diff options
author | Ian Lance Taylor <iant@golang.org> | 2017-09-14 17:11:35 +0000 |
---|---|---|
committer | Ian Lance Taylor <ian@gcc.gnu.org> | 2017-09-14 17:11:35 +0000 |
commit | bc998d034f45d1828a8663b2eed928faf22a7d01 (patch) | |
tree | 8d262a22ca7318f4bcd64269fe8fe9e45bcf8d0f /libgo/go/runtime/cpuprof.go | |
parent | a41a6142df74219f596e612d3a7775f68ca6e96f (diff) | |
download | gcc-bc998d034f45d1828a8663b2eed928faf22a7d01.tar.gz |
libgo: update to go1.9
Reviewed-on: https://go-review.googlesource.com/63753
From-SVN: r252767
Diffstat (limited to 'libgo/go/runtime/cpuprof.go')
-rw-r--r-- | libgo/go/runtime/cpuprof.go | 501 |
1 files changed, 129 insertions, 372 deletions
diff --git a/libgo/go/runtime/cpuprof.go b/libgo/go/runtime/cpuprof.go index e1206f99f10..b031b1a5e75 100644 --- a/libgo/go/runtime/cpuprof.go +++ b/libgo/go/runtime/cpuprof.go @@ -3,118 +3,45 @@ // license that can be found in the LICENSE file. // CPU profiling. -// Based on algorithms and data structures used in -// https://github.com/google/pprof. -// -// The main difference between this code and the google-perftools -// code is that this code is written to allow copying the profile data -// to an arbitrary io.Writer, while the google-perftools code always -// writes to an operating system file. // // The signal handler for the profiling clock tick adds a new stack trace -// to a hash table tracking counts for recent traces. Most clock ticks -// hit in the cache. In the event of a cache miss, an entry must be -// evicted from the hash table, copied to a log that will eventually be -// written as profile data. The google-perftools code flushed the -// log itself during the signal handler. This code cannot do that, because -// the io.Writer might block or need system calls or locks that are not -// safe to use from within the signal handler. Instead, we split the log -// into two halves and let the signal handler fill one half while a goroutine -// is writing out the other half. When the signal handler fills its half, it -// offers to swap with the goroutine. If the writer is not done with its half, -// we lose the stack trace for this clock tick (and record that loss). -// The goroutine interacts with the signal handler by calling getprofile() to -// get the next log piece to write, implicitly handing back the last log -// piece it obtained. -// -// The state of this dance between the signal handler and the goroutine -// is encoded in the Profile.handoff field. If handoff == 0, then the goroutine -// is not using either log half and is waiting (or will soon be waiting) for -// a new piece by calling notesleep(&p.wait). If the signal handler -// changes handoff from 0 to non-zero, it must call notewakeup(&p.wait) -// to wake the goroutine. The value indicates the number of entries in the -// log half being handed off. The goroutine leaves the non-zero value in -// place until it has finished processing the log half and then flips the number -// back to zero. Setting the high bit in handoff means that the profiling is over, -// and the goroutine is now in charge of flushing the data left in the hash table -// to the log and returning that data. -// -// The handoff field is manipulated using atomic operations. -// For the most part, the manipulation of handoff is orderly: if handoff == 0 -// then the signal handler owns it and can change it to non-zero. -// If handoff != 0 then the goroutine owns it and can change it to zero. -// If that were the end of the story then we would not need to manipulate -// handoff using atomic operations. The operations are needed, however, -// in order to let the log closer set the high bit to indicate "EOF" safely -// in the situation when normally the goroutine "owns" handoff. +// to a log of recent traces. The log is read by a user goroutine that +// turns it into formatted profile data. If the reader does not keep up +// with the log, those writes will be recorded as a count of lost records. +// The actual profile buffer is in profbuf.go. package runtime import ( "runtime/internal/atomic" + "runtime/internal/sys" "unsafe" ) -const ( - numBuckets = 1 << 10 - logSize = 1 << 17 - assoc = 4 - maxCPUProfStack = 64 -) +const maxCPUProfStack = 64 -type cpuprofEntry struct { - count uintptr - depth int - stack [maxCPUProfStack]uintptr -} - -//go:notinheap type cpuProfile struct { - on bool // profiling is on - wait note // goroutine waits here - count uintptr // tick count - evicts uintptr // eviction count - lost uintptr // lost ticks that need to be logged - - // Active recent stack traces. - hash [numBuckets]struct { - entry [assoc]cpuprofEntry - } - - // Log of traces evicted from hash. - // Signal handler has filled log[toggle][:nlog]. - // Goroutine is writing log[1-toggle][:handoff]. - log [2][logSize / 2]uintptr - nlog int - toggle int32 - handoff uint32 - - // Writer state. - // Writer maintains its own toggle to avoid races - // looking at signal handler's toggle. - wtoggle uint32 - wholding bool // holding & need to release a log half - flushing bool // flushing hash table - profile is over - eodSent bool // special end-of-data record sent; => flushing + lock mutex + on bool // profiling is on + log *profBuf // profile events written here + + // extra holds extra stacks accumulated in addNonGo + // corresponding to profiling signals arriving on + // non-Go-created threads. Those stacks are written + // to log the next time a normal Go thread gets the + // signal handler. + // Assuming the stacks are 2 words each (we don't get + // a full traceback from those threads), plus one word + // size for framing, 100 Hz profiling would generate + // 300 words per second. + // Hopefully a normal Go thread will get the profiling + // signal at least once every few seconds. + extra [1000]uintptr + numExtra int + lostExtra uint64 // count of frames lost because extra is full } -var ( - cpuprofLock mutex - cpuprof *cpuProfile - - eod = [3]uintptr{0, 1, 0} -) - -func setcpuprofilerate(hz int32) { - systemstack(func() { - setcpuprofilerate_m(hz) - }) -} - -// lostProfileData is a no-op function used in profiles -// to mark the number of profiling stack traces that were -// discarded due to slow data writers. -func lostProfileData() {} +var cpuprof cpuProfile // SetCPUProfileRate sets the CPU profiling rate to hz samples per second. // If hz <= 0, SetCPUProfileRate turns off profiling. @@ -132,323 +59,153 @@ func SetCPUProfileRate(hz int) { hz = 1000000 } - lock(&cpuprofLock) + lock(&cpuprof.lock) if hz > 0 { - if cpuprof == nil { - cpuprof = (*cpuProfile)(sysAlloc(unsafe.Sizeof(cpuProfile{}), &memstats.other_sys)) - if cpuprof == nil { - print("runtime: cpu profiling cannot allocate memory\n") - unlock(&cpuprofLock) - return - } - } - if cpuprof.on || cpuprof.handoff != 0 { + if cpuprof.on || cpuprof.log != nil { print("runtime: cannot set cpu profile rate until previous profile has finished.\n") - unlock(&cpuprofLock) + unlock(&cpuprof.lock) return } cpuprof.on = true - // pprof binary header format. - // https://github.com/gperftools/gperftools/blob/master/src/profiledata.cc#L119 - p := &cpuprof.log[0] - p[0] = 0 // count for header - p[1] = 3 // depth for header - p[2] = 0 // version number - p[3] = uintptr(1e6 / hz) // period (microseconds) - p[4] = 0 - cpuprof.nlog = 5 - cpuprof.toggle = 0 - cpuprof.wholding = false - cpuprof.wtoggle = 0 - cpuprof.flushing = false - cpuprof.eodSent = false - noteclear(&cpuprof.wait) - + cpuprof.log = newProfBuf(1, 1<<17, 1<<14) + hdr := [1]uint64{uint64(hz)} + cpuprof.log.write(nil, nanotime(), hdr[:], nil) setcpuprofilerate(int32(hz)) - } else if cpuprof != nil && cpuprof.on { + } else if cpuprof.on { setcpuprofilerate(0) cpuprof.on = false - - // Now add is not running anymore, and getprofile owns the entire log. - // Set the high bit in cpuprof.handoff to tell getprofile. - for { - n := cpuprof.handoff - if n&0x80000000 != 0 { - print("runtime: setcpuprofile(off) twice\n") - } - if atomic.Cas(&cpuprof.handoff, n, n|0x80000000) { - if n == 0 { - // we did the transition from 0 -> nonzero so we wake getprofile - notewakeup(&cpuprof.wait) - } - break - } - } + cpuprof.addExtra() + cpuprof.log.close() } - unlock(&cpuprofLock) + unlock(&cpuprof.lock) } // add adds the stack trace to the profile. // It is called from signal handlers and other limited environments // and cannot allocate memory or acquire locks that might be // held at the time of the signal, nor can it use substantial amounts -// of stack. It is allowed to call evict. +// of stack. //go:nowritebarrierrec -func (p *cpuProfile) add(pc []uintptr) { - p.addWithFlushlog(pc, p.flushlog) -} - -// addWithFlushlog implements add and addNonGo. -// It is called from signal handlers and other limited environments -// and cannot allocate memory or acquire locks that might be -// held at the time of the signal, nor can it use substantial amounts -// of stack. It may be called by a signal handler with no g or m. -// It is allowed to call evict, passing the flushlog parameter. -//go:nosplit -//go:nowritebarrierrec -func (p *cpuProfile) addWithFlushlog(pc []uintptr, flushlog func() bool) { - if len(pc) > maxCPUProfStack { - pc = pc[:maxCPUProfStack] - } - - // Compute hash. - h := uintptr(0) - for _, x := range pc { - h = h<<8 | (h >> (8 * (unsafe.Sizeof(h) - 1))) - h += x * 41 +func (p *cpuProfile) add(gp *g, stk []uintptr) { + // Simple cas-lock to coordinate with setcpuprofilerate. + for !atomic.Cas(&prof.signalLock, 0, 1) { + osyield() } - p.count++ - // Add to entry count if already present in table. - b := &p.hash[h%numBuckets] -Assoc: - for i := range b.entry { - e := &b.entry[i] - if e.depth != len(pc) { - continue - } - for j := range pc { - if e.stack[j] != pc[j] { - continue Assoc - } + if prof.hz != 0 { // implies cpuprof.log != nil + if p.numExtra > 0 || p.lostExtra > 0 { + p.addExtra() } - e.count++ - return + hdr := [1]uint64{1} + // Note: write "knows" that the argument is &gp.labels, + // because otherwise its write barrier behavior may not + // be correct. See the long comment there before + // changing the argument here. + cpuprof.log.write(&gp.labels, nanotime(), hdr[:], stk) } - // Evict entry with smallest count. - var e *cpuprofEntry - for i := range b.entry { - if e == nil || b.entry[i].count < e.count { - e = &b.entry[i] - } - } - if e.count > 0 { - if !p.evict(e, flushlog) { - // Could not evict entry. Record lost stack. - p.lost++ - return - } - p.evicts++ - } - - // Reuse the newly evicted entry. - e.depth = len(pc) - e.count = 1 - copy(e.stack[:], pc) + atomic.Store(&prof.signalLock, 0) } -// evict copies the given entry's data into the log, so that -// the entry can be reused. evict is called from add, which -// is called from the profiling signal handler, so it must not -// allocate memory or block, and it may be called with no g or m. -// It is safe to call flushlog. evict returns true if the entry was -// copied to the log, false if there was no room available. +// addNonGo adds the non-Go stack trace to the profile. +// It is called from a non-Go thread, so we cannot use much stack at all, +// nor do anything that needs a g or an m. +// In particular, we can't call cpuprof.log.write. +// Instead, we copy the stack into cpuprof.extra, +// which will be drained the next time a Go thread +// gets the signal handling event. //go:nosplit //go:nowritebarrierrec -func (p *cpuProfile) evict(e *cpuprofEntry, flushlog func() bool) bool { - d := e.depth - nslot := d + 2 - log := &p.log[p.toggle] - if p.nlog+nslot > len(log) { - if !flushlog() { - return false - } - log = &p.log[p.toggle] - } - - q := p.nlog - log[q] = e.count - q++ - log[q] = uintptr(d) - q++ - copy(log[q:], e.stack[:d]) - q += d - p.nlog = q - e.count = 0 - return true -} - -// flushlog tries to flush the current log and switch to the other one. -// flushlog is called from evict, called from add, called from the signal handler, -// so it cannot allocate memory or block. It can try to swap logs with -// the writing goroutine, as explained in the comment at the top of this file. -//go:nowritebarrierrec -func (p *cpuProfile) flushlog() bool { - if !atomic.Cas(&p.handoff, 0, uint32(p.nlog)) { - return false +func (p *cpuProfile) addNonGo(stk []uintptr) { + // Simple cas-lock to coordinate with SetCPUProfileRate. + // (Other calls to add or addNonGo should be blocked out + // by the fact that only one SIGPROF can be handled by the + // process at a time. If not, this lock will serialize those too.) + for !atomic.Cas(&prof.signalLock, 0, 1) { + osyield() } - notewakeup(&p.wait) - p.toggle = 1 - p.toggle - log := &p.log[p.toggle] - q := 0 - if p.lost > 0 { - lostPC := funcPC(lostProfileData) - log[0] = p.lost - log[1] = 1 - log[2] = lostPC - q = 3 - p.lost = 0 + if cpuprof.numExtra+1+len(stk) < len(cpuprof.extra) { + i := cpuprof.numExtra + cpuprof.extra[i] = uintptr(1 + len(stk)) + copy(cpuprof.extra[i+1:], stk) + cpuprof.numExtra += 1 + len(stk) + } else { + cpuprof.lostExtra++ } - p.nlog = q - return true -} -// addNonGo is like add, but runs on a non-Go thread. -// It can't do anything that might need a g or an m. -// With this entry point, we don't try to flush the log when evicting an -// old entry. Instead, we just drop the stack trace if we're out of space. -//go:nosplit -//go:nowritebarrierrec -func (p *cpuProfile) addNonGo(pc []uintptr) { - p.addWithFlushlog(pc, func() bool { return false }) + atomic.Store(&prof.signalLock, 0) } -// getprofile blocks until the next block of profiling data is available -// and returns it as a []byte. It is called from the writing goroutine. -func (p *cpuProfile) getprofile() []byte { - if p == nil { - return nil - } - - if p.wholding { - // Release previous log to signal handling side. - // Loop because we are racing against SetCPUProfileRate(0). - for { - n := p.handoff - if n == 0 { - print("runtime: phase error during cpu profile handoff\n") - return nil - } - if n&0x80000000 != 0 { - p.wtoggle = 1 - p.wtoggle - p.wholding = false - p.flushing = true - goto Flush - } - if atomic.Cas(&p.handoff, n, 0) { - break - } - } - p.wtoggle = 1 - p.wtoggle - p.wholding = false - } - - if p.flushing { - goto Flush - } - - if !p.on && p.handoff == 0 { - return nil - } - - // Wait for new log. - notetsleepg(&p.wait, -1) - noteclear(&p.wait) - - switch n := p.handoff; { - case n == 0: - print("runtime: phase error during cpu profile wait\n") - return nil - case n == 0x80000000: - p.flushing = true - goto Flush - default: - n &^= 0x80000000 - - // Return new log to caller. - p.wholding = true - - return uintptrBytes(p.log[p.wtoggle][:n]) - } - - // In flush mode. - // Add is no longer being called. We own the log. - // Also, p.handoff is non-zero, so flushlog will return false. - // Evict the hash table into the log and return it. -Flush: - for i := range p.hash { - b := &p.hash[i] - for j := range b.entry { - e := &b.entry[j] - if e.count > 0 && !p.evict(e, p.flushlog) { - // Filled the log. Stop the loop and return what we've got. - break Flush - } +// addExtra adds the "extra" profiling events, +// queued by addNonGo, to the profile log. +// addExtra is called either from a signal handler on a Go thread +// or from an ordinary goroutine; either way it can use stack +// and has a g. The world may be stopped, though. +func (p *cpuProfile) addExtra() { + // Copy accumulated non-Go profile events. + hdr := [1]uint64{1} + for i := 0; i < p.numExtra; { + p.log.write(nil, 0, hdr[:], p.extra[i+1:i+int(p.extra[i])]) + i += int(p.extra[i]) + } + p.numExtra = 0 + + // Report any lost events. + if p.lostExtra > 0 { + hdr := [1]uint64{p.lostExtra} + lostStk := [2]uintptr{ + funcPC(_LostExternalCode) + sys.PCQuantum, + funcPC(_ExternalCode) + sys.PCQuantum, } + cpuprof.log.write(nil, 0, hdr[:], lostStk[:]) } - - // Return pending log data. - if p.nlog > 0 { - // Note that we're using toggle now, not wtoggle, - // because we're working on the log directly. - n := p.nlog - p.nlog = 0 - return uintptrBytes(p.log[p.toggle][:n]) - } - - // Made it through the table without finding anything to log. - if !p.eodSent { - // We may not have space to append this to the partial log buf, - // so we always return a new slice for the end-of-data marker. - p.eodSent = true - return uintptrBytes(eod[:]) - } - - // Finally done. Clean up and return nil. - p.flushing = false - if !atomic.Cas(&p.handoff, p.handoff, 0) { - print("runtime: profile flush racing with something\n") - } - return nil } -func uintptrBytes(p []uintptr) (ret []byte) { - pp := (*slice)(unsafe.Pointer(&p)) - rp := (*slice)(unsafe.Pointer(&ret)) - - rp.array = pp.array - rp.len = pp.len * int(unsafe.Sizeof(p[0])) - rp.cap = rp.len - - return +func (p *cpuProfile) addLostAtomic64(count uint64) { + hdr := [1]uint64{count} + lostStk := [2]uintptr{ + funcPC(_LostSIGPROFDuringAtomic64) + sys.PCQuantum, + funcPC(_System) + sys.PCQuantum, + } + cpuprof.log.write(nil, 0, hdr[:], lostStk[:]) } -// CPUProfile returns the next chunk of binary CPU profiling stack trace data, -// blocking until data is available. If profiling is turned off and all the profile -// data accumulated while it was on has been returned, CPUProfile returns nil. -// The caller must save the returned data before calling CPUProfile again. +// CPUProfile panics. +// It formerly provided raw access to chunks of +// a pprof-format profile generated by the runtime. +// The details of generating that format have changed, +// so this functionality has been removed. // -// Most clients should use the runtime/pprof package or -// the testing package's -test.cpuprofile flag instead of calling -// CPUProfile directly. +// Deprecated: use the runtime/pprof package, +// or the handlers in the net/http/pprof package, +// or the testing package's -test.cpuprofile flag instead. func CPUProfile() []byte { - return cpuprof.getprofile() + panic("CPUProfile no longer available") } //go:linkname runtime_pprof_runtime_cyclesPerSecond runtime_pprof.runtime_cyclesPerSecond func runtime_pprof_runtime_cyclesPerSecond() int64 { return tickspersecond() } + +// readProfile, provided to runtime/pprof, returns the next chunk of +// binary CPU profiling stack trace data, blocking until data is available. +// If profiling is turned off and all the profile data accumulated while it was +// on has been returned, readProfile returns eof=true. +// The caller must save the returned data and tags before calling readProfile again. +// +//go:linkname runtime_pprof_readProfile runtime_pprof.readProfile +func runtime_pprof_readProfile() ([]uint64, []unsafe.Pointer, bool) { + lock(&cpuprof.lock) + log := cpuprof.log + unlock(&cpuprof.lock) + data, tags, eof := log.read(profBufBlocking) + if len(data) == 0 && eof { + lock(&cpuprof.lock) + cpuprof.log = nil + unlock(&cpuprof.lock) + } + return data, tags, eof +} |