALUE),(REL)); \
+ break; \
+ case QImode: \
+ asm_fprintf ((STREAM), "\t.byte\t%LL%d-%LL%d\n", (VALUE),(REL)); \
+ break; \
+ }
/* Output an absolute table element. */
#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM,VALUE) \
if (TARGET_BIGTABLE) \
- fprintf (STREAM, "\t.long L%d\n", VALUE); \
+ asm_fprintf ((STREAM), "\t.long\t%LL%d\n", (VALUE)); \
else \
- fprintf (STREAM, "\t.word L%d\n", VALUE); \
+ asm_fprintf ((STREAM), "\t.word\t%LL%d\n", (VALUE)); \
/* Output various types of constants. */
@@ -1506,50 +1547,46 @@ dtors_section() \
#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
do { char dstr[30]; \
REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", dstr); \
- fprintf (FILE, "\t.double %s\n", dstr); \
+ fprintf ((FILE), "\t.double %s\n", dstr); \
} while (0)
/* This is how to output an assembler line defining a `float' constant. */
#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
do { char dstr[30]; \
REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", dstr); \
- fprintf (FILE, "\t.float %s\n", dstr); \
+ fprintf ((FILE), "\t.float %s\n", dstr); \
} while (0)
-#define ASM_OUTPUT_INT(STREAM, EXP) \
- (fprintf (STREAM, "\t.long\t"), \
- output_addr_const (STREAM, (EXP)), \
- fputc ('\n', STREAM))
+#define ASM_OUTPUT_INT(STREAM, EXP) \
+ (fprintf ((STREAM), "\t.long\t"), \
+ output_addr_const ((STREAM), (EXP)), \
+ fputc ('\n', (STREAM)))
#define ASM_OUTPUT_SHORT(STREAM, EXP) \
- (fprintf (STREAM, "\t.short\t"), \
- output_addr_const (STREAM, (EXP)), \
- fputc ('\n', STREAM))
+ (fprintf ((STREAM), "\t.short\t"), \
+ output_addr_const ((STREAM), (EXP)), \
+ fputc ('\n', (STREAM)))
-#define ASM_OUTPUT_CHAR(STREAM, EXP) \
- (fprintf (STREAM, "\t.byte\t"), \
- output_addr_const (STREAM, (EXP)), \
- fputc ('\n', STREAM))
+#define ASM_OUTPUT_CHAR(STREAM, EXP) \
+ (fprintf ((STREAM), "\t.byte\t"), \
+ output_addr_const ((STREAM), (EXP)), \
+ fputc ('\n', (STREAM)))
#define ASM_OUTPUT_BYTE(STREAM, VALUE) \
- fprintf (STREAM, "\t.byte\t%d\n", VALUE) \
+ fprintf ((STREAM), "\t.byte\t%d\n", (VALUE)) \
-/* Align loops and labels after unconditional branches to get faster
- code. */
+/* The next two are used for debug info when compiling with -gdwarf. */
+#define UNALIGNED_SHORT_ASM_OP ".uaword"
+#define UNALIGNED_INT_ASM_OP ".ualong"
-#define ASM_OUTPUT_LOOP_ALIGN(FILE) \
- if (! TARGET_SMALLCODE) \
- ASM_OUTPUT_ALIGN ((FILE), 2)
-
-#define ASM_OUTPUT_ALIGN_CODE(FILE) \
- if (! TARGET_SMALLCODE) \
- ASM_OUTPUT_ALIGN ((FILE), (TARGET_SH3 || TARGET_SH3E) ? 4 : 2)
+/* Loop alignment is now done in machine_dependent_reorg, so that
+ branch shortening can know about it. */
/* This is how to output an assembler line
that says to advance the location counter by SIZE bytes. */
#define ASM_OUTPUT_SKIP(FILE,SIZE) \
- fprintf (FILE, "\t.space %d\n", (SIZE))
+ fprintf ((FILE), "\t.space %d\n", (SIZE))
/* This says how to output an assembler line
to define a global common symbol. */
@@ -1562,7 +1599,7 @@ do { char dstr[30]; \
/* This says how to output an assembler line
to define a local common symbol. */
-#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
+#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
( fputs ("\t.lcomm ", (FILE)), \
assemble_name ((FILE), (NAME)), \
fprintf ((FILE), ",%d\n", (SIZE)))
@@ -1580,23 +1617,33 @@ do { char dstr[30]; \
#define TARGET_FF 014
#define TARGET_CR 015
-/* Only perform branch elimination (by making instructions conditional) if
- we're optimizing. Otherwise it's of no use anyway. */
+/* A C statement to be executed just prior to the output of
+ assembler code for INSN, to modify the extracted operands so
+ they will be output differently.
+
+ Here the argument OPVEC is the vector containing the operands
+ extracted from INSN, and NOPERANDS is the number of elements of
+ the vector which contain meaningful data for this insn.
+ The contents of this vector are what will be used to convert the insn
+ template into assembler code, so you can change the assembler output
+ by changing the contents of the vector. */
+
#define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
- final_prescan_insn (INSN, OPVEC, NOPERANDS)
+ final_prescan_insn ((INSN), (OPVEC), (NOPERANDS))
/* Print operand X (an rtx) in assembler syntax to file FILE.
CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
For `%' followed by punctuation, CODE is the punctuation and X is null. */
-#define PRINT_OPERAND(STREAM, X, CODE) print_operand (STREAM, X, CODE)
+#define PRINT_OPERAND(STREAM, X, CODE) print_operand ((STREAM), (X), (CODE))
/* Print a memory address as an operand to reference that memory location. */
-#define PRINT_OPERAND_ADDRESS(STREAM,X) print_operand_address (STREAM, X)
+#define PRINT_OPERAND_ADDRESS(STREAM,X) print_operand_address ((STREAM), (X))
#define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
- ((CHAR)=='.' || (CHAR) == '#' || (CHAR)=='@')
+ ((CHAR) == '.' || (CHAR) == '#' || (CHAR) == '@' || (CHAR) == ',' \
+ || (CHAR) == '$')
extern struct rtx_def *sh_compare_op0;
extern struct rtx_def *sh_compare_op1;
@@ -1606,7 +1653,6 @@ extern struct rtx_def *prepare_scc_operands();
match exactly the cpu attribute in the sh.md file. */
enum processor_type {
- PROCESSOR_SH0,
PROCESSOR_SH1,
PROCESSOR_SH2,
PROCESSOR_SH3,
@@ -1616,15 +1662,39 @@ enum processor_type {
#define sh_cpu_attr ((enum attr_cpu)sh_cpu)
extern enum processor_type sh_cpu;
+extern enum machine_mode sh_addr_diff_vec_mode;
+
+extern int optimize; /* needed for gen_casesi, and addr_diff_vec_adjust. */
+
/* Declare functions defined in sh.c and used in templates. */
extern char *output_branch();
+extern char *output_ieee_ccmpeq();
+extern char *output_branchy_insn();
extern char *output_shift();
extern char *output_movedouble();
extern char *output_movepcrel();
extern char *output_jump_label_table();
extern char *output_far_jump();
+enum mdep_reorg_phase_e
+{
+ SH_BEFORE_MDEP_REORG,
+ SH_INSERT_USES_LABELS,
+ SH_SHORTEN_BRANCHES0,
+ SH_FIXUP_PCLOAD,
+ SH_SHORTEN_BRANCHES1,
+ SH_AFTER_MDEP_REORG
+};
+
+void machine_dependent_reorg ();
+int short_cbranch_p ();
+int med_branch_p ();
+int braf_branch_p ();
+int align_length ();
+int addr_diff_vec_adjust ();
+struct rtx_def *sfunc_uses_reg ();
+
#define MACHINE_DEPENDENT_REORG(X) machine_dependent_reorg(X)
/* Generate calls to memcpy, memcmp and memset. */
@@ -1637,7 +1707,7 @@ extern char *output_far_jump();
text can be read. CH is the first character after the #pragma. The
result of the expression is the terminating character found
(newline or EOF). */
-#define HANDLE_PRAGMA(FILE, NODE) handle_pragma (FILE, NODE)
+#define HANDLE_PRAGMA(FILE, NODE) handle_pragma ((FILE), (NODE))
/* Set when processing a function with pragma interrupt turned on. */
@@ -1666,58 +1736,42 @@ sh_valid_machine_decl_attribute (DECL, ATTRIBUTES, IDENTIFIER, ARGS)
#define ADJUST_INSN_LENGTH(X, LENGTH) \
if (((GET_CODE (X) == INSN \
- && GET_CODE (PATTERN (X)) != SEQUENCE \
&& GET_CODE (PATTERN (X)) != USE \
&& GET_CODE (PATTERN (X)) != CLOBBER) \
|| GET_CODE (X) == CALL_INSN \
|| (GET_CODE (X) == JUMP_INSN \
&& GET_CODE (PATTERN (X)) != ADDR_DIFF_VEC \
&& GET_CODE (PATTERN (X)) != ADDR_VEC)) \
+ && GET_CODE (PATTERN (NEXT_INSN (PREV_INSN (X)))) != SEQUENCE \
&& get_attr_needs_delay_slot (X) == NEEDS_DELAY_SLOT_YES) \
- LENGTH += 2; \
- if (! TARGET_SMALLCODE) \
- { \
- /* After the folowing loop, PAD will be an upper bound \
- for the number of padding bytes the alignment will \
- require. */ \
- rtx aip; \
- int pad = 0; \
- for (aip = PREV_INSN (X); aip; aip = PREV_INSN (aip)) \
- { \
- if (GET_CODE (aip) == BARRIER) \
- { \
- if (TARGET_SH3 || TARGET_SH3E) \
- pad = 14; \
- else \
- pad = 2; \
- break; \
- } \
- else if ((GET_CODE (aip) == NOTE \
- && NOTE_LINE_NUMBER (aip) == NOTE_INSN_LOOP_BEG)) \
- { \
- pad = 2; \
- /* Don't break here, because there might be a \
- preceding BARRIER, which requires mores \
- alignment for SH3[E] . */ \
- } \
- else if (GET_CODE (aip) != NOTE \
- && GET_CODE (aip) != CODE_LABEL) \
- break; \
- } \
- LENGTH += pad; \
- }
+ (LENGTH) += 2; \
+ if (GET_CODE (X) == INSN \
+ && GET_CODE (PATTERN (X)) == UNSPEC_VOLATILE \
+ && XINT (PATTERN (X), 1) == 7) \
+ (LENGTH) -= addr_diff_vec_adjust (X, LENGTH); \
+ if (GET_CODE (X) == INSN \
+ && GET_CODE (PATTERN (X)) == UNSPEC_VOLATILE \
+ && XINT (PATTERN (X), 1) == 1) \
+ (LENGTH) = align_length (X); \
+ if (GET_CODE (X) == JUMP_INSN \
+ && GET_CODE (PATTERN (X)) == ADDR_DIFF_VEC) \
+ /* The code before an ADDR_DIFF_VEC is even aligned, thus \
+ any odd estimate is wrong. */ \
+ (LENGTH) &= ~1;
/* Enable a bug fix for the shorten_branches pass. */
#define SHORTEN_WITH_ADJUST_INSN_LENGTH
/* Define the codes that are matched by predicates in sh.c. */
#define PREDICATE_CODES \
- {"arith_reg_operand", {SUBREG, REG}}, \
{"arith_operand", {SUBREG, REG, CONST_INT}}, \
+ {"arith_reg_operand", {SUBREG, REG}}, \
{"arith_reg_or_0_operand", {SUBREG, REG, CONST_INT}}, \
- {"logical_operand", {SUBREG, REG, CONST_INT}}, \
+ {"braf_label_ref_operand", {LABEL_REF}}, \
{"general_movsrc_operand", {SUBREG, REG, CONST_INT, MEM}}, \
- {"general_movdst_operand", {SUBREG, REG, CONST_INT, MEM}},
+ {"general_movdst_operand", {SUBREG, REG, CONST_INT, MEM}}, \
+ {"logical_operand", {SUBREG, REG, CONST_INT}}, \
+ {"register_operand", {SUBREG, REG}},
/* Define this macro if it is advisable to hold scalars in registers
in a wider mode than that declared by the program. In such cases,
@@ -1731,7 +1785,7 @@ sh_valid_machine_decl_attribute (DECL, ATTRIBUTES, IDENTIFIER, ARGS)
#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
if (GET_MODE_CLASS (MODE) == MODE_INT \
&& GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
- MODE = SImode;
+ (MODE) = SImode;
/* Defining PROMOTE_FUNCTION_ARGS eliminates some unnecessary zero/sign
extensions applied to char/short functions arguments. Defining
@@ -1753,11 +1807,10 @@ sh_valid_machine_decl_attribute (DECL, ATTRIBUTES, IDENTIFIER, ARGS)
the scheduler that an output- or anti-dependence does not incur
the same cost as a data-dependence. */
-/* ??? Should anticipate the effect of delayed branch scheduling
- and arrange for a second instruction to be put between the
- load of the function's address and the call. */
-
#define ADJUST_COST(insn,link,dep_insn,cost) \
+do { \
+ rtx reg; \
+ \
if (GET_CODE(insn) == CALL_INSN) \
{ \
/* The only input for a call that is timing-critical is the \
@@ -1768,14 +1821,32 @@ sh_valid_machine_decl_attribute (DECL, ATTRIBUTES, IDENTIFIER, ARGS)
call = XVECEXP (call, 0 ,0); \
if (GET_CODE (call) == SET) \
call = SET_SRC (call); \
- if (GET_CODE (call) == CALL && GET_CODE (XEXP (call, 0)) == MEM) \
- { \
- rtx set = single_set (dep_insn); \
- \
- if (set && ! rtx_equal_p (SET_DEST (set), XEXP (XEXP (call, 0), 0)))\
- (cost) = 0; \
- } \
- }
+ if (GET_CODE (call) == CALL && GET_CODE (XEXP (call, 0)) == MEM \
+ && ! reg_set_p (XEXP (XEXP (call, 0), 0), dep_insn)) \
+ (cost) = 0; \
+ } \
+ /* All sfunc calls are parallels with at least four components. \
+ Exploit this to avoid unnecessary calls to sfunc_uses_reg. */ \
+ else if (GET_CODE (PATTERN (insn)) == PARALLEL \
+ && XVECLEN (PATTERN (insn), 0) >= 4 \
+ && (reg = sfunc_uses_reg (insn))) \
+ { \
+ /* Likewise, the most timing critical input for an sfuncs call \
+ is the function address. However, sfuncs typically start \
+ using their arguments pretty quickly. \
+ Assume a four cycle delay before they are needed. */ \
+ if (! reg_set_p (reg, dep_insn)) \
+ cost -= 4; \
+ } \
+ /* Adjust load_si / pcload_si type insns latency. Use the known \
+ nominal latency and form of the insn to speed up the check. */ \
+ else if (cost == 3 \
+ && GET_CODE (PATTERN (dep_insn)) == SET \
+ /* Latency for dmpy type insns is also 3, so check the that \
+ it's actually a move insn. */ \
+ && general_movsrc_operand (SET_SRC (PATTERN (dep_insn)), SImode))\
+ cost = 2; \
+} while (0) \
/* Since the SH architecture lacks negative address offsets,
the givs should be sorted smallest to largest so combine_givs
@@ -1787,3 +1858,5 @@ sh_valid_machine_decl_attribute (DECL, ATTRIBUTES, IDENTIFIER, ARGS)
/* For the sake of libgcc2.c, indicate target supports atexit. */
#define HAVE_ATEXIT
+
+#define SH_DYNAMIC_SHIFT_COST (TARGET_SH3 ? (TARGET_SMALLCODE ? 1 : 2) : 20)
diff --git a/gcc/config/sparc/sol2.h b/gcc/config/sparc/sol2.h
index 9c2f0345429..fe4e98c3c03 100644
--- a/gcc/config/sparc/sol2.h
+++ b/gcc/config/sparc/sol2.h
@@ -1,5 +1,5 @@
/* Definitions of target machine for GNU compiler, for SPARC running Solaris 2
- Copyright 1992, 1995, 1996 Free Software Foundation, Inc.
+ Copyright 1992, 1995, 1996, 1997 Free Software Foundation, Inc.
Contributed by Ron Guilmette (rfg@netcom.com).
Additional changes by David V. Henkel-Wallace (gumby@cygnus.com).
@@ -174,3 +174,8 @@ Boston, MA 02111-1307, USA. */
/* Define for support of TFmode long double and REAL_ARITHMETIC.
Sparc ABI says that long double is 4 words. */
#define LONG_DOUBLE_TYPE_SIZE 128
+
+/* But indicate that it isn't supported by the hardware. */
+#define WIDEST_HARDWARE_FP_SIZE 64
+
+#define STDC_0_IN_SYSTEM_HEADERS
diff --git a/gcc/config/sparc/sparc.c b/gcc/config/sparc/sparc.c
index ef512472401..a96bbf962d6 100644
--- a/gcc/config/sparc/sparc.c
+++ b/gcc/config/sparc/sparc.c
@@ -21,8 +21,8 @@ along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
-#include <stdio.h>
#include "config.h"
+#include <stdio.h>
#include "tree.h"
#include "rtl.h"
#include "regs.h"
@@ -102,6 +102,10 @@ static int frame_base_offset;
static rtx find_addr_reg ();
static void sparc_init_modes ();
+
+#ifdef DWARF2_DEBUGGING_INFO
+extern char *dwarf2out_cfi_label ();
+#endif
/* Option handling. */
diff --git a/gcc/config/sparc/sparc.md b/gcc/config/sparc/sparc.md
index de1f090bcdb..b1afbcd003c 100644
--- a/gcc/config/sparc/sparc.md
+++ b/gcc/config/sparc/sparc.md
@@ -1519,15 +1519,15 @@
(define_insn "pic_lo_sum_di"
[(set (match_operand:DI 0 "register_operand" "=r")
- (lo_sum:SI (match_operand:DI 1 "register_operand" "r")
- (unspec:SI [(match_operand:DI 2 "immediate_operand" "in")] 0)))]
+ (lo_sum:SI (match_operand:DI 1 "register_operand" "r")
+ (unspec:SI [(match_operand:DI 2 "immediate_operand" "in")] 0)))]
"TARGET_ARCH64 && flag_pic"
"add %1,%%lo(%a2),%0"
[(set_attr "length" "1")])
(define_insn "pic_sethi_di"
[(set (match_operand:DI 0 "register_operand" "=r")
- (high:SI (unspec:SI [(match_operand 1 "" "")] 0)))]
+ (high:SI (unspec:SI [(match_operand 1 "" "")] 0)))]
"TARGET_ARCH64 && flag_pic && check_pic (1)"
"sethi %%hi(%a1),%0"
[(set_attr "type" "move")
diff --git a/gcc/config/sparc/sysv4.h b/gcc/config/sparc/sysv4.h
index 4c12769b1db..e8a9a603b6f 100644
--- a/gcc/config/sparc/sysv4.h
+++ b/gcc/config/sparc/sysv4.h
@@ -1,5 +1,5 @@
/* Target definitions for GNU compiler for Sparc running System V.4
- Copyright (C) 1991, 1992, 1995, 1996 Free Software Foundation, Inc.
+ Copyright (C) 1991, 1992, 1995, 1996, 1997 Free Software Foundation, Inc.
Written by Ron Guilmette (rfg@netcom.com).
diff --git a/gcc/configure b/gcc/configure
index 20bfbd0cacd..df09c56d129 100755
--- a/gcc/configure
+++ b/gcc/configure
@@ -771,13 +771,212 @@ test "$host_alias" != "$target_alias" &&
program_prefix=${target_alias}-
+# Find the native compiler
+# Extract the first word of "gcc", so it can be a program name with args.
+set dummy gcc; ac_word=$2
+echo $ac_n "checking for $ac_word""... $ac_c" 1>&6
+echo "configure:779: checking for $ac_word" >&5
+if eval "test \"`echo '$''{'ac_cv_prog_CC'+set}'`\" = set"; then
+ echo $ac_n "(cached) $ac_c" 1>&6
+else
+ if test -n "$CC"; then
+ ac_cv_prog_CC="$CC" # Let the user override the test.
+else
+ IFS="${IFS= }"; ac_save_ifs="$IFS"; IFS="${IFS}:"
+ for ac_dir in $PATH; do
+ test -z "$ac_dir" && ac_dir=.
+ if test -f $ac_dir/$ac_word; then
+ ac_cv_prog_CC="gcc"
+ break
+ fi
+ done
+ IFS="$ac_save_ifs"
+fi
+fi
+CC="$ac_cv_prog_CC"
+if test -n "$CC"; then
+ echo "$ac_t""$CC" 1>&6
+else
+ echo "$ac_t""no" 1>&6
+fi
+
+if test -z "$CC"; then
+ # Extract the first word of "cc", so it can be a program name with args.
+set dummy cc; ac_word=$2
+echo $ac_n "checking for $ac_word""... $ac_c" 1>&6
+echo "configure:808: checking for $ac_word" >&5
+if eval "test \"`echo '$''{'ac_cv_prog_CC'+set}'`\" = set"; then
+ echo $ac_n "(cached) $ac_c" 1>&6
+else
+ if test -n "$CC"; then
+ ac_cv_prog_CC="$CC" # Let the user override the test.
+else
+ IFS="${IFS= }"; ac_save_ifs="$IFS"; IFS="${IFS}:"
+ ac_prog_rejected=no
+ for ac_dir in $PATH; do
+ test -z "$ac_dir" && ac_dir=.
+ if test -f $ac_dir/$ac_word; then
+ if test "$ac_dir/$ac_word" = "/usr/ucb/cc"; then
+ ac_prog_rejected=yes
+ continue
+ fi
+ ac_cv_prog_CC="cc"
+ break
+ fi
+ done
+ IFS="$ac_save_ifs"
+if test $ac_prog_rejected = yes; then
+ # We found a bogon in the path, so make sure we never use it.
+ set dummy $ac_cv_prog_CC
+ shift
+ if test $# -gt 0; then
+ # We chose a different compiler from the bogus one.
+ # However, it has the same basename, so the bogon will be chosen
+ # first if we set CC to just the basename; use the full file name.
+ shift
+ set dummy "$ac_dir/$ac_word" "$@"
+ shift
+ ac_cv_prog_CC="$@"
+ fi
+fi
+fi
+fi
+CC="$ac_cv_prog_CC"
+if test -n "$CC"; then
+ echo "$ac_t""$CC" 1>&6
+else
+ echo "$ac_t""no" 1>&6
+fi
+
+ test -z "$CC" && { echo "configure: error: no acceptable cc found in \$PATH" 1>&2; exit 1; }
+fi
+
+echo $ac_n "checking whether the C compiler ($CC $CFLAGS $LDFLAGS) works""... $ac_c" 1>&6
+echo "configure:856: checking whether the C compiler ($CC $CFLAGS $LDFLAGS) works" >&5
+
+ac_ext=c
+# CFLAGS is not in ac_cpp because -g, -O, etc. are not valid cpp options.
+ac_cpp='$CPP $CPPFLAGS'
+ac_compile='${CC-cc} -c $CFLAGS $CPPFLAGS conftest.$ac_ext 1>&5'
+ac_link='${CC-cc} -o conftest $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS 1>&5'
+cross_compiling=$ac_cv_prog_cc_cross
+
+cat > conftest.$ac_ext <<EOF
+#line 866 "configure"
+#include "confdefs.h"
+main(){return(0);}
+EOF
+if { (eval echo configure:870: \"$ac_link\") 1>&5; (eval $ac_link) 2>&5; } && test -s conftest; then
+ ac_cv_prog_cc_works=yes
+ # If we can't run a trivial program, we are probably using a cross compiler.
+ if (./conftest; exit) 2>/dev/null; then
+ ac_cv_prog_cc_cross=no
+ else
+ ac_cv_prog_cc_cross=yes
+ fi
+else
+ echo "configure: failed program was:" >&5
+ cat conftest.$ac_ext >&5
+ ac_cv_prog_cc_works=no
+fi
+rm -fr conftest*
+
+echo "$ac_t""$ac_cv_prog_cc_works" 1>&6
+if test $ac_cv_prog_cc_works = no; then
+ { echo "configure: error: installation or configuration problem: C compiler cannot create executables." 1>&2; exit 1; }
+fi
+echo $ac_n "checking whether the C compiler ($CC $CFLAGS $LDFLAGS) is a cross-compiler""... $ac_c" 1>&6
+echo "configure:890: checking whether the C compiler ($CC $CFLAGS $LDFLAGS) is a cross-compiler" >&5
+echo "$ac_t""$ac_cv_prog_cc_cross" 1>&6
+cross_compiling=$ac_cv_prog_cc_cross
+
+echo $ac_n "checking whether we are using GNU C""... $ac_c" 1>&6
+echo "configure:895: checking whether we are using GNU C" >&5
+if eval "test \"`echo '$''{'ac_cv_prog_gcc'+set}'`\" = set"; then
+ echo $ac_n "(cached) $ac_c" 1>&6
+else
+ cat > conftest.c <<EOF
+#ifdef __GNUC__
+ yes;
+#endif
+EOF
+if { ac_try='${CC-cc} -E conftest.c'; { (eval echo configure:904: \"$ac_try\") 1>&5; (eval $ac_try) 2>&5; }; } | egrep yes >/dev/null 2>&1; then
+ ac_cv_prog_gcc=yes
+else
+ ac_cv_prog_gcc=no
+fi
+fi
+
+echo "$ac_t""$ac_cv_prog_gcc" 1>&6
+
+if test $ac_cv_prog_gcc = yes; then
+ GCC=yes
+ ac_test_CFLAGS="${CFLAGS+set}"
+ ac_save_CFLAGS="$CFLAGS"
+ CFLAGS=
+ echo $ac_n "checking whether ${CC-cc} accepts -g""... $ac_c" 1>&6
+echo "configure:919: checking whether ${CC-cc} accepts -g" >&5
+if eval "test \"`echo '$''{'ac_cv_prog_cc_g'+set}'`\" = set"; then
+ echo $ac_n "(cached) $ac_c" 1>&6
+else
+ echo 'void f(){}' > conftest.c
+if test -z "`${CC-cc} -g -c conftest.c 2>&1`"; then
+ ac_cv_prog_cc_g=yes
+else
+ ac_cv_prog_cc_g=no
+fi
+rm -f conftest*
+
+fi
+
+echo "$ac_t""$ac_cv_prog_cc_g" 1>&6
+ if test "$ac_test_CFLAGS" = set; then
+ CFLAGS="$ac_save_CFLAGS"
+ elif test $ac_cv_prog_cc_g = yes; then
+ CFLAGS="-g -O2"
+ else
+ CFLAGS="-O2"
+ fi
+else
+ GCC=
+ test "${CFLAGS+set}" = set || CFLAGS="-g"
+fi
+
+echo $ac_n "checking whether ${MAKE-make} sets \${MAKE}""... $ac_c" 1>&6
+echo "configure:947: checking whether ${MAKE-make} sets \${MAKE}" >&5
+set dummy ${MAKE-make}; ac_make=`echo "$2" | sed 'y%./+-%__p_%'`
+if eval "test \"`echo '$''{'ac_cv_prog_make_${ac_make}_set'+set}'`\" = set"; then
+ echo $ac_n "(cached) $ac_c" 1>&6
+else
+ cat > conftestmake <<\EOF
+all:
+ @echo 'ac_maketemp="${MAKE}"'
+EOF
+# GNU make sometimes prints "make[1]: Entering...", which would confuse us.
+eval `${MAKE-make} -f conftestmake 2>/dev/null | grep temp=`
+if test -n "$ac_maketemp"; then
+ eval ac_cv_prog_make_${ac_make}_set=yes
+else
+ eval ac_cv_prog_make_${ac_make}_set=no
+fi
+rm -f conftestmake
+fi
+if eval "test \"`echo '$ac_cv_prog_make_'${ac_make}_set`\" = yes"; then
+ echo "$ac_t""yes" 1>&6
+ SET_MAKE=
+else
+ echo "$ac_t""no" 1>&6
+ SET_MAKE="MAKE=${MAKE-make}"
+fi
+
+
# Find some useful tools
for ac_prog in mawk gawk nawk awk
do
# Extract the first word of "$ac_prog", so it can be a program name with args.
set dummy $ac_prog; ac_word=$2
echo $ac_n "checking for $ac_word""... $ac_c" 1>&6
-echo "configure:781: checking for $ac_word" >&5
+echo "configure:980: checking for $ac_word" >&5
if eval "test \"`echo '$''{'ac_cv_prog_AWK'+set}'`\" = set"; then
echo $ac_n "(cached) $ac_c" 1>&6
else
@@ -808,7 +1007,7 @@ done
# Extract the first word of "flex", so it can be a program name with args.
set dummy flex; ac_word=$2
echo $ac_n "checking for $ac_word""... $ac_c" 1>&6
-echo "configure:812: checking for $ac_word" >&5
+echo "configure:1011: checking for $ac_word" >&5
if eval "test \"`echo '$''{'ac_cv_prog_LEX'+set}'`\" = set"; then
echo $ac_n "(cached) $ac_c" 1>&6
else
@@ -841,7 +1040,7 @@ then
*) ac_lib=l ;;
esac
echo $ac_n "checking for yywrap in -l$ac_lib""... $ac_c" 1>&6
-echo "configure:845: checking for yywrap in -l$ac_lib" >&5
+echo "configure:1044: checking for yywrap in -l$ac_lib" >&5
ac_lib_var=`echo $ac_lib'_'yywrap | sed 'y%./+-%__p_%'`
if eval "test \"`echo '$''{'ac_cv_lib_$ac_lib_var'+set}'`\" = set"; then
echo $ac_n "(cached) $ac_c" 1>&6
@@ -849,7 +1048,7 @@ else
ac_save_LIBS="$LIBS"
LIBS="-l$ac_lib $LIBS"
cat > conftest.$ac_ext <<EOF
-#line 853 "configure"
+#line 1052 "configure"
#include "confdefs.h"
/* Override any gcc2 internal prototype to avoid an error. */
/* We use char because int might match the return type of a gcc2
@@ -860,7 +1059,7 @@ int main() {
yywrap()
; return 0; }
EOF
-if { (eval echo configure:864: \"$ac_link\") 1>&5; (eval $ac_link) 2>&5; } && test -s conftest; then
+if { (eval echo configure:1063: \"$ac_link\") 1>&5; (eval $ac_link) 2>&5; } && test -s conftest; then
rm -rf conftest*
eval "ac_cv_lib_$ac_lib_var=yes"
else
@@ -883,7 +1082,7 @@ fi
fi
echo $ac_n "checking whether ln works""... $ac_c" 1>&6
-echo "configure:887: checking whether ln works" >&5
+echo "configure:1086: checking whether ln works" >&5
if eval "test \"`echo '$''{'gcc_cv_prog_LN'+set}'`\" = set"; then
echo $ac_n "(cached) $ac_c" 1>&6
else
@@ -915,7 +1114,7 @@ else
fi
echo $ac_n "checking whether ln -s works""... $ac_c" 1>&6
-echo "configure:919: checking whether ln -s works" >&5
+echo "configure:1118: checking whether ln -s works" >&5
if eval "test \"`echo '$''{'gcc_cv_prog_LN_S'+set}'`\" = set"; then
echo $ac_n "(cached) $ac_c" 1>&6
else
@@ -949,7 +1148,7 @@ fi
# Extract the first word of "ranlib", so it can be a program name with args.
set dummy ranlib; ac_word=$2
echo $ac_n "checking for $ac_word""... $ac_c" 1>&6
-echo "configure:953: checking for $ac_word" >&5
+echo "configure:1152: checking for $ac_word" >&5
if eval "test \"`echo '$''{'ac_cv_prog_RANLIB'+set}'`\" = set"; then
echo $ac_n "(cached) $ac_c" 1>&6
else
@@ -980,7 +1179,7 @@ do
# Extract the first word of "$ac_prog", so it can be a program name with args.
set dummy $ac_prog; ac_word=$2
echo $ac_n "checking for $ac_word""... $ac_c" 1>&6
-echo "configure:984: checking for $ac_word" >&5
+echo "configure:1183: checking for $ac_word" >&5
if eval "test \"`echo '$''{'ac_cv_prog_YACC'+set}'`\" = set"; then
echo $ac_n "(cached) $ac_c" 1>&6
else
@@ -1020,7 +1219,7 @@ test -n "$YACC" || YACC="yacc"
# SVR4 /usr/ucb/install, which tries to use the nonexistent group "staff"
# ./install, which can be erroneously created by make from ./install.sh.
echo $ac_n "checking for a BSD compatible install""... $ac_c" 1>&6
-echo "configure:1024: checking for a BSD compatible install" >&5
+echo "configure:1223: checking for a BSD compatible install" >&5
if test -z "$INSTALL"; then
if eval "test \"`echo '$''{'ac_cv_path_install'+set}'`\" = set"; then
echo $ac_n "(cached) $ac_c" 1>&6
@@ -1074,7 +1273,7 @@ test -z "$INSTALL_DATA" && INSTALL_DATA='${INSTALL} -m 644'
# Extract the first word of "gcc", so it can be a program name with args.
set dummy gcc; ac_word=$2
echo $ac_n "checking for $ac_word""... $ac_c" 1>&6
-echo "configure:1078: checking for $ac_word" >&5
+echo "configure:1277: checking for $ac_word" >&5
if eval "test \"`echo '$''{'ac_cv_prog_CC'+set}'`\" = set"; then
echo $ac_n "(cached) $ac_c" 1>&6
else
@@ -1103,7 +1302,7 @@ if test -z "$CC"; then
# Extract the first word of "cc", so it can be a program name with args.
set dummy cc; ac_word=$2
echo $ac_n "checking for $ac_word""... $ac_c" 1>&6
-echo "configure:1107: checking for $ac_word" >&5
+echo "configure:1306: checking for $ac_word" >&5
if eval "test \"`echo '$''{'ac_cv_prog_CC'+set}'`\" = set"; then
echo $ac_n "(cached) $ac_c" 1>&6
else
@@ -1151,7 +1350,7 @@ fi
fi
echo $ac_n "checking whether the C compiler ($CC $CFLAGS $LDFLAGS) works""... $ac_c" 1>&6
-echo "configure:1155: checking whether the C compiler ($CC $CFLAGS $LDFLAGS) works" >&5
+echo "configure:1354: checking whether the C compiler ($CC $CFLAGS $LDFLAGS) works" >&5
ac_ext=c
# CFLAGS is not in ac_cpp because -g, -O, etc. are not valid cpp options.
@@ -1161,11 +1360,11 @@ ac_link='${CC-cc} -o conftest $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS
cross_compiling=$ac_cv_prog_cc_cross
cat > conftest.$ac_ext <<EOF
-#line 1165 "configure"
+#line 1364 "configure"
#include "confdefs.h"
main(){return(0);}
EOF
-if { (eval echo configure:1169: \"$ac_link\") 1>&5; (eval $ac_link) 2>&5; } && test -s conftest; then
+if { (eval echo configure:1368: \"$ac_link\") 1>&5; (eval $ac_link) 2>&5; } && test -s conftest; then
ac_cv_prog_cc_works=yes
# If we can't run a trivial program, we are probably using a cross compiler.
if (./conftest; exit) 2>/dev/null; then
@@ -1185,12 +1384,12 @@ if test $ac_cv_prog_cc_works = no; then
{ echo "configure: error: installation or configuration problem: C compiler cannot create executables." 1>&2; exit 1; }
fi
echo $ac_n "checking whether the C compiler ($CC $CFLAGS $LDFLAGS) is a cross-compiler""... $ac_c" 1>&6
-echo "configure:1189: checking whether the C compiler ($CC $CFLAGS $LDFLAGS) is a cross-compiler" >&5
+echo "configure:1388: checking whether the C compiler ($CC $CFLAGS $LDFLAGS) is a cross-compiler" >&5
echo "$ac_t""$ac_cv_prog_cc_cross" 1>&6
cross_compiling=$ac_cv_prog_cc_cross
echo $ac_n "checking whether we are using GNU C""... $ac_c" 1>&6
-echo "configure:1194: checking whether we are using GNU C" >&5
+echo "configure:1393: checking whether we are using GNU C" >&5
if eval "test \"`echo '$''{'ac_cv_prog_gcc'+set}'`\" = set"; then
echo $ac_n "(cached) $ac_c" 1>&6
else
@@ -1199,7 +1398,7 @@ else
yes;
#endif
EOF
-if { ac_try='${CC-cc} -E conftest.c'; { (eval echo configure:1203: \"$ac_try\") 1>&5; (eval $ac_try) 2>&5; }; } | egrep yes >/dev/null 2>&1; then
+if { ac_try='${CC-cc} -E conftest.c'; { (eval echo configure:1402: \"$ac_try\") 1>&5; (eval $ac_try) 2>&5; }; } | egrep yes >/dev/null 2>&1; then
ac_cv_prog_gcc=yes
else
ac_cv_prog_gcc=no
@@ -1214,7 +1413,7 @@ if test $ac_cv_prog_gcc = yes; then
ac_save_CFLAGS="$CFLAGS"
CFLAGS=
echo $ac_n "checking whether ${CC-cc} accepts -g""... $ac_c" 1>&6
-echo "configure:1218: checking whether ${CC-cc} accepts -g" >&5
+echo "configure:1417: checking whether ${CC-cc} accepts -g" >&5
if eval "test \"`echo '$''{'ac_cv_prog_cc_g'+set}'`\" = set"; then
echo $ac_n "(cached) $ac_c" 1>&6
else
@@ -1242,7 +1441,7 @@ else
fi
echo $ac_n "checking whether ${MAKE-make} sets \${MAKE}""... $ac_c" 1>&6
-echo "configure:1246: checking whether ${MAKE-make} sets \${MAKE}" >&5
+echo "configure:1445: checking whether ${MAKE-make} sets \${MAKE}" >&5
set dummy ${MAKE-make}; ac_make=`echo "$2" | sed 'y%./+-%__p_%'`
if eval "test \"`echo '$''{'ac_cv_prog_make_${ac_make}_set'+set}'`\" = set"; then
echo $ac_n "(cached) $ac_c" 1>&6
@@ -1270,7 +1469,7 @@ fi
echo $ac_n "checking how to run the C preprocessor""... $ac_c" 1>&6
-echo "configure:1274: checking how to run the C preprocessor" >&5
+echo "configure:1473: checking how to run the C preprocessor" >&5
# On Suns, sometimes $CPP names a directory.
if test -n "$CPP" && test -d "$CPP"; then
CPP=
@@ -1285,13 +1484,13 @@ else
# On the NeXT, cc -E runs the code through the compiler's parser,
# not just through cpp.
cat > conftest.$ac_ext <<EOF
-#line 1289 "configure"
+#line 1488 "configure"
#include "confdefs.h"
#include <assert.h>
Syntax Error
EOF
ac_try="$ac_cpp conftest.$ac_ext >/dev/null 2>conftest.out"
-{ (eval echo configure:1295: \"$ac_try\") 1>&5; (eval $ac_try) 2>&5; }
+{ (eval echo configure:1494: \"$ac_try\") 1>&5; (eval $ac_try) 2>&5; }
ac_err=`grep -v '^ *+' conftest.out`
if test -z "$ac_err"; then
:
@@ -1302,13 +1501,13 @@ else
rm -rf conftest*
CPP="${CC-cc} -E -traditional-cpp"
cat > conftest.$ac_ext <<EOF
-#line 1306 "configure"
+#line 1505 "configure"
#include "confdefs.h"
#include <assert.h>
Syntax Error
EOF
ac_try="$ac_cpp conftest.$ac_ext >/dev/null 2>conftest.out"
-{ (eval echo configure:1312: \"$ac_try\") 1>&5; (eval $ac_try) 2>&5; }
+{ (eval echo configure:1511: \"$ac_try\") 1>&5; (eval $ac_try) 2>&5; }
ac_err=`grep -v '^ *+' conftest.out`
if test -z "$ac_err"; then
:
@@ -1330,21 +1529,21 @@ else
fi
echo "$ac_t""$CPP" 1>&6
-for ac_hdr in stddef.h string.h strings.h stdlib.h time.h unistd.h varargs.h sys/varargs.h
+for ac_hdr in inttypes.h limits.h stddef.h string.h strings.h stdlib.h time.h unistd.h varargs.h sys/varargs.h
do
ac_safe=`echo "$ac_hdr" | sed 'y%./+-%__p_%'`
echo $ac_n "checking for $ac_hdr""... $ac_c" 1>&6
-echo "configure:1338: checking for $ac_hdr" >&5
+echo "configure:1537: checking for $ac_hdr" >&5
if eval "test \"`echo '$''{'ac_cv_header_$ac_safe'+set}'`\" = set"; then
echo $ac_n "(cached) $ac_c" 1>&6
else
cat > conftest.$ac_ext <<EOF
-#line 1343 "configure"
+#line 1542 "configure"
#include "confdefs.h"
#include <$ac_hdr>
EOF
ac_try="$ac_cpp conftest.$ac_ext >/dev/null 2>conftest.out"
-{ (eval echo configure:1348: \"$ac_try\") 1>&5; (eval $ac_try) 2>&5; }
+{ (eval echo configure:1547: \"$ac_try\") 1>&5; (eval $ac_try) 2>&5; }
ac_err=`grep -v '^ *+' conftest.out`
if test -z "$ac_err"; then
rm -rf conftest*
@@ -1372,12 +1571,12 @@ done
echo $ac_n "checking whether malloc must be declared""... $ac_c" 1>&6
-echo "configure:1376: checking whether malloc must be declared" >&5
+echo "configure:1575: checking whether malloc must be declared" >&5
if eval "test \"`echo '$''{'gcc_cv_decl_needed_malloc'+set}'`\" = set"; then
echo $ac_n "(cached) $ac_c" 1>&6
else
cat > conftest.$ac_ext <<EOF
-#line 1381 "configure"
+#line 1580 "configure"
#include "confdefs.h"
#include <stdio.h>
@@ -1398,7 +1597,7 @@ int main() {
char *(*pfn) = (char *(*)) malloc
; return 0; }
EOF
-if { (eval echo configure:1402: \"$ac_compile\") 1>&5; (eval $ac_compile) 2>&5; }; then
+if { (eval echo configure:1601: \"$ac_compile\") 1>&5; (eval $ac_compile) 2>&5; }; then
rm -rf conftest*
gcc_cv_decl_needed_malloc=no
else
@@ -1420,12 +1619,12 @@ EOF
fi
echo $ac_n "checking whether realloc must be declared""... $ac_c" 1>&6
-echo "configure:1424: checking whether realloc must be declared" >&5
+echo "configure:1623: checking whether realloc must be declared" >&5
if eval "test \"`echo '$''{'gcc_cv_decl_needed_realloc'+set}'`\" = set"; then
echo $ac_n "(cached) $ac_c" 1>&6
else
cat > conftest.$ac_ext <<EOF
-#line 1429 "configure"
+#line 1628 "configure"
#include "confdefs.h"
#include <stdio.h>
@@ -1446,7 +1645,7 @@ int main() {
char *(*pfn) = (char *(*)) realloc
; return 0; }
EOF
-if { (eval echo configure:1450: \"$ac_compile\") 1>&5; (eval $ac_compile) 2>&5; }; then
+if { (eval echo configure:1649: \"$ac_compile\") 1>&5; (eval $ac_compile) 2>&5; }; then
rm -rf conftest*
gcc_cv_decl_needed_realloc=no
else
@@ -1468,12 +1667,12 @@ EOF
fi
echo $ac_n "checking whether calloc must be declared""... $ac_c" 1>&6
-echo "configure:1472: checking whether calloc must be declared" >&5
+echo "configure:1671: checking whether calloc must be declared" >&5
if eval "test \"`echo '$''{'gcc_cv_decl_needed_calloc'+set}'`\" = set"; then
echo $ac_n "(cached) $ac_c" 1>&6
else
cat > conftest.$ac_ext <<EOF
-#line 1477 "configure"
+#line 1676 "configure"
#include "confdefs.h"
#include <stdio.h>
@@ -1494,7 +1693,7 @@ int main() {
char *(*pfn) = (char *(*)) calloc
; return 0; }
EOF
-if { (eval echo configure:1498: \"$ac_compile\") 1>&5; (eval $ac_compile) 2>&5; }; then
+if { (eval echo configure:1697: \"$ac_compile\") 1>&5; (eval $ac_compile) 2>&5; }; then
rm -rf conftest*
gcc_cv_decl_needed_calloc=no
else
@@ -1516,12 +1715,12 @@ EOF
fi
echo $ac_n "checking whether free must be declared""... $ac_c" 1>&6
-echo "configure:1520: checking whether free must be declared" >&5
+echo "configure:1719: checking whether free must be declared" >&5
if eval "test \"`echo '$''{'gcc_cv_decl_needed_free'+set}'`\" = set"; then
echo $ac_n "(cached) $ac_c" 1>&6
else
cat > conftest.$ac_ext <<EOF
-#line 1525 "configure"
+#line 1724 "configure"
#include "confdefs.h"
#include <stdio.h>
@@ -1542,7 +1741,7 @@ int main() {
char *(*pfn) = (char *(*)) free
; return 0; }
EOF
-if { (eval echo configure:1546: \"$ac_compile\") 1>&5; (eval $ac_compile) 2>&5; }; then
+if { (eval echo configure:1745: \"$ac_compile\") 1>&5; (eval $ac_compile) 2>&5; }; then
rm -rf conftest*
gcc_cv_decl_needed_free=no
else
@@ -1565,12 +1764,12 @@ fi
echo $ac_n "checking for sys_siglist declaration in signal.h or unistd.h""... $ac_c" 1>&6
-echo "configure:1569: checking for sys_siglist declaration in signal.h or unistd.h" >&5
+echo "configure:1768: checking for sys_siglist declaration in signal.h or unistd.h" >&5
if eval "test \"`echo '$''{'ac_cv_decl_sys_siglist'+set}'`\" = set"; then
echo $ac_n "(cached) $ac_c" 1>&6
else
cat > conftest.$ac_ext <<EOF
-#line 1574 "configure"
+#line 1773 "configure"
#include "confdefs.h"
#include <sys/types.h>
#include <signal.h>
@@ -1582,7 +1781,7 @@ int main() {
char *msg = *(sys_siglist + 1);
; return 0; }
EOF
-if { (eval echo configure:1586: \"$ac_compile\") 1>&5; (eval $ac_compile) 2>&5; }; then
+if { (eval echo configure:1785: \"$ac_compile\") 1>&5; (eval $ac_compile) 2>&5; }; then
rm -rf conftest*
ac_cv_decl_sys_siglist=yes
else
@@ -1606,12 +1805,12 @@ fi
for ac_func in strerror strtoul bsearch
do
echo $ac_n "checking for $ac_func""... $ac_c" 1>&6
-echo "configure:1610: checking for $ac_func" >&5
+echo "configure:1809: checking for $ac_func" >&5
if eval "test \"`echo '$''{'ac_cv_func_$ac_func'+set}'`\" = set"; then
echo $ac_n "(cached) $ac_c" 1>&6
else
cat > conftest.$ac_ext <<EOF
-#line 1615 "configure"
+#line 1814 "configure"
#include "confdefs.h"
/* System header to define __stub macros and hopefully few prototypes,
which can conflict with char $ac_func(); below. */
@@ -1634,7 +1833,7 @@ $ac_func();
; return 0; }
EOF
-if { (eval echo configure:1638: \"$ac_link\") 1>&5; (eval $ac_link) 2>&5; } && test -s conftest; then
+if { (eval echo configure:1837: \"$ac_link\") 1>&5; (eval $ac_link) 2>&5; } && test -s conftest; then
rm -rf conftest*
eval "ac_cv_func_$ac_func=yes"
else
@@ -1816,7 +2015,7 @@ for machine in $build $host $target; do
thread_file='posix'
fi
;;
- alpha*-dec-osf[456789]*)
+ alpha*-dec-osf*)
if [ x$stabs = xyes ]
then
tm_file="${tm_file} dbx.h"
@@ -1826,48 +2025,24 @@ for machine in $build $host $target; do
extra_passes="mips-tfile mips-tdump"
fi
use_collect2=yes
- # Some versions of OSF4 (specifically X4.0-9 296.7) have
- # a broken tar, so we use cpio instead.
case $machine in
- alpha*-dec-osf4*)
+ *-*-osf1.2)
+ tm_file="${tm_file} alpha/osf12.h alpha/osf2or3.h"
+ ;;
+ *-*-osf[23]*)
+ tm_file="${tm_file} alpha/osf2or3.h"
+ ;;
+ *-*-osf4*)
+ # Some versions of OSF4 (specifically X4.0-9 296.7) have
+ # a broken tar, so we use cpio instead.
install_headers_dir=install-headers-cpio
;;
esac
- ;;
- alpha*-dec-osf[23]*)
- tm_file="${tm_file} alpha/osf2or3.h"
- if [ x$stabs = xyes ]
- then
- tm_file="${tm_file} dbx.h"
- fi
- if [ x$gas != xyes ]
- then
- extra_passes="mips-tfile mips-tdump"
- fi
- use_collect2=yes
- ;;
- alpha*-dec-osf1.2)
- tm_file="${tm_file} alpha/osf12.h"
- if [ x$stabs = xyes ]
- then
- tm_file="${tm_file} dbx.h"
- fi
- if [ x$gas != xyes ]
- then
- extra_passes="mips-tfile mips-tdump"
- fi
- use_collect2=yes
- ;;
- alpha*-*-osf*)
- if [ x$stabs = xyes ]
- then
- tm_file="${tm_file} dbx.h"
- fi
- if [ x$gas != xyes ]
- then
- extra_passes="mips-tfile mips-tdump"
- fi
- use_collect2=yes
+ case $machine in
+ *-*-osf4.0[b-z] | *-*-osf4.[1-9]*)
+ target_cpu_default=MASK_SUPPORT_ARCH
+ ;;
+ esac
;;
alpha*-*-winnt3*)
tm_file="${tm_file} alpha/win-nt.h"
@@ -1927,7 +2102,7 @@ for machine in $build $host $target; do
arm-*-netbsd*)
tm_file=arm/netbsd.h
xm_file=arm/xm-netbsd.h
- tmake_file=arm/t-netbsd
+ tmake_file="t-netbsd arm/t-netbsd"
# On NetBSD, the headers are already okay, except for math.h.
fixincludes=fixinc.math
use_collect2=yes
@@ -1943,6 +2118,7 @@ for machine in $build $host $target; do
;;
arm-*-aout)
tm_file=arm/aout.h
+ tmake_file=arm/t-bare
;;
c1-convex-*) # Convex C1
target_cpu_default=1
@@ -2499,6 +2675,7 @@ for machine in $build $host $target; do
extra_parts="crt1.o crti.o crtn.o crtbegin.o crtend.o"
xmake_file=x-svr4
fixincludes=fixinc.svr4
+ broken_install=yes
if [ x$enable_threads = xyes ]; then
thread_file='solaris'
fi
@@ -3526,6 +3703,14 @@ for machine in $build $host $target; do
tm_file=mips/rtems64.h
tmake_file="mips/t-ecoff t-rtems"
;;
+ mipstx39el-*-elf*)
+ tm_file="mips/r3900.h mips/elfl.h mips/abi64.h libgloss.h"
+ tmake_file=mips/t-ecoff
+ ;;
+ mipstx39-*-elf*)
+ tm_file="mips/r3900.h mips/elf.h mips/abi64.h libgloss.h"
+ tmake_file=mips/t-ecoff
+ ;;
mips-*-*) # Default MIPS RISC-OS 4.0.
if [ x$stabs = xyes ]; then
tm_file="${tm_file} dbx.h"
@@ -3752,7 +3937,7 @@ for machine in $build $host $target; do
tmake_file="rs6000/t-ppc rs6000/t-ppccomm"
fi
xmake_file=rs6000/x-sysv4
- fixincludes=fixinc.svr4
+ fixincludes=fixinc.math
extra_headers=ppc-asm.h
;;
rs6000-ibm-aix3.[01]*)
@@ -3892,6 +4077,8 @@ for machine in $build $host $target; do
xmake_file=sparc/x-sysv4
extra_parts="crt1.o crti.o crtn.o gcrt1.o gmon.o crtbegin.o crtend.o"
fixincludes=fixinc.svr4
+ float_format=i128
+ broken_install=yes
if [ x$enable_threads = xyes ]; then
thread_file='solaris'
fi
@@ -4062,8 +4249,14 @@ for machine in $build $host $target; do
;;
alpha*-*-*)
case $machine in
+ alphaev6*)
+ target_cpu_default2="MASK_CPU_EV6|MASK_BXW|MASK_CIX|MASK_MAX"
+ ;;
+ alphapca56*)
+ target_cpu_default2="MASK_CPU_EV5|MASK_BWX|TASK_MAX"
+ ;;
alphaev56*)
- target_cpu_default2="MASK_CPU_EV5|MASK_BYTE_OPS"
+ target_cpu_default2="MASK_CPU_EV5|MASK_BWX"
;;
alphaev5*)
target_cpu_default2="MASK_CPU_EV5"
@@ -4260,10 +4453,11 @@ fi
# Set up the header files.
# $links is the list of header files to create.
# $vars is the list of shell variables with file names to include.
-# config2.h is the old config.h. It is included by the new config.h which
-# created from config.in. The goal is to simplify the transition to autoconf.
+# auto-conf.h is the file containing items generated by autoconf and is
+# the first file included by config.h.
+host_xm_file="auto-config.h ${host_xm_file}"
vars="host_xm_file tm_file xm_file build_xm_file"
-links="config2.h tm.h tconfig.h hconfig.h"
+links="config.h tm.h tconfig.h hconfig.h"
rm -f config.bak
if [ -f config.status ]; then mv -f config.status config.bak; fi
@@ -4338,6 +4532,7 @@ then
cc_set_by_configure="\$(CC)"
stage_prefix_set_by_configure="\$(STAGE_PREFIX)"
else
+ symbolic_link="cp -p"
cc_set_by_configure="\`case '\$(CC)' in stage*) echo '\$(CC)' | sed -e 's|stage|../stage|g';; *) echo '\$(CC)';; esac\`"
stage_prefix_set_by_configure="\`case '\$(STAGE_PREFIX)' in stage*) echo '\$(STAGE_PREFIX)' | sed -e 's|stage|../stage|g';; *) echo '\$(STAGE_PREFIX)';; esac\`"
fi
@@ -4650,6 +4845,7 @@ ${CONFIG_SHELL-/bin/sh} $srcdir/configure.frag $srcdir "$subdirs" "$dep_host_xma
+
# Echo that links are built
if [ x$host = x$target ]
then
@@ -4704,7 +4900,7 @@ EOF
# Ultrix sh set writes to stderr and can't be redirected directly,
# and sets the high bit in the cache file unless we assign to the vars.
(set) 2>&1 |
- case `(ac_space=' '; set) 2>&1` in
+ case `(ac_space=' '; set) 2>&1 | grep ac_space` in
*ac_space=\ *)
# `set' does not quote correctly, so add quotes (double-quote substitution
# turns \\\\ into \\, and sed turns \\ into \).
@@ -4781,7 +4977,7 @@ done
ac_given_srcdir=$srcdir
-trap 'rm -fr `echo "$all_outputs config.h:config.in" | sed "s/:[^ ]*//g"` conftest*; exit 1' 1 2 15
+trap 'rm -fr `echo "$all_outputs auto-config.h:config.in" | sed "s/:[^ ]*//g"` conftest*; exit 1' 1 2 15
EOF
cat >> $CONFIG_STATUS <<EOF
@@ -4827,6 +5023,8 @@ s%@build_alias@%$build_alias%g
s%@build_cpu@%$build_cpu%g
s%@build_vendor@%$build_vendor%g
s%@build_os@%$build_os%g
+s%@CC@%$CC%g
+s%@SET_MAKE@%$SET_MAKE%g
s%@AWK@%$AWK%g
s%@LEX@%$LEX%g
s%@LEXLIB@%$LEXLIB%g
@@ -4837,8 +5035,6 @@ s%@YACC@%$YACC%g
s%@INSTALL@%$INSTALL%g
s%@INSTALL_PROGRAM@%$INSTALL_PROGRAM%g
s%@INSTALL_DATA@%$INSTALL_DATA%g
-s%@CC@%$CC%g
-s%@SET_MAKE@%$SET_MAKE%g
s%@CPP@%$CPP%g
s%@manext@%$manext%g
s%@objext@%$objext%g
@@ -4885,6 +5081,7 @@ s%@maybe_use_collect2@%$maybe_use_collect2%g
s%@cc_set_by_configure@%$cc_set_by_configure%g
s%@stage_prefix_set_by_configure@%$stage_prefix_set_by_configure%g
s%@install@%$install%g
+s%@symbolic_link@%$symbolic_link%g
/@target_overrides@/r $target_overrides
s%@target_overrides@%%g
/@host_overrides@/r $host_overrides
@@ -5015,7 +5212,7 @@ ac_eD='%g'
if test "${CONFIG_HEADERS+set}" != set; then
EOF
cat >> $CONFIG_STATUS <<EOF
- CONFIG_HEADERS="config.h:config.in"
+ CONFIG_HEADERS="auto-config.h:config.in"
EOF
cat >> $CONFIG_STATUS <<\EOF
fi
@@ -5137,7 +5334,7 @@ cat >> $CONFIG_STATUS <<\EOF
. $srcdir/configure.lang
case x$CONFIG_HEADERS in
-xconfig.h:config.in)
+xauto-config.h:config.in)
echo > cstamp-h ;;
esac
# If the host supports symlinks, point stage[1234] at ../stage[1234] so
diff --git a/gcc/configure.in b/gcc/configure.in
index e6dd351e7d7..368fa90f0b3 100644
--- a/gcc/configure.in
+++ b/gcc/configure.in
@@ -22,7 +22,7 @@
# Initialization and defaults
AC_INIT(tree.c)
-AC_CONFIG_HEADER(config.h:config.in)
+AC_CONFIG_HEADER(auto-config.h:config.in)
remove=rm
hard_link=ln
@@ -120,6 +120,10 @@ esac
# Determine the host, build, and target systems
AC_CANONICAL_SYSTEM
+# Find the native compiler
+AC_PROG_CC
+AC_PROG_MAKE_SET
+
# Find some useful tools
AC_PROG_AWK
AC_PROG_LEX
@@ -133,7 +137,7 @@ EGCS_PROG_INSTALL
AC_PROG_CC
AC_PROG_MAKE_SET
-AC_CHECK_HEADERS(stddef.h string.h strings.h stdlib.h time.h unistd.h varargs.h sys/varargs.h)
+AC_CHECK_HEADERS(inttypes.h limits.h stddef.h string.h strings.h stdlib.h time.h unistd.h varargs.h sys/varargs.h)
GCC_NEED_DECLARATION(malloc)
GCC_NEED_DECLARATION(realloc)
@@ -301,7 +305,7 @@ for machine in $build $host $target; do
thread_file='posix'
fi
;;
- alpha*-dec-osf[[456789]]*)
+ alpha*-dec-osf*)
if [[ x$stabs = xyes ]]
then
tm_file="${tm_file} dbx.h"
@@ -311,48 +315,24 @@ for machine in $build $host $target; do
extra_passes="mips-tfile mips-tdump"
fi
use_collect2=yes
- # Some versions of OSF4 (specifically X4.0-9 296.7) have
- # a broken tar, so we use cpio instead.
case $machine in
- alpha*-dec-osf4*)
+ *-*-osf1.2)
+ tm_file="${tm_file} alpha/osf12.h alpha/osf2or3.h"
+ ;;
+ *-*-osf[[23]]*)
+ tm_file="${tm_file} alpha/osf2or3.h"
+ ;;
+ *-*-osf4*)
+ # Some versions of OSF4 (specifically X4.0-9 296.7) have
+ # a broken tar, so we use cpio instead.
install_headers_dir=install-headers-cpio
;;
esac
- ;;
- alpha*-dec-osf[[23]]*)
- tm_file="${tm_file} alpha/osf2or3.h"
- if [[ x$stabs = xyes ]]
- then
- tm_file="${tm_file} dbx.h"
- fi
- if [[ x$gas != xyes ]]
- then
- extra_passes="mips-tfile mips-tdump"
- fi
- use_collect2=yes
- ;;
- alpha*-dec-osf1.2)
- tm_file="${tm_file} alpha/osf12.h"
- if [[ x$stabs = xyes ]]
- then
- tm_file="${tm_file} dbx.h"
- fi
- if [[ x$gas != xyes ]]
- then
- extra_passes="mips-tfile mips-tdump"
- fi
- use_collect2=yes
- ;;
- alpha*-*-osf*)
- if [[ x$stabs = xyes ]]
- then
- tm_file="${tm_file} dbx.h"
- fi
- if [[ x$gas != xyes ]]
- then
- extra_passes="mips-tfile mips-tdump"
- fi
- use_collect2=yes
+ case $machine in
+ *-*-osf4.0[[b-z]] | *-*-osf4.[[1-9]]*)
+ target_cpu_default=MASK_SUPPORT_ARCH
+ ;;
+ esac
;;
alpha*-*-winnt3*)
tm_file="${tm_file} alpha/win-nt.h"
@@ -412,7 +392,7 @@ for machine in $build $host $target; do
arm-*-netbsd*)
tm_file=arm/netbsd.h
xm_file=arm/xm-netbsd.h
- tmake_file=arm/t-netbsd
+ tmake_file="t-netbsd arm/t-netbsd"
# On NetBSD, the headers are already okay, except for math.h.
fixincludes=fixinc.math
use_collect2=yes
@@ -428,6 +408,7 @@ for machine in $build $host $target; do
;;
arm-*-aout)
tm_file=arm/aout.h
+ tmake_file=arm/t-bare
;;
c1-convex-*) # Convex C1
target_cpu_default=1
@@ -984,6 +965,7 @@ for machine in $build $host $target; do
extra_parts="crt1.o crti.o crtn.o crtbegin.o crtend.o"
xmake_file=x-svr4
fixincludes=fixinc.svr4
+ broken_install=yes
if [[ x$enable_threads = xyes ]]; then
thread_file='solaris'
fi
@@ -2011,6 +1993,14 @@ for machine in $build $host $target; do
tm_file=mips/rtems64.h
tmake_file="mips/t-ecoff t-rtems"
;;
+ mipstx39el-*-elf*)
+ tm_file="mips/r3900.h mips/elfl.h mips/abi64.h libgloss.h"
+ tmake_file=mips/t-ecoff
+ ;;
+ mipstx39-*-elf*)
+ tm_file="mips/r3900.h mips/elf.h mips/abi64.h libgloss.h"
+ tmake_file=mips/t-ecoff
+ ;;
mips-*-*) # Default MIPS RISC-OS 4.0.
if [[ x$stabs = xyes ]]; then
tm_file="${tm_file} dbx.h"
@@ -2237,7 +2227,7 @@ for machine in $build $host $target; do
tmake_file="rs6000/t-ppc rs6000/t-ppccomm"
fi
xmake_file=rs6000/x-sysv4
- fixincludes=fixinc.svr4
+ fixincludes=fixinc.math
extra_headers=ppc-asm.h
;;
rs6000-ibm-aix3.[[01]]*)
@@ -2377,6 +2367,8 @@ for machine in $build $host $target; do
xmake_file=sparc/x-sysv4
extra_parts="crt1.o crti.o crtn.o gcrt1.o gmon.o crtbegin.o crtend.o"
fixincludes=fixinc.svr4
+ float_format=i128
+ broken_install=yes
if [[ x$enable_threads = xyes ]]; then
thread_file='solaris'
fi
@@ -2547,8 +2539,14 @@ for machine in $build $host $target; do
;;
alpha*-*-*)
case $machine in
+ alphaev6*)
+ target_cpu_default2="MASK_CPU_EV6|MASK_BXW|MASK_CIX|MASK_MAX"
+ ;;
+ alphapca56*)
+ target_cpu_default2="MASK_CPU_EV5|MASK_BWX|TASK_MAX"
+ ;;
alphaev56*)
- target_cpu_default2="MASK_CPU_EV5|MASK_BYTE_OPS"
+ target_cpu_default2="MASK_CPU_EV5|MASK_BWX"
;;
alphaev5*)
target_cpu_default2="MASK_CPU_EV5"
@@ -2745,10 +2743,11 @@ fi
# Set up the header files.
# $links is the list of header files to create.
# $vars is the list of shell variables with file names to include.
-# config2.h is the old config.h. It is included by the new config.h which
-# created from config.in. The goal is to simplify the transition to autoconf.
+# auto-conf.h is the file containing items generated by autoconf and is
+# the first file included by config.h.
+host_xm_file="auto-config.h ${host_xm_file}"
vars="host_xm_file tm_file xm_file build_xm_file"
-links="config2.h tm.h tconfig.h hconfig.h"
+links="config.h tm.h tconfig.h hconfig.h"
rm -f config.bak
if [[ -f config.status ]]; then mv -f config.status config.bak; fi
@@ -2823,6 +2822,7 @@ then
cc_set_by_configure="\$(CC)"
stage_prefix_set_by_configure="\$(STAGE_PREFIX)"
else
+ symbolic_link="cp -p"
cc_set_by_configure="\`case '\$(CC)' in stage*) echo '\$(CC)' | sed -e 's|stage|../stage|g';; *) echo '\$(CC)';; esac\`"
stage_prefix_set_by_configure="\`case '\$(STAGE_PREFIX)' in stage*) echo '\$(STAGE_PREFIX)' | sed -e 's|stage|../stage|g';; *) echo '\$(STAGE_PREFIX)';; esac\`"
fi
@@ -3126,6 +3126,7 @@ AC_SUBST(maybe_use_collect2)
AC_SUBST(cc_set_by_configure)
AC_SUBST(stage_prefix_set_by_configure)
AC_SUBST(install)
+AC_SUBST(symbolic_link)
AC_SUBST_FILE(target_overrides)
AC_SUBST_FILE(host_overrides)
@@ -3170,7 +3171,7 @@ AC_OUTPUT($all_outputs,
[
. $srcdir/configure.lang
case x$CONFIG_HEADERS in
-xconfig.h:config.in)
+xauto-config.h:config.in)
echo > cstamp-h ;;
esac
# If the host supports symlinks, point stage[1234] at ../stage[1234] so
diff --git a/gcc/cp/ChangeLog b/gcc/cp/ChangeLog
index 20ca7e1df91..bb27b8c9a20 100644
--- a/gcc/cp/ChangeLog
+++ b/gcc/cp/ChangeLog
@@ -77,6 +77,15 @@ Mon Oct 20 10:52:22 1997 Jason Merrill <jason@yorick.cygnus.com>
(common_type): Likewise.
* error.c (args_as_string): Recognize null_node.
+Sun Oct 19 09:13:01 1997 Richard Kenner <kenner@vlsi1.ultra.nyu.edu>
+
+ * typeck.c (rationalize_conditional_expr): Handle {MIN,MAX}_EXPR.
+ (unary_complex_lvalue): Call it for {MIN,MAX}_EXPR.
+
+ * decl.c (init_decl_processing): Call using_eh_for_cleanups.
+
+ * Make-lang.in (g++): Include prefix.o.
+
Thu Oct 16 15:31:09 1997 Judy Goldberg <judygold@sanwafp.com>
* pt.c (determine_explicit_specialization): Initialize "dummy"
diff --git a/gcc/cp/Make-lang.in b/gcc/cp/Make-lang.in
index 3d14dfa329f..78123ef40b0 100644
--- a/gcc/cp/Make-lang.in
+++ b/gcc/cp/Make-lang.in
@@ -90,8 +90,8 @@ g++.o: $(CONFIG_H) multilib.h config.status $(lang_specs_files) g++.c
-c g++.c
# Create the compiler driver for g++.
-g++$(exeext): g++.o g++spec.o version.o choose-temp.o pexecute.o $(LIBDEPS) $(EXTRA_GCC_OBJS)
- $(CC) $(ALL_CFLAGS) $(LDFLAGS) -o $@ g++.o g++spec.o version.o \
+g++$(exeext): g++.o g++spec.o version.o choose-temp.o pexecute.o prefix.o $(LIBDEPS) $(EXTRA_GCC_OBJS)
+ $(CC) $(ALL_CFLAGS) $(LDFLAGS) -o $@ g++.o g++spec.o prefix.o version.o \
choose-temp.o pexecute.o $(EXTRA_GCC_OBJS) $(LIBS)
# Create a version of the g++ driver which calls the cross-compiler.
diff --git a/gcc/cp/decl.c b/gcc/cp/decl.c
index ca21b486f8d..77f5fd50610 100644
--- a/gcc/cp/decl.c
+++ b/gcc/cp/decl.c
@@ -5585,6 +5585,9 @@ init_decl_processing ()
/* Prepare to check format strings against argument lists. */
init_function_format_info ();
+
+ /* Show we use EH for cleanups. */
+ using_eh_for_cleanups ();
}
/* initialize type descriptor type node of various rtti type. */
diff --git a/gcc/cp/parse.c b/gcc/cp/parse.c
index 80ac2205261..9aa05f35086 100644
--- a/gcc/cp/parse.c
+++ b/gcc/cp/parse.c
@@ -3495,7 +3495,7 @@ static const short yycheck[] = { 4,
78, 79, 80, 81, 82, 83, 84, 85
};
/* -*-C-*- Note some compilers choke on comments on `#line' lines. */
-#line 3 "/usr/lib/bison.simple"
+#line 3 "/usr/cygnus/latest-940103/share/bison.simple"
/* Skeleton output parser for bison,
Copyright (C) 1984, 1989, 1990 Free Software Foundation, Inc.
@@ -3688,7 +3688,7 @@ __yy_memcpy (char *to, char *from, int count)
#endif
#endif
-#line 196 "/usr/lib/bison.simple"
+#line 196 "/usr/cygnus/latest-940103/share/bison.simple"
/* The user can define YYPARSE_PARAM as the name of an argument to be passed
into yyparse. The argument should have type void *.
@@ -8425,7 +8425,7 @@ case 830:
break;}
}
/* the action file gets copied in in place of this dollarsign */
-#line 498 "/usr/lib/bison.simple"
+#line 498 "/usr/cygnus/latest-940103/share/bison.simple"
yyvsp -= yylen;
yyssp -= yylen;
diff --git a/gcc/cp/parse.h b/gcc/cp/parse.h
index f45eb6f8604..4ebcff21042 100644
--- a/gcc/cp/parse.h
+++ b/gcc/cp/parse.h
@@ -89,4 +89,5 @@ typedef union {long itype; tree ttype; char *strtype; enum tree_code code; flagg
extern YYSTYPE yylval;
-#define YYEMPTY -2
+#define YYEMPTY -2
+
diff --git a/gcc/cp/typeck.c b/gcc/cp/typeck.c
index aafea54b1e4..4b774d23220 100644
--- a/gcc/cp/typeck.c
+++ b/gcc/cp/typeck.c
@@ -1681,18 +1681,33 @@ build_component_ref_1 (datum, field, protect)
(build_component_ref (datum, field, NULL_TREE, protect));
}
-/* Given a COND_EXPR in T, return it in a form that we can, for
- example, use as an lvalue. This code used to be in unary_complex_lvalue,
- but we needed it to deal with `a = (d == c) ? b : c' expressions, where
- we're dealing with aggregates. So, we now call this in unary_complex_lvalue,
- and in build_modify_expr. The case (in particular) that led to this was
- with CODE == ADDR_EXPR, since it's not an lvalue when we'd get it there. */
+/* Given a COND_EXPR, MIN_EXPR, or MAX_EXPR in T, return it in a form that we
+ can, for example, use as an lvalue. This code used to be in
+ unary_complex_lvalue, but we needed it to deal with `a = (d == c) ? b : c'
+ expressions, where we're dealing with aggregates. But now it's again only
+ called from unary_complex_lvalue. The case (in particular) that led to
+ this was with CODE == ADDR_EXPR, since it's not an lvalue when we'd
+ get it there. */
static tree
rationalize_conditional_expr (code, t)
enum tree_code code;
tree t;
{
+ /* For MIN_EXPR or MAX_EXPR, fold-const.c has arranged things so that
+ the first operand is always the one to be used if both operands
+ are equal, so we know what conditional expression this used to be. */
+ if (TREE_CODE (t) == MIN_EXPR || TREE_CODE (t) == MAX_EXPR)
+ {
+ return
+ build_conditional_expr (build_x_binary_op ((TREE_CODE (t) == MIN_EXPR
+ ? LE_EXPR : GE_EXPR),
+ TREE_OPERAND (t, 0),
+ TREE_OPERAND (t, 1)),
+ build_unary_op (code, TREE_OPERAND (t, 0), 0),
+ build_unary_op (code, TREE_OPERAND (t, 1), 0));
+ }
+
return
build_conditional_expr (TREE_OPERAND (t, 0),
build_unary_op (code, TREE_OPERAND (t, 1), 0),
@@ -4584,7 +4599,8 @@ unary_complex_lvalue (code, arg)
}
/* Handle (a ? b : c) used as an "lvalue". */
- if (TREE_CODE (arg) == COND_EXPR)
+ if (TREE_CODE (arg) == COND_EXPR
+ || TREE_CODE (arg) == MIN_EXPR || TREE_CODE (arg) == MAX_EXPR)
return rationalize_conditional_expr (code, arg);
if (TREE_CODE (arg) == MODIFY_EXPR
diff --git a/gcc/cplus-dem.c b/gcc/cplus-dem.c
index 58f37688b6b..ed16c8680cd 100644
--- a/gcc/cplus-dem.c
+++ b/gcc/cplus-dem.c
@@ -2426,7 +2426,7 @@ demangle_fund_type (work, mangled, result)
case 'J':
(*mangled)++;
APPEND_BLANK (result);
- string_append (result, "complex");
+ string_append (result, "__complex");
break;
default:
done = 1;
diff --git a/gcc/cpp.info b/gcc/cpp.info
deleted file mode 100644
index f20aef96e1f..00000000000
--- a/gcc/cpp.info
+++ /dev/null
@@ -1,75 +0,0 @@
-This is Info file cpp.info, produced by Makeinfo version 1.67 from the
-input file cpp.texi.
-
- This file documents the GNU C Preprocessor.
-
- Copyright 1987, 1989, 1991, 1992, 1993, 1994, 1995 Free Software
-Foundation, Inc.
-
- Permission is granted to make and distribute verbatim copies of this
-manual provided the copyright notice and this permission notice are
-preserved on all copies.
-
- Permission is granted to copy and distribute modified versions of
-this manual under the conditions for verbatim copying, provided also
-that the entire resulting derived work is distributed under the terms
-of a permission notice identical to this one.
-
- Permission is granted to copy and distribute translations of this
-manual into another language, under the above conditions for modified
-versions.
-
-
-Indirect:
-cpp.info-1: 798
-cpp.info-2: 50062
-cpp.info-3: 91249
-
-Tag Table:
-(Indirect)
-Node: Top798
-Node: Global Actions3707
-Node: Directives6227
-Node: Header Files7914
-Node: Header Uses8573
-Node: Include Syntax10065
-Node: Include Operation13207
-Node: Once-Only15069
-Node: Inheritance17494
-Node: Macros20027
-Node: Simple Macros20941
-Node: Argument Macros23929
-Node: Predefined29727
-Node: Standard Predefined30157
-Node: Nonstandard Predefined37948
-Node: Stringification41524
-Node: Concatenation44450
-Node: Undefining47723
-Node: Redefining48762
-Node: Macro Pitfalls50062
-Node: Misnesting51166
-Node: Macro Parentheses52180
-Node: Swallow Semicolon54048
-Node: Side Effects55948
-Node: Self-Reference57646
-Node: Argument Prescan59922
-Node: Cascaded Macros64924
-Node: Newlines in Args66069
-Node: Conditionals67414
-Node: Conditional Uses68766
-Node: Conditional Syntax70189
-Node: #if Directive70775
-Node: #else Directive73064
-Node: #elif Directive73731
-Node: Deleted Code75109
-Node: Conditionals-Macros76170
-Node: Assertions79855
-Node: #error Directive84090
-Node: Combining Sources85575
-Node: Other Directives88486
-Node: Output89940
-Node: Invocation91249
-Node: Concept Index103346
-Node: Index106199
-
-End Tag Table
diff --git a/gcc/cpp.info-1 b/gcc/cpp.info-1
deleted file mode 100644
index aa15a021fec..00000000000
--- a/gcc/cpp.info-1
+++ /dev/null
@@ -1,1182 +0,0 @@
-This is Info file cpp.info, produced by Makeinfo version 1.67 from the
-input file cpp.texi.
-
- This file documents the GNU C Preprocessor.
-
- Copyright 1987, 1989, 1991, 1992, 1993, 1994, 1995 Free Software
-Foundation, Inc.
-
- Permission is granted to make and distribute verbatim copies of this
-manual provided the copyright notice and this permission notice are
-preserved on all copies.
-
- Permission is granted to copy and distribute modified versions of
-this manual under the conditions for verbatim copying, provided also
-that the entire resulting derived work is distributed under the terms
-of a permission notice identical to this one.
-
- Permission is granted to copy and distribute translations of this
-manual into another language, under the above conditions for modified
-versions.
-
-
-File: cpp.info, Node: Top, Next: Global Actions, Up: (DIR)
-
-The C Preprocessor
-******************
-
- The C preprocessor is a "macro processor" that is used automatically
-by the C compiler to transform your program before actual compilation.
-It is called a macro processor because it allows you to define "macros",
-which are brief abbreviations for longer constructs.
-
- The C preprocessor provides four separate facilities that you can
-use as you see fit:
-
- * Inclusion of header files. These are files of declarations that
- can be substituted into your program.
-
- * Macro expansion. You can define "macros", which are abbreviations
- for arbitrary fragments of C code, and then the C preprocessor will
- replace the macros with their definitions throughout the program.
-
- * Conditional compilation. Using special preprocessing directives,
- you can include or exclude parts of the program according to
- various conditions.
-
- * Line control. If you use a program to combine or rearrange source
- files into an intermediate file which is then compiled, you can
- use line control to inform the compiler of where each source line
- originally came from.
-
- C preprocessors vary in some details. This manual discusses the GNU
-C preprocessor, the C Compatible Compiler Preprocessor. The GNU C
-preprocessor provides a superset of the features of ANSI Standard C.
-
- ANSI Standard C requires the rejection of many harmless constructs
-commonly used by today's C programs. Such incompatibility would be
-inconvenient for users, so the GNU C preprocessor is configured to
-accept these constructs by default. Strictly speaking, to get ANSI
-Standard C, you must use the options `-trigraphs', `-undef' and
-`-pedantic', but in practice the consequences of having strict ANSI
-Standard C make it undesirable to do this. *Note Invocation::.
-
- The C preprocessor is designed for C-like languages; you may run into
-problems if you apply it to other kinds of languages, because it assumes
-that it is dealing with C. For example, the C preprocessor sometimes
-outputs extra white space to avoid inadvertent C token concatenation,
-and this may cause problems with other languages.
-
-* Menu:
-
-* Global Actions:: Actions made uniformly on all input files.
-* Directives:: General syntax of preprocessing directives.
-* Header Files:: How and why to use header files.
-* Macros:: How and why to use macros.
-* Conditionals:: How and why to use conditionals.
-* Combining Sources:: Use of line control when you combine source files.
-* Other Directives:: Miscellaneous preprocessing directives.
-* Output:: Format of output from the C preprocessor.
-* Invocation:: How to invoke the preprocessor; command options.
-* Concept Index:: Index of concepts and terms.
-* Index:: Index of directives, predefined macros and options.
-
-
-File: cpp.info, Node: Global Actions, Next: Directives, Prev: Top, Up: Top
-
-Transformations Made Globally
-=============================
-
- Most C preprocessor features are inactive unless you give specific
-directives to request their use. (Preprocessing directives are lines
-starting with `#'; *note Directives::.). But there are three
-transformations that the preprocessor always makes on all the input it
-receives, even in the absence of directives.
-
- * All C comments are replaced with single spaces.
-
- * Backslash-Newline sequences are deleted, no matter where. This
- feature allows you to break long lines for cosmetic purposes
- without changing their meaning.
-
- * Predefined macro names are replaced with their expansions (*note
- Predefined::.).
-
- The first two transformations are done *before* nearly all other
-parsing and before preprocessing directives are recognized. Thus, for
-example, you can split a line cosmetically with Backslash-Newline
-anywhere (except when trigraphs are in use; see below).
-
- /*
- */ # /*
- */ defi\
- ne FO\
- O 10\
- 20
-
-is equivalent into `#define FOO 1020'. You can split even an escape
-sequence with Backslash-Newline. For example, you can split `"foo\bar"'
-between the `\' and the `b' to get
-
- "foo\\
- bar"
-
-This behavior is unclean: in all other contexts, a Backslash can be
-inserted in a string constant as an ordinary character by writing a
-double Backslash, and this creates an exception. But the ANSI C
-standard requires it. (Strict ANSI C does not allow Newlines in string
-constants, so they do not consider this a problem.)
-
- But there are a few exceptions to all three transformations.
-
- * C comments and predefined macro names are not recognized inside a
- `#include' directive in which the file name is delimited with `<'
- and `>'.
-
- * C comments and predefined macro names are never recognized within a
- character or string constant. (Strictly speaking, this is the
- rule, not an exception, but it is worth noting here anyway.)
-
- * Backslash-Newline may not safely be used within an ANSI "trigraph".
- Trigraphs are converted before Backslash-Newline is deleted. If
- you write what looks like a trigraph with a Backslash-Newline
- inside, the Backslash-Newline is deleted as usual, but it is then
- too late to recognize the trigraph.
-
- This exception is relevant only if you use the `-trigraphs' option
- to enable trigraph processing. *Note Invocation::.
-
-
-File: cpp.info, Node: Directives, Next: Header Files, Prev: Global Actions, Up: Top
-
-Preprocessing Directives
-========================
-
- Most preprocessor features are active only if you use preprocessing
-directives to request their use.
-
- Preprocessing directives are lines in your program that start with
-`#'. The `#' is followed by an identifier that is the "directive name".
-For example, `#define' is the directive that defines a macro.
-Whitespace is also allowed before and after the `#'.
-
- The set of valid directive names is fixed. Programs cannot define
-new preprocessing directives.
-
- Some directive names require arguments; these make up the rest of
-the directive line and must be separated from the directive name by
-whitespace. For example, `#define' must be followed by a macro name
-and the intended expansion of the macro. *Note Simple Macros::.
-
- A preprocessing directive cannot be more than one line in normal
-circumstances. It may be split cosmetically with Backslash-Newline,
-but that has no effect on its meaning. Comments containing Newlines
-can also divide the directive into multiple lines, but the comments are
-changed to Spaces before the directive is interpreted. The only way a
-significant Newline can occur in a preprocessing directive is within a
-string constant or character constant. Note that most C compilers that
-might be applied to the output from the preprocessor do not accept
-string or character constants containing Newlines.
-
- The `#' and the directive name cannot come from a macro expansion.
-For example, if `foo' is defined as a macro expanding to `define', that
-does not make `#foo' a valid preprocessing directive.
-
-
-File: cpp.info, Node: Header Files, Next: Macros, Prev: Directives, Up: Top
-
-Header Files
-============
-
- A header file is a file containing C declarations and macro
-definitions (*note Macros::.) to be shared between several source
-files. You request the use of a header file in your program with the C
-preprocessing directive `#include'.
-
-* Menu:
-
-* Header Uses:: What header files are used for.
-* Include Syntax:: How to write `#include' directives.
-* Include Operation:: What `#include' does.
-* Once-Only:: Preventing multiple inclusion of one header file.
-* Inheritance:: Including one header file in another header file.
-
-
-File: cpp.info, Node: Header Uses, Next: Include Syntax, Prev: Header Files, Up: Header Files
-
-Uses of Header Files
---------------------
-
- Header files serve two kinds of purposes.
-
- * System header files declare the interfaces to parts of the
- operating system. You include them in your program to supply the
- definitions and declarations you need to invoke system calls and
- libraries.
-
- * Your own header files contain declarations for interfaces between
- the source files of your program. Each time you have a group of
- related declarations and macro definitions all or most of which
- are needed in several different source files, it is a good idea to
- create a header file for them.
-
- Including a header file produces the same results in C compilation as
-copying the header file into each source file that needs it. But such
-copying would be time-consuming and error-prone. With a header file,
-the related declarations appear in only one place. If they need to be
-changed, they can be changed in one place, and programs that include
-the header file will automatically use the new version when next
-recompiled. The header file eliminates the labor of finding and
-changing all the copies as well as the risk that a failure to find one
-copy will result in inconsistencies within a program.
-
- The usual convention is to give header files names that end with
-`.h'. Avoid unusual characters in header file names, as they reduce
-portability.
-
-
-File: cpp.info, Node: Include Syntax, Next: Include Operation, Prev: Header Uses, Up: Header Files
-
-The `#include' Directive
-------------------------
-
- Both user and system header files are included using the
-preprocessing directive `#include'. It has three variants:
-
-`#include <FILE>'
- This variant is used for system header files. It searches for a
- file named FILE in a list of directories specified by you, then in
- a standard list of system directories. You specify directories to
- search for header files with the command option `-I' (*note
- Invocation::.). The option `-nostdinc' inhibits searching the
- standard system directories; in this case only the directories you
- specify are searched.
-
- The parsing of this form of `#include' is slightly special because
- comments are not recognized within the `<...>'. Thus, in
- `#include <x/*y>' the `/*' does not start a comment and the
- directive specifies inclusion of a system header file named
- `x/*y'. Of course, a header file with such a name is unlikely to
- exist on Unix, where shell wildcard features would make it hard to
- manipulate.
-
- The argument FILE may not contain a `>' character. It may,
- however, contain a `<' character.
-
-`#include "FILE"'
- This variant is used for header files of your own program. It
- searches for a file named FILE first in the current directory,
- then in the same directories used for system header files. The
- current directory is the directory of the current input file. It
- is tried first because it is presumed to be the location of the
- files that the current input file refers to. (If the `-I-' option
- is used, the special treatment of the current directory is
- inhibited.)
-
- The argument FILE may not contain `"' characters. If backslashes
- occur within FILE, they are considered ordinary text characters,
- not escape characters. None of the character escape sequences
- appropriate to string constants in C are processed. Thus,
- `#include "x\n\\y"' specifies a filename containing three
- backslashes. It is not clear why this behavior is ever useful, but
- the ANSI standard specifies it.
-
-`#include ANYTHING ELSE'
- This variant is called a "computed #include". Any `#include'
- directive whose argument does not fit the above two forms is a
- computed include. The text ANYTHING ELSE is checked for macro
- calls, which are expanded (*note Macros::.). When this is done,
- the result must fit one of the above two variants--in particular,
- the expanded text must in the end be surrounded by either quotes
- or angle braces.
-
- This feature allows you to define a macro which controls the file
- name to be used at a later point in the program. One application
- of this is to allow a site-specific configuration file for your
- program to specify the names of the system include files to be
- used. This can help in porting the program to various operating
- systems in which the necessary system header files are found in
- different places.
-
-
-File: cpp.info, Node: Include Operation, Next: Once-Only, Prev: Include Syntax, Up: Header Files
-
-How `#include' Works
---------------------
-
- The `#include' directive works by directing the C preprocessor to
-scan the specified file as input before continuing with the rest of the
-current file. The output from the preprocessor contains the output
-already generated, followed by the output resulting from the included
-file, followed by the output that comes from the text after the
-`#include' directive. For example, given a header file `header.h' as
-follows,
-
- char *test ();
-
-and a main program called `program.c' that uses the header file, like
-this,
-
- int x;
- #include "header.h"
-
- main ()
- {
- printf (test ());
- }
-
-the output generated by the C preprocessor for `program.c' as input
-would be
-
- int x;
- char *test ();
-
- main ()
- {
- printf (test ());
- }
-
- Included files are not limited to declarations and macro
-definitions; those are merely the typical uses. Any fragment of a C
-program can be included from another file. The include file could even
-contain the beginning of a statement that is concluded in the
-containing file, or the end of a statement that was started in the
-including file. However, a comment or a string or character constant
-may not start in the included file and finish in the including file.
-An unterminated comment, string constant or character constant in an
-included file is considered to end (with an error message) at the end
-of the file.
-
- It is possible for a header file to begin or end a syntactic unit
-such as a function definition, but that would be very confusing, so
-don't do it.
-
- The line following the `#include' directive is always treated as a
-separate line by the C preprocessor even if the included file lacks a
-final newline.
-
-
-File: cpp.info, Node: Once-Only, Next: Inheritance, Prev: Include Operation, Up: Header Files
-
-Once-Only Include Files
------------------------
-
- Very often, one header file includes another. It can easily result
-that a certain header file is included more than once. This may lead
-to errors, if the header file defines structure types or typedefs, and
-is certainly wasteful. Therefore, we often wish to prevent multiple
-inclusion of a header file.
-
- The standard way to do this is to enclose the entire real contents
-of the file in a conditional, like this:
-
- #ifndef FILE_FOO_SEEN
- #define FILE_FOO_SEEN
-
- THE ENTIRE FILE
-
- #endif /* FILE_FOO_SEEN */
-
- The macro `FILE_FOO_SEEN' indicates that the file has been included
-once already. In a user header file, the macro name should not begin
-with `_'. In a system header file, this name should begin with `__' to
-avoid conflicts with user programs. In any kind of header file, the
-macro name should contain the name of the file and some additional
-text, to avoid conflicts with other header files.
-
- The GNU C preprocessor is programmed to notice when a header file
-uses this particular construct and handle it efficiently. If a header
-file is contained entirely in a `#ifndef' conditional, then it records
-that fact. If a subsequent `#include' specifies the same file, and the
-macro in the `#ifndef' is already defined, then the file is entirely
-skipped, without even reading it.
-
- There is also an explicit directive to tell the preprocessor that it
-need not include a file more than once. This is called `#pragma once',
-and was used *in addition to* the `#ifndef' conditional around the
-contents of the header file. `#pragma once' is now obsolete and should
-not be used at all.
-
- In the Objective C language, there is a variant of `#include' called
-`#import' which includes a file, but does so at most once. If you use
-`#import' *instead of* `#include', then you don't need the conditionals
-inside the header file to prevent multiple execution of the contents.
-
- `#import' is obsolete because it is not a well designed feature. It
-requires the users of a header file--the applications programmers--to
-know that a certain header file should only be included once. It is
-much better for the header file's implementor to write the file so that
-users don't need to know this. Using `#ifndef' accomplishes this goal.
-
-
-File: cpp.info, Node: Inheritance, Prev: Once-Only, Up: Header Files
-
-Inheritance and Header Files
-----------------------------
-
- "Inheritance" is what happens when one object or file derives some
-of its contents by virtual copying from another object or file. In the
-case of C header files, inheritance means that one header file includes
-another header file and then replaces or adds something.
-
- If the inheriting header file and the base header file have different
-names, then inheritance is straightforward: simply write `#include
-"BASE"' in the inheriting file.
-
- Sometimes it is necessary to give the inheriting file the same name
-as the base file. This is less straightforward.
-
- For example, suppose an application program uses the system header
-`sys/signal.h', but the version of `/usr/include/sys/signal.h' on a
-particular system doesn't do what the application program expects. It
-might be convenient to define a "local" version, perhaps under the name
-`/usr/local/include/sys/signal.h', to override or add to the one
-supplied by the system.
-
- You can do this by compiling with the option `-I.', and writing a
-file `sys/signal.h' that does what the application program expects.
-But making this file include the standard `sys/signal.h' is not so
-easy--writing `#include <sys/signal.h>' in that file doesn't work,
-because it includes your own version of the file, not the standard
-system version. Used in that file itself, this leads to an infinite
-recursion and a fatal error in compilation.
-
- `#include </usr/include/sys/signal.h>' would find the proper file,
-but that is not clean, since it makes an assumption about where the
-system header file is found. This is bad for maintenance, since it
-means that any change in where the system's header files are kept
-requires a change somewhere else.
-
- The clean way to solve this problem is to use `#include_next', which
-means, "Include the *next* file with this name." This directive works
-like `#include' except in searching for the specified file: it starts
-searching the list of header file directories *after* the directory in
-which the current file was found.
-
- Suppose you specify `-I /usr/local/include', and the list of
-directories to search also includes `/usr/include'; and suppose both
-directories contain `sys/signal.h'. Ordinary `#include <sys/signal.h>'
-finds the file under `/usr/local/include'. If that file contains
-`#include_next <sys/signal.h>', it starts searching after that
-directory, and finds the file in `/usr/include'.
-
-
-File: cpp.info, Node: Macros, Next: Conditionals, Prev: Header Files, Up: Top
-
-Macros
-======
-
- A macro is a sort of abbreviation which you can define once and then
-use later. There are many complicated features associated with macros
-in the C preprocessor.
-
-* Menu:
-
-* Simple Macros:: Macros that always expand the same way.
-* Argument Macros:: Macros that accept arguments that are substituted
- into the macro expansion.
-* Predefined:: Predefined macros that are always available.
-* Stringification:: Macro arguments converted into string constants.
-* Concatenation:: Building tokens from parts taken from macro arguments.
-* Undefining:: Cancelling a macro's definition.
-* Redefining:: Changing a macro's definition.
-* Macro Pitfalls:: Macros can confuse the unwary. Here we explain
- several common problems and strange features.
-
-
-File: cpp.info, Node: Simple Macros, Next: Argument Macros, Prev: Macros, Up: Macros
-
-Simple Macros
--------------
-
- A "simple macro" is a kind of abbreviation. It is a name which
-stands for a fragment of code. Some people refer to these as "manifest
-constants".
-
- Before you can use a macro, you must "define" it explicitly with the
-`#define' directive. `#define' is followed by the name of the macro
-and then the code it should be an abbreviation for. For example,
-
- #define BUFFER_SIZE 1020
-
-defines a macro named `BUFFER_SIZE' as an abbreviation for the text
-`1020'. If somewhere after this `#define' directive there comes a C
-statement of the form
-
- foo = (char *) xmalloc (BUFFER_SIZE);
-
-then the C preprocessor will recognize and "expand" the macro
-`BUFFER_SIZE', resulting in
-
- foo = (char *) xmalloc (1020);
-
- The use of all upper case for macro names is a standard convention.
-Programs are easier to read when it is possible to tell at a glance
-which names are macros.
-
- Normally, a macro definition must be a single line, like all C
-preprocessing directives. (You can split a long macro definition
-cosmetically with Backslash-Newline.) There is one exception: Newlines
-can be included in the macro definition if within a string or character
-constant. This is because it is not possible for a macro definition to
-contain an unbalanced quote character; the definition automatically
-extends to include the matching quote character that ends the string or
-character constant. Comments within a macro definition may contain
-Newlines, which make no difference since the comments are entirely
-replaced with Spaces regardless of their contents.
-
- Aside from the above, there is no restriction on what can go in a
-macro body. Parentheses need not balance. The body need not resemble
-valid C code. (But if it does not, you may get error messages from the
-C compiler when you use the macro.)
-
- The C preprocessor scans your program sequentially, so macro
-definitions take effect at the place you write them. Therefore, the
-following input to the C preprocessor
-
- foo = X;
- #define X 4
- bar = X;
-
-produces as output
-
- foo = X;
-
- bar = 4;
-
- After the preprocessor expands a macro name, the macro's definition
-body is appended to the front of the remaining input, and the check for
-macro calls continues. Therefore, the macro body can contain calls to
-other macros. For example, after
-
- #define BUFSIZE 1020
- #define TABLESIZE BUFSIZE
-
-the name `TABLESIZE' when used in the program would go through two
-stages of expansion, resulting ultimately in `1020'.
-
- This is not at all the same as defining `TABLESIZE' to be `1020'.
-The `#define' for `TABLESIZE' uses exactly the body you specify--in
-this case, `BUFSIZE'--and does not check to see whether it too is the
-name of a macro. It's only when you *use* `TABLESIZE' that the result
-of its expansion is checked for more macro names. *Note Cascaded
-Macros::.
-
-
-File: cpp.info, Node: Argument Macros, Next: Predefined, Prev: Simple Macros, Up: Macros
-
-Macros with Arguments
----------------------
-
- A simple macro always stands for exactly the same text, each time it
-is used. Macros can be more flexible when they accept "arguments".
-Arguments are fragments of code that you supply each time the macro is
-used. These fragments are included in the expansion of the macro
-according to the directions in the macro definition. A macro that
-accepts arguments is called a "function-like macro" because the syntax
-for using it looks like a function call.
-
- To define a macro that uses arguments, you write a `#define'
-directive with a list of "argument names" in parentheses after the name
-of the macro. The argument names may be any valid C identifiers,
-separated by commas and optionally whitespace. The open-parenthesis
-must follow the macro name immediately, with no space in between.
-
- For example, here is a macro that computes the minimum of two numeric
-values, as it is defined in many C programs:
-
- #define min(X, Y) ((X) < (Y) ? (X) : (Y))
-
-(This is not the best way to define a "minimum" macro in GNU C. *Note
-Side Effects::, for more information.)
-
- To use a macro that expects arguments, you write the name of the
-macro followed by a list of "actual arguments" in parentheses,
-separated by commas. The number of actual arguments you give must
-match the number of arguments the macro expects. Examples of use of
-the macro `min' include `min (1, 2)' and `min (x + 28, *p)'.
-
- The expansion text of the macro depends on the arguments you use.
-Each of the argument names of the macro is replaced, throughout the
-macro definition, with the corresponding actual argument. Using the
-same macro `min' defined above, `min (1, 2)' expands into
-
- ((1) < (2) ? (1) : (2))
-
-where `1' has been substituted for `X' and `2' for `Y'.
-
- Likewise, `min (x + 28, *p)' expands into
-
- ((x + 28) < (*p) ? (x + 28) : (*p))
-
- Parentheses in the actual arguments must balance; a comma within
-parentheses does not end an argument. However, there is no requirement
-for brackets or braces to balance, and they do not prevent a comma from
-separating arguments. Thus,
-
- macro (array[x = y, x + 1])
-
-passes two arguments to `macro': `array[x = y' and `x + 1]'. If you
-want to supply `array[x = y, x + 1]' as an argument, you must write it
-as `array[(x = y, x + 1)]', which is equivalent C code.
-
- After the actual arguments are substituted into the macro body, the
-entire result is appended to the front of the remaining input, and the
-check for macro calls continues. Therefore, the actual arguments can
-contain calls to other macros, either with or without arguments, or
-even to the same macro. The macro body can also contain calls to other
-macros. For example, `min (min (a, b), c)' expands into this text:
-
- ((((a) < (b) ? (a) : (b))) < (c)
- ? (((a) < (b) ? (a) : (b)))
- : (c))
-
-(Line breaks shown here for clarity would not actually be generated.)
-
- If a macro `foo' takes one argument, and you want to supply an empty
-argument, you must write at least some whitespace between the
-parentheses, like this: `foo ( )'. Just `foo ()' is providing no
-arguments, which is an error if `foo' expects an argument. But `foo0
-()' is the correct way to call a macro defined to take zero arguments,
-like this:
-
- #define foo0() ...
-
- If you use the macro name followed by something other than an
-open-parenthesis (after ignoring any spaces, tabs and comments that
-follow), it is not a call to the macro, and the preprocessor does not
-change what you have written. Therefore, it is possible for the same
-name to be a variable or function in your program as well as a macro,
-and you can choose in each instance whether to refer to the macro (if
-an actual argument list follows) or the variable or function (if an
-argument list does not follow).
-
- Such dual use of one name could be confusing and should be avoided
-except when the two meanings are effectively synonymous: that is, when
-the name is both a macro and a function and the two have similar
-effects. You can think of the name simply as a function; use of the
-name for purposes other than calling it (such as, to take the address)
-will refer to the function, while calls will expand the macro and
-generate better but equivalent code. For example, you can use a
-function named `min' in the same source file that defines the macro.
-If you write `&min' with no argument list, you refer to the function.
-If you write `min (x, bb)', with an argument list, the macro is
-expanded. If you write `(min) (a, bb)', where the name `min' is not
-followed by an open-parenthesis, the macro is not expanded, so you wind
-up with a call to the function `min'.
-
- You may not define the same name as both a simple macro and a macro
-with arguments.
-
- In the definition of a macro with arguments, the list of argument
-names must follow the macro name immediately with no space in between.
-If there is a space after the macro name, the macro is defined as
-taking no arguments, and all the rest of the line is taken to be the
-expansion. The reason for this is that it is often useful to define a
-macro that takes no arguments and whose definition begins with an
-identifier in parentheses. This rule about spaces makes it possible
-for you to do either this:
-
- #define FOO(x) - 1 / (x)
-
-(which defines `FOO' to take an argument and expand into minus the
-reciprocal of that argument) or this:
-
- #define BAR (x) - 1 / (x)
-
-(which defines `BAR' to take no argument and always expand into `(x) -
-1 / (x)').
-
- Note that the *uses* of a macro with arguments can have spaces before
-the left parenthesis; it's the *definition* where it matters whether
-there is a space.
-
-
-File: cpp.info, Node: Predefined, Next: Stringification, Prev: Argument Macros, Up: Macros
-
-Predefined Macros
------------------
-
- Several simple macros are predefined. You can use them without
-giving definitions for them. They fall into two classes: standard
-macros and system-specific macros.
-
-* Menu:
-
-* Standard Predefined:: Standard predefined macros.
-* Nonstandard Predefined:: Nonstandard predefined macros.
-
-
-File: cpp.info, Node: Standard Predefined, Next: Nonstandard Predefined, Prev: Predefined, Up: Predefined
-
-Standard Predefined Macros
-..........................
-
- The standard predefined macros are available with the same meanings
-regardless of the machine or operating system on which you are using
-GNU C. Their names all start and end with double underscores. Those
-preceding `__GNUC__' in this table are standardized by ANSI C; the rest
-are GNU C extensions.
-
-`__FILE__'
- This macro expands to the name of the current input file, in the
- form of a C string constant. The precise name returned is the one
- that was specified in `#include' or as the input file name
- argument.
-
-`__LINE__'
- This macro expands to the current input line number, in the form
- of a decimal integer constant. While we call it a predefined
- macro, it's a pretty strange macro, since its "definition" changes
- with each new line of source code.
-
- This and `__FILE__' are useful in generating an error message to
- report an inconsistency detected by the program; the message can
- state the source line at which the inconsistency was detected.
- For example,
-
- fprintf (stderr, "Internal error: "
- "negative string length "
- "%d at %s, line %d.",
- length, __FILE__, __LINE__);
-
- A `#include' directive changes the expansions of `__FILE__' and
- `__LINE__' to correspond to the included file. At the end of that
- file, when processing resumes on the input file that contained the
- `#include' directive, the expansions of `__FILE__' and `__LINE__'
- revert to the values they had before the `#include' (but
- `__LINE__' is then incremented by one as processing moves to the
- line after the `#include').
-
- The expansions of both `__FILE__' and `__LINE__' are altered if a
- `#line' directive is used. *Note Combining Sources::.
-
-`__DATE__'
- This macro expands to a string constant that describes the date on
- which the preprocessor is being run. The string constant contains
- eleven characters and looks like `"Feb 1 1996"'.
-
-`__TIME__'
- This macro expands to a string constant that describes the time at
- which the preprocessor is being run. The string constant contains
- eight characters and looks like `"23:59:01"'.
-
-`__STDC__'
- This macro expands to the constant 1, to signify that this is ANSI
- Standard C. (Whether that is actually true depends on what C
- compiler will operate on the output from the preprocessor.)
-
- On some hosts, system include files use a different convention,
- where `__STDC__' is normally 0, but is 1 if the user specifies
- strict conformance to the C Standard. The preprocessor follows
- the host convention when processing system include files, but when
- processing user files it follows the usual GNU C convention.
-
- This macro is not defined if the `-traditional' option is used.
-
-`__STDC_VERSION__'
- This macro expands to the C Standard's version number, a long
- integer constant of the form `YYYYMML' where YYYY and MM are the
- year and month of the Standard version. This signifies which
- version of the C Standard the preprocessor conforms to. Like
- `__STDC__', whether this version number is accurate for the entire
- implementation depends on what C compiler will operate on the
- output from the preprocessor.
-
- This macro is not defined if the `-traditional' option is used.
-
-`__GNUC__'
- This macro is defined if and only if this is GNU C. This macro is
- defined only when the entire GNU C compiler is in use; if you
- invoke the preprocessor directly, `__GNUC__' is undefined. The
- value identifies the major version number of GNU CC (`1' for GNU CC
- version 1, which is now obsolete, and `2' for version 2).
-
-`__GNUC_MINOR__'
- The macro contains the minor version number of the compiler. This
- can be used to work around differences between different releases
- of the compiler (for example, if gcc 2.6.3 is known to support a
- feature, you can test for `__GNUC__ > 2 || (__GNUC__ == 2 &&
- __GNUC_MINOR__ >= 6)'). The last number, `3' in the example
- above, denotes the bugfix level of the compiler; no macro contains
- this value.
-
-`__GNUG__'
- The GNU C compiler defines this when the compilation language is
- C++; use `__GNUG__' to distinguish between GNU C and GNU C++.
-
-`__cplusplus'
- The draft ANSI standard for C++ used to require predefining this
- variable. Though it is no longer required, GNU C++ continues to
- define it, as do other popular C++ compilers. You can use
- `__cplusplus' to test whether a header is compiled by a C compiler
- or a C++ compiler.
-
-`__STRICT_ANSI__'
- This macro is defined if and only if the `-ansi' switch was
- specified when GNU C was invoked. Its definition is the null
- string. This macro exists primarily to direct certain GNU header
- files not to define certain traditional Unix constructs which are
- incompatible with ANSI C.
-
-`__BASE_FILE__'
- This macro expands to the name of the main input file, in the form
- of a C string constant. This is the source file that was specified
- as an argument when the C compiler was invoked.
-
-`__INCLUDE_LEVEL__'
- This macro expands to a decimal integer constant that represents
- the depth of nesting in include files. The value of this macro is
- incremented on every `#include' directive and decremented at every
- end of file. For input files specified by command line arguments,
- the nesting level is zero.
-
-`__VERSION__'
- This macro expands to a string which describes the version number
- of GNU C. The string is normally a sequence of decimal numbers
- separated by periods, such as `"2.6.0"'. The only reasonable use
- of this macro is to incorporate it into a string constant.
-
-`__OPTIMIZE__'
- This macro is defined in optimizing compilations. It causes
- certain GNU header files to define alternative macro definitions
- for some system library functions. It is unwise to refer to or
- test the definition of this macro unless you make very sure that
- programs will execute with the same effect regardless.
-
-`__CHAR_UNSIGNED__'
- This macro is defined if and only if the data type `char' is
- unsigned on the target machine. It exists to cause the standard
- header file `limits.h' to work correctly. It is bad practice to
- refer to this macro yourself; instead, refer to the standard
- macros defined in `limits.h'. The preprocessor uses this macro to
- determine whether or not to sign-extend large character constants
- written in octal; see *Note The `#if' Directive: #if Directive.
-
-`__REGISTER_PREFIX__'
- This macro expands to a string describing the prefix applied to cpu
- registers in assembler code. It can be used to write assembler
- code that is usable in multiple environments. For example, in the
- `m68k-aout' environment it expands to the string `""', but in the
- `m68k-coff' environment it expands to the string `"%"'.
-
-`__USER_LABEL_PREFIX__'
- This macro expands to a string describing the prefix applied to
- user generated labels in assembler code. It can be used to write
- assembler code that is usable in multiple environments. For
- example, in the `m68k-aout' environment it expands to the string
- `"_"', but in the `m68k-coff' environment it expands to the string
- `""'. This does not work with the `-mno-underscores' option that
- the i386 OSF/rose and m88k targets provide nor with the `-mcall*'
- options of the rs6000 System V Release 4 target.
-
-
-File: cpp.info, Node: Nonstandard Predefined, Prev: Standard Predefined, Up: Predefined
-
-Nonstandard Predefined Macros
-.............................
-
- The C preprocessor normally has several predefined macros that vary
-between machines because their purpose is to indicate what type of
-system and machine is in use. This manual, being for all systems and
-machines, cannot tell you exactly what their names are; instead, we
-offer a list of some typical ones. You can use `cpp -dM' to see the
-values of predefined macros; see *Note Invocation::.
-
- Some nonstandard predefined macros describe the operating system in
-use, with more or less specificity. For example,
-
-`unix'
- `unix' is normally predefined on all Unix systems.
-
-`BSD'
- `BSD' is predefined on recent versions of Berkeley Unix (perhaps
- only in version 4.3).
-
- Other nonstandard predefined macros describe the kind of CPU, with
-more or less specificity. For example,
-
-`vax'
- `vax' is predefined on Vax computers.
-
-`mc68000'
- `mc68000' is predefined on most computers whose CPU is a Motorola
- 68000, 68010 or 68020.
-
-`m68k'
- `m68k' is also predefined on most computers whose CPU is a 68000,
- 68010 or 68020; however, some makers use `mc68000' and some use
- `m68k'. Some predefine both names. What happens in GNU C depends
- on the system you are using it on.
-
-`M68020'
- `M68020' has been observed to be predefined on some systems that
- use 68020 CPUs--in addition to `mc68000' and `m68k', which are
- less specific.
-
-`_AM29K'
-`_AM29000'
- Both `_AM29K' and `_AM29000' are predefined for the AMD 29000 CPU
- family.
-
-`ns32000'
- `ns32000' is predefined on computers which use the National
- Semiconductor 32000 series CPU.
-
- Yet other nonstandard predefined macros describe the manufacturer of
-the system. For example,
-
-`sun'
- `sun' is predefined on all models of Sun computers.
-
-`pyr'
- `pyr' is predefined on all models of Pyramid computers.
-
-`sequent'
- `sequent' is predefined on all models of Sequent computers.
-
- These predefined symbols are not only nonstandard, they are contrary
-to the ANSI standard because their names do not start with underscores.
-Therefore, the option `-ansi' inhibits the definition of these symbols.
-
- This tends to make `-ansi' useless, since many programs depend on the
-customary nonstandard predefined symbols. Even system header files
-check them and will generate incorrect declarations if they do not find
-the names that are expected. You might think that the header files
-supplied for the Uglix computer would not need to test what machine
-they are running on, because they can simply assume it is the Uglix;
-but often they do, and they do so using the customary names. As a
-result, very few C programs will compile with `-ansi'. We intend to
-avoid such problems on the GNU system.
-
- What, then, should you do in an ANSI C program to test the type of
-machine it will run on?
-
- GNU C offers a parallel series of symbols for this purpose, whose
-names are made from the customary ones by adding `__' at the beginning
-and end. Thus, the symbol `__vax__' would be available on a Vax, and
-so on.
-
- The set of nonstandard predefined names in the GNU C preprocessor is
-controlled (when `cpp' is itself compiled) by the macro
-`CPP_PREDEFINES', which should be a string containing `-D' options,
-separated by spaces. For example, on the Sun 3, we use the following
-definition:
-
- #define CPP_PREDEFINES "-Dmc68000 -Dsun -Dunix -Dm68k"
-
-This macro is usually specified in `tm.h'.
-
-
-File: cpp.info, Node: Stringification, Next: Concatenation, Prev: Predefined, Up: Macros
-
-Stringification
----------------
-
- "Stringification" means turning a code fragment into a string
-constant whose contents are the text for the code fragment. For
-example, stringifying `foo (z)' results in `"foo (z)"'.
-
- In the C preprocessor, stringification is an option available when
-macro arguments are substituted into the macro definition. In the body
-of the definition, when an argument name appears, the character `#'
-before the name specifies stringification of the corresponding actual
-argument when it is substituted at that point in the definition. The
-same argument may be substituted in other places in the definition
-without stringification if the argument name appears in those places
-with no `#'.
-
- Here is an example of a macro definition that uses stringification:
-
- #define WARN_IF(EXP) \
- do { if (EXP) \
- fprintf (stderr, "Warning: " #EXP "\n"); } \
- while (0)
-
-Here the actual argument for `EXP' is substituted once as given, into
-the `if' statement, and once as stringified, into the argument to
-`fprintf'. The `do' and `while (0)' are a kludge to make it possible
-to write `WARN_IF (ARG);', which the resemblance of `WARN_IF' to a
-function would make C programmers want to do; see *Note Swallow
-Semicolon::.
-
- The stringification feature is limited to transforming one macro
-argument into one string constant: there is no way to combine the
-argument with other text and then stringify it all together. But the
-example above shows how an equivalent result can be obtained in ANSI
-Standard C using the feature that adjacent string constants are
-concatenated as one string constant. The preprocessor stringifies the
-actual value of `EXP' into a separate string constant, resulting in
-text like
-
- do { if (x == 0) \
- fprintf (stderr, "Warning: " "x == 0" "\n"); } \
- while (0)
-
-but the C compiler then sees three consecutive string constants and
-concatenates them into one, producing effectively
-
- do { if (x == 0) \
- fprintf (stderr, "Warning: x == 0\n"); } \
- while (0)
-
- Stringification in C involves more than putting doublequote
-characters around the fragment; it is necessary to put backslashes in
-front of all doublequote characters, and all backslashes in string and
-character constants, in order to get a valid C string constant with the
-proper contents. Thus, stringifying `p = "foo\n";' results in `"p =
-\"foo\\n\";"'. However, backslashes that are not inside of string or
-character constants are not duplicated: `\n' by itself stringifies to
-`"\n"'.
-
- Whitespace (including comments) in the text being stringified is
-handled according to precise rules. All leading and trailing
-whitespace is ignored. Any sequence of whitespace in the middle of the
-text is converted to a single space in the stringified result.
-
-
-File: cpp.info, Node: Concatenation, Next: Undefining, Prev: Stringification, Up: Macros
-
-Concatenation
--------------
-
- "Concatenation" means joining two strings into one. In the context
-of macro expansion, concatenation refers to joining two lexical units
-into one longer one. Specifically, an actual argument to the macro can
-be concatenated with another actual argument or with fixed text to
-produce a longer name. The longer name might be the name of a function,
-variable or type, or a C keyword; it might even be the name of another
-macro, in which case it will be expanded.
-
- When you define a macro, you request concatenation with the special
-operator `##' in the macro body. When the macro is called, after
-actual arguments are substituted, all `##' operators are deleted, and
-so is any whitespace next to them (including whitespace that was part
-of an actual argument). The result is to concatenate the syntactic
-tokens on either side of the `##'.
-
- Consider a C program that interprets named commands. There probably
-needs to be a table of commands, perhaps an array of structures
-declared as follows:
-
- struct command
- {
- char *name;
- void (*function) ();
- };
-
- struct command commands[] =
- {
- { "quit", quit_command},
- { "help", help_command},
- ...
- };
-
- It would be cleaner not to have to give each command name twice,
-once in the string constant and once in the function name. A macro
-which takes the name of a command as an argument can make this
-unnecessary. The string constant can be created with stringification,
-and the function name by concatenating the argument with `_command'.
-Here is how it is done:
-
- #define COMMAND(NAME) { #NAME, NAME ## _command }
-
- struct command commands[] =
- {
- COMMAND (quit),
- COMMAND (help),
- ...
- };
-
- The usual case of concatenation is concatenating two names (or a
-name and a number) into a longer name. But this isn't the only valid
-case. It is also possible to concatenate two numbers (or a number and
-a name, such as `1.5' and `e3') into a number. Also, multi-character
-operators such as `+=' can be formed by concatenation. In some cases
-it is even possible to piece together a string constant. However, two
-pieces of text that don't together form a valid lexical unit cannot be
-concatenated. For example, concatenation with `x' on one side and `+'
-on the other is not meaningful because those two characters can't fit
-together in any lexical unit of C. The ANSI standard says that such
-attempts at concatenation are undefined, but in the GNU C preprocessor
-it is well defined: it puts the `x' and `+' side by side with no
-particular special results.
-
- Keep in mind that the C preprocessor converts comments to whitespace
-before macros are even considered. Therefore, you cannot create a
-comment by concatenating `/' and `*': the `/*' sequence that starts a
-comment is not a lexical unit, but rather the beginning of a "long"
-space character. Also, you can freely use comments next to a `##' in a
-macro definition, or in actual arguments that will be concatenated,
-because the comments will be converted to spaces at first sight, and
-concatenation will later discard the spaces.
-
-
-File: cpp.info, Node: Undefining, Next: Redefining, Prev: Concatenation, Up: Macros
-
-Undefining Macros
------------------
-
- To "undefine" a macro means to cancel its definition. This is done
-with the `#undef' directive. `#undef' is followed by the macro name to
-be undefined.
-
- Like definition, undefinition occurs at a specific point in the
-source file, and it applies starting from that point. The name ceases
-to be a macro name, and from that point on it is treated by the
-preprocessor as if it had never been a macro name.
-
- For example,
-
- #define FOO 4
- x = FOO;
- #undef FOO
- x = FOO;
-
-expands into
-
- x = 4;
-
- x = FOO;
-
-In this example, `FOO' had better be a variable or function as well as
-(temporarily) a macro, in order for the result of the expansion to be
-valid C code.
-
- The same form of `#undef' directive will cancel definitions with
-arguments or definitions that don't expect arguments. The `#undef'
-directive has no effect when used on a name not currently defined as a
-macro.
-
-
-File: cpp.info, Node: Redefining, Next: Macro Pitfalls, Prev: Undefining, Up: Macros
-
-Redefining Macros
------------------
-
- "Redefining" a macro means defining (with `#define') a name that is
-already defined as a macro.
-
- A redefinition is trivial if the new definition is transparently
-identical to the old one. You probably wouldn't deliberately write a
-trivial redefinition, but they can happen automatically when a header
-file is included more than once (*note Header Files::.), so they are
-accepted silently and without effect.
-
- Nontrivial redefinition is considered likely to be an error, so it
-provokes a warning message from the preprocessor. However, sometimes it
-is useful to change the definition of a macro in mid-compilation. You
-can inhibit the warning by undefining the macro with `#undef' before the
-second definition.
-
- In order for a redefinition to be trivial, the new definition must
-exactly match the one already in effect, with two possible exceptions:
-
- * Whitespace may be added or deleted at the beginning or the end.
-
- * Whitespace may be changed in the middle (but not inside strings).
- However, it may not be eliminated entirely, and it may not be added
- where there was no whitespace at all.
-
- Recall that a comment counts as whitespace.
-
diff --git a/gcc/cpp.info-2 b/gcc/cpp.info-2
deleted file mode 100644
index b98ab2d0f29..00000000000
--- a/gcc/cpp.info-2
+++ /dev/null
@@ -1,1058 +0,0 @@
-This is Info file cpp.info, produced by Makeinfo version 1.67 from the
-input file cpp.texi.
-
- This file documents the GNU C Preprocessor.
-
- Copyright 1987, 1989, 1991, 1992, 1993, 1994, 1995 Free Software
-Foundation, Inc.
-
- Permission is granted to make and distribute verbatim copies of this
-manual provided the copyright notice and this permission notice are
-preserved on all copies.
-
- Permission is granted to copy and distribute modified versions of
-this manual under the conditions for verbatim copying, provided also
-that the entire resulting derived work is distributed under the terms
-of a permission notice identical to this one.
-
- Permission is granted to copy and distribute translations of this
-manual into another language, under the above conditions for modified
-versions.
-
-
-File: cpp.info, Node: Macro Pitfalls, Prev: Redefining, Up: Macros
-
-Pitfalls and Subtleties of Macros
----------------------------------
-
- In this section we describe some special rules that apply to macros
-and macro expansion, and point out certain cases in which the rules have
-counterintuitive consequences that you must watch out for.
-
-* Menu:
-
-* Misnesting:: Macros can contain unmatched parentheses.
-* Macro Parentheses:: Why apparently superfluous parentheses
- may be necessary to avoid incorrect grouping.
-* Swallow Semicolon:: Macros that look like functions
- but expand into compound statements.
-* Side Effects:: Unsafe macros that cause trouble when
- arguments contain side effects.
-* Self-Reference:: Macros whose definitions use the macros' own names.
-* Argument Prescan:: Actual arguments are checked for macro calls
- before they are substituted.
-* Cascaded Macros:: Macros whose definitions use other macros.
-* Newlines in Args:: Sometimes line numbers get confused.
-
-
-File: cpp.info, Node: Misnesting, Next: Macro Parentheses, Prev: Macro Pitfalls, Up: Macro Pitfalls
-
-Improperly Nested Constructs
-............................
-
- Recall that when a macro is called with arguments, the arguments are
-substituted into the macro body and the result is checked, together with
-the rest of the input file, for more macro calls.
-
- It is possible to piece together a macro call coming partially from
-the macro body and partially from the actual arguments. For example,
-
- #define double(x) (2*(x))
- #define call_with_1(x) x(1)
-
-would expand `call_with_1 (double)' into `(2*(1))'.
-
- Macro definitions do not have to have balanced parentheses. By
-writing an unbalanced open parenthesis in a macro body, it is possible
-to create a macro call that begins inside the macro body but ends
-outside of it. For example,
-
- #define strange(file) fprintf (file, "%s %d",
- ...
- strange(stderr) p, 35)
-
-This bizarre example expands to `fprintf (stderr, "%s %d", p, 35)'!
-
-
-File: cpp.info, Node: Macro Parentheses, Next: Swallow Semicolon, Prev: Misnesting, Up: Macro Pitfalls
-
-Unintended Grouping of Arithmetic
-.................................
-
- You may have noticed that in most of the macro definition examples
-shown above, each occurrence of a macro argument name had parentheses
-around it. In addition, another pair of parentheses usually surround
-the entire macro definition. Here is why it is best to write macros
-that way.
-
- Suppose you define a macro as follows,
-
- #define ceil_div(x, y) (x + y - 1) / y
-
-whose purpose is to divide, rounding up. (One use for this operation is
-to compute how many `int' objects are needed to hold a certain number
-of `char' objects.) Then suppose it is used as follows:
-
- a = ceil_div (b & c, sizeof (int));
-
-This expands into
-
- a = (b & c + sizeof (int) - 1) / sizeof (int);
-
-which does not do what is intended. The operator-precedence rules of C
-make it equivalent to this:
-
- a = (b & (c + sizeof (int) - 1)) / sizeof (int);
-
-But what we want is this:
-
- a = ((b & c) + sizeof (int) - 1)) / sizeof (int);
-
-Defining the macro as
-
- #define ceil_div(x, y) ((x) + (y) - 1) / (y)
-
-provides the desired result.
-
- Unintended grouping can result in another way. Consider `sizeof
-ceil_div(1, 2)'. That has the appearance of a C expression that would
-compute the size of the type of `ceil_div (1, 2)', but in fact it means
-something very different. Here is what it expands to:
-
- sizeof ((1) + (2) - 1) / (2)
-
-This would take the size of an integer and divide it by two. The
-precedence rules have put the division outside the `sizeof' when it was
-intended to be inside.
-
- Parentheses around the entire macro definition can prevent such
-problems. Here, then, is the recommended way to define `ceil_div':
-
- #define ceil_div(x, y) (((x) + (y) - 1) / (y))
-
-
-File: cpp.info, Node: Swallow Semicolon, Next: Side Effects, Prev: Macro Parentheses, Up: Macro Pitfalls
-
-Swallowing the Semicolon
-........................
-
- Often it is desirable to define a macro that expands into a compound
-statement. Consider, for example, the following macro, that advances a
-pointer (the argument `p' says where to find it) across whitespace
-characters:
-
- #define SKIP_SPACES (p, limit) \
- { register char *lim = (limit); \
- while (p != lim) { \
- if (*p++ != ' ') { \
- p--; break; }}}
-
-Here Backslash-Newline is used to split the macro definition, which must
-be a single line, so that it resembles the way such C code would be
-laid out if not part of a macro definition.
-
- A call to this macro might be `SKIP_SPACES (p, lim)'. Strictly
-speaking, the call expands to a compound statement, which is a complete
-statement with no need for a semicolon to end it. But it looks like a
-function call. So it minimizes confusion if you can use it like a
-function call, writing a semicolon afterward, as in `SKIP_SPACES (p,
-lim);'
-
- But this can cause trouble before `else' statements, because the
-semicolon is actually a null statement. Suppose you write
-
- if (*p != 0)
- SKIP_SPACES (p, lim);
- else ...
-
-The presence of two statements--the compound statement and a null
-statement--in between the `if' condition and the `else' makes invalid C
-code.
-
- The definition of the macro `SKIP_SPACES' can be altered to solve
-this problem, using a `do ... while' statement. Here is how:
-
- #define SKIP_SPACES (p, limit) \
- do { register char *lim = (limit); \
- while (p != lim) { \
- if (*p++ != ' ') { \
- p--; break; }}} \
- while (0)
-
- Now `SKIP_SPACES (p, lim);' expands into
-
- do {...} while (0);
-
-which is one statement.
-
-
-File: cpp.info, Node: Side Effects, Next: Self-Reference, Prev: Swallow Semicolon, Up: Macro Pitfalls
-
-Duplication of Side Effects
-...........................
-
- Many C programs define a macro `min', for "minimum", like this:
-
- #define min(X, Y) ((X) < (Y) ? (X) : (Y))
-
- When you use this macro with an argument containing a side effect,
-as shown here,
-
- next = min (x + y, foo (z));
-
-it expands as follows:
-
- next = ((x + y) < (foo (z)) ? (x + y) : (foo (z)));
-
-where `x + y' has been substituted for `X' and `foo (z)' for `Y'.
-
- The function `foo' is used only once in the statement as it appears
-in the program, but the expression `foo (z)' has been substituted twice
-into the macro expansion. As a result, `foo' might be called two times
-when the statement is executed. If it has side effects or if it takes
-a long time to compute, the results might not be what you intended. We
-say that `min' is an "unsafe" macro.
-
- The best solution to this problem is to define `min' in a way that
-computes the value of `foo (z)' only once. The C language offers no
-standard way to do this, but it can be done with GNU C extensions as
-follows:
-
- #define min(X, Y) \
- ({ typeof (X) __x = (X), __y = (Y); \
- (__x < __y) ? __x : __y; })
-
- If you do not wish to use GNU C extensions, the only solution is to
-be careful when *using* the macro `min'. For example, you can
-calculate the value of `foo (z)', save it in a variable, and use that
-variable in `min':
-
- #define min(X, Y) ((X) < (Y) ? (X) : (Y))
- ...
- {
- int tem = foo (z);
- next = min (x + y, tem);
- }
-
-(where we assume that `foo' returns type `int').
-
-
-File: cpp.info, Node: Self-Reference, Next: Argument Prescan, Prev: Side Effects, Up: Macro Pitfalls
-
-Self-Referential Macros
-.......................
-
- A "self-referential" macro is one whose name appears in its
-definition. A special feature of ANSI Standard C is that the
-self-reference is not considered a macro call. It is passed into the
-preprocessor output unchanged.
-
- Let's consider an example:
-
- #define foo (4 + foo)
-
-where `foo' is also a variable in your program.
-
- Following the ordinary rules, each reference to `foo' will expand
-into `(4 + foo)'; then this will be rescanned and will expand into `(4
-+ (4 + foo))'; and so on until it causes a fatal error (memory full) in
-the preprocessor.
-
- However, the special rule about self-reference cuts this process
-short after one step, at `(4 + foo)'. Therefore, this macro definition
-has the possibly useful effect of causing the program to add 4 to the
-value of `foo' wherever `foo' is referred to.
-
- In most cases, it is a bad idea to take advantage of this feature. A
-person reading the program who sees that `foo' is a variable will not
-expect that it is a macro as well. The reader will come across the
-identifier `foo' in the program and think its value should be that of
-the variable `foo', whereas in fact the value is four greater.
-
- The special rule for self-reference applies also to "indirect"
-self-reference. This is the case where a macro X expands to use a
-macro `y', and the expansion of `y' refers to the macro `x'. The
-resulting reference to `x' comes indirectly from the expansion of `x',
-so it is a self-reference and is not further expanded. Thus, after
-
- #define x (4 + y)
- #define y (2 * x)
-
-`x' would expand into `(4 + (2 * x))'. Clear?
-
- But suppose `y' is used elsewhere, not from the definition of `x'.
-Then the use of `x' in the expansion of `y' is not a self-reference
-because `x' is not "in progress". So it does expand. However, the
-expansion of `x' contains a reference to `y', and that is an indirect
-self-reference now because `y' is "in progress". The result is that
-`y' expands to `(2 * (4 + y))'.
-
- It is not clear that this behavior would ever be useful, but it is
-specified by the ANSI C standard, so you may need to understand it.
-
-
-File: cpp.info, Node: Argument Prescan, Next: Cascaded Macros, Prev: Self-Reference, Up: Macro Pitfalls
-
-Separate Expansion of Macro Arguments
-.....................................
-
- We have explained that the expansion of a macro, including the
-substituted actual arguments, is scanned over again for macro calls to
-be expanded.
-
- What really happens is more subtle: first each actual argument text
-is scanned separately for macro calls. Then the results of this are
-substituted into the macro body to produce the macro expansion, and the
-macro expansion is scanned again for macros to expand.
-
- The result is that the actual arguments are scanned *twice* to expand
-macro calls in them.
-
- Most of the time, this has no effect. If the actual argument
-contained any macro calls, they are expanded during the first scan.
-The result therefore contains no macro calls, so the second scan does
-not change it. If the actual argument were substituted as given, with
-no prescan, the single remaining scan would find the same macro calls
-and produce the same results.
-
- You might expect the double scan to change the results when a
-self-referential macro is used in an actual argument of another macro
-(*note Self-Reference::.): the self-referential macro would be expanded
-once in the first scan, and a second time in the second scan. But this
-is not what happens. The self-references that do not expand in the
-first scan are marked so that they will not expand in the second scan
-either.
-
- The prescan is not done when an argument is stringified or
-concatenated. Thus,
-
- #define str(s) #s
- #define foo 4
- str (foo)
-
-expands to `"foo"'. Once more, prescan has been prevented from having
-any noticeable effect.
-
- More precisely, stringification and concatenation use the argument as
-written, in un-prescanned form. The same actual argument would be used
-in prescanned form if it is substituted elsewhere without
-stringification or concatenation.
-
- #define str(s) #s lose(s)
- #define foo 4
- str (foo)
-
- expands to `"foo" lose(4)'.
-
- You might now ask, "Why mention the prescan, if it makes no
-difference? And why not skip it and make the preprocessor faster?"
-The answer is that the prescan does make a difference in three special
-cases:
-
- * Nested calls to a macro.
-
- * Macros that call other macros that stringify or concatenate.
-
- * Macros whose expansions contain unshielded commas.
-
- We say that "nested" calls to a macro occur when a macro's actual
-argument contains a call to that very macro. For example, if `f' is a
-macro that expects one argument, `f (f (1))' is a nested pair of calls
-to `f'. The desired expansion is made by expanding `f (1)' and
-substituting that into the definition of `f'. The prescan causes the
-expected result to happen. Without the prescan, `f (1)' itself would
-be substituted as an actual argument, and the inner use of `f' would
-appear during the main scan as an indirect self-reference and would not
-be expanded. Here, the prescan cancels an undesirable side effect (in
-the medical, not computational, sense of the term) of the special rule
-for self-referential macros.
-
- But prescan causes trouble in certain other cases of nested macro
-calls. Here is an example:
-
- #define foo a,b
- #define bar(x) lose(x)
- #define lose(x) (1 + (x))
-
- bar(foo)
-
-We would like `bar(foo)' to turn into `(1 + (foo))', which would then
-turn into `(1 + (a,b))'. But instead, `bar(foo)' expands into
-`lose(a,b)', and you get an error because `lose' requires a single
-argument. In this case, the problem is easily solved by the same
-parentheses that ought to be used to prevent misnesting of arithmetic
-operations:
-
- #define foo (a,b)
- #define bar(x) lose((x))
-
- The problem is more serious when the operands of the macro are not
-expressions; for example, when they are statements. Then parentheses
-are unacceptable because they would make for invalid C code:
-
- #define foo { int a, b; ... }
-
-In GNU C you can shield the commas using the `({...})' construct which
-turns a compound statement into an expression:
-
- #define foo ({ int a, b; ... })
-
- Or you can rewrite the macro definition to avoid such commas:
-
- #define foo { int a; int b; ... }
-
- There is also one case where prescan is useful. It is possible to
-use prescan to expand an argument and then stringify it--if you use two
-levels of macros. Let's add a new macro `xstr' to the example shown
-above:
-
- #define xstr(s) str(s)
- #define str(s) #s
- #define foo 4
- xstr (foo)
-
- This expands into `"4"', not `"foo"'. The reason for the difference
-is that the argument of `xstr' is expanded at prescan (because `xstr'
-does not specify stringification or concatenation of the argument).
-The result of prescan then forms the actual argument for `str'. `str'
-uses its argument without prescan because it performs stringification;
-but it cannot prevent or undo the prescanning already done by `xstr'.
-
-
-File: cpp.info, Node: Cascaded Macros, Next: Newlines in Args, Prev: Argument Prescan, Up: Macro Pitfalls
-
-Cascaded Use of Macros
-......................
-
- A "cascade" of macros is when one macro's body contains a reference
-to another macro. This is very common practice. For example,
-
- #define BUFSIZE 1020
- #define TABLESIZE BUFSIZE
-
- This is not at all the same as defining `TABLESIZE' to be `1020'.
-The `#define' for `TABLESIZE' uses exactly the body you specify--in
-this case, `BUFSIZE'--and does not check to see whether it too is the
-name of a macro.
-
- It's only when you *use* `TABLESIZE' that the result of its expansion
-is checked for more macro names.
-
- This makes a difference if you change the definition of `BUFSIZE' at
-some point in the source file. `TABLESIZE', defined as shown, will
-always expand using the definition of `BUFSIZE' that is currently in
-effect:
-
- #define BUFSIZE 1020
- #define TABLESIZE BUFSIZE
- #undef BUFSIZE
- #define BUFSIZE 37
-
-Now `TABLESIZE' expands (in two stages) to `37'. (The `#undef' is to
-prevent any warning about the nontrivial redefinition of `BUFSIZE'.)
-
-
-File: cpp.info, Node: Newlines in Args, Prev: Cascaded Macros, Up: Macro Pitfalls
-
-Newlines in Macro Arguments
----------------------------
-
- Traditional macro processing carries forward all newlines in macro
-arguments into the expansion of the macro. This means that, if some of
-the arguments are substituted more than once, or not at all, or out of
-order, newlines can be duplicated, lost, or moved around within the
-expansion. If the expansion consists of multiple statements, then the
-effect is to distort the line numbers of some of these statements. The
-result can be incorrect line numbers, in error messages or displayed in
-a debugger.
-
- The GNU C preprocessor operating in ANSI C mode adjusts appropriately
-for multiple use of an argument--the first use expands all the
-newlines, and subsequent uses of the same argument produce no newlines.
-But even in this mode, it can produce incorrect line numbering if
-arguments are used out of order, or not used at all.
-
- Here is an example illustrating this problem:
-
- #define ignore_second_arg(a,b,c) a; c
-
- ignore_second_arg (foo (),
- ignored (),
- syntax error);
-
-The syntax error triggered by the tokens `syntax error' results in an
-error message citing line four, even though the statement text comes
-from line five.
-
-
-File: cpp.info, Node: Conditionals, Next: Combining Sources, Prev: Macros, Up: Top
-
-Conditionals
-============
-
- In a macro processor, a "conditional" is a directive that allows a
-part of the program to be ignored during compilation, on some
-conditions. In the C preprocessor, a conditional can test either an
-arithmetic expression or whether a name is defined as a macro.
-
- A conditional in the C preprocessor resembles in some ways an `if'
-statement in C, but it is important to understand the difference between
-them. The condition in an `if' statement is tested during the execution
-of your program. Its purpose is to allow your program to behave
-differently from run to run, depending on the data it is operating on.
-The condition in a preprocessing conditional directive is tested when
-your program is compiled. Its purpose is to allow different code to be
-included in the program depending on the situation at the time of
-compilation.
-
-* Menu:
-
-* Uses: Conditional Uses. What conditionals are for.
-* Syntax: Conditional Syntax. How conditionals are written.
-* Deletion: Deleted Code. Making code into a comment.
-* Macros: Conditionals-Macros. Why conditionals are used with macros.
-* Assertions:: How and why to use assertions.
-* Errors: #error Directive. Detecting inconsistent compilation parameters.
-
-
-File: cpp.info, Node: Conditional Uses, Next: Conditional Syntax, Up: Conditionals
-
-Why Conditionals are Used
--------------------------
-
- Generally there are three kinds of reason to use a conditional.
-
- * A program may need to use different code depending on the machine
- or operating system it is to run on. In some cases the code for
- one operating system may be erroneous on another operating system;
- for example, it might refer to library routines that do not exist
- on the other system. When this happens, it is not enough to avoid
- executing the invalid code: merely having it in the program makes
- it impossible to link the program and run it. With a
- preprocessing conditional, the offending code can be effectively
- excised from the program when it is not valid.
-
- * You may want to be able to compile the same source file into two
- different programs. Sometimes the difference between the programs
- is that one makes frequent time-consuming consistency checks on its
- intermediate data, or prints the values of those data for
- debugging, while the other does not.
-
- * A conditional whose condition is always false is a good way to
- exclude code from the program but keep it as a sort of comment for
- future reference.
-
- Most simple programs that are intended to run on only one machine
-will not need to use preprocessing conditionals.
-
-
-File: cpp.info, Node: Conditional Syntax, Next: Deleted Code, Prev: Conditional Uses, Up: Conditionals
-
-Syntax of Conditionals
-----------------------
-
- A conditional in the C preprocessor begins with a "conditional
-directive": `#if', `#ifdef' or `#ifndef'. *Note Conditionals-Macros::,
-for information on `#ifdef' and `#ifndef'; only `#if' is explained here.
-
-* Menu:
-
-* If: #if Directive. Basic conditionals using `#if' and `#endif'.
-* Else: #else Directive. Including some text if the condition fails.
-* Elif: #elif Directive. Testing several alternative possibilities.
-
-
-File: cpp.info, Node: #if Directive, Next: #else Directive, Up: Conditional Syntax
-
-The `#if' Directive
-...................
-
- The `#if' directive in its simplest form consists of
-
- #if EXPRESSION
- CONTROLLED TEXT
- #endif /* EXPRESSION */
-
- The comment following the `#endif' is not required, but it is a good
-practice because it helps people match the `#endif' to the
-corresponding `#if'. Such comments should always be used, except in
-short conditionals that are not nested. In fact, you can put anything
-at all after the `#endif' and it will be ignored by the GNU C
-preprocessor, but only comments are acceptable in ANSI Standard C.
-
- EXPRESSION is a C expression of integer type, subject to stringent
-restrictions. It may contain
-
- * Integer constants, which are all regarded as `long' or `unsigned
- long'.
-
- * Character constants, which are interpreted according to the
- character set and conventions of the machine and operating system
- on which the preprocessor is running. The GNU C preprocessor uses
- the C data type `char' for these character constants; therefore,
- whether some character codes are negative is determined by the C
- compiler used to compile the preprocessor. If it treats `char' as
- signed, then character codes large enough to set the sign bit will
- be considered negative; otherwise, no character code is considered
- negative.
-
- * Arithmetic operators for addition, subtraction, multiplication,
- division, bitwise operations, shifts, comparisons, and logical
- operations (`&&' and `||').
-
- * Identifiers that are not macros, which are all treated as zero(!).
-
- * Macro calls. All macro calls in the expression are expanded before
- actual computation of the expression's value begins.
-
- Note that `sizeof' operators and `enum'-type values are not allowed.
-`enum'-type values, like all other identifiers that are not taken as
-macro calls and expanded, are treated as zero.
-
- The CONTROLLED TEXT inside of a conditional can include
-preprocessing directives. Then the directives inside the conditional
-are obeyed only if that branch of the conditional succeeds. The text
-can also contain other conditional groups. However, the `#if' and
-`#endif' directives must balance.
-
-
-File: cpp.info, Node: #else Directive, Next: #elif Directive, Prev: #if Directive, Up: Conditional Syntax
-
-The `#else' Directive
-.....................
-
- The `#else' directive can be added to a conditional to provide
-alternative text to be used if the condition is false. This is what it
-looks like:
-
- #if EXPRESSION
- TEXT-IF-TRUE
- #else /* Not EXPRESSION */
- TEXT-IF-FALSE
- #endif /* Not EXPRESSION */
-
- If EXPRESSION is nonzero, and thus the TEXT-IF-TRUE is active, then
-`#else' acts like a failing conditional and the TEXT-IF-FALSE is
-ignored. Contrariwise, if the `#if' conditional fails, the
-TEXT-IF-FALSE is considered included.
-
-
-File: cpp.info, Node: #elif Directive, Prev: #else Directive, Up: Conditional Syntax
-
-The `#elif' Directive
-.....................
-
- One common case of nested conditionals is used to check for more
-than two possible alternatives. For example, you might have
-
- #if X == 1
- ...
- #else /* X != 1 */
- #if X == 2
- ...
- #else /* X != 2 */
- ...
- #endif /* X != 2 */
- #endif /* X != 1 */
-
- Another conditional directive, `#elif', allows this to be abbreviated
-as follows:
-
- #if X == 1
- ...
- #elif X == 2
- ...
- #else /* X != 2 and X != 1*/
- ...
- #endif /* X != 2 and X != 1*/
-
- `#elif' stands for "else if". Like `#else', it goes in the middle
-of a `#if'-`#endif' pair and subdivides it; it does not require a
-matching `#endif' of its own. Like `#if', the `#elif' directive
-includes an expression to be tested.
-
- The text following the `#elif' is processed only if the original
-`#if'-condition failed and the `#elif' condition succeeds. More than
-one `#elif' can go in the same `#if'-`#endif' group. Then the text
-after each `#elif' is processed only if the `#elif' condition succeeds
-after the original `#if' and any previous `#elif' directives within it
-have failed. `#else' is equivalent to `#elif 1', and `#else' is
-allowed after any number of `#elif' directives, but `#elif' may not
-follow `#else'.
-
-
-File: cpp.info, Node: Deleted Code, Next: Conditionals-Macros, Prev: Conditional Syntax, Up: Conditionals
-
-Keeping Deleted Code for Future Reference
------------------------------------------
-
- If you replace or delete a part of the program but want to keep the
-old code around as a comment for future reference, the easy way to do
-this is to put `#if 0' before it and `#endif' after it. This is better
-than using comment delimiters `/*' and `*/' since those won't work if
-the code already contains comments (C comments do not nest).
-
- This works even if the code being turned off contains conditionals,
-but they must be entire conditionals (balanced `#if' and `#endif').
-
- Conversely, do not use `#if 0' for comments which are not C code.
-Use the comment delimiters `/*' and `*/' instead. The interior of `#if
-0' must consist of complete tokens; in particular, singlequote
-characters must balance. But comments often contain unbalanced
-singlequote characters (known in English as apostrophes). These
-confuse `#if 0'. They do not confuse `/*'.
-
-
-File: cpp.info, Node: Conditionals-Macros, Next: Assertions, Prev: Deleted Code, Up: Conditionals
-
-Conditionals and Macros
------------------------
-
- Conditionals are useful in connection with macros or assertions,
-because those are the only ways that an expression's value can vary
-from one compilation to another. A `#if' directive whose expression
-uses no macros or assertions is equivalent to `#if 1' or `#if 0'; you
-might as well determine which one, by computing the value of the
-expression yourself, and then simplify the program.
-
- For example, here is a conditional that tests the expression
-`BUFSIZE == 1020', where `BUFSIZE' must be a macro.
-
- #if BUFSIZE == 1020
- printf ("Large buffers!\n");
- #endif /* BUFSIZE is large */
-
- (Programmers often wish they could test the size of a variable or
-data type in `#if', but this does not work. The preprocessor does not
-understand `sizeof', or typedef names, or even the type keywords such
-as `int'.)
-
- The special operator `defined' is used in `#if' expressions to test
-whether a certain name is defined as a macro. Either `defined NAME' or
-`defined (NAME)' is an expression whose value is 1 if NAME is defined
-as macro at the current point in the program, and 0 otherwise. For the
-`defined' operator it makes no difference what the definition of the
-macro is; all that matters is whether there is a definition. Thus, for
-example,
-
- #if defined (vax) || defined (ns16000)
-
-would succeed if either of the names `vax' and `ns16000' is defined as
-a macro. You can test the same condition using assertions (*note
-Assertions::.), like this:
-
- #if #cpu (vax) || #cpu (ns16000)
-
- If a macro is defined and later undefined with `#undef', subsequent
-use of the `defined' operator returns 0, because the name is no longer
-defined. If the macro is defined again with another `#define',
-`defined' will recommence returning 1.
-
- Conditionals that test whether just one name is defined are very
-common, so there are two special short conditional directives for this
-case.
-
-`#ifdef NAME'
- is equivalent to `#if defined (NAME)'.
-
-`#ifndef NAME'
- is equivalent to `#if ! defined (NAME)'.
-
- Macro definitions can vary between compilations for several reasons.
-
- * Some macros are predefined on each kind of machine. For example,
- on a Vax, the name `vax' is a predefined macro. On other
- machines, it would not be defined.
-
- * Many more macros are defined by system header files. Different
- systems and machines define different macros, or give them
- different values. It is useful to test these macros with
- conditionals to avoid using a system feature on a machine where it
- is not implemented.
-
- * Macros are a common way of allowing users to customize a program
- for different machines or applications. For example, the macro
- `BUFSIZE' might be defined in a configuration file for your
- program that is included as a header file in each source file. You
- would use `BUFSIZE' in a preprocessing conditional in order to
- generate different code depending on the chosen configuration.
-
- * Macros can be defined or undefined with `-D' and `-U' command
- options when you compile the program. You can arrange to compile
- the same source file into two different programs by choosing a
- macro name to specify which program you want, writing conditionals
- to test whether or how this macro is defined, and then controlling
- the state of the macro with compiler command options. *Note
- Invocation::.
-
- Assertions are usually predefined, but can be defined with
-preprocessor directives or command-line options.
-
-
-File: cpp.info, Node: Assertions, Next: #error Directive, Prev: Conditionals-Macros, Up: Conditionals
-
-Assertions
-----------
-
- "Assertions" are a more systematic alternative to macros in writing
-conditionals to test what sort of computer or system the compiled
-program will run on. Assertions are usually predefined, but you can
-define them with preprocessing directives or command-line options.
-
- The macros traditionally used to describe the type of target are not
-classified in any way according to which question they answer; they may
-indicate a hardware architecture, a particular hardware model, an
-operating system, a particular version of an operating system, or
-specific configuration options. These are jumbled together in a single
-namespace. In contrast, each assertion consists of a named question and
-an answer. The question is usually called the "predicate". An
-assertion looks like this:
-
- #PREDICATE (ANSWER)
-
-You must use a properly formed identifier for PREDICATE. The value of
-ANSWER can be any sequence of words; all characters are significant
-except for leading and trailing whitespace, and differences in internal
-whitespace sequences are ignored. Thus, `x + y' is different from
-`x+y' but equivalent to `x + y'. `)' is not allowed in an answer.
-
- Here is a conditional to test whether the answer ANSWER is asserted
-for the predicate PREDICATE:
-
- #if #PREDICATE (ANSWER)
-
-There may be more than one answer asserted for a given predicate. If
-you omit the answer, you can test whether *any* answer is asserted for
-PREDICATE:
-
- #if #PREDICATE
-
- Most of the time, the assertions you test will be predefined
-assertions. GNU C provides three predefined predicates: `system',
-`cpu', and `machine'. `system' is for assertions about the type of
-software, `cpu' describes the type of computer architecture, and
-`machine' gives more information about the computer. For example, on a
-GNU system, the following assertions would be true:
-
- #system (gnu)
- #system (mach)
- #system (mach 3)
- #system (mach 3.SUBVERSION)
- #system (hurd)
- #system (hurd VERSION)
-
-and perhaps others. The alternatives with more or less version
-information let you ask more or less detailed questions about the type
-of system software.
-
- On a Unix system, you would find `#system (unix)' and perhaps one of:
-`#system (aix)', `#system (bsd)', `#system (hpux)', `#system (lynx)',
-`#system (mach)', `#system (posix)', `#system (svr3)', `#system
-(svr4)', or `#system (xpg4)' with possible version numbers following.
-
- Other values for `system' are `#system (mvs)' and `#system (vms)'.
-
- *Portability note:* Many Unix C compilers provide only one answer
-for the `system' assertion: `#system (unix)', if they support
-assertions at all. This is less than useful.
-
- An assertion with a multi-word answer is completely different from
-several assertions with individual single-word answers. For example,
-the presence of `system (mach 3.0)' does not mean that `system (3.0)'
-is true. It also does not directly imply `system (mach)', but in GNU
-C, that last will normally be asserted as well.
-
- The current list of possible assertion values for `cpu' is: `#cpu
-(a29k)', `#cpu (alpha)', `#cpu (arm)', `#cpu (clipper)', `#cpu
-(convex)', `#cpu (elxsi)', `#cpu (tron)', `#cpu (h8300)', `#cpu
-(i370)', `#cpu (i386)', `#cpu (i860)', `#cpu (i960)', `#cpu (m68k)',
-`#cpu (m88k)', `#cpu (mips)', `#cpu (ns32k)', `#cpu (hppa)', `#cpu
-(pyr)', `#cpu (ibm032)', `#cpu (rs6000)', `#cpu (sh)', `#cpu (sparc)',
-`#cpu (spur)', `#cpu (tahoe)', `#cpu (vax)', `#cpu (we32000)'.
-
- You can create assertions within a C program using `#assert', like
-this:
-
- #assert PREDICATE (ANSWER)
-
-(Note the absence of a `#' before PREDICATE.)
-
- Each time you do this, you assert a new true answer for PREDICATE.
-Asserting one answer does not invalidate previously asserted answers;
-they all remain true. The only way to remove an assertion is with
-`#unassert'. `#unassert' has the same syntax as `#assert'. You can
-also remove all assertions about PREDICATE like this:
-
- #unassert PREDICATE
-
- You can also add or cancel assertions using command options when you
-run `gcc' or `cpp'. *Note Invocation::.
-
-
-File: cpp.info, Node: #error Directive, Prev: Assertions, Up: Conditionals
-
-The `#error' and `#warning' Directives
---------------------------------------
-
- The directive `#error' causes the preprocessor to report a fatal
-error. The rest of the line that follows `#error' is used as the error
-message. The line must consist of complete tokens.
-
- You would use `#error' inside of a conditional that detects a
-combination of parameters which you know the program does not properly
-support. For example, if you know that the program will not run
-properly on a Vax, you might write
-
- #ifdef __vax__
- #error "Won't work on Vaxen. See comments at get_last_object."
- #endif
-
-*Note Nonstandard Predefined::, for why this works.
-
- If you have several configuration parameters that must be set up by
-the installation in a consistent way, you can use conditionals to detect
-an inconsistency and report it with `#error'. For example,
-
- #if HASH_TABLE_SIZE % 2 == 0 || HASH_TABLE_SIZE % 3 == 0 \
- || HASH_TABLE_SIZE % 5 == 0
- #error HASH_TABLE_SIZE should not be divisible by a small prime
- #endif
-
- The directive `#warning' is like the directive `#error', but causes
-the preprocessor to issue a warning and continue preprocessing. The
-rest of the line that follows `#warning' is used as the warning message.
-
- You might use `#warning' in obsolete header files, with a message
-directing the user to the header file which should be used instead.
-
-
-File: cpp.info, Node: Combining Sources, Next: Other Directives, Prev: Conditionals, Up: Top
-
-Combining Source Files
-======================
-
- One of the jobs of the C preprocessor is to inform the C compiler of
-where each line of C code came from: which source file and which line
-number.
-
- C code can come from multiple source files if you use `#include';
-both `#include' and the use of conditionals and macros can cause the
-line number of a line in the preprocessor output to be different from
-the line's number in the original source file. You will appreciate the
-value of making both the C compiler (in error messages) and symbolic
-debuggers such as GDB use the line numbers in your source file.
-
- The C preprocessor builds on this feature by offering a directive by
-which you can control the feature explicitly. This is useful when a
-file for input to the C preprocessor is the output from another program
-such as the `bison' parser generator, which operates on another file
-that is the true source file. Parts of the output from `bison' are
-generated from scratch, other parts come from a standard parser file.
-The rest are copied nearly verbatim from the source file, but their
-line numbers in the `bison' output are not the same as their original
-line numbers. Naturally you would like compiler error messages and
-symbolic debuggers to know the original source file and line number of
-each line in the `bison' input.
-
- `bison' arranges this by writing `#line' directives into the output
-file. `#line' is a directive that specifies the original line number
-and source file name for subsequent input in the current preprocessor
-input file. `#line' has three variants:
-
-`#line LINENUM'
- Here LINENUM is a decimal integer constant. This specifies that
- the line number of the following line of input, in its original
- source file, was LINENUM.
-
-`#line LINENUM FILENAME'
- Here LINENUM is a decimal integer constant and FILENAME is a
- string constant. This specifies that the following line of input
- came originally from source file FILENAME and its line number there
- was LINENUM. Keep in mind that FILENAME is not just a file name;
- it is surrounded by doublequote characters so that it looks like a
- string constant.
-
-`#line ANYTHING ELSE'
- ANYTHING ELSE is checked for macro calls, which are expanded. The
- result should be a decimal integer constant followed optionally by
- a string constant, as described above.
-
- `#line' directives alter the results of the `__FILE__' and
-`__LINE__' predefined macros from that point on. *Note Standard
-Predefined::.
-
- The output of the preprocessor (which is the input for the rest of
-the compiler) contains directives that look much like `#line'
-directives. They start with just `#' instead of `#line', but this is
-followed by a line number and file name as in `#line'. *Note Output::.
-
-
-File: cpp.info, Node: Other Directives, Next: Output, Prev: Combining Sources, Up: Top
-
-Miscellaneous Preprocessing Directives
-======================================
-
- This section describes three additional preprocessing directives.
-They are not very useful, but are mentioned for completeness.
-
- The "null directive" consists of a `#' followed by a Newline, with
-only whitespace (including comments) in between. A null directive is
-understood as a preprocessing directive but has no effect on the
-preprocessor output. The primary significance of the existence of the
-null directive is that an input line consisting of just a `#' will
-produce no output, rather than a line of output containing just a `#'.
-Supposedly some old C programs contain such lines.
-
- The ANSI standard specifies that the effect of the `#pragma'
-directive is implementation-defined. In the GNU C preprocessor,
-`#pragma' directives are not used, except for `#pragma once' (*note
-Once-Only::.). However, they are left in the preprocessor output, so
-they are available to the compilation pass.
-
- The `#ident' directive is supported for compatibility with certain
-other systems. It is followed by a line of text. On some systems, the
-text is copied into a special place in the object file; on most systems,
-the text is ignored and this directive has no effect. Typically
-`#ident' is only used in header files supplied with those systems where
-it is meaningful.
-
-
-File: cpp.info, Node: Output, Next: Invocation, Prev: Other Directives, Up: Top
-
-C Preprocessor Output
-=====================
-
- The output from the C preprocessor looks much like the input, except
-that all preprocessing directive lines have been replaced with blank
-lines and all comments with spaces. Whitespace within a line is not
-altered; however, unless `-traditional' is used, spaces may be inserted
-into the expansions of macro calls to prevent tokens from being
-concatenated.
-
- Source file name and line number information is conveyed by lines of
-the form
-
- # LINENUM FILENAME FLAGS
-
-which are inserted as needed into the middle of the input (but never
-within a string or character constant). Such a line means that the
-following line originated in file FILENAME at line LINENUM.
-
- After the file name comes zero or more flags, which are `1', `2',
-`3', or `4'. If there are multiple flags, spaces separate them. Here
-is what the flags mean:
-
-`1'
- This indicates the start of a new file.
-
-`2'
- This indicates returning to a file (after having included another
- file).
-
-`3'
- This indicates that the following text comes from a system header
- file, so certain warnings should be suppressed.
-
-`4'
- This indicates that the following text should be treated as C.
-
diff --git a/gcc/cpp.info-3 b/gcc/cpp.info-3
deleted file mode 100644
index 9f0fa14b2bf..00000000000
--- a/gcc/cpp.info-3
+++ /dev/null
@@ -1,478 +0,0 @@
-This is Info file cpp.info, produced by Makeinfo version 1.67 from the
-input file cpp.texi.
-
- This file documents the GNU C Preprocessor.
-
- Copyright 1987, 1989, 1991, 1992, 1993, 1994, 1995 Free Software
-Foundation, Inc.
-
- Permission is granted to make and distribute verbatim copies of this
-manual provided the copyright notice and this permission notice are
-preserved on all copies.
-
- Permission is granted to copy and distribute modified versions of
-this manual under the conditions for verbatim copying, provided also
-that the entire resulting derived work is distributed under the terms
-of a permission notice identical to this one.
-
- Permission is granted to copy and distribute translations of this
-manual into another language, under the above conditions for modified
-versions.
-
-
-File: cpp.info, Node: Invocation, Next: Concept Index, Prev: Output, Up: Top
-
-Invoking the C Preprocessor
-===========================
-
- Most often when you use the C preprocessor you will not have to
-invoke it explicitly: the C compiler will do so automatically.
-However, the preprocessor is sometimes useful on its own.
-
- The C preprocessor expects two file names as arguments, INFILE and
-OUTFILE. The preprocessor reads INFILE together with any other files
-it specifies with `#include'. All the output generated by the combined
-input files is written in OUTFILE.
-
- Either INFILE or OUTFILE may be `-', which as INFILE means to read
-from standard input and as OUTFILE means to write to standard output.
-Also, if OUTFILE or both file names are omitted, the standard output
-and standard input are used for the omitted file names.
-
- Here is a table of command options accepted by the C preprocessor.
-These options can also be given when compiling a C program; they are
-passed along automatically to the preprocessor when it is invoked by the
-compiler.
-
-`-P'
- Inhibit generation of `#'-lines with line-number information in
- the output from the preprocessor (*note Output::.). This might be
- useful when running the preprocessor on something that is not C
- code and will be sent to a program which might be confused by the
- `#'-lines.
-
-`-C'
- Do not discard comments: pass them through to the output file.
- Comments appearing in arguments of a macro call will be copied to
- the output before the expansion of the macro call.
-
-`-traditional'
- Try to imitate the behavior of old-fashioned C, as opposed to ANSI
- C.
-
- * Traditional macro expansion pays no attention to singlequote
- or doublequote characters; macro argument symbols are
- replaced by the argument values even when they appear within
- apparent string or character constants.
-
- * Traditionally, it is permissible for a macro expansion to end
- in the middle of a string or character constant. The
- constant continues into the text surrounding the macro call.
-
- * However, traditionally the end of the line terminates a
- string or character constant, with no error.
-
- * In traditional C, a comment is equivalent to no text at all.
- (In ANSI C, a comment counts as whitespace.)
-
- * Traditional C does not have the concept of a "preprocessing
- number". It considers `1.0e+4' to be three tokens: `1.0e',
- `+', and `4'.
-
- * A macro is not suppressed within its own definition, in
- traditional C. Thus, any macro that is used recursively
- inevitably causes an error.
-
- * The character `#' has no special meaning within a macro
- definition in traditional C.
-
- * In traditional C, the text at the end of a macro expansion
- can run together with the text after the macro call, to
- produce a single token. (This is impossible in ANSI C.)
-
- * Traditionally, `\' inside a macro argument suppresses the
- syntactic significance of the following character.
-
-`-trigraphs'
- Process ANSI standard trigraph sequences. These are
- three-character sequences, all starting with `??', that are
- defined by ANSI C to stand for single characters. For example,
- `??/' stands for `\', so `'??/n'' is a character constant for a
- newline. Strictly speaking, the GNU C preprocessor does not
- support all programs in ANSI Standard C unless `-trigraphs' is
- used, but if you ever notice the difference it will be with relief.
-
- You don't want to know any more about trigraphs.
-
-`-pedantic'
- Issue warnings required by the ANSI C standard in certain cases
- such as when text other than a comment follows `#else' or `#endif'.
-
-`-pedantic-errors'
- Like `-pedantic', except that errors are produced rather than
- warnings.
-
-`-Wtrigraphs'
- Warn if any trigraphs are encountered (assuming they are enabled).
-
-`-Wcomment'
- Warn whenever a comment-start sequence `/*' appears in a `/*'
- comment, or whenever a Backslash-Newline appears in a `//' comment.
-
-`-Wall'
- Requests both `-Wtrigraphs' and `-Wcomment' (but not
- `-Wtraditional' or `-Wundef').
-
-`-Wtraditional'
- Warn about certain constructs that behave differently in
- traditional and ANSI C.
-
-`-Wundef'
- Warn if an undefined identifier is evaluated in an `#if' directive.
-
-`-I DIRECTORY'
- Add the directory DIRECTORY to the head of the list of directories
- to be searched for header files (*note Include Syntax::.). This
- can be used to override a system header file, substituting your
- own version, since these directories are searched before the system
- header file directories. If you use more than one `-I' option,
- the directories are scanned in left-to-right order; the standard
- system directories come after.
-
-`-I-'
- Any directories specified with `-I' options before the `-I-'
- option are searched only for the case of `#include "FILE"'; they
- are not searched for `#include <FILE>'.
-
- If additional directories are specified with `-I' options after
- the `-I-', these directories are searched for all `#include'
- directives.
-
- In addition, the `-I-' option inhibits the use of the current
- directory as the first search directory for `#include "FILE"'.
- Therefore, the current directory is searched only if it is
- requested explicitly with `-I.'. Specifying both `-I-' and `-I.'
- allows you to control precisely which directories are searched
- before the current one and which are searched after.
-
-`-nostdinc'
- Do not search the standard system directories for header files.
- Only the directories you have specified with `-I' options (and the
- current directory, if appropriate) are searched.
-
-`-nostdinc++'
- Do not search for header files in the C++-specific standard
- directories, but do still search the other standard directories.
- (This option is used when building libg++.)
-
-`-D NAME'
- Predefine NAME as a macro, with definition `1'.
-
-`-D NAME=DEFINITION'
- Predefine NAME as a macro, with definition DEFINITION. There are
- no restrictions on the contents of DEFINITION, but if you are
- invoking the preprocessor from a shell or shell-like program you
- may need to use the shell's quoting syntax to protect characters
- such as spaces that have a meaning in the shell syntax. If you
- use more than one `-D' for the same NAME, the rightmost definition
- takes effect.
-
-`-U NAME'
- Do not predefine NAME. If both `-U' and `-D' are specified for
- one name, the `-U' beats the `-D' and the name is not predefined.
-
-`-undef'
- Do not predefine any nonstandard macros.
-
-`-A PREDICATE(ANSWER)'
- Make an assertion with the predicate PREDICATE and answer ANSWER.
- *Note Assertions::.
-
- You can use `-A-' to disable all predefined assertions; it also
- undefines all predefined macros that identify the type of target
- system.
-
-`-dM'
- Instead of outputting the result of preprocessing, output a list of
- `#define' directives for all the macros defined during the
- execution of the preprocessor, including predefined macros. This
- gives you a way of finding out what is predefined in your version
- of the preprocessor; assuming you have no file `foo.h', the command
-
- touch foo.h; cpp -dM foo.h
-
- will show the values of any predefined macros.
-
-`-dD'
- Like `-dM' except in two respects: it does *not* include the
- predefined macros, and it outputs *both* the `#define' directives
- and the result of preprocessing. Both kinds of output go to the
- standard output file.
-
-`-dI'
- Output `#include' directives in addition to the result of
- preprocessing.
-
-`-M [-MG]'
- Instead of outputting the result of preprocessing, output a rule
- suitable for `make' describing the dependencies of the main source
- file. The preprocessor outputs one `make' rule containing the
- object file name for that source file, a colon, and the names of
- all the included files. If there are many included files then the
- rule is split into several lines using `\'-newline.
-
- `-MG' says to treat missing header files as generated files and
- assume they live in the same directory as the source file. It
- must be specified in addition to `-M'.
-
- This feature is used in automatic updating of makefiles.
-
-`-MM [-MG]'
- Like `-M' but mention only the files included with `#include
- "FILE"'. System header files included with `#include <FILE>' are
- omitted.
-
-`-MD FILE'
- Like `-M' but the dependency information is written to FILE. This
- is in addition to compiling the file as specified--`-MD' does not
- inhibit ordinary compilation the way `-M' does.
-
- When invoking gcc, do not specify the FILE argument. Gcc will
- create file names made by replacing ".c" with ".d" at the end of
- the input file names.
-
- In Mach, you can use the utility `md' to merge multiple dependency
- files into a single dependency file suitable for using with the
- `make' command.
-
-`-MMD FILE'
- Like `-MD' except mention only user header files, not system
- header files.
-
-`-H'
- Print the name of each header file used, in addition to other
- normal activities.
-
-`-imacros FILE'
- Process FILE as input, discarding the resulting output, before
- processing the regular input file. Because the output generated
- from FILE is discarded, the only effect of `-imacros FILE' is to
- make the macros defined in FILE available for use in the main
- input.
-
-`-include FILE'
- Process FILE as input, and include all the resulting output,
- before processing the regular input file.
-
-`-idirafter DIR'
- Add the directory DIR to the second include path. The directories
- on the second include path are searched when a header file is not
- found in any of the directories in the main include path (the one
- that `-I' adds to).
-
-`-iprefix PREFIX'
- Specify PREFIX as the prefix for subsequent `-iwithprefix' options.
-
-`-iwithprefix DIR'
- Add a directory to the second include path. The directory's name
- is made by concatenating PREFIX and DIR, where PREFIX was
- specified previously with `-iprefix'.
-
-`-isystem DIR'
- Add a directory to the beginning of the second include path,
- marking it as a system directory, so that it gets the same special
- treatment as is applied to the standard system directories.
-
-`-lang-c'
-`-lang-c89'
-`-lang-c++'
-`-lang-objc'
-`-lang-objc++'
- Specify the source language. `-lang-c' is the default; it allows
- recognition of C++ comments (comments that begin with `//' and end
- at end of line) and hexadecimal floating-point constants, since
- these features will most likely appear in the next C standard.
- `-lang-c89' disables recognition of C++ comments and hexadecimal
- floating-point constants. `-lang-c++' handles C++ comment syntax
- and includes extra default include directories for C++.
- `-lang-objc' enables the Objective C `#import' directive.
- `-lang-objc++' enables both C++ and Objective C extensions.
-
- These options are generated by the compiler driver `gcc', but not
- passed from the `gcc' command line unless you use the driver's
- `-Wp' option.
-
-`-lint'
- Look for commands to the program checker `lint' embedded in
- comments, and emit them preceded by `#pragma lint'. For example,
- the comment `/* NOTREACHED */' becomes `#pragma lint NOTREACHED'.
-
- This option is available only when you call `cpp' directly; `gcc'
- will not pass it from its command line.
-
-`-$'
- Forbid the use of `$' in identifiers. This was formerly required
- for strict conformance to the C Standard before the standard was
- corrected.
-
- This option is available only when you call `cpp' directly; `gcc'
- will not pass it from its command line.
-
-
-File: cpp.info, Node: Concept Index, Next: Index, Prev: Invocation, Up: Top
-
-Concept Index
-*************
-
-* Menu:
-
-* ##: Concatenation.
-* arguments in macro definitions: Argument Macros.
-* assertions: Assertions.
-* assertions, undoing: Assertions.
-* blank macro arguments: Argument Macros.
-* cascaded macros: Cascaded Macros.
-* commenting out code: Deleted Code.
-* computed #include: Include Syntax.
-* concatenation: Concatenation.
-* conditionals: Conditionals.
-* directives: Directives.
-* expansion of arguments: Argument Prescan.
-* function-like macro: Argument Macros.
-* header file: Header Files.
-* including just once: Once-Only.
-* inheritance: Inheritance.
-* invocation of the preprocessor: Invocation.
-* line control: Combining Sources.
-* macro argument expansion: Argument Prescan.
-* macro body uses macro: Cascaded Macros.
-* macros with argument: Argument Macros.
-* manifest constant: Simple Macros.
-* newlines in macro arguments: Newlines in Args.
-* null directive: Other Directives.
-* options: Invocation.
-* output format: Output.
-* overriding a header file: Inheritance.
-* parentheses in macro bodies: Macro Parentheses.
-* pitfalls of macros: Macro Pitfalls.
-* predefined macros: Predefined.
-* predicates: Assertions.
-* preprocessing directives: Directives.
-* prescan of macro arguments: Argument Prescan.
-* problems with macros: Macro Pitfalls.
-* redefining macros: Redefining.
-* repeated inclusion: Once-Only.
-* retracting assertions: Assertions.
-* second include path: Invocation.
-* self-reference: Self-Reference.
-* semicolons (after macro calls): Swallow Semicolon.
-* side effects (in macro arguments): Side Effects.
-* simple macro: Simple Macros.
-* space as macro argument: Argument Macros.
-* standard predefined macros: Standard Predefined.
-* stringification: Stringification.
-* testing predicates: Assertions.
-* unassert: Assertions.
-* undefining macros: Undefining.
-* unsafe macros: Side Effects.
-
-
-File: cpp.info, Node: Index, Prev: Concept Index, Up: Top
-
-Index of Directives, Macros and Options
-***************************************
-
-* Menu:
-
-* #assert: Assertions.
-* #cpu: Assertions.
-* #define: Argument Macros.
-* #elif: #elif Directive.
-* #else: #else Directive.
-* #error: #error Directive.
-* #ident: Other Directives.
-* #if: Conditional Syntax.
-* #ifdef: Conditionals-Macros.
-* #ifndef: Conditionals-Macros.
-* #import: Once-Only.
-* #include: Include Syntax.
-* #include_next: Inheritance.
-* #line: Combining Sources.
-* #machine: Assertions.
-* #pragma: Other Directives.
-* #pragma once: Once-Only.
-* #system: Assertions.
-* #unassert: Assertions.
-* #warning: #error Directive.
-* -$: Invocation.
-* -A: Invocation.
-* -C: Invocation.
-* -D: Invocation.
-* -dD: Invocation.
-* -dI: Invocation.
-* -dM: Invocation.
-* -H: Invocation.
-* -I: Invocation.
-* -idirafter: Invocation.
-* -imacros: Invocation.
-* -include: Invocation.
-* -iprefix: Invocation.
-* -isystem: Invocation.
-* -iwithprefix: Invocation.
-* -lang-c: Invocation.
-* -lang-c++: Invocation.
-* -lang-c89: Invocation.
-* -lang-objc: Invocation.
-* -lang-objc++: Invocation.
-* -M: Invocation.
-* -MD: Invocation.
-* -MM: Invocation.
-* -MMD: Invocation.
-* -nostdinc: Invocation.
-* -nostdinc++: Invocation.
-* -P: Invocation.
-* -pedantic: Invocation.
-* -pedantic-errors: Invocation.
-* -traditional: Invocation.
-* -trigraphs: Invocation.
-* -U: Invocation.
-* -undef: Invocation.
-* -Wall: Invocation.
-* -Wcomment: Invocation.
-* -Wtraditional: Invocation.
-* -Wtrigraphs: Invocation.
-* -Wundef: Invocation.
-* __BASE_FILE__: Standard Predefined.
-* __CHAR_UNSIGNED__: Standard Predefined.
-* __cplusplus: Standard Predefined.
-* __DATE__: Standard Predefined.
-* __FILE__: Standard Predefined.
-* __GNUC__: Standard Predefined.
-* __GNUC_MINOR__: Standard Predefined.
-* __GNUG__: Standard Predefined.
-* __INCLUDE_LEVEL_: Standard Predefined.
-* __LINE__: Standard Predefined.
-* __OPTIMIZE__: Standard Predefined.
-* __REGISTER_PREFIX__: Standard Predefined.
-* __STDC__: Standard Predefined.
-* __STDC_VERSION__: Standard Predefined.
-* __STRICT_ANSI__: Standard Predefined.
-* __TIME__: Standard Predefined.
-* __USER_LABEL_PREFIX__: Standard Predefined.
-* __VERSION__: Standard Predefined.
-* _AM29000: Nonstandard Predefined.
-* _AM29K: Nonstandard Predefined.
-* BSD: Nonstandard Predefined.
-* defined: Conditionals-Macros.
-* M68020: Nonstandard Predefined.
-* m68k: Nonstandard Predefined.
-* mc68000: Nonstandard Predefined.
-* ns32000: Nonstandard Predefined.
-* pyr: Nonstandard Predefined.
-* sequent: Nonstandard Predefined.
-* sun: Nonstandard Predefined.
-* system header files: Header Uses.
-* unix: Nonstandard Predefined.
-* vax: Nonstandard Predefined.
-
-
diff --git a/gcc/cpplib.c b/gcc/cpplib.c
index adbf269a431..0a930367452 100644
--- a/gcc/cpplib.c
+++ b/gcc/cpplib.c
@@ -80,11 +80,16 @@ Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#endif /* USG */
#endif /* not VMS */
+#if HAVE_LIMITS_H
+# include <limits.h>
+#endif
+
/* This defines "errno" properly for VMS, and gives us EACCES. */
#include <errno.h>
extern char *index ();
extern char *rindex ();
+extern char *update_path ();
#ifndef O_RDONLY
#define O_RDONLY 0
@@ -95,18 +100,26 @@ extern char *rindex ();
#define MIN(X,Y) ((X) < (Y) ? (X) : (Y))
#define MAX(X,Y) ((X) > (Y) ? (X) : (Y))
-/* Find the largest host integer type and set its size and type. */
-
-#ifndef HOST_BITS_PER_WIDE_INT
-
-#if HOST_BITS_PER_LONG > HOST_BITS_PER_INT
-#define HOST_BITS_PER_WIDE_INT HOST_BITS_PER_LONG
-#define HOST_WIDE_INT long
-#else
-#define HOST_BITS_PER_WIDE_INT HOST_BITS_PER_INT
-#define HOST_WIDE_INT int
-#endif
-
+/* Find the largest host integer type and set its size and type.
+ Watch out: on some crazy hosts `long' is shorter than `int'. */
+
+#ifndef HOST_WIDE_INT
+# if HAVE_INTTYPES_H
+# include <inttypes.h>
+# define HOST_WIDE_INT intmax_t
+# else
+# if (HOST_BITS_PER_LONG <= HOST_BITS_PER_INT \
+ && HOST_BITS_PER_LONGLONG <= HOST_BITS_PER_INT)
+# define HOST_WIDE_INT int
+# else
+# if (HOST_BITS_PER_LONGLONG <= HOST_BITS_PER_LONG \
+ || ! (defined LONG_LONG_MAX || defined LLONG_MAX))
+# define HOST_WIDE_INT long
+# else
+# define HOST_WIDE_INT long long
+# endif
+# endif
+# endif
#endif
#ifndef S_ISREG
@@ -242,36 +255,35 @@ struct cpp_pending {
/* Forward declarations. */
-extern char *xmalloc ();
+char *xmalloc ();
+void cpp_fatal ();
+void cpp_file_line_for_message PARAMS ((cpp_reader *, char *, int, int));
+void cpp_hash_cleanup PARAMS ((cpp_reader *));
+void cpp_message ();
+void cpp_print_containing_files PARAMS ((cpp_reader *));
static void add_import ();
static void append_include_chain ();
-static void make_undef ();
static void make_assertion ();
static void path_include ();
static void initialize_builtins ();
static void initialize_char_syntax ();
-static void dump_arg_n ();
-static void dump_defn_1 ();
extern void delete_macro ();
+#if 0
static void trigraph_pcp ();
+#endif
static int finclude ();
static void validate_else ();
static int comp_def_part ();
#ifdef abort
extern void fancy_abort ();
#endif
-static void pipe_closed ();
-static void print_containing_files ();
static int lookup_import ();
static int redundant_include_p ();
static is_system_include ();
static struct file_name_map *read_name_map ();
static char *read_filename_string ();
static int open_include_file ();
-static int check_preconditions ();
-static void pcfinclude ();
-static void pcstring_used ();
static int check_macro_name ();
static int compare_defs ();
static int compare_token_lists ();
@@ -352,6 +364,7 @@ struct file_name_list
/* The */
static struct default_include {
char *fname; /* The name of the directory. */
+ char *component; /* The component containing the directory */
int cplusplus; /* Only look here if we're compiling C++. */
int cxx_aware; /* Includes in this directory don't need to
be wrapped in extern "C" when compiling
@@ -362,40 +375,43 @@ static struct default_include {
#else
= {
/* Pick up GNU C++ specific include files. */
- { GPLUSPLUS_INCLUDE_DIR, 1, 1 },
- { OLD_GPLUSPLUS_INCLUDE_DIR, 1, 1 },
+ { GPLUSPLUS_INCLUDE_DIR, "G++", 1, 1 },
+ { OLD_GPLUSPLUS_INCLUDE_DIR, 0, 1, 1 },
#ifdef CROSS_COMPILE
/* This is the dir for fixincludes. Put it just before
the files that we fix. */
- { GCC_INCLUDE_DIR, 0, 0 },
+ { GCC_INCLUDE_DIR, "GCC", 0, 0 },
/* For cross-compilation, this dir name is generated
automatically in Makefile.in. */
- { CROSS_INCLUDE_DIR, 0, 0 },
+ { CROSS_INCLUDE_DIR, "GCC",0, 0 },
#ifdef TOOL_INCLUDE_DIR
/* This is another place that the target system's headers might be. */
- { TOOL_INCLUDE_DIR, 0, 1 },
+ { TOOL_INCLUDE_DIR, "BINUTILS", 0, 1 },
#endif
#else /* not CROSS_COMPILE */
#ifdef LOCAL_INCLUDE_DIR
/* This should be /usr/local/include and should come before
the fixincludes-fixed header files. */
- { LOCAL_INCLUDE_DIR, 0, 1 },
+ { LOCAL_INCLUDE_DIR, 0, 0, 1 },
#endif
#ifdef TOOL_INCLUDE_DIR
/* This is here ahead of GCC_INCLUDE_DIR because assert.h goes here.
Likewise, behind LOCAL_INCLUDE_DIR, where glibc puts its assert.h. */
- { TOOL_INCLUDE_DIR, 0, 1 },
+ { TOOL_INCLUDE_DIR, "BINUTILS", 0, 1 },
#endif
/* This is the dir for fixincludes. Put it just before
the files that we fix. */
- { GCC_INCLUDE_DIR, 0, 0 },
+ { GCC_INCLUDE_DIR, "GCC", 0, 0 },
/* Some systems have an extra dir of include files. */
#ifdef SYSTEM_INCLUDE_DIR
- { SYSTEM_INCLUDE_DIR, 0, 0 },
+ { SYSTEM_INCLUDE_DIR, 0, 0, 0 },
#endif
- { STANDARD_INCLUDE_DIR, 0, 0 },
+#ifndef STANDARD_INCLUDE_COMPONENT
+#define STANDARD_INCLUDE_COMPONENT 0
+#endif
+ { STANDARD_INCLUDE_DIR, STANDARD_INCLUDE_COMPONENT, 0, 0 },
#endif /* not CROSS_COMPILE */
- { 0, 0, 0 }
+ { 0, 0, 0, 0 }
};
#endif /* no INCLUDE_DEFAULTS */
@@ -407,15 +423,15 @@ struct directive {
char *name; /* Name of directive */
enum node_type type; /* Code which describes which directive. */
char command_reads_line; /* One if rest of line is read by func. */
- char traditional_comments; /* Nonzero: keep comments if -traditional. */
- char pass_thru; /* Copy preprocessed directive to output file.*/
};
+#define IS_INCLUDE_DIRECTIVE_TYPE(t) (T_INCLUDE <= (t) && (t) <= T_IMPORT)
+
/* Here is the actual list of #-directives, most-often-used first.
The initialize_builtins function assumes #define is the very first. */
static struct directive directive_table[] = {
- { 6, do_define, "define", T_DEFINE, 0, 1},
+ { 6, do_define, "define", T_DEFINE},
{ 5, do_xifdef, "ifdef", T_IFDEF, 1},
{ 6, do_xifdef, "ifndef", T_IFNDEF, 1},
{ 7, do_include, "include", T_INCLUDE, 1},
@@ -428,9 +444,9 @@ static struct directive directive_table[] = {
{ 5, do_undef, "undef", T_UNDEF},
{ 5, do_error, "error", T_ERROR},
{ 7, do_warning, "warning", T_WARNING},
- { 6, do_pragma, "pragma", T_PRAGMA, 0, 0, 1},
+ { 6, do_pragma, "pragma", T_PRAGMA},
{ 4, do_line, "line", T_LINE, 1},
- { 5, do_ident, "ident", T_IDENT, 1, 0, 1},
+ { 5, do_ident, "ident", T_IDENT, 1},
#ifdef SCCS_DIRECTIVE
{ 4, do_sccs, "sccs", T_SCCS},
#endif
@@ -510,7 +526,7 @@ quote_string (pfile, src)
CPP_PUTC_Q (pfile, c);
else
{
- sprintf ((char *) CPP_PWRITTEN (pfile), "\\%03o", c);
+ sprintf ((char *)CPP_PWRITTEN (pfile), "\\%03o", c);
CPP_ADJUST_WRITTEN (pfile, 4);
}
break;
@@ -981,7 +997,7 @@ copy_rest_of_line (pfile)
break;
case '/':
nextc = PEEKC();
- if (nextc == '*' || (opts->cplusplus_comments && nextc == '*'))
+ if (nextc == '*' || (opts->cplusplus_comments && nextc == '/'))
goto scan_directive_token;
break;
case '\f':
@@ -1091,7 +1107,7 @@ handle_directive (pfile)
{
/* Nonzero means do not delete comments within the directive.
#define needs this when -traditional. */
- int comments = CPP_TRADITIONAL (pfile) && kt->traditional_comments;
+ int comments = CPP_TRADITIONAL (pfile) && kt->type == T_DEFINE;
int save_put_out_comments = CPP_OPTIONS (pfile)->put_out_comments;
CPP_OPTIONS (pfile)->put_out_comments = comments;
after_ident = CPP_WRITTEN (pfile);
@@ -1099,37 +1115,39 @@ handle_directive (pfile)
CPP_OPTIONS (pfile)->put_out_comments = save_put_out_comments;
}
- /* For #pragma and #define, we may want to pass through the directive.
+ /* We may want to pass through #define, #pragma, and #include.
Other directives may create output, but we don't want the directive
- itself out, so we pop it now. For example #include may write a #line
- command (see comment in do_include), and conditionals may emit
+ itself out, so we pop it now. For example conditionals may emit
#failed ... #endfailed stuff. But note that popping the buffer
means the parameters to kt->func may point after pfile->limit
so these parameters are invalid as soon as something gets appended
to the token_buffer. */
line_end = CPP_PWRITTEN (pfile);
- if (!kt->pass_thru && kt->type != T_DEFINE)
+ if (! (kt->type == T_DEFINE
+ || kt->type == T_PRAGMA
+ || (IS_INCLUDE_DIRECTIVE_TYPE (kt->type)
+ && CPP_OPTIONS (pfile)->dump_includes)))
CPP_SET_WRITTEN (pfile, old_written);
(*kt->func) (pfile, kt, pfile->token_buffer + after_ident, line_end);
- if (kt->pass_thru
- || (kt->type == T_DEFINE
- && CPP_OPTIONS (pfile)->dump_macros == dump_definitions))
- {
- /* Just leave the entire #define in the output stack. */
- }
- else if (kt->type == T_DEFINE
- && CPP_OPTIONS (pfile)->dump_macros == dump_names)
+
+ if (kt->type == T_DEFINE)
{
- U_CHAR *p = pfile->token_buffer + old_written + 7; /* Skip "#define". */
- SKIP_WHITE_SPACE (p);
- while (is_idchar[*p]) p++;
- pfile->limit = p;
- CPP_PUTC (pfile, '\n');
+ if (CPP_OPTIONS (pfile)->dump_macros == dump_names)
+ {
+ /* Skip "#define". */
+ U_CHAR *p = pfile->token_buffer + old_written + 7;
+
+ SKIP_WHITE_SPACE (p);
+ while (is_idchar[*p]) p++;
+ pfile->limit = p;
+ CPP_PUTC (pfile, '\n');
+ }
+ else if (CPP_OPTIONS (pfile)->dump_macros != dump_definitions)
+ CPP_SET_WRITTEN (pfile, old_written);
}
- else if (kt->type == T_DEFINE)
- CPP_SET_WRITTEN (pfile, old_written);
+
done_a_directive:
return 1;
@@ -2133,7 +2151,7 @@ output_line_command (pfile, conditional, file_change)
CPP_PUTS_Q (pfile, sharp_line, sizeof(sharp_line)-1);
}
- sprintf ((char *) CPP_PWRITTEN (pfile), "%d ", line);
+ sprintf ((char *) CPP_PWRITTEN (pfile), "%ld ", line);
CPP_ADJUST_WRITTEN (pfile, strlen (CPP_PWRITTEN (pfile)));
quote_string (pfile, ip->nominal_fname);
@@ -2377,6 +2395,12 @@ special_symbol (hp, pfile)
case T_CONST:
buf = (char *) alloca (4 * sizeof (int));
sprintf (buf, "%d", hp->value.ival);
+#ifdef STDC_0_IN_SYSTEM_HEADERS
+ if (ip->system_header_p
+ && hp->length == 8 && bcmp (hp->name, "__STDC__", 8) == 0
+ && ! cpp_lookup (pfile, (U_CHAR *) "__STRICT_ANSI__", -1, -1))
+ strcpy (buf, "0");
+#endif
#if 0
if (pcp_inside_if && pcp_outfile)
/* Output a precondition for this macro use */
@@ -2391,7 +2415,7 @@ special_symbol (hp, pfile)
adjust_position (CPP_LINE_BASE (ip), ip->cur, &line, &col);
buf = (char *) alloca (10);
- sprintf (buf, "%d", line);
+ sprintf (buf, "%ld", line);
}
break;
@@ -2498,26 +2522,26 @@ static void
initialize_builtins (pfile)
cpp_reader *pfile;
{
- install ("__LINE__", -1, T_SPECLINE, 0, 0, -1);
- install ("__DATE__", -1, T_DATE, 0, 0, -1);
- install ("__FILE__", -1, T_FILE, 0, 0, -1);
- install ("__BASE_FILE__", -1, T_BASE_FILE, 0, 0, -1);
- install ("__INCLUDE_LEVEL__", -1, T_INCLUDE_LEVEL, 0, 0, -1);
- install ("__VERSION__", -1, T_VERSION, 0, 0, -1);
+ install ((U_CHAR *)"__LINE__", -1, T_SPECLINE, 0, 0, -1);
+ install ((U_CHAR *)"__DATE__", -1, T_DATE, 0, 0, -1);
+ install ((U_CHAR *)"__FILE__", -1, T_FILE, 0, 0, -1);
+ install ((U_CHAR *)"__BASE_FILE__", -1, T_BASE_FILE, 0, 0, -1);
+ install ((U_CHAR *)"__INCLUDE_LEVEL__", -1, T_INCLUDE_LEVEL, 0, 0, -1);
+ install ((U_CHAR *)"__VERSION__", -1, T_VERSION, 0, 0, -1);
#ifndef NO_BUILTIN_SIZE_TYPE
- install ("__SIZE_TYPE__", -1, T_SIZE_TYPE, 0, 0, -1);
+ install ((U_CHAR *)"__SIZE_TYPE__", -1, T_SIZE_TYPE, 0, 0, -1);
#endif
#ifndef NO_BUILTIN_PTRDIFF_TYPE
- install ("__PTRDIFF_TYPE__ ", -1, T_PTRDIFF_TYPE, 0, 0, -1);
+ install ((U_CHAR *)"__PTRDIFF_TYPE__ ", -1, T_PTRDIFF_TYPE, 0, 0, -1);
#endif
- install ("__WCHAR_TYPE__", -1, T_WCHAR_TYPE, 0, 0, -1);
- install ("__USER_LABEL_PREFIX__", -1, T_USER_LABEL_PREFIX_TYPE, 0, 0, -1);
- install ("__REGISTER_PREFIX__", -1, T_REGISTER_PREFIX_TYPE, 0, 0, -1);
- install ("__TIME__", -1, T_TIME, 0, 0, -1);
+ install ((U_CHAR *)"__WCHAR_TYPE__", -1, T_WCHAR_TYPE, 0, 0, -1);
+ install ((U_CHAR *)"__USER_LABEL_PREFIX__", -1, T_USER_LABEL_PREFIX_TYPE, 0, 0, -1);
+ install ((U_CHAR *)"__REGISTER_PREFIX__", -1, T_REGISTER_PREFIX_TYPE, 0, 0, -1);
+ install ((U_CHAR *)"__TIME__", -1, T_TIME, 0, 0, -1);
if (!CPP_TRADITIONAL (pfile))
- install ("__STDC__", -1, T_CONST, STDC_VALUE, 0, -1);
+ install ((U_CHAR *)"__STDC__", -1, T_CONST, STDC_VALUE, 0, -1);
if (CPP_OPTIONS (pfile)->objc)
- install ("__OBJC__", -1, T_CONST, 1, 0, -1);
+ install ((U_CHAR *)"__OBJC__", -1, T_CONST, 1, 0, -1);
/* This is supplied using a -D by the compiler driver
so that it is present only when truly compiling with GNU C. */
/* install ("__GNUC__", -1, T_CONST, 2, 0, -1); */
@@ -2809,7 +2833,7 @@ macroexpand (pfile, hp)
else
{
CPP_RESERVE (pfile, 4);
- sprintf ((char *) CPP_PWRITTEN (pfile), "\\%03o",
+ sprintf ((char *)CPP_PWRITTEN (pfile), "\\%03o",
(unsigned int) c);
CPP_ADJUST_WRITTEN (pfile, 4);
}
@@ -3728,7 +3752,7 @@ do_line (pfile, keyword)
/* The Newline at the end of this line remains to be processed.
To put the next line at the specified line number,
we must store a line number now that is one less. */
- new_lineno = atoi ((char *) pfile->token_buffer + old_written) - 1;
+ new_lineno = atoi ((char *)(pfile->token_buffer + old_written)) - 1;
CPP_SET_WRITTEN (pfile, old_written);
/* NEW_LINENO is one less than the actual line number here. */
@@ -3948,7 +3972,7 @@ do_once (pfile)
return 0;
}
-/* #ident has already been copied to the output file, so just ignore it. */
+/* Report program identification. */
static int
do_ident (pfile, keyword, buf, limit)
@@ -4136,7 +4160,7 @@ eval_if_expression (pfile, buf, length)
HOST_WIDE_INT value;
long old_written = CPP_WRITTEN (pfile);
- save_defined = install ("defined", -1, T_SPEC_DEFINED, 0, 0, -1);
+ save_defined = install ((U_CHAR *)"defined", -1, T_SPEC_DEFINED, 0, 0, -1);
pfile->pcp_inside_if = 1;
value = cpp_parse_expr (pfile);
@@ -5887,6 +5911,7 @@ cpp_start_read (pfile, fname)
nstore[endp-startp] = '\0';
include_defaults[num_dirs].fname = savestring (nstore);
+ include_defaults[num_dirs].component = 0;
include_defaults[num_dirs].cplusplus = opts->cplusplus;
include_defaults[num_dirs].cxx_aware = 1;
num_dirs++;
@@ -5953,7 +5978,7 @@ cpp_start_read (pfile, fname)
= (struct file_name_list *) xmalloc (sizeof (struct file_name_list));
new->control_macro = 0;
new->c_system_include_path = !p->cxx_aware;
- new->fname = p->fname;
+ new->fname = update_path (p->fname, p->component);
new->got_name_map = 0;
append_include_chain (pfile, new, new);
if (opts->first_system_include == 0)
@@ -6077,8 +6102,12 @@ cpp_start_read (pfile, fname)
deps_output (pfile, "-", ':');
else
{
- char *p, *q;
- int len;
+ char *p, *q, *r;
+ int len, x;
+ static char *known_suffixes[] = { ".c", ".C", ".s", ".S", ".m",
+ ".cc", ".cxx", ".cpp", ".cp",
+ ".c++", 0
+ };
/* Discard all directory prefixes from filename. */
if ((q = rindex (opts->in_fname, '/')) != NULL
@@ -6097,27 +6126,21 @@ cpp_start_read (pfile, fname)
/* Output P, but remove known suffixes. */
len = strlen (p);
q = p + len;
- if (len >= 2
- && p[len - 2] == '.'
- && index("cCsSm", p[len - 1]))
- q = p + (len - 2);
- else if (len >= 3
- && p[len - 3] == '.'
- && p[len - 2] == 'c'
- && p[len - 1] == 'c')
- q = p + (len - 3);
- else if (len >= 4
- && p[len - 4] == '.'
- && p[len - 3] == 'c'
- && p[len - 2] == 'x'
- && p[len - 1] == 'x')
- q = p + (len - 4);
- else if (len >= 4
- && p[len - 4] == '.'
- && p[len - 3] == 'c'
- && p[len - 2] == 'p'
- && p[len - 1] == 'p')
- q = p + (len - 4);
+ /* Point to the filename suffix. */
+ r = rindex (p, '.');
+ /* Compare against the known suffixes. */
+ x = 0;
+ while (known_suffixes[x] != 0)
+ {
+ if (strncmp (known_suffixes[x], r, q - r) == 0)
+ {
+ /* Make q point to the bit we're going to overwrite
+ with an object suffix. */
+ q = r;
+ break;
+ }
+ x++;
+ }
/* Supply our own suffix. */
#ifndef VMS
@@ -6575,6 +6598,9 @@ cpp_handle_options (pfile, argc, argv)
case 'D':
opts->dump_macros = dump_definitions;
break;
+ case 'I':
+ opts->dump_includes = 1;
+ break;
}
}
}
diff --git a/gcc/cse.c b/gcc/cse.c
index 39ce6f6ba90..5ab24441deb 100644
--- a/gcc/cse.c
+++ b/gcc/cse.c
@@ -561,7 +561,8 @@ struct cse_basic_block_data {
|| XEXP (X, 0) == hard_frame_pointer_rtx \
|| XEXP (X, 0) == arg_pointer_rtx \
|| XEXP (X, 0) == virtual_stack_vars_rtx \
- || XEXP (X, 0) == virtual_incoming_args_rtx)))
+ || XEXP (X, 0) == virtual_incoming_args_rtx)) \
+ || GET_CODE (X) == ADDRESSOF)
/* Similar, but also allows reference to the stack pointer.
@@ -585,7 +586,8 @@ struct cse_basic_block_data {
|| (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == CONST_INT \
&& (XEXP (X, 0) == stack_pointer_rtx \
|| XEXP (X, 0) == virtual_stack_dynamic_rtx \
- || XEXP (X, 0) == virtual_outgoing_args_rtx)))
+ || XEXP (X, 0) == virtual_outgoing_args_rtx)) \
+ || GET_CODE (X) == ADDRESSOF)
static int notreg_cost PROTO((rtx));
static void new_basic_block PROTO((void));
@@ -1871,15 +1873,12 @@ canon_hash (x, mode)
if (regno < FIRST_PSEUDO_REGISTER
&& (global_regs[regno]
-#ifdef SMALL_REGISTER_CLASSES
|| (SMALL_REGISTER_CLASSES
&& ! fixed_regs[regno]
&& regno != FRAME_POINTER_REGNUM
&& regno != HARD_FRAME_POINTER_REGNUM
&& regno != ARG_POINTER_REGNUM
- && regno != STACK_POINTER_REGNUM)
-#endif
- ))
+ && regno != STACK_POINTER_REGNUM)))
{
do_not_record = 1;
return 0;
@@ -1955,6 +1954,10 @@ canon_hash (x, mode)
do_not_record = 1;
return 0;
}
+ break;
+
+ default:
+ break;
}
i = GET_RTX_LENGTH (code) - 1;
@@ -1991,6 +1994,8 @@ canon_hash (x, mode)
register unsigned tem = XINT (x, i);
hash += tem;
}
+ else if (fmt[i] == '0')
+ /* unused */;
else
abort ();
}
@@ -2129,6 +2134,9 @@ exp_equiv_p (x, y, validate, equal_values)
validate, equal_values)
&& exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
validate, equal_values)));
+
+ default:
+ break;
}
/* Compare the elements. If any pair of corresponding elements
@@ -2357,6 +2365,9 @@ set_nonvarying_address_components (addr, size, pbase, pstart, pend)
base = *pbase;
}
break;
+
+ default:
+ break;
}
break;
@@ -2479,6 +2490,9 @@ canon_reg (x, insn)
: REGNO_REG_CLASS (first) == NO_REGS ? x
: gen_rtx (REG, qty_mode[reg_qty[REGNO (x)]], first));
}
+
+ default:
+ break;
}
fmt = GET_RTX_FORMAT (code);
@@ -2562,6 +2576,7 @@ find_best_addr (insn, loc)
&& (regno = REGNO (addr), regno == FRAME_POINTER_REGNUM
|| regno == HARD_FRAME_POINTER_REGNUM
|| regno == ARG_POINTER_REGNUM))
+ || GET_CODE (addr) == ADDRESSOF
|| CONSTANT_ADDRESS_P (addr))
return;
@@ -3322,6 +3337,9 @@ simplify_unary_operation (code, mode, op, op_mode)
return convert_memory_address (Pmode, op);
break;
#endif
+
+ default:
+ break;
}
return 0;
@@ -4249,6 +4267,9 @@ simplify_plus_minus (code, mode, op0, op1)
if (negs[i])
ops[i] = GEN_INT (- INTVAL (ops[i])), negs[i] = 0, changed = 1;
break;
+
+ default:
+ break;
}
}
@@ -4574,6 +4595,9 @@ simplify_relational_operation (code, mode, op0, op1)
&& INTEGRAL_MODE_P (mode))
return const0_rtx;
break;
+
+ default:
+ break;
}
return 0;
@@ -4603,9 +4627,9 @@ simplify_relational_operation (code, mode, op0, op1)
return equal || op0ltu ? const_true_rtx : const0_rtx;
case GEU:
return equal || op1ltu ? const_true_rtx : const0_rtx;
+ default:
+ abort ();
}
-
- abort ();
}
/* Simplify CODE, an operation with result mode MODE and three operands,
@@ -4994,6 +5018,8 @@ fold_rtx (x, insn)
else if (GET_CODE (addr) == LO_SUM
&& GET_CODE (XEXP (addr, 1)) == SYMBOL_REF)
base = XEXP (addr, 1);
+ else if (GET_CODE (addr) == ADDRESSOF)
+ XEXP (x, 0) = addr;
/* If this is a constant pool reference, we can fold it into its
constant to allow better value tracking. */
@@ -5085,6 +5111,9 @@ fold_rtx (x, insn)
validate_change (insn, &XVECEXP (x, 3, i),
fold_rtx (XVECEXP (x, 3, i), insn), 0);
break;
+
+ default:
+ break;
}
const_arg0 = 0;
@@ -5420,6 +5449,8 @@ fold_rtx (x, insn)
if (has_sign)
return false;
break;
+ default:
+ break;
}
}
}
@@ -5615,6 +5646,10 @@ fold_rtx (x, insn)
return cse_gen_binary (code, mode, y, new_const);
}
+ break;
+
+ default:
+ break;
}
new = simplify_binary_operation (code, mode,
@@ -7678,6 +7713,9 @@ cse_process_notes (x, object)
/* Otherwise, canonicalize this register. */
return canon_reg (x, NULL_RTX);
+
+ default:
+ break;
}
for (i = 0; i < GET_RTX_LENGTH (code); i++)
@@ -8359,6 +8397,7 @@ cse_basic_block (from, to, next_branch, around_loop)
register rtx insn;
int to_usage = 0;
int in_libcall_block = 0;
+ int num_insns = 0;
/* Each of these arrays is undefined before max_reg, so only allocate
the space actually needed and adjust the start below. */
@@ -8391,6 +8430,29 @@ cse_basic_block (from, to, next_branch, around_loop)
for (insn = from; insn != to; insn = NEXT_INSN (insn))
{
register enum rtx_code code;
+ int i;
+ struct table_elt *p, *next;
+
+ /* If we have processed 1,000 insns, flush the hash table to avoid
+ extreme quadratic behavior.
+
+ ??? This is a real kludge and needs to be done some other way.
+ Perhaps for 2.9. */
+ if (num_insns++ > 1000)
+ {
+ for (i = 0; i < NBUCKETS; i++)
+ for (p = table[i]; p; p = next)
+ {
+ next = p->next_same_hash;
+
+ if (GET_CODE (p->exp) == REG)
+ invalidate (p->exp, p->mode);
+ else
+ remove_from_table (p, i);
+ }
+
+ num_insns = 0;
+ }
/* See if this is a branch that is part of the path. If so, and it is
to be taken, do so. */
@@ -8614,6 +8676,9 @@ count_reg_usage (x, counts, dest, incr)
count_reg_usage (XEXP (x, 0), counts, NULL_RTX, incr);
count_reg_usage (XEXP (x, 1), counts, NULL_RTX, incr);
return;
+
+ default:
+ break;
}
fmt = GET_RTX_FORMAT (code);
diff --git a/gcc/dbxout.c b/gcc/dbxout.c
index 79c065b5c29..92557685b31 100644
--- a/gcc/dbxout.c
+++ b/gcc/dbxout.c
@@ -67,11 +67,11 @@ Boston, MA 02111-1307, USA. */
For more on data type definitions, see `dbxout_type'. */
-/* Include these first, because they may define MIN and MAX. */
+#include "config.h"
+
#include <stdio.h>
#include <errno.h>
-#include "config.h"
#include "tree.h"
#include "rtl.h"
#include "flags.h"
@@ -1870,6 +1870,10 @@ dbxout_symbol (decl, local)
#endif
dbxout_symbol_location (decl, type, 0, DECL_RTL (decl));
+ break;
+
+ default:
+ break;
}
}
diff --git a/gcc/dwarf2.h b/gcc/dwarf2.h
index 4340344c868..d2a74e0d6de 100644
--- a/gcc/dwarf2.h
+++ b/gcc/dwarf2.h
@@ -1,6 +1,6 @@
/* Declarations and definitions of codes relating to the DWARF2 symbolic
debugging information format.
- Copyright (C) 1992, 1993, 1995, 1996 Free Software Foundation, Inc.
+ Copyright (C) 1992, 1993, 1995, 1996, 1997 Free Software Foundation, Inc.
Contributed by Gary Funck (gary@intrepid.com). Derived from the
DWARF 1 implementation written by Ron Guilmette (rfg@monkeys.com).
diff --git a/gcc/dwarf2out.c b/gcc/dwarf2out.c
index 95dd005918c..c8a6c74431b 100644
--- a/gcc/dwarf2out.c
+++ b/gcc/dwarf2out.c
@@ -1,7 +1,7 @@
/* Output Dwarf2 format symbol table information from the GNU C compiler.
Copyright (C) 1992, 1993, 1995, 1996, 1997 Free Software Foundation, Inc.
- Contributed by Gary Funck (gary@intrepid.com). Derived from the
- DWARF 1 implementation written by Ron Guilmette (rfg@monkeys.com).
+ Contributed by Gary Funck (gary@intrepid.com).
+ Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
Extensively modified by Jason Merrill (jason@cygnus.com).
This file is part of GNU CC.
@@ -743,6 +743,8 @@ lookup_cfa_1 (cfi, regp, offsetp)
*regp = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
*offsetp = cfi->dw_cfi_oprnd2.dw_cfi_offset;
break;
+ default:
+ break;
}
}
@@ -1170,7 +1172,6 @@ dwarf2out_frame_debug (insn)
assert (XEXP (src, 1) == stack_pointer_rtx);
assert (GET_CODE (XEXP (src, 0)) == REG
&& REGNO (XEXP (src, 0)) == cfa_temp_reg);
- assert (cfa_store_reg == STACK_POINTER_REGNUM);
cfa_store_reg = REGNO (dest);
cfa_store_offset -= cfa_temp_value;
}
@@ -1489,13 +1490,6 @@ output_call_frame_info (for_eh)
/* Do we want to include a pointer to the exception table? */
int eh_ptr = for_eh && exception_table_p ();
- /* Only output the info if it will be interesting. */
- for (i = 0; i < fde_table_in_use; ++i)
- if (fde_table[i].dw_fde_cfi != NULL)
- break;
- if (i == fde_table_in_use)
- return;
-
fputc ('\n', asm_out_file);
/* We're going to be generating comments, so turn on app. */
@@ -4094,6 +4088,8 @@ print_die (die, outfile)
else
fprintf (outfile, "<null>");
break;
+ default:
+ break;
}
fprintf (outfile, "\n");
@@ -6880,6 +6876,11 @@ add_location_or_const_value_attribute (die, decl)
switch (GET_CODE (rtl))
{
+ case ADDRESSOF:
+ /* The address of a variable that was optimized away; don't emit
+ anything. */
+ break;
+
case CONST_INT:
case CONST_DOUBLE:
case CONST_STRING:
@@ -7667,7 +7668,7 @@ gen_enumeration_type_die (type, context_die)
TREE_ASM_WRITTEN (type) = 1;
add_byte_size_attribute (type_die, type);
- if (type_tag (type))
+ if (TYPE_STUB_DECL (type) != NULL_TREE)
add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
/* If the first reference to this type was as the return type of an
@@ -8542,7 +8543,7 @@ gen_struct_or_union_type_die (type, context_die)
this type is expressed in terms of this type itself. */
TREE_ASM_WRITTEN (type) = 1;
add_byte_size_attribute (type_die, type);
- if (type_tag (type))
+ if (TYPE_STUB_DECL (type) != NULL_TREE)
add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
/* If the first reference to this type was as the return type of an
diff --git a/gcc/dwarfout.c b/gcc/dwarfout.c
index 6db507d6a40..cdeed4abc60 100644
--- a/gcc/dwarfout.c
+++ b/gcc/dwarfout.c
@@ -531,153 +531,153 @@ static void generate_macinfo_entry PROTO((char *, char *));
*/
#ifndef TEXT_BEGIN_LABEL
-#define TEXT_BEGIN_LABEL ".L_text_b"
+#define TEXT_BEGIN_LABEL "*.L_text_b"
#endif
#ifndef TEXT_END_LABEL
-#define TEXT_END_LABEL ".L_text_e"
+#define TEXT_END_LABEL "*.L_text_e"
#endif
#ifndef DATA_BEGIN_LABEL
-#define DATA_BEGIN_LABEL ".L_data_b"
+#define DATA_BEGIN_LABEL "*.L_data_b"
#endif
#ifndef DATA_END_LABEL
-#define DATA_END_LABEL ".L_data_e"
+#define DATA_END_LABEL "*.L_data_e"
#endif
#ifndef DATA1_BEGIN_LABEL
-#define DATA1_BEGIN_LABEL ".L_data1_b"
+#define DATA1_BEGIN_LABEL "*.L_data1_b"
#endif
#ifndef DATA1_END_LABEL
-#define DATA1_END_LABEL ".L_data1_e"
+#define DATA1_END_LABEL "*.L_data1_e"
#endif
#ifndef RODATA_BEGIN_LABEL
-#define RODATA_BEGIN_LABEL ".L_rodata_b"
+#define RODATA_BEGIN_LABEL "*.L_rodata_b"
#endif
#ifndef RODATA_END_LABEL
-#define RODATA_END_LABEL ".L_rodata_e"
+#define RODATA_END_LABEL "*.L_rodata_e"
#endif
#ifndef RODATA1_BEGIN_LABEL
-#define RODATA1_BEGIN_LABEL ".L_rodata1_b"
+#define RODATA1_BEGIN_LABEL "*.L_rodata1_b"
#endif
#ifndef RODATA1_END_LABEL
-#define RODATA1_END_LABEL ".L_rodata1_e"
+#define RODATA1_END_LABEL "*.L_rodata1_e"
#endif
#ifndef BSS_BEGIN_LABEL
-#define BSS_BEGIN_LABEL ".L_bss_b"
+#define BSS_BEGIN_LABEL "*.L_bss_b"
#endif
#ifndef BSS_END_LABEL
-#define BSS_END_LABEL ".L_bss_e"
+#define BSS_END_LABEL "*.L_bss_e"
#endif
#ifndef LINE_BEGIN_LABEL
-#define LINE_BEGIN_LABEL ".L_line_b"
+#define LINE_BEGIN_LABEL "*.L_line_b"
#endif
#ifndef LINE_LAST_ENTRY_LABEL
-#define LINE_LAST_ENTRY_LABEL ".L_line_last"
+#define LINE_LAST_ENTRY_LABEL "*.L_line_last"
#endif
#ifndef LINE_END_LABEL
-#define LINE_END_LABEL ".L_line_e"
+#define LINE_END_LABEL "*.L_line_e"
#endif
#ifndef DEBUG_BEGIN_LABEL
-#define DEBUG_BEGIN_LABEL ".L_debug_b"
+#define DEBUG_BEGIN_LABEL "*.L_debug_b"
#endif
#ifndef SFNAMES_BEGIN_LABEL
-#define SFNAMES_BEGIN_LABEL ".L_sfnames_b"
+#define SFNAMES_BEGIN_LABEL "*.L_sfnames_b"
#endif
#ifndef SRCINFO_BEGIN_LABEL
-#define SRCINFO_BEGIN_LABEL ".L_srcinfo_b"
+#define SRCINFO_BEGIN_LABEL "*.L_srcinfo_b"
#endif
#ifndef MACINFO_BEGIN_LABEL
-#define MACINFO_BEGIN_LABEL ".L_macinfo_b"
+#define MACINFO_BEGIN_LABEL "*.L_macinfo_b"
#endif
#ifndef DIE_BEGIN_LABEL_FMT
-#define DIE_BEGIN_LABEL_FMT ".L_D%u"
+#define DIE_BEGIN_LABEL_FMT "*.L_D%u"
#endif
#ifndef DIE_END_LABEL_FMT
-#define DIE_END_LABEL_FMT ".L_D%u_e"
+#define DIE_END_LABEL_FMT "*.L_D%u_e"
#endif
#ifndef PUB_DIE_LABEL_FMT
-#define PUB_DIE_LABEL_FMT ".L_P%u"
+#define PUB_DIE_LABEL_FMT "*.L_P%u"
#endif
#ifndef INSN_LABEL_FMT
-#define INSN_LABEL_FMT ".L_I%u_%u"
+#define INSN_LABEL_FMT "*.L_I%u_%u"
#endif
#ifndef BLOCK_BEGIN_LABEL_FMT
-#define BLOCK_BEGIN_LABEL_FMT ".L_B%u"
+#define BLOCK_BEGIN_LABEL_FMT "*.L_B%u"
#endif
#ifndef BLOCK_END_LABEL_FMT
-#define BLOCK_END_LABEL_FMT ".L_B%u_e"
+#define BLOCK_END_LABEL_FMT "*.L_B%u_e"
#endif
#ifndef SS_BEGIN_LABEL_FMT
-#define SS_BEGIN_LABEL_FMT ".L_s%u"
+#define SS_BEGIN_LABEL_FMT "*.L_s%u"
#endif
#ifndef SS_END_LABEL_FMT
-#define SS_END_LABEL_FMT ".L_s%u_e"
+#define SS_END_LABEL_FMT "*.L_s%u_e"
#endif
#ifndef EE_BEGIN_LABEL_FMT
-#define EE_BEGIN_LABEL_FMT ".L_e%u"
+#define EE_BEGIN_LABEL_FMT "*.L_e%u"
#endif
#ifndef EE_END_LABEL_FMT
-#define EE_END_LABEL_FMT ".L_e%u_e"
+#define EE_END_LABEL_FMT "*.L_e%u_e"
#endif
#ifndef MT_BEGIN_LABEL_FMT
-#define MT_BEGIN_LABEL_FMT ".L_t%u"
+#define MT_BEGIN_LABEL_FMT "*.L_t%u"
#endif
#ifndef MT_END_LABEL_FMT
-#define MT_END_LABEL_FMT ".L_t%u_e"
+#define MT_END_LABEL_FMT "*.L_t%u_e"
#endif
#ifndef LOC_BEGIN_LABEL_FMT
-#define LOC_BEGIN_LABEL_FMT ".L_l%u"
+#define LOC_BEGIN_LABEL_FMT "*.L_l%u"
#endif
#ifndef LOC_END_LABEL_FMT
-#define LOC_END_LABEL_FMT ".L_l%u_e"
+#define LOC_END_LABEL_FMT "*.L_l%u_e"
#endif
#ifndef BOUND_BEGIN_LABEL_FMT
-#define BOUND_BEGIN_LABEL_FMT ".L_b%u_%u_%c"
+#define BOUND_BEGIN_LABEL_FMT "*.L_b%u_%u_%c"
#endif
#ifndef BOUND_END_LABEL_FMT
-#define BOUND_END_LABEL_FMT ".L_b%u_%u_%c_e"
+#define BOUND_END_LABEL_FMT "*.L_b%u_%u_%c_e"
#endif
#ifndef DERIV_BEGIN_LABEL_FMT
-#define DERIV_BEGIN_LABEL_FMT ".L_d%u"
+#define DERIV_BEGIN_LABEL_FMT "*.L_d%u"
#endif
#ifndef DERIV_END_LABEL_FMT
-#define DERIV_END_LABEL_FMT ".L_d%u_e"
+#define DERIV_END_LABEL_FMT "*.L_d%u_e"
#endif
#ifndef SL_BEGIN_LABEL_FMT
-#define SL_BEGIN_LABEL_FMT ".L_sl%u"
+#define SL_BEGIN_LABEL_FMT "*.L_sl%u"
#endif
#ifndef SL_END_LABEL_FMT
-#define SL_END_LABEL_FMT ".L_sl%u_e"
+#define SL_END_LABEL_FMT "*.L_sl%u_e"
#endif
#ifndef BODY_BEGIN_LABEL_FMT
-#define BODY_BEGIN_LABEL_FMT ".L_b%u"
+#define BODY_BEGIN_LABEL_FMT "*.L_b%u"
#endif
#ifndef BODY_END_LABEL_FMT
-#define BODY_END_LABEL_FMT ".L_b%u_e"
+#define BODY_END_LABEL_FMT "*.L_b%u_e"
#endif
#ifndef FUNC_END_LABEL_FMT
-#define FUNC_END_LABEL_FMT ".L_f%u_e"
+#define FUNC_END_LABEL_FMT "*.L_f%u_e"
#endif
#ifndef TYPE_NAME_FMT
-#define TYPE_NAME_FMT ".L_T%u"
+#define TYPE_NAME_FMT "*.L_T%u"
#endif
#ifndef DECL_NAME_FMT
-#define DECL_NAME_FMT ".L_E%u"
+#define DECL_NAME_FMT "*.L_E%u"
#endif
#ifndef LINE_CODE_LABEL_FMT
-#define LINE_CODE_LABEL_FMT ".L_LC%u"
+#define LINE_CODE_LABEL_FMT "*.L_LC%u"
#endif
#ifndef SFNAMES_ENTRY_LABEL_FMT
-#define SFNAMES_ENTRY_LABEL_FMT ".L_F%u"
+#define SFNAMES_ENTRY_LABEL_FMT "*.L_F%u"
#endif
#ifndef LINE_ENTRY_LABEL_FMT
-#define LINE_ENTRY_LABEL_FMT ".L_LE%u"
+#define LINE_ENTRY_LABEL_FMT "*.L_LE%u"
#endif
/* Definitions of defaults for various types of primitive assembly language
@@ -2403,6 +2403,11 @@ location_or_const_value_attribute (decl)
switch (GET_CODE (rtl))
{
+ case ADDRESSOF:
+ /* The address of a variable that was optimized away; don't emit
+ anything. */
+ break;
+
case CONST_INT:
case CONST_DOUBLE:
case CONST_STRING:
@@ -5496,7 +5501,10 @@ dwarfout_start_new_source_file (filename)
sprintf (label, SFNAMES_ENTRY_LABEL_FMT, lookup_filename (filename));
sprintf (type_and_offset, "0x%08x+%s-%s",
- ((unsigned) MACINFO_start << 24), label, SFNAMES_BEGIN_LABEL);
+ ((unsigned) MACINFO_start << 24),
+ /* Hack: skip leading '*' . */
+ (*label == '*') + label,
+ (*SFNAMES_BEGIN_LABEL == '*') + SFNAMES_BEGIN_LABEL);
generate_macinfo_entry (type_and_offset, "");
}
diff --git a/gcc/emit-rtl.c b/gcc/emit-rtl.c
index 50c65972819..2204cec03c3 100644
--- a/gcc/emit-rtl.c
+++ b/gcc/emit-rtl.c
@@ -35,6 +35,7 @@ Boston, MA 02111-1307, USA. */
is the kind of rtx's they make and what arguments they use. */
#include "config.h"
+#include <stdio.h>
#ifdef __STDC__
#include <stdarg.h>
#else
@@ -48,6 +49,7 @@ Boston, MA 02111-1307, USA. */
#include "expr.h"
#include "regs.h"
#include "insn-config.h"
+#include "recog.h"
#include "real.h"
#include "obstack.h"
@@ -58,8 +60,6 @@ Boston, MA 02111-1307, USA. */
#include "bc-optab.h"
#include "bc-emit.h"
-#include <stdio.h>
-
/* Opcode names */
#ifdef BCDEBUG_PRINT_CODE
char *opcode_name[] =
@@ -958,6 +958,8 @@ gen_lowpart (mode, x)
return change_address (x, mode, plus_constant (XEXP (x, 0), offset));
}
+ else if (GET_CODE (x) == ADDRESSOF)
+ return gen_lowpart (mode, force_reg (GET_MODE (x), x));
else
abort ();
}
@@ -1462,7 +1464,7 @@ gen_inline_header_rtx (first_insn, first_parm_insn, first_labelno,
pops_args, stack_slots, forced_labels, function_flags,
outgoing_args_size, original_arg_vector,
original_decl_initial, regno_rtx, regno_flag,
- regno_align)
+ regno_align, parm_reg_stack_loc)
rtx first_insn, first_parm_insn;
int first_labelno, last_labelno, max_parm_regnum, max_regnum, args_size;
int pops_args;
@@ -1475,6 +1477,7 @@ gen_inline_header_rtx (first_insn, first_parm_insn, first_labelno,
rtvec regno_rtx;
char *regno_flag;
char *regno_align;
+ rtvec parm_reg_stack_loc;
{
rtx header = gen_rtx (INLINE_HEADER, VOIDmode,
cur_insn_uid++, NULL_RTX,
@@ -1484,7 +1487,8 @@ gen_inline_header_rtx (first_insn, first_parm_insn, first_labelno,
stack_slots, forced_labels, function_flags,
outgoing_args_size, original_arg_vector,
original_decl_initial,
- regno_rtx, regno_flag, regno_align);
+ regno_rtx, regno_flag, regno_align,
+ parm_reg_stack_loc);
return header;
}
@@ -1674,6 +1678,10 @@ copy_rtx_if_shared (orig)
x->used = 1;
return x;
}
+ break;
+
+ default:
+ break;
}
/* This rtx may not be shared. If it has already been seen,
@@ -1763,6 +1771,9 @@ reset_used_flags (x)
case BARRIER:
/* The chain of insns is not being copied. */
return;
+
+ default:
+ break;
}
x->used = 0;
diff --git a/gcc/except.c b/gcc/except.c
index b506096f658..bf9cebffca9 100644
--- a/gcc/except.c
+++ b/gcc/except.c
@@ -1,5 +1,5 @@
/* Implements exception handling.
- Copyright (C) 1989, 92-95, 1996 Free Software Foundation, Inc.
+ Copyright (C) 1989, 92-96, 1997 Free Software Foundation, Inc.
Contributed by Mike Stump <mrs@cygnus.com>.
This file is part of GNU CC.
@@ -45,7 +45,7 @@ Boston, MA 02111-1307, USA. */
There are two major codegen options for exception handling. The
flag -fsjlj-exceptions can be used to select the setjmp/longjmp
- approach, which is the default. -fnosjlj-exceptions can be used to
+ approach, which is the default. -fno-sjlj-exceptions can be used to
get the PC range table approach. While this is a compile time
flag, an entire application must be compiled with the same codegen
option. The first is a PC range table approach, the second is a
diff --git a/gcc/except.h b/gcc/except.h
index fc2c37b3dbb..5a65100d4aa 100644
--- a/gcc/except.h
+++ b/gcc/except.h
@@ -1,5 +1,5 @@
/* Exception Handling interface routines.
- Copyright (C) 1996 Free Software Foundation, Inc.
+ Copyright (C) 1996, 1997 Free Software Foundation, Inc.
Contributed by Mike Stump <mrs@cygnus.com>.
This file is part of GNU CC.
@@ -139,8 +139,6 @@ extern rtx catch_clauses;
#endif
-struct function;
-
/* Toplevel initialization for EH. */
extern void init_eh PROTO((void));
@@ -149,14 +147,6 @@ extern void init_eh PROTO((void));
extern void init_eh_for_function PROTO((void));
-/* Saves the current per-function EH data into P. */
-
-extern void save_eh_status PROTO((struct function *p));
-
-/* Restores the per-function EH data from P. */
-
-extern void restore_eh_status PROTO((struct function *p));
-
/* Adds an EH table entry for EH entry number N. Called from
final_scan_insn for NOTE_INSN_EH_REGION_BEG. */
diff --git a/gcc/expmed.c b/gcc/expmed.c
index ce487054310..20a8d6ab4ca 100644
--- a/gcc/expmed.c
+++ b/gcc/expmed.c
@@ -21,6 +21,7 @@ Boston, MA 02111-1307, USA. */
#include "config.h"
+#include <stdio.h>
#include "rtl.h"
#include "tree.h"
#include "flags.h"
@@ -2831,13 +2832,13 @@ expand_divmod (rem_flag, code, mode, op0, op1, target, unsignedp)
op0 = convert_modes (compute_mode, mode, op0, unsignedp);
op1 = convert_modes (compute_mode, mode, op1, unsignedp);
- /* convert_modes may have tossed op1 into a register, so we
- absolutely must recompute the following. */
+ /* convert_modes may have placed op1 into a register, so we
+ must recompute the following. */
op1_is_constant = GET_CODE (op1) == CONST_INT;
op1_is_pow2 = (op1_is_constant
&& ((EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
|| (! unsignedp
- && EXACT_POWER_OF_2_OR_ZERO_P (-INTVAL (op1))))));
+ && EXACT_POWER_OF_2_OR_ZERO_P (-INTVAL (op1)))))) ;
}
/* If one of the operands is a volatile MEM, copy it into a register. */
@@ -3640,6 +3641,9 @@ expand_divmod (rem_flag, code, mode, op0, op1, target, unsignedp)
emit_label (label);
}
return gen_lowpart (mode, rem_flag ? remainder : quotient);
+
+ default:
+ abort ();
}
if (quotient == 0)
@@ -3956,6 +3960,8 @@ emit_store_flag (target, code, op0, op1, mode, unsignedp, normalizep)
if (op1 == const1_rtx)
op1 = const0_rtx, code = EQ;
break;
+ default:
+ break;
}
/* From now on, we won't change CODE, so set ICODE now. */
diff --git a/gcc/expr.c b/gcc/expr.c
index 1715578826b..2f28be5a3e4 100644
--- a/gcc/expr.c
+++ b/gcc/expr.c
@@ -20,6 +20,7 @@ Boston, MA 02111-1307, USA. */
#include "config.h"
+#include <stdio.h>
#include "machmode.h"
#include "rtl.h"
#include "tree.h"
@@ -528,10 +529,11 @@ queued_subexp_p (x)
case MULT:
case PLUS:
case MINUS:
- return queued_subexp_p (XEXP (x, 0))
- || queued_subexp_p (XEXP (x, 1));
+ return (queued_subexp_p (XEXP (x, 0))
+ || queued_subexp_p (XEXP (x, 1)));
+ default:
+ return 0;
}
- return 0;
}
/* Perform all the pending incrementations. */
@@ -776,6 +778,9 @@ convert_move (to, from, unsignedp)
case TFmode:
libcall = extendsftf2_libfunc;
break;
+
+ default:
+ break;
}
break;
@@ -793,6 +798,9 @@ convert_move (to, from, unsignedp)
case TFmode:
libcall = extenddftf2_libfunc;
break;
+
+ default:
+ break;
}
break;
@@ -806,6 +814,9 @@ convert_move (to, from, unsignedp)
case DFmode:
libcall = truncxfdf2_libfunc;
break;
+
+ default:
+ break;
}
break;
@@ -819,8 +830,14 @@ convert_move (to, from, unsignedp)
case DFmode:
libcall = trunctfdf2_libfunc;
break;
+
+ default:
+ break;
}
break;
+
+ default:
+ break;
}
if (libcall == (rtx) 0)
@@ -1567,14 +1584,19 @@ move_by_pieces_1 (genfun, mode, data)
with mode BLKmode.
SIZE is an rtx that says how long they are.
ALIGN is the maximum alignment we can assume they have,
- measured in bytes. */
+ measured in bytes.
-void
+ Return the address of the new block, if memcpy is called and returns it,
+ 0 otherwise. */
+
+rtx
emit_block_move (x, y, size, align)
rtx x, y;
rtx size;
int align;
{
+ rtx retval = 0;
+
if (GET_MODE (x) != BLKmode)
abort ();
@@ -1639,7 +1661,7 @@ emit_block_move (x, y, size, align)
if (pat)
{
emit_insn (pat);
- return;
+ return 0;
}
else
delete_insns_since (last);
@@ -1647,12 +1669,13 @@ emit_block_move (x, y, size, align)
}
#ifdef TARGET_MEM_FUNCTIONS
- emit_library_call (memcpy_libfunc, 0,
- VOIDmode, 3, XEXP (x, 0), Pmode,
- XEXP (y, 0), Pmode,
- convert_to_mode (TYPE_MODE (sizetype), size,
- TREE_UNSIGNED (sizetype)),
- TYPE_MODE (sizetype));
+ retval
+ = emit_library_call_value (memcpy_libfunc, NULL_RTX, 0,
+ ptr_mode, 3, XEXP (x, 0), Pmode,
+ XEXP (y, 0), Pmode,
+ convert_to_mode (TYPE_MODE (sizetype), size,
+ TREE_UNSIGNED (sizetype)),
+ TYPE_MODE (sizetype));
#else
emit_library_call (bcopy_libfunc, 0,
VOIDmode, 3, XEXP (y, 0), Pmode,
@@ -1662,6 +1685,8 @@ emit_block_move (x, y, size, align)
TYPE_MODE (integer_type_node));
#endif
}
+
+ return retval;
}
/* Copy all or part of a value X into registers starting at REGNO.
@@ -1929,7 +1954,7 @@ use_group_regs (call_fusage, regs)
/* A NULL entry means the parameter goes both on the stack and in
registers. This can also be a MEM for targets that pass values
partially on the stack and partially in registers. */
- if (reg && GET_CODE (reg) == REG)
+ if (reg != 0 && GET_CODE (reg) == REG)
use_reg (call_fusage, reg);
}
}
@@ -2066,14 +2091,18 @@ clear_by_pieces_1 (genfun, mode, data)
/* Write zeros through the storage of OBJECT.
If OBJECT has BLKmode, SIZE is its length in bytes and ALIGN is
- the maximum alignment we can is has, measured in bytes. */
+ the maximum alignment we can is has, measured in bytes.
-void
+ If we call a function that returns the length of the block, return it. */
+
+rtx
clear_storage (object, size, align)
rtx object;
rtx size;
int align;
{
+ rtx retval = 0;
+
if (GET_MODE (object) == BLKmode)
{
object = protect_from_queue (object, 1);
@@ -2127,7 +2156,7 @@ clear_storage (object, size, align)
if (pat)
{
emit_insn (pat);
- return;
+ return 0;
}
else
delete_insns_since (last);
@@ -2136,26 +2165,31 @@ clear_storage (object, size, align)
#ifdef TARGET_MEM_FUNCTIONS
- emit_library_call (memset_libfunc, 0,
- VOIDmode, 3,
- XEXP (object, 0), Pmode,
- const0_rtx, TYPE_MODE (integer_type_node),
- convert_to_mode (TYPE_MODE (sizetype),
- size, TREE_UNSIGNED (sizetype)),
- TYPE_MODE (sizetype));
+ retval
+ = emit_library_call_value (memset_libfunc, NULL_RTX, 0,
+ ptr_mode, 3,
+ XEXP (object, 0), Pmode,
+ const0_rtx,
+ TYPE_MODE (integer_type_node),
+ convert_to_mode
+ (TYPE_MODE (sizetype), size,
+ TREE_UNSIGNED (sizetype)),
+ TYPE_MODE (sizetype));
#else
emit_library_call (bzero_libfunc, 0,
VOIDmode, 2,
XEXP (object, 0), Pmode,
- convert_to_mode (TYPE_MODE (integer_type_node),
- size,
- TREE_UNSIGNED (integer_type_node)),
+ convert_to_mode
+ (TYPE_MODE (integer_type_node), size,
+ TREE_UNSIGNED (integer_type_node)),
TYPE_MODE (integer_type_node));
#endif
}
}
else
emit_move_insn (object, CONST0_RTX (GET_MODE (object)));
+
+ return retval;
}
/* Generate code to copy Y into X.
@@ -2940,9 +2974,11 @@ expand_assignment (to, from, want_value, suggest_reg)
size *= GET_MODE_SIZE (best_mode);
/* Check the access right of the pointer. */
- emit_library_call (chkr_check_addr_libfunc, 1, VOIDmode, 3, to_addr,
- ptr_mode, GEN_INT (size), TYPE_MODE (sizetype),
- GEN_INT (MEMORY_USE_WO), QImode);
+ if (size)
+ emit_library_call (chkr_check_addr_libfunc, 1, VOIDmode, 3,
+ to_addr, ptr_mode,
+ GEN_INT (size), TYPE_MODE (sizetype),
+ GEN_INT (MEMORY_USE_WO), QImode);
}
result = store_field (to_rtx, bitsize, bitpos, mode1, from,
@@ -3450,9 +3486,10 @@ is_zeros_p (exp)
return 0;
return 1;
+
+ default:
+ return 0;
}
-
- return 0;
}
/* Return 1 if EXP contains mostly (3/4) zeros. */
@@ -3570,7 +3607,7 @@ store_constructor (exp, target, cleared)
&& GET_MODE_SIZE (GET_MODE (target)) <= UNITS_PER_WORD)
{
if (! cleared)
- emit_move_insn (target, const0_rtx);
+ emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
cleared = 1;
}
@@ -4080,6 +4117,9 @@ store_field (target, bitsize, bitpos, mode, exp, value_mode,
{
HOST_WIDE_INT width_mask = 0;
+ if (TREE_CODE (exp) == ERROR_MARK)
+ return const0_rtx;
+
if (bitsize < HOST_BITS_PER_WIDE_INT)
width_mask = ((HOST_WIDE_INT) 1 << bitsize) - 1;
@@ -4697,6 +4737,9 @@ safe_from_p (x, exp)
case METHOD_CALL_EXPR:
/* This takes a rtx argument, but shouldn't appear here. */
abort ();
+
+ default:
+ break;
}
/* If we have an rtx, we do not need to scan our operands. */
@@ -5215,51 +5258,59 @@ expand_expr (exp, target, tmode, modifier)
}
case PLACEHOLDER_EXPR:
- /* If there is an object on the head of the placeholder list,
- see if some object in it's references is of type TYPE. For
- further information, see tree.def. */
- if (placeholder_list)
- {
- tree need_type = TYPE_MAIN_VARIANT (type);
- tree object = 0;
- tree old_list = placeholder_list;
- tree elt;
+ {
+ tree placeholder_expr;
+
+ /* If there is an object on the head of the placeholder list,
+ see if some object in it's references is of type TYPE. For
+ further information, see tree.def. */
+ for (placeholder_expr = placeholder_list;
+ placeholder_expr != 0;
+ placeholder_expr = TREE_CHAIN (placeholder_expr))
+ {
+ tree need_type = TYPE_MAIN_VARIANT (type);
+ tree object = 0;
+ tree old_list = placeholder_list;
+ tree elt;
+
+ /* See if the object is the type that we want. */
+ if ((TYPE_MAIN_VARIANT (TREE_TYPE
+ (TREE_PURPOSE (placeholder_expr)))
+ == need_type))
+ object = TREE_PURPOSE (placeholder_expr);
+
+ /* Find the innermost reference that is of the type we want. */
+ for (elt = TREE_PURPOSE (placeholder_expr);
+ elt != 0
+ && (TREE_CODE_CLASS (TREE_CODE (elt)) == 'r'
+ || TREE_CODE_CLASS (TREE_CODE (elt)) == '1'
+ || TREE_CODE_CLASS (TREE_CODE (elt)) == '2'
+ || TREE_CODE_CLASS (TREE_CODE (elt)) == 'e');
+ elt = ((TREE_CODE (elt) == COMPOUND_EXPR
+ || TREE_CODE (elt) == COND_EXPR)
+ ? TREE_OPERAND (elt, 1) : TREE_OPERAND (elt, 0)))
+ if (TREE_CODE_CLASS (TREE_CODE (elt)) == 'r'
+ && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_OPERAND (elt, 0)))
+ == need_type))
+ {
+ object = TREE_OPERAND (elt, 0);
+ break;
+ }
- /* See if the object is the type that we want. */
- if ((TYPE_MAIN_VARIANT (TREE_TYPE (TREE_PURPOSE (placeholder_list)))
- == need_type))
- object = TREE_PURPOSE (placeholder_list);
-
- /* Find the innermost reference that is of the type we want. */
- for (elt = TREE_PURPOSE (placeholder_list);
- elt != 0
- && (TREE_CODE_CLASS (TREE_CODE (elt)) == 'r'
- || TREE_CODE_CLASS (TREE_CODE (elt)) == '1'
- || TREE_CODE_CLASS (TREE_CODE (elt)) == '2'
- || TREE_CODE_CLASS (TREE_CODE (elt)) == 'e');
- elt = ((TREE_CODE (elt) == COMPOUND_EXPR
- || TREE_CODE (elt) == COND_EXPR)
- ? TREE_OPERAND (elt, 1) : TREE_OPERAND (elt, 0)))
- if (TREE_CODE_CLASS (TREE_CODE (elt)) == 'r'
- && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_OPERAND (elt, 0)))
- == need_type))
+ if (object != 0)
{
- object = TREE_OPERAND (elt, 0);
- break;
+ /* Expand this object skipping the list entries before
+ it was found in case it is also a PLACEHOLDER_EXPR.
+ In that case, we want to translate it using subsequent
+ entries. */
+ placeholder_list = TREE_CHAIN (placeholder_expr);
+ temp = expand_expr (object, original_target, tmode,
+ ro_modifier);
+ placeholder_list = old_list;
+ return temp;
}
-
- if (object != 0)
- {
- /* Expand this object skipping the list entries before
- it was found in case it is also a PLACEHOLDER_EXPR.
- In that case, we want to translate it using subsequent
- entries. */
- placeholder_list = TREE_CHAIN (placeholder_list);
- temp = expand_expr (object, original_target, tmode, ro_modifier);
- placeholder_list = old_list;
- return temp;
- }
- }
+ }
+ }
/* We can't find the object or there was a missing WITH_RECORD_EXPR. */
abort ();
@@ -5681,11 +5732,12 @@ expand_expr (exp, target, tmode, modifier)
size = (bitpos % BITS_PER_UNIT) + bitsize + BITS_PER_UNIT - 1;
/* Check the access right of the pointer. */
- emit_library_call (chkr_check_addr_libfunc, 1, VOIDmode, 3,
- to, ptr_mode,
- GEN_INT (size / BITS_PER_UNIT),
- TYPE_MODE (sizetype),
- GEN_INT (memory_usage), QImode);
+ if (size > BITS_PER_UNIT)
+ emit_library_call (chkr_check_addr_libfunc, 1, VOIDmode, 3,
+ to, ptr_mode,
+ GEN_INT (size / BITS_PER_UNIT),
+ TYPE_MODE (sizetype),
+ GEN_INT (memory_usage), QImode);
}
}
@@ -6832,7 +6884,8 @@ expand_expr (exp, target, tmode, modifier)
&& integer_zerop (TREE_OPERAND (TREE_OPERAND (exp, 0), 1))
&& operand_equal_p (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
TREE_OPERAND (exp, 1), 0)
- && ! TREE_SIDE_EFFECTS (TREE_OPERAND (exp, 0))
+ && (! TREE_SIDE_EFFECTS (TREE_OPERAND (exp, 0))
+ || TREE_CODE (TREE_OPERAND (exp, 1)) == SAVE_EXPR)
&& safe_from_p (temp, TREE_OPERAND (exp, 2)))
{
if (GET_CODE (temp) == REG && REGNO (temp) < FIRST_PSEUDO_REGISTER)
@@ -6849,7 +6902,8 @@ expand_expr (exp, target, tmode, modifier)
&& integer_zerop (TREE_OPERAND (TREE_OPERAND (exp, 0), 1))
&& operand_equal_p (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
TREE_OPERAND (exp, 2), 0)
- && ! TREE_SIDE_EFFECTS (TREE_OPERAND (exp, 0))
+ && (! TREE_SIDE_EFFECTS (TREE_OPERAND (exp, 0))
+ || TREE_CODE (TREE_OPERAND (exp, 2)) == SAVE_EXPR)
&& safe_from_p (temp, TREE_OPERAND (exp, 1)))
{
if (GET_CODE (temp) == REG && REGNO (temp) < FIRST_PSEUDO_REGISTER)
@@ -6928,10 +6982,15 @@ expand_expr (exp, target, tmode, modifier)
}
else
{
- target = assign_temp (type, 2, 1, 1);
+ target = assign_temp (type, 2, 0, 1);
/* All temp slots at this level must not conflict. */
preserve_temp_slots (target);
DECL_RTL (slot) = target;
+ if (TREE_ADDRESSABLE (slot))
+ {
+ TREE_ADDRESSABLE (slot) = 0;
+ mark_addressable (slot);
+ }
/* Since SLOT is not known to the called function
to belong to its stack frame, we must build an explicit
@@ -7775,6 +7834,9 @@ bc_expand_expr (exp)
return;
}
+
+ default:
+ abort ();
}
abort ();
@@ -8672,6 +8734,16 @@ expand_builtin (exp, target, subtarget, mode, ignore)
TREE_INT_CST_LOW (TREE_VALUE (arglist)),
hard_frame_pointer_rtx);
+ /* Some ports cannot access arbitrary stack frames. */
+ if (tem == NULL)
+ {
+ if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FRAME_ADDRESS)
+ warning ("unsupported arg to `__builtin_frame_address'");
+ else
+ warning ("unsupported arg to `__builtin_return_address'");
+ return const0_rtx;
+ }
+
/* For __builtin_frame_address, return what we've got. */
if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FRAME_ADDRESS)
return tem;
@@ -8777,13 +8849,19 @@ expand_builtin (exp, target, subtarget, mode, ignore)
if (! (*insn_operand_predicate[(int)icode][0]) (result, insn_mode))
result = gen_reg_rtx (insn_mode);
-
src_rtx = memory_address (BLKmode,
expand_expr (src, NULL_RTX, ptr_mode,
EXPAND_NORMAL));
+
if (! (*insn_operand_predicate[(int)icode][1]) (src_rtx, Pmode))
src_rtx = copy_to_mode_reg (Pmode, src_rtx);
+ /* Check the string is readable and has an end. */
+ if (flag_check_memory_usage)
+ emit_library_call (chkr_check_str_libfunc, 1, VOIDmode, 2,
+ src_rtx, ptr_mode,
+ GEN_INT (MEMORY_USE_RO), QImode);
+
char_rtx = const0_rtx;
char_mode = insn_operand_mode[(int)icode][2];
if (! (*insn_operand_predicate[(int)icode][2]) (char_rtx, char_mode))
@@ -8838,9 +8916,12 @@ expand_builtin (exp, target, subtarget, mode, ignore)
/* Arg could be non-pointer if user redeclared this fcn wrong. */
|| TREE_CODE (TREE_TYPE (TREE_VALUE (arglist))) != POINTER_TYPE
|| TREE_CHAIN (arglist) == 0
- || TREE_CODE (TREE_TYPE (TREE_VALUE (TREE_CHAIN (arglist)))) != POINTER_TYPE
+ || (TREE_CODE (TREE_TYPE (TREE_VALUE (TREE_CHAIN (arglist))))
+ != POINTER_TYPE)
|| TREE_CHAIN (TREE_CHAIN (arglist)) == 0
- || TREE_CODE (TREE_TYPE (TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist))))) != INTEGER_TYPE)
+ || (TREE_CODE (TREE_TYPE (TREE_VALUE
+ (TREE_CHAIN (TREE_CHAIN (arglist)))))
+ != INTEGER_TYPE))
break;
else
{
@@ -8853,7 +8934,7 @@ expand_builtin (exp, target, subtarget, mode, ignore)
= get_pointer_alignment (src, BIGGEST_ALIGNMENT) / BITS_PER_UNIT;
int dest_align
= get_pointer_alignment (dest, BIGGEST_ALIGNMENT) / BITS_PER_UNIT;
- rtx dest_rtx, dest_mem, src_mem;
+ rtx dest_rtx, dest_mem, src_mem, src_rtx, dest_addr, len_rtx;
/* If either SRC or DEST is not a pointer type, don't do
this operation in-line. */
@@ -8872,11 +8953,18 @@ expand_builtin (exp, target, subtarget, mode, ignore)
dest = TREE_OPERAND (dest, 0);
type = TREE_TYPE (TREE_TYPE (dest));
MEM_IN_STRUCT_P (dest_mem) = AGGREGATE_TYPE_P (type);
+ src_rtx = expand_expr (src, NULL_RTX, ptr_mode, EXPAND_SUM);
src_mem = gen_rtx (MEM, BLKmode,
- memory_address (BLKmode,
- expand_expr (src, NULL_RTX,
- ptr_mode,
- EXPAND_SUM)));
+ memory_address (BLKmode, src_rtx));
+ len_rtx = expand_expr (len, NULL_RTX, VOIDmode, 0);
+
+ /* Just copy the rights of SRC to the rights of DEST. */
+ if (flag_check_memory_usage)
+ emit_library_call (chkr_copy_bitmap_libfunc, 1, VOIDmode, 3,
+ src_rtx, ptr_mode,
+ dest_rtx, ptr_mode,
+ len_rtx, TYPE_MODE (sizetype));
+
/* There could be a void* cast on top of the object. */
while (TREE_CODE (src) == NOP_EXPR)
src = TREE_OPERAND (src, 0);
@@ -8884,10 +8972,14 @@ expand_builtin (exp, target, subtarget, mode, ignore)
MEM_IN_STRUCT_P (src_mem) = AGGREGATE_TYPE_P (type);
/* Copy word part most expediently. */
- emit_block_move (dest_mem, src_mem,
- expand_expr (len, NULL_RTX, VOIDmode, 0),
- MIN (src_align, dest_align));
- return force_operand (dest_rtx, NULL_RTX);
+ dest_addr
+ = emit_block_move (dest_mem, src_mem, len_rtx,
+ MIN (src_align, dest_align));
+
+ if (dest_addr == 0)
+ dest_addr = force_operand (dest_rtx, NULL_RTX);
+
+ return dest_addr;
}
case BUILT_IN_MEMSET:
@@ -8916,7 +9008,7 @@ expand_builtin (exp, target, subtarget, mode, ignore)
int dest_align
= get_pointer_alignment (dest, BIGGEST_ALIGNMENT) / BITS_PER_UNIT;
- rtx dest_rtx, dest_mem;
+ rtx dest_rtx, dest_mem, dest_addr, len_rtx;
/* If DEST is not a pointer type, don't do this
operation in-line. */
@@ -8930,16 +9022,28 @@ expand_builtin (exp, target, subtarget, mode, ignore)
dest_rtx = expand_expr (dest, NULL_RTX, ptr_mode, EXPAND_SUM);
dest_mem = gen_rtx (MEM, BLKmode,
memory_address (BLKmode, dest_rtx));
+ len_rtx = expand_expr (len, NULL_RTX, VOIDmode, 0);
+
+ /* Just check DST is writable and mark it as readable. */
+ if (flag_check_memory_usage)
+ emit_library_call (chkr_check_addr_libfunc, 1, VOIDmode, 3,
+ dest_rtx, ptr_mode,
+ len_rtx, TYPE_MODE (sizetype),
+ GEN_INT (MEMORY_USE_WO), QImode);
+
+
/* There could be a void* cast on top of the object. */
while (TREE_CODE (dest) == NOP_EXPR)
dest = TREE_OPERAND (dest, 0);
type = TREE_TYPE (TREE_TYPE (dest));
MEM_IN_STRUCT_P (dest_mem) = AGGREGATE_TYPE_P (type);
- clear_storage (dest_mem, expand_expr (len, NULL_RTX, VOIDmode, 0),
- dest_align);
+ dest_addr = clear_storage (dest_mem, len_rtx, dest_align);
+
+ if (dest_addr == 0)
+ dest_addr = force_operand (dest_rtx, NULL_RTX);
- return force_operand (dest_rtx, NULL_RTX);
+ return dest_addr;
}
/* These comparison functions need an instruction that returns an actual
@@ -8951,6 +9055,10 @@ expand_builtin (exp, target, subtarget, mode, ignore)
if (!optimize && ! CALLED_AS_BUILT_IN (fndecl))
break;
+ /* If we need to check memory accesses, call the library function. */
+ if (flag_check_memory_usage)
+ break;
+
if (arglist == 0
/* Arg could be non-pointer if user redeclared this fcn wrong. */
|| TREE_CODE (TREE_TYPE (TREE_VALUE (arglist))) != POINTER_TYPE
@@ -9004,6 +9112,10 @@ expand_builtin (exp, target, subtarget, mode, ignore)
if (!optimize && ! CALLED_AS_BUILT_IN (fndecl))
break;
+ /* If we need to check memory accesses, call the library function. */
+ if (flag_check_memory_usage)
+ break;
+
if (arglist == 0
/* Arg could be non-pointer if user redeclared this fcn wrong. */
|| TREE_CODE (TREE_TYPE (TREE_VALUE (arglist))) != POINTER_TYPE
@@ -9498,7 +9610,7 @@ expand_builtin_apply (function, arguments, argsize)
haven't figured out how the calling convention macros effect this,
but it's likely that the source and/or destination addresses in
the block copy will need updating in machine specific ways. */
- dest = copy_addr_to_reg (push_block (argsize, 0, 0));
+ dest = allocate_dynamic_stack_space (argsize, 0, 0);
emit_block_move (gen_rtx (MEM, BLKmode, dest),
gen_rtx (MEM, BLKmode, incoming_args),
argsize,
@@ -9942,6 +10054,9 @@ preexpand_calls (exp)
case SAVE_EXPR:
if (SAVE_EXPR_RTL (exp) != 0)
return;
+
+ default:
+ break;
}
nops = tree_code_length[(int) TREE_CODE (exp)];
@@ -10566,9 +10681,38 @@ do_jump_by_parts_equality_rtx (op0, if_false_label, if_true_label)
rtx if_false_label, if_true_label;
{
int nwords = GET_MODE_SIZE (GET_MODE (op0)) / UNITS_PER_WORD;
+ rtx part;
int i;
rtx drop_through_label = 0;
+ /* The fastest way of doing this comparison on almost any machine is to
+ "or" all the words and compare the result. If all have to be loaded
+ from memory and this is a very wide item, it's possible this may
+ be slower, but that's highly unlikely. */
+
+ part = gen_reg_rtx (word_mode);
+ emit_move_insn (part, operand_subword_force (op0, 0, GET_MODE (op0)));
+ for (i = 1; i < nwords && part != 0; i++)
+ part = expand_binop (word_mode, ior_optab, part,
+ operand_subword_force (op0, i, GET_MODE (op0)),
+ part, 1, OPTAB_WIDEN);
+
+ if (part != 0)
+ {
+ rtx comp = compare_from_rtx (part, const0_rtx, EQ, 1, word_mode,
+ NULL_RTX, 0);
+
+ if (comp == const_true_rtx)
+ emit_jump (if_false_label);
+ else if (comp == const0_rtx)
+ emit_jump (if_true_label);
+ else
+ do_jump_for_compare (comp, if_false_label, if_true_label);
+
+ return;
+ }
+
+ /* If we couldn't do the "or" simply, do this with a series of compares. */
if (! if_false_label)
drop_through_label = if_false_label = gen_label_rtx ();
@@ -10585,6 +10729,7 @@ do_jump_by_parts_equality_rtx (op0, if_false_label, if_true_label)
if (if_true_label)
emit_jump (if_true_label);
+
if (drop_through_label)
emit_label (drop_through_label);
}
diff --git a/gcc/expr.h b/gcc/expr.h
index fa7b7edd81c..15f1addb1a5 100644
--- a/gcc/expr.h
+++ b/gcc/expr.h
@@ -506,6 +506,7 @@ extern rtx chkr_check_addr_libfunc;
extern rtx chkr_set_right_libfunc;
extern rtx chkr_copy_bitmap_libfunc;
extern rtx chkr_check_exec_libfunc;
+extern rtx chkr_check_str_libfunc;
typedef rtx (*rtxfun) PROTO ((rtx));
@@ -681,7 +682,7 @@ extern rtx convert_to_mode PROTO((enum machine_mode, rtx, int));
extern rtx convert_modes PROTO((enum machine_mode, enum machine_mode, rtx, int));
/* Emit code to move a block Y to a block X. */
-extern void emit_block_move PROTO((rtx, rtx, rtx, int));
+extern rtx emit_block_move PROTO((rtx, rtx, rtx, int));
/* Copy all or part of a value X into registers starting at REGNO.
The number of registers to be filled is NREGS. */
@@ -709,7 +710,7 @@ extern void use_group_regs PROTO((rtx *, rtx));
/* Write zeros through the storage of OBJECT.
If OBJECT has BLKmode, SIZE is its length in bytes and ALIGN is its
alignment. */
-extern void clear_storage PROTO((rtx, rtx, int));
+extern rtx clear_storage PROTO((rtx, rtx, int));
/* Emit insns to set X from Y. */
extern rtx emit_move_insn PROTO((rtx, rtx));
@@ -919,8 +920,6 @@ extern rtx hard_libcall_value PROTO((enum machine_mode));
of STACK_BOUNDARY / BITS_PER_UNIT. */
extern rtx round_push PROTO((rtx));
-extern void emit_block_move PROTO((rtx, rtx, rtx, int));
-
extern rtx store_bit_field PROTO((rtx, int, int, enum machine_mode, rtx, int, int));
extern rtx extract_bit_field PROTO((rtx, int, int, int, rtx, enum machine_mode, enum machine_mode, int, int));
extern rtx expand_mult PROTO((enum machine_mode, rtx, rtx, rtx, int));
diff --git a/gcc/f/Make-lang.in b/gcc/f/Make-lang.in
index 225c397d119..7c53293455d 100644
--- a/gcc/f/Make-lang.in
+++ b/gcc/f/Make-lang.in
@@ -126,8 +126,8 @@ g77.o: $(CONFIG_H) multilib.h config.status $(lang_specs_files) g77.c
-DLANG_SPECIFIC_DRIVER -c g77.c
# Create the compiler driver for g77.
-g77$(exeext): g77.o g77spec.o version.o choose-temp.o pexecute.o $(LIBDEPS) $(EXTRA_GCC_OBJS)
- $(CC) $(ALL_CFLAGS) $(LDFLAGS) -o $@ g77.o g77spec.o version.o \
+g77$(exeext): g77.o g77spec.o version.o choose-temp.o pexecute.o prefix.o $(LIBDEPS) $(EXTRA_GCC_OBJS)
+ $(CC) $(ALL_CFLAGS) $(LDFLAGS) -o $@ g77.o g77spec.o prefix.o version.o \
choose-temp.o pexecute.o $(EXTRA_GCC_OBJS) $(LIBS)
# Create a version of the g77 driver which calls the cross-compiler.
diff --git a/gcc/f/runtime/configure b/gcc/f/runtime/configure
index 9d7b6f5069f..2a17b5abb34 100755
--- a/gcc/f/runtime/configure
+++ b/gcc/f/runtime/configure
@@ -1,7 +1,7 @@
#! /bin/sh
# Guess values for system-dependent variables and create Makefiles.
-# Generated automatically using autoconf version 2.12
+# Generated automatically using autoconf version 2.12.1
# Copyright (C) 1992, 93, 94, 95, 96 Free Software Foundation, Inc.
#
# This configure script is free software; the Free Software Foundation
@@ -49,6 +49,7 @@ mandir='${prefix}/man'
# Initialize some other variables.
subdirs=
MFLAGS= MAKEFLAGS=
+SHELL=${CONFIG_SHELL-/bin/sh}
# Maximum number of lines to put in a shell here document.
ac_max_here_lines=12
@@ -332,7 +333,7 @@ EOF
verbose=yes ;;
-version | --version | --versio | --versi | --vers)
- echo "configure generated by autoconf version 2.12"
+ echo "configure generated by autoconf version 2.12.1"
exit 0 ;;
-with-* | --with-*)
@@ -526,7 +527,7 @@ fi
# Extract the first word of "gcc", so it can be a program name with args.
set dummy gcc; ac_word=$2
echo $ac_n "checking for $ac_word""... $ac_c" 1>&6
-echo "configure:530: checking for $ac_word" >&5
+echo "configure:531: checking for $ac_word" >&5
if eval "test \"`echo '$''{'ac_cv_prog_CC'+set}'`\" = set"; then
echo $ac_n "(cached) $ac_c" 1>&6
else
@@ -555,7 +556,7 @@ if test -z "$CC"; then
# Extract the first word of "cc", so it can be a program name with args.
set dummy cc; ac_word=$2
echo $ac_n "checking for $ac_word""... $ac_c" 1>&6
-echo "configure:559: checking for $ac_word" >&5
+echo "configure:560: checking for $ac_word" >&5
if eval "test \"`echo '$''{'ac_cv_prog_CC'+set}'`\" = set"; then
echo $ac_n "(cached) $ac_c" 1>&6
else
@@ -603,7 +604,7 @@ fi
fi
echo $ac_n "checking whether the C compiler ($CC $CFLAGS $LDFLAGS) works""... $ac_c" 1>&6
-echo "configure:607: checking whether the C compiler ($CC $CFLAGS $LDFLAGS) works" >&5
+echo "configure:608: checking whether the C compiler ($CC $CFLAGS $LDFLAGS) works" >&5
ac_ext=c
# CFLAGS is not in ac_cpp because -g, -O, etc. are not valid cpp options.
@@ -613,11 +614,11 @@ ac_link='${CC-cc} -o conftest $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS
cross_compiling=$ac_cv_prog_cc_cross
cat > conftest.$ac_ext <<EOF
-#line 617 "configure"
+#line 618 "configure"
#include "confdefs.h"
main(){return(0);}
EOF
-if { (eval echo configure:621: \"$ac_link\") 1>&5; (eval $ac_link) 2>&5; } && test -s conftest; then
+if { (eval echo configure:622: \"$ac_link\") 1>&5; (eval $ac_link) 2>&5; } && test -s conftest; then
ac_cv_prog_cc_works=yes
# If we can't run a trivial program, we are probably using a cross compiler.
if (./conftest; exit) 2>/dev/null; then
@@ -637,12 +638,12 @@ if test $ac_cv_prog_cc_works = no; then
{ echo "configure: error: installation or configuration problem: C compiler cannot create executables." 1>&2; exit 1; }
fi
echo $ac_n "checking whether the C compiler ($CC $CFLAGS $LDFLAGS) is a cross-compiler""... $ac_c" 1>&6
-echo "configure:641: checking whether the C compiler ($CC $CFLAGS $LDFLAGS) is a cross-compiler" >&5
+echo "configure:642: checking whether the C compiler ($CC $CFLAGS $LDFLAGS) is a cross-compiler" >&5
echo "$ac_t""$ac_cv_prog_cc_cross" 1>&6
cross_compiling=$ac_cv_prog_cc_cross
echo $ac_n "checking whether we are using GNU C""... $ac_c" 1>&6
-echo "configure:646: checking whether we are using GNU C" >&5
+echo "configure:647: checking whether we are using GNU C" >&5
if eval "test \"`echo '$''{'ac_cv_prog_gcc'+set}'`\" = set"; then
echo $ac_n "(cached) $ac_c" 1>&6
else
@@ -651,7 +652,7 @@ else
yes;
#endif
EOF
-if { ac_try='${CC-cc} -E conftest.c'; { (eval echo configure:655: \"$ac_try\") 1>&5; (eval $ac_try) 2>&5; }; } | egrep yes >/dev/null 2>&1; then
+if { ac_try='${CC-cc} -E conftest.c'; { (eval echo configure:656: \"$ac_try\") 1>&5; (eval $ac_try) 2>&5; }; } | egrep yes >/dev/null 2>&1; then
ac_cv_prog_gcc=yes
else
ac_cv_prog_gcc=no
@@ -666,7 +667,7 @@ if test $ac_cv_prog_gcc = yes; then
ac_save_CFLAGS="$CFLAGS"
CFLAGS=
echo $ac_n "checking whether ${CC-cc} accepts -g""... $ac_c" 1>&6
-echo "configure:670: checking whether ${CC-cc} accepts -g" >&5
+echo "configure:671: checking whether ${CC-cc} accepts -g" >&5
if eval "test \"`echo '$''{'ac_cv_prog_cc_g'+set}'`\" = set"; then
echo $ac_n "(cached) $ac_c" 1>&6
else
@@ -711,7 +712,7 @@ else
# Extract the first word of "ranlib", so it can be a program name with args.
set dummy ranlib; ac_word=$2
echo $ac_n "checking for $ac_word""... $ac_c" 1>&6
-echo "configure:715: checking for $ac_word" >&5
+echo "configure:716: checking for $ac_word" >&5
if eval "test \"`echo '$''{'ac_cv_prog_RANLIB'+set}'`\" = set"; then
echo $ac_n "(cached) $ac_c" 1>&6
else
@@ -744,7 +745,7 @@ fi
# Sanity check for the cross-compilation case:
echo $ac_n "checking how to run the C preprocessor""... $ac_c" 1>&6
-echo "configure:748: checking how to run the C preprocessor" >&5
+echo "configure:749: checking how to run the C preprocessor" >&5
# On Suns, sometimes $CPP names a directory.
if test -n "$CPP" && test -d "$CPP"; then
CPP=
@@ -759,13 +760,13 @@ else
# On the NeXT, cc -E runs the code through the compiler's parser,
# not just through cpp.
cat > conftest.$ac_ext <<EOF
-#line 763 "configure"
+#line 764 "configure"
#include "confdefs.h"
#include <assert.h>
Syntax Error
EOF
ac_try="$ac_cpp conftest.$ac_ext >/dev/null 2>conftest.out"
-{ (eval echo configure:769: \"$ac_try\") 1>&5; (eval $ac_try) 2>&5; }
+{ (eval echo configure:770: \"$ac_try\") 1>&5; (eval $ac_try) 2>&5; }
ac_err=`grep -v '^ *+' conftest.out`
if test -z "$ac_err"; then
:
@@ -776,13 +777,13 @@ else
rm -rf conftest*
CPP="${CC-cc} -E -traditional-cpp"
cat > conftest.$ac_ext <<EOF
-#line 780 "configure"
+#line 781 "configure"
#include "confdefs.h"
#include <assert.h>
Syntax Error
EOF
ac_try="$ac_cpp conftest.$ac_ext >/dev/null 2>conftest.out"
-{ (eval echo configure:786: \"$ac_try\") 1>&5; (eval $ac_try) 2>&5; }
+{ (eval echo configure:787: \"$ac_try\") 1>&5; (eval $ac_try) 2>&5; }
ac_err=`grep -v '^ *+' conftest.out`
if test -z "$ac_err"; then
:
@@ -806,17 +807,17 @@ echo "$ac_t""$CPP" 1>&6
ac_safe=`echo "stdio.h" | sed 'y%./+-%__p_%'`
echo $ac_n "checking for stdio.h""... $ac_c" 1>&6
-echo "configure:810: checking for stdio.h" >&5
+echo "configure:811: checking for stdio.h" >&5
if eval "test \"`echo '$''{'ac_cv_header_$ac_safe'+set}'`\" = set"; then
echo $ac_n "(cached) $ac_c" 1>&6
else
cat > conftest.$ac_ext <<EOF
-#line 815 "configure"
+#line 816 "configure"
#include "confdefs.h"
#include <stdio.h>
EOF
ac_try="$ac_cpp conftest.$ac_ext >/dev/null 2>conftest.out"
-{ (eval echo configure:820: \"$ac_try\") 1>&5; (eval $ac_try) 2>&5; }
+{ (eval echo configure:821: \"$ac_try\") 1>&5; (eval $ac_try) 2>&5; }
ac_err=`grep -v '^ *+' conftest.out`
if test -z "$ac_err"; then
rm -rf conftest*
@@ -844,12 +845,12 @@ fi
echo $ac_n "checking for ANSI C header files""... $ac_c" 1>&6
-echo "configure:848: checking for ANSI C header files" >&5
+echo "configure:849: checking for ANSI C header files" >&5
if eval "test \"`echo '$''{'ac_cv_header_stdc'+set}'`\" = set"; then
echo $ac_n "(cached) $ac_c" 1>&6
else
cat > conftest.$ac_ext <<EOF
-#line 853 "configure"
+#line 854 "configure"
#include "confdefs.h"
#include <stdlib.h>
#include <stdarg.h>
@@ -857,7 +858,7 @@ else
#include <float.h>
EOF
ac_try="$ac_cpp conftest.$ac_ext >/dev/null 2>conftest.out"
-{ (eval echo configure:861: \"$ac_try\") 1>&5; (eval $ac_try) 2>&5; }
+{ (eval echo configure:862: \"$ac_try\") 1>&5; (eval $ac_try) 2>&5; }
ac_err=`grep -v '^ *+' conftest.out`
if test -z "$ac_err"; then
rm -rf conftest*
@@ -874,7 +875,7 @@ rm -f conftest*
if test $ac_cv_header_stdc = yes; then
# SunOS 4.x string.h does not declare mem*, contrary to ANSI.
cat > conftest.$ac_ext <<EOF
-#line 878 "configure"
+#line 879 "configure"
#include "confdefs.h"
#include <string.h>
EOF
@@ -892,7 +893,7 @@ fi
if test $ac_cv_header_stdc = yes; then
# ISC 2.0.2 stdlib.h does not declare free, contrary to ANSI.
cat > conftest.$ac_ext <<EOF
-#line 896 "configure"
+#line 897 "configure"
#include "confdefs.h"
#include <stdlib.h>
EOF
@@ -913,7 +914,7 @@ if test "$cross_compiling" = yes; then
:
else
cat > conftest.$ac_ext <<EOF
-#line 917 "configure"
+#line 918 "configure"
#include "confdefs.h"
#include <ctype.h>
#define ISLOWER(c) ('a' <= (c) && (c) <= 'z')
@@ -924,7 +925,7 @@ if (XOR (islower (i), ISLOWER (i)) || toupper (i) != TOUPPER (i)) exit(2);
exit (0); }
EOF
-if { (eval echo configure:928: \"$ac_link\") 1>&5; (eval $ac_link) 2>&5; } && test -s conftest && (./conftest; exit) 2>/dev/null
+if { (eval echo configure:929: \"$ac_link\") 1>&5; (eval $ac_link) 2>&5; } && test -s conftest && (./conftest; exit) 2>/dev/null
then
:
else
@@ -950,12 +951,12 @@ fi
echo $ac_n "checking for posix""... $ac_c" 1>&6
-echo "configure:954: checking for posix" >&5
+echo "configure:955: checking for posix" >&5
if eval "test \"`echo '$''{'g77_cv_header_posix'+set}'`\" = set"; then
echo $ac_n "(cached) $ac_c" 1>&6
else
cat > conftest.$ac_ext <<EOF
-#line 959 "configure"
+#line 960 "configure"
#include "confdefs.h"
#include <sys/types.h>
#include <unistd.h>
@@ -981,12 +982,12 @@ echo "$ac_t""$g77_cv_header_posix" 1>&6
# We can rely on the GNU library being posix-ish. I guess checking the
# header isn't actually like checking the functions, though...
echo $ac_n "checking for GNU library""... $ac_c" 1>&6
-echo "configure:985: checking for GNU library" >&5
+echo "configure:986: checking for GNU library" >&5
if eval "test \"`echo '$''{'g77_cv_lib_gnu'+set}'`\" = set"; then
echo $ac_n "(cached) $ac_c" 1>&6
else
cat > conftest.$ac_ext <<EOF
-#line 990 "configure"
+#line 991 "configure"
#include "confdefs.h"
#include <stdio.h>
#ifdef __GNU_LIBRARY__
@@ -1010,12 +1011,12 @@ echo "$ac_t""$g77_cv_lib_gnu" 1>&6
# Apparently cygwin needs to be special-cased.
echo $ac_n "checking for cyg\`win'32""... $ac_c" 1>&6
-echo "configure:1014: checking for cyg\`win'32" >&5
+echo "configure:1015: checking for cyg\`win'32" >&5
if eval "test \"`echo '$''{'g77_cv_sys_cygwin32'+set}'`\" = set"; then
echo $ac_n "(cached) $ac_c" 1>&6
else
cat > conftest.$ac_ext <<EOF
-#line 1019 "configure"
+#line 1020 "configure"
#include "confdefs.h"
#ifdef __CYGWIN32__
yes
@@ -1038,17 +1039,17 @@ echo "$ac_t""$g77_cv_sys_cygwin32" 1>&6
ac_safe=`echo "fcntl.h" | sed 'y%./+-%__p_%'`
echo $ac_n "checking for fcntl.h""... $ac_c" 1>&6
-echo "configure:1042: checking for fcntl.h" >&5
+echo "configure:1043: checking for fcntl.h" >&5
if eval "test \"`echo '$''{'ac_cv_header_$ac_safe'+set}'`\" = set"; then
echo $ac_n "(cached) $ac_c" 1>&6
else
cat > conftest.$ac_ext <<EOF
-#line 1047 "configure"
+#line 1048 "configure"
#include "confdefs.h"
#include <fcntl.h>
EOF
ac_try="$ac_cpp conftest.$ac_ext >/dev/null 2>conftest.out"
-{ (eval echo configure:1052: \"$ac_try\") 1>&5; (eval $ac_try) 2>&5; }
+{ (eval echo configure:1053: \"$ac_try\") 1>&5; (eval $ac_try) 2>&5; }
ac_err=`grep -v '^ *+' conftest.out`
if test -z "$ac_err"; then
rm -rf conftest*
@@ -1081,12 +1082,12 @@ fi
echo $ac_n "checking for working const""... $ac_c" 1>&6
-echo "configure:1085: checking for working const" >&5
+echo "configure:1086: checking for working const" >&5
if eval "test \"`echo '$''{'ac_cv_c_const'+set}'`\" = set"; then
echo $ac_n "(cached) $ac_c" 1>&6
else
cat > conftest.$ac_ext <<EOF
-#line 1090 "configure"
+#line 1091 "configure"
#include "confdefs.h"
int main() {
@@ -1135,7 +1136,7 @@ ccp = (char const *const *) p;
; return 0; }
EOF
-if { (eval echo configure:1139: \"$ac_compile\") 1>&5; (eval $ac_compile) 2>&5; }; then
+if { (eval echo configure:1140: \"$ac_compile\") 1>&5; (eval $ac_compile) 2>&5; }; then
rm -rf conftest*
ac_cv_c_const=yes
else
@@ -1156,12 +1157,12 @@ EOF
fi
echo $ac_n "checking for size_t""... $ac_c" 1>&6
-echo "configure:1160: checking for size_t" >&5
+echo "configure:1161: checking for size_t" >&5
if eval "test \"`echo '$''{'ac_cv_type_size_t'+set}'`\" = set"; then
echo $ac_n "(cached) $ac_c" 1>&6
else
cat > conftest.$ac_ext <<EOF
-#line 1165 "configure"
+#line 1166 "configure"
#include "confdefs.h"
#include <sys/types.h>
#if STDC_HEADERS
@@ -1190,12 +1191,12 @@ fi
echo $ac_n "checking return type of signal handlers""... $ac_c" 1>&6
-echo "configure:1194: checking return type of signal handlers" >&5
+echo "configure:1195: checking return type of signal handlers" >&5
if eval "test \"`echo '$''{'ac_cv_type_signal'+set}'`\" = set"; then
echo $ac_n "(cached) $ac_c" 1>&6
else
cat > conftest.$ac_ext <<EOF
-#line 1199 "configure"
+#line 1200 "configure"
#include "confdefs.h"
#include <sys/types.h>
#include <signal.h>
@@ -1212,7 +1213,7 @@ int main() {
int i;
; return 0; }
EOF
-if { (eval echo configure:1216: \"$ac_compile\") 1>&5; (eval $ac_compile) 2>&5; }; then
+if { (eval echo configure:1217: \"$ac_compile\") 1>&5; (eval $ac_compile) 2>&5; }; then
rm -rf conftest*
ac_cv_type_signal=void
else
@@ -1233,12 +1234,12 @@ EOF
# we'll get atexit by default
if test $ac_cv_header_stdc != yes; then
echo $ac_n "checking for atexit""... $ac_c" 1>&6
-echo "configure:1237: checking for atexit" >&5
+echo "configure:1238: checking for atexit" >&5
if eval "test \"`echo '$''{'ac_cv_func_atexit'+set}'`\" = set"; then
echo $ac_n "(cached) $ac_c" 1>&6
else
cat > conftest.$ac_ext <<EOF
-#line 1242 "configure"
+#line 1243 "configure"
#include "confdefs.h"
/* System header to define __stub macros and hopefully few prototypes,
which can conflict with char atexit(); below. */
@@ -1261,7 +1262,7 @@ atexit();
; return 0; }
EOF
-if { (eval echo configure:1265: \"$ac_link\") 1>&5; (eval $ac_link) 2>&5; } && test -s conftest; then
+if { (eval echo configure:1266: \"$ac_link\") 1>&5; (eval $ac_link) 2>&5; } && test -s conftest; then
rm -rf conftest*
eval "ac_cv_func_atexit=yes"
else
@@ -1286,12 +1287,12 @@ else
EOF
echo $ac_n "checking for onexit""... $ac_c" 1>&6
-echo "configure:1290: checking for onexit" >&5
+echo "configure:1291: checking for onexit" >&5
if eval "test \"`echo '$''{'ac_cv_func_onexit'+set}'`\" = set"; then
echo $ac_n "(cached) $ac_c" 1>&6
else
cat > conftest.$ac_ext <<EOF
-#line 1295 "configure"
+#line 1296 "configure"
#include "confdefs.h"
/* System header to define __stub macros and hopefully few prototypes,
which can conflict with char onexit(); below. */
@@ -1314,7 +1315,7 @@ onexit();
; return 0; }
EOF
-if { (eval echo configure:1318: \"$ac_link\") 1>&5; (eval $ac_link) 2>&5; } && test -s conftest; then
+if { (eval echo configure:1319: \"$ac_link\") 1>&5; (eval $ac_link) 2>&5; } && test -s conftest; then
rm -rf conftest*
eval "ac_cv_func_onexit=yes"
else
@@ -1332,12 +1333,12 @@ if eval "test \"`echo '$ac_cv_func_'onexit`\" = yes"; then
else
echo "$ac_t""no" 1>&6
echo $ac_n "checking for on_exit""... $ac_c" 1>&6
-echo "configure:1336: checking for on_exit" >&5
+echo "configure:1337: checking for on_exit" >&5
if eval "test \"`echo '$''{'ac_cv_func_on_exit'+set}'`\" = set"; then
echo $ac_n "(cached) $ac_c" 1>&6
else
cat > conftest.$ac_ext <<EOF
-#line 1341 "configure"
+#line 1342 "configure"
#include "confdefs.h"
/* System header to define __stub macros and hopefully few prototypes,
which can conflict with char on_exit(); below. */
@@ -1360,7 +1361,7 @@ on_exit();
; return 0; }
EOF
-if { (eval echo configure:1364: \"$ac_link\") 1>&5; (eval $ac_link) 2>&5; } && test -s conftest; then
+if { (eval echo configure:1365: \"$ac_link\") 1>&5; (eval $ac_link) 2>&5; } && test -s conftest; then
rm -rf conftest*
eval "ac_cv_func_on_exit=yes"
else
@@ -1393,12 +1394,12 @@ fi
# Apparently positive result on cygwin loses re. NON_UNIX_STDIO
# (as of cygwin b18).
echo $ac_n "checking for fstat""... $ac_c" 1>&6
-echo "configure:1397: checking for fstat" >&5
+echo "configure:1398: checking for fstat" >&5
if eval "test \"`echo '$''{'ac_cv_func_fstat'+set}'`\" = set"; then
echo $ac_n "(cached) $ac_c" 1>&6
else
cat > conftest.$ac_ext <<EOF
-#line 1402 "configure"
+#line 1403 "configure"
#include "confdefs.h"
/* System header to define __stub macros and hopefully few prototypes,
which can conflict with char fstat(); below. */
@@ -1421,7 +1422,7 @@ fstat();
; return 0; }
EOF
-if { (eval echo configure:1425: \"$ac_link\") 1>&5; (eval $ac_link) 2>&5; } && test -s conftest; then
+if { (eval echo configure:1426: \"$ac_link\") 1>&5; (eval $ac_link) 2>&5; } && test -s conftest; then
rm -rf conftest*
eval "ac_cv_func_fstat=yes"
else
@@ -1441,7 +1442,7 @@ else
fi
echo $ac_n "checking need for NON_UNIX_STDIO""... $ac_c" 1>&6
-echo "configure:1445: checking need for NON_UNIX_STDIO" >&5
+echo "configure:1446: checking need for NON_UNIX_STDIO" >&5
if test $g77_cv_sys_cygwin32 = yes || test $ac_cv_func_fstat = no; then
echo "$ac_t""yes" 1>&6
cat >> confdefs.h <<\EOF
@@ -1454,19 +1455,19 @@ fi
# This is necessary for e.g. Linux:
echo $ac_n "checking for necessary members of struct FILE""... $ac_c" 1>&6
-echo "configure:1458: checking for necessary members of struct FILE" >&5
+echo "configure:1459: checking for necessary members of struct FILE" >&5
if eval "test \"`echo '$''{'g77_cv_struct_FILE'+set}'`\" = set"; then
echo $ac_n "(cached) $ac_c" 1>&6
else
cat > conftest.$ac_ext <<EOF
-#line 1463 "configure"
+#line 1464 "configure"
#include "confdefs.h"
#include <stdio.h>
int main() {
FILE s; s._ptr; s._base; s._flag;
; return 0; }
EOF
-if { (eval echo configure:1470: \"$ac_compile\") 1>&5; (eval $ac_compile) 2>&5; }; then
+if { (eval echo configure:1471: \"$ac_compile\") 1>&5; (eval $ac_compile) 2>&5; }; then
rm -rf conftest*
g77_cv_struct_FILE=yes
else
@@ -1486,7 +1487,7 @@ EOF
fi
echo $ac_n "checking for drem in -lm""... $ac_c" 1>&6
-echo "configure:1490: checking for drem in -lm" >&5
+echo "configure:1491: checking for drem in -lm" >&5
ac_lib_var=`echo m'_'drem | sed 'y%./+-%__p_%'`
if eval "test \"`echo '$''{'ac_cv_lib_$ac_lib_var'+set}'`\" = set"; then
echo $ac_n "(cached) $ac_c" 1>&6
@@ -1494,7 +1495,7 @@ else
ac_save_LIBS="$LIBS"
LIBS="-lm $LIBS"
cat > conftest.$ac_ext <<EOF
-#line 1498 "configure"
+#line 1499 "configure"
#include "confdefs.h"
/* Override any gcc2 internal prototype to avoid an error. */
/* We use char because int might match the return type of a gcc2
@@ -1505,7 +1506,7 @@ int main() {
drem()
; return 0; }
EOF
-if { (eval echo configure:1509: \"$ac_link\") 1>&5; (eval $ac_link) 2>&5; } && test -s conftest; then
+if { (eval echo configure:1510: \"$ac_link\") 1>&5; (eval $ac_link) 2>&5; } && test -s conftest; then
rm -rf conftest*
eval "ac_cv_lib_$ac_lib_var=yes"
else
@@ -1535,19 +1536,19 @@ fi
# However, on my sunos4/gcc setup unistd.h leads us wrongly to believe
# we're posix-conformant, so always do the test.
echo $ac_n "checking for ansi/posix sprintf result""... $ac_c" 1>&6
-echo "configure:1539: checking for ansi/posix sprintf result" >&5
+echo "configure:1540: checking for ansi/posix sprintf result" >&5
if test "$cross_compiling" = yes; then
g77_cv_sys_sprintf_ansi=no
else
cat > conftest.$ac_ext <<EOF
-#line 1544 "configure"
+#line 1545 "configure"
#include "confdefs.h"
#include <stdio.h>
/* does sprintf return the number of chars transferred? */
main () {char foo[2]; (sprintf(foo, "1") == 1) ? exit(0) : exit(1);}
EOF
-if { (eval echo configure:1551: \"$ac_link\") 1>&5; (eval $ac_link) 2>&5; } && test -s conftest && (./conftest; exit) 2>/dev/null
+if { (eval echo configure:1552: \"$ac_link\") 1>&5; (eval $ac_link) 2>&5; } && test -s conftest && (./conftest; exit) 2>/dev/null
then
g77_cv_sys_sprintf_ansi=yes
else
@@ -1581,9 +1582,9 @@ fi
# define NON_ANSI_RW_MODES on unix (can't hurt)
echo $ac_n "checking NON_ANSI_RW_MODES""... $ac_c" 1>&6
-echo "configure:1585: checking NON_ANSI_RW_MODES" >&5
+echo "configure:1586: checking NON_ANSI_RW_MODES" >&5
cat > conftest.$ac_ext <<EOF
-#line 1587 "configure"
+#line 1588 "configure"
#include "confdefs.h"
#ifdef unix
yes
@@ -1624,14 +1625,14 @@ fi
# (via com.h). proj.h and com.h are in $srcdir/.., config.h which they need
# is in ../.. and the config files are in $srcdir/../../config.
echo $ac_n "checking f2c integer type""... $ac_c" 1>&6
-echo "configure:1628: checking f2c integer type" >&5
+echo "configure:1629: checking f2c integer type" >&5
late_ac_cpp=$ac_cpp
ac_cpp="$late_ac_cpp -I$srcdir/.. -I../.. -I$srcdir/../.. -I$srcdir/../../config"
if eval "test \"`echo '$''{'g77_cv_sys_f2cinteger'+set}'`\" = set"; then
echo $ac_n "(cached) $ac_c" 1>&6
else
cat > conftest.$ac_ext <<EOF
-#line 1635 "configure"
+#line 1636 "configure"
#include "confdefs.h"
#include "proj.h"
#define FFECOM_DETERMINE_TYPES 1
@@ -1654,7 +1655,7 @@ rm -f conftest*
if test "$g77_cv_sys_f2cinteger" = ""; then
cat > conftest.$ac_ext <<EOF
-#line 1658 "configure"
+#line 1659 "configure"
#include "confdefs.h"
#include "proj.h"
#define FFECOM_DETERMINE_TYPES 1
@@ -1689,14 +1690,14 @@ ac_cpp=$late_ac_cpp
echo $ac_n "checking f2c long int type""... $ac_c" 1>&6
-echo "configure:1693: checking f2c long int type" >&5
+echo "configure:1694: checking f2c long int type" >&5
late_ac_cpp=$ac_cpp
ac_cpp="$late_ac_cpp -I$srcdir/.. -I../.. -I$srcdir/../.. -I$srcdir/../../config"
if eval "test \"`echo '$''{'g77_cv_sys_f2clongint'+set}'`\" = set"; then
echo $ac_n "(cached) $ac_c" 1>&6
else
cat > conftest.$ac_ext <<EOF
-#line 1700 "configure"
+#line 1701 "configure"
#include "confdefs.h"
#include "proj.h"
#define FFECOM_DETERMINE_TYPES 1
@@ -1719,7 +1720,7 @@ rm -f conftest*
if test "$g77_cv_sys_f2clongint" = ""; then
cat > conftest.$ac_ext <<EOF
-#line 1723 "configure"
+#line 1724 "configure"
#include "confdefs.h"
#include "proj.h"
#define FFECOM_DETERMINE_TYPES 1
@@ -1813,7 +1814,7 @@ EOF
# Ultrix sh set writes to stderr and can't be redirected directly,
# and sets the high bit in the cache file unless we assign to the vars.
(set) 2>&1 |
- case `(ac_space=' '; set) 2>&1` in
+ case `(ac_space=' '; set) 2>&1 | grep ac_space` in
*ac_space=\ *)
# `set' does not quote correctly, so add quotes (double-quote substitution
# turns \\\\ into \\, and sed turns \\ into \).
@@ -1892,7 +1893,7 @@ do
echo "running \${CONFIG_SHELL-/bin/sh} $0 $ac_configure_args --no-create --no-recursion"
exec \${CONFIG_SHELL-/bin/sh} $0 $ac_configure_args --no-create --no-recursion ;;
-version | --version | --versio | --versi | --vers | --ver | --ve | --v)
- echo "$CONFIG_STATUS generated by autoconf version 2.12"
+ echo "$CONFIG_STATUS generated by autoconf version 2.12.1"
exit 0 ;;
-help | --help | --hel | --he | --h)
echo "\$ac_cs_usage"; exit 0 ;;
@@ -1911,6 +1912,7 @@ sed 's/%@/@@/; s/@%/@@/; s/%g\$/@g/; /@g\$/s/[\\\\&%]/\\\\&/g;
s/@@/%@/; s/@@/@%/; s/@g\$/%g/' > conftest.subs <<\\CEOF
$ac_vpsub
$extrasub
+s%@SHELL@%$SHELL%g
s%@CFLAGS@%$CFLAGS%g
s%@CPPFLAGS@%$CPPFLAGS%g
s%@CXXFLAGS@%$CXXFLAGS%g
diff --git a/gcc/f/runtime/libU77/configure b/gcc/f/runtime/libU77/configure
index 63fb0e7844e..4961cf5e92a 100755
--- a/gcc/f/runtime/libU77/configure
+++ b/gcc/f/runtime/libU77/configure
@@ -1,7 +1,7 @@
#! /bin/sh
# Guess values for system-dependent variables and create Makefiles.
-# Generated automatically using autoconf version 2.12
+# Generated automatically using autoconf version 2.12.1
# Copyright (C) 1992, 93, 94, 95, 96 Free Software Foundation, Inc.
#
# This configure script is free software; the Free Software Foundation
@@ -49,6 +49,7 @@ mandir='${prefix}/man'
# Initialize some other variables.
subdirs=
MFLAGS= MAKEFLAGS=
+SHELL=${CONFIG_SHELL-/bin/sh}
# Maximum number of lines to put in a shell here document.
ac_max_here_lines=12
@@ -332,7 +333,7 @@ EOF
verbose=yes ;;
-version | --version | --versio | --versi | --vers)
- echo "configure generated by autoconf version 2.12"
+ echo "configure generated by autoconf version 2.12.1"
exit 0 ;;
-with-* | --with-*)
@@ -525,7 +526,7 @@ fi
# Extract the first word of "gcc", so it can be a program name with args.
set dummy gcc; ac_word=$2
echo $ac_n "checking for $ac_word""... $ac_c" 1>&6
-echo "configure:529: checking for $ac_word" >&5
+echo "configure:530: checking for $ac_word" >&5
if eval "test \"`echo '$''{'ac_cv_prog_CC'+set}'`\" = set"; then
echo $ac_n "(cached) $ac_c" 1>&6
else
@@ -554,7 +555,7 @@ if test -z "$CC"; then
# Extract the first word of "cc", so it can be a program name with args.
set dummy cc; ac_word=$2
echo $ac_n "checking for $ac_word""... $ac_c" 1>&6
-echo "configure:558: checking for $ac_word" >&5
+echo "configure:559: checking for $ac_word" >&5
if eval "test \"`echo '$''{'ac_cv_prog_CC'+set}'`\" = set"; then
echo $ac_n "(cached) $ac_c" 1>&6
else
@@ -602,7 +603,7 @@ fi
fi
echo $ac_n "checking whether the C compiler ($CC $CFLAGS $LDFLAGS) works""... $ac_c" 1>&6
-echo "configure:606: checking whether the C compiler ($CC $CFLAGS $LDFLAGS) works" >&5
+echo "configure:607: checking whether the C compiler ($CC $CFLAGS $LDFLAGS) works" >&5
ac_ext=c
# CFLAGS is not in ac_cpp because -g, -O, etc. are not valid cpp options.
@@ -612,11 +613,11 @@ ac_link='${CC-cc} -o conftest $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS
cross_compiling=$ac_cv_prog_cc_cross
cat > conftest.$ac_ext <<EOF
-#line 616 "configure"
+#line 617 "configure"
#include "confdefs.h"
main(){return(0);}
EOF
-if { (eval echo configure:620: \"$ac_link\") 1>&5; (eval $ac_link) 2>&5; } && test -s conftest; then
+if { (eval echo configure:621: \"$ac_link\") 1>&5; (eval $ac_link) 2>&5; } && test -s conftest; then
ac_cv_prog_cc_works=yes
# If we can't run a trivial program, we are probably using a cross compiler.
if (./conftest; exit) 2>/dev/null; then
@@ -636,12 +637,12 @@ if test $ac_cv_prog_cc_works = no; then
{ echo "configure: error: installation or configuration problem: C compiler cannot create executables." 1>&2; exit 1; }
fi
echo $ac_n "checking whether the C compiler ($CC $CFLAGS $LDFLAGS) is a cross-compiler""... $ac_c" 1>&6
-echo "configure:640: checking whether the C compiler ($CC $CFLAGS $LDFLAGS) is a cross-compiler" >&5
+echo "configure:641: checking whether the C compiler ($CC $CFLAGS $LDFLAGS) is a cross-compiler" >&5
echo "$ac_t""$ac_cv_prog_cc_cross" 1>&6
cross_compiling=$ac_cv_prog_cc_cross
echo $ac_n "checking whether we are using GNU C""... $ac_c" 1>&6
-echo "configure:645: checking whether we are using GNU C" >&5
+echo "configure:646: checking whether we are using GNU C" >&5
if eval "test \"`echo '$''{'ac_cv_prog_gcc'+set}'`\" = set"; then
echo $ac_n "(cached) $ac_c" 1>&6
else
@@ -650,7 +651,7 @@ else
yes;
#endif
EOF
-if { ac_try='${CC-cc} -E conftest.c'; { (eval echo configure:654: \"$ac_try\") 1>&5; (eval $ac_try) 2>&5; }; } | egrep yes >/dev/null 2>&1; then
+if { ac_try='${CC-cc} -E conftest.c'; { (eval echo configure:655: \"$ac_try\") 1>&5; (eval $ac_try) 2>&5; }; } | egrep yes >/dev/null 2>&1; then
ac_cv_prog_gcc=yes
else
ac_cv_prog_gcc=no
@@ -665,7 +666,7 @@ if test $ac_cv_prog_gcc = yes; then
ac_save_CFLAGS="$CFLAGS"
CFLAGS=
echo $ac_n "checking whether ${CC-cc} accepts -g""... $ac_c" 1>&6
-echo "configure:669: checking whether ${CC-cc} accepts -g" >&5
+echo "configure:670: checking whether ${CC-cc} accepts -g" >&5
if eval "test \"`echo '$''{'ac_cv_prog_cc_g'+set}'`\" = set"; then
echo $ac_n "(cached) $ac_c" 1>&6
else
@@ -701,7 +702,7 @@ fi
# Extract the first word of "chmod", so it can be a program name with args.
set dummy chmod; ac_word=$2
echo $ac_n "checking for $ac_word""... $ac_c" 1>&6
-echo "configure:705: checking for $ac_word" >&5
+echo "configure:706: checking for $ac_word" >&5
if eval "test \"`echo '$''{'ac_cv_path_ac_cv_prog_chmod'+set}'`\" = set"; then
echo $ac_n "(cached) $ac_c" 1>&6
else
@@ -709,6 +710,9 @@ else
/*)
ac_cv_path_ac_cv_prog_chmod="$ac_cv_prog_chmod" # Let the user override the test with a path.
;;
+ ?:/*)
+ ac_cv_path_ac_cv_prog_chmod="$ac_cv_prog_chmod" # Let the user override the test with a dos path.
+ ;;
*)
IFS="${IFS= }"; ac_save_ifs="$IFS"; IFS="${IFS}:"
for ac_dir in $PATH; do
@@ -748,7 +752,7 @@ else
# Extract the first word of "ranlib", so it can be a program name with args.
set dummy ranlib; ac_word=$2
echo $ac_n "checking for $ac_word""... $ac_c" 1>&6
-echo "configure:752: checking for $ac_word" >&5
+echo "configure:756: checking for $ac_word" >&5
if eval "test \"`echo '$''{'ac_cv_prog_RANLIB'+set}'`\" = set"; then
echo $ac_n "(cached) $ac_c" 1>&6
else
@@ -781,7 +785,7 @@ fi
echo $ac_n "checking how to run the C preprocessor""... $ac_c" 1>&6
-echo "configure:785: checking how to run the C preprocessor" >&5
+echo "configure:789: checking how to run the C preprocessor" >&5
# On Suns, sometimes $CPP names a directory.
if test -n "$CPP" && test -d "$CPP"; then
CPP=
@@ -796,13 +800,13 @@ else
# On the NeXT, cc -E runs the code through the compiler's parser,
# not just through cpp.
cat > conftest.$ac_ext <<EOF
-#line 800 "configure"
+#line 804 "configure"
#include "confdefs.h"
#include <assert.h>
Syntax Error
EOF
ac_try="$ac_cpp conftest.$ac_ext >/dev/null 2>conftest.out"
-{ (eval echo configure:806: \"$ac_try\") 1>&5; (eval $ac_try) 2>&5; }
+{ (eval echo configure:810: \"$ac_try\") 1>&5; (eval $ac_try) 2>&5; }
ac_err=`grep -v '^ *+' conftest.out`
if test -z "$ac_err"; then
:
@@ -813,13 +817,13 @@ else
rm -rf conftest*
CPP="${CC-cc} -E -traditional-cpp"
cat > conftest.$ac_ext <<EOF
-#line 817 "configure"
+#line 821 "configure"
#include "confdefs.h"
#include <assert.h>
Syntax Error
EOF
ac_try="$ac_cpp conftest.$ac_ext >/dev/null 2>conftest.out"
-{ (eval echo configure:823: \"$ac_try\") 1>&5; (eval $ac_try) 2>&5; }
+{ (eval echo configure:827: \"$ac_try\") 1>&5; (eval $ac_try) 2>&5; }
ac_err=`grep -v '^ *+' conftest.out`
if test -z "$ac_err"; then
:
@@ -842,12 +846,12 @@ fi
echo "$ac_t""$CPP" 1>&6
echo $ac_n "checking for ANSI C header files""... $ac_c" 1>&6
-echo "configure:846: checking for ANSI C header files" >&5
+echo "configure:850: checking for ANSI C header files" >&5
if eval "test \"`echo '$''{'ac_cv_header_stdc'+set}'`\" = set"; then
echo $ac_n "(cached) $ac_c" 1>&6
else
cat > conftest.$ac_ext <<EOF
-#line 851 "configure"
+#line 855 "configure"
#include "confdefs.h"
#include <stdlib.h>
#include <stdarg.h>
@@ -855,7 +859,7 @@ else
#include <float.h>
EOF
ac_try="$ac_cpp conftest.$ac_ext >/dev/null 2>conftest.out"
-{ (eval echo configure:859: \"$ac_try\") 1>&5; (eval $ac_try) 2>&5; }
+{ (eval echo configure:863: \"$ac_try\") 1>&5; (eval $ac_try) 2>&5; }
ac_err=`grep -v '^ *+' conftest.out`
if test -z "$ac_err"; then
rm -rf conftest*
@@ -872,7 +876,7 @@ rm -f conftest*
if test $ac_cv_header_stdc = yes; then
# SunOS 4.x string.h does not declare mem*, contrary to ANSI.
cat > conftest.$ac_ext <<EOF
-#line 876 "configure"
+#line 880 "configure"
#include "confdefs.h"
#include <string.h>
EOF
@@ -890,7 +894,7 @@ fi
if test $ac_cv_header_stdc = yes; then
# ISC 2.0.2 stdlib.h does not declare free, contrary to ANSI.
cat > conftest.$ac_ext <<EOF
-#line 894 "configure"
+#line 898 "configure"
#include "confdefs.h"
#include <stdlib.h>
EOF
@@ -911,7 +915,7 @@ if test "$cross_compiling" = yes; then
:
else
cat > conftest.$ac_ext <<EOF
-#line 915 "configure"
+#line 919 "configure"
#include "confdefs.h"
#include <ctype.h>
#define ISLOWER(c) ('a' <= (c) && (c) <= 'z')
@@ -922,7 +926,7 @@ if (XOR (islower (i), ISLOWER (i)) || toupper (i) != TOUPPER (i)) exit(2);
exit (0); }
EOF
-if { (eval echo configure:926: \"$ac_link\") 1>&5; (eval $ac_link) 2>&5; } && test -s conftest && (./conftest; exit) 2>/dev/null
+if { (eval echo configure:930: \"$ac_link\") 1>&5; (eval $ac_link) 2>&5; } && test -s conftest && (./conftest; exit) 2>/dev/null
then
:
else
@@ -947,12 +951,12 @@ fi
echo $ac_n "checking whether time.h and sys/time.h may both be included""... $ac_c" 1>&6
-echo "configure:951: checking whether time.h and sys/time.h may both be included" >&5
+echo "configure:955: checking whether time.h and sys/time.h may both be included" >&5
if eval "test \"`echo '$''{'ac_cv_header_time'+set}'`\" = set"; then
echo $ac_n "(cached) $ac_c" 1>&6
else
cat > conftest.$ac_ext <<EOF
-#line 956 "configure"
+#line 960 "configure"
#include "confdefs.h"
#include <sys/types.h>
#include <sys/time.h>
@@ -961,7 +965,7 @@ int main() {
struct tm *tp;
; return 0; }
EOF
-if { (eval echo configure:965: \"$ac_compile\") 1>&5; (eval $ac_compile) 2>&5; }; then
+if { (eval echo configure:969: \"$ac_compile\") 1>&5; (eval $ac_compile) 2>&5; }; then
rm -rf conftest*
ac_cv_header_time=yes
else
@@ -985,17 +989,17 @@ for ac_hdr in limits.h unistd.h sys/time.h string.h stdlib.h
do
ac_safe=`echo "$ac_hdr" | sed 'y%./+-%__p_%'`
echo $ac_n "checking for $ac_hdr""... $ac_c" 1>&6
-echo "configure:989: checking for $ac_hdr" >&5
+echo "configure:993: checking for $ac_hdr" >&5
if eval "test \"`echo '$''{'ac_cv_header_$ac_safe'+set}'`\" = set"; then
echo $ac_n "(cached) $ac_c" 1>&6
else
cat > conftest.$ac_ext <<EOF
-#line 994 "configure"
+#line 998 "configure"
#include "confdefs.h"
#include <$ac_hdr>
EOF
ac_try="$ac_cpp conftest.$ac_ext >/dev/null 2>conftest.out"
-{ (eval echo configure:999: \"$ac_try\") 1>&5; (eval $ac_try) 2>&5; }
+{ (eval echo configure:1003: \"$ac_try\") 1>&5; (eval $ac_try) 2>&5; }
ac_err=`grep -v '^ *+' conftest.out`
if test -z "$ac_err"; then
rm -rf conftest*
@@ -1023,12 +1027,12 @@ done
echo $ac_n "checking for working const""... $ac_c" 1>&6
-echo "configure:1027: checking for working const" >&5
+echo "configure:1031: checking for working const" >&5
if eval "test \"`echo '$''{'ac_cv_c_const'+set}'`\" = set"; then
echo $ac_n "(cached) $ac_c" 1>&6
else
cat > conftest.$ac_ext <<EOF
-#line 1032 "configure"
+#line 1036 "configure"
#include "confdefs.h"
int main() {
@@ -1077,7 +1081,7 @@ ccp = (char const *const *) p;
; return 0; }
EOF
-if { (eval echo configure:1081: \"$ac_compile\") 1>&5; (eval $ac_compile) 2>&5; }; then
+if { (eval echo configure:1085: \"$ac_compile\") 1>&5; (eval $ac_compile) 2>&5; }; then
rm -rf conftest*
ac_cv_c_const=yes
else
@@ -1098,12 +1102,12 @@ EOF
fi
echo $ac_n "checking for size_t""... $ac_c" 1>&6
-echo "configure:1102: checking for size_t" >&5
+echo "configure:1106: checking for size_t" >&5
if eval "test \"`echo '$''{'ac_cv_type_size_t'+set}'`\" = set"; then
echo $ac_n "(cached) $ac_c" 1>&6
else
cat > conftest.$ac_ext <<EOF
-#line 1107 "configure"
+#line 1111 "configure"
#include "confdefs.h"
#include <sys/types.h>
#if STDC_HEADERS
@@ -1131,12 +1135,12 @@ EOF
fi
echo $ac_n "checking for mode_t""... $ac_c" 1>&6
-echo "configure:1135: checking for mode_t" >&5
+echo "configure:1139: checking for mode_t" >&5
if eval "test \"`echo '$''{'ac_cv_type_mode_t'+set}'`\" = set"; then
echo $ac_n "(cached) $ac_c" 1>&6
else
cat > conftest.$ac_ext <<EOF
-#line 1140 "configure"
+#line 1144 "configure"
#include "confdefs.h"
#include <sys/types.h>
#if STDC_HEADERS
@@ -1165,12 +1169,12 @@ fi
echo $ac_n "checking for pid_t""... $ac_c" 1>&6
-echo "configure:1169: checking for pid_t" >&5
+echo "configure:1173: checking for pid_t" >&5
if eval "test \"`echo '$''{'ac_cv_type_pid_t'+set}'`\" = set"; then
echo $ac_n "(cached) $ac_c" 1>&6
else
cat > conftest.$ac_ext <<EOF
-#line 1174 "configure"
+#line 1178 "configure"
#include "confdefs.h"
#include <sys/types.h>
#if STDC_HEADERS
@@ -1198,12 +1202,12 @@ EOF
fi
echo $ac_n "checking for st_blksize in struct stat""... $ac_c" 1>&6
-echo "configure:1202: checking for st_blksize in struct stat" >&5
+echo "configure:1206: checking for st_blksize in struct stat" >&5
if eval "test \"`echo '$''{'ac_cv_struct_st_blksize'+set}'`\" = set"; then
echo $ac_n "(cached) $ac_c" 1>&6
else
cat > conftest.$ac_ext <<EOF
-#line 1207 "configure"
+#line 1211 "configure"
#include "confdefs.h"
#include <sys/types.h>
#include <sys/stat.h>
@@ -1211,7 +1215,7 @@ int main() {
struct stat s; s.st_blksize;
; return 0; }
EOF
-if { (eval echo configure:1215: \"$ac_compile\") 1>&5; (eval $ac_compile) 2>&5; }; then
+if { (eval echo configure:1219: \"$ac_compile\") 1>&5; (eval $ac_compile) 2>&5; }; then
rm -rf conftest*
ac_cv_struct_st_blksize=yes
else
@@ -1232,12 +1236,12 @@ EOF
fi
echo $ac_n "checking for st_blocks in struct stat""... $ac_c" 1>&6
-echo "configure:1236: checking for st_blocks in struct stat" >&5
+echo "configure:1240: checking for st_blocks in struct stat" >&5
if eval "test \"`echo '$''{'ac_cv_struct_st_blocks'+set}'`\" = set"; then
echo $ac_n "(cached) $ac_c" 1>&6
else
cat > conftest.$ac_ext <<EOF
-#line 1241 "configure"
+#line 1245 "configure"
#include "confdefs.h"
#include <sys/types.h>
#include <sys/stat.h>
@@ -1245,7 +1249,7 @@ int main() {
struct stat s; s.st_blocks;
; return 0; }
EOF
-if { (eval echo configure:1249: \"$ac_compile\") 1>&5; (eval $ac_compile) 2>&5; }; then
+if { (eval echo configure:1253: \"$ac_compile\") 1>&5; (eval $ac_compile) 2>&5; }; then
rm -rf conftest*
ac_cv_struct_st_blocks=yes
else
@@ -1268,12 +1272,12 @@ else
fi
echo $ac_n "checking for st_rdev in struct stat""... $ac_c" 1>&6
-echo "configure:1272: checking for st_rdev in struct stat" >&5
+echo "configure:1276: checking for st_rdev in struct stat" >&5
if eval "test \"`echo '$''{'ac_cv_struct_st_rdev'+set}'`\" = set"; then
echo $ac_n "(cached) $ac_c" 1>&6
else
cat > conftest.$ac_ext <<EOF
-#line 1277 "configure"
+#line 1281 "configure"
#include "confdefs.h"
#include <sys/types.h>
#include <sys/stat.h>
@@ -1281,7 +1285,7 @@ int main() {
struct stat s; s.st_rdev;
; return 0; }
EOF
-if { (eval echo configure:1285: \"$ac_compile\") 1>&5; (eval $ac_compile) 2>&5; }; then
+if { (eval echo configure:1289: \"$ac_compile\") 1>&5; (eval $ac_compile) 2>&5; }; then
rm -rf conftest*
ac_cv_struct_st_rdev=yes
else
@@ -1302,12 +1306,12 @@ EOF
fi
echo $ac_n "checking whether struct tm is in sys/time.h or time.h""... $ac_c" 1>&6
-echo "configure:1306: checking whether struct tm is in sys/time.h or time.h" >&5
+echo "configure:1310: checking whether struct tm is in sys/time.h or time.h" >&5
if eval "test \"`echo '$''{'ac_cv_struct_tm'+set}'`\" = set"; then
echo $ac_n "(cached) $ac_c" 1>&6
else
cat > conftest.$ac_ext <<EOF
-#line 1311 "configure"
+#line 1315 "configure"
#include "confdefs.h"
#include <sys/types.h>
#include <time.h>
@@ -1315,7 +1319,7 @@ int main() {
struct tm *tp; tp->tm_sec;
; return 0; }
EOF
-if { (eval echo configure:1319: \"$ac_compile\") 1>&5; (eval $ac_compile) 2>&5; }; then
+if { (eval echo configure:1323: \"$ac_compile\") 1>&5; (eval $ac_compile) 2>&5; }; then
rm -rf conftest*
ac_cv_struct_tm=time.h
else
@@ -1340,12 +1344,12 @@ fi
for ac_func in symlink getcwd getwd lstat gethostname strerror clock getrusage
do
echo $ac_n "checking for $ac_func""... $ac_c" 1>&6
-echo "configure:1344: checking for $ac_func" >&5
+echo "configure:1348: checking for $ac_func" >&5
if eval "test \"`echo '$''{'ac_cv_func_$ac_func'+set}'`\" = set"; then
echo $ac_n "(cached) $ac_c" 1>&6
else
cat > conftest.$ac_ext <<EOF
-#line 1349 "configure"
+#line 1353 "configure"
#include "confdefs.h"
/* System header to define __stub macros and hopefully few prototypes,
which can conflict with char $ac_func(); below. */
@@ -1368,7 +1372,7 @@ $ac_func();
; return 0; }
EOF
-if { (eval echo configure:1372: \"$ac_link\") 1>&5; (eval $ac_link) 2>&5; } && test -s conftest; then
+if { (eval echo configure:1376: \"$ac_link\") 1>&5; (eval $ac_link) 2>&5; } && test -s conftest; then
rm -rf conftest*
eval "ac_cv_func_$ac_func=yes"
else
@@ -1426,7 +1430,7 @@ EOF
# Ultrix sh set writes to stderr and can't be redirected directly,
# and sets the high bit in the cache file unless we assign to the vars.
(set) 2>&1 |
- case `(ac_space=' '; set) 2>&1` in
+ case `(ac_space=' '; set) 2>&1 | grep ac_space` in
*ac_space=\ *)
# `set' does not quote correctly, so add quotes (double-quote substitution
# turns \\\\ into \\, and sed turns \\ into \).
@@ -1493,7 +1497,7 @@ do
echo "running \${CONFIG_SHELL-/bin/sh} $0 $ac_configure_args --no-create --no-recursion"
exec \${CONFIG_SHELL-/bin/sh} $0 $ac_configure_args --no-create --no-recursion ;;
-version | --version | --versio | --versi | --vers | --ver | --ve | --v)
- echo "$CONFIG_STATUS generated by autoconf version 2.12"
+ echo "$CONFIG_STATUS generated by autoconf version 2.12.1"
exit 0 ;;
-help | --help | --hel | --he | --h)
echo "\$ac_cs_usage"; exit 0 ;;
@@ -1512,6 +1516,7 @@ sed 's/%@/@@/; s/@%/@@/; s/%g\$/@g/; /@g\$/s/[\\\\&%]/\\\\&/g;
s/@@/%@/; s/@@/@%/; s/@g\$/%g/' > conftest.subs <<\\CEOF
$ac_vpsub
$extrasub
+s%@SHELL@%$SHELL%g
s%@CFLAGS@%$CFLAGS%g
s%@CPPFLAGS@%$CPPFLAGS%g
s%@CXXFLAGS@%$CXXFLAGS%g
diff --git a/gcc/final.c b/gcc/final.c
index d9a410b2b09..7faaf2d7285 100644
--- a/gcc/final.c
+++ b/gcc/final.c
@@ -284,10 +284,14 @@ static void add_bb PROTO((FILE *));
static int add_bb_string PROTO((char *, int));
static void output_source_line PROTO((FILE *, rtx));
static rtx walk_alter_subreg PROTO((rtx));
-static int alter_cond PROTO((rtx));
static void output_asm_name PROTO((void));
static void output_operand PROTO((rtx, int));
+#ifdef LEAF_REGISTERS
static void leaf_renumber_regs PROTO((rtx));
+#endif
+#ifdef HAVE_cc0
+static int alter_cond PROTO((rtx));
+#endif
extern char *getpwd ();
@@ -455,12 +459,17 @@ end_final (filename)
ASM_OUTPUT_SHARED_LOCAL (asm_out_file, name, size, rounded);
else
#endif
+#ifdef ASM_OUTPUT_ALIGNED_DECL_LOCAL
+ ASM_OUTPUT_ALIGNED_DECL_LOCAL (asm_out_file, NULL_TREE, name, size,
+ BIGGEST_ALIGNMENT);
+#else
#ifdef ASM_OUTPUT_ALIGNED_LOCAL
ASM_OUTPUT_ALIGNED_LOCAL (asm_out_file, name, size,
BIGGEST_ALIGNMENT);
#else
ASM_OUTPUT_LOCAL (asm_out_file, name, size, rounded);
#endif
+#endif
}
/* Output any basic block strings */
@@ -672,6 +681,10 @@ get_attr_length (insn)
length += get_attr_length (XVECEXP (body, 0, i));
else
length = insn_default_length (insn);
+ break;
+
+ default:
+ break;
}
#ifdef ADJUST_INSN_LENGTH
@@ -753,6 +766,7 @@ shorten_branches (first)
to determine how much padding we need at this point. Therefore,
assume worst possible alignment. */
insn_lengths[uid] += unitsize - 1;
+
#else
;
#endif
@@ -2041,9 +2055,12 @@ final_scan_insn (insn, file, optimize, prescan, nopeepholes)
PUT_CODE (insn, NOTE);
NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
NOTE_SOURCE_FILE (insn) = 0;
- break;
}
}
+ break;
+
+ default:
+ break;
}
}
@@ -2327,6 +2344,9 @@ walk_alter_subreg (x)
case SUBREG:
return alter_subreg (x);
+
+ default:
+ break;
}
return x;
@@ -2385,6 +2405,9 @@ alter_cond (cond)
PUT_CODE (cond, NE);
value = 2;
break;
+
+ default:
+ break;
}
if (cc_status.flags & CC_NOT_NEGATIVE)
@@ -2411,6 +2434,9 @@ alter_cond (cond)
PUT_CODE (cond, NE);
value = 2;
break;
+
+ default:
+ break;
}
if (cc_status.flags & CC_NO_OVERFLOW)
@@ -2433,19 +2459,15 @@ alter_cond (cond)
case LTU:
/* Jump becomes no-op. */
return -1;
+
+ default:
+ break;
}
if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
switch (GET_CODE (cond))
{
- case LE:
- case LEU:
- case GE:
- case GEU:
- case LT:
- case LTU:
- case GT:
- case GTU:
+ default:
abort ();
case NE:
@@ -2483,6 +2505,9 @@ alter_cond (cond)
PUT_CODE (cond, GEU);
value = 2;
break;
+
+ default:
+ break;
}
return value;
diff --git a/gcc/fixinc.math b/gcc/fixinc.math
index 02652aa387b..a8a9fe7e4d3 100755
--- a/gcc/fixinc.math
+++ b/gcc/fixinc.math
@@ -2,7 +2,7 @@
# Fix struct exception in /usr/include/math.h.
#
# We expect several systems which did not need fixincludes in the past
-# to need to fix just math.h. So we created a separate fixinc.mathh
+# to need to fix just math.h. So we created a separate fixinc.math
# script to fix just that problem.
# See README-fixinc for more information.
@@ -13,99 +13,41 @@ INPUT=${2-${INPUT-/usr/include}}
# Directory in which to store the results.
LIB=${1?"fixincludes: output directory not specified"}
-# Define PWDCMD as a command to use to get the working dir
-# in the form that we want.
-PWDCMD=pwd
-case "`pwd`" in
-//*)
- # On an Apollo, discard everything before `/usr'.
- PWDCMD="eval pwd | sed -e 's,.*/usr/,/usr/,'"
- ;;
-esac
-
-# Original directory.
-ORIGDIR=`${PWDCMD}`
-
# Make sure it exists.
if [ ! -d $LIB ]; then
mkdir $LIB || exit 1
fi
-# Make LIB absolute only if needed to avoid problems with the amd.
-case $LIB in
-/*)
- ;;
-*)
- cd $LIB; LIB=`${PWDCMD}`
- ;;
-esac
-
-# Fail if no arg to specify a directory for the output.
-if [ x$1 = x ]
-then echo fixincludes: no output directory specified
-exit 1
-fi
-
echo Building fixed headers in ${LIB}
-# Determine whether this system has symbolic links.
-if ln -s X $LIB/ShouldNotExist 2>/dev/null; then
- rm -f $LIB/ShouldNotExist
- LINKS=true
-elif ln -s X /tmp/ShouldNotExist 2>/dev/null; then
- rm -f /tmp/ShouldNotExist
- LINKS=true
-else
- LINKS=false
-fi
-
-cd ${INPUT}
-
# Some math.h files define struct exception, which conflicts with
# the class exception defined in the C++ file std/stdexcept.h. We
# redefine it to __math_exception. This is not a great fix, but I
# haven't been able to think of anything better.
file=math.h
-if [ -r $file ] && [ ! -r ${LIB}/$file ]; then
- cp $file ${LIB}/$file >/dev/null 2>&1 || echo "Can't copy $file"
- chmod +w ${LIB}/$file 2>/dev/null
- chmod a+r ${LIB}/$file 2>/dev/null
-fi
-
-if [ -r ${LIB}/$file ]; then
- echo Fixing $file, exception
- sed -e '/struct exception/i\
-#ifdef __cplusplus\
-#define exception __math_exception\
-#endif\
-'\
- -e '/struct exception/a\
-#ifdef __cplusplus\
-#undef exception\
-#endif\
-' ${LIB}/$file > ${LIB}/${file}.sed
- rm -f ${LIB}/$file; mv ${LIB}/${file}.sed ${LIB}/$file
- if egrep 'matherr()' ${LIB}/$file >/dev/null 2>&1; then
- sed -e '/matherr/i\
-#ifdef __cplusplus\
-#define exception __math_exception\
-#endif\
-'\
- -e '/matherr/a\
-#ifdef __cplusplus\
-#undef exception\
-#endif\
-' ${LIB}/$file > ${LIB}/${file}.sed
- rm -f ${LIB}/$file; mv ${LIB}/${file}.sed ${LIB}/$file
- fi
- if cmp $file ${LIB}/$file >/dev/null 2>&1; then
- rm -f ${LIB}/$file
- else
- # Find any include directives that use "file".
- for include in `egrep '^[ ]*#[ ]*include[ ]*"[^/]' ${LIB}/$file | sed -e 's/^[ ]*#[ ]*include[ ]*"\([^"]*\)".*$/\1/'`; do
- dir=`echo $file | sed -e s'|/[^/]*$||'`
- required="$required ${INPUT} $dir/$include ${LIB}/$dir/$include"
- done
+if [ -r $INPUT/$file ]; then
+ echo Checking $INPUT/$file
+ if grep 'struct exception' $INPUT/$file >/dev/null
+ then
+ echo Fixed $file
+ rm -f $LIB/$file
+ cat <<'__EOF__' >$LIB/$file
+#ifndef _MATH_H_WRAPPER
+#ifdef __cplusplus
+# define exception __math_exception
+#endif
+#include_next <math.h>
+#ifdef __cplusplus
+# undef exception
+#endif
+#define _MATH_H_WRAPPER
+#endif /* _MATH_H_WRAPPER */
+__EOF__
+ # Define _MATH_H_WRAPPER at the end of the wrapper, not the start,
+ # so that if #include_next gets another instance of the wrapper,
+ # this will follow the #include_next chain until we arrive at
+ # the real <math.h>.
+ chmod a+r $LIB/$file
fi
fi
exit 0
diff --git a/gcc/fixincludes b/gcc/fixincludes
index 33ef8add15b..dfe50d592e2 100755
--- a/gcc/fixincludes
+++ b/gcc/fixincludes
@@ -2901,6 +2901,43 @@ for file in curses.h dbm.h locale.h stdio.h stdlib.h string.h time.h unistd.h sy
fi
done
+# HPUX 10.x sys/param.h defines MAXINT which clashes with values.h
+file=sys/param.h
+base=`basename $file`
+if [ -r ${LIB}/$file ]; then
+ file_to_fix=${LIB}/$file
+else
+ if [ -r ${INPUT}/$file ]; then
+ file_to_fix=${INPUT}/$file
+ else
+ file_to_fix=""
+ fi
+fi
+if [ \! -z "$file_to_fix" ]; then
+ echo Checking $file_to_fix
+ sed -e '/[ ]MAXINT[ ]/i\
+#ifndef MAXINT
+'\
+ -e '/[ ]MAXINT[ ]/a\
+#endif
+' $file_to_fix > /tmp/$base
+ if cmp $file_to_fix /tmp/$base >/dev/null 2>&1; then \
+ true
+ else
+ echo Fixed $file_to_fix
+ rm -f ${LIB}/$file
+ cp /tmp/$base ${LIB}/$file
+ chmod a+r ${LIB}/$file
+ # Find any include directives that use "file".
+ for include in `egrep '^[ ]*#[ ]*include[ ]*"[^/]' ${LIB}/$file | sed -e 's/^[ ]*#[ ]*include[ ]*"\([^"]*\)".*$/\1/'`; do
+ dir=`echo $file | sed -e s'|/[^/]*$||'`
+ required="$required ${INPUT} $dir/$include ${LIB}/$dir/$include"
+ done
+ fi
+ rm -f /tmp/$base
+fi
+
+
# This loop does not appear to do anything, because it uses file
# rather than $file when setting target. It also appears to be
# unnecessary, since the main loop processes symbolic links.
@@ -2960,4 +2997,5 @@ for file in $files; do
rmdir $LIB/$file > /dev/null 2>&1
done
+
exit 0
diff --git a/gcc/flow.c b/gcc/flow.c
index e2c548db2fa..d6e666cee12 100644
--- a/gcc/flow.c
+++ b/gcc/flow.c
@@ -108,8 +108,8 @@ Boston, MA 02111-1307, USA. */
register usage: reg_n_refs, reg_n_deaths, reg_n_sets, reg_live_length,
reg_n_calls_crosses and reg_basic_block. */
-#include <stdio.h>
#include "config.h"
+#include <stdio.h>
#include "rtl.h"
#include "basic-block.h"
#include "insn-config.h"
@@ -2616,6 +2616,9 @@ mark_used_regs (needed, live, x, final, insn)
)
SET_REGNO_REG_SET (live, i);
break;
+
+ default:
+ break;
}
/* Recursively scan the operands of this expression. */
diff --git a/gcc/fold-const.c b/gcc/fold-const.c
index da18997acc3..3ce114bb4ad 100644
--- a/gcc/fold-const.c
+++ b/gcc/fold-const.c
@@ -42,9 +42,9 @@ Boston, MA 02111-1307, USA. */
force_fit_type takes a constant and prior overflow indicator, and
forces the value to fit the type. It returns an overflow indicator. */
+#include "config.h"
#include <stdio.h>
#include <setjmp.h>
-#include "config.h"
#include "flags.h"
#include "tree.h"
@@ -62,6 +62,7 @@ int div_and_round_double PROTO((enum tree_code, int, HOST_WIDE_INT,
HOST_WIDE_INT *));
static int split_tree PROTO((tree, enum tree_code, tree *,
tree *, int *));
+static tree int_const_binop PROTO((enum tree_code, tree, tree, int, int));
static tree const_binop PROTO((enum tree_code, tree, tree, int));
static tree fold_convert PROTO((tree, tree));
static enum tree_code invert_tree_comparison PROTO((enum tree_code));
@@ -1051,192 +1052,215 @@ split_tree (in, code, varp, conp, varsignp)
return 0;
}
-/* Combine two constants ARG1 and ARG2 under operation CODE
+/* Combine two integer constants ARG1 and ARG2 under operation CODE
to produce a new constant.
- We assume ARG1 and ARG2 have the same data type,
- or at least are the same kind of constant and the same machine mode.
- If NOTRUNC is nonzero, do not truncate the result to fit the data type. */
+ If NOTRUNC is nonzero, do not truncate the result to fit the data type.
+ If FORSIZE is nonzero, compute overflow for unsigned types. */
static tree
-const_binop (code, arg1, arg2, notrunc)
+int_const_binop (code, arg1, arg2, notrunc, forsize)
enum tree_code code;
register tree arg1, arg2;
- int notrunc;
+ int notrunc, forsize;
{
- STRIP_NOPS (arg1); STRIP_NOPS (arg2);
+ HOST_WIDE_INT int1l, int1h, int2l, int2h;
+ HOST_WIDE_INT low, hi;
+ HOST_WIDE_INT garbagel, garbageh;
+ register tree t;
+ int uns = TREE_UNSIGNED (TREE_TYPE (arg1));
+ int overflow = 0;
+ int no_overflow = 0;
- if (TREE_CODE (arg1) == INTEGER_CST)
+ int1l = TREE_INT_CST_LOW (arg1);
+ int1h = TREE_INT_CST_HIGH (arg1);
+ int2l = TREE_INT_CST_LOW (arg2);
+ int2h = TREE_INT_CST_HIGH (arg2);
+
+ switch (code)
{
- register HOST_WIDE_INT int1l = TREE_INT_CST_LOW (arg1);
- register HOST_WIDE_INT int1h = TREE_INT_CST_HIGH (arg1);
- HOST_WIDE_INT int2l = TREE_INT_CST_LOW (arg2);
- HOST_WIDE_INT int2h = TREE_INT_CST_HIGH (arg2);
- HOST_WIDE_INT low, hi;
- HOST_WIDE_INT garbagel, garbageh;
- register tree t;
- int uns = TREE_UNSIGNED (TREE_TYPE (arg1));
- int overflow = 0;
- int no_overflow = 0;
+ case BIT_IOR_EXPR:
+ low = int1l | int2l, hi = int1h | int2h;
+ break;
- switch (code)
- {
- case BIT_IOR_EXPR:
- low = int1l | int2l, hi = int1h | int2h;
- break;
+ case BIT_XOR_EXPR:
+ low = int1l ^ int2l, hi = int1h ^ int2h;
+ break;
- case BIT_XOR_EXPR:
- low = int1l ^ int2l, hi = int1h ^ int2h;
- break;
+ case BIT_AND_EXPR:
+ low = int1l & int2l, hi = int1h & int2h;
+ break;
- case BIT_AND_EXPR:
- low = int1l & int2l, hi = int1h & int2h;
- break;
+ case BIT_ANDTC_EXPR:
+ low = int1l & ~int2l, hi = int1h & ~int2h;
+ break;
- case BIT_ANDTC_EXPR:
- low = int1l & ~int2l, hi = int1h & ~int2h;
- break;
+ case RSHIFT_EXPR:
+ int2l = - int2l;
+ case LSHIFT_EXPR:
+ /* It's unclear from the C standard whether shifts can overflow.
+ The following code ignores overflow; perhaps a C standard
+ interpretation ruling is needed. */
+ lshift_double (int1l, int1h, int2l,
+ TYPE_PRECISION (TREE_TYPE (arg1)),
+ &low, &hi,
+ !uns);
+ no_overflow = 1;
+ break;
- case RSHIFT_EXPR:
- int2l = - int2l;
- case LSHIFT_EXPR:
- /* It's unclear from the C standard whether shifts can overflow.
- The following code ignores overflow; perhaps a C standard
- interpretation ruling is needed. */
- lshift_double (int1l, int1h, int2l,
- TYPE_PRECISION (TREE_TYPE (arg1)),
- &low, &hi,
- !uns);
- no_overflow = 1;
- break;
+ case RROTATE_EXPR:
+ int2l = - int2l;
+ case LROTATE_EXPR:
+ lrotate_double (int1l, int1h, int2l,
+ TYPE_PRECISION (TREE_TYPE (arg1)),
+ &low, &hi);
+ break;
- case RROTATE_EXPR:
- int2l = - int2l;
- case LROTATE_EXPR:
- lrotate_double (int1l, int1h, int2l,
- TYPE_PRECISION (TREE_TYPE (arg1)),
- &low, &hi);
- break;
+ case PLUS_EXPR:
+ overflow = add_double (int1l, int1h, int2l, int2h, &low, &hi);
+ break;
- case PLUS_EXPR:
- overflow = add_double (int1l, int1h, int2l, int2h, &low, &hi);
- break;
+ case MINUS_EXPR:
+ neg_double (int2l, int2h, &low, &hi);
+ add_double (int1l, int1h, low, hi, &low, &hi);
+ overflow = overflow_sum_sign (hi, int2h, int1h);
+ break;
- case MINUS_EXPR:
- neg_double (int2l, int2h, &low, &hi);
- add_double (int1l, int1h, low, hi, &low, &hi);
- overflow = overflow_sum_sign (hi, int2h, int1h);
- break;
+ case MULT_EXPR:
+ overflow = mul_double (int1l, int1h, int2l, int2h, &low, &hi);
+ break;
- case MULT_EXPR:
- overflow = mul_double (int1l, int1h, int2l, int2h, &low, &hi);
+ case TRUNC_DIV_EXPR:
+ case FLOOR_DIV_EXPR: case CEIL_DIV_EXPR:
+ case EXACT_DIV_EXPR:
+ /* This is a shortcut for a common special case. */
+ if (int2h == 0 && int2l > 0
+ && ! TREE_CONSTANT_OVERFLOW (arg1)
+ && ! TREE_CONSTANT_OVERFLOW (arg2)
+ && int1h == 0 && int1l >= 0)
+ {
+ if (code == CEIL_DIV_EXPR)
+ int1l += int2l - 1;
+ low = int1l / int2l, hi = 0;
break;
+ }
- case TRUNC_DIV_EXPR:
- case FLOOR_DIV_EXPR: case CEIL_DIV_EXPR:
- case EXACT_DIV_EXPR:
- /* This is a shortcut for a common special case. */
- if (int2h == 0 && int2l > 0
- && ! TREE_CONSTANT_OVERFLOW (arg1)
- && ! TREE_CONSTANT_OVERFLOW (arg2)
- && int1h == 0 && int1l >= 0)
- {
- if (code == CEIL_DIV_EXPR)
- int1l += int2l - 1;
- low = int1l / int2l, hi = 0;
- break;
- }
-
- /* ... fall through ... */
+ /* ... fall through ... */
- case ROUND_DIV_EXPR:
- if (int2h == 0 && int2l == 1)
- {
- low = int1l, hi = int1h;
- break;
- }
- if (int1l == int2l && int1h == int2h
- && ! (int1l == 0 && int1h == 0))
- {
- low = 1, hi = 0;
- break;
- }
- overflow = div_and_round_double (code, uns,
- int1l, int1h, int2l, int2h,
- &low, &hi, &garbagel, &garbageh);
+ case ROUND_DIV_EXPR:
+ if (int2h == 0 && int2l == 1)
+ {
+ low = int1l, hi = int1h;
break;
-
- case TRUNC_MOD_EXPR:
- case FLOOR_MOD_EXPR: case CEIL_MOD_EXPR:
- /* This is a shortcut for a common special case. */
- if (int2h == 0 && int2l > 0
- && ! TREE_CONSTANT_OVERFLOW (arg1)
- && ! TREE_CONSTANT_OVERFLOW (arg2)
- && int1h == 0 && int1l >= 0)
- {
- if (code == CEIL_MOD_EXPR)
- int1l += int2l - 1;
- low = int1l % int2l, hi = 0;
- break;
- }
-
- /* ... fall through ... */
-
- case ROUND_MOD_EXPR:
- overflow = div_and_round_double (code, uns,
- int1l, int1h, int2l, int2h,
- &garbagel, &garbageh, &low, &hi);
+ }
+ if (int1l == int2l && int1h == int2h
+ && ! (int1l == 0 && int1h == 0))
+ {
+ low = 1, hi = 0;
break;
+ }
+ overflow = div_and_round_double (code, uns,
+ int1l, int1h, int2l, int2h,
+ &low, &hi, &garbagel, &garbageh);
+ break;
- case MIN_EXPR:
- case MAX_EXPR:
- if (uns)
- {
- low = (((unsigned HOST_WIDE_INT) int1h
- < (unsigned HOST_WIDE_INT) int2h)
- || (((unsigned HOST_WIDE_INT) int1h
- == (unsigned HOST_WIDE_INT) int2h)
- && ((unsigned HOST_WIDE_INT) int1l
- < (unsigned HOST_WIDE_INT) int2l)));
- }
- else
- {
- low = ((int1h < int2h)
- || ((int1h == int2h)
- && ((unsigned HOST_WIDE_INT) int1l
- < (unsigned HOST_WIDE_INT) int2l)));
- }
- if (low == (code == MIN_EXPR))
- low = int1l, hi = int1h;
- else
- low = int2l, hi = int2h;
+ case TRUNC_MOD_EXPR:
+ case FLOOR_MOD_EXPR: case CEIL_MOD_EXPR:
+ /* This is a shortcut for a common special case. */
+ if (int2h == 0 && int2l > 0
+ && ! TREE_CONSTANT_OVERFLOW (arg1)
+ && ! TREE_CONSTANT_OVERFLOW (arg2)
+ && int1h == 0 && int1l >= 0)
+ {
+ if (code == CEIL_MOD_EXPR)
+ int1l += int2l - 1;
+ low = int1l % int2l, hi = 0;
break;
+ }
- default:
- abort ();
+ /* ... fall through ... */
+
+ case ROUND_MOD_EXPR:
+ overflow = div_and_round_double (code, uns,
+ int1l, int1h, int2l, int2h,
+ &garbagel, &garbageh, &low, &hi);
+ break;
+
+ case MIN_EXPR:
+ case MAX_EXPR:
+ if (uns)
+ {
+ low = (((unsigned HOST_WIDE_INT) int1h
+ < (unsigned HOST_WIDE_INT) int2h)
+ || (((unsigned HOST_WIDE_INT) int1h
+ == (unsigned HOST_WIDE_INT) int2h)
+ && ((unsigned HOST_WIDE_INT) int1l
+ < (unsigned HOST_WIDE_INT) int2l)));
}
- got_it:
- if (TREE_TYPE (arg1) == sizetype && hi == 0
- && low >= 0 && low <= TREE_INT_CST_LOW (TYPE_MAX_VALUE (sizetype))
- && ! overflow
- && ! TREE_OVERFLOW (arg1) && ! TREE_OVERFLOW (arg2))
- t = size_int (low);
else
{
- t = build_int_2 (low, hi);
- TREE_TYPE (t) = TREE_TYPE (arg1);
+ low = ((int1h < int2h)
+ || ((int1h == int2h)
+ && ((unsigned HOST_WIDE_INT) int1l
+ < (unsigned HOST_WIDE_INT) int2l)));
}
+ if (low == (code == MIN_EXPR))
+ low = int1l, hi = int1h;
+ else
+ low = int2l, hi = int2h;
+ break;
- TREE_OVERFLOW (t)
- = ((notrunc ? !uns && overflow
- : force_fit_type (t, overflow && !uns) && ! no_overflow)
- | TREE_OVERFLOW (arg1)
- | TREE_OVERFLOW (arg2));
- TREE_CONSTANT_OVERFLOW (t) = (TREE_OVERFLOW (t)
- | TREE_CONSTANT_OVERFLOW (arg1)
- | TREE_CONSTANT_OVERFLOW (arg2));
- return t;
+ default:
+ abort ();
}
+
+ if (TREE_TYPE (arg1) == sizetype && hi == 0
+ && low >= 0 && low <= TREE_INT_CST_LOW (TYPE_MAX_VALUE (sizetype))
+ && ! overflow
+ && ! TREE_OVERFLOW (arg1) && ! TREE_OVERFLOW (arg2))
+ t = size_int (low);
+ else
+ {
+ t = build_int_2 (low, hi);
+ TREE_TYPE (t) = TREE_TYPE (arg1);
+ }
+
+ TREE_OVERFLOW (t)
+ = ((notrunc ? (!uns || forsize) && overflow
+ : force_fit_type (t, (!uns || forsize) && overflow) && ! no_overflow)
+ | TREE_OVERFLOW (arg1)
+ | TREE_OVERFLOW (arg2));
+ /* If we're doing a size calculation, unsigned arithmetic does overflow.
+ So check if force_fit_type truncated the value. */
+ if (forsize
+ && ! TREE_OVERFLOW (t)
+ && (TREE_INT_CST_HIGH (t) != hi
+ || TREE_INT_CST_LOW (t) != low))
+ TREE_OVERFLOW (t) = 1;
+ TREE_CONSTANT_OVERFLOW (t) = (TREE_OVERFLOW (t)
+ | TREE_CONSTANT_OVERFLOW (arg1)
+ | TREE_CONSTANT_OVERFLOW (arg2));
+ return t;
+}
+
+/* Combine two constants ARG1 and ARG2 under operation CODE
+ to produce a new constant.
+ We assume ARG1 and ARG2 have the same data type,
+ or at least are the same kind of constant and the same machine mode.
+
+ If NOTRUNC is nonzero, do not truncate the result to fit the data type. */
+
+static tree
+const_binop (code, arg1, arg2, notrunc)
+ enum tree_code code;
+ register tree arg1, arg2;
+ int notrunc;
+{
+ STRIP_NOPS (arg1); STRIP_NOPS (arg2);
+
+ if (TREE_CODE (arg1) == INTEGER_CST)
+ return int_const_binop (code, arg1, arg2, notrunc, 0);
+
#if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
if (TREE_CODE (arg1) == REAL_CST)
{
@@ -1450,7 +1474,7 @@ size_binop (code, arg0, arg1)
return arg1;
/* Handle general case of two integer constants. */
- return const_binop (code, arg0, arg1, 0);
+ return int_const_binop (code, arg0, arg1, 0, 1);
}
if (arg0 == error_mark_node || arg1 == error_mark_node)
@@ -1790,6 +1814,8 @@ operand_equal_p (arg0, arg1, only_const)
case ADDR_EXPR:
return operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0),
0);
+ default:
+ break;
}
if (only_const)
@@ -1847,11 +1873,13 @@ operand_equal_p (arg0, arg1, only_const)
TREE_OPERAND (arg1, 1), 0)
&& operand_equal_p (TREE_OPERAND (arg0, 2),
TREE_OPERAND (arg1, 2), 0));
+ default:
+ return 0;
}
- break;
+
+ default:
+ return 0;
}
-
- return 0;
}
/* Similar to operand_equal_p, but see if ARG0 might have been made by
@@ -2002,9 +2030,10 @@ twoval_comparison_p (arg, cval1, cval2, save_p)
return 0;
return 1;
- }
- return 0;
+ default:
+ return 0;
+ }
}
/* ARG is a tree that is known to contain just arithmetic operations and
@@ -2059,7 +2088,10 @@ eval_subst (arg, old0, new0, old1, new1)
old0, new0, old1, new1),
eval_subst (TREE_OPERAND (arg, 2),
old0, new0, old1, new1)));
+ default:
+ break;
}
+ /* fall through (???) */
case '<':
{
@@ -2082,9 +2114,10 @@ eval_subst (arg, old0, new0, old1, new1)
return fold (build (code, type, arg0, arg1));
}
- }
- return arg;
+ default:
+ return arg;
+ }
}
/* Return a tree for the case when the result of an expression is RESULT
@@ -2222,6 +2255,9 @@ invert_truthvalue (arg)
case CLEANUP_POINT_EXPR:
return build1 (CLEANUP_POINT_EXPR, type,
invert_truthvalue (TREE_OPERAND (arg, 0)));
+
+ default:
+ break;
}
if (TREE_CODE (TREE_TYPE (arg)) != BOOLEAN_TYPE)
abort ();
@@ -2704,6 +2740,8 @@ range_binop (code, type, arg0, upper0_p, arg1, upper1_p)
case GT_EXPR: case GE_EXPR:
result = sgn0 > sgn1;
break;
+ default:
+ abort ();
}
return convert (type, result ? integer_one_node : integer_zero_node);
@@ -2780,6 +2818,8 @@ make_range (exp, pin_p, plow, phigh)
case LE_EXPR: /* + [-, c] */
in_p = ! in_p, low = 0, high = arg1;
break;
+ default:
+ abort ();
}
exp = arg0;
@@ -5114,13 +5154,16 @@ fold (expr)
arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node, 0);
t = build (code, type, TREE_OPERAND (t, 0), arg1);
break;
+
+ default:
+ break;
}
}
/* If this is an EQ or NE comparison with zero and ARG0 is
(1 << foo) & bar, convert it to (bar >> foo) & 1. Both require
two operations, but the latter can be done in one less insn
- one machine that have only two-operand insns or on which a
+ on machines that have only two-operand insns or on which a
constant cannot be the first operand. */
if (integer_zerop (arg1) && (code == EQ_EXPR || code == NE_EXPR)
&& TREE_CODE (arg0) == BIT_AND_EXPR)
@@ -5246,6 +5289,8 @@ fold (expr)
t = build_int_2 (0, 0);
TREE_TYPE (t) = type;
return t;
+ default:
+ abort ();
}
}
@@ -5273,9 +5318,41 @@ fold (expr)
return omit_one_operand (type,
convert (type, integer_zero_node),
arg0);
+ default:
+ break;
}
}
+ /* An unsigned <= 0x7fffffff can be simplified. */
+ {
+ int width = TYPE_PRECISION (TREE_TYPE (arg1));
+ if (TREE_CODE (arg1) == INTEGER_CST
+ && ! TREE_CONSTANT_OVERFLOW (arg1)
+ && width <= HOST_BITS_PER_WIDE_INT
+ && TREE_INT_CST_LOW (arg1) == ((HOST_WIDE_INT) 1 << (width - 1)) - 1
+ && TREE_INT_CST_HIGH (arg1) == 0
+ && (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
+ || TREE_CODE (TREE_TYPE (arg1)) == POINTER_TYPE)
+ && TREE_UNSIGNED (TREE_TYPE (arg1)))
+ {
+ switch (TREE_CODE (t))
+ {
+ case LE_EXPR:
+ return fold (build (GE_EXPR, type,
+ convert (signed_type (TREE_TYPE (arg0)),
+ arg0),
+ convert (signed_type (TREE_TYPE (arg1)),
+ integer_zero_node)));
+ case GT_EXPR:
+ return fold (build (LT_EXPR, type,
+ convert (signed_type (TREE_TYPE (arg0)),
+ arg0),
+ convert (signed_type (TREE_TYPE (arg1)),
+ integer_zero_node)));
+ }
+ }
+ }
+
/* If we are comparing an expression that just has comparisons
of two integer values, arithmetic expressions of those comparisons,
and constants, we can simplify it. There are only three cases
@@ -5577,6 +5654,8 @@ fold (expr)
fold (build1 (ABS_EXPR,
TREE_TYPE (arg1),
arg1))))));
+ default:
+ abort ();
}
/* If this is A != 0 ? A : 0, this is simply A. For ==, it is
@@ -5608,21 +5687,28 @@ fold (expr)
return pedantic_non_lvalue (convert (type, arg1));
case LE_EXPR:
case LT_EXPR:
- /* In C++ a ?: expression can be an lvalue, so we can't
- do this; we would lose the distinction between
- LT and LE. */
- if (pedantic_lvalues)
- return pedantic_non_lvalue
- (convert (type, (fold (build (MIN_EXPR, comp_type,
- comp_op0, comp_op1)))));
+ /* In C++ a ?: expression can be an lvalue, so put the
+ operand which will be used if they are equal first
+ so that we can convert this back to the
+ corresponding COND_EXPR. */
+ return pedantic_non_lvalue
+ (convert (type, (fold (build (MIN_EXPR, comp_type,
+ (comp_code == LE_EXPR
+ ? comp_op0 : comp_op1),
+ (comp_code == LE_EXPR
+ ? comp_op1 : comp_op0))))));
break;
case GE_EXPR:
case GT_EXPR:
- if (pedantic_lvalues)
- return pedantic_non_lvalue
- (convert (type, fold (build (MAX_EXPR, comp_type,
- comp_op0, comp_op1))));
+ return pedantic_non_lvalue
+ (convert (type, fold (build (MAX_EXPR, comp_type,
+ (comp_code == GE_EXPR
+ ? comp_op0 : comp_op1),
+ (comp_code == GE_EXPR
+ ? comp_op1 : comp_op0)))));
break;
+ default:
+ abort ();
}
}
@@ -5683,6 +5769,10 @@ fold (expr)
return pedantic_non_lvalue
(fold (build (MAX_EXPR, type, arg1, arg2)));
break;
+ case NE_EXPR:
+ break;
+ default:
+ abort ();
}
}
diff --git a/gcc/frame.c b/gcc/frame.c
index ca0bb39de80..acc78a2381e 100644
--- a/gcc/frame.c
+++ b/gcc/frame.c
@@ -35,6 +35,7 @@ Boston, MA 02111-1307, USA. */
#include "defaults.h"
#ifdef DWARF2_UNWIND_INFO
+#include "gansidecl.h"
#include "dwarf2.h"
#include "frame.h"
#include <stddef.h>
diff --git a/gcc/function.c b/gcc/function.c
index 057da555c71..f7d49717e8b 100644
--- a/gcc/function.c
+++ b/gcc/function.c
@@ -300,14 +300,15 @@ static int invalid_stack_slot;
/* Last insn of those whose job was to put parms into their nominal homes. */
static rtx last_parm_insn;
-/* 1 + last pseudo register number used for loading a copy
- of a parameter of this function. */
-static int max_parm_reg;
+/* 1 + last pseudo register number possibly used for loading a copy
+ of a parameter of this function. */
+int max_parm_reg;
/* Vector indexed by REGNO, containing location on stack in which
to put the parm which is nominally in pseudo register REGNO,
- if we discover that that parm must go in the stack. */
-static rtx *parm_reg_stack_loc;
+ if we discover that that parm must go in the stack. The highest
+ element in this vector is one less than MAX_PARM_REG, above. */
+rtx *parm_reg_stack_loc;
/* Nonzero once virtual register instantiation has been done.
assign_stack_local uses frame_pointer_rtx when this is nonzero. */
@@ -423,7 +424,7 @@ struct fixup_replacement
static struct temp_slot *find_temp_slot_from_address PROTO((rtx));
static void put_reg_into_stack PROTO((struct function *, rtx, tree,
enum machine_mode, enum machine_mode,
- int));
+ int, int));
static void fixup_var_refs PROTO((rtx, enum machine_mode, int));
static struct fixup_replacement
*find_fixup_replacement PROTO((struct fixup_replacement **, rtx));
@@ -449,6 +450,8 @@ static tree blocks_nreverse PROTO((tree));
static int all_blocks PROTO((tree, tree *));
static int *record_insns PROTO((rtx));
static int contains PROTO((rtx, int *));
+static void put_addressof_into_stack PROTO((rtx));
+static void purge_addressof_1 PROTO((rtx *, rtx, int));
/* Pointer to chain of `struct function' for containing functions. */
struct function *outer_function_chain;
@@ -536,7 +539,7 @@ push_function_context_to (context)
init_emit ();
save_expr_status (p);
save_stmt_status (p);
- save_varasm_status (p);
+ save_varasm_status (p, context);
if (save_machine_status)
(*save_machine_status) (p);
@@ -1307,6 +1310,7 @@ put_var_into_stack (decl)
enum machine_mode promoted_mode, decl_mode;
struct function *function = 0;
tree context;
+ int can_use_addressof;
if (output_bytecode)
return;
@@ -1346,11 +1350,35 @@ put_var_into_stack (decl)
decl_mode = promoted_mode = GET_MODE (reg);
}
+ can_use_addressof
+ = (function == 0
+ /* FIXME make it work for promoted modes too */
+ && decl_mode == promoted_mode
+#ifdef NON_SAVING_SETJMP
+ && ! (NON_SAVING_SETJMP && current_function_calls_setjmp)
+#endif
+ );
+
+ /* If we can't use ADDRESSOF, make sure we see through one we already
+ generated. */
+ if (! can_use_addressof && GET_CODE (reg) == MEM
+ && GET_CODE (XEXP (reg, 0)) == ADDRESSOF)
+ reg = XEXP (XEXP (reg, 0), 0);
+
/* Now we should have a value that resides in one or more pseudo regs. */
if (GET_CODE (reg) == REG)
- put_reg_into_stack (function, reg, TREE_TYPE (decl),
- promoted_mode, decl_mode, TREE_SIDE_EFFECTS (decl));
+ {
+ /* If this variable lives in the current function and we don't need
+ to put things in the stack for the sake of setjmp, try to keep it
+ in a register until we know we actually need the address. */
+ if (can_use_addressof)
+ gen_mem_addressof (reg, decl);
+ else
+ put_reg_into_stack (function, reg, TREE_TYPE (decl),
+ promoted_mode, decl_mode,
+ TREE_SIDE_EFFECTS (decl), 0);
+ }
else if (GET_CODE (reg) == CONCAT)
{
/* A CONCAT contains two pseudos; put them both in the stack.
@@ -1360,14 +1388,14 @@ put_var_into_stack (decl)
#ifdef FRAME_GROWS_DOWNWARD
/* Since part 0 should have a lower address, do it second. */
put_reg_into_stack (function, XEXP (reg, 1), part_type, part_mode,
- part_mode, TREE_SIDE_EFFECTS (decl));
+ part_mode, TREE_SIDE_EFFECTS (decl), 0);
put_reg_into_stack (function, XEXP (reg, 0), part_type, part_mode,
- part_mode, TREE_SIDE_EFFECTS (decl));
+ part_mode, TREE_SIDE_EFFECTS (decl), 0);
#else
put_reg_into_stack (function, XEXP (reg, 0), part_type, part_mode,
- part_mode, TREE_SIDE_EFFECTS (decl));
+ part_mode, TREE_SIDE_EFFECTS (decl), 0);
put_reg_into_stack (function, XEXP (reg, 1), part_type, part_mode,
- part_mode, TREE_SIDE_EFFECTS (decl));
+ part_mode, TREE_SIDE_EFFECTS (decl), 0);
#endif
/* Change the CONCAT into a combined MEM for both parts. */
@@ -1399,27 +1427,33 @@ put_var_into_stack (decl)
VOLATILE_P is nonzero if this is for a "volatile" decl. */
static void
-put_reg_into_stack (function, reg, type, promoted_mode, decl_mode, volatile_p)
+put_reg_into_stack (function, reg, type, promoted_mode, decl_mode, volatile_p,
+ original_regno)
struct function *function;
rtx reg;
tree type;
enum machine_mode promoted_mode, decl_mode;
int volatile_p;
+ int original_regno;
{
rtx new = 0;
+ int regno = original_regno;
+
+ if (regno == 0)
+ regno = REGNO (reg);
if (function)
{
- if (REGNO (reg) < function->max_parm_reg)
- new = function->parm_reg_stack_loc[REGNO (reg)];
+ if (regno < function->max_parm_reg)
+ new = function->parm_reg_stack_loc[regno];
if (new == 0)
new = assign_outer_stack_local (decl_mode, GET_MODE_SIZE (decl_mode),
0, function);
}
else
{
- if (REGNO (reg) < max_parm_reg)
- new = parm_reg_stack_loc[REGNO (reg)];
+ if (regno < max_parm_reg)
+ new = parm_reg_stack_loc[regno];
if (new == 0)
new = assign_stack_local (decl_mode, GET_MODE_SIZE (decl_mode), 0);
}
@@ -1591,22 +1625,21 @@ fixup_var_refs_insns (var, promoted_mode, unsignedp, insn, toplevel)
struct fixup_replacement *replacements = 0;
rtx next_insn = NEXT_INSN (insn);
-#ifdef SMALL_REGISTER_CLASSES
- /* If the insn that copies the results of a CALL_INSN
- into a pseudo now references VAR, we have to use an
- intermediate pseudo since we want the life of the
- return value register to be only a single insn.
+ if (SMALL_REGISTER_CLASSES)
+ {
+ /* If the insn that copies the results of a CALL_INSN
+ into a pseudo now references VAR, we have to use an
+ intermediate pseudo since we want the life of the
+ return value register to be only a single insn.
- If we don't use an intermediate pseudo, such things as
- address computations to make the address of VAR valid
- if it is not can be placed between the CALL_INSN and INSN.
+ If we don't use an intermediate pseudo, such things as
+ address computations to make the address of VAR valid
+ if it is not can be placed between the CALL_INSN and INSN.
- To make sure this doesn't happen, we record the destination
- of the CALL_INSN and see if the next insn uses both that
- and VAR. */
+ To make sure this doesn't happen, we record the destination
+ of the CALL_INSN and see if the next insn uses both that
+ and VAR. */
- if (SMALL_REGISTER_CLASSES)
- {
if (call_dest != 0 && GET_CODE (insn) == INSN
&& reg_mentioned_p (var, PATTERN (insn))
&& reg_mentioned_p (call_dest, PATTERN (insn)))
@@ -1629,7 +1662,6 @@ fixup_var_refs_insns (var, promoted_mode, unsignedp, insn, toplevel)
else
call_dest = 0;
}
-#endif
/* See if we have to do anything to INSN now that VAR is in
memory. If it needs to be loaded into a pseudo, use a single
@@ -1732,6 +1764,16 @@ fixup_var_refs_1 (var, promoted_mode, loc, insn, replacements)
switch (code)
{
+ case ADDRESSOF:
+ if (XEXP (x, 0) == var)
+ {
+ start_sequence ();
+ *loc = force_operand (XEXP (var, 0), NULL_RTX);
+ emit_insn_before (gen_sequence (), insn);
+ end_sequence ();
+ }
+ return;
+
case MEM:
if (var == x)
{
@@ -2206,6 +2248,9 @@ fixup_var_refs_1 (var, promoted_mode, loc, insn, replacements)
SET_DEST (x) = temp;
}
}
+
+ default:
+ break;
}
/* Nothing special about this RTX; fix its operands. */
@@ -2331,6 +2376,11 @@ fixup_stack_1 (x, insn)
&& GET_CODE (XEXP (ad, 0)) == REG
&& ((REGNO (XEXP (ad, 0)) >= FIRST_VIRTUAL_REGISTER
&& REGNO (XEXP (ad, 0)) <= LAST_VIRTUAL_REGISTER)
+ || REGNO (XEXP (ad, 0)) == FRAME_POINTER_REGNUM
+#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
+ || REGNO (XEXP (ad, 0)) == HARD_FRAME_POINTER_REGNUM
+#endif
+ || REGNO (XEXP (ad, 0)) == STACK_POINTER_REGNUM
|| XEXP (ad, 0) == current_function_internal_arg_pointer)
&& GET_CODE (XEXP (ad, 1)) == CONST_INT)
{
@@ -2571,6 +2621,158 @@ static int out_arg_offset;
#endif
#endif
+/* Build up a (MEM (ADDRESSOF (REG))) rtx for a register REG that just had
+ its address taken. DECL is the decl for the object stored in the
+ register, for later use if we do need to force REG into the stack.
+ REG is overwritten by the MEM like in put_reg_into_stack. */
+
+rtx
+gen_mem_addressof (reg, decl)
+ rtx reg;
+ tree decl;
+{
+ tree type = TREE_TYPE (decl);
+
+ rtx r = gen_rtx (ADDRESSOF, Pmode, gen_reg_rtx (GET_MODE (reg)));
+ ADDRESSOF_REGNO (r) = REGNO (reg);
+ SET_ADDRESSOF_DECL (r, decl);
+
+ XEXP (reg, 0) = r;
+ PUT_CODE (reg, MEM);
+ PUT_MODE (reg, DECL_MODE (decl));
+ MEM_VOLATILE_P (reg) = TREE_SIDE_EFFECTS (decl);
+ MEM_IN_STRUCT_P (reg) = AGGREGATE_TYPE_P (type);
+
+ fixup_var_refs (reg, GET_MODE (reg), TREE_UNSIGNED (type));
+ return reg;
+}
+
+/* If DECL has an RTL that is an ADDRESSOF rtx, put it into the stack. */
+
+void
+flush_addressof (decl)
+ tree decl;
+{
+ if ((TREE_CODE (decl) == PARM_DECL || TREE_CODE (decl) == VAR_DECL)
+ && DECL_RTL (decl) != 0
+ && GET_CODE (DECL_RTL (decl)) == MEM
+ && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF
+ && GET_CODE (XEXP (XEXP (DECL_RTL (decl), 0), 0)) == REG)
+ put_addressof_into_stack (XEXP (DECL_RTL (decl), 0));
+}
+
+/* Force the register pointed to by R, an ADDRESSOF rtx, into the stack. */
+
+static void
+put_addressof_into_stack (r)
+ rtx r;
+{
+ tree decl = ADDRESSOF_DECL (r);
+ rtx reg = XEXP (r, 0);
+
+ if (GET_CODE (reg) != REG)
+ abort ();
+
+ put_reg_into_stack (0, reg, TREE_TYPE (decl), GET_MODE (reg),
+ DECL_MODE (decl), TREE_SIDE_EFFECTS (decl),
+ ADDRESSOF_REGNO (r));
+}
+
+/* Helper function for purge_addressof. See if the rtx expression at *LOC
+ in INSN needs to be changed. If FORCE, always put any ADDRESSOFs into
+ the stack. */
+
+static void
+purge_addressof_1 (loc, insn, force)
+ rtx *loc;
+ rtx insn;
+ int force;
+{
+ rtx x;
+ RTX_CODE code;
+ int i, j;
+ char *fmt;
+
+ /* Re-start here to avoid recursion in common cases. */
+ restart:
+
+ x = *loc;
+ if (x == 0)
+ return;
+
+ code = GET_CODE (x);
+
+ if (code == ADDRESSOF && GET_CODE (XEXP (x, 0)) == MEM)
+ {
+ rtx insns;
+
+ if (validate_change (insn, loc, XEXP (XEXP (x, 0), 0), 0))
+ return;
+
+ start_sequence ();
+ if (! validate_change (insn, loc,
+ force_operand (XEXP (XEXP (x, 0), 0), NULL_RTX),
+ 0))
+ abort ();
+
+ insns = get_insns ();
+ end_sequence ();
+ emit_insns_before (insns, insn);
+ return;
+ }
+ else if (code == MEM && GET_CODE (XEXP (x, 0)) == ADDRESSOF && ! force)
+ {
+ rtx sub = XEXP (XEXP (x, 0), 0);
+ if (GET_CODE (sub) == REG && GET_MODE (x) != GET_MODE (sub))
+ {
+ if (! BYTES_BIG_ENDIAN && ! WORDS_BIG_ENDIAN)
+ {
+ rtx sub2 = gen_rtx (SUBREG, GET_MODE (x), sub, 0);
+ if (validate_change (insn, loc, sub2, 0))
+ goto restart;
+ }
+ }
+ else if (validate_change (insn, loc, sub, 0))
+ goto restart;
+ /* else give up and put it into the stack */
+ }
+ else if (code == ADDRESSOF)
+ {
+ put_addressof_into_stack (x);
+ return;
+ }
+
+ /* Scan all subexpressions. */
+ fmt = GET_RTX_FORMAT (code);
+ for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
+ {
+ if (*fmt == 'e')
+ purge_addressof_1 (&XEXP (x, i), insn, force);
+ else if (*fmt == 'E')
+ for (j = 0; j < XVECLEN (x, i); j++)
+ purge_addressof_1 (&XVECEXP (x, i, j), insn, force);
+ }
+}
+
+/* Eliminate all occurrences of ADDRESSOF from INSNS. Elide any remaining
+ (MEM (ADDRESSOF)) patterns, and force any needed registers into the
+ stack. */
+
+void
+purge_addressof (insns)
+ rtx insns;
+{
+ rtx insn;
+ for (insn = insns; insn; insn = NEXT_INSN (insn))
+ if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
+ || GET_CODE (insn) == CALL_INSN)
+ {
+ purge_addressof_1 (&PATTERN (insn), insn,
+ asm_noperands (PATTERN (insn)) > 0);
+ purge_addressof_1 (&REG_NOTES (insn), NULL_RTX, 0);
+ }
+}
+
/* Pass through the INSNS of function FNDECL and convert virtual register
references to hard register references. */
@@ -2580,6 +2782,7 @@ instantiate_virtual_regs (fndecl, insns)
rtx insns;
{
rtx insn;
+ int i;
/* Compute the offsets to use for this function. */
in_arg_offset = FIRST_PARM_OFFSET (fndecl);
@@ -2606,6 +2809,12 @@ instantiate_virtual_regs (fndecl, insns)
instantiate_virtual_regs_1 (&REG_NOTES (insn), NULL_RTX, 0);
}
+ /* Instantiate the stack slots for the parm registers, for later use in
+ addressof elimination. */
+ for (i = 0; i < max_parm_reg; ++i)
+ if (parm_reg_stack_loc[i])
+ instantiate_virtual_regs_1 (&parm_reg_stack_loc[i], NULL_RTX, 0);
+
/* Now instantiate the remaining register equivalences for debugging info.
These will not be valid addresses. */
instantiate_decls (fndecl, 0);
@@ -2703,6 +2912,7 @@ instantiate_decl (x, size, valid_only)
addr = XEXP (x, 0);
if (CONSTANT_P (addr)
+ || GET_CODE (addr) == ADDRESSOF
|| (GET_CODE (addr) == REG
&& (REGNO (addr) < FIRST_VIRTUAL_REGISTER
|| REGNO (addr) > LAST_VIRTUAL_REGISTER)))
@@ -2832,7 +3042,7 @@ instantiate_virtual_regs_1 (loc, object, extra_insns)
emit_insns_before (seq, object);
SET_DEST (x) = new;
- if (!validate_change (object, &SET_SRC (x), temp, 0)
+ if (! validate_change (object, &SET_SRC (x), temp, 0)
|| ! extra_insns)
abort ();
@@ -3110,6 +3320,23 @@ instantiate_virtual_regs_1 (loc, object, extra_insns)
}
return 1;
+
+ case ADDRESSOF:
+ if (GET_CODE (XEXP (x, 0)) == REG)
+ return 1;
+
+ else if (GET_CODE (XEXP (x, 0)) == MEM)
+ {
+ /* If we have a (addressof (mem ..)), do any instantiation inside
+ since we know we'll be making the inside valid when we finally
+ remove the ADDRESSOF. */
+ instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), NULL_RTX, 0);
+ return 1;
+ }
+ break;
+
+ default:
+ break;
}
/* Scan all subexpressions. */
@@ -3336,7 +3563,6 @@ assign_parms (fndecl, second_time)
/* This is a dummy PARM_DECL that we used for the function result if
the function returns a structure. */
tree function_result_decl = 0;
- int nparmregs = list_length (fnargs) + LAST_VIRTUAL_REGISTER + 1;
int varargs_setup = 0;
rtx conversion_insns = 0;
@@ -3394,8 +3620,9 @@ assign_parms (fndecl, second_time)
fnargs = function_result_decl;
}
- parm_reg_stack_loc = (rtx *) oballoc (nparmregs * sizeof (rtx));
- bzero ((char *) parm_reg_stack_loc, nparmregs * sizeof (rtx));
+ max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
+ parm_reg_stack_loc = (rtx *) savealloc (max_parm_reg * sizeof (rtx));
+ bzero ((char *) parm_reg_stack_loc, max_parm_reg * sizeof (rtx));
#ifdef INIT_CUMULATIVE_INCOMING_ARGS
INIT_CUMULATIVE_INCOMING_ARGS (args_so_far, fntype, NULL_RTX);
@@ -3924,6 +4151,7 @@ assign_parms (fndecl, second_time)
copy = assign_stack_temp (TYPE_MODE (type),
int_size_in_bytes (type), 1);
MEM_IN_STRUCT_P (copy) = AGGREGATE_TYPE_P (type);
+ RTX_UNCHANGING_P (copy) = TREE_READONLY (parm);
store_expr (parm, copy, 0);
emit_move_insn (parmreg, XEXP (copy, 0));
@@ -3950,17 +4178,20 @@ assign_parms (fndecl, second_time)
else
regno = REGNO (parmreg);
- if (regno >= nparmregs)
+ if (regno >= max_parm_reg)
{
rtx *new;
- int old_nparmregs = nparmregs;
+ int old_max_parm_reg = max_parm_reg;
- nparmregs = regno + 5;
- new = (rtx *) oballoc (nparmregs * sizeof (rtx));
+ /* It's slow to expand this one register at a time,
+ but it's also rare and we need max_parm_reg to be
+ precisely correct. */
+ max_parm_reg = regno + 1;
+ new = (rtx *) savealloc (max_parm_reg * sizeof (rtx));
bcopy ((char *) parm_reg_stack_loc, (char *) new,
- old_nparmregs * sizeof (rtx));
- bzero ((char *) (new + old_nparmregs),
- (nparmregs - old_nparmregs) * sizeof (rtx));
+ old_max_parm_reg * sizeof (rtx));
+ bzero ((char *) (new + old_max_parm_reg),
+ (max_parm_reg - old_max_parm_reg) * sizeof (rtx));
parm_reg_stack_loc = new;
}
@@ -4127,7 +4358,6 @@ assign_parms (fndecl, second_time)
now that all parameters have been copied out of hard registers. */
emit_insns (conversion_insns);
- max_parm_reg = max_reg_num ();
last_parm_insn = get_last_insn ();
current_function_args_size = stack_args_size.constant;
@@ -4486,7 +4716,9 @@ setjmp_protect (block)
if ((TREE_CODE (decl) == VAR_DECL
|| TREE_CODE (decl) == PARM_DECL)
&& DECL_RTL (decl) != 0
- && GET_CODE (DECL_RTL (decl)) == REG
+ && (GET_CODE (DECL_RTL (decl)) == REG
+ || (GET_CODE (DECL_RTL (decl)) == MEM
+ && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
/* If this variable came from an inline function, it must be
that it's life doesn't overlap the setjmp. If there was a
setjmp in the function, it would already be in memory. We
@@ -4517,7 +4749,9 @@ setjmp_protect_args ()
if ((TREE_CODE (decl) == VAR_DECL
|| TREE_CODE (decl) == PARM_DECL)
&& DECL_RTL (decl) != 0
- && GET_CODE (DECL_RTL (decl)) == REG
+ && (GET_CODE (DECL_RTL (decl)) == REG
+ || (GET_CODE (DECL_RTL (decl)) == MEM
+ && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
&& (
/* If longjmp doesn't restore the registers,
don't put anything in them. */
@@ -4583,6 +4817,9 @@ fix_lexical_addr (addr, var)
if (fp == 0)
abort ();
+ if (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == MEM)
+ addr = XEXP (XEXP (addr, 0), 0);
+
/* Decode given address as base reg plus displacement. */
if (GET_CODE (addr) == REG)
basereg = addr, displacement = 0;
@@ -5247,12 +5484,10 @@ expand_function_start (subr, parms_have_cleanups)
{
last_ptr = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
-#ifdef SMALL_REGISTER_CLASSES
/* Delay copying static chain if it is not a register to avoid
conflicts with regs used for parameters. */
if (! SMALL_REGISTER_CLASSES
|| GET_CODE (static_chain_incoming_rtx) == REG)
-#endif
emit_move_insn (last_ptr, static_chain_incoming_rtx);
}
@@ -5361,14 +5596,12 @@ expand_function_start (subr, parms_have_cleanups)
assign_parms (subr, 0);
-#ifdef SMALL_REGISTER_CLASSES
/* Copy the static chain now if it wasn't a register. The delay is to
avoid conflicts with the parameter passing registers. */
if (SMALL_REGISTER_CLASSES && current_function_needs_context)
if (GET_CODE (static_chain_incoming_rtx) != REG)
emit_move_insn (last_ptr, static_chain_incoming_rtx);
-#endif
/* The following was moved from init_function_start.
The move is supposed to make sdb output more accurate. */
@@ -5403,15 +5636,12 @@ expand_function_start (subr, parms_have_cleanups)
generated above. */
if (tem && ! obey_regdecls)
{
-#ifdef SMALL_REGISTER_CLASSES
/* If the static chain originally came in a register, put it back
there, then move it out in the next insn. The reason for
this peculiar code is to satisfy function integration. */
if (SMALL_REGISTER_CLASSES
&& GET_CODE (static_chain_incoming_rtx) == REG)
emit_move_insn (static_chain_incoming_rtx, last_ptr);
-#endif
-
last_ptr = copy_to_reg (static_chain_incoming_rtx);
}
diff --git a/gcc/gcc.c b/gcc/gcc.c
index a03f972c655..7f1cd00448d 100644
--- a/gcc/gcc.c
+++ b/gcc/gcc.c
@@ -31,6 +31,8 @@ CC recognizes how to compile each input file by suffixes in the file names.
Once it knows which kind of compilation to perform, the procedure for
compilation is specified by a string called a "spec". */
+#include "config.h"
+
#include <sys/types.h>
#include <ctype.h>
#include <signal.h>
@@ -41,7 +43,6 @@ compilation is specified by a string called a "spec". */
#include <sys/file.h> /* May get R_OK, etc. on some systems. */
#endif
-#include "config.h"
#include "obstack.h"
#include "gansidecl.h"
@@ -62,6 +63,7 @@ compilation is specified by a string called a "spec". */
extern int pexecute PROTO ((const char *, char * const *, const char *,
const char *, char **, char **, int));
extern int pwait PROTO ((int, int *, int));
+extern char *update_path PROTO((char *, char *));
/* Flag arguments to pexecute. */
#define PEXECUTE_FIRST 1
#define PEXECUTE_LAST 2
@@ -234,7 +236,8 @@ static struct compiler *lookup_compiler PROTO((char *, int, char *));
static char *build_search_list PROTO((struct path_prefix *, char *, int));
static void putenv_from_prefixes PROTO((struct path_prefix *, char *));
static char *find_a_file PROTO((struct path_prefix *, char *, int));
-static void add_prefix PROTO((struct path_prefix *, char *, int, int, int *));
+static void add_prefix PROTO((struct path_prefix *, char *, char *,
+ int, int, int *));
static char *skip_whitespace PROTO((char *));
static void record_temp_file PROTO((char *, int, int));
static void delete_if_ordinary PROTO((char *));
@@ -577,13 +580,14 @@ static int n_compilers;
static struct compiler default_compilers[] =
{
/* Add lists of suffixes of known languages here. If those languages
- were no present when we built the driver, we will hit these copies
- and given a more meaningful error than "file not used since
+ were not present when we built the driver, we will hit these copies
+ and be given a more meaningful error than "file not used since
linking is not done". */
{".cc", "#C++"}, {".cxx", "#C++"}, {".cpp", "#C++"}, {".c++", "#C++"},
{".C", "#C++"}, {".ads", "#Ada"}, {".adb", "#Ada"}, {".ada", "#Ada"},
{".f", "#Fortran"}, {".for", "#Fortran"}, {".F", "#Fortran"},
{".fpp", "#Fortran"},
+ {".p", "#Pascal"}, {".pas", "#Pascal"},
/* Next come the entries for C. */
{".c", "@c"},
{"@c",
@@ -1157,7 +1161,8 @@ set_spec (name, spec)
if (!specs)
{
struct spec_list *next = (struct spec_list *)0;
- for (i = (sizeof (static_specs) / sizeof (static_specs[0])) - 1; i >= 0; i--)
+ for (i = (sizeof (static_specs) / sizeof (static_specs[0])) - 1;
+ i >= 0; i--)
{
sl = &static_specs[i];
sl->next = next;
@@ -1347,9 +1352,8 @@ store_arg (arg, delete_always, delete_failure)
int delete_always, delete_failure;
{
if (argbuf_index + 1 == argbuf_length)
- {
- argbuf = (char **) xrealloc (argbuf, (argbuf_length *= 2) * sizeof (char *));
- }
+ argbuf
+ = (char **) xrealloc (argbuf, (argbuf_length *= 2) * sizeof (char *));
argbuf[argbuf_index++] = arg;
argbuf[argbuf_index] = 0;
@@ -1417,17 +1421,20 @@ read_specs (filename, main_p)
if (*p == '%' && !main_p)
{
p1 = p;
- while (*p && *p != '\n') p++;
- p++; /* skip \n */
+ while (*p && *p != '\n')
+ p++;
+
+ p++; /* Skip '\n' */
if (!strncmp (p1, "%include", sizeof ("%include")-1)
- && (p1[ sizeof ("%include")-1 ] == ' '
- || p1[ sizeof ("%include")-1 ] == '\t'))
+ && (p1[sizeof "%include" - 1] == ' '
+ || p1[sizeof "%include" - 1] == '\t'))
{
char *new_filename;
p1 += sizeof ("%include");
- while (*p1 == ' ' || *p1 == '\t') p1++;
+ while (*p1 == ' ' || *p1 == '\t')
+ p1++;
if (*p1++ != '<' || p[-2] != '>')
fatal ("specs %%include syntax malformed after %d characters",
@@ -1438,13 +1445,13 @@ read_specs (filename, main_p)
read_specs (new_filename ? new_filename : p1, FALSE);
continue;
}
- else if (!strncmp (p1, "%include_noerr", sizeof ("%include_noerr")-1)
- && (p1[ sizeof ("%include_noerr")-1 ] == ' '
- || p1[ sizeof ("%include_noerr")-1 ] == '\t'))
+ else if (!strncmp (p1, "%include_noerr", sizeof "%include_noerr" - 1)
+ && (p1[sizeof "%include_noerr" - 1] == ' '
+ || p1[sizeof "%include_noerr" - 1] == '\t'))
{
char *new_filename;
- p1 += sizeof ("%include_noerr");
+ p1 += sizeof "%include_noerr";
while (*p1 == ' ' || *p1 == '\t') p1++;
if (*p1++ != '<' || p[-2] != '>')
@@ -1459,36 +1466,44 @@ read_specs (filename, main_p)
fprintf (stderr, "Could not find specs file %s\n", p1);
continue;
}
- else if (!strncmp (p1, "%rename", sizeof ("%rename")-1)
- && (p1[ sizeof ("%rename")-1 ] == ' '
- || p1[ sizeof ("%rename")-1 ] == '\t'))
+ else if (!strncmp (p1, "%rename", sizeof "%rename" - 1)
+ && (p1[sizeof "%rename" - 1] == ' '
+ || p1[sizeof "%rename" - 1] == '\t'))
{
int name_len;
struct spec_list *sl;
/* Get original name */
- p1 += sizeof ("%rename");
- while (*p1 == ' ' || *p1 == '\t') p1++;
- if (!isalpha (*p1))
+ p1 += sizeof "%rename";
+ while (*p1 == ' ' || *p1 == '\t')
+ p1++;
+
+ if (! isalpha (*p1))
fatal ("specs %%rename syntax malformed after %d characters",
p1 - buffer);
p2 = p1;
- while (*p2 && !isspace (*p2)) p2++;
+ while (*p2 && !isspace (*p2))
+ p2++;
+
if (*p2 != ' ' && *p2 != '\t')
fatal ("specs %%rename syntax malformed after %d characters",
p2 - buffer);
name_len = p2 - p1;
*p2++ = '\0';
- while (*p2 == ' ' || *p2 == '\t') p2++;
- if (!isalpha (*p2))
+ while (*p2 == ' ' || *p2 == '\t')
+ p2++;
+
+ if (! isalpha (*p2))
fatal ("specs %%rename syntax malformed after %d characters",
p2 - buffer);
/* Get new spec name */
p3 = p2;
- while (*p3 && !isspace (*p3)) p3++;
+ while (*p3 && !isspace (*p3))
+ p3++;
+
if (p3 != p-1)
fatal ("specs %%rename syntax malformed after %d characters",
p3 - buffer);
@@ -1501,7 +1516,7 @@ read_specs (filename, main_p)
if (!sl)
fatal ("specs %s spec was not found to be renamed", p1);
- if (!strcmp (p1, p2))
+ if (strcmp (p1, p2) == 0)
continue;
if (verbose_flag)
@@ -1527,22 +1542,30 @@ read_specs (filename, main_p)
/* Find the colon that should end the suffix. */
p1 = p;
- while (*p1 && *p1 != ':' && *p1 != '\n') p1++;
+ while (*p1 && *p1 != ':' && *p1 != '\n')
+ p1++;
+
/* The colon shouldn't be missing. */
if (*p1 != ':')
fatal ("specs file malformed after %d characters", p1 - buffer);
+
/* Skip back over trailing whitespace. */
p2 = p1;
- while (p2 > buffer && (p2[-1] == ' ' || p2[-1] == '\t')) p2--;
+ while (p2 > buffer && (p2[-1] == ' ' || p2[-1] == '\t'))
+ p2--;
+
/* Copy the suffix to a string. */
suffix = save_string (p, p2 - p);
/* Find the next line. */
p = skip_whitespace (p1 + 1);
if (p[1] == 0)
fatal ("specs file malformed after %d characters", p - buffer);
+
p1 = p;
/* Find next blank line. */
- while (*p1 && !(*p1 == '\n' && p1[1] == '\n')) p1++;
+ while (*p1 && !(*p1 == '\n' && p1[1] == '\n'))
+ p1++;
+
/* Specs end at the blank line and do not include the newline. */
spec = save_string (p, p1 - p);
p = p1;
@@ -1555,9 +1578,9 @@ read_specs (filename, main_p)
if (in[0] == '\\' && in[1] == '\n')
in += 2;
else if (in[0] == '#')
- {
- while (*in && *in != '\n') in++;
- }
+ while (*in && *in != '\n')
+ in++;
+
else
*out++ = *in++;
}
@@ -1575,7 +1598,9 @@ read_specs (filename, main_p)
/* Add this pair to the vector. */
compilers
= ((struct compiler *)
- xrealloc (compilers, (n_compilers + 2) * sizeof (struct compiler)));
+ xrealloc (compilers,
+ (n_compilers + 2) * sizeof (struct compiler)));
+
compilers[n_compilers].suffix = suffix;
bzero ((char *) compilers[n_compilers].spec,
sizeof compilers[n_compilers].spec);
@@ -1648,10 +1673,12 @@ record_temp_file (filename, always_delete, fail_delete)
for (temp = always_delete_queue; temp; temp = temp->next)
if (! strcmp (name, temp->name))
goto already1;
+
temp = (struct temp_file *) xmalloc (sizeof (struct temp_file));
temp->next = always_delete_queue;
temp->name = name;
always_delete_queue = temp;
+
already1:;
}
@@ -1661,10 +1688,12 @@ record_temp_file (filename, always_delete, fail_delete)
for (temp = failure_delete_queue; temp; temp = temp->next)
if (! strcmp (name, temp->name))
goto already2;
+
temp = (struct temp_file *) xmalloc (sizeof (struct temp_file));
temp->next = failure_delete_queue;
temp->name = name;
failure_delete_queue = temp;
+
already2:;
}
}
@@ -1683,7 +1712,9 @@ delete_if_ordinary (name)
fflush (stdout);
i = getchar ();
if (i != '\n')
- while ((c = getchar ()) != '\n' && c != EOF) ;
+ while ((c = getchar ()) != '\n' && c != EOF)
+ ;
+
if (i == 'y' || i == 'Y')
#endif /* DEBUG */
if (stat (name, &st) >= 0 && S_ISREG (st.st_mode))
@@ -1799,7 +1830,7 @@ build_search_list (paths, prefix, check_dir_p)
int len = strlen (pprefix->prefix);
if (machine_suffix
- && (!check_dir_p
+ && (! check_dir_p
|| is_directory (pprefix->prefix, machine_suffix, 0)))
{
if (!first_time)
@@ -1812,10 +1843,10 @@ build_search_list (paths, prefix, check_dir_p)
if (just_machine_suffix
&& pprefix->require_machine_suffix == 2
- && (!check_dir_p
+ && (! check_dir_p
|| is_directory (pprefix->prefix, just_machine_suffix, 0)))
{
- if (!first_time)
+ if (! first_time)
obstack_1grow (&collect_obstack, PATH_SEPARATOR);
first_time = FALSE;
@@ -1824,15 +1855,16 @@ build_search_list (paths, prefix, check_dir_p)
just_suffix_len);
}
- if (!pprefix->require_machine_suffix)
+ if (! pprefix->require_machine_suffix)
{
- if (!first_time)
+ if (! first_time)
obstack_1grow (&collect_obstack, PATH_SEPARATOR);
first_time = FALSE;
obstack_grow (&collect_obstack, pprefix->prefix, len);
}
}
+
obstack_1grow (&collect_obstack, '\0');
return obstack_finish (&collect_obstack);
}
@@ -1870,7 +1902,10 @@ find_a_file (pprefix, name, mode)
/* Determine the filename to execute (special case for absolute paths). */
- if (*name == '/' || *name == DIR_SEPARATOR)
+ if (*name == '/' || *name == DIR_SEPARATOR
+ /* Check for disk name on MS-DOS-based systems. */
+ || (DIR_SEPARATOR == '\\' && name[1] == ':'
+ && (name[2] == DIR_SEPARATOR || name[2] == '/')))
{
if (access (name, mode))
{
@@ -1944,7 +1979,7 @@ find_a_file (pprefix, name, mode)
/* Certain prefixes can't be used without the machine suffix
when the machine or version is explicitly specified. */
- if (!pl->require_machine_suffix)
+ if (! pl->require_machine_suffix)
{
/* Some systems have a suffix for executable files.
So try appending that first. */
@@ -1983,14 +2018,17 @@ find_a_file (pprefix, name, mode)
through this prefix. WARN should point to an int
which will be set to 1 if this entry is used.
+ COMPONENT is the value to be passed to update_path.
+
REQUIRE_MACHINE_SUFFIX is 1 if this prefix can't be used without
the complete value of machine_suffix.
2 means try both machine_suffix and just_machine_suffix. */
static void
-add_prefix (pprefix, prefix, first, require_machine_suffix, warn)
+add_prefix (pprefix, prefix, component, first, require_machine_suffix, warn)
struct path_prefix *pprefix;
char *prefix;
+ char *component;
int first;
int require_machine_suffix;
int *warn;
@@ -1998,7 +2036,7 @@ add_prefix (pprefix, prefix, first, require_machine_suffix, warn)
struct prefix_list *pl, **prev;
int len;
- if (!first && pprefix->plist)
+ if (! first && pprefix->plist)
{
for (pl = pprefix->plist; pl->next; pl = pl->next)
;
@@ -2009,6 +2047,7 @@ add_prefix (pprefix, prefix, first, require_machine_suffix, warn)
/* Keep track of the longest prefix */
+ prefix = update_path (prefix, component);
len = strlen (prefix);
if (len > pprefix->max_len)
pprefix->max_len = len;
@@ -2048,6 +2087,7 @@ unused_prefix_warnings (pprefix)
/* Prevent duplicate warnings. */
*pl->used_flag_ptr = 1;
}
+
pl = pl->next;
}
}
@@ -2068,6 +2108,7 @@ free_path_prefix (pprefix)
free (temp->prefix);
free ((char *) temp);
}
+
pprefix->plist = (struct prefix_list *) 0;
}
@@ -2114,7 +2155,7 @@ execute ()
for (n_commands = 1, i = 0; i < argbuf_index; i++)
if (strcmp (argbuf[i], "|") == 0)
{ /* each command. */
-#if defined (__MSDOS__) || (defined (_WIN32) && ! defined (__CYGWIN32__)) || defined (OS2)
+#if defined (__MSDOS__) || (defined (_WIN32) && ! defined (__CYGWIN32__)) || defined (OS2) || defined (VMS)
fatal ("-pipe not supported");
#endif
argbuf[i] = 0; /* termination of command args. */
@@ -2151,7 +2192,9 @@ execute ()
fflush (stderr);
i = getchar ();
if (i != '\n')
- while (getchar () != '\n') ;
+ while (getchar () != '\n')
+ ;
+
if (i != 'y' && i != 'Y')
return 0;
#endif /* DEBUG */
@@ -2359,8 +2402,8 @@ process_command (argc, argv)
if (gcc_exec_prefix)
{
- add_prefix (&exec_prefixes, gcc_exec_prefix, 0, 0, NULL_PTR);
- add_prefix (&startfile_prefixes, gcc_exec_prefix, 0, 0, NULL_PTR);
+ add_prefix (&exec_prefixes, gcc_exec_prefix, "GCC", 0, 0, NULL_PTR);
+ add_prefix (&startfile_prefixes, gcc_exec_prefix, "GCC", 0, 0, NULL_PTR);
}
/* COMPILER_PATH and LIBRARY_PATH have values
@@ -2387,10 +2430,10 @@ process_command (argc, argv)
}
else
nstore[endp-startp] = 0;
- add_prefix (&exec_prefixes, nstore, 0, 0, NULL_PTR);
+ add_prefix (&exec_prefixes, nstore, 0, 0, 0, NULL_PTR);
add_prefix (&include_prefixes,
concat (nstore, "include", NULL_PTR),
- 0, 0, NULL_PTR);
+ 0, 0, 0, NULL_PTR);
if (*endp == 0)
break;
endp = startp = endp + 1;
@@ -2421,7 +2464,8 @@ process_command (argc, argv)
}
else
nstore[endp-startp] = 0;
- add_prefix (&startfile_prefixes, nstore, 0, 0, NULL_PTR);
+ add_prefix (&startfile_prefixes, nstore, NULL_PTR,
+ 0, 0, NULL_PTR);
if (*endp == 0)
break;
endp = startp = endp + 1;
@@ -2453,7 +2497,8 @@ process_command (argc, argv)
}
else
nstore[endp-startp] = 0;
- add_prefix (&startfile_prefixes, nstore, 0, 0, NULL_PTR);
+ add_prefix (&startfile_prefixes, nstore, NULL_PTR,
+ 0, 0, NULL_PTR);
if (*endp == 0)
break;
endp = startp = endp + 1;
@@ -2651,10 +2696,12 @@ process_command (argc, argv)
value = argv[++i];
else
value = p + 1;
- add_prefix (&exec_prefixes, value, 1, 0, &warn_B);
- add_prefix (&startfile_prefixes, value, 1, 0, &warn_B);
- add_prefix (&include_prefixes, concat (value, "include", NULL_PTR),
- 1, 0, NULL_PTR);
+ add_prefix (&exec_prefixes, value, NULL_PTR, 1, 0, &warn_B);
+ add_prefix (&startfile_prefixes, value, NULL_PTR,
+ 1, 0, &warn_B);
+ add_prefix (&include_prefixes, concat (value, "include",
+ NULL_PTR),
+ NULL_PTR, 1, 0, NULL_PTR);
/* As a kludge, if the arg is "[foo/]stageN/", just add
"[foo/]include" to the include prefix. */
@@ -2670,14 +2717,14 @@ process_command (argc, argv)
|| value[len - 1] == DIR_SEPARATOR))
{
if (len == 7)
- add_prefix (&include_prefixes, "include",
+ add_prefix (&include_prefixes, "include", NULL_PTR,
1, 0, NULL_PTR);
else
{
char *string = xmalloc (len + 1);
strncpy (string, value, len-7);
strcpy (string+len-7, "include");
- add_prefix (&include_prefixes, string,
+ add_prefix (&include_prefixes, string, NULL_PTR,
1, 0, NULL_PTR);
}
}
@@ -2752,12 +2799,16 @@ process_command (argc, argv)
/* Use 2 as fourth arg meaning try just the machine as a suffix,
as well as trying the machine and the version. */
#ifndef OS2
- add_prefix (&exec_prefixes, standard_exec_prefix, 0, 2, warn_std_ptr);
- add_prefix (&exec_prefixes, standard_exec_prefix_1, 0, 2, warn_std_ptr);
+ add_prefix (&exec_prefixes, standard_exec_prefix, "BINUTILS",
+ 0, 2, warn_std_ptr);
+ add_prefix (&exec_prefixes, standard_exec_prefix_1, "BINUTILS",
+ 0, 2, warn_std_ptr);
#endif
- add_prefix (&startfile_prefixes, standard_exec_prefix, 0, 1, warn_std_ptr);
- add_prefix (&startfile_prefixes, standard_exec_prefix_1, 0, 1, warn_std_ptr);
+ add_prefix (&startfile_prefixes, standard_exec_prefix, "BINUTILS",
+ 0, 1, warn_std_ptr);
+ add_prefix (&startfile_prefixes, standard_exec_prefix_1, "BINUTILS",
+ 0, 1, warn_std_ptr);
tooldir_prefix = concat (tooldir_base_prefix, spec_machine,
dir_separator_str, NULL_PTR);
@@ -2780,11 +2831,11 @@ process_command (argc, argv)
add_prefix (&exec_prefixes,
concat (gcc_exec_tooldir_prefix, "bin",
dir_separator_str, NULL_PTR),
- 0, 0, NULL_PTR);
+ NULL_PTR, 0, 0, NULL_PTR);
add_prefix (&startfile_prefixes,
concat (gcc_exec_tooldir_prefix, "lib",
dir_separator_str, NULL_PTR),
- 0, 0, NULL_PTR);
+ NULL_PTR, 0, 0, NULL_PTR);
}
tooldir_prefix = concat (standard_exec_prefix, spec_machine,
@@ -2794,10 +2845,10 @@ process_command (argc, argv)
add_prefix (&exec_prefixes,
concat (tooldir_prefix, "bin", dir_separator_str, NULL_PTR),
- 0, 0, NULL_PTR);
+ "BINUTILS", 0, 0, NULL_PTR);
add_prefix (&startfile_prefixes,
concat (tooldir_prefix, "lib", dir_separator_str, NULL_PTR),
- 0, 0, NULL_PTR);
+ "BINUTILS", 0, 0, NULL_PTR);
/* More prefixes are enabled in main, after we read the specs file
and determine whether this is cross-compilation or not. */
@@ -4465,16 +4516,18 @@ main (argc, argv)
if (*cross_compile == '0')
{
#ifdef MD_EXEC_PREFIX
- add_prefix (&exec_prefixes, md_exec_prefix, 0, 0, NULL_PTR);
- add_prefix (&startfile_prefixes, md_exec_prefix, 0, 0, NULL_PTR);
+ add_prefix (&exec_prefixes, md_exec_prefix, "GCC", 0, 0, NULL_PTR);
+ add_prefix (&startfile_prefixes, md_exec_prefix, "GCC", 0, 0, NULL_PTR);
#endif
#ifdef MD_STARTFILE_PREFIX
- add_prefix (&startfile_prefixes, md_startfile_prefix, 0, 0, NULL_PTR);
+ add_prefix (&startfile_prefixes, md_startfile_prefix, "GCC",
+ 0, 0, NULL_PTR);
#endif
#ifdef MD_STARTFILE_PREFIX_1
- add_prefix (&startfile_prefixes, md_startfile_prefix_1, 0, 0, NULL_PTR);
+ add_prefix (&startfile_prefixes, md_startfile_prefix_1, "GCC",
+ 0, 0, NULL_PTR);
#endif
/* If standard_startfile_prefix is relative, base it on
@@ -4483,28 +4536,28 @@ main (argc, argv)
standard_startfile_prefix on that as well. */
if (*standard_startfile_prefix == '/'
|| *standard_startfile_prefix == DIR_SEPARATOR)
- add_prefix (&startfile_prefixes, standard_startfile_prefix, 0, 0,
- NULL_PTR);
+ add_prefix (&startfile_prefixes, standard_startfile_prefix, "BINUTILS",
+ 0, 0, NULL_PTR);
else
{
if (gcc_exec_prefix)
add_prefix (&startfile_prefixes,
concat (gcc_exec_prefix, machine_suffix,
standard_startfile_prefix, NULL_PTR),
- 0, 0, NULL_PTR);
+ NULL_PTR, 0, 0, NULL_PTR);
add_prefix (&startfile_prefixes,
concat (standard_exec_prefix,
machine_suffix,
standard_startfile_prefix, NULL_PTR),
- 0, 0, NULL_PTR);
+ NULL_PTR, 0, 0, NULL_PTR);
}
- add_prefix (&startfile_prefixes, standard_startfile_prefix_1, 0, 0,
- NULL_PTR);
- add_prefix (&startfile_prefixes, standard_startfile_prefix_2, 0, 0,
- NULL_PTR);
+ add_prefix (&startfile_prefixes, standard_startfile_prefix_1,
+ "BINUTILS", 0, 0, NULL_PTR);
+ add_prefix (&startfile_prefixes, standard_startfile_prefix_2,
+ "BINUTILS", 0, 0, NULL_PTR);
#if 0 /* Can cause surprises, and one can use -B./ instead. */
- add_prefix (&startfile_prefixes, "./", 0, 1, NULL_PTR);
+ add_prefix (&startfile_prefixes, "./", NULL_PTR, 0, 1, NULL_PTR);
#endif
}
else
@@ -4513,7 +4566,7 @@ main (argc, argv)
add_prefix (&startfile_prefixes,
concat (gcc_exec_prefix, machine_suffix,
standard_startfile_prefix, NULL_PTR),
- 0, 0, NULL_PTR);
+ "BINUTILS", 0, 0, NULL_PTR);
}
/* If we have a GCC_EXEC_PREFIX envvar, modify it for cpp's sake. */
diff --git a/gcc/gcc.info b/gcc/gcc.info
deleted file mode 100644
index e47bfc2f8f1..00000000000
--- a/gcc/gcc.info
+++ /dev/null
@@ -1,312 +0,0 @@
-This is Info file gcc.info, produced by Makeinfo version 1.68 from the
-input file gcc.texi.
-
- This file documents the use and the internals of the GNU compiler.
-
- Published by the Free Software Foundation 59 Temple Place - Suite 330
-Boston, MA 02111-1307 USA
-
- Copyright (C) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997 Free
-Software Foundation, Inc.
-
- Permission is granted to make and distribute verbatim copies of this
-manual provided the copyright notice and this permission notice are
-preserved on all copies.
-
- Permission is granted to copy and distribute modified versions of
-this manual under the conditions for verbatim copying, provided also
-that the sections entitled "GNU General Public License," "Funding for
-Free Software," and "Protect Your Freedom--Fight `Look And Feel'" are
-included exactly as in the original, and provided that the entire
-resulting derived work is distributed under the terms of a permission
-notice identical to this one.
-
- Permission is granted to copy and distribute translations of this
-manual into another language, under the above conditions for modified
-versions, except that the sections entitled "GNU General Public
-License," "Funding for Free Software," and "Protect Your Freedom--Fight
-`Look And Feel'", and this permission notice, may be included in
-translations approved by the Free Software Foundation instead of in the
-original English.
-
-
-Indirect:
-gcc.info-1: 1402
-gcc.info-2: 50964
-gcc.info-3: 96983
-gcc.info-4: 143917
-gcc.info-5: 192350
-gcc.info-6: 225344
-gcc.info-7: 249300
-gcc.info-8: 295618
-gcc.info-9: 344449
-gcc.info-10: 393730
-gcc.info-11: 441350
-gcc.info-12: 491094
-gcc.info-13: 534183
-gcc.info-14: 572713
-gcc.info-15: 622155
-gcc.info-16: 665863
-gcc.info-17: 713227
-gcc.info-18: 751237
-gcc.info-19: 796779
-gcc.info-20: 841999
-gcc.info-21: 891870
-gcc.info-22: 937562
-gcc.info-23: 982612
-gcc.info-24: 1026075
-gcc.info-25: 1072705
-gcc.info-26: 1121544
-gcc.info-27: 1162761
-gcc.info-28: 1187258
-
-Tag Table:
-(Indirect)
-Node: Top1402
-Node: G++ and GCC3216
-Node: Invoking GCC5423
-Node: Option Summary8802
-Node: Overall Options20950
-Node: Invoking G++25513
-Node: C Dialect Options27386
-Node: C++ Dialect Options38688
-Node: Warning Options50964
-Node: Debugging Options68134
-Node: Optimize Options84249
-Node: Preprocessor Options96983
-Node: Assembler Options103446
-Node: Link Options103813
-Node: Directory Options109086
-Node: Target Options112951
-Node: Submodel Options116608
-Node: M680x0 Options118040
-Node: VAX Options122970
-Node: SPARC Options123505
-Node: Convex Options132591
-Node: AMD29K Options134772
-Node: ARM Options137997
-Node: M32R/D Options141571
-Node: M88K Options143917
-Node: RS/6000 and PowerPC Options151867
-Node: RT Options170743
-Node: MIPS Options172447
-Node: i386 Options180547
-Node: HPPA Options185990
-Node: Intel 960 Options189810
-Node: DEC Alpha Options192350
-Node: Clipper Options199428
-Node: H8/300 Options199827
-Node: SH Options200641
-Node: System V Options201237
-Node: V850 Options202046
-Node: Code Gen Options204031
-Node: Environment Variables214892
-Node: Running Protoize219115
-Node: Installation225344
-Node: Configurations249300
-Node: Other Dir287877
-Node: Cross-Compiler289593
-Node: Steps of Cross291424
-Node: Configure Cross292542
-Node: Tools and Libraries293179
-Node: Cross Runtime295618
-Node: Cross Headers299699
-Node: Build Cross301698
-Node: Sun Install303574
-Node: VMS Install305042
-Node: Collect2314971
-Node: Header Dirs317680
-Node: C Extensions319094
-Node: Statement Exprs322450
-Node: Local Labels324344
-Node: Labels as Values326406
-Node: Nested Functions328270
-Node: Constructing Calls332126
-Node: Naming Types334183
-Node: Typeof335277
-Node: Lvalues337142
-Node: Conditionals339582
-Node: Long Long340473
-Node: Complex341913
-Node: Zero Length343775
-Node: Variable Length344449
-Node: Macro Varargs346974
-Node: Subscripting349077
-Node: Pointer Arith349560
-Node: Initializers350125
-Node: Constructors350590
-Node: Labeled Elements352284
-Node: Case Ranges354913
-Node: Cast to Union355594
-Node: Function Attributes356672
-Node: Function Prototypes371569
-Node: C++ Comments373371
-Node: Dollar Signs373907
-Node: Character Escapes374365
-Node: Alignment374652
-Node: Variable Attributes376124
-Node: Type Attributes384657
-Node: Inline393730
-Node: Extended Asm397607
-Node: Asm Labels408173
-Node: Explicit Reg Vars409492
-Node: Global Reg Vars410740
-Node: Local Reg Vars415305
-Node: Alternate Keywords416897
-Node: Incomplete Enums418299
-Node: Function Names419055
-Node: Return Address420329
-Node: C++ Extensions422349
-Node: Naming Results423583
-Node: Min and Max426897
-Node: Destructors and Goto428337
-Node: C++ Interface428813
-Node: Template Instantiation434047
-Node: C++ Signatures441350
-Node: Gcov445694
-Node: Gcov Intro446217
-Node: Invoking Gcov448898
-Node: Gcov and Optimization454509
-Node: Gcov Data Files455933
-Node: Trouble459503
-Node: Actual Bugs461204
-Node: Installation Problems462473
-Node: Cross-Compiler Problems476259
-Node: Interoperation477730
-Node: External Bugs491094
-Node: Incompatibilities493226
-Node: Fixed Headers501776
-Node: Standard Libraries504118
-Node: Disappointments505365
-Node: C++ Misunderstandings509922
-Node: Static Definitions510569
-Node: Temporaries511623
-Node: Protoize Caveats513827
-Node: Non-bugs517783
-Node: Warnings and Errors527210
-Node: Bugs528980
-Node: Bug Criteria530340
-Node: Bug Lists532770
-Node: Bug Reporting534183
-Node: Sending Patches546601
-Node: Service551988
-Node: Contributing552558
-Node: VMS553394
-Node: Include Files and VMS553792
-Node: Global Declarations557682
-Node: VMS Misc561991
-Node: Portability566317
-Node: Interface568080
-Node: Passes572713
-Node: RTL590056
-Node: RTL Objects591944
-Node: Accessors594988
-Node: Flags600314
-Node: Machine Modes609333
-Node: Constants616967
-Node: Regs and Memory622155
-Node: Arithmetic634208
-Node: Comparisons640106
-Node: Bit Fields644169
-Node: Conversions645581
-Node: RTL Declarations648469
-Node: Side Effects649278
-Node: Incdec661825
-Node: Assembler664341
-Node: Insns665863
-Node: Calls688341
-Node: Sharing690936
-Node: Reading RTL694012
-Node: Machine Desc694951
-Node: Patterns696804
-Node: Example699748
-Node: RTL Template700876
-Node: Output Template713227
-Node: Output Statement717209
-Node: Constraints720922
-Node: Simple Constraints721925
-Node: Multi-Alternative733837
-Node: Class Preferences736673
-Node: Modifiers737553
-Node: Machine Constraints741097
-Node: No Constraints750116
-Node: Standard Names751237
-Node: Pattern Ordering783426
-Node: Dependent Patterns784653
-Node: Jump Patterns787468
-Node: Insn Canonicalizations793284
-Node: Peephole Definitions796779
-Node: Expander Definitions803697
-Node: Insn Splitting811143
-Node: Insn Attributes818158
-Node: Defining Attributes819205
-Node: Expressions821217
-Node: Tagging Insns827525
-Node: Attr Example831888
-Node: Insn Lengths834264
-Node: Constant Attributes837628
-Node: Delay Slots838788
-Node: Function Units841999
-Node: Target Macros847669
-Node: Driver849552
-Node: Run-time Target863850
-Node: Storage Layout869736
-Node: Type Layout885097
-Node: Registers891870
-Node: Register Basics892850
-Node: Allocation Order896887
-Node: Values in Registers898305
-Node: Leaf Functions902931
-Node: Stack Registers905406
-Node: Obsolete Register Macros906239
-Node: Register Classes908822
-Node: Stack and Calling928897
-Node: Frame Layout929352
-Node: Stack Checking933982
-Node: Frame Registers937562
-Node: Elimination941977
-Node: Stack Arguments946233
-Node: Register Arguments952841
-Node: Scalar Return962634
-Node: Aggregate Return966872
-Node: Caller Saves970587
-Node: Function Entry971737
-Node: Profiling982612
-Node: Varargs989691
-Node: Trampolines997101
-Node: Library Calls1003819
-Node: Addressing Modes1011877
-Node: Condition Code1019876
-Node: Costs1026075
-Node: Sections1034786
-Node: PIC1040969
-Node: Assembler Format1043679
-Node: File Framework1044745
-Node: Data Output1049443
-Node: Uninitialized Data1056637
-Node: Label Output1062043
-Node: Initialization1072705
-Node: Macros for Initialization1078848
-Node: Instruction Output1083445
-Node: Dispatch Tables1091632
-Node: Exception Region Output1094079
-Node: Alignment Output1097073
-Node: Debugging Info1098821
-Node: All Debuggers1099430
-Node: DBX Options1101875
-Node: DBX Hooks1107158
-Node: File Names and DBX1110798
-Node: SDB and DWARF1112771
-Node: Cross-compilation1114978
-Node: Misc1121544
-Node: Config1139585
-Node: Fragments1147323
-Node: Target Fragment1147922
-Node: Host Fragment1152088
-Node: Funding1152690
-Node: Look and Feel1155184
-Node: Copying1162761
-Node: Contributors1181953
-Node: Index1187258
-
-End Tag Table
diff --git a/gcc/gcc.info-1 b/gcc/gcc.info-1
deleted file mode 100644
index 12ce102eabb..00000000000
--- a/gcc/gcc.info-1
+++ /dev/null
@@ -1,1154 +0,0 @@
-This is Info file gcc.info, produced by Makeinfo version 1.68 from the
-input file gcc.texi.
-
- This file documents the use and the internals of the GNU compiler.
-
- Published by the Free Software Foundation 59 Temple Place - Suite 330
-Boston, MA 02111-1307 USA
-
- Copyright (C) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997 Free
-Software Foundation, Inc.
-
- Permission is granted to make and distribute verbatim copies of this
-manual provided the copyright notice and this permission notice are
-preserved on all copies.
-
- Permission is granted to copy and distribute modified versions of
-this manual under the conditions for verbatim copying, provided also
-that the sections entitled "GNU General Public License," "Funding for
-Free Software," and "Protect Your Freedom--Fight `Look And Feel'" are
-included exactly as in the original, and provided that the entire
-resulting derived work is distributed under the terms of a permission
-notice identical to this one.
-
- Permission is granted to copy and distribute translations of this
-manual into another language, under the above conditions for modified
-versions, except that the sections entitled "GNU General Public
-License," "Funding for Free Software," and "Protect Your Freedom--Fight
-`Look And Feel'", and this permission notice, may be included in
-translations approved by the Free Software Foundation instead of in the
-original English.
-
-
-File: gcc.info, Node: Top, Next: G++ and GCC, Up: (DIR)
-
-Introduction
-************
-
- This manual documents how to run, install and port the GNU compiler,
-as well as its new features and incompatibilities, and how to report
-bugs. It corresponds to GNU CC version 2.7.2.
-
-* Menu:
-
-
-* G++ and GCC:: You can compile C or C++ programs.
-* Invoking GCC:: Command options supported by `gcc'.
-* Installation:: How to configure, compile and install GNU CC.
-* C Extensions:: GNU extensions to the C language family.
-* C++ Extensions:: GNU extensions to the C++ language.
-* Gcov:: gcov: a GNU CC test coverage program.
-* Trouble:: If you have trouble installing GNU CC.
-* Bugs:: How, why and where to report bugs.
-* Service:: How to find suppliers of support for GNU CC.
-* Contributing:: How to contribute to testing and developing GNU CC.
-* VMS:: Using GNU CC on VMS.
-
-* Portability:: Goals of GNU CC's portability features.
-* Interface:: Function-call interface of GNU CC output.
-* Passes:: Order of passes, what they do, and what each file is for.
-* RTL:: The intermediate representation that most passes work on.
-* Machine Desc:: How to write machine description instruction patterns.
-* Target Macros:: How to write the machine description C macros.
-* Config:: Writing the `xm-MACHINE.h' file.
-* Fragments:: Writing the `t-TARGET' and `x-HOST' files.
-
-* Funding:: How to help assure funding for free software.
-* Look and Feel:: Protect your freedom--fight "look and feel".
-
-* Copying:: GNU General Public License says
- how you can copy and share GNU CC.
-* Contributors:: People who have contributed to GNU CC.
-
-* Index:: Index of concepts and symbol names.
-
-
-File: gcc.info, Node: G++ and GCC, Next: Invoking GCC, Prev: Top, Up: Top
-
-Compile C, C++, or Objective C
-******************************
-
- The C, C++, and Objective C versions of the compiler are integrated;
-the GNU C compiler can compile programs written in C, C++, or Objective
-C.
-
- "GCC" is a common shorthand term for the GNU C compiler. This is
-both the most general name for the compiler, and the name used when the
-emphasis is on compiling C programs.
-
- When referring to C++ compilation, it is usual to call the compiler
-"G++". Since there is only one compiler, it is also accurate to call
-it "GCC" no matter what the language context; however, the term "G++"
-is more useful when the emphasis is on compiling C++ programs.
-
- We use the name "GNU CC" to refer to the compilation system as a
-whole, and more specifically to the language-independent part of the
-compiler. For example, we refer to the optimization options as
-affecting the behavior of "GNU CC" or sometimes just "the compiler".
-
- Front ends for other languages, such as Ada 9X, Fortran, Modula-3,
-and Pascal, are under development. These front-ends, like that for
-C++, are built in subdirectories of GNU CC and link to it. The result
-is an integrated compiler that can compile programs written in C, C++,
-Objective C, or any of the languages for which you have installed front
-ends.
-
- In this manual, we only discuss the options for the C, Objective-C,
-and C++ compilers and those of the GNU CC core. Consult the
-documentation of the other front ends for the options to use when
-compiling programs written in other languages.
-
- G++ is a *compiler*, not merely a preprocessor. G++ builds object
-code directly from your C++ program source. There is no intermediate C
-version of the program. (By contrast, for example, some other
-implementations use a program that generates a C program from your C++
-source.) Avoiding an intermediate C representation of the program means
-that you get better object code, and better debugging information. The
-GNU debugger, GDB, works with this information in the object code to
-give you comprehensive C++ source-level editing capabilities (*note C
-and C++: (gdb.info)C.).
-
-
-File: gcc.info, Node: Invoking GCC, Next: Installation, Prev: G++ and GCC, Up: Top
-
-GNU CC Command Options
-**********************
-
- When you invoke GNU CC, it normally does preprocessing, compilation,
-assembly and linking. The "overall options" allow you to stop this
-process at an intermediate stage. For example, the `-c' option says
-not to run the linker. Then the output consists of object files output
-by the assembler.
-
- Other options are passed on to one stage of processing. Some options
-control the preprocessor and others the compiler itself. Yet other
-options control the assembler and linker; most of these are not
-documented here, since you rarely need to use any of them.
-
- Most of the command line options that you can use with GNU CC are
-useful for C programs; when an option is only useful with another
-language (usually C++), the explanation says so explicitly. If the
-description for a particular option does not mention a source language,
-you can use that option with all supported languages.
-
- *Note Compiling C++ Programs: Invoking G++, for a summary of special
-options for compiling C++ programs.
-
- The `gcc' program accepts options and file names as operands. Many
-options have multiletter names; therefore multiple single-letter options
-may *not* be grouped: `-dr' is very different from `-d -r'.
-
- You can mix options and other arguments. For the most part, the
-order you use doesn't matter. Order does matter when you use several
-options of the same kind; for example, if you specify `-L' more than
-once, the directories are searched in the order specified.
-
- Many options have long names starting with `-f' or with `-W'--for
-example, `-fforce-mem', `-fstrength-reduce', `-Wformat' and so on.
-Most of these have both positive and negative forms; the negative form
-of `-ffoo' would be `-fno-foo'. This manual documents only one of
-these two forms, whichever one is not the default.
-
-* Menu:
-
-* Option Summary:: Brief list of all options, without explanations.
-* Overall Options:: Controlling the kind of output:
- an executable, object files, assembler files,
- or preprocessed source.
-* Invoking G++:: Compiling C++ programs.
-* C Dialect Options:: Controlling the variant of C language compiled.
-* C++ Dialect Options:: Variations on C++.
-* Warning Options:: How picky should the compiler be?
-* Debugging Options:: Symbol tables, measurements, and debugging dumps.
-* Optimize Options:: How much optimization?
-* Preprocessor Options:: Controlling header files and macro definitions.
- Also, getting dependency information for Make.
-* Assembler Options:: Passing options to the assembler.
-* Link Options:: Specifying libraries and so on.
-* Directory Options:: Where to find header files and libraries.
- Where to find the compiler executable files.
-* Target Options:: Running a cross-compiler, or an old version of GNU CC.
-* Submodel Options:: Specifying minor hardware or convention variations,
- such as 68010 vs 68020.
-* Code Gen Options:: Specifying conventions for function calls, data layout
- and register usage.
-* Environment Variables:: Env vars that affect GNU CC.
-* Running Protoize:: Automatically adding or removing function prototypes.
-
-
-File: gcc.info, Node: Option Summary, Next: Overall Options, Up: Invoking GCC
-
-Option Summary
-==============
-
- Here is a summary of all the options, grouped by type. Explanations
-are in the following sections.
-
-*Overall Options*
- *Note Options Controlling the Kind of Output: Overall Options.
- -c -S -E -o FILE -pipe -v -x LANGUAGE
-
-*C Language Options*
- *Note Options Controlling C Dialect: C Dialect Options.
- -ansi -fallow-single-precision -fcond-mismatch -fno-asm
- -fno-builtin -ffreestanding -fhosted -fsigned-bitfields -fsigned-char
- -funsigned-bitfields -funsigned-char -fwritable-strings
- -traditional -traditional-cpp -trigraphs
-
-*C++ Language Options*
- *Note Options Controlling C++ Dialect: C++ Dialect Options.
- -fall-virtual -fdollars-in-identifiers -felide-constructors
- -fenum-int-equiv -fexternal-templates -ffor-scope -fno-for-scope
- -fhandle-signatures -fmemoize-lookups -fname-mangling-version-N
- -fno-default-inline -fno-gnu-keywords -fnonnull-objects -fguiding-decls
- -foperator-names -fstrict-prototype -fthis-is-variable
- -ftemplate-depth-N -nostdinc++ -traditional +eN
-
-*Warning Options*
- *Note Options to Request or Suppress Warnings: Warning Options.
- -fsyntax-only -pedantic -pedantic-errors
- -w -W -Wall -Waggregate-return -Wbad-function-cast
- -Wcast-align -Wcast-qual -Wchar-subscript -Wcomment
- -Wconversion -Werror -Wformat
- -Wid-clash-LEN -Wimplicit -Wimplicit-int
- -Wimplicit-function-declarations -Wimport -Winline
- -Wlarger-than-LEN -Wmain -Wmissing-declarations
- -Wmissing-prototypes -Wnested-externs
- -Wno-import -Woverloaded-virtual -Wparentheses
- -Wpointer-arith -Wredundant-decls -Wreorder -Wreturn-type -Wshadow
- -Wsign-compare -Wstrict-prototypes -Wswitch -Wsynth
- -Wtemplate-debugging -Wtraditional -Wtrigraphs
- -Wundef -Wuninitialized -Wunused -Wwrite-strings
-
-*Debugging Options*
- *Note Options for Debugging Your Program or GCC: Debugging Options.
- -a -ax -dLETTERS -fpretend-float
- -fprofile-arcs -ftest-coverage
- -g -gLEVEL -gcoff -gdwarf -gdwarf-1 -gdwarf-1+ -gdwarf-2
- -ggdb -gstabs -gstabs+ -gxcoff -gxcoff+
- -p -pg -print-file-name=LIBRARY -print-libgcc-file-name
- -print-prog-name=PROGRAM -print-search-dirs -save-temps
-
-*Optimization Options*
- *Note Options that Control Optimization: Optimize Options.
- -fbranch-probabilities
- -fcaller-saves -fcse-follow-jumps -fcse-skip-blocks
- -fdelayed-branch -fexpensive-optimizations
- -ffast-math -ffloat-store -fforce-addr -fforce-mem
- -ffunction-sections -finline-functions
- -fkeep-inline-functions -fno-default-inline
- -fno-defer-pop -fno-function-cse
- -fno-inline -fno-peephole -fomit-frame-pointer
- -frerun-cse-after-loop -fschedule-insns
- -fschedule-insns2 -fstrength-reduce -fthread-jumps
- -funroll-all-loops -funroll-loops
- -O -O0 -O1 -O2 -O3
-
-*Preprocessor Options*
- *Note Options Controlling the Preprocessor: Preprocessor Options.
- -AQUESTION(ANSWER) -C -dD -dM -dN
- -DMACRO[=DEFN] -E -H
- -idirafter DIR
- -include FILE -imacros FILE
- -iprefix FILE -iwithprefix DIR
- -iwithprefixbefore DIR -isystem DIR
- -M -MD -MM -MMD -MG -nostdinc -P -trigraphs
- -undef -UMACRO -Wp,OPTION
-
-*Assembler Option*
- *Note Passing Options to the Assembler: Assembler Options.
- -Wa,OPTION
-
-*Linker Options*
- *Note Options for Linking: Link Options.
- OBJECT-FILE-NAME -lLIBRARY
- -nostartfiles -nodefaultlibs -nostdlib
- -s -static -shared -symbolic
- -Wl,OPTION -Xlinker OPTION
- -u SYMBOL
-
-*Directory Options*
- *Note Options for Directory Search: Directory Options.
- -BPREFIX -IDIR -I- -LDIR -specs=FILE
-
-*Target Options*
- *Note Target Options::.
- -b MACHINE -V VERSION
-
-*Machine Dependent Options*
- *Note Hardware Models and Configurations: Submodel Options.
- *M680x0 Options*
- -m68000 -m68020 -m68020-40 -m68020-60 -m68030 -m68040
- -m68060 -m5200 -m68881 -mbitfield -mc68000 -mc68020 -mfpa
- -mnobitfield -mrtd -mshort -msoft-float -malign-int
-
- *VAX Options*
- -mg -mgnu -munix
-
- *SPARC Options*
- -mcpu=CPU TYPE
- -mtune=CPU TYPE
- -mcmodel=CODE MODEL
- -malign-jumps=NUM -malign-loops=NUM
- -malign-functions=NUM
- -m32 -m64
- -mapp-regs -mbroken-saverestore -mcypress -mepilogue
- -mflat -mfpu -mhard-float -mhard-quad-float
- -mimpure-text -mlive-g0 -mno-app-regs -mno-epilogue
- -mno-flat -mno-fpu -mno-impure-text
- -mno-stack-bias -mno-unaligned-doubles
- -msoft-float -msoft-quad-float -msparclite -mstack-bias
- -msupersparc -munaligned-doubles -mv8
-
- *Convex Options*
- -mc1 -mc2 -mc32 -mc34 -mc38
- -margcount -mnoargcount
- -mlong32 -mlong64
- -mvolatile-cache -mvolatile-nocache
-
- *AMD29K Options*
- -m29000 -m29050 -mbw -mnbw -mdw -mndw
- -mlarge -mnormal -msmall
- -mkernel-registers -mno-reuse-arg-regs
- -mno-stack-check -mno-storem-bug
- -mreuse-arg-regs -msoft-float -mstack-check
- -mstorem-bug -muser-registers
-
- *ARM Options*
- -mapcs-frame -mapcs-26 -mapcs-32
- -mlittle-endian -mbig-endian -mwords-little-endian
- -mshort-load-bytes -mno-short-load-bytes
- -msoft-float -mhard-float
- -mbsd -mxopen -mno-symrename
-
- *M32R/D Options*
- -mcode-model=MODEL TYPE -msdata=SDATA TYPE
- -G NUM
-
- *M88K Options*
- -m88000 -m88100 -m88110 -mbig-pic
- -mcheck-zero-division -mhandle-large-shift
- -midentify-revision -mno-check-zero-division
- -mno-ocs-debug-info -mno-ocs-frame-position
- -mno-optimize-arg-area -mno-serialize-volatile
- -mno-underscores -mocs-debug-info
- -mocs-frame-position -moptimize-arg-area
- -mserialize-volatile -mshort-data-NUM -msvr3
- -msvr4 -mtrap-large-shift -muse-div-instruction
- -mversion-03.00 -mwarn-passed-structs
-
- *RS/6000 and PowerPC Options*
- -mcpu=CPU TYPE
- -mtune=CPU TYPE
- -mpower -mno-power -mpower2 -mno-power2
- -mpowerpc -mno-powerpc
- -mpowerpc-gpopt -mno-powerpc-gpopt
- -mpowerpc-gfxopt -mno-powerpc-gfxopt
- -mnew-mnemonics -mno-new-mnemonics
- -mfull-toc -mminimal-toc -mno-fop-in-toc -mno-sum-in-toc
- -mxl-call -mno-xl-call -mthreads -mpe
- -msoft-float -mhard-float -mmultiple -mno-multiple
- -mstring -mno-string -mupdate -mno-update
- -mfused-madd -mno-fused-madd -mbit-align -mno-bit-align
- -mstrict-align -mno-strict-align -mrelocatable
- -mno-relocatable -mrelocatable-lib -mno-relocatable-lib
- -mtoc -mno-toc -mtraceback -mno-traceback
- -mlittle -mlittle-endian -mbig -mbig-endian
- -mcall-aix -mcall-sysv -mprototype -mno-prototype
- -msim -mmvme -mads -myellowknife -memb
- -msdata -msdata=OPT -G NUM
-
- *RT Options*
- -mcall-lib-mul -mfp-arg-in-fpregs -mfp-arg-in-gregs
- -mfull-fp-blocks -mhc-struct-return -min-line-mul
- -mminimum-fp-blocks -mnohc-struct-return
-
- *MIPS Options*
- -mabicalls -mcpu=CPU TYPE -membedded-data
- -membedded-pic -mfp32 -mfp64 -mgas -mgp32 -mgp64
- -mgpopt -mhalf-pic -mhard-float -mint64 -mips1
- -mips2 -mips3 -mlong64 -mlong-calls -mmemcpy
- -mmips-as -mmips-tfile -mno-abicalls
- -mno-embedded-data -mno-embedded-pic
- -mno-gpopt -mno-long-calls
- -mno-memcpy -mno-mips-tfile -mno-rnames -mno-stats
- -mrnames -msoft-float
- -m4650 -msingle-float -mmad
- -mstats -EL -EB -G NUM -nocpp
-
- *i386 Options*
- -m486 -m386 -mieee-fp -mno-fancy-math-387
- -mno-fp-ret-in-387 -msoft-float -msvr3-shlib
- -mno-wide-multiply -mrtd -malign-double
- -mreg-alloc=LIST -mregparm=NUM
- -malign-jumps=NUM -malign-loops=NUM
- -malign-functions=NUM
-
- *HPPA Options*
- -mbig-switch -mdisable-fpregs -mdisable-indexing -mfast-indirect-calls
- -mgas -mjump-in-delay -mlong-load-store -mno-big-switch -mno-disable-fpregs
- -mno-disable-indexing -mno-fast-indirect-calls -mno-gas
- -mno-jump-in-delay
- -mno-long-load-store
- -mno-portable-runtime -mno-soft-float -mno-space -mno-space-regs
- -msoft-float
- -mpa-risc-1-0 -mpa-risc-1-1 -mportable-runtime
- -mschedule=LIST -mspace -mspace-regs
-
- *Intel 960 Options*
- -mCPU TYPE -masm-compat -mclean-linkage
- -mcode-align -mcomplex-addr -mleaf-procedures
- -mic-compat -mic2.0-compat -mic3.0-compat
- -mintel-asm -mno-clean-linkage -mno-code-align
- -mno-complex-addr -mno-leaf-procedures
- -mno-old-align -mno-strict-align -mno-tail-call
- -mnumerics -mold-align -msoft-float -mstrict-align
- -mtail-call
-
- *DEC Alpha Options*
- -mfp-regs -mno-fp-regs
- -mno-soft-float -msoft-float
- -mieee -mieee-with-inexact -mieee-conformant
- -mfp-trap-mode -mfp-rounding-mode -mtrap-precision
- -mbuild-constants
-
- *Clipper Options*
- -mc300 -mc400
-
- *H8/300 Options*
- -mrelax -mh -ms -mint32 -malign-300
-
- *SH Options*
- -m1 -m2 -m3 -m3e -mb -ml -mrelax
-
- *System V Options*
- -Qy -Qn -YP,PATHS -Ym,DIR
-
- *V850 Options*
- -mlong-calls -mno-long-calls -mep -mno-ep
- -mprolog-function -mno-prolog-function -mspace
- -mtda=N -msda=N -mzda=N
- -mv850 -mbig-switch
-
-*Code Generation Options*
- *Note Options for Code Generation Conventions: Code Gen Options.
- -fcall-saved-REG -fcall-used-REG
- -ffixed-REG -finhibit-size-directive
- -fcheck-memory-usage -fprefix-function-name
- -fno-common -fno-ident -fno-gnu-linker
- -fpcc-struct-return -fpic -fPIC
- -freg-struct-return -fshared-data -fshort-enums
- -fshort-double -fvolatile -fvolatile-global
- -fverbose-asm -fpack-struct -fstack-check +e0 +e1
-
-* Menu:
-
-* Overall Options:: Controlling the kind of output:
- an executable, object files, assembler files,
- or preprocessed source.
-* C Dialect Options:: Controlling the variant of C language compiled.
-* C++ Dialect Options:: Variations on C++.
-* Warning Options:: How picky should the compiler be?
-* Debugging Options:: Symbol tables, measurements, and debugging dumps.
-* Optimize Options:: How much optimization?
-* Preprocessor Options:: Controlling header files and macro definitions.
- Also, getting dependency information for Make.
-* Assembler Options:: Passing options to the assembler.
-* Link Options:: Specifying libraries and so on.
-* Directory Options:: Where to find header files and libraries.
- Where to find the compiler executable files.
-* Target Options:: Running a cross-compiler, or an old version of GNU CC.
-
-
-File: gcc.info, Node: Overall Options, Next: Invoking G++, Prev: Option Summary, Up: Invoking GCC
-
-Options Controlling the Kind of Output
-======================================
-
- Compilation can involve up to four stages: preprocessing, compilation
-proper, assembly and linking, always in that order. The first three
-stages apply to an individual source file, and end by producing an
-object file; linking combines all the object files (those newly
-compiled, and those specified as input) into an executable file.
-
- For any given input file, the file name suffix determines what kind
-of compilation is done:
-
-`FILE.c'
- C source code which must be preprocessed.
-
-`FILE.i'
- C source code which should not be preprocessed.
-
-`FILE.ii'
- C++ source code which should not be preprocessed.
-
-`FILE.m'
- Objective-C source code. Note that you must link with the library
- `libobjc.a' to make an Objective-C program work.
-
-`FILE.h'
- C header file (not to be compiled or linked).
-
-`FILE.cc'
-`FILE.cxx'
-`FILE.cpp'
-`FILE.C'
- C++ source code which must be preprocessed. Note that in `.cxx',
- the last two letters must both be literally `x'. Likewise, `.C'
- refers to a literal capital C.
-
-`FILE.s'
- Assembler code.
-
-`FILE.S'
- Assembler code which must be preprocessed.
-
-`OTHER'
- An object file to be fed straight into linking. Any file name
- with no recognized suffix is treated this way.
-
- You can specify the input language explicitly with the `-x' option:
-
-`-x LANGUAGE'
- Specify explicitly the LANGUAGE for the following input files
- (rather than letting the compiler choose a default based on the
- file name suffix). This option applies to all following input
- files until the next `-x' option. Possible values for LANGUAGE
- are:
- c objective-c c++
- c-header cpp-output c++-cpp-output
- assembler assembler-with-cpp
-
-`-x none'
- Turn off any specification of a language, so that subsequent files
- are handled according to their file name suffixes (as they are if
- `-x' has not been used at all).
-
- If you only want some of the stages of compilation, you can use `-x'
-(or filename suffixes) to tell `gcc' where to start, and one of the
-options `-c', `-S', or `-E' to say where `gcc' is to stop. Note that
-some combinations (for example, `-x cpp-output -E' instruct `gcc' to do
-nothing at all.
-
-`-c'
- Compile or assemble the source files, but do not link. The linking
- stage simply is not done. The ultimate output is in the form of an
- object file for each source file.
-
- By default, the object file name for a source file is made by
- replacing the suffix `.c', `.i', `.s', etc., with `.o'.
-
- Unrecognized input files, not requiring compilation or assembly,
- are ignored.
-
-`-S'
- Stop after the stage of compilation proper; do not assemble. The
- output is in the form of an assembler code file for each
- non-assembler input file specified.
-
- By default, the assembler file name for a source file is made by
- replacing the suffix `.c', `.i', etc., with `.s'.
-
- Input files that don't require compilation are ignored.
-
-`-E'
- Stop after the preprocessing stage; do not run the compiler
- proper. The output is in the form of preprocessed source code,
- which is sent to the standard output.
-
- Input files which don't require preprocessing are ignored.
-
-`-o FILE'
- Place output in file FILE. This applies regardless to whatever
- sort of output is being produced, whether it be an executable file,
- an object file, an assembler file or preprocessed C code.
-
- Since only one output file can be specified, it does not make
- sense to use `-o' when compiling more than one input file, unless
- you are producing an executable file as output.
-
- If `-o' is not specified, the default is to put an executable file
- in `a.out', the object file for `SOURCE.SUFFIX' in `SOURCE.o', its
- assembler file in `SOURCE.s', and all preprocessed C source on
- standard output.
-
-`-v'
- Print (on standard error output) the commands executed to run the
- stages of compilation. Also print the version number of the
- compiler driver program and of the preprocessor and the compiler
- proper.
-
-`-pipe'
- Use pipes rather than temporary files for communication between the
- various stages of compilation. This fails to work on some systems
- where the assembler is unable to read from a pipe; but the GNU
- assembler has no trouble.
-
-
-File: gcc.info, Node: Invoking G++, Next: C Dialect Options, Prev: Overall Options, Up: Invoking GCC
-
-Compiling C++ Programs
-======================
-
- C++ source files conventionally use one of the suffixes `.C', `.cc',
-`cpp', or `.cxx'; preprocessed C++ files use the suffix `.ii'. GNU CC
-recognizes files with these names and compiles them as C++ programs
-even if you call the compiler the same way as for compiling C programs
-(usually with the name `gcc').
-
- However, C++ programs often require class libraries as well as a
-compiler that understands the C++ language--and under some
-circumstances, you might want to compile programs from standard input,
-or otherwise without a suffix that flags them as C++ programs. `g++'
-is a program that calls GNU CC with the default language set to C++,
-and automatically specifies linking against the GNU class library
-libg++. (1) On many systems, the script `g++' is also installed with
-the name `c++'.
-
- When you compile C++ programs, you may specify many of the same
-command-line options that you use for compiling programs in any
-language; or command-line options meaningful for C and related
-languages; or options that are meaningful only for C++ programs. *Note
-Options Controlling C Dialect: C Dialect Options, for explanations of
-options for languages related to C. *Note Options Controlling C++
-Dialect: C++ Dialect Options, for explanations of options that are
-meaningful only for C++ programs.
-
- ---------- Footnotes ----------
-
- (1) Prior to release 2 of the compiler, there was a separate `g++'
-compiler. That version was based on GNU CC, but not integrated with
-it. Versions of `g++' with a `1.XX' version number--for example, `g++'
-version 1.37 or 1.42--are much less reliable than the versions
-integrated with GCC 2. Moreover, combining G++ `1.XX' with a version 2
-GCC will simply not work.
-
-
-File: gcc.info, Node: C Dialect Options, Next: C++ Dialect Options, Prev: Invoking G++, Up: Invoking GCC
-
-Options Controlling C Dialect
-=============================
-
- The following options control the dialect of C (or languages derived
-from C, such as C++ and Objective C) that the compiler accepts:
-
-`-ansi'
- Support all ANSI standard C programs.
-
- This turns off certain features of GNU C that are incompatible
- with ANSI C, such as the `asm', `inline' and `typeof' keywords, and
- predefined macros such as `unix' and `vax' that identify the type
- of system you are using. It also enables the undesirable and
- rarely used ANSI trigraph feature, and it disables recognition of
- C++ style `//' comments.
-
- The alternate keywords `__asm__', `__extension__', `__inline__'
- and `__typeof__' continue to work despite `-ansi'. You would not
- want to use them in an ANSI C program, of course, but it is useful
- to put them in header files that might be included in compilations
- done with `-ansi'. Alternate predefined macros such as `__unix__'
- and `__vax__' are also available, with or without `-ansi'.
-
- The `-ansi' option does not cause non-ANSI programs to be rejected
- gratuitously. For that, `-pedantic' is required in addition to
- `-ansi'. *Note Warning Options::.
-
- The macro `__STRICT_ANSI__' is predefined when the `-ansi' option
- is used. Some header files may notice this macro and refrain from
- declaring certain functions or defining certain macros that the
- ANSI standard doesn't call for; this is to avoid interfering with
- any programs that might use these names for other things.
-
- The functions `alloca', `abort', `exit', and `_exit' are not
- builtin functions when `-ansi' is used.
-
-`-fno-asm'
- Do not recognize `asm', `inline' or `typeof' as a keyword, so that
- code can use these words as identifiers. You can use the keywords
- `__asm__', `__inline__' and `__typeof__' instead. `-ansi' implies
- `-fno-asm'.
-
- In C++, this switch only affects the `typeof' keyword, since `asm'
- and `inline' are standard keywords. You may want to use the
- `-fno-gnu-keywords' flag instead, as it also disables the other,
- C++-specific, extension keywords such as `headof'.
-
-`-fno-builtin'
- Don't recognize builtin functions that do not begin with two
- leading underscores. Currently, the functions affected include
- `abort', `abs', `alloca', `cos', `exit', `fabs', `ffs', `labs',
- `memcmp', `memcpy', `sin', `sqrt', `strcmp', `strcpy', and
- `strlen'.
-
- GCC normally generates special code to handle certain builtin
- functions more efficiently; for instance, calls to `alloca' may
- become single instructions that adjust the stack directly, and
- calls to `memcpy' may become inline copy loops. The resulting
- code is often both smaller and faster, but since the function
- calls no longer appear as such, you cannot set a breakpoint on
- those calls, nor can you change the behavior of the functions by
- linking with a different library.
-
- The `-ansi' option prevents `alloca' and `ffs' from being builtin
- functions, since these functions do not have an ANSI standard
- meaning.
-
-`-fhosted'
- Assert that compilation takes place in a hosted environment. This
- implies `-fbuiltin'. A hosted environment is one in which the
- entire standard library is available, and in which `main' has a
- return type of `int'. Examples are nearly everything except a
- kernel. This is equivalent to `-fno-freestanding'.
-
-`-ffreestanding'
- Assert that compilation takes place in a freestanding environment.
- This implies `-fno-builtin'. A freestanding environment is one
- in which the standard library may not exist, and program startup
- may not necessarily be at `main'. The most obvious example is an
- OS kernel. This is equivalent to `-fno-hosted'.
-
-`-trigraphs'
- Support ANSI C trigraphs. You don't want to know about this
- brain-damage. The `-ansi' option implies `-trigraphs'.
-
-`-traditional'
- Attempt to support some aspects of traditional C compilers.
- Specifically:
-
- * All `extern' declarations take effect globally even if they
- are written inside of a function definition. This includes
- implicit declarations of functions.
-
- * The newer keywords `typeof', `inline', `signed', `const' and
- `volatile' are not recognized. (You can still use the
- alternative keywords such as `__typeof__', `__inline__', and
- so on.)
-
- * Comparisons between pointers and integers are always allowed.
-
- * Integer types `unsigned short' and `unsigned char' promote to
- `unsigned int'.
-
- * Out-of-range floating point literals are not an error.
-
- * Certain constructs which ANSI regards as a single invalid
- preprocessing number, such as `0xe-0xd', are treated as
- expressions instead.
-
- * String "constants" are not necessarily constant; they are
- stored in writable space, and identical looking constants are
- allocated separately. (This is the same as the effect of
- `-fwritable-strings'.)
-
- * All automatic variables not declared `register' are preserved
- by `longjmp'. Ordinarily, GNU C follows ANSI C: automatic
- variables not declared `volatile' may be clobbered.
-
- * The character escape sequences `\x' and `\a' evaluate as the
- literal characters `x' and `a' respectively. Without
- `-traditional', `\x' is a prefix for the hexadecimal
- representation of a character, and `\a' produces a bell.
-
- * In C++ programs, assignment to `this' is permitted with
- `-traditional'. (The option `-fthis-is-variable' also has
- this effect.)
-
- You may wish to use `-fno-builtin' as well as `-traditional' if
- your program uses names that are normally GNU C builtin functions
- for other purposes of its own.
-
- You cannot use `-traditional' if you include any header files that
- rely on ANSI C features. Some vendors are starting to ship
- systems with ANSI C header files and you cannot use `-traditional'
- on such systems to compile files that include any system headers.
-
- The `-traditional' option also enables the `-traditional-cpp'
- option, which is described next.
-
-`-traditional-cpp'
- Attempt to support some aspects of traditional C preprocessors.
- Specifically:
-
- * Comments convert to nothing at all, rather than to a space.
- This allows traditional token concatenation.
-
- * In a preprocessing directive, the `#' symbol must appear as
- the first character of a line.
-
- * Macro arguments are recognized within string constants in a
- macro definition (and their values are stringified, though
- without additional quote marks, when they appear in such a
- context). The preprocessor always considers a string
- constant to end at a newline.
-
- * The predefined macro `__STDC__' is not defined when you use
- `-traditional', but `__GNUC__' is (since the GNU extensions
- which `__GNUC__' indicates are not affected by
- `-traditional'). If you need to write header files that work
- differently depending on whether `-traditional' is in use, by
- testing both of these predefined macros you can distinguish
- four situations: GNU C, traditional GNU C, other ANSI C
- compilers, and other old C compilers. The predefined macro
- `__STDC_VERSION__' is also not defined when you use
- `-traditional'. *Note Standard Predefined Macros:
- (cpp.info)Standard Predefined, for more discussion of these
- and other predefined macros.
-
- * The preprocessor considers a string constant to end at a
- newline (unless the newline is escaped with `\'). (Without
- `-traditional', string constants can contain the newline
- character as typed.)
-
-`-fcond-mismatch'
- Allow conditional expressions with mismatched types in the second
- and third arguments. The value of such an expression is void.
-
-`-funsigned-char'
- Let the type `char' be unsigned, like `unsigned char'.
-
- Each kind of machine has a default for what `char' should be. It
- is either like `unsigned char' by default or like `signed char' by
- default.
-
- Ideally, a portable program should always use `signed char' or
- `unsigned char' when it depends on the signedness of an object.
- But many programs have been written to use plain `char' and expect
- it to be signed, or expect it to be unsigned, depending on the
- machines they were written for. This option, and its inverse, let
- you make such a program work with the opposite default.
-
- The type `char' is always a distinct type from each of `signed
- char' or `unsigned char', even though its behavior is always just
- like one of those two.
-
-`-fsigned-char'
- Let the type `char' be signed, like `signed char'.
-
- Note that this is equivalent to `-fno-unsigned-char', which is the
- negative form of `-funsigned-char'. Likewise, the option
- `-fno-signed-char' is equivalent to `-funsigned-char'.
-
- You may wish to use `-fno-builtin' as well as `-traditional' if
- your program uses names that are normally GNU C builtin functions
- for other purposes of its own.
-
- You cannot use `-traditional' if you include any header files that
- rely on ANSI C features. Some vendors are starting to ship
- systems with ANSI C header files and you cannot use `-traditional'
- on such systems to compile files that include any system headers.
-
-`-fsigned-bitfields'
-`-funsigned-bitfields'
-`-fno-signed-bitfields'
-`-fno-unsigned-bitfields'
- These options control whether a bitfield is signed or unsigned,
- when the declaration does not use either `signed' or `unsigned'.
- By default, such a bitfield is signed, because this is consistent:
- the basic integer types such as `int' are signed types.
-
- However, when `-traditional' is used, bitfields are all unsigned
- no matter what.
-
-`-fwritable-strings'
- Store string constants in the writable data segment and don't
- uniquize them. This is for compatibility with old programs which
- assume they can write into string constants. The option
- `-traditional' also has this effect.
-
- Writing into string constants is a very bad idea; "constants"
- should be constant.
-
-`-fallow-single-precision'
- Do not promote single precision math operations to double
- precision, even when compiling with `-traditional'.
-
- Traditional K&R C promotes all floating point operations to double
- precision, regardless of the sizes of the operands. On the
- architecture for which you are compiling, single precision may be
- faster than double precision. If you must use `-traditional',
- but want to use single precision operations when the operands are
- single precision, use this option. This option has no effect
- when compiling with ANSI or GNU C conventions (the default).
-
-
-File: gcc.info, Node: C++ Dialect Options, Next: Warning Options, Prev: C Dialect Options, Up: Invoking GCC
-
-Options Controlling C++ Dialect
-===============================
-
- This section describes the command-line options that are only
-meaningful for C++ programs; but you can also use most of the GNU
-compiler options regardless of what language your program is in. For
-example, you might compile a file `firstClass.C' like this:
-
- g++ -g -felide-constructors -O -c firstClass.C
-
-In this example, only `-felide-constructors' is an option meant only
-for C++ programs; you can use the other options with any language
-supported by GNU CC.
-
- Here is a list of options that are *only* for compiling C++ programs:
-
-`-fno-access-control'
- Turn off all access checking. This switch is mainly useful for
- working around bugs in the access control code.
-
-`-fall-virtual'
- Treat all possible member functions as virtual, implicitly. All
- member functions (except for constructor functions and `new' or
- `delete' member operators) are treated as virtual functions of the
- class where they appear.
-
- This does not mean that all calls to these member functions will
- be made through the internal table of virtual functions. Under
- some circumstances, the compiler can determine that a call to a
- given virtual function can be made directly; in these cases the
- calls are direct in any case.
-
-`-fcheck-new'
- Check that the pointer returned by `operator new' is non-null
- before attempting to modify the storage allocated. The current
- Working Paper requires that `operator new' never return a null
- pointer, so this check is normally unnecessary.
-
-`-fconserve-space'
- Put uninitialized or runtime-initialized global variables into the
- common segment, as C does. This saves space in the executable at
- the cost of not diagnosing duplicate definitions. If you compile
- with this flag and your program mysteriously crashes after
- `main()' has completed, you may have an object that is being
- destroyed twice because two definitions were merged.
-
-`-fdollars-in-identifiers'
- Accept `$' in identifiers. You can also explicitly prohibit use of
- `$' with the option `-fno-dollars-in-identifiers'. (GNU C allows
- `$' by default on most target systems, but there are a few
- exceptions.) Traditional C allowed the character `$' to form part
- of identifiers. However, ANSI C and C++ forbid `$' in identifiers.
-
-`-fenum-int-equiv'
- Anachronistically permit implicit conversion of `int' to
- enumeration types. Current C++ allows conversion of `enum' to
- `int', but not the other way around.
-
-`-fexternal-templates'
- Cause template instantiations to obey `#pragma interface' and
- `implementation'; template instances are emitted or not according
- to the location of the template definition. *Note Template
- Instantiation::, for more information.
-
- This option is deprecated.
-
-`-falt-external-templates'
- Similar to -fexternal-templates, but template instances are
- emitted or not according to the place where they are first
- instantiated. *Note Template Instantiation::, for more
- information.
-
- This option is deprecated.
-
-`-ffor-scope'
-`-fno-for-scope'
- If -ffor-scope is specified, the scope of variables declared in a
- for-init-statement is limited to the `for' loop itself, as
- specified by the draft C++ standard. If -fno-for-scope is
- specified, the scope of variables declared in a for-init-statement
- extends to the end of the enclosing scope, as was the case in old
- versions of gcc, and other (traditional) implementations of C++.
-
- The default if neither flag is given to follow the standard, but
- to allow and give a warning for old-style code that would
- otherwise be invalid, or have different behavior.
-
-`-fno-gnu-keywords'
- Do not recognize `classof', `headof', `signature', `sigof' or
- `typeof' as a keyword, so that code can use these words as
- identifiers. You can use the keywords `__classof__',
- `__headof__', `__signature__', `__sigof__', and `__typeof__'
- instead. `-ansi' implies `-fno-gnu-keywords'.
-
-`-fguiding-decls'
- Treat a function declaration with the same type as a potential
- function template instantiation as though it declares that
- instantiation, not a normal function. If a definition is given
- for the function later in the translation unit (or another
- translation unit if the target supports weak symbols), that
- definition will be used; otherwise the template will be
- instantiated. This behavior reflects the C++ language prior to
- September 1996, when guiding declarations were removed.
-
- This option implies `-fname-mangling-version-0', and will not work
- with other name mangling versions.
-
-`-fno-implicit-templates'
- Never emit code for templates which are instantiated implicitly
- (i.e. by use); only emit code for explicit instantiations. *Note
- Template Instantiation::, for more information.
-
-`-fhandle-signatures'
- Recognize the `signature' and `sigof' keywords for specifying
- abstract types. The default (`-fno-handle-signatures') is not to
- recognize them. *Note Type Abstraction using Signatures: C++
- Signatures.
-
-`-fhuge-objects'
- Support virtual function calls for objects that exceed the size
- representable by a `short int'. Users should not use this flag by
- default; if you need to use it, the compiler will tell you so. If
- you compile any of your code with this flag, you must compile
- *all* of your code with this flag (including libg++, if you use
- it).
-
- This flag is not useful when compiling with -fvtable-thunks.
-
-`-fno-implement-inlines'
- To save space, do not emit out-of-line copies of inline functions
- controlled by `#pragma implementation'. This will cause linker
- errors if these functions are not inlined everywhere they are
- called.
-
-`-fmemoize-lookups'
-`-fsave-memoized'
- Use heuristics to compile faster. These heuristics are not
- enabled by default, since they are only effective for certain
- input files. Other input files compile more slowly.
-
- The first time the compiler must build a call to a member function
- (or reference to a data member), it must (1) determine whether the
- class implements member functions of that name; (2) resolve which
- member function to call (which involves figuring out what sorts of
- type conversions need to be made); and (3) check the visibility of
- the member function to the caller. All of this adds up to slower
- compilation. Normally, the second time a call is made to that
- member function (or reference to that data member), it must go
- through the same lengthy process again. This means that code like
- this:
-
- cout << "This " << p << " has " << n << " legs.\n";
-
- makes six passes through all three steps. By using a software
- cache, a "hit" significantly reduces this cost. Unfortunately,
- using the cache introduces another layer of mechanisms which must
- be implemented, and so incurs its own overhead.
- `-fmemoize-lookups' enables the software cache.
-
- Because access privileges (visibility) to members and member
- functions may differ from one function context to the next, G++
- may need to flush the cache. With the `-fmemoize-lookups' flag,
- the cache is flushed after every function that is compiled. The
- `-fsave-memoized' flag enables the same software cache, but when
- the compiler determines that the context of the last function
- compiled would yield the same access privileges of the next
- function to compile, it preserves the cache. This is most helpful
- when defining many member functions for the same class: with the
- exception of member functions which are friends of other classes,
- each member function has exactly the same access privileges as
- every other, and the cache need not be flushed.
-
- The code that implements these flags has rotted; you should
- probably avoid using them.
-
-`-fstrict-prototype'
- Within an `extern "C"' linkage specification, treat a function
- declaration with no arguments, such as `int foo ();', as declaring
- the function to take no arguments. Normally, such a declaration
- means that the function `foo' can take any combination of
- arguments, as in C. `-pedantic' implies `-fstrict-prototype'
- unless overridden with `-fno-strict-prototype'.
-
- This flag no longer affects declarations with C++ linkage.
-
-`-fname-mangling-version-N'
- Control the way in which names are mangled. Version 0 is
- compatible with versions of g++ before 2.8. Version 1 is the
- default. Version 1 will allow correct mangling of function
- templates. For example, version 0 mangling does not mangle
- foo<int, double> and foo<int, char> given this declaration:
-
- template <class T, class U> void foo(T t);
-
-`-fno-nonnull-objects'
- Don't assume that a reference is initialized to refer to a valid
- object. Although the current C++ Working Paper prohibits null
- references, some old code may rely on them, and you can use
- `-fno-nonnull-objects' to turn on checking.
-
- At the moment, the compiler only does this checking for
- conversions to virtual base classes.
-
-`-foperator-names'
- Recognize the operator name keywords `and', `bitand', `bitor',
- `compl', `not', `or' and `xor' as synonyms for the symbols they
- refer to. `-ansi' implies `-foperator-names'.
-
-`-fthis-is-variable'
- Permit assignment to `this'. The incorporation of user-defined
- free store management into C++ has made assignment to `this' an
- anachronism. Therefore, by default it is invalid to assign to
- `this' within a class member function; that is, GNU C++ treats
- `this' in a member function of class `X' as a non-lvalue of type
- `X *'. However, for backwards compatibility, you can make it
- valid with `-fthis-is-variable'.
-
-`-fvtable-thunks'
- Use `thunks' to implement the virtual function dispatch table
- (`vtable'). The traditional (cfront-style) approach to
- implementing vtables was to store a pointer to the function and two
- offsets for adjusting the `this' pointer at the call site. Newer
- implementations store a single pointer to a `thunk' function which
- does any necessary adjustment and then calls the target function.
-
- This option also enables a heuristic for controlling emission of
- vtables; if a class has any non-inline virtual functions, the
- vtable will be emitted in the translation unit containing the
- first one of those.
-
-`-ftemplate-depth-N'
- Set the maximum instantiation depth for template classes to N. A
- limit on the template instantiation depth is needed to detect
- endless recursions during template class instantiation. ANSI/ISO
- C++ conforming programs must not rely on a maximum depth greater
- than 17.
-
-`-nostdinc++'
- Do not search for header files in the standard directories
- specific to C++, but do still search the other standard
- directories. (This option is used when building libg++.)
-
-`-traditional'
- For C++ programs (in addition to the effects that apply to both C
- and C++), this has the same effect as `-fthis-is-variable'. *Note
- Options Controlling C Dialect: C Dialect Options.
-
- In addition, these optimization, warning, and code generation options
-have meanings only for C++ programs:
-
-`-fno-default-inline'
- Do not assume `inline' for functions defined inside a class scope.
- *Note Options That Control Optimization: Optimize Options.
-
-`-Woverloaded-virtual'
-`-Wtemplate-debugging'
- Warnings that apply only to C++ programs. *Note Options to
- Request or Suppress Warnings: Warning Options.
-
-`-Weffc++'
- Warn about violation of some style rules from Effective C++ by
- Scott Myers.
-
-`+eN'
- Control how virtual function definitions are used, in a fashion
- compatible with `cfront' 1.x. *Note Options for Code Generation
- Conventions: Code Gen Options.
-
diff --git a/gcc/gcc.info-10 b/gcc/gcc.info-10
deleted file mode 100644
index a7a7c0cfa11..00000000000
--- a/gcc/gcc.info-10
+++ /dev/null
@@ -1,1079 +0,0 @@
-This is Info file gcc.info, produced by Makeinfo version 1.68 from the
-input file gcc.texi.
-
- This file documents the use and the internals of the GNU compiler.
-
- Published by the Free Software Foundation 59 Temple Place - Suite 330
-Boston, MA 02111-1307 USA
-
- Copyright (C) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997 Free
-Software Foundation, Inc.
-
- Permission is granted to make and distribute verbatim copies of this
-manual provided the copyright notice and this permission notice are
-preserved on all copies.
-
- Permission is granted to copy and distribute modified versions of
-this manual under the conditions for verbatim copying, provided also
-that the sections entitled "GNU General Public License," "Funding for
-Free Software," and "Protect Your Freedom--Fight `Look And Feel'" are
-included exactly as in the original, and provided that the entire
-resulting derived work is distributed under the terms of a permission
-notice identical to this one.
-
- Permission is granted to copy and distribute translations of this
-manual into another language, under the above conditions for modified
-versions, except that the sections entitled "GNU General Public
-License," "Funding for Free Software," and "Protect Your Freedom--Fight
-`Look And Feel'", and this permission notice, may be included in
-translations approved by the Free Software Foundation instead of in the
-original English.
-
-
-File: gcc.info, Node: Inline, Next: Extended Asm, Prev: Alignment, Up: C Extensions
-
-An Inline Function is As Fast As a Macro
-========================================
-
- By declaring a function `inline', you can direct GNU CC to integrate
-that function's code into the code for its callers. This makes
-execution faster by eliminating the function-call overhead; in
-addition, if any of the actual argument values are constant, their known
-values may permit simplifications at compile time so that not all of the
-inline function's code needs to be included. The effect on code size is
-less predictable; object code may be larger or smaller with function
-inlining, depending on the particular case. Inlining of functions is an
-optimization and it really "works" only in optimizing compilation. If
-you don't use `-O', no function is really inline.
-
- To declare a function inline, use the `inline' keyword in its
-declaration, like this:
-
- inline int
- inc (int *a)
- {
- (*a)++;
- }
-
- (If you are writing a header file to be included in ANSI C programs,
-write `__inline__' instead of `inline'. *Note Alternate Keywords::.)
-
- You can also make all "simple enough" functions inline with the
-option `-finline-functions'. Note that certain usages in a function
-definition can make it unsuitable for inline substitution.
-
- Note that in C and Objective C, unlike C++, the `inline' keyword
-does not affect the linkage of the function.
-
- GNU CC automatically inlines member functions defined within the
-class body of C++ programs even if they are not explicitly declared
-`inline'. (You can override this with `-fno-default-inline'; *note
-Options Controlling C++ Dialect: C++ Dialect Options..)
-
- When a function is both inline and `static', if all calls to the
-function are integrated into the caller, and the function's address is
-never used, then the function's own assembler code is never referenced.
-In this case, GNU CC does not actually output assembler code for the
-function, unless you specify the option `-fkeep-inline-functions'.
-Some calls cannot be integrated for various reasons (in particular,
-calls that precede the function's definition cannot be integrated, and
-neither can recursive calls within the definition). If there is a
-nonintegrated call, then the function is compiled to assembler code as
-usual. The function must also be compiled as usual if the program
-refers to its address, because that can't be inlined.
-
- When an inline function is not `static', then the compiler must
-assume that there may be calls from other source files; since a global
-symbol can be defined only once in any program, the function must not
-be defined in the other source files, so the calls therein cannot be
-integrated. Therefore, a non-`static' inline function is always
-compiled on its own in the usual fashion.
-
- If you specify both `inline' and `extern' in the function
-definition, then the definition is used only for inlining. In no case
-is the function compiled on its own, not even if you refer to its
-address explicitly. Such an address becomes an external reference, as
-if you had only declared the function, and had not defined it.
-
- This combination of `inline' and `extern' has almost the effect of a
-macro. The way to use it is to put a function definition in a header
-file with these keywords, and put another copy of the definition
-(lacking `inline' and `extern') in a library file. The definition in
-the header file will cause most calls to the function to be inlined.
-If any uses of the function remain, they will refer to the single copy
-in the library.
-
- GNU C does not inline any functions when not optimizing. It is not
-clear whether it is better to inline or not, in this case, but we found
-that a correct implementation when not optimizing was difficult. So we
-did the easy thing, and turned it off.
-
-
-File: gcc.info, Node: Extended Asm, Next: Asm Labels, Prev: Inline, Up: C Extensions
-
-Assembler Instructions with C Expression Operands
-=================================================
-
- In an assembler instruction using `asm', you can now specify the
-operands of the instruction using C expressions. This means no more
-guessing which registers or memory locations will contain the data you
-want to use.
-
- You must specify an assembler instruction template much like what
-appears in a machine description, plus an operand constraint string for
-each operand.
-
- For example, here is how to use the 68881's `fsinx' instruction:
-
- asm ("fsinx %1,%0" : "=f" (result) : "f" (angle));
-
-Here `angle' is the C expression for the input operand while `result'
-is that of the output operand. Each has `"f"' as its operand
-constraint, saying that a floating point register is required. The `='
-in `=f' indicates that the operand is an output; all output operands'
-constraints must use `='. The constraints use the same language used
-in the machine description (*note Constraints::.).
-
- Each operand is described by an operand-constraint string followed
-by the C expression in parentheses. A colon separates the assembler
-template from the first output operand, and another separates the last
-output operand from the first input, if any. Commas separate output
-operands and separate inputs. The total number of operands is limited
-to ten or to the maximum number of operands in any instruction pattern
-in the machine description, whichever is greater.
-
- If there are no output operands, and there are input operands, then
-there must be two consecutive colons surrounding the place where the
-output operands would go.
-
- Output operand expressions must be lvalues; the compiler can check
-this. The input operands need not be lvalues. The compiler cannot
-check whether the operands have data types that are reasonable for the
-instruction being executed. It does not parse the assembler
-instruction template and does not know what it means, or whether it is
-valid assembler input. The extended `asm' feature is most often used
-for machine instructions that the compiler itself does not know exist.
-If the output expression cannot be directly addressed (for example, it
-is a bit field), your constraint must allow a register. In that case,
-GNU CC will use the register as the output of the `asm', and then store
-that register into the output.
-
- The ordinary output operands must be write-only; GNU CC will assume
-that the values in these operands before the instruction are dead and
-need not be generated. Extended asm supports input-output or
-read-write operands. Use the constraint character `+' to indicate such
-an operand and list it with the output operands.
-
- When the constraints for the read-write operand (or the operand in
-which only some of the bits are to be changed) allows a register, you
-may, as an alternative, logically split its function into two separate
-operands, one input operand and one write-only output operand. The
-connection between them is expressed by constraints which say they need
-to be in the same location when the instruction executes. You can use
-the same C expression for both operands, or different expressions. For
-example, here we write the (fictitious) `combine' instruction with
-`bar' as its read-only source operand and `foo' as its read-write
-destination:
-
- asm ("combine %2,%0" : "=r" (foo) : "0" (foo), "g" (bar));
-
-The constraint `"0"' for operand 1 says that it must occupy the same
-location as operand 0. A digit in constraint is allowed only in an
-input operand, and it must refer to an output operand.
-
- Only a digit in the constraint can guarantee that one operand will
-be in the same place as another. The mere fact that `foo' is the value
-of both operands is not enough to guarantee that they will be in the
-same place in the generated assembler code. The following would not
-work:
-
- asm ("combine %2,%0" : "=r" (foo) : "r" (foo), "g" (bar));
-
- Various optimizations or reloading could cause operands 0 and 1 to
-be in different registers; GNU CC knows no reason not to do so. For
-example, the compiler might find a copy of the value of `foo' in one
-register and use it for operand 1, but generate the output operand 0 in
-a different register (copying it afterward to `foo''s own address). Of
-course, since the register for operand 1 is not even mentioned in the
-assembler code, the result will not work, but GNU CC can't tell that.
-
- Some instructions clobber specific hard registers. To describe
-this, write a third colon after the input operands, followed by the
-names of the clobbered hard registers (given as strings). Here is a
-realistic example for the Vax:
-
- asm volatile ("movc3 %0,%1,%2"
- : /* no outputs */
- : "g" (from), "g" (to), "g" (count)
- : "r0", "r1", "r2", "r3", "r4", "r5");
-
- If you refer to a particular hardware register from the assembler
-code, then you will probably have to list the register after the third
-colon to tell the compiler that the register's value is modified. In
-many assemblers, the register names begin with `%'; to produce one `%'
-in the assembler code, you must write `%%' in the input.
-
- If your assembler instruction can alter the condition code register,
-add `cc' to the list of clobbered registers. GNU CC on some machines
-represents the condition codes as a specific hardware register; `cc'
-serves to name this register. On other machines, the condition code is
-handled differently, and specifying `cc' has no effect. But it is
-valid no matter what the machine.
-
- If your assembler instruction modifies memory in an unpredictable
-fashion, add `memory' to the list of clobbered registers. This will
-cause GNU CC to not keep memory values cached in registers across the
-assembler instruction.
-
- You can put multiple assembler instructions together in a single
-`asm' template, separated either with newlines (written as `\n') or with
-semicolons if the assembler allows such semicolons. The GNU assembler
-allows semicolons and all Unix assemblers seem to do so. The input
-operands are guaranteed not to use any of the clobbered registers, and
-neither will the output operands' addresses, so you can read and write
-the clobbered registers as many times as you like. Here is an example
-of multiple instructions in a template; it assumes that the subroutine
-`_foo' accepts arguments in registers 9 and 10:
-
- asm ("movl %0,r9;movl %1,r10;call _foo"
- : /* no outputs */
- : "g" (from), "g" (to)
- : "r9", "r10");
-
- Unless an output operand has the `&' constraint modifier, GNU CC may
-allocate it in the same register as an unrelated input operand, on the
-assumption that the inputs are consumed before the outputs are produced.
-This assumption may be false if the assembler code actually consists of
-more than one instruction. In such a case, use `&' for each output
-operand that may not overlap an input. *Note Modifiers::.
-
- If you want to test the condition code produced by an assembler
-instruction, you must include a branch and a label in the `asm'
-construct, as follows:
-
- asm ("clr %0;frob %1;beq 0f;mov #1,%0;0:"
- : "g" (result)
- : "g" (input));
-
-This assumes your assembler supports local labels, as the GNU assembler
-and most Unix assemblers do.
-
- Speaking of labels, jumps from one `asm' to another are not
-supported. The compiler's optimizers do not know about these jumps,
-and therefore they cannot take account of them when deciding how to
-optimize.
-
- Usually the most convenient way to use these `asm' instructions is to
-encapsulate them in macros that look like functions. For example,
-
- #define sin(x) \
- ({ double __value, __arg = (x); \
- asm ("fsinx %1,%0": "=f" (__value): "f" (__arg)); \
- __value; })
-
-Here the variable `__arg' is used to make sure that the instruction
-operates on a proper `double' value, and to accept only those arguments
-`x' which can convert automatically to a `double'.
-
- Another way to make sure the instruction operates on the correct
-data type is to use a cast in the `asm'. This is different from using a
-variable `__arg' in that it converts more different types. For
-example, if the desired type were `int', casting the argument to `int'
-would accept a pointer with no complaint, while assigning the argument
-to an `int' variable named `__arg' would warn about using a pointer
-unless the caller explicitly casts it.
-
- If an `asm' has output operands, GNU CC assumes for optimization
-purposes that the instruction has no side effects except to change the
-output operands. This does not mean that instructions with a side
-effect cannot be used, but you must be careful, because the compiler
-may eliminate them if the output operands aren't used, or move them out
-of loops, or replace two with one if they constitute a common
-subexpression. Also, if your instruction does have a side effect on a
-variable that otherwise appears not to change, the old value of the
-variable may be reused later if it happens to be found in a register.
-
- You can prevent an `asm' instruction from being deleted, moved
-significantly, or combined, by writing the keyword `volatile' after the
-`asm'. For example:
-
- #define set_priority(x) \
- asm volatile ("set_priority %0": /* no outputs */ : "g" (x))
-
-An instruction without output operands will not be deleted or moved
-significantly, regardless, unless it is unreachable.
-
- Note that even a volatile `asm' instruction can be moved in ways
-that appear insignificant to the compiler, such as across jump
-instructions. You can't expect a sequence of volatile `asm'
-instructions to remain perfectly consecutive. If you want consecutive
-output, use a single `asm'.
-
- It is a natural idea to look for a way to give access to the
-condition code left by the assembler instruction. However, when we
-attempted to implement this, we found no way to make it work reliably.
-The problem is that output operands might need reloading, which would
-result in additional following "store" instructions. On most machines,
-these instructions would alter the condition code before there was time
-to test it. This problem doesn't arise for ordinary "test" and
-"compare" instructions because they don't have any output operands.
-
- If you are writing a header file that should be includable in ANSI C
-programs, write `__asm__' instead of `asm'. *Note Alternate Keywords::.
-
-
-File: gcc.info, Node: Asm Labels, Next: Explicit Reg Vars, Prev: Extended Asm, Up: C Extensions
-
-Controlling Names Used in Assembler Code
-========================================
-
- You can specify the name to be used in the assembler code for a C
-function or variable by writing the `asm' (or `__asm__') keyword after
-the declarator as follows:
-
- int foo asm ("myfoo") = 2;
-
-This specifies that the name to be used for the variable `foo' in the
-assembler code should be `myfoo' rather than the usual `_foo'.
-
- On systems where an underscore is normally prepended to the name of
-a C function or variable, this feature allows you to define names for
-the linker that do not start with an underscore.
-
- You cannot use `asm' in this way in a function *definition*; but you
-can get the same effect by writing a declaration for the function
-before its definition and putting `asm' there, like this:
-
- extern func () asm ("FUNC");
-
- func (x, y)
- int x, y;
- ...
-
- It is up to you to make sure that the assembler names you choose do
-not conflict with any other assembler symbols. Also, you must not use a
-register name; that would produce completely invalid assembler code.
-GNU CC does not as yet have the ability to store static variables in
-registers. Perhaps that will be added.
-
-
-File: gcc.info, Node: Explicit Reg Vars, Next: Alternate Keywords, Prev: Asm Labels, Up: C Extensions
-
-Variables in Specified Registers
-================================
-
- GNU C allows you to put a few global variables into specified
-hardware registers. You can also specify the register in which an
-ordinary register variable should be allocated.
-
- * Global register variables reserve registers throughout the program.
- This may be useful in programs such as programming language
- interpreters which have a couple of global variables that are
- accessed very often.
-
- * Local register variables in specific registers do not reserve the
- registers. The compiler's data flow analysis is capable of
- determining where the specified registers contain live values, and
- where they are available for other uses.
-
- These local variables are sometimes convenient for use with the
- extended `asm' feature (*note Extended Asm::.), if you want to
- write one output of the assembler instruction directly into a
- particular register. (This will work provided the register you
- specify fits the constraints specified for that operand in the
- `asm'.)
-
-* Menu:
-
-* Global Reg Vars::
-* Local Reg Vars::
-
-
-File: gcc.info, Node: Global Reg Vars, Next: Local Reg Vars, Up: Explicit Reg Vars
-
-Defining Global Register Variables
-----------------------------------
-
- You can define a global register variable in GNU C like this:
-
- register int *foo asm ("a5");
-
-Here `a5' is the name of the register which should be used. Choose a
-register which is normally saved and restored by function calls on your
-machine, so that library routines will not clobber it.
-
- Naturally the register name is cpu-dependent, so you would need to
-conditionalize your program according to cpu type. The register `a5'
-would be a good choice on a 68000 for a variable of pointer type. On
-machines with register windows, be sure to choose a "global" register
-that is not affected magically by the function call mechanism.
-
- In addition, operating systems on one type of cpu may differ in how
-they name the registers; then you would need additional conditionals.
-For example, some 68000 operating systems call this register `%a5'.
-
- Eventually there may be a way of asking the compiler to choose a
-register automatically, but first we need to figure out how it should
-choose and how to enable you to guide the choice. No solution is
-evident.
-
- Defining a global register variable in a certain register reserves
-that register entirely for this use, at least within the current
-compilation. The register will not be allocated for any other purpose
-in the functions in the current compilation. The register will not be
-saved and restored by these functions. Stores into this register are
-never deleted even if they would appear to be dead, but references may
-be deleted or moved or simplified.
-
- It is not safe to access the global register variables from signal
-handlers, or from more than one thread of control, because the system
-library routines may temporarily use the register for other things
-(unless you recompile them specially for the task at hand).
-
- It is not safe for one function that uses a global register variable
-to call another such function `foo' by way of a third function `lose'
-that was compiled without knowledge of this variable (i.e. in a
-different source file in which the variable wasn't declared). This is
-because `lose' might save the register and put some other value there.
-For example, you can't expect a global register variable to be
-available in the comparison-function that you pass to `qsort', since
-`qsort' might have put something else in that register. (If you are
-prepared to recompile `qsort' with the same global register variable,
-you can solve this problem.)
-
- If you want to recompile `qsort' or other source files which do not
-actually use your global register variable, so that they will not use
-that register for any other purpose, then it suffices to specify the
-compiler option `-ffixed-REG'. You need not actually add a global
-register declaration to their source code.
-
- A function which can alter the value of a global register variable
-cannot safely be called from a function compiled without this variable,
-because it could clobber the value the caller expects to find there on
-return. Therefore, the function which is the entry point into the part
-of the program that uses the global register variable must explicitly
-save and restore the value which belongs to its caller.
-
- On most machines, `longjmp' will restore to each global register
-variable the value it had at the time of the `setjmp'. On some
-machines, however, `longjmp' will not change the value of global
-register variables. To be portable, the function that called `setjmp'
-should make other arrangements to save the values of the global register
-variables, and to restore them in a `longjmp'. This way, the same
-thing will happen regardless of what `longjmp' does.
-
- All global register variable declarations must precede all function
-definitions. If such a declaration could appear after function
-definitions, the declaration would be too late to prevent the register
-from being used for other purposes in the preceding functions.
-
- Global register variables may not have initial values, because an
-executable file has no means to supply initial contents for a register.
-
- On the Sparc, there are reports that g3 ... g7 are suitable
-registers, but certain library functions, such as `getwd', as well as
-the subroutines for division and remainder, modify g3 and g4. g1 and
-g2 are local temporaries.
-
- On the 68000, a2 ... a5 should be suitable, as should d2 ... d7. Of
-course, it will not do to use more than a few of those.
-
-
-File: gcc.info, Node: Local Reg Vars, Prev: Global Reg Vars, Up: Explicit Reg Vars
-
-Specifying Registers for Local Variables
-----------------------------------------
-
- You can define a local register variable with a specified register
-like this:
-
- register int *foo asm ("a5");
-
-Here `a5' is the name of the register which should be used. Note that
-this is the same syntax used for defining global register variables,
-but for a local variable it would appear within a function.
-
- Naturally the register name is cpu-dependent, but this is not a
-problem, since specific registers are most often useful with explicit
-assembler instructions (*note Extended Asm::.). Both of these things
-generally require that you conditionalize your program according to cpu
-type.
-
- In addition, operating systems on one type of cpu may differ in how
-they name the registers; then you would need additional conditionals.
-For example, some 68000 operating systems call this register `%a5'.
-
- Eventually there may be a way of asking the compiler to choose a
-register automatically, but first we need to figure out how it should
-choose and how to enable you to guide the choice. No solution is
-evident.
-
- Defining such a register variable does not reserve the register; it
-remains available for other uses in places where flow control determines
-the variable's value is not live. However, these registers are made
-unavailable for use in the reload pass. I would not be surprised if
-excessive use of this feature leaves the compiler too few available
-registers to compile certain functions.
-
-
-File: gcc.info, Node: Alternate Keywords, Next: Incomplete Enums, Prev: Explicit Reg Vars, Up: C Extensions
-
-Alternate Keywords
-==================
-
- The option `-traditional' disables certain keywords; `-ansi'
-disables certain others. This causes trouble when you want to use GNU C
-extensions, or ANSI C features, in a general-purpose header file that
-should be usable by all programs, including ANSI C programs and
-traditional ones. The keywords `asm', `typeof' and `inline' cannot be
-used since they won't work in a program compiled with `-ansi', while
-the keywords `const', `volatile', `signed', `typeof' and `inline' won't
-work in a program compiled with `-traditional'.
-
- The way to solve these problems is to put `__' at the beginning and
-end of each problematical keyword. For example, use `__asm__' instead
-of `asm', `__const__' instead of `const', and `__inline__' instead of
-`inline'.
-
- Other C compilers won't accept these alternative keywords; if you
-want to compile with another compiler, you can define the alternate
-keywords as macros to replace them with the customary keywords. It
-looks like this:
-
- #ifndef __GNUC__
- #define __asm__ asm
- #endif
-
- `-pedantic' causes warnings for many GNU C extensions. You can
-prevent such warnings within one expression by writing `__extension__'
-before the expression. `__extension__' has no effect aside from this.
-
-
-File: gcc.info, Node: Incomplete Enums, Next: Function Names, Prev: Alternate Keywords, Up: C Extensions
-
-Incomplete `enum' Types
-=======================
-
- You can define an `enum' tag without specifying its possible values.
-This results in an incomplete type, much like what you get if you write
-`struct foo' without describing the elements. A later declaration
-which does specify the possible values completes the type.
-
- You can't allocate variables or storage using the type while it is
-incomplete. However, you can work with pointers to that type.
-
- This extension may not be very useful, but it makes the handling of
-`enum' more consistent with the way `struct' and `union' are handled.
-
- This extension is not supported by GNU C++.
-
-
-File: gcc.info, Node: Function Names, Next: Return Address, Prev: Incomplete Enums, Up: C Extensions
-
-Function Names as Strings
-=========================
-
- GNU CC predefines two string variables to be the name of the current
-function. The variable `__FUNCTION__' is the name of the function as
-it appears in the source. The variable `__PRETTY_FUNCTION__' is the
-name of the function pretty printed in a language specific fashion.
-
- These names are always the same in a C function, but in a C++
-function they may be different. For example, this program:
-
- extern "C" {
- extern int printf (char *, ...);
- }
-
- class a {
- public:
- sub (int i)
- {
- printf ("__FUNCTION__ = %s\n", __FUNCTION__);
- printf ("__PRETTY_FUNCTION__ = %s\n", __PRETTY_FUNCTION__);
- }
- };
-
- int
- main (void)
- {
- a ax;
- ax.sub (0);
- return 0;
- }
-
-gives this output:
-
- __FUNCTION__ = sub
- __PRETTY_FUNCTION__ = int a::sub (int)
-
- These names are not macros: they are predefined string variables.
-For example, `#ifdef __FUNCTION__' does not have any special meaning
-inside a function, since the preprocessor does not do anything special
-with the identifier `__FUNCTION__'.
-
-
-File: gcc.info, Node: Return Address, Prev: Function Names, Up: C Extensions
-
-Getting the Return or Frame Address of a Function
-=================================================
-
- These functions may be used to get information about the callers of a
-function.
-
-`__builtin_return_address (LEVEL)'
- This function returns the return address of the current function,
- or of one of its callers. The LEVEL argument is number of frames
- to scan up the call stack. A value of `0' yields the return
- address of the current function, a value of `1' yields the return
- address of the caller of the current function, and so forth.
-
- The LEVEL argument must be a constant integer.
-
- On some machines it may be impossible to determine the return
- address of any function other than the current one; in such cases,
- or when the top of the stack has been reached, this function will
- return `0'.
-
- This function should only be used with a non-zero argument for
- debugging purposes.
-
-`__builtin_frame_address (LEVEL)'
- This function is similar to `__builtin_return_address', but it
- returns the address of the function frame rather than the return
- address of the function. Calling `__builtin_frame_address' with a
- value of `0' yields the frame address of the current function, a
- value of `1' yields the frame address of the caller of the current
- function, and so forth.
-
- The frame is the area on the stack which holds local variables and
- saved registers. The frame address is normally the address of the
- first word pushed on to the stack by the function. However, the
- exact definition depends upon the processor and the calling
- convention. If the processor has a dedicated frame pointer
- register, and the function has a frame, then
- `__builtin_frame_address' will return the value of the frame
- pointer register.
-
- The caveats that apply to `__builtin_return_address' apply to this
- function as well.
-
-
-File: gcc.info, Node: C++ Extensions, Next: Gcov, Prev: C Extensions, Up: Top
-
-Extensions to the C++ Language
-******************************
-
- The GNU compiler provides these extensions to the C++ language (and
-you can also use most of the C language extensions in your C++
-programs). If you want to write code that checks whether these
-features are available, you can test for the GNU compiler the same way
-as for C programs: check for a predefined macro `__GNUC__'. You can
-also use `__GNUG__' to test specifically for GNU C++ (*note Standard
-Predefined Macros: (cpp.info)Standard Predefined.).
-
-* Menu:
-
-* Naming Results:: Giving a name to C++ function return values.
-* Min and Max:: C++ Minimum and maximum operators.
-* Destructors and Goto:: Goto is safe to use in C++ even when destructors
- are needed.
-* C++ Interface:: You can use a single C++ header file for both
- declarations and definitions.
-* Template Instantiation:: Methods for ensuring that exactly one copy of
- each needed template instantiation is emitted.
-* C++ Signatures:: You can specify abstract types to get subtype
- polymorphism independent from inheritance.
-
-
-File: gcc.info, Node: Naming Results, Next: Min and Max, Up: C++ Extensions
-
-Named Return Values in C++
-==========================
-
- GNU C++ extends the function-definition syntax to allow you to
-specify a name for the result of a function outside the body of the
-definition, in C++ programs:
-
- TYPE
- FUNCTIONNAME (ARGS) return RESULTNAME;
- {
- ...
- BODY
- ...
- }
-
- You can use this feature to avoid an extra constructor call when a
-function result has a class type. For example, consider a function
-`m', declared as `X v = m ();', whose result is of class `X':
-
- X
- m ()
- {
- X b;
- b.a = 23;
- return b;
- }
-
- Although `m' appears to have no arguments, in fact it has one
-implicit argument: the address of the return value. At invocation, the
-address of enough space to hold `v' is sent in as the implicit argument.
-Then `b' is constructed and its `a' field is set to the value 23.
-Finally, a copy constructor (a constructor of the form `X(X&)') is
-applied to `b', with the (implicit) return value location as the
-target, so that `v' is now bound to the return value.
-
- But this is wasteful. The local `b' is declared just to hold
-something that will be copied right out. While a compiler that
-combined an "elision" algorithm with interprocedural data flow analysis
-could conceivably eliminate all of this, it is much more practical to
-allow you to assist the compiler in generating efficient code by
-manipulating the return value explicitly, thus avoiding the local
-variable and copy constructor altogether.
-
- Using the extended GNU C++ function-definition syntax, you can avoid
-the temporary allocation and copying by naming `r' as your return value
-at the outset, and assigning to its `a' field directly:
-
- X
- m () return r;
- {
- r.a = 23;
- }
-
-The declaration of `r' is a standard, proper declaration, whose effects
-are executed *before* any of the body of `m'.
-
- Functions of this type impose no additional restrictions; in
-particular, you can execute `return' statements, or return implicitly by
-reaching the end of the function body ("falling off the edge"). Cases
-like
-
- X
- m () return r (23);
- {
- return;
- }
-
-(or even `X m () return r (23); { }') are unambiguous, since the return
-value `r' has been initialized in either case. The following code may
-be hard to read, but also works predictably:
-
- X
- m () return r;
- {
- X b;
- return b;
- }
-
- The return value slot denoted by `r' is initialized at the outset,
-but the statement `return b;' overrides this value. The compiler deals
-with this by destroying `r' (calling the destructor if there is one, or
-doing nothing if there is not), and then reinitializing `r' with `b'.
-
- This extension is provided primarily to help people who use
-overloaded operators, where there is a great need to control not just
-the arguments, but the return values of functions. For classes where
-the copy constructor incurs a heavy performance penalty (especially in
-the common case where there is a quick default constructor), this is a
-major savings. The disadvantage of this extension is that you do not
-control when the default constructor for the return value is called: it
-is always called at the beginning.
-
-
-File: gcc.info, Node: Min and Max, Next: Destructors and Goto, Prev: Naming Results, Up: C++ Extensions
-
-Minimum and Maximum Operators in C++
-====================================
-
- It is very convenient to have operators which return the "minimum"
-or the "maximum" of two arguments. In GNU C++ (but not in GNU C),
-
-`A <? B'
- is the "minimum", returning the smaller of the numeric values A
- and B;
-
-`A >? B'
- is the "maximum", returning the larger of the numeric values A and
- B.
-
- These operations are not primitive in ordinary C++, since you can
-use a macro to return the minimum of two things in C++, as in the
-following example.
-
- #define MIN(X,Y) ((X) < (Y) ? : (X) : (Y))
-
-You might then use `int min = MIN (i, j);' to set MIN to the minimum
-value of variables I and J.
-
- However, side effects in `X' or `Y' may cause unintended behavior.
-For example, `MIN (i++, j++)' will fail, incrementing the smaller
-counter twice. A GNU C extension allows you to write safe macros that
-avoid this kind of problem (*note Naming an Expression's Type: Naming
-Types.). However, writing `MIN' and `MAX' as macros also forces you to
-use function-call notation for a fundamental arithmetic operation.
-Using GNU C++ extensions, you can write `int min = i <? j;' instead.
-
- Since `<?' and `>?' are built into the compiler, they properly
-handle expressions with side-effects; `int min = i++ <? j++;' works
-correctly.
-
-
-File: gcc.info, Node: Destructors and Goto, Next: C++ Interface, Prev: Min and Max, Up: C++ Extensions
-
-`goto' and Destructors in GNU C++
-=================================
-
- In C++ programs, you can safely use the `goto' statement. When you
-use it to exit a block which contains aggregates requiring destructors,
-the destructors will run before the `goto' transfers control.
-
- The compiler still forbids using `goto' to *enter* a scope that
-requires constructors.
-
-
-File: gcc.info, Node: C++ Interface, Next: Template Instantiation, Prev: Destructors and Goto, Up: C++ Extensions
-
-Declarations and Definitions in One Header
-==========================================
-
- C++ object definitions can be quite complex. In principle, your
-source code will need two kinds of things for each object that you use
-across more than one source file. First, you need an "interface"
-specification, describing its structure with type declarations and
-function prototypes. Second, you need the "implementation" itself. It
-can be tedious to maintain a separate interface description in a header
-file, in parallel to the actual implementation. It is also dangerous,
-since separate interface and implementation definitions may not remain
-parallel.
-
- With GNU C++, you can use a single header file for both purposes.
-
- *Warning:* The mechanism to specify this is in transition. For the
- nonce, you must use one of two `#pragma' commands; in a future
- release of GNU C++, an alternative mechanism will make these
- `#pragma' commands unnecessary.
-
- The header file contains the full definitions, but is marked with
-`#pragma interface' in the source code. This allows the compiler to
-use the header file only as an interface specification when ordinary
-source files incorporate it with `#include'. In the single source file
-where the full implementation belongs, you can use either a naming
-convention or `#pragma implementation' to indicate this alternate use
-of the header file.
-
-`#pragma interface'
-`#pragma interface "SUBDIR/OBJECTS.h"'
- Use this directive in *header files* that define object classes,
- to save space in most of the object files that use those classes.
- Normally, local copies of certain information (backup copies of
- inline member functions, debugging information, and the internal
- tables that implement virtual functions) must be kept in each
- object file that includes class definitions. You can use this
- pragma to avoid such duplication. When a header file containing
- `#pragma interface' is included in a compilation, this auxiliary
- information will not be generated (unless the main input source
- file itself uses `#pragma implementation'). Instead, the object
- files will contain references to be resolved at link time.
-
- The second form of this directive is useful for the case where you
- have multiple headers with the same name in different directories.
- If you use this form, you must specify the same string to `#pragma
- implementation'.
-
-`#pragma implementation'
-`#pragma implementation "OBJECTS.h"'
- Use this pragma in a *main input file*, when you want full output
- from included header files to be generated (and made globally
- visible). The included header file, in turn, should use `#pragma
- interface'. Backup copies of inline member functions, debugging
- information, and the internal tables used to implement virtual
- functions are all generated in implementation files.
-
- If you use `#pragma implementation' with no argument, it applies to
- an include file with the same basename(1) as your source file.
- For example, in `allclass.cc', giving just `#pragma implementation'
- by itself is equivalent to `#pragma implementation "allclass.h"'.
-
- In versions of GNU C++ prior to 2.6.0 `allclass.h' was treated as
- an implementation file whenever you would include it from
- `allclass.cc' even if you never specified `#pragma
- implementation'. This was deemed to be more trouble than it was
- worth, however, and disabled.
-
- If you use an explicit `#pragma implementation', it must appear in
- your source file *before* you include the affected header files.
-
- Use the string argument if you want a single implementation file to
- include code from multiple header files. (You must also use
- `#include' to include the header file; `#pragma implementation'
- only specifies how to use the file--it doesn't actually include
- it.)
-
- There is no way to split up the contents of a single header file
- into multiple implementation files.
-
- `#pragma implementation' and `#pragma interface' also have an effect
-on function inlining.
-
- If you define a class in a header file marked with `#pragma
-interface', the effect on a function defined in that class is similar to
-an explicit `extern' declaration--the compiler emits no code at all to
-define an independent version of the function. Its definition is used
-only for inlining with its callers.
-
- Conversely, when you include the same header file in a main source
-file that declares it as `#pragma implementation', the compiler emits
-code for the function itself; this defines a version of the function
-that can be found via pointers (or by callers compiled without
-inlining). If all calls to the function can be inlined, you can avoid
-emitting the function by compiling with `-fno-implement-inlines'. If
-any calls were not inlined, you will get linker errors.
-
- ---------- Footnotes ----------
-
- (1) A file's "basename" was the name stripped of all leading path
-information and of trailing suffixes, such as `.h' or `.C' or `.cc'.
-
-
-File: gcc.info, Node: Template Instantiation, Next: C++ Signatures, Prev: C++ Interface, Up: C++ Extensions
-
-Where's the Template?
-=====================
-
- C++ templates are the first language feature to require more
-intelligence from the environment than one usually finds on a UNIX
-system. Somehow the compiler and linker have to make sure that each
-template instance occurs exactly once in the executable if it is needed,
-and not at all otherwise. There are two basic approaches to this
-problem, which I will refer to as the Borland model and the Cfront
-model.
-
-Borland model
- Borland C++ solved the template instantiation problem by adding
- the code equivalent of common blocks to their linker; the compiler
- emits template instances in each translation unit that uses them,
- and the linker collapses them together. The advantage of this
- model is that the linker only has to consider the object files
- themselves; there is no external complexity to worry about. This
- disadvantage is that compilation time is increased because the
- template code is being compiled repeatedly. Code written for this
- model tends to include definitions of all templates in the header
- file, since they must be seen to be instantiated.
-
-Cfront model
- The AT&T C++ translator, Cfront, solved the template instantiation
- problem by creating the notion of a template repository, an
- automatically maintained place where template instances are
- stored. A more modern version of the repository works as follows:
- As individual object files are built, the compiler places any
- template definitions and instantiations encountered in the
- repository. At link time, the link wrapper adds in the objects in
- the repository and compiles any needed instances that were not
- previously emitted. The advantages of this model are more optimal
- compilation speed and the ability to use the system linker; to
- implement the Borland model a compiler vendor also needs to
- replace the linker. The disadvantages are vastly increased
- complexity, and thus potential for error; for some code this can be
- just as transparent, but in practice it can been very difficult to
- build multiple programs in one directory and one program in
- multiple directories. Code written for this model tends to
- separate definitions of non-inline member templates into a
- separate file, which should be compiled separately.
-
- When used with GNU ld version 2.8 or later on an ELF system such as
-Linux/GNU or Solaris 2, or on Microsoft Windows, g++ supports the
-Borland model. On other systems, g++ implements neither automatic
-model.
-
- A future version of g++ will support a hybrid model whereby the
-compiler will emit any instantiations for which the template definition
-is included in the compile, and store template definitions and
-instantiation context information into the object file for the rest.
-The link wrapper will extract that information as necessary and invoke
-the compiler to produce the remaining instantiations. The linker will
-then combine duplicate instantiations.
-
- In the mean time, you have the following options for dealing with
-template instantiations:
-
- 1. Compile your code with `-fno-implicit-templates' to disable the
- implicit generation of template instances, and explicitly
- instantiate all the ones you use. This approach requires more
- knowledge of exactly which instances you need than do the others,
- but it's less mysterious and allows greater control. You can
- scatter the explicit instantiations throughout your program,
- perhaps putting them in the translation units where the instances
- are used or the translation units that define the templates
- themselves; you can put all of the explicit instantiations you
- need into one big file; or you can create small files like
-
- #include "Foo.h"
- #include "Foo.cc"
-
- template class Foo<int>;
- template ostream& operator <<
- (ostream&, const Foo<int>&);
-
- for each of the instances you need, and create a template
- instantiation library from those.
-
- If you are using Cfront-model code, you can probably get away with
- not using `-fno-implicit-templates' when compiling files that don't
- `#include' the member template definitions.
-
- If you use one big file to do the instantiations, you may want to
- compile it without `-fno-implicit-templates' so you get all of the
- instances required by your explicit instantiations (but not by any
- other files) without having to specify them as well.
-
- g++ has extended the template instantiation syntax outlined in the
- Working Paper to allow forward declaration of explicit
- instantiations, explicit instantiation of members of template
- classes and instantiation of the compiler support data for a
- template class (i.e. the vtable) without instantiating any of its
- members:
-
- extern template int max (int, int);
- template void Foo<int>::f ();
- inline template class Foo<int>;
-
- 2. Do nothing. Pretend g++ does implement automatic instantiation
- management. Code written for the Borland model will work fine, but
- each translation unit will contain instances of each of the
- templates it uses. In a large program, this can lead to an
- unacceptable amount of code duplication.
-
- 3. Add `#pragma interface' to all files containing template
- definitions. For each of these files, add `#pragma implementation
- "FILENAME"' to the top of some `.C' file which `#include's it.
- Then compile everything with `-fexternal-templates'. The
- templates will then only be expanded in the translation unit which
- implements them (i.e. has a `#pragma implementation' line for the
- file where they live); all other files will use external
- references. If you're lucky, everything should work properly. If
- you get undefined symbol errors, you need to make sure that each
- template instance which is used in the program is used in the file
- which implements that template. If you don't have any use for a
- particular instance in that file, you can just instantiate it
- explicitly, using the syntax from the latest C++ working paper:
-
- template class A<int>;
- template ostream& operator << (ostream&, const A<int>&);
-
- This strategy will work with code written for either model. If
- you are using code written for the Cfront model, the file
- containing a class template and the file containing its member
- templates should be implemented in the same translation unit.
-
- A slight variation on this approach is to instead use the flag
- `-falt-external-templates'; this flag causes template instances to
- be emitted in the translation unit that implements the header
- where they are first instantiated, rather than the one which
- implements the file where the templates are defined. This header
- must be the same in all translation units, or things are likely to
- break.
-
- *Note Declarations and Definitions in One Header: C++ Interface,
- for more discussion of these pragmas.
-
diff --git a/gcc/gcc.info-11 b/gcc/gcc.info-11
deleted file mode 100644
index a23d4dc5123..00000000000
--- a/gcc/gcc.info-11
+++ /dev/null
@@ -1,1162 +0,0 @@
-This is Info file gcc.info, produced by Makeinfo version 1.68 from the
-input file gcc.texi.
-
- This file documents the use and the internals of the GNU compiler.
-
- Published by the Free Software Foundation 59 Temple Place - Suite 330
-Boston, MA 02111-1307 USA
-
- Copyright (C) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997 Free
-Software Foundation, Inc.
-
- Permission is granted to make and distribute verbatim copies of this
-manual provided the copyright notice and this permission notice are
-preserved on all copies.
-
- Permission is granted to copy and distribute modified versions of
-this manual under the conditions for verbatim copying, provided also
-that the sections entitled "GNU General Public License," "Funding for
-Free Software," and "Protect Your Freedom--Fight `Look And Feel'" are
-included exactly as in the original, and provided that the entire
-resulting derived work is distributed under the terms of a permission
-notice identical to this one.
-
- Permission is granted to copy and distribute translations of this
-manual into another language, under the above conditions for modified
-versions, except that the sections entitled "GNU General Public
-License," "Funding for Free Software," and "Protect Your Freedom--Fight
-`Look And Feel'", and this permission notice, may be included in
-translations approved by the Free Software Foundation instead of in the
-original English.
-
-
-File: gcc.info, Node: C++ Signatures, Prev: Template Instantiation, Up: C++ Extensions
-
-Type Abstraction using Signatures
-=================================
-
- In GNU C++, you can use the keyword `signature' to define a
-completely abstract class interface as a datatype. You can connect this
-abstraction with actual classes using signature pointers. If you want
-to use signatures, run the GNU compiler with the `-fhandle-signatures'
-command-line option. (With this option, the compiler reserves a second
-keyword `sigof' as well, for a future extension.)
-
- Roughly, signatures are type abstractions or interfaces of classes.
-Some other languages have similar facilities. C++ signatures are
-related to ML's signatures, Haskell's type classes, definition modules
-in Modula-2, interface modules in Modula-3, abstract types in Emerald,
-type modules in Trellis/Owl, categories in Scratchpad II, and types in
-POOL-I. For a more detailed discussion of signatures, see `Signatures:
-A Language Extension for Improving Type Abstraction and Subtype
-Polymorphism in C++' by Gerald Baumgartner and Vincent F. Russo (Tech
-report CSD-TR-95-051, Dept. of Computer Sciences, Purdue University,
-August 1995, a slightly improved version appeared in
-*Software--Practice & Experience*, 25(8), pp. 863-889, August 1995).
-You can get the tech report by anonymous FTP from `ftp.cs.purdue.edu'
-in `pub/gb/Signature-design.ps.gz'.
-
- Syntactically, a signature declaration is a collection of member
-function declarations and nested type declarations. For example, this
-signature declaration defines a new abstract type `S' with member
-functions `int foo ()' and `int bar (int)':
-
- signature S
- {
- int foo ();
- int bar (int);
- };
-
- Since signature types do not include implementation definitions, you
-cannot write an instance of a signature directly. Instead, you can
-define a pointer to any class that contains the required interfaces as a
-"signature pointer". Such a class "implements" the signature type.
-
- To use a class as an implementation of `S', you must ensure that the
-class has public member functions `int foo ()' and `int bar (int)'.
-The class can have other member functions as well, public or not; as
-long as it offers what's declared in the signature, it is suitable as
-an implementation of that signature type.
-
- For example, suppose that `C' is a class that meets the requirements
-of signature `S' (`C' "conforms to" `S'). Then
-
- C obj;
- S * p = &obj;
-
-defines a signature pointer `p' and initializes it to point to an
-object of type `C'. The member function call `int i = p->foo ();'
-executes `obj.foo ()'.
-
- Abstract virtual classes provide somewhat similar facilities in
-standard C++. There are two main advantages to using signatures
-instead:
-
- 1. Subtyping becomes independent from inheritance. A class or
- signature type `T' is a subtype of a signature type `S'
- independent of any inheritance hierarchy as long as all the member
- functions declared in `S' are also found in `T'. So you can
- define a subtype hierarchy that is completely independent from any
- inheritance (implementation) hierarchy, instead of being forced to
- use types that mirror the class inheritance hierarchy.
-
- 2. Signatures allow you to work with existing class hierarchies as
- implementations of a signature type. If those class hierarchies
- are only available in compiled form, you're out of luck with
- abstract virtual classes, since an abstract virtual class cannot
- be retrofitted on top of existing class hierarchies. So you would
- be required to write interface classes as subtypes of the abstract
- virtual class.
-
- There is one more detail about signatures. A signature declaration
-can contain member function *definitions* as well as member function
-declarations. A signature member function with a full definition is
-called a *default implementation*; classes need not contain that
-particular interface in order to conform. For example, a class `C' can
-conform to the signature
-
- signature T
- {
- int f (int);
- int f0 () { return f (0); };
- };
-
-whether or not `C' implements the member function `int f0 ()'. If you
-define `C::f0', that definition takes precedence; otherwise, the
-default implementation `S::f0' applies.
-
-
-File: gcc.info, Node: Gcov, Next: Trouble, Prev: C++ Extensions, Up: Top
-
-`gcov': a Test Coverage Program
-*******************************
-
- `gcov' is a tool you can use in conjunction with GNU CC to test code
-coverage in your programs.
-
- This chapter describes version 1.5 of `gcov'.
-
-* Menu:
-
-* Gcov Intro:: Introduction to gcov.
-* Invoking Gcov:: How to use gcov.
-* Gcov and Optimization:: Using gcov with GCC optimization.
-* Gcov Data Files:: The files used by gcov.
-
-
-File: gcc.info, Node: Gcov Intro, Next: Invoking Gcov, Up: Gcov
-
-Introduction to `gcov'
-======================
-
- `gcov' is a test coverage program. Use it in concert with GNU CC to
-analyze your programs to help create more efficient, faster running
-code. You can use `gcov' as a profiling tool to help discover where
-your optimization efforts will best affect your code. You can also use
-`gcov' along with the other profiling tool, `gprof', to assess which
-parts of your code use the greatest amount of computing time.
-
- Profiling tools help you analyze your code's performance. Using a
-profiler such as `gcov' or `gprof', you can find out some basic
-performance statistics, such as:
-
- * how often each line of code executes
-
- * what lines of code are actually executed
-
- * how much computing time each section of code uses
-
- Once you know these things about how your code works when compiled,
-you can look at each module to see which modules should be optimized.
-`gcov' helps you determine where to work on optimization.
-
- Software developers also use coverage testing in concert with
-testsuites, to make sure software is actually good enough for a release.
-Testsuites can verify that a program works as expected; a coverage
-program tests to see how much of the program is exercised by the
-testsuite. Developers can then determine what kinds of test cases need
-to be added to the testsuites to create both better testing and a better
-final product.
-
- You should compile your code without optimization if you plan to use
-`gcov' because the optimization, by combining some lines of code into
-one function, may not give you as much information as you need to look
-for `hot spots' where the code is using a great deal of computer time.
-Likewise, because `gcov' accumulates statistics by line (at the lowest
-resolution), it works best with a programming style that places only
-one statement on each line. If you use complicated macros that expand
-to loops or to other control structures, the statistics are less
-helpful--they only report on the line where the macro call appears. If
-your complex macros behave like functions, you can replace them with
-inline functions to solve this problem.
-
- `gcov' creates a logfile called `SOURCEFILE.gcov' which indicates
-how many times each line of a source file `SOURCEFILE.c' has executed.
-You can use these logfiles along with `gprof' to aid in fine-tuning the
-performance of your programs. `gprof' gives timing information you can
-use along with the information you get from `gcov'.
-
- `gcov' works only on code compiled with GNU CC. It is not
-compatible with any other profiling or test coverage mechanism.
-
-
-File: gcc.info, Node: Invoking Gcov, Next: Gcov and Optimization, Prev: Gcov Intro, Up: Gcov
-
-Invoking gcov
-=============
-
- gcov [-b] [-v] [-n] [-l] [-f] [-o directory] SOURCEFILE
-
-`-b'
- Write branch frequencies to the output file, and write branch
- summary info to the standard output. This option allows you to
- see how often each branch in your program was taken.
-
-`-v'
- Display the `gcov' version number (on the standard error stream).
-
-`-n'
- Do not create the `gcov' output file.
-
-`-l'
- Create long file names for included source files. For example, if
- the header file `x.h' contains code, and was included in the file
- `a.c', then running `gcov' on the file `a.c' will produce an
- output file called `a.c.x.h.gcov' instead of `x.h.gcov'. This can
- be useful if `x.h' is included in multiple source files.
-
-`-f'
- Output summaries for each function in addition to the file level
- summary.
-
-`-o'
- The directory where the object files live. Gcov will search for
- `.bb', `.bbg', and `.da' files in this directory.
-
- When using `gcov', you must first compile your program with two
-special GNU CC options: `-fprofile-arcs -ftest-coverage'. This tells
-the compiler to generate additional information needed by gcov
-(basically a flow graph of the program) and also includes additional
-code in the object files for generating the extra profiling information
-needed by gcov. These additional files are placed in the directory
-where the source code is located.
-
- Running the program will cause profile output to be generated. For
-each source file compiled with -fprofile-arcs, an accompanying `.da'
-file will be placed in the source directory.
-
- Running `gcov' with your program's source file names as arguments
-will now produce a listing of the code along with frequency of execution
-for each line. For example, if your program is called `tmp.c', this is
-what you see when you use the basic `gcov' facility:
-
- $ gcc -fprofile-arcs -ftest-coverage tmp.c
- $ a.out
- $ gcov tmp.c
- 87.50% of 8 source lines executed in file tmp.c
- Creating tmp.c.gcov.
-
- The file `tmp.c.gcov' contains output from `gcov'. Here is a sample:
-
- main()
- {
- 1 int i, total;
-
- 1 total = 0;
-
- 11 for (i = 0; i < 10; i++)
- 10 total += i;
-
- 1 if (total != 45)
- ###### printf ("Failure\n");
- else
- 1 printf ("Success\n");
- 1 }
-
- When you use the `-b' option, your output looks like this:
-
- $ gcov -b tmp.c
- 87.50% of 8 source lines executed in file tmp.c
- 80.00% of 5 branches executed in file tmp.c
- 80.00% of 5 branches taken at least once in file tmp.c
- 50.00% of 2 calls executed in file tmp.c
- Creating tmp.c.gcov.
-
- Here is a sample of a resulting `tmp.c.gcov' file:
-
- main()
- {
- 1 int i, total;
-
- 1 total = 0;
-
- 11 for (i = 0; i < 10; i++)
- branch 0 taken = 91%
- branch 1 taken = 100%
- branch 2 taken = 100%
- 10 total += i;
-
- 1 if (total != 45)
- branch 0 taken = 100%
- ###### printf ("Failure\n");
- call 0 never executed
- branch 1 never executed
- else
- 1 printf ("Success\n");
- call 0 returns = 100%
- 1 }
-
- For each basic block, a line is printed after the last line of the
-basic block describing the branch or call that ends the basic block.
-There can be multiple branches and calls listed for a single source
-line if there are multiple basic blocks that end on that line. In this
-case, the branches and calls are each given a number. There is no
-simple way to map these branches and calls back to source constructs.
-In general, though, the lowest numbered branch or call will correspond
-to the leftmost construct on the source line.
-
- For a branch, if it was executed at least once, then a percentage
-indicating the number of times the branch was taken divided by the
-number of times the branch was executed will be printed. Otherwise, the
-message "never executed" is printed.
-
- For a call, if it was executed at least once, then a percentage
-indicating the number of times the call returned divided by the number
-of times the call was executed will be printed. This will usually be
-100%, but may be less for functions call `exit' or `longjmp', and thus
-may not return everytime they are called.
-
- The execution counts are cumulative. If the example program were
-executed again without removing the `.da' file, the count for the
-number of times each line in the source was executed would be added to
-the results of the previous run(s). This is potentially useful in
-several ways. For example, it could be used to accumulate data over a
-number of program runs as part of a test verification suite, or to
-provide more accurate long-term information over a large number of
-program runs.
-
- The data in the `.da' files is saved immediately before the program
-exits. For each source file compiled with -fprofile-arcs, the profiling
-code first attempts to read in an existing `.da' file; if the file
-doesn't match the executable (differing number of basic block counts) it
-will ignore the contents of the file. It then adds in the new execution
-counts and finally writes the data to the file.
-
-
-File: gcc.info, Node: Gcov and Optimization, Next: Gcov Data Files, Prev: Invoking Gcov, Up: Gcov
-
-Using `gcov' with GCC Optimization
-==================================
-
- If you plan to use `gcov' to help optimize your code, you must first
-compile your program with two special GNU CC options: `-fprofile-arcs
--ftest-coverage'. Aside from that, you can use any other GNU CC
-options; but if you want to prove that every single line in your
-program was executed, you should not compile with optimization at the
-same time. On some machines the optimizer can eliminate some simple
-code lines by combining them with other lines. For example, code like
-this:
-
- if (a != b)
- c = 1;
- else
- c = 0;
-
-can be compiled into one instruction on some machines. In this case,
-there is no way for `gcov' to calculate separate execution counts for
-each line because there isn't separate code for each line. Hence the
-`gcov' output looks like this if you compiled the program with
-optimization:
-
- 100 if (a != b)
- 100 c = 1;
- 100 else
- 100 c = 0;
-
- The output shows that this block of code, combined by optimization,
-executed 100 times. In one sense this result is correct, because there
-was only one instruction representing all four of these lines. However,
-the output does not indicate how many times the result was 0 and how
-many times the result was 1.
-
-
-File: gcc.info, Node: Gcov Data Files, Prev: Gcov and Optimization, Up: Gcov
-
-Brief description of `gcov' data files
-======================================
-
- `gcov' uses three files for doing profiling. The names of these
-files are derived from the original *source* file by substituting the
-file suffix with either `.bb', `.bbg', or `.da'. All of these files
-are placed in the same directory as the source file, and contain data
-stored in a platform-independent method.
-
- The `.bb' and `.bbg' files are generated when the source file is
-compiled with the GNU CC `-ftest-coverage' option. The `.bb' file
-contains a list of source files (including headers), functions within
-those files, and line numbers corresponding to each basic block in the
-source file.
-
- The `.bb' file format consists of several lists of 4-byte integers
-which correspond to the line numbers of each basic block in the file.
-Each list is terminated by a line number of 0. A line number of -1 is
-used to designate that the source file name (padded to a 4-byte
-boundary and followed by another -1) follows. In addition, a line
-number of -2 is used to designate that the name of a function (also
-padded to a 4-byte boundary and followed by a -2) follows.
-
- The `.bbg' file is used to reconstruct the program flow graph for
-the source file. It contains a list of the program flow arcs (possible
-branches taken from one basic block to another) for each function which,
-in combination with the `.bb' file, enables gcov to reconstruct the
-program flow.
-
- In the `.bbg' file, the format is:
- number of basic blocks for function #0 (4-byte number)
- total number of arcs for function #0 (4-byte number)
- count of arcs in basic block #0 (4-byte number)
- destination basic block of arc #0 (4-byte number)
- flag bits (4-byte number)
- destination basic block of arc #1 (4-byte number)
- flag bits (4-byte number)
- ...
- destination basic block of arc #N (4-byte number)
- flag bits (4-byte number)
- count of arcs in basic block #1 (4-byte number)
- destination basic block of arc #0 (4-byte number)
- flag bits (4-byte number)
- ...
-
- A -1 (stored as a 4-byte number) is used to separate each function's
-list of basic blocks, and to verify that the file has been read
-correctly.
-
- The `.da' file is generated when a program containing object files
-built with the GNU CC `-fprofile-arcs' option is executed. A separate
-`.da' file is created for each source file compiled with this option,
-and the name of the `.da' file is stored as an absolute pathname in the
-resulting object file. This path name is derived from the source file
-name by substituting a `.da' suffix.
-
- The format of the `.da' file is fairly simple. The first 8-byte
-number is the number of counts in the file, followed by the counts
-(stored as 8-byte numbers). Each count corresponds to the number of
-times each arc in the program is executed. The counts are cumulative;
-each time the program is executed, it attemps to combine the existing
-`.da' files with the new counts for this invocation of the program. It
-ignores the contents of any `.da' files whose number of arcs doesn't
-correspond to the current program, and merely overwrites them instead.
-
- All three of these files use the functions in `gcov-io.h' to store
-integers; the functions in this header provide a machine-independent
-mechanism for storing and retrieving data from a stream.
-
-
-File: gcc.info, Node: Trouble, Next: Bugs, Prev: Gcov, Up: Top
-
-Known Causes of Trouble with GNU CC
-***********************************
-
- This section describes known problems that affect users of GNU CC.
-Most of these are not GNU CC bugs per se--if they were, we would fix
-them. But the result for a user may be like the result of a bug.
-
- Some of these problems are due to bugs in other software, some are
-missing features that are too much work to add, and some are places
-where people's opinions differ as to what is best.
-
-* Menu:
-
-* Actual Bugs:: Bugs we will fix later.
-* Installation Problems:: Problems that manifest when you install GNU CC.
-* Cross-Compiler Problems:: Common problems of cross compiling with GNU CC.
-* Interoperation:: Problems using GNU CC with other compilers,
- and with certain linkers, assemblers and debuggers.
-* External Bugs:: Problems compiling certain programs.
-* Incompatibilities:: GNU CC is incompatible with traditional C.
-* Fixed Headers:: GNU C uses corrected versions of system header files.
- This is necessary, but doesn't always work smoothly.
-* Standard Libraries:: GNU C uses the system C library, which might not be
- compliant with the ISO/ANSI C standard.
-* Disappointments:: Regrettable things we can't change, but not quite bugs.
-* C++ Misunderstandings:: Common misunderstandings with GNU C++.
-* Protoize Caveats:: Things to watch out for when using `protoize'.
-* Non-bugs:: Things we think are right, but some others disagree.
-* Warnings and Errors:: Which problems in your code get warnings,
- and which get errors.
-
-
-File: gcc.info, Node: Actual Bugs, Next: Installation Problems, Up: Trouble
-
-Actual Bugs We Haven't Fixed Yet
-================================
-
- * The `fixincludes' script interacts badly with automounters; if the
- directory of system header files is automounted, it tends to be
- unmounted while `fixincludes' is running. This would seem to be a
- bug in the automounter. We don't know any good way to work around
- it.
-
- * The `fixproto' script will sometimes add prototypes for the
- `sigsetjmp' and `siglongjmp' functions that reference the
- `jmp_buf' type before that type is defined. To work around this,
- edit the offending file and place the typedef in front of the
- prototypes.
-
- * There are several obscure case of mis-using struct, union, and
- enum tags that are not detected as errors by the compiler.
-
- * When `-pedantic-errors' is specified, GNU C will incorrectly give
- an error message when a function name is specified in an expression
- involving the comma operator.
-
- * Loop unrolling doesn't work properly for certain C++ programs.
- This is a bug in the C++ front end. It sometimes emits incorrect
- debug info, and the loop unrolling code is unable to recover from
- this error.
-
-
-File: gcc.info, Node: Installation Problems, Next: Cross-Compiler Problems, Prev: Actual Bugs, Up: Trouble
-
-Installation Problems
-=====================
-
- This is a list of problems (and some apparent problems which don't
-really mean anything is wrong) that show up during installation of GNU
-CC.
-
- * On certain systems, defining certain environment variables such as
- `CC' can interfere with the functioning of `make'.
-
- * If you encounter seemingly strange errors when trying to build the
- compiler in a directory other than the source directory, it could
- be because you have previously configured the compiler in the
- source directory. Make sure you have done all the necessary
- preparations. *Note Other Dir::.
-
- * If you build GNU CC on a BSD system using a directory stored in a
- System V file system, problems may occur in running `fixincludes'
- if the System V file system doesn't support symbolic links. These
- problems result in a failure to fix the declaration of `size_t' in
- `sys/types.h'. If you find that `size_t' is a signed type and
- that type mismatches occur, this could be the cause.
-
- The solution is not to use such a directory for building GNU CC.
-
- * In previous versions of GNU CC, the `gcc' driver program looked for
- `as' and `ld' in various places; for example, in files beginning
- with `/usr/local/lib/gcc-'. GNU CC version 2 looks for them in
- the directory `/usr/local/lib/gcc-lib/TARGET/VERSION'.
-
- Thus, to use a version of `as' or `ld' that is not the system
- default, for example `gas' or GNU `ld', you must put them in that
- directory (or make links to them from that directory).
-
- * Some commands executed when making the compiler may fail (return a
- non-zero status) and be ignored by `make'. These failures, which
- are often due to files that were not found, are expected, and can
- safely be ignored.
-
- * It is normal to have warnings in compiling certain files about
- unreachable code and about enumeration type clashes. These files'
- names begin with `insn-'. Also, `real.c' may get some warnings
- that you can ignore.
-
- * Sometimes `make' recompiles parts of the compiler when installing
- the compiler. In one case, this was traced down to a bug in
- `make'. Either ignore the problem or switch to GNU Make.
-
- * If you have installed a program known as purify, you may find that
- it causes errors while linking `enquire', which is part of building
- GNU CC. The fix is to get rid of the file `real-ld' which purify
- installs--so that GNU CC won't try to use it.
-
- * On Linux SLS 1.01, there is a problem with `libc.a': it does not
- contain the obstack functions. However, GNU CC assumes that the
- obstack functions are in `libc.a' when it is the GNU C library.
- To work around this problem, change the `__GNU_LIBRARY__'
- conditional around line 31 to `#if 1'.
-
- * On some 386 systems, building the compiler never finishes because
- `enquire' hangs due to a hardware problem in the motherboard--it
- reports floating point exceptions to the kernel incorrectly. You
- can install GNU CC except for `float.h' by patching out the
- command to run `enquire'. You may also be able to fix the problem
- for real by getting a replacement motherboard. This problem was
- observed in Revision E of the Micronics motherboard, and is fixed
- in Revision F. It has also been observed in the MYLEX MXA-33
- motherboard.
-
- If you encounter this problem, you may also want to consider
- removing the FPU from the socket during the compilation.
- Alternatively, if you are running SCO Unix, you can reboot and
- force the FPU to be ignored. To do this, type `hd(40)unix auto
- ignorefpu'.
-
- * On some 386 systems, GNU CC crashes trying to compile `enquire.c'.
- This happens on machines that don't have a 387 FPU chip. On 386
- machines, the system kernel is supposed to emulate the 387 when you
- don't have one. The crash is due to a bug in the emulator.
-
- One of these systems is the Unix from Interactive Systems: 386/ix.
- On this system, an alternate emulator is provided, and it does
- work. To use it, execute this command as super-user:
-
- ln /etc/emulator.rel1 /etc/emulator
-
- and then reboot the system. (The default emulator file remains
- present under the name `emulator.dflt'.)
-
- Try using `/etc/emulator.att', if you have such a problem on the
- SCO system.
-
- Another system which has this problem is Esix. We don't know
- whether it has an alternate emulator that works.
-
- On NetBSD 0.8, a similar problem manifests itself as these error
- messages:
-
- enquire.c: In function `fprop':
- enquire.c:2328: floating overflow
-
- * On SCO systems, when compiling GNU CC with the system's compiler,
- do not use `-O'. Some versions of the system's compiler miscompile
- GNU CC with `-O'.
-
- * Sometimes on a Sun 4 you may observe a crash in the program
- `genflags' or `genoutput' while building GNU CC. This is said to
- be due to a bug in `sh'. You can probably get around it by running
- `genflags' or `genoutput' manually and then retrying the `make'.
-
- * On Solaris 2, executables of GNU CC version 2.0.2 are commonly
- available, but they have a bug that shows up when compiling current
- versions of GNU CC: undefined symbol errors occur during assembly
- if you use `-g'.
-
- The solution is to compile the current version of GNU CC without
- `-g'. That makes a working compiler which you can use to recompile
- with `-g'.
-
- * Solaris 2 comes with a number of optional OS packages. Some of
- these packages are needed to use GNU CC fully. If you did not
- install all optional packages when installing Solaris, you will
- need to verify that the packages that GNU CC needs are installed.
-
- To check whether an optional package is installed, use the
- `pkginfo' command. To add an optional package, use the `pkgadd'
- command. For further details, see the Solaris documentation.
-
- For Solaris 2.0 and 2.1, GNU CC needs six packages: `SUNWarc',
- `SUNWbtool', `SUNWesu', `SUNWhea', `SUNWlibm', and `SUNWtoo'.
-
- For Solaris 2.2, GNU CC needs an additional seventh package:
- `SUNWsprot'.
-
- * On Solaris 2, trying to use the linker and other tools in
- `/usr/ucb' to install GNU CC has been observed to cause trouble.
- For example, the linker may hang indefinitely. The fix is to
- remove `/usr/ucb' from your `PATH'.
-
- * If you use the 1.31 version of the MIPS assembler (such as was
- shipped with Ultrix 3.1), you will need to use the
- -fno-delayed-branch switch when optimizing floating point code.
- Otherwise, the assembler will complain when the GCC compiler fills
- a branch delay slot with a floating point instruction, such as
- `add.d'.
-
- * If on a MIPS system you get an error message saying "does not have
- gp sections for all it's [sic] sectons [sic]", don't worry about
- it. This happens whenever you use GAS with the MIPS linker, but
- there is not really anything wrong, and it is okay to use the
- output file. You can stop such warnings by installing the GNU
- linker.
-
- It would be nice to extend GAS to produce the gp tables, but they
- are optional, and there should not be a warning about their
- absence.
-
- * In Ultrix 4.0 on the MIPS machine, `stdio.h' does not work with GNU
- CC at all unless it has been fixed with `fixincludes'. This causes
- problems in building GNU CC. Once GNU CC is installed, the
- problems go away.
-
- To work around this problem, when making the stage 1 compiler,
- specify this option to Make:
-
- GCC_FOR_TARGET="./xgcc -B./ -I./include"
-
- When making stage 2 and stage 3, specify this option:
-
- CFLAGS="-g -I./include"
-
- * Users have reported some problems with version 2.0 of the MIPS
- compiler tools that were shipped with Ultrix 4.1. Version 2.10
- which came with Ultrix 4.2 seems to work fine.
-
- Users have also reported some problems with version 2.20 of the
- MIPS compiler tools that were shipped with RISC/os 4.x. The
- earlier version 2.11 seems to work fine.
-
- * Some versions of the MIPS linker will issue an assertion failure
- when linking code that uses `alloca' against shared libraries on
- RISC-OS 5.0, and DEC's OSF/1 systems. This is a bug in the
- linker, that is supposed to be fixed in future revisions. To
- protect against this, GNU CC passes `-non_shared' to the linker
- unless you pass an explicit `-shared' or `-call_shared' switch.
-
- * On System V release 3, you may get this error message while
- linking:
-
- ld fatal: failed to write symbol name SOMETHING
- in strings table for file WHATEVER
-
- This probably indicates that the disk is full or your ULIMIT won't
- allow the file to be as large as it needs to be.
-
- This problem can also result because the kernel parameter `MAXUMEM'
- is too small. If so, you must regenerate the kernel and make the
- value much larger. The default value is reported to be 1024; a
- value of 32768 is said to work. Smaller values may also work.
-
- * On System V, if you get an error like this,
-
- /usr/local/lib/bison.simple: In function `yyparse':
- /usr/local/lib/bison.simple:625: virtual memory exhausted
-
- that too indicates a problem with disk space, ULIMIT, or `MAXUMEM'.
-
- * Current GNU CC versions probably do not work on version 2 of the
- NeXT operating system.
-
- * On NeXTStep 3.0, the Objective C compiler does not work, due,
- apparently, to a kernel bug that it happens to trigger. This
- problem does not happen on 3.1.
-
- * On the Tower models 4N0 and 6N0, by default a process is not
- allowed to have more than one megabyte of memory. GNU CC cannot
- compile itself (or many other programs) with `-O' in that much
- memory.
-
- To solve this problem, reconfigure the kernel adding the following
- line to the configuration file:
-
- MAXUMEM = 4096
-
- * On HP 9000 series 300 or 400 running HP-UX release 8.0, there is a
- bug in the assembler that must be fixed before GNU CC can be
- built. This bug manifests itself during the first stage of
- compilation, while building `libgcc2.a':
-
- _floatdisf
- cc1: warning: `-g' option not supported on this version of GCC
- cc1: warning: `-g1' option not supported on this version of GCC
- ./xgcc: Internal compiler error: program as got fatal signal 11
-
- A patched version of the assembler is available by anonymous ftp
- from `altdorf.ai.mit.edu' as the file
- `archive/cph/hpux-8.0-assembler'. If you have HP software support,
- the patch can also be obtained directly from HP, as described in
- the following note:
-
- This is the patched assembler, to patch SR#1653-010439, where
- the assembler aborts on floating point constants.
-
- The bug is not really in the assembler, but in the shared
- library version of the function "cvtnum(3c)". The bug on
- "cvtnum(3c)" is SR#4701-078451. Anyway, the attached
- assembler uses the archive library version of "cvtnum(3c)"
- and thus does not exhibit the bug.
-
- This patch is also known as PHCO_4484.
-
- * On HP-UX version 8.05, but not on 8.07 or more recent versions,
- the `fixproto' shell script triggers a bug in the system shell.
- If you encounter this problem, upgrade your operating system or
- use BASH (the GNU shell) to run `fixproto'.
-
- * Some versions of the Pyramid C compiler are reported to be unable
- to compile GNU CC. You must use an older version of GNU CC for
- bootstrapping. One indication of this problem is if you get a
- crash when GNU CC compiles the function `muldi3' in file
- `libgcc2.c'.
-
- You may be able to succeed by getting GNU CC version 1, installing
- it, and using it to compile GNU CC version 2. The bug in the
- Pyramid C compiler does not seem to affect GNU CC version 1.
-
- * There may be similar problems on System V Release 3.1 on 386
- systems.
-
- * On the Intel Paragon (an i860 machine), if you are using operating
- system version 1.0, you will get warnings or errors about
- redefinition of `va_arg' when you build GNU CC.
-
- If this happens, then you need to link most programs with the
- library `iclib.a'. You must also modify `stdio.h' as follows:
- before the lines
-
- #if defined(__i860__) && !defined(_VA_LIST)
- #include <va_list.h>
-
- insert the line
-
- #if __PGC__
-
- and after the lines
-
- extern int vprintf(const char *, va_list );
- extern int vsprintf(char *, const char *, va_list );
- #endif
-
- insert the line
-
- #endif /* __PGC__ */
-
- These problems don't exist in operating system version 1.1.
-
- * On the Altos 3068, programs compiled with GNU CC won't work unless
- you fix a kernel bug. This happens using system versions V.2.2
- 1.0gT1 and V.2.2 1.0e and perhaps later versions as well. See the
- file `README.ALTOS'.
-
- * You will get several sorts of compilation and linking errors on the
- we32k if you don't follow the special instructions. *Note
- Configurations::.
-
- * A bug in the HP-UX 8.05 (and earlier) shell will cause the fixproto
- program to report an error of the form:
-
- ./fixproto: sh internal 1K buffer overflow
-
- To fix this, change the first line of the fixproto script to look
- like:
-
- #!/bin/ksh
-
-
-File: gcc.info, Node: Cross-Compiler Problems, Next: Interoperation, Prev: Installation Problems, Up: Trouble
-
-Cross-Compiler Problems
-=======================
-
- You may run into problems with cross compilation on certain machines,
-for several reasons.
-
- * Cross compilation can run into trouble for certain machines because
- some target machines' assemblers require floating point numbers to
- be written as *integer* constants in certain contexts.
-
- The compiler writes these integer constants by examining the
- floating point value as an integer and printing that integer,
- because this is simple to write and independent of the details of
- the floating point representation. But this does not work if the
- compiler is running on a different machine with an incompatible
- floating point format, or even a different byte-ordering.
-
- In addition, correct constant folding of floating point values
- requires representing them in the target machine's format. (The C
- standard does not quite require this, but in practice it is the
- only way to win.)
-
- It is now possible to overcome these problems by defining macros
- such as `REAL_VALUE_TYPE'. But doing so is a substantial amount of
- work for each target machine. *Note Cross-compilation::.
-
- * At present, the program `mips-tfile' which adds debug support to
- object files on MIPS systems does not work in a cross compile
- environment.
-
-
-File: gcc.info, Node: Interoperation, Next: External Bugs, Prev: Cross-Compiler Problems, Up: Trouble
-
-Interoperation
-==============
-
- This section lists various difficulties encountered in using GNU C or
-GNU C++ together with other compilers or with the assemblers, linkers,
-libraries and debuggers on certain systems.
-
- * Objective C does not work on the RS/6000.
-
- * GNU C++ does not do name mangling in the same way as other C++
- compilers. This means that object files compiled with one compiler
- cannot be used with another.
-
- This effect is intentional, to protect you from more subtle
- problems. Compilers differ as to many internal details of C++
- implementation, including: how class instances are laid out, how
- multiple inheritance is implemented, and how virtual function
- calls are handled. If the name encoding were made the same, your
- programs would link against libraries provided from other
- compilers--but the programs would then crash when run.
- Incompatible libraries are then detected at link time, rather than
- at run time.
-
- * Older GDB versions sometimes fail to read the output of GNU CC
- version 2. If you have trouble, get GDB version 4.4 or later.
-
- * DBX rejects some files produced by GNU CC, though it accepts
- similar constructs in output from PCC. Until someone can supply a
- coherent description of what is valid DBX input and what is not,
- there is nothing I can do about these problems. You are on your
- own.
-
- * The GNU assembler (GAS) does not support PIC. To generate PIC
- code, you must use some other assembler, such as `/bin/as'.
-
- * On some BSD systems, including some versions of Ultrix, use of
- profiling causes static variable destructors (currently used only
- in C++) not to be run.
-
- * Use of `-I/usr/include' may cause trouble.
-
- Many systems come with header files that won't work with GNU CC
- unless corrected by `fixincludes'. The corrected header files go
- in a new directory; GNU CC searches this directory before
- `/usr/include'. If you use `-I/usr/include', this tells GNU CC to
- search `/usr/include' earlier on, before the corrected headers.
- The result is that you get the uncorrected header files.
-
- Instead, you should use these options (when compiling C programs):
-
- -I/usr/local/lib/gcc-lib/TARGET/VERSION/include -I/usr/include
-
- For C++ programs, GNU CC also uses a special directory that
- defines C++ interfaces to standard C subroutines. This directory
- is meant to be searched *before* other standard include
- directories, so that it takes precedence. If you are compiling
- C++ programs and specifying include directories explicitly, use
- this option first, then the two options above:
-
- -I/usr/local/lib/g++-include
-
- * On some SGI systems, when you use `-lgl_s' as an option, it gets
- translated magically to `-lgl_s -lX11_s -lc_s'. Naturally, this
- does not happen when you use GNU CC. You must specify all three
- options explicitly.
-
- * On a Sparc, GNU CC aligns all values of type `double' on an 8-byte
- boundary, and it expects every `double' to be so aligned. The Sun
- compiler usually gives `double' values 8-byte alignment, with one
- exception: function arguments of type `double' may not be aligned.
-
- As a result, if a function compiled with Sun CC takes the address
- of an argument of type `double' and passes this pointer of type
- `double *' to a function compiled with GNU CC, dereferencing the
- pointer may cause a fatal signal.
-
- One way to solve this problem is to compile your entire program
- with GNU CC. Another solution is to modify the function that is
- compiled with Sun CC to copy the argument into a local variable;
- local variables are always properly aligned. A third solution is
- to modify the function that uses the pointer to dereference it via
- the following function `access_double' instead of directly with
- `*':
-
- inline double
- access_double (double *unaligned_ptr)
- {
- union d2i { double d; int i[2]; };
-
- union d2i *p = (union d2i *) unaligned_ptr;
- union d2i u;
-
- u.i[0] = p->i[0];
- u.i[1] = p->i[1];
-
- return u.d;
- }
-
- Storing into the pointer can be done likewise with the same union.
-
- * On Solaris, the `malloc' function in the `libmalloc.a' library may
- allocate memory that is only 4 byte aligned. Since GNU CC on the
- Sparc assumes that doubles are 8 byte aligned, this may result in a
- fatal signal if doubles are stored in memory allocated by the
- `libmalloc.a' library.
-
- The solution is to not use the `libmalloc.a' library. Use instead
- `malloc' and related functions from `libc.a'; they do not have
- this problem.
-
- * Sun forgot to include a static version of `libdl.a' with some
- versions of SunOS (mainly 4.1). This results in undefined symbols
- when linking static binaries (that is, if you use `-static'). If
- you see undefined symbols `_dlclose', `_dlsym' or `_dlopen' when
- linking, compile and link against the file `mit/util/misc/dlsym.c'
- from the MIT version of X windows.
-
- * The 128-bit long double format that the Sparc port supports
- currently works by using the architecturally defined quad-word
- floating point instructions. Since there is no hardware that
- supports these instructions they must be emulated by the operating
- system. Long doubles do not work in Sun OS versions 4.0.3 and
- earlier, because the kernel emulator uses an obsolete and
- incompatible format. Long doubles do not work in Sun OS version
- 4.1.1 due to a problem in a Sun library. Long doubles do work on
- Sun OS versions 4.1.2 and higher, but GNU CC does not enable them
- by default. Long doubles appear to work in Sun OS 5.x (Solaris
- 2.x).
-
- * On HP-UX version 9.01 on the HP PA, the HP compiler `cc' does not
- compile GNU CC correctly. We do not yet know why. However, GNU CC
- compiled on earlier HP-UX versions works properly on HP-UX 9.01
- and can compile itself properly on 9.01.
-
- * On the HP PA machine, ADB sometimes fails to work on functions
- compiled with GNU CC. Specifically, it fails to work on functions
- that use `alloca' or variable-size arrays. This is because GNU CC
- doesn't generate HP-UX unwind descriptors for such functions. It
- may even be impossible to generate them.
-
- * Debugging (`-g') is not supported on the HP PA machine, unless you
- use the preliminary GNU tools (*note Installation::.).
-
- * Taking the address of a label may generate errors from the HP-UX
- PA assembler. GAS for the PA does not have this problem.
-
- * Using floating point parameters for indirect calls to static
- functions will not work when using the HP assembler. There simply
- is no way for GCC to specify what registers hold arguments for
- static functions when using the HP assembler. GAS for the PA does
- not have this problem.
-
- * In extremely rare cases involving some very large functions you may
- receive errors from the HP linker complaining about an out of
- bounds unconditional branch offset. This used to occur more often
- in previous versions of GNU CC, but is now exceptionally rare. If
- you should run into it, you can work around by making your
- function smaller.
-
- * GNU CC compiled code sometimes emits warnings from the HP-UX
- assembler of the form:
-
- (warning) Use of GR3 when
- frame >= 8192 may cause conflict.
-
- These warnings are harmless and can be safely ignored.
-
- * The current version of the assembler (`/bin/as') for the RS/6000
- has certain problems that prevent the `-g' option in GCC from
- working. Note that `Makefile.in' uses `-g' by default when
- compiling `libgcc2.c'.
-
- IBM has produced a fixed version of the assembler. The upgraded
- assembler unfortunately was not included in any of the AIX 3.2
- update PTF releases (3.2.2, 3.2.3, or 3.2.3e). Users of AIX 3.1
- should request PTF U403044 from IBM and users of AIX 3.2 should
- request PTF U416277. See the file `README.RS6000' for more
- details on these updates.
-
- You can test for the presense of a fixed assembler by using the
- command
-
- as -u < /dev/null
-
- If the command exits normally, the assembler fix already is
- installed. If the assembler complains that "-u" is an unknown
- flag, you need to order the fix.
-
- * On the IBM RS/6000, compiling code of the form
-
- extern int foo;
-
- ... foo ...
-
- static int foo;
-
- will cause the linker to report an undefined symbol `foo'.
- Although this behavior differs from most other systems, it is not a
- bug because redefining an `extern' variable as `static' is
- undefined in ANSI C.
-
- * AIX on the RS/6000 provides support (NLS) for environments outside
- of the United States. Compilers and assemblers use NLS to support
- locale-specific representations of various objects including
- floating-point numbers ("." vs "," for separating decimal
- fractions). There have been problems reported where the library
- linked with GCC does not produce the same floating-point formats
- that the assembler accepts. If you have this problem, set the
- LANG environment variable to "C" or "En_US".
-
- * Even if you specify `-fdollars-in-identifiers', you cannot
- successfully use `$' in identifiers on the RS/6000 due to a
- restriction in the IBM assembler. GAS supports these identifiers.
-
- * On the RS/6000, XLC version 1.3.0.0 will miscompile `jump.c'. XLC
- version 1.3.0.1 or later fixes this problem. You can obtain
- XLC-1.3.0.2 by requesting PTF 421749 from IBM.
-
- * There is an assembler bug in versions of DG/UX prior to 5.4.2.01
- that occurs when the `fldcr' instruction is used. GNU CC uses
- `fldcr' on the 88100 to serialize volatile memory references. Use
- the option `-mno-serialize-volatile' if your version of the
- assembler has this bug.
-
- * On VMS, GAS versions 1.38.1 and earlier may cause spurious warning
- messages from the linker. These warning messages complain of
- mismatched psect attributes. You can ignore them. *Note VMS
- Install::.
-
- * On NewsOS version 3, if you include both of the files `stddef.h'
- and `sys/types.h', you get an error because there are two typedefs
- of `size_t'. You should change `sys/types.h' by adding these
- lines around the definition of `size_t':
-
- #ifndef _SIZE_T
- #define _SIZE_T
- ACTUAL TYPEDEF HERE
- #endif
-
- * On the Alliant, the system's own convention for returning
- structures and unions is unusual, and is not compatible with GNU
- CC no matter what options are used.
-
- * On the IBM RT PC, the MetaWare HighC compiler (hc) uses a different
- convention for structure and union returning. Use the option
- `-mhc-struct-return' to tell GNU CC to use a convention compatible
- with it.
-
- * On Ultrix, the Fortran compiler expects registers 2 through 5 to
- be saved by function calls. However, the C compiler uses
- conventions compatible with BSD Unix: registers 2 through 5 may be
- clobbered by function calls.
-
- GNU CC uses the same convention as the Ultrix C compiler. You can
- use these options to produce code compatible with the Fortran
- compiler:
-
- -fcall-saved-r2 -fcall-saved-r3 -fcall-saved-r4 -fcall-saved-r5
-
- * On the WE32k, you may find that programs compiled with GNU CC do
- not work with the standard shared C library. You may need to link
- with the ordinary C compiler. If you do so, you must specify the
- following options:
-
- -L/usr/local/lib/gcc-lib/we32k-att-sysv/2.7.1 -lgcc -lc_s
-
- The first specifies where to find the library `libgcc.a' specified
- with the `-lgcc' option.
-
- GNU CC does linking by invoking `ld', just as `cc' does, and there
- is no reason why it *should* matter which compilation program you
- use to invoke `ld'. If someone tracks this problem down, it can
- probably be fixed easily.
-
- * On the Alpha, you may get assembler errors about invalid syntax as
- a result of floating point constants. This is due to a bug in the
- C library functions `ecvt', `fcvt' and `gcvt'. Given valid
- floating point numbers, they sometimes print `NaN'.
-
- * On Irix 4.0.5F (and perhaps in some other versions), an assembler
- bug sometimes reorders instructions incorrectly when optimization
- is turned on. If you think this may be happening to you, try
- using the GNU assembler; GAS version 2.1 supports ECOFF on Irix.
-
- Or use the `-noasmopt' option when you compile GNU CC with itself,
- and then again when you compile your program. (This is a temporary
- kludge to turn off assembler optimization on Irix.) If this
- proves to be what you need, edit the assembler spec in the file
- `specs' so that it unconditionally passes `-O0' to the assembler,
- and never passes `-O2' or `-O3'.
-
diff --git a/gcc/gcc.info-12 b/gcc/gcc.info-12
deleted file mode 100644
index 7cc8309c09c..00000000000
--- a/gcc/gcc.info-12
+++ /dev/null
@@ -1,999 +0,0 @@
-This is Info file gcc.info, produced by Makeinfo version 1.68 from the
-input file gcc.texi.
-
- This file documents the use and the internals of the GNU compiler.
-
- Published by the Free Software Foundation 59 Temple Place - Suite 330
-Boston, MA 02111-1307 USA
-
- Copyright (C) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997 Free
-Software Foundation, Inc.
-
- Permission is granted to make and distribute verbatim copies of this
-manual provided the copyright notice and this permission notice are
-preserved on all copies.
-
- Permission is granted to copy and distribute modified versions of
-this manual under the conditions for verbatim copying, provided also
-that the sections entitled "GNU General Public License," "Funding for
-Free Software," and "Protect Your Freedom--Fight `Look And Feel'" are
-included exactly as in the original, and provided that the entire
-resulting derived work is distributed under the terms of a permission
-notice identical to this one.
-
- Permission is granted to copy and distribute translations of this
-manual into another language, under the above conditions for modified
-versions, except that the sections entitled "GNU General Public
-License," "Funding for Free Software," and "Protect Your Freedom--Fight
-`Look And Feel'", and this permission notice, may be included in
-translations approved by the Free Software Foundation instead of in the
-original English.
-
-
-File: gcc.info, Node: External Bugs, Next: Incompatibilities, Prev: Interoperation, Up: Trouble
-
-Problems Compiling Certain Programs
-===================================
-
- Certain programs have problems compiling.
-
- * Parse errors may occur compiling X11 on a Decstation running
- Ultrix 4.2 because of problems in DEC's versions of the X11 header
- files `X11/Xlib.h' and `X11/Xutil.h'. People recommend adding
- `-I/usr/include/mit' to use the MIT versions of the header files,
- using the `-traditional' switch to turn off ANSI C, or fixing the
- header files by adding this:
-
- #ifdef __STDC__
- #define NeedFunctionPrototypes 0
- #endif
-
- * If you have trouble compiling Perl on a SunOS 4 system, it may be
- because Perl specifies `-I/usr/ucbinclude'. This accesses the
- unfixed header files. Perl specifies the options
-
- -traditional -Dvolatile=__volatile__
- -I/usr/include/sun -I/usr/ucbinclude
- -fpcc-struct-return
-
- most of which are unnecessary with GCC 2.4.5 and newer versions.
- You can make a properly working Perl by setting `ccflags' to
- `-fwritable-strings' (implied by the `-traditional' in the
- original options) and `cppflags' to empty in `config.sh', then
- typing `./doSH; make depend; make'.
-
- * On various 386 Unix systems derived from System V, including SCO,
- ISC, and ESIX, you may get error messages about running out of
- virtual memory while compiling certain programs.
-
- You can prevent this problem by linking GNU CC with the GNU malloc
- (which thus replaces the malloc that comes with the system). GNU
- malloc is available as a separate package, and also in the file
- `src/gmalloc.c' in the GNU Emacs 19 distribution.
-
- If you have installed GNU malloc as a separate library package,
- use this option when you relink GNU CC:
-
- MALLOC=/usr/local/lib/libgmalloc.a
-
- Alternatively, if you have compiled `gmalloc.c' from Emacs 19, copy
- the object file to `gmalloc.o' and use this option when you relink
- GNU CC:
-
- MALLOC=gmalloc.o
-
-
-File: gcc.info, Node: Incompatibilities, Next: Fixed Headers, Prev: External Bugs, Up: Trouble
-
-Incompatibilities of GNU CC
-===========================
-
- There are several noteworthy incompatibilities between GNU C and most
-existing (non-ANSI) versions of C. The `-traditional' option
-eliminates many of these incompatibilities, *but not all*, by telling
-GNU C to behave like the other C compilers.
-
- * GNU CC normally makes string constants read-only. If several
- identical-looking string constants are used, GNU CC stores only one
- copy of the string.
-
- One consequence is that you cannot call `mktemp' with a string
- constant argument. The function `mktemp' always alters the string
- its argument points to.
-
- Another consequence is that `sscanf' does not work on some systems
- when passed a string constant as its format control string or
- input. This is because `sscanf' incorrectly tries to write into
- the string constant. Likewise `fscanf' and `scanf'.
-
- The best solution to these problems is to change the program to use
- `char'-array variables with initialization strings for these
- purposes instead of string constants. But if this is not possible,
- you can use the `-fwritable-strings' flag, which directs GNU CC to
- handle string constants the same way most C compilers do.
- `-traditional' also has this effect, among others.
-
- * `-2147483648' is positive.
-
- This is because 2147483648 cannot fit in the type `int', so
- (following the ANSI C rules) its data type is `unsigned long int'.
- Negating this value yields 2147483648 again.
-
- * GNU CC does not substitute macro arguments when they appear inside
- of string constants. For example, the following macro in GNU CC
-
- #define foo(a) "a"
-
- will produce output `"a"' regardless of what the argument A is.
-
- The `-traditional' option directs GNU CC to handle such cases
- (among others) in the old-fashioned (non-ANSI) fashion.
-
- * When you use `setjmp' and `longjmp', the only automatic variables
- guaranteed to remain valid are those declared `volatile'. This is
- a consequence of automatic register allocation. Consider this
- function:
-
- jmp_buf j;
-
- foo ()
- {
- int a, b;
-
- a = fun1 ();
- if (setjmp (j))
- return a;
-
- a = fun2 ();
- /* `longjmp (j)' may occur in `fun3'. */
- return a + fun3 ();
- }
-
- Here `a' may or may not be restored to its first value when the
- `longjmp' occurs. If `a' is allocated in a register, then its
- first value is restored; otherwise, it keeps the last value stored
- in it.
-
- If you use the `-W' option with the `-O' option, you will get a
- warning when GNU CC thinks such a problem might be possible.
-
- The `-traditional' option directs GNU C to put variables in the
- stack by default, rather than in registers, in functions that call
- `setjmp'. This results in the behavior found in traditional C
- compilers.
-
- * Programs that use preprocessing directives in the middle of macro
- arguments do not work with GNU CC. For example, a program like
- this will not work:
-
- foobar (
- #define luser
- hack)
-
- ANSI C does not permit such a construct. It would make sense to
- support it when `-traditional' is used, but it is too much work to
- implement.
-
- * Declarations of external variables and functions within a block
- apply only to the block containing the declaration. In other
- words, they have the same scope as any other declaration in the
- same place.
-
- In some other C compilers, a `extern' declaration affects all the
- rest of the file even if it happens within a block.
-
- The `-traditional' option directs GNU C to treat all `extern'
- declarations as global, like traditional compilers.
-
- * In traditional C, you can combine `long', etc., with a typedef
- name, as shown here:
-
- typedef int foo;
- typedef long foo bar;
-
- In ANSI C, this is not allowed: `long' and other type modifiers
- require an explicit `int'. Because this criterion is expressed by
- Bison grammar rules rather than C code, the `-traditional' flag
- cannot alter it.
-
- * PCC allows typedef names to be used as function parameters. The
- difficulty described immediately above applies here too.
-
- * PCC allows whitespace in the middle of compound assignment
- operators such as `+='. GNU CC, following the ANSI standard, does
- not allow this. The difficulty described immediately above
- applies here too.
-
- * GNU CC complains about unterminated character constants inside of
- preprocessing conditionals that fail. Some programs have English
- comments enclosed in conditionals that are guaranteed to fail; if
- these comments contain apostrophes, GNU CC will probably report an
- error. For example, this code would produce an error:
-
- #if 0
- You can't expect this to work.
- #endif
-
- The best solution to such a problem is to put the text into an
- actual C comment delimited by `/*...*/'. However, `-traditional'
- suppresses these error messages.
-
- * Many user programs contain the declaration `long time ();'. In the
- past, the system header files on many systems did not actually
- declare `time', so it did not matter what type your program
- declared it to return. But in systems with ANSI C headers, `time'
- is declared to return `time_t', and if that is not the same as
- `long', then `long time ();' is erroneous.
-
- The solution is to change your program to use `time_t' as the
- return type of `time'.
-
- * When compiling functions that return `float', PCC converts it to a
- double. GNU CC actually returns a `float'. If you are concerned
- with PCC compatibility, you should declare your functions to return
- `double'; you might as well say what you mean.
-
- * When compiling functions that return structures or unions, GNU CC
- output code normally uses a method different from that used on most
- versions of Unix. As a result, code compiled with GNU CC cannot
- call a structure-returning function compiled with PCC, and vice
- versa.
-
- The method used by GNU CC is as follows: a structure or union
- which is 1, 2, 4 or 8 bytes long is returned like a scalar. A
- structure or union with any other size is stored into an address
- supplied by the caller (usually in a special, fixed register, but
- on some machines it is passed on the stack). The
- machine-description macros `STRUCT_VALUE' and
- `STRUCT_INCOMING_VALUE' tell GNU CC where to pass this address.
-
- By contrast, PCC on most target machines returns structures and
- unions of any size by copying the data into an area of static
- storage, and then returning the address of that storage as if it
- were a pointer value. The caller must copy the data from that
- memory area to the place where the value is wanted. GNU CC does
- not use this method because it is slower and nonreentrant.
-
- On some newer machines, PCC uses a reentrant convention for all
- structure and union returning. GNU CC on most of these machines
- uses a compatible convention when returning structures and unions
- in memory, but still returns small structures and unions in
- registers.
-
- You can tell GNU CC to use a compatible convention for all
- structure and union returning with the option
- `-fpcc-struct-return'.
-
- * GNU C complains about program fragments such as `0x74ae-0x4000'
- which appear to be two hexadecimal constants separated by the minus
- operator. Actually, this string is a single "preprocessing token".
- Each such token must correspond to one token in C. Since this
- does not, GNU C prints an error message. Although it may appear
- obvious that what is meant is an operator and two values, the ANSI
- C standard specifically requires that this be treated as erroneous.
-
- A "preprocessing token" is a "preprocessing number" if it begins
- with a digit and is followed by letters, underscores, digits,
- periods and `e+', `e-', `E+', or `E-' character sequences.
-
- To make the above program fragment valid, place whitespace in
- front of the minus sign. This whitespace will end the
- preprocessing number.
-
-
-File: gcc.info, Node: Fixed Headers, Next: Standard Libraries, Prev: Incompatibilities, Up: Trouble
-
-Fixed Header Files
-==================
-
- GNU CC needs to install corrected versions of some system header
-files. This is because most target systems have some header files that
-won't work with GNU CC unless they are changed. Some have bugs, some
-are incompatible with ANSI C, and some depend on special features of
-other compilers.
-
- Installing GNU CC automatically creates and installs the fixed header
-files, by running a program called `fixincludes' (or for certain
-targets an alternative such as `fixinc.svr4'). Normally, you don't
-need to pay attention to this. But there are cases where it doesn't do
-the right thing automatically.
-
- * If you update the system's header files, such as by installing a
- new system version, the fixed header files of GNU CC are not
- automatically updated. The easiest way to update them is to
- reinstall GNU CC. (If you want to be clever, look in the makefile
- and you can find a shortcut.)
-
- * On some systems, in particular SunOS 4, header file directories
- contain machine-specific symbolic links in certain places. This
- makes it possible to share most of the header files among hosts
- running the same version of SunOS 4 on different machine models.
-
- The programs that fix the header files do not understand this
- special way of using symbolic links; therefore, the directory of
- fixed header files is good only for the machine model used to
- build it.
-
- In SunOS 4, only programs that look inside the kernel will notice
- the difference between machine models. Therefore, for most
- purposes, you need not be concerned about this.
-
- It is possible to make separate sets of fixed header files for the
- different machine models, and arrange a structure of symbolic
- links so as to use the proper set, but you'll have to do this by
- hand.
-
- * On Lynxos, GNU CC by default does not fix the header files. This
- is because bugs in the shell cause the `fixincludes' script to
- fail.
-
- This means you will encounter problems due to bugs in the system
- header files. It may be no comfort that they aren't GNU CC's
- fault, but it does mean that there's nothing for us to do about
- them.
-
-
-File: gcc.info, Node: Standard Libraries, Next: Disappointments, Prev: Fixed Headers, Up: Trouble
-
-Standard Libraries
-==================
-
- GNU CC by itself attempts to be what the ISO/ANSI C standard calls a
-"conforming freestanding implementation". This means all ANSI C
-language features are available, as well as the contents of `float.h',
-`limits.h', `stdarg.h', and `stddef.h'. The rest of the C library is
-supplied by the vendor of the operating system. If that C library
-doesn't conform to the C standards, then your programs might get
-warnings (especially when using `-Wall') that you don't expect.
-
- For example, the `sprintf' function on SunOS 4.1.3 returns `char *'
-while the C standard says that `sprintf' returns an `int'. The
-`fixincludes' program could make the prototype for this function match
-the Standard, but that would be wrong, since the function will still
-return `char *'.
-
- If you need a Standard compliant library, then you need to find one,
-as GNU CC does not provide one. The GNU C library (called `glibc') has
-been ported to a number of operating systems, and provides ANSI/ISO,
-POSIX, BSD and SystemV compatibility. You could also ask your operating
-system vendor if newer libraries are available.
-
-
-File: gcc.info, Node: Disappointments, Next: C++ Misunderstandings, Prev: Standard Libraries, Up: Trouble
-
-Disappointments and Misunderstandings
-=====================================
-
- These problems are perhaps regrettable, but we don't know any
-practical way around them.
-
- * Certain local variables aren't recognized by debuggers when you
- compile with optimization.
-
- This occurs because sometimes GNU CC optimizes the variable out of
- existence. There is no way to tell the debugger how to compute the
- value such a variable "would have had", and it is not clear that
- would be desirable anyway. So GNU CC simply does not mention the
- eliminated variable when it writes debugging information.
-
- You have to expect a certain amount of disagreement between the
- executable and your source code, when you use optimization.
-
- * Users often think it is a bug when GNU CC reports an error for code
- like this:
-
- int foo (struct mumble *);
-
- struct mumble { ... };
-
- int foo (struct mumble *x)
- { ... }
-
- This code really is erroneous, because the scope of `struct
- mumble' in the prototype is limited to the argument list
- containing it. It does not refer to the `struct mumble' defined
- with file scope immediately below--they are two unrelated types
- with similar names in different scopes.
-
- But in the definition of `foo', the file-scope type is used
- because that is available to be inherited. Thus, the definition
- and the prototype do not match, and you get an error.
-
- This behavior may seem silly, but it's what the ANSI standard
- specifies. It is easy enough for you to make your code work by
- moving the definition of `struct mumble' above the prototype.
- It's not worth being incompatible with ANSI C just to avoid an
- error for the example shown above.
-
- * Accesses to bitfields even in volatile objects works by accessing
- larger objects, such as a byte or a word. You cannot rely on what
- size of object is accessed in order to read or write the bitfield;
- it may even vary for a given bitfield according to the precise
- usage.
-
- If you care about controlling the amount of memory that is
- accessed, use volatile but do not use bitfields.
-
- * GNU CC comes with shell scripts to fix certain known problems in
- system header files. They install corrected copies of various
- header files in a special directory where only GNU CC will
- normally look for them. The scripts adapt to various systems by
- searching all the system header files for the problem cases that
- we know about.
-
- If new system header files are installed, nothing automatically
- arranges to update the corrected header files. You will have to
- reinstall GNU CC to fix the new header files. More specifically,
- go to the build directory and delete the files `stmp-fixinc' and
- `stmp-headers', and the subdirectory `include'; then do `make
- install' again.
-
- * On 68000 and x86 systems, for instance, you can get paradoxical
- results if you test the precise values of floating point numbers.
- For example, you can find that a floating point value which is not
- a NaN is not equal to itself. This results from the fact that the
- floating point registers hold a few more bits of precision than
- fit in a `double' in memory. Compiled code moves values between
- memory and floating point registers at its convenience, and moving
- them into memory truncates them.
-
- You can partially avoid this problem by using the `-ffloat-store'
- option (*note Optimize Options::.).
-
- * On the MIPS, variable argument functions using `varargs.h' cannot
- have a floating point value for the first argument. The reason
- for this is that in the absence of a prototype in scope, if the
- first argument is a floating point, it is passed in a floating
- point register, rather than an integer register.
-
- If the code is rewritten to use the ANSI standard `stdarg.h'
- method of variable arguments, and the prototype is in scope at the
- time of the call, everything will work fine.
-
- * On the H8/300 and H8/300H, variable argument functions must be
- implemented using the ANSI standard `stdarg.h' method of variable
- arguments. Furthermore, calls to functions using `stdarg.h'
- variable arguments must have a prototype for the called function
- in scope at the time of the call.
-
-
-File: gcc.info, Node: C++ Misunderstandings, Next: Protoize Caveats, Prev: Disappointments, Up: Trouble
-
-Common Misunderstandings with GNU C++
-=====================================
-
- C++ is a complex language and an evolving one, and its standard
-definition (the ANSI C++ draft standard) is also evolving. As a result,
-your C++ compiler may occasionally surprise you, even when its behavior
-is correct. This section discusses some areas that frequently give
-rise to questions of this sort.
-
-* Menu:
-
-* Static Definitions:: Static member declarations are not definitions
-* Temporaries:: Temporaries may vanish before you expect
-
-
-File: gcc.info, Node: Static Definitions, Next: Temporaries, Up: C++ Misunderstandings
-
-Declare *and* Define Static Members
------------------------------------
-
- When a class has static data members, it is not enough to *declare*
-the static member; you must also *define* it. For example:
-
- class Foo
- {
- ...
- void method();
- static int bar;
- };
-
- This declaration only establishes that the class `Foo' has an `int'
-named `Foo::bar', and a member function named `Foo::method'. But you
-still need to define *both* `method' and `bar' elsewhere. According to
-the draft ANSI standard, you must supply an initializer in one (and
-only one) source file, such as:
-
- int Foo::bar = 0;
-
- Other C++ compilers may not correctly implement the standard
-behavior. As a result, when you switch to `g++' from one of these
-compilers, you may discover that a program that appeared to work
-correctly in fact does not conform to the standard: `g++' reports as
-undefined symbols any static data members that lack definitions.
-
-
-File: gcc.info, Node: Temporaries, Prev: Static Definitions, Up: C++ Misunderstandings
-
-Temporaries May Vanish Before You Expect
-----------------------------------------
-
- It is dangerous to use pointers or references to *portions* of a
-temporary object. The compiler may very well delete the object before
-you expect it to, leaving a pointer to garbage. The most common place
-where this problem crops up is in classes like the libg++ `String'
-class, that define a conversion function to type `char *' or `const
-char *'. However, any class that returns a pointer to some internal
-structure is potentially subject to this problem.
-
- For example, a program may use a function `strfunc' that returns
-`String' objects, and another function `charfunc' that operates on
-pointers to `char':
-
- String strfunc ();
- void charfunc (const char *);
-
-In this situation, it may seem natural to write
-`charfunc (strfunc ());' based on the knowledge that class `String' has
-an explicit conversion to `char' pointers. However, what really
-happens is akin to `charfunc (strfunc ().convert ());', where the
-`convert' method is a function to do the same data conversion normally
-performed by a cast. Since the last use of the temporary `String'
-object is the call to the conversion function, the compiler may delete
-that object before actually calling `charfunc'. The compiler has no
-way of knowing that deleting the `String' object will invalidate the
-pointer. The pointer then points to garbage, so that by the time
-`charfunc' is called, it gets an invalid argument.
-
- Code like this may run successfully under some other compilers,
-especially those that delete temporaries relatively late. However, the
-GNU C++ behavior is also standard-conforming, so if your program depends
-on late destruction of temporaries it is not portable.
-
- If you think this is surprising, you should be aware that the ANSI
-C++ committee continues to debate the lifetime-of-temporaries problem.
-
- For now, at least, the safe way to write such code is to give the
-temporary a name, which forces it to remain until the end of the scope
-of the name. For example:
-
- String& tmp = strfunc ();
- charfunc (tmp);
-
-
-File: gcc.info, Node: Protoize Caveats, Next: Non-bugs, Prev: C++ Misunderstandings, Up: Trouble
-
-Caveats of using `protoize'
-===========================
-
- The conversion programs `protoize' and `unprotoize' can sometimes
-change a source file in a way that won't work unless you rearrange it.
-
- * `protoize' can insert references to a type name or type tag before
- the definition, or in a file where they are not defined.
-
- If this happens, compiler error messages should show you where the
- new references are, so fixing the file by hand is straightforward.
-
- * There are some C constructs which `protoize' cannot figure out.
- For example, it can't determine argument types for declaring a
- pointer-to-function variable; this you must do by hand. `protoize'
- inserts a comment containing `???' each time it finds such a
- variable; so you can find all such variables by searching for this
- string. ANSI C does not require declaring the argument types of
- pointer-to-function types.
-
- * Using `unprotoize' can easily introduce bugs. If the program
- relied on prototypes to bring about conversion of arguments, these
- conversions will not take place in the program without prototypes.
- One case in which you can be sure `unprotoize' is safe is when you
- are removing prototypes that were made with `protoize'; if the
- program worked before without any prototypes, it will work again
- without them.
-
- You can find all the places where this problem might occur by
- compiling the program with the `-Wconversion' option. It prints a
- warning whenever an argument is converted.
-
- * Both conversion programs can be confused if there are macro calls
- in and around the text to be converted. In other words, the
- standard syntax for a declaration or definition must not result
- from expanding a macro. This problem is inherent in the design of
- C and cannot be fixed. If only a few functions have confusing
- macro calls, you can easily convert them manually.
-
- * `protoize' cannot get the argument types for a function whose
- definition was not actually compiled due to preprocessing
- conditionals. When this happens, `protoize' changes nothing in
- regard to such a function. `protoize' tries to detect such
- instances and warn about them.
-
- You can generally work around this problem by using `protoize' step
- by step, each time specifying a different set of `-D' options for
- compilation, until all of the functions have been converted.
- There is no automatic way to verify that you have got them all,
- however.
-
- * Confusion may result if there is an occasion to convert a function
- declaration or definition in a region of source code where there
- is more than one formal parameter list present. Thus, attempts to
- convert code containing multiple (conditionally compiled) versions
- of a single function header (in the same vicinity) may not produce
- the desired (or expected) results.
-
- If you plan on converting source files which contain such code, it
- is recommended that you first make sure that each conditionally
- compiled region of source code which contains an alternative
- function header also contains at least one additional follower
- token (past the final right parenthesis of the function header).
- This should circumvent the problem.
-
- * `unprotoize' can become confused when trying to convert a function
- definition or declaration which contains a declaration for a
- pointer-to-function formal argument which has the same name as the
- function being defined or declared. We recommand you avoid such
- choices of formal parameter names.
-
- * You might also want to correct some of the indentation by hand and
- break long lines. (The conversion programs don't write lines
- longer than eighty characters in any case.)
-
-
-File: gcc.info, Node: Non-bugs, Next: Warnings and Errors, Prev: Protoize Caveats, Up: Trouble
-
-Certain Changes We Don't Want to Make
-=====================================
-
- This section lists changes that people frequently request, but which
-we do not make because we think GNU CC is better without them.
-
- * Checking the number and type of arguments to a function which has
- an old-fashioned definition and no prototype.
-
- Such a feature would work only occasionally--only for calls that
- appear in the same file as the called function, following the
- definition. The only way to check all calls reliably is to add a
- prototype for the function. But adding a prototype eliminates the
- motivation for this feature. So the feature is not worthwhile.
-
- * Warning about using an expression whose type is signed as a shift
- count.
-
- Shift count operands are probably signed more often than unsigned.
- Warning about this would cause far more annoyance than good.
-
- * Warning about assigning a signed value to an unsigned variable.
-
- Such assignments must be very common; warning about them would
- cause more annoyance than good.
-
- * Warning about unreachable code.
-
- It's very common to have unreachable code in machine-generated
- programs. For example, this happens normally in some files of GNU
- C itself.
-
- * Warning when a non-void function value is ignored.
-
- Coming as I do from a Lisp background, I balk at the idea that
- there is something dangerous about discarding a value. There are
- functions that return values which some callers may find useful;
- it makes no sense to clutter the program with a cast to `void'
- whenever the value isn't useful.
-
- * Assuming (for optimization) that the address of an external symbol
- is never zero.
-
- This assumption is false on certain systems when `#pragma weak' is
- used.
-
- * Making `-fshort-enums' the default.
-
- This would cause storage layout to be incompatible with most other
- C compilers. And it doesn't seem very important, given that you
- can get the same result in other ways. The case where it matters
- most is when the enumeration-valued object is inside a structure,
- and in that case you can specify a field width explicitly.
-
- * Making bitfields unsigned by default on particular machines where
- "the ABI standard" says to do so.
-
- The ANSI C standard leaves it up to the implementation whether a
- bitfield declared plain `int' is signed or not. This in effect
- creates two alternative dialects of C.
-
- The GNU C compiler supports both dialects; you can specify the
- signed dialect with `-fsigned-bitfields' and the unsigned dialect
- with `-funsigned-bitfields'. However, this leaves open the
- question of which dialect to use by default.
-
- Currently, the preferred dialect makes plain bitfields signed,
- because this is simplest. Since `int' is the same as `signed int'
- in every other context, it is cleanest for them to be the same in
- bitfields as well.
-
- Some computer manufacturers have published Application Binary
- Interface standards which specify that plain bitfields should be
- unsigned. It is a mistake, however, to say anything about this
- issue in an ABI. This is because the handling of plain bitfields
- distinguishes two dialects of C. Both dialects are meaningful on
- every type of machine. Whether a particular object file was
- compiled using signed bitfields or unsigned is of no concern to
- other object files, even if they access the same bitfields in the
- same data structures.
-
- A given program is written in one or the other of these two
- dialects. The program stands a chance to work on most any machine
- if it is compiled with the proper dialect. It is unlikely to work
- at all if compiled with the wrong dialect.
-
- Many users appreciate the GNU C compiler because it provides an
- environment that is uniform across machines. These users would be
- inconvenienced if the compiler treated plain bitfields differently
- on certain machines.
-
- Occasionally users write programs intended only for a particular
- machine type. On these occasions, the users would benefit if the
- GNU C compiler were to support by default the same dialect as the
- other compilers on that machine. But such applications are rare.
- And users writing a program to run on more than one type of
- machine cannot possibly benefit from this kind of compatibility.
-
- This is why GNU CC does and will treat plain bitfields in the same
- fashion on all types of machines (by default).
-
- There are some arguments for making bitfields unsigned by default
- on all machines. If, for example, this becomes a universal de
- facto standard, it would make sense for GNU CC to go along with
- it. This is something to be considered in the future.
-
- (Of course, users strongly concerned about portability should
- indicate explicitly in each bitfield whether it is signed or not.
- In this way, they write programs which have the same meaning in
- both C dialects.)
-
- * Undefining `__STDC__' when `-ansi' is not used.
-
- Currently, GNU CC defines `__STDC__' as long as you don't use
- `-traditional'. This provides good results in practice.
-
- Programmers normally use conditionals on `__STDC__' to ask whether
- it is safe to use certain features of ANSI C, such as function
- prototypes or ANSI token concatenation. Since plain `gcc' supports
- all the features of ANSI C, the correct answer to these questions
- is "yes".
-
- Some users try to use `__STDC__' to check for the availability of
- certain library facilities. This is actually incorrect usage in
- an ANSI C program, because the ANSI C standard says that a
- conforming freestanding implementation should define `__STDC__'
- even though it does not have the library facilities. `gcc -ansi
- -pedantic' is a conforming freestanding implementation, and it is
- therefore required to define `__STDC__', even though it does not
- come with an ANSI C library.
-
- Sometimes people say that defining `__STDC__' in a compiler that
- does not completely conform to the ANSI C standard somehow
- violates the standard. This is illogical. The standard is a
- standard for compilers that claim to support ANSI C, such as `gcc
- -ansi'--not for other compilers such as plain `gcc'. Whatever the
- ANSI C standard says is relevant to the design of plain `gcc'
- without `-ansi' only for pragmatic reasons, not as a requirement.
-
- GNU CC normally defines `__STDC__' to be 1, and in addition
- defines `__STRICT_ANSI__' if you specify the `-ansi' option. On
- some hosts, system include files use a different convention, where
- `__STDC__' is normally 0, but is 1 if the user specifies strict
- conformance to the C Standard. GNU CC follows the host convention
- when processing system include files, but when processing user
- files it follows the usual GNU C convention.
-
- * Undefining `__STDC__' in C++.
-
- Programs written to compile with C++-to-C translators get the
- value of `__STDC__' that goes with the C compiler that is
- subsequently used. These programs must test `__STDC__' to
- determine what kind of C preprocessor that compiler uses: whether
- they should concatenate tokens in the ANSI C fashion or in the
- traditional fashion.
-
- These programs work properly with GNU C++ if `__STDC__' is defined.
- They would not work otherwise.
-
- In addition, many header files are written to provide prototypes
- in ANSI C but not in traditional C. Many of these header files
- can work without change in C++ provided `__STDC__' is defined. If
- `__STDC__' is not defined, they will all fail, and will all need
- to be changed to test explicitly for C++ as well.
-
- * Deleting "empty" loops.
-
- GNU CC does not delete "empty" loops because the most likely reason
- you would put one in a program is to have a delay. Deleting them
- will not make real programs run any faster, so it would be
- pointless.
-
- It would be different if optimization of a nonempty loop could
- produce an empty one. But this generally can't happen.
-
- * Making side effects happen in the same order as in some other
- compiler.
-
- It is never safe to depend on the order of evaluation of side
- effects. For example, a function call like this may very well
- behave differently from one compiler to another:
-
- void func (int, int);
-
- int i = 2;
- func (i++, i++);
-
- There is no guarantee (in either the C or the C++ standard language
- definitions) that the increments will be evaluated in any
- particular order. Either increment might happen first. `func'
- might get the arguments `2, 3', or it might get `3, 2', or even
- `2, 2'.
-
- * Not allowing structures with volatile fields in registers.
-
- Strictly speaking, there is no prohibition in the ANSI C standard
- against allowing structures with volatile fields in registers, but
- it does not seem to make any sense and is probably not what you
- wanted to do. So the compiler will give an error message in this
- case.
-
-
-File: gcc.info, Node: Warnings and Errors, Prev: Non-bugs, Up: Trouble
-
-Warning Messages and Error Messages
-===================================
-
- The GNU compiler can produce two kinds of diagnostics: errors and
-warnings. Each kind has a different purpose:
-
- *Errors* report problems that make it impossible to compile your
- program. GNU CC reports errors with the source file name and line
- number where the problem is apparent.
-
- *Warnings* report other unusual conditions in your code that *may*
- indicate a problem, although compilation can (and does) proceed.
- Warning messages also report the source file name and line number,
- but include the text `warning:' to distinguish them from error
- messages.
-
- Warnings may indicate danger points where you should check to make
-sure that your program really does what you intend; or the use of
-obsolete features; or the use of nonstandard features of GNU C or C++.
-Many warnings are issued only if you ask for them, with one of the `-W'
-options (for instance, `-Wall' requests a variety of useful warnings).
-
- GNU CC always tries to compile your program if possible; it never
-gratuitously rejects a program whose meaning is clear merely because
-(for instance) it fails to conform to a standard. In some cases,
-however, the C and C++ standards specify that certain extensions are
-forbidden, and a diagnostic *must* be issued by a conforming compiler.
-The `-pedantic' option tells GNU CC to issue warnings in such cases;
-`-pedantic-errors' says to make them errors instead. This does not
-mean that *all* non-ANSI constructs get warnings or errors.
-
- *Note Options to Request or Suppress Warnings: Warning Options, for
-more detail on these and related command-line options.
-
-
-File: gcc.info, Node: Bugs, Next: Service, Prev: Trouble, Up: Top
-
-Reporting Bugs
-**************
-
- Your bug reports play an essential role in making GNU CC reliable.
-
- When you encounter a problem, the first thing to do is to see if it
-is already known. *Note Trouble::. If it isn't known, then you should
-report the problem.
-
- Reporting a bug may help you by bringing a solution to your problem,
-or it may not. (If it does not, look in the service directory; see
-*Note Service::.) In any case, the principal function of a bug report
-is to help the entire community by making the next version of GNU CC
-work better. Bug reports are your contribution to the maintenance of
-GNU CC.
-
- Since the maintainers are very overloaded, we cannot respond to every
-bug report. However, if the bug has not been fixed, we are likely to
-send you a patch and ask you to tell us whether it works.
-
- In order for a bug report to serve its purpose, you must include the
-information that makes for fixing the bug.
-
-* Menu:
-
-* Criteria: Bug Criteria. Have you really found a bug?
-* Where: Bug Lists. Where to send your bug report.
-* Reporting: Bug Reporting. How to report a bug effectively.
-* Patches: Sending Patches. How to send a patch for GNU CC.
-* Known: Trouble. Known problems.
-* Help: Service. Where to ask for help.
-
-
-File: gcc.info, Node: Bug Criteria, Next: Bug Lists, Up: Bugs
-
-Have You Found a Bug?
-=====================
-
- If you are not sure whether you have found a bug, here are some
-guidelines:
-
- * If the compiler gets a fatal signal, for any input whatever, that
- is a compiler bug. Reliable compilers never crash.
-
- * If the compiler produces invalid assembly code, for any input
- whatever (except an `asm' statement), that is a compiler bug,
- unless the compiler reports errors (not just warnings) which would
- ordinarily prevent the assembler from being run.
-
- * If the compiler produces valid assembly code that does not
- correctly execute the input source code, that is a compiler bug.
-
- However, you must double-check to make sure, because you may have
- run into an incompatibility between GNU C and traditional C (*note
- Incompatibilities::.). These incompatibilities might be considered
- bugs, but they are inescapable consequences of valuable features.
-
- Or you may have a program whose behavior is undefined, which
- happened by chance to give the desired results with another C or
- C++ compiler.
-
- For example, in many nonoptimizing compilers, you can write `x;'
- at the end of a function instead of `return x;', with the same
- results. But the value of the function is undefined if `return'
- is omitted; it is not a bug when GNU CC produces different results.
-
- Problems often result from expressions with two increment
- operators, as in `f (*p++, *p++)'. Your previous compiler might
- have interpreted that expression the way you intended; GNU CC might
- interpret it another way. Neither compiler is wrong. The bug is
- in your code.
-
- After you have localized the error to a single source line, it
- should be easy to check for these things. If your program is
- correct and well defined, you have found a compiler bug.
-
- * If the compiler produces an error message for valid input, that is
- a compiler bug.
-
- * If the compiler does not produce an error message for invalid
- input, that is a compiler bug. However, you should note that your
- idea of "invalid input" might be my idea of "an extension" or
- "support for traditional practice".
-
- * If you are an experienced user of C or C++ compilers, your
- suggestions for improvement of GNU CC or GNU C++ are welcome in
- any case.
-
-
-File: gcc.info, Node: Bug Lists, Next: Bug Reporting, Prev: Bug Criteria, Up: Bugs
-
-Where to Report Bugs
-====================
-
- Send bug reports for GNU C to `bug-gcc@prep.ai.mit.edu'.
-
- Send bug reports for GNU C++ to `bug-g++@prep.ai.mit.edu'. If your
-bug involves the C++ class library libg++, send mail instead to the
-address `bug-lib-g++@prep.ai.mit.edu'. If you're not sure, you can
-send the bug report to both lists.
-
- *Do not send bug reports to `help-gcc@prep.ai.mit.edu' or to the
-newsgroup `gnu.gcc.help'.* Most users of GNU CC do not want to receive
-bug reports. Those that do, have asked to be on `bug-gcc' and/or
-`bug-g++'.
-
- The mailing lists `bug-gcc' and `bug-g++' both have newsgroups which
-serve as repeaters: `gnu.gcc.bug' and `gnu.g++.bug'. Each mailing list
-and its newsgroup carry exactly the same messages.
-
- Often people think of posting bug reports to the newsgroup instead of
-mailing them. This appears to work, but it has one problem which can be
-crucial: a newsgroup posting does not contain a mail path back to the
-sender. Thus, if maintainers need more information, they may be unable
-to reach you. For this reason, you should always send bug reports by
-mail to the proper mailing list.
-
- As a last resort, send bug reports on paper to:
-
- GNU Compiler Bugs
- Free Software Foundation
- 59 Temple Place - Suite 330
- Boston, MA 02111-1307, USA
-
diff --git a/gcc/gcc.info-13 b/gcc/gcc.info-13
deleted file mode 100644
index baeaa8a80fe..00000000000
--- a/gcc/gcc.info-13
+++ /dev/null
@@ -1,853 +0,0 @@
-This is Info file gcc.info, produced by Makeinfo version 1.68 from the
-input file gcc.texi.
-
- This file documents the use and the internals of the GNU compiler.
-
- Published by the Free Software Foundation 59 Temple Place - Suite 330
-Boston, MA 02111-1307 USA
-
- Copyright (C) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997 Free
-Software Foundation, Inc.
-
- Permission is granted to make and distribute verbatim copies of this
-manual provided the copyright notice and this permission notice are
-preserved on all copies.
-
- Permission is granted to copy and distribute modified versions of
-this manual under the conditions for verbatim copying, provided also
-that the sections entitled "GNU General Public License," "Funding for
-Free Software," and "Protect Your Freedom--Fight `Look And Feel'" are
-included exactly as in the original, and provided that the entire
-resulting derived work is distributed under the terms of a permission
-notice identical to this one.
-
- Permission is granted to copy and distribute translations of this
-manual into another language, under the above conditions for modified
-versions, except that the sections entitled "GNU General Public
-License," "Funding for Free Software," and "Protect Your Freedom--Fight
-`Look And Feel'", and this permission notice, may be included in
-translations approved by the Free Software Foundation instead of in the
-original English.
-
-
-File: gcc.info, Node: Bug Reporting, Next: Sending Patches, Prev: Bug Lists, Up: Bugs
-
-How to Report Bugs
-==================
-
- The fundamental principle of reporting bugs usefully is this:
-*report all the facts*. If you are not sure whether to state a fact or
-leave it out, state it!
-
- Often people omit facts because they think they know what causes the
-problem and they conclude that some details don't matter. Thus, you
-might assume that the name of the variable you use in an example does
-not matter. Well, probably it doesn't, but one cannot be sure.
-Perhaps the bug is a stray memory reference which happens to fetch from
-the location where that name is stored in memory; perhaps, if the name
-were different, the contents of that location would fool the compiler
-into doing the right thing despite the bug. Play it safe and give a
-specific, complete example. That is the easiest thing for you to do,
-and the most helpful.
-
- Keep in mind that the purpose of a bug report is to enable someone to
-fix the bug if it is not known. It isn't very important what happens if
-the bug is already known. Therefore, always write your bug reports on
-the assumption that the bug is not known.
-
- Sometimes people give a few sketchy facts and ask, "Does this ring a
-bell?" This cannot help us fix a bug, so it is basically useless. We
-respond by asking for enough details to enable us to investigate. You
-might as well expedite matters by sending them to begin with.
-
- Try to make your bug report self-contained. If we have to ask you
-for more information, it is best if you include all the previous
-information in your response, as well as the information that was
-missing.
-
- Please report each bug in a separate message. This makes it easier
-for us to track which bugs have been fixed and to forward your bugs
-reports to the appropriate maintainer.
-
- Do not compress and encode any part of your bug report using programs
-such as `uuencode'. If you do so it will slow down the processing of
-your bug. If you must submit multiple large files, use `shar', which
-allows us to read your message without having to run any decompression
-programs.
-
- To enable someone to investigate the bug, you should include all
-these things:
-
- * The version of GNU CC. You can get this by running it with the
- `-v' option.
-
- Without this, we won't know whether there is any point in looking
- for the bug in the current version of GNU CC.
-
- * A complete input file that will reproduce the bug. If the bug is
- in the C preprocessor, send a source file and any header files
- that it requires. If the bug is in the compiler proper (`cc1'),
- run your source file through the C preprocessor by doing `gcc -E
- SOURCEFILE > OUTFILE', then include the contents of OUTFILE in the
- bug report. (When you do this, use the same `-I', `-D' or `-U'
- options that you used in actual compilation.)
-
- A single statement is not enough of an example. In order to
- compile it, it must be embedded in a complete file of compiler
- input; and the bug might depend on the details of how this is done.
-
- Without a real example one can compile, all anyone can do about
- your bug report is wish you luck. It would be futile to try to
- guess how to provoke the bug. For example, bugs in register
- allocation and reloading frequently depend on every little detail
- of the function they happen in.
-
- Even if the input file that fails comes from a GNU program, you
- should still send the complete test case. Don't ask the GNU CC
- maintainers to do the extra work of obtaining the program in
- question--they are all overworked as it is. Also, the problem may
- depend on what is in the header files on your system; it is
- unreliable for the GNU CC maintainers to try the problem with the
- header files available to them. By sending CPP output, you can
- eliminate this source of uncertainty and save us a certain
- percentage of wild goose chases.
-
- * The command arguments you gave GNU CC or GNU C++ to compile that
- example and observe the bug. For example, did you use `-O'? To
- guarantee you won't omit something important, list all the options.
-
- If we were to try to guess the arguments, we would probably guess
- wrong and then we would not encounter the bug.
-
- * The type of machine you are using, and the operating system name
- and version number.
-
- * The operands you gave to the `configure' command when you installed
- the compiler.
-
- * A complete list of any modifications you have made to the compiler
- source. (We don't promise to investigate the bug unless it
- happens in an unmodified compiler. But if you've made
- modifications and don't tell us, then you are sending us on a wild
- goose chase.)
-
- Be precise about these changes. A description in English is not
- enough--send a context diff for them.
-
- Adding files of your own (such as a machine description for a
- machine we don't support) is a modification of the compiler source.
-
- * Details of any other deviations from the standard procedure for
- installing GNU CC.
-
- * A description of what behavior you observe that you believe is
- incorrect. For example, "The compiler gets a fatal signal," or,
- "The assembler instruction at line 208 in the output is incorrect."
-
- Of course, if the bug is that the compiler gets a fatal signal,
- then one can't miss it. But if the bug is incorrect output, the
- maintainer might not notice unless it is glaringly wrong. None of
- us has time to study all the assembler code from a 50-line C
- program just on the chance that one instruction might be wrong.
- We need *you* to do this part!
-
- Even if the problem you experience is a fatal signal, you should
- still say so explicitly. Suppose something strange is going on,
- such as, your copy of the compiler is out of synch, or you have
- encountered a bug in the C library on your system. (This has
- happened!) Your copy might crash and the copy here would not. If
- you said to expect a crash, then when the compiler here fails to
- crash, we would know that the bug was not happening. If you don't
- say to expect a crash, then we would not know whether the bug was
- happening. We would not be able to draw any conclusion from our
- observations.
-
- If the problem is a diagnostic when compiling GNU CC with some
- other compiler, say whether it is a warning or an error.
-
- Often the observed symptom is incorrect output when your program
- is run. Sad to say, this is not enough information unless the
- program is short and simple. None of us has time to study a large
- program to figure out how it would work if compiled correctly,
- much less which line of it was compiled wrong. So you will have
- to do that. Tell us which source line it is, and what incorrect
- result happens when that line is executed. A person who
- understands the program can find this as easily as finding a bug
- in the program itself.
-
- * If you send examples of assembler code output from GNU CC or GNU
- C++, please use `-g' when you make them. The debugging information
- includes source line numbers which are essential for correlating
- the output with the input.
-
- * If you wish to mention something in the GNU CC source, refer to it
- by context, not by line number.
-
- The line numbers in the development sources don't match those in
- your sources. Your line numbers would convey no useful
- information to the maintainers.
-
- * Additional information from a debugger might enable someone to
- find a problem on a machine which he does not have available.
- However, you need to think when you collect this information if
- you want it to have any chance of being useful.
-
- For example, many people send just a backtrace, but that is never
- useful by itself. A simple backtrace with arguments conveys little
- about GNU CC because the compiler is largely data-driven; the same
- functions are called over and over for different RTL insns, doing
- different things depending on the details of the insn.
-
- Most of the arguments listed in the backtrace are useless because
- they are pointers to RTL list structure. The numeric values of the
- pointers, which the debugger prints in the backtrace, have no
- significance whatever; all that matters is the contents of the
- objects they point to (and most of the contents are other such
- pointers).
-
- In addition, most compiler passes consist of one or more loops that
- scan the RTL insn sequence. The most vital piece of information
- about such a loop--which insn it has reached--is usually in a
- local variable, not in an argument.
-
- What you need to provide in addition to a backtrace are the values
- of the local variables for several stack frames up. When a local
- variable or an argument is an RTX, first print its value and then
- use the GDB command `pr' to print the RTL expression that it points
- to. (If GDB doesn't run on your machine, use your debugger to call
- the function `debug_rtx' with the RTX as an argument.) In
- general, whenever a variable is a pointer, its value is no use
- without the data it points to.
-
- Here are some things that are not necessary:
-
- * A description of the envelope of the bug.
-
- Often people who encounter a bug spend a lot of time investigating
- which changes to the input file will make the bug go away and which
- changes will not affect it.
-
- This is often time consuming and not very useful, because the way
- we will find the bug is by running a single example under the
- debugger with breakpoints, not by pure deduction from a series of
- examples. You might as well save your time for something else.
-
- Of course, if you can find a simpler example to report *instead* of
- the original one, that is a convenience. Errors in the output
- will be easier to spot, running under the debugger will take less
- time, etc. Most GNU CC bugs involve just one function, so the
- most straightforward way to simplify an example is to delete all
- the function definitions except the one where the bug occurs.
- Those earlier in the file may be replaced by external declarations
- if the crucial function depends on them. (Exception: inline
- functions may affect compilation of functions defined later in the
- file.)
-
- However, simplification is not vital; if you don't want to do this,
- report the bug anyway and send the entire test case you used.
-
- * In particular, some people insert conditionals `#ifdef BUG' around
- a statement which, if removed, makes the bug not happen. These
- are just clutter; we won't pay any attention to them anyway.
- Besides, you should send us cpp output, and that can't have
- conditionals.
-
- * A patch for the bug.
-
- A patch for the bug is useful if it is a good one. But don't omit
- the necessary information, such as the test case, on the
- assumption that a patch is all we need. We might see problems
- with your patch and decide to fix the problem another way, or we
- might not understand it at all.
-
- Sometimes with a program as complicated as GNU CC it is very hard
- to construct an example that will make the program follow a
- certain path through the code. If you don't send the example, we
- won't be able to construct one, so we won't be able to verify that
- the bug is fixed.
-
- And if we can't understand what bug you are trying to fix, or why
- your patch should be an improvement, we won't install it. A test
- case will help us to understand.
-
- *Note Sending Patches::, for guidelines on how to make it easy for
- us to understand and install your patches.
-
- * A guess about what the bug is or what it depends on.
-
- Such guesses are usually wrong. Even I can't guess right about
- such things without first using the debugger to find the facts.
-
- * A core dump file.
-
- We have no way of examining a core dump for your type of machine
- unless we have an identical system--and if we do have one, we
- should be able to reproduce the crash ourselves.
-
-
-File: gcc.info, Node: Sending Patches, Prev: Bug Reporting, Up: Bugs
-
-Sending Patches for GNU CC
-==========================
-
- If you would like to write bug fixes or improvements for the GNU C
-compiler, that is very helpful. Send suggested fixes to the bug report
-mailing list, `bug-gcc@prep.ai.mit.edu'.
-
- Please follow these guidelines so we can study your patches
-efficiently. If you don't follow these guidelines, your information
-might still be useful, but using it will take extra work. Maintaining
-GNU C is a lot of work in the best of circumstances, and we can't keep
-up unless you do your best to help.
-
- * Send an explanation with your changes of what problem they fix or
- what improvement they bring about. For a bug fix, just include a
- copy of the bug report, and explain why the change fixes the bug.
-
- (Referring to a bug report is not as good as including it, because
- then we will have to look it up, and we have probably already
- deleted it if we've already fixed the bug.)
-
- * Always include a proper bug report for the problem you think you
- have fixed. We need to convince ourselves that the change is
- right before installing it. Even if it is right, we might have
- trouble judging it if we don't have a way to reproduce the problem.
-
- * Include all the comments that are appropriate to help people
- reading the source in the future understand why this change was
- needed.
-
- * Don't mix together changes made for different reasons. Send them
- *individually*.
-
- If you make two changes for separate reasons, then we might not
- want to install them both. We might want to install just one. If
- you send them all jumbled together in a single set of diffs, we
- have to do extra work to disentangle them--to figure out which
- parts of the change serve which purpose. If we don't have time
- for this, we might have to ignore your changes entirely.
-
- If you send each change as soon as you have written it, with its
- own explanation, then the two changes never get tangled up, and we
- can consider each one properly without any extra work to
- disentangle them.
-
- Ideally, each change you send should be impossible to subdivide
- into parts that we might want to consider separately, because each
- of its parts gets its motivation from the other parts.
-
- * Send each change as soon as that change is finished. Sometimes
- people think they are helping us by accumulating many changes to
- send them all together. As explained above, this is absolutely
- the worst thing you could do.
-
- Since you should send each change separately, you might as well
- send it right away. That gives us the option of installing it
- immediately if it is important.
-
- * Use `diff -c' to make your diffs. Diffs without context are hard
- for us to install reliably. More than that, they make it hard for
- us to study the diffs to decide whether we want to install them.
- Unidiff format is better than contextless diffs, but not as easy
- to read as `-c' format.
-
- If you have GNU diff, use `diff -cp', which shows the name of the
- function that each change occurs in.
-
- * Write the change log entries for your changes. We get lots of
- changes, and we don't have time to do all the change log writing
- ourselves.
-
- Read the `ChangeLog' file to see what sorts of information to put
- in, and to learn the style that we use. The purpose of the change
- log is to show people where to find what was changed. So you need
- to be specific about what functions you changed; in large
- functions, it's often helpful to indicate where within the
- function the change was.
-
- On the other hand, once you have shown people where to find the
- change, you need not explain its purpose. Thus, if you add a new
- function, all you need to say about it is that it is new. If you
- feel that the purpose needs explaining, it probably does--but the
- explanation will be much more useful if you put it in comments in
- the code.
-
- If you would like your name to appear in the header line for who
- made the change, send us the header line.
-
- * When you write the fix, keep in mind that we can't install a
- change that would break other systems.
-
- People often suggest fixing a problem by changing
- machine-independent files such as `toplev.c' to do something
- special that a particular system needs. Sometimes it is totally
- obvious that such changes would break GNU CC for almost all users.
- We can't possibly make a change like that. At best it might tell
- us how to write another patch that would solve the problem
- acceptably.
-
- Sometimes people send fixes that *might* be an improvement in
- general--but it is hard to be sure of this. It's hard to install
- such changes because we have to study them very carefully. Of
- course, a good explanation of the reasoning by which you concluded
- the change was correct can help convince us.
-
- The safest changes are changes to the configuration files for a
- particular machine. These are safe because they can't create new
- bugs on other machines.
-
- Please help us keep up with the workload by designing the patch in
- a form that is good to install.
-
-
-File: gcc.info, Node: Service, Next: Contributing, Prev: Bugs, Up: Top
-
-How To Get Help with GNU CC
-***************************
-
- If you need help installing, using or changing GNU CC, there are two
-ways to find it:
-
- * Send a message to a suitable network mailing list. First try
- `bug-gcc@prep.ai.mit.edu', and if that brings no response, try
- `help-gcc@prep.ai.mit.edu'.
-
- * Look in the service directory for someone who might help you for a
- fee. The service directory is found in the file named `SERVICE'
- in the GNU CC distribution.
-
-
-File: gcc.info, Node: Contributing, Next: VMS, Prev: Service, Up: Top
-
-Contributing to GNU CC Development
-**********************************
-
- If you would like to help pretest GNU CC releases to assure they work
-well, or if you would like to work on improving GNU CC, please contact
-the maintainers at `bug-gcc@gnu.ai.mit.edu'. A pretester should be
-willing to try to investigate bugs as well as report them.
-
- If you'd like to work on improvements, please ask for suggested
-projects or suggest your own ideas. If you have already written an
-improvement, please tell us about it. If you have not yet started
-work, it is useful to contact `bug-gcc@prep.ai.mit.edu' before you
-start; the maintainers may be able to suggest ways to make your
-extension fit in better with the rest of GNU CC and with other
-development plans.
-
-
-File: gcc.info, Node: VMS, Next: Portability, Prev: Contributing, Up: Top
-
-Using GNU CC on VMS
-*******************
-
- Here is how to use GNU CC on VMS.
-
-* Menu:
-
-* Include Files and VMS:: Where the preprocessor looks for the include files.
-* Global Declarations:: How to do globaldef, globalref and globalvalue with
- GNU CC.
-* VMS Misc:: Misc information.
-
-
-File: gcc.info, Node: Include Files and VMS, Next: Global Declarations, Up: VMS
-
-Include Files and VMS
-=====================
-
- Due to the differences between the filesystems of Unix and VMS, GNU
-CC attempts to translate file names in `#include' into names that VMS
-will understand. The basic strategy is to prepend a prefix to the
-specification of the include file, convert the whole filename to a VMS
-filename, and then try to open the file. GNU CC tries various prefixes
-one by one until one of them succeeds:
-
- 1. The first prefix is the `GNU_CC_INCLUDE:' logical name: this is
- where GNU C header files are traditionally stored. If you wish to
- store header files in non-standard locations, then you can assign
- the logical `GNU_CC_INCLUDE' to be a search list, where each
- element of the list is suitable for use with a rooted logical.
-
- 2. The next prefix tried is `SYS$SYSROOT:[SYSLIB.]'. This is where
- VAX-C header files are traditionally stored.
-
- 3. If the include file specification by itself is a valid VMS
- filename, the preprocessor then uses this name with no prefix in
- an attempt to open the include file.
-
- 4. If the file specification is not a valid VMS filename (i.e. does
- not contain a device or a directory specifier, and contains a `/'
- character), the preprocessor tries to convert it from Unix syntax
- to VMS syntax.
-
- Conversion works like this: the first directory name becomes a
- device, and the rest of the directories are converted into
- VMS-format directory names. For example, the name `X11/foobar.h'
- is translated to `X11:[000000]foobar.h' or `X11:foobar.h',
- whichever one can be opened. This strategy allows you to assign a
- logical name to point to the actual location of the header files.
-
- 5. If none of these strategies succeeds, the `#include' fails.
-
- Include directives of the form:
-
- #include foobar
-
-are a common source of incompatibility between VAX-C and GNU CC. VAX-C
-treats this much like a standard `#include <foobar.h>' directive. That
-is incompatible with the ANSI C behavior implemented by GNU CC: to
-expand the name `foobar' as a macro. Macro expansion should eventually
-yield one of the two standard formats for `#include':
-
- #include "FILE"
- #include <FILE>
-
- If you have this problem, the best solution is to modify the source
-to convert the `#include' directives to one of the two standard forms.
-That will work with either compiler. If you want a quick and dirty fix,
-define the file names as macros with the proper expansion, like this:
-
- #define stdio <stdio.h>
-
-This will work, as long as the name doesn't conflict with anything else
-in the program.
-
- Another source of incompatibility is that VAX-C assumes that:
-
- #include "foobar"
-
-is actually asking for the file `foobar.h'. GNU CC does not make this
-assumption, and instead takes what you ask for literally; it tries to
-read the file `foobar'. The best way to avoid this problem is to
-always specify the desired file extension in your include directives.
-
- GNU CC for VMS is distributed with a set of include files that is
-sufficient to compile most general purpose programs. Even though the
-GNU CC distribution does not contain header files to define constants
-and structures for some VMS system-specific functions, there is no
-reason why you cannot use GNU CC with any of these functions. You first
-may have to generate or create header files, either by using the public
-domain utility `UNSDL' (which can be found on a DECUS tape), or by
-extracting the relevant modules from one of the system macro libraries,
-and using an editor to construct a C header file.
-
- A `#include' file name cannot contain a DECNET node name. The
-preprocessor reports an I/O error if you attempt to use a node name,
-whether explicitly, or implicitly via a logical name.
-
-
-File: gcc.info, Node: Global Declarations, Next: VMS Misc, Prev: Include Files and VMS, Up: VMS
-
-Global Declarations and VMS
-===========================
-
- GNU CC does not provide the `globalref', `globaldef' and
-`globalvalue' keywords of VAX-C. You can get the same effect with an
-obscure feature of GAS, the GNU assembler. (This requires GAS version
-1.39 or later.) The following macros allow you to use this feature in
-a fairly natural way:
-
- #ifdef __GNUC__
- #define GLOBALREF(TYPE,NAME) \
- TYPE NAME \
- asm ("_$$PsectAttributes_GLOBALSYMBOL$$" #NAME)
- #define GLOBALDEF(TYPE,NAME,VALUE) \
- TYPE NAME \
- asm ("_$$PsectAttributes_GLOBALSYMBOL$$" #NAME) \
- = VALUE
- #define GLOBALVALUEREF(TYPE,NAME) \
- const TYPE NAME[1] \
- asm ("_$$PsectAttributes_GLOBALVALUE$$" #NAME)
- #define GLOBALVALUEDEF(TYPE,NAME,VALUE) \
- const TYPE NAME[1] \
- asm ("_$$PsectAttributes_GLOBALVALUE$$" #NAME) \
- = {VALUE}
- #else
- #define GLOBALREF(TYPE,NAME) \
- globalref TYPE NAME
- #define GLOBALDEF(TYPE,NAME,VALUE) \
- globaldef TYPE NAME = VALUE
- #define GLOBALVALUEDEF(TYPE,NAME,VALUE) \
- globalvalue TYPE NAME = VALUE
- #define GLOBALVALUEREF(TYPE,NAME) \
- globalvalue TYPE NAME
- #endif
-
-(The `_$$PsectAttributes_GLOBALSYMBOL' prefix at the start of the name
-is removed by the assembler, after it has modified the attributes of
-the symbol). These macros are provided in the VMS binaries
-distribution in a header file `GNU_HACKS.H'. An example of the usage
-is:
-
- GLOBALREF (int, ijk);
- GLOBALDEF (int, jkl, 0);
-
- The macros `GLOBALREF' and `GLOBALDEF' cannot be used
-straightforwardly for arrays, since there is no way to insert the array
-dimension into the declaration at the right place. However, you can
-declare an array with these macros if you first define a typedef for the
-array type, like this:
-
- typedef int intvector[10];
- GLOBALREF (intvector, foo);
-
- Array and structure initializers will also break the macros; you can
-define the initializer to be a macro of its own, or you can expand the
-`GLOBALDEF' macro by hand. You may find a case where you wish to use
-the `GLOBALDEF' macro with a large array, but you are not interested in
-explicitly initializing each element of the array. In such cases you
-can use an initializer like: `{0,}', which will initialize the entire
-array to `0'.
-
- A shortcoming of this implementation is that a variable declared with
-`GLOBALVALUEREF' or `GLOBALVALUEDEF' is always an array. For example,
-the declaration:
-
- GLOBALVALUEREF(int, ijk);
-
-declares the variable `ijk' as an array of type `int [1]'. This is
-done because a globalvalue is actually a constant; its "value" is what
-the linker would normally consider an address. That is not how an
-integer value works in C, but it is how an array works. So treating
-the symbol as an array name gives consistent results--with the
-exception that the value seems to have the wrong type. *Don't try to
-access an element of the array.* It doesn't have any elements. The
-array "address" may not be the address of actual storage.
-
- The fact that the symbol is an array may lead to warnings where the
-variable is used. Insert type casts to avoid the warnings. Here is an
-example; it takes advantage of the ANSI C feature allowing macros that
-expand to use the same name as the macro itself.
-
- GLOBALVALUEREF (int, ss$_normal);
- GLOBALVALUEDEF (int, xyzzy,123);
- #ifdef __GNUC__
- #define ss$_normal ((int) ss$_normal)
- #define xyzzy ((int) xyzzy)
- #endif
-
- Don't use `globaldef' or `globalref' with a variable whose type is
-an enumeration type; this is not implemented. Instead, make the
-variable an integer, and use a `globalvaluedef' for each of the
-enumeration values. An example of this would be:
-
- #ifdef __GNUC__
- GLOBALDEF (int, color, 0);
- GLOBALVALUEDEF (int, RED, 0);
- GLOBALVALUEDEF (int, BLUE, 1);
- GLOBALVALUEDEF (int, GREEN, 3);
- #else
- enum globaldef color {RED, BLUE, GREEN = 3};
- #endif
-
-
-File: gcc.info, Node: VMS Misc, Prev: Global Declarations, Up: VMS
-
-Other VMS Issues
-================
-
- GNU CC automatically arranges for `main' to return 1 by default if
-you fail to specify an explicit return value. This will be interpreted
-by VMS as a status code indicating a normal successful completion.
-Version 1 of GNU CC did not provide this default.
-
- GNU CC on VMS works only with the GNU assembler, GAS. You need
-version 1.37 or later of GAS in order to produce value debugging
-information for the VMS debugger. Use the ordinary VMS linker with the
-object files produced by GAS.
-
- Under previous versions of GNU CC, the generated code would
-occasionally give strange results when linked to the sharable `VAXCRTL'
-library. Now this should work.
-
- A caveat for use of `const' global variables: the `const' modifier
-must be specified in every external declaration of the variable in all
-of the source files that use that variable. Otherwise the linker will
-issue warnings about conflicting attributes for the variable. Your
-program will still work despite the warnings, but the variable will be
-placed in writable storage.
-
- Although the VMS linker does distinguish between upper and lower case
-letters in global symbols, most VMS compilers convert all such symbols
-into upper case and most run-time library routines also have upper case
-names. To be able to reliably call such routines, GNU CC (by means of
-the assembler GAS) converts global symbols into upper case like other
-VMS compilers. However, since the usual practice in C is to distinguish
-case, GNU CC (via GAS) tries to preserve usual C behavior by augmenting
-each name that is not all lower case. This means truncating the name
-to at most 23 characters and then adding more characters at the end
-which encode the case pattern of those 23. Names which contain at
-least one dollar sign are an exception; they are converted directly into
-upper case without augmentation.
-
- Name augmentation yields bad results for programs that use
-precompiled libraries (such as Xlib) which were generated by another
-compiler. You can use the compiler option `/NOCASE_HACK' to inhibit
-augmentation; it makes external C functions and variables
-case-independent as is usual on VMS. Alternatively, you could write
-all references to the functions and variables in such libraries using
-lower case; this will work on VMS, but is not portable to other
-systems. The compiler option `/NAMES' also provides control over
-global name handling.
-
- Function and variable names are handled somewhat differently with GNU
-C++. The GNU C++ compiler performs "name mangling" on function names,
-which means that it adds information to the function name to describe
-the data types of the arguments that the function takes. One result of
-this is that the name of a function can become very long. Since the
-VMS linker only recognizes the first 31 characters in a name, special
-action is taken to ensure that each function and variable has a unique
-name that can be represented in 31 characters.
-
- If the name (plus a name augmentation, if required) is less than 32
-characters in length, then no special action is performed. If the name
-is longer than 31 characters, the assembler (GAS) will generate a hash
-string based upon the function name, truncate the function name to 23
-characters, and append the hash string to the truncated name. If the
-`/VERBOSE' compiler option is used, the assembler will print both the
-full and truncated names of each symbol that is truncated.
-
- The `/NOCASE_HACK' compiler option should not be used when you are
-compiling programs that use libg++. libg++ has several instances of
-objects (i.e. `Filebuf' and `filebuf') which become indistinguishable
-in a case-insensitive environment. This leads to cases where you need
-to inhibit augmentation selectively (if you were using libg++ and Xlib
-in the same program, for example). There is no special feature for
-doing this, but you can get the result by defining a macro for each
-mixed case symbol for which you wish to inhibit augmentation. The
-macro should expand into the lower case equivalent of itself. For
-example:
-
- #define StuDlyCapS studlycaps
-
- These macro definitions can be placed in a header file to minimize
-the number of changes to your source code.
-
-
-File: gcc.info, Node: Portability, Next: Interface, Prev: VMS, Up: Top
-
-GNU CC and Portability
-**********************
-
- The main goal of GNU CC was to make a good, fast compiler for
-machines in the class that the GNU system aims to run on: 32-bit
-machines that address 8-bit bytes and have several general registers.
-Elegance, theoretical power and simplicity are only secondary.
-
- GNU CC gets most of the information about the target machine from a
-machine description which gives an algebraic formula for each of the
-machine's instructions. This is a very clean way to describe the
-target. But when the compiler needs information that is difficult to
-express in this fashion, I have not hesitated to define an ad-hoc
-parameter to the machine description. The purpose of portability is to
-reduce the total work needed on the compiler; it was not of interest
-for its own sake.
-
- GNU CC does not contain machine dependent code, but it does contain
-code that depends on machine parameters such as endianness (whether the
-most significant byte has the highest or lowest address of the bytes in
-a word) and the availability of autoincrement addressing. In the
-RTL-generation pass, it is often necessary to have multiple strategies
-for generating code for a particular kind of syntax tree, strategies
-that are usable for different combinations of parameters. Often I have
-not tried to address all possible cases, but only the common ones or
-only the ones that I have encountered. As a result, a new target may
-require additional strategies. You will know if this happens because
-the compiler will call `abort'. Fortunately, the new strategies can be
-added in a machine-independent fashion, and will affect only the target
-machines that need them.
-
-
-File: gcc.info, Node: Interface, Next: Passes, Prev: Portability, Up: Top
-
-Interfacing to GNU CC Output
-****************************
-
- GNU CC is normally configured to use the same function calling
-convention normally in use on the target system. This is done with the
-machine-description macros described (*note Target Macros::.).
-
- However, returning of structure and union values is done differently
-on some target machines. As a result, functions compiled with PCC
-returning such types cannot be called from code compiled with GNU CC,
-and vice versa. This does not cause trouble often because few Unix
-library routines return structures or unions.
-
- GNU CC code returns structures and unions that are 1, 2, 4 or 8 bytes
-long in the same registers used for `int' or `double' return values.
-(GNU CC typically allocates variables of such types in registers also.)
-Structures and unions of other sizes are returned by storing them into
-an address passed by the caller (usually in a register). The
-machine-description macros `STRUCT_VALUE' and `STRUCT_INCOMING_VALUE'
-tell GNU CC where to pass this address.
-
- By contrast, PCC on most target machines returns structures and
-unions of any size by copying the data into an area of static storage,
-and then returning the address of that storage as if it were a pointer
-value. The caller must copy the data from that memory area to the
-place where the value is wanted. This is slower than the method used
-by GNU CC, and fails to be reentrant.
-
- On some target machines, such as RISC machines and the 80386, the
-standard system convention is to pass to the subroutine the address of
-where to return the value. On these machines, GNU CC has been
-configured to be compatible with the standard compiler, when this method
-is used. It may not be compatible for structures of 1, 2, 4 or 8 bytes.
-
- GNU CC uses the system's standard convention for passing arguments.
-On some machines, the first few arguments are passed in registers; in
-others, all are passed on the stack. It would be possible to use
-registers for argument passing on any machine, and this would probably
-result in a significant speedup. But the result would be complete
-incompatibility with code that follows the standard convention. So this
-change is practical only if you are switching to GNU CC as the sole C
-compiler for the system. We may implement register argument passing on
-certain machines once we have a complete GNU system so that we can
-compile the libraries with GNU CC.
-
- On some machines (particularly the Sparc), certain types of arguments
-are passed "by invisible reference". This means that the value is
-stored in memory, and the address of the memory location is passed to
-the subroutine.
-
- If you use `longjmp', beware of automatic variables. ANSI C says
-that automatic variables that are not declared `volatile' have undefined
-values after a `longjmp'. And this is all GNU CC promises to do,
-because it is very difficult to restore register variables correctly,
-and one of GNU CC's features is that it can put variables in registers
-without your asking it to.
-
- If you want a variable to be unaltered by `longjmp', and you don't
-want to write `volatile' because old C compilers don't accept it, just
-take the address of the variable. If a variable's address is ever
-taken, even if just to compute it and ignore it, then the variable
-cannot go in a register:
-
- {
- int careful;
- &careful;
- ...
- }
-
- Code compiled with GNU CC may call certain library routines. Most of
-them handle arithmetic for which there are no instructions. This
-includes multiply and divide on some machines, and floating point
-operations on any machine for which floating point support is disabled
-with `-msoft-float'. Some standard parts of the C library, such as
-`bcopy' or `memcpy', are also called automatically. The usual function
-call interface is used for calling the library routines.
-
- These library routines should be defined in the library `libgcc.a',
-which GNU CC automatically searches whenever it links a program. On
-machines that have multiply and divide instructions, if hardware
-floating point is in use, normally `libgcc.a' is not needed, but it is
-searched just in case.
-
- Each arithmetic function is defined in `libgcc1.c' to use the
-corresponding C arithmetic operator. As long as the file is compiled
-with another C compiler, which supports all the C arithmetic operators,
-this file will work portably. However, `libgcc1.c' does not work if
-compiled with GNU CC, because each arithmetic function would compile
-into a call to itself!
-
diff --git a/gcc/gcc.info-14 b/gcc/gcc.info-14
deleted file mode 100644
index c7bf8502727..00000000000
--- a/gcc/gcc.info-14
+++ /dev/null
@@ -1,1161 +0,0 @@
-This is Info file gcc.info, produced by Makeinfo version 1.68 from the
-input file gcc.texi.
-
- This file documents the use and the internals of the GNU compiler.
-
- Published by the Free Software Foundation 59 Temple Place - Suite 330
-Boston, MA 02111-1307 USA
-
- Copyright (C) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997 Free
-Software Foundation, Inc.
-
- Permission is granted to make and distribute verbatim copies of this
-manual provided the copyright notice and this permission notice are
-preserved on all copies.
-
- Permission is granted to copy and distribute modified versions of
-this manual under the conditions for verbatim copying, provided also
-that the sections entitled "GNU General Public License," "Funding for
-Free Software," and "Protect Your Freedom--Fight `Look And Feel'" are
-included exactly as in the original, and provided that the entire
-resulting derived work is distributed under the terms of a permission
-notice identical to this one.
-
- Permission is granted to copy and distribute translations of this
-manual into another language, under the above conditions for modified
-versions, except that the sections entitled "GNU General Public
-License," "Funding for Free Software," and "Protect Your Freedom--Fight
-`Look And Feel'", and this permission notice, may be included in
-translations approved by the Free Software Foundation instead of in the
-original English.
-
-
-File: gcc.info, Node: Passes, Next: RTL, Prev: Interface, Up: Top
-
-Passes and Files of the Compiler
-********************************
-
- The overall control structure of the compiler is in `toplev.c'. This
-file is responsible for initialization, decoding arguments, opening and
-closing files, and sequencing the passes.
-
- The parsing pass is invoked only once, to parse the entire input.
-The RTL intermediate code for a function is generated as the function
-is parsed, a statement at a time. Each statement is read in as a
-syntax tree and then converted to RTL; then the storage for the tree
-for the statement is reclaimed. Storage for types (and the expressions
-for their sizes), declarations, and a representation of the binding
-contours and how they nest, remain until the function is finished being
-compiled; these are all needed to output the debugging information.
-
- Each time the parsing pass reads a complete function definition or
-top-level declaration, it calls either the function
-`rest_of_compilation', or the function `rest_of_decl_compilation' in
-`toplev.c', which are responsible for all further processing necessary,
-ending with output of the assembler language. All other compiler
-passes run, in sequence, within `rest_of_compilation'. When that
-function returns from compiling a function definition, the storage used
-for that function definition's compilation is entirely freed, unless it
-is an inline function (*note An Inline Function is As Fast As a Macro:
-Inline.).
-
- Here is a list of all the passes of the compiler and their source
-files. Also included is a description of where debugging dumps can be
-requested with `-d' options.
-
- * Parsing. This pass reads the entire text of a function definition,
- constructing partial syntax trees. This and RTL generation are no
- longer truly separate passes (formerly they were), but it is
- easier to think of them as separate.
-
- The tree representation does not entirely follow C syntax, because
- it is intended to support other languages as well.
-
- Language-specific data type analysis is also done in this pass,
- and every tree node that represents an expression has a data type
- attached. Variables are represented as declaration nodes.
-
- Constant folding and some arithmetic simplifications are also done
- during this pass.
-
- The language-independent source files for parsing are
- `stor-layout.c', `fold-const.c', and `tree.c'. There are also
- header files `tree.h' and `tree.def' which define the format of
- the tree representation.
-
- The source files to parse C are `c-parse.in', `c-decl.c',
- `c-typeck.c', `c-aux-info.c', `c-convert.c', and `c-lang.c' along
- with header files `c-lex.h', and `c-tree.h'.
-
- The source files for parsing C++ are `cp-parse.y', `cp-class.c',
- `cp-cvt.c', `cp-decl.c', `cp-decl2.c', `cp-dem.c', `cp-except.c',
- `cp-expr.c', `cp-init.c', `cp-lex.c', `cp-method.c', `cp-ptree.c',
- `cp-search.c', `cp-tree.c', `cp-type2.c', and `cp-typeck.c', along
- with header files `cp-tree.def', `cp-tree.h', and `cp-decl.h'.
-
- The special source files for parsing Objective C are
- `objc-parse.y', `objc-actions.c', `objc-tree.def', and
- `objc-actions.h'. Certain C-specific files are used for this as
- well.
-
- The file `c-common.c' is also used for all of the above languages.
-
- * RTL generation. This is the conversion of syntax tree into RTL
- code. It is actually done statement-by-statement during parsing,
- but for most purposes it can be thought of as a separate pass.
-
- This is where the bulk of target-parameter-dependent code is found,
- since often it is necessary for strategies to apply only when
- certain standard kinds of instructions are available. The purpose
- of named instruction patterns is to provide this information to
- the RTL generation pass.
-
- Optimization is done in this pass for `if'-conditions that are
- comparisons, boolean operations or conditional expressions. Tail
- recursion is detected at this time also. Decisions are made about
- how best to arrange loops and how to output `switch' statements.
-
- The source files for RTL generation include `stmt.c', `calls.c',
- `expr.c', `explow.c', `expmed.c', `function.c', `optabs.c' and
- `emit-rtl.c'. Also, the file `insn-emit.c', generated from the
- machine description by the program `genemit', is used in this
- pass. The header file `expr.h' is used for communication within
- this pass.
-
- The header files `insn-flags.h' and `insn-codes.h', generated from
- the machine description by the programs `genflags' and `gencodes',
- tell this pass which standard names are available for use and
- which patterns correspond to them.
-
- Aside from debugging information output, none of the following
- passes refers to the tree structure representation of the function
- (only part of which is saved).
-
- The decision of whether the function can and should be expanded
- inline in its subsequent callers is made at the end of rtl
- generation. The function must meet certain criteria, currently
- related to the size of the function and the types and number of
- parameters it has. Note that this function may contain loops,
- recursive calls to itself (tail-recursive functions can be
- inlined!), gotos, in short, all constructs supported by GNU CC.
- The file `integrate.c' contains the code to save a function's rtl
- for later inlining and to inline that rtl when the function is
- called. The header file `integrate.h' is also used for this
- purpose.
-
- The option `-dr' causes a debugging dump of the RTL code after
- this pass. This dump file's name is made by appending `.rtl' to
- the input file name.
-
- * Jump optimization. This pass simplifies jumps to the following
- instruction, jumps across jumps, and jumps to jumps. It deletes
- unreferenced labels and unreachable code, except that unreachable
- code that contains a loop is not recognized as unreachable in this
- pass. (Such loops are deleted later in the basic block analysis.)
- It also converts some code originally written with jumps into
- sequences of instructions that directly set values from the
- results of comparisons, if the machine has such instructions.
-
- Jump optimization is performed two or three times. The first time
- is immediately following RTL generation. The second time is after
- CSE, but only if CSE says repeated jump optimization is needed.
- The last time is right before the final pass. That time,
- cross-jumping and deletion of no-op move instructions are done
- together with the optimizations described above.
-
- The source file of this pass is `jump.c'.
-
- The option `-dj' causes a debugging dump of the RTL code after
- this pass is run for the first time. This dump file's name is
- made by appending `.jump' to the input file name.
-
- * Register scan. This pass finds the first and last use of each
- register, as a guide for common subexpression elimination. Its
- source is in `regclass.c'.
-
- * Jump threading. This pass detects a condition jump that branches
- to an identical or inverse test. Such jumps can be `threaded'
- through the second conditional test. The source code for this
- pass is in `jump.c'. This optimization is only performed if
- `-fthread-jumps' is enabled.
-
- * Common subexpression elimination. This pass also does constant
- propagation. Its source file is `cse.c'. If constant propagation
- causes conditional jumps to become unconditional or to become
- no-ops, jump optimization is run again when CSE is finished.
-
- The option `-ds' causes a debugging dump of the RTL code after
- this pass. This dump file's name is made by appending `.cse' to
- the input file name.
-
- * Loop optimization. This pass moves constant expressions out of
- loops, and optionally does strength-reduction and loop unrolling
- as well. Its source files are `loop.c' and `unroll.c', plus the
- header `loop.h' used for communication between them. Loop
- unrolling uses some functions in `integrate.c' and the header
- `integrate.h'.
-
- The option `-dL' causes a debugging dump of the RTL code after
- this pass. This dump file's name is made by appending `.loop' to
- the input file name.
-
- * If `-frerun-cse-after-loop' was enabled, a second common
- subexpression elimination pass is performed after the loop
- optimization pass. Jump threading is also done again at this time
- if it was specified.
-
- The option `-dt' causes a debugging dump of the RTL code after
- this pass. This dump file's name is made by appending `.cse2' to
- the input file name.
-
- * Stupid register allocation is performed at this point in a
- nonoptimizing compilation. It does a little data flow analysis as
- well. When stupid register allocation is in use, the next pass
- executed is the reloading pass; the others in between are skipped.
- The source file is `stupid.c'.
-
- * Data flow analysis (`flow.c'). This pass divides the program into
- basic blocks (and in the process deletes unreachable loops); then
- it computes which pseudo-registers are live at each point in the
- program, and makes the first instruction that uses a value point at
- the instruction that computed the value.
-
- This pass also deletes computations whose results are never used,
- and combines memory references with add or subtract instructions
- to make autoincrement or autodecrement addressing.
-
- The option `-df' causes a debugging dump of the RTL code after
- this pass. This dump file's name is made by appending `.flow' to
- the input file name. If stupid register allocation is in use, this
- dump file reflects the full results of such allocation.
-
- * Instruction combination (`combine.c'). This pass attempts to
- combine groups of two or three instructions that are related by
- data flow into single instructions. It combines the RTL
- expressions for the instructions by substitution, simplifies the
- result using algebra, and then attempts to match the result
- against the machine description.
-
- The option `-dc' causes a debugging dump of the RTL code after
- this pass. This dump file's name is made by appending `.combine'
- to the input file name.
-
- * Instruction scheduling (`sched.c'). This pass looks for
- instructions whose output will not be available by the time that
- it is used in subsequent instructions. (Memory loads and floating
- point instructions often have this behavior on RISC machines). It
- re-orders instructions within a basic block to try to separate the
- definition and use of items that otherwise would cause pipeline
- stalls.
-
- Instruction scheduling is performed twice. The first time is
- immediately after instruction combination and the second is
- immediately after reload.
-
- The option `-dS' causes a debugging dump of the RTL code after this
- pass is run for the first time. The dump file's name is made by
- appending `.sched' to the input file name.
-
- * Register class preferencing. The RTL code is scanned to find out
- which register class is best for each pseudo register. The source
- file is `regclass.c'.
-
- * Local register allocation (`local-alloc.c'). This pass allocates
- hard registers to pseudo registers that are used only within one
- basic block. Because the basic block is linear, it can use fast
- and powerful techniques to do a very good job.
-
- The option `-dl' causes a debugging dump of the RTL code after
- this pass. This dump file's name is made by appending `.lreg' to
- the input file name.
-
- * Global register allocation (`global.c'). This pass allocates hard
- registers for the remaining pseudo registers (those whose life
- spans are not contained in one basic block).
-
- * Reloading. This pass renumbers pseudo registers with the hardware
- registers numbers they were allocated. Pseudo registers that did
- not get hard registers are replaced with stack slots. Then it
- finds instructions that are invalid because a value has failed to
- end up in a register, or has ended up in a register of the wrong
- kind. It fixes up these instructions by reloading the
- problematical values temporarily into registers. Additional
- instructions are generated to do the copying.
-
- The reload pass also optionally eliminates the frame pointer and
- inserts instructions to save and restore call-clobbered registers
- around calls.
-
- Source files are `reload.c' and `reload1.c', plus the header
- `reload.h' used for communication between them.
-
- The option `-dg' causes a debugging dump of the RTL code after
- this pass. This dump file's name is made by appending `.greg' to
- the input file name.
-
- * Instruction scheduling is repeated here to try to avoid pipeline
- stalls due to memory loads generated for spilled pseudo registers.
-
- The option `-dR' causes a debugging dump of the RTL code after
- this pass. This dump file's name is made by appending `.sched2'
- to the input file name.
-
- * Jump optimization is repeated, this time including cross-jumping
- and deletion of no-op move instructions.
-
- The option `-dJ' causes a debugging dump of the RTL code after
- this pass. This dump file's name is made by appending `.jump2' to
- the input file name.
-
- * Delayed branch scheduling. This optional pass attempts to find
- instructions that can go into the delay slots of other
- instructions, usually jumps and calls. The source file name is
- `reorg.c'.
-
- The option `-dd' causes a debugging dump of the RTL code after
- this pass. This dump file's name is made by appending `.dbr' to
- the input file name.
-
- * Conversion from usage of some hard registers to usage of a register
- stack may be done at this point. Currently, this is supported only
- for the floating-point registers of the Intel 80387 coprocessor.
- The source file name is `reg-stack.c'.
-
- The options `-dk' causes a debugging dump of the RTL code after
- this pass. This dump file's name is made by appending `.stack' to
- the input file name.
-
- * Final. This pass outputs the assembler code for the function. It
- is also responsible for identifying spurious test and compare
- instructions. Machine-specific peephole optimizations are
- performed at the same time. The function entry and exit sequences
- are generated directly as assembler code in this pass; they never
- exist as RTL.
-
- The source files are `final.c' plus `insn-output.c'; the latter is
- generated automatically from the machine description by the tool
- `genoutput'. The header file `conditions.h' is used for
- communication between these files.
-
- * Debugging information output. This is run after final because it
- must output the stack slot offsets for pseudo registers that did
- not get hard registers. Source files are `dbxout.c' for DBX
- symbol table format, `sdbout.c' for SDB symbol table format, and
- `dwarfout.c' for DWARF symbol table format.
-
- Some additional files are used by all or many passes:
-
- * Every pass uses `machmode.def' and `machmode.h' which define the
- machine modes.
-
- * Several passes use `real.h', which defines the default
- representation of floating point constants and how to operate on
- them.
-
- * All the passes that work with RTL use the header files `rtl.h' and
- `rtl.def', and subroutines in file `rtl.c'. The tools `gen*' also
- use these files to read and work with the machine description RTL.
-
- * Several passes refer to the header file `insn-config.h' which
- contains a few parameters (C macro definitions) generated
- automatically from the machine description RTL by the tool
- `genconfig'.
-
- * Several passes use the instruction recognizer, which consists of
- `recog.c' and `recog.h', plus the files `insn-recog.c' and
- `insn-extract.c' that are generated automatically from the machine
- description by the tools `genrecog' and `genextract'.
-
- * Several passes use the header files `regs.h' which defines the
- information recorded about pseudo register usage, and
- `basic-block.h' which defines the information recorded about basic
- blocks.
-
- * `hard-reg-set.h' defines the type `HARD_REG_SET', a bit-vector
- with a bit for each hard register, and some macros to manipulate
- it. This type is just `int' if the machine has few enough hard
- registers; otherwise it is an array of `int' and some of the
- macros expand into loops.
-
- * Several passes use instruction attributes. A definition of the
- attributes defined for a particular machine is in file
- `insn-attr.h', which is generated from the machine description by
- the program `genattr'. The file `insn-attrtab.c' contains
- subroutines to obtain the attribute values for insns. It is
- generated from the machine description by the program `genattrtab'.
-
-
-File: gcc.info, Node: RTL, Next: Machine Desc, Prev: Passes, Up: Top
-
-RTL Representation
-******************
-
- Most of the work of the compiler is done on an intermediate
-representation called register transfer language. In this language,
-the instructions to be output are described, pretty much one by one, in
-an algebraic form that describes what the instruction does.
-
- RTL is inspired by Lisp lists. It has both an internal form, made
-up of structures that point at other structures, and a textual form
-that is used in the machine description and in printed debugging dumps.
-The textual form uses nested parentheses to indicate the pointers in
-the internal form.
-
-* Menu:
-
-* RTL Objects:: Expressions vs vectors vs strings vs integers.
-* Accessors:: Macros to access expression operands or vector elts.
-* Flags:: Other flags in an RTL expression.
-* Machine Modes:: Describing the size and format of a datum.
-* Constants:: Expressions with constant values.
-* Regs and Memory:: Expressions representing register contents or memory.
-* Arithmetic:: Expressions representing arithmetic on other expressions.
-* Comparisons:: Expressions representing comparison of expressions.
-* Bit Fields:: Expressions representing bitfields in memory or reg.
-* Conversions:: Extending, truncating, floating or fixing.
-* RTL Declarations:: Declaring volatility, constancy, etc.
-* Side Effects:: Expressions for storing in registers, etc.
-* Incdec:: Embedded side-effects for autoincrement addressing.
-* Assembler:: Representing `asm' with operands.
-* Insns:: Expression types for entire insns.
-* Calls:: RTL representation of function call insns.
-* Sharing:: Some expressions are unique; others *must* be copied.
-* Reading RTL:: Reading textual RTL from a file.
-
-
-File: gcc.info, Node: RTL Objects, Next: Accessors, Prev: RTL, Up: RTL
-
-RTL Object Types
-================
-
- RTL uses five kinds of objects: expressions, integers, wide integers,
-strings and vectors. Expressions are the most important ones. An RTL
-expression ("RTX", for short) is a C structure, but it is usually
-referred to with a pointer; a type that is given the typedef name `rtx'.
-
- An integer is simply an `int'; their written form uses decimal
-digits. A wide integer is an integral object whose type is
-`HOST_WIDE_INT' (*note Config::.); their written form uses decimal
-digits.
-
- A string is a sequence of characters. In core it is represented as a
-`char *' in usual C fashion, and it is written in C syntax as well.
-However, strings in RTL may never be null. If you write an empty
-string in a machine description, it is represented in core as a null
-pointer rather than as a pointer to a null character. In certain
-contexts, these null pointers instead of strings are valid. Within RTL
-code, strings are most commonly found inside `symbol_ref' expressions,
-but they appear in other contexts in the RTL expressions that make up
-machine descriptions.
-
- A vector contains an arbitrary number of pointers to expressions.
-The number of elements in the vector is explicitly present in the
-vector. The written form of a vector consists of square brackets
-(`[...]') surrounding the elements, in sequence and with whitespace
-separating them. Vectors of length zero are not created; null pointers
-are used instead.
-
- Expressions are classified by "expression codes" (also called RTX
-codes). The expression code is a name defined in `rtl.def', which is
-also (in upper case) a C enumeration constant. The possible expression
-codes and their meanings are machine-independent. The code of an RTX
-can be extracted with the macro `GET_CODE (X)' and altered with
-`PUT_CODE (X, NEWCODE)'.
-
- The expression code determines how many operands the expression
-contains, and what kinds of objects they are. In RTL, unlike Lisp, you
-cannot tell by looking at an operand what kind of object it is.
-Instead, you must know from its context--from the expression code of
-the containing expression. For example, in an expression of code
-`subreg', the first operand is to be regarded as an expression and the
-second operand as an integer. In an expression of code `plus', there
-are two operands, both of which are to be regarded as expressions. In
-a `symbol_ref' expression, there is one operand, which is to be
-regarded as a string.
-
- Expressions are written as parentheses containing the name of the
-expression type, its flags and machine mode if any, and then the
-operands of the expression (separated by spaces).
-
- Expression code names in the `md' file are written in lower case,
-but when they appear in C code they are written in upper case. In this
-manual, they are shown as follows: `const_int'.
-
- In a few contexts a null pointer is valid where an expression is
-normally wanted. The written form of this is `(nil)'.
-
-
-File: gcc.info, Node: Accessors, Next: Flags, Prev: RTL Objects, Up: RTL
-
-Access to Operands
-==================
-
- For each expression type `rtl.def' specifies the number of contained
-objects and their kinds, with four possibilities: `e' for expression
-(actually a pointer to an expression), `i' for integer, `w' for wide
-integer, `s' for string, and `E' for vector of expressions. The
-sequence of letters for an expression code is called its "format".
-Thus, the format of `subreg' is `ei'.
-
- A few other format characters are used occasionally:
-
-`u'
- `u' is equivalent to `e' except that it is printed differently in
- debugging dumps. It is used for pointers to insns.
-
-`n'
- `n' is equivalent to `i' except that it is printed differently in
- debugging dumps. It is used for the line number or code number of
- a `note' insn.
-
-`S'
- `S' indicates a string which is optional. In the RTL objects in
- core, `S' is equivalent to `s', but when the object is read, from
- an `md' file, the string value of this operand may be omitted. An
- omitted string is taken to be the null string.
-
-`V'
- `V' indicates a vector which is optional. In the RTL objects in
- core, `V' is equivalent to `E', but when the object is read from
- an `md' file, the vector value of this operand may be omitted. An
- omitted vector is effectively the same as a vector of no elements.
-
-`0'
- `0' means a slot whose contents do not fit any normal category.
- `0' slots are not printed at all in dumps, and are often used in
- special ways by small parts of the compiler.
-
- There are macros to get the number of operands, the format, and the
-class of an expression code:
-
-`GET_RTX_LENGTH (CODE)'
- Number of operands of an RTX of code CODE.
-
-`GET_RTX_FORMAT (CODE)'
- The format of an RTX of code CODE, as a C string.
-
-`GET_RTX_CLASS (CODE)'
- A single character representing the type of RTX operation that code
- CODE performs.
-
- The following classes are defined:
-
- `o'
- An RTX code that represents an actual object, such as `reg' or
- `mem'. `subreg' is not in this class.
-
- `<'
- An RTX code for a comparison. The codes in this class are
- `NE', `EQ', `LE', `LT', `GE', `GT', `LEU', `LTU', `GEU',
- `GTU'.
-
- `1'
- An RTX code for a unary arithmetic operation, such as `neg'.
-
- `c'
- An RTX code for a commutative binary operation, other than
- `NE' and `EQ' (which have class `<').
-
- `2'
- An RTX code for a noncommutative binary operation, such as
- `MINUS'.
-
- `b'
- An RTX code for a bitfield operation, either `ZERO_EXTRACT' or
- `SIGN_EXTRACT'.
-
- `3'
- An RTX code for other three input operations, such as
- `IF_THEN_ELSE'.
-
- `i'
- An RTX code for a machine insn (`INSN', `JUMP_INSN', and
- `CALL_INSN').
-
- `m'
- An RTX code for something that matches in insns, such as
- `MATCH_DUP'.
-
- `x'
- All other RTX codes.
-
- Operands of expressions are accessed using the macros `XEXP',
-`XINT', `XWINT' and `XSTR'. Each of these macros takes two arguments:
-an expression-pointer (RTX) and an operand number (counting from zero).
-Thus,
-
- XEXP (X, 2)
-
-accesses operand 2 of expression X, as an expression.
-
- XINT (X, 2)
-
-accesses the same operand as an integer. `XSTR', used in the same
-fashion, would access it as a string.
-
- Any operand can be accessed as an integer, as an expression or as a
-string. You must choose the correct method of access for the kind of
-value actually stored in the operand. You would do this based on the
-expression code of the containing expression. That is also how you
-would know how many operands there are.
-
- For example, if X is a `subreg' expression, you know that it has two
-operands which can be correctly accessed as `XEXP (X, 0)' and `XINT (X,
-1)'. If you did `XINT (X, 0)', you would get the address of the
-expression operand but cast as an integer; that might occasionally be
-useful, but it would be cleaner to write `(int) XEXP (X, 0)'. `XEXP
-(X, 1)' would also compile without error, and would return the second,
-integer operand cast as an expression pointer, which would probably
-result in a crash when accessed. Nothing stops you from writing `XEXP
-(X, 28)' either, but this will access memory past the end of the
-expression with unpredictable results.
-
- Access to operands which are vectors is more complicated. You can
-use the macro `XVEC' to get the vector-pointer itself, or the macros
-`XVECEXP' and `XVECLEN' to access the elements and length of a vector.
-
-`XVEC (EXP, IDX)'
- Access the vector-pointer which is operand number IDX in EXP.
-
-`XVECLEN (EXP, IDX)'
- Access the length (number of elements) in the vector which is in
- operand number IDX in EXP. This value is an `int'.
-
-`XVECEXP (EXP, IDX, ELTNUM)'
- Access element number ELTNUM in the vector which is in operand
- number IDX in EXP. This value is an RTX.
-
- It is up to you to make sure that ELTNUM is not negative and is
- less than `XVECLEN (EXP, IDX)'.
-
- All the macros defined in this section expand into lvalues and
-therefore can be used to assign the operands, lengths and vector
-elements as well as to access them.
-
-
-File: gcc.info, Node: Flags, Next: Machine Modes, Prev: Accessors, Up: RTL
-
-Flags in an RTL Expression
-==========================
-
- RTL expressions contain several flags (one-bit bitfields) that are
-used in certain types of expression. Most often they are accessed with
-the following macros:
-
-`MEM_VOLATILE_P (X)'
- In `mem' expressions, nonzero for volatile memory references.
- Stored in the `volatil' field and printed as `/v'.
-
-`MEM_IN_STRUCT_P (X)'
- In `mem' expressions, nonzero for reference to an entire
- structure, union or array, or to a component of one. Zero for
- references to a scalar variable or through a pointer to a scalar.
- Stored in the `in_struct' field and printed as `/s'.
-
-`REG_LOOP_TEST_P'
- In `reg' expressions, nonzero if this register's entire life is
- contained in the exit test code for some loop. Stored in the
- `in_struct' field and printed as `/s'.
-
-`REG_USERVAR_P (X)'
- In a `reg', nonzero if it corresponds to a variable present in the
- user's source code. Zero for temporaries generated internally by
- the compiler. Stored in the `volatil' field and printed as `/v'.
-
-`REG_FUNCTION_VALUE_P (X)'
- Nonzero in a `reg' if it is the place in which this function's
- value is going to be returned. (This happens only in a hard
- register.) Stored in the `integrated' field and printed as `/i'.
-
- The same hard register may be used also for collecting the values
- of functions called by this one, but `REG_FUNCTION_VALUE_P' is zero
- in this kind of use.
-
-`SUBREG_PROMOTED_VAR_P'
- Nonzero in a `subreg' if it was made when accessing an object that
- was promoted to a wider mode in accord with the `PROMOTED_MODE'
- machine description macro (*note Storage Layout::.). In this
- case, the mode of the `subreg' is the declared mode of the object
- and the mode of `SUBREG_REG' is the mode of the register that
- holds the object. Promoted variables are always either sign- or
- zero-extended to the wider mode on every assignment. Stored in
- the `in_struct' field and printed as `/s'.
-
-`SUBREG_PROMOTED_UNSIGNED_P'
- Nonzero in a `subreg' that has `SUBREG_PROMOTED_VAR_P' nonzero if
- the object being referenced is kept zero-extended and zero if it
- is kept sign-extended. Stored in the `unchanging' field and
- printed as `/u'.
-
-`RTX_UNCHANGING_P (X)'
- Nonzero in a `reg' or `mem' if the value is not changed. (This
- flag is not set for memory references via pointers to constants.
- Such pointers only guarantee that the object will not be changed
- explicitly by the current function. The object might be changed by
- other functions or by aliasing.) Stored in the `unchanging' field
- and printed as `/u'.
-
-`RTX_INTEGRATED_P (INSN)'
- Nonzero in an insn if it resulted from an in-line function call.
- Stored in the `integrated' field and printed as `/i'. This may be
- deleted; nothing currently depends on it.
-
-`SYMBOL_REF_USED (X)'
- In a `symbol_ref', indicates that X has been used. This is
- normally only used to ensure that X is only declared external
- once. Stored in the `used' field.
-
-`SYMBOL_REF_FLAG (X)'
- In a `symbol_ref', this is used as a flag for machine-specific
- purposes. Stored in the `volatil' field and printed as `/v'.
-
-`LABEL_OUTSIDE_LOOP_P'
- In `label_ref' expressions, nonzero if this is a reference to a
- label that is outside the innermost loop containing the reference
- to the label. Stored in the `in_struct' field and printed as `/s'.
-
-`INSN_DELETED_P (INSN)'
- In an insn, nonzero if the insn has been deleted. Stored in the
- `volatil' field and printed as `/v'.
-
-`INSN_ANNULLED_BRANCH_P (INSN)'
- In an `insn' in the delay slot of a branch insn, indicates that an
- annulling branch should be used. See the discussion under
- `sequence' below. Stored in the `unchanging' field and printed as
- `/u'.
-
-`INSN_FROM_TARGET_P (INSN)'
- In an `insn' in a delay slot of a branch, indicates that the insn
- is from the target of the branch. If the branch insn has
- `INSN_ANNULLED_BRANCH_P' set, this insn should only be executed if
- the branch is taken. For annulled branches with this bit clear,
- the insn should be executed only if the branch is not taken.
- Stored in the `in_struct' field and printed as `/s'.
-
-`CONSTANT_POOL_ADDRESS_P (X)'
- Nonzero in a `symbol_ref' if it refers to part of the current
- function's "constants pool". These are addresses close to the
- beginning of the function, and GNU CC assumes they can be addressed
- directly (perhaps with the help of base registers). Stored in the
- `unchanging' field and printed as `/u'.
-
-`CONST_CALL_P (X)'
- In a `call_insn', indicates that the insn represents a call to a
- const function. Stored in the `unchanging' field and printed as
- `/u'.
-
-`LABEL_PRESERVE_P (X)'
- In a `code_label', indicates that the label can never be deleted.
- Labels referenced by a non-local goto will have this bit set.
- Stored in the `in_struct' field and printed as `/s'.
-
-`SCHED_GROUP_P (INSN)'
- During instruction scheduling, in an insn, indicates that the
- previous insn must be scheduled together with this insn. This is
- used to ensure that certain groups of instructions will not be
- split up by the instruction scheduling pass, for example, `use'
- insns before a `call_insn' may not be separated from the
- `call_insn'. Stored in the `in_struct' field and printed as `/s'.
-
- These are the fields which the above macros refer to:
-
-`used'
- Normally, this flag is used only momentarily, at the end of RTL
- generation for a function, to count the number of times an
- expression appears in insns. Expressions that appear more than
- once are copied, according to the rules for shared structure
- (*note Sharing::.).
-
- In a `symbol_ref', it indicates that an external declaration for
- the symbol has already been written.
-
- In a `reg', it is used by the leaf register renumbering code to
- ensure that each register is only renumbered once.
-
-`volatil'
- This flag is used in `mem', `symbol_ref' and `reg' expressions and
- in insns. In RTL dump files, it is printed as `/v'.
-
- In a `mem' expression, it is 1 if the memory reference is volatile.
- Volatile memory references may not be deleted, reordered or
- combined.
-
- In a `symbol_ref' expression, it is used for machine-specific
- purposes.
-
- In a `reg' expression, it is 1 if the value is a user-level
- variable. 0 indicates an internal compiler temporary.
-
- In an insn, 1 means the insn has been deleted.
-
-`in_struct'
- In `mem' expressions, it is 1 if the memory datum referred to is
- all or part of a structure or array; 0 if it is (or might be) a
- scalar variable. A reference through a C pointer has 0 because
- the pointer might point to a scalar variable. This information
- allows the compiler to determine something about possible cases of
- aliasing.
-
- In an insn in the delay slot of a branch, 1 means that this insn
- is from the target of the branch.
-
- During instruction scheduling, in an insn, 1 means that this insn
- must be scheduled as part of a group together with the previous
- insn.
-
- In `reg' expressions, it is 1 if the register has its entire life
- contained within the test expression of some loop.
-
- In `subreg' expressions, 1 means that the `subreg' is accessing an
- object that has had its mode promoted from a wider mode.
-
- In `label_ref' expressions, 1 means that the referenced label is
- outside the innermost loop containing the insn in which the
- `label_ref' was found.
-
- In `code_label' expressions, it is 1 if the label may never be
- deleted. This is used for labels which are the target of
- non-local gotos.
-
- In an RTL dump, this flag is represented as `/s'.
-
-`unchanging'
- In `reg' and `mem' expressions, 1 means that the value of the
- expression never changes.
-
- In `subreg' expressions, it is 1 if the `subreg' references an
- unsigned object whose mode has been promoted to a wider mode.
-
- In an insn, 1 means that this is an annulling branch.
-
- In a `symbol_ref' expression, 1 means that this symbol addresses
- something in the per-function constants pool.
-
- In a `call_insn', 1 means that this instruction is a call to a
- const function.
-
- In an RTL dump, this flag is represented as `/u'.
-
-`integrated'
- In some kinds of expressions, including insns, this flag means the
- rtl was produced by procedure integration.
-
- In a `reg' expression, this flag indicates the register containing
- the value to be returned by the current function. On machines
- that pass parameters in registers, the same register number may be
- used for parameters as well, but this flag is not set on such uses.
-
-
-File: gcc.info, Node: Machine Modes, Next: Constants, Prev: Flags, Up: RTL
-
-Machine Modes
-=============
-
- A machine mode describes a size of data object and the
-representation used for it. In the C code, machine modes are
-represented by an enumeration type, `enum machine_mode', defined in
-`machmode.def'. Each RTL expression has room for a machine mode and so
-do certain kinds of tree expressions (declarations and types, to be
-precise).
-
- In debugging dumps and machine descriptions, the machine mode of an
-RTL expression is written after the expression code with a colon to
-separate them. The letters `mode' which appear at the end of each
-machine mode name are omitted. For example, `(reg:SI 38)' is a `reg'
-expression with machine mode `SImode'. If the mode is `VOIDmode', it
-is not written at all.
-
- Here is a table of machine modes. The term "byte" below refers to an
-object of `BITS_PER_UNIT' bits (*note Storage Layout::.).
-
-`QImode'
- "Quarter-Integer" mode represents a single byte treated as an
- integer.
-
-`HImode'
- "Half-Integer" mode represents a two-byte integer.
-
-`PSImode'
- "Partial Single Integer" mode represents an integer which occupies
- four bytes but which doesn't really use all four. On some
- machines, this is the right mode to use for pointers.
-
-`SImode'
- "Single Integer" mode represents a four-byte integer.
-
-`PDImode'
- "Partial Double Integer" mode represents an integer which occupies
- eight bytes but which doesn't really use all eight. On some
- machines, this is the right mode to use for certain pointers.
-
-`DImode'
- "Double Integer" mode represents an eight-byte integer.
-
-`TImode'
- "Tetra Integer" (?) mode represents a sixteen-byte integer.
-
-`SFmode'
- "Single Floating" mode represents a single-precision (four byte)
- floating point number.
-
-`DFmode'
- "Double Floating" mode represents a double-precision (eight byte)
- floating point number.
-
-`XFmode'
- "Extended Floating" mode represents a triple-precision (twelve
- byte) floating point number. This mode is used for IEEE extended
- floating point. On some systems not all bits within these bytes
- will actually be used.
-
-`TFmode'
- "Tetra Floating" mode represents a quadruple-precision (sixteen
- byte) floating point number.
-
-`CCmode'
- "Condition Code" mode represents the value of a condition code,
- which is a machine-specific set of bits used to represent the
- result of a comparison operation. Other machine-specific modes
- may also be used for the condition code. These modes are not used
- on machines that use `cc0' (see *note Condition Code::.).
-
-`BLKmode'
- "Block" mode represents values that are aggregates to which none of
- the other modes apply. In RTL, only memory references can have
- this mode, and only if they appear in string-move or vector
- instructions. On machines which have no such instructions,
- `BLKmode' will not appear in RTL.
-
-`VOIDmode'
- Void mode means the absence of a mode or an unspecified mode. For
- example, RTL expressions of code `const_int' have mode `VOIDmode'
- because they can be taken to have whatever mode the context
- requires. In debugging dumps of RTL, `VOIDmode' is expressed by
- the absence of any mode.
-
-`SCmode, DCmode, XCmode, TCmode'
- These modes stand for a complex number represented as a pair of
- floating point values. The floating point values are in `SFmode',
- `DFmode', `XFmode', and `TFmode', respectively.
-
-`CQImode, CHImode, CSImode, CDImode, CTImode, COImode'
- These modes stand for a complex number represented as a pair of
- integer values. The integer values are in `QImode', `HImode',
- `SImode', `DImode', `TImode', and `OImode', respectively.
-
- The machine description defines `Pmode' as a C macro which expands
-into the machine mode used for addresses. Normally this is the mode
-whose size is `BITS_PER_WORD', `SImode' on 32-bit machines.
-
- The only modes which a machine description must support are
-`QImode', and the modes corresponding to `BITS_PER_WORD',
-`FLOAT_TYPE_SIZE' and `DOUBLE_TYPE_SIZE'. The compiler will attempt to
-use `DImode' for 8-byte structures and unions, but this can be
-prevented by overriding the definition of `MAX_FIXED_MODE_SIZE'.
-Alternatively, you can have the compiler use `TImode' for 16-byte
-structures and unions. Likewise, you can arrange for the C type `short
-int' to avoid using `HImode'.
-
- Very few explicit references to machine modes remain in the compiler
-and these few references will soon be removed. Instead, the machine
-modes are divided into mode classes. These are represented by the
-enumeration type `enum mode_class' defined in `machmode.h'. The
-possible mode classes are:
-
-`MODE_INT'
- Integer modes. By default these are `QImode', `HImode', `SImode',
- `DImode', and `TImode'.
-
-`MODE_PARTIAL_INT'
- The "partial integer" modes, `PSImode' and `PDImode'.
-
-`MODE_FLOAT'
- floating point modes. By default these are `SFmode', `DFmode',
- `XFmode' and `TFmode'.
-
-`MODE_COMPLEX_INT'
- Complex integer modes. (These are not currently implemented).
-
-`MODE_COMPLEX_FLOAT'
- Complex floating point modes. By default these are `SCmode',
- `DCmode', `XCmode', and `TCmode'.
-
-`MODE_FUNCTION'
- Algol or Pascal function variables including a static chain.
- (These are not currently implemented).
-
-`MODE_CC'
- Modes representing condition code values. These are `CCmode' plus
- any modes listed in the `EXTRA_CC_MODES' macro. *Note Jump
- Patterns::, also see *Note Condition Code::.
-
-`MODE_RANDOM'
- This is a catchall mode class for modes which don't fit into the
- above classes. Currently `VOIDmode' and `BLKmode' are in
- `MODE_RANDOM'.
-
- Here are some C macros that relate to machine modes:
-
-`GET_MODE (X)'
- Returns the machine mode of the RTX X.
-
-`PUT_MODE (X, NEWMODE)'
- Alters the machine mode of the RTX X to be NEWMODE.
-
-`NUM_MACHINE_MODES'
- Stands for the number of machine modes available on the target
- machine. This is one greater than the largest numeric value of any
- machine mode.
-
-`GET_MODE_NAME (M)'
- Returns the name of mode M as a string.
-
-`GET_MODE_CLASS (M)'
- Returns the mode class of mode M.
-
-`GET_MODE_WIDER_MODE (M)'
- Returns the next wider natural mode. For example, the expression
- `GET_MODE_WIDER_MODE (QImode)' returns `HImode'.
-
-`GET_MODE_SIZE (M)'
- Returns the size in bytes of a datum of mode M.
-
-`GET_MODE_BITSIZE (M)'
- Returns the size in bits of a datum of mode M.
-
-`GET_MODE_MASK (M)'
- Returns a bitmask containing 1 for all bits in a word that fit
- within mode M. This macro can only be used for modes whose
- bitsize is less than or equal to `HOST_BITS_PER_INT'.
-
-`GET_MODE_ALIGNMENT (M))'
- Return the required alignment, in bits, for an object of mode M.
-
-`GET_MODE_UNIT_SIZE (M)'
- Returns the size in bytes of the subunits of a datum of mode M.
- This is the same as `GET_MODE_SIZE' except in the case of complex
- modes. For them, the unit size is the size of the real or
- imaginary part.
-
-`GET_MODE_NUNITS (M)'
- Returns the number of units contained in a mode, i.e.,
- `GET_MODE_SIZE' divided by `GET_MODE_UNIT_SIZE'.
-
-`GET_CLASS_NARROWEST_MODE (C)'
- Returns the narrowest mode in mode class C.
-
- The global variables `byte_mode' and `word_mode' contain modes whose
-classes are `MODE_INT' and whose bitsizes are either `BITS_PER_UNIT' or
-`BITS_PER_WORD', respectively. On 32-bit machines, these are `QImode'
-and `SImode', respectively.
-
-
-File: gcc.info, Node: Constants, Next: Regs and Memory, Prev: Machine Modes, Up: RTL
-
-Constant Expression Types
-=========================
-
- The simplest RTL expressions are those that represent constant
-values.
-
-`(const_int I)'
- This type of expression represents the integer value I. I is
- customarily accessed with the macro `INTVAL' as in `INTVAL (EXP)',
- which is equivalent to `XWINT (EXP, 0)'.
-
- There is only one expression object for the integer value zero; it
- is the value of the variable `const0_rtx'. Likewise, the only
- expression for integer value one is found in `const1_rtx', the only
- expression for integer value two is found in `const2_rtx', and the
- only expression for integer value negative one is found in
- `constm1_rtx'. Any attempt to create an expression of code
- `const_int' and value zero, one, two or negative one will return
- `const0_rtx', `const1_rtx', `const2_rtx' or `constm1_rtx' as
- appropriate.
-
- Similarly, there is only one object for the integer whose value is
- `STORE_FLAG_VALUE'. It is found in `const_true_rtx'. If
- `STORE_FLAG_VALUE' is one, `const_true_rtx' and `const1_rtx' will
- point to the same object. If `STORE_FLAG_VALUE' is -1,
- `const_true_rtx' and `constm1_rtx' will point to the same object.
-
-`(const_double:M ADDR I0 I1 ...)'
- Represents either a floating-point constant of mode M or an
- integer constant too large to fit into `HOST_BITS_PER_WIDE_INT'
- bits but small enough to fit within twice that number of bits (GNU
- CC does not provide a mechanism to represent even larger
- constants). In the latter case, M will be `VOIDmode'.
-
- ADDR is used to contain the `mem' expression that corresponds to
- the location in memory that at which the constant can be found. If
- it has not been allocated a memory location, but is on the chain
- of all `const_double' expressions in this compilation (maintained
- using an undisplayed field), ADDR contains `const0_rtx'. If it is
- not on the chain, ADDR contains `cc0_rtx'. ADDR is customarily
- accessed with the macro `CONST_DOUBLE_MEM' and the chain field via
- `CONST_DOUBLE_CHAIN'.
-
- If M is `VOIDmode', the bits of the value are stored in I0 and I1.
- I0 is customarily accessed with the macro `CONST_DOUBLE_LOW' and
- I1 with `CONST_DOUBLE_HIGH'.
-
- If the constant is floating point (regardless of its precision),
- then the number of integers used to store the value depends on the
- size of `REAL_VALUE_TYPE' (*note Cross-compilation::.). The
- integers represent a floating point number, but not precisely in
- the target machine's or host machine's floating point format. To
- convert them to the precise bit pattern used by the target
- machine, use the macro `REAL_VALUE_TO_TARGET_DOUBLE' and friends
- (*note Data Output::.).
-
- The macro `CONST0_RTX (MODE)' refers to an expression with value 0
- in mode MODE. If mode MODE is of mode class `MODE_INT', it
- returns `const0_rtx'. Otherwise, it returns a `CONST_DOUBLE'
- expression in mode MODE. Similarly, the macro `CONST1_RTX (MODE)'
- refers to an expression with value 1 in mode MODE and similarly
- for `CONST2_RTX'.
-
-`(const_string STR)'
- Represents a constant string with value STR. Currently this is
- used only for insn attributes (*note Insn Attributes::.) since
- constant strings in C are placed in memory.
-
-`(symbol_ref:MODE SYMBOL)'
- Represents the value of an assembler label for data. SYMBOL is a
- string that describes the name of the assembler label. If it
- starts with a `*', the label is the rest of SYMBOL not including
- the `*'. Otherwise, the label is SYMBOL, usually prefixed with
- `_'.
-
- The `symbol_ref' contains a mode, which is usually `Pmode'.
- Usually that is the only mode for which a symbol is directly valid.
-
-`(label_ref LABEL)'
- Represents the value of an assembler label for code. It contains
- one operand, an expression, which must be a `code_label' that
- appears in the instruction sequence to identify the place where
- the label should go.
-
- The reason for using a distinct expression type for code label
- references is so that jump optimization can distinguish them.
-
-`(const:M EXP)'
- Represents a constant that is the result of an assembly-time
- arithmetic computation. The operand, EXP, is an expression that
- contains only constants (`const_int', `symbol_ref' and `label_ref'
- expressions) combined with `plus' and `minus'. However, not all
- combinations are valid, since the assembler cannot do arbitrary
- arithmetic on relocatable symbols.
-
- M should be `Pmode'.
-
-`(high:M EXP)'
- Represents the high-order bits of EXP, usually a `symbol_ref'.
- The number of bits is machine-dependent and is normally the number
- of bits specified in an instruction that initializes the high
- order bits of a register. It is used with `lo_sum' to represent
- the typical two-instruction sequence used in RISC machines to
- reference a global memory location.
-
- M should be `Pmode'.
-
diff --git a/gcc/gcc.info-15 b/gcc/gcc.info-15
deleted file mode 100644
index ef51ab57459..00000000000
--- a/gcc/gcc.info-15
+++ /dev/null
@@ -1,1010 +0,0 @@
-This is Info file gcc.info, produced by Makeinfo version 1.68 from the
-input file gcc.texi.
-
- This file documents the use and the internals of the GNU compiler.
-
- Published by the Free Software Foundation 59 Temple Place - Suite 330
-Boston, MA 02111-1307 USA
-
- Copyright (C) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997 Free
-Software Foundation, Inc.
-
- Permission is granted to make and distribute verbatim copies of this
-manual provided the copyright notice and this permission notice are
-preserved on all copies.
-
- Permission is granted to copy and distribute modified versions of
-this manual under the conditions for verbatim copying, provided also
-that the sections entitled "GNU General Public License," "Funding for
-Free Software," and "Protect Your Freedom--Fight `Look And Feel'" are
-included exactly as in the original, and provided that the entire
-resulting derived work is distributed under the terms of a permission
-notice identical to this one.
-
- Permission is granted to copy and distribute translations of this
-manual into another language, under the above conditions for modified
-versions, except that the sections entitled "GNU General Public
-License," "Funding for Free Software," and "Protect Your Freedom--Fight
-`Look And Feel'", and this permission notice, may be included in
-translations approved by the Free Software Foundation instead of in the
-original English.
-
-
-File: gcc.info, Node: Regs and Memory, Next: Arithmetic, Prev: Constants, Up: RTL
-
-Registers and Memory
-====================
-
- Here are the RTL expression types for describing access to machine
-registers and to main memory.
-
-`(reg:M N)'
- For small values of the integer N (those that are less than
- `FIRST_PSEUDO_REGISTER'), this stands for a reference to machine
- register number N: a "hard register". For larger values of N, it
- stands for a temporary value or "pseudo register". The compiler's
- strategy is to generate code assuming an unlimited number of such
- pseudo registers, and later convert them into hard registers or
- into memory references.
-
- M is the machine mode of the reference. It is necessary because
- machines can generally refer to each register in more than one
- mode. For example, a register may contain a full word but there
- may be instructions to refer to it as a half word or as a single
- byte, as well as instructions to refer to it as a floating point
- number of various precisions.
-
- Even for a register that the machine can access in only one mode,
- the mode must always be specified.
-
- The symbol `FIRST_PSEUDO_REGISTER' is defined by the machine
- description, since the number of hard registers on the machine is
- an invariant characteristic of the machine. Note, however, that
- not all of the machine registers must be general registers. All
- the machine registers that can be used for storage of data are
- given hard register numbers, even those that can be used only in
- certain instructions or can hold only certain types of data.
-
- A hard register may be accessed in various modes throughout one
- function, but each pseudo register is given a natural mode and is
- accessed only in that mode. When it is necessary to describe an
- access to a pseudo register using a nonnatural mode, a `subreg'
- expression is used.
-
- A `reg' expression with a machine mode that specifies more than
- one word of data may actually stand for several consecutive
- registers. If in addition the register number specifies a
- hardware register, then it actually represents several consecutive
- hardware registers starting with the specified one.
-
- Each pseudo register number used in a function's RTL code is
- represented by a unique `reg' expression.
-
- Some pseudo register numbers, those within the range of
- `FIRST_VIRTUAL_REGISTER' to `LAST_VIRTUAL_REGISTER' only appear
- during the RTL generation phase and are eliminated before the
- optimization phases. These represent locations in the stack frame
- that cannot be determined until RTL generation for the function
- has been completed. The following virtual register numbers are
- defined:
-
- `VIRTUAL_INCOMING_ARGS_REGNUM'
- This points to the first word of the incoming arguments
- passed on the stack. Normally these arguments are placed
- there by the caller, but the callee may have pushed some
- arguments that were previously passed in registers.
-
- When RTL generation is complete, this virtual register is
- replaced by the sum of the register given by
- `ARG_POINTER_REGNUM' and the value of `FIRST_PARM_OFFSET'.
-
- `VIRTUAL_STACK_VARS_REGNUM'
- If `FRAME_GROWS_DOWNWARD' is defined, this points to
- immediately above the first variable on the stack.
- Otherwise, it points to the first variable on the stack.
-
- `VIRTUAL_STACK_VARS_REGNUM' is replaced with the sum of the
- register given by `FRAME_POINTER_REGNUM' and the value
- `STARTING_FRAME_OFFSET'.
-
- `VIRTUAL_STACK_DYNAMIC_REGNUM'
- This points to the location of dynamically allocated memory
- on the stack immediately after the stack pointer has been
- adjusted by the amount of memory desired.
-
- This virtual register is replaced by the sum of the register
- given by `STACK_POINTER_REGNUM' and the value
- `STACK_DYNAMIC_OFFSET'.
-
- `VIRTUAL_OUTGOING_ARGS_REGNUM'
- This points to the location in the stack at which outgoing
- arguments should be written when the stack is pre-pushed
- (arguments pushed using push insns should always use
- `STACK_POINTER_REGNUM').
-
- This virtual register is replaced by the sum of the register
- given by `STACK_POINTER_REGNUM' and the value
- `STACK_POINTER_OFFSET'.
-
-`(subreg:M REG WORDNUM)'
- `subreg' expressions are used to refer to a register in a machine
- mode other than its natural one, or to refer to one register of a
- multi-word `reg' that actually refers to several registers.
-
- Each pseudo-register has a natural mode. If it is necessary to
- operate on it in a different mode--for example, to perform a
- fullword move instruction on a pseudo-register that contains a
- single byte--the pseudo-register must be enclosed in a `subreg'.
- In such a case, WORDNUM is zero.
-
- Usually M is at least as narrow as the mode of REG, in which case
- it is restricting consideration to only the bits of REG that are
- in M.
-
- Sometimes M is wider than the mode of REG. These `subreg'
- expressions are often called "paradoxical". They are used in
- cases where we want to refer to an object in a wider mode but do
- not care what value the additional bits have. The reload pass
- ensures that paradoxical references are only made to hard
- registers.
-
- The other use of `subreg' is to extract the individual registers of
- a multi-register value. Machine modes such as `DImode' and
- `TImode' can indicate values longer than a word, values which
- usually require two or more consecutive registers. To access one
- of the registers, use a `subreg' with mode `SImode' and a WORDNUM
- that says which register.
-
- Storing in a non-paradoxical `subreg' has undefined results for
- bits belonging to the same word as the `subreg'. This laxity makes
- it easier to generate efficient code for such instructions. To
- represent an instruction that preserves all the bits outside of
- those in the `subreg', use `strict_low_part' around the `subreg'.
-
- The compilation parameter `WORDS_BIG_ENDIAN', if set to 1, says
- that word number zero is the most significant part; otherwise, it
- is the least significant part.
-
- Between the combiner pass and the reload pass, it is possible to
- have a paradoxical `subreg' which contains a `mem' instead of a
- `reg' as its first operand. After the reload pass, it is also
- possible to have a non-paradoxical `subreg' which contains a
- `mem'; this usually occurs when the `mem' is a stack slot which
- replaced a pseudo register.
-
- Note that it is not valid to access a `DFmode' value in `SFmode'
- using a `subreg'. On some machines the most significant part of a
- `DFmode' value does not have the same format as a single-precision
- floating value.
-
- It is also not valid to access a single word of a multi-word value
- in a hard register when less registers can hold the value than
- would be expected from its size. For example, some 32-bit
- machines have floating-point registers that can hold an entire
- `DFmode' value. If register 10 were such a register `(subreg:SI
- (reg:DF 10) 1)' would be invalid because there is no way to
- convert that reference to a single machine register. The reload
- pass prevents `subreg' expressions such as these from being formed.
-
- The first operand of a `subreg' expression is customarily accessed
- with the `SUBREG_REG' macro and the second operand is customarily
- accessed with the `SUBREG_WORD' macro.
-
-`(scratch:M)'
- This represents a scratch register that will be required for the
- execution of a single instruction and not used subsequently. It is
- converted into a `reg' by either the local register allocator or
- the reload pass.
-
- `scratch' is usually present inside a `clobber' operation (*note
- Side Effects::.).
-
-`(cc0)'
- This refers to the machine's condition code register. It has no
- operands and may not have a machine mode. There are two ways to
- use it:
-
- * To stand for a complete set of condition code flags. This is
- best on most machines, where each comparison sets the entire
- series of flags.
-
- With this technique, `(cc0)' may be validly used in only two
- contexts: as the destination of an assignment (in test and
- compare instructions) and in comparison operators comparing
- against zero (`const_int' with value zero; that is to say,
- `const0_rtx').
-
- * To stand for a single flag that is the result of a single
- condition. This is useful on machines that have only a
- single flag bit, and in which comparison instructions must
- specify the condition to test.
-
- With this technique, `(cc0)' may be validly used in only two
- contexts: as the destination of an assignment (in test and
- compare instructions) where the source is a comparison
- operator, and as the first operand of `if_then_else' (in a
- conditional branch).
-
- There is only one expression object of code `cc0'; it is the value
- of the variable `cc0_rtx'. Any attempt to create an expression of
- code `cc0' will return `cc0_rtx'.
-
- Instructions can set the condition code implicitly. On many
- machines, nearly all instructions set the condition code based on
- the value that they compute or store. It is not necessary to
- record these actions explicitly in the RTL because the machine
- description includes a prescription for recognizing the
- instructions that do so (by means of the macro
- `NOTICE_UPDATE_CC'). *Note Condition Code::. Only instructions
- whose sole purpose is to set the condition code, and instructions
- that use the condition code, need mention `(cc0)'.
-
- On some machines, the condition code register is given a register
- number and a `reg' is used instead of `(cc0)'. This is usually the
- preferable approach if only a small subset of instructions modify
- the condition code. Other machines store condition codes in
- general registers; in such cases a pseudo register should be used.
-
- Some machines, such as the Sparc and RS/6000, have two sets of
- arithmetic instructions, one that sets and one that does not set
- the condition code. This is best handled by normally generating
- the instruction that does not set the condition code, and making a
- pattern that both performs the arithmetic and sets the condition
- code register (which would not be `(cc0)' in this case). For
- examples, search for `addcc' and `andcc' in `sparc.md'.
-
-`(pc)'
- This represents the machine's program counter. It has no operands
- and may not have a machine mode. `(pc)' may be validly used only
- in certain specific contexts in jump instructions.
-
- There is only one expression object of code `pc'; it is the value
- of the variable `pc_rtx'. Any attempt to create an expression of
- code `pc' will return `pc_rtx'.
-
- All instructions that do not jump alter the program counter
- implicitly by incrementing it, but there is no need to mention
- this in the RTL.
-
-`(mem:M ADDR)'
- This RTX represents a reference to main memory at an address
- represented by the expression ADDR. M specifies how large a unit
- of memory is accessed.
-
-`(addressof:M REG)'
- This RTX represents a request for the address of register REG.
- Its mode is always `Pmode'. If there are any `addressof'
- expressions left in the function after CSE, REG is forced into the
- stack and the `addressof' expression is replaced with a `plus'
- expression for the address of its stack slot.
-
-
-File: gcc.info, Node: Arithmetic, Next: Comparisons, Prev: Regs and Memory, Up: RTL
-
-RTL Expressions for Arithmetic
-==============================
-
- Unless otherwise specified, all the operands of arithmetic
-expressions must be valid for mode M. An operand is valid for mode M
-if it has mode M, or if it is a `const_int' or `const_double' and M is
-a mode of class `MODE_INT'.
-
- For commutative binary operations, constants should be placed in the
-second operand.
-
-`(plus:M X Y)'
- Represents the sum of the values represented by X and Y carried
- out in machine mode M.
-
-`(lo_sum:M X Y)'
- Like `plus', except that it represents that sum of X and the
- low-order bits of Y. The number of low order bits is
- machine-dependent but is normally the number of bits in a `Pmode'
- item minus the number of bits set by the `high' code (*note
- Constants::.).
-
- M should be `Pmode'.
-
-`(minus:M X Y)'
- Like `plus' but represents subtraction.
-
-`(compare:M X Y)'
- Represents the result of subtracting Y from X for purposes of
- comparison. The result is computed without overflow, as if with
- infinite precision.
-
- Of course, machines can't really subtract with infinite precision.
- However, they can pretend to do so when only the sign of the
- result will be used, which is the case when the result is stored
- in the condition code. And that is the only way this kind of
- expression may validly be used: as a value to be stored in the
- condition codes.
-
- The mode M is not related to the modes of X and Y, but instead is
- the mode of the condition code value. If `(cc0)' is used, it is
- `VOIDmode'. Otherwise it is some mode in class `MODE_CC', often
- `CCmode'. *Note Condition Code::.
-
- Normally, X and Y must have the same mode. Otherwise, `compare'
- is valid only if the mode of X is in class `MODE_INT' and Y is a
- `const_int' or `const_double' with mode `VOIDmode'. The mode of X
- determines what mode the comparison is to be done in; thus it must
- not be `VOIDmode'.
-
- If one of the operands is a constant, it should be placed in the
- second operand and the comparison code adjusted as appropriate.
-
- A `compare' specifying two `VOIDmode' constants is not valid since
- there is no way to know in what mode the comparison is to be
- performed; the comparison must either be folded during the
- compilation or the first operand must be loaded into a register
- while its mode is still known.
-
-`(neg:M X)'
- Represents the negation (subtraction from zero) of the value
- represented by X, carried out in mode M.
-
-`(mult:M X Y)'
- Represents the signed product of the values represented by X and Y
- carried out in machine mode M.
-
- Some machines support a multiplication that generates a product
- wider than the operands. Write the pattern for this as
-
- (mult:M (sign_extend:M X) (sign_extend:M Y))
-
- where M is wider than the modes of X and Y, which need not be the
- same.
-
- Write patterns for unsigned widening multiplication similarly using
- `zero_extend'.
-
-`(div:M X Y)'
- Represents the quotient in signed division of X by Y, carried out
- in machine mode M. If M is a floating point mode, it represents
- the exact quotient; otherwise, the integerized quotient.
-
- Some machines have division instructions in which the operands and
- quotient widths are not all the same; you should represent such
- instructions using `truncate' and `sign_extend' as in,
-
- (truncate:M1 (div:M2 X (sign_extend:M2 Y)))
-
-`(udiv:M X Y)'
- Like `div' but represents unsigned division.
-
-`(mod:M X Y)'
-`(umod:M X Y)'
- Like `div' and `udiv' but represent the remainder instead of the
- quotient.
-
-`(smin:M X Y)'
-`(smax:M X Y)'
- Represents the smaller (for `smin') or larger (for `smax') of X
- and Y, interpreted as signed integers in mode M.
-
-`(umin:M X Y)'
-`(umax:M X Y)'
- Like `smin' and `smax', but the values are interpreted as unsigned
- integers.
-
-`(not:M X)'
- Represents the bitwise complement of the value represented by X,
- carried out in mode M, which must be a fixed-point machine mode.
-
-`(and:M X Y)'
- Represents the bitwise logical-and of the values represented by X
- and Y, carried out in machine mode M, which must be a fixed-point
- machine mode.
-
-`(ior:M X Y)'
- Represents the bitwise inclusive-or of the values represented by X
- and Y, carried out in machine mode M, which must be a fixed-point
- mode.
-
-`(xor:M X Y)'
- Represents the bitwise exclusive-or of the values represented by X
- and Y, carried out in machine mode M, which must be a fixed-point
- mode.
-
-`(ashift:M X C)'
- Represents the result of arithmetically shifting X left by C
- places. X have mode M, a fixed-point machine mode. C be a
- fixed-point mode or be a constant with mode `VOIDmode'; which mode
- is determined by the mode called for in the machine description
- entry for the left-shift instruction. For example, on the Vax,
- the mode of C is `QImode' regardless of M.
-
-`(lshiftrt:M X C)'
-`(ashiftrt:M X C)'
- Like `ashift' but for right shift. Unlike the case for left shift,
- these two operations are distinct.
-
-`(rotate:M X C)'
-`(rotatert:M X C)'
- Similar but represent left and right rotate. If C is a constant,
- use `rotate'.
-
-`(abs:M X)'
- Represents the absolute value of X, computed in mode M.
-
-`(sqrt:M X)'
- Represents the square root of X, computed in mode M. Most often M
- will be a floating point mode.
-
-`(ffs:M X)'
- Represents one plus the index of the least significant 1-bit in X,
- represented as an integer of mode M. (The value is zero if X is
- zero.) The mode of X need not be M; depending on the target
- machine, various mode combinations may be valid.
-
-
-File: gcc.info, Node: Comparisons, Next: Bit Fields, Prev: Arithmetic, Up: RTL
-
-Comparison Operations
-=====================
-
- Comparison operators test a relation on two operands and are
-considered to represent a machine-dependent nonzero value described by,
-but not necessarily equal to, `STORE_FLAG_VALUE' (*note Misc::.) if
-the relation holds, or zero if it does not. The mode of the comparison
-operation is independent of the mode of the data being compared. If
-the comparison operation is being tested (e.g., the first operand of an
-`if_then_else'), the mode must be `VOIDmode'. If the comparison
-operation is producing data to be stored in some variable, the mode
-must be in class `MODE_INT'. All comparison operations producing data
-must use the same mode, which is machine-specific.
-
- There are two ways that comparison operations may be used. The
-comparison operators may be used to compare the condition codes `(cc0)'
-against zero, as in `(eq (cc0) (const_int 0))'. Such a construct
-actually refers to the result of the preceding instruction in which the
-condition codes were set. The instructing setting the condition code
-must be adjacent to the instruction using the condition code; only
-`note' insns may separate them.
-
- Alternatively, a comparison operation may directly compare two data
-objects. The mode of the comparison is determined by the operands; they
-must both be valid for a common machine mode. A comparison with both
-operands constant would be invalid as the machine mode could not be
-deduced from it, but such a comparison should never exist in RTL due to
-constant folding.
-
- In the example above, if `(cc0)' were last set to `(compare X Y)',
-the comparison operation is identical to `(eq X Y)'. Usually only one
-style of comparisons is supported on a particular machine, but the
-combine pass will try to merge the operations to produce the `eq' shown
-in case it exists in the context of the particular insn involved.
-
- Inequality comparisons come in two flavors, signed and unsigned.
-Thus, there are distinct expression codes `gt' and `gtu' for signed and
-unsigned greater-than. These can produce different results for the same
-pair of integer values: for example, 1 is signed greater-than -1 but not
-unsigned greater-than, because -1 when regarded as unsigned is actually
-`0xffffffff' which is greater than 1.
-
- The signed comparisons are also used for floating point values.
-Floating point comparisons are distinguished by the machine modes of
-the operands.
-
-`(eq:M X Y)'
- 1 if the values represented by X and Y are equal, otherwise 0.
-
-`(ne:M X Y)'
- 1 if the values represented by X and Y are not equal, otherwise 0.
-
-`(gt:M X Y)'
- 1 if the X is greater than Y. If they are fixed-point, the
- comparison is done in a signed sense.
-
-`(gtu:M X Y)'
- Like `gt' but does unsigned comparison, on fixed-point numbers
- only.
-
-`(lt:M X Y)'
-`(ltu:M X Y)'
- Like `gt' and `gtu' but test for "less than".
-
-`(ge:M X Y)'
-`(geu:M X Y)'
- Like `gt' and `gtu' but test for "greater than or equal".
-
-`(le:M X Y)'
-`(leu:M X Y)'
- Like `gt' and `gtu' but test for "less than or equal".
-
-`(if_then_else COND THEN ELSE)'
- This is not a comparison operation but is listed here because it is
- always used in conjunction with a comparison operation. To be
- precise, COND is a comparison expression. This expression
- represents a choice, according to COND, between the value
- represented by THEN and the one represented by ELSE.
-
- On most machines, `if_then_else' expressions are valid only to
- express conditional jumps.
-
-`(cond [TEST1 VALUE1 TEST2 VALUE2 ...] DEFAULT)'
- Similar to `if_then_else', but more general. Each of TEST1,
- TEST2, ... is performed in turn. The result of this expression is
- the VALUE corresponding to the first non-zero test, or DEFAULT if
- none of the tests are non-zero expressions.
-
- This is currently not valid for instruction patterns and is
- supported only for insn attributes. *Note Insn Attributes::.
-
-
-File: gcc.info, Node: Bit Fields, Next: Conversions, Prev: Comparisons, Up: RTL
-
-Bit Fields
-==========
-
- Special expression codes exist to represent bitfield instructions.
-These types of expressions are lvalues in RTL; they may appear on the
-left side of an assignment, indicating insertion of a value into the
-specified bit field.
-
-`(sign_extract:M LOC SIZE POS)'
- This represents a reference to a sign-extended bit field contained
- or starting in LOC (a memory or register reference). The bit field
- is SIZE bits wide and starts at bit POS. The compilation option
- `BITS_BIG_ENDIAN' says which end of the memory unit POS counts
- from.
-
- If LOC is in memory, its mode must be a single-byte integer mode.
- If LOC is in a register, the mode to use is specified by the
- operand of the `insv' or `extv' pattern (*note Standard Names::.)
- and is usually a full-word integer mode, which is the default if
- none is specified.
-
- The mode of POS is machine-specific and is also specified in the
- `insv' or `extv' pattern.
-
- The mode M is the same as the mode that would be used for LOC if
- it were a register.
-
-`(zero_extract:M LOC SIZE POS)'
- Like `sign_extract' but refers to an unsigned or zero-extended bit
- field. The same sequence of bits are extracted, but they are
- filled to an entire word with zeros instead of by sign-extension.
-
-
-File: gcc.info, Node: Conversions, Next: RTL Declarations, Prev: Bit Fields, Up: RTL
-
-Conversions
-===========
-
- All conversions between machine modes must be represented by
-explicit conversion operations. For example, an expression which is
-the sum of a byte and a full word cannot be written as `(plus:SI
-(reg:QI 34) (reg:SI 80))' because the `plus' operation requires two
-operands of the same machine mode. Therefore, the byte-sized operand
-is enclosed in a conversion operation, as in
-
- (plus:SI (sign_extend:SI (reg:QI 34)) (reg:SI 80))
-
- The conversion operation is not a mere placeholder, because there
-may be more than one way of converting from a given starting mode to
-the desired final mode. The conversion operation code says how to do
-it.
-
- For all conversion operations, X must not be `VOIDmode' because the
-mode in which to do the conversion would not be known. The conversion
-must either be done at compile-time or X must be placed into a register.
-
-`(sign_extend:M X)'
- Represents the result of sign-extending the value X to machine
- mode M. M must be a fixed-point mode and X a fixed-point value of
- a mode narrower than M.
-
-`(zero_extend:M X)'
- Represents the result of zero-extending the value X to machine
- mode M. M must be a fixed-point mode and X a fixed-point value of
- a mode narrower than M.
-
-`(float_extend:M X)'
- Represents the result of extending the value X to machine mode M.
- M must be a floating point mode and X a floating point value of a
- mode narrower than M.
-
-`(truncate:M X)'
- Represents the result of truncating the value X to machine mode M.
- M must be a fixed-point mode and X a fixed-point value of a mode
- wider than M.
-
-`(float_truncate:M X)'
- Represents the result of truncating the value X to machine mode M.
- M must be a floating point mode and X a floating point value of a
- mode wider than M.
-
-`(float:M X)'
- Represents the result of converting fixed point value X, regarded
- as signed, to floating point mode M.
-
-`(unsigned_float:M X)'
- Represents the result of converting fixed point value X, regarded
- as unsigned, to floating point mode M.
-
-`(fix:M X)'
- When M is a fixed point mode, represents the result of converting
- floating point value X to mode M, regarded as signed. How
- rounding is done is not specified, so this operation may be used
- validly in compiling C code only for integer-valued operands.
-
-`(unsigned_fix:M X)'
- Represents the result of converting floating point value X to
- fixed point mode M, regarded as unsigned. How rounding is done is
- not specified.
-
-`(fix:M X)'
- When M is a floating point mode, represents the result of
- converting floating point value X (valid for mode M) to an
- integer, still represented in floating point mode M, by rounding
- towards zero.
-
-
-File: gcc.info, Node: RTL Declarations, Next: Side Effects, Prev: Conversions, Up: RTL
-
-Declarations
-============
-
- Declaration expression codes do not represent arithmetic operations
-but rather state assertions about their operands.
-
-`(strict_low_part (subreg:M (reg:N R) 0))'
- This expression code is used in only one context: as the
- destination operand of a `set' expression. In addition, the
- operand of this expression must be a non-paradoxical `subreg'
- expression.
-
- The presence of `strict_low_part' says that the part of the
- register which is meaningful in mode N, but is not part of mode M,
- is not to be altered. Normally, an assignment to such a subreg is
- allowed to have undefined effects on the rest of the register when
- M is less than a word.
-
-
-File: gcc.info, Node: Side Effects, Next: Incdec, Prev: RTL Declarations, Up: RTL
-
-Side Effect Expressions
-=======================
-
- The expression codes described so far represent values, not actions.
-But machine instructions never produce values; they are meaningful only
-for their side effects on the state of the machine. Special expression
-codes are used to represent side effects.
-
- The body of an instruction is always one of these side effect codes;
-the codes described above, which represent values, appear only as the
-operands of these.
-
-`(set LVAL X)'
- Represents the action of storing the value of X into the place
- represented by LVAL. LVAL must be an expression representing a
- place that can be stored in: `reg' (or `subreg' or
- `strict_low_part'), `mem', `pc' or `cc0'.
-
- If LVAL is a `reg', `subreg' or `mem', it has a machine mode; then
- X must be valid for that mode.
-
- If LVAL is a `reg' whose machine mode is less than the full width
- of the register, then it means that the part of the register
- specified by the machine mode is given the specified value and the
- rest of the register receives an undefined value. Likewise, if
- LVAL is a `subreg' whose machine mode is narrower than the mode of
- the register, the rest of the register can be changed in an
- undefined way.
-
- If LVAL is a `strict_low_part' of a `subreg', then the part of the
- register specified by the machine mode of the `subreg' is given
- the value X and the rest of the register is not changed.
-
- If LVAL is `(cc0)', it has no machine mode, and X may be either a
- `compare' expression or a value that may have any mode. The
- latter case represents a "test" instruction. The expression `(set
- (cc0) (reg:M N))' is equivalent to `(set (cc0) (compare (reg:M N)
- (const_int 0)))'. Use the former expression to save space during
- the compilation.
-
- If LVAL is `(pc)', we have a jump instruction, and the
- possibilities for X are very limited. It may be a `label_ref'
- expression (unconditional jump). It may be an `if_then_else'
- (conditional jump), in which case either the second or the third
- operand must be `(pc)' (for the case which does not jump) and the
- other of the two must be a `label_ref' (for the case which does
- jump). X may also be a `mem' or `(plus:SI (pc) Y)', where Y may
- be a `reg' or a `mem'; these unusual patterns are used to
- represent jumps through branch tables.
-
- If LVAL is neither `(cc0)' nor `(pc)', the mode of LVAL must not
- be `VOIDmode' and the mode of X must be valid for the mode of LVAL.
-
- LVAL is customarily accessed with the `SET_DEST' macro and X with
- the `SET_SRC' macro.
-
-`(return)'
- As the sole expression in a pattern, represents a return from the
- current function, on machines where this can be done with one
- instruction, such as Vaxes. On machines where a multi-instruction
- "epilogue" must be executed in order to return from the function,
- returning is done by jumping to a label which precedes the
- epilogue, and the `return' expression code is never used.
-
- Inside an `if_then_else' expression, represents the value to be
- placed in `pc' to return to the caller.
-
- Note that an insn pattern of `(return)' is logically equivalent to
- `(set (pc) (return))', but the latter form is never used.
-
-`(call FUNCTION NARGS)'
- Represents a function call. FUNCTION is a `mem' expression whose
- address is the address of the function to be called. NARGS is an
- expression which can be used for two purposes: on some machines it
- represents the number of bytes of stack argument; on others, it
- represents the number of argument registers.
-
- Each machine has a standard machine mode which FUNCTION must have.
- The machine description defines macro `FUNCTION_MODE' to expand
- into the requisite mode name. The purpose of this mode is to
- specify what kind of addressing is allowed, on machines where the
- allowed kinds of addressing depend on the machine mode being
- addressed.
-
-`(clobber X)'
- Represents the storing or possible storing of an unpredictable,
- undescribed value into X, which must be a `reg', `scratch' or
- `mem' expression.
-
- One place this is used is in string instructions that store
- standard values into particular hard registers. It may not be
- worth the trouble to describe the values that are stored, but it
- is essential to inform the compiler that the registers will be
- altered, lest it attempt to keep data in them across the string
- instruction.
-
- If X is `(mem:BLK (const_int 0))', it means that all memory
- locations must be presumed clobbered.
-
- Note that the machine description classifies certain hard
- registers as "call-clobbered". All function call instructions are
- assumed by default to clobber these registers, so there is no need
- to use `clobber' expressions to indicate this fact. Also, each
- function call is assumed to have the potential to alter any memory
- location, unless the function is declared `const'.
-
- If the last group of expressions in a `parallel' are each a
- `clobber' expression whose arguments are `reg' or `match_scratch'
- (*note RTL Template::.) expressions, the combiner phase can add
- the appropriate `clobber' expressions to an insn it has
- constructed when doing so will cause a pattern to be matched.
-
- This feature can be used, for example, on a machine that whose
- multiply and add instructions don't use an MQ register but which
- has an add-accumulate instruction that does clobber the MQ
- register. Similarly, a combined instruction might require a
- temporary register while the constituent instructions might not.
-
- When a `clobber' expression for a register appears inside a
- `parallel' with other side effects, the register allocator
- guarantees that the register is unoccupied both before and after
- that insn. However, the reload phase may allocate a register used
- for one of the inputs unless the `&' constraint is specified for
- the selected alternative (*note Modifiers::.). You can clobber
- either a specific hard register, a pseudo register, or a `scratch'
- expression; in the latter two cases, GNU CC will allocate a hard
- register that is available there for use as a temporary.
-
- For instructions that require a temporary register, you should use
- `scratch' instead of a pseudo-register because this will allow the
- combiner phase to add the `clobber' when required. You do this by
- coding (`clobber' (`match_scratch' ...)). If you do clobber a
- pseudo register, use one which appears nowhere else--generate a
- new one each time. Otherwise, you may confuse CSE.
-
- There is one other known use for clobbering a pseudo register in a
- `parallel': when one of the input operands of the insn is also
- clobbered by the insn. In this case, using the same pseudo
- register in the clobber and elsewhere in the insn produces the
- expected results.
-
-`(use X)'
- Represents the use of the value of X. It indicates that the value
- in X at this point in the program is needed, even though it may
- not be apparent why this is so. Therefore, the compiler will not
- attempt to delete previous instructions whose only effect is to
- store a value in X. X must be a `reg' expression.
-
- During the delayed branch scheduling phase, X may be an insn.
- This indicates that X previously was located at this place in the
- code and its data dependencies need to be taken into account.
- These `use' insns will be deleted before the delayed branch
- scheduling phase exits.
-
-`(parallel [X0 X1 ...])'
- Represents several side effects performed in parallel. The square
- brackets stand for a vector; the operand of `parallel' is a vector
- of expressions. X0, X1 and so on are individual side effect
- expressions--expressions of code `set', `call', `return',
- `clobber' or `use'.
-
- "In parallel" means that first all the values used in the
- individual side-effects are computed, and second all the actual
- side-effects are performed. For example,
-
- (parallel [(set (reg:SI 1) (mem:SI (reg:SI 1)))
- (set (mem:SI (reg:SI 1)) (reg:SI 1))])
-
- says unambiguously that the values of hard register 1 and the
- memory location addressed by it are interchanged. In both places
- where `(reg:SI 1)' appears as a memory address it refers to the
- value in register 1 *before* the execution of the insn.
-
- It follows that it is *incorrect* to use `parallel' and expect the
- result of one `set' to be available for the next one. For
- example, people sometimes attempt to represent a jump-if-zero
- instruction this way:
-
- (parallel [(set (cc0) (reg:SI 34))
- (set (pc) (if_then_else
- (eq (cc0) (const_int 0))
- (label_ref ...)
- (pc)))])
-
- But this is incorrect, because it says that the jump condition
- depends on the condition code value *before* this instruction, not
- on the new value that is set by this instruction.
-
- Peephole optimization, which takes place together with final
- assembly code output, can produce insns whose patterns consist of
- a `parallel' whose elements are the operands needed to output the
- resulting assembler code--often `reg', `mem' or constant
- expressions. This would not be well-formed RTL at any other stage
- in compilation, but it is ok then because no further optimization
- remains to be done. However, the definition of the macro
- `NOTICE_UPDATE_CC', if any, must deal with such insns if you
- define any peephole optimizations.
-
-`(sequence [INSNS ...])'
- Represents a sequence of insns. Each of the INSNS that appears in
- the vector is suitable for appearing in the chain of insns, so it
- must be an `insn', `jump_insn', `call_insn', `code_label',
- `barrier' or `note'.
-
- A `sequence' RTX is never placed in an actual insn during RTL
- generation. It represents the sequence of insns that result from a
- `define_expand' *before* those insns are passed to `emit_insn' to
- insert them in the chain of insns. When actually inserted, the
- individual sub-insns are separated out and the `sequence' is
- forgotten.
-
- After delay-slot scheduling is completed, an insn and all the
- insns that reside in its delay slots are grouped together into a
- `sequence'. The insn requiring the delay slot is the first insn
- in the vector; subsequent insns are to be placed in the delay slot.
-
- `INSN_ANNULLED_BRANCH_P' is set on an insn in a delay slot to
- indicate that a branch insn should be used that will conditionally
- annul the effect of the insns in the delay slots. In such a case,
- `INSN_FROM_TARGET_P' indicates that the insn is from the target of
- the branch and should be executed only if the branch is taken;
- otherwise the insn should be executed only if the branch is not
- taken. *Note Delay Slots::.
-
- These expression codes appear in place of a side effect, as the body
-of an insn, though strictly speaking they do not always describe side
-effects as such:
-
-`(asm_input S)'
- Represents literal assembler code as described by the string S.
-
-`(unspec [OPERANDS ...] INDEX)'
-`(unspec_volatile [OPERANDS ...] INDEX)'
- Represents a machine-specific operation on OPERANDS. INDEX
- selects between multiple machine-specific operations.
- `unspec_volatile' is used for volatile operations and operations
- that may trap; `unspec' is used for other operations.
-
- These codes may appear inside a `pattern' of an insn, inside a
- `parallel', or inside an expression.
-
-`(addr_vec:M [LR0 LR1 ...])'
- Represents a table of jump addresses. The vector elements LR0,
- etc., are `label_ref' expressions. The mode M specifies how much
- space is given to each address; normally M would be `Pmode'.
-
-`(addr_diff_vec:M BASE [LR0 LR1 ...])'
- Represents a table of jump addresses expressed as offsets from
- BASE. The vector elements LR0, etc., are `label_ref' expressions
- and so is BASE. The mode M specifies how much space is given to
- each address-difference.
-
-
-File: gcc.info, Node: Incdec, Next: Assembler, Prev: Side Effects, Up: RTL
-
-Embedded Side-Effects on Addresses
-==================================
-
- Four special side-effect expression codes appear as memory addresses.
-
-`(pre_dec:M X)'
- Represents the side effect of decrementing X by a standard amount
- and represents also the value that X has after being decremented.
- X must be a `reg' or `mem', but most machines allow only a `reg'.
- M must be the machine mode for pointers on the machine in use.
- The amount X is decremented by is the length in bytes of the
- machine mode of the containing memory reference of which this
- expression serves as the address. Here is an example of its use:
-
- (mem:DF (pre_dec:SI (reg:SI 39)))
-
- This says to decrement pseudo register 39 by the length of a
- `DFmode' value and use the result to address a `DFmode' value.
-
-`(pre_inc:M X)'
- Similar, but specifies incrementing X instead of decrementing it.
-
-`(post_dec:M X)'
- Represents the same side effect as `pre_dec' but a different
- value. The value represented here is the value X has before being
- decremented.
-
-`(post_inc:M X)'
- Similar, but specifies incrementing X instead of decrementing it.
-
- These embedded side effect expressions must be used with care.
-Instruction patterns may not use them. Until the `flow' pass of the
-compiler, they may occur only to represent pushes onto the stack. The
-`flow' pass finds cases where registers are incremented or decremented
-in one instruction and used as an address shortly before or after;
-these cases are then transformed to use pre- or post-increment or
--decrement.
-
- If a register used as the operand of these expressions is used in
-another address in an insn, the original value of the register is used.
-Uses of the register outside of an address are not permitted within the
-same insn as a use in an embedded side effect expression because such
-insns behave differently on different machines and hence must be treated
-as ambiguous and disallowed.
-
- An instruction that can be represented with an embedded side effect
-could also be represented using `parallel' containing an additional
-`set' to describe how the address register is altered. This is not
-done because machines that allow these operations at all typically
-allow them wherever a memory address is called for. Describing them as
-additional parallel stores would require doubling the number of entries
-in the machine description.
-
-
-File: gcc.info, Node: Assembler, Next: Insns, Prev: Incdec, Up: RTL
-
-Assembler Instructions as Expressions
-=====================================
-
- The RTX code `asm_operands' represents a value produced by a
-user-specified assembler instruction. It is used to represent an `asm'
-statement with arguments. An `asm' statement with a single output
-operand, like this:
-
- asm ("foo %1,%2,%0" : "=a" (outputvar) : "g" (x + y), "di" (*z));
-
-is represented using a single `asm_operands' RTX which represents the
-value that is stored in `outputvar':
-
- (set RTX-FOR-OUTPUTVAR
- (asm_operands "foo %1,%2,%0" "a" 0
- [RTX-FOR-ADDITION-RESULT RTX-FOR-*Z]
- [(asm_input:M1 "g")
- (asm_input:M2 "di")]))
-
-Here the operands of the `asm_operands' RTX are the assembler template
-string, the output-operand's constraint, the index-number of the output
-operand among the output operands specified, a vector of input operand
-RTX's, and a vector of input-operand modes and constraints. The mode
-M1 is the mode of the sum `x+y'; M2 is that of `*z'.
-
- When an `asm' statement has multiple output values, its insn has
-several such `set' RTX's inside of a `parallel'. Each `set' contains a
-`asm_operands'; all of these share the same assembler template and
-vectors, but each contains the constraint for the respective output
-operand. They are also distinguished by the output-operand index
-number, which is 0, 1, ... for successive output operands.
-
diff --git a/gcc/gcc.info-16 b/gcc/gcc.info-16
deleted file mode 100644
index ab7aa3c8d03..00000000000
--- a/gcc/gcc.info-16
+++ /dev/null
@@ -1,1053 +0,0 @@
-This is Info file gcc.info, produced by Makeinfo version 1.68 from the
-input file gcc.texi.
-
- This file documents the use and the internals of the GNU compiler.
-
- Published by the Free Software Foundation 59 Temple Place - Suite 330
-Boston, MA 02111-1307 USA
-
- Copyright (C) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997 Free
-Software Foundation, Inc.
-
- Permission is granted to make and distribute verbatim copies of this
-manual provided the copyright notice and this permission notice are
-preserved on all copies.
-
- Permission is granted to copy and distribute modified versions of
-this manual under the conditions for verbatim copying, provided also
-that the sections entitled "GNU General Public License," "Funding for
-Free Software," and "Protect Your Freedom--Fight `Look And Feel'" are
-included exactly as in the original, and provided that the entire
-resulting derived work is distributed under the terms of a permission
-notice identical to this one.
-
- Permission is granted to copy and distribute translations of this
-manual into another language, under the above conditions for modified
-versions, except that the sections entitled "GNU General Public
-License," "Funding for Free Software," and "Protect Your Freedom--Fight
-`Look And Feel'", and this permission notice, may be included in
-translations approved by the Free Software Foundation instead of in the
-original English.
-
-
-File: gcc.info, Node: Insns, Next: Calls, Prev: Assembler, Up: RTL
-
-Insns
-=====
-
- The RTL representation of the code for a function is a doubly-linked
-chain of objects called "insns". Insns are expressions with special
-codes that are used for no other purpose. Some insns are actual
-instructions; others represent dispatch tables for `switch' statements;
-others represent labels to jump to or various sorts of declarative
-information.
-
- In addition to its own specific data, each insn must have a unique
-id-number that distinguishes it from all other insns in the current
-function (after delayed branch scheduling, copies of an insn with the
-same id-number may be present in multiple places in a function, but
-these copies will always be identical and will only appear inside a
-`sequence'), and chain pointers to the preceding and following insns.
-These three fields occupy the same position in every insn, independent
-of the expression code of the insn. They could be accessed with `XEXP'
-and `XINT', but instead three special macros are always used:
-
-`INSN_UID (I)'
- Accesses the unique id of insn I.
-
-`PREV_INSN (I)'
- Accesses the chain pointer to the insn preceding I. If I is the
- first insn, this is a null pointer.
-
-`NEXT_INSN (I)'
- Accesses the chain pointer to the insn following I. If I is the
- last insn, this is a null pointer.
-
- The first insn in the chain is obtained by calling `get_insns'; the
-last insn is the result of calling `get_last_insn'. Within the chain
-delimited by these insns, the `NEXT_INSN' and `PREV_INSN' pointers must
-always correspond: if INSN is not the first insn,
-
- NEXT_INSN (PREV_INSN (INSN)) == INSN
-
-is always true and if INSN is not the last insn,
-
- PREV_INSN (NEXT_INSN (INSN)) == INSN
-
-is always true.
-
- After delay slot scheduling, some of the insns in the chain might be
-`sequence' expressions, which contain a vector of insns. The value of
-`NEXT_INSN' in all but the last of these insns is the next insn in the
-vector; the value of `NEXT_INSN' of the last insn in the vector is the
-same as the value of `NEXT_INSN' for the `sequence' in which it is
-contained. Similar rules apply for `PREV_INSN'.
-
- This means that the above invariants are not necessarily true for
-insns inside `sequence' expressions. Specifically, if INSN is the
-first insn in a `sequence', `NEXT_INSN (PREV_INSN (INSN))' is the insn
-containing the `sequence' expression, as is the value of `PREV_INSN
-(NEXT_INSN (INSN))' is INSN is the last insn in the `sequence'
-expression. You can use these expressions to find the containing
-`sequence' expression.
-
- Every insn has one of the following six expression codes:
-
-`insn'
- The expression code `insn' is used for instructions that do not
- jump and do not do function calls. `sequence' expressions are
- always contained in insns with code `insn' even if one of those
- insns should jump or do function calls.
-
- Insns with code `insn' have four additional fields beyond the three
- mandatory ones listed above. These four are described in a table
- below.
-
-`jump_insn'
- The expression code `jump_insn' is used for instructions that may
- jump (or, more generally, may contain `label_ref' expressions). If
- there is an instruction to return from the current function, it is
- recorded as a `jump_insn'.
-
- `jump_insn' insns have the same extra fields as `insn' insns,
- accessed in the same way and in addition contain a field
- `JUMP_LABEL' which is defined once jump optimization has completed.
-
- For simple conditional and unconditional jumps, this field
- contains the `code_label' to which this insn will (possibly
- conditionally) branch. In a more complex jump, `JUMP_LABEL'
- records one of the labels that the insn refers to; the only way to
- find the others is to scan the entire body of the insn.
-
- Return insns count as jumps, but since they do not refer to any
- labels, they have zero in the `JUMP_LABEL' field.
-
-`call_insn'
- The expression code `call_insn' is used for instructions that may
- do function calls. It is important to distinguish these
- instructions because they imply that certain registers and memory
- locations may be altered unpredictably.
-
- `call_insn' insns have the same extra fields as `insn' insns,
- accessed in the same way and in addition contain a field
- `CALL_INSN_FUNCTION_USAGE', which contains a list (chain of
- `expr_list' expressions) containing `use' and `clobber'
- expressions that denote hard registers used or clobbered by the
- called function. A register specified in a `clobber' in this list
- is modified *after* the execution of the `call_insn', while a
- register in a `clobber' in the body of the `call_insn' is
- clobbered before the insn completes execution. `clobber'
- expressions in this list augment registers specified in
- `CALL_USED_REGISTERS' (*note Register Basics::.).
-
-`code_label'
- A `code_label' insn represents a label that a jump insn can jump
- to. It contains two special fields of data in addition to the
- three standard ones. `CODE_LABEL_NUMBER' is used to hold the
- "label number", a number that identifies this label uniquely among
- all the labels in the compilation (not just in the current
- function). Ultimately, the label is represented in the assembler
- output as an assembler label, usually of the form `LN' where N is
- the label number.
-
- When a `code_label' appears in an RTL expression, it normally
- appears within a `label_ref' which represents the address of the
- label, as a number.
-
- The field `LABEL_NUSES' is only defined once the jump optimization
- phase is completed and contains the number of times this label is
- referenced in the current function.
-
-`barrier'
- Barriers are placed in the instruction stream when control cannot
- flow past them. They are placed after unconditional jump
- instructions to indicate that the jumps are unconditional and
- after calls to `volatile' functions, which do not return (e.g.,
- `exit'). They contain no information beyond the three standard
- fields.
-
-`note'
- `note' insns are used to represent additional debugging and
- declarative information. They contain two nonstandard fields, an
- integer which is accessed with the macro `NOTE_LINE_NUMBER' and a
- string accessed with `NOTE_SOURCE_FILE'.
-
- If `NOTE_LINE_NUMBER' is positive, the note represents the
- position of a source line and `NOTE_SOURCE_FILE' is the source
- file name that the line came from. These notes control generation
- of line number data in the assembler output.
-
- Otherwise, `NOTE_LINE_NUMBER' is not really a line number but a
- code with one of the following values (and `NOTE_SOURCE_FILE' must
- contain a null pointer):
-
- `NOTE_INSN_DELETED'
- Such a note is completely ignorable. Some passes of the
- compiler delete insns by altering them into notes of this
- kind.
-
- `NOTE_INSN_BLOCK_BEG'
- `NOTE_INSN_BLOCK_END'
- These types of notes indicate the position of the beginning
- and end of a level of scoping of variable names. They
- control the output of debugging information.
-
- `NOTE_INSN_EH_REGION_BEG'
- `NOTE_INSN_EH_REGION_END'
- These types of notes indicate the position of the beginning
- and end of a level of scoping for exception handling.
- `NOTE_BLOCK_NUMBER' identifies which `CODE_LABEL' is
- associated with the given region.
-
- `NOTE_INSN_LOOP_BEG'
- `NOTE_INSN_LOOP_END'
- These types of notes indicate the position of the beginning
- and end of a `while' or `for' loop. They enable the loop
- optimizer to find loops quickly.
-
- `NOTE_INSN_LOOP_CONT'
- Appears at the place in a loop that `continue' statements
- jump to.
-
- `NOTE_INSN_LOOP_VTOP'
- This note indicates the place in a loop where the exit test
- begins for those loops in which the exit test has been
- duplicated. This position becomes another virtual start of
- the loop when considering loop invariants.
-
- `NOTE_INSN_FUNCTION_END'
- Appears near the end of the function body, just before the
- label that `return' statements jump to (on machine where a
- single instruction does not suffice for returning). This
- note may be deleted by jump optimization.
-
- `NOTE_INSN_SETJMP'
- Appears following each call to `setjmp' or a related function.
-
- These codes are printed symbolically when they appear in debugging
- dumps.
-
- The machine mode of an insn is normally `VOIDmode', but some phases
-use the mode for various purposes; for example, the reload pass sets it
-to `HImode' if the insn needs reloading but not register elimination
-and `QImode' if both are required. The common subexpression
-elimination pass sets the mode of an insn to `QImode' when it is the
-first insn in a block that has already been processed.
-
- Here is a table of the extra fields of `insn', `jump_insn' and
-`call_insn' insns:
-
-`PATTERN (I)'
- An expression for the side effect performed by this insn. This
- must be one of the following codes: `set', `call', `use',
- `clobber', `return', `asm_input', `asm_output', `addr_vec',
- `addr_diff_vec', `trap_if', `unspec', `unspec_volatile',
- `parallel', or `sequence'. If it is a `parallel', each element of
- the `parallel' must be one these codes, except that `parallel'
- expressions cannot be nested and `addr_vec' and `addr_diff_vec'
- are not permitted inside a `parallel' expression.
-
-`INSN_CODE (I)'
- An integer that says which pattern in the machine description
- matches this insn, or -1 if the matching has not yet been
- attempted.
-
- Such matching is never attempted and this field remains -1 on an
- insn whose pattern consists of a single `use', `clobber',
- `asm_input', `addr_vec' or `addr_diff_vec' expression.
-
- Matching is also never attempted on insns that result from an `asm'
- statement. These contain at least one `asm_operands' expression.
- The function `asm_noperands' returns a non-negative value for such
- insns.
-
- In the debugging output, this field is printed as a number
- followed by a symbolic representation that locates the pattern in
- the `md' file as some small positive or negative offset from a
- named pattern.
-
-`LOG_LINKS (I)'
- A list (chain of `insn_list' expressions) giving information about
- dependencies between instructions within a basic block. Neither a
- jump nor a label may come between the related insns.
-
-`REG_NOTES (I)'
- A list (chain of `expr_list' and `insn_list' expressions) giving
- miscellaneous information about the insn. It is often information
- pertaining to the registers used in this insn.
-
- The `LOG_LINKS' field of an insn is a chain of `insn_list'
-expressions. Each of these has two operands: the first is an insn, and
-the second is another `insn_list' expression (the next one in the
-chain). The last `insn_list' in the chain has a null pointer as second
-operand. The significant thing about the chain is which insns appear
-in it (as first operands of `insn_list' expressions). Their order is
-not significant.
-
- This list is originally set up by the flow analysis pass; it is a
-null pointer until then. Flow only adds links for those data
-dependencies which can be used for instruction combination. For each
-insn, the flow analysis pass adds a link to insns which store into
-registers values that are used for the first time in this insn. The
-instruction scheduling pass adds extra links so that every dependence
-will be represented. Links represent data dependencies,
-antidependencies and output dependencies; the machine mode of the link
-distinguishes these three types: antidependencies have mode
-`REG_DEP_ANTI', output dependencies have mode `REG_DEP_OUTPUT', and
-data dependencies have mode `VOIDmode'.
-
- The `REG_NOTES' field of an insn is a chain similar to the
-`LOG_LINKS' field but it includes `expr_list' expressions in addition
-to `insn_list' expressions. There are several kinds of register notes,
-which are distinguished by the machine mode, which in a register note
-is really understood as being an `enum reg_note'. The first operand OP
-of the note is data whose meaning depends on the kind of note.
-
- The macro `REG_NOTE_KIND (X)' returns the kind of register note.
-Its counterpart, the macro `PUT_REG_NOTE_KIND (X, NEWKIND)' sets the
-register note type of X to be NEWKIND.
-
- Register notes are of three classes: They may say something about an
-input to an insn, they may say something about an output of an insn, or
-they may create a linkage between two insns. There are also a set of
-values that are only used in `LOG_LINKS'.
-
- These register notes annotate inputs to an insn:
-
-`REG_DEAD'
- The value in OP dies in this insn; that is to say, altering the
- value immediately after this insn would not affect the future
- behavior of the program.
-
- This does not necessarily mean that the register OP has no useful
- value after this insn since it may also be an output of the insn.
- In such a case, however, a `REG_DEAD' note would be redundant and
- is usually not present until after the reload pass, but no code
- relies on this fact.
-
-`REG_INC'
- The register OP is incremented (or decremented; at this level
- there is no distinction) by an embedded side effect inside this
- insn. This means it appears in a `post_inc', `pre_inc',
- `post_dec' or `pre_dec' expression.
-
-`REG_NONNEG'
- The register OP is known to have a nonnegative value when this
- insn is reached. This is used so that decrement and branch until
- zero instructions, such as the m68k dbra, can be matched.
-
- The `REG_NONNEG' note is added to insns only if the machine
- description has a `decrement_and_branch_until_zero' pattern.
-
-`REG_NO_CONFLICT'
- This insn does not cause a conflict between OP and the item being
- set by this insn even though it might appear that it does. In
- other words, if the destination register and OP could otherwise be
- assigned the same register, this insn does not prevent that
- assignment.
-
- Insns with this note are usually part of a block that begins with a
- `clobber' insn specifying a multi-word pseudo register (which will
- be the output of the block), a group of insns that each set one
- word of the value and have the `REG_NO_CONFLICT' note attached,
- and a final insn that copies the output to itself with an attached
- `REG_EQUAL' note giving the expression being computed. This block
- is encapsulated with `REG_LIBCALL' and `REG_RETVAL' notes on the
- first and last insns, respectively.
-
-`REG_LABEL'
- This insn uses OP, a `code_label', but is not a `jump_insn'. The
- presence of this note allows jump optimization to be aware that OP
- is, in fact, being used.
-
- The following notes describe attributes of outputs of an insn:
-
-`REG_EQUIV'
-`REG_EQUAL'
- This note is only valid on an insn that sets only one register and
- indicates that that register will be equal to OP at run time; the
- scope of this equivalence differs between the two types of notes.
- The value which the insn explicitly copies into the register may
- look different from OP, but they will be equal at run time. If the
- output of the single `set' is a `strict_low_part' expression, the
- note refers to the register that is contained in `SUBREG_REG' of
- the `subreg' expression.
-
- For `REG_EQUIV', the register is equivalent to OP throughout the
- entire function, and could validly be replaced in all its
- occurrences by OP. ("Validly" here refers to the data flow of the
- program; simple replacement may make some insns invalid.) For
- example, when a constant is loaded into a register that is never
- assigned any other value, this kind of note is used.
-
- When a parameter is copied into a pseudo-register at entry to a
- function, a note of this kind records that the register is
- equivalent to the stack slot where the parameter was passed.
- Although in this case the register may be set by other insns, it
- is still valid to replace the register by the stack slot
- throughout the function.
-
- A `REG_EQUIV' note is also used on an instruction which copies a
- register parameter into a pseudo-register at entry to a function,
- if there is a stack slot where that parameter could be stored.
- Although other insns may set the pseudo-register, it is valid for
- the compiler to replace the pseudo-register by stack slot
- throughout the function, provided the compiler ensures that the
- stack slot is properly initialized by making the replacement in
- the initial copy instruction as well. This is used on machines
- for which the calling convention allocates stack space for
- register parameters. See `REG_PARM_STACK_SPACE' in *Note Stack
- Arguments::.
-
- In the case of `REG_EQUAL', the register that is set by this insn
- will be equal to OP at run time at the end of this insn but not
- necessarily elsewhere in the function. In this case, OP is
- typically an arithmetic expression. For example, when a sequence
- of insns such as a library call is used to perform an arithmetic
- operation, this kind of note is attached to the insn that produces
- or copies the final value.
-
- These two notes are used in different ways by the compiler passes.
- `REG_EQUAL' is used by passes prior to register allocation (such as
- common subexpression elimination and loop optimization) to tell
- them how to think of that value. `REG_EQUIV' notes are used by
- register allocation to indicate that there is an available
- substitute expression (either a constant or a `mem' expression for
- the location of a parameter on the stack) that may be used in
- place of a register if insufficient registers are available.
-
- Except for stack homes for parameters, which are indicated by a
- `REG_EQUIV' note and are not useful to the early optimization
- passes and pseudo registers that are equivalent to a memory
- location throughout there entire life, which is not detected until
- later in the compilation, all equivalences are initially indicated
- by an attached `REG_EQUAL' note. In the early stages of register
- allocation, a `REG_EQUAL' note is changed into a `REG_EQUIV' note
- if OP is a constant and the insn represents the only set of its
- destination register.
-
- Thus, compiler passes prior to register allocation need only check
- for `REG_EQUAL' notes and passes subsequent to register allocation
- need only check for `REG_EQUIV' notes.
-
-`REG_UNUSED'
- The register OP being set by this insn will not be used in a
- subsequent insn. This differs from a `REG_DEAD' note, which
- indicates that the value in an input will not be used subsequently.
- These two notes are independent; both may be present for the same
- register.
-
-`REG_WAS_0'
- The single output of this insn contained zero before this insn.
- OP is the insn that set it to zero. You can rely on this note if
- it is present and OP has not been deleted or turned into a `note';
- its absence implies nothing.
-
- These notes describe linkages between insns. They occur in pairs:
-one insn has one of a pair of notes that points to a second insn, which
-has the inverse note pointing back to the first insn.
-
-`REG_RETVAL'
- This insn copies the value of a multi-insn sequence (for example, a
- library call), and OP is the first insn of the sequence (for a
- library call, the first insn that was generated to set up the
- arguments for the library call).
-
- Loop optimization uses this note to treat such a sequence as a
- single operation for code motion purposes and flow analysis uses
- this note to delete such sequences whose results are dead.
-
- A `REG_EQUAL' note will also usually be attached to this insn to
- provide the expression being computed by the sequence.
-
-`REG_LIBCALL'
- This is the inverse of `REG_RETVAL': it is placed on the first
- insn of a multi-insn sequence, and it points to the last one.
-
-`REG_CC_SETTER'
-`REG_CC_USER'
- On machines that use `cc0', the insns which set and use `cc0' set
- and use `cc0' are adjacent. However, when branch delay slot
- filling is done, this may no longer be true. In this case a
- `REG_CC_USER' note will be placed on the insn setting `cc0' to
- point to the insn using `cc0' and a `REG_CC_SETTER' note will be
- placed on the insn using `cc0' to point to the insn setting `cc0'.
-
- These values are only used in the `LOG_LINKS' field, and indicate
-the type of dependency that each link represents. Links which indicate
-a data dependence (a read after write dependence) do not use any code,
-they simply have mode `VOIDmode', and are printed without any
-descriptive text.
-
-`REG_DEP_ANTI'
- This indicates an anti dependence (a write after read dependence).
-
-`REG_DEP_OUTPUT'
- This indicates an output dependence (a write after write
- dependence).
-
- These notes describe information gathered from gcov profile data.
-They are stored in the `REG_NOTES' field of an insn as an `expr_list'.
-
-`REG_EXEC_COUNT'
- This is used to indicate the number of times a basic block was
- executed according to the profile data. The note is attached to
- the first insn in the basic block.
-
-`REG_BR_PROB'
- This is used to specify the ratio of branches to non-branches of a
- branch insn according to the profile data. The value is stored as
- a value between 0 and REG_BR_PROB_BASE; larger values indicate a
- higher probability that the branch will be taken.
-
- For convenience, the machine mode in an `insn_list' or `expr_list'
-is printed using these symbolic codes in debugging dumps.
-
- The only difference between the expression codes `insn_list' and
-`expr_list' is that the first operand of an `insn_list' is assumed to
-be an insn and is printed in debugging dumps as the insn's unique id;
-the first operand of an `expr_list' is printed in the ordinary way as
-an expression.
-
-
-File: gcc.info, Node: Calls, Next: Sharing, Prev: Insns, Up: RTL
-
-RTL Representation of Function-Call Insns
-=========================================
-
- Insns that call subroutines have the RTL expression code `call_insn'.
-These insns must satisfy special rules, and their bodies must use a
-special RTL expression code, `call'.
-
- A `call' expression has two operands, as follows:
-
- (call (mem:FM ADDR) NBYTES)
-
-Here NBYTES is an operand that represents the number of bytes of
-argument data being passed to the subroutine, FM is a machine mode
-(which must equal as the definition of the `FUNCTION_MODE' macro in the
-machine description) and ADDR represents the address of the subroutine.
-
- For a subroutine that returns no value, the `call' expression as
-shown above is the entire body of the insn, except that the insn might
-also contain `use' or `clobber' expressions.
-
- For a subroutine that returns a value whose mode is not `BLKmode',
-the value is returned in a hard register. If this register's number is
-R, then the body of the call insn looks like this:
-
- (set (reg:M R)
- (call (mem:FM ADDR) NBYTES))
-
-This RTL expression makes it clear (to the optimizer passes) that the
-appropriate register receives a useful value in this insn.
-
- When a subroutine returns a `BLKmode' value, it is handled by
-passing to the subroutine the address of a place to store the value.
-So the call insn itself does not "return" any value, and it has the
-same RTL form as a call that returns nothing.
-
- On some machines, the call instruction itself clobbers some register,
-for example to contain the return address. `call_insn' insns on these
-machines should have a body which is a `parallel' that contains both
-the `call' expression and `clobber' expressions that indicate which
-registers are destroyed. Similarly, if the call instruction requires
-some register other than the stack pointer that is not explicitly
-mentioned it its RTL, a `use' subexpression should mention that
-register.
-
- Functions that are called are assumed to modify all registers listed
-in the configuration macro `CALL_USED_REGISTERS' (*note Register
-Basics::.) and, with the exception of `const' functions and library
-calls, to modify all of memory.
-
- Insns containing just `use' expressions directly precede the
-`call_insn' insn to indicate which registers contain inputs to the
-function. Similarly, if registers other than those in
-`CALL_USED_REGISTERS' are clobbered by the called function, insns
-containing a single `clobber' follow immediately after the call to
-indicate which registers.
-
-
-File: gcc.info, Node: Sharing, Next: Reading RTL, Prev: Calls, Up: RTL
-
-Structure Sharing Assumptions
-=============================
-
- The compiler assumes that certain kinds of RTL expressions are
-unique; there do not exist two distinct objects representing the same
-value. In other cases, it makes an opposite assumption: that no RTL
-expression object of a certain kind appears in more than one place in
-the containing structure.
-
- These assumptions refer to a single function; except for the RTL
-objects that describe global variables and external functions, and a
-few standard objects such as small integer constants, no RTL objects
-are common to two functions.
-
- * Each pseudo-register has only a single `reg' object to represent
- it, and therefore only a single machine mode.
-
- * For any symbolic label, there is only one `symbol_ref' object
- referring to it.
-
- * There is only one `const_int' expression with value 0, only one
- with value 1, and only one with value -1. Some other integer
- values are also stored uniquely.
-
- * There is only one `pc' expression.
-
- * There is only one `cc0' expression.
-
- * There is only one `const_double' expression with value 0 for each
- floating point mode. Likewise for values 1 and 2.
-
- * No `label_ref' or `scratch' appears in more than one place in the
- RTL structure; in other words, it is safe to do a tree-walk of all
- the insns in the function and assume that each time a `label_ref'
- or `scratch' is seen it is distinct from all others that are seen.
-
- * Only one `mem' object is normally created for each static variable
- or stack slot, so these objects are frequently shared in all the
- places they appear. However, separate but equal objects for these
- variables are occasionally made.
-
- * When a single `asm' statement has multiple output operands, a
- distinct `asm_operands' expression is made for each output operand.
- However, these all share the vector which contains the sequence of
- input operands. This sharing is used later on to test whether two
- `asm_operands' expressions come from the same statement, so all
- optimizations must carefully preserve the sharing if they copy the
- vector at all.
-
- * No RTL object appears in more than one place in the RTL structure
- except as described above. Many passes of the compiler rely on
- this by assuming that they can modify RTL objects in place without
- unwanted side-effects on other insns.
-
- * During initial RTL generation, shared structure is freely
- introduced. After all the RTL for a function has been generated,
- all shared structure is copied by `unshare_all_rtl' in
- `emit-rtl.c', after which the above rules are guaranteed to be
- followed.
-
- * During the combiner pass, shared structure within an insn can exist
- temporarily. However, the shared structure is copied before the
- combiner is finished with the insn. This is done by calling
- `copy_rtx_if_shared', which is a subroutine of `unshare_all_rtl'.
-
-
-File: gcc.info, Node: Reading RTL, Prev: Sharing, Up: RTL
-
-Reading RTL
-===========
-
- To read an RTL object from a file, call `read_rtx'. It takes one
-argument, a stdio stream, and returns a single RTL object.
-
- Reading RTL from a file is very slow. This is not currently a
-problem since reading RTL occurs only as part of building the compiler.
-
- People frequently have the idea of using RTL stored as text in a
-file as an interface between a language front end and the bulk of GNU
-CC. This idea is not feasible.
-
- GNU CC was designed to use RTL internally only. Correct RTL for a
-given program is very dependent on the particular target machine. And
-the RTL does not contain all the information about the program.
-
- The proper way to interface GNU CC to a new language front end is
-with the "tree" data structure. There is no manual for this data
-structure, but it is described in the files `tree.h' and `tree.def'.
-
-
-File: gcc.info, Node: Machine Desc, Next: Target Macros, Prev: RTL, Up: Top
-
-Machine Descriptions
-********************
-
- A machine description has two parts: a file of instruction patterns
-(`.md' file) and a C header file of macro definitions.
-
- The `.md' file for a target machine contains a pattern for each
-instruction that the target machine supports (or at least each
-instruction that is worth telling the compiler about). It may also
-contain comments. A semicolon causes the rest of the line to be a
-comment, unless the semicolon is inside a quoted string.
-
- See the next chapter for information on the C header file.
-
-* Menu:
-
-* Patterns:: How to write instruction patterns.
-* Example:: An explained example of a `define_insn' pattern.
-* RTL Template:: The RTL template defines what insns match a pattern.
-* Output Template:: The output template says how to make assembler code
- from such an insn.
-* Output Statement:: For more generality, write C code to output
- the assembler code.
-* Constraints:: When not all operands are general operands.
-* Standard Names:: Names mark patterns to use for code generation.
-* Pattern Ordering:: When the order of patterns makes a difference.
-* Dependent Patterns:: Having one pattern may make you need another.
-* Jump Patterns:: Special considerations for patterns for jump insns.
-* Insn Canonicalizations::Canonicalization of Instructions
-* Peephole Definitions::Defining machine-specific peephole optimizations.
-* Expander Definitions::Generating a sequence of several RTL insns
- for a standard operation.
-* Insn Splitting:: Splitting Instructions into Multiple Instructions
-* Insn Attributes:: Specifying the value of attributes for generated insns.
-
-
-File: gcc.info, Node: Patterns, Next: Example, Up: Machine Desc
-
-Everything about Instruction Patterns
-=====================================
-
- Each instruction pattern contains an incomplete RTL expression, with
-pieces to be filled in later, operand constraints that restrict how the
-pieces can be filled in, and an output pattern or C code to generate
-the assembler output, all wrapped up in a `define_insn' expression.
-
- A `define_insn' is an RTL expression containing four or five
-operands:
-
- 1. An optional name. The presence of a name indicate that this
- instruction pattern can perform a certain standard job for the
- RTL-generation pass of the compiler. This pass knows certain
- names and will use the instruction patterns with those names, if
- the names are defined in the machine description.
-
- The absence of a name is indicated by writing an empty string
- where the name should go. Nameless instruction patterns are never
- used for generating RTL code, but they may permit several simpler
- insns to be combined later on.
-
- Names that are not thus known and used in RTL-generation have no
- effect; they are equivalent to no name at all.
-
- 2. The "RTL template" (*note RTL Template::.) is a vector of
- incomplete RTL expressions which show what the instruction should
- look like. It is incomplete because it may contain
- `match_operand', `match_operator', and `match_dup' expressions
- that stand for operands of the instruction.
-
- If the vector has only one element, that element is the template
- for the instruction pattern. If the vector has multiple elements,
- then the instruction pattern is a `parallel' expression containing
- the elements described.
-
- 3. A condition. This is a string which contains a C expression that
- is the final test to decide whether an insn body matches this
- pattern.
-
- For a named pattern, the condition (if present) may not depend on
- the data in the insn being matched, but only the
- target-machine-type flags. The compiler needs to test these
- conditions during initialization in order to learn exactly which
- named instructions are available in a particular run.
-
- For nameless patterns, the condition is applied only when matching
- an individual insn, and only after the insn has matched the
- pattern's recognition template. The insn's operands may be found
- in the vector `operands'.
-
- 4. The "output template": a string that says how to output matching
- insns as assembler code. `%' in this string specifies where to
- substitute the value of an operand. *Note Output Template::.
-
- When simple substitution isn't general enough, you can specify a
- piece of C code to compute the output. *Note Output Statement::.
-
- 5. Optionally, a vector containing the values of attributes for insns
- matching this pattern. *Note Insn Attributes::.
-
-
-File: gcc.info, Node: Example, Next: RTL Template, Prev: Patterns, Up: Machine Desc
-
-Example of `define_insn'
-========================
-
- Here is an actual example of an instruction pattern, for the
-68000/68020.
-
- (define_insn "tstsi"
- [(set (cc0)
- (match_operand:SI 0 "general_operand" "rm"))]
- ""
- "*
- { if (TARGET_68020 || ! ADDRESS_REG_P (operands[0]))
- return \"tstl %0\";
- return \"cmpl #0,%0\"; }")
-
- This is an instruction that sets the condition codes based on the
-value of a general operand. It has no condition, so any insn whose RTL
-description has the form shown may be handled according to this
-pattern. The name `tstsi' means "test a `SImode' value" and tells the
-RTL generation pass that, when it is necessary to test such a value, an
-insn to do so can be constructed using this pattern.
-
- The output control string is a piece of C code which chooses which
-output template to return based on the kind of operand and the specific
-type of CPU for which code is being generated.
-
- `"rm"' is an operand constraint. Its meaning is explained below.
-
-
-File: gcc.info, Node: RTL Template, Next: Output Template, Prev: Example, Up: Machine Desc
-
-RTL Template
-============
-
- The RTL template is used to define which insns match the particular
-pattern and how to find their operands. For named patterns, the RTL
-template also says how to construct an insn from specified operands.
-
- Construction involves substituting specified operands into a copy of
-the template. Matching involves determining the values that serve as
-the operands in the insn being matched. Both of these activities are
-controlled by special expression types that direct matching and
-substitution of the operands.
-
-`(match_operand:M N PREDICATE CONSTRAINT)'
- This expression is a placeholder for operand number N of the insn.
- When constructing an insn, operand number N will be substituted
- at this point. When matching an insn, whatever appears at this
- position in the insn will be taken as operand number N; but it
- must satisfy PREDICATE or this instruction pattern will not match
- at all.
-
- Operand numbers must be chosen consecutively counting from zero in
- each instruction pattern. There may be only one `match_operand'
- expression in the pattern for each operand number. Usually
- operands are numbered in the order of appearance in `match_operand'
- expressions. In the case of a `define_expand', any operand numbers
- used only in `match_dup' expressions have higher values than all
- other operand numbers.
-
- PREDICATE is a string that is the name of a C function that
- accepts two arguments, an expression and a machine mode. During
- matching, the function will be called with the putative operand as
- the expression and M as the mode argument (if M is not specified,
- `VOIDmode' will be used, which normally causes PREDICATE to accept
- any mode). If it returns zero, this instruction pattern fails to
- match. PREDICATE may be an empty string; then it means no test is
- to be done on the operand, so anything which occurs in this
- position is valid.
-
- Most of the time, PREDICATE will reject modes other than M--but
- not always. For example, the predicate `address_operand' uses M
- as the mode of memory ref that the address should be valid for.
- Many predicates accept `const_int' nodes even though their mode is
- `VOIDmode'.
-
- CONSTRAINT controls reloading and the choice of the best register
- class to use for a value, as explained later (*note
- Constraints::.).
-
- People are often unclear on the difference between the constraint
- and the predicate. The predicate helps decide whether a given
- insn matches the pattern. The constraint plays no role in this
- decision; instead, it controls various decisions in the case of an
- insn which does match.
-
- On CISC machines, the most common PREDICATE is
- `"general_operand"'. This function checks that the putative
- operand is either a constant, a register or a memory reference,
- and that it is valid for mode M.
-
- For an operand that must be a register, PREDICATE should be
- `"register_operand"'. Using `"general_operand"' would be valid,
- since the reload pass would copy any non-register operands through
- registers, but this would make GNU CC do extra work, it would
- prevent invariant operands (such as constant) from being removed
- from loops, and it would prevent the register allocator from doing
- the best possible job. On RISC machines, it is usually most
- efficient to allow PREDICATE to accept only objects that the
- constraints allow.
-
- For an operand that must be a constant, you must be sure to either
- use `"immediate_operand"' for PREDICATE, or make the instruction
- pattern's extra condition require a constant, or both. You cannot
- expect the constraints to do this work! If the constraints allow
- only constants, but the predicate allows something else, the
- compiler will crash when that case arises.
-
-`(match_scratch:M N CONSTRAINT)'
- This expression is also a placeholder for operand number N and
- indicates that operand must be a `scratch' or `reg' expression.
-
- When matching patterns, this is equivalent to
-
- (match_operand:M N "scratch_operand" PRED)
-
- but, when generating RTL, it produces a (`scratch':M) expression.
-
- If the last few expressions in a `parallel' are `clobber'
- expressions whose operands are either a hard register or
- `match_scratch', the combiner can add or delete them when
- necessary. *Note Side Effects::.
-
-`(match_dup N)'
- This expression is also a placeholder for operand number N. It is
- used when the operand needs to appear more than once in the insn.
-
- In construction, `match_dup' acts just like `match_operand': the
- operand is substituted into the insn being constructed. But in
- matching, `match_dup' behaves differently. It assumes that operand
- number N has already been determined by a `match_operand'
- appearing earlier in the recognition template, and it matches only
- an identical-looking expression.
-
-`(match_operator:M N PREDICATE [OPERANDS...])'
- This pattern is a kind of placeholder for a variable RTL expression
- code.
-
- When constructing an insn, it stands for an RTL expression whose
- expression code is taken from that of operand N, and whose
- operands are constructed from the patterns OPERANDS.
-
- When matching an expression, it matches an expression if the
- function PREDICATE returns nonzero on that expression *and* the
- patterns OPERANDS match the operands of the expression.
-
- Suppose that the function `commutative_operator' is defined as
- follows, to match any expression whose operator is one of the
- commutative arithmetic operators of RTL and whose mode is MODE:
-
- int
- commutative_operator (x, mode)
- rtx x;
- enum machine_mode mode;
- {
- enum rtx_code code = GET_CODE (x);
- if (GET_MODE (x) != mode)
- return 0;
- return (GET_RTX_CLASS (code) == 'c'
- || code == EQ || code == NE);
- }
-
- Then the following pattern will match any RTL expression consisting
- of a commutative operator applied to two general operands:
-
- (match_operator:SI 3 "commutative_operator"
- [(match_operand:SI 1 "general_operand" "g")
- (match_operand:SI 2 "general_operand" "g")])
-
- Here the vector `[OPERANDS...]' contains two patterns because the
- expressions to be matched all contain two operands.
-
- When this pattern does match, the two operands of the commutative
- operator are recorded as operands 1 and 2 of the insn. (This is
- done by the two instances of `match_operand'.) Operand 3 of the
- insn will be the entire commutative expression: use `GET_CODE
- (operands[3])' to see which commutative operator was used.
-
- The machine mode M of `match_operator' works like that of
- `match_operand': it is passed as the second argument to the
- predicate function, and that function is solely responsible for
- deciding whether the expression to be matched "has" that mode.
-
- When constructing an insn, argument 3 of the gen-function will
- specify the operation (i.e. the expression code) for the
- expression to be made. It should be an RTL expression, whose
- expression code is copied into a new expression whose operands are
- arguments 1 and 2 of the gen-function. The subexpressions of
- argument 3 are not used; only its expression code matters.
-
- When `match_operator' is used in a pattern for matching an insn,
- it usually best if the operand number of the `match_operator' is
- higher than that of the actual operands of the insn. This improves
- register allocation because the register allocator often looks at
- operands 1 and 2 of insns to see if it can do register tying.
-
- There is no way to specify constraints in `match_operator'. The
- operand of the insn which corresponds to the `match_operator'
- never has any constraints because it is never reloaded as a whole.
- However, if parts of its OPERANDS are matched by `match_operand'
- patterns, those parts may have constraints of their own.
-
-`(match_op_dup:M N[OPERANDS...])'
- Like `match_dup', except that it applies to operators instead of
- operands. When constructing an insn, operand number N will be
- substituted at this point. But in matching, `match_op_dup' behaves
- differently. It assumes that operand number N has already been
- determined by a `match_operator' appearing earlier in the
- recognition template, and it matches only an identical-looking
- expression.
-
-`(match_parallel N PREDICATE [SUBPAT...])'
- This pattern is a placeholder for an insn that consists of a
- `parallel' expression with a variable number of elements. This
- expression should only appear at the top level of an insn pattern.
-
- When constructing an insn, operand number N will be substituted at
- this point. When matching an insn, it matches if the body of the
- insn is a `parallel' expression with at least as many elements as
- the vector of SUBPAT expressions in the `match_parallel', if each
- SUBPAT matches the corresponding element of the `parallel', *and*
- the function PREDICATE returns nonzero on the `parallel' that is
- the body of the insn. It is the responsibility of the predicate
- to validate elements of the `parallel' beyond those listed in the
- `match_parallel'.
-
- A typical use of `match_parallel' is to match load and store
- multiple expressions, which can contain a variable number of
- elements in a `parallel'. For example,
-
- (define_insn ""
- [(match_parallel 0 "load_multiple_operation"
- [(set (match_operand:SI 1 "gpc_reg_operand" "=r")
- (match_operand:SI 2 "memory_operand" "m"))
- (use (reg:SI 179))
- (clobber (reg:SI 179))])]
- ""
- "loadm 0,0,%1,%2")
-
- This example comes from `a29k.md'. The function
- `load_multiple_operations' is defined in `a29k.c' and checks that
- subsequent elements in the `parallel' are the same as the `set' in
- the pattern, except that they are referencing subsequent registers
- and memory locations.
-
- An insn that matches this pattern might look like:
-
- (parallel
- [(set (reg:SI 20) (mem:SI (reg:SI 100)))
- (use (reg:SI 179))
- (clobber (reg:SI 179))
- (set (reg:SI 21)
- (mem:SI (plus:SI (reg:SI 100)
- (const_int 4))))
- (set (reg:SI 22)
- (mem:SI (plus:SI (reg:SI 100)
- (const_int 8))))])
-
-`(match_par_dup N [SUBPAT...])'
- Like `match_op_dup', but for `match_parallel' instead of
- `match_operator'.
-
-`(address (match_operand:M N "address_operand" ""))'
- This complex of expressions is a placeholder for an operand number
- N in a "load address" instruction: an operand which specifies a
- memory location in the usual way, but for which the actual operand
- value used is the address of the location, not the contents of the
- location.
-
- `address' expressions never appear in RTL code, only in machine
- descriptions. And they are used only in machine descriptions that
- do not use the operand constraint feature. When operand
- constraints are in use, the letter `p' in the constraint serves
- this purpose.
-
- M is the machine mode of the *memory location being addressed*,
- not the machine mode of the address itself. That mode is always
- the same on a given target machine (it is `Pmode', which normally
- is `SImode'), so there is no point in mentioning it; thus, no
- machine mode is written in the `address' expression. If some day
- support is added for machines in which addresses of different
- kinds of objects appear differently or are used differently (such
- as the PDP-10), different formats would perhaps need different
- machine modes and these modes might be written in the `address'
- expression.
-
diff --git a/gcc/gcc.info-17 b/gcc/gcc.info-17
deleted file mode 100644
index ec0d511435c..00000000000
--- a/gcc/gcc.info-17
+++ /dev/null
@@ -1,1112 +0,0 @@
-This is Info file gcc.info, produced by Makeinfo version 1.68 from the
-input file gcc.texi.
-
- This file documents the use and the internals of the GNU compiler.
-
- Published by the Free Software Foundation 59 Temple Place - Suite 330
-Boston, MA 02111-1307 USA
-
- Copyright (C) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997 Free
-Software Foundation, Inc.
-
- Permission is granted to make and distribute verbatim copies of this
-manual provided the copyright notice and this permission notice are
-preserved on all copies.
-
- Permission is granted to copy and distribute modified versions of
-this manual under the conditions for verbatim copying, provided also
-that the sections entitled "GNU General Public License," "Funding for
-Free Software," and "Protect Your Freedom--Fight `Look And Feel'" are
-included exactly as in the original, and provided that the entire
-resulting derived work is distributed under the terms of a permission
-notice identical to this one.
-
- Permission is granted to copy and distribute translations of this
-manual into another language, under the above conditions for modified
-versions, except that the sections entitled "GNU General Public
-License," "Funding for Free Software," and "Protect Your Freedom--Fight
-`Look And Feel'", and this permission notice, may be included in
-translations approved by the Free Software Foundation instead of in the
-original English.
-
-
-File: gcc.info, Node: Output Template, Next: Output Statement, Prev: RTL Template, Up: Machine Desc
-
-Output Templates and Operand Substitution
-=========================================
-
- The "output template" is a string which specifies how to output the
-assembler code for an instruction pattern. Most of the template is a
-fixed string which is output literally. The character `%' is used to
-specify where to substitute an operand; it can also be used to identify
-places where different variants of the assembler require different
-syntax.
-
- In the simplest case, a `%' followed by a digit N says to output
-operand N at that point in the string.
-
- `%' followed by a letter and a digit says to output an operand in an
-alternate fashion. Four letters have standard, built-in meanings
-described below. The machine description macro `PRINT_OPERAND' can
-define additional letters with nonstandard meanings.
-
- `%cDIGIT' can be used to substitute an operand that is a constant
-value without the syntax that normally indicates an immediate operand.
-
- `%nDIGIT' is like `%cDIGIT' except that the value of the constant is
-negated before printing.
-
- `%aDIGIT' can be used to substitute an operand as if it were a
-memory reference, with the actual operand treated as the address. This
-may be useful when outputting a "load address" instruction, because
-often the assembler syntax for such an instruction requires you to
-write the operand as if it were a memory reference.
-
- `%lDIGIT' is used to substitute a `label_ref' into a jump
-instruction.
-
- `%=' outputs a number which is unique to each instruction in the
-entire compilation. This is useful for making local labels to be
-referred to more than once in a single template that generates multiple
-assembler instructions.
-
- `%' followed by a punctuation character specifies a substitution that
-does not use an operand. Only one case is standard: `%%' outputs a `%'
-into the assembler code. Other nonstandard cases can be defined in the
-`PRINT_OPERAND' macro. You must also define which punctuation
-characters are valid with the `PRINT_OPERAND_PUNCT_VALID_P' macro.
-
- The template may generate multiple assembler instructions. Write
-the text for the instructions, with `\;' between them.
-
- When the RTL contains two operands which are required by constraint
-to match each other, the output template must refer only to the
-lower-numbered operand. Matching operands are not always identical,
-and the rest of the compiler arranges to put the proper RTL expression
-for printing into the lower-numbered operand.
-
- One use of nonstandard letters or punctuation following `%' is to
-distinguish between different assembler languages for the same machine;
-for example, Motorola syntax versus MIT syntax for the 68000. Motorola
-syntax requires periods in most opcode names, while MIT syntax does
-not. For example, the opcode `movel' in MIT syntax is `move.l' in
-Motorola syntax. The same file of patterns is used for both kinds of
-output syntax, but the character sequence `%.' is used in each place
-where Motorola syntax wants a period. The `PRINT_OPERAND' macro for
-Motorola syntax defines the sequence to output a period; the macro for
-MIT syntax defines it to do nothing.
-
- As a special case, a template consisting of the single character `#'
-instructs the compiler to first split the insn, and then output the
-resulting instructions separately. This helps eliminate redundancy in
-the output templates. If you have a `define_insn' that needs to emit
-multiple assembler instructions, and there is an matching `define_split'
-already defined, then you can simply use `#' as the output template
-instead of writing an output template that emits the multiple assembler
-instructions.
-
- If the macro `ASSEMBLER_DIALECT' is defined, you can use construct
-of the form `{option0|option1|option2}' in the templates. These
-describe multiple variants of assembler language syntax. *Note
-Instruction Output::.
-
-
-File: gcc.info, Node: Output Statement, Next: Constraints, Prev: Output Template, Up: Machine Desc
-
-C Statements for Assembler Output
-=================================
-
- Often a single fixed template string cannot produce correct and
-efficient assembler code for all the cases that are recognized by a
-single instruction pattern. For example, the opcodes may depend on the
-kinds of operands; or some unfortunate combinations of operands may
-require extra machine instructions.
-
- If the output control string starts with a `@', then it is actually
-a series of templates, each on a separate line. (Blank lines and
-leading spaces and tabs are ignored.) The templates correspond to the
-pattern's constraint alternatives (*note Multi-Alternative::.). For
-example, if a target machine has a two-address add instruction `addr'
-to add into a register and another `addm' to add a register to memory,
-you might write this pattern:
-
- (define_insn "addsi3"
- [(set (match_operand:SI 0 "general_operand" "=r,m")
- (plus:SI (match_operand:SI 1 "general_operand" "0,0")
- (match_operand:SI 2 "general_operand" "g,r")))]
- ""
- "@
- addr %2,%0
- addm %2,%0")
-
- If the output control string starts with a `*', then it is not an
-output template but rather a piece of C program that should compute a
-template. It should execute a `return' statement to return the
-template-string you want. Most such templates use C string literals,
-which require doublequote characters to delimit them. To include these
-doublequote characters in the string, prefix each one with `\'.
-
- The operands may be found in the array `operands', whose C data type
-is `rtx []'.
-
- It is very common to select different ways of generating assembler
-code based on whether an immediate operand is within a certain range.
-Be careful when doing this, because the result of `INTVAL' is an
-integer on the host machine. If the host machine has more bits in an
-`int' than the target machine has in the mode in which the constant
-will be used, then some of the bits you get from `INTVAL' will be
-superfluous. For proper results, you must carefully disregard the
-values of those bits.
-
- It is possible to output an assembler instruction and then go on to
-output or compute more of them, using the subroutine `output_asm_insn'.
-This receives two arguments: a template-string and a vector of
-operands. The vector may be `operands', or it may be another array of
-`rtx' that you declare locally and initialize yourself.
-
- When an insn pattern has multiple alternatives in its constraints,
-often the appearance of the assembler code is determined mostly by
-which alternative was matched. When this is so, the C code can test
-the variable `which_alternative', which is the ordinal number of the
-alternative that was actually satisfied (0 for the first, 1 for the
-second alternative, etc.).
-
- For example, suppose there are two opcodes for storing zero, `clrreg'
-for registers and `clrmem' for memory locations. Here is how a pattern
-could use `which_alternative' to choose between them:
-
- (define_insn ""
- [(set (match_operand:SI 0 "general_operand" "=r,m")
- (const_int 0))]
- ""
- "*
- return (which_alternative == 0
- ? \"clrreg %0\" : \"clrmem %0\");
- ")
-
- The example above, where the assembler code to generate was *solely*
-determined by the alternative, could also have been specified as
-follows, having the output control string start with a `@':
-
- (define_insn ""
- [(set (match_operand:SI 0 "general_operand" "=r,m")
- (const_int 0))]
- ""
- "@
- clrreg %0
- clrmem %0")
-
-
-File: gcc.info, Node: Constraints, Next: Standard Names, Prev: Output Statement, Up: Machine Desc
-
-Operand Constraints
-===================
-
- Each `match_operand' in an instruction pattern can specify a
-constraint for the type of operands allowed. Constraints can say
-whether an operand may be in a register, and which kinds of register;
-whether the operand can be a memory reference, and which kinds of
-address; whether the operand may be an immediate constant, and which
-possible values it may have. Constraints can also require two operands
-to match.
-
-* Menu:
-
-* Simple Constraints:: Basic use of constraints.
-* Multi-Alternative:: When an insn has two alternative constraint-patterns.
-* Class Preferences:: Constraints guide which hard register to put things in.
-* Modifiers:: More precise control over effects of constraints.
-* Machine Constraints:: Existing constraints for some particular machines.
-* No Constraints:: Describing a clean machine without constraints.
-
-
-File: gcc.info, Node: Simple Constraints, Next: Multi-Alternative, Up: Constraints
-
-Simple Constraints
-------------------
-
- The simplest kind of constraint is a string full of letters, each of
-which describes one kind of operand that is permitted. Here are the
-letters that are allowed:
-
-`m'
- A memory operand is allowed, with any kind of address that the
- machine supports in general.
-
-`o'
- A memory operand is allowed, but only if the address is
- "offsettable". This means that adding a small integer (actually,
- the width in bytes of the operand, as determined by its machine
- mode) may be added to the address and the result is also a valid
- memory address.
-
- For example, an address which is constant is offsettable; so is an
- address that is the sum of a register and a constant (as long as a
- slightly larger constant is also within the range of
- address-offsets supported by the machine); but an autoincrement or
- autodecrement address is not offsettable. More complicated
- indirect/indexed addresses may or may not be offsettable depending
- on the other addressing modes that the machine supports.
-
- Note that in an output operand which can be matched by another
- operand, the constraint letter `o' is valid only when accompanied
- by both `<' (if the target machine has predecrement addressing)
- and `>' (if the target machine has preincrement addressing).
-
-`V'
- A memory operand that is not offsettable. In other words,
- anything that would fit the `m' constraint but not the `o'
- constraint.
-
-`<'
- A memory operand with autodecrement addressing (either
- predecrement or postdecrement) is allowed.
-
-`>'
- A memory operand with autoincrement addressing (either
- preincrement or postincrement) is allowed.
-
-`r'
- A register operand is allowed provided that it is in a general
- register.
-
-`d', `a', `f', ...
- Other letters can be defined in machine-dependent fashion to stand
- for particular classes of registers. `d', `a' and `f' are defined
- on the 68000/68020 to stand for data, address and floating point
- registers.
-
-`i'
- An immediate integer operand (one with constant value) is allowed.
- This includes symbolic constants whose values will be known only at
- assembly time.
-
-`n'
- An immediate integer operand with a known numeric value is allowed.
- Many systems cannot support assembly-time constants for operands
- less than a word wide. Constraints for these operands should use
- `n' rather than `i'.
-
-`I', `J', `K', ... `P'
- Other letters in the range `I' through `P' may be defined in a
- machine-dependent fashion to permit immediate integer operands with
- explicit integer values in specified ranges. For example, on the
- 68000, `I' is defined to stand for the range of values 1 to 8.
- This is the range permitted as a shift count in the shift
- instructions.
-
-`E'
- An immediate floating operand (expression code `const_double') is
- allowed, but only if the target floating point format is the same
- as that of the host machine (on which the compiler is running).
-
-`F'
- An immediate floating operand (expression code `const_double') is
- allowed.
-
-`G', `H'
- `G' and `H' may be defined in a machine-dependent fashion to
- permit immediate floating operands in particular ranges of values.
-
-`s'
- An immediate integer operand whose value is not an explicit
- integer is allowed.
-
- This might appear strange; if an insn allows a constant operand
- with a value not known at compile time, it certainly must allow
- any known value. So why use `s' instead of `i'? Sometimes it
- allows better code to be generated.
-
- For example, on the 68000 in a fullword instruction it is possible
- to use an immediate operand; but if the immediate value is between
- -128 and 127, better code results from loading the value into a
- register and using the register. This is because the load into
- the register can be done with a `moveq' instruction. We arrange
- for this to happen by defining the letter `K' to mean "any integer
- outside the range -128 to 127", and then specifying `Ks' in the
- operand constraints.
-
-`g'
- Any register, memory or immediate integer operand is allowed,
- except for registers that are not general registers.
-
-`X'
- Any operand whatsoever is allowed, even if it does not satisfy
- `general_operand'. This is normally used in the constraint of a
- `match_scratch' when certain alternatives will not actually
- require a scratch register.
-
-`0', `1', `2', ... `9'
- An operand that matches the specified operand number is allowed.
- If a digit is used together with letters within the same
- alternative, the digit should come last.
-
- This is called a "matching constraint" and what it really means is
- that the assembler has only a single operand that fills two roles
- considered separate in the RTL insn. For example, an add insn has
- two input operands and one output operand in the RTL, but on most
- CISC machines an add instruction really has only two operands, one
- of them an input-output operand:
-
- addl #35,r12
-
- Matching constraints are used in these circumstances. More
- precisely, the two operands that match must include one input-only
- operand and one output-only operand. Moreover, the digit must be a
- smaller number than the number of the operand that uses it in the
- constraint.
-
- For operands to match in a particular case usually means that they
- are identical-looking RTL expressions. But in a few special cases
- specific kinds of dissimilarity are allowed. For example, `*x' as
- an input operand will match `*x++' as an output operand. For
- proper results in such cases, the output template should always
- use the output-operand's number when printing the operand.
-
-`p'
- An operand that is a valid memory address is allowed. This is for
- "load address" and "push address" instructions.
-
- `p' in the constraint must be accompanied by `address_operand' as
- the predicate in the `match_operand'. This predicate interprets
- the mode specified in the `match_operand' as the mode of the memory
- reference for which the address would be valid.
-
-`Q', `R', `S', ... `U'
- Letters in the range `Q' through `U' may be defined in a
- machine-dependent fashion to stand for arbitrary operand types.
- The machine description macro `EXTRA_CONSTRAINT' is passed the
- operand as its first argument and the constraint letter as its
- second operand.
-
- A typical use for this would be to distinguish certain types of
- memory references that affect other insn operands.
-
- Do not define these constraint letters to accept register
- references (`reg'); the reload pass does not expect this and would
- not handle it properly.
-
- In order to have valid assembler code, each operand must satisfy its
-constraint. But a failure to do so does not prevent the pattern from
-applying to an insn. Instead, it directs the compiler to modify the
-code so that the constraint will be satisfied. Usually this is done by
-copying an operand into a register.
-
- Contrast, therefore, the two instruction patterns that follow:
-
- (define_insn ""
- [(set (match_operand:SI 0 "general_operand" "=r")
- (plus:SI (match_dup 0)
- (match_operand:SI 1 "general_operand" "r")))]
- ""
- "...")
-
-which has two operands, one of which must appear in two places, and
-
- (define_insn ""
- [(set (match_operand:SI 0 "general_operand" "=r")
- (plus:SI (match_operand:SI 1 "general_operand" "0")
- (match_operand:SI 2 "general_operand" "r")))]
- ""
- "...")
-
-which has three operands, two of which are required by a constraint to
-be identical. If we are considering an insn of the form
-
- (insn N PREV NEXT
- (set (reg:SI 3)
- (plus:SI (reg:SI 6) (reg:SI 109)))
- ...)
-
-the first pattern would not apply at all, because this insn does not
-contain two identical subexpressions in the right place. The pattern
-would say, "That does not look like an add instruction; try other
-patterns." The second pattern would say, "Yes, that's an add
-instruction, but there is something wrong with it." It would direct
-the reload pass of the compiler to generate additional insns to make
-the constraint true. The results might look like this:
-
- (insn N2 PREV N
- (set (reg:SI 3) (reg:SI 6))
- ...)
-
- (insn N N2 NEXT
- (set (reg:SI 3)
- (plus:SI (reg:SI 3) (reg:SI 109)))
- ...)
-
- It is up to you to make sure that each operand, in each pattern, has
-constraints that can handle any RTL expression that could be present for
-that operand. (When multiple alternatives are in use, each pattern
-must, for each possible combination of operand expressions, have at
-least one alternative which can handle that combination of operands.)
-The constraints don't need to *allow* any possible operand--when this is
-the case, they do not constrain--but they must at least point the way to
-reloading any possible operand so that it will fit.
-
- * If the constraint accepts whatever operands the predicate permits,
- there is no problem: reloading is never necessary for this operand.
-
- For example, an operand whose constraints permit everything except
- registers is safe provided its predicate rejects registers.
-
- An operand whose predicate accepts only constant values is safe
- provided its constraints include the letter `i'. If any possible
- constant value is accepted, then nothing less than `i' will do; if
- the predicate is more selective, then the constraints may also be
- more selective.
-
- * Any operand expression can be reloaded by copying it into a
- register. So if an operand's constraints allow some kind of
- register, it is certain to be safe. It need not permit all
- classes of registers; the compiler knows how to copy a register
- into another register of the proper class in order to make an
- instruction valid.
-
- * A nonoffsettable memory reference can be reloaded by copying the
- address into a register. So if the constraint uses the letter
- `o', all memory references are taken care of.
-
- * A constant operand can be reloaded by allocating space in memory to
- hold it as preinitialized data. Then the memory reference can be
- used in place of the constant. So if the constraint uses the
- letters `o' or `m', constant operands are not a problem.
-
- * If the constraint permits a constant and a pseudo register used in
- an insn was not allocated to a hard register and is equivalent to
- a constant, the register will be replaced with the constant. If
- the predicate does not permit a constant and the insn is
- re-recognized for some reason, the compiler will crash. Thus the
- predicate must always recognize any objects allowed by the
- constraint.
-
- If the operand's predicate can recognize registers, but the
-constraint does not permit them, it can make the compiler crash. When
-this operand happens to be a register, the reload pass will be stymied,
-because it does not know how to copy a register temporarily into memory.
-
- If the predicate accepts a unary operator, the constraint applies to
-the operand. For example, the MIPS processor at ISA level 3 supports an
-instruction which adds two registers in `SImode' to produce a `DImode'
-result, but only if the registers are correctly sign extended. This
-predicate for the input operands accepts a `sign_extend' of an `SImode'
-register. Write the constraint to indicate the type of register that
-is required for the operand of the `sign_extend'.
-
-
-File: gcc.info, Node: Multi-Alternative, Next: Class Preferences, Prev: Simple Constraints, Up: Constraints
-
-Multiple Alternative Constraints
---------------------------------
-
- Sometimes a single instruction has multiple alternative sets of
-possible operands. For example, on the 68000, a logical-or instruction
-can combine register or an immediate value into memory, or it can
-combine any kind of operand into a register; but it cannot combine one
-memory location into another.
-
- These constraints are represented as multiple alternatives. An
-alternative can be described by a series of letters for each operand.
-The overall constraint for an operand is made from the letters for this
-operand from the first alternative, a comma, the letters for this
-operand from the second alternative, a comma, and so on until the last
-alternative. Here is how it is done for fullword logical-or on the
-68000:
-
- (define_insn "iorsi3"
- [(set (match_operand:SI 0 "general_operand" "=m,d")
- (ior:SI (match_operand:SI 1 "general_operand" "%0,0")
- (match_operand:SI 2 "general_operand" "dKs,dmKs")))]
- ...)
-
- The first alternative has `m' (memory) for operand 0, `0' for
-operand 1 (meaning it must match operand 0), and `dKs' for operand 2.
-The second alternative has `d' (data register) for operand 0, `0' for
-operand 1, and `dmKs' for operand 2. The `=' and `%' in the
-constraints apply to all the alternatives; their meaning is explained
-in the next section (*note Class Preferences::.).
-
- If all the operands fit any one alternative, the instruction is
-valid. Otherwise, for each alternative, the compiler counts how many
-instructions must be added to copy the operands so that that
-alternative applies. The alternative requiring the least copying is
-chosen. If two alternatives need the same amount of copying, the one
-that comes first is chosen. These choices can be altered with the `?'
-and `!' characters:
-
-`?'
- Disparage slightly the alternative that the `?' appears in, as a
- choice when no alternative applies exactly. The compiler regards
- this alternative as one unit more costly for each `?' that appears
- in it.
-
-`!'
- Disparage severely the alternative that the `!' appears in. This
- alternative can still be used if it fits without reloading, but if
- reloading is needed, some other alternative will be used.
-
- When an insn pattern has multiple alternatives in its constraints,
-often the appearance of the assembler code is determined mostly by which
-alternative was matched. When this is so, the C code for writing the
-assembler code can use the variable `which_alternative', which is the
-ordinal number of the alternative that was actually satisfied (0 for
-the first, 1 for the second alternative, etc.). *Note Output
-Statement::.
-
-
-File: gcc.info, Node: Class Preferences, Next: Modifiers, Prev: Multi-Alternative, Up: Constraints
-
-Register Class Preferences
---------------------------
-
- The operand constraints have another function: they enable the
-compiler to decide which kind of hardware register a pseudo register is
-best allocated to. The compiler examines the constraints that apply to
-the insns that use the pseudo register, looking for the
-machine-dependent letters such as `d' and `a' that specify classes of
-registers. The pseudo register is put in whichever class gets the most
-"votes". The constraint letters `g' and `r' also vote: they vote in
-favor of a general register. The machine description says which
-registers are considered general.
-
- Of course, on some machines all registers are equivalent, and no
-register classes are defined. Then none of this complexity is relevant.
-
-
-File: gcc.info, Node: Modifiers, Next: Machine Constraints, Prev: Class Preferences, Up: Constraints
-
-Constraint Modifier Characters
-------------------------------
-
- Here are constraint modifier characters.
-
-`='
- Means that this operand is write-only for this instruction: the
- previous value is discarded and replaced by output data.
-
-`+'
- Means that this operand is both read and written by the
- instruction.
-
- When the compiler fixes up the operands to satisfy the constraints,
- it needs to know which operands are inputs to the instruction and
- which are outputs from it. `=' identifies an output; `+'
- identifies an operand that is both input and output; all other
- operands are assumed to be input only.
-
-`&'
- Means (in a particular alternative) that this operand is an
- "earlyclobber" operand, which is modified before the instruction is
- finished using the input operands. Therefore, this operand may
- not lie in a register that is used as an input operand or as part
- of any memory address.
-
- `&' applies only to the alternative in which it is written. In
- constraints with multiple alternatives, sometimes one alternative
- requires `&' while others do not. See, for example, the `movdf'
- insn of the 68000.
-
- An input operand can be tied to an earlyclobber operand if its only
- use as an input occurs before the early result is written. Adding
- alternatives of this form often allows GCC to produce better code
- when only some of the inputs can be affected by the earlyclobber.
- See, for example, the `mulsi3' insn of the ARM.
-
- `&' does not obviate the need to write `='.
-
-`%'
- Declares the instruction to be commutative for this operand and the
- following operand. This means that the compiler may interchange
- the two operands if that is the cheapest way to make all operands
- fit the constraints. This is often used in patterns for addition
- instructions that really have only two operands: the result must
- go in one of the arguments. Here for example, is how the 68000
- halfword-add instruction is defined:
-
- (define_insn "addhi3"
- [(set (match_operand:HI 0 "general_operand" "=m,r")
- (plus:HI (match_operand:HI 1 "general_operand" "%0,0")
- (match_operand:HI 2 "general_operand" "di,g")))]
- ...)
-
-`#'
- Says that all following characters, up to the next comma, are to be
- ignored as a constraint. They are significant only for choosing
- register preferences.
-
-`*'
- Says that the following character should be ignored when choosing
- register preferences. `*' has no effect on the meaning of the
- constraint as a constraint, and no effect on reloading.
-
- Here is an example: the 68000 has an instruction to sign-extend a
- halfword in a data register, and can also sign-extend a value by
- copying it into an address register. While either kind of
- register is acceptable, the constraints on an address-register
- destination are less strict, so it is best if register allocation
- makes an address register its goal. Therefore, `*' is used so
- that the `d' constraint letter (for data register) is ignored when
- computing register preferences.
-
- (define_insn "extendhisi2"
- [(set (match_operand:SI 0 "general_operand" "=*d,a")
- (sign_extend:SI
- (match_operand:HI 1 "general_operand" "0,g")))]
- ...)
-
-
-File: gcc.info, Node: Machine Constraints, Next: No Constraints, Prev: Modifiers, Up: Constraints
-
-Constraints for Particular Machines
------------------------------------
-
- Whenever possible, you should use the general-purpose constraint
-letters in `asm' arguments, since they will convey meaning more readily
-to people reading your code. Failing that, use the constraint letters
-that usually have very similar meanings across architectures. The most
-commonly used constraints are `m' and `r' (for memory and
-general-purpose registers respectively; *note Simple Constraints::.),
-and `I', usually the letter indicating the most common
-immediate-constant format.
-
- For each machine architecture, the `config/MACHINE.h' file defines
-additional constraints. These constraints are used by the compiler
-itself for instruction generation, as well as for `asm' statements;
-therefore, some of the constraints are not particularly interesting for
-`asm'. The constraints are defined through these macros:
-
-`REG_CLASS_FROM_LETTER'
- Register class constraints (usually lower case).
-
-`CONST_OK_FOR_LETTER_P'
- Immediate constant constraints, for non-floating point constants of
- word size or smaller precision (usually upper case).
-
-`CONST_DOUBLE_OK_FOR_LETTER_P'
- Immediate constant constraints, for all floating point constants
- and for constants of greater than word size precision (usually
- upper case).
-
-`EXTRA_CONSTRAINT'
- Special cases of registers or memory. This macro is not required,
- and is only defined for some machines.
-
- Inspecting these macro definitions in the compiler source for your
-machine is the best way to be certain you have the right constraints.
-However, here is a summary of the machine-dependent constraints
-available on some particular machines.
-
-*ARM family--`arm.h'*
-
- `f'
- Floating-point register
-
- `F'
- One of the floating-point constants 0.0, 0.5, 1.0, 2.0, 3.0,
- 4.0, 5.0 or 10.0
-
- `G'
- Floating-point constant that would satisfy the constraint `F'
- if it were negated
-
- `I'
- Integer that is valid as an immediate operand in a data
- processing instruction. That is, an integer in the range 0
- to 255 rotated by a multiple of 2
-
- `J'
- Integer in the range -4095 to 4095
-
- `K'
- Integer that satisfies constraint `I' when inverted (ones
- complement)
-
- `L'
- Integer that satisfies constraint `I' when negated (twos
- complement)
-
- `M'
- Integer in the range 0 to 32
-
- `Q'
- A memory reference where the exact address is in a single
- register (``m'' is preferable for `asm' statements)
-
- `R'
- An item in the constant pool
-
- `S'
- A symbol in the text segment of the current file
-
-*AMD 29000 family--`a29k.h'*
-
- `l'
- Local register 0
-
- `b'
- Byte Pointer (`BP') register
-
- `q'
- `Q' register
-
- `h'
- Special purpose register
-
- `A'
- First accumulator register
-
- `a'
- Other accumulator register
-
- `f'
- Floating point register
-
- `I'
- Constant greater than 0, less than 0x100
-
- `J'
- Constant greater than 0, less than 0x10000
-
- `K'
- Constant whose high 24 bits are on (1)
-
- `L'
- 16 bit constant whose high 8 bits are on (1)
-
- `M'
- 32 bit constant whose high 16 bits are on (1)
-
- `N'
- 32 bit negative constant that fits in 8 bits
-
- `O'
- The constant 0x80000000 or, on the 29050, any 32 bit constant
- whose low 16 bits are 0.
-
- `P'
- 16 bit negative constant that fits in 8 bits
-
- `G'
- `H'
- A floating point constant (in `asm' statements, use the
- machine independent `E' or `F' instead)
-
-*IBM RS6000--`rs6000.h'*
-
- `b'
- Address base register
-
- `f'
- Floating point register
-
- `h'
- `MQ', `CTR', or `LINK' register
-
- `q'
- `MQ' register
-
- `c'
- `CTR' register
-
- `l'
- `LINK' register
-
- `x'
- `CR' register (condition register) number 0
-
- `y'
- `CR' register (condition register)
-
- `I'
- Signed 16 bit constant
-
- `J'
- Constant whose low 16 bits are 0
-
- `K'
- Constant whose high 16 bits are 0
-
- `L'
- Constant suitable as a mask operand
-
- `M'
- Constant larger than 31
-
- `N'
- Exact power of 2
-
- `O'
- Zero
-
- `P'
- Constant whose negation is a signed 16 bit constant
-
- `G'
- Floating point constant that can be loaded into a register
- with one instruction per word
-
- `Q'
- Memory operand that is an offset from a register (`m' is
- preferable for `asm' statements)
-
- `R'
- AIX TOC entry
-
- `S'
- Windows NT SYMBOL_REF
-
- `T'
- Windows NT LABEL_REF
-
- `U'
- System V Release 4 small data area reference
-
-*Intel 386--`i386.h'*
-
- `q'
- `a', `b', `c', or `d' register
-
- `A'
- `a', or `d' register (for 64-bit ints)
-
- `f'
- Floating point register
-
- `t'
- First (top of stack) floating point register
-
- `u'
- Second floating point register
-
- `a'
- `a' register
-
- `b'
- `b' register
-
- `c'
- `c' register
-
- `d'
- `d' register
-
- `D'
- `di' register
-
- `S'
- `si' register
-
- `I'
- Constant in range 0 to 31 (for 32 bit shifts)
-
- `J'
- Constant in range 0 to 63 (for 64 bit shifts)
-
- `K'
- `0xff'
-
- `L'
- `0xffff'
-
- `M'
- 0, 1, 2, or 3 (shifts for `lea' instruction)
-
- `N'
- Constant in range 0 to 255 (for `out' instruction)
-
- `G'
- Standard 80387 floating point constant
-
-*Intel 960--`i960.h'*
-
- `f'
- Floating point register (`fp0' to `fp3')
-
- `l'
- Local register (`r0' to `r15')
-
- `b'
- Global register (`g0' to `g15')
-
- `d'
- Any local or global register
-
- `I'
- Integers from 0 to 31
-
- `J'
- 0
-
- `K'
- Integers from -31 to 0
-
- `G'
- Floating point 0
-
- `H'
- Floating point 1
-
-*MIPS--`mips.h'*
-
- `d'
- General-purpose integer register
-
- `f'
- Floating-point register (if available)
-
- `h'
- `Hi' register
-
- `l'
- `Lo' register
-
- `x'
- `Hi' or `Lo' register
-
- `y'
- General-purpose integer register
-
- `z'
- Floating-point status register
-
- `I'
- Signed 16 bit constant (for arithmetic instructions)
-
- `J'
- Zero
-
- `K'
- Zero-extended 16-bit constant (for logic instructions)
-
- `L'
- Constant with low 16 bits zero (can be loaded with `lui')
-
- `M'
- 32 bit constant which requires two instructions to load (a
- constant which is not `I', `K', or `L')
-
- `N'
- Negative 16 bit constant
-
- `O'
- Exact power of two
-
- `P'
- Positive 16 bit constant
-
- `G'
- Floating point zero
-
- `Q'
- Memory reference that can be loaded with more than one
- instruction (`m' is preferable for `asm' statements)
-
- `R'
- Memory reference that can be loaded with one instruction (`m'
- is preferable for `asm' statements)
-
- `S'
- Memory reference in external OSF/rose PIC format (`m' is
- preferable for `asm' statements)
-
-*Motorola 680x0--`m68k.h'*
-
- `a'
- Address register
-
- `d'
- Data register
-
- `f'
- 68881 floating-point register, if available
-
- `x'
- Sun FPA (floating-point) register, if available
-
- `y'
- First 16 Sun FPA registers, if available
-
- `I'
- Integer in the range 1 to 8
-
- `J'
- 16 bit signed number
-
- `K'
- Signed number whose magnitude is greater than 0x80
-
- `L'
- Integer in the range -8 to -1
-
- `M'
- Signed number whose magnitude is greater than 0x100
-
- `G'
- Floating point constant that is not a 68881 constant
-
- `H'
- Floating point constant that can be used by Sun FPA
-
-*SPARC--`sparc.h'*
-
- `f'
- Floating-point register that can hold 32 or 64 bit values.
-
- `e'
- Floating-point register that can hold 64 or 128 bit values.
-
- `I'
- Signed 13 bit constant
-
- `J'
- Zero
-
- `K'
- 32 bit constant with the low 12 bits clear (a constant that
- can be loaded with the `sethi' instruction)
-
- `G'
- Floating-point zero
-
- `H'
- Signed 13 bit constant, sign-extended to 32 or 64 bits
-
- `Q'
- Memory reference that can be loaded with one instruction
- (`m' is more appropriate for `asm' statements)
-
- `S'
- Constant, or memory address
-
- `T'
- Memory address aligned to an 8-byte boundary
-
- `U'
- Even register
-
-
-File: gcc.info, Node: No Constraints, Prev: Machine Constraints, Up: Constraints
-
-Not Using Constraints
----------------------
-
- Some machines are so clean that operand constraints are not
-required. For example, on the Vax, an operand valid in one context is
-valid in any other context. On such a machine, every operand
-constraint would be `g', excepting only operands of "load address"
-instructions which are written as if they referred to a memory
-location's contents but actual refer to its address. They would have
-constraint `p'.
-
- For such machines, instead of writing `g' and `p' for all the
-constraints, you can choose to write a description with empty
-constraints. Then you write `""' for the constraint in every
-`match_operand'. Address operands are identified by writing an
-`address' expression around the `match_operand', not by their
-constraints.
-
- When the machine description has just empty constraints, certain
-parts of compilation are skipped, making the compiler faster. However,
-few machines actually do not need constraints; all machine descriptions
-now in existence use constraints.
-
diff --git a/gcc/gcc.info-18 b/gcc/gcc.info-18
deleted file mode 100644
index abec34e35de..00000000000
--- a/gcc/gcc.info-18
+++ /dev/null
@@ -1,1031 +0,0 @@
-This is Info file gcc.info, produced by Makeinfo version 1.68 from the
-input file gcc.texi.
-
- This file documents the use and the internals of the GNU compiler.
-
- Published by the Free Software Foundation 59 Temple Place - Suite 330
-Boston, MA 02111-1307 USA
-
- Copyright (C) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997 Free
-Software Foundation, Inc.
-
- Permission is granted to make and distribute verbatim copies of this
-manual provided the copyright notice and this permission notice are
-preserved on all copies.
-
- Permission is granted to copy and distribute modified versions of
-this manual under the conditions for verbatim copying, provided also
-that the sections entitled "GNU General Public License," "Funding for
-Free Software," and "Protect Your Freedom--Fight `Look And Feel'" are
-included exactly as in the original, and provided that the entire
-resulting derived work is distributed under the terms of a permission
-notice identical to this one.
-
- Permission is granted to copy and distribute translations of this
-manual into another language, under the above conditions for modified
-versions, except that the sections entitled "GNU General Public
-License," "Funding for Free Software," and "Protect Your Freedom--Fight
-`Look And Feel'", and this permission notice, may be included in
-translations approved by the Free Software Foundation instead of in the
-original English.
-
-
-File: gcc.info, Node: Standard Names, Next: Pattern Ordering, Prev: Constraints, Up: Machine Desc
-
-Standard Pattern Names For Generation
-=====================================
-
- Here is a table of the instruction names that are meaningful in the
-RTL generation pass of the compiler. Giving one of these names to an
-instruction pattern tells the RTL generation pass that it can use the
-pattern in to accomplish a certain task.
-
-`movM'
- Here M stands for a two-letter machine mode name, in lower case.
- This instruction pattern moves data with that machine mode from
- operand 1 to operand 0. For example, `movsi' moves full-word data.
-
- If operand 0 is a `subreg' with mode M of a register whose own
- mode is wider than M, the effect of this instruction is to store
- the specified value in the part of the register that corresponds
- to mode M. The effect on the rest of the register is undefined.
-
- This class of patterns is special in several ways. First of all,
- each of these names *must* be defined, because there is no other
- way to copy a datum from one place to another.
-
- Second, these patterns are not used solely in the RTL generation
- pass. Even the reload pass can generate move insns to copy values
- from stack slots into temporary registers. When it does so, one
- of the operands is a hard register and the other is an operand
- that can need to be reloaded into a register.
-
- Therefore, when given such a pair of operands, the pattern must
- generate RTL which needs no reloading and needs no temporary
- registers--no registers other than the operands. For example, if
- you support the pattern with a `define_expand', then in such a
- case the `define_expand' mustn't call `force_reg' or any other such
- function which might generate new pseudo registers.
-
- This requirement exists even for subword modes on a RISC machine
- where fetching those modes from memory normally requires several
- insns and some temporary registers. Look in `spur.md' to see how
- the requirement can be satisfied.
-
- During reload a memory reference with an invalid address may be
- passed as an operand. Such an address will be replaced with a
- valid address later in the reload pass. In this case, nothing may
- be done with the address except to use it as it stands. If it is
- copied, it will not be replaced with a valid address. No attempt
- should be made to make such an address into a valid address and no
- routine (such as `change_address') that will do so may be called.
- Note that `general_operand' will fail when applied to such an
- address.
-
- The global variable `reload_in_progress' (which must be explicitly
- declared if required) can be used to determine whether such special
- handling is required.
-
- The variety of operands that have reloads depends on the rest of
- the machine description, but typically on a RISC machine these can
- only be pseudo registers that did not get hard registers, while on
- other machines explicit memory references will get optional
- reloads.
-
- If a scratch register is required to move an object to or from
- memory, it can be allocated using `gen_reg_rtx' prior to reload.
- But this is impossible during and after reload. If there are
- cases needing scratch registers after reload, you must define
- `SECONDARY_INPUT_RELOAD_CLASS' and perhaps also
- `SECONDARY_OUTPUT_RELOAD_CLASS' to detect them, and provide
- patterns `reload_inM' or `reload_outM' to handle them. *Note
- Register Classes::.
-
- The constraints on a `moveM' must permit moving any hard register
- to any other hard register provided that `HARD_REGNO_MODE_OK'
- permits mode M in both registers and `REGISTER_MOVE_COST' applied
- to their classes returns a value of 2.
-
- It is obligatory to support floating point `moveM' instructions
- into and out of any registers that can hold fixed point values,
- because unions and structures (which have modes `SImode' or
- `DImode') can be in those registers and they may have floating
- point members.
-
- There may also be a need to support fixed point `moveM'
- instructions in and out of floating point registers.
- Unfortunately, I have forgotten why this was so, and I don't know
- whether it is still true. If `HARD_REGNO_MODE_OK' rejects fixed
- point values in floating point registers, then the constraints of
- the fixed point `moveM' instructions must be designed to avoid
- ever trying to reload into a floating point register.
-
-`reload_inM'
-`reload_outM'
- Like `movM', but used when a scratch register is required to move
- between operand 0 and operand 1. Operand 2 describes the scratch
- register. See the discussion of the `SECONDARY_RELOAD_CLASS'
- macro in *note Register Classes::..
-
-`movstrictM'
- Like `movM' except that if operand 0 is a `subreg' with mode M of
- a register whose natural mode is wider, the `movstrictM'
- instruction is guaranteed not to alter any of the register except
- the part which belongs to mode M.
-
-`load_multiple'
- Load several consecutive memory locations into consecutive
- registers. Operand 0 is the first of the consecutive registers,
- operand 1 is the first memory location, and operand 2 is a
- constant: the number of consecutive registers.
-
- Define this only if the target machine really has such an
- instruction; do not define this if the most efficient way of
- loading consecutive registers from memory is to do them one at a
- time.
-
- On some machines, there are restrictions as to which consecutive
- registers can be stored into memory, such as particular starting or
- ending register numbers or only a range of valid counts. For those
- machines, use a `define_expand' (*note Expander Definitions::.)
- and make the pattern fail if the restrictions are not met.
-
- Write the generated insn as a `parallel' with elements being a
- `set' of one register from the appropriate memory location (you may
- also need `use' or `clobber' elements). Use a `match_parallel'
- (*note RTL Template::.) to recognize the insn. See `a29k.md' and
- `rs6000.md' for examples of the use of this insn pattern.
-
-`store_multiple'
- Similar to `load_multiple', but store several consecutive registers
- into consecutive memory locations. Operand 0 is the first of the
- consecutive memory locations, operand 1 is the first register, and
- operand 2 is a constant: the number of consecutive registers.
-
-`addM3'
- Add operand 2 and operand 1, storing the result in operand 0. All
- operands must have mode M. This can be used even on two-address
- machines, by means of constraints requiring operands 1 and 0 to be
- the same location.
-
-`subM3', `mulM3'
-`divM3', `udivM3', `modM3', `umodM3'
-`sminM3', `smaxM3', `uminM3', `umaxM3'
-`andM3', `iorM3', `xorM3'
- Similar, for other arithmetic operations.
-
-`mulhisi3'
- Multiply operands 1 and 2, which have mode `HImode', and store a
- `SImode' product in operand 0.
-
-`mulqihi3', `mulsidi3'
- Similar widening-multiplication instructions of other widths.
-
-`umulqihi3', `umulhisi3', `umulsidi3'
- Similar widening-multiplication instructions that do unsigned
- multiplication.
-
-`mulM3_highpart'
- Perform a signed multiplication of operands 1 and 2, which have
- mode M, and store the most significant half of the product in
- operand 0. The least significant half of the product is discarded.
-
-`umulM3_highpart'
- Similar, but the multiplication is unsigned.
-
-`divmodM4'
- Signed division that produces both a quotient and a remainder.
- Operand 1 is divided by operand 2 to produce a quotient stored in
- operand 0 and a remainder stored in operand 3.
-
- For machines with an instruction that produces both a quotient and
- a remainder, provide a pattern for `divmodM4' but do not provide
- patterns for `divM3' and `modM3'. This allows optimization in the
- relatively common case when both the quotient and remainder are
- computed.
-
- If an instruction that just produces a quotient or just a remainder
- exists and is more efficient than the instruction that produces
- both, write the output routine of `divmodM4' to call
- `find_reg_note' and look for a `REG_UNUSED' note on the quotient
- or remainder and generate the appropriate instruction.
-
-`udivmodM4'
- Similar, but does unsigned division.
-
-`ashlM3'
- Arithmetic-shift operand 1 left by a number of bits specified by
- operand 2, and store the result in operand 0. Here M is the mode
- of operand 0 and operand 1; operand 2's mode is specified by the
- instruction pattern, and the compiler will convert the operand to
- that mode before generating the instruction.
-
-`ashrM3', `lshrM3', `rotlM3', `rotrM3'
- Other shift and rotate instructions, analogous to the `ashlM3'
- instructions.
-
-`negM2'
- Negate operand 1 and store the result in operand 0.
-
-`absM2'
- Store the absolute value of operand 1 into operand 0.
-
-`sqrtM2'
- Store the square root of operand 1 into operand 0.
-
- The `sqrt' built-in function of C always uses the mode which
- corresponds to the C data type `double'.
-
-`ffsM2'
- Store into operand 0 one plus the index of the least significant
- 1-bit of operand 1. If operand 1 is zero, store zero. M is the
- mode of operand 0; operand 1's mode is specified by the instruction
- pattern, and the compiler will convert the operand to that mode
- before generating the instruction.
-
- The `ffs' built-in function of C always uses the mode which
- corresponds to the C data type `int'.
-
-`one_cmplM2'
- Store the bitwise-complement of operand 1 into operand 0.
-
-`cmpM'
- Compare operand 0 and operand 1, and set the condition codes. The
- RTL pattern should look like this:
-
- (set (cc0) (compare (match_operand:M 0 ...)
- (match_operand:M 1 ...)))
-
-`tstM'
- Compare operand 0 against zero, and set the condition codes. The
- RTL pattern should look like this:
-
- (set (cc0) (match_operand:M 0 ...))
-
- `tstM' patterns should not be defined for machines that do not use
- `(cc0)'. Doing so would confuse the optimizer since it would no
- longer be clear which `set' operations were comparisons. The
- `cmpM' patterns should be used instead.
-
-`movstrM'
- Block move instruction. The addresses of the destination and
- source strings are the first two operands, and both are in mode
- `Pmode'. The number of bytes to move is the third operand, in
- mode M.
-
- The fourth operand is the known shared alignment of the source and
- destination, in the form of a `const_int' rtx. Thus, if the
- compiler knows that both source and destination are word-aligned,
- it may provide the value 4 for this operand.
-
- These patterns need not give special consideration to the
- possibility that the source and destination strings might overlap.
-
-`clrstrM'
- Block clear instruction. The addresses of the destination string
- is the first operand, in mode `Pmode'. The number of bytes to
- clear is the second operand, in mode M.
-
- The third operand is the known alignment of the destination, in
- the form of a `const_int' rtx. Thus, if the compiler knows that
- the destination is word-aligned, it may provide the value 4 for
- this operand.
-
-`cmpstrM'
- Block compare instruction, with five operands. Operand 0 is the
- output; it has mode M. The remaining four operands are like the
- operands of `movstrM'. The two memory blocks specified are
- compared byte by byte in lexicographic order. The effect of the
- instruction is to store a value in operand 0 whose sign indicates
- the result of the comparison.
-
-`strlenM'
- Compute the length of a string, with three operands. Operand 0 is
- the result (of mode M), operand 1 is a `mem' referring to the
- first character of the string, operand 2 is the character to
- search for (normally zero), and operand 3 is a constant describing
- the known alignment of the beginning of the string.
-
-`floatMN2'
- Convert signed integer operand 1 (valid for fixed point mode M) to
- floating point mode N and store in operand 0 (which has mode N).
-
-`floatunsMN2'
- Convert unsigned integer operand 1 (valid for fixed point mode M)
- to floating point mode N and store in operand 0 (which has mode N).
-
-`fixMN2'
- Convert operand 1 (valid for floating point mode M) to fixed point
- mode N as a signed number and store in operand 0 (which has mode
- N). This instruction's result is defined only when the value of
- operand 1 is an integer.
-
-`fixunsMN2'
- Convert operand 1 (valid for floating point mode M) to fixed point
- mode N as an unsigned number and store in operand 0 (which has
- mode N). This instruction's result is defined only when the value
- of operand 1 is an integer.
-
-`ftruncM2'
- Convert operand 1 (valid for floating point mode M) to an integer
- value, still represented in floating point mode M, and store it in
- operand 0 (valid for floating point mode M).
-
-`fix_truncMN2'
- Like `fixMN2' but works for any floating point value of mode M by
- converting the value to an integer.
-
-`fixuns_truncMN2'
- Like `fixunsMN2' but works for any floating point value of mode M
- by converting the value to an integer.
-
-`truncMN2'
- Truncate operand 1 (valid for mode M) to mode N and store in
- operand 0 (which has mode N). Both modes must be fixed point or
- both floating point.
-
-`extendMN2'
- Sign-extend operand 1 (valid for mode M) to mode N and store in
- operand 0 (which has mode N). Both modes must be fixed point or
- both floating point.
-
-`zero_extendMN2'
- Zero-extend operand 1 (valid for mode M) to mode N and store in
- operand 0 (which has mode N). Both modes must be fixed point.
-
-`extv'
- Extract a bit field from operand 1 (a register or memory operand),
- where operand 2 specifies the width in bits and operand 3 the
- starting bit, and store it in operand 0. Operand 0 must have mode
- `word_mode'. Operand 1 may have mode `byte_mode' or `word_mode';
- often `word_mode' is allowed only for registers. Operands 2 and 3
- must be valid for `word_mode'.
-
- The RTL generation pass generates this instruction only with
- constants for operands 2 and 3.
-
- The bit-field value is sign-extended to a full word integer before
- it is stored in operand 0.
-
-`extzv'
- Like `extv' except that the bit-field value is zero-extended.
-
-`insv'
- Store operand 3 (which must be valid for `word_mode') into a bit
- field in operand 0, where operand 1 specifies the width in bits and
- operand 2 the starting bit. Operand 0 may have mode `byte_mode' or
- `word_mode'; often `word_mode' is allowed only for registers.
- Operands 1 and 2 must be valid for `word_mode'.
-
- The RTL generation pass generates this instruction only with
- constants for operands 1 and 2.
-
-`movMODEcc'
- Conditionally move operand 2 or operand 3 into operand 0 according
- to the comparison in operand 1. If the comparison is true,
- operand 2 is moved into operand 0, otherwise operand 3 is moved.
-
- The mode of the operands being compared need not be the same as
- the operands being moved. Some machines, sparc64 for example,
- have instructions that conditionally move an integer value based
- on the floating point condition codes and vice versa.
-
- If the machine does not have conditional move instructions, do not
- define these patterns.
-
-`sCOND'
- Store zero or nonzero in the operand according to the condition
- codes. Value stored is nonzero iff the condition COND is true.
- COND is the name of a comparison operation expression code, such
- as `eq', `lt' or `leu'.
-
- You specify the mode that the operand must have when you write the
- `match_operand' expression. The compiler automatically sees which
- mode you have used and supplies an operand of that mode.
-
- The value stored for a true condition must have 1 as its low bit,
- or else must be negative. Otherwise the instruction is not
- suitable and you should omit it from the machine description. You
- describe to the compiler exactly which value is stored by defining
- the macro `STORE_FLAG_VALUE' (*note Misc::.). If a description
- cannot be found that can be used for all the `sCOND' patterns, you
- should omit those operations from the machine description.
-
- These operations may fail, but should do so only in relatively
- uncommon cases; if they would fail for common cases involving
- integer comparisons, it is best to omit these patterns.
-
- If these operations are omitted, the compiler will usually
- generate code that copies the constant one to the target and
- branches around an assignment of zero to the target. If this code
- is more efficient than the potential instructions used for the
- `sCOND' pattern followed by those required to convert the result
- into a 1 or a zero in `SImode', you should omit the `sCOND'
- operations from the machine description.
-
-`bCOND'
- Conditional branch instruction. Operand 0 is a `label_ref' that
- refers to the label to jump to. Jump if the condition codes meet
- condition COND.
-
- Some machines do not follow the model assumed here where a
- comparison instruction is followed by a conditional branch
- instruction. In that case, the `cmpM' (and `tstM') patterns should
- simply store the operands away and generate all the required insns
- in a `define_expand' (*note Expander Definitions::.) for the
- conditional branch operations. All calls to expand `bCOND'
- patterns are immediately preceded by calls to expand either a
- `cmpM' pattern or a `tstM' pattern.
-
- Machines that use a pseudo register for the condition code value,
- or where the mode used for the comparison depends on the condition
- being tested, should also use the above mechanism. *Note Jump
- Patterns::
-
- The above discussion also applies to the `movMODEcc' and `sCOND'
- patterns.
-
-`call'
- Subroutine call instruction returning no value. Operand 0 is the
- function to call; operand 1 is the number of bytes of arguments
- pushed (in mode `SImode', except it is normally a `const_int');
- operand 2 is the number of registers used as operands.
-
- On most machines, operand 2 is not actually stored into the RTL
- pattern. It is supplied for the sake of some RISC machines which
- need to put this information into the assembler code; they can put
- it in the RTL instead of operand 1.
-
- Operand 0 should be a `mem' RTX whose address is the address of the
- function. Note, however, that this address can be a `symbol_ref'
- expression even if it would not be a legitimate memory address on
- the target machine. If it is also not a valid argument for a call
- instruction, the pattern for this operation should be a
- `define_expand' (*note Expander Definitions::.) that places the
- address into a register and uses that register in the call
- instruction.
-
-`call_value'
- Subroutine call instruction returning a value. Operand 0 is the
- hard register in which the value is returned. There are three more
- operands, the same as the three operands of the `call' instruction
- (but with numbers increased by one).
-
- Subroutines that return `BLKmode' objects use the `call' insn.
-
-`call_pop', `call_value_pop'
- Similar to `call' and `call_value', except used if defined and if
- `RETURN_POPS_ARGS' is non-zero. They should emit a `parallel'
- that contains both the function call and a `set' to indicate the
- adjustment made to the frame pointer.
-
- For machines where `RETURN_POPS_ARGS' can be non-zero, the use of
- these patterns increases the number of functions for which the
- frame pointer can be eliminated, if desired.
-
-`untyped_call'
- Subroutine call instruction returning a value of any type.
- Operand 0 is the function to call; operand 1 is a memory location
- where the result of calling the function is to be stored; operand
- 2 is a `parallel' expression where each element is a `set'
- expression that indicates the saving of a function return value
- into the result block.
-
- This instruction pattern should be defined to support
- `__builtin_apply' on machines where special instructions are needed
- to call a subroutine with arbitrary arguments or to save the value
- returned. This instruction pattern is required on machines that
- have multiple registers that can hold a return value (i.e.
- `FUNCTION_VALUE_REGNO_P' is true for more than one register).
-
-`return'
- Subroutine return instruction. This instruction pattern name
- should be defined only if a single instruction can do all the work
- of returning from a function.
-
- Like the `movM' patterns, this pattern is also used after the RTL
- generation phase. In this case it is to support machines where
- multiple instructions are usually needed to return from a
- function, but some class of functions only requires one
- instruction to implement a return. Normally, the applicable
- functions are those which do not need to save any registers or
- allocate stack space.
-
- For such machines, the condition specified in this pattern should
- only be true when `reload_completed' is non-zero and the function's
- epilogue would only be a single instruction. For machines with
- register windows, the routine `leaf_function_p' may be used to
- determine if a register window push is required.
-
- Machines that have conditional return instructions should define
- patterns such as
-
- (define_insn ""
- [(set (pc)
- (if_then_else (match_operator
- 0 "comparison_operator"
- [(cc0) (const_int 0)])
- (return)
- (pc)))]
- "CONDITION"
- "...")
-
- where CONDITION would normally be the same condition specified on
- the named `return' pattern.
-
-`untyped_return'
- Untyped subroutine return instruction. This instruction pattern
- should be defined to support `__builtin_return' on machines where
- special instructions are needed to return a value of any type.
-
- Operand 0 is a memory location where the result of calling a
- function with `__builtin_apply' is stored; operand 1 is a
- `parallel' expression where each element is a `set' expression
- that indicates the restoring of a function return value from the
- result block.
-
-`nop'
- No-op instruction. This instruction pattern name should always be
- defined to output a no-op in assembler code. `(const_int 0)' will
- do as an RTL pattern.
-
-`indirect_jump'
- An instruction to jump to an address which is operand zero. This
- pattern name is mandatory on all machines.
-
-`casesi'
- Instruction to jump through a dispatch table, including bounds
- checking. This instruction takes five operands:
-
- 1. The index to dispatch on, which has mode `SImode'.
-
- 2. The lower bound for indices in the table, an integer constant.
-
- 3. The total range of indices in the table--the largest index
- minus the smallest one (both inclusive).
-
- 4. A label that precedes the table itself.
-
- 5. A label to jump to if the index has a value outside the
- bounds. (If the machine-description macro
- `CASE_DROPS_THROUGH' is defined, then an out-of-bounds index
- drops through to the code following the jump table instead of
- jumping to this label. In that case, this label is not
- actually used by the `casesi' instruction, but it is always
- provided as an operand.)
-
- The table is a `addr_vec' or `addr_diff_vec' inside of a
- `jump_insn'. The number of elements in the table is one plus the
- difference between the upper bound and the lower bound.
-
-`tablejump'
- Instruction to jump to a variable address. This is a low-level
- capability which can be used to implement a dispatch table when
- there is no `casesi' pattern.
-
- This pattern requires two operands: the address or offset, and a
- label which should immediately precede the jump table. If the
- macro `CASE_VECTOR_PC_RELATIVE' is defined then the first operand
- is an offset which counts from the address of the table;
- otherwise, it is an absolute address to jump to. In either case,
- the first operand has mode `Pmode'.
-
- The `tablejump' insn is always the last insn before the jump table
- it uses. Its assembler code normally has no need to use the
- second operand, but you should incorporate it in the RTL pattern so
- that the jump optimizer will not delete the table as unreachable
- code.
-
-`canonicalize_funcptr_for_compare'
- Canonicalize the function pointer in operand 1 and store the result
- into operand 0.
-
- Operand 0 is always a `reg' and has mode `Pmode'; operand 1 may be
- a `reg', `mem', `symbol_ref', `const_int', etc and also has mode
- `Pmode'.
-
- Canonicalization of a function pointer usually involves computing
- the address of the function which would be called if the function
- pointer were used in an indirect call.
-
- Only define this pattern if function pointers on the target machine
- can have different values but still call the same function when
- used in an indirect call.
-
-`save_stack_block'
-`save_stack_function'
-`save_stack_nonlocal'
-`restore_stack_block'
-`restore_stack_function'
-`restore_stack_nonlocal'
- Most machines save and restore the stack pointer by copying it to
- or from an object of mode `Pmode'. Do not define these patterns on
- such machines.
-
- Some machines require special handling for stack pointer saves and
- restores. On those machines, define the patterns corresponding to
- the non-standard cases by using a `define_expand' (*note Expander
- Definitions::.) that produces the required insns. The three types
- of saves and restores are:
-
- 1. `save_stack_block' saves the stack pointer at the start of a
- block that allocates a variable-sized object, and
- `restore_stack_block' restores the stack pointer when the
- block is exited.
-
- 2. `save_stack_function' and `restore_stack_function' do a
- similar job for the outermost block of a function and are
- used when the function allocates variable-sized objects or
- calls `alloca'. Only the epilogue uses the restored stack
- pointer, allowing a simpler save or restore sequence on some
- machines.
-
- 3. `save_stack_nonlocal' is used in functions that contain labels
- branched to by nested functions. It saves the stack pointer
- in such a way that the inner function can use
- `restore_stack_nonlocal' to restore the stack pointer. The
- compiler generates code to restore the frame and argument
- pointer registers, but some machines require saving and
- restoring additional data such as register window information
- or stack backchains. Place insns in these patterns to save
- and restore any such required data.
-
- When saving the stack pointer, operand 0 is the save area and
- operand 1 is the stack pointer. The mode used to allocate the
- save area is the mode of operand 0. You must specify an integral
- mode, or `VOIDmode' if no save area is needed for a particular
- type of save (either because no save is needed or because a
- machine-specific save area can be used). Operand 0 is the stack
- pointer and operand 1 is the save area for restore operations. If
- `save_stack_block' is defined, operand 0 must not be `VOIDmode'
- since these saves can be arbitrarily nested.
-
- A save area is a `mem' that is at a constant offset from
- `virtual_stack_vars_rtx' when the stack pointer is saved for use by
- nonlocal gotos and a `reg' in the other two cases.
-
-`allocate_stack'
- Subtract (or add if `STACK_GROWS_DOWNWARD' is undefined) operand 1
- from the stack pointer to create space for dynamically allocated
- data.
-
- Store the resultant pointer to this space into operand 0. If you
- are allocating space from the main stack, do this by emitting a
- move insn to copy `virtual_stack_dynamic_rtx' to operand 0. If
- you are allocating the space elsewhere, generate code to copy the
- location of the space to operand 0. In the latter case, you must
- ensure this space gets freed when the correspoinding space on the
- main stack is free.
-
- Do not define this pattern if all that must be done is the
- subtraction. Some machines require other operations such as stack
- probes or maintaining the back chain. Define this pattern to emit
- those operations in addition to updating the stack pointer.
-
-`probe'
- Some machines require instructions to be executed after space is
- allocated from the stack, for example to generate a reference at
- the bottom of the stack.
-
- If you need to emit instructions before the stack has been
- adjusted, put them into the `allocate_stack' pattern. Otherwise,
- define this pattern to emit the required instructions.
-
- No operands are provided.
-
-`check_stack'
- If stack checking cannot be done on your system by probing the
- stack with a load or store instruction (*note Stack Checking::.),
- define this pattern to perform the needed check and signaling an
- error if the stack has overflowed. The single operand is the
- location in the stack furthest from the current stack pointer that
- you need to validate. Normally, on machines where this pattern is
- needed, you would obtain the stack limit from a global or
- thread-specific variable or register.
-
-`nonlocal_goto'
- Emit code to generate a non-local goto, e.g., a jump from one
- function to a label in an outer function. This pattern has four
- arguments, each representing a value to be used in the jump. The
- first argument is to be loadedd into the frame pointer, the second
- is the address to branch to (code to dispatch to the actual label),
- the third is the address of a location where the stack is saved,
- and the last is the address of the label, to be placed in the
- location for the incoming static chain.
-
- On most machines you need not define this pattern, since GNU CC
- will already generate the correct code, which is to load the frame
- pointer and static chain, restore the stack (using the
- `restore_stack_nonlocal' pattern, if defined), and jump indirectly
- to the dispatcher. You need only define this pattern if this code
- will not work on your machine.
-
-`nonlocal_goto_receiver'
- This pattern, if defined, contains code needed at the target of a
- nonlocal goto after the code already generated by GNU CC. You
- will not normally need to define this pattern. A typical reason
- why you might need this pattern is if some value, such as a
- pointer to a global table, must be restored when the frame pointer
- is restored. There are no arguments.
-
-`exception_receiver'
- This pattern, if defined, contains code needed at the site of an
- exception handler that isn't needed at the site of a nonlocal
- goto. You will not normally need to define this pattern. A
- typical reason why you might need this pattern is if some value,
- such as a pointer to a global table, must be restored after
- control flow is branched to the handler of an exception. There
- are no arguments.
-
-
-File: gcc.info, Node: Pattern Ordering, Next: Dependent Patterns, Prev: Standard Names, Up: Machine Desc
-
-When the Order of Patterns Matters
-==================================
-
- Sometimes an insn can match more than one instruction pattern. Then
-the pattern that appears first in the machine description is the one
-used. Therefore, more specific patterns (patterns that will match
-fewer things) and faster instructions (those that will produce better
-code when they do match) should usually go first in the description.
-
- In some cases the effect of ordering the patterns can be used to hide
-a pattern when it is not valid. For example, the 68000 has an
-instruction for converting a fullword to floating point and another for
-converting a byte to floating point. An instruction converting an
-integer to floating point could match either one. We put the pattern
-to convert the fullword first to make sure that one will be used rather
-than the other. (Otherwise a large integer might be generated as a
-single-byte immediate quantity, which would not work.) Instead of
-using this pattern ordering it would be possible to make the pattern
-for convert-a-byte smart enough to deal properly with any constant
-value.
-
-
-File: gcc.info, Node: Dependent Patterns, Next: Jump Patterns, Prev: Pattern Ordering, Up: Machine Desc
-
-Interdependence of Patterns
-===========================
-
- Every machine description must have a named pattern for each of the
-conditional branch names `bCOND'. The recognition template must always
-have the form
-
- (set (pc)
- (if_then_else (COND (cc0) (const_int 0))
- (label_ref (match_operand 0 "" ""))
- (pc)))
-
-In addition, every machine description must have an anonymous pattern
-for each of the possible reverse-conditional branches. Their templates
-look like
-
- (set (pc)
- (if_then_else (COND (cc0) (const_int 0))
- (pc)
- (label_ref (match_operand 0 "" ""))))
-
-They are necessary because jump optimization can turn direct-conditional
-branches into reverse-conditional branches.
-
- It is often convenient to use the `match_operator' construct to
-reduce the number of patterns that must be specified for branches. For
-example,
-
- (define_insn ""
- [(set (pc)
- (if_then_else (match_operator 0 "comparison_operator"
- [(cc0) (const_int 0)])
- (pc)
- (label_ref (match_operand 1 "" ""))))]
- "CONDITION"
- "...")
-
- In some cases machines support instructions identical except for the
-machine mode of one or more operands. For example, there may be
-"sign-extend halfword" and "sign-extend byte" instructions whose
-patterns are
-
- (set (match_operand:SI 0 ...)
- (extend:SI (match_operand:HI 1 ...)))
-
- (set (match_operand:SI 0 ...)
- (extend:SI (match_operand:QI 1 ...)))
-
-Constant integers do not specify a machine mode, so an instruction to
-extend a constant value could match either pattern. The pattern it
-actually will match is the one that appears first in the file. For
-correct results, this must be the one for the widest possible mode
-(`HImode', here). If the pattern matches the `QImode' instruction, the
-results will be incorrect if the constant value does not actually fit
-that mode.
-
- Such instructions to extend constants are rarely generated because
-they are optimized away, but they do occasionally happen in nonoptimized
-compilations.
-
- If a constraint in a pattern allows a constant, the reload pass may
-replace a register with a constant permitted by the constraint in some
-cases. Similarly for memory references. Because of this substitution,
-you should not provide separate patterns for increment and decrement
-instructions. Instead, they should be generated from the same pattern
-that supports register-register add insns by examining the operands and
-generating the appropriate machine instruction.
-
-
-File: gcc.info, Node: Jump Patterns, Next: Insn Canonicalizations, Prev: Dependent Patterns, Up: Machine Desc
-
-Defining Jump Instruction Patterns
-==================================
-
- For most machines, GNU CC assumes that the machine has a condition
-code. A comparison insn sets the condition code, recording the results
-of both signed and unsigned comparison of the given operands. A
-separate branch insn tests the condition code and branches or not
-according its value. The branch insns come in distinct signed and
-unsigned flavors. Many common machines, such as the Vax, the 68000 and
-the 32000, work this way.
-
- Some machines have distinct signed and unsigned compare
-instructions, and only one set of conditional branch instructions. The
-easiest way to handle these machines is to treat them just like the
-others until the final stage where assembly code is written. At this
-time, when outputting code for the compare instruction, peek ahead at
-the following branch using `next_cc0_user (insn)'. (The variable
-`insn' refers to the insn being output, in the output-writing code in
-an instruction pattern.) If the RTL says that is an unsigned branch,
-output an unsigned compare; otherwise output a signed compare. When
-the branch itself is output, you can treat signed and unsigned branches
-identically.
-
- The reason you can do this is that GNU CC always generates a pair of
-consecutive RTL insns, possibly separated by `note' insns, one to set
-the condition code and one to test it, and keeps the pair inviolate
-until the end.
-
- To go with this technique, you must define the machine-description
-macro `NOTICE_UPDATE_CC' to do `CC_STATUS_INIT'; in other words, no
-compare instruction is superfluous.
-
- Some machines have compare-and-branch instructions and no condition
-code. A similar technique works for them. When it is time to "output"
-a compare instruction, record its operands in two static variables.
-When outputting the branch-on-condition-code instruction that follows,
-actually output a compare-and-branch instruction that uses the
-remembered operands.
-
- It also works to define patterns for compare-and-branch instructions.
-In optimizing compilation, the pair of compare and branch instructions
-will be combined according to these patterns. But this does not happen
-if optimization is not requested. So you must use one of the solutions
-above in addition to any special patterns you define.
-
- In many RISC machines, most instructions do not affect the condition
-code and there may not even be a separate condition code register. On
-these machines, the restriction that the definition and use of the
-condition code be adjacent insns is not necessary and can prevent
-important optimizations. For example, on the IBM RS/6000, there is a
-delay for taken branches unless the condition code register is set three
-instructions earlier than the conditional branch. The instruction
-scheduler cannot perform this optimization if it is not permitted to
-separate the definition and use of the condition code register.
-
- On these machines, do not use `(cc0)', but instead use a register to
-represent the condition code. If there is a specific condition code
-register in the machine, use a hard register. If the condition code or
-comparison result can be placed in any general register, or if there are
-multiple condition registers, use a pseudo register.
-
- On some machines, the type of branch instruction generated may
-depend on the way the condition code was produced; for example, on the
-68k and Sparc, setting the condition code directly from an add or
-subtract instruction does not clear the overflow bit the way that a test
-instruction does, so a different branch instruction must be used for
-some conditional branches. For machines that use `(cc0)', the set and
-use of the condition code must be adjacent (separated only by `note'
-insns) allowing flags in `cc_status' to be used. (*Note Condition
-Code::.) Also, the comparison and branch insns can be located from
-each other by using the functions `prev_cc0_setter' and `next_cc0_user'.
-
- However, this is not true on machines that do not use `(cc0)'. On
-those machines, no assumptions can be made about the adjacency of the
-compare and branch insns and the above methods cannot be used. Instead,
-we use the machine mode of the condition code register to record
-different formats of the condition code register.
-
- Registers used to store the condition code value should have a mode
-that is in class `MODE_CC'. Normally, it will be `CCmode'. If
-additional modes are required (as for the add example mentioned above in
-the Sparc), define the macro `EXTRA_CC_MODES' to list the additional
-modes required (*note Condition Code::.). Also define `EXTRA_CC_NAMES'
-to list the names of those modes and `SELECT_CC_MODE' to choose a mode
-given an operand of a compare.
-
- If it is known during RTL generation that a different mode will be
-required (for example, if the machine has separate compare instructions
-for signed and unsigned quantities, like most IBM processors), they can
-be specified at that time.
-
- If the cases that require different modes would be made by
-instruction combination, the macro `SELECT_CC_MODE' determines which
-machine mode should be used for the comparison result. The patterns
-should be written using that mode. To support the case of the add on
-the Sparc discussed above, we have the pattern
-
- (define_insn ""
- [(set (reg:CC_NOOV 0)
- (compare:CC_NOOV
- (plus:SI (match_operand:SI 0 "register_operand" "%r")
- (match_operand:SI 1 "arith_operand" "rI"))
- (const_int 0)))]
- ""
- "...")
-
- The `SELECT_CC_MODE' macro on the Sparc returns `CC_NOOVmode' for
-comparisons whose argument is a `plus'.
-
-
-File: gcc.info, Node: Insn Canonicalizations, Next: Peephole Definitions, Prev: Jump Patterns, Up: Machine Desc
-
-Canonicalization of Instructions
-================================
-
- There are often cases where multiple RTL expressions could represent
-an operation performed by a single machine instruction. This situation
-is most commonly encountered with logical, branch, and
-multiply-accumulate instructions. In such cases, the compiler attempts
-to convert these multiple RTL expressions into a single canonical form
-to reduce the number of insn patterns required.
-
- In addition to algebraic simplifications, following canonicalizations
-are performed:
-
- * For commutative and comparison operators, a constant is always
- made the second operand. If a machine only supports a constant as
- the second operand, only patterns that match a constant in the
- second operand need be supplied.
-
- For these operators, if only one operand is a `neg', `not',
- `mult', `plus', or `minus' expression, it will be the first
- operand.
-
- * For the `compare' operator, a constant is always the second operand
- on machines where `cc0' is used (*note Jump Patterns::.). On other
- machines, there are rare cases where the compiler might want to
- construct a `compare' with a constant as the first operand.
- However, these cases are not common enough for it to be worthwhile
- to provide a pattern matching a constant as the first operand
- unless the machine actually has such an instruction.
-
- An operand of `neg', `not', `mult', `plus', or `minus' is made the
- first operand under the same conditions as above.
-
- * `(minus X (const_int N))' is converted to `(plus X (const_int
- -N))'.
-
- * Within address computations (i.e., inside `mem'), a left shift is
- converted into the appropriate multiplication by a power of two.
-
- De`Morgan's Law is used to move bitwise negation inside a bitwise
- logical-and or logical-or operation. If this results in only one
- operand being a `not' expression, it will be the first one.
-
- A machine that has an instruction that performs a bitwise
- logical-and of one operand with the bitwise negation of the other
- should specify the pattern for that instruction as
-
- (define_insn ""
- [(set (match_operand:M 0 ...)
- (and:M (not:M (match_operand:M 1 ...))
- (match_operand:M 2 ...)))]
- "..."
- "...")
-
- Similarly, a pattern for a "NAND" instruction should be written
-
- (define_insn ""
- [(set (match_operand:M 0 ...)
- (ior:M (not:M (match_operand:M 1 ...))
- (not:M (match_operand:M 2 ...))))]
- "..."
- "...")
-
- In both cases, it is not necessary to include patterns for the many
- logically equivalent RTL expressions.
-
- * The only possible RTL expressions involving both bitwise
- exclusive-or and bitwise negation are `(xor:M X Y)' and `(not:M
- (xor:M X Y))'.
-
- * The sum of three items, one of which is a constant, will only
- appear in the form
-
- (plus:M (plus:M X Y) CONSTANT)
-
- * On machines that do not use `cc0', `(compare X (const_int 0))'
- will be converted to X.
-
- * Equality comparisons of a group of bits (usually a single bit)
- with zero will be written using `zero_extract' rather than the
- equivalent `and' or `sign_extract' operations.
-
diff --git a/gcc/gcc.info-19 b/gcc/gcc.info-19
deleted file mode 100644
index 3ba2b75ada7..00000000000
--- a/gcc/gcc.info-19
+++ /dev/null
@@ -1,1072 +0,0 @@
-This is Info file gcc.info, produced by Makeinfo version 1.68 from the
-input file gcc.texi.
-
- This file documents the use and the internals of the GNU compiler.
-
- Published by the Free Software Foundation 59 Temple Place - Suite 330
-Boston, MA 02111-1307 USA
-
- Copyright (C) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997 Free
-Software Foundation, Inc.
-
- Permission is granted to make and distribute verbatim copies of this
-manual provided the copyright notice and this permission notice are
-preserved on all copies.
-
- Permission is granted to copy and distribute modified versions of
-this manual under the conditions for verbatim copying, provided also
-that the sections entitled "GNU General Public License," "Funding for
-Free Software," and "Protect Your Freedom--Fight `Look And Feel'" are
-included exactly as in the original, and provided that the entire
-resulting derived work is distributed under the terms of a permission
-notice identical to this one.
-
- Permission is granted to copy and distribute translations of this
-manual into another language, under the above conditions for modified
-versions, except that the sections entitled "GNU General Public
-License," "Funding for Free Software," and "Protect Your Freedom--Fight
-`Look And Feel'", and this permission notice, may be included in
-translations approved by the Free Software Foundation instead of in the
-original English.
-
-
-File: gcc.info, Node: Peephole Definitions, Next: Expander Definitions, Prev: Insn Canonicalizations, Up: Machine Desc
-
-Machine-Specific Peephole Optimizers
-====================================
-
- In addition to instruction patterns the `md' file may contain
-definitions of machine-specific peephole optimizations.
-
- The combiner does not notice certain peephole optimizations when the
-data flow in the program does not suggest that it should try them. For
-example, sometimes two consecutive insns related in purpose can be
-combined even though the second one does not appear to use a register
-computed in the first one. A machine-specific peephole optimizer can
-detect such opportunities.
-
- A definition looks like this:
-
- (define_peephole
- [INSN-PATTERN-1
- INSN-PATTERN-2
- ...]
- "CONDITION"
- "TEMPLATE"
- "OPTIONAL INSN-ATTRIBUTES")
-
-The last string operand may be omitted if you are not using any
-machine-specific information in this machine description. If present,
-it must obey the same rules as in a `define_insn'.
-
- In this skeleton, INSN-PATTERN-1 and so on are patterns to match
-consecutive insns. The optimization applies to a sequence of insns when
-INSN-PATTERN-1 matches the first one, INSN-PATTERN-2 matches the next,
-and so on.
-
- Each of the insns matched by a peephole must also match a
-`define_insn'. Peepholes are checked only at the last stage just
-before code generation, and only optionally. Therefore, any insn which
-would match a peephole but no `define_insn' will cause a crash in code
-generation in an unoptimized compilation, or at various optimization
-stages.
-
- The operands of the insns are matched with `match_operands',
-`match_operator', and `match_dup', as usual. What is not usual is that
-the operand numbers apply to all the insn patterns in the definition.
-So, you can check for identical operands in two insns by using
-`match_operand' in one insn and `match_dup' in the other.
-
- The operand constraints used in `match_operand' patterns do not have
-any direct effect on the applicability of the peephole, but they will
-be validated afterward, so make sure your constraints are general enough
-to apply whenever the peephole matches. If the peephole matches but
-the constraints are not satisfied, the compiler will crash.
-
- It is safe to omit constraints in all the operands of the peephole;
-or you can write constraints which serve as a double-check on the
-criteria previously tested.
-
- Once a sequence of insns matches the patterns, the CONDITION is
-checked. This is a C expression which makes the final decision whether
-to perform the optimization (we do so if the expression is nonzero). If
-CONDITION is omitted (in other words, the string is empty) then the
-optimization is applied to every sequence of insns that matches the
-patterns.
-
- The defined peephole optimizations are applied after register
-allocation is complete. Therefore, the peephole definition can check
-which operands have ended up in which kinds of registers, just by
-looking at the operands.
-
- The way to refer to the operands in CONDITION is to write
-`operands[I]' for operand number I (as matched by `(match_operand I
-...)'). Use the variable `insn' to refer to the last of the insns
-being matched; use `prev_active_insn' to find the preceding insns.
-
- When optimizing computations with intermediate results, you can use
-CONDITION to match only when the intermediate results are not used
-elsewhere. Use the C expression `dead_or_set_p (INSN, OP)', where INSN
-is the insn in which you expect the value to be used for the last time
-(from the value of `insn', together with use of `prev_nonnote_insn'),
-and OP is the intermediate value (from `operands[I]').
-
- Applying the optimization means replacing the sequence of insns with
-one new insn. The TEMPLATE controls ultimate output of assembler code
-for this combined insn. It works exactly like the template of a
-`define_insn'. Operand numbers in this template are the same ones used
-in matching the original sequence of insns.
-
- The result of a defined peephole optimizer does not need to match
-any of the insn patterns in the machine description; it does not even
-have an opportunity to match them. The peephole optimizer definition
-itself serves as the insn pattern to control how the insn is output.
-
- Defined peephole optimizers are run as assembler code is being
-output, so the insns they produce are never combined or rearranged in
-any way.
-
- Here is an example, taken from the 68000 machine description:
-
- (define_peephole
- [(set (reg:SI 15) (plus:SI (reg:SI 15) (const_int 4)))
- (set (match_operand:DF 0 "register_operand" "=f")
- (match_operand:DF 1 "register_operand" "ad"))]
- "FP_REG_P (operands[0]) && ! FP_REG_P (operands[1])"
- "*
- {
- rtx xoperands[2];
- xoperands[1] = gen_rtx (REG, SImode, REGNO (operands[1]) + 1);
- #ifdef MOTOROLA
- output_asm_insn (\"move.l %1,(sp)\", xoperands);
- output_asm_insn (\"move.l %1,-(sp)\", operands);
- return \"fmove.d (sp)+,%0\";
- #else
- output_asm_insn (\"movel %1,sp@\", xoperands);
- output_asm_insn (\"movel %1,sp@-\", operands);
- return \"fmoved sp@+,%0\";
- #endif
- }
- ")
-
- The effect of this optimization is to change
-
- jbsr _foobar
- addql #4,sp
- movel d1,sp@-
- movel d0,sp@-
- fmoved sp@+,fp0
-
-into
-
- jbsr _foobar
- movel d1,sp@
- movel d0,sp@-
- fmoved sp@+,fp0
-
- INSN-PATTERN-1 and so on look *almost* like the second operand of
-`define_insn'. There is one important difference: the second operand
-of `define_insn' consists of one or more RTX's enclosed in square
-brackets. Usually, there is only one: then the same action can be
-written as an element of a `define_peephole'. But when there are
-multiple actions in a `define_insn', they are implicitly enclosed in a
-`parallel'. Then you must explicitly write the `parallel', and the
-square brackets within it, in the `define_peephole'. Thus, if an insn
-pattern looks like this,
-
- (define_insn "divmodsi4"
- [(set (match_operand:SI 0 "general_operand" "=d")
- (div:SI (match_operand:SI 1 "general_operand" "0")
- (match_operand:SI 2 "general_operand" "dmsK")))
- (set (match_operand:SI 3 "general_operand" "=d")
- (mod:SI (match_dup 1) (match_dup 2)))]
- "TARGET_68020"
- "divsl%.l %2,%3:%0")
-
-then the way to mention this insn in a peephole is as follows:
-
- (define_peephole
- [...
- (parallel
- [(set (match_operand:SI 0 "general_operand" "=d")
- (div:SI (match_operand:SI 1 "general_operand" "0")
- (match_operand:SI 2 "general_operand" "dmsK")))
- (set (match_operand:SI 3 "general_operand" "=d")
- (mod:SI (match_dup 1) (match_dup 2)))])
- ...]
- ...)
-
-
-File: gcc.info, Node: Expander Definitions, Next: Insn Splitting, Prev: Peephole Definitions, Up: Machine Desc
-
-Defining RTL Sequences for Code Generation
-==========================================
-
- On some target machines, some standard pattern names for RTL
-generation cannot be handled with single insn, but a sequence of RTL
-insns can represent them. For these target machines, you can write a
-`define_expand' to specify how to generate the sequence of RTL.
-
- A `define_expand' is an RTL expression that looks almost like a
-`define_insn'; but, unlike the latter, a `define_expand' is used only
-for RTL generation and it can produce more than one RTL insn.
-
- A `define_expand' RTX has four operands:
-
- * The name. Each `define_expand' must have a name, since the only
- use for it is to refer to it by name.
-
- * The RTL template. This is just like the RTL template for a
- `define_peephole' in that it is a vector of RTL expressions each
- being one insn.
-
- * The condition, a string containing a C expression. This
- expression is used to express how the availability of this pattern
- depends on subclasses of target machine, selected by command-line
- options when GNU CC is run. This is just like the condition of a
- `define_insn' that has a standard name. Therefore, the condition
- (if present) may not depend on the data in the insn being matched,
- but only the target-machine-type flags. The compiler needs to
- test these conditions during initialization in order to learn
- exactly which named instructions are available in a particular run.
-
- * The preparation statements, a string containing zero or more C
- statements which are to be executed before RTL code is generated
- from the RTL template.
-
- Usually these statements prepare temporary registers for use as
- internal operands in the RTL template, but they can also generate
- RTL insns directly by calling routines such as `emit_insn', etc.
- Any such insns precede the ones that come from the RTL template.
-
- Every RTL insn emitted by a `define_expand' must match some
-`define_insn' in the machine description. Otherwise, the compiler will
-crash when trying to generate code for the insn or trying to optimize
-it.
-
- The RTL template, in addition to controlling generation of RTL insns,
-also describes the operands that need to be specified when this pattern
-is used. In particular, it gives a predicate for each operand.
-
- A true operand, which needs to be specified in order to generate RTL
-from the pattern, should be described with a `match_operand' in its
-first occurrence in the RTL template. This enters information on the
-operand's predicate into the tables that record such things. GNU CC
-uses the information to preload the operand into a register if that is
-required for valid RTL code. If the operand is referred to more than
-once, subsequent references should use `match_dup'.
-
- The RTL template may also refer to internal "operands" which are
-temporary registers or labels used only within the sequence made by the
-`define_expand'. Internal operands are substituted into the RTL
-template with `match_dup', never with `match_operand'. The values of
-the internal operands are not passed in as arguments by the compiler
-when it requests use of this pattern. Instead, they are computed
-within the pattern, in the preparation statements. These statements
-compute the values and store them into the appropriate elements of
-`operands' so that `match_dup' can find them.
-
- There are two special macros defined for use in the preparation
-statements: `DONE' and `FAIL'. Use them with a following semicolon, as
-a statement.
-
-`DONE'
- Use the `DONE' macro to end RTL generation for the pattern. The
- only RTL insns resulting from the pattern on this occasion will be
- those already emitted by explicit calls to `emit_insn' within the
- preparation statements; the RTL template will not be generated.
-
-`FAIL'
- Make the pattern fail on this occasion. When a pattern fails, it
- means that the pattern was not truly available. The calling
- routines in the compiler will try other strategies for code
- generation using other patterns.
-
- Failure is currently supported only for binary (addition,
- multiplication, shifting, etc.) and bitfield (`extv', `extzv', and
- `insv') operations.
-
- Here is an example, the definition of left-shift for the SPUR chip:
-
- (define_expand "ashlsi3"
- [(set (match_operand:SI 0 "register_operand" "")
- (ashift:SI
-
- (match_operand:SI 1 "register_operand" "")
- (match_operand:SI 2 "nonmemory_operand" "")))]
- ""
- "
-
- {
- if (GET_CODE (operands[2]) != CONST_INT
- || (unsigned) INTVAL (operands[2]) > 3)
- FAIL;
- }")
-
-This example uses `define_expand' so that it can generate an RTL insn
-for shifting when the shift-count is in the supported range of 0 to 3
-but fail in other cases where machine insns aren't available. When it
-fails, the compiler tries another strategy using different patterns
-(such as, a library call).
-
- If the compiler were able to handle nontrivial condition-strings in
-patterns with names, then it would be possible to use a `define_insn'
-in that case. Here is another case (zero-extension on the 68000) which
-makes more use of the power of `define_expand':
-
- (define_expand "zero_extendhisi2"
- [(set (match_operand:SI 0 "general_operand" "")
- (const_int 0))
- (set (strict_low_part
- (subreg:HI
- (match_dup 0)
- 0))
- (match_operand:HI 1 "general_operand" ""))]
- ""
- "operands[1] = make_safe_from (operands[1], operands[0]);")
-
-Here two RTL insns are generated, one to clear the entire output operand
-and the other to copy the input operand into its low half. This
-sequence is incorrect if the input operand refers to [the old value of]
-the output operand, so the preparation statement makes sure this isn't
-so. The function `make_safe_from' copies the `operands[1]' into a
-temporary register if it refers to `operands[0]'. It does this by
-emitting another RTL insn.
-
- Finally, a third example shows the use of an internal operand.
-Zero-extension on the SPUR chip is done by `and'-ing the result against
-a halfword mask. But this mask cannot be represented by a `const_int'
-because the constant value is too large to be legitimate on this
-machine. So it must be copied into a register with `force_reg' and
-then the register used in the `and'.
-
- (define_expand "zero_extendhisi2"
- [(set (match_operand:SI 0 "register_operand" "")
- (and:SI (subreg:SI
- (match_operand:HI 1 "register_operand" "")
- 0)
- (match_dup 2)))]
- ""
- "operands[2]
- = force_reg (SImode, gen_rtx (CONST_INT,
- VOIDmode, 65535)); ")
-
- *Note:* If the `define_expand' is used to serve a standard binary or
-unary arithmetic operation or a bitfield operation, then the last insn
-it generates must not be a `code_label', `barrier' or `note'. It must
-be an `insn', `jump_insn' or `call_insn'. If you don't need a real insn
-at the end, emit an insn to copy the result of the operation into
-itself. Such an insn will generate no code, but it can avoid problems
-in the compiler.
-
-
-File: gcc.info, Node: Insn Splitting, Next: Insn Attributes, Prev: Expander Definitions, Up: Machine Desc
-
-Defining How to Split Instructions
-==================================
-
- There are two cases where you should specify how to split a pattern
-into multiple insns. On machines that have instructions requiring delay
-slots (*note Delay Slots::.) or that have instructions whose output is
-not available for multiple cycles (*note Function Units::.), the
-compiler phases that optimize these cases need to be able to move insns
-into one-instruction delay slots. However, some insns may generate
-more than one machine instruction. These insns cannot be placed into a
-delay slot.
-
- Often you can rewrite the single insn as a list of individual insns,
-each corresponding to one machine instruction. The disadvantage of
-doing so is that it will cause the compilation to be slower and require
-more space. If the resulting insns are too complex, it may also
-suppress some optimizations. The compiler splits the insn if there is a
-reason to believe that it might improve instruction or delay slot
-scheduling.
-
- The insn combiner phase also splits putative insns. If three insns
-are merged into one insn with a complex expression that cannot be
-matched by some `define_insn' pattern, the combiner phase attempts to
-split the complex pattern into two insns that are recognized. Usually
-it can break the complex pattern into two patterns by splitting out some
-subexpression. However, in some other cases, such as performing an
-addition of a large constant in two insns on a RISC machine, the way to
-split the addition into two insns is machine-dependent.
-
- The `define_split' definition tells the compiler how to split a
-complex insn into several simpler insns. It looks like this:
-
- (define_split
- [INSN-PATTERN]
- "CONDITION"
- [NEW-INSN-PATTERN-1
- NEW-INSN-PATTERN-2
- ...]
- "PREPARATION STATEMENTS")
-
- INSN-PATTERN is a pattern that needs to be split and CONDITION is
-the final condition to be tested, as in a `define_insn'. When an insn
-matching INSN-PATTERN and satisfying CONDITION is found, it is replaced
-in the insn list with the insns given by NEW-INSN-PATTERN-1,
-NEW-INSN-PATTERN-2, etc.
-
- The PREPARATION STATEMENTS are similar to those statements that are
-specified for `define_expand' (*note Expander Definitions::.) and are
-executed before the new RTL is generated to prepare for the generated
-code or emit some insns whose pattern is not fixed. Unlike those in
-`define_expand', however, these statements must not generate any new
-pseudo-registers. Once reload has completed, they also must not
-allocate any space in the stack frame.
-
- Patterns are matched against INSN-PATTERN in two different
-circumstances. If an insn needs to be split for delay slot scheduling
-or insn scheduling, the insn is already known to be valid, which means
-that it must have been matched by some `define_insn' and, if
-`reload_completed' is non-zero, is known to satisfy the constraints of
-that `define_insn'. In that case, the new insn patterns must also be
-insns that are matched by some `define_insn' and, if `reload_completed'
-is non-zero, must also satisfy the constraints of those definitions.
-
- As an example of this usage of `define_split', consider the following
-example from `a29k.md', which splits a `sign_extend' from `HImode' to
-`SImode' into a pair of shift insns:
-
- (define_split
- [(set (match_operand:SI 0 "gen_reg_operand" "")
- (sign_extend:SI (match_operand:HI 1 "gen_reg_operand" "")))]
- ""
- [(set (match_dup 0)
- (ashift:SI (match_dup 1)
- (const_int 16)))
- (set (match_dup 0)
- (ashiftrt:SI (match_dup 0)
- (const_int 16)))]
- "
- { operands[1] = gen_lowpart (SImode, operands[1]); }")
-
- When the combiner phase tries to split an insn pattern, it is always
-the case that the pattern is *not* matched by any `define_insn'. The
-combiner pass first tries to split a single `set' expression and then
-the same `set' expression inside a `parallel', but followed by a
-`clobber' of a pseudo-reg to use as a scratch register. In these
-cases, the combiner expects exactly two new insn patterns to be
-generated. It will verify that these patterns match some `define_insn'
-definitions, so you need not do this test in the `define_split' (of
-course, there is no point in writing a `define_split' that will never
-produce insns that match).
-
- Here is an example of this use of `define_split', taken from
-`rs6000.md':
-
- (define_split
- [(set (match_operand:SI 0 "gen_reg_operand" "")
- (plus:SI (match_operand:SI 1 "gen_reg_operand" "")
- (match_operand:SI 2 "non_add_cint_operand" "")))]
- ""
- [(set (match_dup 0) (plus:SI (match_dup 1) (match_dup 3)))
- (set (match_dup 0) (plus:SI (match_dup 0) (match_dup 4)))]
- "
- {
- int low = INTVAL (operands[2]) & 0xffff;
- int high = (unsigned) INTVAL (operands[2]) >> 16;
-
- if (low & 0x8000)
- high++, low |= 0xffff0000;
-
- operands[3] = gen_rtx (CONST_INT, VOIDmode, high << 16);
- operands[4] = gen_rtx (CONST_INT, VOIDmode, low);
- }")
-
- Here the predicate `non_add_cint_operand' matches any `const_int'
-that is *not* a valid operand of a single add insn. The add with the
-smaller displacement is written so that it can be substituted into the
-address of a subsequent operation.
-
- An example that uses a scratch register, from the same file,
-generates an equality comparison of a register and a large constant:
-
- (define_split
- [(set (match_operand:CC 0 "cc_reg_operand" "")
- (compare:CC (match_operand:SI 1 "gen_reg_operand" "")
- (match_operand:SI 2 "non_short_cint_operand" "")))
- (clobber (match_operand:SI 3 "gen_reg_operand" ""))]
- "find_single_use (operands[0], insn, 0)
- && (GET_CODE (*find_single_use (operands[0], insn, 0)) == EQ
- || GET_CODE (*find_single_use (operands[0], insn, 0)) == NE)"
- [(set (match_dup 3) (xor:SI (match_dup 1) (match_dup 4)))
- (set (match_dup 0) (compare:CC (match_dup 3) (match_dup 5)))]
- "
- {
- /* Get the constant we are comparing against, C, and see what it
- looks like sign-extended to 16 bits. Then see what constant
- could be XOR'ed with C to get the sign-extended value. */
-
- int c = INTVAL (operands[2]);
- int sextc = (c << 16) >> 16;
- int xorv = c ^ sextc;
-
- operands[4] = gen_rtx (CONST_INT, VOIDmode, xorv);
- operands[5] = gen_rtx (CONST_INT, VOIDmode, sextc);
- }")
-
- To avoid confusion, don't write a single `define_split' that accepts
-some insns that match some `define_insn' as well as some insns that
-don't. Instead, write two separate `define_split' definitions, one for
-the insns that are valid and one for the insns that are not valid.
-
-
-File: gcc.info, Node: Insn Attributes, Prev: Insn Splitting, Up: Machine Desc
-
-Instruction Attributes
-======================
-
- In addition to describing the instruction supported by the target
-machine, the `md' file also defines a group of "attributes" and a set of
-values for each. Every generated insn is assigned a value for each
-attribute. One possible attribute would be the effect that the insn
-has on the machine's condition code. This attribute can then be used
-by `NOTICE_UPDATE_CC' to track the condition codes.
-
-* Menu:
-
-* Defining Attributes:: Specifying attributes and their values.
-* Expressions:: Valid expressions for attribute values.
-* Tagging Insns:: Assigning attribute values to insns.
-* Attr Example:: An example of assigning attributes.
-* Insn Lengths:: Computing the length of insns.
-* Constant Attributes:: Defining attributes that are constant.
-* Delay Slots:: Defining delay slots required for a machine.
-* Function Units:: Specifying information for insn scheduling.
-
-
-File: gcc.info, Node: Defining Attributes, Next: Expressions, Up: Insn Attributes
-
-Defining Attributes and their Values
-------------------------------------
-
- The `define_attr' expression is used to define each attribute
-required by the target machine. It looks like:
-
- (define_attr NAME LIST-OF-VALUES DEFAULT)
-
- NAME is a string specifying the name of the attribute being defined.
-
- LIST-OF-VALUES is either a string that specifies a comma-separated
-list of values that can be assigned to the attribute, or a null string
-to indicate that the attribute takes numeric values.
-
- DEFAULT is an attribute expression that gives the value of this
-attribute for insns that match patterns whose definition does not
-include an explicit value for this attribute. *Note Attr Example::,
-for more information on the handling of defaults. *Note Constant
-Attributes::, for information on attributes that do not depend on any
-particular insn.
-
- For each defined attribute, a number of definitions are written to
-the `insn-attr.h' file. For cases where an explicit set of values is
-specified for an attribute, the following are defined:
-
- * A `#define' is written for the symbol `HAVE_ATTR_NAME'.
-
- * An enumeral class is defined for `attr_NAME' with elements of the
- form `UPPER-NAME_UPPER-VALUE' where the attribute name and value
- are first converted to upper case.
-
- * A function `get_attr_NAME' is defined that is passed an insn and
- returns the attribute value for that insn.
-
- For example, if the following is present in the `md' file:
-
- (define_attr "type" "branch,fp,load,store,arith" ...)
-
-the following lines will be written to the file `insn-attr.h'.
-
- #define HAVE_ATTR_type
- enum attr_type {TYPE_BRANCH, TYPE_FP, TYPE_LOAD,
- TYPE_STORE, TYPE_ARITH};
- extern enum attr_type get_attr_type ();
-
- If the attribute takes numeric values, no `enum' type will be
-defined and the function to obtain the attribute's value will return
-`int'.
-
-
-File: gcc.info, Node: Expressions, Next: Tagging Insns, Prev: Defining Attributes, Up: Insn Attributes
-
-Attribute Expressions
----------------------
-
- RTL expressions used to define attributes use the codes described
-above plus a few specific to attribute definitions, to be discussed
-below. Attribute value expressions must have one of the following
-forms:
-
-`(const_int I)'
- The integer I specifies the value of a numeric attribute. I must
- be non-negative.
-
- The value of a numeric attribute can be specified either with a
- `const_int' or as an integer represented as a string in
- `const_string', `eq_attr' (see below), and `set_attr' (*note
- Tagging Insns::.) expressions.
-
-`(const_string VALUE)'
- The string VALUE specifies a constant attribute value. If VALUE
- is specified as `"*"', it means that the default value of the
- attribute is to be used for the insn containing this expression.
- `"*"' obviously cannot be used in the DEFAULT expression of a
- `define_attr'.
-
- If the attribute whose value is being specified is numeric, VALUE
- must be a string containing a non-negative integer (normally
- `const_int' would be used in this case). Otherwise, it must
- contain one of the valid values for the attribute.
-
-`(if_then_else TEST TRUE-VALUE FALSE-VALUE)'
- TEST specifies an attribute test, whose format is defined below.
- The value of this expression is TRUE-VALUE if TEST is true,
- otherwise it is FALSE-VALUE.
-
-`(cond [TEST1 VALUE1 ...] DEFAULT)'
- The first operand of this expression is a vector containing an even
- number of expressions and consisting of pairs of TEST and VALUE
- expressions. The value of the `cond' expression is that of the
- VALUE corresponding to the first true TEST expression. If none of
- the TEST expressions are true, the value of the `cond' expression
- is that of the DEFAULT expression.
-
- TEST expressions can have one of the following forms:
-
-`(const_int I)'
- This test is true if I is non-zero and false otherwise.
-
-`(not TEST)'
-`(ior TEST1 TEST2)'
-`(and TEST1 TEST2)'
- These tests are true if the indicated logical function is true.
-
-`(match_operand:M N PRED CONSTRAINTS)'
- This test is true if operand N of the insn whose attribute value
- is being determined has mode M (this part of the test is ignored
- if M is `VOIDmode') and the function specified by the string PRED
- returns a non-zero value when passed operand N and mode M (this
- part of the test is ignored if PRED is the null string).
-
- The CONSTRAINTS operand is ignored and should be the null string.
-
-`(le ARITH1 ARITH2)'
-`(leu ARITH1 ARITH2)'
-`(lt ARITH1 ARITH2)'
-`(ltu ARITH1 ARITH2)'
-`(gt ARITH1 ARITH2)'
-`(gtu ARITH1 ARITH2)'
-`(ge ARITH1 ARITH2)'
-`(geu ARITH1 ARITH2)'
-`(ne ARITH1 ARITH2)'
-`(eq ARITH1 ARITH2)'
- These tests are true if the indicated comparison of the two
- arithmetic expressions is true. Arithmetic expressions are formed
- with `plus', `minus', `mult', `div', `mod', `abs', `neg', `and',
- `ior', `xor', `not', `ashift', `lshiftrt', and `ashiftrt'
- expressions.
-
- `const_int' and `symbol_ref' are always valid terms (*note Insn
- Lengths::.,for additional forms). `symbol_ref' is a string
- denoting a C expression that yields an `int' when evaluated by the
- `get_attr_...' routine. It should normally be a global variable.
-
-`(eq_attr NAME VALUE)'
- NAME is a string specifying the name of an attribute.
-
- VALUE is a string that is either a valid value for attribute NAME,
- a comma-separated list of values, or `!' followed by a value or
- list. If VALUE does not begin with a `!', this test is true if
- the value of the NAME attribute of the current insn is in the list
- specified by VALUE. If VALUE begins with a `!', this test is true
- if the attribute's value is *not* in the specified list.
-
- For example,
-
- (eq_attr "type" "load,store")
-
- is equivalent to
-
- (ior (eq_attr "type" "load") (eq_attr "type" "store"))
-
- If NAME specifies an attribute of `alternative', it refers to the
- value of the compiler variable `which_alternative' (*note Output
- Statement::.) and the values must be small integers. For example,
-
- (eq_attr "alternative" "2,3")
-
- is equivalent to
-
- (ior (eq (symbol_ref "which_alternative") (const_int 2))
- (eq (symbol_ref "which_alternative") (const_int 3)))
-
- Note that, for most attributes, an `eq_attr' test is simplified in
- cases where the value of the attribute being tested is known for
- all insns matching a particular pattern. This is by far the most
- common case.
-
-`(attr_flag NAME)'
- The value of an `attr_flag' expression is true if the flag
- specified by NAME is true for the `insn' currently being scheduled.
-
- NAME is a string specifying one of a fixed set of flags to test.
- Test the flags `forward' and `backward' to determine the direction
- of a conditional branch. Test the flags `very_likely', `likely',
- `very_unlikely', and `unlikely' to determine if a conditional
- branch is expected to be taken.
-
- If the `very_likely' flag is true, then the `likely' flag is also
- true. Likewise for the `very_unlikely' and `unlikely' flags.
-
- This example describes a conditional branch delay slot which can
- be nullified for forward branches that are taken (annul-true) or
- for backward branches which are not taken (annul-false).
-
- (define_delay (eq_attr "type" "cbranch")
- [(eq_attr "in_branch_delay" "true")
- (and (eq_attr "in_branch_delay" "true")
- (attr_flag "forward"))
- (and (eq_attr "in_branch_delay" "true")
- (attr_flag "backward"))])
-
- The `forward' and `backward' flags are false if the current `insn'
- being scheduled is not a conditional branch.
-
- The `very_likely' and `likely' flags are true if the `insn' being
- scheduled is not a conditional branch. The `very_unlikely' and
- `unlikely' flags are false if the `insn' being scheduled is not a
- conditional branch.
-
- `attr_flag' is only used during delay slot scheduling and has no
- meaning to other passes of the compiler.
-
-
-File: gcc.info, Node: Tagging Insns, Next: Attr Example, Prev: Expressions, Up: Insn Attributes
-
-Assigning Attribute Values to Insns
------------------------------------
-
- The value assigned to an attribute of an insn is primarily
-determined by which pattern is matched by that insn (or which
-`define_peephole' generated it). Every `define_insn' and
-`define_peephole' can have an optional last argument to specify the
-values of attributes for matching insns. The value of any attribute
-not specified in a particular insn is set to the default value for that
-attribute, as specified in its `define_attr'. Extensive use of default
-values for attributes permits the specification of the values for only
-one or two attributes in the definition of most insn patterns, as seen
-in the example in the next section.
-
- The optional last argument of `define_insn' and `define_peephole' is
-a vector of expressions, each of which defines the value for a single
-attribute. The most general way of assigning an attribute's value is
-to use a `set' expression whose first operand is an `attr' expression
-giving the name of the attribute being set. The second operand of the
-`set' is an attribute expression (*note Expressions::.) giving the
-value of the attribute.
-
- When the attribute value depends on the `alternative' attribute
-(i.e., which is the applicable alternative in the constraint of the
-insn), the `set_attr_alternative' expression can be used. It allows
-the specification of a vector of attribute expressions, one for each
-alternative.
-
- When the generality of arbitrary attribute expressions is not
-required, the simpler `set_attr' expression can be used, which allows
-specifying a string giving either a single attribute value or a list of
-attribute values, one for each alternative.
-
- The form of each of the above specifications is shown below. In
-each case, NAME is a string specifying the attribute to be set.
-
-`(set_attr NAME VALUE-STRING)'
- VALUE-STRING is either a string giving the desired attribute value,
- or a string containing a comma-separated list giving the values for
- succeeding alternatives. The number of elements must match the
- number of alternatives in the constraint of the insn pattern.
-
- Note that it may be useful to specify `*' for some alternative, in
- which case the attribute will assume its default value for insns
- matching that alternative.
-
-`(set_attr_alternative NAME [VALUE1 VALUE2 ...])'
- Depending on the alternative of the insn, the value will be one of
- the specified values. This is a shorthand for using a `cond' with
- tests on the `alternative' attribute.
-
-`(set (attr NAME) VALUE)'
- The first operand of this `set' must be the special RTL expression
- `attr', whose sole operand is a string giving the name of the
- attribute being set. VALUE is the value of the attribute.
-
- The following shows three different ways of representing the same
-attribute value specification:
-
- (set_attr "type" "load,store,arith")
-
- (set_attr_alternative "type"
- [(const_string "load") (const_string "store")
- (const_string "arith")])
-
- (set (attr "type")
- (cond [(eq_attr "alternative" "1") (const_string "load")
- (eq_attr "alternative" "2") (const_string "store")]
- (const_string "arith")))
-
- The `define_asm_attributes' expression provides a mechanism to
-specify the attributes assigned to insns produced from an `asm'
-statement. It has the form:
-
- (define_asm_attributes [ATTR-SETS])
-
-where ATTR-SETS is specified the same as for both the `define_insn' and
-the `define_peephole' expressions.
-
- These values will typically be the "worst case" attribute values.
-For example, they might indicate that the condition code will be
-clobbered.
-
- A specification for a `length' attribute is handled specially. The
-way to compute the length of an `asm' insn is to multiply the length
-specified in the expression `define_asm_attributes' by the number of
-machine instructions specified in the `asm' statement, determined by
-counting the number of semicolons and newlines in the string.
-Therefore, the value of the `length' attribute specified in a
-`define_asm_attributes' should be the maximum possible length of a
-single machine instruction.
-
-
-File: gcc.info, Node: Attr Example, Next: Insn Lengths, Prev: Tagging Insns, Up: Insn Attributes
-
-Example of Attribute Specifications
------------------------------------
-
- The judicious use of defaulting is important in the efficient use of
-insn attributes. Typically, insns are divided into "types" and an
-attribute, customarily called `type', is used to represent this value.
-This attribute is normally used only to define the default value for
-other attributes. An example will clarify this usage.
-
- Assume we have a RISC machine with a condition code and in which only
-full-word operations are performed in registers. Let us assume that we
-can divide all insns into loads, stores, (integer) arithmetic
-operations, floating point operations, and branches.
-
- Here we will concern ourselves with determining the effect of an
-insn on the condition code and will limit ourselves to the following
-possible effects: The condition code can be set unpredictably
-(clobbered), not be changed, be set to agree with the results of the
-operation, or only changed if the item previously set into the
-condition code has been modified.
-
- Here is part of a sample `md' file for such a machine:
-
- (define_attr "type" "load,store,arith,fp,branch" (const_string "arith"))
-
- (define_attr "cc" "clobber,unchanged,set,change0"
- (cond [(eq_attr "type" "load")
- (const_string "change0")
- (eq_attr "type" "store,branch")
- (const_string "unchanged")
- (eq_attr "type" "arith")
- (if_then_else (match_operand:SI 0 "" "")
- (const_string "set")
- (const_string "clobber"))]
- (const_string "clobber")))
-
- (define_insn ""
- [(set (match_operand:SI 0 "general_operand" "=r,r,m")
- (match_operand:SI 1 "general_operand" "r,m,r"))]
- ""
- "@
- move %0,%1
- load %0,%1
- store %0,%1"
- [(set_attr "type" "arith,load,store")])
-
- Note that we assume in the above example that arithmetic operations
-performed on quantities smaller than a machine word clobber the
-condition code since they will set the condition code to a value
-corresponding to the full-word result.
-
-
-File: gcc.info, Node: Insn Lengths, Next: Constant Attributes, Prev: Attr Example, Up: Insn Attributes
-
-Computing the Length of an Insn
--------------------------------
-
- For many machines, multiple types of branch instructions are
-provided, each for different length branch displacements. In most
-cases, the assembler will choose the correct instruction to use.
-However, when the assembler cannot do so, GCC can when a special
-attribute, the `length' attribute, is defined. This attribute must be
-defined to have numeric values by specifying a null string in its
-`define_attr'.
-
- In the case of the `length' attribute, two additional forms of
-arithmetic terms are allowed in test expressions:
-
-`(match_dup N)'
- This refers to the address of operand N of the current insn, which
- must be a `label_ref'.
-
-`(pc)'
- This refers to the address of the *current* insn. It might have
- been more consistent with other usage to make this the address of
- the *next* insn but this would be confusing because the length of
- the current insn is to be computed.
-
- For normal insns, the length will be determined by value of the
-`length' attribute. In the case of `addr_vec' and `addr_diff_vec' insn
-patterns, the length is computed as the number of vectors multiplied by
-the size of each vector.
-
- Lengths are measured in addressable storage units (bytes).
-
- The following macros can be used to refine the length computation:
-
-`FIRST_INSN_ADDRESS'
- When the `length' insn attribute is used, this macro specifies the
- value to be assigned to the address of the first insn in a
- function. If not specified, 0 is used.
-
-`ADJUST_INSN_LENGTH (INSN, LENGTH)'
- If defined, modifies the length assigned to instruction INSN as a
- function of the context in which it is used. LENGTH is an lvalue
- that contains the initially computed length of the insn and should
- be updated with the correct length of the insn. If updating is
- required, INSN must not be a varying-length insn.
-
- This macro will normally not be required. A case in which it is
- required is the ROMP. On this machine, the size of an `addr_vec'
- insn must be increased by two to compensate for the fact that
- alignment may be required.
-
- The routine that returns `get_attr_length' (the value of the
-`length' attribute) can be used by the output routine to determine the
-form of the branch instruction to be written, as the example below
-illustrates.
-
- As an example of the specification of variable-length branches,
-consider the IBM 360. If we adopt the convention that a register will
-be set to the starting address of a function, we can jump to labels
-within 4k of the start using a four-byte instruction. Otherwise, we
-need a six-byte sequence to load the address from memory and then
-branch to it.
-
- On such a machine, a pattern for a branch instruction might be
-specified as follows:
-
- (define_insn "jump"
- [(set (pc)
- (label_ref (match_operand 0 "" "")))]
- ""
- "*
- {
- return (get_attr_length (insn) == 4
- ? \"b %l0\" : \"l r15,=a(%l0); br r15\");
- }"
- [(set (attr "length") (if_then_else (lt (match_dup 0) (const_int 4096))
- (const_int 4)
- (const_int 6)))])
-
-
-File: gcc.info, Node: Constant Attributes, Next: Delay Slots, Prev: Insn Lengths, Up: Insn Attributes
-
-Constant Attributes
--------------------
-
- A special form of `define_attr', where the expression for the
-default value is a `const' expression, indicates an attribute that is
-constant for a given run of the compiler. Constant attributes may be
-used to specify which variety of processor is used. For example,
-
- (define_attr "cpu" "m88100,m88110,m88000"
- (const
- (cond [(symbol_ref "TARGET_88100") (const_string "m88100")
- (symbol_ref "TARGET_88110") (const_string "m88110")]
- (const_string "m88000"))))
-
- (define_attr "memory" "fast,slow"
- (const
- (if_then_else (symbol_ref "TARGET_FAST_MEM")
- (const_string "fast")
- (const_string "slow"))))
-
- The routine generated for constant attributes has no parameters as it
-does not depend on any particular insn. RTL expressions used to define
-the value of a constant attribute may use the `symbol_ref' form, but
-may not use either the `match_operand' form or `eq_attr' forms
-involving insn attributes.
-
-
-File: gcc.info, Node: Delay Slots, Next: Function Units, Prev: Constant Attributes, Up: Insn Attributes
-
-Delay Slot Scheduling
----------------------
-
- The insn attribute mechanism can be used to specify the requirements
-for delay slots, if any, on a target machine. An instruction is said to
-require a "delay slot" if some instructions that are physically after
-the instruction are executed as if they were located before it.
-Classic examples are branch and call instructions, which often execute
-the following instruction before the branch or call is performed.
-
- On some machines, conditional branch instructions can optionally
-"annul" instructions in the delay slot. This means that the
-instruction will not be executed for certain branch outcomes. Both
-instructions that annul if the branch is true and instructions that
-annul if the branch is false are supported.
-
- Delay slot scheduling differs from instruction scheduling in that
-determining whether an instruction needs a delay slot is dependent only
-on the type of instruction being generated, not on data flow between the
-instructions. See the next section for a discussion of data-dependent
-instruction scheduling.
-
- The requirement of an insn needing one or more delay slots is
-indicated via the `define_delay' expression. It has the following form:
-
- (define_delay TEST
- [DELAY-1 ANNUL-TRUE-1 ANNUL-FALSE-1
- DELAY-2 ANNUL-TRUE-2 ANNUL-FALSE-2
- ...])
-
- TEST is an attribute test that indicates whether this `define_delay'
-applies to a particular insn. If so, the number of required delay
-slots is determined by the length of the vector specified as the second
-argument. An insn placed in delay slot N must satisfy attribute test
-DELAY-N. ANNUL-TRUE-N is an attribute test that specifies which insns
-may be annulled if the branch is true. Similarly, ANNUL-FALSE-N
-specifies which insns in the delay slot may be annulled if the branch
-is false. If annulling is not supported for that delay slot, `(nil)'
-should be coded.
-
- For example, in the common case where branch and call insns require
-a single delay slot, which may contain any insn other than a branch or
-call, the following would be placed in the `md' file:
-
- (define_delay (eq_attr "type" "branch,call")
- [(eq_attr "type" "!branch,call") (nil) (nil)])
-
- Multiple `define_delay' expressions may be specified. In this case,
-each such expression specifies different delay slot requirements and
-there must be no insn for which tests in two `define_delay' expressions
-are both true.
-
- For example, if we have a machine that requires one delay slot for
-branches but two for calls, no delay slot can contain a branch or call
-insn, and any valid insn in the delay slot for the branch can be
-annulled if the branch is true, we might represent this as follows:
-
- (define_delay (eq_attr "type" "branch")
- [(eq_attr "type" "!branch,call")
- (eq_attr "type" "!branch,call")
- (nil)])
-
- (define_delay (eq_attr "type" "call")
- [(eq_attr "type" "!branch,call") (nil) (nil)
- (eq_attr "type" "!branch,call") (nil) (nil)])
-
diff --git a/gcc/gcc.info-2 b/gcc/gcc.info-2
deleted file mode 100644
index 1e15a3090eb..00000000000
--- a/gcc/gcc.info-2
+++ /dev/null
@@ -1,1142 +0,0 @@
-This is Info file gcc.info, produced by Makeinfo version 1.68 from the
-input file gcc.texi.
-
- This file documents the use and the internals of the GNU compiler.
-
- Published by the Free Software Foundation 59 Temple Place - Suite 330
-Boston, MA 02111-1307 USA
-
- Copyright (C) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997 Free
-Software Foundation, Inc.
-
- Permission is granted to make and distribute verbatim copies of this
-manual provided the copyright notice and this permission notice are
-preserved on all copies.
-
- Permission is granted to copy and distribute modified versions of
-this manual under the conditions for verbatim copying, provided also
-that the sections entitled "GNU General Public License," "Funding for
-Free Software," and "Protect Your Freedom--Fight `Look And Feel'" are
-included exactly as in the original, and provided that the entire
-resulting derived work is distributed under the terms of a permission
-notice identical to this one.
-
- Permission is granted to copy and distribute translations of this
-manual into another language, under the above conditions for modified
-versions, except that the sections entitled "GNU General Public
-License," "Funding for Free Software," and "Protect Your Freedom--Fight
-`Look And Feel'", and this permission notice, may be included in
-translations approved by the Free Software Foundation instead of in the
-original English.
-
-
-File: gcc.info, Node: Warning Options, Next: Debugging Options, Prev: C++ Dialect Options, Up: Invoking GCC
-
-Options to Request or Suppress Warnings
-=======================================
-
- Warnings are diagnostic messages that report constructions which are
-not inherently erroneous but which are risky or suggest there may have
-been an error.
-
- You can request many specific warnings with options beginning `-W',
-for example `-Wimplicit' to request warnings on implicit declarations.
-Each of these specific warning options also has a negative form
-beginning `-Wno-' to turn off warnings; for example, `-Wno-implicit'.
-This manual lists only one of the two forms, whichever is not the
-default.
-
- These options control the amount and kinds of warnings produced by
-GNU CC:
-
-`-fsyntax-only'
- Check the code for syntax errors, but don't do anything beyond
- that.
-
-`-pedantic'
- Issue all the warnings demanded by strict ANSI standard C; reject
- all programs that use forbidden extensions.
-
- Valid ANSI standard C programs should compile properly with or
- without this option (though a rare few will require `-ansi').
- However, without this option, certain GNU extensions and
- traditional C features are supported as well. With this option,
- they are rejected.
-
- `-pedantic' does not cause warning messages for use of the
- alternate keywords whose names begin and end with `__'. Pedantic
- warnings are also disabled in the expression that follows
- `__extension__'. However, only system header files should use
- these escape routes; application programs should avoid them.
- *Note Alternate Keywords::.
-
- This option is not intended to be useful; it exists only to satisfy
- pedants who would otherwise claim that GNU CC fails to support the
- ANSI standard.
-
- Some users try to use `-pedantic' to check programs for strict ANSI
- C conformance. They soon find that it does not do quite what they
- want: it finds some non-ANSI practices, but not all--only those
- for which ANSI C *requires* a diagnostic.
-
- A feature to report any failure to conform to ANSI C might be
- useful in some instances, but would require considerable
- additional work and would be quite different from `-pedantic'. We
- recommend, rather, that users take advantage of the extensions of
- GNU C and disregard the limitations of other compilers. Aside
- from certain supercomputers and obsolete small machines, there is
- less and less reason ever to use any other C compiler other than
- for bootstrapping GNU CC.
-
-`-pedantic-errors'
- Like `-pedantic', except that errors are produced rather than
- warnings.
-
-`-w'
- Inhibit all warning messages.
-
-`-Wno-import'
- Inhibit warning messages about the use of `#import'.
-
-`-Wchar-subscripts'
- Warn if an array subscript has type `char'. This is a common cause
- of error, as programmers often forget that this type is signed on
- some machines.
-
-`-Wcomment'
- Warn whenever a comment-start sequence `/*' appears in a `/*'
- comment, or whenever a Backslash-Newline appears in a `//' comment.
-
-`-Wformat'
- Check calls to `printf' and `scanf', etc., to make sure that the
- arguments supplied have types appropriate to the format string
- specified.
-
-`-Wimplicit-int'
- Warn when a declaration does not specify a type.
-
-`-Wimplicit-function-declarations'
- Warn whenever a function is used before being declared.
-
-`-Wimplicit'
- Same as `-Wimplicit-int' `-Wimplicit-function-declaration'.
-
-`-Wmain'
- Warn if the type of `main' is suspicious. `main' should be a
- function with external linkage, returning int, taking either zero
- arguments, two, or three arguments of appropriate types.
-
-`-Wparentheses'
- Warn if parentheses are omitted in certain contexts, such as when
- there is an assignment in a context where a truth value is
- expected, or when operators are nested whose precedence people
- often get confused about.
-
- Also warn about constructions where there may be confusion to which
- `if' statement an `else' branch belongs. Here is an example of
- such a case:
-
- {
- if (a)
- if (b)
- foo ();
- else
- bar ();
- }
-
- In C, every `else' branch belongs to the innermost possible `if'
- statement, which in this example is `if (b)'. This is often not
- what the programmer expected, as illustrated in the above example
- by indentation the programmer chose. When there is the potential
- for this confusion, GNU C will issue a warning when this flag is
- specified. To eliminate the warning, add explicit braces around
- the innermost `if' statement so there is no way the `else' could
- belong to the enclosing `if'. The resulting code would look like
- this:
-
- {
- if (a)
- {
- if (b)
- foo ();
- else
- bar ();
- }
- }
-
-`-Wreturn-type'
- Warn whenever a function is defined with a return-type that
- defaults to `int'. Also warn about any `return' statement with no
- return-value in a function whose return-type is not `void'.
-
-`-Wswitch'
- Warn whenever a `switch' statement has an index of enumeral type
- and lacks a `case' for one or more of the named codes of that
- enumeration. (The presence of a `default' label prevents this
- warning.) `case' labels outside the enumeration range also
- provoke warnings when this option is used.
-
-`-Wtrigraphs'
- Warn if any trigraphs are encountered (assuming they are enabled).
-
-`-Wunused'
- Warn whenever a variable is unused aside from its declaration,
- whenever a function is declared static but never defined, whenever
- a label is declared but not used, and whenever a statement
- computes a result that is explicitly not used.
-
- To suppress this warning for an expression, simply cast it to
- void. For unused variables and parameters, use the `unused'
- attribute (*note Variable Attributes::.).
-
-`-Wuninitialized'
- An automatic variable is used without first being initialized.
-
- These warnings are possible only in optimizing compilation,
- because they require data flow information that is computed only
- when optimizing. If you don't specify `-O', you simply won't get
- these warnings.
-
- These warnings occur only for variables that are candidates for
- register allocation. Therefore, they do not occur for a variable
- that is declared `volatile', or whose address is taken, or whose
- size is other than 1, 2, 4 or 8 bytes. Also, they do not occur for
- structures, unions or arrays, even when they are in registers.
-
- Note that there may be no warning about a variable that is used
- only to compute a value that itself is never used, because such
- computations may be deleted by data flow analysis before the
- warnings are printed.
-
- These warnings are made optional because GNU CC is not smart
- enough to see all the reasons why the code might be correct
- despite appearing to have an error. Here is one example of how
- this can happen:
-
- {
- int x;
- switch (y)
- {
- case 1: x = 1;
- break;
- case 2: x = 4;
- break;
- case 3: x = 5;
- }
- foo (x);
- }
-
- If the value of `y' is always 1, 2 or 3, then `x' is always
- initialized, but GNU CC doesn't know this. Here is another common
- case:
-
- {
- int save_y;
- if (change_y) save_y = y, y = new_y;
- ...
- if (change_y) y = save_y;
- }
-
- This has no bug because `save_y' is used only if it is set.
-
- Some spurious warnings can be avoided if you declare all the
- functions you use that never return as `noreturn'. *Note Function
- Attributes::.
-
-`-Wreorder (C++ only)'
- Warn when the order of member initializers given in the code does
- not match the order in which they must be executed. For instance:
-
- struct A {
- int i;
- int j;
- A(): j (0), i (1) { }
- };
-
- Here the compiler will warn that the member initializers for `i'
- and `j' will be rearranged to match the declaration order of the
- members.
-
-`-Wtemplate-debugging'
- When using templates in a C++ program, warn if debugging is not yet
- fully available (C++ only).
-
-`-Wall'
- All of the above `-W' options combined. This enables all the
- warnings about constructions that some users consider
- questionable, and that are easy to avoid (or modify to prevent the
- warning), even in conjunction with macros.
-
- The following `-W...' options are not implied by `-Wall'. Some of
-them warn about constructions that users generally do not consider
-questionable, but which occasionally you might wish to check for;
-others warn about constructions that are necessary or hard to avoid in
-some cases, and there is no simple way to modify the code to suppress
-the warning.
-
-`-W'
- Print extra warning messages for these events:
-
- * A nonvolatile automatic variable might be changed by a call to
- `longjmp'. These warnings as well are possible only in
- optimizing compilation.
-
- The compiler sees only the calls to `setjmp'. It cannot know
- where `longjmp' will be called; in fact, a signal handler
- could call it at any point in the code. As a result, you may
- get a warning even when there is in fact no problem because
- `longjmp' cannot in fact be called at the place which would
- cause a problem.
-
- * A function can return either with or without a value.
- (Falling off the end of the function body is considered
- returning without a value.) For example, this function would
- evoke such a warning:
-
- foo (a)
- {
- if (a > 0)
- return a;
- }
-
- * An expression-statement or the left-hand side of a comma
- expression contains no side effects. To suppress the
- warning, cast the unused expression to void. For example, an
- expression such as `x[i,j]' will cause a warning, but
- `x[(void)i,j]' will not.
-
- * An unsigned value is compared against zero with `<' or `<='.
-
- * A comparison like `x<=y<=z' appears; this is equivalent to
- `(x<=y ? 1 : 0) <= z', which is a different interpretation
- from that of ordinary mathematical notation.
-
- * Storage-class specifiers like `static' are not the first
- things in a declaration. According to the C Standard, this
- usage is obsolescent.
-
- * If `-Wall' or `-Wunused' is also specified, warn about unused
- arguments.
-
- * A comparison between signed and unsigned values could produce
- an incorrect result when the signed value is converted to
- unsigned. (But do not warn if `-Wno-sign-compare' is also
- specified.)
-
- * An aggregate has a partly bracketed initializer. For
- example, the following code would evoke such a warning,
- because braces are missing around the initializer for `x.h':
-
- struct s { int f, g; };
- struct t { struct s h; int i; };
- struct t x = { 1, 2, 3 };
-
-`-Wtraditional'
- Warn about certain constructs that behave differently in
- traditional and ANSI C.
-
- * Macro arguments occurring within string constants in the
- macro body. These would substitute the argument in
- traditional C, but are part of the constant in ANSI C.
-
- * A function declared external in one block and then used after
- the end of the block.
-
- * A `switch' statement has an operand of type `long'.
-
-`-Wundef'
- Warn if an undefined identifier is evaluated in an `#if' directive.
-
-`-Wshadow'
- Warn whenever a local variable shadows another local variable.
-
-`-Wid-clash-LEN'
- Warn whenever two distinct identifiers match in the first LEN
- characters. This may help you prepare a program that will compile
- with certain obsolete, brain-damaged compilers.
-
-`-Wlarger-than-LEN'
- Warn whenever an object of larger than LEN bytes is defined.
-
-`-Wpointer-arith'
- Warn about anything that depends on the "size of" a function type
- or of `void'. GNU C assigns these types a size of 1, for
- convenience in calculations with `void *' pointers and pointers to
- functions.
-
-`-Wbad-function-cast'
- Warn whenever a function call is cast to a non-matching type. For
- example, warn if `int malloc()' is cast to `anything *'.
-
-`-Wcast-qual'
- Warn whenever a pointer is cast so as to remove a type qualifier
- from the target type. For example, warn if a `const char *' is
- cast to an ordinary `char *'.
-
-`-Wcast-align'
- Warn whenever a pointer is cast such that the required alignment
- of the target is increased. For example, warn if a `char *' is
- cast to an `int *' on machines where integers can only be accessed
- at two- or four-byte boundaries.
-
-`-Wwrite-strings'
- Give string constants the type `const char[LENGTH]' so that
- copying the address of one into a non-`const' `char *' pointer
- will get a warning. These warnings will help you find at compile
- time code that can try to write into a string constant, but only
- if you have been very careful about using `const' in declarations
- and prototypes. Otherwise, it will just be a nuisance; this is
- why we did not make `-Wall' request these warnings.
-
-`-Wconversion'
- Warn if a prototype causes a type conversion that is different
- from what would happen to the same argument in the absence of a
- prototype. This includes conversions of fixed point to floating
- and vice versa, and conversions changing the width or signedness
- of a fixed point argument except when the same as the default
- promotion.
-
- Also, warn if a negative integer constant expression is implicitly
- converted to an unsigned type. For example, warn about the
- assignment `x = -1' if `x' is unsigned. But do not warn about
- explicit casts like `(unsigned) -1'.
-
-`-Wsign-compare'
- Warn when a comparison between signed and unsigned values could
- produce an incorrect result when the signed value is converted to
- unsigned. This warning is also enabled by `-W'; to get the other
- warnings of `-W' without this warning, use `-W -Wno-sign-compare'.
-
-`-Waggregate-return'
- Warn if any functions that return structures or unions are defined
- or called. (In languages where you can return an array, this also
- elicits a warning.)
-
-`-Wstrict-prototypes'
- Warn if a function is declared or defined without specifying the
- argument types. (An old-style function definition is permitted
- without a warning if preceded by a declaration which specifies the
- argument types.)
-
-`-Wmissing-prototypes'
- Warn if a global function is defined without a previous prototype
- declaration. This warning is issued even if the definition itself
- provides a prototype. The aim is to detect global functions that
- fail to be declared in header files.
-
-`-Wmissing-declarations'
- Warn if a global function is defined without a previous
- declaration. Do so even if the definition itself provides a
- prototype. Use this option to detect global functions that are
- not declared in header files.
-
-`-Wredundant-decls'
- Warn if anything is declared more than once in the same scope,
- even in cases where multiple declaration is valid and changes
- nothing.
-
-`-Wnested-externs'
- Warn if an `extern' declaration is encountered within an function.
-
-`-Winline'
- Warn if a function can not be inlined, and either it was declared
- as inline, or else the `-finline-functions' option was given.
-
-`-Woverloaded-virtual'
- Warn when a derived class function declaration may be an error in
- defining a virtual function (C++ only). In a derived class, the
- definitions of virtual functions must match the type signature of a
- virtual function declared in the base class. With this option, the
- compiler warns when you define a function with the same name as a
- virtual function, but with a type signature that does not match any
- declarations from the base class.
-
-`-Wsynth (C++ only)'
- Warn when g++'s synthesis behavior does not match that of cfront.
- For instance:
-
- struct A {
- operator int ();
- A& operator = (int);
- };
-
- main ()
- {
- A a,b;
- a = b;
- }
-
- In this example, g++ will synthesize a default `A& operator =
- (const A&);', while cfront will use the user-defined `operator ='.
-
-`-Werror'
- Make all warnings into errors.
-
-
-File: gcc.info, Node: Debugging Options, Next: Optimize Options, Prev: Warning Options, Up: Invoking GCC
-
-Options for Debugging Your Program or GNU CC
-============================================
-
- GNU CC has various special options that are used for debugging
-either your program or GCC:
-
-`-g'
- Produce debugging information in the operating system's native
- format (stabs, COFF, XCOFF, or DWARF). GDB can work with this
- debugging information.
-
- On most systems that use stabs format, `-g' enables use of extra
- debugging information that only GDB can use; this extra information
- makes debugging work better in GDB but will probably make other
- debuggers crash or refuse to read the program. If you want to
- control for certain whether to generate the extra information, use
- `-gstabs+', `-gstabs', `-gxcoff+', `-gxcoff', `-gdwarf-1+', or
- `-gdwarf-1' (see below).
-
- Unlike most other C compilers, GNU CC allows you to use `-g' with
- `-O'. The shortcuts taken by optimized code may occasionally
- produce surprising results: some variables you declared may not
- exist at all; flow of control may briefly move where you did not
- expect it; some statements may not be executed because they
- compute constant results or their values were already at hand;
- some statements may execute in different places because they were
- moved out of loops.
-
- Nevertheless it proves possible to debug optimized output. This
- makes it reasonable to use the optimizer for programs that might
- have bugs.
-
- The following options are useful when GNU CC is generated with the
- capability for more than one debugging format.
-
-`-ggdb'
- Produce debugging information for use by GDB. This means to use
- the most expressive format available (DWARF 2, stabs, or the
- native format if neither of those are supported), including GDB
- extensions if at all possible.
-
-`-gstabs'
- Produce debugging information in stabs format (if that is
- supported), without GDB extensions. This is the format used by
- DBX on most BSD systems. On MIPS, Alpha and System V Release 4
- systems this option produces stabs debugging output which is not
- understood by DBX or SDB. On System V Release 4 systems this
- option requires the GNU assembler.
-
-`-gstabs+'
- Produce debugging information in stabs format (if that is
- supported), using GNU extensions understood only by the GNU
- debugger (GDB). The use of these extensions is likely to make
- other debuggers crash or refuse to read the program.
-
-`-gcoff'
- Produce debugging information in COFF format (if that is
- supported). This is the format used by SDB on most System V
- systems prior to System V Release 4.
-
-`-gxcoff'
- Produce debugging information in XCOFF format (if that is
- supported). This is the format used by the DBX debugger on IBM
- RS/6000 systems.
-
-`-gxcoff+'
- Produce debugging information in XCOFF format (if that is
- supported), using GNU extensions understood only by the GNU
- debugger (GDB). The use of these extensions is likely to make
- other debuggers crash or refuse to read the program, and may cause
- assemblers other than the GNU assembler (GAS) to fail with an
- error.
-
-`-gdwarf'
- Produce debugging information in DWARF version 1 format (if that is
- supported). This is the format used by SDB on most System V
- Release 4 systems.
-
-`-gdwarf+'
- Produce debugging information in DWARF version 1 format (if that is
- supported), using GNU extensions understood only by the GNU
- debugger (GDB). The use of these extensions is likely to make
- other debuggers crash or refuse to read the program.
-
-`-gdwarf-2'
- Produce debugging information in DWARF version 2 format (if that is
- supported). This is the format used by DBX on IRIX 6.
-
-`-gLEVEL'
-`-ggdbLEVEL'
-`-gstabsLEVEL'
-`-gcoffLEVEL'
-`-gxcoffLEVEL'
-`-gdwarfLEVEL'
-`-gdwarf-2LEVEL'
- Request debugging information and also use LEVEL to specify how
- much information. The default level is 2.
-
- Level 1 produces minimal information, enough for making backtraces
- in parts of the program that you don't plan to debug. This
- includes descriptions of functions and external variables, but no
- information about local variables and no line numbers.
-
- Level 3 includes extra information, such as all the macro
- definitions present in the program. Some debuggers support macro
- expansion when you use `-g3'.
-
-`-p'
- Generate extra code to write profile information suitable for the
- analysis program `prof'. You must use this option when compiling
- the source files you want data about, and you must also use it when
- linking.
-
-`-pg'
- Generate extra code to write profile information suitable for the
- analysis program `gprof'. You must use this option when compiling
- the source files you want data about, and you must also use it when
- linking.
-
-`-a'
- Generate extra code to write profile information for basic blocks,
- which will record the number of times each basic block is
- executed, the basic block start address, and the function name
- containing the basic block. If `-g' is used, the line number and
- filename of the start of the basic block will also be recorded.
- If not overridden by the machine description, the default action is
- to append to the text file `bb.out'.
-
- This data could be analyzed by a program like `tcov'. Note,
- however, that the format of the data is not what `tcov' expects.
- Eventually GNU `gprof' should be extended to process this data.
-
-`-ax'
- Generate extra code to profile basic blocks. Your executable will
- produce output that is a superset of that produced when `-a' is
- used. Additional output is the source and target address of the
- basic blocks where a jump takes place, the number of times a jump
- is executed, and (optionally) the complete sequence of basic
- blocks being executed. The output is appended to file `bb.out'.
-
- You can examine different profiling aspects without recompilation.
- Your execuable will read a list of function names from file
- `bb.in'. Profiling starts when a function on the list is entered
- and stops when that invocation is exited. To exclude a function
- from profiling, prefix its name with `-'. If a function name is
- not unique, you can disambiguate it by writing it in the form
- `/path/filename.d:functionname'. Your executable will write the
- available paths and filenames in file `bb.out'.
-
- Several function names have a special meaning:
- `__bb_jumps__'
- Write source, target and frequency of jumps to file `bb.out'.
-
- `__bb_hidecall__'
- Exclude function calls from frequency count.
-
- `__bb_showret__'
- Include function returns in frequency count.
-
- `__bb_trace__'
- Write the sequence of basic blocks executed to file
- `bbtrace.gz'. The file will be compressed using the program
- `gzip', which must exist in your `PATH'. On systems without
- the `popen' function, the file will be named `bbtrace' and
- will not be compressed. *Profiling for even a few seconds on
- these systems will produce a very large file.* Note:
- `__bb_hidecall__' and `__bb_showret__' will not affect the
- sequence written to `bbtrace.gz'.
-
- Here's a short example using different profiling parameters in
- file `bb.in'. Assume function `foo' consists of basic blocks 1
- and 2 and is called twice from block 3 of function `main'. After
- the calls, block 3 transfers control to block 4 of `main'.
-
- With `__bb_trace__' and `main' contained in file `bb.in', the
- following sequence of blocks is written to file `bbtrace.gz': 0 3
- 1 2 1 2 4. The return from block 2 to block 3 is not shown,
- because the return is to a point inside the block and not to the
- top. The block address 0 always indicates, that control is
- transferred to the trace from somewhere outside the observed
- functions. With `-foo' added to `bb.in', the blocks of function
- `foo' are removed from the trace, so only 0 3 4 remains.
-
- With `__bb_jumps__' and `main' contained in file `bb.in', jump
- frequencies will be written to file `bb.out'. The frequencies are
- obtained by constructing a trace of blocks and incrementing a
- counter for every neighbouring pair of blocks in the trace. The
- trace 0 3 1 2 1 2 4 displays the following frequencies:
-
- Jump from block 0x0 to block 0x3 executed 1 time(s)
- Jump from block 0x3 to block 0x1 executed 1 time(s)
- Jump from block 0x1 to block 0x2 executed 2 time(s)
- Jump from block 0x2 to block 0x1 executed 1 time(s)
- Jump from block 0x2 to block 0x4 executed 1 time(s)
-
- With `__bb_hidecall__', control transfer due to call instructions
- is removed from the trace, that is the trace is cut into three
- parts: 0 3 4, 0 1 2 and 0 1 2. With `__bb_showret__', control
- transfer due to return instructions is added to the trace. The
- trace becomes: 0 3 1 2 3 1 2 3 4. Note, that this trace is not
- the same, as the sequence written to `bbtrace.gz'. It is solely
- used for counting jump frequencies.
-
-`-fprofile-arcs'
- Instrument "arcs" during compilation. For each function of your
- program, GNU CC creates a program flow graph, then finds a
- spanning tree for the graph. Only arcs that are not on the
- spanning tree have to be instrumented: the compiler adds code to
- count the number of times that these arcs are executed. When an
- arc is the only exit or only entrance to a block, the
- instrumentation code can be added to the block; otherwise, a new
- basic block must be created to hold the instrumentation code.
-
- Since not every arc in the program must be instrumented, programs
- compiled with this option run faster than programs compiled with
- `-a', which adds instrumentation code to every basic block in the
- program. The tradeoff: since `gcov' does not have execution
- counts for all branches, it must start with the execution counts
- for the instrumented branches, and then iterate over the program
- flow graph until the entire graph has been solved. Hence, `gcov'
- runs a little more slowly than a program which uses information
- from `-a'.
-
- `-fprofile-arcs' also makes it possible to estimate branch
- probabilities, and to calculate basic block execution counts. In
- general, basic block execution counts do not give enough
- information to estimate all branch probabilities. When the
- compiled program exits, it saves the arc execution counts to a
- file called `SOURCENAME.da'. Use the compiler option
- `-fbranch-probabilities' (*note Options that Control Optimization:
- Optimize Options.) when recompiling, to optimize using estimated
- branch probabilities.
-
-`-ftest-coverage'
- Create data files for the `gcov' code-coverage utility (*note
- `gcov': a GNU CC Test Coverage Program: Gcov.). The data file
- names begin with the name of your source file:
-
- `SOURCENAME.bb'
- A mapping from basic blocks to line numbers, which `gcov'
- uses to associate basic block execution counts with line
- numbers.
-
- `SOURCENAME.bbg'
- A list of all arcs in the program flow graph. This allows
- `gcov' to reconstruct the program flow graph, so that it can
- compute all basic block and arc execution counts from the
- information in the `SOURCENAME.da' file (this last file is
- the output from `-fprofile-arcs').
-
-`-dLETTERS'
- Says to make debugging dumps during compilation at times specified
- by LETTERS. This is used for debugging the compiler. The file
- names for most of the dumps are made by appending a word to the
- source file name (e.g. `foo.c.rtl' or `foo.c.jump'). Here are the
- possible letters for use in LETTERS, and their meanings:
-
- `M'
- Dump all macro definitions, at the end of preprocessing, and
- write no output.
-
- `N'
- Dump all macro names, at the end of preprocessing.
-
- `D'
- Dump all macro definitions, at the end of preprocessing, in
- addition to normal output.
-
- `y'
- Dump debugging information during parsing, to standard error.
-
- `r'
- Dump after RTL generation, to `FILE.rtl'.
-
- `x'
- Just generate RTL for a function instead of compiling it.
- Usually used with `r'.
-
- `j'
- Dump after first jump optimization, to `FILE.jump'.
-
- `s'
- Dump after CSE (including the jump optimization that sometimes
- follows CSE), to `FILE.cse'.
-
- `L'
- Dump after loop optimization, to `FILE.loop'.
-
- `t'
- Dump after the second CSE pass (including the jump
- optimization that sometimes follows CSE), to `FILE.cse2'.
-
- `f'
- Dump after flow analysis, to `FILE.flow'.
-
- `c'
- Dump after instruction combination, to the file
- `FILE.combine'.
-
- `S'
- Dump after the first instruction scheduling pass, to
- `FILE.sched'.
-
- `l'
- Dump after local register allocation, to `FILE.lreg'.
-
- `g'
- Dump after global register allocation, to `FILE.greg'.
-
- `R'
- Dump after the second instruction scheduling pass, to
- `FILE.sched2'.
-
- `J'
- Dump after last jump optimization, to `FILE.jump2'.
-
- `d'
- Dump after delayed branch scheduling, to `FILE.dbr'.
-
- `k'
- Dump after conversion from registers to stack, to
- `FILE.stack'.
-
- `a'
- Produce all the dumps listed above.
-
- `m'
- Print statistics on memory usage, at the end of the run, to
- standard error.
-
- `p'
- Annotate the assembler output with a comment indicating which
- pattern and alternative was used.
-
- `A'
- Annotate the assembler output with miscellaneous debugging
- information.
-
-`-fpretend-float'
- When running a cross-compiler, pretend that the target machine
- uses the same floating point format as the host machine. This
- causes incorrect output of the actual floating constants, but the
- actual instruction sequence will probably be the same as GNU CC
- would make when running on the target machine.
-
-`-save-temps'
- Store the usual "temporary" intermediate files permanently; place
- them in the current directory and name them based on the source
- file. Thus, compiling `foo.c' with `-c -save-temps' would produce
- files `foo.i' and `foo.s', as well as `foo.o'.
-
-`-print-file-name=LIBRARY'
- Print the full absolute name of the library file LIBRARY that
- would be used when linking--and don't do anything else. With this
- option, GNU CC does not compile or link anything; it just prints
- the file name.
-
-`-print-prog-name=PROGRAM'
- Like `-print-file-name', but searches for a program such as `cpp'.
-
-`-print-libgcc-file-name'
- Same as `-print-file-name=libgcc.a'.
-
- This is useful when you use `-nostdlib' or `-nodefaultlibs' but
- you do want to link with `libgcc.a'. You can do
-
- gcc -nostdlib FILES... `gcc -print-libgcc-file-name`
-
-`-print-search-dirs'
- Print the name of the configured installation directory and a list
- of program and library directories gcc will search--and don't do
- anything else.
-
- This is useful when gcc prints the error message `installation
- problem, cannot exec cpp: No such file or directory'. To resolve
- this you either need to put `cpp' and the other compiler
- components where gcc expects to find them, or you can set the
- environment variable `GCC_EXEC_PREFIX' to the directory where you
- installed them. Don't forget the trailing '/'. *Note Environment
- Variables::.
-
-
-File: gcc.info, Node: Optimize Options, Next: Preprocessor Options, Prev: Debugging Options, Up: Invoking GCC
-
-Options That Control Optimization
-=================================
-
- These options control various sorts of optimizations:
-
-`-O'
-`-O1'
- Optimize. Optimizing compilation takes somewhat more time, and a
- lot more memory for a large function.
-
- Without `-O', the compiler's goal is to reduce the cost of
- compilation and to make debugging produce the expected results.
- Statements are independent: if you stop the program with a
- breakpoint between statements, you can then assign a new value to
- any variable or change the program counter to any other statement
- in the function and get exactly the results you would expect from
- the source code.
-
- Without `-O', the compiler only allocates variables declared
- `register' in registers. The resulting compiled code is a little
- worse than produced by PCC without `-O'.
-
- With `-O', the compiler tries to reduce code size and execution
- time.
-
- When you specify `-O', the compiler turns on `-fthread-jumps' and
- `-fdefer-pop' on all machines. The compiler turns on
- `-fdelayed-branch' on machines that have delay slots, and
- `-fomit-frame-pointer' on machines that can support debugging even
- without a frame pointer. On some machines the compiler also turns
- on other flags.
-
-`-O2'
- Optimize even more. GNU CC performs nearly all supported
- optimizations that do not involve a space-speed tradeoff. The
- compiler does not perform loop unrolling or function inlining when
- you specify `-O2'. As compared to `-O', this option increases
- both compilation time and the performance of the generated code.
-
- `-O2' turns on all optional optimizations except for loop unrolling
- and function inlining. It also turns on the `-fforce-mem' option
- on all machines and frame pointer elimination on machines where
- doing so does not interfere with debugging.
-
-`-O3'
- Optimize yet more. `-O3' turns on all optimizations specified by
- `-O2' and also turns on the `inline-functions' option.
-
-`-O0'
- Do not optimize.
-
- If you use multiple `-O' options, with or without level numbers,
- the last such option is the one that is effective.
-
- Options of the form `-fFLAG' specify machine-independent flags.
-Most flags have both positive and negative forms; the negative form of
-`-ffoo' would be `-fno-foo'. In the table below, only one of the forms
-is listed--the one which is not the default. You can figure out the
-other form by either removing `no-' or adding it.
-
-`-ffloat-store'
- Do not store floating point variables in registers, and inhibit
- other options that might change whether a floating point value is
- taken from a register or memory.
-
- This option prevents undesirable excess precision on machines such
- as the 68000 where the floating registers (of the 68881) keep more
- precision than a `double' is supposed to have. Similarly for the
- x86 architecture. For most programs, the excess precision does
- only good, but a few programs rely on the precise definition of
- IEEE floating point. Use `-ffloat-store' for such programs.
-
-`-fno-default-inline'
- Do not make member functions inline by default merely because they
- are defined inside the class scope (C++ only). Otherwise, when
- you specify `-O', member functions defined inside class scope are
- compiled inline by default; i.e., you don't need to add `inline'
- in front of the member function name.
-
-`-fno-defer-pop'
- Always pop the arguments to each function call as soon as that
- function returns. For machines which must pop arguments after a
- function call, the compiler normally lets arguments accumulate on
- the stack for several function calls and pops them all at once.
-
-`-fforce-mem'
- Force memory operands to be copied into registers before doing
- arithmetic on them. This produces better code by making all memory
- references potential common subexpressions. When they are not
- common subexpressions, instruction combination should eliminate
- the separate register-load. The `-O2' option turns on this option.
-
-`-fforce-addr'
- Force memory address constants to be copied into registers before
- doing arithmetic on them. This may produce better code just as
- `-fforce-mem' may.
-
-`-fomit-frame-pointer'
- Don't keep the frame pointer in a register for functions that
- don't need one. This avoids the instructions to save, set up and
- restore frame pointers; it also makes an extra register available
- in many functions. *It also makes debugging impossible on some
- machines.*
-
- On some machines, such as the Vax, this flag has no effect, because
- the standard calling sequence automatically handles the frame
- pointer and nothing is saved by pretending it doesn't exist. The
- machine-description macro `FRAME_POINTER_REQUIRED' controls
- whether a target machine supports this flag. *Note Registers::.
-
-`-fno-inline'
- Don't pay attention to the `inline' keyword. Normally this option
- is used to keep the compiler from expanding any functions inline.
- Note that if you are not optimizing, no functions can be expanded
- inline.
-
-`-finline-functions'
- Integrate all simple functions into their callers. The compiler
- heuristically decides which functions are simple enough to be worth
- integrating in this way.
-
- If all calls to a given function are integrated, and the function
- is declared `static', then the function is normally not output as
- assembler code in its own right.
-
-`-fkeep-inline-functions'
- Even if all calls to a given function are integrated, and the
- function is declared `static', nevertheless output a separate
- run-time callable version of the function. This switch does not
- affect `extern inline' functions.
-
-`-fkeep-static-consts'
- Emit variables declared `static const' when optimization isn't
- turned on, even if the variables aren't referenced.
-
- GNU CC enables this option by default. If you want to force the
- compiler to check if the variable was referenced, regardless of
- whether or not optimization is turned on, use the
- `-fno-keep-static-consts' option.
-
-`-fno-function-cse'
- Do not put function addresses in registers; make each instruction
- that calls a constant function contain the function's address
- explicitly.
-
- This option results in less efficient code, but some strange hacks
- that alter the assembler output may be confused by the
- optimizations performed when this option is not used.
-
-`-ffast-math'
- This option allows GCC to violate some ANSI or IEEE rules and/or
- specifications in the interest of optimizing code for speed. For
- example, it allows the compiler to assume arguments to the `sqrt'
- function are non-negative numbers and that no floating-point values
- are NaNs.
-
- This option should never be turned on by any `-O' option since it
- can result in incorrect output for programs which depend on an
- exact implementation of IEEE or ANSI rules/specifications for math
- functions.
-
- The following options control specific optimizations. The `-O2'
-option turns on all of these optimizations except `-funroll-loops' and
-`-funroll-all-loops'. On most machines, the `-O' option turns on the
-`-fthread-jumps' and `-fdelayed-branch' options, but specific machines
-may handle it differently.
-
- You can use the following flags in the rare cases when "fine-tuning"
-of optimizations to be performed is desired.
-
-`-fstrength-reduce'
- Perform the optimizations of loop strength reduction and
- elimination of iteration variables.
-
-`-fthread-jumps'
- Perform optimizations where we check to see if a jump branches to a
- location where another comparison subsumed by the first is found.
- If so, the first branch is redirected to either the destination of
- the second branch or a point immediately following it, depending
- on whether the condition is known to be true or false.
-
-`-fcse-follow-jumps'
- In common subexpression elimination, scan through jump instructions
- when the target of the jump is not reached by any other path. For
- example, when CSE encounters an `if' statement with an `else'
- clause, CSE will follow the jump when the condition tested is
- false.
-
-`-fcse-skip-blocks'
- This is similar to `-fcse-follow-jumps', but causes CSE to follow
- jumps which conditionally skip over blocks. When CSE encounters a
- simple `if' statement with no else clause, `-fcse-skip-blocks'
- causes CSE to follow the jump around the body of the `if'.
-
-`-frerun-cse-after-loop'
- Re-run common subexpression elimination after loop optimizations
- has been performed.
-
-`-fexpensive-optimizations'
- Perform a number of minor optimizations that are relatively
- expensive.
-
-`-fdelayed-branch'
- If supported for the target machine, attempt to reorder
- instructions to exploit instruction slots available after delayed
- branch instructions.
-
-`-fschedule-insns'
- If supported for the target machine, attempt to reorder
- instructions to eliminate execution stalls due to required data
- being unavailable. This helps machines that have slow floating
- point or memory load instructions by allowing other instructions
- to be issued until the result of the load or floating point
- instruction is required.
-
-`-fschedule-insns2'
- Similar to `-fschedule-insns', but requests an additional pass of
- instruction scheduling after register allocation has been done.
- This is especially useful on machines with a relatively small
- number of registers and where memory load instructions take more
- than one cycle.
-
-`-ffunction-sections'
- Place each function into its own section in the output file if the
- target supports arbitrary sections. The function's name determines
- the section's name in the output file.
-
- Use this option on systems where the linker can perform
- optimizations to improve locality of reference in the instruction
- space. HPPA processors running HP-UX and Sparc processors running
- Solaris 2 have linkers with such optimizations. Other systems
- using the ELF object format as well as AIX may have these
- optimizations in the future.
-
- Only use this option when there are significant benefits from doing
- so. When you specify this option, the assembler and linker will
- create larger object and executable files and will also be slower.
- You will not be able to use `gprof' on all systems if you specify
- this option and you may have problems with debugging if you
- specify both this option and `-g'.
-
-`-fcaller-saves'
- Enable values to be allocated in registers that will be clobbered
- by function calls, by emitting extra instructions to save and
- restore the registers around such calls. Such allocation is done
- only when it seems to result in better code than would otherwise
- be produced.
-
- This option is enabled by default on certain machines, usually
- those which have no call-preserved registers to use instead.
-
-`-funroll-loops'
- Perform the optimization of loop unrolling. This is only done for
- loops whose number of iterations can be determined at compile time
- or run time. `-funroll-loop' implies both `-fstrength-reduce' and
- `-frerun-cse-after-loop'.
-
-`-funroll-all-loops'
- Perform the optimization of loop unrolling. This is done for all
- loops and usually makes programs run more slowly.
- `-funroll-all-loops' implies `-fstrength-reduce' as well as
- `-frerun-cse-after-loop'.
-
-`-fno-peephole'
- Disable any machine-specific peephole optimizations.
-
-`-fbranch-probabilities'
- After running a program compiled with `-fprofile-arcs' (*note
- Options for Debugging Your Program or `gcc': Debugging Options.),
- you can compile it a second time using `-fbranch-probabilities',
- to improve optimizations based on guessing the path a branch might
- take.
-
- With `-fbranch-probabilities', GNU CC puts a `REG_EXEC_COUNT' note
- on the first instruction of each basic block, and a `REG_BR_PROB'
- note on each `JUMP_INSN' and `CALL_INSN'. These can be used to
- improve optimization. Currently, they are only used in one place:
- in `reorg.c', instead of guessing which path a branch is mostly to
- take, the `REG_BR_PROB' values are used to exactly determine which
- path is taken more often.
-
diff --git a/gcc/gcc.info-20 b/gcc/gcc.info-20
deleted file mode 100644
index cf674a47b20..00000000000
--- a/gcc/gcc.info-20
+++ /dev/null
@@ -1,1207 +0,0 @@
-This is Info file gcc.info, produced by Makeinfo version 1.68 from the
-input file gcc.texi.
-
- This file documents the use and the internals of the GNU compiler.
-
- Published by the Free Software Foundation 59 Temple Place - Suite 330
-Boston, MA 02111-1307 USA
-
- Copyright (C) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997 Free
-Software Foundation, Inc.
-
- Permission is granted to make and distribute verbatim copies of this
-manual provided the copyright notice and this permission notice are
-preserved on all copies.
-
- Permission is granted to copy and distribute modified versions of
-this manual under the conditions for verbatim copying, provided also
-that the sections entitled "GNU General Public License," "Funding for
-Free Software," and "Protect Your Freedom--Fight `Look And Feel'" are
-included exactly as in the original, and provided that the entire
-resulting derived work is distributed under the terms of a permission
-notice identical to this one.
-
- Permission is granted to copy and distribute translations of this
-manual into another language, under the above conditions for modified
-versions, except that the sections entitled "GNU General Public
-License," "Funding for Free Software," and "Protect Your Freedom--Fight
-`Look And Feel'", and this permission notice, may be included in
-translations approved by the Free Software Foundation instead of in the
-original English.
-
-
-File: gcc.info, Node: Function Units, Prev: Delay Slots, Up: Insn Attributes
-
-Specifying Function Units
--------------------------
-
- On most RISC machines, there are instructions whose results are not
-available for a specific number of cycles. Common cases are
-instructions that load data from memory. On many machines, a pipeline
-stall will result if the data is referenced too soon after the load
-instruction.
-
- In addition, many newer microprocessors have multiple function
-units, usually one for integer and one for floating point, and often
-will incur pipeline stalls when a result that is needed is not yet
-ready.
-
- The descriptions in this section allow the specification of how much
-time must elapse between the execution of an instruction and the time
-when its result is used. It also allows specification of when the
-execution of an instruction will delay execution of similar instructions
-due to function unit conflicts.
-
- For the purposes of the specifications in this section, a machine is
-divided into "function units", each of which execute a specific class
-of instructions in first-in-first-out order. Function units that
-accept one instruction each cycle and allow a result to be used in the
-succeeding instruction (usually via forwarding) need not be specified.
-Classic RISC microprocessors will normally have a single function unit,
-which we can call `memory'. The newer "superscalar" processors will
-often have function units for floating point operations, usually at
-least a floating point adder and multiplier.
-
- Each usage of a function units by a class of insns is specified with
-a `define_function_unit' expression, which looks like this:
-
- (define_function_unit NAME MULTIPLICITY SIMULTANEITY
- TEST READY-DELAY ISSUE-DELAY
- [CONFLICT-LIST])
-
- NAME is a string giving the name of the function unit.
-
- MULTIPLICITY is an integer specifying the number of identical units
-in the processor. If more than one unit is specified, they will be
-scheduled independently. Only truly independent units should be
-counted; a pipelined unit should be specified as a single unit. (The
-only common example of a machine that has multiple function units for a
-single instruction class that are truly independent and not pipelined
-are the two multiply and two increment units of the CDC 6600.)
-
- SIMULTANEITY specifies the maximum number of insns that can be
-executing in each instance of the function unit simultaneously or zero
-if the unit is pipelined and has no limit.
-
- All `define_function_unit' definitions referring to function unit
-NAME must have the same name and values for MULTIPLICITY and
-SIMULTANEITY.
-
- TEST is an attribute test that selects the insns we are describing
-in this definition. Note that an insn may use more than one function
-unit and a function unit may be specified in more than one
-`define_function_unit'.
-
- READY-DELAY is an integer that specifies the number of cycles after
-which the result of the instruction can be used without introducing any
-stalls.
-
- ISSUE-DELAY is an integer that specifies the number of cycles after
-the instruction matching the TEST expression begins using this unit
-until a subsequent instruction can begin. A cost of N indicates an N-1
-cycle delay. A subsequent instruction may also be delayed if an
-earlier instruction has a longer READY-DELAY value. This blocking
-effect is computed using the SIMULTANEITY, READY-DELAY, ISSUE-DELAY,
-and CONFLICT-LIST terms. For a normal non-pipelined function unit,
-SIMULTANEITY is one, the unit is taken to block for the READY-DELAY
-cycles of the executing insn, and smaller values of ISSUE-DELAY are
-ignored.
-
- CONFLICT-LIST is an optional list giving detailed conflict costs for
-this unit. If specified, it is a list of condition test expressions to
-be applied to insns chosen to execute in NAME following the particular
-insn matching TEST that is already executing in NAME. For each insn in
-the list, ISSUE-DELAY specifies the conflict cost; for insns not in the
-list, the cost is zero. If not specified, CONFLICT-LIST defaults to
-all instructions that use the function unit.
-
- Typical uses of this vector are where a floating point function unit
-can pipeline either single- or double-precision operations, but not
-both, or where a memory unit can pipeline loads, but not stores, etc.
-
- As an example, consider a classic RISC machine where the result of a
-load instruction is not available for two cycles (a single "delay"
-instruction is required) and where only one load instruction can be
-executed simultaneously. This would be specified as:
-
- (define_function_unit "memory" 1 1 (eq_attr "type" "load") 2 0)
-
- For the case of a floating point function unit that can pipeline
-either single or double precision, but not both, the following could be
-specified:
-
- (define_function_unit
- "fp" 1 0 (eq_attr "type" "sp_fp") 4 4 [(eq_attr "type" "dp_fp")])
- (define_function_unit
- "fp" 1 0 (eq_attr "type" "dp_fp") 4 4 [(eq_attr "type" "sp_fp")])
-
- *Note:* The scheduler attempts to avoid function unit conflicts and
-uses all the specifications in the `define_function_unit' expression.
-It has recently come to our attention that these specifications may not
-allow modeling of some of the newer "superscalar" processors that have
-insns using multiple pipelined units. These insns will cause a
-potential conflict for the second unit used during their execution and
-there is no way of representing that conflict. We welcome any examples
-of how function unit conflicts work in such processors and suggestions
-for their representation.
-
-
-File: gcc.info, Node: Target Macros, Next: Config, Prev: Machine Desc, Up: Top
-
-Target Description Macros
-*************************
-
- In addition to the file `MACHINE.md', a machine description includes
-a C header file conventionally given the name `MACHINE.h'. This header
-file defines numerous macros that convey the information about the
-target machine that does not fit into the scheme of the `.md' file.
-The file `tm.h' should be a link to `MACHINE.h'. The header file
-`config.h' includes `tm.h' and most compiler source files include
-`config.h'.
-
-* Menu:
-
-* Driver:: Controlling how the driver runs the compilation passes.
-* Run-time Target:: Defining `-m' options like `-m68000' and `-m68020'.
-* Storage Layout:: Defining sizes and alignments of data.
-* Type Layout:: Defining sizes and properties of basic user data types.
-* Registers:: Naming and describing the hardware registers.
-* Register Classes:: Defining the classes of hardware registers.
-* Stack and Calling:: Defining which way the stack grows and by how much.
-* Varargs:: Defining the varargs macros.
-* Trampolines:: Code set up at run time to enter a nested function.
-* Library Calls:: Controlling how library routines are implicitly called.
-* Addressing Modes:: Defining addressing modes valid for memory operands.
-* Condition Code:: Defining how insns update the condition code.
-* Costs:: Defining relative costs of different operations.
-* Sections:: Dividing storage into text, data, and other sections.
-* PIC:: Macros for position independent code.
-* Assembler Format:: Defining how to write insns and pseudo-ops to output.
-* Debugging Info:: Defining the format of debugging output.
-* Cross-compilation:: Handling floating point for cross-compilers.
-* Misc:: Everything else.
-
-
-File: gcc.info, Node: Driver, Next: Run-time Target, Up: Target Macros
-
-Controlling the Compilation Driver, `gcc'
-=========================================
-
- You can control the compilation driver.
-
-`SWITCH_TAKES_ARG (CHAR)'
- A C expression which determines whether the option `-CHAR' takes
- arguments. The value should be the number of arguments that
- option takes-zero, for many options.
-
- By default, this macro is defined as `DEFAULT_SWITCH_TAKES_ARG',
- which handles the standard options properly. You need not define
- `SWITCH_TAKES_ARG' unless you wish to add additional options which
- take arguments. Any redefinition should call
- `DEFAULT_SWITCH_TAKES_ARG' and then check for additional options.
-
-`WORD_SWITCH_TAKES_ARG (NAME)'
- A C expression which determines whether the option `-NAME' takes
- arguments. The value should be the number of arguments that
- option takes-zero, for many options. This macro rather than
- `SWITCH_TAKES_ARG' is used for multi-character option names.
-
- By default, this macro is defined as
- `DEFAULT_WORD_SWITCH_TAKES_ARG', which handles the standard options
- properly. You need not define `WORD_SWITCH_TAKES_ARG' unless you
- wish to add additional options which take arguments. Any
- redefinition should call `DEFAULT_WORD_SWITCH_TAKES_ARG' and then
- check for additional options.
-
-`SWITCHES_NEED_SPACES'
- A string-valued C expression which enumerates the options for which
- the linker needs a space between the option and its argument.
-
- If this macro is not defined, the default value is `""'.
-
-`CPP_SPEC'
- A C string constant that tells the GNU CC driver program options to
- pass to CPP. It can also specify how to translate options you
- give to GNU CC into options for GNU CC to pass to the CPP.
-
- Do not define this macro if it does not need to do anything.
-
-`NO_BUILTIN_SIZE_TYPE'
- If this macro is defined, the preprocessor will not define the
- builtin macro `__SIZE_TYPE__'. The macro `__SIZE_TYPE__' must
- then be defined by `CPP_SPEC' instead.
-
- This should be defined if `SIZE_TYPE' depends on target dependent
- flags which are not accessible to the preprocessor. Otherwise, it
- should not be defined.
-
-`NO_BUILTIN_PTRDIFF_TYPE'
- If this macro is defined, the preprocessor will not define the
- builtin macro `__PTRDIFF_TYPE__'. The macro `__PTRDIFF_TYPE__'
- must then be defined by `CPP_SPEC' instead.
-
- This should be defined if `PTRDIFF_TYPE' depends on target
- dependent flags which are not accessible to the preprocessor.
- Otherwise, it should not be defined.
-
-`SIGNED_CHAR_SPEC'
- A C string constant that tells the GNU CC driver program options to
- pass to CPP. By default, this macro is defined to pass the option
- `-D__CHAR_UNSIGNED__' to CPP if `char' will be treated as
- `unsigned char' by `cc1'.
-
- Do not define this macro unless you need to override the default
- definition.
-
-`CC1_SPEC'
- A C string constant that tells the GNU CC driver program options to
- pass to `cc1'. It can also specify how to translate options you
- give to GNU CC into options for GNU CC to pass to the `cc1'.
-
- Do not define this macro if it does not need to do anything.
-
-`CC1PLUS_SPEC'
- A C string constant that tells the GNU CC driver program options to
- pass to `cc1plus'. It can also specify how to translate options
- you give to GNU CC into options for GNU CC to pass to the
- `cc1plus'.
-
- Do not define this macro if it does not need to do anything.
-
-`ASM_SPEC'
- A C string constant that tells the GNU CC driver program options to
- pass to the assembler. It can also specify how to translate
- options you give to GNU CC into options for GNU CC to pass to the
- assembler. See the file `sun3.h' for an example of this.
-
- Do not define this macro if it does not need to do anything.
-
-`ASM_FINAL_SPEC'
- A C string constant that tells the GNU CC driver program how to
- run any programs which cleanup after the normal assembler.
- Normally, this is not needed. See the file `mips.h' for an
- example of this.
-
- Do not define this macro if it does not need to do anything.
-
-`LINK_SPEC'
- A C string constant that tells the GNU CC driver program options to
- pass to the linker. It can also specify how to translate options
- you give to GNU CC into options for GNU CC to pass to the linker.
-
- Do not define this macro if it does not need to do anything.
-
-`LIB_SPEC'
- Another C string constant used much like `LINK_SPEC'. The
- difference between the two is that `LIB_SPEC' is used at the end
- of the command given to the linker.
-
- If this macro is not defined, a default is provided that loads the
- standard C library from the usual place. See `gcc.c'.
-
-`LIBGCC_SPEC'
- Another C string constant that tells the GNU CC driver program how
- and when to place a reference to `libgcc.a' into the linker
- command line. This constant is placed both before and after the
- value of `LIB_SPEC'.
-
- If this macro is not defined, the GNU CC driver provides a default
- that passes the string `-lgcc' to the linker unless the `-shared'
- option is specified.
-
-`STARTFILE_SPEC'
- Another C string constant used much like `LINK_SPEC'. The
- difference between the two is that `STARTFILE_SPEC' is used at the
- very beginning of the command given to the linker.
-
- If this macro is not defined, a default is provided that loads the
- standard C startup file from the usual place. See `gcc.c'.
-
-`ENDFILE_SPEC'
- Another C string constant used much like `LINK_SPEC'. The
- difference between the two is that `ENDFILE_SPEC' is used at the
- very end of the command given to the linker.
-
- Do not define this macro if it does not need to do anything.
-
-`EXTRA_SPECS'
- Define this macro to provide additional specifications to put in
- the `specs' file that can be used in various specifications like
- `CC1_SPEC'.
-
- The definition should be an initializer for an array of structures,
- containing a string constant, that defines the specification name,
- and a string constant that provides the specification.
-
- Do not define this macro if it does not need to do anything.
-
- `EXTRA_SPECS' is useful when an architecture contains several
- related targets, which have various `..._SPECS' which are similar
- to each other, and the maintainer would like one central place to
- keep these definitions.
-
- For example, the PowerPC System V.4 targets use `EXTRA_SPECS' to
- define either `_CALL_SYSV' when the System V calling sequence is
- used or `_CALL_AIX' when the older AIX-based calling sequence is
- used.
-
- The `config/rs6000/rs6000.h' target file defines:
-
- #define EXTRA_SPECS \
- { "cpp_sysv_default", CPP_SYSV_DEFAULT },
-
- #define CPP_SYS_DEFAULT ""
-
- The `config/rs6000/sysv.h' target file defines:
- #undef CPP_SPEC
- #define CPP_SPEC \
- "%{posix: -D_POSIX_SOURCE } \
- %{mcall-sysv: -D_CALL_SYSV } %{mcall-aix: -D_CALL_AIX } \
- %{!mcall-sysv: %{!mcall-aix: %(cpp_sysv_default) }} \
- %{msoft-float: -D_SOFT_FLOAT} %{mcpu=403: -D_SOFT_FLOAT}"
-
- #undef CPP_SYSV_DEFAULT
- #define CPP_SYSV_DEFAULT "-D_CALL_SYSV"
-
- while the `config/rs6000/eabiaix.h' target file defines
- `CPP_SYSV_DEFAULT' as:
-
- #undef CPP_SYSV_DEFAULT
- #define CPP_SYSV_DEFAULT "-D_CALL_AIX"
-
-`LINK_LIBGCC_SPECIAL'
- Define this macro if the driver program should find the library
- `libgcc.a' itself and should not pass `-L' options to the linker.
- If you do not define this macro, the driver program will pass the
- argument `-lgcc' to tell the linker to do the search and will pass
- `-L' options to it.
-
-`LINK_LIBGCC_SPECIAL_1'
- Define this macro if the driver program should find the library
- `libgcc.a'. If you do not define this macro, the driver program
- will pass the argument `-lgcc' to tell the linker to do the search.
- This macro is similar to `LINK_LIBGCC_SPECIAL', except that it does
- not affect `-L' options.
-
-`MULTILIB_DEFAULTS'
- Define this macro as a C expression for the initializer of an
- array of string to tell the driver program which options are
- defaults for this target and thus do not need to be handled
- specially when using `MULTILIB_OPTIONS'.
-
- Do not define this macro if `MULTILIB_OPTIONS' is not defined in
- the target makefile fragment or if none of the options listed in
- `MULTILIB_OPTIONS' are set by default. *Note Target Fragment::.
-
-`RELATIVE_PREFIX_NOT_LINKDIR'
- Define this macro to tell `gcc' that it should only translate a
- `-B' prefix into a `-L' linker option if the prefix indicates an
- absolute file name.
-
-`STANDARD_EXEC_PREFIX'
- Define this macro as a C string constant if you wish to override
- the standard choice of `/usr/local/lib/gcc-lib/' as the default
- prefix to try when searching for the executable files of the
- compiler.
-
-`MD_EXEC_PREFIX'
- If defined, this macro is an additional prefix to try after
- `STANDARD_EXEC_PREFIX'. `MD_EXEC_PREFIX' is not searched when the
- `-b' option is used, or the compiler is built as a cross compiler.
-
-`STANDARD_STARTFILE_PREFIX'
- Define this macro as a C string constant if you wish to override
- the standard choice of `/usr/local/lib/' as the default prefix to
- try when searching for startup files such as `crt0.o'.
-
-`MD_STARTFILE_PREFIX'
- If defined, this macro supplies an additional prefix to try after
- the standard prefixes. `MD_EXEC_PREFIX' is not searched when the
- `-b' option is used, or when the compiler is built as a cross
- compiler.
-
-`MD_STARTFILE_PREFIX_1'
- If defined, this macro supplies yet another prefix to try after the
- standard prefixes. It is not searched when the `-b' option is
- used, or when the compiler is built as a cross compiler.
-
-`INIT_ENVIRONMENT'
- Define this macro as a C string constant if you wish to set
- environment variables for programs called by the driver, such as
- the assembler and loader. The driver passes the value of this
- macro to `putenv' to initialize the necessary environment
- variables.
-
-`LOCAL_INCLUDE_DIR'
- Define this macro as a C string constant if you wish to override
- the standard choice of `/usr/local/include' as the default prefix
- to try when searching for local header files. `LOCAL_INCLUDE_DIR'
- comes before `SYSTEM_INCLUDE_DIR' in the search order.
-
- Cross compilers do not use this macro and do not search either
- `/usr/local/include' or its replacement.
-
-`SYSTEM_INCLUDE_DIR'
- Define this macro as a C string constant if you wish to specify a
- system-specific directory to search for header files before the
- standard directory. `SYSTEM_INCLUDE_DIR' comes before
- `STANDARD_INCLUDE_DIR' in the search order.
-
- Cross compilers do not use this macro and do not search the
- directory specified.
-
-`STANDARD_INCLUDE_DIR'
- Define this macro as a C string constant if you wish to override
- the standard choice of `/usr/include' as the default prefix to try
- when searching for header files.
-
- Cross compilers do not use this macro and do not search either
- `/usr/include' or its replacement.
-
-`STANDARD_INCLUDE_COMPONENT'
- The "component" corresponding to `STANDARD_INCLUDE_DIR'. See
- `INCLUDE_DEFAULTS', below, for the description of components. If
- you do not define this macro, no component is used.
-
-`INCLUDE_DEFAULTS'
- Define this macro if you wish to override the entire default
- search path for include files. For a native compiler, the default
- search path usually consists of `GCC_INCLUDE_DIR',
- `LOCAL_INCLUDE_DIR', `SYSTEM_INCLUDE_DIR',
- `GPLUSPLUS_INCLUDE_DIR', and `STANDARD_INCLUDE_DIR'. In addition,
- `GPLUSPLUS_INCLUDE_DIR' and `GCC_INCLUDE_DIR' are defined
- automatically by `Makefile', and specify private search areas for
- GCC. The directory `GPLUSPLUS_INCLUDE_DIR' is used only for C++
- programs.
-
- The definition should be an initializer for an array of structures.
- Each array element should have four elements: the directory name (a
- string constant), the component name, and flag for C++-only
- directories, and a flag showing that the includes in the directory
- don't need to be wrapped in `extern `C'' when compiling C++. Mark
- the end of the array with a null element.
-
- The component name denotes what GNU package the include file is
- part of, if any, in all upper-case letters. For example, it might
- be `GCC' or `BINUTILS'. If the package is part of the a
- vendor-supplied operating system, code the component name as `0'.
-
- For example, here is the definition used for VAX/VMS:
-
- #define INCLUDE_DEFAULTS \
- { \
- { "GNU_GXX_INCLUDE:", "G++", 1, 1}, \
- { "GNU_CC_INCLUDE:", "GCC", 0, 0}, \
- { "SYS$SYSROOT:[SYSLIB.]", 0, 0, 0}, \
- { ".", 0, 0, 0}, \
- { 0, 0, 0, 0} \
- }
-
- Here is the order of prefixes tried for exec files:
-
- 1. Any prefixes specified by the user with `-B'.
-
- 2. The environment variable `GCC_EXEC_PREFIX', if any.
-
- 3. The directories specified by the environment variable
- `COMPILER_PATH'.
-
- 4. The macro `STANDARD_EXEC_PREFIX'.
-
- 5. `/usr/lib/gcc/'.
-
- 6. The macro `MD_EXEC_PREFIX', if any.
-
- Here is the order of prefixes tried for startfiles:
-
- 1. Any prefixes specified by the user with `-B'.
-
- 2. The environment variable `GCC_EXEC_PREFIX', if any.
-
- 3. The directories specified by the environment variable
- `LIBRARY_PATH' (native only, cross compilers do not use this).
-
- 4. The macro `STANDARD_EXEC_PREFIX'.
-
- 5. `/usr/lib/gcc/'.
-
- 6. The macro `MD_EXEC_PREFIX', if any.
-
- 7. The macro `MD_STARTFILE_PREFIX', if any.
-
- 8. The macro `STANDARD_STARTFILE_PREFIX'.
-
- 9. `/lib/'.
-
- 10. `/usr/lib/'.
-
-
-File: gcc.info, Node: Run-time Target, Next: Storage Layout, Prev: Driver, Up: Target Macros
-
-Run-time Target Specification
-=============================
-
- Here are run-time target specifications.
-
-`CPP_PREDEFINES'
- Define this to be a string constant containing `-D' options to
- define the predefined macros that identify this machine and system.
- These macros will be predefined unless the `-ansi' option is
- specified.
-
- In addition, a parallel set of macros are predefined, whose names
- are made by appending `__' at the beginning and at the end. These
- `__' macros are permitted by the ANSI standard, so they are
- predefined regardless of whether `-ansi' is specified.
-
- For example, on the Sun, one can use the following value:
-
- "-Dmc68000 -Dsun -Dunix"
-
- The result is to define the macros `__mc68000__', `__sun__' and
- `__unix__' unconditionally, and the macros `mc68000', `sun' and
- `unix' provided `-ansi' is not specified.
-
-`extern int target_flags;'
- This declaration should be present.
-
-`TARGET_...'
- This series of macros is to allow compiler command arguments to
- enable or disable the use of optional features of the target
- machine. For example, one machine description serves both the
- 68000 and the 68020; a command argument tells the compiler whether
- it should use 68020-only instructions or not. This command
- argument works by means of a macro `TARGET_68020' that tests a bit
- in `target_flags'.
-
- Define a macro `TARGET_FEATURENAME' for each such option. Its
- definition should test a bit in `target_flags'; for example:
-
- #define TARGET_68020 (target_flags & 1)
-
- One place where these macros are used is in the
- condition-expressions of instruction patterns. Note how
- `TARGET_68020' appears frequently in the 68000 machine description
- file, `m68k.md'. Another place they are used is in the
- definitions of the other macros in the `MACHINE.h' file.
-
-`TARGET_SWITCHES'
- This macro defines names of command options to set and clear bits
- in `target_flags'. Its definition is an initializer with a
- subgrouping for each command option.
-
- Each subgrouping contains a string constant, that defines the
- option name, and a number, which contains the bits to set in
- `target_flags'. A negative number says to clear bits instead; the
- negative of the number is which bits to clear. The actual option
- name is made by appending `-m' to the specified name.
-
- One of the subgroupings should have a null string. The number in
- this grouping is the default value for `target_flags'. Any target
- options act starting with that value.
-
- Here is an example which defines `-m68000' and `-m68020' with
- opposite meanings, and picks the latter as the default:
-
- #define TARGET_SWITCHES \
- { { "68020", 1}, \
- { "68000", -1}, \
- { "", 1}}
-
-`TARGET_OPTIONS'
- This macro is similar to `TARGET_SWITCHES' but defines names of
- command options that have values. Its definition is an
- initializer with a subgrouping for each command option.
-
- Each subgrouping contains a string constant, that defines the
- fixed part of the option name, and the address of a variable. The
- variable, type `char *', is set to the variable part of the given
- option if the fixed part matches. The actual option name is made
- by appending `-m' to the specified name.
-
- Here is an example which defines `-mshort-data-NUMBER'. If the
- given option is `-mshort-data-512', the variable `m88k_short_data'
- will be set to the string `"512"'.
-
- extern char *m88k_short_data;
- #define TARGET_OPTIONS \
- { { "short-data-", &m88k_short_data } }
-
-`TARGET_VERSION'
- This macro is a C statement to print on `stderr' a string
- describing the particular machine description choice. Every
- machine description should define `TARGET_VERSION'. For example:
-
- #ifdef MOTOROLA
- #define TARGET_VERSION \
- fprintf (stderr, " (68k, Motorola syntax)");
- #else
- #define TARGET_VERSION \
- fprintf (stderr, " (68k, MIT syntax)");
- #endif
-
-`OVERRIDE_OPTIONS'
- Sometimes certain combinations of command options do not make
- sense on a particular target machine. You can define a macro
- `OVERRIDE_OPTIONS' to take account of this. This macro, if
- defined, is executed once just after all the command options have
- been parsed.
-
- Don't use this macro to turn on various extra optimizations for
- `-O'. That is what `OPTIMIZATION_OPTIONS' is for.
-
-`OPTIMIZATION_OPTIONS (LEVEL)'
- Some machines may desire to change what optimizations are
- performed for various optimization levels. This macro, if
- defined, is executed once just after the optimization level is
- determined and before the remainder of the command options have
- been parsed. Values set in this macro are used as the default
- values for the other command line options.
-
- LEVEL is the optimization level specified; 2 if `-O2' is
- specified, 1 if `-O' is specified, and 0 if neither is specified.
-
- You should not use this macro to change options that are not
- machine-specific. These should uniformly selected by the same
- optimization level on all supported machines. Use this macro to
- enable machine-specific optimizations.
-
- *Do not examine `write_symbols' in this macro!* The debugging
- options are not supposed to alter the generated code.
-
-`CAN_DEBUG_WITHOUT_FP'
- Define this macro if debugging can be performed even without a
- frame pointer. If this macro is defined, GNU CC will turn on the
- `-fomit-frame-pointer' option whenever `-O' is specified.
-
-
-File: gcc.info, Node: Storage Layout, Next: Type Layout, Prev: Run-time Target, Up: Target Macros
-
-Storage Layout
-==============
-
- Note that the definitions of the macros in this table which are
-sizes or alignments measured in bits do not need to be constant. They
-can be C expressions that refer to static variables, such as the
-`target_flags'. *Note Run-time Target::.
-
-`BITS_BIG_ENDIAN'
- Define this macro to have the value 1 if the most significant bit
- in a byte has the lowest number; otherwise define it to have the
- value zero. This means that bit-field instructions count from the
- most significant bit. If the machine has no bit-field
- instructions, then this must still be defined, but it doesn't
- matter which value it is defined to. This macro need not be a
- constant.
-
- This macro does not affect the way structure fields are packed into
- bytes or words; that is controlled by `BYTES_BIG_ENDIAN'.
-
-`BYTES_BIG_ENDIAN'
- Define this macro to have the value 1 if the most significant byte
- in a word has the lowest number. This macro need not be a
- constant.
-
-`WORDS_BIG_ENDIAN'
- Define this macro to have the value 1 if, in a multiword object,
- the most significant word has the lowest number. This applies to
- both memory locations and registers; GNU CC fundamentally assumes
- that the order of words in memory is the same as the order in
- registers. This macro need not be a constant.
-
-`LIBGCC2_WORDS_BIG_ENDIAN'
- Define this macro if WORDS_BIG_ENDIAN is not constant. This must
- be a constant value with the same meaning as WORDS_BIG_ENDIAN,
- which will be used only when compiling libgcc2.c. Typically the
- value will be set based on preprocessor defines.
-
-`FLOAT_WORDS_BIG_ENDIAN'
- Define this macro to have the value 1 if `DFmode', `XFmode' or
- `TFmode' floating point numbers are stored in memory with the word
- containing the sign bit at the lowest address; otherwise define it
- to have the value 0. This macro need not be a constant.
-
- You need not define this macro if the ordering is the same as for
- multi-word integers.
-
-`BITS_PER_UNIT'
- Define this macro to be the number of bits in an addressable
- storage unit (byte); normally 8.
-
-`BITS_PER_WORD'
- Number of bits in a word; normally 32.
-
-`MAX_BITS_PER_WORD'
- Maximum number of bits in a word. If this is undefined, the
- default is `BITS_PER_WORD'. Otherwise, it is the constant value
- that is the largest value that `BITS_PER_WORD' can have at
- run-time.
-
-`UNITS_PER_WORD'
- Number of storage units in a word; normally 4.
-
-`MIN_UNITS_PER_WORD'
- Minimum number of units in a word. If this is undefined, the
- default is `UNITS_PER_WORD'. Otherwise, it is the constant value
- that is the smallest value that `UNITS_PER_WORD' can have at
- run-time.
-
-`POINTER_SIZE'
- Width of a pointer, in bits. You must specify a value no wider
- than the width of `Pmode'. If it is not equal to the width of
- `Pmode', you must define `POINTERS_EXTEND_UNSIGNED'.
-
-`POINTERS_EXTEND_UNSIGNED'
- A C expression whose value is nonzero if pointers that need to be
- extended from being `POINTER_SIZE' bits wide to `Pmode' are
- sign-extended and zero if they are zero-extended.
-
- You need not define this macro if the `POINTER_SIZE' is equal to
- the width of `Pmode'.
-
-`PROMOTE_MODE (M, UNSIGNEDP, TYPE)'
- A macro to update M and UNSIGNEDP when an object whose type is
- TYPE and which has the specified mode and signedness is to be
- stored in a register. This macro is only called when TYPE is a
- scalar type.
-
- On most RISC machines, which only have operations that operate on
- a full register, define this macro to set M to `word_mode' if M is
- an integer mode narrower than `BITS_PER_WORD'. In most cases,
- only integer modes should be widened because wider-precision
- floating-point operations are usually more expensive than their
- narrower counterparts.
-
- For most machines, the macro definition does not change UNSIGNEDP.
- However, some machines, have instructions that preferentially
- handle either signed or unsigned quantities of certain modes. For
- example, on the DEC Alpha, 32-bit loads from memory and 32-bit add
- instructions sign-extend the result to 64 bits. On such machines,
- set UNSIGNEDP according to which kind of extension is more
- efficient.
-
- Do not define this macro if it would never modify M.
-
-`PROMOTE_FUNCTION_ARGS'
- Define this macro if the promotion described by `PROMOTE_MODE'
- should also be done for outgoing function arguments.
-
-`PROMOTE_FUNCTION_RETURN'
- Define this macro if the promotion described by `PROMOTE_MODE'
- should also be done for the return value of functions.
-
- If this macro is defined, `FUNCTION_VALUE' must perform the same
- promotions done by `PROMOTE_MODE'.
-
-`PROMOTE_FOR_CALL_ONLY'
- Define this macro if the promotion described by `PROMOTE_MODE'
- should *only* be performed for outgoing function arguments or
- function return values, as specified by `PROMOTE_FUNCTION_ARGS'
- and `PROMOTE_FUNCTION_RETURN', respectively.
-
-`PARM_BOUNDARY'
- Normal alignment required for function parameters on the stack, in
- bits. All stack parameters receive at least this much alignment
- regardless of data type. On most machines, this is the same as the
- size of an integer.
-
-`STACK_BOUNDARY'
- Define this macro if you wish to preserve a certain alignment for
- the stack pointer. The definition is a C expression for the
- desired alignment (measured in bits).
-
- If `PUSH_ROUNDING' is not defined, the stack will always be aligned
- to the specified boundary. If `PUSH_ROUNDING' is defined and
- specifies a less strict alignment than `STACK_BOUNDARY', the stack
- may be momentarily unaligned while pushing arguments.
-
-`FUNCTION_BOUNDARY'
- Alignment required for a function entry point, in bits.
-
-`BIGGEST_ALIGNMENT'
- Biggest alignment that any data type can require on this machine,
- in bits.
-
-`MINIMUM_ATOMIC_ALIGNMENT'
- If defined, the smallest alignment, in bits, that can be given to
- an object that can be referenced in one operation, without
- disturbing any nearby object. Normally, this is `BITS_PER_UNIT',
- but may be larger on machines that don't have byte or half-word
- store operations.
-
-`BIGGEST_FIELD_ALIGNMENT'
- Biggest alignment that any structure field can require on this
- machine, in bits. If defined, this overrides `BIGGEST_ALIGNMENT'
- for structure fields only.
-
-`ADJUST_FIELD_ALIGN (FIELD, COMPUTED)'
- An expression for the alignment of a structure field FIELD if the
- alignment computed in the usual way is COMPUTED. GNU CC uses this
- value instead of the value in `BIGGEST_ALIGNMENT' or
- `BIGGEST_FIELD_ALIGNMENT', if defined, for structure fields only.
-
-`MAX_OFILE_ALIGNMENT'
- Biggest alignment supported by the object file format of this
- machine. Use this macro to limit the alignment which can be
- specified using the `__attribute__ ((aligned (N)))' construct. If
- not defined, the default value is `BIGGEST_ALIGNMENT'.
-
-`DATA_ALIGNMENT (TYPE, BASIC-ALIGN)'
- If defined, a C expression to compute the alignment for a static
- variable. TYPE is the data type, and BASIC-ALIGN is the alignment
- that the object would ordinarily have. The value of this macro is
- used instead of that alignment to align the object.
-
- If this macro is not defined, then BASIC-ALIGN is used.
-
- One use of this macro is to increase alignment of medium-size data
- to make it all fit in fewer cache lines. Another is to cause
- character arrays to be word-aligned so that `strcpy' calls that
- copy constants to character arrays can be done inline.
-
-`CONSTANT_ALIGNMENT (CONSTANT, BASIC-ALIGN)'
- If defined, a C expression to compute the alignment given to a
- constant that is being placed in memory. CONSTANT is the constant
- and BASIC-ALIGN is the alignment that the object would ordinarily
- have. The value of this macro is used instead of that alignment to
- align the object.
-
- If this macro is not defined, then BASIC-ALIGN is used.
-
- The typical use of this macro is to increase alignment for string
- constants to be word aligned so that `strcpy' calls that copy
- constants can be done inline.
-
-`EMPTY_FIELD_BOUNDARY'
- Alignment in bits to be given to a structure bit field that
- follows an empty field such as `int : 0;'.
-
- Note that `PCC_BITFIELD_TYPE_MATTERS' also affects the alignment
- that results from an empty field.
-
-`STRUCTURE_SIZE_BOUNDARY'
- Number of bits which any structure or union's size must be a
- multiple of. Each structure or union's size is rounded up to a
- multiple of this.
-
- If you do not define this macro, the default is the same as
- `BITS_PER_UNIT'.
-
-`STRICT_ALIGNMENT'
- Define this macro to be the value 1 if instructions will fail to
- work if given data not on the nominal alignment. If instructions
- will merely go slower in that case, define this macro as 0.
-
-`PCC_BITFIELD_TYPE_MATTERS'
- Define this if you wish to imitate the way many other C compilers
- handle alignment of bitfields and the structures that contain them.
-
- The behavior is that the type written for a bitfield (`int',
- `short', or other integer type) imposes an alignment for the
- entire structure, as if the structure really did contain an
- ordinary field of that type. In addition, the bitfield is placed
- within the structure so that it would fit within such a field, not
- crossing a boundary for it.
-
- Thus, on most machines, a bitfield whose type is written as `int'
- would not cross a four-byte boundary, and would force four-byte
- alignment for the whole structure. (The alignment used may not be
- four bytes; it is controlled by the other alignment parameters.)
-
- If the macro is defined, its definition should be a C expression;
- a nonzero value for the expression enables this behavior.
-
- Note that if this macro is not defined, or its value is zero, some
- bitfields may cross more than one alignment boundary. The
- compiler can support such references if there are `insv', `extv',
- and `extzv' insns that can directly reference memory.
-
- The other known way of making bitfields work is to define
- `STRUCTURE_SIZE_BOUNDARY' as large as `BIGGEST_ALIGNMENT'. Then
- every structure can be accessed with fullwords.
-
- Unless the machine has bitfield instructions or you define
- `STRUCTURE_SIZE_BOUNDARY' that way, you must define
- `PCC_BITFIELD_TYPE_MATTERS' to have a nonzero value.
-
- If your aim is to make GNU CC use the same conventions for laying
- out bitfields as are used by another compiler, here is how to
- investigate what the other compiler does. Compile and run this
- program:
-
- struct foo1
- {
- char x;
- char :0;
- char y;
- };
-
- struct foo2
- {
- char x;
- int :0;
- char y;
- };
-
- main ()
- {
- printf ("Size of foo1 is %d\n",
- sizeof (struct foo1));
- printf ("Size of foo2 is %d\n",
- sizeof (struct foo2));
- exit (0);
- }
-
- If this prints 2 and 5, then the compiler's behavior is what you
- would get from `PCC_BITFIELD_TYPE_MATTERS'.
-
-`BITFIELD_NBYTES_LIMITED'
- Like PCC_BITFIELD_TYPE_MATTERS except that its effect is limited to
- aligning a bitfield within the structure.
-
-`ROUND_TYPE_SIZE (STRUCT, SIZE, ALIGN)'
- Define this macro as an expression for the overall size of a
- structure (given by STRUCT as a tree node) when the size computed
- from the fields is SIZE and the alignment is ALIGN.
-
- The default is to round SIZE up to a multiple of ALIGN.
-
-`ROUND_TYPE_ALIGN (STRUCT, COMPUTED, SPECIFIED)'
- Define this macro as an expression for the alignment of a structure
- (given by STRUCT as a tree node) if the alignment computed in the
- usual way is COMPUTED and the alignment explicitly specified was
- SPECIFIED.
-
- The default is to use SPECIFIED if it is larger; otherwise, use
- the smaller of COMPUTED and `BIGGEST_ALIGNMENT'
-
-`MAX_FIXED_MODE_SIZE'
- An integer expression for the size in bits of the largest integer
- machine mode that should actually be used. All integer machine
- modes of this size or smaller can be used for structures and
- unions with the appropriate sizes. If this macro is undefined,
- `GET_MODE_BITSIZE (DImode)' is assumed.
-
-`CHECK_FLOAT_VALUE (MODE, VALUE, OVERFLOW)'
- A C statement to validate the value VALUE (of type `double') for
- mode MODE. This means that you check whether VALUE fits within
- the possible range of values for mode MODE on this target machine.
- The mode MODE is always a mode of class `MODE_FLOAT'. OVERFLOW
- is nonzero if the value is already known to be out of range.
-
- If VALUE is not valid or if OVERFLOW is nonzero, you should set
- OVERFLOW to 1 and then assign some valid value to VALUE. Allowing
- an invalid value to go through the compiler can produce incorrect
- assembler code which may even cause Unix assemblers to crash.
-
- This macro need not be defined if there is no work for it to do.
-
-`TARGET_FLOAT_FORMAT'
- A code distinguishing the floating point format of the target
- machine. There are three defined values:
-
- `IEEE_FLOAT_FORMAT'
- This code indicates IEEE floating point. It is the default;
- there is no need to define this macro when the format is IEEE.
-
- `VAX_FLOAT_FORMAT'
- This code indicates the peculiar format used on the Vax.
-
- `UNKNOWN_FLOAT_FORMAT'
- This code indicates any other format.
-
- The value of this macro is compared with `HOST_FLOAT_FORMAT'
- (*note Config::.) to determine whether the target machine has the
- same format as the host machine. If any other formats are
- actually in use on supported machines, new codes should be defined
- for them.
-
- The ordering of the component words of floating point values
- stored in memory is controlled by `FLOAT_WORDS_BIG_ENDIAN' for the
- target machine and `HOST_FLOAT_WORDS_BIG_ENDIAN' for the host.
-
-`DEFAULT_VTABLE_THUNKS'
- GNU CC supports two ways of implementing C++ vtables: traditional
- or with so-called "thunks". The flag `-fvtable-thunk' chooses
- between them. Define this macro to be a C expression for the
- default value of that flag. If `DEFAULT_VTABLE_THUNKS' is 0, GNU
- CC uses the traditional implementation by default. The "thunk"
- implementation is more efficient (especially if you have provided
- an implementation of `ASM_OUTPUT_MI_THUNK', see *Note Function
- Entry::), but is not binary compatible with code compiled using
- the traditional implementation. If you are writing a new ports,
- define `DEFAULT_VTABLE_THUNKS' to 1.
-
- If you do not define this macro, the default for `-fvtable-thunk'
- is 0.
-
-
-File: gcc.info, Node: Type Layout, Next: Registers, Prev: Storage Layout, Up: Target Macros
-
-Layout of Source Language Data Types
-====================================
-
- These macros define the sizes and other characteristics of the
-standard basic data types used in programs being compiled. Unlike the
-macros in the previous section, these apply to specific features of C
-and related languages, rather than to fundamental aspects of storage
-layout.
-
-`INT_TYPE_SIZE'
- A C expression for the size in bits of the type `int' on the
- target machine. If you don't define this, the default is one word.
-
-`MAX_INT_TYPE_SIZE'
- Maximum number for the size in bits of the type `int' on the target
- machine. If this is undefined, the default is `INT_TYPE_SIZE'.
- Otherwise, it is the constant value that is the largest value that
- `INT_TYPE_SIZE' can have at run-time. This is used in `cpp'.
-
-`SHORT_TYPE_SIZE'
- A C expression for the size in bits of the type `short' on the
- target machine. If you don't define this, the default is half a
- word. (If this would be less than one storage unit, it is rounded
- up to one unit.)
-
-`LONG_TYPE_SIZE'
- A C expression for the size in bits of the type `long' on the
- target machine. If you don't define this, the default is one word.
-
-`MAX_LONG_TYPE_SIZE'
- Maximum number for the size in bits of the type `long' on the
- target machine. If this is undefined, the default is
- `LONG_TYPE_SIZE'. Otherwise, it is the constant value that is the
- largest value that `LONG_TYPE_SIZE' can have at run-time. This is
- used in `cpp'.
-
-`LONG_LONG_TYPE_SIZE'
- A C expression for the size in bits of the type `long long' on the
- target machine. If you don't define this, the default is two
- words. If you want to support GNU Ada on your machine, the value
- of macro must be at least 64.
-
-`CHAR_TYPE_SIZE'
- A C expression for the size in bits of the type `char' on the
- target machine. If you don't define this, the default is one
- quarter of a word. (If this would be less than one storage unit,
- it is rounded up to one unit.)
-
-`MAX_CHAR_TYPE_SIZE'
- Maximum number for the size in bits of the type `char' on the
- target machine. If this is undefined, the default is
- `CHAR_TYPE_SIZE'. Otherwise, it is the constant value that is the
- largest value that `CHAR_TYPE_SIZE' can have at run-time. This is
- used in `cpp'.
-
-`FLOAT_TYPE_SIZE'
- A C expression for the size in bits of the type `float' on the
- target machine. If you don't define this, the default is one word.
-
-`DOUBLE_TYPE_SIZE'
- A C expression for the size in bits of the type `double' on the
- target machine. If you don't define this, the default is two
- words.
-
-`LONG_DOUBLE_TYPE_SIZE'
- A C expression for the size in bits of the type `long double' on
- the target machine. If you don't define this, the default is two
- words.
-
-`WIDEST_HARDWARE_FP_SIZE'
- A C expression for the size in bits of the widest floating-point
- format supported by the hardware. If you define this macro, you
- must specify a value less than or equal to the value of
- `LONG_DOUBLE_TYPE_SIZE'. If you do not define this macro, the
- value of `LONG_DOUBLE_TYPE_SIZE' is the default.
-
-`DEFAULT_SIGNED_CHAR'
- An expression whose value is 1 or 0, according to whether the type
- `char' should be signed or unsigned by default. The user can
- always override this default with the options `-fsigned-char' and
- `-funsigned-char'.
-
-`DEFAULT_SHORT_ENUMS'
- A C expression to determine whether to give an `enum' type only as
- many bytes as it takes to represent the range of possible values
- of that type. A nonzero value means to do that; a zero value
- means all `enum' types should be allocated like `int'.
-
- If you don't define the macro, the default is 0.
-
-`SIZE_TYPE'
- A C expression for a string describing the name of the data type
- to use for size values. The typedef name `size_t' is defined
- using the contents of the string.
-
- The string can contain more than one keyword. If so, separate
- them with spaces, and write first any length keyword, then
- `unsigned' if appropriate, and finally `int'. The string must
- exactly match one of the data type names defined in the function
- `init_decl_processing' in the file `c-decl.c'. You may not omit
- `int' or change the order--that would cause the compiler to crash
- on startup.
-
- If you don't define this macro, the default is `"long unsigned
- int"'.
-
-`PTRDIFF_TYPE'
- A C expression for a string describing the name of the data type
- to use for the result of subtracting two pointers. The typedef
- name `ptrdiff_t' is defined using the contents of the string. See
- `SIZE_TYPE' above for more information.
-
- If you don't define this macro, the default is `"long int"'.
-
-`WCHAR_TYPE'
- A C expression for a string describing the name of the data type
- to use for wide characters. The typedef name `wchar_t' is defined
- using the contents of the string. See `SIZE_TYPE' above for more
- information.
-
- If you don't define this macro, the default is `"int"'.
-
-`WCHAR_TYPE_SIZE'
- A C expression for the size in bits of the data type for wide
- characters. This is used in `cpp', which cannot make use of
- `WCHAR_TYPE'.
-
-`MAX_WCHAR_TYPE_SIZE'
- Maximum number for the size in bits of the data type for wide
- characters. If this is undefined, the default is
- `WCHAR_TYPE_SIZE'. Otherwise, it is the constant value that is the
- largest value that `WCHAR_TYPE_SIZE' can have at run-time. This is
- used in `cpp'.
-
-`OBJC_INT_SELECTORS'
- Define this macro if the type of Objective C selectors should be
- `int'.
-
- If this macro is not defined, then selectors should have the type
- `struct objc_selector *'.
-
-`OBJC_SELECTORS_WITHOUT_LABELS'
- Define this macro if the compiler can group all the selectors
- together into a vector and use just one label at the beginning of
- the vector. Otherwise, the compiler must give each selector its
- own assembler label.
-
- On certain machines, it is important to have a separate label for
- each selector because this enables the linker to eliminate
- duplicate selectors.
-
-`TARGET_BELL'
- A C constant expression for the integer value for escape sequence
- `\a'.
-
-`TARGET_BS'
-`TARGET_TAB'
-`TARGET_NEWLINE'
- C constant expressions for the integer values for escape sequences
- `\b', `\t' and `\n'.
-
-`TARGET_VT'
-`TARGET_FF'
-`TARGET_CR'
- C constant expressions for the integer values for escape sequences
- `\v', `\f' and `\r'.
-
diff --git a/gcc/gcc.info-21 b/gcc/gcc.info-21
deleted file mode 100644
index 72ee0b7fa80..00000000000
--- a/gcc/gcc.info-21
+++ /dev/null
@@ -1,1028 +0,0 @@
-This is Info file gcc.info, produced by Makeinfo version 1.68 from the
-input file gcc.texi.
-
- This file documents the use and the internals of the GNU compiler.
-
- Published by the Free Software Foundation 59 Temple Place - Suite 330
-Boston, MA 02111-1307 USA
-
- Copyright (C) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997 Free
-Software Foundation, Inc.
-
- Permission is granted to make and distribute verbatim copies of this
-manual provided the copyright notice and this permission notice are
-preserved on all copies.
-
- Permission is granted to copy and distribute modified versions of
-this manual under the conditions for verbatim copying, provided also
-that the sections entitled "GNU General Public License," "Funding for
-Free Software," and "Protect Your Freedom--Fight `Look And Feel'" are
-included exactly as in the original, and provided that the entire
-resulting derived work is distributed under the terms of a permission
-notice identical to this one.
-
- Permission is granted to copy and distribute translations of this
-manual into another language, under the above conditions for modified
-versions, except that the sections entitled "GNU General Public
-License," "Funding for Free Software," and "Protect Your Freedom--Fight
-`Look And Feel'", and this permission notice, may be included in
-translations approved by the Free Software Foundation instead of in the
-original English.
-
-
-File: gcc.info, Node: Registers, Next: Register Classes, Prev: Type Layout, Up: Target Macros
-
-Register Usage
-==============
-
- This section explains how to describe what registers the target
-machine has, and how (in general) they can be used.
-
- The description of which registers a specific instruction can use is
-done with register classes; see *Note Register Classes::. For
-information on using registers to access a stack frame, see *Note Frame
-Registers::. For passing values in registers, see *Note Register
-Arguments::. For returning values in registers, see *Note Scalar
-Return::.
-
-* Menu:
-
-* Register Basics:: Number and kinds of registers.
-* Allocation Order:: Order in which registers are allocated.
-* Values in Registers:: What kinds of values each reg can hold.
-* Leaf Functions:: Renumbering registers for leaf functions.
-* Stack Registers:: Handling a register stack such as 80387.
-* Obsolete Register Macros:: Macros formerly used for the 80387.
-
-
-File: gcc.info, Node: Register Basics, Next: Allocation Order, Up: Registers
-
-Basic Characteristics of Registers
-----------------------------------
-
- Registers have various characteristics.
-
-`FIRST_PSEUDO_REGISTER'
- Number of hardware registers known to the compiler. They receive
- numbers 0 through `FIRST_PSEUDO_REGISTER-1'; thus, the first
- pseudo register's number really is assigned the number
- `FIRST_PSEUDO_REGISTER'.
-
-`FIXED_REGISTERS'
- An initializer that says which registers are used for fixed
- purposes all throughout the compiled code and are therefore not
- available for general allocation. These would include the stack
- pointer, the frame pointer (except on machines where that can be
- used as a general register when no frame pointer is needed), the
- program counter on machines where that is considered one of the
- addressable registers, and any other numbered register with a
- standard use.
-
- This information is expressed as a sequence of numbers, separated
- by commas and surrounded by braces. The Nth number is 1 if
- register N is fixed, 0 otherwise.
-
- The table initialized from this macro, and the table initialized by
- the following one, may be overridden at run time either
- automatically, by the actions of the macro
- `CONDITIONAL_REGISTER_USAGE', or by the user with the command
- options `-ffixed-REG', `-fcall-used-REG' and `-fcall-saved-REG'.
-
-`CALL_USED_REGISTERS'
- Like `FIXED_REGISTERS' but has 1 for each register that is
- clobbered (in general) by function calls as well as for fixed
- registers. This macro therefore identifies the registers that are
- not available for general allocation of values that must live
- across function calls.
-
- If a register has 0 in `CALL_USED_REGISTERS', the compiler
- automatically saves it on function entry and restores it on
- function exit, if the register is used within the function.
-
-`CONDITIONAL_REGISTER_USAGE'
- Zero or more C statements that may conditionally modify two
- variables `fixed_regs' and `call_used_regs' (both of type `char
- []') after they have been initialized from the two preceding
- macros.
-
- This is necessary in case the fixed or call-clobbered registers
- depend on target flags.
-
- You need not define this macro if it has no work to do.
-
- If the usage of an entire class of registers depends on the target
- flags, you may indicate this to GCC by using this macro to modify
- `fixed_regs' and `call_used_regs' to 1 for each of the registers
- in the classes which should not be used by GCC. Also define the
- macro `REG_CLASS_FROM_LETTER' to return `NO_REGS' if it is called
- with a letter for a class that shouldn't be used.
-
- (However, if this class is not included in `GENERAL_REGS' and all
- of the insn patterns whose constraints permit this class are
- controlled by target switches, then GCC will automatically avoid
- using these registers when the target switches are opposed to
- them.)
-
-`NON_SAVING_SETJMP'
- If this macro is defined and has a nonzero value, it means that
- `setjmp' and related functions fail to save the registers, or that
- `longjmp' fails to restore them. To compensate, the compiler
- avoids putting variables in registers in functions that use
- `setjmp'.
-
-`INCOMING_REGNO (OUT)'
- Define this macro if the target machine has register windows.
- This C expression returns the register number as seen by the
- called function corresponding to the register number OUT as seen
- by the calling function. Return OUT if register number OUT is not
- an outbound register.
-
-`OUTGOING_REGNO (IN)'
- Define this macro if the target machine has register windows.
- This C expression returns the register number as seen by the
- calling function corresponding to the register number IN as seen
- by the called function. Return IN if register number IN is not an
- inbound register.
-
-
-File: gcc.info, Node: Allocation Order, Next: Values in Registers, Prev: Register Basics, Up: Registers
-
-Order of Allocation of Registers
---------------------------------
-
- Registers are allocated in order.
-
-`REG_ALLOC_ORDER'
- If defined, an initializer for a vector of integers, containing the
- numbers of hard registers in the order in which GNU CC should
- prefer to use them (from most preferred to least).
-
- If this macro is not defined, registers are used lowest numbered
- first (all else being equal).
-
- One use of this macro is on machines where the highest numbered
- registers must always be saved and the save-multiple-registers
- instruction supports only sequences of consecutive registers. On
- such machines, define `REG_ALLOC_ORDER' to be an initializer that
- lists the highest numbered allocatable register first.
-
-`ORDER_REGS_FOR_LOCAL_ALLOC'
- A C statement (sans semicolon) to choose the order in which to
- allocate hard registers for pseudo-registers local to a basic
- block.
-
- Store the desired register order in the array `reg_alloc_order'.
- Element 0 should be the register to allocate first; element 1, the
- next register; and so on.
-
- The macro body should not assume anything about the contents of
- `reg_alloc_order' before execution of the macro.
-
- On most machines, it is not necessary to define this macro.
-
-
-File: gcc.info, Node: Values in Registers, Next: Leaf Functions, Prev: Allocation Order, Up: Registers
-
-How Values Fit in Registers
----------------------------
-
- This section discusses the macros that describe which kinds of values
-(specifically, which machine modes) each register can hold, and how many
-consecutive registers are needed for a given mode.
-
-`HARD_REGNO_NREGS (REGNO, MODE)'
- A C expression for the number of consecutive hard registers,
- starting at register number REGNO, required to hold a value of mode
- MODE.
-
- On a machine where all registers are exactly one word, a suitable
- definition of this macro is
-
- #define HARD_REGNO_NREGS(REGNO, MODE) \
- ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) \
- / UNITS_PER_WORD))
-
-`HARD_REGNO_MODE_OK (REGNO, MODE)'
- A C expression that is nonzero if it is permissible to store a
- value of mode MODE in hard register number REGNO (or in several
- registers starting with that one). For a machine where all
- registers are equivalent, a suitable definition is
-
- #define HARD_REGNO_MODE_OK(REGNO, MODE) 1
-
- You need not include code to check for the numbers of fixed
- registers, because the allocation mechanism considers them to be
- always occupied.
-
- On some machines, double-precision values must be kept in even/odd
- register pairs. You can implement that by defining this macro to
- reject odd register numbers for such modes.
-
- The minimum requirement for a mode to be OK in a register is that
- the `movMODE' instruction pattern support moves between the
- register and other hard register in the same class and that moving
- a value into the register and back out not alter it.
-
- Since the same instruction used to move `word_mode' will work for
- all narrower integer modes, it is not necessary on any machine for
- `HARD_REGNO_MODE_OK' to distinguish between these modes, provided
- you define patterns `movhi', etc., to take advantage of this. This
- is useful because of the interaction between `HARD_REGNO_MODE_OK'
- and `MODES_TIEABLE_P'; it is very desirable for all integer modes
- to be tieable.
-
- Many machines have special registers for floating point arithmetic.
- Often people assume that floating point machine modes are allowed
- only in floating point registers. This is not true. Any
- registers that can hold integers can safely *hold* a floating
- point machine mode, whether or not floating arithmetic can be done
- on it in those registers. Integer move instructions can be used
- to move the values.
-
- On some machines, though, the converse is true: fixed-point machine
- modes may not go in floating registers. This is true if the
- floating registers normalize any value stored in them, because
- storing a non-floating value there would garble it. In this case,
- `HARD_REGNO_MODE_OK' should reject fixed-point machine modes in
- floating registers. But if the floating registers do not
- automatically normalize, if you can store any bit pattern in one
- and retrieve it unchanged without a trap, then any machine mode
- may go in a floating register, so you can define this macro to say
- so.
-
- The primary significance of special floating registers is rather
- that they are the registers acceptable in floating point arithmetic
- instructions. However, this is of no concern to
- `HARD_REGNO_MODE_OK'. You handle it by writing the proper
- constraints for those instructions.
-
- On some machines, the floating registers are especially slow to
- access, so that it is better to store a value in a stack frame
- than in such a register if floating point arithmetic is not being
- done. As long as the floating registers are not in class
- `GENERAL_REGS', they will not be used unless some pattern's
- constraint asks for one.
-
-`MODES_TIEABLE_P (MODE1, MODE2)'
- A C expression that is nonzero if a value of mode MODE1 is
- accessable in mode MODE2 without copying.
-
- If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R,
- MODE2)' are always the same for any R, then `MODES_TIEABLE_P
- (MODE1, MODE2)' should be nonzero. If they differ for any R, you
- should define this macro to return zero unless some other
- mechanism ensures the accessability of the value in a narrower
- mode.
-
- You should define this macro to return nonzero in as many cases as
- possible since doing so will allow GNU CC to perform better
- register allocation.
-
-
-File: gcc.info, Node: Leaf Functions, Next: Stack Registers, Prev: Values in Registers, Up: Registers
-
-Handling Leaf Functions
------------------------
-
- On some machines, a leaf function (i.e., one which makes no calls)
-can run more efficiently if it does not make its own register window.
-Often this means it is required to receive its arguments in the
-registers where they are passed by the caller, instead of the registers
-where they would normally arrive.
-
- The special treatment for leaf functions generally applies only when
-other conditions are met; for example, often they may use only those
-registers for its own variables and temporaries. We use the term "leaf
-function" to mean a function that is suitable for this special
-handling, so that functions with no calls are not necessarily "leaf
-functions".
-
- GNU CC assigns register numbers before it knows whether the function
-is suitable for leaf function treatment. So it needs to renumber the
-registers in order to output a leaf function. The following macros
-accomplish this.
-
-`LEAF_REGISTERS'
- A C initializer for a vector, indexed by hard register number,
- which contains 1 for a register that is allowable in a candidate
- for leaf function treatment.
-
- If leaf function treatment involves renumbering the registers,
- then the registers marked here should be the ones before
- renumbering--those that GNU CC would ordinarily allocate. The
- registers which will actually be used in the assembler code, after
- renumbering, should not be marked with 1 in this vector.
-
- Define this macro only if the target machine offers a way to
- optimize the treatment of leaf functions.
-
-`LEAF_REG_REMAP (REGNO)'
- A C expression whose value is the register number to which REGNO
- should be renumbered, when a function is treated as a leaf
- function.
-
- If REGNO is a register number which should not appear in a leaf
- function before renumbering, then the expression should yield -1,
- which will cause the compiler to abort.
-
- Define this macro only if the target machine offers a way to
- optimize the treatment of leaf functions, and registers need to be
- renumbered to do this.
-
- Normally, `FUNCTION_PROLOGUE' and `FUNCTION_EPILOGUE' must treat
-leaf functions specially. It can test the C variable `leaf_function'
-which is nonzero for leaf functions. (The variable `leaf_function' is
-defined only if `LEAF_REGISTERS' is defined.)
-
-
-File: gcc.info, Node: Stack Registers, Next: Obsolete Register Macros, Prev: Leaf Functions, Up: Registers
-
-Registers That Form a Stack
----------------------------
-
- There are special features to handle computers where some of the
-"registers" form a stack, as in the 80387 coprocessor for the 80386.
-Stack registers are normally written by pushing onto the stack, and are
-numbered relative to the top of the stack.
-
- Currently, GNU CC can only handle one group of stack-like registers,
-and they must be consecutively numbered.
-
-`STACK_REGS'
- Define this if the machine has any stack-like registers.
-
-`FIRST_STACK_REG'
- The number of the first stack-like register. This one is the top
- of the stack.
-
-`LAST_STACK_REG'
- The number of the last stack-like register. This one is the
- bottom of the stack.
-
-
-File: gcc.info, Node: Obsolete Register Macros, Prev: Stack Registers, Up: Registers
-
-Obsolete Macros for Controlling Register Usage
-----------------------------------------------
-
- These features do not work very well. They exist because they used
-to be required to generate correct code for the 80387 coprocessor of the
-80386. They are no longer used by that machine description and may be
-removed in a later version of the compiler. Don't use them!
-
-`OVERLAPPING_REGNO_P (REGNO)'
- If defined, this is a C expression whose value is nonzero if hard
- register number REGNO is an overlapping register. This means a
- hard register which overlaps a hard register with a different
- number. (Such overlap is undesirable, but occasionally it allows
- a machine to be supported which otherwise could not be.) This
- macro must return nonzero for *all* the registers which overlap
- each other. GNU CC can use an overlapping register only in
- certain limited ways. It can be used for allocation within a
- basic block, and may be spilled for reloading; that is all.
-
- If this macro is not defined, it means that none of the hard
- registers overlap each other. This is the usual situation.
-
-`INSN_CLOBBERS_REGNO_P (INSN, REGNO)'
- If defined, this is a C expression whose value should be nonzero if
- the insn INSN has the effect of mysteriously clobbering the
- contents of hard register number REGNO. By "mysterious" we mean
- that the insn's RTL expression doesn't describe such an effect.
-
- If this macro is not defined, it means that no insn clobbers
- registers mysteriously. This is the usual situation; all else
- being equal, it is best for the RTL expression to show all the
- activity.
-
-`PRESERVE_DEATH_INFO_REGNO_P (REGNO)'
- If defined, this is a C expression whose value is nonzero if
- correct `REG_DEAD' notes are needed for hard register number REGNO
- after reload.
-
- You would arrange to preserve death info for a register when some
- of the code in the machine description which is executed to write
- the assembler code looks at the death notes. This is necessary
- only when the actual hardware feature which GNU CC thinks of as a
- register is not actually a register of the usual sort. (It might,
- for example, be a hardware stack.)
-
- It is also useful for peepholes and linker relaxation.
-
- If this macro is not defined, it means that no death notes need to
- be preserved, and some may even be incorrect. This is the usual
- situation.
-
-
-File: gcc.info, Node: Register Classes, Next: Stack and Calling, Prev: Registers, Up: Target Macros
-
-Register Classes
-================
-
- On many machines, the numbered registers are not all equivalent.
-For example, certain registers may not be allowed for indexed
-addressing; certain registers may not be allowed in some instructions.
-These machine restrictions are described to the compiler using
-"register classes".
-
- You define a number of register classes, giving each one a name and
-saying which of the registers belong to it. Then you can specify
-register classes that are allowed as operands to particular instruction
-patterns.
-
- In general, each register will belong to several classes. In fact,
-one class must be named `ALL_REGS' and contain all the registers.
-Another class must be named `NO_REGS' and contain no registers. Often
-the union of two classes will be another class; however, this is not
-required.
-
- One of the classes must be named `GENERAL_REGS'. There is nothing
-terribly special about the name, but the operand constraint letters `r'
-and `g' specify this class. If `GENERAL_REGS' is the same as
-`ALL_REGS', just define it as a macro which expands to `ALL_REGS'.
-
- Order the classes so that if class X is contained in class Y then X
-has a lower class number than Y.
-
- The way classes other than `GENERAL_REGS' are specified in operand
-constraints is through machine-dependent operand constraint letters.
-You can define such letters to correspond to various classes, then use
-them in operand constraints.
-
- You should define a class for the union of two classes whenever some
-instruction allows both classes. For example, if an instruction allows
-either a floating point (coprocessor) register or a general register
-for a certain operand, you should define a class `FLOAT_OR_GENERAL_REGS'
-which includes both of them. Otherwise you will get suboptimal code.
-
- You must also specify certain redundant information about the
-register classes: for each class, which classes contain it and which
-ones are contained in it; for each pair of classes, the largest class
-contained in their union.
-
- When a value occupying several consecutive registers is expected in a
-certain class, all the registers used must belong to that class.
-Therefore, register classes cannot be used to enforce a requirement for
-a register pair to start with an even-numbered register. The way to
-specify this requirement is with `HARD_REGNO_MODE_OK'.
-
- Register classes used for input-operands of bitwise-and or shift
-instructions have a special requirement: each such class must have, for
-each fixed-point machine mode, a subclass whose registers can transfer
-that mode to or from memory. For example, on some machines, the
-operations for single-byte values (`QImode') are limited to certain
-registers. When this is so, each register class that is used in a
-bitwise-and or shift instruction must have a subclass consisting of
-registers from which single-byte values can be loaded or stored. This
-is so that `PREFERRED_RELOAD_CLASS' can always have a possible value to
-return.
-
-`enum reg_class'
- An enumeral type that must be defined with all the register class
- names as enumeral values. `NO_REGS' must be first. `ALL_REGS'
- must be the last register class, followed by one more enumeral
- value, `LIM_REG_CLASSES', which is not a register class but rather
- tells how many classes there are.
-
- Each register class has a number, which is the value of casting
- the class name to type `int'. The number serves as an index in
- many of the tables described below.
-
-`N_REG_CLASSES'
- The number of distinct register classes, defined as follows:
-
- #define N_REG_CLASSES (int) LIM_REG_CLASSES
-
-`REG_CLASS_NAMES'
- An initializer containing the names of the register classes as C
- string constants. These names are used in writing some of the
- debugging dumps.
-
-`REG_CLASS_CONTENTS'
- An initializer containing the contents of the register classes, as
- integers which are bit masks. The Nth integer specifies the
- contents of class N. The way the integer MASK is interpreted is
- that register R is in the class if `MASK & (1 << R)' is 1.
-
- When the machine has more than 32 registers, an integer does not
- suffice. Then the integers are replaced by sub-initializers,
- braced groupings containing several integers. Each
- sub-initializer must be suitable as an initializer for the type
- `HARD_REG_SET' which is defined in `hard-reg-set.h'.
-
-`REGNO_REG_CLASS (REGNO)'
- A C expression whose value is a register class containing hard
- register REGNO. In general there is more than one such class;
- choose a class which is "minimal", meaning that no smaller class
- also contains the register.
-
-`BASE_REG_CLASS'
- A macro whose definition is the name of the class to which a valid
- base register must belong. A base register is one used in an
- address which is the register value plus a displacement.
-
-`INDEX_REG_CLASS'
- A macro whose definition is the name of the class to which a valid
- index register must belong. An index register is one used in an
- address where its value is either multiplied by a scale factor or
- added to another register (as well as added to a displacement).
-
-`REG_CLASS_FROM_LETTER (CHAR)'
- A C expression which defines the machine-dependent operand
- constraint letters for register classes. If CHAR is such a
- letter, the value should be the register class corresponding to
- it. Otherwise, the value should be `NO_REGS'. The register
- letter `r', corresponding to class `GENERAL_REGS', will not be
- passed to this macro; you do not need to handle it.
-
-`REGNO_OK_FOR_BASE_P (NUM)'
- A C expression which is nonzero if register number NUM is suitable
- for use as a base register in operand addresses. It may be either
- a suitable hard register or a pseudo register that has been
- allocated such a hard register.
-
-`REGNO_MODE_OK_FOR_BASE_P (NUM, MODE)'
- A C expression that is just like `REGNO_OK_FOR_BASE_P', except that
- that expression may examine the mode of the memory reference in
- MODE. You should define this macro if the mode of the memory
- reference affects whether a register may be used as a base
- register. If you define this macro, the compiler will use it
- instead of `REGNO_OK_FOR_BASE_P'.
-
-`REGNO_OK_FOR_INDEX_P (NUM)'
- A C expression which is nonzero if register number NUM is suitable
- for use as an index register in operand addresses. It may be
- either a suitable hard register or a pseudo register that has been
- allocated such a hard register.
-
- The difference between an index register and a base register is
- that the index register may be scaled. If an address involves the
- sum of two registers, neither one of them scaled, then either one
- may be labeled the "base" and the other the "index"; but whichever
- labeling is used must fit the machine's constraints of which
- registers may serve in each capacity. The compiler will try both
- labelings, looking for one that is valid, and will reload one or
- both registers only if neither labeling works.
-
-`PREFERRED_RELOAD_CLASS (X, CLASS)'
- A C expression that places additional restrictions on the register
- class to use when it is necessary to copy value X into a register
- in class CLASS. The value is a register class; perhaps CLASS, or
- perhaps another, smaller class. On many machines, the following
- definition is safe:
-
- #define PREFERRED_RELOAD_CLASS(X,CLASS) CLASS
-
- Sometimes returning a more restrictive class makes better code.
- For example, on the 68000, when X is an integer constant that is
- in range for a `moveq' instruction, the value of this macro is
- always `DATA_REGS' as long as CLASS includes the data registers.
- Requiring a data register guarantees that a `moveq' will be used.
-
- If X is a `const_double', by returning `NO_REGS' you can force X
- into a memory constant. This is useful on certain machines where
- immediate floating values cannot be loaded into certain kinds of
- registers.
-
-`PREFERRED_OUTPUT_RELOAD_CLASS (X, CLASS)'
- Like `PREFERRED_RELOAD_CLASS', but for output reloads instead of
- input reloads. If you don't define this macro, the default is to
- use CLASS, unchanged.
-
-`LIMIT_RELOAD_CLASS (MODE, CLASS)'
- A C expression that places additional restrictions on the register
- class to use when it is necessary to be able to hold a value of
- mode MODE in a reload register for which class CLASS would
- ordinarily be used.
-
- Unlike `PREFERRED_RELOAD_CLASS', this macro should be used when
- there are certain modes that simply can't go in certain reload
- classes.
-
- The value is a register class; perhaps CLASS, or perhaps another,
- smaller class.
-
- Don't define this macro unless the target machine has limitations
- which require the macro to do something nontrivial.
-
-`SECONDARY_RELOAD_CLASS (CLASS, MODE, X)'
-`SECONDARY_INPUT_RELOAD_CLASS (CLASS, MODE, X)'
-`SECONDARY_OUTPUT_RELOAD_CLASS (CLASS, MODE, X)'
- Many machines have some registers that cannot be copied directly
- to or from memory or even from other types of registers. An
- example is the `MQ' register, which on most machines, can only be
- copied to or from general registers, but not memory. Some
- machines allow copying all registers to and from memory, but
- require a scratch register for stores to some memory locations
- (e.g., those with symbolic address on the RT, and those with
- certain symbolic address on the Sparc when compiling PIC). In
- some cases, both an intermediate and a scratch register are
- required.
-
- You should define these macros to indicate to the reload phase
- that it may need to allocate at least one register for a reload in
- addition to the register to contain the data. Specifically, if
- copying X to a register CLASS in MODE requires an intermediate
- register, you should define `SECONDARY_INPUT_RELOAD_CLASS' to
- return the largest register class all of whose registers can be
- used as intermediate registers or scratch registers.
-
- If copying a register CLASS in MODE to X requires an intermediate
- or scratch register, `SECONDARY_OUTPUT_RELOAD_CLASS' should be
- defined to return the largest register class required. If the
- requirements for input and output reloads are the same, the macro
- `SECONDARY_RELOAD_CLASS' should be used instead of defining both
- macros identically.
-
- The values returned by these macros are often `GENERAL_REGS'.
- Return `NO_REGS' if no spare register is needed; i.e., if X can be
- directly copied to or from a register of CLASS in MODE without
- requiring a scratch register. Do not define this macro if it
- would always return `NO_REGS'.
-
- If a scratch register is required (either with or without an
- intermediate register), you should define patterns for
- `reload_inM' or `reload_outM', as required (*note Standard
- Names::.. These patterns, which will normally be implemented with
- a `define_expand', should be similar to the `movM' patterns,
- except that operand 2 is the scratch register.
-
- Define constraints for the reload register and scratch register
- that contain a single register class. If the original reload
- register (whose class is CLASS) can meet the constraint given in
- the pattern, the value returned by these macros is used for the
- class of the scratch register. Otherwise, two additional reload
- registers are required. Their classes are obtained from the
- constraints in the insn pattern.
-
- X might be a pseudo-register or a `subreg' of a pseudo-register,
- which could either be in a hard register or in memory. Use
- `true_regnum' to find out; it will return -1 if the pseudo is in
- memory and the hard register number if it is in a register.
-
- These macros should not be used in the case where a particular
- class of registers can only be copied to memory and not to another
- class of registers. In that case, secondary reload registers are
- not needed and would not be helpful. Instead, a stack location
- must be used to perform the copy and the `movM' pattern should use
- memory as a intermediate storage. This case often occurs between
- floating-point and general registers.
-
-`SECONDARY_MEMORY_NEEDED (CLASS1, CLASS2, M)'
- Certain machines have the property that some registers cannot be
- copied to some other registers without using memory. Define this
- macro on those machines to be a C expression that is non-zero if
- objects of mode M in registers of CLASS1 can only be copied to
- registers of class CLASS2 by storing a register of CLASS1 into
- memory and loading that memory location into a register of CLASS2.
-
- Do not define this macro if its value would always be zero.
-
-`SECONDARY_MEMORY_NEEDED_RTX (MODE)'
- Normally when `SECONDARY_MEMORY_NEEDED' is defined, the compiler
- allocates a stack slot for a memory location needed for register
- copies. If this macro is defined, the compiler instead uses the
- memory location defined by this macro.
-
- Do not define this macro if you do not define
- `SECONDARY_MEMORY_NEEDED'.
-
-`SECONDARY_MEMORY_NEEDED_MODE (MODE)'
- When the compiler needs a secondary memory location to copy
- between two registers of mode MODE, it normally allocates
- sufficient memory to hold a quantity of `BITS_PER_WORD' bits and
- performs the store and load operations in a mode that many bits
- wide and whose class is the same as that of MODE.
-
- This is right thing to do on most machines because it ensures that
- all bits of the register are copied and prevents accesses to the
- registers in a narrower mode, which some machines prohibit for
- floating-point registers.
-
- However, this default behavior is not correct on some machines,
- such as the DEC Alpha, that store short integers in floating-point
- registers differently than in integer registers. On those
- machines, the default widening will not work correctly and you
- must define this macro to suppress that widening in some cases.
- See the file `alpha.h' for details.
-
- Do not define this macro if you do not define
- `SECONDARY_MEMORY_NEEDED' or if widening MODE to a mode that is
- `BITS_PER_WORD' bits wide is correct for your machine.
-
-`SMALL_REGISTER_CLASSES'
- Normally the compiler avoids choosing registers that have been
- explicitly mentioned in the rtl as spill registers (these
- registers are normally those used to pass parameters and return
- values). However, some machines have so few registers of certain
- classes that there would not be enough registers to use as spill
- registers if this were done.
-
- Define `SMALL_REGISTER_CLASSES' to be an expression with a non-zero
- value on these machines. When this macro has a non-zero value, the
- compiler allows registers explicitly used in the rtl to be used as
- spill registers but avoids extending the lifetime of these
- registers.
-
- It is always safe to define this macro with a non-zero value, but
- if you unnecessarily define it, you will reduce the amount of
- optimizations that can be performed in some cases. If you do not
- define this macro with a non-zero value when it is required, the
- compiler will run out of spill registers and print a fatal error
- message. For most machines, you should not define this macro at
- all.
-
-`CLASS_LIKELY_SPILLED_P (CLASS)'
- A C expression whose value is nonzero if pseudos that have been
- assigned to registers of class CLASS would likely be spilled
- because registers of CLASS are needed for spill registers.
-
- The default value of this macro returns 1 if CLASS has exactly one
- register and zero otherwise. On most machines, this default
- should be used. Only define this macro to some other expression
- if pseudo allocated by `local-alloc.c' end up in memory because
- their hard registers were needed for spill registers. If this
- macro returns nonzero for those classes, those pseudos will only
- be allocated by `global.c', which knows how to reallocate the
- pseudo to another register. If there would not be another
- register available for reallocation, you should not change the
- definition of this macro since the only effect of such a
- definition would be to slow down register allocation.
-
-`CLASS_MAX_NREGS (CLASS, MODE)'
- A C expression for the maximum number of consecutive registers of
- class CLASS needed to hold a value of mode MODE.
-
- This is closely related to the macro `HARD_REGNO_NREGS'. In fact,
- the value of the macro `CLASS_MAX_NREGS (CLASS, MODE)' should be
- the maximum value of `HARD_REGNO_NREGS (REGNO, MODE)' for all
- REGNO values in the class CLASS.
-
- This macro helps control the handling of multiple-word values in
- the reload pass.
-
-`CLASS_CANNOT_CHANGE_SIZE'
- If defined, a C expression for a class that contains registers
- which the compiler must always access in a mode that is the same
- size as the mode in which it loaded the register.
-
- For the example, loading 32-bit integer or floating-point objects
- into floating-point registers on the Alpha extends them to 64-bits.
- Therefore loading a 64-bit object and then storing it as a 32-bit
- object does not store the low-order 32-bits, as would be the case
- for a normal register. Therefore, `alpha.h' defines this macro as
- `FLOAT_REGS'.
-
- Three other special macros describe which operands fit which
-constraint letters.
-
-`CONST_OK_FOR_LETTER_P (VALUE, C)'
- A C expression that defines the machine-dependent operand
- constraint letters that specify particular ranges of integer
- values. If C is one of those letters, the expression should check
- that VALUE, an integer, is in the appropriate range and return 1
- if so, 0 otherwise. If C is not one of those letters, the value
- should be 0 regardless of VALUE.
-
-`CONST_DOUBLE_OK_FOR_LETTER_P (VALUE, C)'
- A C expression that defines the machine-dependent operand
- constraint letters that specify particular ranges of
- `const_double' values.
-
- If C is one of those letters, the expression should check that
- VALUE, an RTX of code `const_double', is in the appropriate range
- and return 1 if so, 0 otherwise. If C is not one of those
- letters, the value should be 0 regardless of VALUE.
-
- `const_double' is used for all floating-point constants and for
- `DImode' fixed-point constants. A given letter can accept either
- or both kinds of values. It can use `GET_MODE' to distinguish
- between these kinds.
-
-`EXTRA_CONSTRAINT (VALUE, C)'
- A C expression that defines the optional machine-dependent
- constraint letters that can be used to segregate specific types of
- operands, usually memory references, for the target machine.
- Normally this macro will not be defined. If it is required for a
- particular target machine, it should return 1 if VALUE corresponds
- to the operand type represented by the constraint letter C. If C
- is not defined as an extra constraint, the value returned should
- be 0 regardless of VALUE.
-
- For example, on the ROMP, load instructions cannot have their
- output in r0 if the memory reference contains a symbolic address.
- Constraint letter `Q' is defined as representing a memory address
- that does *not* contain a symbolic address. An alternative is
- specified with a `Q' constraint on the input and `r' on the
- output. The next alternative specifies `m' on the input and a
- register class that does not include r0 on the output.
-
-
-File: gcc.info, Node: Stack and Calling, Next: Varargs, Prev: Register Classes, Up: Target Macros
-
-Stack Layout and Calling Conventions
-====================================
-
- This describes the stack layout and calling conventions.
-
-* Menu:
-
-* Frame Layout::
-* Stack Checking::
-* Frame Registers::
-* Elimination::
-* Stack Arguments::
-* Register Arguments::
-* Scalar Return::
-* Aggregate Return::
-* Caller Saves::
-* Function Entry::
-* Profiling::
-
-
-File: gcc.info, Node: Frame Layout, Next: Stack Checking, Up: Stack and Calling
-
-Basic Stack Layout
-------------------
-
- Here is the basic stack layout.
-
-`STACK_GROWS_DOWNWARD'
- Define this macro if pushing a word onto the stack moves the stack
- pointer to a smaller address.
-
- When we say, "define this macro if ...," it means that the
- compiler checks this macro only with `#ifdef' so the precise
- definition used does not matter.
-
-`FRAME_GROWS_DOWNWARD'
- Define this macro if the addresses of local variable slots are at
- negative offsets from the frame pointer.
-
-`ARGS_GROW_DOWNWARD'
- Define this macro if successive arguments to a function occupy
- decreasing addresses on the stack.
-
-`STARTING_FRAME_OFFSET'
- Offset from the frame pointer to the first local variable slot to
- be allocated.
-
- If `FRAME_GROWS_DOWNWARD', find the next slot's offset by
- subtracting the first slot's length from `STARTING_FRAME_OFFSET'.
- Otherwise, it is found by adding the length of the first slot to
- the value `STARTING_FRAME_OFFSET'.
-
-`STACK_POINTER_OFFSET'
- Offset from the stack pointer register to the first location at
- which outgoing arguments are placed. If not specified, the
- default value of zero is used. This is the proper value for most
- machines.
-
- If `ARGS_GROW_DOWNWARD', this is the offset to the location above
- the first location at which outgoing arguments are placed.
-
-`FIRST_PARM_OFFSET (FUNDECL)'
- Offset from the argument pointer register to the first argument's
- address. On some machines it may depend on the data type of the
- function.
-
- If `ARGS_GROW_DOWNWARD', this is the offset to the location above
- the first argument's address.
-
-`STACK_DYNAMIC_OFFSET (FUNDECL)'
- Offset from the stack pointer register to an item dynamically
- allocated on the stack, e.g., by `alloca'.
-
- The default value for this macro is `STACK_POINTER_OFFSET' plus the
- length of the outgoing arguments. The default is correct for most
- machines. See `function.c' for details.
-
-`DYNAMIC_CHAIN_ADDRESS (FRAMEADDR)'
- A C expression whose value is RTL representing the address in a
- stack frame where the pointer to the caller's frame is stored.
- Assume that FRAMEADDR is an RTL expression for the address of the
- stack frame itself.
-
- If you don't define this macro, the default is to return the value
- of FRAMEADDR--that is, the stack frame address is also the address
- of the stack word that points to the previous frame.
-
-`SETUP_FRAME_ADDRESSES ()'
- If defined, a C expression that produces the machine-specific code
- to setup the stack so that arbitrary frames can be accessed. For
- example, on the Sparc, we must flush all of the register windows
- to the stack before we can access arbitrary stack frames. This
- macro will seldom need to be defined.
-
-`RETURN_ADDR_RTX (COUNT, FRAMEADDR)'
- A C expression whose value is RTL representing the value of the
- return address for the frame COUNT steps up from the current
- frame, after the prologue. FRAMEADDR is the frame pointer of the
- COUNT frame, or the frame pointer of the COUNT - 1 frame if
- `RETURN_ADDR_IN_PREVIOUS_FRAME' is defined.
-
- The value of the expression must always be the correct address when
- COUNT is zero, but may be `NULL_RTX' if there is not way to
- determine the return address of other frames.
-
-`RETURN_ADDR_IN_PREVIOUS_FRAME'
- Define this if the return address of a particular stack frame is
- accessed from the frame pointer of the previous stack frame.
-
-`INCOMING_RETURN_ADDR_RTX'
- A C expression whose value is RTL representing the location of the
- incoming return address at the beginning of any function, before
- the prologue. This RTL is either a `REG', indicating that the
- return value is saved in `REG', or a `MEM' representing a location
- in the stack.
-
- You only need to define this macro if you want to support call
- frame debugging information like that provided by DWARF 2.
-
-`INCOMING_FRAME_SP_OFFSET'
- A C expression whose value is an integer giving the offset, in
- bytes, from the value of the stack pointer register to the top of
- the stack frame at the beginning of any function, before the
- prologue. The top of the frame is defined to be the value of the
- stack pointer in the previous frame, just before the call
- instruction.
-
- You only need to define this macro if you want to support call
- frame debugging information like that provided by DWARF 2.
-
-
-File: gcc.info, Node: Stack Checking, Next: Frame Registers, Prev: Frame Layout, Up: Stack and Calling
-
-Specifying How Stack Checking is Done
--------------------------------------
-
- GNU CC will check that stack references are within the boundaries of
-the stack, if the `-fstack-check' is specified, in one of three ways:
-
- 1. If the value of the `STACK_CHECK_BUILTIN' macro is nonzero, GNU CC
- will assume that you have arranged for stack checking to be done at
- appropriate places in the configuration files, e.g., in
- `FUNCTION_PROLOGUE'. GNU CC will do not other special processing.
-
- 2. If `STACK_CHECK_BUILTIN' is zero and you defined a named pattern
- called `check_stack' in your `md' file, GNU CC will call that
- pattern with one argument which is the address to compare the stack
- value against. You must arrange for this pattern to report an
- error if the stack pointer is out of range.
-
- 3. If neither of the above are true, GNU CC will generate code to
- periodically "probe" the stack pointer using the values of the
- macros defined below.
-
- Normally, you will use the default values of these macros, so GNU CC
-will use the third approach.
-
-`STACK_CHECK_BUILTIN'
- A nonzero value if stack checking is done by the configuration
- files in a machine-dependent manner. You should define this macro
- if stack checking is require by the ABI of your machine or if you
- would like to have to stack checking in some more efficient way
- than GNU CC's portable approach. The default value of this macro
- is zero.
-
-`STACK_CHECK_PROBE_INTERVAL'
- An integer representing the interval at which GNU CC must generate
- stack probe instructions. You will normally define this macro to
- be no larger than the size of the "guard pages" at the end of a
- stack area. The default value of 4096 is suitable for most
- systems.
-
-`STACK_CHECK_PROBE_LOAD'
- A integer which is nonzero if GNU CC should perform the stack probe
- as a load instruction and zero if GNU CC should use a store
- instruction. The default is zero, which is the most efficient
- choice on most systems.
-
-`STACK_CHECK_PROTECT'
- The number of bytes of stack needed to recover from a stack
- overflow, for languages where such a recovery is supported. The
- default value of 75 words should be adequate for most machines.
-
-`STACK_CHECK_MAX_FRAME_SIZE'
- The maximum size of a stack frame, in bytes. GNU CC will generate
- probe instructions in non-leaf functions to ensure at least this
- many bytes of stack are available. If a stack frame is larger
- than this size, stack checking will not be reliable and GNU CC
- will issue a warning. The default is chosen so that GNU CC only
- generates one instruction on most systems. You should normally
- not change the default value of this macro.
-
-`STACK_CHECK_FIXED_FRAME_SIZE'
- GNU CC uses this value to generate the above warning message. It
- represents the amount of fixed frame used by a function, not
- including space for any callee-saved registers, temporaries and
- user variables. You need only specify an upper bound for this
- amount and will normally use the default of four words.
-
-`STACK_CHECK_MAX_VAR_SIZE'
- The maximum size, in bytes, of an object that GNU CC will place in
- the fixed area of the stack frame when the user specifies
- `-fstack-check'. GNU CC computed the default from the values of
- the above macros and you will normally not need to override that
- default.
-
diff --git a/gcc/gcc.info-22 b/gcc/gcc.info-22
deleted file mode 100644
index 686333944da..00000000000
--- a/gcc/gcc.info-22
+++ /dev/null
@@ -1,961 +0,0 @@
-This is Info file gcc.info, produced by Makeinfo version 1.68 from the
-input file gcc.texi.
-
- This file documents the use and the internals of the GNU compiler.
-
- Published by the Free Software Foundation 59 Temple Place - Suite 330
-Boston, MA 02111-1307 USA
-
- Copyright (C) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997 Free
-Software Foundation, Inc.
-
- Permission is granted to make and distribute verbatim copies of this
-manual provided the copyright notice and this permission notice are
-preserved on all copies.
-
- Permission is granted to copy and distribute modified versions of
-this manual under the conditions for verbatim copying, provided also
-that the sections entitled "GNU General Public License," "Funding for
-Free Software," and "Protect Your Freedom--Fight `Look And Feel'" are
-included exactly as in the original, and provided that the entire
-resulting derived work is distributed under the terms of a permission
-notice identical to this one.
-
- Permission is granted to copy and distribute translations of this
-manual into another language, under the above conditions for modified
-versions, except that the sections entitled "GNU General Public
-License," "Funding for Free Software," and "Protect Your Freedom--Fight
-`Look And Feel'", and this permission notice, may be included in
-translations approved by the Free Software Foundation instead of in the
-original English.
-
-
-File: gcc.info, Node: Frame Registers, Next: Elimination, Prev: Stack Checking, Up: Stack and Calling
-
-Registers That Address the Stack Frame
---------------------------------------
-
- This discusses registers that address the stack frame.
-
-`STACK_POINTER_REGNUM'
- The register number of the stack pointer register, which must also
- be a fixed register according to `FIXED_REGISTERS'. On most
- machines, the hardware determines which register this is.
-
-`FRAME_POINTER_REGNUM'
- The register number of the frame pointer register, which is used to
- access automatic variables in the stack frame. On some machines,
- the hardware determines which register this is. On other
- machines, you can choose any register you wish for this purpose.
-
-`HARD_FRAME_POINTER_REGNUM'
- On some machines the offset between the frame pointer and starting
- offset of the automatic variables is not known until after register
- allocation has been done (for example, because the saved registers
- are between these two locations). On those machines, define
- `FRAME_POINTER_REGNUM' the number of a special, fixed register to
- be used internally until the offset is known, and define
- `HARD_FRAME_POINTER_REGNUM' to be actual the hard register number
- used for the frame pointer.
-
- You should define this macro only in the very rare circumstances
- when it is not possible to calculate the offset between the frame
- pointer and the automatic variables until after register
- allocation has been completed. When this macro is defined, you
- must also indicate in your definition of `ELIMINABLE_REGS' how to
- eliminate `FRAME_POINTER_REGNUM' into either
- `HARD_FRAME_POINTER_REGNUM' or `STACK_POINTER_REGNUM'.
-
- Do not define this macro if it would be the same as
- `FRAME_POINTER_REGNUM'.
-
-`ARG_POINTER_REGNUM'
- The register number of the arg pointer register, which is used to
- access the function's argument list. On some machines, this is
- the same as the frame pointer register. On some machines, the
- hardware determines which register this is. On other machines,
- you can choose any register you wish for this purpose. If this is
- not the same register as the frame pointer register, then you must
- mark it as a fixed register according to `FIXED_REGISTERS', or
- arrange to be able to eliminate it (*note Elimination::.).
-
-`RETURN_ADDRESS_POINTER_REGNUM'
- The register number of the return address pointer register, which
- is used to access the current function's return address from the
- stack. On some machines, the return address is not at a fixed
- offset from the frame pointer or stack pointer or argument
- pointer. This register can be defined to point to the return
- address on the stack, and then be converted by `ELIMINABLE_REGS'
- into either the frame pointer or stack pointer.
-
- Do not define this macro unless there is no other way to get the
- return address from the stack.
-
-`STATIC_CHAIN_REGNUM'
-`STATIC_CHAIN_INCOMING_REGNUM'
- Register numbers used for passing a function's static chain
- pointer. If register windows are used, the register number as
- seen by the called function is `STATIC_CHAIN_INCOMING_REGNUM',
- while the register number as seen by the calling function is
- `STATIC_CHAIN_REGNUM'. If these registers are the same,
- `STATIC_CHAIN_INCOMING_REGNUM' need not be defined.
-
- The static chain register need not be a fixed register.
-
- If the static chain is passed in memory, these macros should not be
- defined; instead, the next two macros should be defined.
-
-`STATIC_CHAIN'
-`STATIC_CHAIN_INCOMING'
- If the static chain is passed in memory, these macros provide rtx
- giving `mem' expressions that denote where they are stored.
- `STATIC_CHAIN' and `STATIC_CHAIN_INCOMING' give the locations as
- seen by the calling and called functions, respectively. Often the
- former will be at an offset from the stack pointer and the latter
- at an offset from the frame pointer.
-
- The variables `stack_pointer_rtx', `frame_pointer_rtx', and
- `arg_pointer_rtx' will have been initialized prior to the use of
- these macros and should be used to refer to those items.
-
- If the static chain is passed in a register, the two previous
- macros should be defined instead.
-
-
-File: gcc.info, Node: Elimination, Next: Stack Arguments, Prev: Frame Registers, Up: Stack and Calling
-
-Eliminating Frame Pointer and Arg Pointer
------------------------------------------
-
- This is about eliminating the frame pointer and arg pointer.
-
-`FRAME_POINTER_REQUIRED'
- A C expression which is nonzero if a function must have and use a
- frame pointer. This expression is evaluated in the reload pass.
- If its value is nonzero the function will have a frame pointer.
-
- The expression can in principle examine the current function and
- decide according to the facts, but on most machines the constant 0
- or the constant 1 suffices. Use 0 when the machine allows code to
- be generated with no frame pointer, and doing so saves some time
- or space. Use 1 when there is no possible advantage to avoiding a
- frame pointer.
-
- In certain cases, the compiler does not know how to produce valid
- code without a frame pointer. The compiler recognizes those cases
- and automatically gives the function a frame pointer regardless of
- what `FRAME_POINTER_REQUIRED' says. You don't need to worry about
- them.
-
- In a function that does not require a frame pointer, the frame
- pointer register can be allocated for ordinary usage, unless you
- mark it as a fixed register. See `FIXED_REGISTERS' for more
- information.
-
-`INITIAL_FRAME_POINTER_OFFSET (DEPTH-VAR)'
- A C statement to store in the variable DEPTH-VAR the difference
- between the frame pointer and the stack pointer values immediately
- after the function prologue. The value would be computed from
- information such as the result of `get_frame_size ()' and the
- tables of registers `regs_ever_live' and `call_used_regs'.
-
- If `ELIMINABLE_REGS' is defined, this macro will be not be used and
- need not be defined. Otherwise, it must be defined even if
- `FRAME_POINTER_REQUIRED' is defined to always be true; in that
- case, you may set DEPTH-VAR to anything.
-
-`ELIMINABLE_REGS'
- If defined, this macro specifies a table of register pairs used to
- eliminate unneeded registers that point into the stack frame. If
- it is not defined, the only elimination attempted by the compiler
- is to replace references to the frame pointer with references to
- the stack pointer.
-
- The definition of this macro is a list of structure
- initializations, each of which specifies an original and
- replacement register.
-
- On some machines, the position of the argument pointer is not
- known until the compilation is completed. In such a case, a
- separate hard register must be used for the argument pointer.
- This register can be eliminated by replacing it with either the
- frame pointer or the argument pointer, depending on whether or not
- the frame pointer has been eliminated.
-
- In this case, you might specify:
- #define ELIMINABLE_REGS \
- {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
- {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
- {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
-
- Note that the elimination of the argument pointer with the stack
- pointer is specified first since that is the preferred elimination.
-
-`CAN_ELIMINATE (FROM-REG, TO-REG)'
- A C expression that returns non-zero if the compiler is allowed to
- try to replace register number FROM-REG with register number
- TO-REG. This macro need only be defined if `ELIMINABLE_REGS' is
- defined, and will usually be the constant 1, since most of the
- cases preventing register elimination are things that the compiler
- already knows about.
-
-`INITIAL_ELIMINATION_OFFSET (FROM-REG, TO-REG, OFFSET-VAR)'
- This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It
- specifies the initial difference between the specified pair of
- registers. This macro must be defined if `ELIMINABLE_REGS' is
- defined.
-
-`LONGJMP_RESTORE_FROM_STACK'
- Define this macro if the `longjmp' function restores registers from
- the stack frames, rather than from those saved specifically by
- `setjmp'. Certain quantities must not be kept in registers across
- a call to `setjmp' on such machines.
-
-
-File: gcc.info, Node: Stack Arguments, Next: Register Arguments, Prev: Elimination, Up: Stack and Calling
-
-Passing Function Arguments on the Stack
----------------------------------------
-
- The macros in this section control how arguments are passed on the
-stack. See the following section for other macros that control passing
-certain arguments in registers.
-
-`PROMOTE_PROTOTYPES'
- Define this macro if an argument declared in a prototype as an
- integral type smaller than `int' should actually be passed as an
- `int'. In addition to avoiding errors in certain cases of
- mismatch, it also makes for better code on certain machines.
-
-`PUSH_ROUNDING (NPUSHED)'
- A C expression that is the number of bytes actually pushed onto the
- stack when an instruction attempts to push NPUSHED bytes.
-
- If the target machine does not have a push instruction, do not
- define this macro. That directs GNU CC to use an alternate
- strategy: to allocate the entire argument block and then store the
- arguments into it.
-
- On some machines, the definition
-
- #define PUSH_ROUNDING(BYTES) (BYTES)
-
- will suffice. But on other machines, instructions that appear to
- push one byte actually push two bytes in an attempt to maintain
- alignment. Then the definition should be
-
- #define PUSH_ROUNDING(BYTES) (((BYTES) + 1) & ~1)
-
-`ACCUMULATE_OUTGOING_ARGS'
- If defined, the maximum amount of space required for outgoing
- arguments will be computed and placed into the variable
- `current_function_outgoing_args_size'. No space will be pushed
- onto the stack for each call; instead, the function prologue should
- increase the stack frame size by this amount.
-
- Defining both `PUSH_ROUNDING' and `ACCUMULATE_OUTGOING_ARGS' is
- not proper.
-
-`REG_PARM_STACK_SPACE (FNDECL)'
- Define this macro if functions should assume that stack space has
- been allocated for arguments even when their values are passed in
- registers.
-
- The value of this macro is the size, in bytes, of the area
- reserved for arguments passed in registers for the function
- represented by FNDECL.
-
- This space can be allocated by the caller, or be a part of the
- machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
- which.
-
-`MAYBE_REG_PARM_STACK_SPACE'
-`FINAL_REG_PARM_STACK_SPACE (CONST_SIZE, VAR_SIZE)'
- Define these macros in addition to the one above if functions might
- allocate stack space for arguments even when their values are
- passed in registers. These should be used when the stack space
- allocated for arguments in registers is not a simple constant
- independent of the function declaration.
-
- The value of the first macro is the size, in bytes, of the area
- that we should initially assume would be reserved for arguments
- passed in registers.
-
- The value of the second macro is the actual size, in bytes, of the
- area that will be reserved for arguments passed in registers.
- This takes two arguments: an integer representing the number of
- bytes of fixed sized arguments on the stack, and a tree
- representing the number of bytes of variable sized arguments on
- the stack.
-
- When these macros are defined, `REG_PARM_STACK_SPACE' will only be
- called for libcall functions, the current function, or for a
- function being called when it is known that such stack space must
- be allocated. In each case this value can be easily computed.
-
- When deciding whether a called function needs such stack space,
- and how much space to reserve, GNU CC uses these two macros
- instead of `REG_PARM_STACK_SPACE'.
-
-`OUTGOING_REG_PARM_STACK_SPACE'
- Define this if it is the responsibility of the caller to allocate
- the area reserved for arguments passed in registers.
-
- If `ACCUMULATE_OUTGOING_ARGS' is defined, this macro controls
- whether the space for these arguments counts in the value of
- `current_function_outgoing_args_size'.
-
-`STACK_PARMS_IN_REG_PARM_AREA'
- Define this macro if `REG_PARM_STACK_SPACE' is defined, but the
- stack parameters don't skip the area specified by it.
-
- Normally, when a parameter is not passed in registers, it is
- placed on the stack beyond the `REG_PARM_STACK_SPACE' area.
- Defining this macro suppresses this behavior and causes the
- parameter to be passed on the stack in its natural location.
-
-`RETURN_POPS_ARGS (FUNDECL, FUNTYPE, STACK-SIZE)'
- A C expression that should indicate the number of bytes of its own
- arguments that a function pops on returning, or 0 if the function
- pops no arguments and the caller must therefore pop them all after
- the function returns.
-
- FUNDECL is a C variable whose value is a tree node that describes
- the function in question. Normally it is a node of type
- `FUNCTION_DECL' that describes the declaration of the function.
- From this you can obtain the DECL_MACHINE_ATTRIBUTES of the
- function.
-
- FUNTYPE is a C variable whose value is a tree node that describes
- the function in question. Normally it is a node of type
- `FUNCTION_TYPE' that describes the data type of the function.
- From this it is possible to obtain the data types of the value and
- arguments (if known).
-
- When a call to a library function is being considered, FUNDECL
- will contain an identifier node for the library function. Thus, if
- you need to distinguish among various library functions, you can
- do so by their names. Note that "library function" in this
- context means a function used to perform arithmetic, whose name is
- known specially in the compiler and was not mentioned in the C
- code being compiled.
-
- STACK-SIZE is the number of bytes of arguments passed on the
- stack. If a variable number of bytes is passed, it is zero, and
- argument popping will always be the responsibility of the calling
- function.
-
- On the Vax, all functions always pop their arguments, so the
- definition of this macro is STACK-SIZE. On the 68000, using the
- standard calling convention, no functions pop their arguments, so
- the value of the macro is always 0 in this case. But an
- alternative calling convention is available in which functions
- that take a fixed number of arguments pop them but other functions
- (such as `printf') pop nothing (the caller pops all). When this
- convention is in use, FUNTYPE is examined to determine whether a
- function takes a fixed number of arguments.
-
-
-File: gcc.info, Node: Register Arguments, Next: Scalar Return, Prev: Stack Arguments, Up: Stack and Calling
-
-Passing Arguments in Registers
-------------------------------
-
- This section describes the macros which let you control how various
-types of arguments are passed in registers or how they are arranged in
-the stack.
-
-`FUNCTION_ARG (CUM, MODE, TYPE, NAMED)'
- A C expression that controls whether a function argument is passed
- in a register, and which register.
-
- The arguments are CUM, which summarizes all the previous
- arguments; MODE, the machine mode of the argument; TYPE, the data
- type of the argument as a tree node or 0 if that is not known
- (which happens for C support library functions); and NAMED, which
- is 1 for an ordinary argument and 0 for nameless arguments that
- correspond to `...' in the called function's prototype.
-
- The value of the expression is usually either a `reg' RTX for the
- hard register in which to pass the argument, or zero to pass the
- argument on the stack.
-
- For machines like the Vax and 68000, where normally all arguments
- are pushed, zero suffices as a definition.
-
- The value of the expression can also be a `parallel' RTX. This is
- used when an argument is passed in multiple locations. The mode
- of the of the `parallel' should be the mode of the entire
- argument. The `parallel' holds any number of `expr_list' pairs;
- each one describes where part of the argument is passed. In each
- `expr_list', the first operand can be either a `reg' RTX for the
- hard register in which to pass this part of the argument, or zero
- to pass the argument on the stack. If this operand is a `reg',
- then the mode indicates how large this part of the argument is.
- The second operand of the `expr_list' is a `const_int' which gives
- the offset in bytes into the entire argument where this part
- starts.
-
- The usual way to make the ANSI library `stdarg.h' work on a machine
- where some arguments are usually passed in registers, is to cause
- nameless arguments to be passed on the stack instead. This is done
- by making `FUNCTION_ARG' return 0 whenever NAMED is 0.
-
- You may use the macro `MUST_PASS_IN_STACK (MODE, TYPE)' in the
- definition of this macro to determine if this argument is of a
- type that must be passed in the stack. If `REG_PARM_STACK_SPACE'
- is not defined and `FUNCTION_ARG' returns non-zero for such an
- argument, the compiler will abort. If `REG_PARM_STACK_SPACE' is
- defined, the argument will be computed in the stack and then
- loaded into a register.
-
-`FUNCTION_INCOMING_ARG (CUM, MODE, TYPE, NAMED)'
- Define this macro if the target machine has "register windows", so
- that the register in which a function sees an arguments is not
- necessarily the same as the one in which the caller passed the
- argument.
-
- For such machines, `FUNCTION_ARG' computes the register in which
- the caller passes the value, and `FUNCTION_INCOMING_ARG' should be
- defined in a similar fashion to tell the function being called
- where the arguments will arrive.
-
- If `FUNCTION_INCOMING_ARG' is not defined, `FUNCTION_ARG' serves
- both purposes.
-
-`FUNCTION_ARG_PARTIAL_NREGS (CUM, MODE, TYPE, NAMED)'
- A C expression for the number of words, at the beginning of an
- argument, must be put in registers. The value must be zero for
- arguments that are passed entirely in registers or that are
- entirely pushed on the stack.
-
- On some machines, certain arguments must be passed partially in
- registers and partially in memory. On these machines, typically
- the first N words of arguments are passed in registers, and the
- rest on the stack. If a multi-word argument (a `double' or a
- structure) crosses that boundary, its first few words must be
- passed in registers and the rest must be pushed. This macro tells
- the compiler when this occurs, and how many of the words should go
- in registers.
-
- `FUNCTION_ARG' for these arguments should return the first
- register to be used by the caller for this argument; likewise
- `FUNCTION_INCOMING_ARG', for the called function.
-
-`FUNCTION_ARG_PASS_BY_REFERENCE (CUM, MODE, TYPE, NAMED)'
- A C expression that indicates when an argument must be passed by
- reference. If nonzero for an argument, a copy of that argument is
- made in memory and a pointer to the argument is passed instead of
- the argument itself. The pointer is passed in whatever way is
- appropriate for passing a pointer to that type.
-
- On machines where `REG_PARM_STACK_SPACE' is not defined, a suitable
- definition of this macro might be
- #define FUNCTION_ARG_PASS_BY_REFERENCE\
- (CUM, MODE, TYPE, NAMED) \
- MUST_PASS_IN_STACK (MODE, TYPE)
-
-`FUNCTION_ARG_CALLEE_COPIES (CUM, MODE, TYPE, NAMED)'
- If defined, a C expression that indicates when it is the called
- function's responsibility to make a copy of arguments passed by
- invisible reference. Normally, the caller makes a copy and passes
- the address of the copy to the routine being called. When
- FUNCTION_ARG_CALLEE_COPIES is defined and is nonzero, the caller
- does not make a copy. Instead, it passes a pointer to the "live"
- value. The called function must not modify this value. If it can
- be determined that the value won't be modified, it need not make a
- copy; otherwise a copy must be made.
-
-`CUMULATIVE_ARGS'
- A C type for declaring a variable that is used as the first
- argument of `FUNCTION_ARG' and other related values. For some
- target machines, the type `int' suffices and can hold the number
- of bytes of argument so far.
-
- There is no need to record in `CUMULATIVE_ARGS' anything about the
- arguments that have been passed on the stack. The compiler has
- other variables to keep track of that. For target machines on
- which all arguments are passed on the stack, there is no need to
- store anything in `CUMULATIVE_ARGS'; however, the data structure
- must exist and should not be empty, so use `int'.
-
-`INIT_CUMULATIVE_ARGS (CUM, FNTYPE, LIBNAME, INDIRECT)'
- A C statement (sans semicolon) for initializing the variable CUM
- for the state at the beginning of the argument list. The variable
- has type `CUMULATIVE_ARGS'. The value of FNTYPE is the tree node
- for the data type of the function which will receive the args, or 0
- if the args are to a compiler support library function. The value
- of INDIRECT is nonzero when processing an indirect call, for
- example a call through a function pointer. The value of INDIRECT
- is zero for a call to an explicitly named function, a library
- function call, or when `INIT_CUMULATIVE_ARGS' is used to find
- arguments for the function being compiled.
-
- When processing a call to a compiler support library function,
- LIBNAME identifies which one. It is a `symbol_ref' rtx which
- contains the name of the function, as a string. LIBNAME is 0 when
- an ordinary C function call is being processed. Thus, each time
- this macro is called, either LIBNAME or FNTYPE is nonzero, but
- never both of them at once.
-
-`INIT_CUMULATIVE_INCOMING_ARGS (CUM, FNTYPE, LIBNAME)'
- Like `INIT_CUMULATIVE_ARGS' but overrides it for the purposes of
- finding the arguments for the function being compiled. If this
- macro is undefined, `INIT_CUMULATIVE_ARGS' is used instead.
-
- The value passed for LIBNAME is always 0, since library routines
- with special calling conventions are never compiled with GNU CC.
- The argument LIBNAME exists for symmetry with
- `INIT_CUMULATIVE_ARGS'.
-
-`FUNCTION_ARG_ADVANCE (CUM, MODE, TYPE, NAMED)'
- A C statement (sans semicolon) to update the summarizer variable
- CUM to advance past an argument in the argument list. The values
- MODE, TYPE and NAMED describe that argument. Once this is done,
- the variable CUM is suitable for analyzing the *following*
- argument with `FUNCTION_ARG', etc.
-
- This macro need not do anything if the argument in question was
- passed on the stack. The compiler knows how to track the amount
- of stack space used for arguments without any special help.
-
-`FUNCTION_ARG_PADDING (MODE, TYPE)'
- If defined, a C expression which determines whether, and in which
- direction, to pad out an argument with extra space. The value
- should be of type `enum direction': either `upward' to pad above
- the argument, `downward' to pad below, or `none' to inhibit
- padding.
-
- The *amount* of padding is always just enough to reach the next
- multiple of `FUNCTION_ARG_BOUNDARY'; this macro does not control
- it.
-
- This macro has a default definition which is right for most
- systems. For little-endian machines, the default is to pad
- upward. For big-endian machines, the default is to pad downward
- for an argument of constant size shorter than an `int', and upward
- otherwise.
-
-`FUNCTION_ARG_BOUNDARY (MODE, TYPE)'
- If defined, a C expression that gives the alignment boundary, in
- bits, of an argument with the specified mode and type. If it is
- not defined, `PARM_BOUNDARY' is used for all arguments.
-
-`FUNCTION_ARG_REGNO_P (REGNO)'
- A C expression that is nonzero if REGNO is the number of a hard
- register in which function arguments are sometimes passed. This
- does *not* include implicit arguments such as the static chain and
- the structure-value address. On many machines, no registers can be
- used for this purpose since all function arguments are pushed on
- the stack.
-
-
-File: gcc.info, Node: Scalar Return, Next: Aggregate Return, Prev: Register Arguments, Up: Stack and Calling
-
-How Scalar Function Values Are Returned
----------------------------------------
-
- This section discusses the macros that control returning scalars as
-values--values that can fit in registers.
-
-`TRADITIONAL_RETURN_FLOAT'
- Define this macro if `-traditional' should not cause functions
- declared to return `float' to convert the value to `double'.
-
-`FUNCTION_VALUE (VALTYPE, FUNC)'
- A C expression to create an RTX representing the place where a
- function returns a value of data type VALTYPE. VALTYPE is a tree
- node representing a data type. Write `TYPE_MODE (VALTYPE)' to get
- the machine mode used to represent that type. On many machines,
- only the mode is relevant. (Actually, on most machines, scalar
- values are returned in the same place regardless of mode).
-
- The value of the expression is usually a `reg' RTX for the hard
- register where the return value is stored. The value can also be a
- `parallel' RTX, if the return value is in multiple places. See
- `FUNCTION_ARG' for an explanation of the `parallel' form.
-
- If `PROMOTE_FUNCTION_RETURN' is defined, you must apply the same
- promotion rules specified in `PROMOTE_MODE' if VALTYPE is a scalar
- type.
-
- If the precise function being called is known, FUNC is a tree node
- (`FUNCTION_DECL') for it; otherwise, FUNC is a null pointer. This
- makes it possible to use a different value-returning convention
- for specific functions when all their calls are known.
-
- `FUNCTION_VALUE' is not used for return vales with aggregate data
- types, because these are returned in another way. See
- `STRUCT_VALUE_REGNUM' and related macros, below.
-
-`FUNCTION_OUTGOING_VALUE (VALTYPE, FUNC)'
- Define this macro if the target machine has "register windows" so
- that the register in which a function returns its value is not the
- same as the one in which the caller sees the value.
-
- For such machines, `FUNCTION_VALUE' computes the register in which
- the caller will see the value. `FUNCTION_OUTGOING_VALUE' should be
- defined in a similar fashion to tell the function where to put the
- value.
-
- If `FUNCTION_OUTGOING_VALUE' is not defined, `FUNCTION_VALUE'
- serves both purposes.
-
- `FUNCTION_OUTGOING_VALUE' is not used for return vales with
- aggregate data types, because these are returned in another way.
- See `STRUCT_VALUE_REGNUM' and related macros, below.
-
-`LIBCALL_VALUE (MODE)'
- A C expression to create an RTX representing the place where a
- library function returns a value of mode MODE. If the precise
- function being called is known, FUNC is a tree node
- (`FUNCTION_DECL') for it; otherwise, FUNC is a null pointer. This
- makes it possible to use a different value-returning convention
- for specific functions when all their calls are known.
-
- Note that "library function" in this context means a compiler
- support routine, used to perform arithmetic, whose name is known
- specially by the compiler and was not mentioned in the C code being
- compiled.
-
- The definition of `LIBRARY_VALUE' need not be concerned aggregate
- data types, because none of the library functions returns such
- types.
-
-`FUNCTION_VALUE_REGNO_P (REGNO)'
- A C expression that is nonzero if REGNO is the number of a hard
- register in which the values of called function may come back.
-
- A register whose use for returning values is limited to serving as
- the second of a pair (for a value of type `double', say) need not
- be recognized by this macro. So for most machines, this definition
- suffices:
-
- #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
-
- If the machine has register windows, so that the caller and the
- called function use different registers for the return value, this
- macro should recognize only the caller's register numbers.
-
-`APPLY_RESULT_SIZE'
- Define this macro if `untyped_call' and `untyped_return' need more
- space than is implied by `FUNCTION_VALUE_REGNO_P' for saving and
- restoring an arbitrary return value.
-
-
-File: gcc.info, Node: Aggregate Return, Next: Caller Saves, Prev: Scalar Return, Up: Stack and Calling
-
-How Large Values Are Returned
------------------------------
-
- When a function value's mode is `BLKmode' (and in some other cases),
-the value is not returned according to `FUNCTION_VALUE' (*note Scalar
-Return::.). Instead, the caller passes the address of a block of
-memory in which the value should be stored. This address is called the
-"structure value address".
-
- This section describes how to control returning structure values in
-memory.
-
-`RETURN_IN_MEMORY (TYPE)'
- A C expression which can inhibit the returning of certain function
- values in registers, based on the type of value. A nonzero value
- says to return the function value in memory, just as large
- structures are always returned. Here TYPE will be a C expression
- of type `tree', representing the data type of the value.
-
- Note that values of mode `BLKmode' must be explicitly handled by
- this macro. Also, the option `-fpcc-struct-return' takes effect
- regardless of this macro. On most systems, it is possible to
- leave the macro undefined; this causes a default definition to be
- used, whose value is the constant 1 for `BLKmode' values, and 0
- otherwise.
-
- Do not use this macro to indicate that structures and unions
- should always be returned in memory. You should instead use
- `DEFAULT_PCC_STRUCT_RETURN' to indicate this.
-
-`DEFAULT_PCC_STRUCT_RETURN'
- Define this macro to be 1 if all structure and union return values
- must be in memory. Since this results in slower code, this should
- be defined only if needed for compatibility with other compilers
- or with an ABI. If you define this macro to be 0, then the
- conventions used for structure and union return values are decided
- by the `RETURN_IN_MEMORY' macro.
-
- If not defined, this defaults to the value 1.
-
-`STRUCT_VALUE_REGNUM'
- If the structure value address is passed in a register, then
- `STRUCT_VALUE_REGNUM' should be the number of that register.
-
-`STRUCT_VALUE'
- If the structure value address is not passed in a register, define
- `STRUCT_VALUE' as an expression returning an RTX for the place
- where the address is passed. If it returns 0, the address is
- passed as an "invisible" first argument.
-
-`STRUCT_VALUE_INCOMING_REGNUM'
- On some architectures the place where the structure value address
- is found by the called function is not the same place that the
- caller put it. This can be due to register windows, or it could
- be because the function prologue moves it to a different place.
-
- If the incoming location of the structure value address is in a
- register, define this macro as the register number.
-
-`STRUCT_VALUE_INCOMING'
- If the incoming location is not a register, then you should define
- `STRUCT_VALUE_INCOMING' as an expression for an RTX for where the
- called function should find the value. If it should find the
- value on the stack, define this to create a `mem' which refers to
- the frame pointer. A definition of 0 means that the address is
- passed as an "invisible" first argument.
-
-`PCC_STATIC_STRUCT_RETURN'
- Define this macro if the usual system convention on the target
- machine for returning structures and unions is for the called
- function to return the address of a static variable containing the
- value.
-
- Do not define this if the usual system convention is for the
- caller to pass an address to the subroutine.
-
- This macro has effect in `-fpcc-struct-return' mode, but it does
- nothing when you use `-freg-struct-return' mode.
-
-
-File: gcc.info, Node: Caller Saves, Next: Function Entry, Prev: Aggregate Return, Up: Stack and Calling
-
-Caller-Saves Register Allocation
---------------------------------
-
- If you enable it, GNU CC can save registers around function calls.
-This makes it possible to use call-clobbered registers to hold
-variables that must live across calls.
-
-`DEFAULT_CALLER_SAVES'
- Define this macro if function calls on the target machine do not
- preserve any registers; in other words, if `CALL_USED_REGISTERS'
- has 1 for all registers. This macro enables `-fcaller-saves' by
- default. Eventually that option will be enabled by default on all
- machines and both the option and this macro will be eliminated.
-
-`CALLER_SAVE_PROFITABLE (REFS, CALLS)'
- A C expression to determine whether it is worthwhile to consider
- placing a pseudo-register in a call-clobbered hard register and
- saving and restoring it around each function call. The expression
- should be 1 when this is worth doing, and 0 otherwise.
-
- If you don't define this macro, a default is used which is good on
- most machines: `4 * CALLS < REFS'.
-
-
-File: gcc.info, Node: Function Entry, Next: Profiling, Prev: Caller Saves, Up: Stack and Calling
-
-Function Entry and Exit
------------------------
-
- This section describes the macros that output function entry
-("prologue") and exit ("epilogue") code.
-
-`FUNCTION_PROLOGUE (FILE, SIZE)'
- A C compound statement that outputs the assembler code for entry
- to a function. The prologue is responsible for setting up the
- stack frame, initializing the frame pointer register, saving
- registers that must be saved, and allocating SIZE additional bytes
- of storage for the local variables. SIZE is an integer. FILE is
- a stdio stream to which the assembler code should be output.
-
- The label for the beginning of the function need not be output by
- this macro. That has already been done when the macro is run.
-
- To determine which registers to save, the macro can refer to the
- array `regs_ever_live': element R is nonzero if hard register R is
- used anywhere within the function. This implies the function
- prologue should save register R, provided it is not one of the
- call-used registers. (`FUNCTION_EPILOGUE' must likewise use
- `regs_ever_live'.)
-
- On machines that have "register windows", the function entry code
- does not save on the stack the registers that are in the windows,
- even if they are supposed to be preserved by function calls;
- instead it takes appropriate steps to "push" the register stack,
- if any non-call-used registers are used in the function.
-
- On machines where functions may or may not have frame-pointers, the
- function entry code must vary accordingly; it must set up the frame
- pointer if one is wanted, and not otherwise. To determine whether
- a frame pointer is in wanted, the macro can refer to the variable
- `frame_pointer_needed'. The variable's value will be 1 at run
- time in a function that needs a frame pointer. *Note
- Elimination::.
-
- The function entry code is responsible for allocating any stack
- space required for the function. This stack space consists of the
- regions listed below. In most cases, these regions are allocated
- in the order listed, with the last listed region closest to the
- top of the stack (the lowest address if `STACK_GROWS_DOWNWARD' is
- defined, and the highest address if it is not defined). You can
- use a different order for a machine if doing so is more convenient
- or required for compatibility reasons. Except in cases where
- required by standard or by a debugger, there is no reason why the
- stack layout used by GCC need agree with that used by other
- compilers for a machine.
-
- * A region of `current_function_pretend_args_size' bytes of
- uninitialized space just underneath the first argument
- arriving on the stack. (This may not be at the very start of
- the allocated stack region if the calling sequence has pushed
- anything else since pushing the stack arguments. But
- usually, on such machines, nothing else has been pushed yet,
- because the function prologue itself does all the pushing.)
- This region is used on machines where an argument may be
- passed partly in registers and partly in memory, and, in some
- cases to support the features in `varargs.h' and `stdargs.h'.
-
- * An area of memory used to save certain registers used by the
- function. The size of this area, which may also include
- space for such things as the return address and pointers to
- previous stack frames, is machine-specific and usually
- depends on which registers have been used in the function.
- Machines with register windows often do not require a save
- area.
-
- * A region of at least SIZE bytes, possibly rounded up to an
- allocation boundary, to contain the local variables of the
- function. On some machines, this region and the save area
- may occur in the opposite order, with the save area closer to
- the top of the stack.
-
- * Optionally, when `ACCUMULATE_OUTGOING_ARGS' is defined, a
- region of `current_function_outgoing_args_size' bytes to be
- used for outgoing argument lists of the function. *Note
- Stack Arguments::.
-
- Normally, it is necessary for the macros `FUNCTION_PROLOGUE' and
- `FUNCTION_EPILOGUE' to treat leaf functions specially. The C
- variable `leaf_function' is nonzero for such a function.
-
-`EXIT_IGNORE_STACK'
- Define this macro as a C expression that is nonzero if the return
- instruction or the function epilogue ignores the value of the stack
- pointer; in other words, if it is safe to delete an instruction to
- adjust the stack pointer before a return from the function.
-
- Note that this macro's value is relevant only for functions for
- which frame pointers are maintained. It is never safe to delete a
- final stack adjustment in a function that has no frame pointer,
- and the compiler knows this regardless of `EXIT_IGNORE_STACK'.
-
-`EPILOGUE_USES (REGNO)'
- Define this macro as a C expression that is nonzero for registers
- are used by the epilogue or the `return' pattern. The stack and
- frame pointer registers are already be assumed to be used as
- needed.
-
-`FUNCTION_EPILOGUE (FILE, SIZE)'
- A C compound statement that outputs the assembler code for exit
- from a function. The epilogue is responsible for restoring the
- saved registers and stack pointer to their values when the
- function was called, and returning control to the caller. This
- macro takes the same arguments as the macro `FUNCTION_PROLOGUE',
- and the registers to restore are determined from `regs_ever_live'
- and `CALL_USED_REGISTERS' in the same way.
-
- On some machines, there is a single instruction that does all the
- work of returning from the function. On these machines, give that
- instruction the name `return' and do not define the macro
- `FUNCTION_EPILOGUE' at all.
-
- Do not define a pattern named `return' if you want the
- `FUNCTION_EPILOGUE' to be used. If you want the target switches
- to control whether return instructions or epilogues are used,
- define a `return' pattern with a validity condition that tests the
- target switches appropriately. If the `return' pattern's validity
- condition is false, epilogues will be used.
-
- On machines where functions may or may not have frame-pointers, the
- function exit code must vary accordingly. Sometimes the code for
- these two cases is completely different. To determine whether a
- frame pointer is wanted, the macro can refer to the variable
- `frame_pointer_needed'. The variable's value will be 1 when
- compiling a function that needs a frame pointer.
-
- Normally, `FUNCTION_PROLOGUE' and `FUNCTION_EPILOGUE' must treat
- leaf functions specially. The C variable `leaf_function' is
- nonzero for such a function. *Note Leaf Functions::.
-
- On some machines, some functions pop their arguments on exit while
- others leave that for the caller to do. For example, the 68020
- when given `-mrtd' pops arguments in functions that take a fixed
- number of arguments.
-
- Your definition of the macro `RETURN_POPS_ARGS' decides which
- functions pop their own arguments. `FUNCTION_EPILOGUE' needs to
- know what was decided. The variable that is called
- `current_function_pops_args' is the number of bytes of its
- arguments that a function should pop. *Note Scalar Return::.
-
-`DELAY_SLOTS_FOR_EPILOGUE'
- Define this macro if the function epilogue contains delay slots to
- which instructions from the rest of the function can be "moved".
- The definition should be a C expression whose value is an integer
- representing the number of delay slots there.
-
-`ELIGIBLE_FOR_EPILOGUE_DELAY (INSN, N)'
- A C expression that returns 1 if INSN can be placed in delay slot
- number N of the epilogue.
-
- The argument N is an integer which identifies the delay slot now
- being considered (since different slots may have different rules of
- eligibility). It is never negative and is always less than the
- number of epilogue delay slots (what `DELAY_SLOTS_FOR_EPILOGUE'
- returns). If you reject a particular insn for a given delay slot,
- in principle, it may be reconsidered for a subsequent delay slot.
- Also, other insns may (at least in principle) be considered for
- the so far unfilled delay slot.
-
- The insns accepted to fill the epilogue delay slots are put in an
- RTL list made with `insn_list' objects, stored in the variable
- `current_function_epilogue_delay_list'. The insn for the first
- delay slot comes first in the list. Your definition of the macro
- `FUNCTION_EPILOGUE' should fill the delay slots by outputting the
- insns in this list, usually by calling `final_scan_insn'.
-
- You need not define this macro if you did not define
- `DELAY_SLOTS_FOR_EPILOGUE'.
-
-`ASM_OUTPUT_MI_THUNK (FILE, THUNK_FNDECL, DELTA, FUNCTION)'
- A C compound statement that outputs the assembler code for a thunk
- function, used to implement C++ virtual function calls with
- multiple inheritance. The thunk acts as a wrapper around a
- virtual function, adjusting the implicit object parameter before
- handing control off to the real function.
-
- First, emit code to add the integer DELTA to the location that
- contains the incoming first argument. Assume that this argument
- contains a pointer, and is the one used to pass the `this' pointer
- in C++. This is the incoming argument *before* the function
- prologue, e.g. `%o0' on a sparc. The addition must preserve the
- values of all other incoming arguments.
-
- After the addition, emit code to jump to FUNCTION, which is a
- `FUNCTION_DECL'. This is a direct pure jump, not a call, and does
- not touch the return address. Hence returning from FUNCTION will
- return to whoever called the current `thunk'.
-
- The effect must be as if FUNCTION had been called directly with
- the adjusted first argument. This macro is responsible for
- emitting all of the code for a thunk function; `FUNCTION_PROLOGUE'
- and `FUNCTION_EPILOGUE' are not invoked.
-
- The THUNK_FNDECL is redundant. (DELTA and FUNCTION have already
- been extracted from it.) It might possibly be useful on some
- targets, but probably not.
-
- If you do not define this macro, the target-independent code in
- the C++ frontend will generate a less efficient heavyweight thunk
- that calls FUNCTION instead of jumping to it. The generic
- approach does not support varargs.
-
diff --git a/gcc/gcc.info-23 b/gcc/gcc.info-23
deleted file mode 100644
index 79c4ab94fdf..00000000000
--- a/gcc/gcc.info-23
+++ /dev/null
@@ -1,972 +0,0 @@
-This is Info file gcc.info, produced by Makeinfo version 1.68 from the
-input file gcc.texi.
-
- This file documents the use and the internals of the GNU compiler.
-
- Published by the Free Software Foundation 59 Temple Place - Suite 330
-Boston, MA 02111-1307 USA
-
- Copyright (C) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997 Free
-Software Foundation, Inc.
-
- Permission is granted to make and distribute verbatim copies of this
-manual provided the copyright notice and this permission notice are
-preserved on all copies.
-
- Permission is granted to copy and distribute modified versions of
-this manual under the conditions for verbatim copying, provided also
-that the sections entitled "GNU General Public License," "Funding for
-Free Software," and "Protect Your Freedom--Fight `Look And Feel'" are
-included exactly as in the original, and provided that the entire
-resulting derived work is distributed under the terms of a permission
-notice identical to this one.
-
- Permission is granted to copy and distribute translations of this
-manual into another language, under the above conditions for modified
-versions, except that the sections entitled "GNU General Public
-License," "Funding for Free Software," and "Protect Your Freedom--Fight
-`Look And Feel'", and this permission notice, may be included in
-translations approved by the Free Software Foundation instead of in the
-original English.
-
-
-File: gcc.info, Node: Profiling, Prev: Function Entry, Up: Stack and Calling
-
-Generating Code for Profiling
------------------------------
-
- These macros will help you generate code for profiling.
-
-`FUNCTION_PROFILER (FILE, LABELNO)'
- A C statement or compound statement to output to FILE some
- assembler code to call the profiling subroutine `mcount'. Before
- calling, the assembler code must load the address of a counter
- variable into a register where `mcount' expects to find the
- address. The name of this variable is `LP' followed by the number
- LABELNO, so you would generate the name using `LP%d' in a
- `fprintf'.
-
- The details of how the address should be passed to `mcount' are
- determined by your operating system environment, not by GNU CC. To
- figure them out, compile a small program for profiling using the
- system's installed C compiler and look at the assembler code that
- results.
-
-`PROFILE_BEFORE_PROLOGUE'
- Define this macro if the code for function profiling should come
- before the function prologue. Normally, the profiling code comes
- after.
-
-`FUNCTION_BLOCK_PROFILER (FILE, LABELNO)'
- A C statement or compound statement to output to FILE some
- assembler code to initialize basic-block profiling for the current
- object module. The global compile flag `profile_block_flag'
- distingishes two profile modes.
-
- `profile_block_flag != 2'
- Output code to call the subroutine `__bb_init_func' once per
- object module, passing it as its sole argument the address of
- a block allocated in the object module.
-
- The name of the block is a local symbol made with this
- statement:
-
- ASM_GENERATE_INTERNAL_LABEL (BUFFER, "LPBX", 0);
-
- Of course, since you are writing the definition of
- `ASM_GENERATE_INTERNAL_LABEL' as well as that of this macro,
- you can take a short cut in the definition of this macro and
- use the name that you know will result.
-
- The first word of this block is a flag which will be nonzero
- if the object module has already been initialized. So test
- this word first, and do not call `__bb_init_func' if the flag
- is nonzero. BLOCK_OR_LABEL contains a unique number which
- may be used to generate a label as a branch destination when
- `__bb_init_func' will not be called.
-
- Described in assembler language, the code to be output looks
- like:
-
- cmp (LPBX0),0
- bne local_label
- parameter1 <- LPBX0
- call __bb_init_func
- local_label:
-
- `profile_block_flag == 2'
- Output code to call the subroutine `__bb_init_trace_func' and
- pass two parameters to it. The first parameter is the same as
- for `__bb_init_func'. The second parameter is the number of
- the first basic block of the function as given by
- BLOCK_OR_LABEL. Note that `__bb_init_trace_func' has to be
- called, even if the object module has been initialized
- already.
-
- Described in assembler language, the code to be output looks
- like:
- parameter1 <- LPBX0
- parameter2 <- BLOCK_OR_LABEL
- call __bb_init_trace_func
-
-`BLOCK_PROFILER (FILE, BLOCKNO)'
- A C statement or compound statement to output to FILE some
- assembler code to increment the count associated with the basic
- block number BLOCKNO. The global compile flag
- `profile_block_flag' distingishes two profile modes.
-
- `profile_block_flag != 2'
- Output code to increment the counter directly. Basic blocks
- are numbered separately from zero within each compilation.
- The count associated with block number BLOCKNO is at index
- BLOCKNO in a vector of words; the name of this array is a
- local symbol made with this statement:
-
- ASM_GENERATE_INTERNAL_LABEL (BUFFER, "LPBX", 2);
-
- Of course, since you are writing the definition of
- `ASM_GENERATE_INTERNAL_LABEL' as well as that of this macro,
- you can take a short cut in the definition of this macro and
- use the name that you know will result.
-
- Described in assembler language, the code to be output looks
- like:
-
- inc (LPBX2+4*BLOCKNO)
-
- `profile_block_flag == 2'
- Output code to initialize the global structure `__bb' and
- call the function `__bb_trace_func', which will increment the
- counter.
-
- `__bb' consists of two words. In the first word, the current
- basic block number, as given by BLOCKNO, has to be stored. In
- the second word, the address of a block allocated in the
- object module has to be stored. The address is given by the
- label created with this statement:
-
- ASM_GENERATE_INTERNAL_LABEL (BUFFER, "LPBX", 0);
-
- Described in assembler language, the code to be output looks
- like:
- move BLOCKNO -> (__bb)
- move LPBX0 -> (__bb+4)
- call __bb_trace_func
-
-`FUNCTION_BLOCK_PROFILER_EXIT (FILE)'
- A C statement or compound statement to output to FILE assembler
- code to call function `__bb_trace_ret'. The assembler code should
- only be output if the global compile flag `profile_block_flag' ==
- 2. This macro has to be used at every place where code for
- returning from a function is generated (e.g. `FUNCTION_EPILOGUE').
- Although you have to write the definition of `FUNCTION_EPILOGUE'
- as well, you have to define this macro to tell the compiler, that
- the proper call to `__bb_trace_ret' is produced.
-
-`MACHINE_STATE_SAVE (ID)'
- A C statement or compound statement to save all registers, which
- may be clobbered by a function call, including condition codes.
- The `asm' statement will be mostly likely needed to handle this
- task. Local labels in the assembler code can be concatenated with
- the string ID, to obtain a unique lable name.
-
- Registers or condition codes clobbered by `FUNCTION_PROLOGUE' or
- `FUNCTION_EPILOGUE' must be saved in the macros
- `FUNCTION_BLOCK_PROFILER', `FUNCTION_BLOCK_PROFILER_EXIT' and
- `BLOCK_PROFILER' prior calling `__bb_init_trace_func',
- `__bb_trace_ret' and `__bb_trace_func' respectively.
-
-`MACHINE_STATE_RESTORE (ID)'
- A C statement or compound statement to restore all registers,
- including condition codes, saved by `MACHINE_STATE_SAVE'.
-
- Registers or condition codes clobbered by `FUNCTION_PROLOGUE' or
- `FUNCTION_EPILOGUE' must be restored in the macros
- `FUNCTION_BLOCK_PROFILER', `FUNCTION_BLOCK_PROFILER_EXIT' and
- `BLOCK_PROFILER' after calling `__bb_init_trace_func',
- `__bb_trace_ret' and `__bb_trace_func' respectively.
-
-`BLOCK_PROFILER_CODE'
- A C function or functions which are needed in the library to
- support block profiling.
-
-
-File: gcc.info, Node: Varargs, Next: Trampolines, Prev: Stack and Calling, Up: Target Macros
-
-Implementing the Varargs Macros
-===============================
-
- GNU CC comes with an implementation of `varargs.h' and `stdarg.h'
-that work without change on machines that pass arguments on the stack.
-Other machines require their own implementations of varargs, and the
-two machine independent header files must have conditionals to include
-it.
-
- ANSI `stdarg.h' differs from traditional `varargs.h' mainly in the
-calling convention for `va_start'. The traditional implementation
-takes just one argument, which is the variable in which to store the
-argument pointer. The ANSI implementation of `va_start' takes an
-additional second argument. The user is supposed to write the last
-named argument of the function here.
-
- However, `va_start' should not use this argument. The way to find
-the end of the named arguments is with the built-in functions described
-below.
-
-`__builtin_saveregs ()'
- Use this built-in function to save the argument registers in
- memory so that the varargs mechanism can access them. Both ANSI
- and traditional versions of `va_start' must use
- `__builtin_saveregs', unless you use `SETUP_INCOMING_VARARGS' (see
- below) instead.
-
- On some machines, `__builtin_saveregs' is open-coded under the
- control of the macro `EXPAND_BUILTIN_SAVEREGS'. On other machines,
- it calls a routine written in assembler language, found in
- `libgcc2.c'.
-
- Code generated for the call to `__builtin_saveregs' appears at the
- beginning of the function, as opposed to where the call to
- `__builtin_saveregs' is written, regardless of what the code is.
- This is because the registers must be saved before the function
- starts to use them for its own purposes.
-
-`__builtin_args_info (CATEGORY)'
- Use this built-in function to find the first anonymous arguments in
- registers.
-
- In general, a machine may have several categories of registers
- used for arguments, each for a particular category of data types.
- (For example, on some machines, floating-point registers are used
- for floating-point arguments while other arguments are passed in
- the general registers.) To make non-varargs functions use the
- proper calling convention, you have defined the `CUMULATIVE_ARGS'
- data type to record how many registers in each category have been
- used so far
-
- `__builtin_args_info' accesses the same data structure of type
- `CUMULATIVE_ARGS' after the ordinary argument layout is finished
- with it, with CATEGORY specifying which word to access. Thus, the
- value indicates the first unused register in a given category.
-
- Normally, you would use `__builtin_args_info' in the implementation
- of `va_start', accessing each category just once and storing the
- value in the `va_list' object. This is because `va_list' will
- have to update the values, and there is no way to alter the values
- accessed by `__builtin_args_info'.
-
-`__builtin_next_arg (LASTARG)'
- This is the equivalent of `__builtin_args_info', for stack
- arguments. It returns the address of the first anonymous stack
- argument, as type `void *'. If `ARGS_GROW_DOWNWARD', it returns
- the address of the location above the first anonymous stack
- argument. Use it in `va_start' to initialize the pointer for
- fetching arguments from the stack. Also use it in `va_start' to
- verify that the second parameter LASTARG is the last named argument
- of the current function.
-
-`__builtin_classify_type (OBJECT)'
- Since each machine has its own conventions for which data types are
- passed in which kind of register, your implementation of `va_arg'
- has to embody these conventions. The easiest way to categorize the
- specified data type is to use `__builtin_classify_type' together
- with `sizeof' and `__alignof__'.
-
- `__builtin_classify_type' ignores the value of OBJECT, considering
- only its data type. It returns an integer describing what kind of
- type that is--integer, floating, pointer, structure, and so on.
-
- The file `typeclass.h' defines an enumeration that you can use to
- interpret the values of `__builtin_classify_type'.
-
- These machine description macros help implement varargs:
-
-`EXPAND_BUILTIN_SAVEREGS (ARGS)'
- If defined, is a C expression that produces the machine-specific
- code for a call to `__builtin_saveregs'. This code will be moved
- to the very beginning of the function, before any parameter access
- are made. The return value of this function should be an RTX that
- contains the value to use as the return of `__builtin_saveregs'.
-
- The argument ARGS is a `tree_list' containing the arguments that
- were passed to `__builtin_saveregs'.
-
- If this macro is not defined, the compiler will output an ordinary
- call to the library function `__builtin_saveregs'.
-
-`SETUP_INCOMING_VARARGS (ARGS_SO_FAR, MODE, TYPE,'
- PRETEND_ARGS_SIZE, SECOND_TIME) This macro offers an alternative
- to using `__builtin_saveregs' and defining the macro
- `EXPAND_BUILTIN_SAVEREGS'. Use it to store the anonymous register
- arguments into the stack so that all the arguments appear to have
- been passed consecutively on the stack. Once this is done, you
- can use the standard implementation of varargs that works for
- machines that pass all their arguments on the stack.
-
- The argument ARGS_SO_FAR is the `CUMULATIVE_ARGS' data structure,
- containing the values that obtain after processing of the named
- arguments. The arguments MODE and TYPE describe the last named
- argument--its machine mode and its data type as a tree node.
-
- The macro implementation should do two things: first, push onto the
- stack all the argument registers *not* used for the named
- arguments, and second, store the size of the data thus pushed into
- the `int'-valued variable whose name is supplied as the argument
- PRETEND_ARGS_SIZE. The value that you store here will serve as
- additional offset for setting up the stack frame.
-
- Because you must generate code to push the anonymous arguments at
- compile time without knowing their data types,
- `SETUP_INCOMING_VARARGS' is only useful on machines that have just
- a single category of argument register and use it uniformly for
- all data types.
-
- If the argument SECOND_TIME is nonzero, it means that the
- arguments of the function are being analyzed for the second time.
- This happens for an inline function, which is not actually
- compiled until the end of the source file. The macro
- `SETUP_INCOMING_VARARGS' should not generate any instructions in
- this case.
-
-`STRICT_ARGUMENT_NAMING'
- Define this macro if the location where a function argument is
- passed depends on whether or not it is a named argument.
-
- This macro controls how the NAMED argument to `FUNCTION_ARG' is
- set for varargs and stdarg functions. With this macro defined,
- the NAMED argument is always true for named arguments, and false
- for unnamed arguments. If this is not defined, but
- `SETUP_INCOMING_VARARGS' is defined, then all arguments are
- treated as named. Otherwise, all named arguments except the last
- are treated as named.
-
-
-File: gcc.info, Node: Trampolines, Next: Library Calls, Prev: Varargs, Up: Target Macros
-
-Trampolines for Nested Functions
-================================
-
- A "trampoline" is a small piece of code that is created at run time
-when the address of a nested function is taken. It normally resides on
-the stack, in the stack frame of the containing function. These macros
-tell GNU CC how to generate code to allocate and initialize a
-trampoline.
-
- The instructions in the trampoline must do two things: load a
-constant address into the static chain register, and jump to the real
-address of the nested function. On CISC machines such as the m68k,
-this requires two instructions, a move immediate and a jump. Then the
-two addresses exist in the trampoline as word-long immediate operands.
-On RISC machines, it is often necessary to load each address into a
-register in two parts. Then pieces of each address form separate
-immediate operands.
-
- The code generated to initialize the trampoline must store the
-variable parts--the static chain value and the function address--into
-the immediate operands of the instructions. On a CISC machine, this is
-simply a matter of copying each address to a memory reference at the
-proper offset from the start of the trampoline. On a RISC machine, it
-may be necessary to take out pieces of the address and store them
-separately.
-
-`TRAMPOLINE_TEMPLATE (FILE)'
- A C statement to output, on the stream FILE, assembler code for a
- block of data that contains the constant parts of a trampoline.
- This code should not include a label--the label is taken care of
- automatically.
-
- If you do not define this macro, it means no template is needed
- for the target. Do not define this macro on systems where the
- block move code to copy the trampoline into place would be larger
- than the code to generate it on the spot.
-
-`TRAMPOLINE_SECTION'
- The name of a subroutine to switch to the section in which the
- trampoline template is to be placed (*note Sections::.). The
- default is a value of `readonly_data_section', which places the
- trampoline in the section containing read-only data.
-
-`TRAMPOLINE_SIZE'
- A C expression for the size in bytes of the trampoline, as an
- integer.
-
-`TRAMPOLINE_ALIGNMENT'
- Alignment required for trampolines, in bits.
-
- If you don't define this macro, the value of `BIGGEST_ALIGNMENT'
- is used for aligning trampolines.
-
-`INITIALIZE_TRAMPOLINE (ADDR, FNADDR, STATIC_CHAIN)'
- A C statement to initialize the variable parts of a trampoline.
- ADDR is an RTX for the address of the trampoline; FNADDR is an RTX
- for the address of the nested function; STATIC_CHAIN is an RTX for
- the static chain value that should be passed to the function when
- it is called.
-
-`ALLOCATE_TRAMPOLINE (FP)'
- A C expression to allocate run-time space for a trampoline. The
- expression value should be an RTX representing a memory reference
- to the space for the trampoline.
-
- If this macro is not defined, by default the trampoline is
- allocated as a stack slot. This default is right for most
- machines. The exceptions are machines where it is impossible to
- execute instructions in the stack area. On such machines, you may
- have to implement a separate stack, using this macro in
- conjunction with `FUNCTION_PROLOGUE' and `FUNCTION_EPILOGUE'.
-
- FP points to a data structure, a `struct function', which
- describes the compilation status of the immediate containing
- function of the function which the trampoline is for. Normally
- (when `ALLOCATE_TRAMPOLINE' is not defined), the stack slot for the
- trampoline is in the stack frame of this containing function.
- Other allocation strategies probably must do something analogous
- with this information.
-
- Implementing trampolines is difficult on many machines because they
-have separate instruction and data caches. Writing into a stack
-location fails to clear the memory in the instruction cache, so when
-the program jumps to that location, it executes the old contents.
-
- Here are two possible solutions. One is to clear the relevant parts
-of the instruction cache whenever a trampoline is set up. The other is
-to make all trampolines identical, by having them jump to a standard
-subroutine. The former technique makes trampoline execution faster; the
-latter makes initialization faster.
-
- To clear the instruction cache when a trampoline is initialized,
-define the following macros which describe the shape of the cache.
-
-`INSN_CACHE_SIZE'
- The total size in bytes of the cache.
-
-`INSN_CACHE_LINE_WIDTH'
- The length in bytes of each cache line. The cache is divided into
- cache lines which are disjoint slots, each holding a contiguous
- chunk of data fetched from memory. Each time data is brought into
- the cache, an entire line is read at once. The data loaded into a
- cache line is always aligned on a boundary equal to the line size.
-
-`INSN_CACHE_DEPTH'
- The number of alternative cache lines that can hold any particular
- memory location.
-
- Alternatively, if the machine has system calls or instructions to
-clear the instruction cache directly, you can define the following
-macro.
-
-`CLEAR_INSN_CACHE (BEG, END)'
- If defined, expands to a C expression clearing the *instruction
- cache* in the specified interval. If it is not defined, and the
- macro INSN_CACHE_SIZE is defined, some generic code is generated
- to clear the cache. The definition of this macro would typically
- be a series of `asm' statements. Both BEG and END are both pointer
- expressions.
-
- To use a standard subroutine, define the following macro. In
-addition, you must make sure that the instructions in a trampoline fill
-an entire cache line with identical instructions, or else ensure that
-the beginning of the trampoline code is always aligned at the same
-point in its cache line. Look in `m68k.h' as a guide.
-
-`TRANSFER_FROM_TRAMPOLINE'
- Define this macro if trampolines need a special subroutine to do
- their work. The macro should expand to a series of `asm'
- statements which will be compiled with GNU CC. They go in a
- library function named `__transfer_from_trampoline'.
-
- If you need to avoid executing the ordinary prologue code of a
- compiled C function when you jump to the subroutine, you can do so
- by placing a special label of your own in the assembler code. Use
- one `asm' statement to generate an assembler label, and another to
- make the label global. Then trampolines can use that label to
- jump directly to your special assembler code.
-
-
-File: gcc.info, Node: Library Calls, Next: Addressing Modes, Prev: Trampolines, Up: Target Macros
-
-Implicit Calls to Library Routines
-==================================
-
- Here is an explanation of implicit calls to library routines.
-
-`MULSI3_LIBCALL'
- A C string constant giving the name of the function to call for
- multiplication of one signed full-word by another. If you do not
- define this macro, the default name is used, which is `__mulsi3',
- a function defined in `libgcc.a'.
-
-`DIVSI3_LIBCALL'
- A C string constant giving the name of the function to call for
- division of one signed full-word by another. If you do not define
- this macro, the default name is used, which is `__divsi3', a
- function defined in `libgcc.a'.
-
-`UDIVSI3_LIBCALL'
- A C string constant giving the name of the function to call for
- division of one unsigned full-word by another. If you do not
- define this macro, the default name is used, which is `__udivsi3',
- a function defined in `libgcc.a'.
-
-`MODSI3_LIBCALL'
- A C string constant giving the name of the function to call for the
- remainder in division of one signed full-word by another. If you
- do not define this macro, the default name is used, which is
- `__modsi3', a function defined in `libgcc.a'.
-
-`UMODSI3_LIBCALL'
- A C string constant giving the name of the function to call for the
- remainder in division of one unsigned full-word by another. If
- you do not define this macro, the default name is used, which is
- `__umodsi3', a function defined in `libgcc.a'.
-
-`MULDI3_LIBCALL'
- A C string constant giving the name of the function to call for
- multiplication of one signed double-word by another. If you do not
- define this macro, the default name is used, which is `__muldi3',
- a function defined in `libgcc.a'.
-
-`DIVDI3_LIBCALL'
- A C string constant giving the name of the function to call for
- division of one signed double-word by another. If you do not
- define this macro, the default name is used, which is `__divdi3', a
- function defined in `libgcc.a'.
-
-`UDIVDI3_LIBCALL'
- A C string constant giving the name of the function to call for
- division of one unsigned full-word by another. If you do not
- define this macro, the default name is used, which is `__udivdi3',
- a function defined in `libgcc.a'.
-
-`MODDI3_LIBCALL'
- A C string constant giving the name of the function to call for the
- remainder in division of one signed double-word by another. If
- you do not define this macro, the default name is used, which is
- `__moddi3', a function defined in `libgcc.a'.
-
-`UMODDI3_LIBCALL'
- A C string constant giving the name of the function to call for the
- remainder in division of one unsigned full-word by another. If
- you do not define this macro, the default name is used, which is
- `__umoddi3', a function defined in `libgcc.a'.
-
-`INIT_TARGET_OPTABS'
- Define this macro as a C statement that declares additional library
- routines renames existing ones. `init_optabs' calls this macro
- after initializing all the normal library routines.
-
-`TARGET_EDOM'
- The value of `EDOM' on the target machine, as a C integer constant
- expression. If you don't define this macro, GNU CC does not
- attempt to deposit the value of `EDOM' into `errno' directly.
- Look in `/usr/include/errno.h' to find the value of `EDOM' on your
- system.
-
- If you do not define `TARGET_EDOM', then compiled code reports
- domain errors by calling the library function and letting it
- report the error. If mathematical functions on your system use
- `matherr' when there is an error, then you should leave
- `TARGET_EDOM' undefined so that `matherr' is used normally.
-
-`GEN_ERRNO_RTX'
- Define this macro as a C expression to create an rtl expression
- that refers to the global "variable" `errno'. (On certain systems,
- `errno' may not actually be a variable.) If you don't define this
- macro, a reasonable default is used.
-
-`TARGET_MEM_FUNCTIONS'
- Define this macro if GNU CC should generate calls to the System V
- (and ANSI C) library functions `memcpy' and `memset' rather than
- the BSD functions `bcopy' and `bzero'.
-
-`LIBGCC_NEEDS_DOUBLE'
- Define this macro if only `float' arguments cannot be passed to
- library routines (so they must be converted to `double'). This
- macro affects both how library calls are generated and how the
- library routines in `libgcc1.c' accept their arguments. It is
- useful on machines where floating and fixed point arguments are
- passed differently, such as the i860.
-
-`FLOAT_ARG_TYPE'
- Define this macro to override the type used by the library
- routines to pick up arguments of type `float'. (By default, they
- use a union of `float' and `int'.)
-
- The obvious choice would be `float'--but that won't work with
- traditional C compilers that expect all arguments declared as
- `float' to arrive as `double'. To avoid this conversion, the
- library routines ask for the value as some other type and then
- treat it as a `float'.
-
- On some systems, no other type will work for this. For these
- systems, you must use `LIBGCC_NEEDS_DOUBLE' instead, to force
- conversion of the values `double' before they are passed.
-
-`FLOATIFY (PASSED-VALUE)'
- Define this macro to override the way library routines redesignate
- a `float' argument as a `float' instead of the type it was passed
- as. The default is an expression which takes the `float' field of
- the union.
-
-`FLOAT_VALUE_TYPE'
- Define this macro to override the type used by the library
- routines to return values that ought to have type `float'. (By
- default, they use `int'.)
-
- The obvious choice would be `float'--but that won't work with
- traditional C compilers gratuitously convert values declared as
- `float' into `double'.
-
-`INTIFY (FLOAT-VALUE)'
- Define this macro to override the way the value of a
- `float'-returning library routine should be packaged in order to
- return it. These functions are actually declared to return type
- `FLOAT_VALUE_TYPE' (normally `int').
-
- These values can't be returned as type `float' because traditional
- C compilers would gratuitously convert the value to a `double'.
-
- A local variable named `intify' is always available when the macro
- `INTIFY' is used. It is a union of a `float' field named `f' and
- a field named `i' whose type is `FLOAT_VALUE_TYPE' or `int'.
-
- If you don't define this macro, the default definition works by
- copying the value through that union.
-
-`nongcc_SI_type'
- Define this macro as the name of the data type corresponding to
- `SImode' in the system's own C compiler.
-
- You need not define this macro if that type is `long int', as it
- usually is.
-
-`nongcc_word_type'
- Define this macro as the name of the data type corresponding to the
- word_mode in the system's own C compiler.
-
- You need not define this macro if that type is `long int', as it
- usually is.
-
-`perform_...'
- Define these macros to supply explicit C statements to carry out
- various arithmetic operations on types `float' and `double' in the
- library routines in `libgcc1.c'. See that file for a full list of
- these macros and their arguments.
-
- On most machines, you don't need to define any of these macros,
- because the C compiler that comes with the system takes care of
- doing them.
-
-`NEXT_OBJC_RUNTIME'
- Define this macro to generate code for Objective C message sending
- using the calling convention of the NeXT system. This calling
- convention involves passing the object, the selector and the
- method arguments all at once to the method-lookup library function.
-
- The default calling convention passes just the object and the
- selector to the lookup function, which returns a pointer to the
- method.
-
-
-File: gcc.info, Node: Addressing Modes, Next: Condition Code, Prev: Library Calls, Up: Target Macros
-
-Addressing Modes
-================
-
- This is about addressing modes.
-
-`HAVE_POST_INCREMENT'
- Define this macro if the machine supports post-increment
- addressing.
-
-`HAVE_PRE_INCREMENT'
-`HAVE_POST_DECREMENT'
-`HAVE_PRE_DECREMENT'
- Similar for other kinds of addressing.
-
-`CONSTANT_ADDRESS_P (X)'
- A C expression that is 1 if the RTX X is a constant which is a
- valid address. On most machines, this can be defined as
- `CONSTANT_P (X)', but a few machines are more restrictive in which
- constant addresses are supported.
-
- `CONSTANT_P' accepts integer-values expressions whose values are
- not explicitly known, such as `symbol_ref', `label_ref', and
- `high' expressions and `const' arithmetic expressions, in addition
- to `const_int' and `const_double' expressions.
-
-`MAX_REGS_PER_ADDRESS'
- A number, the maximum number of registers that can appear in a
- valid memory address. Note that it is up to you to specify a
- value equal to the maximum number that `GO_IF_LEGITIMATE_ADDRESS'
- would ever accept.
-
-`GO_IF_LEGITIMATE_ADDRESS (MODE, X, LABEL)'
- A C compound statement with a conditional `goto LABEL;' executed
- if X (an RTX) is a legitimate memory address on the target machine
- for a memory operand of mode MODE.
-
- It usually pays to define several simpler macros to serve as
- subroutines for this one. Otherwise it may be too complicated to
- understand.
-
- This macro must exist in two variants: a strict variant and a
- non-strict one. The strict variant is used in the reload pass. It
- must be defined so that any pseudo-register that has not been
- allocated a hard register is considered a memory reference. In
- contexts where some kind of register is required, a pseudo-register
- with no hard register must be rejected.
-
- The non-strict variant is used in other passes. It must be
- defined to accept all pseudo-registers in every context where some
- kind of register is required.
-
- Compiler source files that want to use the strict variant of this
- macro define the macro `REG_OK_STRICT'. You should use an `#ifdef
- REG_OK_STRICT' conditional to define the strict variant in that
- case and the non-strict variant otherwise.
-
- Subroutines to check for acceptable registers for various purposes
- (one for base registers, one for index registers, and so on) are
- typically among the subroutines used to define
- `GO_IF_LEGITIMATE_ADDRESS'. Then only these subroutine macros
- need have two variants; the higher levels of macros may be the
- same whether strict or not.
-
- Normally, constant addresses which are the sum of a `symbol_ref'
- and an integer are stored inside a `const' RTX to mark them as
- constant. Therefore, there is no need to recognize such sums
- specifically as legitimate addresses. Normally you would simply
- recognize any `const' as legitimate.
-
- Usually `PRINT_OPERAND_ADDRESS' is not prepared to handle constant
- sums that are not marked with `const'. It assumes that a naked
- `plus' indicates indexing. If so, then you *must* reject such
- naked constant sums as illegitimate addresses, so that none of
- them will be given to `PRINT_OPERAND_ADDRESS'.
-
- On some machines, whether a symbolic address is legitimate depends
- on the section that the address refers to. On these machines,
- define the macro `ENCODE_SECTION_INFO' to store the information
- into the `symbol_ref', and then check for it here. When you see a
- `const', you will have to look inside it to find the `symbol_ref'
- in order to determine the section. *Note Assembler Format::.
-
- The best way to modify the name string is by adding text to the
- beginning, with suitable punctuation to prevent any ambiguity.
- Allocate the new name in `saveable_obstack'. You will have to
- modify `ASM_OUTPUT_LABELREF' to remove and decode the added text
- and output the name accordingly, and define `STRIP_NAME_ENCODING'
- to access the original name string.
-
- You can check the information stored here into the `symbol_ref' in
- the definitions of the macros `GO_IF_LEGITIMATE_ADDRESS' and
- `PRINT_OPERAND_ADDRESS'.
-
-`REG_OK_FOR_BASE_P (X)'
- A C expression that is nonzero if X (assumed to be a `reg' RTX) is
- valid for use as a base register. For hard registers, it should
- always accept those which the hardware permits and reject the
- others. Whether the macro accepts or rejects pseudo registers
- must be controlled by `REG_OK_STRICT' as described above. This
- usually requires two variant definitions, of which `REG_OK_STRICT'
- controls the one actually used.
-
-`REG_MODE_OK_FOR_BASE_P (X, MODE)'
- A C expression that is just like `REG_OK_FOR_BASE_P', except that
- that expression may examine the mode of the memory reference in
- MODE. You should define this macro if the mode of the memory
- reference affects whether a register may be used as a base
- register. If you define this macro, the compiler will use it
- instead of `REG_OK_FOR_BASE_P'.
-
-`REG_OK_FOR_INDEX_P (X)'
- A C expression that is nonzero if X (assumed to be a `reg' RTX) is
- valid for use as an index register.
-
- The difference between an index register and a base register is
- that the index register may be scaled. If an address involves the
- sum of two registers, neither one of them scaled, then either one
- may be labeled the "base" and the other the "index"; but whichever
- labeling is used must fit the machine's constraints of which
- registers may serve in each capacity. The compiler will try both
- labelings, looking for one that is valid, and will reload one or
- both registers only if neither labeling works.
-
-`LEGITIMIZE_ADDRESS (X, OLDX, MODE, WIN)'
- A C compound statement that attempts to replace X with a valid
- memory address for an operand of mode MODE. WIN will be a C
- statement label elsewhere in the code; the macro definition may use
-
- GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN);
-
- to avoid further processing if the address has become legitimate.
-
- X will always be the result of a call to `break_out_memory_refs',
- and OLDX will be the operand that was given to that function to
- produce X.
-
- The code generated by this macro should not alter the substructure
- of X. If it transforms X into a more legitimate form, it should
- assign X (which will always be a C variable) a new value.
-
- It is not necessary for this macro to come up with a legitimate
- address. The compiler has standard ways of doing so in all cases.
- In fact, it is safe for this macro to do nothing. But often a
- machine-dependent strategy can generate better code.
-
-`GO_IF_MODE_DEPENDENT_ADDRESS (ADDR, LABEL)'
- A C statement or compound statement with a conditional `goto
- LABEL;' executed if memory address X (an RTX) can have different
- meanings depending on the machine mode of the memory reference it
- is used for or if the address is valid for some modes but not
- others.
-
- Autoincrement and autodecrement addresses typically have
- mode-dependent effects because the amount of the increment or
- decrement is the size of the operand being addressed. Some
- machines have other mode-dependent addresses. Many RISC machines
- have no mode-dependent addresses.
-
- You may assume that ADDR is a valid address for the machine.
-
-`LEGITIMATE_CONSTANT_P (X)'
- A C expression that is nonzero if X is a legitimate constant for
- an immediate operand on the target machine. You can assume that X
- satisfies `CONSTANT_P', so you need not check this. In fact, `1'
- is a suitable definition for this macro on machines where anything
- `CONSTANT_P' is valid.
-
-
-File: gcc.info, Node: Condition Code, Next: Costs, Prev: Addressing Modes, Up: Target Macros
-
-Condition Code Status
-=====================
-
- This describes the condition code status.
-
- The file `conditions.h' defines a variable `cc_status' to describe
-how the condition code was computed (in case the interpretation of the
-condition code depends on the instruction that it was set by). This
-variable contains the RTL expressions on which the condition code is
-currently based, and several standard flags.
-
- Sometimes additional machine-specific flags must be defined in the
-machine description header file. It can also add additional
-machine-specific information by defining `CC_STATUS_MDEP'.
-
-`CC_STATUS_MDEP'
- C code for a data type which is used for declaring the `mdep'
- component of `cc_status'. It defaults to `int'.
-
- This macro is not used on machines that do not use `cc0'.
-
-`CC_STATUS_MDEP_INIT'
- A C expression to initialize the `mdep' field to "empty". The
- default definition does nothing, since most machines don't use the
- field anyway. If you want to use the field, you should probably
- define this macro to initialize it.
-
- This macro is not used on machines that do not use `cc0'.
-
-`NOTICE_UPDATE_CC (EXP, INSN)'
- A C compound statement to set the components of `cc_status'
- appropriately for an insn INSN whose body is EXP. It is this
- macro's responsibility to recognize insns that set the condition
- code as a byproduct of other activity as well as those that
- explicitly set `(cc0)'.
-
- This macro is not used on machines that do not use `cc0'.
-
- If there are insns that do not set the condition code but do alter
- other machine registers, this macro must check to see whether they
- invalidate the expressions that the condition code is recorded as
- reflecting. For example, on the 68000, insns that store in address
- registers do not set the condition code, which means that usually
- `NOTICE_UPDATE_CC' can leave `cc_status' unaltered for such insns.
- But suppose that the previous insn set the condition code based
- on location `a4@(102)' and the current insn stores a new value in
- `a4'. Although the condition code is not changed by this, it will
- no longer be true that it reflects the contents of `a4@(102)'.
- Therefore, `NOTICE_UPDATE_CC' must alter `cc_status' in this case
- to say that nothing is known about the condition code value.
-
- The definition of `NOTICE_UPDATE_CC' must be prepared to deal with
- the results of peephole optimization: insns whose patterns are
- `parallel' RTXs containing various `reg', `mem' or constants which
- are just the operands. The RTL structure of these insns is not
- sufficient to indicate what the insns actually do. What
- `NOTICE_UPDATE_CC' should do when it sees one is just to run
- `CC_STATUS_INIT'.
-
- A possible definition of `NOTICE_UPDATE_CC' is to call a function
- that looks at an attribute (*note Insn Attributes::.) named, for
- example, `cc'. This avoids having detailed information about
- patterns in two places, the `md' file and in `NOTICE_UPDATE_CC'.
-
-`EXTRA_CC_MODES'
- A list of names to be used for additional modes for condition code
- values in registers (*note Jump Patterns::.). These names are
- added to `enum machine_mode' and all have class `MODE_CC'. By
- convention, they should start with `CC' and end with `mode'.
-
- You should only define this macro if your machine does not use
- `cc0' and only if additional modes are required.
-
-`EXTRA_CC_NAMES'
- A list of C strings giving the names for the modes listed in
- `EXTRA_CC_MODES'. For example, the Sparc defines this macro and
- `EXTRA_CC_MODES' as
-
- #define EXTRA_CC_MODES CC_NOOVmode, CCFPmode, CCFPEmode
- #define EXTRA_CC_NAMES "CC_NOOV", "CCFP", "CCFPE"
-
- This macro is not required if `EXTRA_CC_MODES' is not defined.
-
-`SELECT_CC_MODE (OP, X, Y)'
- Returns a mode from class `MODE_CC' to be used when comparison
- operation code OP is applied to rtx X and Y. For example, on the
- Sparc, `SELECT_CC_MODE' is defined as (see *note Jump Patterns::.
- for a description of the reason for this definition)
-
- #define SELECT_CC_MODE(OP,X,Y) \
- (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
- ? ((OP == EQ || OP == NE) ? CCFPmode : CCFPEmode) \
- : ((GET_CODE (X) == PLUS || GET_CODE (X) == MINUS \
- || GET_CODE (X) == NEG) \
- ? CC_NOOVmode : CCmode))
-
- You need not define this macro if `EXTRA_CC_MODES' is not defined.
-
-`CANONICALIZE_COMPARISON (CODE, OP0, OP1)'
- One some machines not all possible comparisons are defined, but
- you can convert an invalid comparison into a valid one. For
- example, the Alpha does not have a `GT' comparison, but you can
- use an `LT' comparison instead and swap the order of the operands.
-
- On such machines, define this macro to be a C statement to do any
- required conversions. CODE is the initial comparison code and OP0
- and OP1 are the left and right operands of the comparison,
- respectively. You should modify CODE, OP0, and OP1 as required.
-
- GNU CC will not assume that the comparison resulting from this
- macro is valid but will see if the resulting insn matches a
- pattern in the `md' file.
-
- You need not define this macro if it would never change the
- comparison code or operands.
-
-`REVERSIBLE_CC_MODE (MODE)'
- A C expression whose value is one if it is always safe to reverse a
- comparison whose mode is MODE. If `SELECT_CC_MODE' can ever
- return MODE for a floating-point inequality comparison, then
- `REVERSIBLE_CC_MODE (MODE)' must be zero.
-
- You need not define this macro if it would always returns zero or
- if the floating-point format is anything other than
- `IEEE_FLOAT_FORMAT'. For example, here is the definition used on
- the Sparc, where floating-point inequality comparisons are always
- given `CCFPEmode':
-
- #define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode)
-
diff --git a/gcc/gcc.info-24 b/gcc/gcc.info-24
deleted file mode 100644
index f33b78f422e..00000000000
--- a/gcc/gcc.info-24
+++ /dev/null
@@ -1,1043 +0,0 @@
-This is Info file gcc.info, produced by Makeinfo version 1.68 from the
-input file gcc.texi.
-
- This file documents the use and the internals of the GNU compiler.
-
- Published by the Free Software Foundation 59 Temple Place - Suite 330
-Boston, MA 02111-1307 USA
-
- Copyright (C) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997 Free
-Software Foundation, Inc.
-
- Permission is granted to make and distribute verbatim copies of this
-manual provided the copyright notice and this permission notice are
-preserved on all copies.
-
- Permission is granted to copy and distribute modified versions of
-this manual under the conditions for verbatim copying, provided also
-that the sections entitled "GNU General Public License," "Funding for
-Free Software," and "Protect Your Freedom--Fight `Look And Feel'" are
-included exactly as in the original, and provided that the entire
-resulting derived work is distributed under the terms of a permission
-notice identical to this one.
-
- Permission is granted to copy and distribute translations of this
-manual into another language, under the above conditions for modified
-versions, except that the sections entitled "GNU General Public
-License," "Funding for Free Software," and "Protect Your Freedom--Fight
-`Look And Feel'", and this permission notice, may be included in
-translations approved by the Free Software Foundation instead of in the
-original English.
-
-
-File: gcc.info, Node: Costs, Next: Sections, Prev: Condition Code, Up: Target Macros
-
-Describing Relative Costs of Operations
-=======================================
-
- These macros let you describe the relative speed of various
-operations on the target machine.
-
-`CONST_COSTS (X, CODE, OUTER_CODE)'
- A part of a C `switch' statement that describes the relative costs
- of constant RTL expressions. It must contain `case' labels for
- expression codes `const_int', `const', `symbol_ref', `label_ref'
- and `const_double'. Each case must ultimately reach a `return'
- statement to return the relative cost of the use of that kind of
- constant value in an expression. The cost may depend on the
- precise value of the constant, which is available for examination
- in X, and the rtx code of the expression in which it is contained,
- found in OUTER_CODE.
-
- CODE is the expression code--redundant, since it can be obtained
- with `GET_CODE (X)'.
-
-`RTX_COSTS (X, CODE, OUTER_CODE)'
- Like `CONST_COSTS' but applies to nonconstant RTL expressions.
- This can be used, for example, to indicate how costly a multiply
- instruction is. In writing this macro, you can use the construct
- `COSTS_N_INSNS (N)' to specify a cost equal to N fast
- instructions. OUTER_CODE is the code of the expression in which X
- is contained.
-
- This macro is optional; do not define it if the default cost
- assumptions are adequate for the target machine.
-
-`ADDRESS_COST (ADDRESS)'
- An expression giving the cost of an addressing mode that contains
- ADDRESS. If not defined, the cost is computed from the ADDRESS
- expression and the `CONST_COSTS' values.
-
- For most CISC machines, the default cost is a good approximation
- of the true cost of the addressing mode. However, on RISC
- machines, all instructions normally have the same length and
- execution time. Hence all addresses will have equal costs.
-
- In cases where more than one form of an address is known, the form
- with the lowest cost will be used. If multiple forms have the
- same, lowest, cost, the one that is the most complex will be used.
-
- For example, suppose an address that is equal to the sum of a
- register and a constant is used twice in the same basic block.
- When this macro is not defined, the address will be computed in a
- register and memory references will be indirect through that
- register. On machines where the cost of the addressing mode
- containing the sum is no higher than that of a simple indirect
- reference, this will produce an additional instruction and
- possibly require an additional register. Proper specification of
- this macro eliminates this overhead for such machines.
-
- Similar use of this macro is made in strength reduction of loops.
-
- ADDRESS need not be valid as an address. In such a case, the cost
- is not relevant and can be any value; invalid addresses need not be
- assigned a different cost.
-
- On machines where an address involving more than one register is as
- cheap as an address computation involving only one register,
- defining `ADDRESS_COST' to reflect this can cause two registers to
- be live over a region of code where only one would have been if
- `ADDRESS_COST' were not defined in that manner. This effect should
- be considered in the definition of this macro. Equivalent costs
- should probably only be given to addresses with different numbers
- of registers on machines with lots of registers.
-
- This macro will normally either not be defined or be defined as a
- constant.
-
-`REGISTER_MOVE_COST (FROM, TO)'
- A C expression for the cost of moving data from a register in class
- FROM to one in class TO. The classes are expressed using the
- enumeration values such as `GENERAL_REGS'. A value of 2 is the
- default; other values are interpreted relative to that.
-
- It is not required that the cost always equal 2 when FROM is the
- same as TO; on some machines it is expensive to move between
- registers if they are not general registers.
-
- If reload sees an insn consisting of a single `set' between two
- hard registers, and if `REGISTER_MOVE_COST' applied to their
- classes returns a value of 2, reload does not check to ensure that
- the constraints of the insn are met. Setting a cost of other than
- 2 will allow reload to verify that the constraints are met. You
- should do this if the `movM' pattern's constraints do not allow
- such copying.
-
-`MEMORY_MOVE_COST (M)'
- A C expression for the cost of moving data of mode M between a
- register and memory. A value of 4 is the default; this cost is
- relative to those in `REGISTER_MOVE_COST'.
-
- If moving between registers and memory is more expensive than
- between two registers, you should define this macro to express the
- relative cost.
-
-`BRANCH_COST'
- A C expression for the cost of a branch instruction. A value of 1
- is the default; other values are interpreted relative to that.
-
- Here are additional macros which do not specify precise relative
-costs, but only that certain actions are more expensive than GNU CC
-would ordinarily expect.
-
-`SLOW_BYTE_ACCESS'
- Define this macro as a C expression which is nonzero if accessing
- less than a word of memory (i.e. a `char' or a `short') is no
- faster than accessing a word of memory, i.e., if such access
- require more than one instruction or if there is no difference in
- cost between byte and (aligned) word loads.
-
- When this macro is not defined, the compiler will access a field by
- finding the smallest containing object; when it is defined, a
- fullword load will be used if alignment permits. Unless bytes
- accesses are faster than word accesses, using word accesses is
- preferable since it may eliminate subsequent memory access if
- subsequent accesses occur to other fields in the same word of the
- structure, but to different bytes.
-
-`SLOW_ZERO_EXTEND'
- Define this macro if zero-extension (of a `char' or `short' to an
- `int') can be done faster if the destination is a register that is
- known to be zero.
-
- If you define this macro, you must have instruction patterns that
- recognize RTL structures like this:
-
- (set (strict_low_part (subreg:QI (reg:SI ...) 0)) ...)
-
- and likewise for `HImode'.
-
-`SLOW_UNALIGNED_ACCESS'
- Define this macro to be the value 1 if unaligned accesses have a
- cost many times greater than aligned accesses, for example if they
- are emulated in a trap handler.
-
- When this macro is non-zero, the compiler will act as if
- `STRICT_ALIGNMENT' were non-zero when generating code for block
- moves. This can cause significantly more instructions to be
- produced. Therefore, do not set this macro non-zero if unaligned
- accesses only add a cycle or two to the time for a memory access.
-
- If the value of this macro is always zero, it need not be defined.
-
-`DONT_REDUCE_ADDR'
- Define this macro to inhibit strength reduction of memory
- addresses. (On some machines, such strength reduction seems to do
- harm rather than good.)
-
-`MOVE_RATIO'
- The number of scalar move insns which should be generated instead
- of a string move insn or a library call. Increasing the value
- will always make code faster, but eventually incurs high cost in
- increased code size.
-
- If you don't define this, a reasonable default is used.
-
-`NO_FUNCTION_CSE'
- Define this macro if it is as good or better to call a constant
- function address than to call an address kept in a register.
-
-`NO_RECURSIVE_FUNCTION_CSE'
- Define this macro if it is as good or better for a function to call
- itself with an explicit address than to call an address kept in a
- register.
-
-`ADJUST_COST (INSN, LINK, DEP_INSN, COST)'
- A C statement (sans semicolon) to update the integer variable COST
- based on the relationship between INSN that is dependent on
- DEP_INSN through the dependence LINK. The default is to make no
- adjustment to COST. This can be used for example to specify to
- the scheduler that an output- or anti-dependence does not incur
- the same cost as a data-dependence.
-
-`ADJUST_PRIORITY (INSN)'
- A C statement (sans semicolon) to update the integer scheduling
- priority `INSN_PRIORITY(INSN)'. Reduce the priority to execute
- the INSN earlier, increase the priority to execute INSN later.
- Do not define this macro if you do not need to adjust the
- scheduling priorities of insns.
-
-
-File: gcc.info, Node: Sections, Next: PIC, Prev: Costs, Up: Target Macros
-
-Dividing the Output into Sections (Texts, Data, ...)
-====================================================
-
- An object file is divided into sections containing different types of
-data. In the most common case, there are three sections: the "text
-section", which holds instructions and read-only data; the "data
-section", which holds initialized writable data; and the "bss section",
-which holds uninitialized data. Some systems have other kinds of
-sections.
-
- The compiler must tell the assembler when to switch sections. These
-macros control what commands to output to tell the assembler this. You
-can also define additional sections.
-
-`TEXT_SECTION_ASM_OP'
- A C expression whose value is a string containing the assembler
- operation that should precede instructions and read-only data.
- Normally `".text"' is right.
-
-`DATA_SECTION_ASM_OP'
- A C expression whose value is a string containing the assembler
- operation to identify the following data as writable initialized
- data. Normally `".data"' is right.
-
-`SHARED_SECTION_ASM_OP'
- If defined, a C expression whose value is a string containing the
- assembler operation to identify the following data as shared data.
- If not defined, `DATA_SECTION_ASM_OP' will be used.
-
-`BSS_SECTION_ASM_OP'
- If defined, a C expression whose value is a string containing the
- assembler operation to identify the following data as
- uninitialized global data. If not defined, and neither
- `ASM_OUTPUT_BSS' nor `ASM_OUTPUT_ALIGNED_BSS' are defined,
- uninitialized global data will be output in the data section if
- `-fno-common' is passed, otherwise `ASM_OUTPUT_COMMON' will be
- used.
-
-`SHARED_BSS_SECTION_ASM_OP'
- If defined, a C expression whose value is a string containing the
- assembler operation to identify the following data as
- uninitialized global shared data. If not defined, and
- `BSS_SECTION_ASM_OP' is, the latter will be used.
-
-`INIT_SECTION_ASM_OP'
- If defined, a C expression whose value is a string containing the
- assembler operation to identify the following data as
- initialization code. If not defined, GNU CC will assume such a
- section does not exist.
-
-`EXTRA_SECTIONS'
- A list of names for sections other than the standard two, which are
- `in_text' and `in_data'. You need not define this macro on a
- system with no other sections (that GCC needs to use).
-
-`EXTRA_SECTION_FUNCTIONS'
- One or more functions to be defined in `varasm.c'. These
- functions should do jobs analogous to those of `text_section' and
- `data_section', for your additional sections. Do not define this
- macro if you do not define `EXTRA_SECTIONS'.
-
-`READONLY_DATA_SECTION'
- On most machines, read-only variables, constants, and jump tables
- are placed in the text section. If this is not the case on your
- machine, this macro should be defined to be the name of a function
- (either `data_section' or a function defined in `EXTRA_SECTIONS')
- that switches to the section to be used for read-only items.
-
- If these items should be placed in the text section, this macro
- should not be defined.
-
-`SELECT_SECTION (EXP, RELOC)'
- A C statement or statements to switch to the appropriate section
- for output of EXP. You can assume that EXP is either a `VAR_DECL'
- node or a constant of some sort. RELOC indicates whether the
- initial value of EXP requires link-time relocations. Select the
- section by calling `text_section' or one of the alternatives for
- other sections.
-
- Do not define this macro if you put all read-only variables and
- constants in the read-only data section (usually the text section).
-
-`SELECT_RTX_SECTION (MODE, RTX)'
- A C statement or statements to switch to the appropriate section
- for output of RTX in mode MODE. You can assume that RTX is some
- kind of constant in RTL. The argument MODE is redundant except in
- the case of a `const_int' rtx. Select the section by calling
- `text_section' or one of the alternatives for other sections.
-
- Do not define this macro if you put all constants in the read-only
- data section.
-
-`JUMP_TABLES_IN_TEXT_SECTION'
- Define this macro if jump tables (for `tablejump' insns) should be
- output in the text section, along with the assembler instructions.
- Otherwise, the readonly data section is used.
-
- This macro is irrelevant if there is no separate readonly data
- section.
-
-`ENCODE_SECTION_INFO (DECL)'
- Define this macro if references to a symbol must be treated
- differently depending on something about the variable or function
- named by the symbol (such as what section it is in).
-
- The macro definition, if any, is executed immediately after the
- rtl for DECL has been created and stored in `DECL_RTL (DECL)'.
- The value of the rtl will be a `mem' whose address is a
- `symbol_ref'.
-
- The usual thing for this macro to do is to record a flag in the
- `symbol_ref' (such as `SYMBOL_REF_FLAG') or to store a modified
- name string in the `symbol_ref' (if one bit is not enough
- information).
-
-`STRIP_NAME_ENCODING (VAR, SYM_NAME)'
- Decode SYM_NAME and store the real name part in VAR, sans the
- characters that encode section info. Define this macro if
- `ENCODE_SECTION_INFO' alters the symbol's name string.
-
-`UNIQUE_SECTION_P (DECL)'
- A C expression which evaluates to true if DECL should be placed
- into a unique section for some target-specific reason. If you do
- not define this macro, the default is `0'. Note that the flag
- `-ffunction-sections' will also cause functions to be placed into
- unique sections.
-
-`UNIQUE_SECTION (DECL, RELOC)'
- A C statement to build up a unique section name, expressed as a
- STRING_CST node, and assign it to `DECL_SECTION_NAME (DECL)'.
- RELOC indicates whether the initial value of EXP requires
- link-time relocations. If you do not define this macro, GNU CC
- will use the symbol name prefixed by `.' as the section name.
-
-
-File: gcc.info, Node: PIC, Next: Assembler Format, Prev: Sections, Up: Target Macros
-
-Position Independent Code
-=========================
-
- This section describes macros that help implement generation of
-position independent code. Simply defining these macros is not enough
-to generate valid PIC; you must also add support to the macros
-`GO_IF_LEGITIMATE_ADDRESS' and `PRINT_OPERAND_ADDRESS', as well as
-`LEGITIMIZE_ADDRESS'. You must modify the definition of `movsi' to do
-something appropriate when the source operand contains a symbolic
-address. You may also need to alter the handling of switch statements
-so that they use relative addresses.
-
-`PIC_OFFSET_TABLE_REGNUM'
- The register number of the register used to address a table of
- static data addresses in memory. In some cases this register is
- defined by a processor's "application binary interface" (ABI).
- When this macro is defined, RTL is generated for this register
- once, as with the stack pointer and frame pointer registers. If
- this macro is not defined, it is up to the machine-dependent files
- to allocate such a register (if necessary).
-
-`PIC_OFFSET_TABLE_REG_CALL_CLOBBERED'
- Define this macro if the register defined by
- `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
- this macro if `PPIC_OFFSET_TABLE_REGNUM' is not defined.
-
-`FINALIZE_PIC'
- By generating position-independent code, when two different
- programs (A and B) share a common library (libC.a), the text of
- the library can be shared whether or not the library is linked at
- the same address for both programs. In some of these
- environments, position-independent code requires not only the use
- of different addressing modes, but also special code to enable the
- use of these addressing modes.
-
- The `FINALIZE_PIC' macro serves as a hook to emit these special
- codes once the function is being compiled into assembly code, but
- not before. (It is not done before, because in the case of
- compiling an inline function, it would lead to multiple PIC
- prologues being included in functions which used inline functions
- and were compiled to assembly language.)
-
-`LEGITIMATE_PIC_OPERAND_P (X)'
- A C expression that is nonzero if X is a legitimate immediate
- operand on the target machine when generating position independent
- code. You can assume that X satisfies `CONSTANT_P', so you need
- not check this. You can also assume FLAG_PIC is true, so you need
- not check it either. You need not define this macro if all
- constants (including `SYMBOL_REF') can be immediate operands when
- generating position independent code.
-
-
-File: gcc.info, Node: Assembler Format, Next: Debugging Info, Prev: PIC, Up: Target Macros
-
-Defining the Output Assembler Language
-======================================
-
- This section describes macros whose principal purpose is to describe
-how to write instructions in assembler language-rather than what the
-instructions do.
-
-* Menu:
-
-* File Framework:: Structural information for the assembler file.
-* Data Output:: Output of constants (numbers, strings, addresses).
-* Uninitialized Data:: Output of uninitialized variables.
-* Label Output:: Output and generation of labels.
-* Initialization:: General principles of initialization
- and termination routines.
-* Macros for Initialization::
- Specific macros that control the handling of
- initialization and termination routines.
-* Instruction Output:: Output of actual instructions.
-* Dispatch Tables:: Output of jump tables.
-* Exception Region Output:: Output of exception region code.
-* Alignment Output:: Pseudo ops for alignment and skipping data.
-
-
-File: gcc.info, Node: File Framework, Next: Data Output, Up: Assembler Format
-
-The Overall Framework of an Assembler File
-------------------------------------------
-
- This describes the overall framework of an assembler file.
-
-`ASM_FILE_START (STREAM)'
- A C expression which outputs to the stdio stream STREAM some
- appropriate text to go at the start of an assembler file.
-
- Normally this macro is defined to output a line containing
- `#NO_APP', which is a comment that has no effect on most
- assemblers but tells the GNU assembler that it can save time by not
- checking for certain assembler constructs.
-
- On systems that use SDB, it is necessary to output certain
- commands; see `attasm.h'.
-
-`ASM_FILE_END (STREAM)'
- A C expression which outputs to the stdio stream STREAM some
- appropriate text to go at the end of an assembler file.
-
- If this macro is not defined, the default is to output nothing
- special at the end of the file. Most systems don't require any
- definition.
-
- On systems that use SDB, it is necessary to output certain
- commands; see `attasm.h'.
-
-`ASM_IDENTIFY_GCC (FILE)'
- A C statement to output assembler commands which will identify the
- object file as having been compiled with GNU CC (or another GNU
- compiler).
-
- If you don't define this macro, the string `gcc_compiled.:' is
- output. This string is calculated to define a symbol which, on
- BSD systems, will never be defined for any other reason. GDB
- checks for the presence of this symbol when reading the symbol
- table of an executable.
-
- On non-BSD systems, you must arrange communication with GDB in
- some other fashion. If GDB is not used on your system, you can
- define this macro with an empty body.
-
-`ASM_COMMENT_START'
- A C string constant describing how to begin a comment in the target
- assembler language. The compiler assumes that the comment will
- end at the end of the line.
-
-`ASM_APP_ON'
- A C string constant for text to be output before each `asm'
- statement or group of consecutive ones. Normally this is
- `"#APP"', which is a comment that has no effect on most assemblers
- but tells the GNU assembler that it must check the lines that
- follow for all valid assembler constructs.
-
-`ASM_APP_OFF'
- A C string constant for text to be output after each `asm'
- statement or group of consecutive ones. Normally this is
- `"#NO_APP"', which tells the GNU assembler to resume making the
- time-saving assumptions that are valid for ordinary compiler
- output.
-
-`ASM_OUTPUT_SOURCE_FILENAME (STREAM, NAME)'
- A C statement to output COFF information or DWARF debugging
- information which indicates that filename NAME is the current
- source file to the stdio stream STREAM.
-
- This macro need not be defined if the standard form of output for
- the file format in use is appropriate.
-
-`OUTPUT_QUOTED_STRING (STREAM, NAME)'
- A C statement to output the string STRING to the stdio stream
- STREAM. If you do not call the function `output_quoted_string' in
- your config files, GNU CC will only call it to output filenames to
- the assembler source. So you can use it to canonicalize the format
- of the filename using this macro.
-
-`ASM_OUTPUT_SOURCE_LINE (STREAM, LINE)'
- A C statement to output DBX or SDB debugging information before
- code for line number LINE of the current source file to the stdio
- stream STREAM.
-
- This macro need not be defined if the standard form of debugging
- information for the debugger in use is appropriate.
-
-`ASM_OUTPUT_IDENT (STREAM, STRING)'
- A C statement to output something to the assembler file to handle a
- `#ident' directive containing the text STRING. If this macro is
- not defined, nothing is output for a `#ident' directive.
-
-`ASM_OUTPUT_SECTION_NAME (STREAM, DECL, NAME, RELOC)'
- A C statement to output something to the assembler file to switch
- to section NAME for object DECL which is either a `FUNCTION_DECL',
- a `VAR_DECL' or `NULL_TREE'. RELOC indicates whether the initial
- value of EXP requires link-time relocations. Some target formats
- do not support arbitrary sections. Do not define this macro in
- such cases.
-
- At present this macro is only used to support section attributes.
- When this macro is undefined, section attributes are disabled.
-
-`OBJC_PROLOGUE'
- A C statement to output any assembler statements which are
- required to precede any Objective C object definitions or message
- sending. The statement is executed only when compiling an
- Objective C program.
-
-
-File: gcc.info, Node: Data Output, Next: Uninitialized Data, Prev: File Framework, Up: Assembler Format
-
-Output of Data
---------------
-
- This describes data output.
-
-`ASM_OUTPUT_LONG_DOUBLE (STREAM, VALUE)'
-`ASM_OUTPUT_DOUBLE (STREAM, VALUE)'
-`ASM_OUTPUT_FLOAT (STREAM, VALUE)'
-`ASM_OUTPUT_THREE_QUARTER_FLOAT (STREAM, VALUE)'
-`ASM_OUTPUT_SHORT_FLOAT (STREAM, VALUE)'
-`ASM_OUTPUT_BYTE_FLOAT (STREAM, VALUE)'
- A C statement to output to the stdio stream STREAM an assembler
- instruction to assemble a floating-point constant of `TFmode',
- `DFmode', `SFmode', `TQFmode', `HFmode', or `QFmode',
- respectively, whose value is VALUE. VALUE will be a C expression
- of type `REAL_VALUE_TYPE'. Macros such as
- `REAL_VALUE_TO_TARGET_DOUBLE' are useful for writing these
- definitions.
-
-`ASM_OUTPUT_QUADRUPLE_INT (STREAM, EXP)'
-`ASM_OUTPUT_DOUBLE_INT (STREAM, EXP)'
-`ASM_OUTPUT_INT (STREAM, EXP)'
-`ASM_OUTPUT_SHORT (STREAM, EXP)'
-`ASM_OUTPUT_CHAR (STREAM, EXP)'
- A C statement to output to the stdio stream STREAM an assembler
- instruction to assemble an integer of 16, 8, 4, 2 or 1 bytes,
- respectively, whose value is VALUE. The argument EXP will be an
- RTL expression which represents a constant value. Use
- `output_addr_const (STREAM, EXP)' to output this value as an
- assembler expression.
-
- For sizes larger than `UNITS_PER_WORD', if the action of a macro
- would be identical to repeatedly calling the macro corresponding to
- a size of `UNITS_PER_WORD', once for each word, you need not define
- the macro.
-
-`ASM_OUTPUT_BYTE (STREAM, VALUE)'
- A C statement to output to the stdio stream STREAM an assembler
- instruction to assemble a single byte containing the number VALUE.
-
-`ASM_BYTE_OP'
- A C string constant giving the pseudo-op to use for a sequence of
- single-byte constants. If this macro is not defined, the default
- is `"byte"'.
-
-`ASM_OUTPUT_ASCII (STREAM, PTR, LEN)'
- A C statement to output to the stdio stream STREAM an assembler
- instruction to assemble a string constant containing the LEN bytes
- at PTR. PTR will be a C expression of type `char *' and LEN a C
- expression of type `int'.
-
- If the assembler has a `.ascii' pseudo-op as found in the Berkeley
- Unix assembler, do not define the macro `ASM_OUTPUT_ASCII'.
-
-`CONSTANT_POOL_BEFORE_FUNCTION'
- You may define this macro as a C expression. You should define the
- expression to have a non-zero value if GNU CC should output the
- constant pool for a function before the code for the function, or
- a zero value if GNU CC should output the constant pool after the
- function. If you do not define this macro, the usual case, GNU CC
- will output the constant pool before the function.
-
-`ASM_OUTPUT_POOL_PROLOGUE (FILE FUNNAME FUNDECL SIZE)'
- A C statement to output assembler commands to define the start of
- the constant pool for a function. FUNNAME is a string giving the
- name of the function. Should the return type of the function be
- required, it can be obtained via FUNDECL. SIZE is the size, in
- bytes, of the constant pool that will be written immediately after
- this call.
-
- If no constant-pool prefix is required, the usual case, this macro
- need not be defined.
-
-`ASM_OUTPUT_SPECIAL_POOL_ENTRY (FILE, X, MODE, ALIGN, LABELNO, JUMPTO)'
- A C statement (with or without semicolon) to output a constant in
- the constant pool, if it needs special treatment. (This macro
- need not do anything for RTL expressions that can be output
- normally.)
-
- The argument FILE is the standard I/O stream to output the
- assembler code on. X is the RTL expression for the constant to
- output, and MODE is the machine mode (in case X is a `const_int').
- ALIGN is the required alignment for the value X; you should
- output an assembler directive to force this much alignment.
-
- The argument LABELNO is a number to use in an internal label for
- the address of this pool entry. The definition of this macro is
- responsible for outputting the label definition at the proper
- place. Here is how to do this:
-
- ASM_OUTPUT_INTERNAL_LABEL (FILE, "LC", LABELNO);
-
- When you output a pool entry specially, you should end with a
- `goto' to the label JUMPTO. This will prevent the same pool entry
- from being output a second time in the usual manner.
-
- You need not define this macro if it would do nothing.
-
-`CONSTANT_AFTER_FUNCTION_P (EXP)'
- Define this macro as a C expression which is nonzero if the
- constant EXP, of type `tree', should be output after the code for a
- function. The compiler will normally output all constants before
- the function; you need not define this macro if this is OK.
-
-`ASM_OUTPUT_POOL_EPILOGUE (FILE FUNNAME FUNDECL SIZE)'
- A C statement to output assembler commands to at the end of the
- constant pool for a function. FUNNAME is a string giving the name
- of the function. Should the return type of the function be
- required, you can obtain it via FUNDECL. SIZE is the size, in
- bytes, of the constant pool that GNU CC wrote immediately before
- this call.
-
- If no constant-pool epilogue is required, the usual case, you need
- not define this macro.
-
-`IS_ASM_LOGICAL_LINE_SEPARATOR (C)'
- Define this macro as a C expression which is nonzero if C is used
- as a logical line separator by the assembler.
-
- If you do not define this macro, the default is that only the
- character `;' is treated as a logical line separator.
-
-`ASM_OPEN_PAREN'
-`ASM_CLOSE_PAREN'
- These macros are defined as C string constant, describing the
- syntax in the assembler for grouping arithmetic expressions. The
- following definitions are correct for most assemblers:
-
- #define ASM_OPEN_PAREN "("
- #define ASM_CLOSE_PAREN ")"
-
- These macros are provided by `real.h' for writing the definitions of
-`ASM_OUTPUT_DOUBLE' and the like:
-
-`REAL_VALUE_TO_TARGET_SINGLE (X, L)'
-`REAL_VALUE_TO_TARGET_DOUBLE (X, L)'
-`REAL_VALUE_TO_TARGET_LONG_DOUBLE (X, L)'
- These translate X, of type `REAL_VALUE_TYPE', to the target's
- floating point representation, and store its bit pattern in the
- array of `long int' whose address is L. The number of elements in
- the output array is determined by the size of the desired target
- floating point data type: 32 bits of it go in each `long int' array
- element. Each array element holds 32 bits of the result, even if
- `long int' is wider than 32 bits on the host machine.
-
- The array element values are designed so that you can print them
- out using `fprintf' in the order they should appear in the target
- machine's memory.
-
-`REAL_VALUE_TO_DECIMAL (X, FORMAT, STRING)'
- This macro converts X, of type `REAL_VALUE_TYPE', to a decimal
- number and stores it as a string into STRING. You must pass, as
- STRING, the address of a long enough block of space to hold the
- result.
-
- The argument FORMAT is a `printf'-specification that serves as a
- suggestion for how to format the output string.
-
-
-File: gcc.info, Node: Uninitialized Data, Next: Label Output, Prev: Data Output, Up: Assembler Format
-
-Output of Uninitialized Variables
----------------------------------
-
- Each of the macros in this section is used to do the whole job of
-outputting a single uninitialized variable.
-
-`ASM_OUTPUT_COMMON (STREAM, NAME, SIZE, ROUNDED)'
- A C statement (sans semicolon) to output to the stdio stream
- STREAM the assembler definition of a common-label named NAME whose
- size is SIZE bytes. The variable ROUNDED is the size rounded up
- to whatever alignment the caller wants.
-
- Use the expression `assemble_name (STREAM, NAME)' to output the
- name itself; before and after that, output the additional
- assembler syntax for defining the name, and a newline.
-
- This macro controls how the assembler definitions of uninitialized
- common global variables are output.
-
-`ASM_OUTPUT_ALIGNED_COMMON (STREAM, NAME, SIZE, ALIGNMENT)'
- Like `ASM_OUTPUT_COMMON' except takes the required alignment as a
- separate, explicit argument. If you define this macro, it is used
- in place of `ASM_OUTPUT_COMMON', and gives you more flexibility in
- handling the required alignment of the variable. The alignment is
- specified as the number of bits.
-
-`ASM_OUTPUT_ALIGNED_DECL_COMMON (STREAM, DECL, NAME, SIZE, ALIGNMENT)'
- Like `ASM_OUTPUT_ALIGNED_COMMON' except that DECL of the variable
- to be output, if there is one, or `NULL_TREE' if there is not
- corresponding variable. If you define this macro, GNU CC wil use
- it in place of both `ASM_OUTPUT_COMMON' and
- `ASM_OUTPUT_ALIGNED_COMMON'. Define this macro when you need to
- see the variable's decl in order to chose what to output.
-
-`ASM_OUTPUT_SHARED_COMMON (STREAM, NAME, SIZE, ROUNDED)'
- If defined, it is similar to `ASM_OUTPUT_COMMON', except that it
- is used when NAME is shared. If not defined, `ASM_OUTPUT_COMMON'
- will be used.
-
-`ASM_OUTPUT_BSS (STREAM, DECL, NAME, SIZE, ROUNDED)'
- A C statement (sans semicolon) to output to the stdio stream
- STREAM the assembler definition of uninitialized global DECL named
- NAME whose size is SIZE bytes. The variable ROUNDED is the size
- rounded up to whatever alignment the caller wants.
-
- Try to use function `asm_output_bss' defined in `varasm.c' when
- defining this macro. If unable, use the expression `assemble_name
- (STREAM, NAME)' to output the name itself; before and after that,
- output the additional assembler syntax for defining the name, and
- a newline.
-
- This macro controls how the assembler definitions of uninitialized
- global variables are output. This macro exists to properly
- support languages like `c++' which do not have `common' data.
- However, this macro currently is not defined for all targets. If
- this macro and `ASM_OUTPUT_ALIGNED_BSS' are not defined then
- `ASM_OUTPUT_COMMON' or `ASM_OUTPUT_ALIGNED_COMMON' or
- `ASM_OUTPUT_ALIGNED_DECL_COMMON' is used.
-
-`ASM_OUTPUT_ALIGNED_BSS (STREAM, DECL, NAME, SIZE, ALIGNMENT)'
- Like `ASM_OUTPUT_BSS' except takes the required alignment as a
- separate, explicit argument. If you define this macro, it is used
- in place of `ASM_OUTPUT_BSS', and gives you more flexibility in
- handling the required alignment of the variable. The alignment is
- specified as the number of bits.
-
- Try to use function `asm_output_aligned_bss' defined in file
- `varasm.c' when defining this macro.
-
-`ASM_OUTPUT_SHARED_BSS (STREAM, DECL, NAME, SIZE, ROUNDED)'
- If defined, it is similar to `ASM_OUTPUT_BSS', except that it is
- used when NAME is shared. If not defined, `ASM_OUTPUT_BSS' will
- be used.
-
-`ASM_OUTPUT_LOCAL (STREAM, NAME, SIZE, ROUNDED)'
- A C statement (sans semicolon) to output to the stdio stream
- STREAM the assembler definition of a local-common-label named NAME
- whose size is SIZE bytes. The variable ROUNDED is the size
- rounded up to whatever alignment the caller wants.
-
- Use the expression `assemble_name (STREAM, NAME)' to output the
- name itself; before and after that, output the additional
- assembler syntax for defining the name, and a newline.
-
- This macro controls how the assembler definitions of uninitialized
- static variables are output.
-
-`ASM_OUTPUT_ALIGNED_LOCAL (STREAM, NAME, SIZE, ALIGNMENT)'
- Like `ASM_OUTPUT_LOCAL' except takes the required alignment as a
- separate, explicit argument. If you define this macro, it is used
- in place of `ASM_OUTPUT_LOCAL', and gives you more flexibility in
- handling the required alignment of the variable. The alignment is
- specified as the number of bits.
-
-`ASM_OUTPUT_ALIGNED_DECL_LOCAL (STREAM, DECL, NAME, SIZE, ALIGNMENT)'
- Like `ASM_OUTPUT_ALIGNED_DECL' except that DECL of the variable to
- be output, if there is one, or `NULL_TREE' if there is not
- corresponding variable. If you define this macro, GNU CC wil use
- it in place of both `ASM_OUTPUT_DECL' and
- `ASM_OUTPUT_ALIGNED_DECL'. Define this macro when you need to see
- the variable's decl in order to chose what to output.
-
-`ASM_OUTPUT_SHARED_LOCAL (STREAM, NAME, SIZE, ROUNDED)'
- If defined, it is similar to `ASM_OUTPUT_LOCAL', except that it is
- used when NAME is shared. If not defined, `ASM_OUTPUT_LOCAL' will
- be used.
-
-
-File: gcc.info, Node: Label Output, Next: Initialization, Prev: Uninitialized Data, Up: Assembler Format
-
-Output and Generation of Labels
--------------------------------
-
- This is about outputting labels.
-
-`ASM_OUTPUT_LABEL (STREAM, NAME)'
- A C statement (sans semicolon) to output to the stdio stream
- STREAM the assembler definition of a label named NAME. Use the
- expression `assemble_name (STREAM, NAME)' to output the name
- itself; before and after that, output the additional assembler
- syntax for defining the name, and a newline.
-
-`ASM_DECLARE_FUNCTION_NAME (STREAM, NAME, DECL)'
- A C statement (sans semicolon) to output to the stdio stream
- STREAM any text necessary for declaring the name NAME of a
- function which is being defined. This macro is responsible for
- outputting the label definition (perhaps using
- `ASM_OUTPUT_LABEL'). The argument DECL is the `FUNCTION_DECL'
- tree node representing the function.
-
- If this macro is not defined, then the function name is defined in
- the usual manner as a label (by means of `ASM_OUTPUT_LABEL').
-
-`ASM_DECLARE_FUNCTION_SIZE (STREAM, NAME, DECL)'
- A C statement (sans semicolon) to output to the stdio stream
- STREAM any text necessary for declaring the size of a function
- which is being defined. The argument NAME is the name of the
- function. The argument DECL is the `FUNCTION_DECL' tree node
- representing the function.
-
- If this macro is not defined, then the function size is not
- defined.
-
-`ASM_DECLARE_OBJECT_NAME (STREAM, NAME, DECL)'
- A C statement (sans semicolon) to output to the stdio stream
- STREAM any text necessary for declaring the name NAME of an
- initialized variable which is being defined. This macro must
- output the label definition (perhaps using `ASM_OUTPUT_LABEL').
- The argument DECL is the `VAR_DECL' tree node representing the
- variable.
-
- If this macro is not defined, then the variable name is defined in
- the usual manner as a label (by means of `ASM_OUTPUT_LABEL').
-
-`ASM_FINISH_DECLARE_OBJECT (STREAM, DECL, TOPLEVEL, ATEND)'
- A C statement (sans semicolon) to finish up declaring a variable
- name once the compiler has processed its initializer fully and
- thus has had a chance to determine the size of an array when
- controlled by an initializer. This is used on systems where it's
- necessary to declare something about the size of the object.
-
- If you don't define this macro, that is equivalent to defining it
- to do nothing.
-
-`ASM_GLOBALIZE_LABEL (STREAM, NAME)'
- A C statement (sans semicolon) to output to the stdio stream
- STREAM some commands that will make the label NAME global; that
- is, available for reference from other files. Use the expression
- `assemble_name (STREAM, NAME)' to output the name itself; before
- and after that, output the additional assembler syntax for making
- that name global, and a newline.
-
-`ASM_WEAKEN_LABEL'
- A C statement (sans semicolon) to output to the stdio stream
- STREAM some commands that will make the label NAME weak; that is,
- available for reference from other files but only used if no other
- definition is available. Use the expression `assemble_name
- (STREAM, NAME)' to output the name itself; before and after that,
- output the additional assembler syntax for making that name weak,
- and a newline.
-
- If you don't define this macro, GNU CC will not support weak
- symbols and you should not define the `SUPPORTS_WEAK' macro.
-
-`SUPPORTS_WEAK'
- A C expression which evaluates to true if the target supports weak
- symbols.
-
- If you don't define this macro, `defaults.h' provides a default
- definition. If `ASM_WEAKEN_LABEL' is defined, the default
- definition is `1'; otherwise, it is `0'. Define this macro if you
- want to control weak symbol support with a compiler flag such as
- `-melf'.
-
-`MAKE_DECL_ONE_ONLY'
- A C statement (sans semicolon) to mark DECL to be emitted as a
- public symbol such that extra copies in multiple translation units
- will be discarded by the linker. Define this macro if your object
- file format provides support for this concept, such as the `COMDAT'
- section flags in the Microsoft Windows PE/COFF format, and this
- support requires changes to DECL, such as putting it in a separate
- section.
-
-`SUPPORTS_ONE_ONLY'
- A C expression which evaluates to true if the target supports
- one-only semantics.
-
- If you don't define this macro, `varasm.c' provides a default
- definition. If `MAKE_DECL_ONE_ONLY' is defined, the default
- definition is `1'; otherwise, it is `0'. Define this macro if you
- want to control one-only symbol support with a compiler flag, or if
- setting the `DECL_ONE_ONLY' flag is enough to mark a declaration to
- be emitted as one-only.
-
-`ASM_OUTPUT_EXTERNAL (STREAM, DECL, NAME)'
- A C statement (sans semicolon) to output to the stdio stream
- STREAM any text necessary for declaring the name of an external
- symbol named NAME which is referenced in this compilation but not
- defined. The value of DECL is the tree node for the declaration.
-
- This macro need not be defined if it does not need to output
- anything. The GNU assembler and most Unix assemblers don't
- require anything.
-
-`ASM_OUTPUT_EXTERNAL_LIBCALL (STREAM, SYMREF)'
- A C statement (sans semicolon) to output on STREAM an assembler
- pseudo-op to declare a library function name external. The name
- of the library function is given by SYMREF, which has type `rtx'
- and is a `symbol_ref'.
-
- This macro need not be defined if it does not need to output
- anything. The GNU assembler and most Unix assemblers don't
- require anything.
-
-`ASM_OUTPUT_LABELREF (STREAM, NAME)'
- A C statement (sans semicolon) to output to the stdio stream
- STREAM a reference in assembler syntax to a label named NAME.
- This should add `_' to the front of the name, if that is customary
- on your operating system, as it is in most Berkeley Unix systems.
- This macro is used in `assemble_name'.
-
-`ASM_OUTPUT_INTERNAL_LABEL (STREAM, PREFIX, NUM)'
- A C statement to output to the stdio stream STREAM a label whose
- name is made from the string PREFIX and the number NUM.
-
- It is absolutely essential that these labels be distinct from the
- labels used for user-level functions and variables. Otherwise,
- certain programs will have name conflicts with internal labels.
-
- It is desirable to exclude internal labels from the symbol table
- of the object file. Most assemblers have a naming convention for
- labels that should be excluded; on many systems, the letter `L' at
- the beginning of a label has this effect. You should find out what
- convention your system uses, and follow it.
-
- The usual definition of this macro is as follows:
-
- fprintf (STREAM, "L%s%d:\n", PREFIX, NUM)
-
-`ASM_GENERATE_INTERNAL_LABEL (STRING, PREFIX, NUM)'
- A C statement to store into the string STRING a label whose name
- is made from the string PREFIX and the number NUM.
-
- This string, when output subsequently by `assemble_name', should
- produce the output that `ASM_OUTPUT_INTERNAL_LABEL' would produce
- with the same PREFIX and NUM.
-
- If the string begins with `*', then `assemble_name' will output
- the rest of the string unchanged. It is often convenient for
- `ASM_GENERATE_INTERNAL_LABEL' to use `*' in this way. If the
- string doesn't start with `*', then `ASM_OUTPUT_LABELREF' gets to
- output the string, and may change it. (Of course,
- `ASM_OUTPUT_LABELREF' is also part of your machine description, so
- you should know what it does on your machine.)
-
-`ASM_FORMAT_PRIVATE_NAME (OUTVAR, NAME, NUMBER)'
- A C expression to assign to OUTVAR (which is a variable of type
- `char *') a newly allocated string made from the string NAME and
- the number NUMBER, with some suitable punctuation added. Use
- `alloca' to get space for the string.
-
- The string will be used as an argument to `ASM_OUTPUT_LABELREF' to
- produce an assembler label for an internal static variable whose
- name is NAME. Therefore, the string must be such as to result in
- valid assembler code. The argument NUMBER is different each time
- this macro is executed; it prevents conflicts between
- similarly-named internal static variables in different scopes.
-
- Ideally this string should not be a valid C identifier, to prevent
- any conflict with the user's own symbols. Most assemblers allow
- periods or percent signs in assembler symbols; putting at least
- one of these between the name and the number will suffice.
-
-`ASM_OUTPUT_DEF (STREAM, NAME, VALUE)'
- A C statement to output to the stdio stream STREAM assembler code
- which defines (equates) the symbol NAME to have the value VALUE.
-
- If SET_ASM_OP is defined, a default definition is provided which is
- correct for most systems.
-
-`ASM_OUTPUT_WEAK_ALIAS (STREAM, NAME, VALUE)'
- A C statement to output to the stdio stream STREAM assembler code
- which defines (equates) the weak symbol NAME to have the value
- VALUE.
-
- Define this macro if the target only supports weak aliases; define
- ASM_OUTPUT_DEF instead if possible.
-
-`OBJC_GEN_METHOD_LABEL (BUF, IS_INST, CLASS_NAME, CAT_NAME, SEL_NAME)'
- Define this macro to override the default assembler names used for
- Objective C methods.
-
- The default name is a unique method number followed by the name of
- the class (e.g. `_1_Foo'). For methods in categories, the name of
- the category is also included in the assembler name (e.g.
- `_1_Foo_Bar').
-
- These names are safe on most systems, but make debugging difficult
- since the method's selector is not present in the name.
- Therefore, particular systems define other ways of computing names.
-
- BUF is an expression of type `char *' which gives you a buffer in
- which to store the name; its length is as long as CLASS_NAME,
- CAT_NAME and SEL_NAME put together, plus 50 characters extra.
-
- The argument IS_INST specifies whether the method is an instance
- method or a class method; CLASS_NAME is the name of the class;
- CAT_NAME is the name of the category (or NULL if the method is not
- in a category); and SEL_NAME is the name of the selector.
-
- On systems where the assembler can handle quoted names, you can
- use this macro to provide more human-readable names.
-
diff --git a/gcc/gcc.info-25 b/gcc/gcc.info-25
deleted file mode 100644
index fc5e5a7655b..00000000000
--- a/gcc/gcc.info-25
+++ /dev/null
@@ -1,1143 +0,0 @@
-This is Info file gcc.info, produced by Makeinfo version 1.68 from the
-input file gcc.texi.
-
- This file documents the use and the internals of the GNU compiler.
-
- Published by the Free Software Foundation 59 Temple Place - Suite 330
-Boston, MA 02111-1307 USA
-
- Copyright (C) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997 Free
-Software Foundation, Inc.
-
- Permission is granted to make and distribute verbatim copies of this
-manual provided the copyright notice and this permission notice are
-preserved on all copies.
-
- Permission is granted to copy and distribute modified versions of
-this manual under the conditions for verbatim copying, provided also
-that the sections entitled "GNU General Public License," "Funding for
-Free Software," and "Protect Your Freedom--Fight `Look And Feel'" are
-included exactly as in the original, and provided that the entire
-resulting derived work is distributed under the terms of a permission
-notice identical to this one.
-
- Permission is granted to copy and distribute translations of this
-manual into another language, under the above conditions for modified
-versions, except that the sections entitled "GNU General Public
-License," "Funding for Free Software," and "Protect Your Freedom--Fight
-`Look And Feel'", and this permission notice, may be included in
-translations approved by the Free Software Foundation instead of in the
-original English.
-
-
-File: gcc.info, Node: Initialization, Next: Macros for Initialization, Prev: Label Output, Up: Assembler Format
-
-How Initialization Functions Are Handled
-----------------------------------------
-
- The compiled code for certain languages includes "constructors"
-(also called "initialization routines")--functions to initialize data
-in the program when the program is started. These functions need to be
-called before the program is "started"--that is to say, before `main'
-is called.
-
- Compiling some languages generates "destructors" (also called
-"termination routines") that should be called when the program
-terminates.
-
- To make the initialization and termination functions work, the
-compiler must output something in the assembler code to cause those
-functions to be called at the appropriate time. When you port the
-compiler to a new system, you need to specify how to do this.
-
- There are two major ways that GCC currently supports the execution of
-initialization and termination functions. Each way has two variants.
-Much of the structure is common to all four variations.
-
- The linker must build two lists of these functions--a list of
-initialization functions, called `__CTOR_LIST__', and a list of
-termination functions, called `__DTOR_LIST__'.
-
- Each list always begins with an ignored function pointer (which may
-hold 0, -1, or a count of the function pointers after it, depending on
-the environment). This is followed by a series of zero or more function
-pointers to constructors (or destructors), followed by a function
-pointer containing zero.
-
- Depending on the operating system and its executable file format,
-either `crtstuff.c' or `libgcc2.c' traverses these lists at startup
-time and exit time. Constructors are called in reverse order of the
-list; destructors in forward order.
-
- The best way to handle static constructors works only for object file
-formats which provide arbitrarily-named sections. A section is set
-aside for a list of constructors, and another for a list of destructors.
-Traditionally these are called `.ctors' and `.dtors'. Each object file
-that defines an initialization function also puts a word in the
-constructor section to point to that function. The linker accumulates
-all these words into one contiguous `.ctors' section. Termination
-functions are handled similarly.
-
- To use this method, you need appropriate definitions of the macros
-`ASM_OUTPUT_CONSTRUCTOR' and `ASM_OUTPUT_DESTRUCTOR'. Usually you can
-get them by including `svr4.h'.
-
- When arbitrary sections are available, there are two variants,
-depending upon how the code in `crtstuff.c' is called. On systems that
-support an "init" section which is executed at program startup, parts
-of `crtstuff.c' are compiled into that section. The program is linked
-by the `gcc' driver like this:
-
- ld -o OUTPUT_FILE crtbegin.o ... crtend.o -lgcc
-
- The head of a function (`__do_global_ctors') appears in the init
-section of `crtbegin.o'; the remainder of the function appears in the
-init section of `crtend.o'. The linker will pull these two parts of
-the section together, making a whole function. If any of the user's
-object files linked into the middle of it contribute code, then that
-code will be executed as part of the body of `__do_global_ctors'.
-
- To use this variant, you must define the `INIT_SECTION_ASM_OP' macro
-properly.
-
- If no init section is available, do not define
-`INIT_SECTION_ASM_OP'. Then `__do_global_ctors' is built into the text
-section like all other functions, and resides in `libgcc.a'. When GCC
-compiles any function called `main', it inserts a procedure call to
-`__main' as the first executable code after the function prologue. The
-`__main' function, also defined in `libgcc2.c', simply calls
-`__do_global_ctors'.
-
- In file formats that don't support arbitrary sections, there are
-again two variants. In the simplest variant, the GNU linker (GNU `ld')
-and an `a.out' format must be used. In this case,
-`ASM_OUTPUT_CONSTRUCTOR' is defined to produce a `.stabs' entry of type
-`N_SETT', referencing the name `__CTOR_LIST__', and with the address of
-the void function containing the initialization code as its value. The
-GNU linker recognizes this as a request to add the value to a "set";
-the values are accumulated, and are eventually placed in the executable
-as a vector in the format described above, with a leading (ignored)
-count and a trailing zero element. `ASM_OUTPUT_DESTRUCTOR' is handled
-similarly. Since no init section is available, the absence of
-`INIT_SECTION_ASM_OP' causes the compilation of `main' to call `__main'
-as above, starting the initialization process.
-
- The last variant uses neither arbitrary sections nor the GNU linker.
-This is preferable when you want to do dynamic linking and when using
-file formats which the GNU linker does not support, such as `ECOFF'. In
-this case, `ASM_OUTPUT_CONSTRUCTOR' does not produce an `N_SETT'
-symbol; initialization and termination functions are recognized simply
-by their names. This requires an extra program in the linkage step,
-called `collect2'. This program pretends to be the linker, for use
-with GNU CC; it does its job by running the ordinary linker, but also
-arranges to include the vectors of initialization and termination
-functions. These functions are called via `__main' as described above.
-
- Choosing among these configuration options has been simplified by a
-set of operating-system-dependent files in the `config' subdirectory.
-These files define all of the relevant parameters. Usually it is
-sufficient to include one into your specific machine-dependent
-configuration file. These files are:
-
-`aoutos.h'
- For operating systems using the `a.out' format.
-
-`next.h'
- For operating systems using the `MachO' format.
-
-`svr3.h'
- For System V Release 3 and similar systems using `COFF' format.
-
-`svr4.h'
- For System V Release 4 and similar systems using `ELF' format.
-
-`vms.h'
- For the VMS operating system.
-
- The following section describes the specific macros that control and
-customize the handling of initialization and termination functions.
-
-
-File: gcc.info, Node: Macros for Initialization, Next: Instruction Output, Prev: Initialization, Up: Assembler Format
-
-Macros Controlling Initialization Routines
-------------------------------------------
-
- Here are the macros that control how the compiler handles
-initialization and termination functions:
-
-`INIT_SECTION_ASM_OP'
- If defined, a C string constant for the assembler operation to
- identify the following data as initialization code. If not
- defined, GNU CC will assume such a section does not exist. When
- you are using special sections for initialization and termination
- functions, this macro also controls how `crtstuff.c' and
- `libgcc2.c' arrange to run the initialization functions.
-
-`HAS_INIT_SECTION'
- If defined, `main' will not call `__main' as described above.
- This macro should be defined for systems that control the contents
- of the init section on a symbol-by-symbol basis, such as OSF/1,
- and should not be defined explicitly for systems that support
- `INIT_SECTION_ASM_OP'.
-
-`LD_INIT_SWITCH'
- If defined, a C string constant for a switch that tells the linker
- that the following symbol is an initialization routine.
-
-`LD_FINI_SWITCH'
- If defined, a C string constant for a switch that tells the linker
- that the following symbol is a finalization routine.
-
-`INVOKE__main'
- If defined, `main' will call `__main' despite the presence of
- `INIT_SECTION_ASM_OP'. This macro should be defined for systems
- where the init section is not actually run automatically, but is
- still useful for collecting the lists of constructors and
- destructors.
-
-`ASM_OUTPUT_CONSTRUCTOR (STREAM, NAME)'
- Define this macro as a C statement to output on the stream STREAM
- the assembler code to arrange to call the function named NAME at
- initialization time.
-
- Assume that NAME is the name of a C function generated
- automatically by the compiler. This function takes no arguments.
- Use the function `assemble_name' to output the name NAME; this
- performs any system-specific syntactic transformations such as
- adding an underscore.
-
- If you don't define this macro, nothing special is output to
- arrange to call the function. This is correct when the function
- will be called in some other manner--for example, by means of the
- `collect2' program, which looks through the symbol table to find
- these functions by their names.
-
-`ASM_OUTPUT_DESTRUCTOR (STREAM, NAME)'
- This is like `ASM_OUTPUT_CONSTRUCTOR' but used for termination
- functions rather than initialization functions.
-
- If your system uses `collect2' as the means of processing
-constructors, then that program normally uses `nm' to scan an object
-file for constructor functions to be called. On certain kinds of
-systems, you can define these macros to make `collect2' work faster
-(and, in some cases, make it work at all):
-
-`OBJECT_FORMAT_COFF'
- Define this macro if the system uses COFF (Common Object File
- Format) object files, so that `collect2' can assume this format
- and scan object files directly for dynamic constructor/destructor
- functions.
-
-`OBJECT_FORMAT_ROSE'
- Define this macro if the system uses ROSE format object files, so
- that `collect2' can assume this format and scan object files
- directly for dynamic constructor/destructor functions.
-
- These macros are effective only in a native compiler; `collect2' as
- part of a cross compiler always uses `nm' for the target machine.
-
-`REAL_NM_FILE_NAME'
- Define this macro as a C string constant containing the file name
- to use to execute `nm'. The default is to search the path
- normally for `nm'.
-
- If your system supports shared libraries and has a program to list
- the dynamic dependencies of a given library or executable, you can
- define these macros to enable support for running initialization
- and termination functions in shared libraries:
-
-`LDD_SUFFIX'
- Define this macro to a C string constant containing the name of the
- program which lists dynamic dependencies, like `"ldd"' under SunOS
- 4.
-
-`PARSE_LDD_OUTPUT (PTR)'
- Define this macro to be C code that extracts filenames from the
- output of the program denoted by `LDD_SUFFIX'. PTR is a variable
- of type `char *' that points to the beginning of a line of output
- from `LDD_SUFFIX'. If the line lists a dynamic dependency, the
- code must advance PTR to the beginning of the filename on that
- line. Otherwise, it must set PTR to `NULL'.
-
-
-File: gcc.info, Node: Instruction Output, Next: Dispatch Tables, Prev: Macros for Initialization, Up: Assembler Format
-
-Output of Assembler Instructions
---------------------------------
-
- This describes assembler instruction output.
-
-`REGISTER_NAMES'
- A C initializer containing the assembler's names for the machine
- registers, each one as a C string constant. This is what
- translates register numbers in the compiler into assembler
- language.
-
-`ADDITIONAL_REGISTER_NAMES'
- If defined, a C initializer for an array of structures containing
- a name and a register number. This macro defines additional names
- for hard registers, thus allowing the `asm' option in declarations
- to refer to registers using alternate names.
-
-`ASM_OUTPUT_OPCODE (STREAM, PTR)'
- Define this macro if you are using an unusual assembler that
- requires different names for the machine instructions.
-
- The definition is a C statement or statements which output an
- assembler instruction opcode to the stdio stream STREAM. The
- macro-operand PTR is a variable of type `char *' which points to
- the opcode name in its "internal" form--the form that is written
- in the machine description. The definition should output the
- opcode name to STREAM, performing any translation you desire, and
- increment the variable PTR to point at the end of the opcode so
- that it will not be output twice.
-
- In fact, your macro definition may process less than the entire
- opcode name, or more than the opcode name; but if you want to
- process text that includes `%'-sequences to substitute operands,
- you must take care of the substitution yourself. Just be sure to
- increment PTR over whatever text should not be output normally.
-
- If you need to look at the operand values, they can be found as the
- elements of `recog_operand'.
-
- If the macro definition does nothing, the instruction is output in
- the usual way.
-
-`FINAL_PRESCAN_INSN (INSN, OPVEC, NOPERANDS)'
- If defined, a C statement to be executed just prior to the output
- of assembler code for INSN, to modify the extracted operands so
- they will be output differently.
-
- Here the argument OPVEC is the vector containing the operands
- extracted from INSN, and NOPERANDS is the number of elements of
- the vector which contain meaningful data for this insn. The
- contents of this vector are what will be used to convert the insn
- template into assembler code, so you can change the assembler
- output by changing the contents of the vector.
-
- This macro is useful when various assembler syntaxes share a single
- file of instruction patterns; by defining this macro differently,
- you can cause a large class of instructions to be output
- differently (such as with rearranged operands). Naturally,
- variations in assembler syntax affecting individual insn patterns
- ought to be handled by writing conditional output routines in
- those patterns.
-
- If this macro is not defined, it is equivalent to a null statement.
-
-`FINAL_PRESCAN_LABEL'
- If defined, `FINAL_PRESCAN_INSN' will be called on each
- `CODE_LABEL'. In that case, OPVEC will be a null pointer and
- NOPERANDS will be zero.
-
-`PRINT_OPERAND (STREAM, X, CODE)'
- A C compound statement to output to stdio stream STREAM the
- assembler syntax for an instruction operand X. X is an RTL
- expression.
-
- CODE is a value that can be used to specify one of several ways of
- printing the operand. It is used when identical operands must be
- printed differently depending on the context. CODE comes from the
- `%' specification that was used to request printing of the
- operand. If the specification was just `%DIGIT' then CODE is 0;
- if the specification was `%LTR DIGIT' then CODE is the ASCII code
- for LTR.
-
- If X is a register, this macro should print the register's name.
- The names can be found in an array `reg_names' whose type is `char
- *[]'. `reg_names' is initialized from `REGISTER_NAMES'.
-
- When the machine description has a specification `%PUNCT' (a `%'
- followed by a punctuation character), this macro is called with a
- null pointer for X and the punctuation character for CODE.
-
-`PRINT_OPERAND_PUNCT_VALID_P (CODE)'
- A C expression which evaluates to true if CODE is a valid
- punctuation character for use in the `PRINT_OPERAND' macro. If
- `PRINT_OPERAND_PUNCT_VALID_P' is not defined, it means that no
- punctuation characters (except for the standard one, `%') are used
- in this way.
-
-`PRINT_OPERAND_ADDRESS (STREAM, X)'
- A C compound statement to output to stdio stream STREAM the
- assembler syntax for an instruction operand that is a memory
- reference whose address is X. X is an RTL expression.
-
- On some machines, the syntax for a symbolic address depends on the
- section that the address refers to. On these machines, define the
- macro `ENCODE_SECTION_INFO' to store the information into the
- `symbol_ref', and then check for it here. *Note Assembler
- Format::.
-
-`DBR_OUTPUT_SEQEND(FILE)'
- A C statement, to be executed after all slot-filler instructions
- have been output. If necessary, call `dbr_sequence_length' to
- determine the number of slots filled in a sequence (zero if not
- currently outputting a sequence), to decide how many no-ops to
- output, or whatever.
-
- Don't define this macro if it has nothing to do, but it is helpful
- in reading assembly output if the extent of the delay sequence is
- made explicit (e.g. with white space).
-
- Note that output routines for instructions with delay slots must be
- prepared to deal with not being output as part of a sequence (i.e.
- when the scheduling pass is not run, or when no slot fillers could
- be found.) The variable `final_sequence' is null when not
- processing a sequence, otherwise it contains the `sequence' rtx
- being output.
-
-`REGISTER_PREFIX'
-`LOCAL_LABEL_PREFIX'
-`USER_LABEL_PREFIX'
-`IMMEDIATE_PREFIX'
- If defined, C string expressions to be used for the `%R', `%L',
- `%U', and `%I' options of `asm_fprintf' (see `final.c'). These
- are useful when a single `md' file must support multiple assembler
- formats. In that case, the various `tm.h' files can define these
- macros differently.
-
-`ASSEMBLER_DIALECT'
- If your target supports multiple dialects of assembler language
- (such as different opcodes), define this macro as a C expression
- that gives the numeric index of the assembler language dialect to
- use, with zero as the first variant.
-
- If this macro is defined, you may use constructs of the form
- `{option0|option1|option2...}' in the output templates of patterns
- (*note Output Template::.) or in the first argument of
- `asm_fprintf'. This construct outputs `option0', `option1' or
- `option2', etc., if the value of `ASSEMBLER_DIALECT' is zero, one
- or two, etc. Any special characters within these strings retain
- their usual meaning.
-
- If you do not define this macro, the characters `{', `|' and `}'
- do not have any special meaning when used in templates or operands
- to `asm_fprintf'.
-
- Define the macros `REGISTER_PREFIX', `LOCAL_LABEL_PREFIX',
- `USER_LABEL_PREFIX' and `IMMEDIATE_PREFIX' if you can express the
- variations in assemble language syntax with that mechanism. Define
- `ASSEMBLER_DIALECT' and use the `{option0|option1}' syntax if the
- syntax variant are larger and involve such things as different
- opcodes or operand order.
-
-`ASM_OUTPUT_REG_PUSH (STREAM, REGNO)'
- A C expression to output to STREAM some assembler code which will
- push hard register number REGNO onto the stack. The code need not
- be optimal, since this macro is used only when profiling.
-
-`ASM_OUTPUT_REG_POP (STREAM, REGNO)'
- A C expression to output to STREAM some assembler code which will
- pop hard register number REGNO off of the stack. The code need
- not be optimal, since this macro is used only when profiling.
-
-
-File: gcc.info, Node: Dispatch Tables, Next: Exception Region Output, Prev: Instruction Output, Up: Assembler Format
-
-Output of Dispatch Tables
--------------------------
-
- This concerns dispatch tables.
-
-`ASM_OUTPUT_ADDR_DIFF_ELT (STREAM, VALUE, REL)'
- A C statement to output to the stdio stream STREAM an assembler
- pseudo-instruction to generate a difference between two labels.
- VALUE and REL are the numbers of two internal labels. The
- definitions of these labels are output using
- `ASM_OUTPUT_INTERNAL_LABEL', and they must be printed in the same
- way here. For example,
-
- fprintf (STREAM, "\t.word L%d-L%d\n",
- VALUE, REL)
-
- You must provide this macro on machines where the addresses in a
- dispatch table are relative to the table's own address. If
- defined, GNU CC will also use this macro on all machines when
- producing PIC.
-
-`ASM_OUTPUT_ADDR_VEC_ELT (STREAM, VALUE)'
- This macro should be provided on machines where the addresses in a
- dispatch table are absolute.
-
- The definition should be a C statement to output to the stdio
- stream STREAM an assembler pseudo-instruction to generate a
- reference to a label. VALUE is the number of an internal label
- whose definition is output using `ASM_OUTPUT_INTERNAL_LABEL'. For
- example,
-
- fprintf (STREAM, "\t.word L%d\n", VALUE)
-
-`ASM_OUTPUT_CASE_LABEL (STREAM, PREFIX, NUM, TABLE)'
- Define this if the label before a jump-table needs to be output
- specially. The first three arguments are the same as for
- `ASM_OUTPUT_INTERNAL_LABEL'; the fourth argument is the jump-table
- which follows (a `jump_insn' containing an `addr_vec' or
- `addr_diff_vec').
-
- This feature is used on system V to output a `swbeg' statement for
- the table.
-
- If this macro is not defined, these labels are output with
- `ASM_OUTPUT_INTERNAL_LABEL'.
-
-`ASM_OUTPUT_CASE_END (STREAM, NUM, TABLE)'
- Define this if something special must be output at the end of a
- jump-table. The definition should be a C statement to be executed
- after the assembler code for the table is written. It should write
- the appropriate code to stdio stream STREAM. The argument TABLE
- is the jump-table insn, and NUM is the label-number of the
- preceding label.
-
- If this macro is not defined, nothing special is output at the end
- of the jump-table.
-
-
-File: gcc.info, Node: Exception Region Output, Next: Alignment Output, Prev: Dispatch Tables, Up: Assembler Format
-
-Assembler Commands for Exception Regions
-----------------------------------------
-
- This describes commands marking the start and the end of an exception
-region.
-
-`ASM_OUTPUT_EH_REGION_BEG ()'
- A C expression to output text to mark the start of an exception
- region.
-
- This macro need not be defined on most platforms.
-
-`ASM_OUTPUT_EH_REGION_END ()'
- A C expression to output text to mark the end of an exception
- region.
-
- This macro need not be defined on most platforms.
-
-`EXCEPTION_SECTION ()'
- A C expression to switch to the section in which the main
- exception table is to be placed (*note Sections::.). The default
- is a section named `.gcc_except_table' on machines that support
- named sections via `ASM_OUTPUT_SECTION_NAME', otherwise if `-fpic'
- or `-fPIC' is in effect, the `data_section', otherwise the
- `readonly_data_section'.
-
-`EH_FRAME_SECTION_ASM_OP'
- If defined, a C string constant for the assembler operation to
- switch to the section for exception handling frame unwind
- information. If not defined, GNU CC will provide a default
- definition if the target supports named sections. `crtstuff.c'
- uses this macro to switch to the appropriate section.
-
- You should define this symbol if your target supports DWARF 2 frame
- unwind information and the default definition does not work.
-
-`OMIT_EH_TABLE ()'
- A C expression that is nonzero if the normal exception table output
- should be omitted.
-
- This macro need not be defined on most platforms.
-
-`EH_TABLE_LOOKUP ()'
- Alternate runtime support for looking up an exception at runtime
- and finding the associated handler, if the default method won't
- work.
-
- This macro need not be defined on most platforms.
-
-`DOESNT_NEED_UNWINDER'
- A C expression that decides whether or not the current function
- needs to have a function unwinder generated for it. See the file
- `except.c' for details on when to define this, and how.
-
-`MASK_RETURN_ADDR'
- An rtx used to mask the return address found via RETURN_ADDR_RTX,
- so that it does not contain any extraneous set bits in it.
-
-`DWARF2_UNWIND_INFO'
- Define this macro to 0 if your target supports DWARF 2 frame unwind
- information, but it does not yet work with exception handling.
- Otherwise, if your target supports this information (if it defines
- `INCOMING_RETURN_ADDR_RTX' and either `UNALIGNED_INT_ASM_OP' or
- `OBJECT_FORMAT_ELF'), GCC will provide a default definition of 1.
-
- If this macro is defined to 1, the DWARF 2 unwinder will be the
- default exception handling mechanism; otherwise, setjmp/longjmp
- will be used by default.
-
- If this macro is defined to anything, the DWARF 2 unwinder will be
- used instead of inline unwinders and __unwind_function in the
- non-setjmp case.
-
-
-File: gcc.info, Node: Alignment Output, Prev: Exception Region Output, Up: Assembler Format
-
-Assembler Commands for Alignment
---------------------------------
-
- This describes commands for alignment.
-
-`ASM_OUTPUT_ALIGN_CODE (FILE)'
- A C expression to output text to align the location counter in the
- way that is desirable at a point in the code that is reached only
- by jumping.
-
- This macro need not be defined if you don't want any special
- alignment to be done at such a time. Most machine descriptions do
- not currently define the macro.
-
-`ASM_OUTPUT_LOOP_ALIGN (FILE)'
- A C expression to output text to align the location counter in the
- way that is desirable at the beginning of a loop.
-
- This macro need not be defined if you don't want any special
- alignment to be done at such a time. Most machine descriptions do
- not currently define the macro.
-
-`ASM_OUTPUT_SKIP (STREAM, NBYTES)'
- A C statement to output to the stdio stream STREAM an assembler
- instruction to advance the location counter by NBYTES bytes.
- Those bytes should be zero when loaded. NBYTES will be a C
- expression of type `int'.
-
-`ASM_NO_SKIP_IN_TEXT'
- Define this macro if `ASM_OUTPUT_SKIP' should not be used in the
- text section because it fails put zeros in the bytes that are
- skipped. This is true on many Unix systems, where the pseudo-op
- to skip bytes produces no-op instructions rather than zeros when
- used in the text section.
-
-`ASM_OUTPUT_ALIGN (STREAM, POWER)'
- A C statement to output to the stdio stream STREAM an assembler
- command to advance the location counter to a multiple of 2 to the
- POWER bytes. POWER will be a C expression of type `int'.
-
-
-File: gcc.info, Node: Debugging Info, Next: Cross-compilation, Prev: Assembler Format, Up: Target Macros
-
-Controlling Debugging Information Format
-========================================
-
- This describes how to specify debugging information.
-
-* Menu:
-
-* All Debuggers:: Macros that affect all debugging formats uniformly.
-* DBX Options:: Macros enabling specific options in DBX format.
-* DBX Hooks:: Hook macros for varying DBX format.
-* File Names and DBX:: Macros controlling output of file names in DBX format.
-* SDB and DWARF:: Macros for SDB (COFF) and DWARF formats.
-
-
-File: gcc.info, Node: All Debuggers, Next: DBX Options, Up: Debugging Info
-
-Macros Affecting All Debugging Formats
---------------------------------------
-
- These macros affect all debugging formats.
-
-`DBX_REGISTER_NUMBER (REGNO)'
- A C expression that returns the DBX register number for the
- compiler register number REGNO. In simple cases, the value of this
- expression may be REGNO itself. But sometimes there are some
- registers that the compiler knows about and DBX does not, or vice
- versa. In such cases, some register may need to have one number in
- the compiler and another for DBX.
-
- If two registers have consecutive numbers inside GNU CC, and they
- can be used as a pair to hold a multiword value, then they *must*
- have consecutive numbers after renumbering with
- `DBX_REGISTER_NUMBER'. Otherwise, debuggers will be unable to
- access such a pair, because they expect register pairs to be
- consecutive in their own numbering scheme.
-
- If you find yourself defining `DBX_REGISTER_NUMBER' in way that
- does not preserve register pairs, then what you must do instead is
- redefine the actual register numbering scheme.
-
-`DEBUGGER_AUTO_OFFSET (X)'
- A C expression that returns the integer offset value for an
- automatic variable having address X (an RTL expression). The
- default computation assumes that X is based on the frame-pointer
- and gives the offset from the frame-pointer. This is required for
- targets that produce debugging output for DBX or COFF-style
- debugging output for SDB and allow the frame-pointer to be
- eliminated when the `-g' options is used.
-
-`DEBUGGER_ARG_OFFSET (OFFSET, X)'
- A C expression that returns the integer offset value for an
- argument having address X (an RTL expression). The nominal offset
- is OFFSET.
-
-`PREFERRED_DEBUGGING_TYPE'
- A C expression that returns the type of debugging output GNU CC
- produces when the user specifies `-g' or `-ggdb'. Define this if
- you have arranged for GNU CC to support more than one format of
- debugging output. Currently, the allowable values are `DBX_DEBUG',
- `SDB_DEBUG', `DWARF_DEBUG', `DWARF2_DEBUG', and `XCOFF_DEBUG'.
-
- The value of this macro only affects the default debugging output;
- the user can always get a specific type of output by using
- `-gstabs', `-gcoff', `-gdwarf-1', `-gdwarf-2', or `-gxcoff'.
-
-
-File: gcc.info, Node: DBX Options, Next: DBX Hooks, Prev: All Debuggers, Up: Debugging Info
-
-Specific Options for DBX Output
--------------------------------
-
- These are specific options for DBX output.
-
-`DBX_DEBUGGING_INFO'
- Define this macro if GNU CC should produce debugging output for DBX
- in response to the `-g' option.
-
-`XCOFF_DEBUGGING_INFO'
- Define this macro if GNU CC should produce XCOFF format debugging
- output in response to the `-g' option. This is a variant of DBX
- format.
-
-`DEFAULT_GDB_EXTENSIONS'
- Define this macro to control whether GNU CC should by default
- generate GDB's extended version of DBX debugging information
- (assuming DBX-format debugging information is enabled at all). If
- you don't define the macro, the default is 1: always generate the
- extended information if there is any occasion to.
-
-`DEBUG_SYMS_TEXT'
- Define this macro if all `.stabs' commands should be output while
- in the text section.
-
-`ASM_STABS_OP'
- A C string constant naming the assembler pseudo op to use instead
- of `.stabs' to define an ordinary debugging symbol. If you don't
- define this macro, `.stabs' is used. This macro applies only to
- DBX debugging information format.
-
-`ASM_STABD_OP'
- A C string constant naming the assembler pseudo op to use instead
- of `.stabd' to define a debugging symbol whose value is the current
- location. If you don't define this macro, `.stabd' is used. This
- macro applies only to DBX debugging information format.
-
-`ASM_STABN_OP'
- A C string constant naming the assembler pseudo op to use instead
- of `.stabn' to define a debugging symbol with no name. If you
- don't define this macro, `.stabn' is used. This macro applies
- only to DBX debugging information format.
-
-`DBX_NO_XREFS'
- Define this macro if DBX on your system does not support the
- construct `xsTAGNAME'. On some systems, this construct is used to
- describe a forward reference to a structure named TAGNAME. On
- other systems, this construct is not supported at all.
-
-`DBX_CONTIN_LENGTH'
- A symbol name in DBX-format debugging information is normally
- continued (split into two separate `.stabs' directives) when it
- exceeds a certain length (by default, 80 characters). On some
- operating systems, DBX requires this splitting; on others,
- splitting must not be done. You can inhibit splitting by defining
- this macro with the value zero. You can override the default
- splitting-length by defining this macro as an expression for the
- length you desire.
-
-`DBX_CONTIN_CHAR'
- Normally continuation is indicated by adding a `\' character to
- the end of a `.stabs' string when a continuation follows. To use
- a different character instead, define this macro as a character
- constant for the character you want to use. Do not define this
- macro if backslash is correct for your system.
-
-`DBX_STATIC_STAB_DATA_SECTION'
- Define this macro if it is necessary to go to the data section
- before outputting the `.stabs' pseudo-op for a non-global static
- variable.
-
-`DBX_TYPE_DECL_STABS_CODE'
- The value to use in the "code" field of the `.stabs' directive for
- a typedef. The default is `N_LSYM'.
-
-`DBX_STATIC_CONST_VAR_CODE'
- The value to use in the "code" field of the `.stabs' directive for
- a static variable located in the text section. DBX format does not
- provide any "right" way to do this. The default is `N_FUN'.
-
-`DBX_REGPARM_STABS_CODE'
- The value to use in the "code" field of the `.stabs' directive for
- a parameter passed in registers. DBX format does not provide any
- "right" way to do this. The default is `N_RSYM'.
-
-`DBX_REGPARM_STABS_LETTER'
- The letter to use in DBX symbol data to identify a symbol as a
- parameter passed in registers. DBX format does not customarily
- provide any way to do this. The default is `'P''.
-
-`DBX_MEMPARM_STABS_LETTER'
- The letter to use in DBX symbol data to identify a symbol as a
- stack parameter. The default is `'p''.
-
-`DBX_FUNCTION_FIRST'
- Define this macro if the DBX information for a function and its
- arguments should precede the assembler code for the function.
- Normally, in DBX format, the debugging information entirely
- follows the assembler code.
-
-`DBX_LBRAC_FIRST'
- Define this macro if the `N_LBRAC' symbol for a block should
- precede the debugging information for variables and functions
- defined in that block. Normally, in DBX format, the `N_LBRAC'
- symbol comes first.
-
-`DBX_BLOCKS_FUNCTION_RELATIVE'
- Define this macro if the value of a symbol describing the scope of
- a block (`N_LBRAC' or `N_RBRAC') should be relative to the start
- of the enclosing function. Normally, GNU C uses an absolute
- address.
-
-`DBX_USE_BINCL'
- Define this macro if GNU C should generate `N_BINCL' and `N_EINCL'
- stabs for included header files, as on Sun systems. This macro
- also directs GNU C to output a type number as a pair of a file
- number and a type number within the file. Normally, GNU C does not
- generate `N_BINCL' or `N_EINCL' stabs, and it outputs a single
- number for a type number.
-
-
-File: gcc.info, Node: DBX Hooks, Next: File Names and DBX, Prev: DBX Options, Up: Debugging Info
-
-Open-Ended Hooks for DBX Format
--------------------------------
-
- These are hooks for DBX format.
-
-`DBX_OUTPUT_LBRAC (STREAM, NAME)'
- Define this macro to say how to output to STREAM the debugging
- information for the start of a scope level for variable names. The
- argument NAME is the name of an assembler symbol (for use with
- `assemble_name') whose value is the address where the scope begins.
-
-`DBX_OUTPUT_RBRAC (STREAM, NAME)'
- Like `DBX_OUTPUT_LBRAC', but for the end of a scope level.
-
-`DBX_OUTPUT_ENUM (STREAM, TYPE)'
- Define this macro if the target machine requires special handling
- to output an enumeration type. The definition should be a C
- statement (sans semicolon) to output the appropriate information
- to STREAM for the type TYPE.
-
-`DBX_OUTPUT_FUNCTION_END (STREAM, FUNCTION)'
- Define this macro if the target machine requires special output at
- the end of the debugging information for a function. The
- definition should be a C statement (sans semicolon) to output the
- appropriate information to STREAM. FUNCTION is the
- `FUNCTION_DECL' node for the function.
-
-`DBX_OUTPUT_STANDARD_TYPES (SYMS)'
- Define this macro if you need to control the order of output of the
- standard data types at the beginning of compilation. The argument
- SYMS is a `tree' which is a chain of all the predefined global
- symbols, including names of data types.
-
- Normally, DBX output starts with definitions of the types for
- integers and characters, followed by all the other predefined
- types of the particular language in no particular order.
-
- On some machines, it is necessary to output different particular
- types first. To do this, define `DBX_OUTPUT_STANDARD_TYPES' to
- output those symbols in the necessary order. Any predefined types
- that you don't explicitly output will be output afterward in no
- particular order.
-
- Be careful not to define this macro so that it works only for C.
- There are no global variables to access most of the built-in
- types, because another language may have another set of types.
- The way to output a particular type is to look through SYMS to see
- if you can find it. Here is an example:
-
- {
- tree decl;
- for (decl = syms; decl; decl = TREE_CHAIN (decl))
- if (!strcmp (IDENTIFIER_POINTER (DECL_NAME (decl)),
- "long int"))
- dbxout_symbol (decl);
- ...
- }
-
- This does nothing if the expected type does not exist.
-
- See the function `init_decl_processing' in `c-decl.c' to find the
- names to use for all the built-in C types.
-
- Here is another way of finding a particular type:
-
- {
- tree decl;
- for (decl = syms; decl; decl = TREE_CHAIN (decl))
- if (TREE_CODE (decl) == TYPE_DECL
- && (TREE_CODE (TREE_TYPE (decl))
- == INTEGER_CST)
- && TYPE_PRECISION (TREE_TYPE (decl)) == 16
- && TYPE_UNSIGNED (TREE_TYPE (decl)))
- /* This must be `unsigned short'. */
- dbxout_symbol (decl);
- ...
- }
-
-`NO_DBX_FUNCTION_END'
- Some stabs encapsulation formats (in particular ECOFF), cannot
- handle the `.stabs "",N_FUN,,0,0,Lscope-function-1' gdb dbx
- extention construct. On those machines, define this macro to turn
- this feature off without disturbing the rest of the gdb extensions.
-
-
-File: gcc.info, Node: File Names and DBX, Next: SDB and DWARF, Prev: DBX Hooks, Up: Debugging Info
-
-File Names in DBX Format
-------------------------
-
- This describes file names in DBX format.
-
-`DBX_WORKING_DIRECTORY'
- Define this if DBX wants to have the current directory recorded in
- each object file.
-
- Note that the working directory is always recorded if GDB
- extensions are enabled.
-
-`DBX_OUTPUT_MAIN_SOURCE_FILENAME (STREAM, NAME)'
- A C statement to output DBX debugging information to the stdio
- stream STREAM which indicates that file NAME is the main source
- file--the file specified as the input file for compilation. This
- macro is called only once, at the beginning of compilation.
-
- This macro need not be defined if the standard form of output for
- DBX debugging information is appropriate.
-
-`DBX_OUTPUT_MAIN_SOURCE_DIRECTORY (STREAM, NAME)'
- A C statement to output DBX debugging information to the stdio
- stream STREAM which indicates that the current directory during
- compilation is named NAME.
-
- This macro need not be defined if the standard form of output for
- DBX debugging information is appropriate.
-
-`DBX_OUTPUT_MAIN_SOURCE_FILE_END (STREAM, NAME)'
- A C statement to output DBX debugging information at the end of
- compilation of the main source file NAME.
-
- If you don't define this macro, nothing special is output at the
- end of compilation, which is correct for most machines.
-
-`DBX_OUTPUT_SOURCE_FILENAME (STREAM, NAME)'
- A C statement to output DBX debugging information to the stdio
- stream STREAM which indicates that file NAME is the current source
- file. This output is generated each time input shifts to a
- different source file as a result of `#include', the end of an
- included file, or a `#line' command.
-
- This macro need not be defined if the standard form of output for
- DBX debugging information is appropriate.
-
-
-File: gcc.info, Node: SDB and DWARF, Prev: File Names and DBX, Up: Debugging Info
-
-Macros for SDB and DWARF Output
--------------------------------
-
- Here are macros for SDB and DWARF output.
-
-`SDB_DEBUGGING_INFO'
- Define this macro if GNU CC should produce COFF-style debugging
- output for SDB in response to the `-g' option.
-
-`DWARF_DEBUGGING_INFO'
- Define this macro if GNU CC should produce dwarf format debugging
- output in response to the `-g' option.
-
-`DWARF2_DEBUGGING_INFO'
- Define this macro if GNU CC should produce dwarf version 2 format
- debugging output in response to the `-g' option.
-
- To support optional call frame debugging information, you must also
- define `INCOMING_RETURN_ADDR_RTX' and either set
- `RTX_FRAME_RELATED_P' on the prologue insns if you use RTL for the
- prologue, or call `dwarf2out_def_cfa' and `dwarf2out_reg_save' as
- appropriate from `FUNCTION_PROLOGUE' if you don't.
-
-`PUT_SDB_...'
- Define these macros to override the assembler syntax for the
- special SDB assembler directives. See `sdbout.c' for a list of
- these macros and their arguments. If the standard syntax is used,
- you need not define them yourself.
-
-`SDB_DELIM'
- Some assemblers do not support a semicolon as a delimiter, even
- between SDB assembler directives. In that case, define this macro
- to be the delimiter to use (usually `\n'). It is not necessary to
- define a new set of `PUT_SDB_OP' macros if this is the only change
- required.
-
-`SDB_GENERATE_FAKE'
- Define this macro to override the usual method of constructing a
- dummy name for anonymous structure and union types. See
- `sdbout.c' for more information.
-
-`SDB_ALLOW_UNKNOWN_REFERENCES'
- Define this macro to allow references to unknown structure, union,
- or enumeration tags to be emitted. Standard COFF does not allow
- handling of unknown references, MIPS ECOFF has support for it.
-
-`SDB_ALLOW_FORWARD_REFERENCES'
- Define this macro to allow references to structure, union, or
- enumeration tags that have not yet been seen to be handled. Some
- assemblers choke if forward tags are used, while some require it.
-
-
-File: gcc.info, Node: Cross-compilation, Next: Misc, Prev: Debugging Info, Up: Target Macros
-
-Cross Compilation and Floating Point
-====================================
-
- While all modern machines use 2's complement representation for
-integers, there are a variety of representations for floating point
-numbers. This means that in a cross-compiler the representation of
-floating point numbers in the compiled program may be different from
-that used in the machine doing the compilation.
-
- Because different representation systems may offer different amounts
-of range and precision, the cross compiler cannot safely use the host
-machine's floating point arithmetic. Therefore, floating point
-constants must be represented in the target machine's format. This
-means that the cross compiler cannot use `atof' to parse a floating
-point constant; it must have its own special routine to use instead.
-Also, constant folding must emulate the target machine's arithmetic (or
-must not be done at all).
-
- The macros in the following table should be defined only if you are
-cross compiling between different floating point formats.
-
- Otherwise, don't define them. Then default definitions will be set
-up which use `double' as the data type, `==' to test for equality, etc.
-
- You don't need to worry about how many times you use an operand of
-any of these macros. The compiler never uses operands which have side
-effects.
-
-`REAL_VALUE_TYPE'
- A macro for the C data type to be used to hold a floating point
- value in the target machine's format. Typically this would be a
- `struct' containing an array of `int'.
-
-`REAL_VALUES_EQUAL (X, Y)'
- A macro for a C expression which compares for equality the two
- values, X and Y, both of type `REAL_VALUE_TYPE'.
-
-`REAL_VALUES_LESS (X, Y)'
- A macro for a C expression which tests whether X is less than Y,
- both values being of type `REAL_VALUE_TYPE' and interpreted as
- floating point numbers in the target machine's representation.
-
-`REAL_VALUE_LDEXP (X, SCALE)'
- A macro for a C expression which performs the standard library
- function `ldexp', but using the target machine's floating point
- representation. Both X and the value of the expression have type
- `REAL_VALUE_TYPE'. The second argument, SCALE, is an integer.
-
-`REAL_VALUE_FIX (X)'
- A macro whose definition is a C expression to convert the
- target-machine floating point value X to a signed integer. X has
- type `REAL_VALUE_TYPE'.
-
-`REAL_VALUE_UNSIGNED_FIX (X)'
- A macro whose definition is a C expression to convert the
- target-machine floating point value X to an unsigned integer. X
- has type `REAL_VALUE_TYPE'.
-
-`REAL_VALUE_RNDZINT (X)'
- A macro whose definition is a C expression to round the
- target-machine floating point value X towards zero to an integer
- value (but still as a floating point number). X has type
- `REAL_VALUE_TYPE', and so does the value.
-
-`REAL_VALUE_UNSIGNED_RNDZINT (X)'
- A macro whose definition is a C expression to round the
- target-machine floating point value X towards zero to an unsigned
- integer value (but still represented as a floating point number).
- X has type `REAL_VALUE_TYPE', and so does the value.
-
-`REAL_VALUE_ATOF (STRING, MODE)'
- A macro for a C expression which converts STRING, an expression of
- type `char *', into a floating point number in the target machine's
- representation for mode MODE. The value has type
- `REAL_VALUE_TYPE'.
-
-`REAL_INFINITY'
- Define this macro if infinity is a possible floating point value,
- and therefore division by 0 is legitimate.
-
-`REAL_VALUE_ISINF (X)'
- A macro for a C expression which determines whether X, a floating
- point value, is infinity. The value has type `int'. By default,
- this is defined to call `isinf'.
-
-`REAL_VALUE_ISNAN (X)'
- A macro for a C expression which determines whether X, a floating
- point value, is a "nan" (not-a-number). The value has type `int'.
- By default, this is defined to call `isnan'.
-
- Define the following additional macros if you want to make floating
-point constant folding work while cross compiling. If you don't define
-them, cross compilation is still possible, but constant folding will
-not happen for floating point values.
-
-`REAL_ARITHMETIC (OUTPUT, CODE, X, Y)'
- A macro for a C statement which calculates an arithmetic operation
- of the two floating point values X and Y, both of type
- `REAL_VALUE_TYPE' in the target machine's representation, to
- produce a result of the same type and representation which is
- stored in OUTPUT (which will be a variable).
-
- The operation to be performed is specified by CODE, a tree code
- which will always be one of the following: `PLUS_EXPR',
- `MINUS_EXPR', `MULT_EXPR', `RDIV_EXPR', `MAX_EXPR', `MIN_EXPR'.
-
- The expansion of this macro is responsible for checking for
- overflow. If overflow happens, the macro expansion should execute
- the statement `return 0;', which indicates the inability to
- perform the arithmetic operation requested.
-
-`REAL_VALUE_NEGATE (X)'
- A macro for a C expression which returns the negative of the
- floating point value X. Both X and the value of the expression
- have type `REAL_VALUE_TYPE' and are in the target machine's
- floating point representation.
-
- There is no way for this macro to report overflow, since overflow
- can't happen in the negation operation.
-
-`REAL_VALUE_TRUNCATE (MODE, X)'
- A macro for a C expression which converts the floating point value
- X to mode MODE.
-
- Both X and the value of the expression are in the target machine's
- floating point representation and have type `REAL_VALUE_TYPE'.
- However, the value should have an appropriate bit pattern to be
- output properly as a floating constant whose precision accords
- with mode MODE.
-
- There is no way for this macro to report overflow.
-
-`REAL_VALUE_TO_INT (LOW, HIGH, X)'
- A macro for a C expression which converts a floating point value X
- into a double-precision integer which is then stored into LOW and
- HIGH, two variables of type INT.
-
-`REAL_VALUE_FROM_INT (X, LOW, HIGH, MODE)'
- A macro for a C expression which converts a double-precision
- integer found in LOW and HIGH, two variables of type INT, into a
- floating point value which is then stored into X. The value is in
- the target machine's representation for mode MODE and has the type
- `REAL_VALUE_TYPE'.
-
diff --git a/gcc/gcc.info-26 b/gcc/gcc.info-26
deleted file mode 100644
index f70a06ecec4..00000000000
--- a/gcc/gcc.info-26
+++ /dev/null
@@ -1,973 +0,0 @@
-This is Info file gcc.info, produced by Makeinfo version 1.68 from the
-input file gcc.texi.
-
- This file documents the use and the internals of the GNU compiler.
-
- Published by the Free Software Foundation 59 Temple Place - Suite 330
-Boston, MA 02111-1307 USA
-
- Copyright (C) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997 Free
-Software Foundation, Inc.
-
- Permission is granted to make and distribute verbatim copies of this
-manual provided the copyright notice and this permission notice are
-preserved on all copies.
-
- Permission is granted to copy and distribute modified versions of
-this manual under the conditions for verbatim copying, provided also
-that the sections entitled "GNU General Public License," "Funding for
-Free Software," and "Protect Your Freedom--Fight `Look And Feel'" are
-included exactly as in the original, and provided that the entire
-resulting derived work is distributed under the terms of a permission
-notice identical to this one.
-
- Permission is granted to copy and distribute translations of this
-manual into another language, under the above conditions for modified
-versions, except that the sections entitled "GNU General Public
-License," "Funding for Free Software," and "Protect Your Freedom--Fight
-`Look And Feel'", and this permission notice, may be included in
-translations approved by the Free Software Foundation instead of in the
-original English.
-
-
-File: gcc.info, Node: Misc, Prev: Cross-compilation, Up: Target Macros
-
-Miscellaneous Parameters
-========================
-
- Here are several miscellaneous parameters.
-
-`PREDICATE_CODES'
- Define this if you have defined special-purpose predicates in the
- file `MACHINE.c'. This macro is called within an initializer of an
- array of structures. The first field in the structure is the name
- of a predicate and the second field is an array of rtl codes. For
- each predicate, list all rtl codes that can be in expressions
- matched by the predicate. The list should have a trailing comma.
- Here is an example of two entries in the list for a typical RISC
- machine:
-
- #define PREDICATE_CODES \
- {"gen_reg_rtx_operand", {SUBREG, REG}}, \
- {"reg_or_short_cint_operand", {SUBREG, REG, CONST_INT}},
-
- Defining this macro does not affect the generated code (however,
- incorrect definitions that omit an rtl code that may be matched by
- the predicate can cause the compiler to malfunction). Instead, it
- allows the table built by `genrecog' to be more compact and
- efficient, thus speeding up the compiler. The most important
- predicates to include in the list specified by this macro are
- thoses used in the most insn patterns.
-
-`CASE_VECTOR_MODE'
- An alias for a machine mode name. This is the machine mode that
- elements of a jump-table should have.
-
-`CASE_VECTOR_PC_RELATIVE'
- Define this macro if jump-tables should contain relative addresses.
-
-`CASE_DROPS_THROUGH'
- Define this if control falls through a `case' insn when the index
- value is out of range. This means the specified default-label is
- actually ignored by the `case' insn proper.
-
-`CASE_VALUES_THRESHOLD'
- Define this to be the smallest number of different values for
- which it is best to use a jump-table instead of a tree of
- conditional branches. The default is four for machines with a
- `casesi' instruction and five otherwise. This is best for most
- machines.
-
-`WORD_REGISTER_OPERATIONS'
- Define this macro if operations between registers with integral
- mode smaller than a word are always performed on the entire
- register. Most RISC machines have this property and most CISC
- machines do not.
-
-`LOAD_EXTEND_OP (MODE)'
- Define this macro to be a C expression indicating when insns that
- read memory in MODE, an integral mode narrower than a word, set the
- bits outside of MODE to be either the sign-extension or the
- zero-extension of the data read. Return `SIGN_EXTEND' for values
- of MODE for which the insn sign-extends, `ZERO_EXTEND' for which
- it zero-extends, and `NIL' for other modes.
-
- This macro is not called with MODE non-integral or with a width
- greater than or equal to `BITS_PER_WORD', so you may return any
- value in this case. Do not define this macro if it would always
- return `NIL'. On machines where this macro is defined, you will
- normally define it as the constant `SIGN_EXTEND' or `ZERO_EXTEND'.
-
-`IMPLICIT_FIX_EXPR'
- An alias for a tree code that should be used by default for
- conversion of floating point values to fixed point. Normally,
- `FIX_ROUND_EXPR' is used.
-
-`FIXUNS_TRUNC_LIKE_FIX_TRUNC'
- Define this macro if the same instructions that convert a floating
- point number to a signed fixed point number also convert validly
- to an unsigned one.
-
-`EASY_DIV_EXPR'
- An alias for a tree code that is the easiest kind of division to
- compile code for in the general case. It may be `TRUNC_DIV_EXPR',
- `FLOOR_DIV_EXPR', `CEIL_DIV_EXPR' or `ROUND_DIV_EXPR'. These four
- division operators differ in how they round the result to an
- integer. `EASY_DIV_EXPR' is used when it is permissible to use
- any of those kinds of division and the choice should be made on
- the basis of efficiency.
-
-`MOVE_MAX'
- The maximum number of bytes that a single instruction can move
- quickly between memory and registers or between two memory
- locations.
-
-`MAX_MOVE_MAX'
- The maximum number of bytes that a single instruction can move
- quickly between memory and registers or between two memory
- locations. If this is undefined, the default is `MOVE_MAX'.
- Otherwise, it is the constant value that is the largest value that
- `MOVE_MAX' can have at run-time.
-
-`SHIFT_COUNT_TRUNCATED'
- A C expression that is nonzero if on this machine the number of
- bits actually used for the count of a shift operation is equal to
- the number of bits needed to represent the size of the object
- being shifted. When this macro is non-zero, the compiler will
- assume that it is safe to omit a sign-extend, zero-extend, and
- certain bitwise `and' instructions that truncates the count of a
- shift operation. On machines that have instructions that act on
- bitfields at variable positions, which may include `bit test'
- instructions, a nonzero `SHIFT_COUNT_TRUNCATED' also enables
- deletion of truncations of the values that serve as arguments to
- bitfield instructions.
-
- If both types of instructions truncate the count (for shifts) and
- position (for bitfield operations), or if no variable-position
- bitfield instructions exist, you should define this macro.
-
- However, on some machines, such as the 80386 and the 680x0,
- truncation only applies to shift operations and not the (real or
- pretended) bitfield operations. Define `SHIFT_COUNT_TRUNCATED' to
- be zero on such machines. Instead, add patterns to the `md' file
- that include the implied truncation of the shift instructions.
-
- You need not define this macro if it would always have the value
- of zero.
-
-`TRULY_NOOP_TRUNCATION (OUTPREC, INPREC)'
- A C expression which is nonzero if on this machine it is safe to
- "convert" an integer of INPREC bits to one of OUTPREC bits (where
- OUTPREC is smaller than INPREC) by merely operating on it as if it
- had only OUTPREC bits.
-
- On many machines, this expression can be 1.
-
- When `TRULY_NOOP_TRUNCATION' returns 1 for a pair of sizes for
- modes for which `MODES_TIEABLE_P' is 0, suboptimal code can result.
- If this is the case, making `TRULY_NOOP_TRUNCATION' return 0 in
- such cases may improve things.
-
-`STORE_FLAG_VALUE'
- A C expression describing the value returned by a comparison
- operator with an integral mode and stored by a store-flag
- instruction (`sCOND') when the condition is true. This
- description must apply to *all* the `sCOND' patterns and all the
- comparison operators whose results have a `MODE_INT' mode.
-
- A value of 1 or -1 means that the instruction implementing the
- comparison operator returns exactly 1 or -1 when the comparison is
- true and 0 when the comparison is false. Otherwise, the value
- indicates which bits of the result are guaranteed to be 1 when the
- comparison is true. This value is interpreted in the mode of the
- comparison operation, which is given by the mode of the first
- operand in the `sCOND' pattern. Either the low bit or the sign
- bit of `STORE_FLAG_VALUE' be on. Presently, only those bits are
- used by the compiler.
-
- If `STORE_FLAG_VALUE' is neither 1 or -1, the compiler will
- generate code that depends only on the specified bits. It can also
- replace comparison operators with equivalent operations if they
- cause the required bits to be set, even if the remaining bits are
- undefined. For example, on a machine whose comparison operators
- return an `SImode' value and where `STORE_FLAG_VALUE' is defined as
- `0x80000000', saying that just the sign bit is relevant, the
- expression
-
- (ne:SI (and:SI X (const_int POWER-OF-2)) (const_int 0))
-
- can be converted to
-
- (ashift:SI X (const_int N))
-
- where N is the appropriate shift count to move the bit being
- tested into the sign bit.
-
- There is no way to describe a machine that always sets the
- low-order bit for a true value, but does not guarantee the value
- of any other bits, but we do not know of any machine that has such
- an instruction. If you are trying to port GNU CC to such a
- machine, include an instruction to perform a logical-and of the
- result with 1 in the pattern for the comparison operators and let
- us know (*note How to Report Bugs: Bug Reporting.).
-
- Often, a machine will have multiple instructions that obtain a
- value from a comparison (or the condition codes). Here are rules
- to guide the choice of value for `STORE_FLAG_VALUE', and hence the
- instructions to be used:
-
- * Use the shortest sequence that yields a valid definition for
- `STORE_FLAG_VALUE'. It is more efficient for the compiler to
- "normalize" the value (convert it to, e.g., 1 or 0) than for
- the comparison operators to do so because there may be
- opportunities to combine the normalization with other
- operations.
-
- * For equal-length sequences, use a value of 1 or -1, with -1
- being slightly preferred on machines with expensive jumps and
- 1 preferred on other machines.
-
- * As a second choice, choose a value of `0x80000001' if
- instructions exist that set both the sign and low-order bits
- but do not define the others.
-
- * Otherwise, use a value of `0x80000000'.
-
- Many machines can produce both the value chosen for
- `STORE_FLAG_VALUE' and its negation in the same number of
- instructions. On those machines, you should also define a pattern
- for those cases, e.g., one matching
-
- (set A (neg:M (ne:M B C)))
-
- Some machines can also perform `and' or `plus' operations on
- condition code values with less instructions than the corresponding
- `sCOND' insn followed by `and' or `plus'. On those machines,
- define the appropriate patterns. Use the names `incscc' and
- `decscc', respectively, for the patterns which perform `plus' or
- `minus' operations on condition code values. See `rs6000.md' for
- some examples. The GNU Superoptizer can be used to find such
- instruction sequences on other machines.
-
- You need not define `STORE_FLAG_VALUE' if the machine has no
- store-flag instructions.
-
-`FLOAT_STORE_FLAG_VALUE'
- A C expression that gives a non-zero floating point value that is
- returned when comparison operators with floating-point results are
- true. Define this macro on machine that have comparison
- operations that return floating-point values. If there are no
- such operations, do not define this macro.
-
-`Pmode'
- An alias for the machine mode for pointers. On most machines,
- define this to be the integer mode corresponding to the width of a
- hardware pointer; `SImode' on 32-bit machine or `DImode' on 64-bit
- machines. On some machines you must define this to be one of the
- partial integer modes, such as `PSImode'.
-
- The width of `Pmode' must be at least as large as the value of
- `POINTER_SIZE'. If it is not equal, you must define the macro
- `POINTERS_EXTEND_UNSIGNED' to specify how pointers are extended to
- `Pmode'.
-
-`FUNCTION_MODE'
- An alias for the machine mode used for memory references to
- functions being called, in `call' RTL expressions. On most
- machines this should be `QImode'.
-
-`INTEGRATE_THRESHOLD (DECL)'
- A C expression for the maximum number of instructions above which
- the function DECL should not be inlined. DECL is a
- `FUNCTION_DECL' node.
-
- The default definition of this macro is 64 plus 8 times the number
- of arguments that the function accepts. Some people think a larger
- threshold should be used on RISC machines.
-
-`SCCS_DIRECTIVE'
- Define this if the preprocessor should ignore `#sccs' directives
- and print no error message.
-
-`NO_IMPLICIT_EXTERN_C'
- Define this macro if the system header files support C++ as well
- as C. This macro inhibits the usual method of using system header
- files in C++, which is to pretend that the file's contents are
- enclosed in `extern "C" {...}'.
-
-`HANDLE_PRAGMA (STREAM, NODE)'
- Define this macro if you want to implement any pragmas. If
- defined, it is a C expression whose value is 1 if the pragma was
- handled by the function. The argument STREAM is the stdio input
- stream from which the source text can be read. NODE is the tree
- node for the identifier after the `#pragma'.
-
- It is generally a bad idea to implement new uses of `#pragma'. The
- only reason to define this macro is for compatibility with other
- compilers that do support `#pragma' for the sake of any user
- programs which already use it.
-
-`VALID_MACHINE_DECL_ATTRIBUTE (DECL, ATTRIBUTES, IDENTIFIER, ARGS)'
- If defined, a C expression whose value is nonzero if IDENTIFIER
- with arguments ARGS is a valid machine specific attribute for DECL.
- The attributes in ATTRIBUTES have previously been assigned to DECL.
-
-`VALID_MACHINE_TYPE_ATTRIBUTE (TYPE, ATTRIBUTES, IDENTIFIER, ARGS)'
- If defined, a C expression whose value is nonzero if IDENTIFIER
- with arguments ARGS is a valid machine specific attribute for TYPE.
- The attributes in ATTRIBUTES have previously been assigned to TYPE.
-
-`COMP_TYPE_ATTRIBUTES (TYPE1, TYPE2)'
- If defined, a C expression whose value is zero if the attributes on
- TYPE1 and TYPE2 are incompatible, one if they are compatible, and
- two if they are nearly compatible (which causes a warning to be
- generated).
-
-`SET_DEFAULT_TYPE_ATTRIBUTES (TYPE)'
- If defined, a C statement that assigns default attributes to newly
- defined TYPE.
-
-`DOLLARS_IN_IDENTIFIERS'
- Define this macro to control use of the character `$' in identifier
- names. 0 means `$' is not allowed by default; 1 means it is
- allowed. 1 is the default; there is no need to define this macro
- in that case. This macro controls the compiler proper; it does
- not affect the preprocessor.
-
-`NO_DOLLAR_IN_LABEL'
- Define this macro if the assembler does not accept the character
- `$' in label names. By default constructors and destructors in
- G++ have `$' in the identifiers. If this macro is defined, `.' is
- used instead.
-
-`NO_DOT_IN_LABEL'
- Define this macro if the assembler does not accept the character
- `.' in label names. By default constructors and destructors in G++
- have names that use `.'. If this macro is defined, these names
- are rewritten to avoid `.'.
-
-`DEFAULT_MAIN_RETURN'
- Define this macro if the target system expects every program's
- `main' function to return a standard "success" value by default
- (if no other value is explicitly returned).
-
- The definition should be a C statement (sans semicolon) to
- generate the appropriate rtl instructions. It is used only when
- compiling the end of `main'.
-
-`HAVE_ATEXIT'
- Define this if the target system supports the function `atexit'
- from the ANSI C standard. If this is not defined, and
- `INIT_SECTION_ASM_OP' is not defined, a default `exit' function
- will be provided to support C++.
-
-`EXIT_BODY'
- Define this if your `exit' function needs to do something besides
- calling an external function `_cleanup' before terminating with
- `_exit'. The `EXIT_BODY' macro is only needed if neither
- `HAVE_ATEXIT' nor `INIT_SECTION_ASM_OP' are defined.
-
-`INSN_SETS_ARE_DELAYED (INSN)'
- Define this macro as a C expression that is nonzero if it is safe
- for the delay slot scheduler to place instructions in the delay
- slot of INSN, even if they appear to use a resource set or
- clobbered in INSN. INSN is always a `jump_insn' or an `insn'; GNU
- CC knows that every `call_insn' has this behavior. On machines
- where some `insn' or `jump_insn' is really a function call and
- hence has this behavior, you should define this macro.
-
- You need not define this macro if it would always return zero.
-
-`INSN_REFERENCES_ARE_DELAYED (INSN)'
- Define this macro as a C expression that is nonzero if it is safe
- for the delay slot scheduler to place instructions in the delay
- slot of INSN, even if they appear to set or clobber a resource
- referenced in INSN. INSN is always a `jump_insn' or an `insn'.
- On machines where some `insn' or `jump_insn' is really a function
- call and its operands are registers whose use is actually in the
- subroutine it calls, you should define this macro. Doing so
- allows the delay slot scheduler to move instructions which copy
- arguments into the argument registers into the delay slot of INSN.
-
- You need not define this macro if it would always return zero.
-
-`MACHINE_DEPENDENT_REORG (INSN)'
- In rare cases, correct code generation requires extra machine
- dependent processing between the second jump optimization pass and
- delayed branch scheduling. On those machines, define this macro
- as a C statement to act on the code starting at INSN.
-
-`MULTIPLE_SYMBOL_SPACES'
- Define this macro if in some cases global symbols from one
- translation unit may not be bound to undefined symbols in another
- translation unit without user intervention. For instance, under
- Microsoft Windows symbols must be explicitly imported from shared
- libraries (DLLs).
-
-`GIV_SORT_CRITERION (GIV1, GIV2)'
- In some cases, the strength reduction optimization pass can
- produce better code if this is defined. This macro controls the
- order that induction variables are combined. This macro is
- particularly useful if the target has limited addressing modes.
- For instance, the SH target has only positive offsets in
- addresses. Thus sorting to put the smallest address first allows
- the most combinations to be found.
-
-
-File: gcc.info, Node: Config, Next: Fragments, Prev: Target Macros, Up: Top
-
-The Configuration File
-**********************
-
- The configuration file `xm-MACHINE.h' contains macro definitions
-that describe the machine and system on which the compiler is running,
-unlike the definitions in `MACHINE.h', which describe the machine for
-which the compiler is producing output. Most of the values in
-`xm-MACHINE.h' are actually the same on all machines that GNU CC runs
-on, so large parts of all configuration files are identical. But there
-are some macros that vary:
-
-`USG'
- Define this macro if the host system is System V.
-
-`VMS'
- Define this macro if the host system is VMS.
-
-`FATAL_EXIT_CODE'
- A C expression for the status code to be returned when the compiler
- exits after serious errors.
-
-`SUCCESS_EXIT_CODE'
- A C expression for the status code to be returned when the compiler
- exits without serious errors.
-
-`HOST_WORDS_BIG_ENDIAN'
- Defined if the host machine stores words of multi-word values in
- big-endian order. (GNU CC does not depend on the host byte
- ordering within a word.)
-
-`HOST_FLOAT_WORDS_BIG_ENDIAN'
- Define this macro to be 1 if the host machine stores `DFmode',
- `XFmode' or `TFmode' floating point numbers in memory with the
- word containing the sign bit at the lowest address; otherwise,
- define it to be zero.
-
- This macro need not be defined if the ordering is the same as for
- multi-word integers.
-
-`HOST_FLOAT_FORMAT'
- A numeric code distinguishing the floating point format for the
- host machine. See `TARGET_FLOAT_FORMAT' in *Note Storage Layout::
- for the alternatives and default.
-
-`HOST_BITS_PER_CHAR'
- A C expression for the number of bits in `char' on the host
- machine.
-
-`HOST_BITS_PER_SHORT'
- A C expression for the number of bits in `short' on the host
- machine.
-
-`HOST_BITS_PER_INT'
- A C expression for the number of bits in `int' on the host machine.
-
-`HOST_BITS_PER_LONG'
- A C expression for the number of bits in `long' on the host
- machine.
-
-`ONLY_INT_FIELDS'
- Define this macro to indicate that the host compiler only supports
- `int' bit fields, rather than other integral types, including
- `enum', as do most C compilers.
-
-`OBSTACK_CHUNK_SIZE'
- A C expression for the size of ordinary obstack chunks. If you
- don't define this, a usually-reasonable default is used.
-
-`OBSTACK_CHUNK_ALLOC'
- The function used to allocate obstack chunks. If you don't define
- this, `xmalloc' is used.
-
-`OBSTACK_CHUNK_FREE'
- The function used to free obstack chunks. If you don't define
- this, `free' is used.
-
-`USE_C_ALLOCA'
- Define this macro to indicate that the compiler is running with the
- `alloca' implemented in C. This version of `alloca' can be found
- in the file `alloca.c'; to use it, you must also alter the
- `Makefile' variable `ALLOCA'. (This is done automatically for the
- systems on which we know it is needed.)
-
- If you do define this macro, you should probably do it as follows:
-
- #ifndef __GNUC__
- #define USE_C_ALLOCA
- #else
- #define alloca __builtin_alloca
- #endif
-
- so that when the compiler is compiled with GNU CC it uses the more
- efficient built-in `alloca' function.
-
-`FUNCTION_CONVERSION_BUG'
- Define this macro to indicate that the host compiler does not
- properly handle converting a function value to a
- pointer-to-function when it is used in an expression.
-
-`HAVE_VPRINTF'
- Define this if the library function `vprintf' is available on your
- system.
-
-`MULTIBYTE_CHARS'
- Define this macro to enable support for multibyte characters in the
- input to GNU CC. This requires that the host system support the
- ANSI C library functions for converting multibyte characters to
- wide characters.
-
-`HAVE_PUTENV'
- Define this if the library function `putenv' is available on your
- system.
-
-`POSIX'
- Define this if your system is POSIX.1 compliant.
-
-`HAVE_POPEN'
- Define this if the library function `popen' is available on your
- system.
-
-`NO_SYS_SIGLIST'
- Define this if your system *does not* provide the variable
- `sys_siglist'.
-
- Some systems do provide this variable, but with a different name
- such as `_sys_siglist'. On these systems, you can define
- `sys_siglist' as a macro which expands into the name actually
- provided.
-
- Autoconf normally defines `SYS_SIGLIST_DECLARED' when it finds a
- declaration of `sys_siglist' in the system header files. However,
- when you define `sys_siglist' to a different name autoconf will
- not automatically define `SYS_SIGLIST_DECLARED'. Therefore, if
- you define `sys_siglist', you should also define
- `SYS_SIGLIST_DECLARED'.
-
-`USE_PROTOTYPES'
- Define this to be 1 if you know that the host compiler supports
- prototypes, even if it doesn't define __STDC__, or define it to be
- 0 if you do not want any prototypes used in compiling GNU CC. If
- `USE_PROTOTYPES' is not defined, it will be determined
- automatically whether your compiler supports prototypes by
- checking if `__STDC__' is defined.
-
-`NO_MD_PROTOTYPES'
- Define this if you wish suppression of prototypes generated from
- the machine description file, but to use other prototypes within
- GNU CC. If `USE_PROTOTYPES' is defined to be 0, or the host
- compiler does not support prototypes, this macro has no effect.
-
-`MD_CALL_PROTOTYPES'
- Define this if you wish to generate prototypes for the `gen_call'
- or `gen_call_value' functions generated from the machine
- description file. If `USE_PROTOTYPES' is defined to be 0, or the
- host compiler does not support prototypes, or `NO_MD_PROTOTYPES'
- is defined, this macro has no effect. As soon as all of the
- machine descriptions are modified to have the appropriate number
- of arguments, this macro will be removed.
-
-`NO_STAB_H'
- Define this if your system does not have the include file
- `stab.h'. If `USG' is defined, `NO_STAB_H' is assumed.
-
-`PATH_SEPARATOR'
- Define this macro to be a C character constant representing the
- character used to separate components in paths. The default value
- is the colon character
-
-`DIR_SEPARATOR'
- If your system uses some character other than slash to separate
- directory names within a file specification, define this macro to
- be a C character constant specifying that character. When GNU CC
- displays file names, the character you specify will be used. GNU
- CC will test for both slash and the character you specify when
- parsing filenames.
-
-`OBJECT_SUFFIX'
- Define this macro to be a C string representing the suffix for
- object files on your machine. If you do not define this macro,
- GNU CC will use `.o' as the suffix for object files.
-
-`EXECUTABLE_SUFFIX'
- Define this macro to be a C string representing the suffix for
- executable files on your machine. If you do not define this
- macro, GNU CC will use the null string as the suffix for object
- files.
-
-`COLLECT_EXPORT_LIST'
- If defined, `collect2' will scan the individual object files
- specified on its command line and create an export list for the
- linker. Define this macro for systems like AIX, where the linker
- discards object files that are not referenced from `main' and uses
- export lists.
-
- In addition, configuration files for system V define `bcopy',
-`bzero' and `bcmp' as aliases. Some files define `alloca' as a macro
-when compiled with GNU CC, in order to take advantage of the benefit of
-GNU CC's built-in `alloca'.
-
-
-File: gcc.info, Node: Fragments, Next: Funding, Prev: Config, Up: Top
-
-Makefile Fragments
-******************
-
- When you configure GNU CC using the `configure' script (*note
-Installation::.), it will construct the file `Makefile' from the
-template file `Makefile.in'. When it does this, it will incorporate
-makefile fragment files from the `config' directory, named `t-TARGET'
-and `x-HOST'. If these files do not exist, it means nothing needs to
-be added for a given target or host.
-
-* Menu:
-
-* Target Fragment:: Writing the `t-TARGET' file.
-* Host Fragment:: Writing the `x-HOST' file.
-
-
-File: gcc.info, Node: Target Fragment, Next: Host Fragment, Up: Fragments
-
-The Target Makefile Fragment
-============================
-
- The target makefile fragment, `t-TARGET', defines special target
-dependent variables and targets used in the `Makefile':
-
-`LIBGCC1'
- The rule to use to build `libgcc1.a'. If your target does not
- need to use the functions in `libgcc1.a', set this to empty.
- *Note Interface::.
-
-`CROSS_LIBGCC1'
- The rule to use to build `libgcc1.a' when building a cross
- compiler. If your target does not need to use the functions in
- `libgcc1.a', set this to empty. *Note Cross Runtime::.
-
-`LIBGCC2_CFLAGS'
- Compiler flags to use when compiling `libgcc2.c'.
-
-`LIB2FUNCS_EXTRA'
- A list of source file names to be compiled or assembled and
- inserted into `libgcc.a'.
-
-`CRTSTUFF_T_CFLAGS'
- Special flags used when compiling `crtstuff.c'. *Note
- Initialization::.
-
-`CRTSTUFF_T_CFLAGS_S'
- Special flags used when compiling `crtstuff.c' for shared linking.
- Used if you use `crtbeginS.o' and `crtendS.o' in `EXTRA-PARTS'.
- *Note Initialization::.
-
-`MULTILIB_OPTIONS'
- For some targets, invoking GNU CC in different ways produces
- objects that can not be linked together. For example, for some
- targets GNU CC produces both big and little endian code. For
- these targets, you must arrange for multiple versions of
- `libgcc.a' to be compiled, one for each set of incompatible
- options. When GNU CC invokes the linker, it arranges to link in
- the right version of `libgcc.a', based on the command line options
- used.
-
- The `MULTILIB_OPTIONS' macro lists the set of options for which
- special versions of `libgcc.a' must be built. Write options that
- are mutually incompatible side by side, separated by a slash.
- Write options that may be used together separated by a space. The
- build procedure will build all combinations of compatible options.
-
- For example, if you set `MULTILIB_OPTIONS' to `m68000/m68020
- msoft-float', `Makefile' will build special versions of `libgcc.a'
- using the sets of options `-m68000', `-m68020', `-msoft-float',
- `-m68000 -msoft-float', and `-m68020 -msoft-float'.
-
-`MULTILIB_DIRNAMES'
- If `MULTILIB_OPTIONS' is used, this variable specifies the
- directory names that should be used to hold the various libraries.
- Write one element in `MULTILIB_DIRNAMES' for each element in
- `MULTILIB_OPTIONS'. If `MULTILIB_DIRNAMES' is not used, the
- default value will be `MULTILIB_OPTIONS', with all slashes treated
- as spaces.
-
- For example, if `MULTILIB_OPTIONS' is specified as `m68000/m68020
- msoft-float', then the default value of `MULTILIB_DIRNAMES' is
- `m68000 m68020 msoft-float'. You may specify a different value if
- you desire a different set of directory names.
-
-`MULTILIB_MATCHES'
- Sometimes the same option may be written in two different ways.
- If an option is listed in `MULTILIB_OPTIONS', GNU CC needs to know
- about any synonyms. In that case, set `MULTILIB_MATCHES' to a
- list of items of the form `option=option' to describe all relevant
- synonyms. For example, `m68000=mc68000 m68020=mc68020'.
-
-`MULTILIB_EXCEPTIONS'
- Sometimes when there are multiple sets of `MULTILIB_OPTIONS' being
- specified, there are combinations that should not be built. In
- that case, set `MULTILIB_EXCEPTIONS' to be all of the switch
- exceptions in shell case syntax that should not be built.
-
- For example, in the PowerPC embedded ABI support, it was not
- desirable to build libraries that compiled with the
- `-mcall-aixdesc' option and either of the `-mcall-aixdesc' or
- `-mlittle' options at the same time, and therefore
- `MULTILIB_EXCEPTIONS' is set to `*mrelocatable/*mcall-aixdesc*
- *mlittle/*mcall-aixdesc*'.
-
-`MULTILIB_EXTRA_OPTS'
- Sometimes it is desirable that when building multiple versions of
- `libgcc.a' certain options should always be passed on to the
- compiler. In that case, set `MULTILIB_EXTRA_OPTS' to be the list
- of options to be used for all builds.
-
-
-File: gcc.info, Node: Host Fragment, Prev: Target Fragment, Up: Fragments
-
-The Host Makefile Fragment
-==========================
-
- The host makefile fragment, `x-HOST', defines special host dependent
-variables and targets used in the `Makefile':
-
-`CC'
- The compiler to use when building the first stage.
-
-`CLIB'
- Additional host libraries to link with.
-
-`OLDCC'
- The compiler to use when building `libgcc1.a' for a native
- compilation.
-
-`OLDAR'
- The version of `ar' to use when building `libgcc1.a' for a native
- compilation.
-
-`INSTALL'
- The install program to use.
-
-
-File: gcc.info, Node: Funding, Next: Look and Feel, Prev: Fragments, Up: Top
-
-Funding Free Software
-*********************
-
- If you want to have more free software a few years from now, it makes
-sense for you to help encourage people to contribute funds for its
-development. The most effective approach known is to encourage
-commercial redistributors to donate.
-
- Users of free software systems can boost the pace of development by
-encouraging for-a-fee distributors to donate part of their selling price
-to free software developers--the Free Software Foundation, and others.
-
- The way to convince distributors to do this is to demand it and
-expect it from them. So when you compare distributors, judge them
-partly by how much they give to free software development. Show
-distributors they must compete to be the one who gives the most.
-
- To make this approach work, you must insist on numbers that you can
-compare, such as, "We will donate ten dollars to the Frobnitz project
-for each disk sold." Don't be satisfied with a vague promise, such as
-"A portion of the profits are donated," since it doesn't give a basis
-for comparison.
-
- Even a precise fraction "of the profits from this disk" is not very
-meaningful, since creative accounting and unrelated business decisions
-can greatly alter what fraction of the sales price counts as profit.
-If the price you pay is $50, ten percent of the profit is probably less
-than a dollar; it might be a few cents, or nothing at all.
-
- Some redistributors do development work themselves. This is useful
-too; but to keep everyone honest, you need to inquire how much they do,
-and what kind. Some kinds of development make much more long-term
-difference than others. For example, maintaining a separate version of
-a program contributes very little; maintaining the standard version of a
-program for the whole community contributes much. Easy new ports
-contribute little, since someone else would surely do them; difficult
-ports such as adding a new CPU to the GNU C compiler contribute more;
-major new features or packages contribute the most.
-
- By establishing the idea that supporting further development is "the
-proper thing to do" when distributing free software for a fee, we can
-assure a steady flow of resources into making more free software.
-
- Copyright (C) 1994 Free Software Foundation, Inc.
- Verbatim copying and redistribution of this section is permitted
- without royalty; alteration is not permitted.
-
-
-File: gcc.info, Node: Look and Feel, Next: Copying, Prev: Funding, Up: Top
-
-Protect Your Freedom--Fight "Look And Feel"
-*******************************************
-
- This section is a political message from the League for Programming
- Freedom to the users of GNU CC. We have included it here because
- the issue of interface copyright is important to the GNU project.
-
- Apple, Lotus, and now CDC have tried to create a new form of legal
-monopoly: a copyright on a user interface.
-
- An interface is a kind of language--a set of conventions for
-communication between two entities, human or machine. Until a few years
-ago, the law seemed clear: interfaces were outside the domain of
-copyright, so programmers could program freely and implement whatever
-interface the users demanded. Imitating de-facto standard interfaces,
-sometimes with improvements, was standard practice in the computer
-field. These improvements, if accepted by the users, caught on and
-became the norm; in this way, much progress took place.
-
- Computer users, and most software developers, were happy with this
-state of affairs. However, large companies such as Apple and Lotus
-would prefer a different system--one in which they can own interfaces
-and thereby rid themselves of all serious competitors. They hope that
-interface copyright will give them, in effect, monopolies on major
-classes of software.
-
- Other large companies such as IBM and Digital also favor interface
-monopolies, for the same reason: if languages become property, they
-expect to own many de-facto standard languages. But Apple and Lotus are
-the ones who have actually sued. Apple's lawsuit was defeated, for
-reasons only partly related to the general issue of interface copyright.
-
- Lotus won lawsuits against two small companies, which were thus put
-out of business. Then Lotus sued Borland; Lotus won in the trial court
-(no surprise, since it was the same court that had ruled for Lotus twice
-before), but the court of appeals ruled in favor of Borland, which was
-assisted by a friend-of-the-court brief from the League for Programming
-Freedom.
-
- Lotus appealed the case to the Supreme Court, which heard the case
-but was unable to reach a decision. This failure means that the appeals
-court decision stands, in one portion of the United States, and may
-influence the other appeals courts, but it does not set a nationwide
-precedent. The battle is not over, and it is not limited to the United
-States.
-
- The battle is extending into other areas of software as well. In
-1995 a company that produced a simulator for a CDC computer was shut
-down by a copyright lawsuit, in which CDC charged that the simulator
-infringed the copyright on the manuals for the computer.
-
- If the monopolists get their way, they will hobble the software
-field:
-
- * Gratuitous incompatibilities will burden users. Imagine if each
- car manufacturer had to design a different way to start, stop, and
- steer a car.
-
- * Users will be "locked in" to whichever interface they learn; then
- they will be prisoners of one supplier, who will charge a
- monopolistic price.
-
- * Large companies have an unfair advantage wherever lawsuits become
- commonplace. Since they can afford to sue, they can intimidate
- smaller developers with threats even when they don't really have a
- case.
-
- * Interface improvements will come slower, since incremental
- evolution through creative partial imitation will no longer occur.
-
- If interface monopolies are accepted, other large companies are
-waiting to grab theirs:
-
- * Adobe is expected to claim a monopoly on the interfaces of various
- popular application programs, if Lotus ultimately wins the case
- against Borland.
-
- * Open Computing magazine reported a Microsoft vice president as
- threatening to sue people who imitate the interface of Windows.
-
- Users invest a great deal of time and money in learning to use
-computer interfaces. Far more, in fact, than software developers
-invest in developing *and even implementing* the interfaces. Whoever
-can own an interface, has made its users into captives, and
-misappropriated their investment.
-
- To protect our freedom from monopolies like these, a group of
-programmers and users have formed a grass-roots political organization,
-the League for Programming Freedom.
-
- The purpose of the League is to oppose monopolistic practices such as
-interface copyright and software patents. The League calls for a return
-to the legal policies of the recent past, in which programmers could
-program freely. The League is not concerned with free software as an
-issue, and is not affiliated with the Free Software Foundation.
-
- The League's activities include publicizing the issues, as is being
-done here, and filing friend-of-the-court briefs on behalf of
-defendants sued by monopolists.
-
- The League's membership rolls include Donald Knuth, the foremost
-authority on algorithms, John McCarthy, inventor of Lisp, Marvin Minsky,
-founder of the MIT Artificial Intelligence lab, Guy L. Steele, Jr.,
-author of well-known books on Lisp and C, as well as Richard Stallman,
-the developer of GNU CC. Please join and add your name to the list.
-Membership dues in the League are $42 per year for programmers, managers
-and professionals; $10.50 for students; $21 for others.
-
- Activist members are especially important, but members who have no
-time to give are also important. Surveys at major ACM conferences have
-indicated a vast majority of attendees agree with the League on both
-issues (interface copyrights and software patents). If just ten percent
-of the programmers who agree with the League join the League, we will
-probably triumph.
-
- To join, or for more information, send electronic mail to the
-address `lpf@uunet.uu.net' or write to:
-
- League for Programming Freedom
- 1 Kendall Square #143
- P.O. Box 9171
- Cambridge, MA 02139
-
- In addition to joining the League, here are some suggestions from the
-League for other things you can do to protect your freedom to write
-programs:
-
- * Tell your friends and colleagues about this issue and how it
- threatens to ruin the computer industry.
-
- * Mention that you are a League member in your `.signature', and
- mention the League's email address for inquiries.
-
- * Ask the companies you consider working for or working with to make
- statements against software monopolies, and give preference to
- those that do.
-
- * When employers ask you to sign contracts giving them copyright on
- your work, insist on a clause saying they will not claim the
- copyright covers imitating the interface.
-
- * When employers ask you to sign contracts giving them patent rights,
- insist on clauses saying they can use these rights only
- defensively. Don't rely on "company policy," since that can
- change at any time; don't rely on an individual executive's
- private word, since that person may be replaced. Get a commitment
- just as binding as the commitment they get from you.
-
- * Write to Congress to explain the importance of these issues.
-
- House Subcommittee on Intellectual Property
- 2137 Rayburn Bldg
- Washington, DC 20515
-
- Senate Subcommittee on Patents, Trademarks and Copyrights
- United States Senate
- Washington, DC 20510
-
- (These committees have received lots of mail already; let's give
- them even more.)
-
- Democracy means nothing if you don't use it. Stand up and be
-counted!
-
diff --git a/gcc/gcc.info-27 b/gcc/gcc.info-27
deleted file mode 100644
index d486a64c257..00000000000
--- a/gcc/gcc.info-27
+++ /dev/null
@@ -1,534 +0,0 @@
-This is Info file gcc.info, produced by Makeinfo version 1.68 from the
-input file gcc.texi.
-
- This file documents the use and the internals of the GNU compiler.
-
- Published by the Free Software Foundation 59 Temple Place - Suite 330
-Boston, MA 02111-1307 USA
-
- Copyright (C) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997 Free
-Software Foundation, Inc.
-
- Permission is granted to make and distribute verbatim copies of this
-manual provided the copyright notice and this permission notice are
-preserved on all copies.
-
- Permission is granted to copy and distribute modified versions of
-this manual under the conditions for verbatim copying, provided also
-that the sections entitled "GNU General Public License," "Funding for
-Free Software," and "Protect Your Freedom--Fight `Look And Feel'" are
-included exactly as in the original, and provided that the entire
-resulting derived work is distributed under the terms of a permission
-notice identical to this one.
-
- Permission is granted to copy and distribute translations of this
-manual into another language, under the above conditions for modified
-versions, except that the sections entitled "GNU General Public
-License," "Funding for Free Software," and "Protect Your Freedom--Fight
-`Look And Feel'", and this permission notice, may be included in
-translations approved by the Free Software Foundation instead of in the
-original English.
-
-
-File: gcc.info, Node: Copying, Next: Contributors, Prev: Look and Feel, Up: Top
-
-GNU GENERAL PUBLIC LICENSE
-**************************
-
- Version 2, June 1991
-
- Copyright (C) 1989, 1991 Free Software Foundation, Inc.
- 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
-
- Everyone is permitted to copy and distribute verbatim copies
- of this license document, but changing it is not allowed.
-
-Preamble
-========
-
- The licenses for most software are designed to take away your
-freedom to share and change it. By contrast, the GNU General Public
-License is intended to guarantee your freedom to share and change free
-software--to make sure the software is free for all its users. This
-General Public License applies to most of the Free Software
-Foundation's software and to any other program whose authors commit to
-using it. (Some other Free Software Foundation software is covered by
-the GNU Library General Public License instead.) You can apply it to
-your programs, too.
-
- When we speak of free software, we are referring to freedom, not
-price. Our General Public Licenses are designed to make sure that you
-have the freedom to distribute copies of free software (and charge for
-this service if you wish), that you receive source code or can get it
-if you want it, that you can change the software or use pieces of it in
-new free programs; and that you know you can do these things.
-
- To protect your rights, we need to make restrictions that forbid
-anyone to deny you these rights or to ask you to surrender the rights.
-These restrictions translate to certain responsibilities for you if you
-distribute copies of the software, or if you modify it.
-
- For example, if you distribute copies of such a program, whether
-gratis or for a fee, you must give the recipients all the rights that
-you have. You must make sure that they, too, receive or can get the
-source code. And you must show them these terms so they know their
-rights.
-
- We protect your rights with two steps: (1) copyright the software,
-and (2) offer you this license which gives you legal permission to copy,
-distribute and/or modify the software.
-
- Also, for each author's protection and ours, we want to make certain
-that everyone understands that there is no warranty for this free
-software. If the software is modified by someone else and passed on, we
-want its recipients to know that what they have is not the original, so
-that any problems introduced by others will not reflect on the original
-authors' reputations.
-
- Finally, any free program is threatened constantly by software
-patents. We wish to avoid the danger that redistributors of a free
-program will individually obtain patent licenses, in effect making the
-program proprietary. To prevent this, we have made it clear that any
-patent must be licensed for everyone's free use or not licensed at all.
-
- The precise terms and conditions for copying, distribution and
-modification follow.
-
- TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
-
- 0. This License applies to any program or other work which contains a
- notice placed by the copyright holder saying it may be distributed
- under the terms of this General Public License. The "Program",
- below, refers to any such program or work, and a "work based on
- the Program" means either the Program or any derivative work under
- copyright law: that is to say, a work containing the Program or a
- portion of it, either verbatim or with modifications and/or
- translated into another language. (Hereinafter, translation is
- included without limitation in the term "modification".) Each
- licensee is addressed as "you".
-
- Activities other than copying, distribution and modification are
- not covered by this License; they are outside its scope. The act
- of running the Program is not restricted, and the output from the
- Program is covered only if its contents constitute a work based on
- the Program (independent of having been made by running the
- Program). Whether that is true depends on what the Program does.
-
- 1. You may copy and distribute verbatim copies of the Program's
- source code as you receive it, in any medium, provided that you
- conspicuously and appropriately publish on each copy an appropriate
- copyright notice and disclaimer of warranty; keep intact all the
- notices that refer to this License and to the absence of any
- warranty; and give any other recipients of the Program a copy of
- this License along with the Program.
-
- You may charge a fee for the physical act of transferring a copy,
- and you may at your option offer warranty protection in exchange
- for a fee.
-
- 2. You may modify your copy or copies of the Program or any portion
- of it, thus forming a work based on the Program, and copy and
- distribute such modifications or work under the terms of Section 1
- above, provided that you also meet all of these conditions:
-
- a. You must cause the modified files to carry prominent notices
- stating that you changed the files and the date of any change.
-
- b. You must cause any work that you distribute or publish, that
- in whole or in part contains or is derived from the Program
- or any part thereof, to be licensed as a whole at no charge
- to all third parties under the terms of this License.
-
- c. If the modified program normally reads commands interactively
- when run, you must cause it, when started running for such
- interactive use in the most ordinary way, to print or display
- an announcement including an appropriate copyright notice and
- a notice that there is no warranty (or else, saying that you
- provide a warranty) and that users may redistribute the
- program under these conditions, and telling the user how to
- view a copy of this License. (Exception: if the Program
- itself is interactive but does not normally print such an
- announcement, your work based on the Program is not required
- to print an announcement.)
-
- These requirements apply to the modified work as a whole. If
- identifiable sections of that work are not derived from the
- Program, and can be reasonably considered independent and separate
- works in themselves, then this License, and its terms, do not
- apply to those sections when you distribute them as separate
- works. But when you distribute the same sections as part of a
- whole which is a work based on the Program, the distribution of
- the whole must be on the terms of this License, whose permissions
- for other licensees extend to the entire whole, and thus to each
- and every part regardless of who wrote it.
-
- Thus, it is not the intent of this section to claim rights or
- contest your rights to work written entirely by you; rather, the
- intent is to exercise the right to control the distribution of
- derivative or collective works based on the Program.
-
- In addition, mere aggregation of another work not based on the
- Program with the Program (or with a work based on the Program) on
- a volume of a storage or distribution medium does not bring the
- other work under the scope of this License.
-
- 3. You may copy and distribute the Program (or a work based on it,
- under Section 2) in object code or executable form under the terms
- of Sections 1 and 2 above provided that you also do one of the
- following:
-
- a. Accompany it with the complete corresponding machine-readable
- source code, which must be distributed under the terms of
- Sections 1 and 2 above on a medium customarily used for
- software interchange; or,
-
- b. Accompany it with a written offer, valid for at least three
- years, to give any third party, for a charge no more than your
- cost of physically performing source distribution, a complete
- machine-readable copy of the corresponding source code, to be
- distributed under the terms of Sections 1 and 2 above on a
- medium customarily used for software interchange; or,
-
- c. Accompany it with the information you received as to the offer
- to distribute corresponding source code. (This alternative is
- allowed only for noncommercial distribution and only if you
- received the program in object code or executable form with
- such an offer, in accord with Subsection b above.)
-
- The source code for a work means the preferred form of the work for
- making modifications to it. For an executable work, complete
- source code means all the source code for all modules it contains,
- plus any associated interface definition files, plus the scripts
- used to control compilation and installation of the executable.
- However, as a special exception, the source code distributed need
- not include anything that is normally distributed (in either
- source or binary form) with the major components (compiler,
- kernel, and so on) of the operating system on which the executable
- runs, unless that component itself accompanies the executable.
-
- If distribution of executable or object code is made by offering
- access to copy from a designated place, then offering equivalent
- access to copy the source code from the same place counts as
- distribution of the source code, even though third parties are not
- compelled to copy the source along with the object code.
-
- 4. You may not copy, modify, sublicense, or distribute the Program
- except as expressly provided under this License. Any attempt
- otherwise to copy, modify, sublicense or distribute the Program is
- void, and will automatically terminate your rights under this
- License. However, parties who have received copies, or rights,
- from you under this License will not have their licenses
- terminated so long as such parties remain in full compliance.
-
- 5. You are not required to accept this License, since you have not
- signed it. However, nothing else grants you permission to modify
- or distribute the Program or its derivative works. These actions
- are prohibited by law if you do not accept this License.
- Therefore, by modifying or distributing the Program (or any work
- based on the Program), you indicate your acceptance of this
- License to do so, and all its terms and conditions for copying,
- distributing or modifying the Program or works based on it.
-
- 6. Each time you redistribute the Program (or any work based on the
- Program), the recipient automatically receives a license from the
- original licensor to copy, distribute or modify the Program
- subject to these terms and conditions. You may not impose any
- further restrictions on the recipients' exercise of the rights
- granted herein. You are not responsible for enforcing compliance
- by third parties to this License.
-
- 7. If, as a consequence of a court judgment or allegation of patent
- infringement or for any other reason (not limited to patent
- issues), conditions are imposed on you (whether by court order,
- agreement or otherwise) that contradict the conditions of this
- License, they do not excuse you from the conditions of this
- License. If you cannot distribute so as to satisfy simultaneously
- your obligations under this License and any other pertinent
- obligations, then as a consequence you may not distribute the
- Program at all. For example, if a patent license would not permit
- royalty-free redistribution of the Program by all those who
- receive copies directly or indirectly through you, then the only
- way you could satisfy both it and this License would be to refrain
- entirely from distribution of the Program.
-
- If any portion of this section is held invalid or unenforceable
- under any particular circumstance, the balance of the section is
- intended to apply and the section as a whole is intended to apply
- in other circumstances.
-
- It is not the purpose of this section to induce you to infringe any
- patents or other property right claims or to contest validity of
- any such claims; this section has the sole purpose of protecting
- the integrity of the free software distribution system, which is
- implemented by public license practices. Many people have made
- generous contributions to the wide range of software distributed
- through that system in reliance on consistent application of that
- system; it is up to the author/donor to decide if he or she is
- willing to distribute software through any other system and a
- licensee cannot impose that choice.
-
- This section is intended to make thoroughly clear what is believed
- to be a consequence of the rest of this License.
-
- 8. If the distribution and/or use of the Program is restricted in
- certain countries either by patents or by copyrighted interfaces,
- the original copyright holder who places the Program under this
- License may add an explicit geographical distribution limitation
- excluding those countries, so that distribution is permitted only
- in or among countries not thus excluded. In such case, this
- License incorporates the limitation as if written in the body of
- this License.
-
- 9. The Free Software Foundation may publish revised and/or new
- versions of the General Public License from time to time. Such
- new versions will be similar in spirit to the present version, but
- may differ in detail to address new problems or concerns.
-
- Each version is given a distinguishing version number. If the
- Program specifies a version number of this License which applies
- to it and "any later version", you have the option of following
- the terms and conditions either of that version or of any later
- version published by the Free Software Foundation. If the Program
- does not specify a version number of this License, you may choose
- any version ever published by the Free Software Foundation.
-
- 10. If you wish to incorporate parts of the Program into other free
- programs whose distribution conditions are different, write to the
- author to ask for permission. For software which is copyrighted
- by the Free Software Foundation, write to the Free Software
- Foundation; we sometimes make exceptions for this. Our decision
- will be guided by the two goals of preserving the free status of
- all derivatives of our free software and of promoting the sharing
- and reuse of software generally.
-
- NO WARRANTY
-
- 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
- WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE
- LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
- HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT
- WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT
- NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
- FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE
- QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
- PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY
- SERVICING, REPAIR OR CORRECTION.
-
- 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
- WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
- MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE
- LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,
- INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
- INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
- DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU
- OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY
- OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
- ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
-
- END OF TERMS AND CONDITIONS
-
-How to Apply These Terms to Your New Programs
-=============================================
-
- If you develop a new program, and you want it to be of the greatest
-possible use to the public, the best way to achieve this is to make it
-free software which everyone can redistribute and change under these
-terms.
-
- To do so, attach the following notices to the program. It is safest
-to attach them to the start of each source file to most effectively
-convey the exclusion of warranty; and each file should have at least
-the "copyright" line and a pointer to where the full notice is found.
-
- ONE LINE TO GIVE THE PROGRAM'S NAME AND A BRIEF IDEA OF WHAT IT DOES.
- Copyright (C) 19YY NAME OF AUTHOR
-
- This program is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2 of the License, or
- (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program; if not, write to the Free Software
- Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
-
- Also add information on how to contact you by electronic and paper
-mail.
-
- If the program is interactive, make it output a short notice like
-this when it starts in an interactive mode:
-
- Gnomovision version 69, Copyright (C) 19YY NAME OF AUTHOR
- Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
- type `show w'.
- This is free software, and you are welcome to redistribute it
- under certain conditions; type `show c' for details.
-
- The hypothetical commands `show w' and `show c' should show the
-appropriate parts of the General Public License. Of course, the
-commands you use may be called something other than `show w' and `show
-c'; they could even be mouse-clicks or menu items--whatever suits your
-program.
-
- You should also get your employer (if you work as a programmer) or
-your school, if any, to sign a "copyright disclaimer" for the program,
-if necessary. Here is a sample; alter the names:
-
- Yoyodyne, Inc., hereby disclaims all copyright interest in the program
- `Gnomovision' (which makes passes at compilers) written by James Hacker.
-
- SIGNATURE OF TY COON, 1 April 1989
- Ty Coon, President of Vice
-
- This General Public License does not permit incorporating your
-program into proprietary programs. If your program is a subroutine
-library, you may consider it more useful to permit linking proprietary
-applications with the library. If this is what you want to do, use the
-GNU Library General Public License instead of this License.
-
-
-File: gcc.info, Node: Contributors, Next: Index, Prev: Copying, Up: Top
-
-Contributors to GNU CC
-**********************
-
- In addition to Richard Stallman, several people have written parts
-of GNU CC.
-
- * The idea of using RTL and some of the optimization ideas came from
- the program PO written at the University of Arizona by Jack
- Davidson and Christopher Fraser. See "Register Allocation and
- Exhaustive Peephole Optimization", Software Practice and
- Experience 14 (9), Sept. 1984, 857-866.
-
- * Paul Rubin wrote most of the preprocessor.
-
- * Leonard Tower wrote parts of the parser, RTL generator, and RTL
- definitions, and of the Vax machine description.
-
- * Ted Lemon wrote parts of the RTL reader and printer.
-
- * Jim Wilson implemented loop strength reduction and some other loop
- optimizations.
-
- * Nobuyuki Hikichi of Software Research Associates, Tokyo,
- contributed the support for the Sony NEWS machine.
-
- * Charles LaBrec contributed the support for the Integrated Solutions
- 68020 system.
-
- * Michael Tiemann of Cygnus Support wrote the front end for C++, as
- well as the support for inline functions and instruction
- scheduling. Also the descriptions of the National Semiconductor
- 32000 series cpu, the SPARC cpu and part of the Motorola 88000 cpu.
-
- * Gerald Baumgartner added the signature extension to the C++
- front-end.
-
- * Jan Stein of the Chalmers Computer Society provided support for
- Genix, as well as part of the 32000 machine description.
-
- * Randy Smith finished the Sun FPA support.
-
- * Robert Brown implemented the support for Encore 32000 systems.
-
- * David Kashtan of SRI adapted GNU CC to VMS.
-
- * Alex Crain provided changes for the 3b1.
-
- * Greg Satz and Chris Hanson assisted in making GNU CC work on HP-UX
- for the 9000 series 300.
-
- * William Schelter did most of the work on the Intel 80386 support.
-
- * Christopher Smith did the port for Convex machines.
-
- * Paul Petersen wrote the machine description for the Alliant FX/8.
-
- * Dario Dariol contributed the four varieties of sample programs
- that print a copy of their source.
-
- * Alain Lichnewsky ported GNU CC to the Mips cpu.
-
- * Devon Bowen, Dale Wiles and Kevin Zachmann ported GNU CC to the
- Tahoe.
-
- * Jonathan Stone wrote the machine description for the Pyramid
- computer.
-
- * Gary Miller ported GNU CC to Charles River Data Systems machines.
-
- * Richard Kenner of the New York University Ultracomputer Research
- Laboratory wrote the machine descriptions for the AMD 29000, the
- DEC Alpha, the IBM RT PC, and the IBM RS/6000 as well as the
- support for instruction attributes. He also made changes to
- better support RISC processors including changes to common
- subexpression elimination, strength reduction, function calling
- sequence handling, and condition code support, in addition to
- generalizing the code for frame pointer elimination.
-
- * Richard Kenner and Michael Tiemann jointly developed reorg.c, the
- delay slot scheduler.
-
- * Mike Meissner and Tom Wood of Data General finished the port to the
- Motorola 88000.
-
- * Masanobu Yuhara of Fujitsu Laboratories implemented the machine
- description for the Tron architecture (specifically, the Gmicro).
-
- * NeXT, Inc. donated the front end that supports the Objective C
- language.
-
- * James van Artsdalen wrote the code that makes efficient use of the
- Intel 80387 register stack.
-
- * Mike Meissner at the Open Software Foundation finished the port to
- the MIPS cpu, including adding ECOFF debug support, and worked on
- the Intel port for the Intel 80386 cpu. Later at Cygnus Support,
- he worked on the rs6000 and PowerPC ports.
-
- * Ron Guilmette implemented the `protoize' and `unprotoize' tools,
- the support for Dwarf symbolic debugging information, and much of
- the support for System V Release 4. He has also worked heavily on
- the Intel 386 and 860 support.
-
- * Torbjorn Granlund implemented multiply- and divide-by-constant
- optimization, improved long long support, and improved leaf
- function register allocation.
-
- * Mike Stump implemented the support for Elxsi 64 bit CPU.
-
- * John Wehle added the machine description for the Western Electric
- 32000 processor used in several 3b series machines (no relation to
- the National Semiconductor 32000 processor).
-
- * Holger Teutsch provided the support for the Clipper cpu.
-
- * Kresten Krab Thorup wrote the run time support for the Objective C
- language.
-
- * Stephen Moshier contributed the floating point emulator that
- assists in cross-compilation and permits support for floating
- point numbers wider than 64 bits.
-
- * David Edelsohn contributed the changes to RS/6000 port to make it
- support the PowerPC and POWER2 architectures.
-
- * Steve Chamberlain wrote the support for the Hitachi SH processor.
-
- * Peter Schauer wrote the code to allow debugging to work on the
- Alpha.
-
- * Oliver M. Kellogg of Deutsche Aerospace contributed the port to the
- MIL-STD-1750A.
-
- * Michael K. Gschwind contributed the port to the PDP-11.
-
- * David Reese of Sun Microsystems contributed to the Solaris on
- PowerPC port.
-
diff --git a/gcc/gcc.info-28 b/gcc/gcc.info-28
deleted file mode 100644
index c90dd644f07..00000000000
--- a/gcc/gcc.info-28
+++ /dev/null
@@ -1,2030 +0,0 @@
-This is Info file gcc.info, produced by Makeinfo version 1.68 from the
-input file gcc.texi.
-
- This file documents the use and the internals of the GNU compiler.
-
- Published by the Free Software Foundation 59 Temple Place - Suite 330
-Boston, MA 02111-1307 USA
-
- Copyright (C) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997 Free
-Software Foundation, Inc.
-
- Permission is granted to make and distribute verbatim copies of this
-manual provided the copyright notice and this permission notice are
-preserved on all copies.
-
- Permission is granted to copy and distribute modified versions of
-this manual under the conditions for verbatim copying, provided also
-that the sections entitled "GNU General Public License," "Funding for
-Free Software," and "Protect Your Freedom--Fight `Look And Feel'" are
-included exactly as in the original, and provided that the entire
-resulting derived work is distributed under the terms of a permission
-notice identical to this one.
-
- Permission is granted to copy and distribute translations of this
-manual into another language, under the above conditions for modified
-versions, except that the sections entitled "GNU General Public
-License," "Funding for Free Software," and "Protect Your Freedom--Fight
-`Look And Feel'", and this permission notice, may be included in
-translations approved by the Free Software Foundation instead of in the
-original English.
-
-
-File: gcc.info, Node: Index, Prev: Contributors, Up: Top
-
-Index
-*****
-
-* Menu:
-
-* ! in constraint: Multi-Alternative.
-* # in constraint: Modifiers.
-* # in template: Output Template.
-* #pragma: Misc.
-* #pragma implementation, implied: C++ Interface.
-* #pragma, reason for not using: Function Attributes.
-* $: Dollar Signs.
-* % in constraint: Modifiers.
-* % in template: Output Template.
-* & in constraint: Modifiers.
-* ': Incompatibilities.
-* (nil): RTL Objects.
-* * in constraint: Modifiers.
-* * in template: Output Statement.
-* + in constraint: Modifiers.
-* -lgcc, use with -nodefaultlibs: Link Options.
-* -lgcc, use with -nostdlib: Link Options.
-* -nodefaultlibs and unresolved references: Link Options.
-* -nostdlib and unresolved references: Link Options.
-* .sdata/.sdata2 references (PowerPC): RS/6000 and PowerPC Options.
-* //: C++ Comments.
-* /i in RTL dump: Flags.
-* /s in RTL dump: Flags.
-* /u in RTL dump: Flags.
-* /v in RTL dump: Flags.
-* 0 in constraint: Simple Constraints.
-* < in constraint: Simple Constraints.
-* <?: Min and Max.
-* = in constraint: Modifiers.
-* > in constraint: Simple Constraints.
-* >?: Min and Max.
-* ? in constraint: Multi-Alternative.
-* ?: extensions <1>: Conditionals.
-* ?: extensions: Lvalues.
-* ?: side effect: Conditionals.
-* \: Output Template.
-* _ in variables in macros: Naming Types.
-* __bb: Profiling.
-* __bb_init_func: Profiling.
-* __bb_init_trace_func: Profiling.
-* __bb_trace_func: Profiling.
-* __bb_trace_ret: Profiling.
-* __builtin_apply: Constructing Calls.
-* __builtin_apply_args: Constructing Calls.
-* __builtin_args_info: Varargs.
-* __builtin_classify_type: Varargs.
-* __builtin_next_arg: Varargs.
-* __builtin_return: Constructing Calls.
-* __builtin_saveregs: Varargs.
-* __CTOR_LIST__: Initialization.
-* __DTOR_LIST__: Initialization.
-* __main: Collect2.
-* abort <1>: Portability.
-* abort: C Dialect Options.
-* abs <1>: Arithmetic.
-* abs: C Dialect Options.
-* abs and attributes: Expressions.
-* absM2 instruction pattern: Standard Names.
-* absolute value: Arithmetic.
-* access to operands: Accessors.
-* accessors: Accessors.
-* ACCUMULATE_OUTGOING_ARGS: Stack Arguments.
-* ACCUMULATE_OUTGOING_ARGS and stack frames: Function Entry.
-* ADDITIONAL_REGISTER_NAMES: Instruction Output.
-* addM3 instruction pattern: Standard Names.
-* addr_diff_vec: Side Effects.
-* addr_diff_vec, length of: Insn Lengths.
-* addr_vec: Side Effects.
-* addr_vec, length of: Insn Lengths.
-* address: RTL Template.
-* address constraints: Simple Constraints.
-* address of a label: Labels as Values.
-* ADDRESS_COST: Costs.
-* address_operand: Simple Constraints.
-* addressing modes: Addressing Modes.
-* addressof: Regs and Memory.
-* ADJUST_COST: Costs.
-* ADJUST_FIELD_ALIGN: Storage Layout.
-* ADJUST_INSN_LENGTH: Insn Lengths.
-* ADJUST_PRIORITY: Costs.
-* aggregates as return values: Aggregate Return.
-* alias attribute: Function Attributes.
-* aligned attribute <1>: Type Attributes.
-* aligned attribute: Variable Attributes.
-* alignment: Alignment.
-* ALL_REGS: Register Classes.
-* Alliant: Interoperation.
-* alloca: C Dialect Options.
-* alloca and SunOS: Installation.
-* alloca vs variable-length arrays: Variable Length.
-* alloca, for SunOS: Sun Install.
-* alloca, for Unos: Configurations.
-* allocate_stack instruction pattern: Standard Names.
-* ALLOCATE_TRAMPOLINE: Trampolines.
-* alternate keywords: Alternate Keywords.
-* AMD29K options: AMD29K Options.
-* analysis, data flow: Passes.
-* and: Arithmetic.
-* and and attributes: Expressions.
-* and, canonicalization of: Insn Canonicalizations.
-* andM3 instruction pattern: Standard Names.
-* ANSI support: C Dialect Options.
-* apostrophes: Incompatibilities.
-* APPLY_RESULT_SIZE: Scalar Return.
-* ARG_POINTER_REGNUM: Frame Registers.
-* ARG_POINTER_REGNUM and virtual registers: Regs and Memory.
-* arg_pointer_rtx: Frame Registers.
-* ARGS_GROW_DOWNWARD: Frame Layout.
-* argument passing: Interface.
-* arguments in frame (88k): M88K Options.
-* arguments in registers: Register Arguments.
-* arguments on stack: Stack Arguments.
-* arithmetic libraries: Interface.
-* arithmetic shift: Arithmetic.
-* arithmetic simplifications: Passes.
-* arithmetic, in RTL: Arithmetic.
-* ARM options: ARM Options.
-* arrays of length zero: Zero Length.
-* arrays of variable length: Variable Length.
-* arrays, non-lvalue: Subscripting.
-* ashift: Arithmetic.
-* ashift and attributes: Expressions.
-* ashiftrt: Arithmetic.
-* ashiftrt and attributes: Expressions.
-* ashlM3 instruction pattern: Standard Names.
-* ashrM3 instruction pattern: Standard Names.
-* asm expressions: Extended Asm.
-* ASM_APP_OFF: File Framework.
-* ASM_APP_ON: File Framework.
-* ASM_BYTE_OP: Data Output.
-* ASM_CLOSE_PAREN: Data Output.
-* ASM_COMMENT_START: File Framework.
-* ASM_DECLARE_FUNCTION_NAME: Label Output.
-* ASM_DECLARE_FUNCTION_SIZE: Label Output.
-* ASM_DECLARE_OBJECT_NAME: Label Output.
-* ASM_FILE_END: File Framework.
-* ASM_FILE_START: File Framework.
-* ASM_FINAL_SPEC: Driver.
-* ASM_FINISH_DECLARE_OBJECT: Label Output.
-* ASM_FORMAT_PRIVATE_NAME: Label Output.
-* asm_fprintf: Instruction Output.
-* ASM_GENERATE_INTERNAL_LABEL: Label Output.
-* ASM_GLOBALIZE_LABEL: Label Output.
-* ASM_IDENTIFY_GCC: File Framework.
-* asm_input: Side Effects.
-* ASM_NO_SKIP_IN_TEXT: Alignment Output.
-* asm_noperands: Insns.
-* ASM_OPEN_PAREN: Data Output.
-* asm_operands, RTL sharing: Sharing.
-* asm_operands, usage: Assembler.
-* ASM_OUTPUT_ADDR_DIFF_ELT: Dispatch Tables.
-* ASM_OUTPUT_ADDR_VEC_ELT: Dispatch Tables.
-* ASM_OUTPUT_ALIGN: Alignment Output.
-* ASM_OUTPUT_ALIGN_CODE: Alignment Output.
-* ASM_OUTPUT_ALIGNED_BSS: Uninitialized Data.
-* ASM_OUTPUT_ALIGNED_COMMON: Uninitialized Data.
-* ASM_OUTPUT_ALIGNED_DECL_COMMON: Uninitialized Data.
-* ASM_OUTPUT_ALIGNED_DECL_LOCAL: Uninitialized Data.
-* ASM_OUTPUT_ALIGNED_LOCAL: Uninitialized Data.
-* ASM_OUTPUT_ASCII: Data Output.
-* ASM_OUTPUT_BSS: Uninitialized Data.
-* ASM_OUTPUT_BYTE: Data Output.
-* ASM_OUTPUT_CASE_END: Dispatch Tables.
-* ASM_OUTPUT_CASE_LABEL: Dispatch Tables.
-* ASM_OUTPUT_CHAR: Data Output.
-* ASM_OUTPUT_COMMON: Uninitialized Data.
-* ASM_OUTPUT_CONSTRUCTOR: Macros for Initialization.
-* ASM_OUTPUT_DEF: Label Output.
-* ASM_OUTPUT_DESTRUCTOR: Macros for Initialization.
-* ASM_OUTPUT_DOUBLE: Data Output.
-* ASM_OUTPUT_DOUBLE_INT: Data Output.
-* ASM_OUTPUT_EH_REGION_BEG: Exception Region Output.
-* ASM_OUTPUT_EH_REGION_END: Exception Region Output.
-* ASM_OUTPUT_EXTERNAL: Label Output.
-* ASM_OUTPUT_EXTERNAL_LIBCALL: Label Output.
-* ASM_OUTPUT_FLOAT: Data Output.
-* ASM_OUTPUT_IDENT: File Framework.
-* ASM_OUTPUT_INT: Data Output.
-* ASM_OUTPUT_INTERNAL_LABEL: Label Output.
-* ASM_OUTPUT_LABEL: Label Output.
-* ASM_OUTPUT_LABELREF: Label Output.
-* ASM_OUTPUT_LOCAL: Uninitialized Data.
-* ASM_OUTPUT_LONG_DOUBLE: Data Output.
-* ASM_OUTPUT_LOOP_ALIGN: Alignment Output.
-* ASM_OUTPUT_MI_THUNK: Function Entry.
-* ASM_OUTPUT_OPCODE: Instruction Output.
-* ASM_OUTPUT_POOL_EPILOGUE: Data Output.
-* ASM_OUTPUT_POOL_PROLOGUE: Data Output.
-* ASM_OUTPUT_QUADRUPLE_INT: Data Output.
-* ASM_OUTPUT_REG_POP: Instruction Output.
-* ASM_OUTPUT_REG_PUSH: Instruction Output.
-* ASM_OUTPUT_SECTION_NAME: File Framework.
-* ASM_OUTPUT_SHARED_BSS: Uninitialized Data.
-* ASM_OUTPUT_SHARED_COMMON: Uninitialized Data.
-* ASM_OUTPUT_SHARED_LOCAL: Uninitialized Data.
-* ASM_OUTPUT_SHORT: Data Output.
-* ASM_OUTPUT_SKIP: Alignment Output.
-* ASM_OUTPUT_SOURCE_FILENAME: File Framework.
-* ASM_OUTPUT_SOURCE_LINE: File Framework.
-* ASM_OUTPUT_SPECIAL_POOL_ENTRY: Data Output.
-* ASM_OUTPUT_WEAK_ALIAS: Label Output.
-* ASM_SPEC: Driver.
-* ASM_STABD_OP: DBX Options.
-* ASM_STABN_OP: DBX Options.
-* ASM_STABS_OP: DBX Options.
-* ASM_WEAKEN_LABEL: Label Output.
-* assemble_name: Label Output.
-* assembler format: File Framework.
-* assembler instructions: Extended Asm.
-* assembler instructions in RTL: Assembler.
-* assembler names for identifiers: Asm Labels.
-* assembler syntax, 88k: M88K Options.
-* ASSEMBLER_DIALECT: Instruction Output.
-* assembly code, invalid: Bug Criteria.
-* assigning attribute values to insns: Tagging Insns.
-* asterisk in template: Output Statement.
-* atof: Cross-compilation.
-* attr: Tagging Insns.
-* attr_flag: Expressions.
-* attribute expressions: Expressions.
-* attribute of types: Type Attributes.
-* attribute of variables: Variable Attributes.
-* attribute specifications: Attr Example.
-* attribute specifications example: Attr Example.
-* attributes, defining: Defining Attributes.
-* autoincrement addressing, availability: Portability.
-* autoincrement/decrement addressing: Simple Constraints.
-* autoincrement/decrement analysis: Passes.
-* automatic inline for C++ member fns: Inline.
-* backslash: Output Template.
-* backtrace for bug reports: Bug Reporting.
-* barrier: Insns.
-* BASE_REG_CLASS: Register Classes.
-* basic blocks: Passes.
-* bcmp: Config.
-* bCOND instruction pattern: Standard Names.
-* bcopy, implicit usage: Library Calls.
-* BIGGEST_ALIGNMENT: Storage Layout.
-* BIGGEST_FIELD_ALIGNMENT: Storage Layout.
-* Bison parser generator: Installation.
-* bit fields: Bit Fields.
-* bit shift overflow (88k): M88K Options.
-* BITFIELD_NBYTES_LIMITED: Storage Layout.
-* BITS_BIG_ENDIAN: Storage Layout.
-* BITS_BIG_ENDIAN, effect on sign_extract: Bit Fields.
-* BITS_PER_UNIT: Storage Layout.
-* BITS_PER_WORD: Storage Layout.
-* bitwise complement: Arithmetic.
-* bitwise exclusive-or: Arithmetic.
-* bitwise inclusive-or: Arithmetic.
-* bitwise logical-and: Arithmetic.
-* BLKmode: Machine Modes.
-* BLKmode, and function return values: Calls.
-* BLOCK_PROFILER: Profiling.
-* BLOCK_PROFILER_CODE: Profiling.
-* BRANCH_COST: Costs.
-* break_out_memory_refs: Addressing Modes.
-* BSS_SECTION_ASM_OP: Sections.
-* bug criteria: Bug Criteria.
-* bug report mailing lists: Bug Lists.
-* bugs: Bugs.
-* bugs, known: Trouble.
-* builtin functions: C Dialect Options.
-* byte writes (29k): AMD29K Options.
-* byte_mode: Machine Modes.
-* BYTES_BIG_ENDIAN: Storage Layout.
-* bzero: Config.
-* bzero, implicit usage: Library Calls.
-* C compilation options: Invoking GCC.
-* C intermediate output, nonexistent: G++ and GCC.
-* C language extensions: C Extensions.
-* C language, traditional: C Dialect Options.
-* C statements for assembler output: Output Statement.
-* c++: Invoking G++.
-* C++: G++ and GCC.
-* C++ comments: C++ Comments.
-* C++ compilation options: Invoking GCC.
-* C++ interface and implementation headers: C++ Interface.
-* C++ language extensions: C++ Extensions.
-* C++ member fns, automatically inline: Inline.
-* C++ misunderstandings: C++ Misunderstandings.
-* C++ named return value: Naming Results.
-* C++ options, command line: C++ Dialect Options.
-* C++ pragmas, effect on inlining: C++ Interface.
-* C++ signatures: C++ Signatures.
-* C++ source file suffixes: Invoking G++.
-* C++ static data, declaring and defining: Static Definitions.
-* C++ subtype polymorphism: C++ Signatures.
-* C++ type abstraction: C++ Signatures.
-* C_INCLUDE_PATH: Environment Variables.
-* call: Side Effects.
-* call instruction pattern: Standard Names.
-* call usage: Calls.
-* call-clobbered register: Register Basics.
-* call-saved register: Register Basics.
-* call-used register: Register Basics.
-* call_insn: Insns.
-* call_insn and /u: Flags.
-* CALL_INSN_FUNCTION_USAGE: Insns.
-* call_pop instruction pattern: Standard Names.
-* CALL_USED_REGISTERS: Register Basics.
-* call_used_regs: Register Basics.
-* call_value instruction pattern: Standard Names.
-* call_value_pop instruction pattern: Standard Names.
-* CALLER_SAVE_PROFITABLE: Caller Saves.
-* calling conventions: Stack and Calling.
-* calling functions in RTL: Calls.
-* calling functions through the function vector on the H8/300 processors: Function Attributes.
-* CAN_DEBUG_WITHOUT_FP: Run-time Target.
-* CAN_ELIMINATE: Elimination.
-* canonicalization of instructions: Insn Canonicalizations.
-* CANONICALIZE_COMPARISON: Condition Code.
-* canonicalize_funcptr_for_compare instruction pattern: Standard Names.
-* case labels in initializers: Labeled Elements.
-* case ranges: Case Ranges.
-* case sensitivity and VMS: VMS Misc.
-* CASE_DROPS_THROUGH: Misc.
-* CASE_VALUES_THRESHOLD: Misc.
-* CASE_VECTOR_MODE: Misc.
-* CASE_VECTOR_PC_RELATIVE: Misc.
-* casesi instruction pattern: Standard Names.
-* cast to a union: Cast to Union.
-* casts as lvalues: Lvalues.
-* CC: Host Fragment.
-* cc0: Regs and Memory.
-* cc0, RTL sharing: Sharing.
-* cc0_rtx: Regs and Memory.
-* CC1_SPEC: Driver.
-* CC1PLUS_SPEC: Driver.
-* cc_status: Condition Code.
-* CC_STATUS_MDEP: Condition Code.
-* CC_STATUS_MDEP_INIT: Condition Code.
-* CCmode: Machine Modes.
-* CDImode: Machine Modes.
-* change_address: Standard Names.
-* CHAR_TYPE_SIZE: Type Layout.
-* CHECK_FLOAT_VALUE: Storage Layout.
-* check_stack instruction pattern: Standard Names.
-* CHImode: Machine Modes.
-* class definitions, register: Register Classes.
-* class preference constraints: Class Preferences.
-* CLASS_LIKELY_SPILLED_P: Register Classes.
-* CLASS_MAX_NREGS: Register Classes.
-* classes of RTX codes: Accessors.
-* CLEAR_INSN_CACHE: Trampolines.
-* CLIB: Host Fragment.
-* clobber: Side Effects.
-* clrstrM instruction pattern: Standard Names.
-* cmpM instruction pattern: Standard Names.
-* cmpstrM instruction pattern: Standard Names.
-* code generation conventions: Code Gen Options.
-* code generation RTL sequences: Expander Definitions.
-* code motion: Passes.
-* code_label: Insns.
-* code_label and /i: Flags.
-* CODE_LABEL_NUMBER: Insns.
-* codes, RTL expression: RTL Objects.
-* COImode: Machine Modes.
-* COLLECT_EXPORT_LIST: Config.
-* combiner pass: Regs and Memory.
-* command options: Invoking GCC.
-* comments, C++ style: C++ Comments.
-* common subexpression elimination: Passes.
-* COMP_TYPE_ATTRIBUTES: Misc.
-* compare: Arithmetic.
-* compare, canonicalization of: Insn Canonicalizations.
-* comparison of signed and unsigned values, warning: Warning Options.
-* compilation in a separate directory: Other Dir.
-* compiler bugs, reporting: Bug Reporting.
-* compiler compared to C++ preprocessor: G++ and GCC.
-* compiler options, C++: C++ Dialect Options.
-* compiler passes and files: Passes.
-* compiler version, specifying: Target Options.
-* COMPILER_PATH: Environment Variables.
-* complement, bitwise: Arithmetic.
-* complex numbers: Complex.
-* compound expressions as lvalues: Lvalues.
-* computed gotos: Labels as Values.
-* computing the length of an insn: Insn Lengths.
-* cond: Comparisons.
-* cond and attributes: Expressions.
-* condition code register: Regs and Memory.
-* condition code status: Condition Code.
-* condition codes: Comparisons.
-* conditional expressions as lvalues: Lvalues.
-* conditional expressions, extensions: Conditionals.
-* CONDITIONAL_REGISTER_USAGE: Register Basics.
-* conditions, in patterns: Patterns.
-* configuration file: Config.
-* configurations supported by GNU CC: Configurations.
-* conflicting types: Disappointments.
-* const applied to function: Function Attributes.
-* const function attribute: Function Attributes.
-* CONST0_RTX: Constants.
-* const0_rtx: Constants.
-* CONST1_RTX: Constants.
-* const1_rtx: Constants.
-* CONST2_RTX: Constants.
-* const2_rtx: Constants.
-* CONST_CALL_P: Flags.
-* CONST_COSTS: Costs.
-* const_double: Constants.
-* const_double, RTL sharing: Sharing.
-* CONST_DOUBLE_CHAIN: Constants.
-* CONST_DOUBLE_LOW: Constants.
-* CONST_DOUBLE_MEM: Constants.
-* CONST_DOUBLE_OK_FOR_LETTER_P: Register Classes.
-* const_int: Constants.
-* const_int and attribute tests: Expressions.
-* const_int and attributes: Expressions.
-* const_int, RTL sharing: Sharing.
-* CONST_OK_FOR_LETTER_P: Register Classes.
-* const_string: Constants.
-* const_string and attributes: Expressions.
-* const_true_rtx: Constants.
-* constant attributes: Constant Attributes.
-* constant folding: Passes.
-* constant folding and floating point: Cross-compilation.
-* constant propagation: Passes.
-* CONSTANT_ADDRESS_P: Addressing Modes.
-* CONSTANT_AFTER_FUNCTION_P: Data Output.
-* CONSTANT_ALIGNMENT: Storage Layout.
-* CONSTANT_P: Addressing Modes.
-* CONSTANT_POOL_ADDRESS_P: Flags.
-* CONSTANT_POOL_BEFORE_FUNCTION: Data Output.
-* constants in constraints: Simple Constraints.
-* constm1_rtx: Constants.
-* constraint modifier characters: Modifiers.
-* constraint, matching: Simple Constraints.
-* constraints: Constraints.
-* constraints, machine specific: Machine Constraints.
-* constructing calls: Constructing Calls.
-* constructor expressions: Constructors.
-* constructor function attribute: Function Attributes.
-* constructors vs goto: Destructors and Goto.
-* constructors, automatic calls: Collect2.
-* constructors, output of: Initialization.
-* contributors: Contributors.
-* controlling register usage: Register Basics.
-* controlling the compilation driver: Driver.
-* conventions, run-time: Interface.
-* conversions: Conversions.
-* Convex options: Convex Options.
-* copy_rtx_if_shared: Sharing.
-* core dump: Bug Criteria.
-* cos: C Dialect Options.
-* costs of instructions: Costs.
-* COSTS_N_INSNS: Costs.
-* CPLUS_INCLUDE_PATH: Environment Variables.
-* CPP_PREDEFINES: Run-time Target.
-* CPP_SPEC: Driver.
-* CQImode: Machine Modes.
-* cross compilation and floating point: Cross-compilation.
-* cross compiling: Target Options.
-* cross-compiler, installation: Cross-Compiler.
-* cross-jumping: Passes.
-* CROSS_LIBGCC1: Target Fragment.
-* CRTSTUFF_T_CFLAGS: Target Fragment.
-* CRTSTUFF_T_CFLAGS_S: Target Fragment.
-* CSImode: Machine Modes.
-* CTImode: Machine Modes.
-* CUMULATIVE_ARGS: Register Arguments.
-* current_function_epilogue_delay_list: Function Entry.
-* current_function_outgoing_args_size: Stack Arguments.
-* current_function_pops_args: Function Entry.
-* current_function_pretend_args_size: Function Entry.
-* d in constraint: Simple Constraints.
-* data flow analysis: Passes.
-* DATA_ALIGNMENT: Storage Layout.
-* data_section: Sections.
-* DATA_SECTION_ASM_OP: Sections.
-* DBR_OUTPUT_SEQEND: Instruction Output.
-* dbr_sequence_length: Instruction Output.
-* DBX: Interoperation.
-* DBX_BLOCKS_FUNCTION_RELATIVE: DBX Options.
-* DBX_CONTIN_CHAR: DBX Options.
-* DBX_CONTIN_LENGTH: DBX Options.
-* DBX_DEBUGGING_INFO: DBX Options.
-* DBX_FUNCTION_FIRST: DBX Options.
-* DBX_LBRAC_FIRST: DBX Options.
-* DBX_MEMPARM_STABS_LETTER: DBX Options.
-* DBX_NO_XREFS: DBX Options.
-* DBX_OUTPUT_ENUM: DBX Hooks.
-* DBX_OUTPUT_FUNCTION_END: DBX Hooks.
-* DBX_OUTPUT_LBRAC: DBX Hooks.
-* DBX_OUTPUT_MAIN_SOURCE_DIRECTORY: File Names and DBX.
-* DBX_OUTPUT_MAIN_SOURCE_FILE_END: File Names and DBX.
-* DBX_OUTPUT_MAIN_SOURCE_FILENAME: File Names and DBX.
-* DBX_OUTPUT_RBRAC: DBX Hooks.
-* DBX_OUTPUT_SOURCE_FILENAME: File Names and DBX.
-* DBX_OUTPUT_STANDARD_TYPES: DBX Hooks.
-* DBX_REGISTER_NUMBER: All Debuggers.
-* DBX_REGPARM_STABS_CODE: DBX Options.
-* DBX_REGPARM_STABS_LETTER: DBX Options.
-* DBX_STATIC_CONST_VAR_CODE: DBX Options.
-* DBX_STATIC_STAB_DATA_SECTION: DBX Options.
-* DBX_TYPE_DECL_STABS_CODE: DBX Options.
-* DBX_USE_BINCL: DBX Options.
-* DBX_WORKING_DIRECTORY: File Names and DBX.
-* DCmode: Machine Modes.
-* De Morgan's law: Insn Canonicalizations.
-* dead code: Passes.
-* dead_or_set_p: Peephole Definitions.
-* deallocating variable length arrays: Variable Length.
-* death notes: Obsolete Register Macros.
-* debug_rtx: Bug Reporting.
-* DEBUG_SYMS_TEXT: DBX Options.
-* DEBUGGER_ARG_OFFSET: All Debuggers.
-* DEBUGGER_AUTO_OFFSET: All Debuggers.
-* debugging information generation: Passes.
-* debugging information options: Debugging Options.
-* debugging, 88k OCS: M88K Options.
-* declaration scope: Incompatibilities.
-* declarations inside expressions: Statement Exprs.
-* declarations, RTL: RTL Declarations.
-* declaring attributes of functions: Function Attributes.
-* declaring static data in C++: Static Definitions.
-* default implementation, signature member function: C++ Signatures.
-* DEFAULT_CALLER_SAVES: Caller Saves.
-* DEFAULT_GDB_EXTENSIONS: DBX Options.
-* DEFAULT_MAIN_RETURN: Misc.
-* DEFAULT_PCC_STRUCT_RETURN: Aggregate Return.
-* DEFAULT_SHORT_ENUMS: Type Layout.
-* DEFAULT_SIGNED_CHAR: Type Layout.
-* DEFAULT_VTABLE_THUNKS: Storage Layout.
-* define_asm_attributes: Tagging Insns.
-* define_attr: Defining Attributes.
-* define_delay: Delay Slots.
-* define_expand: Expander Definitions.
-* define_function_unit: Function Units.
-* define_insn: Patterns.
-* define_insn example: Example.
-* define_peephole: Expander Definitions.
-* define_split: Insn Splitting.
-* defining attributes and their values: Defining Attributes.
-* defining jump instruction patterns: Jump Patterns.
-* defining peephole optimizers: Peephole Definitions.
-* defining RTL sequences for code generation: Expander Definitions.
-* defining static data in C++: Static Definitions.
-* delay slots, defining: Delay Slots.
-* DELAY_SLOTS_FOR_EPILOGUE: Function Entry.
-* delayed branch scheduling: Passes.
-* dependencies for make as output: Environment Variables.
-* dependencies, make: Preprocessor Options.
-* DEPENDENCIES_OUTPUT: Environment Variables.
-* Dependent Patterns: Dependent Patterns.
-* destructor function attribute: Function Attributes.
-* destructors vs goto: Destructors and Goto.
-* destructors, output of: Initialization.
-* detecting -traditional: C Dialect Options.
-* DFmode: Machine Modes.
-* dialect options: C Dialect Options.
-* digits in constraint: Simple Constraints.
-* DImode: Machine Modes.
-* DIR_SEPARATOR: Config.
-* directory options: Directory Options.
-* disabling certain registers: Register Basics.
-* dispatch table: Dispatch Tables.
-* div: Arithmetic.
-* div and attributes: Expressions.
-* DIVDI3_LIBCALL: Library Calls.
-* divide instruction, 88k: M88K Options.
-* division: Arithmetic.
-* divM3 instruction pattern: Standard Names.
-* divmodM4 instruction pattern: Standard Names.
-* DIVSI3_LIBCALL: Library Calls.
-* DOESNT_NEED_UNWINDER: Exception Region Output.
-* dollar signs in identifier names: Dollar Signs.
-* DOLLARS_IN_IDENTIFIERS: Misc.
-* DONE: Expander Definitions.
-* DONT_REDUCE_ADDR: Costs.
-* double-word arithmetic: Long Long.
-* DOUBLE_TYPE_SIZE: Type Layout.
-* downward funargs: Nested Functions.
-* driver: Driver.
-* DW bit (29k): AMD29K Options.
-* DWARF2_DEBUGGING_INFO: SDB and DWARF.
-* DWARF2_UNWIND_INFO: Exception Region Output.
-* DWARF_DEBUGGING_INFO: SDB and DWARF.
-* DYNAMIC_CHAIN_ADDRESS: Frame Layout.
-* E in constraint: Simple Constraints.
-* earlyclobber operand: Modifiers.
-* EASY_DIV_EXPR: Misc.
-* EDOM, implicit usage: Library Calls.
-* EH_FRAME_SECTION_ASM_OP: Exception Region Output.
-* EH_TABLE_LOOKUP: Exception Region Output.
-* eight bit data on the H8/300 and H8/300H: Function Attributes.
-* ELIGIBLE_FOR_EPILOGUE_DELAY: Function Entry.
-* ELIMINABLE_REGS: Elimination.
-* empty constraints: No Constraints.
-* EMPTY_FIELD_BOUNDARY: Storage Layout.
-* ENCODE_SECTION_INFO: Sections.
-* ENCODE_SECTION_INFO and address validation: Addressing Modes.
-* ENCODE_SECTION_INFO usage: Instruction Output.
-* ENDFILE_SPEC: Driver.
-* endianness: Portability.
-* enum machine_mode: Machine Modes.
-* enum reg_class: Register Classes.
-* environment variables: Environment Variables.
-* epilogue: Function Entry.
-* EPILOGUE_USES: Function Entry.
-* eq: Comparisons.
-* eq and attributes: Expressions.
-* eq_attr: Expressions.
-* equal: Comparisons.
-* errno, implicit usage: Library Calls.
-* error messages: Warnings and Errors.
-* escape sequences, traditional: C Dialect Options.
-* exception_receiver instruction pattern: Standard Names.
-* EXCEPTION_SECTION: Exception Region Output.
-* exclamation point: Multi-Alternative.
-* exclusive-or, bitwise: Arithmetic.
-* EXECUTABLE_SUFFIX: Config.
-* exit: C Dialect Options.
-* exit status and VMS: VMS Misc.
-* EXIT_BODY: Misc.
-* EXIT_IGNORE_STACK: Function Entry.
-* EXPAND_BUILTIN_SAVEREGS: Varargs.
-* expander definitions: Expander Definitions.
-* explicit register variables: Explicit Reg Vars.
-* expr_list: Insns.
-* expression codes: RTL Objects.
-* expressions containing statements: Statement Exprs.
-* expressions, compound, as lvalues: Lvalues.
-* expressions, conditional, as lvalues: Lvalues.
-* expressions, constructor: Constructors.
-* extended asm: Extended Asm.
-* extendMN2 instruction pattern: Standard Names.
-* extensible constraints: Simple Constraints.
-* extensions, ?: <1>: Conditionals.
-* extensions, ?:: Lvalues.
-* extensions, C language: C Extensions.
-* extensions, C++ language: C++ Extensions.
-* extern int target_flags: Run-time Target.
-* external declaration scope: Incompatibilities.
-* EXTRA_CC_MODES: Condition Code.
-* EXTRA_CC_NAMES: Condition Code.
-* EXTRA_CONSTRAINT: Register Classes.
-* EXTRA_SECTION_FUNCTIONS: Sections.
-* EXTRA_SECTIONS: Sections.
-* EXTRA_SPECS: Driver.
-* extv instruction pattern: Standard Names.
-* extzv instruction pattern: Standard Names.
-* F in constraint: Simple Constraints.
-* fabs: C Dialect Options.
-* FAIL: Expander Definitions.
-* fatal signal: Bug Criteria.
-* FATAL_EXIT_CODE: Config.
-* features, optional, in system conventions: Run-time Target.
-* ffs <1>: Arithmetic.
-* ffs: C Dialect Options.
-* ffsM2 instruction pattern: Standard Names.
-* file name suffix: Overall Options.
-* file names: Link Options.
-* files and passes of the compiler: Passes.
-* final pass: Passes.
-* FINAL_PRESCAN_INSN: Instruction Output.
-* FINAL_PRESCAN_LABEL: Instruction Output.
-* FINAL_REG_PARM_STACK_SPACE: Stack Arguments.
-* final_scan_insn: Function Entry.
-* final_sequence: Instruction Output.
-* FINALIZE_PIC: PIC.
-* FIRST_INSN_ADDRESS: Insn Lengths.
-* FIRST_PARM_OFFSET: Frame Layout.
-* FIRST_PARM_OFFSET and virtual registers: Regs and Memory.
-* FIRST_PSEUDO_REGISTER: Register Basics.
-* FIRST_STACK_REG: Stack Registers.
-* FIRST_VIRTUAL_REGISTER: Regs and Memory.
-* fix: Conversions.
-* fix_truncMN2 instruction pattern: Standard Names.
-* fixed register: Register Basics.
-* FIXED_REGISTERS: Register Basics.
-* fixed_regs: Register Basics.
-* fixMN2 instruction pattern: Standard Names.
-* FIXUNS_TRUNC_LIKE_FIX_TRUNC: Misc.
-* fixuns_truncMN2 instruction pattern: Standard Names.
-* fixunsMN2 instruction pattern: Standard Names.
-* flags in RTL expression: Flags.
-* float: Conversions.
-* float as function value type: Incompatibilities.
-* FLOAT_ARG_TYPE: Library Calls.
-* float_extend: Conversions.
-* FLOAT_STORE_FLAG_VALUE: Misc.
-* float_truncate: Conversions.
-* FLOAT_TYPE_SIZE: Type Layout.
-* FLOAT_VALUE_TYPE: Library Calls.
-* FLOAT_WORDS_BIG_ENDIAN: Storage Layout.
-* FLOATIFY: Library Calls.
-* floating point and cross compilation: Cross-compilation.
-* floating point precision <1>: Disappointments.
-* floating point precision: Optimize Options.
-* floatMN2 instruction pattern: Standard Names.
-* floatunsMN2 instruction pattern: Standard Names.
-* force_reg: Standard Names.
-* format function attribute: Function Attributes.
-* format_arg function attribute: Function Attributes.
-* forwarding calls: Constructing Calls.
-* frame layout: Frame Layout.
-* FRAME_GROWS_DOWNWARD: Frame Layout.
-* FRAME_GROWS_DOWNWARD and virtual registers: Regs and Memory.
-* frame_pointer_needed: Function Entry.
-* FRAME_POINTER_REGNUM: Frame Registers.
-* FRAME_POINTER_REGNUM and virtual registers: Regs and Memory.
-* FRAME_POINTER_REQUIRED: Elimination.
-* frame_pointer_rtx: Frame Registers.
-* fscanf, and constant strings: Incompatibilities.
-* ftruncM2 instruction pattern: Standard Names.
-* function addressability on the M32R/D: Function Attributes.
-* function attributes: Function Attributes.
-* function call conventions: Interface.
-* function entry and exit: Function Entry.
-* function pointers, arithmetic: Pointer Arith.
-* function prototype declarations: Function Prototypes.
-* function units, for scheduling: Function Units.
-* function, size of pointer to: Pointer Arith.
-* function-call insns: Calls.
-* FUNCTION_ARG: Register Arguments.
-* FUNCTION_ARG_ADVANCE: Register Arguments.
-* FUNCTION_ARG_BOUNDARY: Register Arguments.
-* FUNCTION_ARG_CALLEE_COPIES: Register Arguments.
-* FUNCTION_ARG_PADDING: Register Arguments.
-* FUNCTION_ARG_PARTIAL_NREGS: Register Arguments.
-* FUNCTION_ARG_PASS_BY_REFERENCE: Register Arguments.
-* FUNCTION_ARG_REGNO_P: Register Arguments.
-* FUNCTION_BLOCK_PROFILER: Profiling.
-* FUNCTION_BLOCK_PROFILER_EXIT: Profiling.
-* FUNCTION_BOUNDARY: Storage Layout.
-* FUNCTION_CONVERSION_BUG: Config.
-* FUNCTION_EPILOGUE: Function Entry.
-* FUNCTION_EPILOGUE and trampolines: Trampolines.
-* FUNCTION_INCOMING_ARG: Register Arguments.
-* FUNCTION_MODE: Misc.
-* FUNCTION_OUTGOING_VALUE: Scalar Return.
-* FUNCTION_PROFILER: Profiling.
-* FUNCTION_PROLOGUE: Function Entry.
-* FUNCTION_PROLOGUE and trampolines: Trampolines.
-* FUNCTION_VALUE: Scalar Return.
-* FUNCTION_VALUE_REGNO_P: Scalar Return.
-* functions called via pointer on the RS/6000 and PowerPC: Function Attributes.
-* functions in arbitrary sections: Function Attributes.
-* functions that are passed arguments in registers on the 386: Function Attributes.
-* functions that do not pop the argument stack on the 386: Function Attributes.
-* functions that do pop the argument stack on the 386: Function Attributes.
-* functions that have no side effects: Function Attributes.
-* functions that never return: Function Attributes.
-* functions that pop the argument stack on the 386: Function Attributes.
-* functions which are exported from a dll on PowerPC Windows NT: Function Attributes.
-* functions which are imported from a dll on PowerPC Windows NT: Function Attributes.
-* functions which specify exception handling on PowerPC Windows NT: Function Attributes.
-* functions with printf or scanf style arguments: Function Attributes.
-* functions, leaf: Leaf Functions.
-* g in constraint: Simple Constraints.
-* G in constraint: Simple Constraints.
-* g++: Invoking G++.
-* G++: G++ and GCC.
-* g++ 1.XX: Invoking G++.
-* g++ older version: Invoking G++.
-* g++, separate compiler: Invoking G++.
-* GCC: G++ and GCC.
-* GCC_EXEC_PREFIX: Environment Variables.
-* ge: Comparisons.
-* ge and attributes: Expressions.
-* GEN_ERRNO_RTX: Library Calls.
-* gencodes: Passes.
-* genconfig: Passes.
-* general_operand: RTL Template.
-* GENERAL_REGS: Register Classes.
-* generalized lvalues: Lvalues.
-* generating assembler output: Output Statement.
-* generating insns: RTL Template.
-* genflags: Passes.
-* genflags, crash on Sun 4: Installation Problems.
-* get_attr: Expressions.
-* get_attr_length: Insn Lengths.
-* GET_CLASS_NARROWEST_MODE: Machine Modes.
-* GET_CODE: RTL Objects.
-* get_frame_size: Elimination.
-* get_insns: Insns.
-* get_last_insn: Insns.
-* GET_MODE: Machine Modes.
-* GET_MODE_ALIGNMENT: Machine Modes.
-* GET_MODE_BITSIZE: Machine Modes.
-* GET_MODE_CLASS: Machine Modes.
-* GET_MODE_MASK: Machine Modes.
-* GET_MODE_NAME: Machine Modes.
-* GET_MODE_NUNITS: Machine Modes.
-* GET_MODE_SIZE: Machine Modes.
-* GET_MODE_UNIT_SIZE: Machine Modes.
-* GET_MODE_WIDER_MODE: Machine Modes.
-* GET_RTX_CLASS: Accessors.
-* GET_RTX_FORMAT: Accessors.
-* GET_RTX_LENGTH: Accessors.
-* geu: Comparisons.
-* geu and attributes: Expressions.
-* GIV_SORT_CRITERION: Misc.
-* global offset table: Code Gen Options.
-* global register after longjmp: Global Reg Vars.
-* global register allocation: Passes.
-* global register variables: Global Reg Vars.
-* GLOBALDEF: Global Declarations.
-* GLOBALREF: Global Declarations.
-* GLOBALVALUEDEF: Global Declarations.
-* GLOBALVALUEREF: Global Declarations.
-* GNU CC and portability: Portability.
-* GNU CC command options: Invoking GCC.
-* GO_IF_LEGITIMATE_ADDRESS: Addressing Modes.
-* GO_IF_MODE_DEPENDENT_ADDRESS: Addressing Modes.
-* goto in C++: Destructors and Goto.
-* goto with computed label: Labels as Values.
-* gp-relative references (MIPS): MIPS Options.
-* gprof: Debugging Options.
-* greater than: Comparisons.
-* grouping options: Invoking GCC.
-* gt: Comparisons.
-* gt and attributes: Expressions.
-* gtu: Comparisons.
-* gtu and attributes: Expressions.
-* H in constraint: Simple Constraints.
-* HANDLE_PRAGMA: Misc.
-* hard registers: Regs and Memory.
-* HARD_FRAME_POINTER_REGNUM: Frame Registers.
-* HARD_REGNO_MODE_OK: Values in Registers.
-* HARD_REGNO_NREGS: Values in Registers.
-* hardware models and configurations, specifying: Submodel Options.
-* HAS_INIT_SECTION: Macros for Initialization.
-* HAVE_ATEXIT: Misc.
-* HAVE_POPEN: Config.
-* HAVE_POST_DECREMENT: Addressing Modes.
-* HAVE_POST_INCREMENT: Addressing Modes.
-* HAVE_PRE_DECREMENT: Addressing Modes.
-* HAVE_PRE_INCREMENT: Addressing Modes.
-* HAVE_PUTENV: Config.
-* HAVE_VPRINTF: Config.
-* header files and VMS: Include Files and VMS.
-* high: Constants.
-* HImode: Machine Modes.
-* HImode, in insn: Insns.
-* host makefile fragment: Host Fragment.
-* HOST_BITS_PER_CHAR: Config.
-* HOST_BITS_PER_INT: Config.
-* HOST_BITS_PER_LONG: Config.
-* HOST_BITS_PER_SHORT: Config.
-* HOST_FLOAT_FORMAT: Config.
-* HOST_FLOAT_WORDS_BIG_ENDIAN: Config.
-* HOST_WORDS_BIG_ENDIAN: Config.
-* hosted environment: C Dialect Options.
-* HPPA Options: HPPA Options.
-* I in constraint: Simple Constraints.
-* i in constraint: Simple Constraints.
-* i386 Options: i386 Options.
-* IBM RS/6000 and PowerPC Options: RS/6000 and PowerPC Options.
-* IBM RT options: RT Options.
-* IBM RT PC: Interoperation.
-* identifier names, dollar signs in: Dollar Signs.
-* identifiers, names in assembler code: Asm Labels.
-* identifying source, compiler (88k): M88K Options.
-* IEEE_FLOAT_FORMAT: Storage Layout.
-* if_then_else: Comparisons.
-* if_then_else and attributes: Expressions.
-* if_then_else usage: Side Effects.
-* immediate_operand: RTL Template.
-* IMMEDIATE_PREFIX: Instruction Output.
-* implicit argument: return value: Naming Results.
-* IMPLICIT_FIX_EXPR: Misc.
-* implied #pragma implementation: C++ Interface.
-* in_data: Sections.
-* in_struct: Flags.
-* in_struct, in code_label: Flags.
-* in_struct, in insn: Flags.
-* in_struct, in label_ref: Flags.
-* in_struct, in mem: Flags.
-* in_struct, in reg: Flags.
-* in_struct, in subreg: Flags.
-* in_text: Sections.
-* include files and VMS: Include Files and VMS.
-* INCLUDE_DEFAULTS: Driver.
-* inclusive-or, bitwise: Arithmetic.
-* INCOMING_FRAME_SP_OFFSET: Frame Layout.
-* INCOMING_REGNO: Register Basics.
-* INCOMING_RETURN_ADDR_RTX: Frame Layout.
-* incompatibilities of GNU CC: Incompatibilities.
-* increment operators: Bug Criteria.
-* INDEX_REG_CLASS: Register Classes.
-* indirect_jump instruction pattern: Standard Names.
-* INIT_CUMULATIVE_ARGS: Register Arguments.
-* INIT_CUMULATIVE_INCOMING_ARGS: Register Arguments.
-* INIT_ENVIRONMENT: Driver.
-* INIT_SECTION_ASM_OP <1>: Macros for Initialization.
-* INIT_SECTION_ASM_OP: Sections.
-* INIT_TARGET_OPTABS: Library Calls.
-* INITIAL_ELIMINATION_OFFSET: Elimination.
-* INITIAL_FRAME_POINTER_OFFSET: Elimination.
-* initialization routines: Initialization.
-* initializations in expressions: Constructors.
-* INITIALIZE_TRAMPOLINE: Trampolines.
-* initializers with labeled elements: Labeled Elements.
-* initializers, non-constant: Initializers.
-* inline automatic for C++ member fns: Inline.
-* inline functions: Inline.
-* inline functions, omission of: Inline.
-* inline, automatic: Passes.
-* inlining and C++ pragmas: C++ Interface.
-* insn: Insns.
-* insn and /i: Flags.
-* insn and /s: Flags.
-* insn and /u: Flags.
-* insn attributes: Insn Attributes.
-* insn canonicalization: Insn Canonicalizations.
-* insn lengths, computing: Insn Lengths.
-* insn splitting: Insn Splitting.
-* insn-attr.h: Defining Attributes.
-* INSN_ANNULLED_BRANCH_P: Flags.
-* INSN_CACHE_DEPTH: Trampolines.
-* INSN_CACHE_LINE_WIDTH: Trampolines.
-* INSN_CACHE_SIZE: Trampolines.
-* INSN_CLOBBERS_REGNO_P: Obsolete Register Macros.
-* INSN_CODE: Insns.
-* INSN_DELETED_P: Flags.
-* INSN_FROM_TARGET_P: Flags.
-* insn_list: Insns.
-* INSN_REFERENCES_ARE_DELAYED: Misc.
-* INSN_SETS_ARE_DELAYED: Misc.
-* INSN_UID: Insns.
-* insns: Insns.
-* insns, generating: RTL Template.
-* insns, recognizing: RTL Template.
-* INSTALL: Host Fragment.
-* installation trouble: Trouble.
-* installing GNU CC: Installation.
-* installing GNU CC on the Sun: Sun Install.
-* installing GNU CC on VMS: VMS Install.
-* instruction attributes: Insn Attributes.
-* instruction combination: Passes.
-* instruction patterns: Patterns.
-* instruction recognizer: Passes.
-* instruction scheduling: Passes.
-* instruction splitting: Insn Splitting.
-* insv instruction pattern: Standard Names.
-* INT_TYPE_SIZE: Type Layout.
-* INTEGRATE_THRESHOLD: Misc.
-* integrated: Flags.
-* integrated, in insn: Flags.
-* integrated, in reg: Flags.
-* integrating function code: Inline.
-* Intel 386 Options: i386 Options.
-* Interdependence of Patterns: Dependent Patterns.
-* interface and implementation headers, C++: C++ Interface.
-* interfacing to GNU CC output: Interface.
-* intermediate C version, nonexistent: G++ and GCC.
-* interrupt handler functions on the H8/300 processors: Function Attributes.
-* interrupt handlers on the M32R/D: Function Attributes.
-* INTIFY: Library Calls.
-* introduction: Top.
-* invalid assembly code: Bug Criteria.
-* invalid input: Bug Criteria.
-* INVOKE__main: Macros for Initialization.
-* invoking g++: Invoking G++.
-* ior: Arithmetic.
-* ior and attributes: Expressions.
-* ior, canonicalization of: Insn Canonicalizations.
-* iorM3 instruction pattern: Standard Names.
-* IS_ASM_LOGICAL_LINE_SEPARATOR: Data Output.
-* isinf: Cross-compilation.
-* isnan: Cross-compilation.
-* jump instruction patterns: Jump Patterns.
-* jump instructions and set: Side Effects.
-* jump optimization: Passes.
-* jump threading: Passes.
-* jump_insn: Insns.
-* JUMP_LABEL: Insns.
-* JUMP_TABLES_IN_TEXT_SECTION: Sections.
-* kernel and user registers (29k): AMD29K Options.
-* keywords, alternate: Alternate Keywords.
-* known causes of trouble: Trouble.
-* LABEL_NUSES: Insns.
-* LABEL_OUTSIDE_LOOP_P: Flags.
-* LABEL_PRESERVE_P: Flags.
-* label_ref: Constants.
-* label_ref and /s: Flags.
-* label_ref, RTL sharing: Sharing.
-* labeled elements in initializers: Labeled Elements.
-* labels as values: Labels as Values.
-* labs: C Dialect Options.
-* language dialect options: C Dialect Options.
-* large bit shifts (88k): M88K Options.
-* large return values: Aggregate Return.
-* LAST_STACK_REG: Stack Registers.
-* LAST_VIRTUAL_REGISTER: Regs and Memory.
-* LD_FINI_SWITCH: Macros for Initialization.
-* LD_INIT_SWITCH: Macros for Initialization.
-* LDD_SUFFIX: Macros for Initialization.
-* ldexp: Cross-compilation.
-* le: Comparisons.
-* le and attributes: Expressions.
-* leaf functions: Leaf Functions.
-* leaf_function: Leaf Functions.
-* leaf_function_p: Standard Names.
-* LEAF_REG_REMAP: Leaf Functions.
-* LEAF_REGISTERS: Leaf Functions.
-* left rotate: Arithmetic.
-* left shift: Arithmetic.
-* LEGITIMATE_CONSTANT_P: Addressing Modes.
-* LEGITIMATE_PIC_OPERAND_P: PIC.
-* LEGITIMIZE_ADDRESS: Addressing Modes.
-* length-zero arrays: Zero Length.
-* less than: Comparisons.
-* less than or equal: Comparisons.
-* leu: Comparisons.
-* leu and attributes: Expressions.
-* LIB2FUNCS_EXTRA: Target Fragment.
-* LIB_SPEC: Driver.
-* LIBCALL_VALUE: Scalar Return.
-* libgcc.a: Library Calls.
-* LIBGCC1: Target Fragment.
-* LIBGCC2_CFLAGS: Target Fragment.
-* LIBGCC2_WORDS_BIG_ENDIAN: Storage Layout.
-* LIBGCC_NEEDS_DOUBLE: Library Calls.
-* LIBGCC_SPEC: Driver.
-* Libraries: Link Options.
-* library subroutine names: Library Calls.
-* LIBRARY_PATH: Environment Variables.
-* LIMIT_RELOAD_CLASS: Register Classes.
-* link options: Link Options.
-* LINK_LIBGCC_SPECIAL: Driver.
-* LINK_LIBGCC_SPECIAL_1: Driver.
-* LINK_SPEC: Driver.
-* lo_sum: Arithmetic.
-* load address instruction: Simple Constraints.
-* LOAD_EXTEND_OP: Misc.
-* load_multiple instruction pattern: Standard Names.
-* local labels: Local Labels.
-* local register allocation: Passes.
-* local variables in macros: Naming Types.
-* local variables, specifying registers: Local Reg Vars.
-* LOCAL_INCLUDE_DIR: Driver.
-* LOCAL_LABEL_PREFIX: Instruction Output.
-* LOG_LINKS: Insns.
-* logical-and, bitwise: Arithmetic.
-* long long data types: Long Long.
-* LONG_DOUBLE_TYPE_SIZE: Type Layout.
-* LONG_LONG_TYPE_SIZE: Type Layout.
-* LONG_TYPE_SIZE: Type Layout.
-* longjmp: Global Reg Vars.
-* longjmp and automatic variables <1>: Interface.
-* longjmp and automatic variables: C Dialect Options.
-* longjmp incompatibilities: Incompatibilities.
-* longjmp warnings: Warning Options.
-* LONGJMP_RESTORE_FROM_STACK: Elimination.
-* loop optimization: Passes.
-* lshiftrt: Arithmetic.
-* lshiftrt and attributes: Expressions.
-* lshrM3 instruction pattern: Standard Names.
-* lt: Comparisons.
-* lt and attributes: Expressions.
-* ltu: Comparisons.
-* lvalues, generalized: Lvalues.
-* m in constraint: Simple Constraints.
-* M32R/D options: M32R/D Options.
-* M680x0 options: M680x0 Options.
-* M88k options: M88K Options.
-* machine dependent options: Submodel Options.
-* machine description macros: Target Macros.
-* machine descriptions: Machine Desc.
-* machine mode conversions: Conversions.
-* machine modes: Machine Modes.
-* machine specific constraints: Machine Constraints.
-* MACHINE_DEPENDENT_REORG: Misc.
-* MACHINE_STATE_RESTORE: Profiling.
-* MACHINE_STATE_SAVE: Profiling.
-* macro with variable arguments: Macro Varargs.
-* macros containing asm: Extended Asm.
-* macros, inline alternative: Inline.
-* macros, local labels: Local Labels.
-* macros, local variables in: Naming Types.
-* macros, statements in expressions: Statement Exprs.
-* macros, target description: Target Macros.
-* macros, types of arguments: Typeof.
-* main and the exit status: VMS Misc.
-* make: Preprocessor Options.
-* MAKE_DECL_ONE_ONLY (DECL): Label Output.
-* make_safe_from: Expander Definitions.
-* makefile fragment: Fragments.
-* MASK_RETURN_ADDR: Exception Region Output.
-* match_dup: RTL Template.
-* match_dup and attributes: Insn Lengths.
-* match_op_dup: RTL Template.
-* match_operand: RTL Template.
-* match_operand and attributes: Expressions.
-* match_operator: RTL Template.
-* match_par_dup: RTL Template.
-* match_parallel: RTL Template.
-* match_scratch: RTL Template.
-* matching constraint: Simple Constraints.
-* matching operands: Output Template.
-* math libraries: Interface.
-* math, in RTL: Arithmetic.
-* MAX_BITS_PER_WORD: Storage Layout.
-* MAX_CHAR_TYPE_SIZE: Type Layout.
-* MAX_FIXED_MODE_SIZE: Storage Layout.
-* MAX_INT_TYPE_SIZE: Type Layout.
-* MAX_LONG_TYPE_SIZE: Type Layout.
-* MAX_MOVE_MAX: Misc.
-* MAX_OFILE_ALIGNMENT: Storage Layout.
-* MAX_REGS_PER_ADDRESS: Addressing Modes.
-* MAX_WCHAR_TYPE_SIZE: Type Layout.
-* maximum operator: Min and Max.
-* MAYBE_REG_PARM_STACK_SPACE: Stack Arguments.
-* mcount: Profiling.
-* MD_CALL_PROTOTYPES: Config.
-* MD_EXEC_PREFIX: Driver.
-* MD_STARTFILE_PREFIX: Driver.
-* MD_STARTFILE_PREFIX_1: Driver.
-* mem: Regs and Memory.
-* mem and /s: Flags.
-* mem and /u: Flags.
-* mem and /v: Flags.
-* mem, RTL sharing: Sharing.
-* MEM_IN_STRUCT_P: Flags.
-* MEM_VOLATILE_P: Flags.
-* member fns, automatically inline: Inline.
-* memcmp: C Dialect Options.
-* memcpy: C Dialect Options.
-* memcpy, implicit usage: Library Calls.
-* memory model (29k): AMD29K Options.
-* memory reference, nonoffsettable: Simple Constraints.
-* memory references in constraints: Simple Constraints.
-* MEMORY_MOVE_COST: Costs.
-* memset, implicit usage: Library Calls.
-* messages, warning: Warning Options.
-* messages, warning and error: Warnings and Errors.
-* middle-operands, omitted: Conditionals.
-* MIN_UNITS_PER_WORD: Storage Layout.
-* minimum operator: Min and Max.
-* MINIMUM_ATOMIC_ALIGNMENT: Storage Layout.
-* minus: Arithmetic.
-* minus and attributes: Expressions.
-* minus, canonicalization of: Insn Canonicalizations.
-* MIPS options: MIPS Options.
-* misunderstandings in C++: C++ Misunderstandings.
-* mktemp, and constant strings: Incompatibilities.
-* mod: Arithmetic.
-* mod and attributes: Expressions.
-* MODDI3_LIBCALL: Library Calls.
-* mode attribute: Variable Attributes.
-* mode classes: Machine Modes.
-* MODE_CC: Machine Modes.
-* MODE_COMPLEX_FLOAT: Machine Modes.
-* MODE_COMPLEX_INT: Machine Modes.
-* MODE_FLOAT: Machine Modes.
-* MODE_FUNCTION: Machine Modes.
-* MODE_INT: Machine Modes.
-* MODE_PARTIAL_INT: Machine Modes.
-* MODE_RANDOM: Machine Modes.
-* MODES_TIEABLE_P: Values in Registers.
-* modifiers in constraints: Modifiers.
-* modM3 instruction pattern: Standard Names.
-* MODSI3_LIBCALL: Library Calls.
-* MOVE_MAX: Misc.
-* MOVE_RATIO: Costs.
-* movM instruction pattern: Standard Names.
-* movMODEcc instruction pattern: Standard Names.
-* movstrictM instruction pattern: Standard Names.
-* movstrM instruction pattern: Standard Names.
-* MULDI3_LIBCALL: Library Calls.
-* mulhisi3 instruction pattern: Standard Names.
-* mulM3 instruction pattern: Standard Names.
-* mulqihi3 instruction pattern: Standard Names.
-* MULSI3_LIBCALL: Library Calls.
-* mulsidi3 instruction pattern: Standard Names.
-* mult: Arithmetic.
-* mult and attributes: Expressions.
-* mult, canonicalization of: Insn Canonicalizations.
-* MULTIBYTE_CHARS: Config.
-* MULTILIB_DEFAULTS: Driver.
-* MULTILIB_DIRNAMES: Target Fragment.
-* MULTILIB_EXCEPTIONS: Target Fragment.
-* MULTILIB_EXTRA_OPTS: Target Fragment.
-* MULTILIB_MATCHES: Target Fragment.
-* MULTILIB_OPTIONS: Target Fragment.
-* multiple alternative constraints: Multi-Alternative.
-* MULTIPLE_SYMBOL_SPACES: Misc.
-* multiplication: Arithmetic.
-* multiprecision arithmetic: Long Long.
-* MUST_PASS_IN_STACK, and FUNCTION_ARG: Register Arguments.
-* n in constraint: Simple Constraints.
-* N_REG_CLASSES: Register Classes.
-* name augmentation: VMS Misc.
-* named patterns and conditions: Patterns.
-* named return value in C++: Naming Results.
-* names used in assembler code: Asm Labels.
-* names, pattern: Standard Names.
-* naming convention, implementation headers: C++ Interface.
-* naming types: Naming Types.
-* ne: Comparisons.
-* ne and attributes: Expressions.
-* neg: Arithmetic.
-* neg and attributes: Expressions.
-* neg, canonicalization of: Insn Canonicalizations.
-* negM2 instruction pattern: Standard Names.
-* nested functions: Nested Functions.
-* nested functions, trampolines for: Trampolines.
-* newline vs string constants: C Dialect Options.
-* next_cc0_user: Jump Patterns.
-* NEXT_INSN: Insns.
-* NEXT_OBJC_RUNTIME: Library Calls.
-* nil: RTL Objects.
-* no constraints: No Constraints.
-* no-op move instructions: Passes.
-* NO_BUILTIN_PTRDIFF_TYPE: Driver.
-* NO_BUILTIN_SIZE_TYPE: Driver.
-* NO_DBX_FUNCTION_END: DBX Hooks.
-* NO_DOLLAR_IN_LABEL: Misc.
-* NO_DOT_IN_LABEL: Misc.
-* NO_FUNCTION_CSE: Costs.
-* NO_IMPLICIT_EXTERN_C: Misc.
-* NO_MD_PROTOTYPES: Config.
-* NO_RECURSIVE_FUNCTION_CSE: Costs.
-* NO_REGS: Register Classes.
-* NO_STAB_H: Config.
-* NO_SYS_SIGLIST: Config.
-* nocommon attribute: Variable Attributes.
-* non-constant initializers: Initializers.
-* non-static inline function: Inline.
-* NON_SAVING_SETJMP: Register Basics.
-* nongcc_SI_type: Library Calls.
-* nongcc_word_type: Library Calls.
-* nonlocal_goto instruction pattern: Standard Names.
-* nonlocal_goto_receiver instruction pattern: Standard Names.
-* nonoffsettable memory reference: Simple Constraints.
-* nop instruction pattern: Standard Names.
-* noreturn function attribute: Function Attributes.
-* not: Arithmetic.
-* not and attributes: Expressions.
-* not equal: Comparisons.
-* not using constraints: No Constraints.
-* not, canonicalization of: Insn Canonicalizations.
-* note: Insns.
-* NOTE_INSN_BLOCK_BEG: Insns.
-* NOTE_INSN_BLOCK_END: Insns.
-* NOTE_INSN_DELETED: Insns.
-* NOTE_INSN_EH_REGION_BEG: Insns.
-* NOTE_INSN_EH_REGION_END: Insns.
-* NOTE_INSN_FUNCTION_END: Insns.
-* NOTE_INSN_LOOP_BEG: Insns.
-* NOTE_INSN_LOOP_CONT: Insns.
-* NOTE_INSN_LOOP_END: Insns.
-* NOTE_INSN_LOOP_VTOP: Insns.
-* NOTE_INSN_SETJMP: Insns.
-* NOTE_LINE_NUMBER: Insns.
-* NOTE_SOURCE_FILE: Insns.
-* NOTICE_UPDATE_CC: Condition Code.
-* NUM_MACHINE_MODES: Machine Modes.
-* o in constraint: Simple Constraints.
-* OBJC_GEN_METHOD_LABEL: Label Output.
-* OBJC_INCLUDE_PATH: Environment Variables.
-* OBJC_INT_SELECTORS: Type Layout.
-* OBJC_PROLOGUE: File Framework.
-* OBJC_SELECTORS_WITHOUT_LABELS: Type Layout.
-* OBJECT_FORMAT_COFF: Macros for Initialization.
-* OBJECT_FORMAT_ROSE: Macros for Initialization.
-* OBJECT_SUFFIX: Config.
-* Objective C: G++ and GCC.
-* Objective C threads: Installation.
-* OBSTACK_CHUNK_ALLOC: Config.
-* OBSTACK_CHUNK_FREE: Config.
-* OBSTACK_CHUNK_SIZE: Config.
-* obstack_free: Configurations.
-* OCS (88k): M88K Options.
-* offsettable address: Simple Constraints.
-* old-style function definitions: Function Prototypes.
-* OLDAR: Host Fragment.
-* OLDCC: Host Fragment.
-* OMIT_EH_TABLE: Exception Region Output.
-* omitted middle-operands: Conditionals.
-* one_cmplM2 instruction pattern: Standard Names.
-* ONLY_INT_FIELDS: Config.
-* open coding: Inline.
-* operand access: Accessors.
-* operand constraints: Constraints.
-* operand substitution: Output Template.
-* operands: Patterns.
-* OPTIMIZATION_OPTIONS: Run-time Target.
-* optimize options: Optimize Options.
-* optional hardware or system features: Run-time Target.
-* options to control warnings: Warning Options.
-* options, C++: C++ Dialect Options.
-* options, code generation: Code Gen Options.
-* options, debugging: Debugging Options.
-* options, dialect: C Dialect Options.
-* options, directory search: Directory Options.
-* options, GNU CC command: Invoking GCC.
-* options, grouping: Invoking GCC.
-* options, linking: Link Options.
-* options, optimization: Optimize Options.
-* options, order: Invoking GCC.
-* options, preprocessor: Preprocessor Options.
-* order of evaluation, side effects: Non-bugs.
-* order of options: Invoking GCC.
-* order of register allocation: Allocation Order.
-* ORDER_REGS_FOR_LOCAL_ALLOC: Allocation Order.
-* Ordering of Patterns: Pattern Ordering.
-* other directory, compilation in: Other Dir.
-* OUTGOING_REG_PARM_STACK_SPACE: Stack Arguments.
-* OUTGOING_REGNO: Register Basics.
-* output file option: Overall Options.
-* output of assembler code: File Framework.
-* output statements: Output Statement.
-* output templates: Output Template.
-* output_addr_const: Data Output.
-* output_asm_insn: Output Statement.
-* OUTPUT_QUOTED_STRING: File Framework.
-* overflow while constant folding: Cross-compilation.
-* OVERLAPPING_REGNO_P: Obsolete Register Macros.
-* overloaded virtual fn, warning: Warning Options.
-* OVERRIDE_OPTIONS: Run-time Target.
-* p in constraint: Simple Constraints.
-* packed attribute: Variable Attributes.
-* parallel: Side Effects.
-* parameter forward declaration: Variable Length.
-* parameters, miscellaneous: Misc.
-* PARM_BOUNDARY: Storage Layout.
-* PARSE_LDD_OUTPUT: Macros for Initialization.
-* parser generator, Bison: Installation.
-* parsing pass: Passes.
-* passes and files of the compiler: Passes.
-* passing arguments: Interface.
-* PATH_SEPARATOR: Config.
-* PATTERN: Insns.
-* pattern conditions: Patterns.
-* pattern names: Standard Names.
-* Pattern Ordering: Pattern Ordering.
-* patterns: Patterns.
-* pc: Regs and Memory.
-* pc and attributes: Insn Lengths.
-* pc, RTL sharing: Sharing.
-* pc_rtx: Regs and Memory.
-* PCC_BITFIELD_TYPE_MATTERS: Storage Layout.
-* PCC_STATIC_STRUCT_RETURN: Aggregate Return.
-* PDImode: Machine Modes.
-* peephole optimization: Passes.
-* peephole optimization, RTL representation: Side Effects.
-* peephole optimizer definitions: Peephole Definitions.
-* percent sign: Output Template.
-* perform_...: Library Calls.
-* PIC <1>: PIC.
-* PIC: Code Gen Options.
-* PIC_OFFSET_TABLE_REG_CALL_CLOBBERED: PIC.
-* PIC_OFFSET_TABLE_REGNUM: PIC.
-* plus: Arithmetic.
-* plus and attributes: Expressions.
-* plus, canonicalization of: Insn Canonicalizations.
-* Pmode: Misc.
-* pointer arguments: Function Attributes.
-* POINTER_SIZE: Storage Layout.
-* POINTERS_EXTEND_UNSIGNED: Storage Layout.
-* popen: Config.
-* portability: Portability.
-* portions of temporary objects, pointers to: Temporaries.
-* position independent code: PIC.
-* POSIX: Config.
-* post_dec: Incdec.
-* post_inc: Incdec.
-* pragma: Misc.
-* pragma, reason for not using: Function Attributes.
-* pragmas in C++, effect on inlining: C++ Interface.
-* pragmas, interface and implementation: C++ Interface.
-* pre_dec: Incdec.
-* pre_inc: Incdec.
-* predefined macros: Run-time Target.
-* PREDICATE_CODES: Misc.
-* PREFERRED_DEBUGGING_TYPE: All Debuggers.
-* PREFERRED_OUTPUT_RELOAD_CLASS: Register Classes.
-* PREFERRED_RELOAD_CLASS: Register Classes.
-* preprocessing numbers: Incompatibilities.
-* preprocessing tokens: Incompatibilities.
-* preprocessor options: Preprocessor Options.
-* PRESERVE_DEATH_INFO_REGNO_P: Obsolete Register Macros.
-* prev_active_insn: Peephole Definitions.
-* prev_cc0_setter: Jump Patterns.
-* PREV_INSN: Insns.
-* PRINT_OPERAND: Instruction Output.
-* PRINT_OPERAND_ADDRESS: Instruction Output.
-* PRINT_OPERAND_PUNCT_VALID_P: Instruction Output.
-* probe instruction pattern: Standard Names.
-* processor selection (29k): AMD29K Options.
-* product: Arithmetic.
-* prof: Debugging Options.
-* PROFILE_BEFORE_PROLOGUE: Profiling.
-* profile_block_flag: Profiling.
-* profiling, code generation: Profiling.
-* program counter: Regs and Memory.
-* prologue: Function Entry.
-* PROMOTE_FOR_CALL_ONLY: Storage Layout.
-* PROMOTE_FUNCTION_ARGS: Storage Layout.
-* PROMOTE_FUNCTION_RETURN: Storage Layout.
-* PROMOTE_MODE: Storage Layout.
-* PROMOTE_PROTOTYPES: Stack Arguments.
-* promotion of formal parameters: Function Prototypes.
-* pseudo registers: Regs and Memory.
-* PSImode: Machine Modes.
-* PTRDIFF_TYPE: Type Layout.
-* push address instruction: Simple Constraints.
-* PUSH_ROUNDING: Stack Arguments.
-* PUSH_ROUNDING, interaction with STACK_BOUNDARY: Storage Layout.
-* PUT_CODE: RTL Objects.
-* PUT_MODE: Machine Modes.
-* PUT_REG_NOTE_KIND: Insns.
-* PUT_SDB_...: SDB and DWARF.
-* putenv: Config.
-* Q, in constraint: Simple Constraints.
-* QImode: Machine Modes.
-* QImode, in insn: Insns.
-* qsort, and global register variables: Global Reg Vars.
-* question mark: Multi-Alternative.
-* quotient: Arithmetic.
-* r in constraint: Simple Constraints.
-* r0-relative references (88k): M88K Options.
-* ranges in case statements: Case Ranges.
-* read-only strings: Incompatibilities.
-* READONLY_DATA_SECTION: Sections.
-* REAL_ARITHMETIC: Cross-compilation.
-* REAL_INFINITY: Cross-compilation.
-* REAL_NM_FILE_NAME: Macros for Initialization.
-* REAL_VALUE_ATOF: Cross-compilation.
-* REAL_VALUE_FIX: Cross-compilation.
-* REAL_VALUE_FROM_INT: Cross-compilation.
-* REAL_VALUE_ISINF: Cross-compilation.
-* REAL_VALUE_ISNAN: Cross-compilation.
-* REAL_VALUE_LDEXP: Cross-compilation.
-* REAL_VALUE_NEGATE: Cross-compilation.
-* REAL_VALUE_RNDZINT: Cross-compilation.
-* REAL_VALUE_TO_DECIMAL: Data Output.
-* REAL_VALUE_TO_INT: Cross-compilation.
-* REAL_VALUE_TO_TARGET_DOUBLE: Data Output.
-* REAL_VALUE_TO_TARGET_LONG_DOUBLE: Data Output.
-* REAL_VALUE_TO_TARGET_SINGLE: Data Output.
-* REAL_VALUE_TRUNCATE: Cross-compilation.
-* REAL_VALUE_TYPE: Cross-compilation.
-* REAL_VALUE_UNSIGNED_FIX: Cross-compilation.
-* REAL_VALUE_UNSIGNED_RNDZINT: Cross-compilation.
-* REAL_VALUES_EQUAL: Cross-compilation.
-* REAL_VALUES_LESS: Cross-compilation.
-* recog_operand: Instruction Output.
-* recognizing insns: RTL Template.
-* reg: Regs and Memory.
-* reg and /i: Flags.
-* reg and /s: Flags.
-* reg and /u: Flags.
-* reg and /v: Flags.
-* reg, RTL sharing: Sharing.
-* REG_ALLOC_ORDER: Allocation Order.
-* REG_BR_PROB: Insns.
-* REG_CC_SETTER: Insns.
-* REG_CC_USER: Insns.
-* REG_CLASS_CONTENTS: Register Classes.
-* REG_CLASS_FROM_LETTER: Register Classes.
-* REG_CLASS_NAMES: Register Classes.
-* REG_DEAD: Insns.
-* REG_DEP_ANTI: Insns.
-* REG_DEP_OUTPUT: Insns.
-* REG_EQUAL: Insns.
-* REG_EQUIV: Insns.
-* REG_EXEC_COUNT: Insns.
-* REG_FUNCTION_VALUE_P: Flags.
-* REG_INC: Insns.
-* REG_LABEL: Insns.
-* REG_LIBCALL: Insns.
-* REG_LOOP_TEST_P: Flags.
-* REG_MODE_OK_FOR_BASE_P: Addressing Modes.
-* reg_names: Instruction Output.
-* REG_NO_CONFLICT: Insns.
-* REG_NONNEG: Insns.
-* REG_NOTE_KIND: Insns.
-* REG_NOTES: Insns.
-* REG_OK_FOR_BASE_P: Addressing Modes.
-* REG_OK_FOR_INDEX_P: Addressing Modes.
-* REG_OK_STRICT: Addressing Modes.
-* REG_PARM_STACK_SPACE: Stack Arguments.
-* REG_PARM_STACK_SPACE, and FUNCTION_ARG: Register Arguments.
-* REG_RETVAL: Insns.
-* REG_UNUSED: Insns.
-* REG_USERVAR_P: Flags.
-* REG_WAS_0: Insns.
-* register allocation: Passes.
-* register allocation order: Allocation Order.
-* register allocation, stupid: Passes.
-* register class definitions: Register Classes.
-* register class preference constraints: Class Preferences.
-* register class preference pass: Passes.
-* register pairs: Values in Registers.
-* register positions in frame (88k): M88K Options.
-* Register Transfer Language (RTL): RTL.
-* register usage: Registers.
-* register use analysis: Passes.
-* register variable after longjmp: Global Reg Vars.
-* register-to-stack conversion: Passes.
-* REGISTER_MOVE_COST: Costs.
-* REGISTER_NAMES: Instruction Output.
-* register_operand: RTL Template.
-* REGISTER_PREFIX: Instruction Output.
-* registers: Extended Asm.
-* registers arguments: Register Arguments.
-* registers for local variables: Local Reg Vars.
-* registers in constraints: Simple Constraints.
-* registers, global allocation: Explicit Reg Vars.
-* registers, global variables in: Global Reg Vars.
-* REGNO_MODE_OK_FOR_BASE_P: Register Classes.
-* REGNO_OK_FOR_BASE_P: Register Classes.
-* REGNO_OK_FOR_INDEX_P: Register Classes.
-* REGNO_REG_CLASS: Register Classes.
-* regs_ever_live: Function Entry.
-* relative costs: Costs.
-* RELATIVE_PREFIX_NOT_LINKDIR: Driver.
-* reload pass: Regs and Memory.
-* reload_completed: Standard Names.
-* reload_in instruction pattern: Standard Names.
-* reload_in_progress: Standard Names.
-* reload_out instruction pattern: Standard Names.
-* reloading: Passes.
-* remainder: Arithmetic.
-* reordering, warning: Warning Options.
-* reporting bugs: Bugs.
-* representation of RTL: RTL.
-* rest argument (in macro): Macro Varargs.
-* rest_of_compilation: Passes.
-* rest_of_decl_compilation: Passes.
-* restore_stack_block instruction pattern: Standard Names.
-* restore_stack_function instruction pattern: Standard Names.
-* restore_stack_nonlocal instruction pattern: Standard Names.
-* return: Side Effects.
-* return instruction pattern: Standard Names.
-* return value of main: VMS Misc.
-* return value, named, in C++: Naming Results.
-* return values in registers: Scalar Return.
-* return, in C++ function header: Naming Results.
-* RETURN_ADDR_IN_PREVIOUS_FRAME: Frame Layout.
-* RETURN_ADDR_RTX: Frame Layout.
-* RETURN_ADDRESS_POINTER_REGNUM: Frame Registers.
-* RETURN_IN_MEMORY: Aggregate Return.
-* RETURN_POPS_ARGS: Stack Arguments.
-* returning aggregate values: Aggregate Return.
-* returning structures and unions: Interface.
-* REVERSIBLE_CC_MODE: Condition Code.
-* right rotate: Arithmetic.
-* right shift: Arithmetic.
-* rotate: Arithmetic.
-* rotatert: Arithmetic.
-* rotlM3 instruction pattern: Standard Names.
-* rotrM3 instruction pattern: Standard Names.
-* ROUND_TYPE_ALIGN: Storage Layout.
-* ROUND_TYPE_SIZE: Storage Layout.
-* RS/6000 and PowerPC Options: RS/6000 and PowerPC Options.
-* RT options: RT Options.
-* RT PC: Interoperation.
-* RTL addition: Arithmetic.
-* RTL comparison: Arithmetic.
-* RTL comparison operations: Comparisons.
-* RTL constant expression types: Constants.
-* RTL constants: Constants.
-* RTL declarations: RTL Declarations.
-* RTL difference: Arithmetic.
-* RTL expression: RTL Objects.
-* RTL expressions for arithmetic: Arithmetic.
-* RTL format: Accessors.
-* RTL format characters: Accessors.
-* RTL function-call insns: Calls.
-* RTL generation: Passes.
-* RTL insn template: RTL Template.
-* RTL integers: RTL Objects.
-* RTL memory expressions: Regs and Memory.
-* RTL object types: RTL Objects.
-* RTL postdecrement: Incdec.
-* RTL postincrement: Incdec.
-* RTL predecrement: Incdec.
-* RTL preincrement: Incdec.
-* RTL register expressions: Regs and Memory.
-* RTL representation: RTL.
-* RTL side effect expressions: Side Effects.
-* RTL strings: RTL Objects.
-* RTL structure sharing assumptions: Sharing.
-* RTL subtraction: Arithmetic.
-* RTL sum: Arithmetic.
-* RTL vectors: RTL Objects.
-* RTX (See RTL): RTL Objects.
-* RTX_COSTS: Costs.
-* RTX_INTEGRATED_P: Flags.
-* RTX_UNCHANGING_P: Flags.
-* run-time conventions: Interface.
-* run-time options: Code Gen Options.
-* run-time target specification: Run-time Target.
-* s in constraint: Simple Constraints.
-* save_stack_block instruction pattern: Standard Names.
-* save_stack_function instruction pattern: Standard Names.
-* save_stack_nonlocal instruction pattern: Standard Names.
-* saveable_obstack: Addressing Modes.
-* scalars, returned as values: Scalar Return.
-* scanf, and constant strings: Incompatibilities.
-* SCCS_DIRECTIVE: Misc.
-* SCHED_GROUP_P: Flags.
-* scheduling, delayed branch: Passes.
-* scheduling, instruction: Passes.
-* SCmode: Machine Modes.
-* sCOND instruction pattern: Standard Names.
-* scope of a variable length array: Variable Length.
-* scope of declaration: Disappointments.
-* scope of external declarations: Incompatibilities.
-* scratch: Regs and Memory.
-* scratch operands: Regs and Memory.
-* scratch, RTL sharing: Sharing.
-* SDB_ALLOW_FORWARD_REFERENCES: SDB and DWARF.
-* SDB_ALLOW_UNKNOWN_REFERENCES: SDB and DWARF.
-* SDB_DEBUGGING_INFO: SDB and DWARF.
-* SDB_DELIM: SDB and DWARF.
-* SDB_GENERATE_FAKE: SDB and DWARF.
-* search path: Directory Options.
-* second include path: Preprocessor Options.
-* SECONDARY_INPUT_RELOAD_CLASS: Register Classes.
-* SECONDARY_MEMORY_NEEDED: Register Classes.
-* SECONDARY_MEMORY_NEEDED_MODE: Register Classes.
-* SECONDARY_MEMORY_NEEDED_RTX: Register Classes.
-* SECONDARY_OUTPUT_RELOAD_CLASS: Register Classes.
-* SECONDARY_RELOAD_CLASS: Register Classes.
-* section function attribute: Function Attributes.
-* section variable attribute: Variable Attributes.
-* SELECT_CC_MODE: Condition Code.
-* SELECT_RTX_SECTION: Sections.
-* SELECT_SECTION: Sections.
-* separate directory, compilation in: Other Dir.
-* sequence: Side Effects.
-* sequential consistency on 88k: M88K Options.
-* set: Side Effects.
-* set_attr: Tagging Insns.
-* set_attr_alternative: Tagging Insns.
-* SET_DEFAULT_TYPE_ATTRIBUTES: Misc.
-* SET_DEST: Side Effects.
-* SET_SRC: Side Effects.
-* setjmp: Global Reg Vars.
-* setjmp incompatibilities: Incompatibilities.
-* SETUP_FRAME_ADDRESSES: Frame Layout.
-* SETUP_INCOMING_VARARGS: Varargs.
-* SFmode: Machine Modes.
-* shared strings: Incompatibilities.
-* shared VMS run time system: VMS Misc.
-* SHARED_BSS_SECTION_ASM_OP: Sections.
-* SHARED_SECTION_ASM_OP: Sections.
-* sharing of RTL components: Sharing.
-* shift: Arithmetic.
-* SHIFT_COUNT_TRUNCATED: Misc.
-* SHORT_TYPE_SIZE: Type Layout.
-* side effect in ?:: Conditionals.
-* side effects, macro argument: Statement Exprs.
-* side effects, order of evaluation: Non-bugs.
-* sign_extend: Conversions.
-* sign_extract: Bit Fields.
-* sign_extract, canonicalization of: Insn Canonicalizations.
-* signature: C++ Signatures.
-* signature in C++, advantages: C++ Signatures.
-* signature member function default implementation: C++ Signatures.
-* signatures, C++: C++ Signatures.
-* signed and unsigned values, comparison warning: Warning Options.
-* signed division: Arithmetic.
-* signed maximum: Arithmetic.
-* signed minimum: Arithmetic.
-* SIGNED_CHAR_SPEC: Driver.
-* SImode: Machine Modes.
-* simple constraints: Simple Constraints.
-* simplifications, arithmetic: Passes.
-* sin: C Dialect Options.
-* SIZE_TYPE: Type Layout.
-* sizeof: Typeof.
-* SLOW_BYTE_ACCESS: Costs.
-* SLOW_UNALIGNED_ACCESS: Costs.
-* SLOW_ZERO_EXTEND: Costs.
-* SMALL_REGISTER_CLASSES: Register Classes.
-* smaller data references: M32R/D Options.
-* smaller data references (88k): M88K Options.
-* smaller data references (MIPS): MIPS Options.
-* smaller data references (PowerPC): RS/6000 and PowerPC Options.
-* smax: Arithmetic.
-* smaxM3 instruction pattern: Standard Names.
-* smin: Arithmetic.
-* sminM3 instruction pattern: Standard Names.
-* smulM3_highpart instruction pattern: Standard Names.
-* SPARC options: SPARC Options.
-* specified registers: Explicit Reg Vars.
-* specifying compiler version and target machine: Target Options.
-* specifying hardware config: Submodel Options.
-* specifying machine version: Target Options.
-* specifying registers for local variables: Local Reg Vars.
-* speed of instructions: Costs.
-* splitting instructions: Insn Splitting.
-* sqrt <1>: Arithmetic.
-* sqrt: C Dialect Options.
-* sqrtM2 instruction pattern: Standard Names.
-* square root: Arithmetic.
-* sscanf, and constant strings: Incompatibilities.
-* stack arguments: Stack Arguments.
-* stack checks (29k): AMD29K Options.
-* stack frame layout: Frame Layout.
-* STACK_BOUNDARY: Storage Layout.
-* STACK_CHECK_BUILTIN: Stack Checking.
-* STACK_CHECK_FIXED_FRAME_SIZE: Stack Checking.
-* STACK_CHECK_MAX_FRAME_SIZE: Stack Checking.
-* STACK_CHECK_MAX_VAR_SIZE: Stack Checking.
-* STACK_CHECK_PROBE_INTERVAL: Stack Checking.
-* STACK_CHECK_PROBE_LOAD: Stack Checking.
-* STACK_CHECK_PROTECT: Stack Checking.
-* STACK_DYNAMIC_OFFSET: Frame Layout.
-* STACK_DYNAMIC_OFFSET and virtual registers: Regs and Memory.
-* STACK_GROWS_DOWNWARD: Frame Layout.
-* STACK_PARMS_IN_REG_PARM_AREA: Stack Arguments.
-* STACK_POINTER_OFFSET: Frame Layout.
-* STACK_POINTER_OFFSET and virtual registers: Regs and Memory.
-* STACK_POINTER_REGNUM: Frame Registers.
-* STACK_POINTER_REGNUM and virtual registers: Regs and Memory.
-* stack_pointer_rtx: Frame Registers.
-* STACK_REGS: Stack Registers.
-* stage1: Installation.
-* standard pattern names: Standard Names.
-* STANDARD_EXEC_PREFIX: Driver.
-* STANDARD_INCLUDE_COMPONENT: Driver.
-* STANDARD_INCLUDE_DIR: Driver.
-* STANDARD_STARTFILE_PREFIX: Driver.
-* start files: Tools and Libraries.
-* STARTFILE_SPEC: Driver.
-* STARTING_FRAME_OFFSET: Frame Layout.
-* STARTING_FRAME_OFFSET and virtual registers: Regs and Memory.
-* statements inside expressions: Statement Exprs.
-* static data in C++, declaring and defining: Static Definitions.
-* STATIC_CHAIN: Frame Registers.
-* STATIC_CHAIN_INCOMING: Frame Registers.
-* STATIC_CHAIN_INCOMING_REGNUM: Frame Registers.
-* STATIC_CHAIN_REGNUM: Frame Registers.
-* stdarg.h and register arguments: Register Arguments.
-* stdarg.h and RT PC: RT Options.
-* storage layout: Storage Layout.
-* STORE_FLAG_VALUE: Misc.
-* store_multiple instruction pattern: Standard Names.
-* storem bug (29k): AMD29K Options.
-* strcmp: C Dialect Options.
-* strcpy <1>: Storage Layout.
-* strcpy: C Dialect Options.
-* strength-reduction: Passes.
-* STRICT_ALIGNMENT: Storage Layout.
-* STRICT_ARGUMENT_NAMING: Varargs.
-* strict_low_part: RTL Declarations.
-* string constants: Incompatibilities.
-* string constants vs newline: C Dialect Options.
-* STRIP_NAME_ENCODING: Sections.
-* strlen: C Dialect Options.
-* strlenM instruction pattern: Standard Names.
-* STRUCT_VALUE: Aggregate Return.
-* STRUCT_VALUE_INCOMING: Aggregate Return.
-* STRUCT_VALUE_INCOMING_REGNUM: Aggregate Return.
-* STRUCT_VALUE_REGNUM: Aggregate Return.
-* structure passing (88k): M88K Options.
-* structure value address: Aggregate Return.
-* STRUCTURE_SIZE_BOUNDARY: Storage Layout.
-* structures: Incompatibilities.
-* structures, constructor expression: Constructors.
-* structures, returning: Interface.
-* stupid register allocation: Passes.
-* subM3 instruction pattern: Standard Names.
-* submodel options: Submodel Options.
-* subreg: Regs and Memory.
-* subreg and /s: Flags.
-* subreg and /u: Flags.
-* subreg, in strict_low_part: RTL Declarations.
-* subreg, special reload handling: Regs and Memory.
-* SUBREG_PROMOTED_UNSIGNED_P: Flags.
-* SUBREG_PROMOTED_VAR_P: Flags.
-* SUBREG_REG: Regs and Memory.
-* SUBREG_WORD: Regs and Memory.
-* subscripting: Subscripting.
-* subscripting and function values: Subscripting.
-* subtype polymorphism, C++: C++ Signatures.
-* SUCCESS_EXIT_CODE: Config.
-* suffixes for C++ source: Invoking G++.
-* Sun installation: Sun Install.
-* SUPPORTS_ONE_ONLY: Label Output.
-* SUPPORTS_WEAK: Label Output.
-* suppressing warnings: Warning Options.
-* surprises in C++: C++ Misunderstandings.
-* SVr4: M88K Options.
-* SWITCH_TAKES_ARG: Driver.
-* SWITCHES_NEED_SPACES: Driver.
-* symbol_ref: Constants.
-* symbol_ref and /u: Flags.
-* symbol_ref and /v: Flags.
-* symbol_ref, RTL sharing: Sharing.
-* SYMBOL_REF_FLAG: Flags.
-* SYMBOL_REF_FLAG, in ENCODE_SECTION_INFO: Sections.
-* SYMBOL_REF_USED: Flags.
-* symbolic label: Sharing.
-* syntax checking: Warning Options.
-* synthesized methods, warning: Warning Options.
-* sys_siglist: Config.
-* SYSTEM_INCLUDE_DIR: Driver.
-* t-TARGET: Target Fragment.
-* tablejump instruction pattern: Standard Names.
-* tagging insns: Tagging Insns.
-* tail recursion optimization: Passes.
-* target description macros: Target Macros.
-* target machine, specifying: Target Options.
-* target makefile fragment: Target Fragment.
-* target options: Target Options.
-* target specifications: Run-time Target.
-* target-parameter-dependent code: Passes.
-* TARGET_BELL: Type Layout.
-* TARGET_BS: Type Layout.
-* TARGET_CR: Type Layout.
-* TARGET_EDOM: Library Calls.
-* TARGET_FF: Type Layout.
-* TARGET_FLOAT_FORMAT: Storage Layout.
-* TARGET_MEM_FUNCTIONS: Library Calls.
-* TARGET_NEWLINE: Type Layout.
-* TARGET_OPTIONS: Run-time Target.
-* TARGET_SWITCHES: Run-time Target.
-* TARGET_TAB: Type Layout.
-* TARGET_VERSION: Run-time Target.
-* TARGET_VT: Type Layout.
-* TCmode: Machine Modes.
-* tcov: Debugging Options.
-* template debugging: Warning Options.
-* template instantiation: Template Instantiation.
-* temporaries, lifetime of: Temporaries.
-* termination routines: Initialization.
-* text_section: Sections.
-* TEXT_SECTION_ASM_OP: Sections.
-* TFmode: Machine Modes.
-* threads, Objective C: Installation.
-* thunks: Nested Functions.
-* TImode: Machine Modes.
-* tiny data section on the H8/300H: Function Attributes.
-* tm.h macros: Target Macros.
-* TMPDIR: Environment Variables.
-* top level of compiler: Passes.
-* traditional C language: C Dialect Options.
-* TRADITIONAL_RETURN_FLOAT: Scalar Return.
-* TRAMPOLINE_ALIGNMENT: Trampolines.
-* TRAMPOLINE_SECTION: Trampolines.
-* TRAMPOLINE_SIZE: Trampolines.
-* TRAMPOLINE_TEMPLATE: Trampolines.
-* trampolines for nested functions: Trampolines.
-* TRANSFER_FROM_TRAMPOLINE: Trampolines.
-* TRULY_NOOP_TRUNCATION: Misc.
-* truncate: Conversions.
-* truncMN2 instruction pattern: Standard Names.
-* tstM instruction pattern: Standard Names.
-* type abstraction, C++: C++ Signatures.
-* type alignment: Alignment.
-* type attributes: Type Attributes.
-* typedef names as function parameters: Incompatibilities.
-* typeof: Typeof.
-* udiv: Arithmetic.
-* UDIVDI3_LIBCALL: Library Calls.
-* udivM3 instruction pattern: Standard Names.
-* udivmodM4 instruction pattern: Standard Names.
-* UDIVSI3_LIBCALL: Library Calls.
-* Ultrix calling convention: Interoperation.
-* umax: Arithmetic.
-* umaxM3 instruction pattern: Standard Names.
-* umin: Arithmetic.
-* uminM3 instruction pattern: Standard Names.
-* umod: Arithmetic.
-* UMODDI3_LIBCALL: Library Calls.
-* umodM3 instruction pattern: Standard Names.
-* UMODSI3_LIBCALL: Library Calls.
-* umulhisi3 instruction pattern: Standard Names.
-* umulM3_highpart instruction pattern: Standard Names.
-* umulqihi3 instruction pattern: Standard Names.
-* umulsidi3 instruction pattern: Standard Names.
-* unchanging: Flags.
-* unchanging, in call_insn: Flags.
-* unchanging, in insn: Flags.
-* unchanging, in reg and mem: Flags.
-* unchanging, in subreg: Flags.
-* unchanging, in symbol_ref: Flags.
-* undefined behavior: Bug Criteria.
-* undefined function value: Bug Criteria.
-* underscores in variables in macros: Naming Types.
-* underscores, avoiding (88k): M88K Options.
-* union, casting to a: Cast to Union.
-* unions: Incompatibilities.
-* unions, returning: Interface.
-* UNIQUE_SECTION: Sections.
-* UNIQUE_SECTION_P: Sections.
-* UNITS_PER_WORD: Storage Layout.
-* UNKNOWN_FLOAT_FORMAT: Storage Layout.
-* unreachable code: Passes.
-* unresolved references and -nodefaultlibs: Link Options.
-* unresolved references and -nostdlib: Link Options.
-* unshare_all_rtl: Sharing.
-* unsigned division: Arithmetic.
-* unsigned greater than: Comparisons.
-* unsigned less than: Comparisons.
-* unsigned minimum and maximum: Arithmetic.
-* unsigned_fix: Conversions.
-* unsigned_float: Conversions.
-* unspec: Side Effects.
-* unspec_volatile: Side Effects.
-* untyped_call instruction pattern: Standard Names.
-* untyped_return instruction pattern: Standard Names.
-* use: Side Effects.
-* USE_C_ALLOCA: Config.
-* USE_PROTOTYPES: Config.
-* used: Flags.
-* used, in symbol_ref: Flags.
-* USER_LABEL_PREFIX: Instruction Output.
-* USG: Config.
-* V in constraint: Simple Constraints.
-* V850 Options: V850 Options.
-* VALID_MACHINE_DECL_ATTRIBUTE: Misc.
-* VALID_MACHINE_TYPE_ATTRIBUTE: Misc.
-* value after longjmp: Global Reg Vars.
-* values, returned by functions: Scalar Return.
-* varargs implementation: Varargs.
-* varargs.h and RT PC: RT Options.
-* variable addressability on the M32R/D: Variable Attributes.
-* variable alignment: Alignment.
-* variable attributes: Variable Attributes.
-* variable number of arguments: Macro Varargs.
-* variable-length array scope: Variable Length.
-* variable-length arrays: Variable Length.
-* variables in specified registers: Explicit Reg Vars.
-* variables, local, in macros: Naming Types.
-* Vax calling convention: Interoperation.
-* VAX options: VAX Options.
-* VAX_FLOAT_FORMAT: Storage Layout.
-* VAXCRTL: VMS Misc.
-* VIRTUAL_INCOMING_ARGS_REGNUM: Regs and Memory.
-* VIRTUAL_OUTGOING_ARGS_REGNUM: Regs and Memory.
-* VIRTUAL_STACK_DYNAMIC_REGNUM: Regs and Memory.
-* VIRTUAL_STACK_VARS_REGNUM: Regs and Memory.
-* VMS: Config.
-* VMS and case sensitivity: VMS Misc.
-* VMS and include files: Include Files and VMS.
-* VMS installation: VMS Install.
-* void pointers, arithmetic: Pointer Arith.
-* void, size of pointer to: Pointer Arith.
-* VOIDmode: Machine Modes.
-* volatil: Flags.
-* volatil, in insn: Flags.
-* volatil, in mem: Flags.
-* volatil, in reg: Flags.
-* volatil, in symbol_ref: Flags.
-* volatile applied to function: Function Attributes.
-* volatile memory references: Flags.
-* voting between constraint alternatives: Class Preferences.
-* vprintf: Config.
-* warning for comparison of signed and unsigned values: Warning Options.
-* warning for overloaded virtual fn: Warning Options.
-* warning for reordering of member initializers: Warning Options.
-* warning for synthesized methods: Warning Options.
-* warning messages: Warning Options.
-* warnings vs errors: Warnings and Errors.
-* WCHAR_TYPE: Type Layout.
-* WCHAR_TYPE_SIZE: Type Layout.
-* weak attribute: Function Attributes.
-* which_alternative: Output Statement.
-* whitespace: Incompatibilities.
-* WIDEST_HARDWARE_FP_SIZE: Type Layout.
-* word_mode: Machine Modes.
-* WORD_REGISTER_OPERATIONS: Misc.
-* WORD_SWITCH_TAKES_ARG: Driver.
-* WORDS_BIG_ENDIAN: Storage Layout.
-* WORDS_BIG_ENDIAN, effect on subreg: Regs and Memory.
-* X in constraint: Simple Constraints.
-* x-HOST: Host Fragment.
-* XCmode: Machine Modes.
-* XCOFF_DEBUGGING_INFO: DBX Options.
-* XEXP: Accessors.
-* XFmode: Machine Modes.
-* XINT: Accessors.
-* xm-MACHINE.h: Config.
-* xor: Arithmetic.
-* xor, canonicalization of: Insn Canonicalizations.
-* xorM3 instruction pattern: Standard Names.
-* XSTR: Accessors.
-* XVEC: Accessors.
-* XVECEXP: Accessors.
-* XVECLEN: Accessors.
-* XWINT: Accessors.
-* zero division on 88k: M88K Options.
-* zero-length arrays: Zero Length.
-* zero_extend: Conversions.
-* zero_extendMN2 instruction pattern: Standard Names.
-* zero_extract: Bit Fields.
-* zero_extract, canonicalization of: Insn Canonicalizations.
-
-
diff --git a/gcc/gcc.info-3 b/gcc/gcc.info-3
deleted file mode 100644
index d60f8139c92..00000000000
--- a/gcc/gcc.info-3
+++ /dev/null
@@ -1,1198 +0,0 @@
-This is Info file gcc.info, produced by Makeinfo version 1.68 from the
-input file gcc.texi.
-
- This file documents the use and the internals of the GNU compiler.
-
- Published by the Free Software Foundation 59 Temple Place - Suite 330
-Boston, MA 02111-1307 USA
-
- Copyright (C) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997 Free
-Software Foundation, Inc.
-
- Permission is granted to make and distribute verbatim copies of this
-manual provided the copyright notice and this permission notice are
-preserved on all copies.
-
- Permission is granted to copy and distribute modified versions of
-this manual under the conditions for verbatim copying, provided also
-that the sections entitled "GNU General Public License," "Funding for
-Free Software," and "Protect Your Freedom--Fight `Look And Feel'" are
-included exactly as in the original, and provided that the entire
-resulting derived work is distributed under the terms of a permission
-notice identical to this one.
-
- Permission is granted to copy and distribute translations of this
-manual into another language, under the above conditions for modified
-versions, except that the sections entitled "GNU General Public
-License," "Funding for Free Software," and "Protect Your Freedom--Fight
-`Look And Feel'", and this permission notice, may be included in
-translations approved by the Free Software Foundation instead of in the
-original English.
-
-
-File: gcc.info, Node: Preprocessor Options, Next: Assembler Options, Prev: Optimize Options, Up: Invoking GCC
-
-Options Controlling the Preprocessor
-====================================
-
- These options control the C preprocessor, which is run on each C
-source file before actual compilation.
-
- If you use the `-E' option, nothing is done except preprocessing.
-Some of these options make sense only together with `-E' because they
-cause the preprocessor output to be unsuitable for actual compilation.
-
-`-include FILE'
- Process FILE as input before processing the regular input file.
- In effect, the contents of FILE are compiled first. Any `-D' and
- `-U' options on the command line are always processed before
- `-include FILE', regardless of the order in which they are
- written. All the `-include' and `-imacros' options are processed
- in the order in which they are written.
-
-`-imacros FILE'
- Process FILE as input, discarding the resulting output, before
- processing the regular input file. Because the output generated
- from FILE is discarded, the only effect of `-imacros FILE' is to
- make the macros defined in FILE available for use in the main
- input.
-
- Any `-D' and `-U' options on the command line are always processed
- before `-imacros FILE', regardless of the order in which they are
- written. All the `-include' and `-imacros' options are processed
- in the order in which they are written.
-
-`-idirafter DIR'
- Add the directory DIR to the second include path. The directories
- on the second include path are searched when a header file is not
- found in any of the directories in the main include path (the one
- that `-I' adds to).
-
-`-iprefix PREFIX'
- Specify PREFIX as the prefix for subsequent `-iwithprefix' options.
-
-`-iwithprefix DIR'
- Add a directory to the second include path. The directory's name
- is made by concatenating PREFIX and DIR, where PREFIX was
- specified previously with `-iprefix'. If you have not specified a
- prefix yet, the directory containing the installed passes of the
- compiler is used as the default.
-
-`-iwithprefixbefore DIR'
- Add a directory to the main include path. The directory's name is
- made by concatenating PREFIX and DIR, as in the case of
- `-iwithprefix'.
-
-`-isystem DIR'
- Add a directory to the beginning of the second include path,
- marking it as a system directory, so that it gets the same special
- treatment as is applied to the standard system directories.
-
-`-nostdinc'
- Do not search the standard system directories for header files.
- Only the directories you have specified with `-I' options (and the
- current directory, if appropriate) are searched. *Note Directory
- Options::, for information on `-I'.
-
- By using both `-nostdinc' and `-I-', you can limit the include-file
- search path to only those directories you specify explicitly.
-
-`-undef'
- Do not predefine any nonstandard macros. (Including architecture
- flags).
-
-`-E'
- Run only the C preprocessor. Preprocess all the C source files
- specified and output the results to standard output or to the
- specified output file.
-
-`-C'
- Tell the preprocessor not to discard comments. Used with the `-E'
- option.
-
-`-P'
- Tell the preprocessor not to generate `#line' directives. Used
- with the `-E' option.
-
-`-M'
- Tell the preprocessor to output a rule suitable for `make'
- describing the dependencies of each object file. For each source
- file, the preprocessor outputs one `make'-rule whose target is the
- object file name for that source file and whose dependencies are
- all the `#include' header files it uses. This rule may be a
- single line or may be continued with `\'-newline if it is long.
- The list of rules is printed on standard output instead of the
- preprocessed C program.
-
- `-M' implies `-E'.
-
- Another way to specify output of a `make' rule is by setting the
- environment variable `DEPENDENCIES_OUTPUT' (*note Environment
- Variables::.).
-
-`-MM'
- Like `-M' but the output mentions only the user header files
- included with `#include "FILE"'. System header files included
- with `#include <FILE>' are omitted.
-
-`-MD'
- Like `-M' but the dependency information is written to a file made
- by replacing ".c" with ".d" at the end of the input file names.
- This is in addition to compiling the file as specified--`-MD' does
- not inhibit ordinary compilation the way `-M' does.
-
- In Mach, you can use the utility `md' to merge multiple dependency
- files into a single dependency file suitable for using with the
- `make' command.
-
-`-MMD'
- Like `-MD' except mention only user header files, not system
- header files.
-
-`-MG'
- Treat missing header files as generated files and assume they live
- in the same directory as the source file. If you specify `-MG',
- you must also specify either `-M' or `-MM'. `-MG' is not
- supported with `-MD' or `-MMD'.
-
-`-H'
- Print the name of each header file used, in addition to other
- normal activities.
-
-`-AQUESTION(ANSWER)'
- Assert the answer ANSWER for QUESTION, in case it is tested with a
- preprocessing conditional such as `#if #QUESTION(ANSWER)'. `-A-'
- disables the standard assertions that normally describe the target
- machine.
-
-`-DMACRO'
- Define macro MACRO with the string `1' as its definition.
-
-`-DMACRO=DEFN'
- Define macro MACRO as DEFN. All instances of `-D' on the command
- line are processed before any `-U' options.
-
-`-UMACRO'
- Undefine macro MACRO. `-U' options are evaluated after all `-D'
- options, but before any `-include' and `-imacros' options.
-
-`-dM'
- Tell the preprocessor to output only a list of the macro
- definitions that are in effect at the end of preprocessing. Used
- with the `-E' option.
-
-`-dD'
- Tell the preprocessing to pass all macro definitions into the
- output, in their proper sequence in the rest of the output.
-
-`-dN'
- Like `-dD' except that the macro arguments and contents are
- omitted. Only `#define NAME' is included in the output.
-
-`-trigraphs'
- Support ANSI C trigraphs. The `-ansi' option also has this effect.
-
-`-Wp,OPTION'
- Pass OPTION as an option to the preprocessor. If OPTION contains
- commas, it is split into multiple options at the commas.
-
-
-File: gcc.info, Node: Assembler Options, Next: Link Options, Prev: Preprocessor Options, Up: Invoking GCC
-
-Passing Options to the Assembler
-================================
-
- You can pass options to the assembler.
-
-`-Wa,OPTION'
- Pass OPTION as an option to the assembler. If OPTION contains
- commas, it is split into multiple options at the commas.
-
-
-File: gcc.info, Node: Link Options, Next: Directory Options, Prev: Assembler Options, Up: Invoking GCC
-
-Options for Linking
-===================
-
- These options come into play when the compiler links object files
-into an executable output file. They are meaningless if the compiler is
-not doing a link step.
-
-`OBJECT-FILE-NAME'
- A file name that does not end in a special recognized suffix is
- considered to name an object file or library. (Object files are
- distinguished from libraries by the linker according to the file
- contents.) If linking is done, these object files are used as
- input to the linker.
-
-`-c'
-`-S'
-`-E'
- If any of these options is used, then the linker is not run, and
- object file names should not be used as arguments. *Note Overall
- Options::.
-
-`-lLIBRARY'
- Search the library named LIBRARY when linking.
-
- It makes a difference where in the command you write this option;
- the linker searches processes libraries and object files in the
- order they are specified. Thus, `foo.o -lz bar.o' searches
- library `z' after file `foo.o' but before `bar.o'. If `bar.o'
- refers to functions in `z', those functions may not be loaded.
-
- The linker searches a standard list of directories for the library,
- which is actually a file named `libLIBRARY.a'. The linker then
- uses this file as if it had been specified precisely by name.
-
- The directories searched include several standard system
- directories plus any that you specify with `-L'.
-
- Normally the files found this way are library files--archive files
- whose members are object files. The linker handles an archive
- file by scanning through it for members which define symbols that
- have so far been referenced but not defined. But if the file that
- is found is an ordinary object file, it is linked in the usual
- fashion. The only difference between using an `-l' option and
- specifying a file name is that `-l' surrounds LIBRARY with `lib'
- and `.a' and searches several directories.
-
-`-lobjc'
- You need this special case of the `-l' option in order to link an
- Objective C program.
-
-`-nostartfiles'
- Do not use the standard system startup files when linking. The
- standard system libraries are used normally, unless `-nostdlib' or
- `-nodefaultlibs' is used.
-
-`-nodefaultlibs'
- Do not use the standard system libraries when linking. Only the
- libraries you specify will be passed to the linker. The standard
- startup files are used normally, unless `-nostartfiles' is used.
-
-`-nostdlib'
- Do not use the standard system startup files or libraries when
- linking. No startup files and only the libraries you specify will
- be passed to the linker.
-
- One of the standard libraries bypassed by `-nostdlib' and
- `-nodefaultlibs' is `libgcc.a', a library of internal subroutines
- that GNU CC uses to overcome shortcomings of particular machines,
- or special needs for some languages. (*Note Interfacing to GNU CC
- Output: Interface, for more discussion of `libgcc.a'.) In most
- cases, you need `libgcc.a' even when you want to avoid other
- standard libraries. In other words, when you specify `-nostdlib'
- or `-nodefaultlibs' you should usually specify `-lgcc' as well.
- This ensures that you have no unresolved references to internal
- GNU CC library subroutines. (For example, `__main', used to
- ensure C++ constructors will be called; *note `collect2':
- Collect2..)
-
-`-s'
- Remove all symbol table and relocation information from the
- executable.
-
-`-static'
- On systems that support dynamic linking, this prevents linking
- with the shared libraries. On other systems, this option has no
- effect.
-
-`-shared'
- Produce a shared object which can then be linked with other
- objects to form an executable. Not all systems support this
- option. You must also specify `-fpic' or `-fPIC' on some systems
- when you specify this option.
-
-`-symbolic'
- Bind references to global symbols when building a shared object.
- Warn about any unresolved references (unless overridden by the
- link editor option `-Xlinker -z -Xlinker defs'). Only a few
- systems support this option.
-
-`-Xlinker OPTION'
- Pass OPTION as an option to the linker. You can use this to
- supply system-specific linker options which GNU CC does not know
- how to recognize.
-
- If you want to pass an option that takes an argument, you must use
- `-Xlinker' twice, once for the option and once for the argument.
- For example, to pass `-assert definitions', you must write
- `-Xlinker -assert -Xlinker definitions'. It does not work to write
- `-Xlinker "-assert definitions"', because this passes the entire
- string as a single argument, which is not what the linker expects.
-
-`-Wl,OPTION'
- Pass OPTION as an option to the linker. If OPTION contains
- commas, it is split into multiple options at the commas.
-
-`-u SYMBOL'
- Pretend the symbol SYMBOL is undefined, to force linking of
- library modules to define it. You can use `-u' multiple times with
- different symbols to force loading of additional library modules.
-
-
-File: gcc.info, Node: Directory Options, Next: Target Options, Prev: Link Options, Up: Invoking GCC
-
-Options for Directory Search
-============================
-
- These options specify directories to search for header files, for
-libraries and for parts of the compiler:
-
-`-IDIR'
- Add the directory DIR to the head of the list of directories to be
- searched for header files. This can be used to override a system
- header file, substituting your own version, since these
- directories are searched before the system header file
- directories. If you use more than one `-I' option, the
- directories are scanned in left-to-right order; the standard
- system directories come after.
-
-`-I-'
- Any directories you specify with `-I' options before the `-I-'
- option are searched only for the case of `#include "FILE"'; they
- are not searched for `#include <FILE>'.
-
- If additional directories are specified with `-I' options after
- the `-I-', these directories are searched for all `#include'
- directives. (Ordinarily *all* `-I' directories are used this way.)
-
- In addition, the `-I-' option inhibits the use of the current
- directory (where the current input file came from) as the first
- search directory for `#include "FILE"'. There is no way to
- override this effect of `-I-'. With `-I.' you can specify
- searching the directory which was current when the compiler was
- invoked. That is not exactly the same as what the preprocessor
- does by default, but it is often satisfactory.
-
- `-I-' does not inhibit the use of the standard system directories
- for header files. Thus, `-I-' and `-nostdinc' are independent.
-
-`-LDIR'
- Add directory DIR to the list of directories to be searched for
- `-l'.
-
-`-BPREFIX'
- This option specifies where to find the executables, libraries,
- include files, and data files of the compiler itself.
-
- The compiler driver program runs one or more of the subprograms
- `cpp', `cc1', `as' and `ld'. It tries PREFIX as a prefix for each
- program it tries to run, both with and without `MACHINE/VERSION/'
- (*note Target Options::.).
-
- For each subprogram to be run, the compiler driver first tries the
- `-B' prefix, if any. If that name is not found, or if `-B' was
- not specified, the driver tries two standard prefixes, which are
- `/usr/lib/gcc/' and `/usr/local/lib/gcc-lib/'. If neither of
- those results in a file name that is found, the unmodified program
- name is searched for using the directories specified in your
- `PATH' environment variable.
-
- `-B' prefixes that effectively specify directory names also apply
- to libraries in the linker, because the compiler translates these
- options into `-L' options for the linker. They also apply to
- includes files in the preprocessor, because the compiler
- translates these options into `-isystem' options for the
- preprocessor. In this case, the compiler appends `include' to the
- prefix.
-
- The run-time support file `libgcc.a' can also be searched for using
- the `-B' prefix, if needed. If it is not found there, the two
- standard prefixes above are tried, and that is all. The file is
- left out of the link if it is not found by those means.
-
- Another way to specify a prefix much like the `-B' prefix is to use
- the environment variable `GCC_EXEC_PREFIX'. *Note Environment
- Variables::.
-
-`-specs=FILE'
- Process FILE after the compiler reads in the standard `specs'
- file, in order to override the defaults that the `gcc' driver
- program uses when determining what switches to pass to `cc1',
- `cc1plus', `as', `ld', etc. More than one `-specs='FILE can be
- specified on the command line, and they are processed in order,
- from left to right.
-
-
-File: gcc.info, Node: Target Options, Next: Submodel Options, Prev: Directory Options, Up: Invoking GCC
-
-Specifying Target Machine and Compiler Version
-==============================================
-
- By default, GNU CC compiles code for the same type of machine that
-you are using. However, it can also be installed as a cross-compiler,
-to compile for some other type of machine. In fact, several different
-configurations of GNU CC, for different target machines, can be
-installed side by side. Then you specify which one to use with the
-`-b' option.
-
- In addition, older and newer versions of GNU CC can be installed side
-by side. One of them (probably the newest) will be the default, but
-you may sometimes wish to use another.
-
-`-b MACHINE'
- The argument MACHINE specifies the target machine for compilation.
- This is useful when you have installed GNU CC as a cross-compiler.
-
- The value to use for MACHINE is the same as was specified as the
- machine type when configuring GNU CC as a cross-compiler. For
- example, if a cross-compiler was configured with `configure
- i386v', meaning to compile for an 80386 running System V, then you
- would specify `-b i386v' to run that cross compiler.
-
- When you do not specify `-b', it normally means to compile for the
- same type of machine that you are using.
-
-`-V VERSION'
- The argument VERSION specifies which version of GNU CC to run.
- This is useful when multiple versions are installed. For example,
- VERSION might be `2.0', meaning to run GNU CC version 2.0.
-
- The default version, when you do not specify `-V', is the last
- version of GNU CC that you installed.
-
- The `-b' and `-V' options actually work by controlling part of the
-file name used for the executable files and libraries used for
-compilation. A given version of GNU CC, for a given target machine, is
-normally kept in the directory `/usr/local/lib/gcc-lib/MACHINE/VERSION'.
-
- Thus, sites can customize the effect of `-b' or `-V' either by
-changing the names of these directories or adding alternate names (or
-symbolic links). If in directory `/usr/local/lib/gcc-lib/' the file
-`80386' is a link to the file `i386v', then `-b 80386' becomes an alias
-for `-b i386v'.
-
- In one respect, the `-b' or `-V' do not completely change to a
-different compiler: the top-level driver program `gcc' that you
-originally invoked continues to run and invoke the other executables
-(preprocessor, compiler per se, assembler and linker) that do the real
-work. However, since no real work is done in the driver program, it
-usually does not matter that the driver program in use is not the one
-for the specified target and version.
-
- The only way that the driver program depends on the target machine is
-in the parsing and handling of special machine-specific options.
-However, this is controlled by a file which is found, along with the
-other executables, in the directory for the specified version and
-target machine. As a result, a single installed driver program adapts
-to any specified target machine and compiler version.
-
- The driver program executable does control one significant thing,
-however: the default version and target machine. Therefore, you can
-install different instances of the driver program, compiled for
-different targets or versions, under different names.
-
- For example, if the driver for version 2.0 is installed as `ogcc'
-and that for version 2.1 is installed as `gcc', then the command `gcc'
-will use version 2.1 by default, while `ogcc' will use 2.0 by default.
-However, you can choose either version with either command with the
-`-V' option.
-
-
-File: gcc.info, Node: Submodel Options, Next: Code Gen Options, Prev: Target Options, Up: Invoking GCC
-
-Hardware Models and Configurations
-==================================
-
- Earlier we discussed the standard option `-b' which chooses among
-different installed compilers for completely different target machines,
-such as Vax vs. 68000 vs. 80386.
-
- In addition, each of these target machine types can have its own
-special options, starting with `-m', to choose among various hardware
-models or configurations--for example, 68010 vs 68020, floating
-coprocessor or none. A single installed version of the compiler can
-compile for any model or configuration, according to the options
-specified.
-
- Some configurations of the compiler also support additional special
-options, usually for compatibility with other compilers on the same
-platform.
-
- These options are defined by the macro `TARGET_SWITCHES' in the
-machine description. The default for the options is also defined by
-that macro, which enables you to change the defaults.
-
-* Menu:
-
-* M680x0 Options::
-* VAX Options::
-* SPARC Options::
-* Convex Options::
-* AMD29K Options::
-* ARM Options::
-* M32R/D Options::
-* M88K Options::
-* RS/6000 and PowerPC Options::
-* RT Options::
-* MIPS Options::
-* i386 Options::
-* HPPA Options::
-* Intel 960 Options::
-* DEC Alpha Options::
-* Clipper Options::
-* H8/300 Options::
-* SH Options::
-* System V Options::
-* V850 Options::
-
-
-File: gcc.info, Node: M680x0 Options, Next: VAX Options, Up: Submodel Options
-
-M680x0 Options
---------------
-
- These are the `-m' options defined for the 68000 series. The default
-values for these options depends on which style of 68000 was selected
-when the compiler was configured; the defaults for the most common
-choices are given below.
-
-`-m68000'
-`-mc68000'
- Generate output for a 68000. This is the default when the
- compiler is configured for 68000-based systems.
-
-`-m68020'
-`-mc68020'
- Generate output for a 68020. This is the default when the
- compiler is configured for 68020-based systems.
-
-`-m68881'
- Generate output containing 68881 instructions for floating point.
- This is the default for most 68020 systems unless `-nfp' was
- specified when the compiler was configured.
-
-`-m68030'
- Generate output for a 68030. This is the default when the
- compiler is configured for 68030-based systems.
-
-`-m68040'
- Generate output for a 68040. This is the default when the
- compiler is configured for 68040-based systems.
-
- This option inhibits the use of 68881/68882 instructions that have
- to be emulated by software on the 68040. If your 68040 does not
- have code to emulate those instructions, use `-m68040'.
-
-`-m68060'
- Generate output for a 68060. This is the default when the
- compiler is configured for 68060-based systems.
-
- This option inhibits the use of 68020 and 68881/68882 instructions
- that have to be emulated by software on the 68060. If your 68060
- does not have code to emulate those instructions, use `-m68060'.
-
-`-m5200'
- Generate output for a 520X "coldfire" family cpu. This is the
- default when the compiler is configured for 520X-based systems.
-
-`-m68020-40'
- Generate output for a 68040, without using any of the new
- instructions. This results in code which can run relatively
- efficiently on either a 68020/68881 or a 68030 or a 68040. The
- generated code does use the 68881 instructions that are emulated
- on the 68040.
-
-`-m68020-60'
- Generate output for a 68060, without using any of the new
- instructions. This results in code which can run relatively
- efficiently on either a 68020/68881 or a 68030 or a 68040. The
- generated code does use the 68881 instructions that are emulated
- on the 68060.
-
-`-mfpa'
- Generate output containing Sun FPA instructions for floating point.
-
-`-msoft-float'
- Generate output containing library calls for floating point.
- *Warning:* the requisite libraries are not available for all m68k
- targets. Normally the facilities of the machine's usual C
- compiler are used, but this can't be done directly in
- cross-compilation. You must make your own arrangements to provide
- suitable library functions for cross-compilation. The embedded
- targets `m68k-*-aout' and `m68k-*-coff' do provide software
- floating point support.
-
-`-mshort'
- Consider type `int' to be 16 bits wide, like `short int'.
-
-`-mnobitfield'
- Do not use the bit-field instructions. The `-m68000' option
- implies `-mnobitfield'.
-
-`-mbitfield'
- Do use the bit-field instructions. The `-m68020' option implies
- `-mbitfield'. This is the default if you use a configuration
- designed for a 68020.
-
-`-mrtd'
- Use a different function-calling convention, in which functions
- that take a fixed number of arguments return with the `rtd'
- instruction, which pops their arguments while returning. This
- saves one instruction in the caller since there is no need to pop
- the arguments there.
-
- This calling convention is incompatible with the one normally used
- on Unix, so you cannot use it if you need to call libraries
- compiled with the Unix compiler.
-
- Also, you must provide function prototypes for all functions that
- take variable numbers of arguments (including `printf'); otherwise
- incorrect code will be generated for calls to those functions.
-
- In addition, seriously incorrect code will result if you call a
- function with too many arguments. (Normally, extra arguments are
- harmlessly ignored.)
-
- The `rtd' instruction is supported by the 68010, 68020, 68030,
- 68040, and 68060 processors, but not by the 68000 or 5200.
-
-`-malign-int'
-`-mno-align-int'
- Control whether GNU CC aligns `int', `long', `long long', `float',
- `double', and `long double' variables on a 32-bit boundary
- (`-malign-int') or a 16-bit boundary (`-mno-align-int'). Aligning
- variables on 32-bit boundaries produces code that runs somewhat
- faster on processors with 32-bit busses at the expense of more
- memory.
-
- *Warning:* if you use the `-malign-int' switch, GNU CC will align
- structures containing the above types differently than most
- published application binary interface specifications for the m68k.
-
-
-File: gcc.info, Node: VAX Options, Next: SPARC Options, Prev: M680x0 Options, Up: Submodel Options
-
-VAX Options
------------
-
- These `-m' options are defined for the Vax:
-
-`-munix'
- Do not output certain jump instructions (`aobleq' and so on) that
- the Unix assembler for the Vax cannot handle across long ranges.
-
-`-mgnu'
- Do output those jump instructions, on the assumption that you will
- assemble with the GNU assembler.
-
-`-mg'
- Output code for g-format floating point numbers instead of
- d-format.
-
-
-File: gcc.info, Node: SPARC Options, Next: Convex Options, Prev: VAX Options, Up: Submodel Options
-
-SPARC Options
--------------
-
- These `-m' switches are supported on the SPARC:
-
-`-mno-app-regs'
-`-mapp-regs'
- Specify `-mapp-regs' to generate output using the global registers
- 2 through 4, which the SPARC SVR4 ABI reserves for applications.
- This is the default.
-
- To be fully SVR4 ABI compliant at the cost of some performance
- loss, specify `-mno-app-regs'. You should compile libraries and
- system software with this option.
-
-`-mfpu'
-`-mhard-float'
- Generate output containing floating point instructions. This is
- the default.
-
-`-mno-fpu'
-`-msoft-float'
- Generate output containing library calls for floating point.
- *Warning:* the requisite libraries are not available for all SPARC
- targets. Normally the facilities of the machine's usual C
- compiler are used, but this cannot be done directly in
- cross-compilation. You must make your own arrangements to provide
- suitable library functions for cross-compilation. The embedded
- targets `sparc-*-aout' and `sparclite-*-*' do provide software
- floating point support.
-
- `-msoft-float' changes the calling convention in the output file;
- therefore, it is only useful if you compile *all* of a program with
- this option. In particular, you need to compile `libgcc.a', the
- library that comes with GNU CC, with `-msoft-float' in order for
- this to work.
-
-`-mhard-quad-float'
- Generate output containing quad-word (long double) floating point
- instructions.
-
-`-msoft-quad-float'
- Generate output containing library calls for quad-word (long
- double) floating point instructions. The functions called are
- those specified in the SPARC ABI. This is the default.
-
- As of this writing, there are no sparc implementations that have
- hardware support for the quad-word floating point instructions.
- They all invoke a trap handler for one of these instructions, and
- then the trap handler emulates the effect of the instruction.
- Because of the trap handler overhead, this is much slower than
- calling the ABI library routines. Thus the `-msoft-quad-float'
- option is the default.
-
-`-mno-epilogue'
-`-mepilogue'
- With `-mepilogue' (the default), the compiler always emits code for
- function exit at the end of each function. Any function exit in
- the middle of the function (such as a return statement in C) will
- generate a jump to the exit code at the end of the function.
-
- With `-mno-epilogue', the compiler tries to emit exit code inline
- at every function exit.
-
-`-mno-flat'
-`-mflat'
- With `-mflat', the compiler does not generate save/restore
- instructions and will use a "flat" or single register window
- calling convention. This model uses %i7 as the frame pointer and
- is compatible with the normal register window model. Code from
- either may be intermixed. The local registers and the input
- registers (0-5) are still treated as "call saved" registers and
- will be saved on the stack as necessary.
-
- With `-mno-flat' (the default), the compiler emits save/restore
- instructions (except for leaf functions) and is the normal mode of
- operation.
-
-`-mno-unaligned-doubles'
-`-munaligned-doubles'
- Assume that doubles have 8 byte alignment. This is the default.
-
- With `-munaligned-doubles', GNU CC assumes that doubles have 8 byte
- alignment only if they are contained in another type, or if they
- have an absolute address. Otherwise, it assumes they have 4 byte
- alignment. Specifying this option avoids some rare compatibility
- problems with code generated by other compilers. It is not the
- default because it results in a performance loss, especially for
- floating point code.
-
-`-mv8'
-`-msparclite'
- These two options select variations on the SPARC architecture.
-
- By default (unless specifically configured for the Fujitsu
- SPARClite), GCC generates code for the v7 variant of the SPARC
- architecture.
-
- `-mv8' will give you SPARC v8 code. The only difference from v7
- code is that the compiler emits the integer multiply and integer
- divide instructions which exist in SPARC v8 but not in SPARC v7.
-
- `-msparclite' will give you SPARClite code. This adds the integer
- multiply, integer divide step and scan (`ffs') instructions which
- exist in SPARClite but not in SPARC v7.
-
- These options are deprecated and will be deleted in GNU CC 2.9.
- They have been replaced with `-mcpu=xxx'.
-
-`-mcypress'
-`-msupersparc'
- These two options select the processor for which the code is
- optimised.
-
- With `-mcypress' (the default), the compiler optimizes code for the
- Cypress CY7C602 chip, as used in the SparcStation/SparcServer 3xx
- series. This is also appropriate for the older SparcStation 1, 2,
- IPX etc.
-
- With `-msupersparc' the compiler optimizes code for the SuperSparc
- cpu, as used in the SparcStation 10, 1000 and 2000 series. This
- flag also enables use of the full SPARC v8 instruction set.
-
- These options are deprecated and will be deleted in GNU CC 2.9.
- They have been replaced with `-mcpu=xxx'.
-
-`-mcpu=CPU_TYPE'
- Set architecture type and instruction scheduling parameters for
- machine type CPU_TYPE. Supported values for CPU_TYPE are `v7',
- `cypress', `v8', `supersparc', `sparclite', `f930', `f934',
- `sparclet', `tsc701', `v8plus', `v9', and `ultrasparc'.
-
-`-mtune=CPU_TYPE'
- Set the instruction scheduling parameters for machine type
- CPU_TYPE, but do not set the architecture type as the option
- `-mcpu='CPU_TYPE would. The same values for `-mcpu='CPU_TYPE are
- used for `-mtune='CPU_TYPE.
-
-`-malign-loops=NUM'
- Align loops to a 2 raised to a NUM byte boundary. If
- `-malign-loops' is not specified, the default is 2.
-
-`-malign-jumps=NUM'
- Align instructions that are only jumped to to a 2 raised to a NUM
- byte boundary. If `-malign-jumps' is not specified, the default
- is 2.
-
-`-malign-functions=NUM'
- Align the start of functions to a 2 raised to NUM byte boundary.
- If `-malign-functions' is not specified, the default is 2 if
- compiling for 32 bit sparc, and 5 if compiling for 64 bit sparc.
-
- These `-m' switches are supported in addition to the above on the
-SPARCLET processor.
-
-`-mlittle-endian'
- Generate code for a processor running in little-endian mode.
-
-`-mlive-g0'
- Treat register `%g0' as a normal register. GCC will continue to
- clobber it as necessary but will not assume it always reads as 0.
-
-`-mbroken-saverestore'
- Generate code that does not use non-trivial forms of the `save' and
- `restore' instructions. Early versions of the SPARCLET processor
- do not correctly handle `save' and `restore' instructions used with
- arguments. They correctly handle them used without arguments. A
- `save' instruction used without arguments increments the current
- window pointer but does not allocate a new stack frame. It is
- assumed that the window overflow trap handler will properly handle
- this case as will interrupt handlers.
-
- These `-m' switches are supported in addition to the above on SPARC
-V9 processors in 64 bit environments.
-
-`-mlittle-endian'
- Generate code for a processor running in little-endian mode.
-
-`-m32'
-`-m64'
- Generate code for a 32 bit or 64 bit environment. The 32 bit
- environment sets int, long and pointer to 32 bits. The 64 bit
- environment sets int to 32 bits and long and pointer to 64 bits.
-
-`-mcmodel=medlow'
- Generate code for the Medium/Low code model: the program must be
- linked in the low 32 bits of the address space. Pointers are 64
- bits. Programs can be statically or dynamically linked.
-
-`-mcmodel=medmid'
- Generate code for the Medium/Middle code model: the program must
- be linked in the low 44 bits of the address space, the text
- segment must be less than 2G bytes, and data segment must be
- within 2G of the text segment. Pointers are 64 bits.
-
-`-mcmodel=medany'
- Generate code for the Medium/Anywhere code model: the program may
- be linked anywhere in the address space, the text segment must be
- less than 2G bytes, and data segment must be within 2G of the text
- segment. Pointers are 64 bits.
-
-`-mcmodel=embmedany'
- Generate code for the Medium/Anywhere code model for embedded
- systems: assume a 32 bit text and a 32 bit data segment, both
- starting anywhere (determined at link time). Register %g4 points
- to the base of the data segment. Pointers still 64 bits.
- Programs are statically linked, PIC is not supported.
-
-`-mstack-bias'
-`-mno-stack-bias'
- With `-mstack-bias', GNU CC assumes that the stack pointer, and
- frame pointer if present, are offset by -2047 which must be added
- back when making stack frame references. Otherwise, assume no
- such offset is present.
-
-
-File: gcc.info, Node: Convex Options, Next: AMD29K Options, Prev: SPARC Options, Up: Submodel Options
-
-Convex Options
---------------
-
- These `-m' options are defined for Convex:
-
-`-mc1'
- Generate output for C1. The code will run on any Convex machine.
- The preprocessor symbol `__convex__c1__' is defined.
-
-`-mc2'
- Generate output for C2. Uses instructions not available on C1.
- Scheduling and other optimizations are chosen for max performance
- on C2. The preprocessor symbol `__convex_c2__' is defined.
-
-`-mc32'
- Generate output for C32xx. Uses instructions not available on C1.
- Scheduling and other optimizations are chosen for max performance
- on C32. The preprocessor symbol `__convex_c32__' is defined.
-
-`-mc34'
- Generate output for C34xx. Uses instructions not available on C1.
- Scheduling and other optimizations are chosen for max performance
- on C34. The preprocessor symbol `__convex_c34__' is defined.
-
-`-mc38'
- Generate output for C38xx. Uses instructions not available on C1.
- Scheduling and other optimizations are chosen for max performance
- on C38. The preprocessor symbol `__convex_c38__' is defined.
-
-`-margcount'
- Generate code which puts an argument count in the word preceding
- each argument list. This is compatible with regular CC, and a few
- programs may need the argument count word. GDB and other
- source-level debuggers do not need it; this info is in the symbol
- table.
-
-`-mnoargcount'
- Omit the argument count word. This is the default.
-
-`-mvolatile-cache'
- Allow volatile references to be cached. This is the default.
-
-`-mvolatile-nocache'
- Volatile references bypass the data cache, going all the way to
- memory. This is only needed for multi-processor code that does
- not use standard synchronization instructions. Making
- non-volatile references to volatile locations will not necessarily
- work.
-
-`-mlong32'
- Type long is 32 bits, the same as type int. This is the default.
-
-`-mlong64'
- Type long is 64 bits, the same as type long long. This option is
- useless, because no library support exists for it.
-
-
-File: gcc.info, Node: AMD29K Options, Next: ARM Options, Prev: Convex Options, Up: Submodel Options
-
-AMD29K Options
---------------
-
- These `-m' options are defined for the AMD Am29000:
-
-`-mdw'
- Generate code that assumes the `DW' bit is set, i.e., that byte and
- halfword operations are directly supported by the hardware. This
- is the default.
-
-`-mndw'
- Generate code that assumes the `DW' bit is not set.
-
-`-mbw'
- Generate code that assumes the system supports byte and halfword
- write operations. This is the default.
-
-`-mnbw'
- Generate code that assumes the systems does not support byte and
- halfword write operations. `-mnbw' implies `-mndw'.
-
-`-msmall'
- Use a small memory model that assumes that all function addresses
- are either within a single 256 KB segment or at an absolute
- address of less than 256k. This allows the `call' instruction to
- be used instead of a `const', `consth', `calli' sequence.
-
-`-mnormal'
- Use the normal memory model: Generate `call' instructions only when
- calling functions in the same file and `calli' instructions
- otherwise. This works if each file occupies less than 256 KB but
- allows the entire executable to be larger than 256 KB. This is
- the default.
-
-`-mlarge'
- Always use `calli' instructions. Specify this option if you expect
- a single file to compile into more than 256 KB of code.
-
-`-m29050'
- Generate code for the Am29050.
-
-`-m29000'
- Generate code for the Am29000. This is the default.
-
-`-mkernel-registers'
- Generate references to registers `gr64-gr95' instead of to
- registers `gr96-gr127'. This option can be used when compiling
- kernel code that wants a set of global registers disjoint from
- that used by user-mode code.
-
- Note that when this option is used, register names in `-f' flags
- must use the normal, user-mode, names.
-
-`-muser-registers'
- Use the normal set of global registers, `gr96-gr127'. This is the
- default.
-
-`-mstack-check'
-`-mno-stack-check'
- Insert (or do not insert) a call to `__msp_check' after each stack
- adjustment. This is often used for kernel code.
-
-`-mstorem-bug'
-`-mno-storem-bug'
- `-mstorem-bug' handles 29k processors which cannot handle the
- separation of a mtsrim insn and a storem instruction (most 29000
- chips to date, but not the 29050).
-
-`-mno-reuse-arg-regs'
-`-mreuse-arg-regs'
- `-mno-reuse-arg-regs' tells the compiler to only use incoming
- argument registers for copying out arguments. This helps detect
- calling a function with fewer arguments than it was declared with.
-
-`-mno-impure-text'
-`-mimpure-text'
- `-mimpure-text', used in addition to `-shared', tells the compiler
- to not pass `-assert pure-text' to the linker when linking a
- shared object.
-
-`-msoft-float'
- Generate output containing library calls for floating point.
- *Warning:* the requisite libraries are not part of GNU CC.
- Normally the facilities of the machine's usual C compiler are
- used, but this can't be done directly in cross-compilation. You
- must make your own arrangements to provide suitable library
- functions for cross-compilation.
-
-
-File: gcc.info, Node: ARM Options, Next: M32R/D Options, Prev: AMD29K Options, Up: Submodel Options
-
-ARM Options
------------
-
- These `-m' options are defined for Advanced RISC Machines (ARM)
-architectures:
-
-`-mapcs-frame'
- Generate a stack frame that is compliant with the ARM Procedure
- Call Standard for all functions, even if this is not strictly
- necessary for correct execution of the code.
-
-`-mapcs-26'
- Generate code for a processor running with a 26-bit program
- counter, and conforming to the function calling standards for the
- APCS 26-bit option. This option replaces the `-m2' and `-m3'
- options of previous releases of the compiler.
-
-`-mapcs-32'
- Generate code for a processor running with a 32-bit program
- counter, and conforming to the function calling standards for the
- APCS 32-bit option. This option replaces the `-m6' option of
- previous releases of the compiler.
-
-`-mhard-float'
- Generate output containing floating point instructions. This is
- the default.
-
-`-msoft-float'
- Generate output containing library calls for floating point.
- *Warning:* the requisite libraries are not available for all ARM
- targets. Normally the facilities of the machine's usual C
- compiler are used, but this cannot be done directly in
- cross-compilation. You must make your own arrangements to provide
- suitable library functions for cross-compilation.
-
- `-msoft-float' changes the calling convention in the output file;
- therefore, it is only useful if you compile *all* of a program with
- this option. In particular, you need to compile `libgcc.a', the
- library that comes with GNU CC, with `-msoft-float' in order for
- this to work.
-
-`-mlittle-endian'
- Generate code for a processor running in little-endian mode. This
- is the default for all standard configurations.
-
-`-mbig-endian'
- Generate code for a processor running in big-endian mode; the
- default is to compile code for a little-endian processor.
-
-`-mwords-little-endian'
- This option only applies when generating code for big-endian
- processors. Generate code for a little-endian word order but a
- big-endian byte order. That is, a byte order of the form
- `32107654'. Note: this option should only be used if you require
- compatibility with code for big-endian ARM processors generated by
- versions of the compiler prior to 2.8.
-
-`-mshort-load-bytes'
- Do not try to load half-words (eg `short's) by loading a word from
- an unaligned address. For some targets the MMU is configured to
- trap unaligned loads; use this option to generate code that is
- safe in these environments.
-
-`-mno-short-load-bytes'
- Use unaligned word loads to load half-words (eg `short's). This
- option produces more efficient code, but the MMU is sometimes
- configured to trap these instructions.
-
-`-mbsd'
- This option only applies to RISC iX. Emulate the native BSD-mode
- compiler. This is the default if `-ansi' is not specified.
-
-`-mxopen'
- This option only applies to RISC iX. Emulate the native
- X/Open-mode compiler.
-
-`-mno-symrename'
- This option only applies to RISC iX. Do not run the assembler
- post-processor, `symrename', after code has been assembled.
- Normally it is necessary to modify some of the standard symbols in
- preparation for linking with the RISC iX C library; this option
- suppresses this pass. The post-processor is never run when the
- compiler is built for cross-compilation.
-
-
-File: gcc.info, Node: M32R/D Options, Next: M88K Options, Prev: ARM Options, Up: Submodel Options
-
-M32R/D Options
---------------
-
- These `-m' options are defined for Mitsubishi M32R/D architectures:
-
-`-mcode-model=small'
- Assume all objects live in the lower 16MB of memory (so that their
- addresses can be loaded with the `ld24' instruction), and assume
- all subroutines are reachable with the `bl' instruction. This is
- the default.
-
- The addressability of a particular object can be set with the
- `model' attribute.
-
-`-mcode-model=medium'
- Assume objects may be anywhere in the 32 bit address space (the
- compiler will generate `seth/add3' instructions to load their
- addresses), and assume all subroutines are reachable with the `bl'
- instruction.
-
-`-mcode-model=large'
- Assume objects may be anywhere in the 32 bit address space (the
- compiler will generate `seth/add3' instructions to load their
- addresses), and assume subroutines may not be reachable with the
- `bl' instruction (the compiler will generate the much slower
- `seth/add3/jl' instruction sequence).
-
-`-msdata=none'
- Disable use of the small data area. Variables will be put into
- one of `.data', `bss', or `.rodata' (unless the `section'
- attribute has been specified). This is the default.
-
- The small data area consists of sections `.sdata' and `.sbss'.
- Objects may be explicitly put in the small data area with the
- `section' attribute using one of these sections.
-
-`-msdata=sdata'
- Put small global and static data in the small data area, but do not
- generate special code to reference them.
-
-`-msdata=use'
- Put small global and static data in the small data area, and
- generate special instructions to reference them.
-
-`-G NUM'
- Put global and static objects less than or equal to NUM bytes into
- the small data or bss sections instead of the normal data or bss
- sections. The default value of NUM is 8. The `-msdata' option
- must be set to one of `sdata' or `use' for this option to have any
- effect.
-
- All modules should be compiled with the same `-G NUM' value.
- Compiling with different values of NUM may or may not work; if it
- doesn't the linker will give an error message - incorrect code
- will not be generated.
-
diff --git a/gcc/gcc.info-4 b/gcc/gcc.info-4
deleted file mode 100644
index 8a3d1fbdbf6..00000000000
--- a/gcc/gcc.info-4
+++ /dev/null
@@ -1,1171 +0,0 @@
-This is Info file gcc.info, produced by Makeinfo version 1.68 from the
-input file gcc.texi.
-
- This file documents the use and the internals of the GNU compiler.
-
- Published by the Free Software Foundation 59 Temple Place - Suite 330
-Boston, MA 02111-1307 USA
-
- Copyright (C) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997 Free
-Software Foundation, Inc.
-
- Permission is granted to make and distribute verbatim copies of this
-manual provided the copyright notice and this permission notice are
-preserved on all copies.
-
- Permission is granted to copy and distribute modified versions of
-this manual under the conditions for verbatim copying, provided also
-that the sections entitled "GNU General Public License," "Funding for
-Free Software," and "Protect Your Freedom--Fight `Look And Feel'" are
-included exactly as in the original, and provided that the entire
-resulting derived work is distributed under the terms of a permission
-notice identical to this one.
-
- Permission is granted to copy and distribute translations of this
-manual into another language, under the above conditions for modified
-versions, except that the sections entitled "GNU General Public
-License," "Funding for Free Software," and "Protect Your Freedom--Fight
-`Look And Feel'", and this permission notice, may be included in
-translations approved by the Free Software Foundation instead of in the
-original English.
-
-
-File: gcc.info, Node: M88K Options, Next: RS/6000 and PowerPC Options, Prev: M32R/D Options, Up: Submodel Options
-
-M88K Options
-------------
-
- These `-m' options are defined for Motorola 88k architectures:
-
-`-m88000'
- Generate code that works well on both the m88100 and the m88110.
-
-`-m88100'
- Generate code that works best for the m88100, but that also runs
- on the m88110.
-
-`-m88110'
- Generate code that works best for the m88110, and may not run on
- the m88100.
-
-`-mbig-pic'
- Obsolete option to be removed from the next revision. Use `-fPIC'.
-
-`-midentify-revision'
- Include an `ident' directive in the assembler output recording the
- source file name, compiler name and version, timestamp, and
- compilation flags used.
-
-`-mno-underscores'
- In assembler output, emit symbol names without adding an underscore
- character at the beginning of each name. The default is to use an
- underscore as prefix on each name.
-
-`-mocs-debug-info'
-`-mno-ocs-debug-info'
- Include (or omit) additional debugging information (about
- registers used in each stack frame) as specified in the 88open
- Object Compatibility Standard, "OCS". This extra information
- allows debugging of code that has had the frame pointer
- eliminated. The default for DG/UX, SVr4, and Delta 88 SVr3.2 is
- to include this information; other 88k configurations omit this
- information by default.
-
-`-mocs-frame-position'
- When emitting COFF debugging information for automatic variables
- and parameters stored on the stack, use the offset from the
- canonical frame address, which is the stack pointer (register 31)
- on entry to the function. The DG/UX, SVr4, Delta88 SVr3.2, and
- BCS configurations use `-mocs-frame-position'; other 88k
- configurations have the default `-mno-ocs-frame-position'.
-
-`-mno-ocs-frame-position'
- When emitting COFF debugging information for automatic variables
- and parameters stored on the stack, use the offset from the frame
- pointer register (register 30). When this option is in effect,
- the frame pointer is not eliminated when debugging information is
- selected by the -g switch.
-
-`-moptimize-arg-area'
-`-mno-optimize-arg-area'
- Control how function arguments are stored in stack frames.
- `-moptimize-arg-area' saves space by optimizing them, but this
- conflicts with the 88open specifications. The opposite
- alternative, `-mno-optimize-arg-area', agrees with 88open
- standards. By default GNU CC does not optimize the argument area.
-
-`-mshort-data-NUM'
- Generate smaller data references by making them relative to `r0',
- which allows loading a value using a single instruction (rather
- than the usual two). You control which data references are
- affected by specifying NUM with this option. For example, if you
- specify `-mshort-data-512', then the data references affected are
- those involving displacements of less than 512 bytes.
- `-mshort-data-NUM' is not effective for NUM greater than 64k.
-
-`-mserialize-volatile'
-`-mno-serialize-volatile'
- Do, or don't, generate code to guarantee sequential consistency of
- volatile memory references. By default, consistency is guaranteed.
-
- The order of memory references made by the MC88110 processor does
- not always match the order of the instructions requesting those
- references. In particular, a load instruction may execute before
- a preceding store instruction. Such reordering violates
- sequential consistency of volatile memory references, when there
- are multiple processors. When consistency must be guaranteed,
- GNU C generates special instructions, as needed, to force
- execution in the proper order.
-
- The MC88100 processor does not reorder memory references and so
- always provides sequential consistency. However, by default, GNU
- C generates the special instructions to guarantee consistency even
- when you use `-m88100', so that the code may be run on an MC88110
- processor. If you intend to run your code only on the MC88100
- processor, you may use `-mno-serialize-volatile'.
-
- The extra code generated to guarantee consistency may affect the
- performance of your application. If you know that you can safely
- forgo this guarantee, you may use `-mno-serialize-volatile'.
-
-`-msvr4'
-`-msvr3'
- Turn on (`-msvr4') or off (`-msvr3') compiler extensions related
- to System V release 4 (SVr4). This controls the following:
-
- 1. Which variant of the assembler syntax to emit.
-
- 2. `-msvr4' makes the C preprocessor recognize `#pragma weak'
- that is used on System V release 4.
-
- 3. `-msvr4' makes GNU CC issue additional declaration directives
- used in SVr4.
-
- `-msvr4' is the default for the m88k-motorola-sysv4 and
- m88k-dg-dgux m88k configurations. `-msvr3' is the default for all
- other m88k configurations.
-
-`-mversion-03.00'
- This option is obsolete, and is ignored.
-
-`-mno-check-zero-division'
-`-mcheck-zero-division'
- Do, or don't, generate code to guarantee that integer division by
- zero will be detected. By default, detection is guaranteed.
-
- Some models of the MC88100 processor fail to trap upon integer
- division by zero under certain conditions. By default, when
- compiling code that might be run on such a processor, GNU C
- generates code that explicitly checks for zero-valued divisors and
- traps with exception number 503 when one is detected. Use of
- mno-check-zero-division suppresses such checking for code
- generated to run on an MC88100 processor.
-
- GNU C assumes that the MC88110 processor correctly detects all
- instances of integer division by zero. When `-m88110' is
- specified, both `-mcheck-zero-division' and
- `-mno-check-zero-division' are ignored, and no explicit checks for
- zero-valued divisors are generated.
-
-`-muse-div-instruction'
- Use the div instruction for signed integer division on the MC88100
- processor. By default, the div instruction is not used.
-
- On the MC88100 processor the signed integer division instruction
- div) traps to the operating system on a negative operand. The
- operating system transparently completes the operation, but at a
- large cost in execution time. By default, when compiling code
- that might be run on an MC88100 processor, GNU C emulates signed
- integer division using the unsigned integer division instruction
- divu), thereby avoiding the large penalty of a trap to the
- operating system. Such emulation has its own, smaller, execution
- cost in both time and space. To the extent that your code's
- important signed integer division operations are performed on two
- nonnegative operands, it may be desirable to use the div
- instruction directly.
-
- On the MC88110 processor the div instruction (also known as the
- divs instruction) processes negative operands without trapping to
- the operating system. When `-m88110' is specified,
- `-muse-div-instruction' is ignored, and the div instruction is used
- for signed integer division.
-
- Note that the result of dividing INT_MIN by -1 is undefined. In
- particular, the behavior of such a division with and without
- `-muse-div-instruction' may differ.
-
-`-mtrap-large-shift'
-`-mhandle-large-shift'
- Include code to detect bit-shifts of more than 31 bits;
- respectively, trap such shifts or emit code to handle them
- properly. By default GNU CC makes no special provision for large
- bit shifts.
-
-`-mwarn-passed-structs'
- Warn when a function passes a struct as an argument or result.
- Structure-passing conventions have changed during the evolution of
- the C language, and are often the source of portability problems.
- By default, GNU CC issues no such warning.
-
-
-File: gcc.info, Node: RS/6000 and PowerPC Options, Next: RT Options, Prev: M88K Options, Up: Submodel Options
-
-IBM RS/6000 and PowerPC Options
--------------------------------
-
- These `-m' options are defined for the IBM RS/6000 and PowerPC:
-`-mpower'
-`-mno-power'
-`-mpower2'
-`-mno-power2'
-`-mpowerpc'
-`-mno-powerpc'
-`-mpowerpc-gpopt'
-`-mno-powerpc-gpopt'
-`-mpowerpc-gfxopt'
-`-mno-powerpc-gfxopt'
- GNU CC supports two related instruction set architectures for the
- RS/6000 and PowerPC. The "POWER" instruction set are those
- instructions supported by the `rios' chip set used in the original
- RS/6000 systems and the "PowerPC" instruction set is the
- architecture of the Motorola MPC5xx, MPC6xx, MPC8xx
- microprocessors, and the IBM 4xx microprocessors.
-
- Neither architecture is a subset of the other. However there is a
- large common subset of instructions supported by both. An MQ
- register is included in processors supporting the POWER
- architecture.
-
- You use these options to specify which instructions are available
- on the processor you are using. The default value of these
- options is determined when configuring GNU CC. Specifying the
- `-mcpu=CPU_TYPE' overrides the specification of these options. We
- recommend you use the `-mcpu=CPU_TYPE' option rather than the
- options listed above.
-
- The `-mpower' option allows GNU CC to generate instructions that
- are found only in the POWER architecture and to use the MQ
- register. Specifying `-mpower2' implies `-power' and also allows
- GNU CC to generate instructions that are present in the POWER2
- architecture but not the original POWER architecture.
-
- The `-mpowerpc' option allows GNU CC to generate instructions that
- are found only in the 32-bit subset of the PowerPC architecture.
- Specifying `-mpowerpc-gpopt' implies `-mpowerpc' and also allows
- GNU CC to use the optional PowerPC architecture instructions in the
- General Purpose group, including floating-point square root.
- Specifying `-mpowerpc-gfxopt' implies `-mpowerpc' and also allows
- GNU CC to use the optional PowerPC architecture instructions in
- the Graphics group, including floating-point select.
-
- If you specify both `-mno-power' and `-mno-powerpc', GNU CC will
- use only the instructions in the common subset of both
- architectures plus some special AIX common-mode calls, and will
- not use the MQ register. Specifying both `-mpower' and `-mpowerpc'
- permits GNU CC to use any instruction from either architecture and
- to allow use of the MQ register; specify this for the Motorola
- MPC601.
-
-`-mnew-mnemonics'
-`-mold-mnemonics'
- Select which mnemonics to use in the generated assembler code.
- `-mnew-mnemonics' requests output that uses the assembler mnemonics
- defined for the PowerPC architecture, while `-mold-mnemonics'
- requests the assembler mnemonics defined for the POWER
- architecture. Instructions defined in only one architecture have
- only one mnemonic; GNU CC uses that mnemonic irrespective of which
- of these options is specified.
-
- PowerPC assemblers support both the old and new mnemonics, as will
- later POWER assemblers. Current POWER assemblers only support the
- old mnemonics. Specify `-mnew-mnemonics' if you have an assembler
- that supports them, otherwise specify `-mold-mnemonics'.
-
- The default value of these options depends on how GNU CC was
- configured. Specifying `-mcpu=CPU_TYPE' sometimes overrides the
- value of these option. Unless you are building a cross-compiler,
- you should normally not specify either `-mnew-mnemonics' or
- `-mold-mnemonics', but should instead accept the default.
-
-`-mcpu=CPU_TYPE'
- Set architecture type, register usage, choice of mnemonics, and
- instruction scheduling parameters for machine type CPU_TYPE.
- Supported values for CPU_TYPE are `rs6000', `rios1', `rios2',
- `rsc', `601', `602', `603', `603e', `604', `604e', `620', `power',
- `power2', `powerpc', `403', `505', `801', `821', `823', and `860'
- and `common'. `-mcpu=power', `-mcpu=power2', and `-mcpu=powerpc'
- specify generic POWER, POWER2 and pure PowerPC (i.e., not MPC601)
- architecture machine types, with an appropriate, generic processor
- model assumed for scheduling purposes.
-
- Specifying any of the following options: `-mcpu=rios1',
- `-mcpu=rios2', `-mcpu=rsc', `-mcpu=power', or `-mcpu=power2'
- enables the `-mpower' option and disables the `-mpowerpc' option;
- `-mcpu=601' enables both the `-mpower' and `-mpowerpc' options.
- All of `-mcpu=602', `-mcpu=603', `-mcpu=603e', `-mcpu=604',
- `-mcpu=620', enable the `-mpowerpc' option and disable the
- `-mpower' option. Exactly similarly, all of `-mcpu=403',
- `-mcpu=505', `-mcpu=821', `-mcpu=860' and `-mcpu=powerpc' enable
- the `-mpowerpc' option and disable the `-mpower' option.
- `-mcpu=common' disables both the `-mpower' and `-mpowerpc' options.
-
- AIX versions 4 or greater selects `-mcpu=common' by default, so
- that code will operate on all members of the RS/6000 and PowerPC
- families. In that case, GNU CC will use only the instructions in
- the common subset of both architectures plus some special AIX
- common-mode calls, and will not use the MQ register. GNU CC
- assumes a generic processor model for scheduling purposes.
-
- Specifying any of the options `-mcpu=rios1', `-mcpu=rios2',
- `-mcpu=rsc', `-mcpu=power', or `-mcpu=power2' also disables the
- `new-mnemonics' option. Specifying `-mcpu=601', `-mcpu=602',
- `-mcpu=603', `-mcpu=603e', `-mcpu=604', `620', `403', or
- `-mcpu=powerpc' also enables the `new-mnemonics' option.
-
- Specifying `-mcpu=403', `-mcpu=821', or `-mcpu=860' also enables
- the `-msoft-float' option.
-
-`-mtune=CPU_TYPE'
- Set the instruction scheduling parameters for machine type
- CPU_TYPE, but do not set the architecture type, register usage,
- choice of mnemonics like `-mcpu='CPU_TYPE would. The same values
- for CPU_TYPE are used for `-mtune='CPU_TYPE as for
- `-mcpu='CPU_TYPE. The `-mtune='CPU_TYPE option overrides the
- `-mcpu='CPU_TYPE option in terms of instruction scheduling
- parameters.
-
-`-mfull-toc'
-`-mno-fp-in-toc'
-`-mno-sum-in-toc'
-`-mminimal-toc'
- Modify generation of the TOC (Table Of Contents), which is created
- for every executable file. The `-mfull-toc' option is selected by
- default. In that case, GNU CC will allocate at least one TOC
- entry for each unique non-automatic variable reference in your
- program. GNU CC will also place floating-point constants in the
- TOC. However, only 16,384 entries are available in the TOC.
-
- If you receive a linker error message that saying you have
- overflowed the available TOC space, you can reduce the amount of
- TOC space used with the `-mno-fp-in-toc' and `-mno-sum-in-toc'
- options. `-mno-fp-in-toc' prevents GNU CC from putting
- floating-point constants in the TOC and `-mno-sum-in-toc' forces
- GNU CC to generate code to calculate the sum of an address and a
- constant at run-time instead of putting that sum into the TOC.
- You may specify one or both of these options. Each causes GNU CC
- to produce very slightly slower and larger code at the expense of
- conserving TOC space.
-
- If you still run out of space in the TOC even when you specify
- both of these options, specify `-mminimal-toc' instead. This
- option causes GNU CC to make only one TOC entry for every file.
- When you specify this option, GNU CC will produce code that is
- slower and larger but which uses extremely little TOC space. You
- may wish to use this option only on files that contain less
- frequently executed code.
-
-`-mxl-call'
-`-mno-xl-call'
- On AIX, pass floating-point arguments to prototyped functions
- beyond the register save area (RSA) on the stack in addition to
- argument FPRs. The AIX calling convention was extended but not
- initially documented to handle an obscure K&R C case of calling a
- function that takes the address of its arguments with fewer
- arguments than declared. AIX XL compilers assume that floating
- point arguments which do not fit in the RSA are on the stack when
- they compile a subroutine without optimization. Because always
- storing floating-point arguments on the stack is inefficient and
- rarely needed, this option is not enabled by default and only is
- necessary when calling subroutines compiled by AIX XL compilers
- without optimization.
-
-`-mthreads'
- Support "AIX Threads". Link an application written to use
- "pthreads" with special libraries and startup code to enable the
- application to run.
-
-`-mpe'
- Support "IBM RS/6000 SP" "Parallel Environment" (PE). Link an
- application written to use message passing with special startup
- code to enable the application to run. The system must have PE
- installed in the standard location (`/usr/lpp/ppe.poe/'), or the
- `specs' file must be overridden with the `-specs=' option to
- specify the appropriate directory location. The Parallel
- Environment does not support threads, so the `-mpe' option and the
- `-mthreads' option are incompatible.
-
-`-msoft-float'
-`-mhard-float'
- Generate code that does not use (uses) the floating-point register
- set. Software floating point emulation is provided if you use the
- `-msoft-float' option, and pass the option to GNU CC when linking.
-
-`-mmultiple'
-`-mno-multiple'
- Generate code that uses (does not use) the load multiple word
- instructions and the store multiple word instructions. These
- instructions are generated by default on POWER systems, and not
- generated on PowerPC systems. Do not use `-mmultiple' on little
- endian PowerPC systems, since those instructions do not work when
- the processor is in little endian mode.
-
-`-mstring'
-`-mno-string'
- Generate code that uses (does not use) the load string
- instructions and the store string word instructions to save
- multiple registers and do small block moves. These instructions
- are generated by default on POWER systems, and not generated on
- PowerPC systems. Do not use `-mstring' on little endian PowerPC
- systems, since those instructions do not work when the processor
- is in little endian mode.
-
-`-mupdate'
-`-mno-update'
- Generate code that uses (does not use) the load or store
- instructions that update the base register to the address of the
- calculated memory location. These instructions are generated by
- default. If you use `-mno-update', there is a small window
- between the time that the stack pointer is updated and the address
- of the previous frame is stored, which means code that walks the
- stack frame across interrupts or signals may get corrupted data.
-
-`-mfused-madd'
-`-mno-fused-madd'
- Generate code that uses (does not use) the floating point multiply
- and accumulate instructions. These instructions are generated by
- default if hardware floating is used.
-
-`-mno-bit-align'
-`-mbit-align'
- On System V.4 and embedded PowerPC systems do not (do) force
- structures and unions that contain bit fields to be aligned to the
- base type of the bit field.
-
- For example, by default a structure containing nothing but 8
- `unsigned' bitfields of length 1 would be aligned to a 4 byte
- boundary and have a size of 4 bytes. By using `-mno-bit-align',
- the structure would be aligned to a 1 byte boundary and be one
- byte in size.
-
-`-mno-strict-align'
-`-mstrict-align'
- On System V.4 and embedded PowerPC systems do not (do) assume that
- unaligned memory references will be handled by the system.
-
-`-mrelocatable'
-`-mno-relocatable'
- On embedded PowerPC systems generate code that allows (does not
- allow) the program to be relocated to a different address at
- runtime. If you use `-mrelocatable' on any module, all objects
- linked together must be compiled with `-mrelocatable' or
- `-mrelocatable-lib'.
-
-`-mrelocatable-lib'
-`-mno-relocatable-lib'
- On embedded PowerPC systems generate code that allows (does not
- allow) the program to be relocated to a different address at
- runtime. Modules compiled with `-mreloctable-lib' can be linked
- with either modules compiled without `-mrelocatable' and
- `-mrelocatable-lib' or with modules compiled with the
- `-mrelocatable' options.
-
-`-mno-toc'
-`-mtoc'
- On System V.4 and embedded PowerPC systems do not (do) assume that
- register 2 contains a pointer to a global area pointing to the
- addresses used in the program.
-
-`-mno-traceback'
-`-mtraceback'
- On embedded PowerPC systems do not (do) generate a traceback tag
- before the start of the function. This tag can be used by the
- debugger to identify where the start of a function is.
-
-`-mlittle'
-`-mlittle-endian'
- On System V.4 and embedded PowerPC systems compile code for the
- processor in little endian mode. The `-mlittle-endian' option is
- the same as `-mlittle'.
-
-`-mbig'
-`-mbig-endian'
- On System V.4 and embedded PowerPC systems compile code for the
- processor in big endian mode. The `-mbig-endian' option is the
- same as `-mbig'.
-
-`-mcall-sysv'
- On System V.4 and embedded PowerPC systems compile code using
- calling conventions that adheres to the March 1995 draft of the
- System V Application Binary Interface, PowerPC processor
- supplement. This is the default unless you configured GCC using
- `powerpc-*-eabiaix'.
-
-`-mcall-sysv-eabi'
- Specify both `-mcall-sysv' and `-meabi' options.
-
-`-mcall-sysv-noeabi'
- Specify both `-mcall-sysv' and `-mno-eabi' options.
-
-`-mcall-aix'
- On System V.4 and embedded PowerPC systems compile code using
- calling conventions that are similar to those used on AIX. This
- is the default if you configured GCC using `powerpc-*-eabiaix'.
-
-`-mcall-solaris'
- On System V.4 and embedded PowerPC systems compile code for the
- Solaris operating system.
-
-`-mcall-linux'
- On System V.4 and embedded PowerPC systems compile code for the
- Linux-based GNU system.
-
-`-mprototype'
-`-mno-prototype'
- On System V.4 and embedded PowerPC systems assume that all calls to
- variable argument functions are properly prototyped. Otherwise,
- the compiler must insert an instruction before every non
- prototyped call to set or clear bit 6 of the condition code
- register (CR) to indicate whether floating point values were
- passed in the floating point registers in case the function takes
- a variable arguments. With `-mprototype', only calls to
- prototyped variable argument functions will set or clear the bit.
-
-`-msim'
- On embedded PowerPC systems, assume that the startup module is
- called `sim-crt0.o' and that the standard C libraries are
- `libsim.a' and `libc.a'. This is the default for
- `powerpc-*-eabisim'. configurations.
-
-`-mmvme'
- On embedded PowerPC systems, assume that the startup module is
- called `crt0.o' and the standard C libraries are `libmvme.a' and
- `libc.a'.
-
-`-mads'
- On embedded PowerPC systems, assume that the startup module is
- called `crt0.o' and the standard C libraries are `libads.a' and
- `libc.a'.
-
-`-myellowknife'
- On embedded PowerPC systems, assume that the startup module is
- called `crt0.o' and the standard C libraries are `libyk.a' and
- `libc.a'.
-
-`-memb'
- On embedded PowerPC systems, set the PPC_EMB bit in the ELF flags
- header to indicate that `eabi' extended relocations are used.
-
-`-meabi'
-`-mno-eabi'
- On System V.4 and embedded PowerPC systems do (do not) adhere to
- the Embedded Applications Binary Interface (eabi) which is a set of
- modifications to the System V.4 specifications. Selecting `-meabi'
- means that the stack is aligned to an 8 byte boundary, a function
- `__eabi' is called to from `main' to set up the eabi environment,
- and the `-msdata' option can use both `r2' and `r13' to point to
- two separate small data areas. Selecting `-mno-eabi' means that
- the stack is aligned to a 16 byte boundary, do not call an
- initialization function from `main', and the `-msdata' option will
- only use `r13' to point to a single small data area. The `-meabi'
- option is on by default if you configured GCC using one of the
- `powerpc*-*-eabi*' options.
-
-`-msdata=eabi'
- On System V.4 and embedded PowerPC systems, put small initialized
- `const' global and static data in the `.sdata2' section, which is
- pointed to by register `r2'. Put small initialized non-`const'
- global and static data in the `.sdata' section, which is pointed
- to by register `r13'. Put small uninitialized global and static
- data in the `.sbss' section, which is adjacent to the `.sdata'
- section. The `-msdata=eabi' option is incompatible with the
- `-mrelocatable' option. The `-msdata=eabi' option also sets the
- `-memb' option.
-
-`-msdata=sysv'
- On System V.4 and embedded PowerPC systems, put small global and
- static data in the `.sdata' section, which is pointed to by
- register `r13'. Put small uninitialized global and static data in
- the `.sbss' section, which is adjacent to the `.sdata' section.
- The `-msdata=sysv' option is incompatible with the `-mrelocatable'
- option.
-
-`-msdata=default'
-`-msdata'
- On System V.4 and embedded PowerPC systems, if `-meabi' is used,
- compile code the same as `-msdata=eabi', otherwise compile code the
- same as `-msdata=sysv'.
-
-`-msdata-data'
- On System V.4 and embedded PowerPC systems, put small global and
- static data in the `.sdata' section. Put small uninitialized
- global and static data in the `.sbss' section. Do not use
- register `r13' to address small data however. This is the default
- behavior unless other `-msdata' options are used.
-
-`-msdata=none'
-`-mno-sdata'
- On embedded PowerPC systems, put all initialized global and static
- data in the `.data' section, and all uninitialized data in the
- `.bss' section.
-
-`-G NUM'
- On embbeded PowerPC systems, put global and static items less than
- or equal to NUM bytes into the small data or bss sections instead
- of the normal data or bss section. By default, NUM is 8. The `-G
- NUM' switch is also passed to the linker. All modules should be
- compiled with the same `-G NUM' value.
-
-`-mregnames'
-`-mno-regnames'
- On System V.4 and embedded PowerPC systems do (do not) emit
- register names in the assembly language output using symbolic
- forms.
-
-
-File: gcc.info, Node: RT Options, Next: MIPS Options, Prev: RS/6000 and PowerPC Options, Up: Submodel Options
-
-IBM RT Options
---------------
-
- These `-m' options are defined for the IBM RT PC:
-
-`-min-line-mul'
- Use an in-line code sequence for integer multiplies. This is the
- default.
-
-`-mcall-lib-mul'
- Call `lmul$$' for integer multiples.
-
-`-mfull-fp-blocks'
- Generate full-size floating point data blocks, including the
- minimum amount of scratch space recommended by IBM. This is the
- default.
-
-`-mminimum-fp-blocks'
- Do not include extra scratch space in floating point data blocks.
- This results in smaller code, but slower execution, since scratch
- space must be allocated dynamically.
-
-`-mfp-arg-in-fpregs'
- Use a calling sequence incompatible with the IBM calling
- convention in which floating point arguments are passed in
- floating point registers. Note that `varargs.h' and `stdargs.h'
- will not work with floating point operands if this option is
- specified.
-
-`-mfp-arg-in-gregs'
- Use the normal calling convention for floating point arguments.
- This is the default.
-
-`-mhc-struct-return'
- Return structures of more than one word in memory, rather than in a
- register. This provides compatibility with the MetaWare HighC (hc)
- compiler. Use the option `-fpcc-struct-return' for compatibility
- with the Portable C Compiler (pcc).
-
-`-mnohc-struct-return'
- Return some structures of more than one word in registers, when
- convenient. This is the default. For compatibility with the
- IBM-supplied compilers, use the option `-fpcc-struct-return' or the
- option `-mhc-struct-return'.
-
-
-File: gcc.info, Node: MIPS Options, Next: i386 Options, Prev: RT Options, Up: Submodel Options
-
-MIPS Options
-------------
-
- These `-m' options are defined for the MIPS family of computers:
-
-`-mcpu=CPU TYPE'
- Assume the defaults for the machine type CPU TYPE when scheduling
- instructions. The choices for CPU TYPE are `r2000', `r3000',
- `r4000', `r4400', `r4600', and `r6000'. While picking a specific
- CPU TYPE will schedule things appropriately for that particular
- chip, the compiler will not generate any code that does not meet
- level 1 of the MIPS ISA (instruction set architecture) without the
- `-mips2' or `-mips3' switches being used.
-
-`-mips1'
- Issue instructions from level 1 of the MIPS ISA. This is the
- default. `r3000' is the default CPU TYPE at this ISA level.
-
-`-mips2'
- Issue instructions from level 2 of the MIPS ISA (branch likely,
- square root instructions). `r6000' is the default CPU TYPE at this
- ISA level.
-
-`-mips3'
- Issue instructions from level 3 of the MIPS ISA (64 bit
- instructions). `r4000' is the default CPU TYPE at this ISA level.
- This option does not change the sizes of any of the C data types.
-
-`-mfp32'
- Assume that 32 32-bit floating point registers are available.
- This is the default.
-
-`-mfp64'
- Assume that 32 64-bit floating point registers are available.
- This is the default when the `-mips3' option is used.
-
-`-mgp32'
- Assume that 32 32-bit general purpose registers are available.
- This is the default.
-
-`-mgp64'
- Assume that 32 64-bit general purpose registers are available.
- This is the default when the `-mips3' option is used.
-
-`-mint64'
- Types long, int, and pointer are 64 bits. This works only if
- `-mips3' is also specified.
-
-`-mlong64'
- Types long and pointer are 64 bits, and type int is 32 bits. This
- works only if `-mips3' is also specified.
-
-`-mmips-as'
- Generate code for the MIPS assembler, and invoke `mips-tfile' to
- add normal debug information. This is the default for all
- platforms except for the OSF/1 reference platform, using the
- OSF/rose object format. If the either of the `-gstabs' or
- `-gstabs+' switches are used, the `mips-tfile' program will
- encapsulate the stabs within MIPS ECOFF.
-
-`-mgas'
- Generate code for the GNU assembler. This is the default on the
- OSF/1 reference platform, using the OSF/rose object format. Also,
- this is the default if the configure option `--with-gnu-as' is
- used.
-
-`-msplit-addresses'
-`-mno-split-addresses'
- Generate code to load the high and low parts of address constants
- separately. This allows `gcc' to optimize away redundant loads of
- the high order bits of addresses. This optimization requires GNU
- as and GNU ld. This optimization is enabled by default for some
- embedded targets where GNU as and GNU ld are standard.
-
-`-mrnames'
-`-mno-rnames'
- The `-mrnames' switch says to output code using the MIPS software
- names for the registers, instead of the hardware names (ie, A0
- instead of $4). The only known assembler that supports this option
- is the Algorithmics assembler.
-
-`-mgpopt'
-`-mno-gpopt'
- The `-mgpopt' switch says to write all of the data declarations
- before the instructions in the text section, this allows the MIPS
- assembler to generate one word memory references instead of using
- two words for short global or static data items. This is on by
- default if optimization is selected.
-
-`-mstats'
-`-mno-stats'
- For each non-inline function processed, the `-mstats' switch
- causes the compiler to emit one line to the standard error file to
- print statistics about the program (number of registers saved,
- stack size, etc.).
-
-`-mmemcpy'
-`-mno-memcpy'
- The `-mmemcpy' switch makes all block moves call the appropriate
- string function (`memcpy' or `bcopy') instead of possibly
- generating inline code.
-
-`-mmips-tfile'
-`-mno-mips-tfile'
- The `-mno-mips-tfile' switch causes the compiler not postprocess
- the object file with the `mips-tfile' program, after the MIPS
- assembler has generated it to add debug support. If `mips-tfile'
- is not run, then no local variables will be available to the
- debugger. In addition, `stage2' and `stage3' objects will have
- the temporary file names passed to the assembler embedded in the
- object file, which means the objects will not compare the same.
- The `-mno-mips-tfile' switch should only be used when there are
- bugs in the `mips-tfile' program that prevents compilation.
-
-`-msoft-float'
- Generate output containing library calls for floating point.
- *Warning:* the requisite libraries are not part of GNU CC.
- Normally the facilities of the machine's usual C compiler are
- used, but this can't be done directly in cross-compilation. You
- must make your own arrangements to provide suitable library
- functions for cross-compilation.
-
-`-mhard-float'
- Generate output containing floating point instructions. This is
- the default if you use the unmodified sources.
-
-`-mabicalls'
-`-mno-abicalls'
- Emit (or do not emit) the pseudo operations `.abicalls',
- `.cpload', and `.cprestore' that some System V.4 ports use for
- position independent code.
-
-`-mlong-calls'
-`-mno-long-calls'
- Do all calls with the `JALR' instruction, which requires loading
- up a function's address into a register before the call. You need
- to use this switch, if you call outside of the current 512
- megabyte segment to functions that are not through pointers.
-
-`-mhalf-pic'
-`-mno-half-pic'
- Put pointers to extern references into the data section and load
- them up, rather than put the references in the text section.
-
-`-membedded-pic'
-`-mno-embedded-pic'
- Generate PIC code suitable for some embedded systems. All calls
- are made using PC relative address, and all data is addressed
- using the $gp register. This requires GNU as and GNU ld which do
- most of the work.
-
-`-membedded-data'
-`-mno-embedded-data'
- Allocate variables to the read-only data section first if
- possible, then next in the small data section if possible,
- otherwise in data. This gives slightly slower code than the
- default, but reduces the amount of RAM required when executing,
- and thus may be preferred for some embedded systems.
-
-`-msingle-float'
-`-mdouble-float'
- The `-msingle-float' switch tells gcc to assume that the floating
- point coprocessor only supports single precision operations, as on
- the `r4650' chip. The `-mdouble-float' switch permits gcc to use
- double precision operations. This is the default.
-
-`-mmad'
-`-mno-mad'
- Permit use of the `mad', `madu' and `mul' instructions, as on the
- `r4650' chip.
-
-`-m4650'
- Turns on `-msingle-float', `-mmad', and, at least for now,
- `-mcpu=r4650'.
-
-`-EL'
- Compile code for the processor in little endian mode. The
- requisite libraries are assumed to exist.
-
-`-EB'
- Compile code for the processor in big endian mode. The requisite
- libraries are assumed to exist.
-
-`-G NUM'
- Put global and static items less than or equal to NUM bytes into
- the small data or bss sections instead of the normal data or bss
- section. This allows the assembler to emit one word memory
- reference instructions based on the global pointer (GP or $28),
- instead of the normal two words used. By default, NUM is 8 when
- the MIPS assembler is used, and 0 when the GNU assembler is used.
- The `-G NUM' switch is also passed to the assembler and linker.
- All modules should be compiled with the same `-G NUM' value.
-
-`-nocpp'
- Tell the MIPS assembler to not run it's preprocessor over user
- assembler files (with a `.s' suffix) when assembling them.
-
- These options are defined by the macro `TARGET_SWITCHES' in the
-machine description. The default for the options is also defined by
-that macro, which enables you to change the defaults.
-
-
-File: gcc.info, Node: i386 Options, Next: HPPA Options, Prev: MIPS Options, Up: Submodel Options
-
-Intel 386 Options
------------------
-
- These `-m' options are defined for the i386 family of computers:
-
-`-m486'
-`-m386'
- Control whether or not code is optimized for a 486 instead of an
- 386. Code generated for an 486 will run on a 386 and vice versa.
-
-`-mieee-fp'
-`-mno-ieee-fp'
- Control whether or not the compiler uses IEEE floating point
- comparisons. These handle correctly the case where the result of a
- comparison is unordered.
-
-`-msoft-float'
- Generate output containing library calls for floating point.
- *Warning:* the requisite libraries are not part of GNU CC.
- Normally the facilities of the machine's usual C compiler are
- used, but this can't be done directly in cross-compilation. You
- must make your own arrangements to provide suitable library
- functions for cross-compilation.
-
- On machines where a function returns floating point results in the
- 80387 register stack, some floating point opcodes may be emitted
- even if `-msoft-float' is used.
-
-`-mno-fp-ret-in-387'
- Do not use the FPU registers for return values of functions.
-
- The usual calling convention has functions return values of types
- `float' and `double' in an FPU register, even if there is no FPU.
- The idea is that the operating system should emulate an FPU.
-
- The option `-mno-fp-ret-in-387' causes such values to be returned
- in ordinary CPU registers instead.
-
-`-mno-fancy-math-387'
- Some 387 emulators do not support the `sin', `cos' and `sqrt'
- instructions for the 387. Specify this option to avoid generating
- those instructions. This option is the default on FreeBSD. As of
- revision 2.6.1, these instructions are not generated unless you
- also use the `-ffast-math' switch.
-
-`-malign-double'
-`-mno-align-double'
- Control whether GNU CC aligns `double', `long double', and `long
- long' variables on a two word boundary or a one word boundary.
- Aligning `double' variables on a two word boundary will produce
- code that runs somewhat faster on a `Pentium' at the expense of
- more memory.
-
- *Warning:* if you use the `-malign-double' switch, structures
- containing the above types will be aligned differently than the
- published application binary interface specifications for the 386.
-
-`-msvr3-shlib'
-`-mno-svr3-shlib'
- Control whether GNU CC places uninitialized locals into `bss' or
- `data'. `-msvr3-shlib' places these locals into `bss'. These
- options are meaningful only on System V Release 3.
-
-`-mno-wide-multiply'
-`-mwide-multiply'
- Control whether GNU CC uses the `mul' and `imul' that produce 64
- bit results in `eax:edx' from 32 bit operands to do `long long'
- multiplies and 32-bit division by constants.
-
-`-mrtd'
- Use a different function-calling convention, in which functions
- that take a fixed number of arguments return with the `ret' NUM
- instruction, which pops their arguments while returning. This
- saves one instruction in the caller since there is no need to pop
- the arguments there.
-
- You can specify that an individual function is called with this
- calling sequence with the function attribute `stdcall'. You can
- also override the `-mrtd' option by using the function attribute
- `cdecl'. *Note Function Attributes::
-
- *Warning:* this calling convention is incompatible with the one
- normally used on Unix, so you cannot use it if you need to call
- libraries compiled with the Unix compiler.
-
- Also, you must provide function prototypes for all functions that
- take variable numbers of arguments (including `printf'); otherwise
- incorrect code will be generated for calls to those functions.
-
- In addition, seriously incorrect code will result if you call a
- function with too many arguments. (Normally, extra arguments are
- harmlessly ignored.)
-
-`-mreg-alloc=REGS'
- Control the default allocation order of integer registers. The
- string REGS is a series of letters specifying a register. The
- supported letters are: `a' allocate EAX; `b' allocate EBX; `c'
- allocate ECX; `d' allocate EDX; `S' allocate ESI; `D' allocate
- EDI; `B' allocate EBP.
-
-`-mregparm=NUM'
- Control how many registers are used to pass integer arguments. By
- default, no registers are used to pass arguments, and at most 3
- registers can be used. You can control this behavior for a
- specific function by using the function attribute `regparm'.
- *Note Function Attributes::
-
- *Warning:* if you use this switch, and NUM is nonzero, then you
- must build all modules with the same value, including any
- libraries. This includes the system libraries and startup modules.
-
-`-malign-loops=NUM'
- Align loops to a 2 raised to a NUM byte boundary. If
- `-malign-loops' is not specified, the default is 2.
-
-`-malign-jumps=NUM'
- Align instructions that are only jumped to to a 2 raised to a NUM
- byte boundary. If `-malign-jumps' is not specified, the default is
- 2 if optimizing for a 386, and 4 if optimizing for a 486.
-
-`-malign-functions=NUM'
- Align the start of functions to a 2 raised to NUM byte boundary.
- If `-malign-functions' is not specified, the default is 2 if
- optimizing for a 386, and 4 if optimizing for a 486.
-
-
-File: gcc.info, Node: HPPA Options, Next: Intel 960 Options, Prev: i386 Options, Up: Submodel Options
-
-HPPA Options
-------------
-
- These `-m' options are defined for the HPPA family of computers:
-
-`-mpa-risc-1-0'
- Generate code for a PA 1.0 processor.
-
-`-mpa-risc-1-1'
- Generate code for a PA 1.1 processor.
-
-`-mbig-switch'
- Generate code suitable for big switch tables. Use this option
- only if the assembler/linker complain about out of range branches
- within a switch table.
-
-`-mjump-in-delay'
- Fill delay slots of function calls with unconditional jump
- instructions by modifying the return pointer for the function call
- to be the target of the conditional jump.
-
-`-mdisable-fpregs'
- Prevent floating point registers from being used in any manner.
- This is necessary for compiling kernels which perform lazy context
- switching of floating point registers. If you use this option and
- attempt to perform floating point operations, the compiler will
- abort.
-
-`-mdisable-indexing'
- Prevent the compiler from using indexing address modes. This
- avoids some rather obscure problems when compiling MIG generated
- code under MACH.
-
-`-mno-space-regs'
- Generate code that assumes the target has no space registers.
- This allows GCC to generate faster indirect calls and use unscaled
- index address modes.
-
- Such code is suitable for level 0 PA systems and kernels.
-
-`-mfast-indirect-calls'
- Generate code that assumes calls never cross space boundaries.
- This allows GCC to emit code which performs faster indirect calls.
-
- This option will not work in the presense of shared libraries or
- nested functions.
-
-`-mspace'
- Optimize for space rather than execution time. Currently this only
- enables out of line function prologues and epilogues. This option
- is incompatable with PIC code generation and profiling.
-
-`-mlong-load-store'
- Generate 3-instruction load and store sequences as sometimes
- required by the HP-UX 10 linker. This is equivalent to the `+k'
- option to the HP compilers.
-
-`-mportable-runtime'
- Use the portable calling conventions proposed by HP for ELF
- systems.
-
-`-mgas'
- Enable the use of assembler directives only GAS understands.
-
-`-mschedule=CPU TYPE'
- Schedule code according to the constraints for the machine type
- CPU TYPE. The choices for CPU TYPE are `700' for 7N0 machines,
- `7100' for 7N5 machines, and `7100' for 7N2 machines. `7100' is
- the default for CPU TYPE.
-
- Note the `7100LC' scheduling information is incomplete and using
- `7100LC' often leads to bad schedules. For now it's probably best
- to use `7100' instead of `7100LC' for the 7N2 machines.
-
-`-mlinker-opt'
- Enable the optimization pass in the HPUX linker. Note this makes
- symbolic debugging impossible. It also triggers a bug in the HPUX
- 8 and HPUX 9 linkers in which they give bogus error messages when
- linking some programs.
-
-`-msoft-float'
- Generate output containing library calls for floating point.
- *Warning:* the requisite libraries are not available for all HPPA
- targets. Normally the facilities of the machine's usual C
- compiler are used, but this cannot be done directly in
- cross-compilation. You must make your own arrangements to provide
- suitable library functions for cross-compilation. The embedded
- target `hppa1.1-*-pro' does provide software floating point
- support.
-
- `-msoft-float' changes the calling convention in the output file;
- therefore, it is only useful if you compile *all* of a program with
- this option. In particular, you need to compile `libgcc.a', the
- library that comes with GNU CC, with `-msoft-float' in order for
- this to work.
-
-
-File: gcc.info, Node: Intel 960 Options, Next: DEC Alpha Options, Prev: HPPA Options, Up: Submodel Options
-
-Intel 960 Options
------------------
-
- These `-m' options are defined for the Intel 960 implementations:
-
-`-mCPU TYPE'
- Assume the defaults for the machine type CPU TYPE for some of the
- other options, including instruction scheduling, floating point
- support, and addressing modes. The choices for CPU TYPE are `ka',
- `kb', `mc', `ca', `cf', `sa', and `sb'. The default is `kb'.
-
-`-mnumerics'
-`-msoft-float'
- The `-mnumerics' option indicates that the processor does support
- floating-point instructions. The `-msoft-float' option indicates
- that floating-point support should not be assumed.
-
-`-mleaf-procedures'
-`-mno-leaf-procedures'
- Do (or do not) attempt to alter leaf procedures to be callable
- with the `bal' instruction as well as `call'. This will result in
- more efficient code for explicit calls when the `bal' instruction
- can be substituted by the assembler or linker, but less efficient
- code in other cases, such as calls via function pointers, or using
- a linker that doesn't support this optimization.
-
-`-mtail-call'
-`-mno-tail-call'
- Do (or do not) make additional attempts (beyond those of the
- machine-independent portions of the compiler) to optimize
- tail-recursive calls into branches. You may not want to do this
- because the detection of cases where this is not valid is not
- totally complete. The default is `-mno-tail-call'.
-
-`-mcomplex-addr'
-`-mno-complex-addr'
- Assume (or do not assume) that the use of a complex addressing
- mode is a win on this implementation of the i960. Complex
- addressing modes may not be worthwhile on the K-series, but they
- definitely are on the C-series. The default is currently
- `-mcomplex-addr' for all processors except the CB and CC.
-
-`-mcode-align'
-`-mno-code-align'
- Align code to 8-byte boundaries for faster fetching (or don't
- bother). Currently turned on by default for C-series
- implementations only.
-
-`-mic-compat'
-`-mic2.0-compat'
-`-mic3.0-compat'
- Enable compatibility with iC960 v2.0 or v3.0.
-
-`-masm-compat'
-`-mintel-asm'
- Enable compatibility with the iC960 assembler.
-
-`-mstrict-align'
-`-mno-strict-align'
- Do not permit (do permit) unaligned accesses.
-
-`-mold-align'
- Enable structure-alignment compatibility with Intel's gcc release
- version 1.3 (based on gcc 1.37). This option implies
- `-mstrict-align'.
-
diff --git a/gcc/gcc.info-5 b/gcc/gcc.info-5
deleted file mode 100644
index dcf6541be8c..00000000000
--- a/gcc/gcc.info-5
+++ /dev/null
@@ -1,836 +0,0 @@
-This is Info file gcc.info, produced by Makeinfo version 1.68 from the
-input file gcc.texi.
-
- This file documents the use and the internals of the GNU compiler.
-
- Published by the Free Software Foundation 59 Temple Place - Suite 330
-Boston, MA 02111-1307 USA
-
- Copyright (C) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997 Free
-Software Foundation, Inc.
-
- Permission is granted to make and distribute verbatim copies of this
-manual provided the copyright notice and this permission notice are
-preserved on all copies.
-
- Permission is granted to copy and distribute modified versions of
-this manual under the conditions for verbatim copying, provided also
-that the sections entitled "GNU General Public License," "Funding for
-Free Software," and "Protect Your Freedom--Fight `Look And Feel'" are
-included exactly as in the original, and provided that the entire
-resulting derived work is distributed under the terms of a permission
-notice identical to this one.
-
- Permission is granted to copy and distribute translations of this
-manual into another language, under the above conditions for modified
-versions, except that the sections entitled "GNU General Public
-License," "Funding for Free Software," and "Protect Your Freedom--Fight
-`Look And Feel'", and this permission notice, may be included in
-translations approved by the Free Software Foundation instead of in the
-original English.
-
-
-File: gcc.info, Node: DEC Alpha Options, Next: Clipper Options, Prev: Intel 960 Options, Up: Submodel Options
-
-DEC Alpha Options
------------------
-
- These `-m' options are defined for the DEC Alpha implementations:
-
-`-mno-soft-float'
-`-msoft-float'
- Use (do not use) the hardware floating-point instructions for
- floating-point operations. When `-msoft-float' is specified,
- functions in `libgcc1.c' will be used to perform floating-point
- operations. Unless they are replaced by routines that emulate the
- floating-point operations, or compiled in such a way as to call
- such emulations routines, these routines will issue floating-point
- operations. If you are compiling for an Alpha without
- floating-point operations, you must ensure that the library is
- built so as not to call them.
-
- Note that Alpha implementations without floating-point operations
- are required to have floating-point registers.
-
-`-mfp-reg'
-`-mno-fp-regs'
- Generate code that uses (does not use) the floating-point register
- set. `-mno-fp-regs' implies `-msoft-float'. If the floating-point
- register set is not used, floating point operands are passed in
- integer registers as if they were integers and floating-point
- results are passed in $0 instead of $f0. This is a non-standard
- calling sequence, so any function with a floating-point argument
- or return value called by code compiled with `-mno-fp-regs' must
- also be compiled with that option.
-
- A typical use of this option is building a kernel that does not
- use, and hence need not save and restore, any floating-point
- registers.
-
-`-mieee'
- The Alpha architecture implements floating-point hardware
- optimized for maximum performance. It is mostly compliant with
- the IEEE floating point standard. However, for full compliance,
- software assistance is required. This option generates code fully
- IEEE compliant code *except* that the INEXACT FLAG is not
- maintained (see below). If this option is turned on, the CPP
- macro `_IEEE_FP' is defined during compilation. The option is a
- shorthand for: `-D_IEEE_FP -mfp-trap-mode=su -mtrap-precision=i
- -mieee-conformant'. The resulting code is less efficient but is
- able to correctly support denormalized numbers and exceptional
- IEEE values such as not-a-number and plus/minus infinity. Other
- Alpha compilers call this option `-ieee_with_no_inexact'.
-
-`-mieee-with-inexact'
- This is like `-mieee' except the generated code also maintains the
- IEEE INEXACT FLAG. Turning on this option causes the generated
- code to implement fully-compliant IEEE math. The option is a
- shorthand for `-D_IEEE_FP -D_IEEE_FP_INEXACT' plus the three
- following: `-mieee-conformant', `-mfp-trap-mode=sui', and
- `-mtrap-precision=i'. On some Alpha implementations the resulting
- code may execute significantly slower than the code generated by
- default. Since there is very little code that depends on the
- INEXACT FLAG, you should normally not specify this option. Other
- Alpha compilers call this option `-ieee_with_inexact'.
-
-`-mfp-trap-mode=TRAP MODE'
- This option controls what floating-point related traps are enabled.
- Other Alpha compilers call this option `-fptm 'TRAP MODE. The
- trap mode can be set to one of four values:
-
- `n'
- This is the default (normal) setting. The only traps that
- are enabled are the ones that cannot be disabled in software
- (e.g., division by zero trap).
-
- `u'
- In addition to the traps enabled by `n', underflow traps are
- enabled as well.
-
- `su'
- Like `su', but the instructions are marked to be safe for
- software completion (see Alpha architecture manual for
- details).
-
- `sui'
- Like `su', but inexact traps are enabled as well.
-
-`-mfp-rounding-mode=ROUNDING MODE'
- Selects the IEEE rounding mode. Other Alpha compilers call this
- option `-fprm 'ROUNDING MODE. The ROUNDING MODE can be one of:
-
- `n'
- Normal IEEE rounding mode. Floating point numbers are
- rounded towards the nearest machine number or towards the
- even machine number in case of a tie.
-
- `m'
- Round towards minus infinity.
-
- `c'
- Chopped rounding mode. Floating point numbers are rounded
- towards zero.
-
- `d'
- Dynamic rounding mode. A field in the floating point control
- register (FPCR, see Alpha architecture reference manual)
- controls the rounding mode in effect. The C library
- initializes this register for rounding towards plus infinity.
- Thus, unless your program modifies the FPCR, `d' corresponds
- to round towards plus infinity.
-
-`-mtrap-precision=TRAP PRECISION'
- In the Alpha architecture, floating point traps are imprecise.
- This means without software assistance it is impossible to recover
- from a floating trap and program execution normally needs to be
- terminated. GNU CC can generate code that can assist operating
- system trap handlers in determining the exact location that caused
- a floating point trap. Depending on the requirements of an
- application, different levels of precisions can be selected:
-
- `p'
- Program precision. This option is the default and means a
- trap handler can only identify which program caused a
- floating point exception.
-
- `f'
- Function precision. The trap handler can determine the
- function that caused a floating point exception.
-
- `i'
- Instruction precision. The trap handler can determine the
- exact instruction that caused a floating point exception.
-
- Other Alpha compilers provide the equivalent options called
- `-scope_safe' and `-resumption_safe'.
-
-`-mieee-conformant'
- This option marks the generated code as IEEE conformant. You must
- not use this option unless you also specify `-mtrap-precision=i'
- and either `-mfp-trap-mode=su' or `-mfp-trap-mode=sui'. Its only
- effect is to emit the line `.eflag 48' in the function prologue of
- the generated assembly file. Under DEC Unix, this has the effect
- that IEEE-conformant math library routines will be linked in.
-
-`-mbuild-constants'
- Normally GNU CC examines a 32- or 64-bit integer constant to see
- if it can construct it from smaller constants in two or three
- instructions. If it cannot, it will output the constant as a
- literal and generate code to load it from the data segement at
- runtime.
-
- Use this option to require GNU CC to construct *all* integer
- constants using code, even if it takes more instructions (the
- maximum is six).
-
- You would typically use this option to build a shared library
- dynamic loader. Itself a shared library, it must relocate itself
- in memory before it can find the variables and constants in its
- own data segment.
-
-
-File: gcc.info, Node: Clipper Options, Next: H8/300 Options, Prev: DEC Alpha Options, Up: Submodel Options
-
-Clipper Options
----------------
-
- These `-m' options are defined for the Clipper implementations:
-
-`-mc300'
- Produce code for a C300 Clipper processor. This is the default.
-
-`-mc400'
- Produce code for a C400 Clipper processor i.e. use floating point
- registers f8..f15.
-
-
-File: gcc.info, Node: H8/300 Options, Next: SH Options, Prev: Clipper Options, Up: Submodel Options
-
-H8/300 Options
---------------
-
- These `-m' options are defined for the H8/300 implementations:
-
-`-mrelax'
- Shorten some address references at link time, when possible; uses
- the linker option `-relax'. *Note `ld' and the H8/300:
- (ld.info)H8/300, for a fuller description.
-
-`-mh'
- Generate code for the H8/300H.
-
-`-ms'
- Generate code for the H8/S.
-
-`-mint32'
- Make `int' data 32 bits by default.
-
-`-malign-300'
- On the h8/300h, use the same alignment rules as for the h8/300.
- The default for the h8/300h is to align longs and floats on 4 byte
- boundaries. `-malign-300' causes them to be aligned on 2 byte
- boundaries. This option has no effect on the h8/300.
-
-
-File: gcc.info, Node: SH Options, Next: System V Options, Prev: H8/300 Options, Up: Submodel Options
-
-SH Options
-----------
-
- These `-m' options are defined for the SH implementations:
-
-`-m1'
- Generate code for the SH1.
-
-`-m2'
- Generate code for the SH2.
-
-`-m3'
- Generate code for the SH3.
-
-`-m3e'
- Generate code for the SH3e.
-
-`-mb'
- Compile code for the processor in big endian mode.
-
-`-ml'
- Compile code for the processor in little endian mode.
-
-`-mrelax'
- Shorten some address references at link time, when possible; uses
- the linker option `-relax'.
-
-
-File: gcc.info, Node: System V Options, Next: V850 Options, Prev: SH Options, Up: Submodel Options
-
-Options for System V
---------------------
-
- These additional options are available on System V Release 4 for
-compatibility with other compilers on those systems:
-
-`-G'
- Create a shared object. It is recommended that `-symbolic' or
- `-shared' be used instead.
-
-`-Qy'
- Identify the versions of each tool used by the compiler, in a
- `.ident' assembler directive in the output.
-
-`-Qn'
- Refrain from adding `.ident' directives to the output file (this is
- the default).
-
-`-YP,DIRS'
- Search the directories DIRS, and no others, for libraries
- specified with `-l'.
-
-`-Ym,DIR'
- Look in the directory DIR to find the M4 preprocessor. The
- assembler uses this option.
-
-
-File: gcc.info, Node: V850 Options, Prev: System V Options, Up: Submodel Options
-
-V850 Options
-------------
-
- These `-m' options are defined for V850 implementations:
-
-`-mlong-calls'
-`-mno-long-calls'
- Treat all calls as being far away (near). If calls are assumed to
- be far away, the compiler will always load the functions address
- up into a register, and call indirect through the pointer.
-
-`-mno-ep'
-
-`-mep'
- Do not optimize (do optimize) basic blocks that use the same index
- pointer 4 or more times to copy pointer into the `ep' register, and
- use the shorter `sld' and `sst' instructions. The `-mep' option
- is on by default if you optimize.
-
-`-mno-prolog-function'
-`-mprolog-function'
- Do not use (do use) external functions to save and restore
- registers at the prolog and epilog of a function. The external
- functions are slower, but use less code space if more than one
- function saves the same number of registers. The
- `-mprolog-function' option is on by default if you optimize.
-
-`-mspace'
- Try to make the code as small as possible. At present, this just
- turns on the `-mep' and `-mprolog-function' options.
-
-`-mtda=N'
- Put static or global variables whose size is N bytes or less into
- the tiny data area that register `ep' points to. The tiny data
- area can hold up to 256 bytes in total (128 bytes for byte
- references).
-
-`-msda=N'
- Put static or global variables whose size is N bytes or less into
- the small data area that register `gp' points to. The small data
- area can hold up to 64 kilobytes.
-
-`-mzda=N'
- Put static or global variables whose size is N bytes or less into
- the first 32 kilobytes of memory.
-
-`-mv850'
- Specify that the target processor is the V850.
-
-`-mbig-switch'
- Generate code suitable for big switch tables. Use this option
- only if the assembler/linker complain about out of range branches
- within a switch table.
-
-
-File: gcc.info, Node: Code Gen Options, Next: Environment Variables, Prev: Submodel Options, Up: Invoking GCC
-
-Options for Code Generation Conventions
-=======================================
-
- These machine-independent options control the interface conventions
-used in code generation.
-
- Most of them have both positive and negative forms; the negative form
-of `-ffoo' would be `-fno-foo'. In the table below, only one of the
-forms is listed--the one which is not the default. You can figure out
-the other form by either removing `no-' or adding it.
-
-`-fpcc-struct-return'
- Return "short" `struct' and `union' values in memory like longer
- ones, rather than in registers. This convention is less
- efficient, but it has the advantage of allowing intercallability
- between GNU CC-compiled files and files compiled with other
- compilers.
-
- The precise convention for returning structures in memory depends
- on the target configuration macros.
-
- Short structures and unions are those whose size and alignment
- match that of some integer type.
-
-`-freg-struct-return'
- Use the convention that `struct' and `union' values are returned
- in registers when possible. This is more efficient for small
- structures than `-fpcc-struct-return'.
-
- If you specify neither `-fpcc-struct-return' nor its contrary
- `-freg-struct-return', GNU CC defaults to whichever convention is
- standard for the target. If there is no standard convention, GNU
- CC defaults to `-fpcc-struct-return', except on targets where GNU
- CC is the principal compiler. In those cases, we can choose the
- standard, and we chose the more efficient register return
- alternative.
-
-`-fshort-enums'
- Allocate to an `enum' type only as many bytes as it needs for the
- declared range of possible values. Specifically, the `enum' type
- will be equivalent to the smallest integer type which has enough
- room.
-
-`-fshort-double'
- Use the same size for `double' as for `float'.
-
-`-fshared-data'
- Requests that the data and non-`const' variables of this
- compilation be shared data rather than private data. The
- distinction makes sense only on certain operating systems, where
- shared data is shared between processes running the same program,
- while private data exists in one copy per process.
-
-`-fno-common'
- Allocate even uninitialized global variables in the bss section of
- the object file, rather than generating them as common blocks.
- This has the effect that if the same variable is declared (without
- `extern') in two different compilations, you will get an error
- when you link them. The only reason this might be useful is if
- you wish to verify that the program will work on other systems
- which always work this way.
-
-`-fno-ident'
- Ignore the `#ident' directive.
-
-`-fno-gnu-linker'
- Do not output global initializations (such as C++ constructors and
- destructors) in the form used by the GNU linker (on systems where
- the GNU linker is the standard method of handling them). Use this
- option when you want to use a non-GNU linker, which also requires
- using the `collect2' program to make sure the system linker
- includes constructors and destructors. (`collect2' is included in
- the GNU CC distribution.) For systems which *must* use
- `collect2', the compiler driver `gcc' is configured to do this
- automatically.
-
-`-finhibit-size-directive'
- Don't output a `.size' assembler directive, or anything else that
- would cause trouble if the function is split in the middle, and the
- two halves are placed at locations far apart in memory. This
- option is used when compiling `crtstuff.c'; you should not need to
- use it for anything else.
-
-`-fverbose-asm'
- Put extra commentary information in the generated assembly code to
- make it more readable. This option is generally only of use to
- those who actually need to read the generated assembly code
- (perhaps while debugging the compiler itself).
-
- `-fverbose-asm' is the default. `-fno-verbose-asm' causes the
- extra information to be omitted and is useful when comparing two
- assembler files.
-
-`-fvolatile'
- Consider all memory references through pointers to be volatile.
-
-`-fvolatile-global'
- Consider all memory references to extern and global data items to
- be volatile.
-
-`-fpic'
- Generate position-independent code (PIC) suitable for use in a
- shared library, if supported for the target machine. Such code
- accesses all constant addresses through a global offset table
- (GOT). The dynamic loader resolves the GOT entries when the
- program starts (the dynamic loader is not part of GNU CC; it is
- part of the operating system). If the GOT size for the linked
- executable exceeds a machine-specific maximum size, you get an
- error message from the linker indicating that `-fpic' does not
- work; in that case, recompile with `-fPIC' instead. (These
- maximums are 16k on the m88k, 8k on the Sparc, and 32k on the m68k
- and RS/6000. The 386 has no such limit.)
-
- Position-independent code requires special support, and therefore
- works only on certain machines. For the 386, GNU CC supports PIC
- for System V but not for the Sun 386i. Code generated for the IBM
- RS/6000 is always position-independent.
-
-`-fPIC'
- If supported for the target machine, emit position-independent
- code, suitable for dynamic linking and avoiding any limit on the
- size of the global offset table. This option makes a difference
- on the m68k, m88k, and the Sparc.
-
- Position-independent code requires special support, and therefore
- works only on certain machines.
-
-`-ffixed-REG'
- Treat the register named REG as a fixed register; generated code
- should never refer to it (except perhaps as a stack pointer, frame
- pointer or in some other fixed role).
-
- REG must be the name of a register. The register names accepted
- are machine-specific and are defined in the `REGISTER_NAMES' macro
- in the machine description macro file.
-
- This flag does not have a negative form, because it specifies a
- three-way choice.
-
-`-fcall-used-REG'
- Treat the register named REG as an allocatable register that is
- clobbered by function calls. It may be allocated for temporaries
- or variables that do not live across a call. Functions compiled
- this way will not save and restore the register REG.
-
- Use of this flag for a register that has a fixed pervasive role in
- the machine's execution model, such as the stack pointer or frame
- pointer, will produce disastrous results.
-
- This flag does not have a negative form, because it specifies a
- three-way choice.
-
-`-fcall-saved-REG'
- Treat the register named REG as an allocatable register saved by
- functions. It may be allocated even for temporaries or variables
- that live across a call. Functions compiled this way will save
- and restore the register REG if they use it.
-
- Use of this flag for a register that has a fixed pervasive role in
- the machine's execution model, such as the stack pointer or frame
- pointer, will produce disastrous results.
-
- A different sort of disaster will result from the use of this flag
- for a register in which function values may be returned.
-
- This flag does not have a negative form, because it specifies a
- three-way choice.
-
-`-fpack-struct'
- Pack all structure members together without holes. Usually you
- would not want to use this option, since it makes the code
- suboptimal, and the offsets of structure members won't agree with
- system libraries.
-
-`-fcheck-memory-usage'
- Generate extra code to check each memory access. GNU CC will
- generate code that is suitable for a detector of bad memory
- accesses such as `Checker'. If you specify this option, you can
- not use the `asm' or `__asm__' keywords.
-
- You must also specify this option when you compile functions you
- call that have side effects. If you do not, you may get erronous
- messages from the detector. Normally, you should compile all
- your code with this option. If you use functions from a library
- that have side-effects (such as `read'), you may not be able to
- recompile the library and specify this option. In that case, you
- can enable the `-fprefix-function-name' option, which requests GNU
- CC to encapsulate your code and make other functions look as if
- they were compiled with `-fcheck-memory-usage'. This is done by
- calling "stubs", which are provided by the detector. If you
- cannot find or build stubs for every function you call, you may
- have to specify `-fcheck-memory-usage' without
- `-fprefix-function-name'.
-
-`-fprefix-function-name'
- Request GNU CC to add a prefix to the symbols generated for
- function names. GNU CC adds a prefix to the names of functions
- defined as well as functions called. Code compiled with this
- option and code compiled without the option can't be linked
- together, unless or stubs are used.
-
- If you compile the following code with `-fprefix-function-name'
- extern void bar (int);
- void
- foo (int a)
- {
- return bar (a + 5);
-
- }
-
- GNU CC will compile the code as if it was written:
- extern void prefix_bar (int);
- void
- prefix_foo (int a)
- {
- return prefix_bar (a + 5);
- }
- This option is designed to be used with `-fcheck-memory-usage'.
-
-`-fstack-check'
- Generate code to verify that you do not go beyond the boundary of
- the stack. You should specify this flag if you are running in an
- environment with multiple threads, but only rarely need to specify
- it in a single-threaded environment since stack overflow is
- automatically detected on nearly all systems if there is only one
- stack.
-
-`+e0'
-`+e1'
- Control whether virtual function definitions in classes are used to
- generate code, or only to define interfaces for their callers.
- (C++ only).
-
- These options are provided for compatibility with `cfront' 1.x
- usage; the recommended alternative GNU C++ usage is in flux.
- *Note Declarations and Definitions in One Header: C++ Interface.
-
- With `+e0', virtual function definitions in classes are declared
- `extern'; the declaration is used only as an interface
- specification, not to generate code for the virtual functions (in
- this compilation).
-
- With `+e1', G++ actually generates the code implementing virtual
- functions defined in the code, and makes them publicly visible.
-
-
-File: gcc.info, Node: Environment Variables, Next: Running Protoize, Prev: Code Gen Options, Up: Invoking GCC
-
-Environment Variables Affecting GNU CC
-======================================
-
- This section describes several environment variables that affect how
-GNU CC operates. They work by specifying directories or prefixes to use
-when searching for various kinds of files.
-
- Note that you can also specify places to search using options such as
-`-B', `-I' and `-L' (*note Directory Options::.). These take
-precedence over places specified using environment variables, which in
-turn take precedence over those specified by the configuration of GNU
-CC. *Note Driver::.
-
-`TMPDIR'
- If `TMPDIR' is set, it specifies the directory to use for temporary
- files. GNU CC uses temporary files to hold the output of one
- stage of compilation which is to be used as input to the next
- stage: for example, the output of the preprocessor, which is the
- input to the compiler proper.
-
-`GCC_EXEC_PREFIX'
- If `GCC_EXEC_PREFIX' is set, it specifies a prefix to use in the
- names of the subprograms executed by the compiler. No slash is
- added when this prefix is combined with the name of a subprogram,
- but you can specify a prefix that ends with a slash if you wish.
-
- If GNU CC cannot find the subprogram using the specified prefix, it
- tries looking in the usual places for the subprogram.
-
- The default value of `GCC_EXEC_PREFIX' is `PREFIX/lib/gcc-lib/'
- where PREFIX is the value of `prefix' when you ran the `configure'
- script.
-
- Other prefixes specified with `-B' take precedence over this
- prefix.
-
- This prefix is also used for finding files such as `crt0.o' that
- are used for linking.
-
- In addition, the prefix is used in an unusual way in finding the
- directories to search for header files. For each of the standard
- directories whose name normally begins with
- `/usr/local/lib/gcc-lib' (more precisely, with the value of
- `GCC_INCLUDE_DIR'), GNU CC tries replacing that beginning with the
- specified prefix to produce an alternate directory name. Thus,
- with `-Bfoo/', GNU CC will search `foo/bar' where it would
- normally search `/usr/local/lib/bar'. These alternate directories
- are searched first; the standard directories come next.
-
-`COMPILER_PATH'
- The value of `COMPILER_PATH' is a colon-separated list of
- directories, much like `PATH'. GNU CC tries the directories thus
- specified when searching for subprograms, if it can't find the
- subprograms using `GCC_EXEC_PREFIX'.
-
-`LIBRARY_PATH'
- The value of `LIBRARY_PATH' is a colon-separated list of
- directories, much like `PATH'. When configured as a native
- compiler, GNU CC tries the directories thus specified when
- searching for special linker files, if it can't find them using
- `GCC_EXEC_PREFIX'. Linking using GNU CC also uses these
- directories when searching for ordinary libraries for the `-l'
- option (but directories specified with `-L' come first).
-
-`C_INCLUDE_PATH'
-`CPLUS_INCLUDE_PATH'
-`OBJC_INCLUDE_PATH'
- These environment variables pertain to particular languages. Each
- variable's value is a colon-separated list of directories, much
- like `PATH'. When GNU CC searches for header files, it tries the
- directories listed in the variable for the language you are using,
- after the directories specified with `-I' but before the standard
- header file directories.
-
-`DEPENDENCIES_OUTPUT'
- If this variable is set, its value specifies how to output
- dependencies for Make based on the header files processed by the
- compiler. This output looks much like the output from the `-M'
- option (*note Preprocessor Options::.), but it goes to a separate
- file, and is in addition to the usual results of compilation.
-
- The value of `DEPENDENCIES_OUTPUT' can be just a file name, in
- which case the Make rules are written to that file, guessing the
- target name from the source file name. Or the value can have the
- form `FILE TARGET', in which case the rules are written to file
- FILE using TARGET as the target name.
-
-
-File: gcc.info, Node: Running Protoize, Prev: Environment Variables, Up: Invoking GCC
-
-Running Protoize
-================
-
- The program `protoize' is an optional part of GNU C. You can use it
-to add prototypes to a program, thus converting the program to ANSI C
-in one respect. The companion program `unprotoize' does the reverse:
-it removes argument types from any prototypes that are found.
-
- When you run these programs, you must specify a set of source files
-as command line arguments. The conversion programs start out by
-compiling these files to see what functions they define. The
-information gathered about a file FOO is saved in a file named `FOO.X'.
-
- After scanning comes actual conversion. The specified files are all
-eligible to be converted; any files they include (whether sources or
-just headers) are eligible as well.
-
- But not all the eligible files are converted. By default,
-`protoize' and `unprotoize' convert only source and header files in the
-current directory. You can specify additional directories whose files
-should be converted with the `-d DIRECTORY' option. You can also
-specify particular files to exclude with the `-x FILE' option. A file
-is converted if it is eligible, its directory name matches one of the
-specified directory names, and its name within the directory has not
-been excluded.
-
- Basic conversion with `protoize' consists of rewriting most function
-definitions and function declarations to specify the types of the
-arguments. The only ones not rewritten are those for varargs functions.
-
- `protoize' optionally inserts prototype declarations at the
-beginning of the source file, to make them available for any calls that
-precede the function's definition. Or it can insert prototype
-declarations with block scope in the blocks where undeclared functions
-are called.
-
- Basic conversion with `unprotoize' consists of rewriting most
-function declarations to remove any argument types, and rewriting
-function definitions to the old-style pre-ANSI form.
-
- Both conversion programs print a warning for any function
-declaration or definition that they can't convert. You can suppress
-these warnings with `-q'.
-
- The output from `protoize' or `unprotoize' replaces the original
-source file. The original file is renamed to a name ending with
-`.save'. If the `.save' file already exists, then the source file is
-simply discarded.
-
- `protoize' and `unprotoize' both depend on GNU CC itself to scan the
-program and collect information about the functions it uses. So
-neither of these programs will work until GNU CC is installed.
-
- Here is a table of the options you can use with `protoize' and
-`unprotoize'. Each option works with both programs unless otherwise
-stated.
-
-`-B DIRECTORY'
- Look for the file `SYSCALLS.c.X' in DIRECTORY, instead of the
- usual directory (normally `/usr/local/lib'). This file contains
- prototype information about standard system functions. This option
- applies only to `protoize'.
-
-`-c COMPILATION-OPTIONS'
- Use COMPILATION-OPTIONS as the options when running `gcc' to
- produce the `.X' files. The special option `-aux-info' is always
- passed in addition, to tell `gcc' to write a `.X' file.
-
- Note that the compilation options must be given as a single
- argument to `protoize' or `unprotoize'. If you want to specify
- several `gcc' options, you must quote the entire set of
- compilation options to make them a single word in the shell.
-
- There are certain `gcc' arguments that you cannot use, because they
- would produce the wrong kind of output. These include `-g', `-O',
- `-c', `-S', and `-o' If you include these in the
- COMPILATION-OPTIONS, they are ignored.
-
-`-C'
- Rename files to end in `.C' instead of `.c'. This is convenient
- if you are converting a C program to C++. This option applies
- only to `protoize'.
-
-`-g'
- Add explicit global declarations. This means inserting explicit
- declarations at the beginning of each source file for each function
- that is called in the file and was not declared. These
- declarations precede the first function definition that contains a
- call to an undeclared function. This option applies only to
- `protoize'.
-
-`-i STRING'
- Indent old-style parameter declarations with the string STRING.
- This option applies only to `protoize'.
-
- `unprotoize' converts prototyped function definitions to old-style
- function definitions, where the arguments are declared between the
- argument list and the initial `{'. By default, `unprotoize' uses
- five spaces as the indentation. If you want to indent with just
- one space instead, use `-i " "'.
-
-`-k'
- Keep the `.X' files. Normally, they are deleted after conversion
- is finished.
-
-`-l'
- Add explicit local declarations. `protoize' with `-l' inserts a
- prototype declaration for each function in each block which calls
- the function without any declaration. This option applies only to
- `protoize'.
-
-`-n'
- Make no real changes. This mode just prints information about the
- conversions that would have been done without `-n'.
-
-`-N'
- Make no `.save' files. The original files are simply deleted.
- Use this option with caution.
-
-`-p PROGRAM'
- Use the program PROGRAM as the compiler. Normally, the name `gcc'
- is used.
-
-`-q'
- Work quietly. Most warnings are suppressed.
-
-`-v'
- Print the version number, just like `-v' for `gcc'.
-
- If you need special compiler options to compile one of your program's
-source files, then you should generate that file's `.X' file specially,
-by running `gcc' on that source file with the appropriate options and
-the option `-aux-info'. Then run `protoize' on the entire set of
-files. `protoize' will use the existing `.X' file because it is newer
-than the source file. For example:
-
- gcc -Dfoo=bar file1.c -aux-info
- protoize *.c
-
-You need to include the special files along with the rest in the
-`protoize' command, even though their `.X' files already exist, because
-otherwise they won't get converted.
-
- *Note Protoize Caveats::, for more information on how to use
-`protoize' successfully.
-
diff --git a/gcc/gcc.info-6 b/gcc/gcc.info-6
deleted file mode 100644
index e8e391957c8..00000000000
--- a/gcc/gcc.info-6
+++ /dev/null
@@ -1,537 +0,0 @@
-This is Info file gcc.info, produced by Makeinfo version 1.68 from the
-input file gcc.texi.
-
- This file documents the use and the internals of the GNU compiler.
-
- Published by the Free Software Foundation 59 Temple Place - Suite 330
-Boston, MA 02111-1307 USA
-
- Copyright (C) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997 Free
-Software Foundation, Inc.
-
- Permission is granted to make and distribute verbatim copies of this
-manual provided the copyright notice and this permission notice are
-preserved on all copies.
-
- Permission is granted to copy and distribute modified versions of
-this manual under the conditions for verbatim copying, provided also
-that the sections entitled "GNU General Public License," "Funding for
-Free Software," and "Protect Your Freedom--Fight `Look And Feel'" are
-included exactly as in the original, and provided that the entire
-resulting derived work is distributed under the terms of a permission
-notice identical to this one.
-
- Permission is granted to copy and distribute translations of this
-manual into another language, under the above conditions for modified
-versions, except that the sections entitled "GNU General Public
-License," "Funding for Free Software," and "Protect Your Freedom--Fight
-`Look And Feel'", and this permission notice, may be included in
-translations approved by the Free Software Foundation instead of in the
-original English.
-
-
-File: gcc.info, Node: Installation, Next: C Extensions, Prev: Invoking GCC, Up: Top
-
-Installing GNU CC
-*****************
-
-* Menu:
-
-* Configurations:: Configurations Supported by GNU CC.
-* Other Dir:: Compiling in a separate directory (not where the source is).
-* Cross-Compiler:: Building and installing a cross-compiler.
-* Sun Install:: See below for installation on the Sun.
-* VMS Install:: See below for installation on VMS.
-* Collect2:: How `collect2' works; how it finds `ld'.
-* Header Dirs:: Understanding the standard header file directories.
-
- Here is the procedure for installing GNU CC on a Unix system. See
-*Note VMS Install::, for VMS systems. In this section we assume you
-compile in the same directory that contains the source files; see *Note
-Other Dir::, to find out how to compile in a separate directory on Unix
-systems.
-
- You cannot install GNU C by itself on MSDOS; it will not compile
-under any MSDOS compiler except itself. You need to get the complete
-compilation package DJGPP, which includes binaries as well as sources,
-and includes all the necessary compilation tools and libraries.
-
- 1. If you have built GNU CC previously in the same directory for a
- different target machine, do `make distclean' to delete all files
- that might be invalid. One of the files this deletes is
- `Makefile'; if `make distclean' complains that `Makefile' does not
- exist, it probably means that the directory is already suitably
- clean.
-
- 2. On a System V release 4 system, make sure `/usr/bin' precedes
- `/usr/ucb' in `PATH'. The `cc' command in `/usr/ucb' uses
- libraries which have bugs.
-
- 3. Specify the host, build and target machine configurations. You do
- this by running the file `configure'.
-
- The "build" machine is the system which you are using, the "host"
- machine is the system where you want to run the resulting compiler
- (normally the build machine), and the "target" machine is the
- system for which you want the compiler to generate code.
-
- If you are building a compiler to produce code for the machine it
- runs on (a native compiler), you normally do not need to specify
- any operands to `configure'; it will try to guess the type of
- machine you are on and use that as the build, host and target
- machines. So you don't need to specify a configuration when
- building a native compiler unless `configure' cannot figure out
- what your configuration is or guesses wrong.
-
- In those cases, specify the build machine's "configuration name"
- with the `--build' option; the host and target will default to be
- the same as the build machine. (If you are building a
- cross-compiler, see *Note Cross-Compiler::.)
-
- Here is an example:
-
- ./configure --build=sparc-sun-sunos4.1
-
- A configuration name may be canonical or it may be more or less
- abbreviated.
-
- A canonical configuration name has three parts, separated by
- dashes. It looks like this: `CPU-COMPANY-SYSTEM'. (The three
- parts may themselves contain dashes; `configure' can figure out
- which dashes serve which purpose.) For example,
- `m68k-sun-sunos4.1' specifies a Sun 3.
-
- You can also replace parts of the configuration by nicknames or
- aliases. For example, `sun3' stands for `m68k-sun', so
- `sun3-sunos4.1' is another way to specify a Sun 3. You can also
- use simply `sun3-sunos', since the version of SunOS is assumed by
- default to be version 4.
-
- You can specify a version number after any of the system types,
- and some of the CPU types. In most cases, the version is
- irrelevant, and will be ignored. So you might as well specify the
- version if you know it.
-
- See *Note Configurations::, for a list of supported configuration
- names and notes on many of the configurations. You should check
- the notes in that section before proceeding any further with the
- installation of GNU CC.
-
- There are four additional options you can specify independently to
- describe variant hardware and software configurations. These are
- `--with-gnu-as', `--with-gnu-ld', `--with-stabs' and `--nfp'.
-
- `--with-gnu-as'
- If you will use GNU CC with the GNU assembler (GAS), you
- should declare this by using the `--with-gnu-as' option when
- you run `configure'.
-
- Using this option does not install GAS. It only modifies the
- output of GNU CC to work with GAS. Building and installing
- GAS is up to you.
-
- Conversely, if you *do not* wish to use GAS and do not specify
- `--with-gnu-as' when building GNU CC, it is up to you to make
- sure that GAS is not installed. GNU CC searches for a
- program named `as' in various directories; if the program it
- finds is GAS, then it runs GAS. If you are not sure where
- GNU CC finds the assembler it is using, try specifying `-v'
- when you run it.
-
- The systems where it makes a difference whether you use GAS
- are
- `hppa1.0-ANY-ANY', `hppa1.1-ANY-ANY', `i386-ANY-sysv',
- `i386-ANY-isc',
- `i860-ANY-bsd', `m68k-bull-sysv',
- `m68k-hp-hpux', `m68k-sony-bsd',
- `m68k-altos-sysv', `m68000-hp-hpux',
- `m68000-att-sysv', `ANY-lynx-lynxos', and `mips-ANY'). On
- any other system, `--with-gnu-as' has no effect.
-
- On the systems listed above (except for the HP-PA, for ISC on
- the 386, and for `mips-sgi-irix5.*'), if you use GAS, you
- should also use the GNU linker (and specify `--with-gnu-ld').
-
- `--with-gnu-ld'
- Specify the option `--with-gnu-ld' if you plan to use the GNU
- linker with GNU CC.
-
- This option does not cause the GNU linker to be installed; it
- just modifies the behavior of GNU CC to work with the GNU
- linker. Specifically, it inhibits the installation of
- `collect2', a program which otherwise serves as a front-end
- for the system's linker on most configurations.
-
- `--with-stabs'
- On MIPS based systems and on Alphas, you must specify whether
- you want GNU CC to create the normal ECOFF debugging format,
- or to use BSD-style stabs passed through the ECOFF symbol
- table. The normal ECOFF debug format cannot fully handle
- languages other than C. BSD stabs format can handle other
- languages, but it only works with the GNU debugger GDB.
-
- Normally, GNU CC uses the ECOFF debugging format by default;
- if you prefer BSD stabs, specify `--with-stabs' when you
- configure GNU CC.
-
- No matter which default you choose when you configure GNU CC,
- the user can use the `-gcoff' and `-gstabs+' options to
- specify explicitly the debug format for a particular
- compilation.
-
- `--with-stabs' is meaningful on the ISC system on the 386,
- also, if `--with-gas' is used. It selects use of stabs
- debugging information embedded in COFF output. This kind of
- debugging information supports C++ well; ordinary COFF
- debugging information does not.
-
- `--with-stabs' is also meaningful on 386 systems running
- SVR4. It selects use of stabs debugging information embedded
- in ELF output. The C++ compiler currently (2.6.0) does not
- support the DWARF debugging information normally used on 386
- SVR4 platforms; stabs provide a workable alternative. This
- requires gas and gdb, as the normal SVR4 tools can not
- generate or interpret stabs.
-
- `--nfp'
- On certain systems, you must specify whether the machine has
- a floating point unit. These systems include
- `m68k-sun-sunosN' and `m68k-isi-bsd'. On any other system,
- `--nfp' currently has no effect, though perhaps there are
- other systems where it could usefully make a difference.
-
- `--enable-objcthreads=TYPE'
- Certain systems, notably Linux-based GNU systems, can't be
- relied on to supply a threads facility for the Objective C
- runtime and so will default to single-threaded runtime. They
- may, however, have a library threads implementation
- available, in which case threads can be enabled with this
- option by supplying a suitable TYPE, probably `posix'. The
- possibilities for TYPE are `single', `posix', `win32',
- `solaris', `irix' and `mach'.
-
- The `configure' script searches subdirectories of the source
- directory for other compilers that are to be integrated into GNU
- CC. The GNU compiler for C++, called G++ is in a subdirectory
- named `cp'. `configure' inserts rules into `Makefile' to build
- all of those compilers.
-
- Here we spell out what files will be set up by `configure'.
- Normally you need not be concerned with these files.
-
- * A file named `config.h' is created that contains a `#include'
- of the top-level config file for the machine you will run the
- compiler on (*note Config::.). This file is responsible for
- defining information about the host machine. It includes
- `tm.h'.
-
- The top-level config file is located in the subdirectory
- `config'. Its name is always `xm-SOMETHING.h'; usually
- `xm-MACHINE.h', but there are some exceptions.
-
- If your system does not support symbolic links, you might
- want to set up `config.h' to contain a `#include' command
- which refers to the appropriate file.
-
- * A file named `tconfig.h' is created which includes the
- top-level config file for your target machine. This is used
- for compiling certain programs to run on that machine.
-
- * A file named `tm.h' is created which includes the
- machine-description macro file for your target machine. It
- should be in the subdirectory `config' and its name is often
- `MACHINE.h'.
-
- * The command file `configure' also constructs the file
- `Makefile' by adding some text to the template file
- `Makefile.in'. The additional text comes from files in the
- `config' directory, named `t-TARGET' and `x-HOST'. If these
- files do not exist, it means nothing needs to be added for a
- given target or host.
-
- 4. The standard directory for installing GNU CC is `/usr/local/lib'.
- If you want to install its files somewhere else, specify
- `--prefix=DIR' when you run `configure'. Here DIR is a directory
- name to use instead of `/usr/local' for all purposes with one
- exception: the directory `/usr/local/include' is searched for
- header files no matter where you install the compiler. To override
- this name, use the `--local-prefix' option below.
-
- 5. Specify `--local-prefix=DIR' if you want the compiler to search
- directory `DIR/include' for locally installed header files
- *instead* of `/usr/local/include'.
-
- You should specify `--local-prefix' *only* if your site has a
- different convention (not `/usr/local') for where to put
- site-specific files.
-
- The default value for `--local-prefix' is `/usr/local' regardless
- of the value of `--prefix'. Specifying `--prefix' has no effect
- on which directory GNU CC searches for local header files. This
- may seem counterintuitive, but actually it is logical.
-
- The purpose of `--prefix' is to specify where to *install GNU CC*.
- The local header files in `/usr/local/include'--if you put any in
- that directory--are not part of GNU CC. They are part of other
- programs--perhaps many others. (GNU CC installs its own header
- files in another directory which is based on the `--prefix' value.)
-
- *Do not* specify `/usr' as the `--local-prefix'! The directory
- you use for `--local-prefix' *must not* contain any of the
- system's standard header files. If it did contain them, certain
- programs would be miscompiled (including GNU Emacs, on certain
- targets), because this would override and nullify the header file
- corrections made by the `fixincludes' script.
-
- Indications are that people who use this option use it based on
- mistaken ideas of what it is for. People use it as if it specified
- where to install part of GNU CC. Perhaps they make this assumption
- because installing GNU CC creates the directory.
-
- 6. Make sure the Bison parser generator is installed. (This is
- unnecessary if the Bison output files `c-parse.c' and `cexp.c' are
- more recent than `c-parse.y' and `cexp.y' and you do not plan to
- change the `.y' files.)
-
- Bison versions older than Sept 8, 1988 will produce incorrect
- output for `c-parse.c'.
-
- 7. If you have chosen a configuration for GNU CC which requires other
- GNU tools (such as GAS or the GNU linker) instead of the standard
- system tools, install the required tools in the build directory
- under the names `as', `ld' or whatever is appropriate. This will
- enable the compiler to find the proper tools for compilation of
- the program `enquire'.
-
- Alternatively, you can do subsequent compilation using a value of
- the `PATH' environment variable such that the necessary GNU tools
- come before the standard system tools.
-
- 8. Build the compiler. Just type `make LANGUAGES=c' in the compiler
- directory.
-
- `LANGUAGES=c' specifies that only the C compiler should be
- compiled. The makefile normally builds compilers for all the
- supported languages; currently, C, C++ and Objective C. However,
- C is the only language that is sure to work when you build with
- other non-GNU C compilers. In addition, building anything but C
- at this stage is a waste of time.
-
- In general, you can specify the languages to build by typing the
- argument `LANGUAGES="LIST"', where LIST is one or more words from
- the list `c', `c++', and `objective-c'. If you have any
- additional GNU compilers as subdirectories of the GNU CC source
- directory, you may also specify their names in this list.
-
- Ignore any warnings you may see about "statement not reached" in
- `insn-emit.c'; they are normal. Also, warnings about "unknown
- escape sequence" are normal in `genopinit.c' and perhaps some
- other files. Likewise, you should ignore warnings about "constant
- is so large that it is unsigned" in `insn-emit.c' and
- `insn-recog.c' and a warning about a comparison always being zero
- in `enquire.o'. Any other compilation errors may represent bugs in
- the port to your machine or operating system, and should be
- investigated and reported (*note Bugs::.).
-
- Some commercial compilers fail to compile GNU CC because they have
- bugs or limitations. For example, the Microsoft compiler is said
- to run out of macro space. Some Ultrix compilers run out of
- expression space; then you need to break up the statement where
- the problem happens.
-
- 9. If you are building a cross-compiler, stop here. *Note
- Cross-Compiler::.
-
- 10. Move the first-stage object files and executables into a
- subdirectory with this command:
-
- make stage1
-
- The files are moved into a subdirectory named `stage1'. Once
- installation is complete, you may wish to delete these files with
- `rm -r stage1'.
-
- 11. If you have chosen a configuration for GNU CC which requires other
- GNU tools (such as GAS or the GNU linker) instead of the standard
- system tools, install the required tools in the `stage1'
- subdirectory under the names `as', `ld' or whatever is
- appropriate. This will enable the stage 1 compiler to find the
- proper tools in the following stage.
-
- Alternatively, you can do subsequent compilation using a value of
- the `PATH' environment variable such that the necessary GNU tools
- come before the standard system tools.
-
- 12. Recompile the compiler with itself, with this command:
-
- make CC="stage1/xgcc -Bstage1/" CFLAGS="-g -O2"
-
- This is called making the stage 2 compiler.
-
- The command shown above builds compilers for all the supported
- languages. If you don't want them all, you can specify the
- languages to build by typing the argument `LANGUAGES="LIST"'. LIST
- should contain one or more words from the list `c', `c++',
- `objective-c', and `proto'. Separate the words with spaces.
- `proto' stands for the programs `protoize' and `unprotoize'; they
- are not a separate language, but you use `LANGUAGES' to enable or
- disable their installation.
-
- If you are going to build the stage 3 compiler, then you might
- want to build only the C language in stage 2.
-
- Once you have built the stage 2 compiler, if you are short of disk
- space, you can delete the subdirectory `stage1'.
-
- On a 68000 or 68020 system lacking floating point hardware, unless
- you have selected a `tm.h' file that expects by default that there
- is no such hardware, do this instead:
-
- make CC="stage1/xgcc -Bstage1/" CFLAGS="-g -O2 -msoft-float"
-
- 13. If you wish to test the compiler by compiling it with itself one
- more time, install any other necessary GNU tools (such as GAS or
- the GNU linker) in the `stage2' subdirectory as you did in the
- `stage1' subdirectory, then do this:
-
- make stage2
- make CC="stage2/xgcc -Bstage2/" CFLAGS="-g -O2"
-
- This is called making the stage 3 compiler. Aside from the `-B'
- option, the compiler options should be the same as when you made
- the stage 2 compiler. But the `LANGUAGES' option need not be the
- same. The command shown above builds compilers for all the
- supported languages; if you don't want them all, you can specify
- the languages to build by typing the argument `LANGUAGES="LIST"',
- as described above.
-
- If you do not have to install any additional GNU tools, you may
- use the command
-
- make bootstrap LANGUAGES=LANGUAGE-LIST BOOT_CFLAGS=OPTION-LIST
-
- instead of making `stage1', `stage2', and performing the two
- compiler builds.
-
- 14. Then compare the latest object files with the stage 2 object
- files--they ought to be identical, aside from time stamps (if any).
-
- On some systems, meaningful comparison of object files is
- impossible; they always appear "different." This is currently
- true on Solaris and some systems that use ELF object file format.
- On some versions of Irix on SGI machines and DEC Unix (OSF/1) on
- Alpha systems, you will not be able to compare the files without
- specifying `-save-temps'; see the description of individual
- systems above to see if you get comparison failures. You may have
- similar problems on other systems.
-
- Use this command to compare the files:
-
- make compare
-
- This will mention any object files that differ between stage 2 and
- stage 3. Any difference, no matter how innocuous, indicates that
- the stage 2 compiler has compiled GNU CC incorrectly, and is
- therefore a potentially serious bug which you should investigate
- and report (*note Bugs::.).
-
- If your system does not put time stamps in the object files, then
- this is a faster way to compare them (using the Bourne shell):
-
- for file in *.o; do
- cmp $file stage2/$file
- done
-
- If you have built the compiler with the `-mno-mips-tfile' option on
- MIPS machines, you will not be able to compare the files.
-
- 15. Install the compiler driver, the compiler's passes and run-time
- support with `make install'. Use the same value for `CC',
- `CFLAGS' and `LANGUAGES' that you used when compiling the files
- that are being installed. One reason this is necessary is that
- some versions of Make have bugs and recompile files gratuitously
- when you do this step. If you use the same variable values, those
- files will be recompiled properly.
-
- For example, if you have built the stage 2 compiler, you can use
- the following command:
-
- make install CC="stage2/xgcc -Bstage2/" CFLAGS="-g -O" LANGUAGES="LIST"
-
- This copies the files `cc1', `cpp' and `libgcc.a' to files `cc1',
- `cpp' and `libgcc.a' in the directory
- `/usr/local/lib/gcc-lib/TARGET/VERSION', which is where the
- compiler driver program looks for them. Here TARGET is the target
- machine type specified when you ran `configure', and VERSION is
- the version number of GNU CC. This naming scheme permits various
- versions and/or cross-compilers to coexist. It also copies the
- executables for compilers for other languages (e.g., `cc1plus' for
- C++) to the same directory.
-
- This also copies the driver program `xgcc' into
- `/usr/local/bin/gcc', so that it appears in typical execution
- search paths. It also copies `gcc.1' into `/usr/local/man/man1'
- and info pages into `/usr/local/info'.
-
- On some systems, this command causes recompilation of some files.
- This is usually due to bugs in `make'. You should either ignore
- this problem, or use GNU Make.
-
- *Warning: there is a bug in `alloca' in the Sun library. To avoid
- this bug, be sure to install the executables of GNU CC that were
- compiled by GNU CC. (That is, the executables from stage 2 or 3,
- not stage 1.) They use `alloca' as a built-in function and never
- the one in the library.*
-
- (It is usually better to install GNU CC executables from stage 2
- or 3, since they usually run faster than the ones compiled with
- some other compiler.)
-
- 16. If you're going to use C++, it's likely that you need to also
- install the libg++ distribution. It should be available from the
- same place where you got the GNU C distribution. Just as GNU C
- does not distribute a C runtime library, it also does not include
- a C++ run-time library. All I/O functionality, special class
- libraries, etc., are available in the libg++ distribution.
-
- 17. GNU CC includes a runtime library for Objective-C because it is an
- integral part of the language. You can find the files associated
- with the library in the subdirectory `objc'. The GNU Objective-C
- Runtime Library requires header files for the target's C library in
- order to be compiled,and also requires the header files for the
- target's thread library if you want thread support. *Note
- Cross-Compilers and Header Files: Cross Headers, for discussion
- about header files issues for cross-compilation.
-
- When you run `configure', it picks the appropriate Objective-C
- thread implementation file for the target platform. In some
- situations, you may wish to choose a different back-end as some
- platforms support multiple thread implementations or you may wish
- to disable thread support completely. You do this by specifying a
- value for the OBJC_THREAD_FILE makefile variable on the command
- line when you run make, for example:
-
- make CC="stage2/xgcc -Bstage2/" CFLAGS="-g -O2" OBJC_THREAD_FILE=thr-single
-
- Below is a list of the currently available back-ends.
-
- * thr-single Disable thread support, should work for all
- platforms.
-
- * thr-decosf1 DEC OSF/1 thread support.
-
- * thr-irix SGI IRIX thread support.
-
- * thr-mach Generic MACH thread support, known to work on
- NEXTSTEP.
-
- * thr-os2 IBM OS/2 thread support.
-
- * thr-posix Generix POSIX thread support.
-
- * thr-pthreads PCThreads on Linux-based GNU systems.
-
- * thr-solaris SUN Solaris thread support.
-
- * thr-win32 Microsoft Win32 API thread support.
-
diff --git a/gcc/gcc.info-7 b/gcc/gcc.info-7
deleted file mode 100644
index 35bf202f11f..00000000000
--- a/gcc/gcc.info-7
+++ /dev/null
@@ -1,1100 +0,0 @@
-This is Info file gcc.info, produced by Makeinfo version 1.68 from the
-input file gcc.texi.
-
- This file documents the use and the internals of the GNU compiler.
-
- Published by the Free Software Foundation 59 Temple Place - Suite 330
-Boston, MA 02111-1307 USA
-
- Copyright (C) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997 Free
-Software Foundation, Inc.
-
- Permission is granted to make and distribute verbatim copies of this
-manual provided the copyright notice and this permission notice are
-preserved on all copies.
-
- Permission is granted to copy and distribute modified versions of
-this manual under the conditions for verbatim copying, provided also
-that the sections entitled "GNU General Public License," "Funding for
-Free Software," and "Protect Your Freedom--Fight `Look And Feel'" are
-included exactly as in the original, and provided that the entire
-resulting derived work is distributed under the terms of a permission
-notice identical to this one.
-
- Permission is granted to copy and distribute translations of this
-manual into another language, under the above conditions for modified
-versions, except that the sections entitled "GNU General Public
-License," "Funding for Free Software," and "Protect Your Freedom--Fight
-`Look And Feel'", and this permission notice, may be included in
-translations approved by the Free Software Foundation instead of in the
-original English.
-
-
-File: gcc.info, Node: Configurations, Next: Other Dir, Up: Installation
-
-Configurations Supported by GNU CC
-==================================
-
- Here are the possible CPU types:
-
- 1750a, a29k, alpha, arm, cN, clipper, dsp16xx, elxsi, h8300,
- hppa1.0, hppa1.1, i370, i386, i486, i586, i860, i960, m32r,
- m68000, m68k, m88k, mips, mipsel, mips64, mips64el, ns32k,
- powerpc, powerpcle, pyramid, romp, rs6000, sh, sparc, sparclite,
- sparc64, vax, we32k.
-
- Here are the recognized company names. As you can see, customary
-abbreviations are used rather than the longer official names.
-
- acorn, alliant, altos, apollo, apple, att, bull, cbm, convergent,
- convex, crds, dec, dg, dolphin, elxsi, encore, harris, hitachi,
- hp, ibm, intergraph, isi, mips, motorola, ncr, next, ns, omron,
- plexus, sequent, sgi, sony, sun, tti, unicom, wrs.
-
- The company name is meaningful only to disambiguate when the rest of
-the information supplied is insufficient. You can omit it, writing
-just `CPU-SYSTEM', if it is not needed. For example, `vax-ultrix4.2'
-is equivalent to `vax-dec-ultrix4.2'.
-
- Here is a list of system types:
-
- 386bsd, aix, acis, amigaos, aos, aout, aux, bosx, bsd, clix, coff,
- ctix, cxux, dgux, dynix, ebmon, ecoff, elf, esix, freebsd, hms,
- genix, gnu, linux-gnu, hiux, hpux, iris, irix, isc, luna, lynxos,
- mach, minix, msdos, mvs, netbsd, newsos, nindy, ns, osf, osfrose,
- ptx, riscix, riscos, rtu, sco, sim, solaris, sunos, sym, sysv,
- udi, ultrix, unicos, uniplus, unos, vms, vsta, vxworks, winnt,
- xenix.
-
-You can omit the system type; then `configure' guesses the operating
-system from the CPU and company.
-
- You can add a version number to the system type; this may or may not
-make a difference. For example, you can write `bsd4.3' or `bsd4.4' to
-distinguish versions of BSD. In practice, the version number is most
-needed for `sysv3' and `sysv4', which are often treated differently.
-
- If you specify an impossible combination such as `i860-dg-vms', then
-you may get an error message from `configure', or it may ignore part of
-the information and do the best it can with the rest. `configure'
-always prints the canonical name for the alternative that it used. GNU
-CC does not support all possible alternatives.
-
- Often a particular model of machine has a name. Many machine names
-are recognized as aliases for CPU/company combinations. Thus, the
-machine name `sun3', mentioned above, is an alias for `m68k-sun'.
-Sometimes we accept a company name as a machine name, when the name is
-popularly used for a particular machine. Here is a table of the known
-machine names:
-
- 3300, 3b1, 3bN, 7300, altos3068, altos, apollo68, att-7300,
- balance, convex-cN, crds, decstation-3100, decstation, delta,
- encore, fx2800, gmicro, hp7NN, hp8NN, hp9k2NN, hp9k3NN, hp9k7NN,
- hp9k8NN, iris4d, iris, isi68, m3230, magnum, merlin, miniframe,
- mmax, news-3600, news800, news, next, pbd, pc532, pmax, powerpc,
- powerpcle, ps2, risc-news, rtpc, sun2, sun386i, sun386, sun3,
- sun4, symmetry, tower-32, tower.
-
-Remember that a machine name specifies both the cpu type and the company
-name. If you want to install your own homemade configuration files,
-you can use `local' as the company name to access them. If you use
-configuration `CPU-local', the configuration name without the cpu prefix
-is used to form the configuration file names.
-
- Thus, if you specify `m68k-local', configuration uses files
-`m68k.md', `local.h', `m68k.c', `xm-local.h', `t-local', and `x-local',
-all in the directory `config/m68k'.
-
- Here is a list of configurations that have special treatment or
-special things you must know:
-
-`1750a-*-*'
- MIL-STD-1750A processors.
-
- The MIL-STD-1750A cross configuration produces output for
- `as1750', an assembler/linker available under the GNU Public
- License for the 1750A. `as1750' can be obtained at
- *ftp://ftp.fta-berlin.de/pub/crossgcc/1750gals/*. A similarly
- licensed simulator for the 1750A is available from same address.
-
- You should ignore a fatal error during the building of libgcc
- (libgcc is not yet implemented for the 1750A.)
-
- The `as1750' assembler requires the file `ms1750.inc', which is
- found in the directory `config/1750a'.
-
- GNU CC produced the same sections as the Fairchild F9450 C
- Compiler, namely:
-
- `Normal'
- The program code section.
-
- `Static'
- The read/write (RAM) data section.
-
- `Konst'
- The read-only (ROM) constants section.
-
- `Init'
- Initialization section (code to copy KREL to SREL).
-
- The smallest addressable unit is 16 bits (BITS_PER_UNIT is 16).
- This means that type `char' is represented with a 16-bit word per
- character. The 1750A's "Load/Store Upper/Lower Byte" instructions
- are not used by GNU CC.
-
-`alpha-*-osf1'
- Systems using processors that implement the DEC Alpha architecture
- and are running the DEC Unix (OSF/1) operating system, for example
- the DEC Alpha AXP systems. (VMS on the Alpha is not currently
- supported by GNU CC.)
-
- GNU CC writes a `.verstamp' directive to the assembler output file
- unless it is built as a cross-compiler. It gets the version to
- use from the system header file `/usr/include/stamp.h'. If you
- install a new version of DEC Unix, you should rebuild GCC to pick
- up the new version stamp.
-
- Note that since the Alpha is a 64-bit architecture,
- cross-compilers from 32-bit machines will not generate code as
- efficient as that generated when the compiler is running on a
- 64-bit machine because many optimizations that depend on being
- able to represent a word on the target in an integral value on the
- host cannot be performed. Building cross-compilers on the Alpha
- for 32-bit machines has only been tested in a few cases and may
- not work properly.
-
- `make compare' may fail on old versions of DEC Unix unless you add
- `-save-temps' to `CFLAGS'. On these systems, the name of the
- assembler input file is stored in the object file, and that makes
- comparison fail if it differs between the `stage1' and `stage2'
- compilations. The option `-save-temps' forces a fixed name to be
- used for the assembler input file, instead of a randomly chosen
- name in `/tmp'. Do not add `-save-temps' unless the comparisons
- fail without that option. If you add `-save-temps', you will have
- to manually delete the `.i' and `.s' files after each series of
- compilations.
-
- GNU CC now supports both the native (ECOFF) debugging format used
- by DBX and GDB and an encapsulated STABS format for use only with
- GDB. See the discussion of the `--with-stabs' option of
- `configure' above for more information on these formats and how to
- select them.
-
- There is a bug in DEC's assembler that produces incorrect line
- numbers for ECOFF format when the `.align' directive is used. To
- work around this problem, GNU CC will not emit such alignment
- directives while writing ECOFF format debugging information even
- if optimization is being performed. Unfortunately, this has the
- very undesirable side-effect that code addresses when `-O' is
- specified are different depending on whether or not `-g' is also
- specified.
-
- To avoid this behavior, specify `-gstabs+' and use GDB instead of
- DBX. DEC is now aware of this problem with the assembler and
- hopes to provide a fix shortly.
-
-`arc-*-elf'
- Argonaut ARC processor. This configuration is intended for
- embedded systems.
-
-`arm-*-aout'
- Advanced RISC Machines ARM-family processors. These are often
- used in embedded applications. There are no standard Unix
- configurations. This configuration corresponds to the basic
- instruction sequences and will produce `a.out' format object
- modules.
-
- You may need to make a variant of the file `arm.h' for your
- particular configuration.
-
-`arm-*-linuxaout'
- Any of the ARM family processors running the Linux-based GNU
- system with the `a.out' binary format (ELF is not yet supported).
- You must use version 2.8.1.0.7 or later of the Linux binutils,
- which you can download from `sunsite.unc.edu:/pub/Linux/GCC' and
- other mirror sites for Linux-based GNU systems.
-
-`arm-*-riscix'
- The ARM2 or ARM3 processor running RISC iX, Acorn's port of BSD
- Unix. If you are running a version of RISC iX prior to 1.2 then
- you must specify the version number during configuration. Note
- that the assembler shipped with RISC iX does not support stabs
- debugging information; a new version of the assembler, with stabs
- support included, is now available from Acorn.
-
-`a29k'
- AMD Am29k-family processors. These are normally used in embedded
- applications. There are no standard Unix configurations. This
- configuration corresponds to AMD's standard calling sequence and
- binary interface and is compatible with other 29k tools.
-
- You may need to make a variant of the file `a29k.h' for your
- particular configuration.
-
-`a29k-*-bsd'
- AMD Am29050 used in a system running a variant of BSD Unix.
-
-`decstation-*'
- DECstations can support three different personalities: Ultrix, DEC
- OSF/1, and OSF/rose. To configure GCC for these platforms use the
- following configurations:
-
- `decstation-ultrix'
- Ultrix configuration.
-
- `decstation-osf1'
- Dec's version of OSF/1.
-
- `decstation-osfrose'
- Open Software Foundation reference port of OSF/1 which uses
- the OSF/rose object file format instead of ECOFF. Normally,
- you would not select this configuration.
-
- The MIPS C compiler needs to be told to increase its table size
- for switch statements with the `-Wf,-XNg1500' option in order to
- compile `cp/parse.c'. If you use the `-O2' optimization option,
- you also need to use `-Olimit 3000'. Both of these options are
- automatically generated in the `Makefile' that the shell script
- `configure' builds. If you override the `CC' make variable and
- use the MIPS compilers, you may need to add `-Wf,-XNg1500 -Olimit
- 3000'.
-
-`elxsi-elxsi-bsd'
- The Elxsi's C compiler has known limitations that prevent it from
- compiling GNU C. Please contact `mrs@cygnus.com' for more details.
-
-`dsp16xx'
- A port to the AT&T DSP1610 family of processors.
-
-`h8300-*-*'
- Hitachi H8/300 series of processors.
-
- The calling convention and structure layout has changed in release
- 2.6. All code must be recompiled. The calling convention now
- passes the first three arguments in function calls in registers.
- Structures are no longer a multiple of 2 bytes.
-
-`hppa*-*-*'
- There are several variants of the HP-PA processor which run a
- variety of operating systems. GNU CC must be configured to use
- the correct processor type and operating system, or GNU CC will
- not function correctly. The easiest way to handle this problem is
- to *not* specify a target when configuring GNU CC, the `configure'
- script will try to automatically determine the right processor
- type and operating system.
-
- `-g' does not work on HP-UX, since that system uses a peculiar
- debugging format which GNU CC does not know about. However, `-g'
- will work if you also use GAS and GDB in conjunction with GCC. We
- highly recommend using GAS for all HP-PA configurations.
-
- You should be using GAS-2.6 (or later) along with GDB-4.16 (or
- later). These can be retrieved from all the traditional GNU ftp
- archive sites.
-
- GAS will need to be installed into a directory before `/bin',
- `/usr/bin', and `/usr/ccs/bin' in your search path. You should
- install GAS before you build GNU CC.
-
- To enable debugging, you must configure GNU CC with the
- `--with-gnu-as' option before building.
-
-`i370-*-*'
- This port is very preliminary and has many known bugs. We hope to
- have a higher-quality port for this machine soon.
-
-`i386-*-linux-gnuoldld'
- Use this configuration to generate `a.out' binaries on Linux-based
- GNU systems if you do not have gas/binutils version 2.5.2 or later
- installed. This is an obsolete configuration.
-
-`i386-*-linux-gnuaout'
- Use this configuration to generate `a.out' binaries on Linux-based
- GNU systems. This configuration is being superseded. You must use
- gas/binutils version 2.5.2 or later.
-
-`i386-*-linux-gnu'
- Use this configuration to generate ELF binaries on Linux-based GNU
- systems. You must use gas/binutils version 2.5.2 or later.
-
-`i386-*-sco'
- Compilation with RCC is recommended. Also, it may be a good idea
- to link with GNU malloc instead of the malloc that comes with the
- system.
-
-`i386-*-sco3.2v4'
- Use this configuration for SCO release 3.2 version 4.
-
-`i386-*-sco3.2v5*'
- Use this for the SCO OpenServer Release family including 5.0.0,
- 5.0.2, 5.0.4, Internet FastStart 1.0, and Internet FastStart 1.1.
-
- GNU CC can generate ELF binaries (if you specify `-melf') or COFF
- binaries (the default). If you are going to build your compiler
- in ELF mode (once you have bootstrapped the first stage compiler)
- you *must* specify `-melf' as part of `CC', *not* `CFLAGS', for
- example as `CC="stage1/xgcc -melf -Bstage1/" '. If you do not do
- this, the bootstrap will generate incorrect versions of `libgcc.a'.
-
- You must have TLS597 (from ftp.sco.com/TLS) installed for ELF
- binaries to work correctly. Note that Open Server 5.0.2 *does*
- need TLS597 installed.
-
- *NOTE:* You must follow the instructions about invoking `make
- bootstrap' because the native OpenServer compiler builds a
- `cc1plus' that will not correctly parse many valid C++ programs.
- You must do a `make bootstrap' if you are building with the native
- compiler.
-
-`i386-*-isc'
- It may be a good idea to link with GNU malloc instead of the
- malloc that comes with the system.
-
- In ISC version 4.1, `sed' core dumps when building `deduced.h'.
- Use the version of `sed' from version 4.0.
-
-`i386-*-esix'
- It may be good idea to link with GNU malloc instead of the malloc
- that comes with the system.
-
-`i386-ibm-aix'
- You need to use GAS version 2.1 or later, and LD from GNU binutils
- version 2.2 or later.
-
-`i386-sequent-bsd'
- Go to the Berkeley universe before compiling. In addition, you
- probably need to create a file named `string.h' containing just
- one line: `#include <strings.h>'.
-
-`i386-sequent-ptx1*'
- Sequent DYNIX/ptx 1.x.
-
-`i386-sequent-ptx2*'
- Sequent DYNIX/ptx 2.x.
-
-`i386-sun-sunos4'
- You may find that you need another version of GNU CC to begin
- bootstrapping with, since the current version when built with the
- system's own compiler seems to get an infinite loop compiling part
- of `libgcc2.c'. GNU CC version 2 compiled with GNU CC (any
- version) seems not to have this problem.
-
- See *Note Sun Install::, for information on installing GNU CC on
- Sun systems.
-
-`i[345]86-*-winnt3.5'
- This version requires a GAS that has not yet been released. Until
- it is, you can get a prebuilt binary version via anonymous ftp from
- `cs.washington.edu:pub/gnat' or `cs.nyu.edu:pub/gnat'. You must
- also use the Microsoft header files from the Windows NT 3.5 SDK.
- Find these on the CDROM in the `/mstools/h' directory dated
- 9/4/94. You must use a fixed version of Microsoft linker made
- especially for NT 3.5, which is also is available on the NT 3.5
- SDK CDROM. If you do not have this linker, can you also use the
- linker from Visual C/C++ 1.0 or 2.0.
-
- Installing GNU CC for NT builds a wrapper linker, called `ld.exe',
- which mimics the behaviour of Unix `ld' in the specification of
- libraries (`-L' and `-l'). `ld.exe' looks for both Unix and
- Microsoft named libraries. For example, if you specify `-lfoo',
- `ld.exe' will look first for `libfoo.a' and then for `foo.lib'.
-
- You may install GNU CC for Windows NT in one of two ways,
- depending on whether or not you have a Unix-like shell and various
- Unix-like utilities.
-
- 1. If you do not have a Unix-like shell and few Unix-like
- utilities, you will use a DOS style batch script called
- `configure.bat'. Invoke it as `configure winnt' from an
- MSDOS console window or from the program manager dialog box.
- `configure.bat' assumes you have already installed and have
- in your path a Unix-like `sed' program which is used to
- create a working `Makefile' from `Makefile.in'.
-
- `Makefile' uses the Microsoft Nmake program maintenance
- utility and the Visual C/C++ V8.00 compiler to build GNU CC.
- You need only have the utilities `sed' and `touch' to use
- this installation method, which only automatically builds the
- compiler itself. You must then examine what `fixinc.winnt'
- does, edit the header files by hand and build `libgcc.a'
- manually.
-
- 2. The second type of installation assumes you are running a
- Unix-like shell, have a complete suite of Unix-like utilities
- in your path, and have a previous version of GNU CC already
- installed, either through building it via the above
- installation method or acquiring a pre-built binary. In this
- case, use the `configure' script in the normal fashion.
-
-`i860-intel-osf1'
- This is the Paragon. If you have version 1.0 of the operating
- system, see *Note Installation Problems::, for special things you
- need to do to compensate for peculiarities in the system.
-
-`*-lynx-lynxos'
- LynxOS 2.2 and earlier comes with GNU CC 1.x already installed as
- `/bin/gcc'. You should compile with this instead of `/bin/cc'.
- You can tell GNU CC to use the GNU assembler and linker, by
- specifying `--with-gnu-as --with-gnu-ld' when configuring. These
- will produce COFF format object files and executables; otherwise
- GNU CC will use the installed tools, which produce `a.out' format
- executables.
-
-`m32r-*-elf'
- Mitsubishi M32R processor. This configuration is intended for
- embedded systems.
-
-`m68000-hp-bsd'
- HP 9000 series 200 running BSD. Note that the C compiler that
- comes with this system cannot compile GNU CC; contact
- `law@cs.utah.edu' to get binaries of GNU CC for bootstrapping.
-
-`m68k-altos'
- Altos 3068. You must use the GNU assembler, linker and debugger.
- Also, you must fix a kernel bug. Details in the file
- `README.ALTOS'.
-
-`m68k-apple-aux'
- Apple Macintosh running A/UX. You may configure GCC to use
- either the system assembler and linker or the GNU assembler and
- linker. You should use the GNU configuration if you can,
- especially if you also want to use GNU C++. You enabled that
- configuration with + the `--with-gnu-as' and `--with-gnu-ld'
- options to `configure'.
-
- Note the C compiler that comes with this system cannot compile GNU
- CC. You can fine binaries of GNU CC for bootstrapping on
- `jagubox.gsfc.nasa.gov'. You will also a patched version of
- `/bin/ld' there that raises some of the arbitrary limits found in
- the original.
-
-`m68k-att-sysv'
- AT&T 3b1, a.k.a. 7300 PC. Special procedures are needed to
- compile GNU CC with this machine's standard C compiler, due to
- bugs in that compiler. You can bootstrap it more easily with
- previous versions of GNU CC if you have them.
-
- Installing GNU CC on the 3b1 is difficult if you do not already
- have GNU CC running, due to bugs in the installed C compiler.
- However, the following procedure might work. We are unable to
- test it.
-
- 1. Comment out the `#include "config.h"' line near the start of
- `cccp.c' and do `make cpp'. This makes a preliminary version
- of GNU cpp.
-
- 2. Save the old `/lib/cpp' and copy the preliminary GNU cpp to
- that file name.
-
- 3. Undo your change in `cccp.c', or reinstall the original
- version, and do `make cpp' again.
-
- 4. Copy this final version of GNU cpp into `/lib/cpp'.
-
- 5. Replace every occurrence of `obstack_free' in the file
- `tree.c' with `_obstack_free'.
-
- 6. Run `make' to get the first-stage GNU CC.
-
- 7. Reinstall the original version of `/lib/cpp'.
-
- 8. Now you can compile GNU CC with itself and install it in the
- normal fashion.
-
-`m68k-bull-sysv'
- Bull DPX/2 series 200 and 300 with BOS-2.00.45 up to BOS-2.01. GNU
- CC works either with native assembler or GNU assembler. You can use
- GNU assembler with native coff generation by providing
- `--with-gnu-as' to the configure script or use GNU assembler with
- dbx-in-coff encapsulation by providing `--with-gnu-as --stabs'.
- For any problem with native assembler or for availability of the
- DPX/2 port of GAS, contact `F.Pierresteguy@frcl.bull.fr'.
-
-`m68k-crds-unox'
- Use `configure unos' for building on Unos.
-
- The Unos assembler is named `casm' instead of `as'. For some
- strange reason linking `/bin/as' to `/bin/casm' changes the
- behavior, and does not work. So, when installing GNU CC, you
- should install the following script as `as' in the subdirectory
- where the passes of GCC are installed:
-
- #!/bin/sh
- casm $*
-
- The default Unos library is named `libunos.a' instead of `libc.a'.
- To allow GNU CC to function, either change all references to
- `-lc' in `gcc.c' to `-lunos' or link `/lib/libc.a' to
- `/lib/libunos.a'.
-
- When compiling GNU CC with the standard compiler, to overcome bugs
- in the support of `alloca', do not use `-O' when making stage 2.
- Then use the stage 2 compiler with `-O' to make the stage 3
- compiler. This compiler will have the same characteristics as the
- usual stage 2 compiler on other systems. Use it to make a stage 4
- compiler and compare that with stage 3 to verify proper
- compilation.
-
- (Perhaps simply defining `ALLOCA' in `x-crds' as described in the
- comments there will make the above paragraph superfluous. Please
- inform us of whether this works.)
-
- Unos uses memory segmentation instead of demand paging, so you
- will need a lot of memory. 5 Mb is barely enough if no other
- tasks are running. If linking `cc1' fails, try putting the object
- files into a library and linking from that library.
-
-`m68k-hp-hpux'
- HP 9000 series 300 or 400 running HP-UX. HP-UX version 8.0 has a
- bug in the assembler that prevents compilation of GNU CC. To fix
- it, get patch PHCO_4484 from HP.
-
- In addition, if you wish to use gas `--with-gnu-as' you must use
- gas version 2.1 or later, and you must use the GNU linker version
- 2.1 or later. Earlier versions of gas relied upon a program which
- converted the gas output into the native HP/UX format, but that
- program has not been kept up to date. gdb does not understand
- that native HP/UX format, so you must use gas if you wish to use
- gdb.
-
-`m68k-sun'
- Sun 3. We do not provide a configuration file to use the Sun FPA
- by default, because programs that establish signal handlers for
- floating point traps inherently cannot work with the FPA.
-
- See *Note Sun Install::, for information on installing GNU CC on
- Sun systems.
-
-`m88k-*-svr3'
- Motorola m88k running the AT&T/Unisoft/Motorola V.3 reference port.
- These systems tend to use the Green Hills C, revision 1.8.5, as the
- standard C compiler. There are apparently bugs in this compiler
- that result in object files differences between stage 2 and stage
- 3. If this happens, make the stage 4 compiler and compare it to
- the stage 3 compiler. If the stage 3 and stage 4 object files are
- identical, this suggests you encountered a problem with the
- standard C compiler; the stage 3 and 4 compilers may be usable.
-
- It is best, however, to use an older version of GNU CC for
- bootstrapping if you have one.
-
-`m88k-*-dgux'
- Motorola m88k running DG/UX. To build 88open BCS native or cross
- compilers on DG/UX, specify the configuration name as
- `m88k-*-dguxbcs' and build in the 88open BCS software development
- environment. To build ELF native or cross compilers on DG/UX,
- specify `m88k-*-dgux' and build in the DG/UX ELF development
- environment. You set the software development environment by
- issuing `sde-target' command and specifying either `m88kbcs' or
- `m88kdguxelf' as the operand.
-
- If you do not specify a configuration name, `configure' guesses the
- configuration based on the current software development
- environment.
-
-`m88k-tektronix-sysv3'
- Tektronix XD88 running UTekV 3.2e. Do not turn on optimization
- while building stage1 if you bootstrap with the buggy Green Hills
- compiler. Also, The bundled LAI System V NFS is buggy so if you
- build in an NFS mounted directory, start from a fresh reboot, or
- avoid NFS all together. Otherwise you may have trouble getting
- clean comparisons between stages.
-
-`mips-mips-bsd'
- MIPS machines running the MIPS operating system in BSD mode. It's
- possible that some old versions of the system lack the functions
- `memcpy', `memcmp', and `memset'. If your system lacks these, you
- must remove or undo the definition of `TARGET_MEM_FUNCTIONS' in
- `mips-bsd.h'.
-
- The MIPS C compiler needs to be told to increase its table size
- for switch statements with the `-Wf,-XNg1500' option in order to
- compile `cp/parse.c'. If you use the `-O2' optimization option,
- you also need to use `-Olimit 3000'. Both of these options are
- automatically generated in the `Makefile' that the shell script
- `configure' builds. If you override the `CC' make variable and
- use the MIPS compilers, you may need to add `-Wf,-XNg1500 -Olimit
- 3000'.
-
-`mips-mips-riscos*'
- The MIPS C compiler needs to be told to increase its table size
- for switch statements with the `-Wf,-XNg1500' option in order to
- compile `cp/parse.c'. If you use the `-O2' optimization option,
- you also need to use `-Olimit 3000'. Both of these options are
- automatically generated in the `Makefile' that the shell script
- `configure' builds. If you override the `CC' make variable and
- use the MIPS compilers, you may need to add `-Wf,-XNg1500 -Olimit
- 3000'.
-
- MIPS computers running RISC-OS can support four different
- personalities: default, BSD 4.3, System V.3, and System V.4 (older
- versions of RISC-OS don't support V.4). To configure GCC for
- these platforms use the following configurations:
-
- `mips-mips-riscos`rev''
- Default configuration for RISC-OS, revision `rev'.
-
- `mips-mips-riscos`rev'bsd'
- BSD 4.3 configuration for RISC-OS, revision `rev'.
-
- `mips-mips-riscos`rev'sysv4'
- System V.4 configuration for RISC-OS, revision `rev'.
-
- `mips-mips-riscos`rev'sysv'
- System V.3 configuration for RISC-OS, revision `rev'.
-
- The revision `rev' mentioned above is the revision of RISC-OS to
- use. You must reconfigure GCC when going from a RISC-OS revision
- 4 to RISC-OS revision 5. This has the effect of avoiding a linker
- bug (see *Note Installation Problems::, for more details).
-
-`mips-sgi-*'
- In order to compile GCC on an SGI running IRIX 4, the "c.hdr.lib"
- option must be installed from the CD-ROM supplied from Silicon
- Graphics. This is found on the 2nd CD in release 4.0.1.
-
- In order to compile GCC on an SGI running IRIX 5, the
- "compiler_dev.hdr" subsystem must be installed from the IDO CD-ROM
- supplied by Silicon Graphics.
-
- `make compare' may fail on version 5 of IRIX unless you add
- `-save-temps' to `CFLAGS'. On these systems, the name of the
- assembler input file is stored in the object file, and that makes
- comparison fail if it differs between the `stage1' and `stage2'
- compilations. The option `-save-temps' forces a fixed name to be
- used for the assembler input file, instead of a randomly chosen
- name in `/tmp'. Do not add `-save-temps' unless the comparisons
- fail without that option. If you do you `-save-temps', you will
- have to manually delete the `.i' and `.s' files after each series
- of compilations.
-
- The MIPS C compiler needs to be told to increase its table size
- for switch statements with the `-Wf,-XNg1500' option in order to
- compile `cp/parse.c'. If you use the `-O2' optimization option,
- you also need to use `-Olimit 3000'. Both of these options are
- automatically generated in the `Makefile' that the shell script
- `configure' builds. If you override the `CC' make variable and
- use the MIPS compilers, you may need to add `-Wf,-XNg1500 -Olimit
- 3000'.
-
- On Irix version 4.0.5F, and perhaps on some other versions as well,
- there is an assembler bug that reorders instructions incorrectly.
- To work around it, specify the target configuration
- `mips-sgi-irix4loser'. This configuration inhibits assembler
- optimization.
-
- In a compiler configured with target `mips-sgi-irix4', you can turn
- off assembler optimization by using the `-noasmopt' option. This
- compiler option passes the option `-O0' to the assembler, to
- inhibit reordering.
-
- The `-noasmopt' option can be useful for testing whether a problem
- is due to erroneous assembler reordering. Even if a problem does
- not go away with `-noasmopt', it may still be due to assembler
- reordering--perhaps GNU CC itself was miscompiled as a result.
-
- To enable debugging under Irix 5, you must use GNU as 2.5 or later,
- and use the `--with-gnu-as' configure option when configuring gcc.
- GNU as is distributed as part of the binutils package.
-
-`mips-sony-sysv'
- Sony MIPS NEWS. This works in NEWSOS 5.0.1, but not in 5.0.2
- (which uses ELF instead of COFF). Support for 5.0.2 will probably
- be provided soon by volunteers. In particular, the linker does
- not like the code generated by GCC when shared libraries are
- linked in.
-
-`ns32k-encore'
- Encore ns32000 system. Encore systems are supported only under
- BSD.
-
-`ns32k-*-genix'
- National Semiconductor ns32000 system. Genix has bugs in `alloca'
- and `malloc'; you must get the compiled versions of these from GNU
- Emacs.
-
-`ns32k-sequent'
- Go to the Berkeley universe before compiling. In addition, you
- probably need to create a file named `string.h' containing just
- one line: `#include <strings.h>'.
-
-`ns32k-utek'
- UTEK ns32000 system ("merlin"). The C compiler that comes with
- this system cannot compile GNU CC; contact `tektronix!reed!mason'
- to get binaries of GNU CC for bootstrapping.
-
-`romp-*-aos'
-`romp-*-mach'
- The only operating systems supported for the IBM RT PC are AOS and
- MACH. GNU CC does not support AIX running on the RT. We
- recommend you compile GNU CC with an earlier version of itself; if
- you compile GNU CC with `hc', the Metaware compiler, it will work,
- but you will get mismatches between the stage 2 and stage 3
- compilers in various files. These errors are minor differences in
- some floating-point constants and can be safely ignored; the stage
- 3 compiler is correct.
-
-`rs6000-*-aix'
-`powerpc-*-aix'
- Various early versions of each release of the IBM XLC compiler
- will not bootstrap GNU CC. Symptoms include differences between
- the stage2 and stage3 object files, and errors when compiling
- `libgcc.a' or `enquire'. Known problematic releases include:
- xlc-1.2.1.8, xlc-1.3.0.0 (distributed with AIX 3.2.5), and
- xlc-1.3.0.19. Both xlc-1.2.1.28 and xlc-1.3.0.24 (PTF 432238) are
- known to produce working versions of GNU CC, but most other recent
- releases correctly bootstrap GNU CC. Also, releases of AIX prior
- to AIX 3.2.4 include a version of the IBM assembler which does not
- accept debugging directives: assembler updates are available as
- PTFs. Also, if you are using AIX 3.2.5 or greater and the GNU
- assembler, you must have a version modified after October 16th,
- 1995 in order for the GNU C compiler to build. See the file
- `README.RS6000' for more details on of these problems.
-
- GNU CC does not yet support the 64-bit PowerPC instructions.
-
- Objective C does not work on this architecture because it makes
- assumptions that are incompatible with the calling conventions.
-
- AIX on the RS/6000 provides support (NLS) for environments outside
- of the United States. Compilers and assemblers use NLS to support
- locale-specific representations of various objects including
- floating-point numbers ("." vs "," for separating decimal
- fractions). There have been problems reported where the library
- linked with GNU CC does not produce the same floating-point
- formats that the assembler accepts. If you have this problem, set
- the LANG environment variable to "C" or "En_US".
-
- Due to changes in the way that GNU CC invokes the binder (linker)
- for AIX 4.1, you may now receive warnings of duplicate symbols
- from the link step that were not reported before. The assembly
- files generated by GNU CC for AIX have always included multiple
- symbol definitions for certain global variable and function
- declarations in the original program. The warnings should not
- prevent the linker from producing a correct library or runnable
- executable.
-
- By default, AIX 4.1 produces code that can be used on either Power
- or PowerPC processors.
-
- You can specify a default version for the `-mcpu='CPU_TYPE switch
- by using the configure option `--with-cpu-'CPU_TYPE.
-
-`powerpc-*-elf'
-`powerpc-*-sysv4'
- PowerPC system in big endian mode, running System V.4.
-
- You can specify a default version for the `-mcpu='CPU_TYPE switch
- by using the configure option `--with-cpu-'CPU_TYPE.
-
-`powerpc-*-linux-gnu'
- PowerPC system in big endian mode, running the Linux-based GNU
- system.
-
- You can specify a default version for the `-mcpu='CPU_TYPE switch
- by using the configure option `--with-cpu-'CPU_TYPE.
-
-`powerpc-*-eabiaix'
- Embedded PowerPC system in big endian mode with -mcall-aix
- selected as the default.
-
- You can specify a default version for the `-mcpu='CPU_TYPE switch
- by using the configure option `--with-cpu-'CPU_TYPE.
-
-`powerpc-*-eabisim'
- Embedded PowerPC system in big endian mode for use in running
- under the PSIM simulator.
-
- You can specify a default version for the `-mcpu='CPU_TYPE switch
- by using the configure option `--with-cpu-'CPU_TYPE.
-
-`powerpc-*-eabi'
- Embedded PowerPC system in big endian mode.
-
- You can specify a default version for the `-mcpu='CPU_TYPE switch
- by using the configure option `--with-cpu-'CPU_TYPE.
-
-`powerpcle-*-elf'
-`powerpcle-*-sysv4'
- PowerPC system in little endian mode, running System V.4.
-
- You can specify a default version for the `-mcpu='CPU_TYPE switch
- by using the configure option `--with-cpu-'CPU_TYPE.
-
-`powerpcle-*-solaris2*'
- PowerPC system in little endian mode, running Solaris 2.5.1 or
- higher.
-
- You can specify a default version for the `-mcpu='CPU_TYPE switch
- by using the configure option `--with-cpu-'CPU_TYPE. Beta
- versions of the Sun 4.0 compiler do not seem to be able to build
- GNU CC correctly. There are also problems with the host assembler
- and linker that are fixed by using the GNU versions of these tools.
-
-`powerpcle-*-eabisim'
- Embedded PowerPC system in little endian mode for use in running
- under the PSIM simulator.
-
-`powerpcle-*-eabi'
- Embedded PowerPC system in little endian mode.
-
- You can specify a default version for the `-mcpu='CPU_TYPE switch
- by using the configure option `--with-cpu-'CPU_TYPE.
-
-`powerpcle-*-winnt'
-`powerpcle-*-pe'
- PowerPC system in little endian mode running Windows NT.
-
- You can specify a default version for the `-mcpu='CPU_TYPE switch
- by using the configure option `--with-cpu-'CPU_TYPE.
-
-`vax-dec-ultrix'
- Don't try compiling with Vax C (`vcc'). It produces incorrect code
- in some cases (for example, when `alloca' is used).
-
- Meanwhile, compiling `cp/parse.c' with pcc does not work because of
- an internal table size limitation in that compiler. To avoid this
- problem, compile just the GNU C compiler first, and use it to
- recompile building all the languages that you want to run.
-
-`sparc-sun-*'
- See *Note Sun Install::, for information on installing GNU CC on
- Sun systems.
-
-`vax-dec-vms'
- See *Note VMS Install::, for details on how to install GNU CC on
- VMS.
-
-`we32k-*-*'
- These computers are also known as the 3b2, 3b5, 3b20 and other
- similar names. (However, the 3b1 is actually a 68000; see *Note
- Configurations::.)
-
- Don't use `-g' when compiling with the system's compiler. The
- system's linker seems to be unable to handle such a large program
- with debugging information.
-
- The system's compiler runs out of capacity when compiling `stmt.c'
- in GNU CC. You can work around this by building `cpp' in GNU CC
- first, then use that instead of the system's preprocessor with the
- system's C compiler to compile `stmt.c'. Here is how:
-
- mv /lib/cpp /lib/cpp.att
- cp cpp /lib/cpp.gnu
- echo '/lib/cpp.gnu -traditional ${1+"$@"}' > /lib/cpp
- chmod +x /lib/cpp
-
- The system's compiler produces bad code for some of the GNU CC
- optimization files. So you must build the stage 2 compiler without
- optimization. Then build a stage 3 compiler with optimization.
- That executable should work. Here are the necessary commands:
-
- make LANGUAGES=c CC=stage1/xgcc CFLAGS="-Bstage1/ -g"
- make stage2
- make CC=stage2/xgcc CFLAGS="-Bstage2/ -g -O"
-
- You may need to raise the ULIMIT setting to build a C++ compiler,
- as the file `cc1plus' is larger than one megabyte.
-
-
-File: gcc.info, Node: Other Dir, Next: Cross-Compiler, Prev: Configurations, Up: Installation
-
-Compilation in a Separate Directory
-===================================
-
- If you wish to build the object files and executables in a directory
-other than the one containing the source files, here is what you must
-do differently:
-
- 1. Make sure you have a version of Make that supports the `VPATH'
- feature. (GNU Make supports it, as do Make versions on most BSD
- systems.)
-
- 2. If you have ever run `configure' in the source directory, you must
- undo the configuration. Do this by running:
-
- make distclean
-
- 3. Go to the directory in which you want to build the compiler before
- running `configure':
-
- mkdir gcc-sun3
- cd gcc-sun3
-
- On systems that do not support symbolic links, this directory must
- be on the same file system as the source code directory.
-
- 4. Specify where to find `configure' when you run it:
-
- ../gcc/configure ...
-
- This also tells `configure' where to find the compiler sources;
- `configure' takes the directory from the file name that was used to
- invoke it. But if you want to be sure, you can specify the source
- directory with the `--srcdir' option, like this:
-
- ../gcc/configure --srcdir=../gcc OTHER OPTIONS
-
- The directory you specify with `--srcdir' need not be the same as
- the one that `configure' is found in.
-
- Now, you can run `make' in that directory. You need not repeat the
-configuration steps shown above, when ordinary source files change. You
-must, however, run `configure' again when the configuration files
-change, if your system does not support symbolic links.
-
-
-File: gcc.info, Node: Cross-Compiler, Next: Sun Install, Prev: Other Dir, Up: Installation
-
-Building and Installing a Cross-Compiler
-========================================
-
- GNU CC can function as a cross-compiler for many machines, but not
-all.
-
- * Cross-compilers for the Mips as target using the Mips assembler
- currently do not work, because the auxiliary programs
- `mips-tdump.c' and `mips-tfile.c' can't be compiled on anything
- but a Mips. It does work to cross compile for a Mips if you use
- the GNU assembler and linker.
-
- * Cross-compilers between machines with different floating point
- formats have not all been made to work. GNU CC now has a floating
- point emulator with which these can work, but each target machine
- description needs to be updated to take advantage of it.
-
- * Cross-compilation between machines of different word sizes is
- somewhat problematic and sometimes does not work.
-
- Since GNU CC generates assembler code, you probably need a
-cross-assembler that GNU CC can run, in order to produce object files.
-If you want to link on other than the target machine, you need a
-cross-linker as well. You also need header files and libraries suitable
-for the target machine that you can install on the host machine.
-
-* Menu:
-
-* Steps of Cross:: Using a cross-compiler involves several steps
- that may be carried out on different machines.
-* Configure Cross:: Configuring a cross-compiler.
-* Tools and Libraries:: Where to put the linker and assembler, and the C library.
-* Cross Headers:: Finding and installing header files
- for a cross-compiler.
-* Cross Runtime:: Supplying arithmetic runtime routines (`libgcc1.a').
-* Build Cross:: Actually compiling the cross-compiler.
-
-
-File: gcc.info, Node: Steps of Cross, Next: Configure Cross, Up: Cross-Compiler
-
-Steps of Cross-Compilation
---------------------------
-
- To compile and run a program using a cross-compiler involves several
-steps:
-
- * Run the cross-compiler on the host machine to produce assembler
- files for the target machine. This requires header files for the
- target machine.
-
- * Assemble the files produced by the cross-compiler. You can do this
- either with an assembler on the target machine, or with a
- cross-assembler on the host machine.
-
- * Link those files to make an executable. You can do this either
- with a linker on the target machine, or with a cross-linker on the
- host machine. Whichever machine you use, you need libraries and
- certain startup files (typically `crt....o') for the target
- machine.
-
- It is most convenient to do all of these steps on the same host
-machine, since then you can do it all with a single invocation of GNU
-CC. This requires a suitable cross-assembler and cross-linker. For
-some targets, the GNU assembler and linker are available.
-
-
-File: gcc.info, Node: Configure Cross, Next: Tools and Libraries, Prev: Steps of Cross, Up: Cross-Compiler
-
-Configuring a Cross-Compiler
-----------------------------
-
- To build GNU CC as a cross-compiler, you start out by running
-`configure'. Use the `--target=TARGET' to specify the target type. If
-`configure' was unable to correctly identify the system you are running
-on, also specify the `--build=BUILD' option. For example, here is how
-to configure for a cross-compiler that produces code for an HP 68030
-system running BSD on a system that `configure' can correctly identify:
-
- ./configure --target=m68k-hp-bsd4.3
-
-
-File: gcc.info, Node: Tools and Libraries, Next: Cross Headers, Prev: Configure Cross, Up: Cross-Compiler
-
-Tools and Libraries for a Cross-Compiler
-----------------------------------------
-
- If you have a cross-assembler and cross-linker available, you should
-install them now. Put them in the directory `/usr/local/TARGET/bin'.
-Here is a table of the tools you should put in this directory:
-
-`as'
- This should be the cross-assembler.
-
-`ld'
- This should be the cross-linker.
-
-`ar'
- This should be the cross-archiver: a program which can manipulate
- archive files (linker libraries) in the target machine's format.
-
-`ranlib'
- This should be a program to construct a symbol table in an archive
- file.
-
- The installation of GNU CC will find these programs in that
-directory, and copy or link them to the proper place to for the
-cross-compiler to find them when run later.
-
- The easiest way to provide these files is to build the Binutils
-package and GAS. Configure them with the same `--host' and `--target'
-options that you use for configuring GNU CC, then build and install
-them. They install their executables automatically into the proper
-directory. Alas, they do not support all the targets that GNU CC
-supports.
-
- If you want to install libraries to use with the cross-compiler,
-such as a standard C library, put them in the directory
-`/usr/local/TARGET/lib'; installation of GNU CC copies all the files in
-that subdirectory into the proper place for GNU CC to find them and
-link with them. Here's an example of copying some libraries from a
-target machine:
-
- ftp TARGET-MACHINE
- lcd /usr/local/TARGET/lib
- cd /lib
- get libc.a
- cd /usr/lib
- get libg.a
- get libm.a
- quit
-
-The precise set of libraries you'll need, and their locations on the
-target machine, vary depending on its operating system.
-
- Many targets require "start files" such as `crt0.o' and `crtn.o'
-which are linked into each executable; these too should be placed in
-`/usr/local/TARGET/lib'. There may be several alternatives for
-`crt0.o', for use with profiling or other compilation options. Check
-your target's definition of `STARTFILE_SPEC' to find out what start
-files it uses. Here's an example of copying these files from a target
-machine:
-
- ftp TARGET-MACHINE
- lcd /usr/local/TARGET/lib
- prompt
- cd /lib
- mget *crt*.o
- cd /usr/lib
- mget *crt*.o
- quit
-
diff --git a/gcc/gcc.info-8 b/gcc/gcc.info-8
deleted file mode 100644
index 3f490970f76..00000000000
--- a/gcc/gcc.info-8
+++ /dev/null
@@ -1,1202 +0,0 @@
-This is Info file gcc.info, produced by Makeinfo version 1.68 from the
-input file gcc.texi.
-
- This file documents the use and the internals of the GNU compiler.
-
- Published by the Free Software Foundation 59 Temple Place - Suite 330
-Boston, MA 02111-1307 USA
-
- Copyright (C) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997 Free
-Software Foundation, Inc.
-
- Permission is granted to make and distribute verbatim copies of this
-manual provided the copyright notice and this permission notice are
-preserved on all copies.
-
- Permission is granted to copy and distribute modified versions of
-this manual under the conditions for verbatim copying, provided also
-that the sections entitled "GNU General Public License," "Funding for
-Free Software," and "Protect Your Freedom--Fight `Look And Feel'" are
-included exactly as in the original, and provided that the entire
-resulting derived work is distributed under the terms of a permission
-notice identical to this one.
-
- Permission is granted to copy and distribute translations of this
-manual into another language, under the above conditions for modified
-versions, except that the sections entitled "GNU General Public
-License," "Funding for Free Software," and "Protect Your Freedom--Fight
-`Look And Feel'", and this permission notice, may be included in
-translations approved by the Free Software Foundation instead of in the
-original English.
-
-
-File: gcc.info, Node: Cross Runtime, Next: Build Cross, Prev: Cross Headers, Up: Cross-Compiler
-
-`libgcc.a' and Cross-Compilers
-------------------------------
-
- Code compiled by GNU CC uses certain runtime support functions
-implicitly. Some of these functions can be compiled successfully with
-GNU CC itself, but a few cannot be. These problem functions are in the
-source file `libgcc1.c'; the library made from them is called
-`libgcc1.a'.
-
- When you build a native compiler, these functions are compiled with
-some other compiler-the one that you use for bootstrapping GNU CC.
-Presumably it knows how to open code these operations, or else knows how
-to call the run-time emulation facilities that the machine comes with.
-But this approach doesn't work for building a cross-compiler. The
-compiler that you use for building knows about the host system, not the
-target system.
-
- So, when you build a cross-compiler you have to supply a suitable
-library `libgcc1.a' that does the job it is expected to do.
-
- To compile `libgcc1.c' with the cross-compiler itself does not work.
-The functions in this file are supposed to implement arithmetic
-operations that GNU CC does not know how to open code for your target
-machine. If these functions are compiled with GNU CC itself, they will
-compile into infinite recursion.
-
- On any given target, most of these functions are not needed. If GNU
-CC can open code an arithmetic operation, it will not call these
-functions to perform the operation. It is possible that on your target
-machine, none of these functions is needed. If so, you can supply an
-empty library as `libgcc1.a'.
-
- Many targets need library support only for multiplication and
-division. If you are linking with a library that contains functions for
-multiplication and division, you can tell GNU CC to call them directly
-by defining the macros `MULSI3_LIBCALL', and the like. These macros
-need to be defined in the target description macro file. For some
-targets, they are defined already. This may be sufficient to avoid the
-need for libgcc1.a; if so, you can supply an empty library.
-
- Some targets do not have floating point instructions; they need other
-functions in `libgcc1.a', which do floating arithmetic. Recent
-versions of GNU CC have a file which emulates floating point. With a
-certain amount of work, you should be able to construct a floating
-point emulator that can be used as `libgcc1.a'. Perhaps future
-versions will contain code to do this automatically and conveniently.
-That depends on whether someone wants to implement it.
-
- Some embedded targets come with all the necessary `libgcc1.a'
-routines written in C or assembler. These targets build `libgcc1.a'
-automatically and you do not need to do anything special for them.
-Other embedded targets do not need any `libgcc1.a' routines since all
-the necessary operations are supported by the hardware.
-
- If your target system has another C compiler, you can configure GNU
-CC as a native compiler on that machine, build just `libgcc1.a' with
-`make libgcc1.a' on that machine, and use the resulting file with the
-cross-compiler. To do this, execute the following on the target
-machine:
-
- cd TARGET-BUILD-DIR
- ./configure --host=sparc --target=sun3
- make libgcc1.a
-
-And then this on the host machine:
-
- ftp TARGET-MACHINE
- binary
- cd TARGET-BUILD-DIR
- get libgcc1.a
- quit
-
- Another way to provide the functions you need in `libgcc1.a' is to
-define the appropriate `perform_...' macros for those functions. If
-these definitions do not use the C arithmetic operators that they are
-meant to implement, you should be able to compile them with the
-cross-compiler you are building. (If these definitions already exist
-for your target file, then you are all set.)
-
- To build `libgcc1.a' using the perform macros, use
-`LIBGCC1=libgcc1.a OLDCC=./xgcc' when building the compiler.
-Otherwise, you should place your replacement library under the name
-`libgcc1.a' in the directory in which you will build the
-cross-compiler, before you run `make'.
-
-
-File: gcc.info, Node: Cross Headers, Next: Cross Runtime, Prev: Tools and Libraries, Up: Cross-Compiler
-
-Cross-Compilers and Header Files
---------------------------------
-
- If you are cross-compiling a standalone program or a program for an
-embedded system, then you may not need any header files except the few
-that are part of GNU CC (and those of your program). However, if you
-intend to link your program with a standard C library such as `libc.a',
-then you probably need to compile with the header files that go with
-the library you use.
-
- The GNU C compiler does not come with these files, because (1) they
-are system-specific, and (2) they belong in a C library, not in a
-compiler.
-
- If the GNU C library supports your target machine, then you can get
-the header files from there (assuming you actually use the GNU library
-when you link your program).
-
- If your target machine comes with a C compiler, it probably comes
-with suitable header files also. If you make these files accessible
-from the host machine, the cross-compiler can use them also.
-
- Otherwise, you're on your own in finding header files to use when
-cross-compiling.
-
- When you have found suitable header files, put them in the directory
-`/usr/local/TARGET/include', before building the cross compiler. Then
-installation will run fixincludes properly and install the corrected
-versions of the header files where the compiler will use them.
-
- Provide the header files before you build the cross-compiler, because
-the build stage actually runs the cross-compiler to produce parts of
-`libgcc.a'. (These are the parts that *can* be compiled with GNU CC.)
-Some of them need suitable header files.
-
- Here's an example showing how to copy the header files from a target
-machine. On the target machine, do this:
-
- (cd /usr/include; tar cf - .) > tarfile
-
- Then, on the host machine, do this:
-
- ftp TARGET-MACHINE
- lcd /usr/local/TARGET/include
- get tarfile
- quit
- tar xf tarfile
-
-
-File: gcc.info, Node: Build Cross, Prev: Cross Runtime, Up: Cross-Compiler
-
-Actually Building the Cross-Compiler
-------------------------------------
-
- Now you can proceed just as for compiling a single-machine compiler
-through the step of building stage 1. If you have not provided some
-sort of `libgcc1.a', then compilation will give up at the point where
-it needs that file, printing a suitable error message. If you do
-provide `libgcc1.a', then building the compiler will automatically
-compile and link a test program called `libgcc1-test'; if you get
-errors in the linking, it means that not all of the necessary routines
-in `libgcc1.a' are available.
-
- You must provide the header file `float.h'. One way to do this is
-to compile `enquire' and run it on your target machine. The job of
-`enquire' is to run on the target machine and figure out by experiment
-the nature of its floating point representation. `enquire' records its
-findings in the header file `float.h'. If you can't produce this file
-by running `enquire' on the target machine, then you will need to come
-up with a suitable `float.h' in some other way (or else, avoid using it
-in your programs).
-
- Do not try to build stage 2 for a cross-compiler. It doesn't work to
-rebuild GNU CC as a cross-compiler using the cross-compiler, because
-that would produce a program that runs on the target machine, not on the
-host. For example, if you compile a 386-to-68030 cross-compiler with
-itself, the result will not be right either for the 386 (because it was
-compiled into 68030 code) or for the 68030 (because it was configured
-for a 386 as the host). If you want to compile GNU CC into 68030 code,
-whether you compile it on a 68030 or with a cross-compiler on a 386, you
-must specify a 68030 as the host when you configure it.
-
- To install the cross-compiler, use `make install', as usual.
-
-
-File: gcc.info, Node: Sun Install, Next: VMS Install, Prev: Cross-Compiler, Up: Installation
-
-Installing GNU CC on the Sun
-============================
-
- On Solaris (version 2.1), do not use the linker or other tools in
-`/usr/ucb' to build GNU CC. Use `/usr/ccs/bin'.
-
- Make sure the environment variable `FLOAT_OPTION' is not set when
-you compile `libgcc.a'. If this option were set to `f68881' when
-`libgcc.a' is compiled, the resulting code would demand to be linked
-with a special startup file and would not link properly without special
-pains.
-
- There is a bug in `alloca' in certain versions of the Sun library.
-To avoid this bug, install the binaries of GNU CC that were compiled by
-GNU CC. They use `alloca' as a built-in function and never the one in
-the library.
-
- Some versions of the Sun compiler crash when compiling GNU CC. The
-problem is a segmentation fault in cpp. This problem seems to be due to
-the bulk of data in the environment variables. You may be able to avoid
-it by using the following command to compile GNU CC with Sun CC:
-
- make CC="TERMCAP=x OBJS=x LIBFUNCS=x STAGESTUFF=x cc"
-
- SunOS 4.1.3 and 4.1.3_U1 have bugs that can cause intermittent core
-dumps when compiling GNU CC. A common symptom is an internal compiler
-error which does not recur if you run it again. To fix the problem,
-install Sun recommended patch 100726 (for SunOS 4.1.3) or 101508 (for
-SunOS 4.1.3_U1), or upgrade to a later SunOS release.
-
-
-File: gcc.info, Node: VMS Install, Next: Collect2, Prev: Sun Install, Up: Installation
-
-Installing GNU CC on VMS
-========================
-
- The VMS version of GNU CC is distributed in a backup saveset
-containing both source code and precompiled binaries.
-
- To install the `gcc' command so you can use the compiler easily, in
-the same manner as you use the VMS C compiler, you must install the VMS
-CLD file for GNU CC as follows:
-
- 1. Define the VMS logical names `GNU_CC' and `GNU_CC_INCLUDE' to
- point to the directories where the GNU CC executables
- (`gcc-cpp.exe', `gcc-cc1.exe', etc.) and the C include files are
- kept respectively. This should be done with the commands:
-
- $ assign /system /translation=concealed -
- disk:[gcc.] gnu_cc
- $ assign /system /translation=concealed -
- disk:[gcc.include.] gnu_cc_include
-
- with the appropriate disk and directory names. These commands can
- be placed in your system startup file so they will be executed
- whenever the machine is rebooted. You may, if you choose, do this
- via the `GCC_INSTALL.COM' script in the `[GCC]' directory.
-
- 2. Install the `GCC' command with the command line:
-
- $ set command /table=sys$common:[syslib]dcltables -
- /output=sys$common:[syslib]dcltables gnu_cc:[000000]gcc
- $ install replace sys$common:[syslib]dcltables
-
- 3. To install the help file, do the following:
-
- $ library/help sys$library:helplib.hlb gcc.hlp
-
- Now you can invoke the compiler with a command like `gcc /verbose
- file.c', which is equivalent to the command `gcc -v -c file.c' in
- Unix.
-
- If you wish to use GNU C++ you must first install GNU CC, and then
-perform the following steps:
-
- 1. Define the VMS logical name `GNU_GXX_INCLUDE' to point to the
- directory where the preprocessor will search for the C++ header
- files. This can be done with the command:
-
- $ assign /system /translation=concealed -
- disk:[gcc.gxx_include.] gnu_gxx_include
-
- with the appropriate disk and directory name. If you are going to
- be using libg++, this is where the libg++ install procedure will
- install the libg++ header files.
-
- 2. Obtain the file `gcc-cc1plus.exe', and place this in the same
- directory that `gcc-cc1.exe' is kept.
-
- The GNU C++ compiler can be invoked with a command like `gcc /plus
- /verbose file.cc', which is equivalent to the command `g++ -v -c
- file.cc' in Unix.
-
- We try to put corresponding binaries and sources on the VMS
-distribution tape. But sometimes the binaries will be from an older
-version than the sources, because we don't always have time to update
-them. (Use the `/version' option to determine the version number of
-the binaries and compare it with the source file `version.c' to tell
-whether this is so.) In this case, you should use the binaries you get
-to recompile the sources. If you must recompile, here is how:
-
- 1. Execute the command procedure `vmsconfig.com' to set up the files
- `tm.h', `config.h', `aux-output.c', and `md.', and to create files
- `tconfig.h' and `hconfig.h'. This procedure also creates several
- linker option files used by `make-cc1.com' and a data file used by
- `make-l2.com'.
-
- $ @vmsconfig.com
-
- 2. Setup the logical names and command tables as defined above. In
- addition, define the VMS logical name `GNU_BISON' to point at the
- to the directories where the Bison executable is kept. This
- should be done with the command:
-
- $ assign /system /translation=concealed -
- disk:[bison.] gnu_bison
-
- You may, if you choose, use the `INSTALL_BISON.COM' script in the
- `[BISON]' directory.
-
- 3. Install the `BISON' command with the command line:
-
- $ set command /table=sys$common:[syslib]dcltables -
- /output=sys$common:[syslib]dcltables -
- gnu_bison:[000000]bison
- $ install replace sys$common:[syslib]dcltables
-
- 4. Type `@make-gcc' to recompile everything (alternatively, submit
- the file `make-gcc.com' to a batch queue). If you wish to build
- the GNU C++ compiler as well as the GNU CC compiler, you must
- first edit `make-gcc.com' and follow the instructions that appear
- in the comments.
-
- 5. In order to use GCC, you need a library of functions which GCC
- compiled code will call to perform certain tasks, and these
- functions are defined in the file `libgcc2.c'. To compile this
- you should use the command procedure `make-l2.com', which will
- generate the library `libgcc2.olb'. `libgcc2.olb' should be built
- using the compiler built from the same distribution that
- `libgcc2.c' came from, and `make-gcc.com' will automatically do
- all of this for you.
-
- To install the library, use the following commands:
-
- $ library gnu_cc:[000000]gcclib/delete=(new,eprintf)
- $ library gnu_cc:[000000]gcclib/delete=L_*
- $ library libgcc2/extract=*/output=libgcc2.obj
- $ library gnu_cc:[000000]gcclib libgcc2.obj
-
- The first command simply removes old modules that will be replaced
- with modules from `libgcc2' under different module names. The
- modules `new' and `eprintf' may not actually be present in your
- `gcclib.olb'--if the VMS librarian complains about those modules
- not being present, simply ignore the message and continue on with
- the next command. The second command removes the modules that
- came from the previous version of the library `libgcc2.c'.
-
- Whenever you update the compiler on your system, you should also
- update the library with the above procedure.
-
- 6. You may wish to build GCC in such a way that no files are written
- to the directory where the source files reside. An example would
- be the when the source files are on a read-only disk. In these
- cases, execute the following DCL commands (substituting your
- actual path names):
-
- $ assign dua0:[gcc.build_dir.]/translation=concealed, -
- dua1:[gcc.source_dir.]/translation=concealed gcc_build
- $ set default gcc_build:[000000]
-
- where the directory `dua1:[gcc.source_dir]' contains the source
- code, and the directory `dua0:[gcc.build_dir]' is meant to contain
- all of the generated object files and executables. Once you have
- done this, you can proceed building GCC as described above. (Keep
- in mind that `gcc_build' is a rooted logical name, and thus the
- device names in each element of the search list must be an actual
- physical device name rather than another rooted logical name).
-
- 7. *If you are building GNU CC with a previous version of GNU CC, you
- also should check to see that you have the newest version of the
- assembler*. In particular, GNU CC version 2 treats global constant
- variables slightly differently from GNU CC version 1, and GAS
- version 1.38.1 does not have the patches required to work with GCC
- version 2. If you use GAS 1.38.1, then `extern const' variables
- will not have the read-only bit set, and the linker will generate
- warning messages about mismatched psect attributes for these
- variables. These warning messages are merely a nuisance, and can
- safely be ignored.
-
- If you are compiling with a version of GNU CC older than 1.33,
- specify `/DEFINE=("inline=")' as an option in all the
- compilations. This requires editing all the `gcc' commands in
- `make-cc1.com'. (The older versions had problems supporting
- `inline'.) Once you have a working 1.33 or newer GNU CC, you can
- change this file back.
-
- 8. If you want to build GNU CC with the VAX C compiler, you will need
- to make minor changes in `make-cccp.com' and `make-cc1.com' to
- choose alternate definitions of `CC', `CFLAGS', and `LIBS'. See
- comments in those files. However, you must also have a working
- version of the GNU assembler (GNU as, aka GAS) as it is used as
- the back-end for GNU CC to produce binary object modules and is
- not included in the GNU CC sources. GAS is also needed to compile
- `libgcc2' in order to build `gcclib' (see above); `make-l2.com'
- expects to be able to find it operational in
- `gnu_cc:[000000]gnu-as.exe'.
-
- To use GNU CC on VMS, you need the VMS driver programs `gcc.exe',
- `gcc.com', and `gcc.cld'. They are distributed with the VMS
- binaries (`gcc-vms') rather than the GNU CC sources. GAS is also
- included in `gcc-vms', as is Bison.
-
- Once you have successfully built GNU CC with VAX C, you should use
- the resulting compiler to rebuild itself. Before doing this, be
- sure to restore the `CC', `CFLAGS', and `LIBS' definitions in
- `make-cccp.com' and `make-cc1.com'. The second generation
- compiler will be able to take advantage of many optimizations that
- must be suppressed when building with other compilers.
-
- Under previous versions of GNU CC, the generated code would
-occasionally give strange results when linked with the sharable
-`VAXCRTL' library. Now this should work.
-
- Even with this version, however, GNU CC itself should not be linked
-with the sharable `VAXCRTL'. The version of `qsort' in `VAXCRTL' has a
-bug (known to be present in VMS versions V4.6 through V5.5) which
-causes the compiler to fail.
-
- The executables are generated by `make-cc1.com' and `make-cccp.com'
-use the object library version of `VAXCRTL' in order to make use of the
-`qsort' routine in `gcclib.olb'. If you wish to link the compiler
-executables with the shareable image version of `VAXCRTL', you should
-edit the file `tm.h' (created by `vmsconfig.com') to define the macro
-`QSORT_WORKAROUND'.
-
- `QSORT_WORKAROUND' is always defined when GNU CC is compiled with
-VAX C, to avoid a problem in case `gcclib.olb' is not yet available.
-
-
-File: gcc.info, Node: Collect2, Next: Header Dirs, Prev: VMS Install, Up: Installation
-
-`collect2'
-==========
-
- Many target systems do not have support in the assembler and linker
-for "constructors"--initialization functions to be called before the
-official "start" of `main'. On such systems, GNU CC uses a utility
-called `collect2' to arrange to call these functions at start time.
-
- The program `collect2' works by linking the program once and looking
-through the linker output file for symbols with particular names
-indicating they are constructor functions. If it finds any, it creates
-a new temporary `.c' file containing a table of them, compiles it, and
-links the program a second time including that file.
-
- The actual calls to the constructors are carried out by a subroutine
-called `__main', which is called (automatically) at the beginning of
-the body of `main' (provided `main' was compiled with GNU CC). Calling
-`__main' is necessary, even when compiling C code, to allow linking C
-and C++ object code together. (If you use `-nostdlib', you get an
-unresolved reference to `__main', since it's defined in the standard
-GCC library. Include `-lgcc' at the end of your compiler command line
-to resolve this reference.)
-
- The program `collect2' is installed as `ld' in the directory where
-the passes of the compiler are installed. When `collect2' needs to
-find the *real* `ld', it tries the following file names:
-
- * `real-ld' in the directories listed in the compiler's search
- directories.
-
- * `real-ld' in the directories listed in the environment variable
- `PATH'.
-
- * The file specified in the `REAL_LD_FILE_NAME' configuration macro,
- if specified.
-
- * `ld' in the compiler's search directories, except that `collect2'
- will not execute itself recursively.
-
- * `ld' in `PATH'.
-
- "The compiler's search directories" means all the directories where
-`gcc' searches for passes of the compiler. This includes directories
-that you specify with `-B'.
-
- Cross-compilers search a little differently:
-
- * `real-ld' in the compiler's search directories.
-
- * `TARGET-real-ld' in `PATH'.
-
- * The file specified in the `REAL_LD_FILE_NAME' configuration macro,
- if specified.
-
- * `ld' in the compiler's search directories.
-
- * `TARGET-ld' in `PATH'.
-
- `collect2' explicitly avoids running `ld' using the file name under
-which `collect2' itself was invoked. In fact, it remembers up a list
-of such names--in case one copy of `collect2' finds another copy (or
-version) of `collect2' installed as `ld' in a second place in the
-search path.
-
- `collect2' searches for the utilities `nm' and `strip' using the
-same algorithm as above for `ld'.
-
-
-File: gcc.info, Node: Header Dirs, Prev: Collect2, Up: Installation
-
-Standard Header File Directories
-================================
-
- `GCC_INCLUDE_DIR' means the same thing for native and cross. It is
-where GNU CC stores its private include files, and also where GNU CC
-stores the fixed include files. A cross compiled GNU CC runs
-`fixincludes' on the header files in `$(tooldir)/include'. (If the
-cross compilation header files need to be fixed, they must be installed
-before GNU CC is built. If the cross compilation header files are
-already suitable for ANSI C and GNU CC, nothing special need be done).
-
- `GPLUS_INCLUDE_DIR' means the same thing for native and cross. It
-is where `g++' looks first for header files. `libg++' installs only
-target independent header files in that directory.
-
- `LOCAL_INCLUDE_DIR' is used only for a native compiler. It is
-normally `/usr/local/include'. GNU CC searches this directory so that
-users can install header files in `/usr/local/include'.
-
- `CROSS_INCLUDE_DIR' is used only for a cross compiler. GNU CC
-doesn't install anything there.
-
- `TOOL_INCLUDE_DIR' is used for both native and cross compilers. It
-is the place for other packages to install header files that GNU CC will
-use. For a cross-compiler, this is the equivalent of `/usr/include'.
-When you build a cross-compiler, `fixincludes' processes any header
-files in this directory.
-
-
-File: gcc.info, Node: C Extensions, Next: C++ Extensions, Prev: Installation, Up: Top
-
-Extensions to the C Language Family
-***********************************
-
- GNU C provides several language features not found in ANSI standard
-C. (The `-pedantic' option directs GNU CC to print a warning message if
-any of these features is used.) To test for the availability of these
-features in conditional compilation, check for a predefined macro
-`__GNUC__', which is always defined under GNU CC.
-
- These extensions are available in C and Objective C. Most of them
-are also available in C++. *Note Extensions to the C++ Language: C++
-Extensions, for extensions that apply *only* to C++.
-
-* Menu:
-
-* Statement Exprs:: Putting statements and declarations inside expressions.
-* Local Labels:: Labels local to a statement-expression.
-* Labels as Values:: Getting pointers to labels, and computed gotos.
-* Nested Functions:: As in Algol and Pascal, lexical scoping of functions.
-* Constructing Calls:: Dispatching a call to another function.
-* Naming Types:: Giving a name to the type of some expression.
-* Typeof:: `typeof': referring to the type of an expression.
-* Lvalues:: Using `?:', `,' and casts in lvalues.
-* Conditionals:: Omitting the middle operand of a `?:' expression.
-* Long Long:: Double-word integers--`long long int'.
-* Complex:: Data types for complex numbers.
-* Zero Length:: Zero-length arrays.
-* Variable Length:: Arrays whose length is computed at run time.
-* Macro Varargs:: Macros with variable number of arguments.
-* Subscripting:: Any array can be subscripted, even if not an lvalue.
-* Pointer Arith:: Arithmetic on `void'-pointers and function pointers.
-* Initializers:: Non-constant initializers.
-* Constructors:: Constructor expressions give structures, unions
- or arrays as values.
-* Labeled Elements:: Labeling elements of initializers.
-* Cast to Union:: Casting to union type from any member of the union.
-* Case Ranges:: `case 1 ... 9' and such.
-* Function Attributes:: Declaring that functions have no side effects,
- or that they can never return.
-* Function Prototypes:: Prototype declarations and old-style definitions.
-* C++ Comments:: C++ comments are recognized.
-* Dollar Signs:: Dollar sign is allowed in identifiers.
-* Character Escapes:: `\e' stands for the character <ESC>.
-* Variable Attributes:: Specifying attributes of variables.
-* Type Attributes:: Specifying attributes of types.
-* Alignment:: Inquiring about the alignment of a type or variable.
-* Inline:: Defining inline functions (as fast as macros).
-* Extended Asm:: Assembler instructions with C expressions as operands.
- (With them you can define "built-in" functions.)
-* Asm Labels:: Specifying the assembler name to use for a C symbol.
-* Explicit Reg Vars:: Defining variables residing in specified registers.
-* Alternate Keywords:: `__const__', `__asm__', etc., for header files.
-* Incomplete Enums:: `enum foo;', with details to follow.
-* Function Names:: Printable strings which are the name of the current
- function.
-* Return Address:: Getting the return or frame address of a function.
-
-
-File: gcc.info, Node: Statement Exprs, Next: Local Labels, Up: C Extensions
-
-Statements and Declarations in Expressions
-==========================================
-
- A compound statement enclosed in parentheses may appear as an
-expression in GNU C. This allows you to use loops, switches, and local
-variables within an expression.
-
- Recall that a compound statement is a sequence of statements
-surrounded by braces; in this construct, parentheses go around the
-braces. For example:
-
- ({ int y = foo (); int z;
- if (y > 0) z = y;
- else z = - y;
- z; })
-
-is a valid (though slightly more complex than necessary) expression for
-the absolute value of `foo ()'.
-
- The last thing in the compound statement should be an expression
-followed by a semicolon; the value of this subexpression serves as the
-value of the entire construct. (If you use some other kind of statement
-last within the braces, the construct has type `void', and thus
-effectively no value.)
-
- This feature is especially useful in making macro definitions "safe"
-(so that they evaluate each operand exactly once). For example, the
-"maximum" function is commonly defined as a macro in standard C as
-follows:
-
- #define max(a,b) ((a) > (b) ? (a) : (b))
-
-But this definition computes either A or B twice, with bad results if
-the operand has side effects. In GNU C, if you know the type of the
-operands (here let's assume `int'), you can define the macro safely as
-follows:
-
- #define maxint(a,b) \
- ({int _a = (a), _b = (b); _a > _b ? _a : _b; })
-
- Embedded statements are not allowed in constant expressions, such as
-the value of an enumeration constant, the width of a bit field, or the
-initial value of a static variable.
-
- If you don't know the type of the operand, you can still do this,
-but you must use `typeof' (*note Typeof::.) or type naming (*note
-Naming Types::.).
-
-
-File: gcc.info, Node: Local Labels, Next: Labels as Values, Prev: Statement Exprs, Up: C Extensions
-
-Locally Declared Labels
-=======================
-
- Each statement expression is a scope in which "local labels" can be
-declared. A local label is simply an identifier; you can jump to it
-with an ordinary `goto' statement, but only from within the statement
-expression it belongs to.
-
- A local label declaration looks like this:
-
- __label__ LABEL;
-
-or
-
- __label__ LABEL1, LABEL2, ...;
-
- Local label declarations must come at the beginning of the statement
-expression, right after the `({', before any ordinary declarations.
-
- The label declaration defines the label *name*, but does not define
-the label itself. You must do this in the usual way, with `LABEL:',
-within the statements of the statement expression.
-
- The local label feature is useful because statement expressions are
-often used in macros. If the macro contains nested loops, a `goto' can
-be useful for breaking out of them. However, an ordinary label whose
-scope is the whole function cannot be used: if the macro can be
-expanded several times in one function, the label will be multiply
-defined in that function. A local label avoids this problem. For
-example:
-
- #define SEARCH(array, target) \
- ({ \
- __label__ found; \
- typeof (target) _SEARCH_target = (target); \
- typeof (*(array)) *_SEARCH_array = (array); \
- int i, j; \
- int value; \
- for (i = 0; i < max; i++) \
- for (j = 0; j < max; j++) \
- if (_SEARCH_array[i][j] == _SEARCH_target) \
- { value = i; goto found; } \
- value = -1; \
- found: \
- value; \
- })
-
-
-File: gcc.info, Node: Labels as Values, Next: Nested Functions, Prev: Local Labels, Up: C Extensions
-
-Labels as Values
-================
-
- You can get the address of a label defined in the current function
-(or a containing function) with the unary operator `&&'. The value has
-type `void *'. This value is a constant and can be used wherever a
-constant of that type is valid. For example:
-
- void *ptr;
- ...
- ptr = &&foo;
-
- To use these values, you need to be able to jump to one. This is
-done with the computed goto statement(1), `goto *EXP;'. For example,
-
- goto *ptr;
-
-Any expression of type `void *' is allowed.
-
- One way of using these constants is in initializing a static array
-that will serve as a jump table:
-
- static void *array[] = { &&foo, &&bar, &&hack };
-
- Then you can select a label with indexing, like this:
-
- goto *array[i];
-
-Note that this does not check whether the subscript is in bounds--array
-indexing in C never does that.
-
- Such an array of label values serves a purpose much like that of the
-`switch' statement. The `switch' statement is cleaner, so use that
-rather than an array unless the problem does not fit a `switch'
-statement very well.
-
- Another use of label values is in an interpreter for threaded code.
-The labels within the interpreter function can be stored in the
-threaded code for super-fast dispatching.
-
- You can use this mechanism to jump to code in a different function.
-If you do that, totally unpredictable things will happen. The best way
-to avoid this is to store the label address only in automatic variables
-and never pass it as an argument.
-
- ---------- Footnotes ----------
-
- (1) The analogous feature in Fortran is called an assigned goto, but
-that name seems inappropriate in C, where one can do more than simply
-store label addresses in label variables.
-
-
-File: gcc.info, Node: Nested Functions, Next: Constructing Calls, Prev: Labels as Values, Up: C Extensions
-
-Nested Functions
-================
-
- A "nested function" is a function defined inside another function.
-(Nested functions are not supported for GNU C++.) The nested function's
-name is local to the block where it is defined. For example, here we
-define a nested function named `square', and call it twice:
-
- foo (double a, double b)
- {
- double square (double z) { return z * z; }
-
- return square (a) + square (b);
- }
-
- The nested function can access all the variables of the containing
-function that are visible at the point of its definition. This is
-called "lexical scoping". For example, here we show a nested function
-which uses an inherited variable named `offset':
-
- bar (int *array, int offset, int size)
- {
- int access (int *array, int index)
- { return array[index + offset]; }
- int i;
- ...
- for (i = 0; i < size; i++)
- ... access (array, i) ...
- }
-
- Nested function definitions are permitted within functions in the
-places where variable definitions are allowed; that is, in any block,
-before the first statement in the block.
-
- It is possible to call the nested function from outside the scope of
-its name by storing its address or passing the address to another
-function:
-
- hack (int *array, int size)
- {
- void store (int index, int value)
- { array[index] = value; }
-
- intermediate (store, size);
- }
-
- Here, the function `intermediate' receives the address of `store' as
-an argument. If `intermediate' calls `store', the arguments given to
-`store' are used to store into `array'. But this technique works only
-so long as the containing function (`hack', in this example) does not
-exit.
-
- If you try to call the nested function through its address after the
-containing function has exited, all hell will break loose. If you try
-to call it after a containing scope level has exited, and if it refers
-to some of the variables that are no longer in scope, you may be lucky,
-but it's not wise to take the risk. If, however, the nested function
-does not refer to anything that has gone out of scope, you should be
-safe.
-
- GNU CC implements taking the address of a nested function using a
-technique called "trampolines". A paper describing them is available
-from `maya.idiap.ch' in directory `pub/tmb', file `usenix88-lexic.ps.Z'.
-
- A nested function can jump to a label inherited from a containing
-function, provided the label was explicitly declared in the containing
-function (*note Local Labels::.). Such a jump returns instantly to the
-containing function, exiting the nested function which did the `goto'
-and any intermediate functions as well. Here is an example:
-
- bar (int *array, int offset, int size)
- {
- __label__ failure;
- int access (int *array, int index)
- {
- if (index > size)
- goto failure;
- return array[index + offset];
- }
- int i;
- ...
- for (i = 0; i < size; i++)
- ... access (array, i) ...
- ...
- return 0;
-
- /* Control comes here from `access'
- if it detects an error. */
- failure:
- return -1;
- }
-
- A nested function always has internal linkage. Declaring one with
-`extern' is erroneous. If you need to declare the nested function
-before its definition, use `auto' (which is otherwise meaningless for
-function declarations).
-
- bar (int *array, int offset, int size)
- {
- __label__ failure;
- auto int access (int *, int);
- ...
- int access (int *array, int index)
- {
- if (index > size)
- goto failure;
- return array[index + offset];
- }
- ...
- }
-
-
-File: gcc.info, Node: Constructing Calls, Next: Naming Types, Prev: Nested Functions, Up: C Extensions
-
-Constructing Function Calls
-===========================
-
- Using the built-in functions described below, you can record the
-arguments a function received, and call another function with the same
-arguments, without knowing the number or types of the arguments.
-
- You can also record the return value of that function call, and
-later return that value, without knowing what data type the function
-tried to return (as long as your caller expects that data type).
-
-`__builtin_apply_args ()'
- This built-in function returns a pointer of type `void *' to data
- describing how to perform a call with the same arguments as were
- passed to the current function.
-
- The function saves the arg pointer register, structure value
- address, and all registers that might be used to pass arguments to
- a function into a block of memory allocated on the stack. Then it
- returns the address of that block.
-
-`__builtin_apply (FUNCTION, ARGUMENTS, SIZE)'
- This built-in function invokes FUNCTION (type `void (*)()') with a
- copy of the parameters described by ARGUMENTS (type `void *') and
- SIZE (type `int').
-
- The value of ARGUMENTS should be the value returned by
- `__builtin_apply_args'. The argument SIZE specifies the size of
- the stack argument data, in bytes.
-
- This function returns a pointer of type `void *' to data describing
- how to return whatever value was returned by FUNCTION. The data
- is saved in a block of memory allocated on the stack.
-
- It is not always simple to compute the proper value for SIZE. The
- value is used by `__builtin_apply' to compute the amount of data
- that should be pushed on the stack and copied from the incoming
- argument area.
-
-`__builtin_return (RESULT)'
- This built-in function returns the value described by RESULT from
- the containing function. You should specify, for RESULT, a value
- returned by `__builtin_apply'.
-
-
-File: gcc.info, Node: Naming Types, Next: Typeof, Prev: Constructing Calls, Up: C Extensions
-
-Naming an Expression's Type
-===========================
-
- You can give a name to the type of an expression using a `typedef'
-declaration with an initializer. Here is how to define NAME as a type
-name for the type of EXP:
-
- typedef NAME = EXP;
-
- This is useful in conjunction with the statements-within-expressions
-feature. Here is how the two together can be used to define a safe
-"maximum" macro that operates on any arithmetic type:
-
- #define max(a,b) \
- ({typedef _ta = (a), _tb = (b); \
- _ta _a = (a); _tb _b = (b); \
- _a > _b ? _a : _b; })
-
- The reason for using names that start with underscores for the local
-variables is to avoid conflicts with variable names that occur within
-the expressions that are substituted for `a' and `b'. Eventually we
-hope to design a new form of declaration syntax that allows you to
-declare variables whose scopes start only after their initializers;
-this will be a more reliable way to prevent such conflicts.
-
-
-File: gcc.info, Node: Typeof, Next: Lvalues, Prev: Naming Types, Up: C Extensions
-
-Referring to a Type with `typeof'
-=================================
-
- Another way to refer to the type of an expression is with `typeof'.
-The syntax of using of this keyword looks like `sizeof', but the
-construct acts semantically like a type name defined with `typedef'.
-
- There are two ways of writing the argument to `typeof': with an
-expression or with a type. Here is an example with an expression:
-
- typeof (x[0](1))
-
-This assumes that `x' is an array of functions; the type described is
-that of the values of the functions.
-
- Here is an example with a typename as the argument:
-
- typeof (int *)
-
-Here the type described is that of pointers to `int'.
-
- If you are writing a header file that must work when included in
-ANSI C programs, write `__typeof__' instead of `typeof'. *Note
-Alternate Keywords::.
-
- A `typeof'-construct can be used anywhere a typedef name could be
-used. For example, you can use it in a declaration, in a cast, or
-inside of `sizeof' or `typeof'.
-
- * This declares `y' with the type of what `x' points to.
-
- typeof (*x) y;
-
- * This declares `y' as an array of such values.
-
- typeof (*x) y[4];
-
- * This declares `y' as an array of pointers to characters:
-
- typeof (typeof (char *)[4]) y;
-
- It is equivalent to the following traditional C declaration:
-
- char *y[4];
-
- To see the meaning of the declaration using `typeof', and why it
- might be a useful way to write, let's rewrite it with these macros:
-
- #define pointer(T) typeof(T *)
- #define array(T, N) typeof(T [N])
-
- Now the declaration can be rewritten this way:
-
- array (pointer (char), 4) y;
-
- Thus, `array (pointer (char), 4)' is the type of arrays of 4
- pointers to `char'.
-
-
-File: gcc.info, Node: Lvalues, Next: Conditionals, Prev: Typeof, Up: C Extensions
-
-Generalized Lvalues
-===================
-
- Compound expressions, conditional expressions and casts are allowed
-as lvalues provided their operands are lvalues. This means that you
-can take their addresses or store values into them.
-
- Standard C++ allows compound expressions and conditional expressions
-as lvalues, and permits casts to reference type, so use of this
-extension is deprecated for C++ code.
-
- For example, a compound expression can be assigned, provided the last
-expression in the sequence is an lvalue. These two expressions are
-equivalent:
-
- (a, b) += 5
- a, (b += 5)
-
- Similarly, the address of the compound expression can be taken.
-These two expressions are equivalent:
-
- &(a, b)
- a, &b
-
- A conditional expression is a valid lvalue if its type is not void
-and the true and false branches are both valid lvalues. For example,
-these two expressions are equivalent:
-
- (a ? b : c) = 5
- (a ? b = 5 : (c = 5))
-
- A cast is a valid lvalue if its operand is an lvalue. A simple
-assignment whose left-hand side is a cast works by converting the
-right-hand side first to the specified type, then to the type of the
-inner left-hand side expression. After this is stored, the value is
-converted back to the specified type to become the value of the
-assignment. Thus, if `a' has type `char *', the following two
-expressions are equivalent:
-
- (int)a = 5
- (int)(a = (char *)(int)5)
-
- An assignment-with-arithmetic operation such as `+=' applied to a
-cast performs the arithmetic using the type resulting from the cast,
-and then continues as in the previous case. Therefore, these two
-expressions are equivalent:
-
- (int)a += 5
- (int)(a = (char *)(int) ((int)a + 5))
-
- You cannot take the address of an lvalue cast, because the use of its
-address would not work out coherently. Suppose that `&(int)f' were
-permitted, where `f' has type `float'. Then the following statement
-would try to store an integer bit-pattern where a floating point number
-belongs:
-
- *&(int)f = 1;
-
- This is quite different from what `(int)f = 1' would do--that would
-convert 1 to floating point and store it. Rather than cause this
-inconsistency, we think it is better to prohibit use of `&' on a cast.
-
- If you really do want an `int *' pointer with the address of `f',
-you can simply write `(int *)&f'.
-
-
-File: gcc.info, Node: Conditionals, Next: Long Long, Prev: Lvalues, Up: C Extensions
-
-Conditionals with Omitted Operands
-==================================
-
- The middle operand in a conditional expression may be omitted. Then
-if the first operand is nonzero, its value is the value of the
-conditional expression.
-
- Therefore, the expression
-
- x ? : y
-
-has the value of `x' if that is nonzero; otherwise, the value of `y'.
-
- This example is perfectly equivalent to
-
- x ? x : y
-
-In this simple case, the ability to omit the middle operand is not
-especially useful. When it becomes useful is when the first operand
-does, or may (if it is a macro argument), contain a side effect. Then
-repeating the operand in the middle would perform the side effect
-twice. Omitting the middle operand uses the value already computed
-without the undesirable effects of recomputing it.
-
-
-File: gcc.info, Node: Long Long, Next: Complex, Prev: Conditionals, Up: C Extensions
-
-Double-Word Integers
-====================
-
- GNU C supports data types for integers that are twice as long as
-`int'. Simply write `long long int' for a signed integer, or `unsigned
-long long int' for an unsigned integer. To make an integer constant of
-type `long long int', add the suffix `LL' to the integer. To make an
-integer constant of type `unsigned long long int', add the suffix `ULL'
-to the integer.
-
- You can use these types in arithmetic like any other integer types.
-Addition, subtraction, and bitwise boolean operations on these types
-are open-coded on all types of machines. Multiplication is open-coded
-if the machine supports fullword-to-doubleword a widening multiply
-instruction. Division and shifts are open-coded only on machines that
-provide special support. The operations that are not open-coded use
-special library routines that come with GNU CC.
-
- There may be pitfalls when you use `long long' types for function
-arguments, unless you declare function prototypes. If a function
-expects type `int' for its argument, and you pass a value of type `long
-long int', confusion will result because the caller and the subroutine
-will disagree about the number of bytes for the argument. Likewise, if
-the function expects `long long int' and you pass `int'. The best way
-to avoid such problems is to use prototypes.
-
-
-File: gcc.info, Node: Complex, Next: Zero Length, Prev: Long Long, Up: C Extensions
-
-Complex Numbers
-===============
-
- GNU C supports complex data types. You can declare both complex
-integer types and complex floating types, using the keyword
-`__complex__'.
-
- For example, `__complex__ double x;' declares `x' as a variable
-whose real part and imaginary part are both of type `double'.
-`__complex__ short int y;' declares `y' to have real and imaginary
-parts of type `short int'; this is not likely to be useful, but it
-shows that the set of complex types is complete.
-
- To write a constant with a complex data type, use the suffix `i' or
-`j' (either one; they are equivalent). For example, `2.5fi' has type
-`__complex__ float' and `3i' has type `__complex__ int'. Such a
-constant always has a pure imaginary value, but you can form any
-complex value you like by adding one to a real constant.
-
- To extract the real part of a complex-valued expression EXP, write
-`__real__ EXP'. Likewise, use `__imag__' to extract the imaginary part.
-
- The operator `~' performs complex conjugation when used on a value
-with a complex type.
-
- GNU CC can allocate complex automatic variables in a noncontiguous
-fashion; it's even possible for the real part to be in a register while
-the imaginary part is on the stack (or vice-versa). None of the
-supported debugging info formats has a way to represent noncontiguous
-allocation like this, so GNU CC describes a noncontiguous complex
-variable as if it were two separate variables of noncomplex type. If
-the variable's actual name is `foo', the two fictitious variables are
-named `foo$real' and `foo$imag'. You can examine and set these two
-fictitious variables with your debugger.
-
- A future version of GDB will know how to recognize such pairs and
-treat them as a single variable with a complex type.
-
-
-File: gcc.info, Node: Zero Length, Next: Variable Length, Prev: Complex, Up: C Extensions
-
-Arrays of Length Zero
-=====================
-
- Zero-length arrays are allowed in GNU C. They are very useful as
-the last element of a structure which is really a header for a
-variable-length object:
-
- struct line {
- int length;
- char contents[0];
- };
-
- {
- struct line *thisline = (struct line *)
- malloc (sizeof (struct line) + this_length);
- thisline->length = this_length;
- }
-
- In standard C, you would have to give `contents' a length of 1, which
-means either you waste space or complicate the argument to `malloc'.
-
diff --git a/gcc/gcc.info-9 b/gcc/gcc.info-9
deleted file mode 100644
index 822751e6d8a..00000000000
--- a/gcc/gcc.info-9
+++ /dev/null
@@ -1,1225 +0,0 @@
-This is Info file gcc.info, produced by Makeinfo version 1.68 from the
-input file gcc.texi.
-
- This file documents the use and the internals of the GNU compiler.
-
- Published by the Free Software Foundation 59 Temple Place - Suite 330
-Boston, MA 02111-1307 USA
-
- Copyright (C) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997 Free
-Software Foundation, Inc.
-
- Permission is granted to make and distribute verbatim copies of this
-manual provided the copyright notice and this permission notice are
-preserved on all copies.
-
- Permission is granted to copy and distribute modified versions of
-this manual under the conditions for verbatim copying, provided also
-that the sections entitled "GNU General Public License," "Funding for
-Free Software," and "Protect Your Freedom--Fight `Look And Feel'" are
-included exactly as in the original, and provided that the entire
-resulting derived work is distributed under the terms of a permission
-notice identical to this one.
-
- Permission is granted to copy and distribute translations of this
-manual into another language, under the above conditions for modified
-versions, except that the sections entitled "GNU General Public
-License," "Funding for Free Software," and "Protect Your Freedom--Fight
-`Look And Feel'", and this permission notice, may be included in
-translations approved by the Free Software Foundation instead of in the
-original English.
-
-
-File: gcc.info, Node: Variable Length, Next: Macro Varargs, Prev: Zero Length, Up: C Extensions
-
-Arrays of Variable Length
-=========================
-
- Variable-length automatic arrays are allowed in GNU C. These arrays
-are declared like any other automatic arrays, but with a length that is
-not a constant expression. The storage is allocated at the point of
-declaration and deallocated when the brace-level is exited. For
-example:
-
- FILE *
- concat_fopen (char *s1, char *s2, char *mode)
- {
- char str[strlen (s1) + strlen (s2) + 1];
- strcpy (str, s1);
- strcat (str, s2);
- return fopen (str, mode);
- }
-
- Jumping or breaking out of the scope of the array name deallocates
-the storage. Jumping into the scope is not allowed; you get an error
-message for it.
-
- You can use the function `alloca' to get an effect much like
-variable-length arrays. The function `alloca' is available in many
-other C implementations (but not in all). On the other hand,
-variable-length arrays are more elegant.
-
- There are other differences between these two methods. Space
-allocated with `alloca' exists until the containing *function* returns.
-The space for a variable-length array is deallocated as soon as the
-array name's scope ends. (If you use both variable-length arrays and
-`alloca' in the same function, deallocation of a variable-length array
-will also deallocate anything more recently allocated with `alloca'.)
-
- You can also use variable-length arrays as arguments to functions:
-
- struct entry
- tester (int len, char data[len][len])
- {
- ...
- }
-
- The length of an array is computed once when the storage is allocated
-and is remembered for the scope of the array in case you access it with
-`sizeof'.
-
- If you want to pass the array first and the length afterward, you can
-use a forward declaration in the parameter list--another GNU extension.
-
- struct entry
- tester (int len; char data[len][len], int len)
- {
- ...
- }
-
- The `int len' before the semicolon is a "parameter forward
-declaration", and it serves the purpose of making the name `len' known
-when the declaration of `data' is parsed.
-
- You can write any number of such parameter forward declarations in
-the parameter list. They can be separated by commas or semicolons, but
-the last one must end with a semicolon, which is followed by the "real"
-parameter declarations. Each forward declaration must match a "real"
-declaration in parameter name and data type.
-
-
-File: gcc.info, Node: Macro Varargs, Next: Subscripting, Prev: Variable Length, Up: C Extensions
-
-Macros with Variable Numbers of Arguments
-=========================================
-
- In GNU C, a macro can accept a variable number of arguments, much as
-a function can. The syntax for defining the macro looks much like that
-used for a function. Here is an example:
-
- #define eprintf(format, args...) \
- fprintf (stderr, format , ## args)
-
- Here `args' is a "rest argument": it takes in zero or more
-arguments, as many as the call contains. All of them plus the commas
-between them form the value of `args', which is substituted into the
-macro body where `args' is used. Thus, we have this expansion:
-
- eprintf ("%s:%d: ", input_file_name, line_number)
- ==>
- fprintf (stderr, "%s:%d: " , input_file_name, line_number)
-
-Note that the comma after the string constant comes from the definition
-of `eprintf', whereas the last comma comes from the value of `args'.
-
- The reason for using `##' is to handle the case when `args' matches
-no arguments at all. In this case, `args' has an empty value. In this
-case, the second comma in the definition becomes an embarrassment: if
-it got through to the expansion of the macro, we would get something
-like this:
-
- fprintf (stderr, "success!\n" , )
-
-which is invalid C syntax. `##' gets rid of the comma, so we get the
-following instead:
-
- fprintf (stderr, "success!\n")
-
- This is a special feature of the GNU C preprocessor: `##' before a
-rest argument that is empty discards the preceding sequence of
-non-whitespace characters from the macro definition. (If another macro
-argument precedes, none of it is discarded.)
-
- It might be better to discard the last preprocessor token instead of
-the last preceding sequence of non-whitespace characters; in fact, we
-may someday change this feature to do so. We advise you to write the
-macro definition so that the preceding sequence of non-whitespace
-characters is just a single token, so that the meaning will not change
-if we change the definition of this feature.
-
-
-File: gcc.info, Node: Subscripting, Next: Pointer Arith, Prev: Macro Varargs, Up: C Extensions
-
-Non-Lvalue Arrays May Have Subscripts
-=====================================
-
- Subscripting is allowed on arrays that are not lvalues, even though
-the unary `&' operator is not. For example, this is valid in GNU C
-though not valid in other C dialects:
-
- struct foo {int a[4];};
-
- struct foo f();
-
- bar (int index)
- {
- return f().a[index];
- }
-
-
-File: gcc.info, Node: Pointer Arith, Next: Initializers, Prev: Subscripting, Up: C Extensions
-
-Arithmetic on `void'- and Function-Pointers
-===========================================
-
- In GNU C, addition and subtraction operations are supported on
-pointers to `void' and on pointers to functions. This is done by
-treating the size of a `void' or of a function as 1.
-
- A consequence of this is that `sizeof' is also allowed on `void' and
-on function types, and returns 1.
-
- The option `-Wpointer-arith' requests a warning if these extensions
-are used.
-
-
-File: gcc.info, Node: Initializers, Next: Constructors, Prev: Pointer Arith, Up: C Extensions
-
-Non-Constant Initializers
-=========================
-
- As in standard C++, the elements of an aggregate initializer for an
-automatic variable are not required to be constant expressions in GNU C.
-Here is an example of an initializer with run-time varying elements:
-
- foo (float f, float g)
- {
- float beat_freqs[2] = { f-g, f+g };
- ...
- }
-
-
-File: gcc.info, Node: Constructors, Next: Labeled Elements, Prev: Initializers, Up: C Extensions
-
-Constructor Expressions
-=======================
-
- GNU C supports constructor expressions. A constructor looks like a
-cast containing an initializer. Its value is an object of the type
-specified in the cast, containing the elements specified in the
-initializer.
-
- Usually, the specified type is a structure. Assume that `struct
-foo' and `structure' are declared as shown:
-
- struct foo {int a; char b[2];} structure;
-
-Here is an example of constructing a `struct foo' with a constructor:
-
- structure = ((struct foo) {x + y, 'a', 0});
-
-This is equivalent to writing the following:
-
- {
- struct foo temp = {x + y, 'a', 0};
- structure = temp;
- }
-
- You can also construct an array. If all the elements of the
-constructor are (made up of) simple constant expressions, suitable for
-use in initializers, then the constructor is an lvalue and can be
-coerced to a pointer to its first element, as shown here:
-
- char **foo = (char *[]) { "x", "y", "z" };
-
- Array constructors whose elements are not simple constants are not
-very useful, because the constructor is not an lvalue. There are only
-two valid ways to use it: to subscript it, or initialize an array
-variable with it. The former is probably slower than a `switch'
-statement, while the latter does the same thing an ordinary C
-initializer would do. Here is an example of subscripting an array
-constructor:
-
- output = ((int[]) { 2, x, 28 }) [input];
-
- Constructor expressions for scalar types and union types are is also
-allowed, but then the constructor expression is equivalent to a cast.
-
-
-File: gcc.info, Node: Labeled Elements, Next: Cast to Union, Prev: Constructors, Up: C Extensions
-
-Labeled Elements in Initializers
-================================
-
- Standard C requires the elements of an initializer to appear in a
-fixed order, the same as the order of the elements in the array or
-structure being initialized.
-
- In GNU C you can give the elements in any order, specifying the array
-indices or structure field names they apply to. This extension is not
-implemented in GNU C++.
-
- To specify an array index, write `[INDEX]' or `[INDEX] =' before the
-element value. For example,
-
- int a[6] = { [4] 29, [2] = 15 };
-
-is equivalent to
-
- int a[6] = { 0, 0, 15, 0, 29, 0 };
-
-The index values must be constant expressions, even if the array being
-initialized is automatic.
-
- To initialize a range of elements to the same value, write `[FIRST
-... LAST] = VALUE'. For example,
-
- int widths[] = { [0 ... 9] = 1, [10 ... 99] = 2, [100] = 3 };
-
-Note that the length of the array is the highest value specified plus
-one.
-
- In a structure initializer, specify the name of a field to initialize
-with `FIELDNAME:' before the element value. For example, given the
-following structure,
-
- struct point { int x, y; };
-
-the following initialization
-
- struct point p = { y: yvalue, x: xvalue };
-
-is equivalent to
-
- struct point p = { xvalue, yvalue };
-
- Another syntax which has the same meaning is `.FIELDNAME ='., as
-shown here:
-
- struct point p = { .y = yvalue, .x = xvalue };
-
- You can also use an element label (with either the colon syntax or
-the period-equal syntax) when initializing a union, to specify which
-element of the union should be used. For example,
-
- union foo { int i; double d; };
-
- union foo f = { d: 4 };
-
-will convert 4 to a `double' to store it in the union using the second
-element. By contrast, casting 4 to type `union foo' would store it
-into the union as the integer `i', since it is an integer. (*Note Cast
-to Union::.)
-
- You can combine this technique of naming elements with ordinary C
-initialization of successive elements. Each initializer element that
-does not have a label applies to the next consecutive element of the
-array or structure. For example,
-
- int a[6] = { [1] = v1, v2, [4] = v4 };
-
-is equivalent to
-
- int a[6] = { 0, v1, v2, 0, v4, 0 };
-
- Labeling the elements of an array initializer is especially useful
-when the indices are characters or belong to an `enum' type. For
-example:
-
- int whitespace[256]
- = { [' '] = 1, ['\t'] = 1, ['\h'] = 1,
- ['\f'] = 1, ['\n'] = 1, ['\r'] = 1 };
-
-
-File: gcc.info, Node: Case Ranges, Next: Function Attributes, Prev: Cast to Union, Up: C Extensions
-
-Case Ranges
-===========
-
- You can specify a range of consecutive values in a single `case'
-label, like this:
-
- case LOW ... HIGH:
-
-This has the same effect as the proper number of individual `case'
-labels, one for each integer value from LOW to HIGH, inclusive.
-
- This feature is especially useful for ranges of ASCII character
-codes:
-
- case 'A' ... 'Z':
-
- *Be careful:* Write spaces around the `...', for otherwise it may be
-parsed wrong when you use it with integer values. For example, write
-this:
-
- case 1 ... 5:
-
-rather than this:
-
- case 1...5:
-
-
-File: gcc.info, Node: Cast to Union, Next: Case Ranges, Prev: Labeled Elements, Up: C Extensions
-
-Cast to a Union Type
-====================
-
- A cast to union type is similar to other casts, except that the type
-specified is a union type. You can specify the type either with `union
-TAG' or with a typedef name. A cast to union is actually a constructor
-though, not a cast, and hence does not yield an lvalue like normal
-casts. (*Note Constructors::.)
-
- The types that may be cast to the union type are those of the members
-of the union. Thus, given the following union and variables:
-
- union foo { int i; double d; };
- int x;
- double y;
-
-both `x' and `y' can be cast to type `union' foo.
-
- Using the cast as the right-hand side of an assignment to a variable
-of union type is equivalent to storing in a member of the union:
-
- union foo u;
- ...
- u = (union foo) x == u.i = x
- u = (union foo) y == u.d = y
-
- You can also use the union cast as a function argument:
-
- void hack (union foo);
- ...
- hack ((union foo) x);
-
-
-File: gcc.info, Node: Function Attributes, Next: Function Prototypes, Prev: Case Ranges, Up: C Extensions
-
-Declaring Attributes of Functions
-=================================
-
- In GNU C, you declare certain things about functions called in your
-program which help the compiler optimize function calls and check your
-code more carefully.
-
- The keyword `__attribute__' allows you to specify special attributes
-when making a declaration. This keyword is followed by an attribute
-specification inside double parentheses. Eight attributes, `noreturn',
-`const', `format', `section', `constructor', `destructor', `unused' and
-`weak' are currently defined for functions. Other attributes, including
-`section' are supported for variables declarations (*note Variable
-Attributes::.) and for types (*note Type Attributes::.).
-
- You may also specify attributes with `__' preceding and following
-each keyword. This allows you to use them in header files without
-being concerned about a possible macro of the same name. For example,
-you may use `__noreturn__' instead of `noreturn'.
-
-`noreturn'
- A few standard library functions, such as `abort' and `exit',
- cannot return. GNU CC knows this automatically. Some programs
- define their own functions that never return. You can declare them
- `noreturn' to tell the compiler this fact. For example,
-
- void fatal () __attribute__ ((noreturn));
-
- void
- fatal (...)
- {
- ... /* Print error message. */ ...
- exit (1);
- }
-
- The `noreturn' keyword tells the compiler to assume that `fatal'
- cannot return. It can then optimize without regard to what would
- happen if `fatal' ever did return. This makes slightly better
- code. More importantly, it helps avoid spurious warnings of
- uninitialized variables.
-
- Do not assume that registers saved by the calling function are
- restored before calling the `noreturn' function.
-
- It does not make sense for a `noreturn' function to have a return
- type other than `void'.
-
- The attribute `noreturn' is not implemented in GNU C versions
- earlier than 2.5. An alternative way to declare that a function
- does not return, which works in the current version and in some
- older versions, is as follows:
-
- typedef void voidfn ();
-
- volatile voidfn fatal;
-
-`const'
- Many functions do not examine any values except their arguments,
- and have no effects except the return value. Such a function can
- be subject to common subexpression elimination and loop
- optimization just as an arithmetic operator would be. These
- functions should be declared with the attribute `const'. For
- example,
-
- int square (int) __attribute__ ((const));
-
- says that the hypothetical function `square' is safe to call fewer
- times than the program says.
-
- The attribute `const' is not implemented in GNU C versions earlier
- than 2.5. An alternative way to declare that a function has no
- side effects, which works in the current version and in some older
- versions, is as follows:
-
- typedef int intfn ();
-
- extern const intfn square;
-
- This approach does not work in GNU C++ from 2.6.0 on, since the
- language specifies that the `const' must be attached to the return
- value.
-
- Note that a function that has pointer arguments and examines the
- data pointed to must *not* be declared `const'. Likewise, a
- function that calls a non-`const' function usually must not be
- `const'. It does not make sense for a `const' function to return
- `void'.
-
-`format (ARCHETYPE, STRING-INDEX, FIRST-TO-CHECK)'
- The `format' attribute specifies that a function takes `printf' or
- `scanf' style arguments which should be type-checked against a
- format string. For example, the declaration:
-
- extern int
- my_printf (void *my_object, const char *my_format, ...)
- __attribute__ ((format (printf, 2, 3)));
-
- causes the compiler to check the arguments in calls to `my_printf'
- for consistency with the `printf' style format string argument
- `my_format'.
-
- The parameter ARCHETYPE determines how the format string is
- interpreted, and should be either `printf' or `scanf'. The
- parameter STRING-INDEX specifies which argument is the format
- string argument (starting from 1), while FIRST-TO-CHECK is the
- number of the first argument to check against the format string.
- For functions where the arguments are not available to be checked
- (such as `vprintf'), specify the third parameter as zero. In this
- case the compiler only checks the format string for consistency.
-
- In the example above, the format string (`my_format') is the second
- argument of the function `my_print', and the arguments to check
- start with the third argument, so the correct parameters for the
- format attribute are 2 and 3.
-
- The `format' attribute allows you to identify your own functions
- which take format strings as arguments, so that GNU CC can check
- the calls to these functions for errors. The compiler always
- checks formats for the ANSI library functions `printf', `fprintf',
- `sprintf', `scanf', `fscanf', `sscanf', `vprintf', `vfprintf' and
- `vsprintf' whenever such warnings are requested (using
- `-Wformat'), so there is no need to modify the header file
- `stdio.h'.
-
-`format_arg (STRING-INDEX)'
- The `format_arg' attribute specifies that a function takes
- `printf' or `scanf' style arguments, modifies it (for example, to
- translate it into another language), and passes it to a `printf'
- or `scanf' style function. For example, the declaration:
-
- extern char *
- my_dgettext (char *my_domain, const char *my_format)
- __attribute__ ((format_arg (2)));
-
- causes the compiler to check the arguments in calls to
- `my_dgettext' whose result is passed to a `printf' or `scanf' type
- function for consistency with the `printf' style format string
- argument `my_format'.
-
- The parameter STRING-INDEX specifies which argument is the format
- string argument (starting from 1).
-
- The `format-arg' attribute allows you to identify your own
- functions which modify format strings, so that GNU CC can check the
- calls to `printf' and `scanf' function whose operands are a call
- to one of your own function. The compiler always treats
- `gettext', `dgettext', and `dcgettext' in this manner.
-
-`section ("section-name")'
- Normally, the compiler places the code it generates in the `text'
- section. Sometimes, however, you need additional sections, or you
- need certain particular functions to appear in special sections.
- The `section' attribute specifies that a function lives in a
- particular section. For example, the declaration:
-
- extern void foobar (void) __attribute__ ((section ("bar")));
-
- puts the function `foobar' in the `bar' section.
-
- Some file formats do not support arbitrary sections so the
- `section' attribute is not available on all platforms. If you
- need to map the entire contents of a module to a particular
- section, consider using the facilities of the linker instead.
-
-`constructor'
-`destructor'
- The `constructor' attribute causes the function to be called
- automatically before execution enters `main ()'. Similarly, the
- `destructor' attribute causes the function to be called
- automatically after `main ()' has completed or `exit ()' has been
- called. Functions with these attributes are useful for
- initializing data that will be used implicitly during the
- execution of the program.
-
- These attributes are not currently implemented for Objective C.
-
-`unused'
- This attribute, attached to a function, means that the function is
- meant to be possibly unused. GNU CC will not produce a warning
- for this function. GNU C++ does not currently support this
- attribute as definitions without parameters are valid in C++.
-
-`weak'
- The `weak' attribute causes the declaration to be emitted as a weak
- symbol rather than a global. This is primarily useful in defining
- library functions which can be overridden in user code, though it
- can also be used with non-function declarations. Weak symbols are
- supported for ELF targets, and also for a.out targets when using
- the GNU assembler and linker.
-
-`alias ("target")'
- The `alias' attribute causes the declaration to be emitted as an
- alias for another symbol, which must be specified. For instance,
-
- void __f () { /* do something */; }
- void f () __attribute__ ((weak, alias ("__f")));
-
- declares `f' to be a weak alias for `__f'. In C++, the mangled
- name for the target must be used.
-
- Not all target machines support this attribute.
-
-`regparm (NUMBER)'
- On the Intel 386, the `regparm' attribute causes the compiler to
- pass up to NUMBER integer arguments in registers EAX, EDX, and ECX
- instead of on the stack. Functions that take a variable number of
- arguments will continue to be passed all of their arguments on the
- stack.
-
-`stdcall'
- On the Intel 386, the `stdcall' attribute causes the compiler to
- assume that the called function will pop off the stack space used
- to pass arguments, unless it takes a variable number of arguments.
-
- The PowerPC compiler for Windows NT currently ignores the `stdcall'
- attribute.
-
-`cdecl'
- On the Intel 386, the `cdecl' attribute causes the compiler to
- assume that the calling function will pop off the stack space used
- to pass arguments. This is useful to override the effects of the
- `-mrtd' switch.
-
- The PowerPC compiler for Windows NT currently ignores the `cdecl'
- attribute.
-
-`longcall'
- On the RS/6000 and PowerPC, the `longcall' attribute causes the
- compiler to always call the function via a pointer, so that
- functions which reside further than 64 megabytes (67,108,864
- bytes) from the current location can be called.
-
-`dllimport'
- On the PowerPC running Windows NT, the `dllimport' attribute causes
- the compiler to call the function via a global pointer to the
- function pointer that is set up by the Windows NT dll library.
- The pointer name is formed by combining `__imp_' and the function
- name.
-
-`dllexport'
- On the PowerPC running Windows NT, the `dllexport' attribute causes
- the compiler to provide a global pointer to the function pointer,
- so that it can be called with the `dllimport' attribute. The
- pointer name is formed by combining `__imp_' and the function name.
-
-`exception (EXCEPT-FUNC [, EXCEPT-ARG])'
- On the PowerPC running Windows NT, the `exception' attribute causes
- the compiler to modify the structured exception table entry it
- emits for the declared function. The string or identifier
- EXCEPT-FUNC is placed in the third entry of the structured
- exception table. It represents a function, which is called by the
- exception handling mechanism if an exception occurs. If it was
- specified, the string or identifier EXCEPT-ARG is placed in the
- fourth entry of the structured exception table.
-
-`function_vector'
- Use this option on the H8/300 and H8/300H to indicate that the
- specified function should be called through the function vector.
- Calling a function through the function vector will reduce code
- size, however; the function vector has a limited size (maximum 128
- entries on the H8/300 and 64 entries on the H8/300H) and shares
- space with the interrupt vector.
-
- You must use GAS and GLD from GNU binutils version 2.7 or later for
- this option to work correctly.
-
-`interrupt_handler'
- Use this option on the H8/300 and H8/300H to indicate that the
- specified function is an interrupt handler. The compiler will
- generate function entry and exit sequences suitable for use in an
- interrupt handler when this attribute is present.
-
-`eightbit_data'
- Use this option on the H8/300 and H8/300H to indicate that the
- specified variable should be placed into the eight bit data
- section. The compiler will generate more efficient code for
- certain operations on data in the eight bit data area. Note the
- eight bit data area is limited to 256 bytes of data.
-
- You must use GAS and GLD from GNU binutils version 2.7 or later for
- this option to work correctly.
-
-`tiny_data'
- Use this option on the H8/300H to indicate that the specified
- variable should be placed into the tiny data section. The
- compiler will generate more efficient code for loads and stores on
- data in the tiny data section. Note the tiny data area is limited
- to slightly under 32kbytes of data.
-
-`interrupt'
- Use this option on the M32R/D to indicate that the specified
- function is an interrupt handler. The compiler will generate
- function entry and exit sequences suitable for use in an interrupt
- handler when this attribute is present.
-
-`model (MODEL-NAME)'
- Use this attribute on the M32R/D to set the addressability of an
- object, and the code generated for a function. The identifier
- MODEL-NAME is one of `small', `medium', or `large', representing
- each of the code models.
-
- Small model objects live in the lower 16MB of memory (so that their
- addresses can be loaded with the `ld24' instruction), and are
- callable with the `bl' instruction.
-
- Medium model objects may live anywhere in the 32 bit address space
- (the compiler will generate `seth/add3' instructions to load their
- addresses), and are callable with the `bl' instruction.
-
- Large model objects may live anywhere in the 32 bit address space
- (the compiler will generate `seth/add3' instructions to load their
- addresses), and may not be reachable with the `bl' instruction
- (the compiler will generate the much slower `seth/add3/jl'
- instruction sequence).
-
- You can specify multiple attributes in a declaration by separating
-them by commas within the double parentheses or by immediately
-following an attribute declaration with another attribute declaration.
-
- Some people object to the `__attribute__' feature, suggesting that
-ANSI C's `#pragma' should be used instead. There are two reasons for
-not doing this.
-
- 1. It is impossible to generate `#pragma' commands from a macro.
-
- 2. There is no telling what the same `#pragma' might mean in another
- compiler.
-
- These two reasons apply to almost any application that might be
-proposed for `#pragma'. It is basically a mistake to use `#pragma' for
-*anything*.
-
-
-File: gcc.info, Node: Function Prototypes, Next: C++ Comments, Prev: Function Attributes, Up: C Extensions
-
-Prototypes and Old-Style Function Definitions
-=============================================
-
- GNU C extends ANSI C to allow a function prototype to override a
-later old-style non-prototype definition. Consider the following
-example:
-
- /* Use prototypes unless the compiler is old-fashioned. */
- #ifdef __STDC__
- #define P(x) x
- #else
- #define P(x) ()
- #endif
-
- /* Prototype function declaration. */
- int isroot P((uid_t));
-
- /* Old-style function definition. */
- int
- isroot (x) /* ??? lossage here ??? */
- uid_t x;
- {
- return x == 0;
- }
-
- Suppose the type `uid_t' happens to be `short'. ANSI C does not
-allow this example, because subword arguments in old-style
-non-prototype definitions are promoted. Therefore in this example the
-function definition's argument is really an `int', which does not match
-the prototype argument type of `short'.
-
- This restriction of ANSI C makes it hard to write code that is
-portable to traditional C compilers, because the programmer does not
-know whether the `uid_t' type is `short', `int', or `long'. Therefore,
-in cases like these GNU C allows a prototype to override a later
-old-style definition. More precisely, in GNU C, a function prototype
-argument type overrides the argument type specified by a later
-old-style definition if the former type is the same as the latter type
-before promotion. Thus in GNU C the above example is equivalent to the
-following:
-
- int isroot (uid_t);
-
- int
- isroot (uid_t x)
- {
- return x == 0;
- }
-
- GNU C++ does not support old-style function definitions, so this
-extension is irrelevant.
-
-
-File: gcc.info, Node: C++ Comments, Next: Dollar Signs, Prev: Function Prototypes, Up: C Extensions
-
-C++ Style Comments
-==================
-
- In GNU C, you may use C++ style comments, which start with `//' and
-continue until the end of the line. Many other C implementations allow
-such comments, and they are likely to be in a future C standard.
-However, C++ style comments are not recognized if you specify `-ansi'
-or `-traditional', since they are incompatible with traditional
-constructs like `dividend//*comment*/divisor'.
-
-
-File: gcc.info, Node: Dollar Signs, Next: Character Escapes, Prev: C++ Comments, Up: C Extensions
-
-Dollar Signs in Identifier Names
-================================
-
- In GNU C, you may normally use dollar signs in identifier names.
-This is because many traditional C implementations allow such
-identifiers. However, dollar signs in identifiers are not supported on
-a few target machines, typically because the target assembler does not
-allow them.
-
-
-File: gcc.info, Node: Character Escapes, Next: Variable Attributes, Prev: Dollar Signs, Up: C Extensions
-
-The Character <ESC> in Constants
-================================
-
- You can use the sequence `\e' in a string or character constant to
-stand for the ASCII character <ESC>.
-
-
-File: gcc.info, Node: Alignment, Next: Inline, Prev: Type Attributes, Up: C Extensions
-
-Inquiring on Alignment of Types or Variables
-============================================
-
- The keyword `__alignof__' allows you to inquire about how an object
-is aligned, or the minimum alignment usually required by a type. Its
-syntax is just like `sizeof'.
-
- For example, if the target machine requires a `double' value to be
-aligned on an 8-byte boundary, then `__alignof__ (double)' is 8. This
-is true on many RISC machines. On more traditional machine designs,
-`__alignof__ (double)' is 4 or even 2.
-
- Some machines never actually require alignment; they allow reference
-to any data type even at an odd addresses. For these machines,
-`__alignof__' reports the *recommended* alignment of a type.
-
- When the operand of `__alignof__' is an lvalue rather than a type,
-the value is the largest alignment that the lvalue is known to have.
-It may have this alignment as a result of its data type, or because it
-is part of a structure and inherits alignment from that structure. For
-example, after this declaration:
-
- struct foo { int x; char y; } foo1;
-
-the value of `__alignof__ (foo1.y)' is probably 2 or 4, the same as
-`__alignof__ (int)', even though the data type of `foo1.y' does not
-itself demand any alignment.
-
- A related feature which lets you specify the alignment of an object
-is `__attribute__ ((aligned (ALIGNMENT)))'; see the following section.
-
-
-File: gcc.info, Node: Variable Attributes, Next: Type Attributes, Prev: Character Escapes, Up: C Extensions
-
-Specifying Attributes of Variables
-==================================
-
- The keyword `__attribute__' allows you to specify special attributes
-of variables or structure fields. This keyword is followed by an
-attribute specification inside double parentheses. Eight attributes
-are currently defined for variables: `aligned', `mode', `nocommon',
-`packed', `section', `transparent_union', `unused', and `weak'. Other
-attributes are available for functions (*note Function Attributes::.)
-and for types (*note Type Attributes::.).
-
- You may also specify attributes with `__' preceding and following
-each keyword. This allows you to use them in header files without
-being concerned about a possible macro of the same name. For example,
-you may use `__aligned__' instead of `aligned'.
-
-`aligned (ALIGNMENT)'
- This attribute specifies a minimum alignment for the variable or
- structure field, measured in bytes. For example, the declaration:
-
- int x __attribute__ ((aligned (16))) = 0;
-
- causes the compiler to allocate the global variable `x' on a
- 16-byte boundary. On a 68040, this could be used in conjunction
- with an `asm' expression to access the `move16' instruction which
- requires 16-byte aligned operands.
-
- You can also specify the alignment of structure fields. For
- example, to create a double-word aligned `int' pair, you could
- write:
-
- struct foo { int x[2] __attribute__ ((aligned (8))); };
-
- This is an alternative to creating a union with a `double' member
- that forces the union to be double-word aligned.
-
- It is not possible to specify the alignment of functions; the
- alignment of functions is determined by the machine's requirements
- and cannot be changed. You cannot specify alignment for a typedef
- name because such a name is just an alias, not a distinct type.
-
- As in the preceding examples, you can explicitly specify the
- alignment (in bytes) that you wish the compiler to use for a given
- variable or structure field. Alternatively, you can leave out the
- alignment factor and just ask the compiler to align a variable or
- field to the maximum useful alignment for the target machine you
- are compiling for. For example, you could write:
-
- short array[3] __attribute__ ((aligned));
-
- Whenever you leave out the alignment factor in an `aligned'
- attribute specification, the compiler automatically sets the
- alignment for the declared variable or field to the largest
- alignment which is ever used for any data type on the target
- machine you are compiling for. Doing this can often make copy
- operations more efficient, because the compiler can use whatever
- instructions copy the biggest chunks of memory when performing
- copies to or from the variables or fields that you have aligned
- this way.
-
- The `aligned' attribute can only increase the alignment; but you
- can decrease it by specifying `packed' as well. See below.
-
- Note that the effectiveness of `aligned' attributes may be limited
- by inherent limitations in your linker. On many systems, the
- linker is only able to arrange for variables to be aligned up to a
- certain maximum alignment. (For some linkers, the maximum
- supported alignment may be very very small.) If your linker is
- only able to align variables up to a maximum of 8 byte alignment,
- then specifying `aligned(16)' in an `__attribute__' will still
- only provide you with 8 byte alignment. See your linker
- documentation for further information.
-
-`mode (MODE)'
- This attribute specifies the data type for the
- declaration--whichever type corresponds to the mode MODE. This in
- effect lets you request an integer or floating point type
- according to its width.
-
- You may also specify a mode of `byte' or `__byte__' to indicate
- the mode corresponding to a one-byte integer, `word' or `__word__'
- for the mode of a one-word integer, and `pointer' or `__pointer__'
- for the mode used to represent pointers.
-
-`nocommon'
- This attribute specifies requests GNU CC not to place a variable
- "common" but instead to allocate space for it directly. If you
- specify the `-fno-common' flag, GNU CC will do this for all
- variables.
-
- Specifying the `nocommon' attribute for a variable provides an
- initialization of zeros. A variable may only be initialized in one
- source file.
-
-`packed'
- The `packed' attribute specifies that a variable or structure field
- should have the smallest possible alignment--one byte for a
- variable, and one bit for a field, unless you specify a larger
- value with the `aligned' attribute.
-
- Here is a structure in which the field `x' is packed, so that it
- immediately follows `a':
-
- struct foo
- {
- char a;
- int x[2] __attribute__ ((packed));
- };
-
-`section ("section-name")'
- Normally, the compiler places the objects it generates in sections
- like `data' and `bss'. Sometimes, however, you need additional
- sections, or you need certain particular variables to appear in
- special sections, for example to map to special hardware. The
- `section' attribute specifies that a variable (or function) lives
- in a particular section. For example, this small program uses
- several specific section names:
-
- struct duart a __attribute__ ((section ("DUART_A"))) = { 0 };
- struct duart b __attribute__ ((section ("DUART_B"))) = { 0 };
- char stack[10000] __attribute__ ((section ("STACK"))) = { 0 };
- int init_data __attribute__ ((section ("INITDATA"))) = 0;
-
- main()
- {
- /* Initialize stack pointer */
- init_sp (stack + sizeof (stack));
-
- /* Initialize initialized data */
- memcpy (&init_data, &data, &edata - &data);
-
- /* Turn on the serial ports */
- init_duart (&a);
- init_duart (&b);
- }
-
- Use the `section' attribute with an *initialized* definition of a
- *global* variable, as shown in the example. GNU CC issues a
- warning and otherwise ignores the `section' attribute in
- uninitialized variable declarations.
-
- You may only use the `section' attribute with a fully initialized
- global definition because of the way linkers work. The linker
- requires each object be defined once, with the exception that
- uninitialized variables tentatively go in the `common' (or `bss')
- section and can be multiply "defined". You can force a variable
- to be initialized with the `-fno-common' flag or the `nocommon'
- attribute.
-
- Some file formats do not support arbitrary sections so the
- `section' attribute is not available on all platforms. If you
- need to map the entire contents of a module to a particular
- section, consider using the facilities of the linker instead.
-
-`transparent_union'
- This attribute, attached to a function parameter which is a union,
- means that the corresponding argument may have the type of any
- union member, but the argument is passed as if its type were that
- of the first union member. For more details see *Note Type
- Attributes::. You can also use this attribute on a `typedef' for
- a union data type; then it applies to all function parameters with
- that type.
-
-`unused'
- This attribute, attached to a variable, means that the variable is
- meant to be possibly unused. GNU CC will not produce a warning
- for this variable.
-
-`weak'
- The `weak' attribute is described in *Note Function Attributes::.
-
-`model (MODEL-NAME)'
- Use this attribute on the M32R/D to set the addressability of an
- object. The identifier MODEL-NAME is one of `small', `medium', or
- `large', representing each of the code models.
-
- Small model objects live in the lower 16MB of memory (so that their
- addresses can be loaded with the `ld24' instruction).
-
- Medium and large model objects may live anywhere in the 32 bit
- address space (the compiler will generate `seth/add3' instructions
- to load their addresses).
-
- To specify multiple attributes, separate them by commas within the
-double parentheses: for example, `__attribute__ ((aligned (16),
-packed))'.
-
-
-File: gcc.info, Node: Type Attributes, Next: Alignment, Prev: Variable Attributes, Up: C Extensions
-
-Specifying Attributes of Types
-==============================
-
- The keyword `__attribute__' allows you to specify special attributes
-of `struct' and `union' types when you define such types. This keyword
-is followed by an attribute specification inside double parentheses.
-Three attributes are currently defined for types: `aligned', `packed',
-and `transparent_union'. Other attributes are defined for functions
-(*note Function Attributes::.) and for variables (*note Variable
-Attributes::.).
-
- You may also specify any one of these attributes with `__' preceding
-and following its keyword. This allows you to use these attributes in
-header files without being concerned about a possible macro of the same
-name. For example, you may use `__aligned__' instead of `aligned'.
-
- You may specify the `aligned' and `transparent_union' attributes
-either in a `typedef' declaration or just past the closing curly brace
-of a complete enum, struct or union type *definition* and the `packed'
-attribute only past the closing brace of a definition.
-
-`aligned (ALIGNMENT)'
- This attribute specifies a minimum alignment (in bytes) for
- variables of the specified type. For example, the declarations:
-
- struct S { short f[3]; } __attribute__ ((aligned (8));
- typedef int more_aligned_int __attribute__ ((aligned (8));
-
- force the compiler to insure (as far as it can) that each variable
- whose type is `struct S' or `more_aligned_int' will be allocated
- and aligned *at least* on a 8-byte boundary. On a Sparc, having
- all variables of type `struct S' aligned to 8-byte boundaries
- allows the compiler to use the `ldd' and `std' (doubleword load and
- store) instructions when copying one variable of type `struct S' to
- another, thus improving run-time efficiency.
-
- Note that the alignment of any given `struct' or `union' type is
- required by the ANSI C standard to be at least a perfect multiple
- of the lowest common multiple of the alignments of all of the
- members of the `struct' or `union' in question. This means that
- you *can* effectively adjust the alignment of a `struct' or `union'
- type by attaching an `aligned' attribute to any one of the members
- of such a type, but the notation illustrated in the example above
- is a more obvious, intuitive, and readable way to request the
- compiler to adjust the alignment of an entire `struct' or `union'
- type.
-
- As in the preceding example, you can explicitly specify the
- alignment (in bytes) that you wish the compiler to use for a given
- `struct' or `union' type. Alternatively, you can leave out the
- alignment factor and just ask the compiler to align a type to the
- maximum useful alignment for the target machine you are compiling
- for. For example, you could write:
-
- struct S { short f[3]; } __attribute__ ((aligned));
-
- Whenever you leave out the alignment factor in an `aligned'
- attribute specification, the compiler automatically sets the
- alignment for the type to the largest alignment which is ever used
- for any data type on the target machine you are compiling for.
- Doing this can often make copy operations more efficient, because
- the compiler can use whatever instructions copy the biggest chunks
- of memory when performing copies to or from the variables which
- have types that you have aligned this way.
-
- In the example above, if the size of each `short' is 2 bytes, then
- the size of the entire `struct S' type is 6 bytes. The smallest
- power of two which is greater than or equal to that is 8, so the
- compiler sets the alignment for the entire `struct S' type to 8
- bytes.
-
- Note that although you can ask the compiler to select a
- time-efficient alignment for a given type and then declare only
- individual stand-alone objects of that type, the compiler's
- ability to select a time-efficient alignment is primarily useful
- only when you plan to create arrays of variables having the
- relevant (efficiently aligned) type. If you declare or use arrays
- of variables of an efficiently-aligned type, then it is likely
- that your program will also be doing pointer arithmetic (or
- subscripting, which amounts to the same thing) on pointers to the
- relevant type, and the code that the compiler generates for these
- pointer arithmetic operations will often be more efficient for
- efficiently-aligned types than for other types.
-
- The `aligned' attribute can only increase the alignment; but you
- can decrease it by specifying `packed' as well. See below.
-
- Note that the effectiveness of `aligned' attributes may be limited
- by inherent limitations in your linker. On many systems, the
- linker is only able to arrange for variables to be aligned up to a
- certain maximum alignment. (For some linkers, the maximum
- supported alignment may be very very small.) If your linker is
- only able to align variables up to a maximum of 8 byte alignment,
- then specifying `aligned(16)' in an `__attribute__' will still
- only provide you with 8 byte alignment. See your linker
- documentation for further information.
-
-`packed'
- This attribute, attached to an `enum', `struct', or `union' type
- definition, specified that the minimum required memory be used to
- represent the type.
-
- Specifying this attribute for `struct' and `union' types is
- equivalent to specifying the `packed' attribute on each of the
- structure or union members. Specifying the `-fshort-enums' flag
- on the line is equivalent to specifying the `packed' attribute on
- all `enum' definitions.
-
- You may only specify this attribute after a closing curly brace on
- an `enum' definition, not in a `typedef' declaration, unless that
- declaration also contains the definition of the `enum'.
-
-`transparent_union'
- This attribute, attached to a `union' type definition, indicates
- that any function parameter having that union type causes calls to
- that function to be treated in a special way.
-
- First, the argument corresponding to a transparent union type can
- be of any type in the union; no cast is required. Also, if the
- union contains a pointer type, the corresponding argument can be a
- null pointer constant or a void pointer expression; and if the
- union contains a void pointer type, the corresponding argument can
- be any pointer expression. If the union member type is a pointer,
- qualifiers like `const' on the referenced type must be respected,
- just as with normal pointer conversions.
-
- Second, the argument is passed to the function using the calling
- conventions of first member of the transparent union, not the
- calling conventions of the union itself. All members of the union
- must have the same machine representation; this is necessary for
- this argument passing to work properly.
-
- Transparent unions are designed for library functions that have
- multiple interfaces for compatibility reasons. For example,
- suppose the `wait' function must accept either a value of type
- `int *' to comply with Posix, or a value of type `union wait *' to
- comply with the 4.1BSD interface. If `wait''s parameter were
- `void *', `wait' would accept both kinds of arguments, but it
- would also accept any other pointer type and this would make
- argument type checking less useful. Instead, `<sys/wait.h>' might
- define the interface as follows:
-
- typedef union
- {
- int *__ip;
- union wait *__up;
- } wait_status_ptr_t __attribute__ ((__transparent_union__));
-
- pid_t wait (wait_status_ptr_t);
-
- This interface allows either `int *' or `union wait *' arguments
- to be passed, using the `int *' calling convention. The program
- can call `wait' with arguments of either type:
-
- int w1 () { int w; return wait (&w); }
- int w2 () { union wait w; return wait (&w); }
-
- With this interface, `wait''s implementation might look like this:
-
- pid_t wait (wait_status_ptr_t p)
- {
- return waitpid (-1, p.__ip, 0);
- }
-
-`unused'
- When attached to a type (including a `union' or a `struct'), this
- attribute means that variables of that type are meant to appear
- possibly unused. GNU CC will not produce a warning for any
- variables of that type, even if the variable appears to do
- nothing. This is often the case with lock or thread classes,
- which are usually defined and then not referenced, but contain
- constructors and destructors that have non-trivial bookeeping
- functions.
-
- To specify multiple attributes, separate them by commas within the
-double parentheses: for example, `__attribute__ ((aligned (16),
-packed))'.
-
diff --git a/gcc/gcc.texi b/gcc/gcc.texi
index 802f7f65ed7..83ac13bbf3f 100644
--- a/gcc/gcc.texi
+++ b/gcc/gcc.texi
@@ -1,4 +1,4 @@
->\input texinfo @c -*-texinfo-*-
+\input texinfo @c -*-texinfo-*-
@c %**start of header
@setfilename gcc.info
@c @setfilename usegcc.info
@@ -1975,6 +1975,14 @@ compilers such as plain @samp{gcc}. Whatever the ANSI C standard says
is relevant to the design of plain @samp{gcc} without @samp{-ansi} only
for pragmatic reasons, not as a requirement.
+GNU CC normally defines @code{__STDC__} to be 1, and in addition
+defines @code{__STRICT_ANSI__} if you specify the @samp{-ansi} option.
+On some hosts, system include files use a different convention, where
+@code{__STDC__} is normally 0, but is 1 if the user specifies strict
+conformance to the C Standard. GNU CC follows the host convention when
+processing system include files, but when processing user files it follows
+the usual GNU C convention.
+
@item
Undefining @code{__STDC__} in C++.
@@ -3718,6 +3726,19 @@ system.
Define this if your system @emph{does not} provide the variable
@code{sys_siglist}.
+@vindex sys_siglist
+Some systems do provide this variable, but with a different name such
+as @code{_sys_siglist}. On these systems, you can define
+@code{sys_siglist} as a macro which expands into the name actually
+provided.
+
+Autoconf normally defines @code{SYS_SIGLIST_DECLARED} when it finds a
+declaration of @code{sys_siglist} in the system header files.
+However, when you define @code{sys_siglist} to a different name
+autoconf will not automatically define @code{SYS_SIGLIST_DECLARED}.
+Therefore, if you define @code{sys_siglist}, you should also define
+@code{SYS_SIGLIST_DECLARED}.
+
@findex USE_PROTOTYPES
@item USE_PROTOTYPES
Define this to be 1 if you know that the host compiler supports
@@ -3746,15 +3767,6 @@ no effect. As soon as all of the machine descriptions are
modified to have the appropriate number of arguments, this macro
will be removed.
-@vindex sys_siglist
-Some systems do provide this variable, but with a different name such
-as @code{_sys_siglist}. On these systems, you can define
-@code{sys_siglist} as a macro which expands into the name actually
-provided.
-
-If you define @code{sys_siglist}, you should also define
-@code{SYS_SIGLIST_DECLARED}.
-
@findex NO_STAB_H
@item NO_STAB_H
Define this if your system does not have the include file
@@ -3764,7 +3776,7 @@ assumed.
@findex PATH_SEPARATOR
@item PATH_SEPARATOR
Define this macro to be a C character constant representing the
-character used to separate components in paths. The default value is.
+character used to separate components in paths. The default value is
the colon character
@findex DIR_SEPARATOR
diff --git a/gcc/genattrtab.c b/gcc/genattrtab.c
index 8e4f423b5ad..bef1c59bcba 100644
--- a/gcc/genattrtab.c
+++ b/gcc/genattrtab.c
@@ -1,5 +1,5 @@
/* Generate code from machine description to compute values of attributes.
- Copyright (C) 1991, 1993, 1994, 1995, 1996 Free Software Foundation, Inc.
+ Copyright (C) 1991, 93, 94, 95, 96, 1997 Free Software Foundation, Inc.
Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
This file is part of GNU CC.
@@ -102,9 +102,9 @@ Boston, MA 02111-1307, USA. */
#else
#include <varargs.h>
#endif
+#include <stdio.h>
#include "rtl.h"
#include "insn-config.h" /* For REGISTER_CONSTRAINTS */
-#include <stdio.h>
#ifndef VMS
#ifndef USG
@@ -393,7 +393,9 @@ static rtx zero_fn PROTO((rtx));
static rtx one_fn PROTO((rtx));
static rtx max_fn PROTO((rtx));
static rtx simplify_cond PROTO((rtx, int, int));
+#if 0
static rtx simplify_by_alternatives PROTO((rtx, int, int));
+#endif
static rtx simplify_by_exploding PROTO((rtx));
static int find_and_mark_used_attributes PROTO((rtx, rtx *, int *));
static void unmark_used_attributes PROTO((rtx, struct dimension *, int));
@@ -864,6 +866,9 @@ attr_copy_rtx (orig)
case PC:
case CC0:
return orig;
+
+ default:
+ break;
}
copy = rtx_alloc (code);
@@ -1420,8 +1425,11 @@ make_canonical (attr, exp)
}
if (allsame)
return defval;
- break;
}
+ break;
+
+ default:
+ break;
}
return exp;
@@ -2181,6 +2189,9 @@ encode_units_mask (x)
case CC0:
case EQ_ATTR:
return x;
+
+ default:
+ break;
}
/* Compare the elements. If any pair of corresponding elements
@@ -3274,6 +3285,10 @@ simplify_test_exp (exp, insn_code, insn_index)
for (ie = av->first_insn; ie; ie = ie->next)
if (ie->insn_code == insn_code)
return evaluate_eq_attr (exp, av->value, insn_code, insn_index);
+ break;
+
+ default:
+ break;
}
/* We have already simplified this expression. Simplifying it again
@@ -3626,9 +3641,10 @@ find_and_mark_used_attributes (exp, terms, nterms)
if (! find_and_mark_used_attributes (XEXP (exp, 1), terms, nterms))
return 0;
return 1;
- }
- return 0;
+ default:
+ return 0;
+ }
}
/* Clear the MEM_VOLATILE_P flag in all EQ_ATTR expressions on LIST and
@@ -3864,8 +3880,10 @@ simplify_with_current_value_aux (exp)
have been selected. */
}
return simplify_with_current_value_aux (XEXP (exp, 1));
+
+ default:
+ abort ();
}
- abort ();
}
/* Clear the MEM_IN_STRUCT_P flag in EXP and its subexpressions. */
@@ -3898,6 +3916,9 @@ clear_struct_flag (x)
case EQ_ATTR:
case ATTR_FLAG:
return;
+
+ default:
+ break;
}
/* Compare the elements. If any pair of corresponding elements
@@ -3950,6 +3971,9 @@ count_sub_rtxs (x, max)
case EQ_ATTR:
case ATTR_FLAG:
return 1;
+
+ default:
+ break;
}
/* Compare the elements. If any pair of corresponding elements
@@ -4174,6 +4198,9 @@ gen_insn (exp)
id->vec_idx = 0;
got_define_asm_attributes = 1;
break;
+
+ default:
+ abort ();
}
}
@@ -4386,6 +4413,8 @@ write_test_expr (exp, in_comparison)
case ASHIFTRT:
printf (" >> ");
break;
+ default:
+ abort ();
}
write_test_expr (XEXP (exp, 1), in_comparison || comparison_operator);
@@ -4418,6 +4447,8 @@ write_test_expr (exp, in_comparison)
case NEG:
printf ("-");
break;
+ default:
+ abort ();
}
write_test_expr (XEXP (exp, 0), in_comparison);
@@ -4609,6 +4640,9 @@ walk_attr_value (exp)
case ATTR_FLAG:
return;
+
+ default:
+ break;
}
for (i = 0, fmt = GET_RTX_FORMAT (code); i < GET_RTX_LENGTH (code); i++)
@@ -5463,6 +5497,9 @@ copy_rtx_unchanging (orig)
case SYMBOL_REF:
case CODE_LABEL:
return orig;
+
+ default:
+ break;
}
copy = rtx_alloc (code);
@@ -5650,6 +5687,7 @@ from the machine description file `md'. */\n\n");
expand_units ();
printf ("#include \"config.h\"\n");
+ printf ("#include <stdio.h>\n");
printf ("#include \"rtl.h\"\n");
printf ("#include \"insn-config.h\"\n");
printf ("#include \"recog.h\"\n");
diff --git a/gcc/ginclude/stdarg.h b/gcc/ginclude/stdarg.h
index 431439c152f..24f3383198d 100644
--- a/gcc/ginclude/stdarg.h
+++ b/gcc/ginclude/stdarg.h
@@ -96,7 +96,7 @@ void va_end (__gnuc_va_list); /* Defined in libgcc.a */
/* We cast to void * and then to TYPE * because this avoids
a warning about increasing the alignment requirement. */
-#if defined (__arm__) || defined (__i386__) || defined (__i860__) || defined (__ns32000__) || defined (__vax__)
+#if (defined (__arm__) && ! defined (__ARMEB__)) || defined (__i386__) || defined (__i860__) || defined (__ns32000__) || defined (__vax__)
/* This is for little-endian machines; small args are padded upward. */
#define va_arg(AP, TYPE) \
(AP = (__gnuc_va_list) ((char *) (AP) + __va_rounded_size (TYPE)), \
diff --git a/gcc/ginclude/va-v850.h b/gcc/ginclude/va-v850.h
index 3fd812ab228..96da6d5a3de 100644
--- a/gcc/ginclude/va-v850.h
+++ b/gcc/ginclude/va-v850.h
@@ -1,5 +1,3 @@
-/* CYGNUS LOCAL v850/law (entire file ) */
-
/* Define __gnuc_va_list. */
#ifndef __GNUC_VA_LIST
@@ -34,4 +32,3 @@ void va_end (__gnuc_va_list);
: (AP = (__gnuc_va_list) ((char *) (AP) + __va_rounded_size (TYPE)), \
*((TYPE *) (void *) ((char *) (AP) - __va_rounded_size (TYPE)))))
#endif
-/* END CYGNUS LOCAL */
diff --git a/gcc/ginclude/varargs.h b/gcc/ginclude/varargs.h
index cfb5f2308c7..410d06aac69 100644
--- a/gcc/ginclude/varargs.h
+++ b/gcc/ginclude/varargs.h
@@ -115,7 +115,7 @@ typedef void *__gnuc_va_list;
(((sizeof (TYPE) + sizeof (int) - 1) / sizeof (int)) * sizeof (int))
#endif
-#if defined (__arm__) || defined (__i386__) || defined (__i860__) || defined (__ns32000__) || defined (__vax__)
+#if (defined (__arm__) && ! defined (__ARMEB__)) || defined (__i386__) || defined (__i860__) || defined (__ns32000__) || defined (__vax__)
/* This is for little-endian machines; small args are padded upward. */
#define va_arg(AP, TYPE) \
(AP = (__gnuc_va_list) ((char *) (AP) + __va_rounded_size (TYPE)), \
diff --git a/gcc/global.c b/gcc/global.c
index 87acccb6319..3ab4d708af6 100644
--- a/gcc/global.c
+++ b/gcc/global.c
@@ -19,8 +19,8 @@ the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
-#include <stdio.h>
#include "config.h"
+#include <stdio.h>
#include "rtl.h"
#include "flags.h"
#include "basic-block.h"
diff --git a/gcc/install.texi b/gcc/install.texi
index 57e28108063..22166230b93 100644
--- a/gcc/install.texi
+++ b/gcc/install.texi
@@ -1,4 +1,4 @@
-@c Copyright (C) 1988,89,92,93,94,95,96 Free Software Foundation, Inc.
+@c Copyright (C) 1988,89,92,93,94,95,96,97 Free Software Foundation, Inc.
@c This is part of the GCC manual.
@c For copying conditions, see the file gcc.texi.
@@ -759,6 +759,10 @@ To avoid this behavior, specify @samp{-gstabs+} and use GDB instead of
DBX. DEC is now aware of this problem with the assembler and hopes to
provide a fix shortly.
+@item arc-*-elf
+Argonaut ARC processor.
+This configuration is intended for embedded systems.
+
@item arm-*-aout
Advanced RISC Machines ARM-family processors. These are often used in
embedded applications. There are no standard Unix configurations.
@@ -855,6 +859,8 @@ output from GNU CC.
@end ignore
@item h8300-*-*
+Hitachi H8/300 series of processors.
+
The calling convention and structure layout has changed in release 2.6.
All code must be recompiled. The calling convention now passes the
first three arguments in function calls in registers. Structures are no
@@ -909,19 +915,27 @@ link with GNU malloc instead of the malloc that comes with the system.
Use this configuration for SCO release 3.2 version 4.
@item i386-*-sco3.2v5*
-Use this for SCO Open Server Release 5.0. GNU CC can generate ELF
-binaries (if you specify @samp{-melf}) or COFF binaries (the default).
-If you are going to build your compiler in ELF mode (once you have
-bootstrapped the first stage compiler) you @strong{must} specify
-@samp{-melf} as part of CC, @emph{not} CFLAGS. You should
-use some variant of: @samp{CC="stage1/xgcc -melf" CFLAGS="-Bstage1/"} etc.
-If you do not do this, the boostrap will generate completely bogus versions
-of libgcc.a generated.
+Use this for the SCO OpenServer Release family including 5.0.0, 5.0.2,
+5.0.4, Internet FastStart 1.0, and Internet FastStart 1.1.
+
+GNU CC can generate ELF binaries (if you specify @samp{-melf}) or COFF
+binaries (the default). If you are going to build your compiler in ELF
+mode (once you have bootstrapped the first stage compiler) you
+@strong{must} specify @samp{-melf} as part of @code{CC},
+@emph{not} @code{CFLAGS}, for example as
+@samp{CC="stage1/xgcc -melf -Bstage1/" }. If you do not do this, the
+bootstrap will generate incorrect versions of @file{libgcc.a}.
You must have TLS597 (from ftp.sco.com/TLS) installed for ELF
binaries to work correctly. Note that Open Server 5.0.2 @emph{does}
need TLS597 installed.
+@emph{NOTE:} You must follow the instructions about invoking
+@samp{make bootstrap} because the native OpenServer compiler builds
+a @file{cc1plus} that will not correctly parse many valid C++ programs.
+You must do a @samp{make bootstrap} if you are building with the native
+compiler.
+
@item i386-*-isc
It may be a good idea to link with GNU malloc instead of the malloc that
comes with the system.
@@ -959,7 +973,7 @@ See @ref{Sun Install}, for information on installing GNU CC on Sun
systems.
@item i[345]86-*-winnt3.5
-This version requires a GAS that has not let been released. Until it
+This version requires a GAS that has not yet been released. Until it
is, you can get a prebuilt binary version via anonymous ftp from
@file{cs.washington.edu:pub/gnat} or @file{cs.nyu.edu:pub/gnat}. You
must also use the Microsoft header files from the Windows NT 3.5 SDK.
@@ -1027,7 +1041,8 @@ COFF format object files and executables; otherwise GNU CC will use the
installed tools, which produce @file{a.out} format executables.
@item m32r-*-elf
-Embedded M32R system.
+Mitsubishi M32R processor.
+This configuration is intended for embedded systems.
@item m68000-hp-bsd
HP 9000 series 200 running BSD. Note that the C compiler that comes
@@ -1064,7 +1079,7 @@ the following procedure might work. We are unable to test it.
@enumerate
@item
-Comment out the @samp{#include "config.h"} line on line 37 of
+Comment out the @samp{#include "config.h"} line near the start of
@file{cccp.c} and do @samp{make cpp}. This makes a preliminary version
of GNU cpp.
diff --git a/gcc/integrate.c b/gcc/integrate.c
index 27aa4df6ebf..3931dee279d 100644
--- a/gcc/integrate.c
+++ b/gcc/integrate.c
@@ -20,9 +20,8 @@ the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
-#include <stdio.h>
-
#include "config.h"
+#include <stdio.h>
#include "rtl.h"
#include "tree.h"
#include "regs.h"
@@ -31,6 +30,7 @@ Boston, MA 02111-1307, USA. */
#include "insn-flags.h"
#include "expr.h"
#include "output.h"
+#include "recog.h"
#include "integrate.h"
#include "real.h"
#include "except.h"
@@ -218,7 +218,8 @@ static rtx *insn_map;
static tree *parmdecl_map;
/* Keep track of first pseudo-register beyond those that are parms. */
-static int max_parm_reg;
+extern int max_parm_reg;
+extern rtx *parm_reg_stack_loc;
/* When an insn is being copied by copy_for_inline,
this is nonzero if we have copied an ASM_OPERANDS.
@@ -344,7 +345,8 @@ initialize_for_inline (fndecl, min_labelno, max_labelno, max_reg, copy)
current_function_outgoing_args_size,
arg_vector, (rtx) DECL_INITIAL (fndecl),
(rtvec) regno_reg_rtx, regno_pointer_flag,
- regno_pointer_align);
+ regno_pointer_align,
+ (rtvec) parm_reg_stack_loc);
}
/* Subroutine for `save_for_inline{copying,nocopy}'. Finishes up the
@@ -435,7 +437,6 @@ save_for_inline_copying (fndecl)
for the parms, prior to elimination of virtual registers.
These values are needed for substituting parms properly. */
- max_parm_reg = max_parm_reg_num ();
parmdecl_map = (tree *) alloca (max_parm_reg * sizeof (tree));
head = initialize_for_inline (fndecl, min_labelno, max_labelno, max_reg, 1);
@@ -776,7 +777,6 @@ save_for_inline_nocopy (fndecl)
for the parms, prior to elimination of virtual registers.
These values are needed for substituting parms properly. */
- max_parm_reg = max_parm_reg_num ();
parmdecl_map = (tree *) alloca (max_parm_reg * sizeof (tree));
/* Make and emit a return-label if we have not already done so. */
@@ -1134,6 +1134,8 @@ copy_for_inline (orig)
}
break;
#endif
+ default:
+ break;
}
/* Replace this rtx with a copy of itself. */
@@ -1428,7 +1430,7 @@ expand_inline_function (fndecl, parms, target, ignore, type,
and argument memory blocks. If there are no insns yet, add a dummy
insn that can be used as an insertion point. */
map->insns_at_start = get_last_insn ();
- if (!map->insns_at_start)
+ if (map->insns_at_start == 0)
map->insns_at_start = emit_note (NULL_PTR, NOTE_INSN_DELETED);
map->regno_pointer_flag = INLINE_REGNO_POINTER_FLAG (header);
@@ -1655,6 +1657,7 @@ expand_inline_function (fndecl, parms, target, ignore, type,
force_operand (structure_value_addr, NULL_RTX));
map->reg_map[REGNO (XEXP (loc, 0))] = temp;
if ((CONSTANT_P (structure_value_addr)
+ || GET_CODE (structure_value_addr) == ADDRESSOF
|| (GET_CODE (structure_value_addr) == PLUS
&& XEXP (structure_value_addr, 0) == virtual_stack_vars_rtx
&& GET_CODE (XEXP (structure_value_addr, 1)) == CONST_INT))
@@ -2333,6 +2336,30 @@ copy_rtx_and_substitute (orig, map)
return gen_rtx (SUBREG, GET_MODE (orig), copy,
SUBREG_WORD (orig));
+ case ADDRESSOF:
+ copy = gen_rtx (ADDRESSOF, mode,
+ copy_rtx_and_substitute (XEXP (orig, 0), map));
+ SET_ADDRESSOF_DECL (copy, ADDRESSOF_DECL (orig));
+ regno = ADDRESSOF_REGNO (orig);
+ if (map->reg_map[regno])
+ regno = REGNO (map->reg_map[regno]);
+ else if (regno > LAST_VIRTUAL_REGISTER)
+ {
+ temp = XEXP (orig, 0);
+ map->reg_map[regno] = gen_reg_rtx (GET_MODE (temp));
+ REG_USERVAR_P (map->reg_map[regno]) = REG_USERVAR_P (temp);
+ REG_LOOP_TEST_P (map->reg_map[regno]) = REG_LOOP_TEST_P (temp);
+ RTX_UNCHANGING_P (map->reg_map[regno]) = RTX_UNCHANGING_P (temp);
+ /* A reg with REG_FUNCTION_VALUE_P true will never reach here. */
+
+ if (map->regno_pointer_flag[regno])
+ mark_reg_pointer (map->reg_map[regno],
+ map->regno_pointer_align[regno]);
+ regno = REGNO (map->reg_map[regno]);
+ }
+ ADDRESSOF_REGNO (copy) = regno;
+ return copy;
+
case USE:
case CLOBBER:
/* USE and CLOBBER are ordinary, but we convert (use (subreg foo))
@@ -2510,13 +2537,26 @@ copy_rtx_and_substitute (orig, map)
case SET:
/* If this is setting fp or ap, it means that we have a nonlocal goto.
- Don't alter that.
+ Adjust the setting by the offset of the area we made.
If the nonlocal goto is into the current function,
this will result in unnecessarily bad code, but should work. */
if (SET_DEST (orig) == virtual_stack_vars_rtx
|| SET_DEST (orig) == virtual_incoming_args_rtx)
- return gen_rtx (SET, VOIDmode, SET_DEST (orig),
- copy_rtx_and_substitute (SET_SRC (orig), map));
+ {
+ /* In case a translation hasn't occurred already, make one now. */
+ rtx junk = copy_rtx_and_substitute (SET_DEST (orig), map);
+ rtx equiv_reg = map->reg_map[REGNO (SET_DEST (orig))];
+ rtx equiv_loc = map->const_equiv_map[REGNO (equiv_reg)];
+ HOST_WIDE_INT loc_offset
+ = GET_CODE (equiv_loc) == REG ? 0 : INTVAL (XEXP (equiv_loc, 1));
+
+ return gen_rtx (SET, VOIDmode, SET_DEST (orig),
+ force_operand
+ (plus_constant
+ (copy_rtx_and_substitute (SET_SRC (orig), map),
+ - loc_offset),
+ NULL_RTX));
+ }
break;
case MEM:
@@ -2535,6 +2575,9 @@ copy_rtx_and_substitute (orig, map)
RTX_UNCHANGING_P (copy) = RTX_UNCHANGING_P (orig);
return copy;
+
+ default:
+ break;
}
copy = rtx_alloc (code);
@@ -2550,6 +2593,7 @@ copy_rtx_and_substitute (orig, map)
switch (*format_ptr++)
{
case '0':
+ XEXP (copy, i) = XEXP (orig, i);
break;
case 'e':
@@ -2827,9 +2871,11 @@ subst_constants (loc, insn, map)
map->equiv_sets[map->num_sets].equiv = copy_rtx (src);
map->equiv_sets[map->num_sets++].dest = dest;
}
-
- return;
}
+ return;
+
+ default:
+ break;
}
format_ptr = GET_RTX_FORMAT (code);
@@ -2949,9 +2995,13 @@ mark_stores (dest, x)
: regno + HARD_REGNO_NREGS (regno, mode) - 1);
int i;
- for (i = regno; i <= last_reg; i++)
- if (i < global_const_equiv_map_size)
- global_const_equiv_map[i] = 0;
+ /* Ignore virtual stack var or virtual arg register since those
+ are handled separately. */
+ if (regno != VIRTUAL_INCOMING_ARGS_REGNUM
+ && regno != VIRTUAL_STACK_VARS_REGNUM)
+ for (i = regno; i <= last_reg; i++)
+ if (i < global_const_equiv_map_size)
+ global_const_equiv_map[i] = 0;
}
}
@@ -3197,6 +3247,8 @@ output_inline_function (fndecl)
regno_reg_rtx = (rtx *) INLINE_REGNO_REG_RTX (head);
regno_pointer_flag = INLINE_REGNO_POINTER_FLAG (head);
regno_pointer_align = INLINE_REGNO_POINTER_ALIGN (head);
+ max_parm_reg = MAX_PARMREG (head);
+ parm_reg_stack_loc = (rtx *) PARMREG_STACK_LOC (head);
stack_slot_list = STACK_SLOT_LIST (head);
forced_labels = FORCED_LABELS (head);
diff --git a/gcc/invoke.texi b/gcc/invoke.texi
index 7b65f6316e0..1880143f593 100644
--- a/gcc/invoke.texi
+++ b/gcc/invoke.texi
@@ -117,7 +117,8 @@ in the following sections.
-w -W -Wall -Waggregate-return -Wbad-function-cast
-Wcast-align -Wcast-qual -Wchar-subscript -Wcomment
-Wconversion -Werror -Wformat
--Wid-clash-@var{len} -Wimplicit -Wimport -Winline
+-Wid-clash-@var{len} -Wimplicit -Wimplicit-int
+-Wimplicit-function-declarations -Wimport -Winline
-Wlarger-than-@var{len} -Wmain -Wmissing-declarations
-Wmissing-prototypes -Wnested-externs
-Wno-import -Wold-style-cast -Woverloaded-virtual -Wparentheses
@@ -283,7 +284,8 @@ in the following sections.
-mtoc -mno-toc -mtraceback -mno-traceback
-mlittle -mlittle-endian -mbig -mbig-endian
-mcall-aix -mcall-sysv -mprototype -mno-prototype
--msim -mmvme -memb -msdata -msdata=@var{opt} -G @var{num}
+-msim -mmvme -mads -myellowknife -memb
+-msdata -msdata=@var{opt} -G @var{num}
@emph{RT Options}
-mcall-lib-mul -mfp-arg-in-fpregs -mfp-arg-in-gregs
@@ -317,7 +319,8 @@ in the following sections.
-mno-disable-indexing -mno-fast-indirect-calls -mno-gas
-mno-jump-in-delay
-mno-long-load-store
--mno-portable-runtime -mno-soft-float -mno-space -mno-space-regs -msoft-float
+-mno-portable-runtime -mno-soft-float -mno-space -mno-space-regs
+-msoft-float
-mpa-risc-1-0 -mpa-risc-1-1 -mportable-runtime
-mschedule=@var{list} -mspace -mspace-regs
@@ -354,7 +357,7 @@ in the following sections.
-mlong-calls -mno-long-calls -mep -mno-ep
-mprolog-function -mno-prolog-function -mspace
-mtda=@var{n} -msda=@var{n} -mzda=@var{n}
--mv850
+-mv850 -mbig-switch
@end smallexample
@item Code Generation Options
@@ -1226,9 +1229,14 @@ Check calls to @code{printf} and @code{scanf}, etc., to make sure that
the arguments supplied have types appropriate to the format string
specified.
+@item -Wimplicit-int
+Warn when a declaration does not specify a type.
+
+@item -Wimplicit-function-declarations
+Warn whenever a function is used before being declared.
+
@item -Wimplicit
-Warn whenever a function or parameter is implicitly declared,
-or when a type implicitly defaults to @code{int}.
+Same as @samp{-Wimplicit-int} @samp{-Wimplicit-function-declaration}.
@item -Wmain
Warn if the type of @samp{main} is suspicious. @samp{main} should be a
@@ -1241,6 +1249,41 @@ as when there is an assignment in a context where a truth value
is expected, or when operators are nested whose precedence people
often get confused about.
+Also warn about constructions where there may be confusion to which
+@code{if} statement an @code{else} branch belongs. Here is an example of
+such a case:
+
+@smallexample
+@{
+ if (a)
+ if (b)
+ foo ();
+ else
+ bar ();
+@}
+@end smallexample
+
+In C, every @code{else} branch belongs to the innermost possible @code{if}
+statement, which in this example is @code{if (b)}. This is often not
+what the programmer expected, as illustrated in the above example by
+indentation the programmer chose. When there is the potential for this
+confusion, GNU C will issue a warning when this flag is specified.
+To eliminate the warning, add explicit braces around the innermost
+@code{if} statement so there is no way the @code{else} could belong to
+the enclosing @code{if}. The resulting code would look like this:
+
+@smallexample
+@{
+ if (a)
+ @{
+ if (b)
+ foo ();
+ else
+ bar ();
+ @}
+@}
+@end smallexample
+
@item -Wreturn-type
Warn whenever a function is defined with a return-type that defaults
to @code{int}. Also warn about any @code{return} statement with no
@@ -1344,13 +1387,6 @@ Here the compiler will warn that the member initializers for @samp{i}
and @samp{j} will be rearranged to match the declaration order of the
members.
-@item -Wsign-compare
-@cindex warning for comparison of signed and unsigned values
-@cindex comparison of signed and unsigned values, warning
-@cindex signed and unsigned values, comparison warning
-Warn when a comparison between signed and unsigned values could produce
-an incorrect result when the signed value is converted to unsigned.
-
@item -Wtemplate-debugging
@cindex template debugging
When using templates in a C++ program, warn if debugging is not yet
@@ -1427,6 +1463,11 @@ If @samp{-Wall} or @samp{-Wunused} is also specified, warn about unused
arguments.
@item
+A comparison between signed and unsigned values could produce an
+incorrect result when the signed value is converted to unsigned.
+(But do not warn if @samp{-Wno-sign-compare} is also specified.)
+
+@item
An aggregate has a partly bracketed initializer.
For example, the following code would evoke such a warning,
because braces are missing around the initializer for @code{x.h}:
@@ -1512,6 +1553,15 @@ converted to an unsigned type. For example, warn about the assignment
@code{x = -1} if @code{x} is unsigned. But do not warn about explicit
casts like @code{(unsigned) -1}.
+@item -Wsign-compare
+@cindex warning for comparison of signed and unsigned values
+@cindex comparison of signed and unsigned values, warning
+@cindex signed and unsigned values, comparison warning
+Warn when a comparison between signed and unsigned values could produce
+an incorrect result when the signed value is converted to unsigned.
+This warning is also enabled by @samp{-W}; to get the other warnings
+of @samp{-W} without this warning, use @samp{-W -Wno-sign-compare}.
+
@item -Waggregate-return
Warn if any functions that return structures or unions are defined or
called. (In languages where you can return an array, this also elicits
@@ -4100,7 +4150,7 @@ On System V.4 and embedded PowerPC systems compile code for the
Linux-based GNU system.
@item -mprototype
-@item -mno-prototype
+@itemx -mno-prototype
On System V.4 and embedded PowerPC systems assume that all calls to
variable argument functions are properly prototyped. Otherwise, the
compiler must insert an instruction before every non prototyped call to
@@ -4118,7 +4168,17 @@ configurations.
@item -mmvme
On embedded PowerPC systems, assume that the startup module is called
-@file{mvme-crt0.o} and the standard C libraries are @file{libmvme.a} and
+@file{crt0.o} and the standard C libraries are @file{libmvme.a} and
+@file{libc.a}.
+
+@item -mads
+On embedded PowerPC systems, assume that the startup module is called
+@file{crt0.o} and the standard C libraries are @file{libads.a} and
+@file{libc.a}.
+
+@item -myellowknife
+On embedded PowerPC systems, assume that the startup module is called
+@file{crt0.o} and the standard C libraries are @file{libyk.a} and
@file{libc.a}.
@item -memb
@@ -5067,10 +5127,14 @@ area can hold up to 64 kilobytes.
@item -mzda=@var{n}
Put static or global variables whose size is @var{n} bytes or less into
the first 32 kilobytes of memory.
-
+
@item -mv850
Specify that the target processor is the V850.
+@item -mbig-switch
+Generate code suitable for big switch tables. Use this option only if
+the assembler/linker complain about out of range branches within a switch
+table.
@end table
@node Code Gen Options
diff --git a/gcc/jump.c b/gcc/jump.c
index fee77d69f3c..f72dedf387b 100644
--- a/gcc/jump.c
+++ b/gcc/jump.c
@@ -52,12 +52,14 @@ Boston, MA 02111-1307, USA. */
from other passes as well. */
#include "config.h"
+#include <stdio.h>
#include "rtl.h"
#include "flags.h"
#include "hard-reg-set.h"
#include "regs.h"
#include "insn-config.h"
#include "insn-flags.h"
+#include "recog.h"
#include "expr.h"
#include "real.h"
#include "except.h"
@@ -760,10 +762,8 @@ jump_optimize (f, cross_jump, noop_moves, after_regscan)
&& GET_CODE (temp3) == INSN
&& (temp4 = single_set (temp3)) != 0
&& GET_CODE (temp1 = SET_DEST (temp4)) == REG
-#ifdef SMALL_REGISTER_CLASSES
&& (! SMALL_REGISTER_CLASSES
|| REGNO (temp1) >= FIRST_PSEUDO_REGISTER)
-#endif
&& (temp2 = next_active_insn (insn)) != 0
&& GET_CODE (temp2) == INSN
&& (temp4 = single_set (temp2)) != 0
@@ -898,11 +898,8 @@ jump_optimize (f, cross_jump, noop_moves, after_regscan)
&& GET_CODE (temp2) == INSN
&& (temp4 = single_set (temp2)) != 0
&& GET_CODE (temp1 = SET_DEST (temp4)) == REG
-#ifdef SMALL_REGISTER_CLASSES
&& (! SMALL_REGISTER_CLASSES
|| REGNO (temp1) >= FIRST_PSEUDO_REGISTER)
-#endif
-
&& (temp3 = prev_active_insn (insn)) != 0
&& GET_CODE (temp3) == INSN
&& (temp4 = single_set (temp3)) != 0
@@ -988,10 +985,8 @@ jump_optimize (f, cross_jump, noop_moves, after_regscan)
&& (temp1 = single_set (temp)) != 0
&& (temp2 = SET_DEST (temp1), GET_CODE (temp2) == REG)
&& GET_MODE_CLASS (GET_MODE (temp2)) == MODE_INT
-#ifdef SMALL_REGISTER_CLASSES
&& (! SMALL_REGISTER_CLASSES
|| REGNO (temp2) >= FIRST_PSEUDO_REGISTER)
-#endif
&& GET_CODE (SET_SRC (temp1)) != REG
&& GET_CODE (SET_SRC (temp1)) != SUBREG
&& GET_CODE (SET_SRC (temp1)) != CONST_INT
@@ -1031,10 +1026,8 @@ jump_optimize (f, cross_jump, noop_moves, after_regscan)
&& (temp1 = single_set (temp)) != 0
&& (temp2 = SET_DEST (temp1), GET_CODE (temp2) == REG)
&& GET_MODE_CLASS (GET_MODE (temp2)) == MODE_INT
-#ifdef SMALL_REGISTER_CLASSES
&& (! SMALL_REGISTER_CLASSES
|| REGNO (temp2) >= FIRST_PSEUDO_REGISTER)
-#endif
&& ! side_effects_p (SET_SRC (temp1))
&& ! may_trap_p (SET_SRC (temp1))
&& rtx_cost (SET_SRC (temp1), SET) < 10
@@ -1093,10 +1086,8 @@ jump_optimize (f, cross_jump, noop_moves, after_regscan)
&& (temp4 = single_set (temp3)) != 0
&& (temp2 = SET_DEST (temp4), GET_CODE (temp2) == REG)
&& GET_MODE_CLASS (GET_MODE (temp2)) == MODE_INT
-#ifdef SMALL_REGISTER_CLASSES
&& (! SMALL_REGISTER_CLASSES
|| REGNO (temp2) >= FIRST_PSEUDO_REGISTER)
-#endif
&& rtx_equal_p (SET_DEST (temp4), temp2)
&& ! side_effects_p (SET_SRC (temp4))
&& ! may_trap_p (SET_SRC (temp4))
@@ -1147,10 +1138,8 @@ jump_optimize (f, cross_jump, noop_moves, after_regscan)
&& GET_CODE (temp) == INSN
&& GET_CODE (PATTERN (temp)) == SET
&& GET_CODE (temp1 = SET_DEST (PATTERN (temp))) == REG
-#ifdef SMALL_REGISTER_CLASSES
&& (! SMALL_REGISTER_CLASSES
|| REGNO (temp1) >= FIRST_PSEUDO_REGISTER)
-#endif
&& (GET_CODE (temp2 = SET_SRC (PATTERN (temp))) == REG
|| GET_CODE (temp2) == SUBREG
/* ??? How about floating point constants? */
@@ -2335,6 +2324,8 @@ duplicate_loop_exit_test (loop_start)
|| find_reg_note (insn, REG_LIBCALL, NULL_RTX))
return 0;
break;
+ default:
+ break;
}
}
@@ -3085,6 +3076,9 @@ comparison_dominates_p (code1, code2)
if (code2 == GEU || code2 == NE)
return 1;
break;
+
+ default:
+ break;
}
return 0;
@@ -3405,8 +3399,11 @@ mark_jump_label (x, insn, cross_jump)
for (i = 0; i < XVECLEN (x, eltnum); i++)
mark_jump_label (XVECEXP (x, eltnum, i), NULL_RTX, cross_jump);
- return;
}
+ return;
+
+ default:
+ break;
}
fmt = GET_RTX_FORMAT (code);
@@ -4174,6 +4171,9 @@ rtx_renumbered_equal_p (x, y)
case SYMBOL_REF:
return XSTR (x, 0) == XSTR (y, 0);
+
+ default:
+ break;
}
/* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
@@ -4644,6 +4644,9 @@ rtx_equal_for_thread_p (x, y, yinsn)
case SYMBOL_REF:
return XSTR (x, 0) == XSTR (y, 0);
+
+ default:
+ break;
}
if (x == y)
diff --git a/gcc/local-alloc.c b/gcc/local-alloc.c
index ce7b4b9f405..ab7fc98f39d 100644
--- a/gcc/local-alloc.c
+++ b/gcc/local-alloc.c
@@ -59,8 +59,8 @@ Boston, MA 02111-1307, USA. */
register is used as a spill register. So we don't allocate such pseudos
here if their preferred class is likely to be used by spills. */
-#include <stdio.h>
#include "config.h"
+#include <stdio.h>
#include "rtl.h"
#include "flags.h"
#include "basic-block.h"
@@ -695,6 +695,9 @@ memref_referenced_p (memref, x)
return 1;
return memref_referenced_p (memref, SET_SRC (x));
+
+ default:
+ break;
}
fmt = GET_RTX_FORMAT (code);
@@ -758,13 +761,11 @@ optimize_reg_copy_1 (insn, dest, src)
int sregno = REGNO (src);
int dregno = REGNO (dest);
+ /* We don't want to mess with hard regs if register classes are small. */
if (sregno == dregno
-#ifdef SMALL_REGISTER_CLASSES
- /* We don't want to mess with hard regs if register classes are small. */
|| (SMALL_REGISTER_CLASSES
&& (sregno < FIRST_PSEUDO_REGISTER
|| dregno < FIRST_PSEUDO_REGISTER))
-#endif
/* We don't see all updates to SP if they are in an auto-inc memory
reference, so we must disallow this optimization on them. */
|| sregno == STACK_POINTER_REGNUM || dregno == STACK_POINTER_REGNUM)
diff --git a/gcc/loop.c b/gcc/loop.c
index 73f347fd86f..70f15513cc9 100644
--- a/gcc/loop.c
+++ b/gcc/loop.c
@@ -34,8 +34,8 @@ Boston, MA 02111-1307, USA. */
Most of the complexity is in heuristics to decide when it is worth
while to do these things. */
-#include <stdio.h>
#include "config.h"
+#include <stdio.h>
#include "rtl.h"
#include "obstack.h"
#include "expr.h"
@@ -286,7 +286,9 @@ static void count_loop_regs_set ();
static void note_addr_stored ();
static int loop_reg_used_before_p ();
static void scan_loop ();
+#if 0
static void replace_call_address ();
+#endif
static rtx skip_consec_insns ();
static int libcall_benefit ();
static void ignore_some_movables ();
@@ -817,11 +819,9 @@ scan_loop (loop_start, end, nregs)
&& n_times_set[REGNO (SET_DEST (set))] == 1
&& ! side_effects_p (SET_SRC (set))
&& ! find_reg_note (p, REG_RETVAL, NULL_RTX)
-#ifdef SMALL_REGISTER_CLASSES
- && ! (SMALL_REGISTER_CLASSES
- && GET_CODE (SET_SRC (set)) == REG
- && REGNO (SET_SRC (set)) < FIRST_PSEUDO_REGISTER)
-#endif
+ && (! SMALL_REGISTER_CLASSES
+ || (! (GET_CODE (SET_SRC (set)) == REG
+ && REGNO (SET_SRC (set)) < FIRST_PSEUDO_REGISTER)))
/* This test is not redundant; SET_SRC (set) might be
a call-clobbered register and the life of REGNO
might span a call. */
@@ -1084,6 +1084,9 @@ record_excess_regs (in_this, not_in_this, output)
&& ! reg_mentioned_p (in_this, not_in_this))
*output = gen_rtx (EXPR_LIST, VOIDmode, in_this, *output);
return;
+
+ default:
+ break;
}
fmt = GET_RTX_FORMAT (code);
@@ -1171,6 +1174,9 @@ reg_in_basic_block_p (insn, reg)
case BARRIER:
/* It's the end of the basic block, so we lose. */
return 0;
+
+ default:
+ break;
}
}
@@ -2122,6 +2128,9 @@ replace_call_address (x, reg, addr)
abort ();
XEXP (x, 0) = addr;
return;
+
+ default:
+ break;
}
fmt = GET_RTX_FORMAT (code);
@@ -2170,6 +2179,9 @@ count_nonfixed_reads (x)
case MEM:
return ((invariant_p (XEXP (x, 0)) != 1)
+ count_nonfixed_reads (XEXP (x, 0)));
+
+ default:
+ break;
}
value = 0;
@@ -2352,6 +2364,8 @@ find_and_verify_loops (f)
current_loop = loop_outer_loop[current_loop];
break;
+ default:
+ break;
}
/* Note that this will mark the NOTE_INSN_LOOP_END note as being in the
@@ -2891,6 +2905,10 @@ invariant_p (x)
/* Don't mess with insns declared volatile. */
if (MEM_VOLATILE_P (x))
return 0;
+ break;
+
+ default:
+ break;
}
fmt = GET_RTX_FORMAT (code);
@@ -4381,14 +4399,8 @@ valid_initial_value_p (x, insn, call_seen, loop_start)
/* Don't use call-clobbered registers across a call which clobbers it. On
some machines, don't use any hard registers at all. */
if (REGNO (x) < FIRST_PSEUDO_REGISTER
- && (
-#ifdef SMALL_REGISTER_CLASSES
- SMALL_REGISTER_CLASSES
-#else
- 0
-#endif
- || (call_used_regs[REGNO (x)] && call_seen))
- )
+ && (SMALL_REGISTER_CLASSES
+ || (call_used_regs[REGNO (x)] && call_seen)))
return 0;
/* Don't use registers that have been clobbered before the start of the
@@ -4459,8 +4471,11 @@ find_mem_givs (x, insn, not_every_iteration, loop_start, loop_end)
v->mem_mode = GET_MODE (x);
}
- return;
}
+ return;
+
+ default:
+ break;
}
/* Recursively scan the subexpressions for other mem refs. */
@@ -5547,6 +5562,9 @@ simplify_giv_expr (x, benefit)
tem = gen_rtx (MINUS, mode, tem, v->derive_adjustment);
return simplify_giv_expr (tem, benefit);
}
+
+ default:
+ break;
}
/* Fall through to general case. */
@@ -6163,21 +6181,47 @@ check_dbra_loop (loop_end, insn_count, loop_start)
fprintf (loop_dump_stream, "Can reverse loop\n");
/* Now check other conditions:
- initial_value must be zero,
- final_value % add_val == 0, so that when reversed, the
- biv will be zero on the last iteration.
+
+ The increment must be a constant and the comparison code
+ must be LT.
This test can probably be improved since +/- 1 in the constant
can be obtained by changing LT to LE and vice versa; this is
confusing. */
- if (comparison && bl->initial_value == const0_rtx
+ if (comparison
&& GET_CODE (XEXP (comparison, 1)) == CONST_INT
/* LE gets turned into LT */
- && GET_CODE (comparison) == LT
- && (INTVAL (XEXP (comparison, 1))
- % INTVAL (bl->biv->add_val)) == 0)
+ && GET_CODE (comparison) == LT)
{
+ HOST_WIDE_INT add_val, comparison_val;
+ rtx initial_value;
+
+ add_val = INTVAL (bl->biv->add_val);
+ comparison_val = INTVAL (XEXP (comparison, 1));
+ initial_value = bl->initial_value;
+
+ /* Normalize the initial value if it has no other use
+ except as a counter. This will allow a few more loops
+ to be reversed. */
+ if (no_use_except_counting)
+ {
+ comparison_val = comparison_val - INTVAL (bl->initial_value);
+ initial_value = const0_rtx;
+ }
+
+ /* If the initial value is not zero, or if the comparison
+ value is not an exact multiple of the increment, then we
+ can not reverse this loop. */
+ if (initial_value != const0_rtx
+ || (comparison_val % add_val) != 0)
+ return 0;
+
+ /* Reset these in case we normalized the initial value
+ and comparison value above. */
+ bl->initial_value = initial_value;
+ XEXP (comparison, 1) = GEN_INT (comparison_val);
+
/* Register will always be nonnegative, with value
0 on last iteration if loop reversed */
@@ -6690,6 +6734,9 @@ maybe_eliminate_biv_1 (x, insn, bl, eliminate_p, where)
if (v->giv_type == DEST_ADDR && v->location == &XEXP (x, 0))
return 1;
break;
+
+ default:
+ break;
}
/* See if any subexpression fails elimination. */
@@ -7007,6 +7054,9 @@ get_condition (jump, earliest)
if (uconst_val != 0)
code = GTU, op1 = GEN_INT (uconst_val - 1);
break;
+
+ default:
+ break;
}
}
diff --git a/gcc/mips-tfile.c b/gcc/mips-tfile.c
index 4fb2f31ec04..b87a8ac5e49 100644
--- a/gcc/mips-tfile.c
+++ b/gcc/mips-tfile.c
@@ -2,7 +2,7 @@
contain debugging information specified by the GNU compiler
in the form of comments (the mips assembler does not support
assembly access to debug information).
- Copyright (C) 1991, 1993, 1994. 1995 Free Software Foundation, Inc.
+ Copyright (C) 1991, 1993, 1994, 1995, 1997 Free Software Foundation, Inc.
Contributed by Michael Meissner, meissner@osf.org
This file is part of GNU CC.
@@ -599,12 +599,12 @@ Boston, MA 02111-1307, USA. */
*/
+#include "config.h"
#ifdef __STDC__
#include <stdarg.h>
#else
#include <varargs.h>
#endif
-#include "config.h"
#include <stdio.h>
#ifndef __SABER__
diff --git a/gcc/objc/Make-lang.in b/gcc/objc/Make-lang.in
index d3001edb732..0dcd59c12ab 100644
--- a/gcc/objc/Make-lang.in
+++ b/gcc/objc/Make-lang.in
@@ -121,58 +121,59 @@ OBJC_O = objc/hash.o objc/sarray.o \
objc/thr.o objc/linking.o \
objc/$(OBJC_THREAD_FILE).o
-objc/hash.o: $(srcdir)/objc/hash.c
+objc/hash.o: $(srcdir)/objc/hash.c $(GCC_PASSES)
$(GCC_FOR_TARGET) $(GCC_CFLAGS) $(INCLUDES) \
-c $(srcdir)/objc/hash.c -o $@
-objc/sarray.o: $(srcdir)/objc/sarray.c
+objc/sarray.o: $(srcdir)/objc/sarray.c $(GCC_PASSES)
$(GCC_FOR_TARGET) $(GCC_CFLAGS) $(INCLUDES) \
-c $(srcdir)/objc/sarray.c -o $@
-objc/class.o: $(srcdir)/objc/class.c
+objc/class.o: $(srcdir)/objc/class.c $(GCC_PASSES)
$(GCC_FOR_TARGET) $(GCC_CFLAGS) $(INCLUDES) \
-c $(srcdir)/objc/class.c -o $@
-objc/sendmsg.o: $(srcdir)/objc/sendmsg.c
+objc/sendmsg.o: $(srcdir)/objc/sendmsg.c $(GCC_PASSES)
$(GCC_FOR_TARGET) $(GCC_CFLAGS) $(INCLUDES) \
-c $(srcdir)/objc/sendmsg.c -o $@
-objc/init.o: $(srcdir)/objc/init.c
+objc/init.o: $(srcdir)/objc/init.c $(GCC_PASSES)
$(GCC_FOR_TARGET) $(GCC_CFLAGS) $(INCLUDES) \
-c $(srcdir)/objc/init.c -o $@
-objc/archive.o: $(srcdir)/objc/archive.c
+objc/archive.o: $(srcdir)/objc/archive.c $(GCC_PASSES)
$(GCC_FOR_TARGET) $(GCC_CFLAGS) $(INCLUDES) \
-c $(srcdir)/objc/archive.c -o $@
-objc/encoding.o: $(srcdir)/objc/encoding.c
+objc/encoding.o: $(srcdir)/objc/encoding.c $(GCC_PASSES)
$(GCC_FOR_TARGET) $(GCC_CFLAGS) $(INCLUDES) \
-c $(srcdir)/objc/encoding.c -o $@
-objc/selector.o: $(srcdir)/objc/selector.c
+objc/selector.o: $(srcdir)/objc/selector.c $(GCC_PASSES)
$(GCC_FOR_TARGET) $(GCC_CFLAGS) $(INCLUDES) \
-c $(srcdir)/objc/selector.c -o $@
-objc/objects.o: $(srcdir)/objc/objects.c
+objc/objects.o: $(srcdir)/objc/objects.c $(GCC_PASSES)
$(GCC_FOR_TARGET) $(GCC_CFLAGS) $(INCLUDES) \
-c $(srcdir)/objc/objects.c -o $@
-objc/misc.o: $(srcdir)/objc/misc.c
+objc/misc.o: $(srcdir)/objc/misc.c $(GCC_PASSES)
$(GCC_FOR_TARGET) $(GCC_CFLAGS) $(INCLUDES) \
-c $(srcdir)/objc/misc.c -o $@
-objc/NXConstStr.o: $(srcdir)/objc/NXConstStr.m
+objc/NXConstStr.o: $(srcdir)/objc/NXConstStr.m $(GCC_PASSES)
$(GCC_FOR_TARGET) $(GCC_CFLAGS) $(INCLUDES) \
-c $(srcdir)/objc/NXConstStr.m -o $@
-objc/Object.o: $(srcdir)/objc/Object.m
+objc/Object.o: $(srcdir)/objc/Object.m $(GCC_PASSES)
$(GCC_FOR_TARGET) $(GCC_CFLAGS) $(INCLUDES) \
-c $(srcdir)/objc/Object.m -o $@
-objc/Protocol.o: $(srcdir)/objc/Protocol.m
+objc/Protocol.o: $(srcdir)/objc/Protocol.m $(GCC_PASSES)
$(GCC_FOR_TARGET) $(GCC_CFLAGS) $(INCLUDES) \
-c $(srcdir)/objc/Protocol.m -o $@
-objc/thr.o: $(srcdir)/objc/thr.h $(srcdir)/objc/thr.c
+objc/thr.o: $(srcdir)/objc/thr.h $(srcdir)/objc/thr.c $(GCC_PASSES)
$(GCC_FOR_TARGET) $(GCC_CFLAGS) $(INCLUDES) \
-c $(srcdir)/objc/thr.c -o $@
-objc/$(OBJC_THREAD_FILE).o: $(srcdir)/objc/$(OBJC_THREAD_FILE).c
+objc/$(OBJC_THREAD_FILE).o: $(srcdir)/objc/$(OBJC_THREAD_FILE).c $(GCC_PASSES)
$(GCC_FOR_TARGET) $(GCC_CFLAGS) $(INCLUDES) \
-c $(srcdir)/objc/$(OBJC_THREAD_FILE).c -o $@
-objc/nil_method.o: $(srcdir)/objc/nil_method.c
+objc/nil_method.o: $(srcdir)/objc/nil_method.c $(GCC_PASSES)
$(GCC_FOR_TARGET) $(GCC_CFLAGS) $(INCLUDES) \
-c $(srcdir)/objc/nil_method.c -o $@
-objc/linking.o: $(srcdir)/objc/linking.m
+objc/linking.o: $(srcdir)/objc/linking.m $(GCC_PASSES)
$(GCC_FOR_TARGET) $(GCC_CFLAGS) $(INCLUDES) \
-c $(srcdir)/objc/linking.m -o $@
-$(srcdir)/objc/libobjc_entry.o: $(srcdir)/objc/libobjc_entry.c
+
+$(srcdir)/objc/libobjc_entry.o: $(srcdir)/objc/libobjc_entry.c $(GCC_PASSES)
$(GCC_FOR_TARGET) $(GCC_CFLAGS) $(INCLUDES) \
-c $(srcdir)/objc/libobjc_entry.c -o $@
@@ -294,3 +295,9 @@ objc.stage4:
# This target creates the files that can be rebuilt, but go in the
# distribution anyway. It then copies the files to the distdir directory.
objc.distdir:
+ mkdir tmp/objc
+ cd objc ; $(MAKE) $(FLAGS_TO_PASS) objc-parse.c
+ cd objc; \
+ for file in *[0-9a-zA-Z+]; do \
+ ln $$file ../tmp/objc >/dev/null 2>&1 || cp $$file ../tmp/objc; \
+ done
diff --git a/gcc/objc/objc-parse.c b/gcc/objc/objc-parse.c
index 9c80c878ad4..3734a97fb66 100644
--- a/gcc/objc/objc-parse.c
+++ b/gcc/objc/objc-parse.c
@@ -1,5 +1,6 @@
-/* A Bison parser, made from objc-parse.y with Bison version GNU Bison version 1.24
+/* A Bison parser, made from objc-parse.y
+ by GNU Bison version 1.25
*/
#define YYBISON 1 /* Identify Bison output. */
@@ -142,23 +143,6 @@ int objc_public_flag;
#define YYPRINT(FILE,YYCHAR,YYLVAL) yyprint(FILE,YYCHAR,YYLVAL)
extern void yyprint ();
-
-#ifndef YYLTYPE
-typedef
- struct yyltype
- {
- int timestamp;
- int first_line;
- int first_column;
- int last_line;
- int last_column;
- char *text;
- }
- yyltype;
-
-#define YYLTYPE yyltype
-#endif
-
#include <stdio.h>
#ifndef __cplusplus
@@ -507,6 +491,10 @@ static const short yyrline[] = { 0,
2868, 2873, 2879, 2881, 2887, 2891, 2892, 2898, 2900, 2903,
2905, 2911, 2916, 2922, 2929, 2938
};
+#endif
+
+
+#if YYDEBUG != 0 || defined (YYERROR_VERBOSE)
static const char * const yytname[] = { "$","error","$undefined.","IDENTIFIER",
"TYPENAME","SCSPEC","TYPESPEC","TYPE_QUAL","CONSTANT","STRING","ELLIPSIS","SIZEOF",
@@ -549,8 +537,7 @@ static const char * const yytname[] = { "$","error","$undefined.","IDENTIFIER"
"myxdecls","mydecls","mydecl","myparms","myparm","optparmlist","@64","unaryselector",
"keywordselector","selector","reservedwords","keyworddecl","messageargs","keywordarglist",
"keywordexpr","keywordarg","receiver","objcmessageexpr","@65","@66","selectorarg",
-"keywordnamelist","keywordname","objcselectorexpr","objcprotocolexpr","objcencodeexpr",
-""
+"keywordnamelist","keywordname","objcselectorexpr","objcprotocolexpr","objcencodeexpr", NULL
};
#endif
@@ -1652,7 +1639,7 @@ static const short yycheck[] = { 9,
48, 49, 50, 51, 52
};
/* -*-C-*- Note some compilers choke on comments on `#line' lines. */
-#line 3 "/usr/local/share/bison.simple"
+#line 3 "/usr/cygnus/latest-940103/share/bison.simple"
/* Skeleton output parser for bison,
Copyright (C) 1984, 1989, 1990 Free Software Foundation, Inc.
@@ -1807,16 +1794,16 @@ int yyparse (void);
#endif
#if __GNUC__ > 1 /* GNU C and GNU C++ define this. */
-#define __yy_memcpy(FROM,TO,COUNT) __builtin_memcpy(TO,FROM,COUNT)
+#define __yy_memcpy(TO,FROM,COUNT) __builtin_memcpy(TO,FROM,COUNT)
#else /* not GNU C or C++ */
#ifndef __cplusplus
/* This is the most reliable way to avoid incompatibilities
in available built-in functions on various systems. */
static void
-__yy_memcpy (from, to, count)
- char *from;
+__yy_memcpy (to, from, count)
char *to;
+ char *from;
int count;
{
register char *f = from;
@@ -1832,7 +1819,7 @@ __yy_memcpy (from, to, count)
/* This is the most reliable way to avoid incompatibilities
in available built-in functions on various systems. */
static void
-__yy_memcpy (char *from, char *to, int count)
+__yy_memcpy (char *to, char *from, int count)
{
register char *f = from;
register char *t = to;
@@ -1845,7 +1832,7 @@ __yy_memcpy (char *from, char *to, int count)
#endif
#endif
-#line 192 "/usr/local/share/bison.simple"
+#line 196 "/usr/cygnus/latest-940103/share/bison.simple"
/* The user can define YYPARSE_PARAM as the name of an argument to be passed
into yyparse. The argument should have type void *.
@@ -1854,14 +1841,20 @@ __yy_memcpy (char *from, char *to, int count)
to the proper pointer type. */
#ifdef YYPARSE_PARAM
+#ifdef __cplusplus
+#define YYPARSE_PARAM_ARG void *YYPARSE_PARAM
+#define YYPARSE_PARAM_DECL
+#else /* not __cplusplus */
+#define YYPARSE_PARAM_ARG YYPARSE_PARAM
#define YYPARSE_PARAM_DECL void *YYPARSE_PARAM;
-#else
-#define YYPARSE_PARAM
+#endif /* not __cplusplus */
+#else /* not YYPARSE_PARAM */
+#define YYPARSE_PARAM_ARG
#define YYPARSE_PARAM_DECL
-#endif
+#endif /* not YYPARSE_PARAM */
int
-yyparse(YYPARSE_PARAM)
+yyparse(YYPARSE_PARAM_ARG)
YYPARSE_PARAM_DECL
{
register int yystate;
@@ -1978,12 +1971,12 @@ yynewstate:
if (yystacksize > YYMAXDEPTH)
yystacksize = YYMAXDEPTH;
yyss = (short *) alloca (yystacksize * sizeof (*yyssp));
- __yy_memcpy ((char *)yyss1, (char *)yyss, size * sizeof (*yyssp));
+ __yy_memcpy ((char *)yyss, (char *)yyss1, size * sizeof (*yyssp));
yyvs = (YYSTYPE *) alloca (yystacksize * sizeof (*yyvsp));
- __yy_memcpy ((char *)yyvs1, (char *)yyvs, size * sizeof (*yyvsp));
+ __yy_memcpy ((char *)yyvs, (char *)yyvs1, size * sizeof (*yyvsp));
#ifdef YYLSP_NEEDED
yyls = (YYLTYPE *) alloca (yystacksize * sizeof (*yylsp));
- __yy_memcpy ((char *)yyls1, (char *)yyls, size * sizeof (*yylsp));
+ __yy_memcpy ((char *)yyls, (char *)yyls1, size * sizeof (*yylsp));
#endif
#endif /* no yyoverflow */
@@ -4911,7 +4904,7 @@ case 556:
break;}
}
/* the action file gets copied in in place of this dollarsign */
-#line 487 "/usr/local/share/bison.simple"
+#line 498 "/usr/cygnus/latest-940103/share/bison.simple"
yyvsp -= yylen;
yyssp -= yylen;
diff --git a/gcc/obstack.h b/gcc/obstack.h
index 461a11d9337..5ad3e5ef12b 100644
--- a/gcc/obstack.h
+++ b/gcc/obstack.h
@@ -1,5 +1,5 @@
/* obstack.h - object stack macros
- Copyright (C) 1988,89,90,91,92,93,94,96 Free Software Foundation, Inc.
+ Copyright (C) 1988,89,90,91,92,93,94,96,97 Free Software Foundation, Inc.
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
diff --git a/gcc/pexecute.c b/gcc/pexecute.c
index dc2aacd2ba5..39fe9c7d5db 100644
--- a/gcc/pexecute.c
+++ b/gcc/pexecute.c
@@ -252,7 +252,7 @@ fix_argv (argvec)
{
if (temp[j] == '"')
{
- newtemp = xmalloc (len + 2);
+ newtemp = (char *) xmalloc (len + 2);
strncpy (newtemp, temp, j);
newtemp [j] = '\\';
strncpy (&newtemp [j+1], &temp [j], len-j);
@@ -407,7 +407,7 @@ pexecute (program, argv, this_pname, temp_base, errmsg_fmt, errmsg_arg, flags)
/* See if we have an argument that needs fixing. */
if (strchr(argv[i], '/'))
{
- tmpname = xmalloc (256);
+ tmpname = (char *) xmalloc (256);
mpwify_filename (argv[i], tmpname);
argv[i] = tmpname;
}
@@ -432,7 +432,7 @@ pexecute (program, argv, this_pname, temp_base, errmsg_fmt, errmsg_arg, flags)
/* See if we have an argument that needs fixing. */
if (strchr(argv[i], '/'))
{
- tmpname = xmalloc (256);
+ tmpname = (char *) xmalloc (256);
mpwify_filename (argv[i], tmpname);
argv[i] = tmpname;
}
diff --git a/gcc/profile.c b/gcc/profile.c
index 1888ad0ef96..4de616625f1 100644
--- a/gcc/profile.c
+++ b/gcc/profile.c
@@ -41,12 +41,13 @@ the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
achieve this, see Dain Sample's UC Berkeley thesis. */
#include "config.h"
+#include <stdio.h>
#include "rtl.h"
#include "flags.h"
#include "insn-flags.h"
#include "insn-config.h"
#include "output.h"
-#include <stdio.h>
+#include "regs.h"
#include "tree.h"
#include "output.h"
#include "gcov-io.h"
@@ -1514,7 +1515,6 @@ output_arc_profiler (arcno, insert_after)
rtx mem_ref, add_ref;
rtx sequence;
-#ifdef SMALL_REGISTER_CLASSES
/* In this case, reload can use explicitly mentioned hard registers for
reloads. It is not safe to output profiling code between a call
and the instruction that copies the result to a pseudo-reg. This
@@ -1550,11 +1550,15 @@ output_arc_profiler (arcno, insert_after)
else
return_reg = SET_DEST (XVECEXP (PATTERN (insert_after), 0, 0));
- if (reg_referenced_p (return_reg, PATTERN (next_insert_after)))
+ /* Now, NEXT_INSERT_AFTER may be an instruction that uses the
+ return value. However, it could also be something else,
+ like a CODE_LABEL, so check that the code is INSN. */
+ if (next_insert_after != 0
+ && GET_RTX_CLASS (GET_CODE (next_insert_after)) == 'i'
+ && reg_referenced_p (return_reg, PATTERN (next_insert_after)))
insert_after = next_insert_after;
}
}
-#endif
start_sequence ();
diff --git a/gcc/real.c b/gcc/real.c
index b1bb94e2e2d..2f3ec1ba02c 100644
--- a/gcc/real.c
+++ b/gcc/real.c
@@ -1,6 +1,6 @@
/* real.c - implementation of REAL_ARITHMETIC, REAL_VALUE_ATOF,
and support for XFmode IEEE extended real floating point arithmetic.
- Copyright (C) 1993, 1994, 1995, 1996 Free Software Foundation, Inc.
+ Copyright (C) 1993, 1994, 1995, 1996, 1997 Free Software Foundation, Inc.
Contributed by Stephen L. Moshier (moshier@world.std.com).
This file is part of GNU CC.
@@ -20,9 +20,9 @@ along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
+#include "config.h"
#include <stdio.h>
#include <errno.h>
-#include "config.h"
#include "tree.h"
#ifndef errno
@@ -209,7 +209,7 @@ unknown arithmetic type
#if HOST_BITS_PER_LONG >= EMULONG_SIZE
#define EMULONG long
#else
-#if HOST_BITS_PER_LONG_LONG >= EMULONG_SIZE
+#if HOST_BITS_PER_LONGLONG >= EMULONG_SIZE
#define EMULONG long long int
#else
/* You will have to modify this program to have a smaller unit size. */
@@ -406,15 +406,19 @@ static void eremain PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *,
unsigned EMUSHORT *));
static void eiremain PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *));
static void mtherr PROTO((char *, int));
+#ifdef DEC
static void dectoe PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *));
static void etodec PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *));
static void todec PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *));
+#endif
+#ifdef IBM
static void ibmtoe PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *,
enum machine_mode));
static void etoibm PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *,
enum machine_mode));
static void toibm PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *,
enum machine_mode));
+#endif
static void make_nan PROTO((unsigned EMUSHORT *, int, enum machine_mode));
static void uditoe PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *));
static void ditoe PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *));
diff --git a/gcc/real.h b/gcc/real.h
index 835c702f7d3..530a88659f7 100644
--- a/gcc/real.h
+++ b/gcc/real.h
@@ -1,5 +1,5 @@
-/* Front-end tree definitions for GNU compiler.
- Copyright (C) 1989, 1991, 1994, 1996 Free Software Foundation, Inc.
+/* Definitions of floating-point access for GNU compiler.
+ Copyright (C) 1989, 1991, 1994, 1996, 1997 Free Software Foundation, Inc.
This file is part of GNU CC.
@@ -361,8 +361,7 @@ extern double (atof) ();
size and where `float' is SFmode. */
/* Don't use REAL_VALUE_TRUNCATE directly--always call real_value_truncate. */
-extern REAL_VALUE_TYPE real_value_truncate PROTO ((enum machine_mode,
- REAL_VALUE_TYPE));
+extern REAL_VALUE_TYPE real_value_truncate PROTO((enum machine_mode, REAL_VALUE_TYPE));
#ifndef REAL_VALUE_TRUNCATE
#define REAL_VALUE_TRUNCATE(mode, x) \
@@ -385,6 +384,10 @@ extern REAL_VALUE_TYPE real_value_truncate PROTO ((enum machine_mode,
#define REAL_VALUE_NEGATIVE(x) (target_negative (x))
#endif
+extern int target_isnan PROTO ((REAL_VALUE_TYPE));
+extern int target_isinf PROTO ((REAL_VALUE_TYPE));
+extern int target_negative PROTO ((REAL_VALUE_TYPE));
+
/* Determine whether a floating-point value X is minus 0. */
#ifndef REAL_VALUE_MINUS_ZERO
#define REAL_VALUE_MINUS_ZERO(x) ((x) == 0 && REAL_VALUE_NEGATIVE (x))
@@ -452,13 +455,9 @@ extern struct rtx_def *immed_real_const_1 PROTO((REAL_VALUE_TYPE,
/* Replace R by 1/R in the given machine mode, if the result is exact. */
extern int exact_real_inverse PROTO((enum machine_mode, REAL_VALUE_TYPE *));
-extern int target_isnan PROTO ((REAL_VALUE_TYPE));
-extern int target_isinf PROTO ((REAL_VALUE_TYPE));
-extern int target_negative PROTO ((REAL_VALUE_TYPE));
extern void debug_real PROTO ((REAL_VALUE_TYPE));
/* In varasm.c */
extern void assemble_real PROTO ((REAL_VALUE_TYPE,
enum machine_mode));
-
#endif /* Not REAL_H_INCLUDED */
diff --git a/gcc/reg-stack.c b/gcc/reg-stack.c
index 2f3a4a72be2..aea3cdb93fd 100644
--- a/gcc/reg-stack.c
+++ b/gcc/reg-stack.c
@@ -157,8 +157,8 @@ Boston, MA 02111-1307, USA. */
*/
-#include <stdio.h>
#include "config.h"
+#include <stdio.h>
#include "tree.h"
#include "rtl.h"
#include "insn-config.h"
diff --git a/gcc/regclass.c b/gcc/regclass.c
index 45ee16ee202..db29999aee1 100644
--- a/gcc/regclass.c
+++ b/gcc/regclass.c
@@ -24,6 +24,7 @@ Boston, MA 02111-1307, USA. */
and a function init_reg_sets to initialize the tables. */
#include "config.h"
+#include <stdio.h>
#include "rtl.h"
#include "hard-reg-set.h"
#include "flags.h"
@@ -1539,64 +1540,33 @@ record_address_regs (x, class, scale)
else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
record_address_regs (arg0, INDEX_REG_CLASS, scale);
- /* Look for the sum of two registers where the first is definitely
- a base register or the second is definitely an index register. */
+ /* If one operand is known to be a pointer, it must be the base
+ with the other operand the index. Likewise if the other operand
+ is a MULT. */
- else if (code0 == REG && code1 == REG
- && ((REGNO (arg0) < FIRST_PSEUDO_REGISTER
- && REG_OK_FOR_BASE_P (arg0))
- || ((REGNO (arg1) < FIRST_PSEUDO_REGISTER
- && REG_OK_FOR_INDEX_P (arg1)))))
+ else if ((code0 == REG && REGNO_POINTER_FLAG (REGNO (arg0)))
+ || code1 == MULT)
{
record_address_regs (arg0, BASE_REG_CLASS, scale);
record_address_regs (arg1, INDEX_REG_CLASS, scale);
}
-
- /* Look for the sum of two registers where the first is definitely
- an index register or the second is definitely a base register. */
-
- else if (code0 == REG && code1 == REG
- && ((REGNO (arg1) < FIRST_PSEUDO_REGISTER
- && REG_OK_FOR_BASE_P (arg1))
- || ((REGNO (arg0) < FIRST_PSEUDO_REGISTER
- && REG_OK_FOR_INDEX_P (arg0)))))
+ else if ((code1 == REG && REGNO_POINTER_FLAG (REGNO (arg1)))
+ || code0 == MULT)
{
record_address_regs (arg0, INDEX_REG_CLASS, scale);
record_address_regs (arg1, BASE_REG_CLASS, scale);
}
- /* If this the sum of two registers where the first is known to be a
- pointer, it must be a base register with the second an index. */
-
- else if (code0 == REG && code1 == REG
- && REGNO_POINTER_FLAG (REGNO (arg0)))
- {
- record_address_regs (arg0, BASE_REG_CLASS, scale);
- record_address_regs (arg1, INDEX_REG_CLASS, scale);
- }
-
- /* If this is the sum of two registers and neither is known to
- be a pointer, count equal chances that each might be a base
+ /* Otherwise, count equal chances that each might be a base
or index register. This case should be rare. */
- else if (code0 == REG && code1 == REG
- && ! REGNO_POINTER_FLAG (REGNO (arg0))
- && ! REGNO_POINTER_FLAG (REGNO (arg1)))
+ else
{
record_address_regs (arg0, BASE_REG_CLASS, scale / 2);
record_address_regs (arg0, INDEX_REG_CLASS, scale / 2);
record_address_regs (arg1, BASE_REG_CLASS, scale / 2);
record_address_regs (arg1, INDEX_REG_CLASS, scale / 2);
}
-
- /* In all other cases, the first operand is an index and the
- second is the base. */
-
- else
- {
- record_address_regs (arg0, INDEX_REG_CLASS, scale);
- record_address_regs (arg1, BASE_REG_CLASS, scale);
- }
}
break;
diff --git a/gcc/reload.c b/gcc/reload.c
index 4b48a6c3171..f26cb5800cb 100644
--- a/gcc/reload.c
+++ b/gcc/reload.c
@@ -87,8 +87,8 @@ a register with any other reload. */
#define REG_OK_STRICT
-#include <stdio.h>
#include "config.h"
+#include <stdio.h>
#include "rtl.h"
#include "insn-config.h"
#include "insn-codes.h"
@@ -496,11 +496,7 @@ push_secondary_reload (in_p, x, opnum, optional, reload_class, reload_mode,
== CODE_FOR_nothing))
|| (! in_p &&(reload_secondary_out_icode[t_reload]
== CODE_FOR_nothing)))
- && (reg_class_size[(int) t_class] == 1
-#ifdef SMALL_REGISTER_CLASSES
- || SMALL_REGISTER_CLASSES
-#endif
- )
+ && (reg_class_size[(int) t_class] == 1 || SMALL_REGISTER_CLASSES)
&& MERGABLE_RELOADS (secondary_type,
reload_when_needed[t_reload],
opnum, reload_opnum[t_reload]))
@@ -557,11 +553,7 @@ push_secondary_reload (in_p, x, opnum, optional, reload_class, reload_mode,
|| (! in_p && reload_secondary_out_reload[s_reload] == t_reload))
&& ((in_p && reload_secondary_in_icode[s_reload] == t_icode)
|| (! in_p && reload_secondary_out_icode[s_reload] == t_icode))
- && (reg_class_size[(int) class] == 1
-#ifdef SMALL_REGISTER_CLASSES
- || SMALL_REGISTER_CLASSES
-#endif
- )
+ && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
&& MERGABLE_RELOADS (secondary_type, reload_when_needed[s_reload],
opnum, reload_opnum[s_reload]))
{
@@ -583,6 +575,17 @@ push_secondary_reload (in_p, x, opnum, optional, reload_class, reload_mode,
if (s_reload == n_reloads)
{
+#ifdef SECONDARY_MEMORY_NEEDED
+ /* If we need a memory location to copy between the two reload regs,
+ set it up now. Note that we do the input case before making
+ the reload and the output case after. This is due to the
+ way reloads are output. */
+
+ if (in_p && icode == CODE_FOR_nothing
+ && SECONDARY_MEMORY_NEEDED (class, reload_class, mode))
+ get_secondary_mem (x, reload_mode, opnum, type);
+#endif
+
/* We need to make a new secondary reload for this register class. */
reload_in[s_reload] = reload_out[s_reload] = 0;
reload_reg_class[s_reload] = class;
@@ -607,13 +610,6 @@ push_secondary_reload (in_p, x, opnum, optional, reload_class, reload_mode,
n_reloads++;
#ifdef SECONDARY_MEMORY_NEEDED
- /* If we need a memory location to copy between the two reload regs,
- set it up now. */
-
- if (in_p && icode == CODE_FOR_nothing
- && SECONDARY_MEMORY_NEEDED (class, reload_class, mode))
- get_secondary_mem (x, mode, opnum, type);
-
if (! in_p && icode == CODE_FOR_nothing
&& SECONDARY_MEMORY_NEEDED (reload_class, class, mode))
get_secondary_mem (x, mode, opnum, type);
@@ -1176,11 +1172,7 @@ push_reload (in, out, inloc, outloc, class,
||
(out != 0 && MATCHES (reload_out[i], out)
&& (in == 0 || reload_in[i] == 0 || MATCHES (reload_in[i], in))))
- && (reg_class_size[(int) class] == 1
-#ifdef SMALL_REGISTER_CLASSES
- || SMALL_REGISTER_CLASSES
-#endif
- )
+ && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
&& MERGABLE_RELOADS (type, reload_when_needed[i],
opnum, reload_opnum[i]))
break;
@@ -1212,11 +1204,7 @@ push_reload (in, out, inloc, outloc, class,
|| GET_CODE (in) == PRE_INC
|| GET_CODE (in) == PRE_DEC)
&& MATCHES (XEXP (in, 0), reload_in[i])))
- && (reg_class_size[(int) class] == 1
-#ifdef SMALL_REGISTER_CLASSES
- || SMALL_REGISTER_CLASSES
-#endif
- )
+ && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
&& MERGABLE_RELOADS (type, reload_when_needed[i],
opnum, reload_opnum[i]))
{
@@ -1250,6 +1238,15 @@ push_reload (in, out, inloc, outloc, class,
/* We found no existing reload suitable for re-use.
So add an additional reload. */
+#ifdef SECONDARY_MEMORY_NEEDED
+ /* If a memory location is needed for the copy, make one. */
+ if (in != 0 && GET_CODE (in) == REG
+ && REGNO (in) < FIRST_PSEUDO_REGISTER
+ && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (in)),
+ class, inmode))
+ get_secondary_mem (in, inmode, opnum, type);
+#endif
+
i = n_reloads;
reload_in[i] = in;
reload_out[i] = out;
@@ -1272,13 +1269,6 @@ push_reload (in, out, inloc, outloc, class,
n_reloads++;
#ifdef SECONDARY_MEMORY_NEEDED
- /* If a memory location is needed for the copy, make one. */
- if (in != 0 && GET_CODE (in) == REG
- && REGNO (in) < FIRST_PSEUDO_REGISTER
- && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (in)),
- class, inmode))
- get_secondary_mem (in, inmode, opnum, type);
-
if (out != 0 && GET_CODE (out) == REG
&& REGNO (out) < FIRST_PSEUDO_REGISTER
&& SECONDARY_MEMORY_NEEDED (class, REGNO_REG_CLASS (REGNO (out)),
@@ -1557,17 +1547,12 @@ combine_reloads ()
|| rtx_equal_p (secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[i]],
secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[output_reload]]))
#endif
- && (
-#ifdef SMALL_REGISTER_CLASSES
- SMALL_REGISTER_CLASSES
-#else
- 0
-#endif
- ? reload_reg_class[i] == reload_reg_class[output_reload]
- : (reg_class_subset_p (reload_reg_class[i],
- reload_reg_class[output_reload])
- || reg_class_subset_p (reload_reg_class[output_reload],
- reload_reg_class[i])))
+ && (SMALL_REGISTER_CLASSES
+ ? (reload_reg_class[i] == reload_reg_class[output_reload])
+ : (reg_class_subset_p (reload_reg_class[i],
+ reload_reg_class[output_reload])
+ || reg_class_subset_p (reload_reg_class[output_reload],
+ reload_reg_class[i])))
&& (MATCHES (reload_in[i], reload_out[output_reload])
/* Args reversed because the first arg seems to be
the one that we imagine being modified
@@ -1584,10 +1569,7 @@ combine_reloads ()
&& reg_overlap_mentioned_for_reload_p (reload_in[i],
reload_out[output_reload]))))
&& (reg_class_size[(int) reload_reg_class[i]]
-#ifdef SMALL_REGISTER_CLASSES
- || SMALL_REGISTER_CLASSES
-#endif
- )
+ || SMALL_REGISTER_CLASSES)
/* We will allow making things slightly worse by combining an
input and an output, but no worse than that. */
&& (reload_when_needed[i] == RELOAD_FOR_INPUT
@@ -4631,6 +4613,10 @@ subst_reg_equivs (ad)
if (XEXP (ad, 0) == frame_pointer_rtx
&& GET_CODE (XEXP (ad, 1)) == CONST_INT)
return ad;
+ break;
+
+ default:
+ break;
}
fmt = GET_RTX_FORMAT (code);
@@ -4969,7 +4955,7 @@ find_reloads_address_1 (mode, x, context, loc, opnum, type, ind_levels, insn)
(context
? reload_address_index_reg_class
: reload_address_base_reg_class),
- GET_MODE (x), GET_MODE (x), VOIDmode, 0,
+ GET_MODE (x), GET_MODE (x), 0, 0,
opnum, RELOAD_OTHER);
}
else
@@ -4979,7 +4965,7 @@ find_reloads_address_1 (mode, x, context, loc, opnum, type, ind_levels, insn)
(context
? reload_address_index_reg_class
: reload_address_base_reg_class),
- GET_MODE (x), GET_MODE (x), VOIDmode, 0,
+ GET_MODE (x), GET_MODE (x), 0, 0,
opnum, type);
reload_inc[reloadnum]
= find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
@@ -5163,6 +5149,9 @@ find_reloads_address_1 (mode, x, context, loc, opnum, type, ind_levels, insn)
}
}
break;
+
+ default:
+ break;
}
{
@@ -5452,6 +5441,9 @@ refers_to_regno_for_reload_p (regno, endregno, x, loc)
return 0;
x = SET_SRC (x);
goto repeat;
+
+ default:
+ break;
}
/* X does not match, so try its subexpressions. */
@@ -5632,6 +5624,8 @@ find_equiv_reg (goal, insn, class, other, reload_reg_p, goalreg, mode)
case POST_DEC:
case PRE_DEC:
return 0;
+ default:
+ break;
}
goal_mem = 1;
}
@@ -5937,6 +5931,9 @@ find_equiv_reg (goal, insn, class, other, reload_reg_p, goalreg, mode)
else if (goal_mem && GET_CODE (dest) == MEM
&& ! push_operand (dest, GET_MODE (dest)))
return 0;
+ else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
+ && reg_equiv_memory_loc[regno] != 0)
+ return 0;
else if (need_stable_sp
&& push_operand (dest, GET_MODE (dest)))
return 0;
diff --git a/gcc/reload1.c b/gcc/reload1.c
index cbb41308ddb..4281800b65a 100644
--- a/gcc/reload1.c
+++ b/gcc/reload1.c
@@ -19,8 +19,8 @@ the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
-#include <stdio.h>
#include "config.h"
+#include <stdio.h>
#include "rtl.h"
#include "obstack.h"
#include "insn-config.h"
@@ -159,7 +159,7 @@ HARD_REG_SET forbidden_regs;
/* This reg set indicates registers that are not good for spill registers.
They will not be used to complete groups of spill registers. This includes
all fixed registers, registers that may be eliminated, and, if
- SMALL_REGISTER_CLASSES is not defined, registers explicitly used in the rtl.
+ SMALL_REGISTER_CLASSES is zero, registers explicitly used in the rtl.
(spill_reg_order prevents these registers from being used to start a
group.) */
@@ -399,9 +399,12 @@ static void reload_cse_invalidate_mem PROTO((rtx));
static void reload_cse_invalidate_rtx PROTO((rtx, rtx));
static int reload_cse_regno_equal_p PROTO((int, rtx, enum machine_mode));
static int reload_cse_noop_set_p PROTO((rtx, rtx));
-static void reload_cse_simplify_set PROTO((rtx, rtx));
+static int reload_cse_simplify_set PROTO((rtx, rtx));
+static int reload_cse_simplify_operands PROTO((rtx));
static void reload_cse_check_clobber PROTO((rtx, rtx));
static void reload_cse_record_set PROTO((rtx, rtx));
+static void reload_cse_delete_death_notes PROTO((rtx));
+static void reload_cse_no_longer_dead PROTO((int, enum machine_mode));
/* Initialize the reload pass once per compilation. */
@@ -465,7 +468,6 @@ init_reload ()
but that is hard to determine. */
reload_address_base_reg_class = BASE_REG_CLASS;
reload_address_index_reg_class = INDEX_REG_CLASS;
-#ifdef SMALL_REGISTER_CLASSES
if (SMALL_REGISTER_CLASSES)
{
int regno;
@@ -511,7 +513,6 @@ init_reload ()
}
indexok:;
}
-#endif /* SMALL_REGISTER_CLASSES */
}
/* Main entry point for the reload pass.
@@ -637,10 +638,8 @@ reload (first, global, dumpfile)
cannot_omit_stores = (char *) alloca (max_regno);
bzero (cannot_omit_stores, max_regno);
-#ifdef SMALL_REGISTER_CLASSES
if (SMALL_REGISTER_CLASSES)
CLEAR_HARD_REG_SET (forbidden_regs);
-#endif
/* Look for REG_EQUIV notes; record what each pseudo is equivalent to.
Also find all paradoxical subregs and find largest such for each pseudo.
@@ -820,9 +819,7 @@ reload (first, global, dumpfile)
rtl as a spill register. But on some, we have to. Those will have
taken care to keep the life of hard regs as short as possible. */
-#ifdef SMALL_REGISTER_CLASSES
if (! SMALL_REGISTER_CLASSES)
-#endif
COPY_HARD_REG_SET (forbidden_regs, bad_spill_regs);
/* Spill any hard regs that we know we can't eliminate. */
@@ -1092,7 +1089,6 @@ reload (first, global, dumpfile)
if (num_eliminable)
did_elimination = eliminate_regs_in_insn (insn, 0);
-#ifdef SMALL_REGISTER_CLASSES
/* Set avoid_return_reg if this is an insn
that might use the value of a function call. */
if (SMALL_REGISTER_CLASSES && GET_CODE (insn) == CALL_INSN)
@@ -1105,8 +1101,7 @@ reload (first, global, dumpfile)
else
after_call = 0;
}
- else if (SMALL_REGISTER_CLASSES
- && after_call != 0
+ else if (SMALL_REGISTER_CLASSES && after_call != 0
&& !(GET_CODE (PATTERN (insn)) == SET
&& SET_DEST (PATTERN (insn)) == stack_pointer_rtx))
{
@@ -1114,7 +1109,6 @@ reload (first, global, dumpfile)
avoid_return_reg = after_call;
after_call = 0;
}
-#endif /* SMALL_REGISTER_CLASSES */
/* Analyze the instruction. */
find_reloads (insn, 0, spill_indirect_levels, global,
@@ -1459,7 +1453,6 @@ reload (first, global, dumpfile)
}
}
-#ifdef SMALL_REGISTER_CLASSES
/* If this insn stores the value of a function call,
and that value is in a register that has been spilled,
and if the insn needs a reload in a class
@@ -1528,7 +1521,6 @@ reload (first, global, dumpfile)
}
}
}
-#endif /* SMALL_REGISTER_CLASSES */
/* For each class, collect maximum need of any insn. */
@@ -1824,7 +1816,6 @@ reload (first, global, dumpfile)
}
}
/* We can't complete a group, so start one. */
-#ifdef SMALL_REGISTER_CLASSES
/* Look for a pair neither of which is explicitly used. */
if (SMALL_REGISTER_CLASSES && i == FIRST_PSEUDO_REGISTER)
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
@@ -1849,7 +1840,6 @@ reload (first, global, dumpfile)
&& ! regs_explicitly_used[j + 1])
break;
}
-#endif
/* Now try any group at all
whose registers are not in bad_spill_regs. */
if (i == FIRST_PSEUDO_REGISTER)
@@ -2761,6 +2751,9 @@ set_label_offsets (x, insn, initial_p)
else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
break;
return;
+
+ default:
+ break;
}
/* If we reach here, all eliminations must be at their initial
@@ -2768,6 +2761,10 @@ set_label_offsets (x, insn, initial_p)
for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
if (p->offset != p->initial_offset)
p->can_eliminate = 0;
+ break;
+
+ default:
+ break;
}
}
@@ -2834,6 +2831,15 @@ eliminate_regs (x, mem_mode, insn, storing)
case RETURN:
return x;
+ case ADDRESSOF:
+ /* This is only for the benefit of the debugging backends, which call
+ eliminate_regs on DECL_RTL; any ADDRESSOFs in the actual insns are
+ removed after CSE. */
+ new = eliminate_regs (XEXP (x, 0), 0, insn, 0);
+ if (GET_CODE (new) == MEM)
+ return XEXP (new, 0);
+ return x;
+
case REG:
regno = REGNO (x);
@@ -3284,6 +3290,12 @@ eliminate_regs (x, mem_mode, insn, storing)
return x;
case MEM:
+ /* This is only for the benefit of the debugging backends, which call
+ eliminate_regs on DECL_RTL; any ADDRESSOFs in the actual insns are
+ removed after CSE. */
+ if (GET_CODE (XEXP (x, 0)) == ADDRESSOF)
+ return eliminate_regs (XEXP (XEXP (x, 0), 0), 0, insn, 0);
+
/* Our only special processing is to pass the mode of the MEM to our
recursive call and copy the flags. While we are here, handle this
case more efficiently. */
@@ -3298,6 +3310,9 @@ eliminate_regs (x, mem_mode, insn, storing)
}
else
return x;
+
+ default:
+ break;
}
/* Process each of our operands recursively. If any have changed, make a
@@ -3761,12 +3776,9 @@ scan_paradoxical_subregs (x)
switch (code)
{
case REG:
-#ifdef SMALL_REGISTER_CLASSES
- if (SMALL_REGISTER_CLASSES
- && REGNO (x) < FIRST_PSEUDO_REGISTER
+ if (SMALL_REGISTER_CLASSES && REGNO (x) < FIRST_PSEUDO_REGISTER
&& REG_USERVAR_P (x))
SET_HARD_REG_BIT (forbidden_regs, REGNO (x));
-#endif
return;
case CONST_INT:
@@ -3786,6 +3798,9 @@ scan_paradoxical_subregs (x)
reg_max_ref_width[REGNO (SUBREG_REG (x))]
= GET_MODE_SIZE (GET_MODE (x));
return;
+
+ default:
+ break;
}
fmt = GET_RTX_FORMAT (code);
@@ -3878,14 +3893,12 @@ order_regs_for_reload (global)
else if (regs_explicitly_used[i])
{
hard_reg_n_uses[i].uses += large + 1;
- /* ??? We are doing this here because of the potential that
- bad code may be generated if a register explicitly used in
- an insn was used as a spill register for that insn. But
- not using these are spill registers may lose on some machine.
- We'll have to see how this works out. */
-#ifdef SMALL_REGISTER_CLASSES
if (! SMALL_REGISTER_CLASSES)
-#endif
+ /* ??? We are doing this here because of the potential
+ that bad code may be generated if a register explicitly
+ used in an insn was used as a spill register for that
+ insn. But not using these are spill registers may lose
+ on some machine. We'll have to see how this works out. */
SET_HARD_REG_BIT (bad_spill_regs, i);
}
}
@@ -4037,7 +4050,6 @@ reload_as_needed (first, live_known)
rtx avoid_return_reg = 0;
rtx oldpat = PATTERN (insn);
-#ifdef SMALL_REGISTER_CLASSES
/* Set avoid_return_reg if this is an insn
that might use the value of a function call. */
if (SMALL_REGISTER_CLASSES && GET_CODE (insn) == CALL_INSN)
@@ -4050,8 +4062,7 @@ reload_as_needed (first, live_known)
else
after_call = 0;
}
- else if (SMALL_REGISTER_CLASSES
- && after_call != 0
+ else if (SMALL_REGISTER_CLASSES && after_call != 0
&& !(GET_CODE (PATTERN (insn)) == SET
&& SET_DEST (PATTERN (insn)) == stack_pointer_rtx))
{
@@ -4059,7 +4070,6 @@ reload_as_needed (first, live_known)
avoid_return_reg = after_call;
after_call = 0;
}
-#endif /* SMALL_REGISTER_CLASSES */
/* If this is a USE and CLOBBER of a MEM, ensure that any
references to eliminable registers have been removed. */
@@ -4126,13 +4136,11 @@ reload_as_needed (first, live_known)
Record the choices of reload reg in reload_reg_rtx. */
choose_reload_regs (insn, avoid_return_reg);
-#ifdef SMALL_REGISTER_CLASSES
/* Merge any reloads that we didn't combine for fear of
increasing the number of spill registers needed but now
discover can be safely merged. */
if (SMALL_REGISTER_CLASSES)
merge_assigned_reloads (insn);
-#endif
/* Generate the insns to reload operands into or out of
their reload regs. */
@@ -5264,7 +5272,6 @@ choose_reload_regs (insn, avoid_return_reg)
CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
}
-#ifdef SMALL_REGISTER_CLASSES
/* Don't bother with avoiding the return reg
if we have no mandatory reload that could use it. */
if (SMALL_REGISTER_CLASSES && avoid_return_reg)
@@ -5287,7 +5294,6 @@ choose_reload_regs (insn, avoid_return_reg)
if (!do_avoid)
avoid_return_reg = 0;
}
-#endif /* SMALL_REGISTER_CLASSES */
#if 0 /* Not needed, now that we can always retry without inheritance. */
/* See if we have more mandatory reloads than spill regs.
@@ -5298,11 +5304,7 @@ choose_reload_regs (insn, avoid_return_reg)
unless it is equal to reload_in or reload_out, count such reloads. */
{
- int tem = 0;
-#ifdef SMALL_REGISTER_CLASSES
- if (SMALL_REGISTER_CLASSES)
- tem = (avoid_return_reg != 0);
-#endif
+ int tem = SMALL_REGISTER_CLASSES? (avoid_return_reg != 0): 0;
for (j = 0; j < n_reloads; j++)
if (! reload_optional[j]
&& (reload_in[j] != 0 || reload_out[j] != 0 || reload_secondary_p[j])
@@ -5315,7 +5317,6 @@ choose_reload_regs (insn, avoid_return_reg)
}
#endif
-#ifdef SMALL_REGISTER_CLASSES
/* Don't use the subroutine call return reg for a reload
if we are supposed to avoid it. */
if (SMALL_REGISTER_CLASSES && avoid_return_reg)
@@ -5329,7 +5330,6 @@ choose_reload_regs (insn, avoid_return_reg)
if (spill_reg_order[r] >= 0)
SET_HARD_REG_BIT (reload_reg_used, r);
}
-#endif /* SMALL_REGISTER_CLASSES */
/* In order to be certain of getting the registers we need,
we must sort the reloads into order of increasing register class.
@@ -5882,7 +5882,7 @@ choose_reload_regs (insn, avoid_return_reg)
}
}
-/* If SMALL_REGISTER_CLASSES are defined, we may not have merged two
+/* If SMALL_REGISTER_CLASSES is non-zero, we may not have merged two
reloads of the same item for fear that we might not have enough reload
registers. However, normally they will get the same reload register
and hence actually need not be loaded twice.
@@ -5895,8 +5895,6 @@ choose_reload_regs (insn, avoid_return_reg)
This will not increase the number of spill registers needed and will
prevent redundant code. */
-#ifdef SMALL_REGISTER_CLASSES
-
static void
merge_assigned_reloads (insn)
rtx insn;
@@ -5970,7 +5968,7 @@ merge_assigned_reloads (insn)
}
}
}
-#endif /* SMALL_RELOAD_CLASSES */
+
/* Output insns to reload values in and out of the chosen reload regs. */
@@ -7541,6 +7539,9 @@ count_occurrences (x, find)
if (SET_DEST (x) == find)
return count_occurrences (SET_SRC (x), find);
break;
+
+ default:
+ break;
}
format_ptr = GET_RTX_FORMAT (code);
@@ -7588,6 +7589,13 @@ static rtx *reg_values;
static rtx invalidate_regno_rtx;
+/* This is a set of registers for which we must remove REG_DEAD notes in
+ previous insns, because our modifications made them invalid. That can
+ happen if we introduced the register into the current insn, or we deleted
+ the current insn which used to set the register. */
+
+static HARD_REG_SET no_longer_dead_regs;
+
/* Invalidate any entries in reg_values which depend on REGNO,
including those for REGNO itself. This is called if REGNO is
changing. If CLOBBER is true, then always forget anything we
@@ -7705,7 +7713,10 @@ reload_cse_mem_conflict_p (mem_base, val)
if (GET_MODE (mem_base) == BLKmode
|| GET_MODE (val) == BLKmode)
return 1;
- return anti_dependence (val, mem_base);
+ if (anti_dependence (val, mem_base))
+ return 1;
+ /* The address may contain nested MEMs. */
+ break;
default:
break;
@@ -7787,6 +7798,55 @@ reload_cse_invalidate_rtx (dest, ignore)
reload_cse_invalidate_mem (dest);
}
+/* Possibly delete death notes on the insns before INSN if modifying INSN
+ extended the lifespan of the registers. */
+
+static void
+reload_cse_delete_death_notes (insn)
+ rtx insn;
+{
+ int dreg;
+
+ for (dreg = 0; dreg < FIRST_PSEUDO_REGISTER; dreg++)
+ {
+ rtx trial;
+
+ if (! TEST_HARD_REG_BIT (no_longer_dead_regs, dreg))
+ continue;
+
+ for (trial = prev_nonnote_insn (insn);
+ (trial
+ && GET_CODE (trial) != CODE_LABEL
+ && GET_CODE (trial) != BARRIER);
+ trial = prev_nonnote_insn (trial))
+ {
+ if (find_regno_note (trial, REG_DEAD, dreg))
+ {
+ remove_death (dreg, trial);
+ break;
+ }
+ }
+ }
+}
+
+/* Record that the current insn uses hard reg REGNO in mode MODE. This
+ will be used in reload_cse_delete_death_notes to delete prior REG_DEAD
+ notes for this register. */
+
+static void
+reload_cse_no_longer_dead (regno, mode)
+ int regno;
+ enum machine_mode mode;
+{
+ int nregs = HARD_REGNO_NREGS (regno, mode);
+ while (nregs-- > 0)
+ {
+ SET_HARD_REG_BIT (no_longer_dead_regs, regno);
+ regno++;
+ }
+}
+
+
/* Do a very simple CSE pass over the hard registers.
This function detects no-op moves where we happened to assign two
@@ -7797,7 +7857,12 @@ reload_cse_invalidate_rtx (dest, ignore)
This function also detects cases where we load a value from memory
into two different registers, and (if memory is more expensive than
registers) changes it to simply copy the first register into the
- second register. */
+ second register.
+
+ Another optimization is performed that scans the operands of each
+ instruction to see whether the value is already available in a
+ hard register. It then replaces the operand with the hard register
+ if possible, much like an optional reload would. */
void
reload_cse_regs (first)
@@ -7855,6 +7920,8 @@ reload_cse_regs (first)
if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
continue;
+ CLEAR_HARD_REG_SET (no_longer_dead_regs);
+
/* If this is a call instruction, forget anything stored in a
call clobbered register, or, if this is not a const call, in
memory. */
@@ -7871,22 +7938,32 @@ reload_cse_regs (first)
body = PATTERN (insn);
if (GET_CODE (body) == SET)
{
+ int count = 0;
if (reload_cse_noop_set_p (body, insn))
{
PUT_CODE (insn, NOTE);
NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
NOTE_SOURCE_FILE (insn) = 0;
+ reload_cse_delete_death_notes (insn);
/* We're done with this insn. */
continue;
}
- reload_cse_simplify_set (body, insn);
+ /* It's not a no-op, but we can try to simplify it. */
+ CLEAR_HARD_REG_SET (no_longer_dead_regs);
+ count += reload_cse_simplify_set (body, insn);
+
+ if (count > 0 && apply_change_group ())
+ reload_cse_delete_death_notes (insn);
+ else if (reload_cse_simplify_operands (insn))
+ reload_cse_delete_death_notes (insn);
+
reload_cse_record_set (body, body);
}
else if (GET_CODE (body) == PARALLEL)
{
- int delete;
+ int count = 0;
/* If every action in a PARALLEL is a noop, we can delete
the entire PARALLEL. */
@@ -7900,10 +7977,22 @@ reload_cse_regs (first)
PUT_CODE (insn, NOTE);
NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
NOTE_SOURCE_FILE (insn) = 0;
+ reload_cse_delete_death_notes (insn);
/* We're done with this insn. */
continue;
}
+
+ /* It's not a no-op, but we can try to simplify it. */
+ CLEAR_HARD_REG_SET (no_longer_dead_regs);
+ for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
+ if (GET_CODE (XVECEXP (body, 0, i)) == SET)
+ count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
+
+ if (count > 0 && apply_change_group ())
+ reload_cse_delete_death_notes (insn);
+ else if (reload_cse_simplify_operands (insn))
+ reload_cse_delete_death_notes (insn);
/* Look through the PARALLEL and record the values being
set, if possible. Also handle any CLOBBERs. */
@@ -8069,34 +8158,22 @@ reload_cse_noop_set_p (set, insn)
/* If we can delete this SET, then we need to look for an earlier
REG_DEAD note on DREG, and remove it if it exists. */
- if (ret)
+ if (ret && dreg >= 0)
{
if (! find_regno_note (insn, REG_UNUSED, dreg))
- {
- rtx trial;
-
- for (trial = prev_nonnote_insn (insn);
- (trial
- && GET_CODE (trial) != CODE_LABEL
- && GET_CODE (trial) != BARRIER);
- trial = prev_nonnote_insn (trial))
- {
- if (find_regno_note (trial, REG_DEAD, dreg))
- {
- remove_death (dreg, trial);
- break;
- }
- }
- }
+ reload_cse_no_longer_dead (dreg, dest_mode);
}
return ret;
}
/* Try to simplify a single SET instruction. SET is the set pattern.
- INSN is the instruction it came from. */
+ INSN is the instruction it came from.
+ This function only handles one case: if we set a register to a value
+ which is not a register, we try to find that value in some other register
+ and change the set into a register copy. */
-static void
+static int
reload_cse_simplify_set (set, insn)
rtx set;
rtx insn;
@@ -8107,22 +8184,18 @@ reload_cse_simplify_set (set, insn)
enum reg_class dclass;
register int i;
- /* We only handle one case: if we set a register to a value which is
- not a register, we try to find that value in some other register
- and change the set into a register copy. */
-
dreg = true_regnum (SET_DEST (set));
if (dreg < 0)
- return;
+ return 0;
src = SET_SRC (set);
if (side_effects_p (src) || true_regnum (src) >= 0)
- return;
+ return 0;
/* If memory loads are cheaper than register copies, don't change
them. */
if (GET_CODE (src) == MEM && MEMORY_MOVE_COST (GET_MODE (src)) < 2)
- return;
+ return 0;
dest_mode = GET_MODE (SET_DEST (set));
dclass = REGNO_REG_CLASS (dreg);
@@ -8138,38 +8211,252 @@ reload_cse_simplify_set (set, insn)
pop_obstacks ();
validated = validate_change (insn, &SET_SRC (set),
- gen_rtx (REG, dest_mode, i), 0);
+ gen_rtx (REG, dest_mode, i), 1);
/* Go back to the obstack we are using for temporary
storage. */
push_obstacks (&reload_obstack, &reload_obstack);
- if (validated)
+ if (validated && ! find_regno_note (insn, REG_UNUSED, i))
+ {
+ reload_cse_no_longer_dead (i, dest_mode);
+ return 1;
+ }
+ }
+ }
+ return 0;
+}
+
+/* Try to replace operands in INSN with equivalent values that are already
+ in registers. This can be viewed as optional reloading.
+
+ For each non-register operand in the insn, see if any hard regs are
+ known to be equivalent to that operand. Record the alternatives which
+ can accept these hard registers. Among all alternatives, select the
+ ones which are better or equal to the one currently matching, where
+ "better" is in terms of '?' and '!' constraints. Among the remaining
+ alternatives, select the one which replaces most operands with
+ hard registers. */
+
+static int
+reload_cse_simplify_operands (insn)
+ rtx insn;
+{
+#ifdef REGISTER_CONSTRAINTS
+ int insn_code_number, n_operands, n_alternatives;
+ int i,j;
+
+ char *constraints[MAX_RECOG_OPERANDS];
+
+ /* Vector recording how bad an alternative is. */
+ int *alternative_reject;
+ /* Vector recording how many registers can be introduced by choosing
+ this alternative. */
+ int *alternative_nregs;
+ /* Array of vectors recording, for each operand and each alternative,
+ which hard register to substitute, or -1 if the operand should be
+ left as it is. */
+ int *op_alt_regno[MAX_RECOG_OPERANDS];
+ /* Array of alternatives, sorted in order of decreasing desirability. */
+ int *alternative_order;
+
+ /* Find out some information about this insn. */
+ insn_code_number = recog_memoized (insn);
+ /* We don't modify asm instructions. */
+ if (insn_code_number < 0)
+ return 0;
+
+ n_operands = insn_n_operands[insn_code_number];
+ n_alternatives = insn_n_alternatives[insn_code_number];
+
+ if (n_alternatives == 0 || n_operands == 0)
+ return;
+ insn_extract (insn);
+
+ /* Figure out which alternative currently matches. */
+ if (! constrain_operands (insn_code_number, 1))
+ abort ();
+
+ alternative_reject = (int *) alloca (n_alternatives * sizeof (int));
+ alternative_nregs = (int *) alloca (n_alternatives * sizeof (int));
+ alternative_order = (int *) alloca (n_alternatives * sizeof (int));
+ bzero ((char *)alternative_reject, n_alternatives * sizeof (int));
+ bzero ((char *)alternative_nregs, n_alternatives * sizeof (int));
+
+ for (i = 0; i < n_operands; i++)
+ {
+ enum machine_mode mode;
+ int regno;
+ char *p;
+
+ op_alt_regno[i] = (int *) alloca (n_alternatives * sizeof (int));
+ for (j = 0; j < n_alternatives; j++)
+ op_alt_regno[i][j] = -1;
+
+ p = constraints[i] = insn_operand_constraint[insn_code_number][i];
+ mode = insn_operand_mode[insn_code_number][i];
+
+ /* Add the reject values for each alternative given by the constraints
+ for this operand. */
+ j = 0;
+ while (*p != '\0')
+ {
+ char c = *p++;
+ if (c == ',')
+ j++;
+ else if (c == '?')
+ alternative_reject[j] += 3;
+ else if (c == '!')
+ alternative_reject[j] += 300;
+ }
+
+ /* We won't change operands which are already registers. We
+ also don't want to modify output operands. */
+ regno = true_regnum (recog_operand[i]);
+ if (regno >= 0
+ || constraints[i][0] == '='
+ || constraints[i][0] == '+')
+ continue;
+
+ for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
+ {
+ int class = (int) NO_REGS;
+
+ if (! reload_cse_regno_equal_p (regno, recog_operand[i], mode))
+ continue;
+
+ /* We found a register equal to this operand. Now look for all
+ alternatives that can accept this register and have not been
+ assigned a register they can use yet. */
+ j = 0;
+ p = constraints[i];
+ for (;;)
{
- /* We need to look for an earlier REG_DEAD note on I,
- and remove it if it exists. */
- if (! find_regno_note (insn, REG_UNUSED, i))
+ char c = *p++;
+
+ switch (c)
{
- rtx trial;
+ case '=': case '+': case '?':
+ case '#': case '&': case '!':
+ case '*': case '%':
+ case '0': case '1': case '2': case '3': case '4':
+ case 'm': case '<': case '>': case 'V': case 'o':
+ case 'E': case 'F': case 'G': case 'H':
+ case 's': case 'i': case 'n':
+ case 'I': case 'J': case 'K': case 'L':
+ case 'M': case 'N': case 'O': case 'P':
+#ifdef EXTRA_CONSTRAINT
+ case 'Q': case 'R': case 'S': case 'T': case 'U':
+#endif
+ case 'p': case 'X':
+ /* These don't say anything we care about. */
+ break;
- for (trial = prev_nonnote_insn (insn);
- (trial
- && GET_CODE (trial) != CODE_LABEL
- && GET_CODE (trial) != BARRIER);
- trial = prev_nonnote_insn (trial))
+ case 'g': case 'r':
+ class = reg_class_subunion[(int) class][(int) GENERAL_REGS];
+ break;
+
+ default:
+ class
+ = reg_class_subunion[(int) class][(int) REG_CLASS_FROM_LETTER (c)];
+ break;
+
+ case ',': case '\0':
+ /* See if REGNO fits this alternative, and set it up as the
+ replacement register if we don't have one for this
+ alternative yet. */
+ if (op_alt_regno[i][j] == -1
+ && reg_fits_class_p (gen_rtx (REG, mode, regno), class,
+ 0, mode))
{
- if (find_regno_note (trial, REG_DEAD, i))
- {
- remove_death (i, trial);
- break;
- }
+ alternative_nregs[j]++;
+ op_alt_regno[i][j] = regno;
}
+ j++;
+ break;
}
- return;
+ if (c == '\0')
+ break;
+ }
+ }
+ }
+
+ /* Record all alternatives which are better or equal to the currently
+ matching one in the alternative_order array. */
+ for (i = j = 0; i < n_alternatives; i++)
+ if (alternative_reject[i] <= alternative_reject[which_alternative])
+ alternative_order[j++] = i;
+ n_alternatives = j;
+
+ /* Sort it. Given a small number of alternatives, a dumb algorithm
+ won't hurt too much. */
+ for (i = 0; i < n_alternatives - 1; i++)
+ {
+ int best = i;
+ int best_reject = alternative_reject[alternative_order[i]];
+ int best_nregs = alternative_nregs[alternative_order[i]];
+ int tmp;
+
+ for (j = i + 1; j < n_alternatives; j++)
+ {
+ int this_reject = alternative_reject[alternative_order[j]];
+ int this_nregs = alternative_nregs[alternative_order[j]];
+
+ if (this_reject < best_reject
+ || (this_reject == best_reject && this_nregs < best_nregs))
+ {
+ best = j;
+ best_reject = this_reject;
+ best_nregs = this_nregs;
}
}
+
+ tmp = alternative_order[best];
+ alternative_order[best] = alternative_order[i];
+ alternative_order[i] = tmp;
+ }
+
+ /* Substitute the operands as determined by op_alt_regno for the best
+ alternative. */
+ j = alternative_order[0];
+ CLEAR_HARD_REG_SET (no_longer_dead_regs);
+
+ /* Pop back to the real obstacks while changing the insn. */
+ pop_obstacks ();
+
+ for (i = 0; i < n_operands; i++)
+ {
+ enum machine_mode mode = insn_operand_mode[insn_code_number][i];
+ if (op_alt_regno[i][j] == -1)
+ continue;
+
+ reload_cse_no_longer_dead (op_alt_regno[i][j], mode);
+ validate_change (insn, recog_operand_loc[i],
+ gen_rtx (REG, mode, op_alt_regno[i][j]), 1);
+ }
+
+ for (i = insn_n_dups[insn_code_number] - 1; i >= 0; i--)
+ {
+ int op = recog_dup_num[i];
+ enum machine_mode mode = insn_operand_mode[insn_code_number][op];
+
+ if (op_alt_regno[op][j] == -1)
+ continue;
+
+ reload_cse_no_longer_dead (op_alt_regno[op][j], mode);
+ validate_change (insn, recog_dup_loc[i],
+ gen_rtx (REG, mode, op_alt_regno[op][j]), 1);
}
+
+ /* Go back to the obstack we are using for temporary
+ storage. */
+ push_obstacks (&reload_obstack, &reload_obstack);
+
+ return apply_change_group ();
+#else
+ return 0;
+#endif
}
/* These two variables are used to pass information from
diff --git a/gcc/reorg.c b/gcc/reorg.c
index 28553e6583d..5ae579a88a1 100644
--- a/gcc/reorg.c
+++ b/gcc/reorg.c
@@ -115,8 +115,8 @@ Boston, MA 02111-1307, USA. */
The HP-PA can conditionally nullify insns, providing a similar
effect to the ARM, differing mostly in which insn is "in charge". */
-#include <stdio.h>
#include "config.h"
+#include <stdio.h>
#include "rtl.h"
#include "insn-config.h"
#include "conditions.h"
diff --git a/gcc/rtl.c b/gcc/rtl.c
index b61b95ee352..a386f84cd0a 100644
--- a/gcc/rtl.c
+++ b/gcc/rtl.c
@@ -284,6 +284,7 @@ copy_rtx (orig)
case CC0:
case SCRATCH:
/* SCRATCH must be shared because they represent distinct values. */
+ case ADDRESSOF:
return orig;
case CONST:
@@ -299,6 +300,9 @@ copy_rtx (orig)
the constant address may need to be reloaded. If the mem is shared,
then reloading one copy of this mem will cause all copies to appear
to have been reloaded. */
+
+ default:
+ break;
}
copy = rtx_alloc (code);
@@ -385,6 +389,8 @@ copy_most_rtx (orig, may_share)
case PC:
case CC0:
return orig;
+ default:
+ break;
}
copy = rtx_alloc (code);
diff --git a/gcc/rtl.h b/gcc/rtl.h
index f95adc5735d..16de2806d03 100644
--- a/gcc/rtl.h
+++ b/gcc/rtl.h
@@ -176,14 +176,14 @@ typedef struct rtx_def
PARALLEL expressions. */
typedef struct rtvec_def{
- unsigned num_elem; /* number of elements */
+ int num_elem; /* number of elements */
rtunion elem[1];
} *rtvec;
#define NULL_RTVEC (rtvec) 0
#define GET_NUM_ELEM(RTVEC) ((RTVEC)->num_elem)
-#define PUT_NUM_ELEM(RTVEC, NUM) ((RTVEC)->num_elem = (unsigned) NUM)
+#define PUT_NUM_ELEM(RTVEC, NUM) ((RTVEC)->num_elem = (NUM))
#define RTVEC_ELT(RTVEC, I) ((RTVEC)->elem[(I)].rtx)
@@ -443,11 +443,18 @@ extern char *note_insn_name[];
to hold these things. That happens to be true. */
/* For static or external objects. */
-#define BYTECODE_LABEL(X) (XEXP ((X), 0))
+#define BYTECODE_LABEL(X) (XSTR ((X), 0))
/* For goto labels inside bytecode functions. */
#define BYTECODE_BC_LABEL(X) (*(struct bc_label **) &XEXP ((X), 1))
+/* The original regno this ADDRESSOF was built for. */
+#define ADDRESSOF_REGNO(RTX) ((RTX)->fld[1].rtint)
+
+/* The variable in the register we took the address of. */
+#define ADDRESSOF_DECL(X) ((tree) XEXP ((X), 2))
+#define SET_ADDRESSOF_DECL(X, T) (XEXP ((X), 2) = (rtx) (T))
+
/* In jump.c, each JUMP_INSN can point to a label that it can jump to,
so that if the JUMP_INSN is deleted, the label's LABEL_NUSES can
be decremented and possibly the label can be deleted. */
@@ -612,6 +619,7 @@ extern char *note_insn_name[];
#define INLINE_REGNO_REG_RTX(RTX) ((RTX)->fld[16].rtvec)
#define INLINE_REGNO_POINTER_FLAG(RTX) ((RTX)->fld[17].rtstr)
#define INLINE_REGNO_POINTER_ALIGN(RTX) ((RTX)->fld[18].rtstr)
+#define PARMREG_STACK_LOC(RTX) ((RTX)->fld[19].rtvec)
/* In FUNCTION_FLAGS we save some variables computed when emitting the code
for the function and which must be `or'ed into the current flag values when
@@ -674,7 +682,9 @@ extern rtx gen_rtx PVPROTO((enum rtx_code,
enum machine_mode, ...));
extern rtvec gen_rtvec PVPROTO((int, ...));
-extern rtx read_rtx STDIO_PROTO((FILE *));
+#ifdef BUFSIZ
+extern rtx read_rtx PROTO((FILE *));
+#endif
#if 0
/* At present, don't prototype xrealloc, since all of the callers don't
@@ -691,18 +701,9 @@ extern char *oballoc PROTO((int));
extern char *permalloc PROTO((int));
extern rtx rtx_alloc PROTO((RTX_CODE));
extern rtvec rtvec_alloc PROTO((int));
-extern rtx find_reg_note PROTO((rtx, enum reg_note, rtx));
-extern rtx find_regno_note PROTO((rtx, enum reg_note, int));
-extern int find_reg_fusage PROTO((rtx, enum rtx_code, rtx));
-extern int find_regno_fusage PROTO((rtx, enum rtx_code, int));
-extern HOST_WIDE_INT get_integer_term PROTO((rtx));
-extern rtx get_related_value PROTO((rtx));
-extern rtx single_set PROTO((rtx));
-extern rtx find_last_value PROTO((rtx, rtx *, rtx));
extern rtx copy_rtx PROTO((rtx));
extern rtx copy_rtx_if_shared PROTO((rtx));
extern rtx copy_most_rtx PROTO((rtx, rtx));
-extern rtx replace_rtx PROTO((rtx, rtx, rtx));
extern rtvec gen_rtvec_v PROTO((int, rtx *));
extern rtvec gen_rtvec_vv PROTO((int, rtunion *));
extern rtx gen_reg_rtx PROTO((enum machine_mode));
@@ -710,7 +711,7 @@ extern rtx gen_label_rtx PROTO((void));
extern rtx gen_inline_header_rtx PROTO((rtx, rtx, int, int, int, int,
int, int, rtx, rtx, int, int,
rtvec, rtx,
- rtvec, char *, char *));
+ rtvec, char *, char *, rtvec));
extern rtx gen_lowpart_common PROTO((enum machine_mode, rtx));
extern rtx gen_lowpart PROTO((enum machine_mode, rtx));
extern rtx gen_lowpart_if_possible PROTO((enum machine_mode, rtx));
@@ -779,7 +780,6 @@ extern rtx prev_label PROTO((rtx));
extern rtx next_label PROTO((rtx));
extern rtx next_cc0_user PROTO((rtx));
extern rtx prev_cc0_setter PROTO((rtx));
-extern rtx reg_set_last PROTO((rtx, rtx));
extern rtx next_nondeleted_insn PROTO((rtx));
extern enum rtx_code reverse_condition PROTO((enum rtx_code));
extern enum rtx_code swap_condition PROTO((enum rtx_code));
@@ -805,6 +805,7 @@ extern rtx gen_jump PROTO((rtx));
extern rtx gen_beq PROTO((rtx));
extern rtx gen_bge PROTO((rtx));
extern rtx gen_ble PROTO((rtx));
+extern rtx gen_mem_addressof PROTO((rtx, union tree_node *));
extern rtx eliminate_constant_term PROTO((rtx, rtx *));
extern rtx expand_complex_abs PROTO((enum machine_mode, rtx, rtx, int));
extern enum machine_mode choose_hard_reg_mode PROTO((int, int));
@@ -819,6 +820,43 @@ extern int refers_to_regno_p PROTO((int, int, rtx, rtx *));
extern int reg_overlap_mentioned_p PROTO((rtx, rtx));
extern rtx find_use_as_address PROTO((rtx, rtx, HOST_WIDE_INT));
+/* Functions in rtlanal.c */
+
+extern int rtx_unstable_p PROTO((rtx));
+extern int rtx_varies_p PROTO((rtx));
+extern int rtx_addr_varies_p PROTO((rtx));
+extern HOST_WIDE_INT get_integer_term PROTO((rtx));
+extern rtx get_related_value PROTO((rtx));
+extern int reg_mentioned_p PROTO((rtx, rtx));
+extern int reg_referenced_p PROTO((rtx, rtx));
+extern int reg_used_between_p PROTO((rtx, rtx, rtx));
+extern int reg_referenced_between_p PROTO((rtx, rtx, rtx));
+extern int reg_set_between_p PROTO((rtx, rtx, rtx));
+extern int modified_between_p PROTO((rtx, rtx, rtx));
+extern int no_labels_between_p PROTO((rtx, rtx));
+extern int modified_in_p PROTO((rtx, rtx));
+extern int reg_set_p PROTO((rtx, rtx));
+extern rtx single_set PROTO((rtx));
+extern rtx find_last_value PROTO((rtx, rtx *, rtx));
+extern int refers_to_regno_p PROTO((int, int, rtx, rtx *));
+extern int reg_overlap_mentioned_p PROTO((rtx, rtx));
+extern void note_stores PROTO((rtx, void (*)()));
+extern rtx reg_set_last PROTO((rtx, rtx));
+extern int rtx_equal_p PROTO((rtx, rtx));
+extern int dead_or_set_p PROTO((rtx, rtx));
+extern int dead_or_set_regno_p PROTO((rtx, int));
+extern rtx find_reg_note PROTO((rtx, enum reg_note, rtx));
+extern rtx find_regno_note PROTO((rtx, enum reg_note, int));
+extern int find_reg_fusage PROTO((rtx, enum rtx_code, rtx));
+extern int find_regno_fusage PROTO((rtx, enum rtx_code, int));
+extern void remove_note PROTO((rtx, rtx));
+extern int side_effects_p PROTO((rtx));
+extern int volatile_refs_p PROTO((rtx));
+extern int volatile_insn_p PROTO((rtx));
+extern int may_trap_p PROTO((rtx));
+extern int inequality_comparison_p PROTO((rtx));
+extern rtx replace_rtx PROTO((rtx, rtx, rtx));
+extern rtx replace_regs PROTO((rtx, rtx *, int, int));
/* Maximum number of parallel sets and clobbers in any insn in this fn.
Always at least 3, since the combiner could put that many togetherm
@@ -833,7 +871,6 @@ extern enum reg_class reg_preferred_class PROTO((int));
extern enum reg_class reg_alternate_class PROTO((int));
extern rtx get_first_nonparm_insn PROTO((void));
-extern rtx replace_regs PROTO((rtx, rtx *, int, int));
/* Standard pieces of rtx, to be substituted directly into things. */
extern rtx pc_rtx;
diff --git a/gcc/rtl.texi b/gcc/rtl.texi
index 539d420d073..3a4de0c67c1 100644
--- a/gcc/rtl.texi
+++ b/gcc/rtl.texi
@@ -1212,6 +1212,14 @@ by incrementing it, but there is no need to mention this in the RTL.
This RTX represents a reference to main memory at an address
represented by the expression @var{addr}. @var{m} specifies how large
a unit of memory is accessed.
+
+@findex addressof
+@item (addressof:@var{m} @var{reg})
+This RTX represents a request for the address of register @var{reg}. Its mode
+is always @code{Pmode}. If there are any @code{addressof}
+expressions left in the function after CSE, @var{reg} is forced into the
+stack and the @code{addressof} expression is replaced with a @code{plus}
+expression for the address of its stack slot.
@end table
@node Arithmetic, Comparisons, Regs and Memory, RTL
diff --git a/gcc/rtlanal.c b/gcc/rtlanal.c
index c8b21b847c4..d311652d2ef 100644
--- a/gcc/rtlanal.c
+++ b/gcc/rtlanal.c
@@ -1,5 +1,5 @@
/* Analyze RTL for C-Compiler
- Copyright (C) 1987, 88, 9-5, 1996 Free Software Foundation, Inc.
+ Copyright (C) 1987, 88, 92-96, 1997 Free Software Foundation, Inc.
This file is part of GNU CC.
@@ -20,10 +20,10 @@ Boston, MA 02111-1307, USA. */
#include "config.h"
+#include <stdio.h>
#include "rtl.h"
-void note_stores ();
-int reg_set_p ();
+static int rtx_addr_can_trap_p PROTO((rtx));
/* Forward declarations */
@@ -109,6 +109,9 @@ rtx_varies_p (x)
/* The operand 0 of a LO_SUM is considered constant
(in fact is it related specifically to operand 1). */
return rtx_varies_p (XEXP (x, 1));
+
+ default:
+ break;
}
fmt = GET_RTX_FORMAT (code);
@@ -121,7 +124,7 @@ rtx_varies_p (x)
/* Return 0 if the use of X as an address in a MEM can cause a trap. */
-int
+static int
rtx_addr_can_trap_p (x)
register rtx x;
{
@@ -153,6 +156,9 @@ rtx_addr_can_trap_p (x)
case LO_SUM:
return rtx_addr_can_trap_p (XEXP (x, 1));
+
+ default:
+ break;
}
/* If it isn't one of the case above, it can cause a trap. */
@@ -278,6 +284,9 @@ reg_mentioned_p (reg, in)
case CONST_DOUBLE:
/* These are kept unique for a given value. */
return 0;
+
+ default:
+ break;
}
if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
@@ -368,13 +377,13 @@ reg_referenced_p (x, body)
+ (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
&& reg_overlap_mentioned_p (x, SET_DEST (body)))
return 1;
- break;
+ return 0;
case ASM_OPERANDS:
for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
return 1;
- break;
+ return 0;
case CALL:
case USE:
@@ -389,10 +398,11 @@ reg_referenced_p (x, body)
for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
if (reg_referenced_p (x, XVECEXP (body, 0, i)))
return 1;
- break;
+ return 0;
+
+ default:
+ return 0;
}
-
- return 0;
}
/* Nonzero if register REG is referenced in an insn between
@@ -443,7 +453,7 @@ static int reg_set_flag;
static void
reg_set_p_1 (x, pat)
- rtx x;
+ rtx x, pat;
{
/* We don't want to return 1 if X is a MEM that contains a register
within REG_SET_REG. */
@@ -521,6 +531,9 @@ modified_between_p (x, start, end)
case REG:
return reg_set_between_p (x, start, end);
+
+ default:
+ break;
}
fmt = GET_RTX_FORMAT (code);
@@ -573,6 +586,9 @@ modified_in_p (x, insn)
case REG:
return reg_set_p (x, insn);
+
+ default:
+ break;
}
fmt = GET_RTX_FORMAT (code);
@@ -753,6 +769,9 @@ refers_to_regno_p (regno, endregno, x, loc)
return 0;
x = SET_SRC (x);
goto repeat;
+
+ default:
+ break;
}
/* X does not match, so try its subexpressions. */
@@ -1408,6 +1427,9 @@ volatile_insn_p (x)
case ASM_OPERANDS:
if (MEM_VOLATILE_P (x))
return 1;
+
+ default:
+ break;
}
/* Recursively scan the operands of this expression. */
@@ -1471,6 +1493,9 @@ volatile_refs_p (x)
case ASM_OPERANDS:
if (MEM_VOLATILE_P (x))
return 1;
+
+ default:
+ break;
}
/* Recursively scan the operands of this expression. */
@@ -1543,6 +1568,9 @@ side_effects_p (x)
case ASM_OPERANDS:
if (MEM_VOLATILE_P (x))
return 1;
+
+ default:
+ break;
}
/* Recursively scan the operands of this expression. */
@@ -1611,16 +1639,20 @@ may_trap_p (x)
case MOD:
case UDIV:
case UMOD:
- if (! CONSTANT_P (XEXP (x, 1)))
+ if (! CONSTANT_P (XEXP (x, 1))
+ || GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
return 1;
/* This was const0_rtx, but by not using that,
we can link this file into other programs. */
if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) == 0)
return 1;
+ break;
+
case EXPR_LIST:
/* An EXPR_LIST is used to represent a function call. This
certainly may trap. */
return 1;
+
default:
/* Any floating arithmetic may trap. */
if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
@@ -1679,6 +1711,9 @@ inequality_comparisons_p (x)
case GE:
case GEU:
return 1;
+
+ default:
+ break;
}
len = GET_RTX_LENGTH (code);
@@ -1834,6 +1869,9 @@ replace_regs (x, reg_map, nregs, replace_dest)
SET_SRC (x) = replace_regs (SET_SRC (x), reg_map, nregs, 0);
return x;
+
+ default:
+ break;
}
fmt = GET_RTX_FORMAT (code);
@@ -1852,7 +1890,6 @@ replace_regs (x, reg_map, nregs, replace_dest)
return x;
}
-
/* Return 1 if X, the SRC_SRC of SET of (pc) contain a REG or MEM that is
not in the constant pool and not in the condition of an IF_THEN_ELSE. */
diff --git a/gcc/sched.c b/gcc/sched.c
index b8153242574..a06044e2d29 100644
--- a/gcc/sched.c
+++ b/gcc/sched.c
@@ -117,8 +117,8 @@ Boston, MA 02111-1307, USA. */
other NOTE insns are grouped in their same relative order at the
beginning of basic blocks that have been scheduled. */
-#include <stdio.h>
#include "config.h"
+#include <stdio.h>
#include "rtl.h"
#include "basic-block.h"
#include "regs.h"
@@ -322,7 +322,7 @@ static void sched_note_set PROTO((int, rtx, int));
static int rank_for_schedule PROTO((rtx *, rtx *));
static void swap_sort PROTO((rtx *, int));
static void queue_insn PROTO((rtx, int));
-static int birthing_insn PROTO((rtx));
+static int birthing_insn_p PROTO((rtx));
static void adjust_priority PROTO((rtx));
static int schedule_insn PROTO((rtx, rtx *, int, int));
static int schedule_select PROTO((rtx *, int, int, FILE *));
@@ -1462,6 +1462,9 @@ sched_analyze_2 (x, insn)
sched_analyze_2 (XEXP (x, 0), insn);
sched_analyze_1 (x, insn);
return;
+
+ default:
+ break;
}
/* Other cases: walk the insn. */
@@ -4109,15 +4112,8 @@ update_flow_info (notes, first, last, orig_insn)
for (insn = first; ; insn = NEXT_INSN (insn))
{
- rtx pat;
- int i;
-
- /* I'm not sure if this can happen, but let's be safe. */
- if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
- continue;
-
- pat = PATTERN (insn);
- i = GET_CODE (pat) == PARALLEL ? XVECLEN (pat, 0) : 0;
+ rtx pat = PATTERN (insn);
+ int i = GET_CODE (pat) == PARALLEL ? XVECLEN (pat, 0) : 0;
set = pat;
for (;;)
{
diff --git a/gcc/sdbout.c b/gcc/sdbout.c
index a306c81a365..c42afdb28ca 100644
--- a/gcc/sdbout.c
+++ b/gcc/sdbout.c
@@ -44,9 +44,9 @@ AT&T C compiler. From the example below I would conclude the following:
#ifdef SDB_DEBUGGING_INFO
+#include <stdio.h>
#include "tree.h"
#include "rtl.h"
-#include <stdio.h>
#include "regs.h"
#include "defaults.h"
#include "flags.h"
diff --git a/gcc/stmt.c b/gcc/stmt.c
index bc1e6ba6dd2..b7a2c52f43c 100644
--- a/gcc/stmt.c
+++ b/gcc/stmt.c
@@ -445,6 +445,12 @@ struct label_chain
struct label_chain *next;
tree label;
};
+
+
+/* Non-zero if we are using EH to handle cleanus. */
+static int using_eh_for_cleanups_p = 0;
+
+
static void expand_goto_internal PROTO((tree, rtx, rtx));
static void bc_expand_goto_internal PROTO((enum bytecode_opcode,
struct bc_label *, tree));
@@ -489,6 +495,12 @@ extern rtx bc_allocate_local ();
extern rtx bc_allocate_variable_array ();
void
+using_eh_for_cleanups ()
+{
+ using_eh_for_cleanups_p = 1;
+}
+
+void
init_stmt ()
{
gcc_obstack_init (&stmt_obstack);
@@ -2855,6 +2867,10 @@ expand_return (retval)
expand_value_return (const0_rtx);
return;
}
+ break;
+
+ default:
+ break;
}
}
#endif /* HAVE_return */
@@ -3260,7 +3276,8 @@ expand_end_bindings (vars, mark_ends, dont_jump_in)
if (warn_unused)
for (decl = vars; decl; decl = TREE_CHAIN (decl))
if (! TREE_USED (decl) && TREE_CODE (decl) == VAR_DECL
- && ! DECL_IN_SYSTEM_HEADER (decl))
+ && ! DECL_IN_SYSTEM_HEADER (decl)
+ && DECL_NAME (decl) && ! DECL_ARTIFICIAL (decl))
warning_with_decl (decl, "unused variable `%s'");
if (thisblock->exit_label)
@@ -3972,7 +3989,8 @@ expand_decl_cleanup (decl, cleanup)
/* If this was optimized so that there is no exception region for the
cleanup, then mark the TREE_LIST node, so that we can later tell
if we need to call expand_eh_region_end. */
- if (expand_eh_region_start_tree (decl, cleanup))
+ if (! using_eh_for_cleanups_p
+ || expand_eh_region_start_tree (decl, cleanup))
TREE_ADDRESSABLE (t) = 1;
if (cond_context)
diff --git a/gcc/stor-layout.c b/gcc/stor-layout.c
index 2ccf45ee1f4..21a8f4404ae 100644
--- a/gcc/stor-layout.c
+++ b/gcc/stor-layout.c
@@ -390,7 +390,7 @@ layout_record (rec)
int type_align = TYPE_ALIGN (TREE_TYPE (field));
if (maximum_field_alignment != 0)
type_align = MIN (type_align, maximum_field_alignment);
- else if (TYPE_PACKED (rec))
+ else if (DECL_PACKED (field))
type_align = MIN (type_align, BITS_PER_UNIT);
record_align = MAX (record_align, type_align);
@@ -464,11 +464,15 @@ layout_record (rec)
if (maximum_field_alignment != 0)
type_align = MIN (type_align, maximum_field_alignment);
- else if (TYPE_PACKED (rec))
+ /* ??? This test is opposite the test in the containing if
+ statement, so this code is unreachable currently. */
+ else if (DECL_PACKED (field))
type_align = MIN (type_align, BITS_PER_UNIT);
/* A bit field may not span the unit of alignment of its type.
Advance to next boundary if necessary. */
+ /* ??? This code should match the code above for the
+ PCC_BITFIELD_TYPE_MATTERS case. */
if (const_size / type_align
!= (const_size + field_size - 1) / type_align)
const_size = CEIL (const_size, type_align) * type_align;
@@ -694,6 +698,11 @@ layout_type (type)
of the language-specific code. */
abort ();
+ case BOOLEAN_TYPE: /* Used for Java, Pascal, and Chill. */
+ if (TYPE_PRECISION (type) == 0)
+ TYPE_PRECISION (type) = 1; /* default to one byte/boolean. */
+ /* ... fall through ... */
+
case INTEGER_TYPE:
case ENUMERAL_TYPE:
case CHAR_TYPE:
@@ -944,18 +953,7 @@ layout_type (type)
}
break;
- /* Pascal and Chill types */
- case BOOLEAN_TYPE: /* store one byte/boolean for now. */
- TYPE_MODE (type) = QImode;
- TYPE_SIZE (type) = size_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
- TYPE_PRECISION (type) = 1;
- TYPE_ALIGN (type) = GET_MODE_ALIGNMENT (TYPE_MODE (type));
- if (TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST
- && tree_int_cst_sgn (TYPE_MIN_VALUE (type)) >= 0)
- TREE_UNSIGNED (type) = 1;
- break;
-
- case SET_TYPE:
+ case SET_TYPE: /* Used by Chill and Pascal. */
if (TREE_CODE (TYPE_MAX_VALUE (TYPE_DOMAIN (type))) != INTEGER_CST
|| TREE_CODE (TYPE_MIN_VALUE (TYPE_DOMAIN (type))) != INTEGER_CST)
abort();
diff --git a/gcc/tm.texi b/gcc/tm.texi
index c5407a26dba..e3337d9ea13 100644
--- a/gcc/tm.texi
+++ b/gcc/tm.texi
@@ -320,7 +320,7 @@ used, or when the compiler is built as a cross compiler.
@findex INIT_ENVIRONMENT
@item INIT_ENVIRONMENT
-Define this macro as a C string constant if you with to set environment
+Define this macro as a C string constant if you wish to set environment
variables for programs called by the driver, such as the assembler and
loader. The driver passes the value of this macro to @code{putenv} to
initialize the necessary environment variables.
@@ -354,11 +354,17 @@ try when searching for header files.
Cross compilers do not use this macro and do not search either
@file{/usr/include} or its replacement.
+@findex STANDARD_INCLUDE_COMPONENT
+@item STANDARD_INCLUDE_COMPONENT
+The ``component'' corresponding to @code{STANDARD_INCLUDE_DIR}.
+See @code{INCLUDE_DEFAULTS}, below, for the description of components.
+If you do not define this macro, no component is used.
+
@findex INCLUDE_DEFAULTS
@item INCLUDE_DEFAULTS
Define this macro if you wish to override the entire default search path
-for include files. The default search path includes
-@code{GCC_INCLUDE_DIR}, @code{LOCAL_INCLUDE_DIR},
+for include files. For a native compiler, the default search path
+usually consists of @code{GCC_INCLUDE_DIR}, @code{LOCAL_INCLUDE_DIR},
@code{SYSTEM_INCLUDE_DIR}, @code{GPLUSPLUS_INCLUDE_DIR}, and
@code{STANDARD_INCLUDE_DIR}. In addition, @code{GPLUSPLUS_INCLUDE_DIR}
and @code{GCC_INCLUDE_DIR} are defined automatically by @file{Makefile},
@@ -366,19 +372,28 @@ and specify private search areas for GCC. The directory
@code{GPLUSPLUS_INCLUDE_DIR} is used only for C++ programs.
The definition should be an initializer for an array of structures.
-Each array element should have two elements: the directory name (a
-string constant) and a flag for C++-only directories. Mark the end of
-the array with a null element. For example, here is the definition used
-for VMS:
+Each array element should have four elements: the directory name (a
+string constant), the component name, and flag for C++-only directories,
+and a flag showing that the includes in the directory don't need to be
+wrapped in @code{extern @samp{C}} when compiling C++. Mark the end of
+the array with a null element.
+
+The component name denotes what GNU package the include file is part of,
+if any, in all upper-case letters. For example, it might be @samp{GCC}
+or @samp{BINUTILS}. If the package is part of the a vendor-supplied
+operating system, code the component name as @samp{0}.
+
+
+For example, here is the definition used for VAX/VMS:
@example
#define INCLUDE_DEFAULTS \
@{ \
- @{ "GNU_GXX_INCLUDE:", 1@}, \
- @{ "GNU_CC_INCLUDE:", 0@}, \
- @{ "SYS$SYSROOT:[SYSLIB.]", 0@}, \
- @{ ".", 0@}, \
- @{ 0, 0@} \
+ @{ "GNU_GXX_INCLUDE:", "G++", 1, 1@}, \
+ @{ "GNU_CC_INCLUDE:", "GCC", 0, 0@}, \
+ @{ "SYS$SYSROOT:[SYSLIB.]", 0, 0, 0@}, \
+ @{ ".", 0, 0, 0@}, \
+ @{ 0, 0, 0, 0@} \
@}
@end example
@end table
@@ -982,6 +997,20 @@ supported machines, new codes should be defined for them.
The ordering of the component words of floating point values stored in
memory is controlled by @code{FLOAT_WORDS_BIG_ENDIAN} for the target
machine and @code{HOST_FLOAT_WORDS_BIG_ENDIAN} for the host.
+
+@findex DEFAULT_VTABLE_THUNKS
+@item DEFAULT_VTABLE_THUNKS
+GNU CC supports two ways of implementing C++ vtables: traditional or with
+so-called ``thunks''. The flag @samp{-fvtable-thunk} chooses between them.
+Define this macro to be a C expression for the default value of that flag.
+If @code{DEFAULT_VTABLE_THUNKS} is 0, GNU CC uses the traditional
+implementation by default. The ``thunk'' implementation is more efficient
+(especially if you have provided an implementation of
+@code{ASM_OUTPUT_MI_THUNK}, see @ref{Function Entry}), but is not binary
+compatible with code compiled using the traditional implementation.
+If you are writing a new ports, define @code{DEFAULT_VTABLE_THUNKS} to 1.
+
+If you do not define this macro, the default for @samp{-fvtable-thunk} is 0.
@end table
@node Type Layout
@@ -1064,6 +1093,14 @@ A C expression for the size in bits of the type @code{long double} on
the target machine. If you don't define this, the default is two
words.
+@findex WIDEST_HARDWARE_FP_SIZE
+@item WIDEST_HARDWARE_FP_SIZE
+A C expression for the size in bits of the widest floating-point format
+supported by the hardware. If you define this macro, you must specify a
+value less than or equal to the value of @code{LONG_DOUBLE_TYPE_SIZE}.
+If you do not define this macro, the value of @code{LONG_DOUBLE_TYPE_SIZE}
+is the default.
+
@findex DEFAULT_SIGNED_CHAR
@item DEFAULT_SIGNED_CHAR
An expression whose value is 1 or 0, according to whether the type
@@ -1375,30 +1412,21 @@ are equivalent, a suitable definition is
#define HARD_REGNO_MODE_OK(REGNO, MODE) 1
@end smallexample
-It is not necessary for this macro to check for the numbers of fixed
-registers, because the allocation mechanism considers them to be always
-occupied.
+You need not include code to check for the numbers of fixed registers,
+because the allocation mechanism considers them to be always occupied.
@cindex register pairs
On some machines, double-precision values must be kept in even/odd
-register pairs. The way to implement that is to define this macro
-to reject odd register numbers for such modes.
-
-@ignore
-@c I think this is not true now
-GNU CC assumes that it can always move values between registers and
-(suitably addressed) memory locations. If it is impossible to move a
-value of a certain mode between memory and certain registers, then
-@code{HARD_REGNO_MODE_OK} must not allow this mode in those registers.
-@end ignore
+register pairs. You can implement that by defining this macro to reject
+odd register numbers for such modes.
The minimum requirement for a mode to be OK in a register is that the
@samp{mov@var{mode}} instruction pattern support moves between the
-register and any other hard register for which the mode is OK; and that
-moving a value into the register and back out not alter it.
+register and other hard register in the same class and that moving a
+value into the register and back out not alter it.
-Since the same instruction used to move @code{SImode} will work for all
-narrower integer modes, it is not necessary on any machine for
+Since the same instruction used to move @code{word_mode} will work for
+all narrower integer modes, it is not necessary on any machine for
@code{HARD_REGNO_MODE_OK} to distinguish between these modes, provided
you define patterns @samp{movhi}, etc., to take advantage of this. This
is useful because of the interaction between @code{HARD_REGNO_MODE_OK}
@@ -1436,14 +1464,19 @@ be used unless some pattern's constraint asks for one.
@findex MODES_TIEABLE_P
@item MODES_TIEABLE_P (@var{mode1}, @var{mode2})
-A C expression that is nonzero if it is desirable to choose register
-allocation so as to avoid move instructions between a value of mode
-@var{mode1} and a value of mode @var{mode2}.
+A C expression that is nonzero if a value of mode
+@var{mode1} is accessable in mode @var{mode2} without copying.
If @code{HARD_REGNO_MODE_OK (@var{r}, @var{mode1})} and
-@code{HARD_REGNO_MODE_OK (@var{r}, @var{mode2})} are ever different
-for any @var{r}, then @code{MODES_TIEABLE_P (@var{mode1},
-@var{mode2})} must be zero.
+@code{HARD_REGNO_MODE_OK (@var{r}, @var{mode2})} are always the same for
+any @var{r}, then @code{MODES_TIEABLE_P (@var{mode1}, @var{mode2})}
+should be nonzero. If they differ for any @var{r}, you should define
+this macro to return zero unless some other mechanism ensures the
+accessability of the value in a narrower mode.
+
+You should define this macro to return nonzero in as many cases as
+possible since doing so will allow GNU CC to perform better register
+allocation.
@end table
@node Leaf Functions
@@ -2136,6 +2169,10 @@ the prologue. @var{frameaddr} is the frame pointer of the @var{count}
frame, or the frame pointer of the @var{count} @minus{} 1 frame if
@code{RETURN_ADDR_IN_PREVIOUS_FRAME} is defined.
+The value of the expression must always be the correct address when
+@var{count} is zero, but may be @code{NULL_RTX} if there is not way to
+determine the return address of other frames.
+
@findex RETURN_ADDR_IN_PREVIOUS_FRAME
@item RETURN_ADDR_IN_PREVIOUS_FRAME
Define this if the return address of a particular stack frame is accessed
@@ -4691,7 +4728,7 @@ Decode @var{sym_name} and store the real name part in @var{var}, sans
the characters that encode section info. Define this macro if
@code{ENCODE_SECTION_INFO} alters the symbol's name string.
-@findex UNIQUE_SECTION_P (@var{decl})
+@findex UNIQUE_SECTION_P
@item UNIQUE_SECTION_P (@var{decl})
A C expression which evaluates to true if @var{decl} should be placed
into a unique section for some target-specific reason. If you do not
@@ -4871,6 +4908,14 @@ the stdio stream @var{stream}.
This macro need not be defined if the standard form of output
for the file format in use is appropriate.
+@findex OUTPUT_QUOTED_STRING
+@item OUTPUT_QUOTED_STRING (@var{stream}, @var{name})
+A C statement to output the string @var{string} to the stdio stream
+@var{stream}. If you do not call the function @code{output_quoted_string}
+in your config files, GNU CC will only call it to output filenames to
+the assembler source. So you can use it to canonicalize the format
+of the filename using this macro.
+
@findex ASM_OUTPUT_SOURCE_LINE
@item ASM_OUTPUT_SOURCE_LINE (@var{stream}, @var{line})
A C statement to output DBX or SDB debugging information before code
@@ -5127,6 +5172,15 @@ place of @code{ASM_OUTPUT_COMMON}, and gives you more flexibility in
handling the required alignment of the variable. The alignment is specified
as the number of bits.
+@findex ASM_OUTPUT_ALIGNED_DECL_COMMON
+@item ASM_OUTPUT_ALIGNED_DECL_COMMON (@var{stream}, @var{decl}, @var{name}, @var{size}, @var{alignment})
+Like @code{ASM_OUTPUT_ALIGNED_COMMON} except that @var{decl} of the
+variable to be output, if there is one, or @code{NULL_TREE} if there
+is not corresponding variable. If you define this macro, GNU CC wil use it
+in place of both @code{ASM_OUTPUT_COMMON} and
+@code{ASM_OUTPUT_ALIGNED_COMMON}. Define this macro when you need to see
+the variable's decl in order to chose what to output.
+
@findex ASM_OUTPUT_SHARED_COMMON
@item ASM_OUTPUT_SHARED_COMMON (@var{stream}, @var{name}, @var{size}, @var{rounded})
If defined, it is similar to @code{ASM_OUTPUT_COMMON}, except that it
@@ -5151,7 +5205,8 @@ variables are output. This macro exists to properly support languages like
@code{c++} which do not have @code{common} data. However, this macro currently
is not defined for all targets. If this macro and
@code{ASM_OUTPUT_ALIGNED_BSS} are not defined then @code{ASM_OUTPUT_COMMON}
-or @code{ASM_OUTPUT_ALIGNED_COMMON} is used.
+or @code{ASM_OUTPUT_ALIGNED_COMMON} or
+@code{ASM_OUTPUT_ALIGNED_DECL_COMMON} is used.
@findex ASM_OUTPUT_ALIGNED_BSS
@item ASM_OUTPUT_ALIGNED_BSS (@var{stream}, @var{decl}, @var{name}, @var{size}, @var{alignment})
@@ -5192,6 +5247,16 @@ place of @code{ASM_OUTPUT_LOCAL}, and gives you more flexibility in
handling the required alignment of the variable. The alignment is specified
as the number of bits.
+@findex ASM_OUTPUT_ALIGNED_DECL_LOCAL
+@item ASM_OUTPUT_ALIGNED_DECL_LOCAL (@var{stream}, @var{decl}, @var{name}, @var{size}, @var{alignment})
+Like @code{ASM_OUTPUT_ALIGNED_DECL} except that @var{decl} of the
+variable to be output, if there is one, or @code{NULL_TREE} if there
+is not corresponding variable. If you define this macro, GNU CC wil use it
+in place of both @code{ASM_OUTPUT_DECL} and
+@code{ASM_OUTPUT_ALIGNED_DECL}. Define this macro when you need to see
+the variable's decl in order to chose what to output.
+
+
@findex ASM_OUTPUT_SHARED_LOCAL
@item ASM_OUTPUT_SHARED_LOCAL (@var{stream}, @var{name}, @var{size}, @var{rounded})
If defined, it is similar to @code{ASM_OUTPUT_LOCAL}, except that it
@@ -5300,15 +5365,15 @@ format provides support for this concept, such as the @samp{COMDAT}
section flags in the Microsoft Windows PE/COFF format, and this support
requires changes to @var{decl}, such as putting it in a separate section.
-@findex SUPPORTS_WEAK
-@item SUPPORTS_WEAK
+@findex SUPPORTS_ONE_ONLY
+@item SUPPORTS_ONE_ONLY
A C expression which evaluates to true if the target supports one-only
semantics.
If you don't define this macro, @file{varasm.c} provides a default
definition. If @code{MAKE_DECL_ONE_ONLY} is defined, the default
definition is @samp{1}; otherwise, it is @samp{0}. Define this macro if
-you want to control weak symbol support with a compiler flag, or if
+you want to control one-only symbol support with a compiler flag, or if
setting the @code{DECL_ONE_ONLY} flag is enough to mark a declaration to
be emitted as one-only.
@@ -7092,7 +7157,7 @@ and @code{INIT_SECTION_ASM_OP} is not defined, a default
Define this if your @code{exit} function needs to do something
besides calling an external function @code{_cleanup} before
terminating with @code{_exit}. The @code{EXIT_BODY} macro is
-only needed if netiher @code{HAVE_ATEXIT} nor
+only needed if neither @code{HAVE_ATEXIT} nor
@code{INIT_SECTION_ASM_OP} are defined.
@findex INSN_SETS_ARE_DELAYED
diff --git a/gcc/toplev.c b/gcc/toplev.c
index c36554f1c83..956d78e09be 100644
--- a/gcc/toplev.c
+++ b/gcc/toplev.c
@@ -239,6 +239,7 @@ extern int target_flags;
int rtl_dump = 0;
int rtl_dump_and_exit = 0;
int jump_opt_dump = 0;
+int addressof_dump = 0;
int cse_dump = 0;
int loop_dump = 0;
int cse2_dump = 0;
@@ -807,6 +808,11 @@ char *lang_options[] =
"-Wno-format",
"-Wimport",
"-Wno-import",
+ "-Wimplicit-function-declaration",
+ "-Wno-implicit-function-declaration",
+ "-Werror-implicit-function-declaration",
+ "-Wimplicit-int",
+ "-Wno-implicit-int",
"-Wimplicit",
"-Wno-implicit",
"-Wmain",
@@ -938,6 +944,7 @@ FILE *asm_out_file;
FILE *aux_info_file;
FILE *rtl_dump_file;
FILE *jump_opt_dump_file;
+FILE *addressof_dump_file;
FILE *cse_dump_file;
FILE *loop_dump_file;
FILE *cse2_dump_file;
@@ -1104,6 +1111,8 @@ fatal_insn (message, insn)
fflush (rtl_dump_file);
if (jump_opt_dump_file)
fflush (jump_opt_dump_file);
+ if (addressof_dump_file)
+ fflush (addressof_dump_file);
if (cse_dump_file)
fflush (cse_dump_file);
if (loop_dump_file)
@@ -1929,14 +1938,17 @@ xmalloc (size)
return value;
}
-/* Same as `realloc' but report error if no memory available. */
+/* Same as `realloc' but report error if no memory available.
+ Also handle null PTR even if the vendor realloc gets it wrong. */
char *
xrealloc (ptr, size)
char *ptr;
int size;
{
- char *result = (char *) realloc (ptr, size);
+ char *result = (ptr
+ ? (char *) realloc (ptr, size)
+ : (char *) malloc (size));
if (!result)
fatal ("virtual memory exhausted");
return result;
@@ -2096,6 +2108,9 @@ output_quoted_string (asm_file, string)
FILE *asm_file;
char *string;
{
+#ifdef OUTPUT_QUOTED_STRING
+ OUTPUT_QUOTED_STRING (asm_file, string);
+#else
char c;
putc ('\"', asm_file);
@@ -2106,6 +2121,7 @@ output_quoted_string (asm_file, string)
putc (c, asm_file);
}
putc ('\"', asm_file);
+#endif
}
/* Output a file name in the form wanted by System V. */
@@ -2269,6 +2285,10 @@ compile_file (name)
if (jump_opt_dump)
jump_opt_dump_file = open_dump_file (dump_base_name, ".jump");
+ /* If addressof dump desired, open the output file. */
+ if (addressof_dump)
+ addressof_dump_file = open_dump_file (dump_base_name, ".addressof");
+
/* If cse dump desired, open the output file. */
if (cse_dump)
cse_dump_file = open_dump_file (dump_base_name, ".cse");
@@ -2790,6 +2810,9 @@ compile_file (name)
if (jump_opt_dump)
fclose (jump_opt_dump_file);
+ if (addressof_dump)
+ fclose (addressof_dump_file);
+
if (cse_dump)
fclose (cse_dump_file);
@@ -3062,6 +3085,18 @@ rest_of_compilation (decl)
functions containing nested functions since the nested function
data is in our non-saved obstack. */
+ /* If this is a nested inline, remove ADDRESSOF now so we can
+ finish compiling ourselves. Otherwise, wait until EOF.
+ We have to do this because the purge_addressof transformation
+ changes the DECL_RTL for many variables, which confuses integrate. */
+ if (inlineable)
+ {
+ if (decl_function_context (decl))
+ purge_addressof (insns);
+ else
+ DECL_DEFER_OUTPUT (decl) = 1;
+ }
+
if (! current_function_contains_functions
&& (DECL_DEFER_OUTPUT (decl)
|| (DECL_INLINE (decl)
@@ -3254,6 +3289,18 @@ rest_of_compilation (decl)
fflush (cse_dump_file);
});
+ purge_addressof (insns);
+ reg_scan (insns, max_reg_num (), 1);
+
+ if (addressof_dump)
+ TIMEVAR (dump_time,
+ {
+ fprintf (addressof_dump_file, "\n;; Function %s\n\n",
+ (*decl_printable_name) (decl, 2));
+ print_rtl (addressof_dump_file, insns);
+ fflush (addressof_dump_file);
+ });
+
if (loop_dump)
TIMEVAR (dump_time,
{
@@ -3911,6 +3958,7 @@ main (argc, argv, envp)
flow_dump = 1;
global_reg_dump = 1;
jump_opt_dump = 1;
+ addressof_dump = 1;
jump2_opt_dump = 1;
local_reg_dump = 1;
loop_dump = 1;
@@ -3942,6 +3990,9 @@ main (argc, argv, envp)
case 'j':
jump_opt_dump = 1;
break;
+ case 'D':
+ addressof_dump = 1;
+ break;
case 'J':
jump2_opt_dump = 1;
break;
@@ -4216,8 +4267,8 @@ main (argc, argv, envp)
p = str + strlen (da->arg);
if (*p && (*p < '0' || *p > '9'))
continue;
- q = p;
len = p - str;
+ q = p;
while (*q && (*q >= '0' && *q <= '9'))
q++;
if (*p)
@@ -4402,11 +4453,13 @@ main (argc, argv, envp)
lim - (char *) &environ);
fflush (stderr);
+#ifndef __MSDOS__
#ifdef USG
system ("ps -l 1>&2");
#else /* not USG */
system ("ps v");
#endif /* not USG */
+#endif
}
#endif /* ! OS2 && ! VMS && (! _WIN32 || CYGWIN32) */
diff --git a/gcc/tree.c b/gcc/tree.c
index d5eabaea008..2129f8491e1 100644
--- a/gcc/tree.c
+++ b/gcc/tree.c
@@ -33,8 +33,8 @@ Boston, MA 02111-1307, USA. */
are used also for allocating many other kinds of objects
by all passes of the compiler. */
-#include <setjmp.h>
#include "config.h"
+#include <setjmp.h>
#include "flags.h"
#include "tree.h"
#include "except.h"
@@ -2310,9 +2310,10 @@ staticp (arg)
if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
&& TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
return staticp (TREE_OPERAND (arg, 0));
- }
- return 0;
+ default:
+ return 0;
+ }
}
/* Wrap a SAVE_EXPR around EXPR, if appropriate.
@@ -2456,6 +2457,9 @@ unsave_expr_now (expr)
case METHOD_CALL_EXPR:
first_rtl = 3;
break;
+
+ default:
+ break;
}
switch (TREE_CODE_CLASS (code))
@@ -2490,6 +2494,7 @@ contains_placeholder_p (exp)
tree exp;
{
register enum tree_code code = TREE_CODE (exp);
+ int result;
/* If we have a WITH_RECORD_EXPR, it "cancels" any PLACEHOLDER_EXPR
in it since it is supplying a value for it. */
@@ -2507,6 +2512,13 @@ contains_placeholder_p (exp)
here will be valid. */
return contains_placeholder_p (TREE_OPERAND (exp, 0));
+ case 'x':
+ if (code == TREE_LIST)
+ return (contains_placeholder_p (TREE_VALUE (exp))
+ || (TREE_CHAIN (exp) != 0
+ && contains_placeholder_p (TREE_CHAIN (exp))));
+ break;
+
case '1':
case '2': case '<':
case 'e':
@@ -2526,8 +2538,24 @@ contains_placeholder_p (exp)
|| contains_placeholder_p (TREE_OPERAND (exp, 2)));
case SAVE_EXPR:
- return (SAVE_EXPR_RTL (exp) == 0
- && contains_placeholder_p (TREE_OPERAND (exp, 0)));
+ /* If we already know this doesn't have a placeholder, don't
+ check again. */
+ if (SAVE_EXPR_NOPLACEHOLDER (exp) || SAVE_EXPR_RTL (exp) != 0)
+ return 0;
+
+ SAVE_EXPR_NOPLACEHOLDER (exp) = 1;
+ result = contains_placeholder_p (TREE_OPERAND (exp, 0));
+ if (result)
+ SAVE_EXPR_NOPLACEHOLDER (exp) = 0;
+
+ return result;
+
+ case CALL_EXPR:
+ return (TREE_OPERAND (exp, 1) != 0
+ && contains_placeholder_p (TREE_OPERAND (exp, 1)));
+
+ default:
+ break;
}
switch (tree_code_length[(int) code])
@@ -2537,16 +2565,20 @@ contains_placeholder_p (exp)
case 2:
return (contains_placeholder_p (TREE_OPERAND (exp, 0))
|| contains_placeholder_p (TREE_OPERAND (exp, 1)));
+ default:
+ return 0;
}
- }
- return 0;
+ default:
+ return 0;
+ }
}
/* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
return a tree with all occurrences of references to F in a
PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
- contains only arithmetic expressions. */
+ contains only arithmetic expressions or a CALL_EXPR with a
+ PLACEHOLDER_EXPR occurring only in its arglist. */
tree
substitute_in_expr (exp, f, r)
@@ -2556,7 +2588,7 @@ substitute_in_expr (exp, f, r)
{
enum tree_code code = TREE_CODE (exp);
tree op0, op1, op2;
- tree new = 0;
+ tree new;
tree inner;
switch (TREE_CODE_CLASS (code))
@@ -2568,7 +2600,18 @@ substitute_in_expr (exp, f, r)
case 'x':
if (code == PLACEHOLDER_EXPR)
return exp;
- break;
+ else if (code == TREE_LIST)
+ {
+ op0 = (TREE_CHAIN (exp) == 0
+ ? 0 : substitute_in_expr (TREE_CHAIN (exp), f, r));
+ op1 = substitute_in_expr (TREE_VALUE (exp), f, r);
+ if (op0 == TREE_CHAIN (exp) || op1 == TREE_VALUE (exp))
+ return exp;
+
+ return tree_cons (TREE_PURPOSE (exp), op0, op1);
+ }
+
+ abort ();
case '1':
case '2':
@@ -2606,7 +2649,17 @@ substitute_in_expr (exp, f, r)
if (code == SAVE_EXPR)
return exp;
- if (code != COND_EXPR)
+ else if (code == CALL_EXPR)
+ {
+ op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
+ if (op1 == TREE_OPERAND (exp, 1))
+ return exp;
+
+ return build (code, TREE_TYPE (exp),
+ TREE_OPERAND (exp, 0), op1, NULL_TREE);
+ }
+
+ else if (code != COND_EXPR)
abort ();
op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
@@ -2617,6 +2670,10 @@ substitute_in_expr (exp, f, r)
return exp;
new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
+ break;
+
+ default:
+ abort ();
}
break;
@@ -2668,13 +2725,16 @@ substitute_in_expr (exp, f, r)
new = fold (build1 (code, TREE_TYPE (exp), op0));
break;
+
+ default:
+ abort ();
}
+ break;
+
+ default:
+ abort ();
}
- /* If it wasn't one of the cases we handle, give up. */
- if (new == 0)
- abort ();
-
TREE_READONLY (new) = TREE_READONLY (exp);
return new;
}
@@ -3153,18 +3213,20 @@ build_type_attribute_variant (ttype, attribute)
switch (TREE_CODE (ntype))
{
- case FUNCTION_TYPE:
- hashcode += TYPE_HASH (TYPE_ARG_TYPES (ntype));
- break;
- case ARRAY_TYPE:
- hashcode += TYPE_HASH (TYPE_DOMAIN (ntype));
- break;
- case INTEGER_TYPE:
- hashcode += TYPE_HASH (TYPE_MAX_VALUE (ntype));
- break;
- case REAL_TYPE:
- hashcode += TYPE_HASH (TYPE_PRECISION (ntype));
- break;
+ case FUNCTION_TYPE:
+ hashcode += TYPE_HASH (TYPE_ARG_TYPES (ntype));
+ break;
+ case ARRAY_TYPE:
+ hashcode += TYPE_HASH (TYPE_DOMAIN (ntype));
+ break;
+ case INTEGER_TYPE:
+ hashcode += TYPE_HASH (TYPE_MAX_VALUE (ntype));
+ break;
+ case REAL_TYPE:
+ hashcode += TYPE_HASH (TYPE_PRECISION (ntype));
+ break;
+ default:
+ break;
}
ntype = type_hash_canon (hashcode, ntype);
@@ -3831,6 +3893,9 @@ simple_cst_equal (t1, t2)
case CONST_DECL:
case FUNCTION_DECL:
return 0;
+
+ default:
+ break;
}
/* This general rule works for most tree codes. All exceptions should be
@@ -3858,9 +3923,10 @@ simple_cst_equal (t1, t2)
return cmp;
}
return cmp;
- }
- return -1;
+ default:
+ return -1;
+ }
}
/* Constructors for pointer, array and function types.
@@ -3901,7 +3967,12 @@ build_pointer_type (to_type)
/* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
MAXVAL should be the maximum value in the domain
- (one less than the length of the array). */
+ (one less than the length of the array).
+
+ The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
+ We don't enforce this limit, that is up to caller (e.g. language front end).
+ The limit exists because the result is a signed type and we don't handle
+ sizes that use more than one HOST_WIDE_INT. */
tree
build_index_type (maxval)
@@ -4515,7 +4586,7 @@ print_inline_obstack_statistics ()
{
struct simple_obstack_stack *current = toplev_inline_obstacks;
int n_obstacks = 0;
- unsigned long n_alloc = 0;
+ int n_alloc = 0;
int n_chunks = 0;
for (; current; current = current->next, ++n_obstacks)
@@ -4529,7 +4600,7 @@ print_inline_obstack_statistics ()
for (; chunk; chunk = chunk->prev, ++n_chunks)
n_alloc += chunk->limit - &chunk->contents[0];
}
- fprintf (stderr, "inline obstacks: %d obstacks, %lu bytes, %d chunks\n",
+ fprintf (stderr, "inline obstacks: %d obstacks, %d bytes, %d chunks\n",
n_obstacks, n_alloc, n_chunks);
}
@@ -4542,7 +4613,7 @@ print_obstack_statistics (str, o)
{
struct _obstack_chunk *chunk = o->chunk;
int n_chunks = 1;
- unsigned long n_alloc = 0;
+ int n_alloc = 0;
n_alloc += o->next_free - chunk->contents;
chunk = chunk->prev;
diff --git a/gcc/tree.h b/gcc/tree.h
index 217015d2c10..bfde55ef0db 100644
--- a/gcc/tree.h
+++ b/gcc/tree.h
@@ -266,6 +266,8 @@ struct tree_common
FUNCTION_DECL
TREE_PARMLIST in
TREE_PARMLIST (C++)
+ SAVE_EXPR_NOPLACEHOLDER in
+ SAVE_EXPR
asm_written_flag:
@@ -617,6 +619,7 @@ struct tree_vec
/* In a SAVE_EXPR node. */
#define SAVE_EXPR_CONTEXT(NODE) TREE_OPERAND(NODE, 1)
#define SAVE_EXPR_RTL(NODE) (*(struct rtx_def **) &(NODE)->exp.operands[2])
+#define SAVE_EXPR_NOPLACEHOLDER(NODE) TREE_UNSIGNED (NODE)
/* In a RTL_EXPR node. */
#define RTL_EXPR_SEQUENCE(NODE) (*(struct rtx_def **) &(NODE)->exp.operands[0])
@@ -1229,6 +1232,7 @@ extern char *oballoc PROTO((int));
extern char *permalloc PROTO((int));
extern char *savealloc PROTO((int));
extern char *expralloc PROTO((int));
+extern void free PROTO((void *));
/* Lowest level primitive for allocating a node.
The TREE_CODE is the only argument. Contents are initialized
@@ -1672,6 +1676,7 @@ extern void (*incomplete_decl_finalize_hook) ();
/* In tree.c */
extern char *perm_calloc PROTO((int, long));
+extern tree get_file_function_name PROTO((int));
extern tree get_set_constructor_bits PROTO((tree, char *, int));
extern tree get_set_constructor_bytes PROTO((tree,
unsigned char *, int));
diff --git a/gcc/unroll.c b/gcc/unroll.c
index 0c298751685..10dfb8a9277 100644
--- a/gcc/unroll.c
+++ b/gcc/unroll.c
@@ -1,5 +1,5 @@
/* Try to unroll loops, and split induction variables.
- Copyright (C) 1992, 1993, 1994, 1995 Free Software Foundation, Inc.
+ Copyright (C) 1992, 1993, 1994, 1995, 1997 Free Software Foundation, Inc.
Contributed by James E. Wilson, Cygnus Support/UC Berkeley.
This file is part of GNU CC.
@@ -147,13 +147,14 @@ struct _factor { int factor, count; } factors[NUM_FACTORS]
enum unroll_types { UNROLL_COMPLETELY, UNROLL_MODULO, UNROLL_NAIVE };
#include "config.h"
+#include <stdio.h>
#include "rtl.h"
#include "insn-config.h"
#include "integrate.h"
#include "regs.h"
+#include "recog.h"
#include "flags.h"
#include "expr.h"
-#include <stdio.h>
#include "loop.h"
/* This controls which loops are unrolled, and by how much we unroll
@@ -3607,6 +3608,10 @@ remap_split_bivs (x)
if (REGNO (x) < max_reg_before_loop
&& reg_iv_type[REGNO (x)] == BASIC_INDUCT)
return reg_biv_class[REGNO (x)]->biv->src_reg;
+ break;
+
+ default:
+ break;
}
fmt = GET_RTX_FORMAT (code);
diff --git a/gcc/varasm.c b/gcc/varasm.c
index 3210aa2e65c..1161837cec3 100644
--- a/gcc/varasm.c
+++ b/gcc/varasm.c
@@ -26,10 +26,10 @@ Boston, MA 02111-1307, USA. */
We also output the assembler code for constants stored in memory
and are responsible for combining constants with the same value. */
+#include "config.h"
#include <stdio.h>
#include <setjmp.h>
/* #include <stab.h> */
-#include "config.h"
#include "rtl.h"
#include "tree.h"
#include "flags.h"
@@ -282,10 +282,6 @@ named_section (decl, name, reloc)
if (in_section != in_named || strcmp (name, in_named_name))
{
- in_named_name = obstack_alloc (&permanent_obstack, strlen (name) + 1);
- strcpy (in_named_name, name);
- in_section = in_named;
-
#ifdef ASM_OUTPUT_SECTION_NAME
ASM_OUTPUT_SECTION_NAME (asm_out_file, decl, name, reloc);
#else
@@ -294,6 +290,10 @@ named_section (decl, name, reloc)
already have flagged this as an error. */
abort ();
#endif
+
+ in_named_name = obstack_alloc (&permanent_obstack, strlen (name) + 1);
+ strcpy (in_named_name, name);
+ in_section = in_named;
}
}
@@ -1428,12 +1428,17 @@ assemble_variable (decl, top_level, at_end, dont_output_data)
}
else
{
+#ifdef ASM_OUTPUT_ALIGNED_DECL_COMMON
+ ASM_OUTPUT_ALIGNED_DECL_COMMON (asm_out_file, decl, name, size,
+ DECL_ALIGN (decl));
+#else
#ifdef ASM_OUTPUT_ALIGNED_COMMON
ASM_OUTPUT_ALIGNED_COMMON (asm_out_file, name, size,
DECL_ALIGN (decl));
#else
ASM_OUTPUT_COMMON (asm_out_file, name, size, rounded);
#endif
+#endif
}
}
#if defined (ASM_OUTPUT_BSS) || defined (ASM_OUTPUT_ALIGNED_BSS)
@@ -1472,12 +1477,17 @@ assemble_variable (decl, top_level, at_end, dont_output_data)
}
else
{
+#ifdef ASM_OUTPUT_ALIGNED_DECL_LOCAL
+ ASM_OUTPUT_ALIGNED_DECL_LOCAL (asm_out_file, decl, name, size,
+ DECL_ALIGN (decl));
+#else
#ifdef ASM_OUTPUT_ALIGNED_LOCAL
ASM_OUTPUT_ALIGNED_LOCAL (asm_out_file, name, size,
DECL_ALIGN (decl));
#else
ASM_OUTPUT_LOCAL (asm_out_file, name, size, rounded);
#endif
+#endif
}
}
goto finish;
@@ -1878,11 +1888,16 @@ assemble_static_space (size)
}
else
{
+#ifdef ASM_OUTPUT_ALIGNED_DECL_LOCAL
+ ASM_OUTPUT_ALIGNED_DECL_LOCAL (asm_out_file, NULL_TREE, name, size,
+ BIGGEST_ALIGNMENT);
+#else
#ifdef ASM_OUTPUT_ALIGNED_LOCAL
ASM_OUTPUT_ALIGNED_LOCAL (asm_out_file, name, size, BIGGEST_ALIGNMENT);
#else
ASM_OUTPUT_LOCAL (asm_out_file, name, size, rounded);
#endif
+#endif
}
return x;
}
@@ -2521,6 +2536,9 @@ const_hash (exp)
case CONVERT_EXPR:
case NON_LVALUE_EXPR:
return const_hash (TREE_OPERAND (exp, 0)) * 7 + 2;
+
+ default:
+ abort ();
}
/* Compute hashing function */
@@ -2708,6 +2726,9 @@ compare_constant_1 (exp, p)
case CONVERT_EXPR:
case NON_LVALUE_EXPR:
return compare_constant_1 (TREE_OPERAND (exp, 0), p);
+
+ default:
+ abort ();
}
/* Compare constant contents. */
@@ -3262,14 +3283,20 @@ init_const_rtx_hash_table ()
/* Save and restore status for a nested function. */
void
-save_varasm_status (p)
+save_varasm_status (p, context)
struct function *p;
+ tree context;
{
p->const_rtx_hash_table = const_rtx_hash_table;
p->const_rtx_sym_hash_table = const_rtx_sym_hash_table;
p->first_pool = first_pool;
p->last_pool = last_pool;
p->pool_offset = pool_offset;
+ p->const_double_chain = const_double_chain;
+
+ /* If we are pushing to toplevel, we can't reuse const_double_chain. */
+ if (context == NULL_TREE)
+ const_double_chain = 0;
}
void
@@ -3281,6 +3308,7 @@ restore_varasm_status (p)
first_pool = p->first_pool;
last_pool = p->last_pool;
pool_offset = p->pool_offset;
+ const_double_chain = p->const_double_chain;
}
enum kind { RTX_DOUBLE, RTX_INT };
@@ -3383,6 +3411,9 @@ decode_rtx_const (mode, x, value)
for the sake of addresses of library routines.
For a LABEL_REF, compare labels. */
value->un.addr.base = XEXP (value->un.addr.base, 0);
+
+ default:
+ break;
}
}
@@ -3916,7 +3947,7 @@ output_addressed_constants (exp)
}
break;
- case ERROR_MARK:
+ default:
break;
}
return reloc;
@@ -4052,6 +4083,9 @@ output_constant (exp, size)
else
error ("unknown set constructor type");
return;
+
+ default:
+ break; /* ??? */
}
if (size > 0)
@@ -4419,7 +4453,7 @@ output_constructor (exp, size)
}
/* Now get the bits from the appropriate constant word. */
- if (shift < HOST_BITS_PER_INT)
+ if (shift < HOST_BITS_PER_WIDE_INT)
value = TREE_INT_CST_LOW (val);
else if (shift < 2 * HOST_BITS_PER_WIDE_INT)
{
diff --git a/gcc/version.c b/gcc/version.c
index c0b9b741620..f8640f972f8 100644
--- a/gcc/version.c
+++ b/gcc/version.c
@@ -1 +1 @@
-char *version_string = "egcs-2.90.15 971031 (gcc2-970802 experimental)";
+char *version_string = "egcs-2.91.00 971101 (gcc2-971021 experimental)";