diff options
author | ro <ro@138bc75d-0d04-0410-961f-82ee72b054a4> | 2011-08-05 14:53:09 +0000 |
---|---|---|
committer | ro <ro@138bc75d-0d04-0410-961f-82ee72b054a4> | 2011-08-05 14:53:09 +0000 |
commit | a23b9c51a0b27c4507a2fb82275b725b6d6fc8eb (patch) | |
tree | 24104c84aafe6bb8ace23e951f7e0950cbc3d4fa /libgcc/fp-bit.c | |
parent | e59be7e3775cce7a65bfac5c9aeb5f76d42f539b (diff) | |
download | gcc-a23b9c51a0b27c4507a2fb82275b725b6d6fc8eb.tar.gz |
gcc:
* Makefile.in (FPBIT_FUNCS, DPBIT_FUNCS, TPBIT_FUNCS): Remove.
(libgcc-support): Remove $(FPBIT), $(DPBIT), $(TPBIT)
dependencies.
(libgcc.mvars): Remove FPBIT, FPBIT_FUNCS, DPBIT, DPBIT_FUNCS,
TPBIT, TPBIT_FUNCS.
* config/fp-bit.c, config/fp-bit.h: Move to ../libgcc.
* config/arm/t-strongarm-elf (FPBIT, DPBIT, dp-bit.c, fp-bit.c):
Remove.
* config/arm/t-vxworks: Likewise.
* config/arm/t-wince-pe: Likewise.
* config/avr/t-avr (fp-bit.c, FPBIT): Remove.
* config/bfin/t-bfin (FPBIT, DPBIT, dp-bit.c, fp-bit.c): Remove.
* config/bfin/t-bfin-elf: Likewise.
* config/bfin/t-bfin-linux: Likewise.
* config/bfin/t-bfin-uclinux: Likewise.
* config/cris/t-cris (FPBIT, DPBIT, dp-bit.c, tmplibgcc_fp_bit.c):
Remove.
* config/fr30/t-fr30: Likewise.
* config/frv/t-frv: Likewise.
* config/h8300/t-h8300 (FPBIT, fp-bit.c): Remove.
* config/iq2000/t-iq2000 (FPBIT, DPBIT, dp-bit.c, fp-bit.c): Remove.
* config/m32c/t-m32c: Likewise.
* config/m32r/t-linux: (LIB2FUNCS_EXTRA, fp-bit.c, dp-bit.c): Remove.
* config/m32r/t-m32r (FPBIT, DPBIT, dp-bit.c, fp-bit.c): Remove.
* config/mcore/t-mcore: Likewise.
* config/mep/t-mep: Likewise.
* config/microblaze/t-microblaze: Likewise.
* config/mips/t-linux64 (TPBIT, tp-bit.c): Remove.
* config/mips/t-mips (FPBIT, DPBIT, dp-bit.c, fp-bit.c): Remove.
* config/mips/t-sdemtk (FPBIT, DPBIT): Remove.
* config/mips/t-sr71k (FPBIT, DPBIT, dp-bit.c, fp-bit.c): Remove.
* config/mn10300/t-linux: Remove.
* config/mn10300/t-mn10300 (FPBIT, DPBIT, dp-bit.c, fp-bit.c): Remove.
* config/pdp11/t-pdp11: Likewise.
* config/picochip/t-picochip (FPBIT, fp-bit.c): Remove.
* config/rs6000/ppc64-fp.c: Move to ../libgcc/config/rs6000.
* config/rs6000/t-aix43 (FPBIT, DPBIT, dp-bit.c, fp-bit.c): Remove.
(LIB2FUNCS_EXTRA): Remove $(srcdir)/config/rs6000/ppc64-fp.c.
* config/rs6000/t-aix52: Likewise.
* config/rs6000/t-darwin (LIB2FUNCS_EXTRA): Remove
$(srcdir)/config/rs6000/ppc64-fp.c.
* config/rs6000/t-fprules-fpbit: Remove.
* config/rs6000/t-linux64 (LIB2FUNCS_EXTRA): Remove.
* config/rs6000/t-lynx (FPBIT, DPBIT, dp-bit.c, fp-bit.c): Remove.
* config/sh/t-netbsd (FPBIT, DPBIT): Remove.
* config/sh/t-sh (FPBIT, DPBIT, dp-bit.c, fp-bit.c): Remove.
* config/sparc/t-elf: Likewise.
* config/sparc/t-leon: Likewise.
* config/sparc/t-leon3: Likewise.
* config/spu/t-spu-elf: Likewise.
(DPBIT_FUNCS): Remove.
* config/stormy16/t-stormy16 (FPBIT, DPBIT, dp-bit.c, fp-bit.c): Remove.
* config/v850/t-v850: Likewise.
* config.gcc (avr-*-rtems*): Add avr/avr-lib.h to libgcc_tm_file.
(avr-*-*): Likewise.
(h8300-*-rtems*): Set libgcc_tm_file.
(h8300-*-elf*): Likewise.
(powerpc-*-eabisimaltivec*): Remove rs6000/t-fprules-fpbit from
tmake_file.
(powerpc-*-eabisim*): Likewise.
(powerpc-*-elf*): Likewise.
(powerpc-*-eabialtivec*): Likewise.
(powerpc-xilinx-eabi*): Likewise.
(powerpc-*-eabi*): Likewise.
(powerpc-*-rtems*): Likewise.
(powerpc-wrs-vxworks, powerpc-wrs-vxworksae): Likewise.
(powerpcle-*-elf*): Likewise.
(powerpcle-*-eabisim*): Likewise.
(powerpcle-*-eabi*): Likewise.
(rx-*-elf*): Add rx/rx-lib.h to libgcc_tm_file.
(am33_2.0-*-linux*): Remove mn10300/t-linux from tmake_file.
* doc/fragments.texi (Target Fragment, Floating Point Emulation):
Remove.
gcc/po:
* EXCLUDES (config/fp-bit.c, config/fp-bit.h): Remove.
libgcc:
* Makefile.in (double_type_size, long_double_type_size): Set.
Remove $(fpbit-in-libgcc) support.
(FPBIT_FUNCS, DPBIT_FUNCS, TPBIT_FUNCS): New variables.
(fpbit-src): New variable.
($(fpbit-o), $(fpbit-s-o)): Use $(fpbit-src) instead of $(FPBIT).
Compile with -DFLOAT $(FPBIT_CFLAGS).
Use $<.
($(dpbit-o), $(dpbit-s-o)): Use $(fpbit-src) instead of $(DPBIT).
Compile with $(FPBIT_CFLAGS).
Use $<.
($(tpbit-o), $(tpbit-s-o): Use $(fpbit-src) instead of $(TPBIT).
Compile with -DFLOAT $(TPBIT_CFLAGS).
Use $<.
* configure.ac (double_type_size, long_double_type_size):
Determine and substitute.
* configure: Regenerate.
* fp-bit.c, fp-bit.h: New files.
* config/avr/avr-lib.h, config/h8300/h8300-lib.h: New files.
* config/mips/t-irix6 (TPBIT, $(gcc_objdir)/tp-bit.c): Remove.
* config/mips/t-mips: New file.
* config/mips/t-sdemtk: New file.
* config/rs6000/ppc64-fp.c: New file.
* config/rs6000/t-darwin (LIB2ADD): Add
$(srcdir)/config/rs6000/ppc64-fp.c.
* config/rs6000/t-ppc64-fp: New file.
* config/rx/rx-lib.h: New file.
* config/rx/t-rx (FPBIT): Set to true.
($(gcc_objdir)/fp-bit.c): Remove.
(DPBIT): Set to true only with -m64bit-doubles.
($(gcc_objdir)/dp-bit.c): Remove.
* config/sparc/t-softfp: Remove.
* config/spu/t-elf: New file.
* config/t-fdpbit, config/t-fpbit: New files.
* config.host (m32c*-*-*): Add t-fdpbit to tmake_file.
(mips*-*-*): Likewise.
(arm-wrs-vxworks): Likewise.
(arm*-*-freebsd*): Likewise.
(avr-*-rtems*): Add t-fpbit to tmake_file.
(avr-*-*): Likewise.
(bfin*-elf*): Add t-fdpbit to tmake_file.
(bfin*-uclinux*): Likewise.
(bfin*-linux-uclibc*): Likewise.
(bfin*-rtems*): New case.
Add t-fdpbit to tmake_file.
(bfin*-*): Add t-fdpbit to tmake_file.
(crisv32-*-elf): Likewise.
(cris-*-linux*): Likewise.
(fr30-*-elf): Likewise.
(frv-*-elf, frv-*-*linux*): Likewise.
(h8300-*-rtems*, h8300-*-elf*): Add t-fpbit to tmake_file.
(iq2000*-*-elf*): Add t-fdpbit to tmake_file.
(m32r-*-elf*): Likewise.
(m32rle-*-elf*): Likewise.
(m32r-*-linux*): Likewise.
(m32rle-*-linux*): Likewise.
(mcore-*-elf): Add t-fdpbit to tmake_file.
(microblaze*-*-*): Likewise.
(mips-sgi-irix6.5*): Add t-tpbit to tmake_file.
(mips*-*-netbsd*): Add mips/t-mips to tmake_file.
(mips64*-*-linux*): Also handle mipsisa64*-*-linux*.
Fix typo.
Add mips/t-tpbit to tmake-file.
(mips*-*-linux*): Fix typo.
(mips*-sde-elf*): New case
Add mips/t-sdemtk unless using newlib.
(mipsisa64sr71k-*-elf*): Add t-fdpbit to tmake_file.
(mipsisa64sb1-*-elf*): Add mips/t-mips to tmake_file.
(mn10300-*-*): Likewise.
(pdp11-*-*): Likewise.
(picochip-*-*): Add t-fpbit to tmake_file.
(powerpc-*-eabisimaltivec*): Likewise.
(powerpc-*-eabisim*): Likewise.
(powerpc-*-elf*): Likewise.
(powerpc-*-eabialtivec*): Likewise.
(powerpc-xilinx-eabi*): New case.
Add t-fdpbit to tmake_file.
(powerpc-*-eabi*): Add t-fdpbit to tmake_file.
(powerpc-*-rtems*): Likewise.
(powerpc-*-linux*, powerpc64-*-linux*): Add rs6000/t-ppc64-fp to
tmake_file.
(powerpc-wrs-vxworks, powerpc-wrs-vxworksae): Add t-fdpbit to
tmake_file.
(powerpc-*-lynxos*): Likewise.
(powerpcle-*-elf*): Likewise.
(powerpcle-*-eabisim*): Likewise.
(powerpcle-*-eabi*): Likewise.
(rs6000-ibm-aix4.[3456789]*, powerpc-ibm-aix4.[3456789]*): Add
t-fdpbit, rs6000/t-ppc64-fp to tmake_file.
(rs6000-ibm-aix5.1.*, powerpc-ibm-aix5.1.*): Likewise.
(rs6000-ibm-aix[56789].*, powerpc-ibm-aix[56789].*): Likewise.
(rx-*-elf): Add t-fdpbit to tmake_file.
(sh-*-elf*, sh[12346l]*-*-elf*, sh-*-linux*)
(sh[2346lbe]*-*-linux*, sh-*-netbsdelf*, shl*-*-netbsdelf*)
(sh5-*-netbsd*, sh5l*-*-netbsd*, sh64-*-netbsd*)
(sh64l*-*-netbsd*): Add t-fdpbit to tmake_file except on
sh*-*-netbsd*.
(sh-*-rtems*): Add t-fdpbit to tmake_file.
(sh-wrs-vxworks): Likewise.
(sparc-*-elf*): Replace sparc/t-softfp by t-fdpbit in tmake_file.
(sparc-*-linux*): Add t-fdpbit to tmake_file for *-leon*.
(sparc-*-rtems*, sparc64-*-rtems*): Split off ...
(sparc64-*-rtems*): ... new case.
(sparc-*-rtems*): Add t-fdpbit to tmake_file.
(spu-*-elf*): Likewise.
Add spu/t-elf to tmake_file.
(v850*-*-*): Add t-fdpbit to tmake_file.
(xstormy16-*-elf): Likewise.
(am33_2.0-*-linux*): Add t-fdpbit to tmake_file.
(mep*-*-*): Likewise.
git-svn-id: svn+ssh://gcc.gnu.org/svn/gcc/trunk@177448 138bc75d-0d04-0410-961f-82ee72b054a4
Diffstat (limited to 'libgcc/fp-bit.c')
-rw-r--r-- | libgcc/fp-bit.c | 1657 |
1 files changed, 1657 insertions, 0 deletions
diff --git a/libgcc/fp-bit.c b/libgcc/fp-bit.c new file mode 100644 index 00000000000..de9b3ada5ec --- /dev/null +++ b/libgcc/fp-bit.c @@ -0,0 +1,1657 @@ +/* This is a software floating point library which can be used + for targets without hardware floating point. + Copyright (C) 1994, 1995, 1996, 1997, 1998, 2000, 2001, 2002, 2003, + 2004, 2005, 2008, 2009, 2010, 2011 Free Software Foundation, Inc. + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify it under +the terms of the GNU General Public License as published by the Free +Software Foundation; either version 3, or (at your option) any later +version. + +GCC is distributed in the hope that it will be useful, but WITHOUT ANY +WARRANTY; without even the implied warranty of MERCHANTABILITY or +FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License +for more details. + +Under Section 7 of GPL version 3, you are granted additional +permissions described in the GCC Runtime Library Exception, version +3.1, as published by the Free Software Foundation. + +You should have received a copy of the GNU General Public License and +a copy of the GCC Runtime Library Exception along with this program; +see the files COPYING3 and COPYING.RUNTIME respectively. If not, see +<http://www.gnu.org/licenses/>. */ + +/* This implements IEEE 754 format arithmetic, but does not provide a + mechanism for setting the rounding mode, or for generating or handling + exceptions. + + The original code by Steve Chamberlain, hacked by Mark Eichin and Jim + Wilson, all of Cygnus Support. */ + +/* The intended way to use this file is to make two copies, add `#define FLOAT' + to one copy, then compile both copies and add them to libgcc.a. */ + +#include "tconfig.h" +#include "coretypes.h" +#include "tm.h" +#include "fp-bit.h" + +/* The following macros can be defined to change the behavior of this file: + FLOAT: Implement a `float', aka SFmode, fp library. If this is not + defined, then this file implements a `double', aka DFmode, fp library. + FLOAT_ONLY: Used with FLOAT, to implement a `float' only library, i.e. + don't include float->double conversion which requires the double library. + This is useful only for machines which can't support doubles, e.g. some + 8-bit processors. + CMPtype: Specify the type that floating point compares should return. + This defaults to SItype, aka int. + _DEBUG_BITFLOAT: This makes debugging the code a little easier, by adding + two integers to the FLO_union_type. + NO_DENORMALS: Disable handling of denormals. + NO_NANS: Disable nan and infinity handling + SMALL_MACHINE: Useful when operations on QIs and HIs are faster + than on an SI */ + +/* We don't currently support extended floats (long doubles) on machines + without hardware to deal with them. + + These stubs are just to keep the linker from complaining about unresolved + references which can be pulled in from libio & libstdc++, even if the + user isn't using long doubles. However, they may generate an unresolved + external to abort if abort is not used by the function, and the stubs + are referenced from within libc, since libgcc goes before and after the + system library. */ + +#ifdef DECLARE_LIBRARY_RENAMES + DECLARE_LIBRARY_RENAMES +#endif + +#ifdef EXTENDED_FLOAT_STUBS +extern void abort (void); +void __extendsfxf2 (void) { abort(); } +void __extenddfxf2 (void) { abort(); } +void __truncxfdf2 (void) { abort(); } +void __truncxfsf2 (void) { abort(); } +void __fixxfsi (void) { abort(); } +void __floatsixf (void) { abort(); } +void __addxf3 (void) { abort(); } +void __subxf3 (void) { abort(); } +void __mulxf3 (void) { abort(); } +void __divxf3 (void) { abort(); } +void __negxf2 (void) { abort(); } +void __eqxf2 (void) { abort(); } +void __nexf2 (void) { abort(); } +void __gtxf2 (void) { abort(); } +void __gexf2 (void) { abort(); } +void __lexf2 (void) { abort(); } +void __ltxf2 (void) { abort(); } + +void __extendsftf2 (void) { abort(); } +void __extenddftf2 (void) { abort(); } +void __trunctfdf2 (void) { abort(); } +void __trunctfsf2 (void) { abort(); } +void __fixtfsi (void) { abort(); } +void __floatsitf (void) { abort(); } +void __addtf3 (void) { abort(); } +void __subtf3 (void) { abort(); } +void __multf3 (void) { abort(); } +void __divtf3 (void) { abort(); } +void __negtf2 (void) { abort(); } +void __eqtf2 (void) { abort(); } +void __netf2 (void) { abort(); } +void __gttf2 (void) { abort(); } +void __getf2 (void) { abort(); } +void __letf2 (void) { abort(); } +void __lttf2 (void) { abort(); } +#else /* !EXTENDED_FLOAT_STUBS, rest of file */ + +/* IEEE "special" number predicates */ + +#ifdef NO_NANS + +#define nan() 0 +#define isnan(x) 0 +#define isinf(x) 0 +#else + +#if defined L_thenan_sf +const fp_number_type __thenan_sf = { CLASS_SNAN, 0, 0, {(fractype) 0} }; +#elif defined L_thenan_df +const fp_number_type __thenan_df = { CLASS_SNAN, 0, 0, {(fractype) 0} }; +#elif defined L_thenan_tf +const fp_number_type __thenan_tf = { CLASS_SNAN, 0, 0, {(fractype) 0} }; +#elif defined TFLOAT +extern const fp_number_type __thenan_tf; +#elif defined FLOAT +extern const fp_number_type __thenan_sf; +#else +extern const fp_number_type __thenan_df; +#endif + +INLINE +static const fp_number_type * +makenan (void) +{ +#ifdef TFLOAT + return & __thenan_tf; +#elif defined FLOAT + return & __thenan_sf; +#else + return & __thenan_df; +#endif +} + +INLINE +static int +isnan (const fp_number_type *x) +{ + return __builtin_expect (x->class == CLASS_SNAN || x->class == CLASS_QNAN, + 0); +} + +INLINE +static int +isinf (const fp_number_type * x) +{ + return __builtin_expect (x->class == CLASS_INFINITY, 0); +} + +#endif /* NO_NANS */ + +INLINE +static int +iszero (const fp_number_type * x) +{ + return x->class == CLASS_ZERO; +} + +INLINE +static void +flip_sign ( fp_number_type * x) +{ + x->sign = !x->sign; +} + +/* Count leading zeroes in N. */ +INLINE +static int +clzusi (USItype n) +{ + extern int __clzsi2 (USItype); + if (sizeof (USItype) == sizeof (unsigned int)) + return __builtin_clz (n); + else if (sizeof (USItype) == sizeof (unsigned long)) + return __builtin_clzl (n); + else if (sizeof (USItype) == sizeof (unsigned long long)) + return __builtin_clzll (n); + else + return __clzsi2 (n); +} + +extern FLO_type pack_d (const fp_number_type * ); + +#if defined(L_pack_df) || defined(L_pack_sf) || defined(L_pack_tf) +FLO_type +pack_d (const fp_number_type *src) +{ + FLO_union_type dst; + fractype fraction = src->fraction.ll; /* wasn't unsigned before? */ + int sign = src->sign; + int exp = 0; + + if (LARGEST_EXPONENT_IS_NORMAL (FRAC_NBITS) && (isnan (src) || isinf (src))) + { + /* We can't represent these values accurately. By using the + largest possible magnitude, we guarantee that the conversion + of infinity is at least as big as any finite number. */ + exp = EXPMAX; + fraction = ((fractype) 1 << FRACBITS) - 1; + } + else if (isnan (src)) + { + exp = EXPMAX; + if (src->class == CLASS_QNAN || 1) + { +#ifdef QUIET_NAN_NEGATED + fraction |= QUIET_NAN - 1; +#else + fraction |= QUIET_NAN; +#endif + } + } + else if (isinf (src)) + { + exp = EXPMAX; + fraction = 0; + } + else if (iszero (src)) + { + exp = 0; + fraction = 0; + } + else if (fraction == 0) + { + exp = 0; + } + else + { + if (__builtin_expect (src->normal_exp < NORMAL_EXPMIN, 0)) + { +#ifdef NO_DENORMALS + /* Go straight to a zero representation if denormals are not + supported. The denormal handling would be harmless but + isn't unnecessary. */ + exp = 0; + fraction = 0; +#else /* NO_DENORMALS */ + /* This number's exponent is too low to fit into the bits + available in the number, so we'll store 0 in the exponent and + shift the fraction to the right to make up for it. */ + + int shift = NORMAL_EXPMIN - src->normal_exp; + + exp = 0; + + if (shift > FRAC_NBITS - NGARDS) + { + /* No point shifting, since it's more that 64 out. */ + fraction = 0; + } + else + { + int lowbit = (fraction & (((fractype)1 << shift) - 1)) ? 1 : 0; + fraction = (fraction >> shift) | lowbit; + } + if ((fraction & GARDMASK) == GARDMSB) + { + if ((fraction & (1 << NGARDS))) + fraction += GARDROUND + 1; + } + else + { + /* Add to the guards to round up. */ + fraction += GARDROUND; + } + /* Perhaps the rounding means we now need to change the + exponent, because the fraction is no longer denormal. */ + if (fraction >= IMPLICIT_1) + { + exp += 1; + } + fraction >>= NGARDS; +#endif /* NO_DENORMALS */ + } + else if (!LARGEST_EXPONENT_IS_NORMAL (FRAC_NBITS) + && __builtin_expect (src->normal_exp > EXPBIAS, 0)) + { + exp = EXPMAX; + fraction = 0; + } + else + { + exp = src->normal_exp + EXPBIAS; + if (!ROUND_TOWARDS_ZERO) + { + /* IF the gard bits are the all zero, but the first, then we're + half way between two numbers, choose the one which makes the + lsb of the answer 0. */ + if ((fraction & GARDMASK) == GARDMSB) + { + if (fraction & (1 << NGARDS)) + fraction += GARDROUND + 1; + } + else + { + /* Add a one to the guards to round up */ + fraction += GARDROUND; + } + if (fraction >= IMPLICIT_2) + { + fraction >>= 1; + exp += 1; + } + } + fraction >>= NGARDS; + + if (LARGEST_EXPONENT_IS_NORMAL (FRAC_NBITS) && exp > EXPMAX) + { + /* Saturate on overflow. */ + exp = EXPMAX; + fraction = ((fractype) 1 << FRACBITS) - 1; + } + } + } + + /* We previously used bitfields to store the number, but this doesn't + handle little/big endian systems conveniently, so use shifts and + masks */ +#ifdef FLOAT_BIT_ORDER_MISMATCH + dst.bits.fraction = fraction; + dst.bits.exp = exp; + dst.bits.sign = sign; +#else +# if defined TFLOAT && defined HALFFRACBITS + { + halffractype high, low, unity; + int lowsign, lowexp; + + unity = (halffractype) 1 << HALFFRACBITS; + + /* Set HIGH to the high double's significand, masking out the implicit 1. + Set LOW to the low double's full significand. */ + high = (fraction >> (FRACBITS - HALFFRACBITS)) & (unity - 1); + low = fraction & (unity * 2 - 1); + + /* Get the initial sign and exponent of the low double. */ + lowexp = exp - HALFFRACBITS - 1; + lowsign = sign; + + /* HIGH should be rounded like a normal double, making |LOW| <= + 0.5 ULP of HIGH. Assume round-to-nearest. */ + if (exp < EXPMAX) + if (low > unity || (low == unity && (high & 1) == 1)) + { + /* Round HIGH up and adjust LOW to match. */ + high++; + if (high == unity) + { + /* May make it infinite, but that's OK. */ + high = 0; + exp++; + } + low = unity * 2 - low; + lowsign ^= 1; + } + + high |= (halffractype) exp << HALFFRACBITS; + high |= (halffractype) sign << (HALFFRACBITS + EXPBITS); + + if (exp == EXPMAX || exp == 0 || low == 0) + low = 0; + else + { + while (lowexp > 0 && low < unity) + { + low <<= 1; + lowexp--; + } + + if (lowexp <= 0) + { + halffractype roundmsb, round; + int shift; + + shift = 1 - lowexp; + roundmsb = (1 << (shift - 1)); + round = low & ((roundmsb << 1) - 1); + + low >>= shift; + lowexp = 0; + + if (round > roundmsb || (round == roundmsb && (low & 1) == 1)) + { + low++; + if (low == unity) + /* LOW rounds up to the smallest normal number. */ + lowexp++; + } + } + + low &= unity - 1; + low |= (halffractype) lowexp << HALFFRACBITS; + low |= (halffractype) lowsign << (HALFFRACBITS + EXPBITS); + } + dst.value_raw = ((fractype) high << HALFSHIFT) | low; + } +# else + dst.value_raw = fraction & ((((fractype)1) << FRACBITS) - (fractype)1); + dst.value_raw |= ((fractype) (exp & ((1 << EXPBITS) - 1))) << FRACBITS; + dst.value_raw |= ((fractype) (sign & 1)) << (FRACBITS | EXPBITS); +# endif +#endif + +#if defined(FLOAT_WORD_ORDER_MISMATCH) && !defined(FLOAT) +#ifdef TFLOAT + { + qrtrfractype tmp1 = dst.words[0]; + qrtrfractype tmp2 = dst.words[1]; + dst.words[0] = dst.words[3]; + dst.words[1] = dst.words[2]; + dst.words[2] = tmp2; + dst.words[3] = tmp1; + } +#else + { + halffractype tmp = dst.words[0]; + dst.words[0] = dst.words[1]; + dst.words[1] = tmp; + } +#endif +#endif + + return dst.value; +} +#endif + +#if defined(L_unpack_df) || defined(L_unpack_sf) || defined(L_unpack_tf) +void +unpack_d (FLO_union_type * src, fp_number_type * dst) +{ + /* We previously used bitfields to store the number, but this doesn't + handle little/big endian systems conveniently, so use shifts and + masks */ + fractype fraction; + int exp; + int sign; + +#if defined(FLOAT_WORD_ORDER_MISMATCH) && !defined(FLOAT) + FLO_union_type swapped; + +#ifdef TFLOAT + swapped.words[0] = src->words[3]; + swapped.words[1] = src->words[2]; + swapped.words[2] = src->words[1]; + swapped.words[3] = src->words[0]; +#else + swapped.words[0] = src->words[1]; + swapped.words[1] = src->words[0]; +#endif + src = &swapped; +#endif + +#ifdef FLOAT_BIT_ORDER_MISMATCH + fraction = src->bits.fraction; + exp = src->bits.exp; + sign = src->bits.sign; +#else +# if defined TFLOAT && defined HALFFRACBITS + { + halffractype high, low; + + high = src->value_raw >> HALFSHIFT; + low = src->value_raw & (((fractype)1 << HALFSHIFT) - 1); + + fraction = high & ((((fractype)1) << HALFFRACBITS) - 1); + fraction <<= FRACBITS - HALFFRACBITS; + exp = ((int)(high >> HALFFRACBITS)) & ((1 << EXPBITS) - 1); + sign = ((int)(high >> (((HALFFRACBITS + EXPBITS))))) & 1; + + if (exp != EXPMAX && exp != 0 && low != 0) + { + int lowexp = ((int)(low >> HALFFRACBITS)) & ((1 << EXPBITS) - 1); + int lowsign = ((int)(low >> (((HALFFRACBITS + EXPBITS))))) & 1; + int shift; + fractype xlow; + + xlow = low & ((((fractype)1) << HALFFRACBITS) - 1); + if (lowexp) + xlow |= (((halffractype)1) << HALFFRACBITS); + else + lowexp = 1; + shift = (FRACBITS - HALFFRACBITS) - (exp - lowexp); + if (shift > 0) + xlow <<= shift; + else if (shift < 0) + xlow >>= -shift; + if (sign == lowsign) + fraction += xlow; + else if (fraction >= xlow) + fraction -= xlow; + else + { + /* The high part is a power of two but the full number is lower. + This code will leave the implicit 1 in FRACTION, but we'd + have added that below anyway. */ + fraction = (((fractype) 1 << FRACBITS) - xlow) << 1; + exp--; + } + } + } +# else + fraction = src->value_raw & ((((fractype)1) << FRACBITS) - 1); + exp = ((int)(src->value_raw >> FRACBITS)) & ((1 << EXPBITS) - 1); + sign = ((int)(src->value_raw >> (FRACBITS + EXPBITS))) & 1; +# endif +#endif + + dst->sign = sign; + if (exp == 0) + { + /* Hmm. Looks like 0 */ + if (fraction == 0 +#ifdef NO_DENORMALS + || 1 +#endif + ) + { + /* tastes like zero */ + dst->class = CLASS_ZERO; + } + else + { + /* Zero exponent with nonzero fraction - it's denormalized, + so there isn't a leading implicit one - we'll shift it so + it gets one. */ + dst->normal_exp = exp - EXPBIAS + 1; + fraction <<= NGARDS; + + dst->class = CLASS_NUMBER; +#if 1 + while (fraction < IMPLICIT_1) + { + fraction <<= 1; + dst->normal_exp--; + } +#endif + dst->fraction.ll = fraction; + } + } + else if (!LARGEST_EXPONENT_IS_NORMAL (FRAC_NBITS) + && __builtin_expect (exp == EXPMAX, 0)) + { + /* Huge exponent*/ + if (fraction == 0) + { + /* Attached to a zero fraction - means infinity */ + dst->class = CLASS_INFINITY; + } + else + { + /* Nonzero fraction, means nan */ +#ifdef QUIET_NAN_NEGATED + if ((fraction & QUIET_NAN) == 0) +#else + if (fraction & QUIET_NAN) +#endif + { + dst->class = CLASS_QNAN; + } + else + { + dst->class = CLASS_SNAN; + } + /* Keep the fraction part as the nan number */ + dst->fraction.ll = fraction; + } + } + else + { + /* Nothing strange about this number */ + dst->normal_exp = exp - EXPBIAS; + dst->class = CLASS_NUMBER; + dst->fraction.ll = (fraction << NGARDS) | IMPLICIT_1; + } +} +#endif /* L_unpack_df || L_unpack_sf */ + +#if defined(L_addsub_sf) || defined(L_addsub_df) || defined(L_addsub_tf) +static const fp_number_type * +_fpadd_parts (fp_number_type * a, + fp_number_type * b, + fp_number_type * tmp) +{ + intfrac tfraction; + + /* Put commonly used fields in local variables. */ + int a_normal_exp; + int b_normal_exp; + fractype a_fraction; + fractype b_fraction; + + if (isnan (a)) + { + return a; + } + if (isnan (b)) + { + return b; + } + if (isinf (a)) + { + /* Adding infinities with opposite signs yields a NaN. */ + if (isinf (b) && a->sign != b->sign) + return makenan (); + return a; + } + if (isinf (b)) + { + return b; + } + if (iszero (b)) + { + if (iszero (a)) + { + *tmp = *a; + tmp->sign = a->sign & b->sign; + return tmp; + } + return a; + } + if (iszero (a)) + { + return b; + } + + /* Got two numbers. shift the smaller and increment the exponent till + they're the same */ + { + int diff; + int sdiff; + + a_normal_exp = a->normal_exp; + b_normal_exp = b->normal_exp; + a_fraction = a->fraction.ll; + b_fraction = b->fraction.ll; + + diff = a_normal_exp - b_normal_exp; + sdiff = diff; + + if (diff < 0) + diff = -diff; + if (diff < FRAC_NBITS) + { + if (sdiff > 0) + { + b_normal_exp += diff; + LSHIFT (b_fraction, diff); + } + else if (sdiff < 0) + { + a_normal_exp += diff; + LSHIFT (a_fraction, diff); + } + } + else + { + /* Somethings's up.. choose the biggest */ + if (a_normal_exp > b_normal_exp) + { + b_normal_exp = a_normal_exp; + b_fraction = 0; + } + else + { + a_normal_exp = b_normal_exp; + a_fraction = 0; + } + } + } + + if (a->sign != b->sign) + { + if (a->sign) + { + tfraction = -a_fraction + b_fraction; + } + else + { + tfraction = a_fraction - b_fraction; + } + if (tfraction >= 0) + { + tmp->sign = 0; + tmp->normal_exp = a_normal_exp; + tmp->fraction.ll = tfraction; + } + else + { + tmp->sign = 1; + tmp->normal_exp = a_normal_exp; + tmp->fraction.ll = -tfraction; + } + /* and renormalize it */ + + while (tmp->fraction.ll < IMPLICIT_1 && tmp->fraction.ll) + { + tmp->fraction.ll <<= 1; + tmp->normal_exp--; + } + } + else + { + tmp->sign = a->sign; + tmp->normal_exp = a_normal_exp; + tmp->fraction.ll = a_fraction + b_fraction; + } + tmp->class = CLASS_NUMBER; + /* Now the fraction is added, we have to shift down to renormalize the + number */ + + if (tmp->fraction.ll >= IMPLICIT_2) + { + LSHIFT (tmp->fraction.ll, 1); + tmp->normal_exp++; + } + return tmp; +} + +FLO_type +add (FLO_type arg_a, FLO_type arg_b) +{ + fp_number_type a; + fp_number_type b; + fp_number_type tmp; + const fp_number_type *res; + FLO_union_type au, bu; + + au.value = arg_a; + bu.value = arg_b; + + unpack_d (&au, &a); + unpack_d (&bu, &b); + + res = _fpadd_parts (&a, &b, &tmp); + + return pack_d (res); +} + +FLO_type +sub (FLO_type arg_a, FLO_type arg_b) +{ + fp_number_type a; + fp_number_type b; + fp_number_type tmp; + const fp_number_type *res; + FLO_union_type au, bu; + + au.value = arg_a; + bu.value = arg_b; + + unpack_d (&au, &a); + unpack_d (&bu, &b); + + b.sign ^= 1; + + res = _fpadd_parts (&a, &b, &tmp); + + return pack_d (res); +} +#endif /* L_addsub_sf || L_addsub_df */ + +#if defined(L_mul_sf) || defined(L_mul_df) || defined(L_mul_tf) +static inline __attribute__ ((__always_inline__)) const fp_number_type * +_fpmul_parts ( fp_number_type * a, + fp_number_type * b, + fp_number_type * tmp) +{ + fractype low = 0; + fractype high = 0; + + if (isnan (a)) + { + a->sign = a->sign != b->sign; + return a; + } + if (isnan (b)) + { + b->sign = a->sign != b->sign; + return b; + } + if (isinf (a)) + { + if (iszero (b)) + return makenan (); + a->sign = a->sign != b->sign; + return a; + } + if (isinf (b)) + { + if (iszero (a)) + { + return makenan (); + } + b->sign = a->sign != b->sign; + return b; + } + if (iszero (a)) + { + a->sign = a->sign != b->sign; + return a; + } + if (iszero (b)) + { + b->sign = a->sign != b->sign; + return b; + } + + /* Calculate the mantissa by multiplying both numbers to get a + twice-as-wide number. */ + { +#if defined(NO_DI_MODE) || defined(TFLOAT) + { + fractype x = a->fraction.ll; + fractype ylow = b->fraction.ll; + fractype yhigh = 0; + int bit; + + /* ??? This does multiplies one bit at a time. Optimize. */ + for (bit = 0; bit < FRAC_NBITS; bit++) + { + int carry; + + if (x & 1) + { + carry = (low += ylow) < ylow; + high += yhigh + carry; + } + yhigh <<= 1; + if (ylow & FRACHIGH) + { + yhigh |= 1; + } + ylow <<= 1; + x >>= 1; + } + } +#elif defined(FLOAT) + /* Multiplying two USIs to get a UDI, we're safe. */ + { + UDItype answer = (UDItype)a->fraction.ll * (UDItype)b->fraction.ll; + + high = answer >> BITS_PER_SI; + low = answer; + } +#else + /* fractype is DImode, but we need the result to be twice as wide. + Assuming a widening multiply from DImode to TImode is not + available, build one by hand. */ + { + USItype nl = a->fraction.ll; + USItype nh = a->fraction.ll >> BITS_PER_SI; + USItype ml = b->fraction.ll; + USItype mh = b->fraction.ll >> BITS_PER_SI; + UDItype pp_ll = (UDItype) ml * nl; + UDItype pp_hl = (UDItype) mh * nl; + UDItype pp_lh = (UDItype) ml * nh; + UDItype pp_hh = (UDItype) mh * nh; + UDItype res2 = 0; + UDItype res0 = 0; + UDItype ps_hh__ = pp_hl + pp_lh; + if (ps_hh__ < pp_hl) + res2 += (UDItype)1 << BITS_PER_SI; + pp_hl = (UDItype)(USItype)ps_hh__ << BITS_PER_SI; + res0 = pp_ll + pp_hl; + if (res0 < pp_ll) + res2++; + res2 += (ps_hh__ >> BITS_PER_SI) + pp_hh; + high = res2; + low = res0; + } +#endif + } + + tmp->normal_exp = a->normal_exp + b->normal_exp + + FRAC_NBITS - (FRACBITS + NGARDS); + tmp->sign = a->sign != b->sign; + while (high >= IMPLICIT_2) + { + tmp->normal_exp++; + if (high & 1) + { + low >>= 1; + low |= FRACHIGH; + } + high >>= 1; + } + while (high < IMPLICIT_1) + { + tmp->normal_exp--; + + high <<= 1; + if (low & FRACHIGH) + high |= 1; + low <<= 1; + } + + if (!ROUND_TOWARDS_ZERO && (high & GARDMASK) == GARDMSB) + { + if (high & (1 << NGARDS)) + { + /* Because we're half way, we would round to even by adding + GARDROUND + 1, except that's also done in the packing + function, and rounding twice will lose precision and cause + the result to be too far off. Example: 32-bit floats with + bit patterns 0xfff * 0x3f800400 ~= 0xfff (less than 0.5ulp + off), not 0x1000 (more than 0.5ulp off). */ + } + else if (low) + { + /* We're a further than half way by a small amount corresponding + to the bits set in "low". Knowing that, we round here and + not in pack_d, because there we don't have "low" available + anymore. */ + high += GARDROUND + 1; + + /* Avoid further rounding in pack_d. */ + high &= ~(fractype) GARDMASK; + } + } + tmp->fraction.ll = high; + tmp->class = CLASS_NUMBER; + return tmp; +} + +FLO_type +multiply (FLO_type arg_a, FLO_type arg_b) +{ + fp_number_type a; + fp_number_type b; + fp_number_type tmp; + const fp_number_type *res; + FLO_union_type au, bu; + + au.value = arg_a; + bu.value = arg_b; + + unpack_d (&au, &a); + unpack_d (&bu, &b); + + res = _fpmul_parts (&a, &b, &tmp); + + return pack_d (res); +} +#endif /* L_mul_sf || L_mul_df || L_mul_tf */ + +#if defined(L_div_sf) || defined(L_div_df) || defined(L_div_tf) +static inline __attribute__ ((__always_inline__)) const fp_number_type * +_fpdiv_parts (fp_number_type * a, + fp_number_type * b) +{ + fractype bit; + fractype numerator; + fractype denominator; + fractype quotient; + + if (isnan (a)) + { + return a; + } + if (isnan (b)) + { + return b; + } + + a->sign = a->sign ^ b->sign; + + if (isinf (a) || iszero (a)) + { + if (a->class == b->class) + return makenan (); + return a; + } + + if (isinf (b)) + { + a->fraction.ll = 0; + a->normal_exp = 0; + return a; + } + if (iszero (b)) + { + a->class = CLASS_INFINITY; + return a; + } + + /* Calculate the mantissa by multiplying both 64bit numbers to get a + 128 bit number */ + { + /* quotient = + ( numerator / denominator) * 2^(numerator exponent - denominator exponent) + */ + + a->normal_exp = a->normal_exp - b->normal_exp; + numerator = a->fraction.ll; + denominator = b->fraction.ll; + + if (numerator < denominator) + { + /* Fraction will be less than 1.0 */ + numerator *= 2; + a->normal_exp--; + } + bit = IMPLICIT_1; + quotient = 0; + /* ??? Does divide one bit at a time. Optimize. */ + while (bit) + { + if (numerator >= denominator) + { + quotient |= bit; + numerator -= denominator; + } + bit >>= 1; + numerator *= 2; + } + + if (!ROUND_TOWARDS_ZERO && (quotient & GARDMASK) == GARDMSB) + { + if (quotient & (1 << NGARDS)) + { + /* Because we're half way, we would round to even by adding + GARDROUND + 1, except that's also done in the packing + function, and rounding twice will lose precision and cause + the result to be too far off. */ + } + else if (numerator) + { + /* We're a further than half way by the small amount + corresponding to the bits set in "numerator". Knowing + that, we round here and not in pack_d, because there we + don't have "numerator" available anymore. */ + quotient += GARDROUND + 1; + + /* Avoid further rounding in pack_d. */ + quotient &= ~(fractype) GARDMASK; + } + } + + a->fraction.ll = quotient; + return (a); + } +} + +FLO_type +divide (FLO_type arg_a, FLO_type arg_b) +{ + fp_number_type a; + fp_number_type b; + const fp_number_type *res; + FLO_union_type au, bu; + + au.value = arg_a; + bu.value = arg_b; + + unpack_d (&au, &a); + unpack_d (&bu, &b); + + res = _fpdiv_parts (&a, &b); + + return pack_d (res); +} +#endif /* L_div_sf || L_div_df */ + +#if defined(L_fpcmp_parts_sf) || defined(L_fpcmp_parts_df) \ + || defined(L_fpcmp_parts_tf) +/* according to the demo, fpcmp returns a comparison with 0... thus + a<b -> -1 + a==b -> 0 + a>b -> +1 + */ + +int +__fpcmp_parts (fp_number_type * a, fp_number_type * b) +{ +#if 0 + /* either nan -> unordered. Must be checked outside of this routine. */ + if (isnan (a) && isnan (b)) + { + return 1; /* still unordered! */ + } +#endif + + if (isnan (a) || isnan (b)) + { + return 1; /* how to indicate unordered compare? */ + } + if (isinf (a) && isinf (b)) + { + /* +inf > -inf, but +inf != +inf */ + /* b \a| +inf(0)| -inf(1) + ______\+--------+-------- + +inf(0)| a==b(0)| a<b(-1) + -------+--------+-------- + -inf(1)| a>b(1) | a==b(0) + -------+--------+-------- + So since unordered must be nonzero, just line up the columns... + */ + return b->sign - a->sign; + } + /* but not both... */ + if (isinf (a)) + { + return a->sign ? -1 : 1; + } + if (isinf (b)) + { + return b->sign ? 1 : -1; + } + if (iszero (a) && iszero (b)) + { + return 0; + } + if (iszero (a)) + { + return b->sign ? 1 : -1; + } + if (iszero (b)) + { + return a->sign ? -1 : 1; + } + /* now both are "normal". */ + if (a->sign != b->sign) + { + /* opposite signs */ + return a->sign ? -1 : 1; + } + /* same sign; exponents? */ + if (a->normal_exp > b->normal_exp) + { + return a->sign ? -1 : 1; + } + if (a->normal_exp < b->normal_exp) + { + return a->sign ? 1 : -1; + } + /* same exponents; check size. */ + if (a->fraction.ll > b->fraction.ll) + { + return a->sign ? -1 : 1; + } + if (a->fraction.ll < b->fraction.ll) + { + return a->sign ? 1 : -1; + } + /* after all that, they're equal. */ + return 0; +} +#endif + +#if defined(L_compare_sf) || defined(L_compare_df) || defined(L_compoare_tf) +CMPtype +compare (FLO_type arg_a, FLO_type arg_b) +{ + fp_number_type a; + fp_number_type b; + FLO_union_type au, bu; + + au.value = arg_a; + bu.value = arg_b; + + unpack_d (&au, &a); + unpack_d (&bu, &b); + + return __fpcmp_parts (&a, &b); +} +#endif /* L_compare_sf || L_compare_df */ + +/* These should be optimized for their specific tasks someday. */ + +#if defined(L_eq_sf) || defined(L_eq_df) || defined(L_eq_tf) +CMPtype +_eq_f2 (FLO_type arg_a, FLO_type arg_b) +{ + fp_number_type a; + fp_number_type b; + FLO_union_type au, bu; + + au.value = arg_a; + bu.value = arg_b; + + unpack_d (&au, &a); + unpack_d (&bu, &b); + + if (isnan (&a) || isnan (&b)) + return 1; /* false, truth == 0 */ + + return __fpcmp_parts (&a, &b) ; +} +#endif /* L_eq_sf || L_eq_df */ + +#if defined(L_ne_sf) || defined(L_ne_df) || defined(L_ne_tf) +CMPtype +_ne_f2 (FLO_type arg_a, FLO_type arg_b) +{ + fp_number_type a; + fp_number_type b; + FLO_union_type au, bu; + + au.value = arg_a; + bu.value = arg_b; + + unpack_d (&au, &a); + unpack_d (&bu, &b); + + if (isnan (&a) || isnan (&b)) + return 1; /* true, truth != 0 */ + + return __fpcmp_parts (&a, &b) ; +} +#endif /* L_ne_sf || L_ne_df */ + +#if defined(L_gt_sf) || defined(L_gt_df) || defined(L_gt_tf) +CMPtype +_gt_f2 (FLO_type arg_a, FLO_type arg_b) +{ + fp_number_type a; + fp_number_type b; + FLO_union_type au, bu; + + au.value = arg_a; + bu.value = arg_b; + + unpack_d (&au, &a); + unpack_d (&bu, &b); + + if (isnan (&a) || isnan (&b)) + return -1; /* false, truth > 0 */ + + return __fpcmp_parts (&a, &b); +} +#endif /* L_gt_sf || L_gt_df */ + +#if defined(L_ge_sf) || defined(L_ge_df) || defined(L_ge_tf) +CMPtype +_ge_f2 (FLO_type arg_a, FLO_type arg_b) +{ + fp_number_type a; + fp_number_type b; + FLO_union_type au, bu; + + au.value = arg_a; + bu.value = arg_b; + + unpack_d (&au, &a); + unpack_d (&bu, &b); + + if (isnan (&a) || isnan (&b)) + return -1; /* false, truth >= 0 */ + return __fpcmp_parts (&a, &b) ; +} +#endif /* L_ge_sf || L_ge_df */ + +#if defined(L_lt_sf) || defined(L_lt_df) || defined(L_lt_tf) +CMPtype +_lt_f2 (FLO_type arg_a, FLO_type arg_b) +{ + fp_number_type a; + fp_number_type b; + FLO_union_type au, bu; + + au.value = arg_a; + bu.value = arg_b; + + unpack_d (&au, &a); + unpack_d (&bu, &b); + + if (isnan (&a) || isnan (&b)) + return 1; /* false, truth < 0 */ + + return __fpcmp_parts (&a, &b); +} +#endif /* L_lt_sf || L_lt_df */ + +#if defined(L_le_sf) || defined(L_le_df) || defined(L_le_tf) +CMPtype +_le_f2 (FLO_type arg_a, FLO_type arg_b) +{ + fp_number_type a; + fp_number_type b; + FLO_union_type au, bu; + + au.value = arg_a; + bu.value = arg_b; + + unpack_d (&au, &a); + unpack_d (&bu, &b); + + if (isnan (&a) || isnan (&b)) + return 1; /* false, truth <= 0 */ + + return __fpcmp_parts (&a, &b) ; +} +#endif /* L_le_sf || L_le_df */ + +#if defined(L_unord_sf) || defined(L_unord_df) || defined(L_unord_tf) +CMPtype +_unord_f2 (FLO_type arg_a, FLO_type arg_b) +{ + fp_number_type a; + fp_number_type b; + FLO_union_type au, bu; + + au.value = arg_a; + bu.value = arg_b; + + unpack_d (&au, &a); + unpack_d (&bu, &b); + + return (isnan (&a) || isnan (&b)); +} +#endif /* L_unord_sf || L_unord_df */ + +#if defined(L_si_to_sf) || defined(L_si_to_df) || defined(L_si_to_tf) +FLO_type +si_to_float (SItype arg_a) +{ + fp_number_type in; + + in.class = CLASS_NUMBER; + in.sign = arg_a < 0; + if (!arg_a) + { + in.class = CLASS_ZERO; + } + else + { + USItype uarg; + int shift; + in.normal_exp = FRACBITS + NGARDS; + if (in.sign) + { + /* Special case for minint, since there is no +ve integer + representation for it */ + if (arg_a == (- MAX_SI_INT - 1)) + { + return (FLO_type)(- MAX_SI_INT - 1); + } + uarg = (-arg_a); + } + else + uarg = arg_a; + + in.fraction.ll = uarg; + shift = clzusi (uarg) - (BITS_PER_SI - 1 - FRACBITS - NGARDS); + if (shift > 0) + { + in.fraction.ll <<= shift; + in.normal_exp -= shift; + } + } + return pack_d (&in); +} +#endif /* L_si_to_sf || L_si_to_df */ + +#if defined(L_usi_to_sf) || defined(L_usi_to_df) || defined(L_usi_to_tf) +FLO_type +usi_to_float (USItype arg_a) +{ + fp_number_type in; + + in.sign = 0; + if (!arg_a) + { + in.class = CLASS_ZERO; + } + else + { + int shift; + in.class = CLASS_NUMBER; + in.normal_exp = FRACBITS + NGARDS; + in.fraction.ll = arg_a; + + shift = clzusi (arg_a) - (BITS_PER_SI - 1 - FRACBITS - NGARDS); + if (shift < 0) + { + fractype guard = in.fraction.ll & (((fractype)1 << -shift) - 1); + in.fraction.ll >>= -shift; + in.fraction.ll |= (guard != 0); + in.normal_exp -= shift; + } + else if (shift > 0) + { + in.fraction.ll <<= shift; + in.normal_exp -= shift; + } + } + return pack_d (&in); +} +#endif + +#if defined(L_sf_to_si) || defined(L_df_to_si) || defined(L_tf_to_si) +SItype +float_to_si (FLO_type arg_a) +{ + fp_number_type a; + SItype tmp; + FLO_union_type au; + + au.value = arg_a; + unpack_d (&au, &a); + + if (iszero (&a)) + return 0; + if (isnan (&a)) + return 0; + /* get reasonable MAX_SI_INT... */ + if (isinf (&a)) + return a.sign ? (-MAX_SI_INT)-1 : MAX_SI_INT; + /* it is a number, but a small one */ + if (a.normal_exp < 0) + return 0; + if (a.normal_exp > BITS_PER_SI - 2) + return a.sign ? (-MAX_SI_INT)-1 : MAX_SI_INT; + tmp = a.fraction.ll >> ((FRACBITS + NGARDS) - a.normal_exp); + return a.sign ? (-tmp) : (tmp); +} +#endif /* L_sf_to_si || L_df_to_si */ + +#if defined(L_tf_to_usi) +USItype +float_to_usi (FLO_type arg_a) +{ + fp_number_type a; + FLO_union_type au; + + au.value = arg_a; + unpack_d (&au, &a); + + if (iszero (&a)) + return 0; + if (isnan (&a)) + return 0; + /* it is a negative number */ + if (a.sign) + return 0; + /* get reasonable MAX_USI_INT... */ + if (isinf (&a)) + return MAX_USI_INT; + /* it is a number, but a small one */ + if (a.normal_exp < 0) + return 0; + if (a.normal_exp > BITS_PER_SI - 1) + return MAX_USI_INT; + else if (a.normal_exp > (FRACBITS + NGARDS)) + return a.fraction.ll << (a.normal_exp - (FRACBITS + NGARDS)); + else + return a.fraction.ll >> ((FRACBITS + NGARDS) - a.normal_exp); +} +#endif /* L_tf_to_usi */ + +#if defined(L_negate_sf) || defined(L_negate_df) || defined(L_negate_tf) +FLO_type +negate (FLO_type arg_a) +{ + fp_number_type a; + FLO_union_type au; + + au.value = arg_a; + unpack_d (&au, &a); + + flip_sign (&a); + return pack_d (&a); +} +#endif /* L_negate_sf || L_negate_df */ + +#ifdef FLOAT + +#if defined(L_make_sf) +SFtype +__make_fp(fp_class_type class, + unsigned int sign, + int exp, + USItype frac) +{ + fp_number_type in; + + in.class = class; + in.sign = sign; + in.normal_exp = exp; + in.fraction.ll = frac; + return pack_d (&in); +} +#endif /* L_make_sf */ + +#ifndef FLOAT_ONLY + +/* This enables one to build an fp library that supports float but not double. + Otherwise, we would get an undefined reference to __make_dp. + This is needed for some 8-bit ports that can't handle well values that + are 8-bytes in size, so we just don't support double for them at all. */ + +#if defined(L_sf_to_df) +DFtype +sf_to_df (SFtype arg_a) +{ + fp_number_type in; + FLO_union_type au; + + au.value = arg_a; + unpack_d (&au, &in); + + return __make_dp (in.class, in.sign, in.normal_exp, + ((UDItype) in.fraction.ll) << F_D_BITOFF); +} +#endif /* L_sf_to_df */ + +#if defined(L_sf_to_tf) && defined(TMODES) +TFtype +sf_to_tf (SFtype arg_a) +{ + fp_number_type in; + FLO_union_type au; + + au.value = arg_a; + unpack_d (&au, &in); + + return __make_tp (in.class, in.sign, in.normal_exp, + ((UTItype) in.fraction.ll) << F_T_BITOFF); +} +#endif /* L_sf_to_df */ + +#endif /* ! FLOAT_ONLY */ +#endif /* FLOAT */ + +#ifndef FLOAT + +extern SFtype __make_fp (fp_class_type, unsigned int, int, USItype); + +#if defined(L_make_df) +DFtype +__make_dp (fp_class_type class, unsigned int sign, int exp, UDItype frac) +{ + fp_number_type in; + + in.class = class; + in.sign = sign; + in.normal_exp = exp; + in.fraction.ll = frac; + return pack_d (&in); +} +#endif /* L_make_df */ + +#if defined(L_df_to_sf) +SFtype +df_to_sf (DFtype arg_a) +{ + fp_number_type in; + USItype sffrac; + FLO_union_type au; + + au.value = arg_a; + unpack_d (&au, &in); + + sffrac = in.fraction.ll >> F_D_BITOFF; + + /* We set the lowest guard bit in SFFRAC if we discarded any non + zero bits. */ + if ((in.fraction.ll & (((USItype) 1 << F_D_BITOFF) - 1)) != 0) + sffrac |= 1; + + return __make_fp (in.class, in.sign, in.normal_exp, sffrac); +} +#endif /* L_df_to_sf */ + +#if defined(L_df_to_tf) && defined(TMODES) \ + && !defined(FLOAT) && !defined(TFLOAT) +TFtype +df_to_tf (DFtype arg_a) +{ + fp_number_type in; + FLO_union_type au; + + au.value = arg_a; + unpack_d (&au, &in); + + return __make_tp (in.class, in.sign, in.normal_exp, + ((UTItype) in.fraction.ll) << D_T_BITOFF); +} +#endif /* L_sf_to_df */ + +#ifdef TFLOAT +#if defined(L_make_tf) +TFtype +__make_tp(fp_class_type class, + unsigned int sign, + int exp, + UTItype frac) +{ + fp_number_type in; + + in.class = class; + in.sign = sign; + in.normal_exp = exp; + in.fraction.ll = frac; + return pack_d (&in); +} +#endif /* L_make_tf */ + +#if defined(L_tf_to_df) +DFtype +tf_to_df (TFtype arg_a) +{ + fp_number_type in; + UDItype sffrac; + FLO_union_type au; + + au.value = arg_a; + unpack_d (&au, &in); + + sffrac = in.fraction.ll >> D_T_BITOFF; + + /* We set the lowest guard bit in SFFRAC if we discarded any non + zero bits. */ + if ((in.fraction.ll & (((UTItype) 1 << D_T_BITOFF) - 1)) != 0) + sffrac |= 1; + + return __make_dp (in.class, in.sign, in.normal_exp, sffrac); +} +#endif /* L_tf_to_df */ + +#if defined(L_tf_to_sf) +SFtype +tf_to_sf (TFtype arg_a) +{ + fp_number_type in; + USItype sffrac; + FLO_union_type au; + + au.value = arg_a; + unpack_d (&au, &in); + + sffrac = in.fraction.ll >> F_T_BITOFF; + + /* We set the lowest guard bit in SFFRAC if we discarded any non + zero bits. */ + if ((in.fraction.ll & (((UTItype) 1 << F_T_BITOFF) - 1)) != 0) + sffrac |= 1; + + return __make_fp (in.class, in.sign, in.normal_exp, sffrac); +} +#endif /* L_tf_to_sf */ +#endif /* TFLOAT */ + +#endif /* ! FLOAT */ +#endif /* !EXTENDED_FLOAT_STUBS */ |