summaryrefslogtreecommitdiff
path: root/libgfortran/generated/matmul_c4.c
diff options
context:
space:
mode:
authorvictorlei <victorlei@138bc75d-0d04-0410-961f-82ee72b054a4>2004-11-18 08:45:11 +0000
committervictorlei <victorlei@138bc75d-0d04-0410-961f-82ee72b054a4>2004-11-18 08:45:11 +0000
commit4e867f903aef0e97125606c0a6f5b0575ef5a45f (patch)
tree1bf92b09fa37314da9efc3b1c11b7617fadc2eba /libgfortran/generated/matmul_c4.c
parentd1982d82eb67a4ab81876b6e83479ed9158aeef4 (diff)
downloadgcc-4e867f903aef0e97125606c0a6f5b0575ef5a45f.tar.gz
Modified Files:
ChangeLog generated/matmul_c4.c generated/matmul_c8.c generated/matmul_i4.c generated/matmul_i8.c generated/matmul_r4.c generated/matmul_r8.c m4/matmul.m4 2004-11-18 Victor Leikehman <lei@il.ibm.com> * m4/matmul.m4: Loops reordered to improve cache behavior. * generated/matmul_??.c: Regenerated. git-svn-id: svn+ssh://gcc.gnu.org/svn/gcc/trunk@90853 138bc75d-0d04-0410-961f-82ee72b054a4
Diffstat (limited to 'libgfortran/generated/matmul_c4.c')
-rw-r--r--libgfortran/generated/matmul_c4.c154
1 files changed, 94 insertions, 60 deletions
diff --git a/libgfortran/generated/matmul_c4.c b/libgfortran/generated/matmul_c4.c
index 7967e970646..fd265d8b5b1 100644
--- a/libgfortran/generated/matmul_c4.c
+++ b/libgfortran/generated/matmul_c4.c
@@ -21,37 +21,46 @@ Boston, MA 02111-1307, USA. */
#include "config.h"
#include <stdlib.h>
+#include <string.h>
#include <assert.h>
#include "libgfortran.h"
-/* Dimensions: retarray(x,y) a(x, count) b(count,y).
- Either a or b can be rank 1. In this case x or y is 1. */
+/* This is a C version of the following fortran pseudo-code. The key
+ point is the loop order -- we access all arrays column-first, which
+ improves the performance enough to boost galgel spec score by 50%.
+
+ DIMENSION A(M,COUNT), B(COUNT,N), C(M,N)
+ C = 0
+ DO J=1,N
+ DO K=1,COUNT
+ DO I=1,M
+ C(I,J) = C(I,J)+A(I,K)*B(K,J)
+*/
+
void
__matmul_c4 (gfc_array_c4 * retarray, gfc_array_c4 * a, gfc_array_c4 * b)
{
GFC_COMPLEX_4 *abase;
GFC_COMPLEX_4 *bbase;
GFC_COMPLEX_4 *dest;
- GFC_COMPLEX_4 res;
- index_type rxstride;
- index_type rystride;
- index_type xcount;
- index_type ycount;
- index_type xstride;
- index_type ystride;
- index_type x;
- index_type y;
-
- GFC_COMPLEX_4 *pa;
- GFC_COMPLEX_4 *pb;
- index_type astride;
- index_type bstride;
- index_type count;
- index_type n;
+
+ index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
+ index_type x, y, n, count, xcount, ycount;
assert (GFC_DESCRIPTOR_RANK (a) == 2
|| GFC_DESCRIPTOR_RANK (b) == 2);
+/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
+
+ Either A or B (but not both) can be rank 1:
+
+ o One-dimensional argument A is implicitly treated as a row matrix
+ dimensioned [1,count], so xcount=1.
+
+ o One-dimensional argument B is implicitly treated as a column matrix
+ dimensioned [count, 1], so ycount=1.
+ */
+
if (retarray->data == NULL)
{
if (GFC_DESCRIPTOR_RANK (a) == 1)
@@ -95,8 +104,10 @@ __matmul_c4 (gfc_array_c4 * retarray, gfc_array_c4 * a, gfc_array_c4 * b)
if (GFC_DESCRIPTOR_RANK (retarray) == 1)
{
- rxstride = retarray->dim[0].stride;
- rystride = rxstride;
+ /* One-dimensional result may be addressed in the code below
+ either as a row or a column matrix. We want both cases to
+ work. */
+ rxstride = rystride = retarray->dim[0].stride;
}
else
{
@@ -104,65 +115,88 @@ __matmul_c4 (gfc_array_c4 * retarray, gfc_array_c4 * a, gfc_array_c4 * b)
rystride = retarray->dim[1].stride;
}
- /* If we have rank 1 parameters, zero the absent stride, and set the size to
- one. */
+
if (GFC_DESCRIPTOR_RANK (a) == 1)
{
- astride = a->dim[0].stride;
- count = a->dim[0].ubound + 1 - a->dim[0].lbound;
- xstride = 0;
- rxstride = 0;
+ /* Treat it as a a row matrix A[1,count]. */
+ axstride = a->dim[0].stride;
+ aystride = 1;
+
xcount = 1;
+ count = a->dim[0].ubound + 1 - a->dim[0].lbound;
}
else
{
- astride = a->dim[1].stride;
+ axstride = a->dim[0].stride;
+ aystride = a->dim[1].stride;
+
count = a->dim[1].ubound + 1 - a->dim[1].lbound;
- xstride = a->dim[0].stride;
xcount = a->dim[0].ubound + 1 - a->dim[0].lbound;
}
+
+ assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound);
+
if (GFC_DESCRIPTOR_RANK (b) == 1)
{
- bstride = b->dim[0].stride;
- assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound);
- ystride = 0;
- rystride = 0;
+ /* Treat it as a column matrix B[count,1] */
+ bxstride = b->dim[0].stride;
+
+ /* bystride should never be used for 1-dimensional b.
+ in case it is we want it to cause a segfault, rather than
+ an incorrect result. */
+ bystride = 0xDEADBEEF;
ycount = 1;
}
else
{
- bstride = b->dim[0].stride;
- assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound);
- ystride = b->dim[1].stride;
+ bxstride = b->dim[0].stride;
+ bystride = b->dim[1].stride;
ycount = b->dim[1].ubound + 1 - b->dim[1].lbound;
}
- for (y = 0; y < ycount; y++)
+ assert (a->base == 0);
+ assert (b->base == 0);
+ assert (retarray->base == 0);
+
+ abase = a->data;
+ bbase = b->data;
+ dest = retarray->data;
+
+ if (rxstride == 1 && axstride == 1 && bxstride == 1)
{
- for (x = 0; x < xcount; x++)
- {
- /* Do the summation for this element. For real and integer types
- this is the same as DOT_PRODUCT. For complex types we use do
- a*b, not conjg(a)*b. */
- pa = abase;
- pb = bbase;
- res = 0;
-
- for (n = 0; n < count; n++)
- {
- res += *pa * *pb;
- pa += astride;
- pb += bstride;
- }
-
- *dest = res;
-
- dest += rxstride;
- abase += xstride;
- }
- abase -= xstride * xcount;
- bbase += ystride;
- dest += rystride - (rxstride * xcount);
+ GFC_COMPLEX_4 *bbase_y;
+ GFC_COMPLEX_4 *dest_y;
+ GFC_COMPLEX_4 *abase_n;
+ GFC_COMPLEX_4 bbase_yn;
+
+ memset (dest, 0, (sizeof (GFC_COMPLEX_4) * size0(retarray)));
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = bbase + y*bystride;
+ dest_y = dest + y*rystride;
+ for (n = 0; n < count; n++)
+ {
+ abase_n = abase + n*aystride;
+ bbase_yn = bbase_y[n];
+ for (x = 0; x < xcount; x++)
+ {
+ dest_y[x] += abase_n[x] * bbase_yn;
+ }
+ }
+ }
+ }
+ else
+ {
+ for (y = 0; y < ycount; y++)
+ for (x = 0; x < xcount; x++)
+ dest[x*rxstride + y*rystride] = (GFC_COMPLEX_4)0;
+
+ for (y = 0; y < ycount; y++)
+ for (n = 0; n < count; n++)
+ for (x = 0; x < xcount; x++)
+ /* dest[x,y] += a[x,n] * b[n,y] */
+ dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride];
}
}