summaryrefslogtreecommitdiff
path: root/libquadmath/math/erfq.c
diff options
context:
space:
mode:
authorburnus <burnus@138bc75d-0d04-0410-961f-82ee72b054a4>2010-11-16 21:23:19 +0000
committerburnus <burnus@138bc75d-0d04-0410-961f-82ee72b054a4>2010-11-16 21:23:19 +0000
commit87969c8c8b36df7b629b962028b668d7ede7321c (patch)
treee26ad385cfada5f1f2c55f92057a0259de8b98d2 /libquadmath/math/erfq.c
parent6ef8d12f7e0db62100394a870efefae4c20f74f7 (diff)
downloadgcc-87969c8c8b36df7b629b962028b668d7ede7321c.tar.gz
/
2010-11-13 Francois-Xavier Coudert <fxcoudert@gcc.gnu.org> Tobias Burnus <burnus@net-b.de> PR fortran/32049 * Makefile.def: Add libquadmath; build it with language=fortran. * configure.ac: Add libquadmath. * Makefile.tpl: Handle multiple libs in check-[+language+]. * Makefile.in: Regenerate. * configure: Regenerate. libquadmath/ 2010-11-13 Francois-Xavier Coudert <fxcoudert@gcc.gnu.org> Tobias Burnus <burnus@net-b.de> PR fortran/32049 Initial implementation and checkin. gcc/fortran/ 2010-11-13 Francois-Xavier Coudert <fxcoudert@gcc.gnu.org> Tobias Burnus <burnus@net-b.de> PR fortran/32049 * gfortranspec.c (find_spec_file): New function. (lang_specific_driver): Try to find .spec file and use it. * trans-io.c (iocall): Define * IOCALL_X_REAL128/COMPLEX128(,write). (gfc_build_io_library_fndecls): Build decl for __float128 I/O. (transfer_expr): Call __float128 I/O functions. * trans-types.c (gfc_init_kinds): Allow kind-16 belonging to __float128. gcc/testsuite/ 2010-11-13 Francois-Xavier Coudert <fxcoudert@gcc.gnu.org> Tobias Burnus <burnus@net-b.de> PR fortran/32049 * gfortran.dg/quad_1.f90: New. * lib/gcc-defs.exp (gcc-set-multilib-library-path): Use also compiler arguments. * lib/gfortran.exp (gfortran_link_flags): Add libquadmath to library search path; call gcc-set-multilib-library-path with arguments such that libgfortran.spec is found. (gfortran_init): Add path for libgfortran.spec to GFORTRAN_UNDER_TEST. libgomp/ 2010-11-13 Francois-Xavier Coudert <fxcoudert@gcc.gnu.org> Tobias Burnus <burnus@net-b.de> PR fortran/32049 * configure.ac: * configure: Regenerate. libgfortran/ 2010-11-13 Francois-Xavier Coudert <fxcoudert@gcc.gnu.org> Tobias Burnus <burnus@net-b.de> PR fortran/32049 * Makefile.am: Add missing pow_r16_i4.c, add transfer128.c, link libquadmath, if used. * acinclude.m4 (LIBGFOR_CHECK_FLOAT128): Add. * configure.ac: Use it, touch spec file. * gfortran.map: Add pow_r16_i4 and transfer_(real,complex)128(,write) functions. * intrinsics/cshift0.c (cshift0): Handle __float128 type. * intrinsics/erfc_scaled_inc.c: Ditto. * intrinsics/pack_generic.c (pack): Ditto * intrinsics/spread_generic.c (spread): Ditto. * intrinsics/unpack_generic.c (unpack1): Ditto. * io/read.c (convert_real): Ditto. * io/transfer.c: Update comments. * io/transfer128.c: New file. * io/write_float.def (write_float): Handle __float128 type. * libgfortran.h: #include quadmath_weak.h, define __builtin_infq and nanq. * m4/mtype.m4: Handle __float128 type. * runtime/in_pack_generic.c (internal_pack): Ditto. * runtime/in_unpack_generic.c (internal_unpack): Ditto. * kinds-override.h: New file. * libgfortran.spec.in: Ditto. * generated/pow_r16_i4.c: Generated. * Makefile.in: Regenerate. * configure: Regenerate. * config.h: Regenerate. * bessel_r10.c: Regenerate. * bessel_r16.c: Regenerate. * bessel_r4.c: Regenerate. * bessel_r8.c: Regenerate. * exponent_r16.c: Regenerate. * fraction_r16.c: Regenerate. * nearest_r16.c: Regenerate. * norm2_r10.c: Regenerate. * norm2_r16.c: Regenerate. * norm2_r4.c: Regenerate. * norm2_r8.c: Regenerate. * rrspacing_r16.c: Regenerate. * set_exponent_r16.c: Regenerate. * spacing_r16.c: Regenerate. git-svn-id: svn+ssh://gcc.gnu.org/svn/gcc/trunk@166825 138bc75d-0d04-0410-961f-82ee72b054a4
Diffstat (limited to 'libquadmath/math/erfq.c')
-rw-r--r--libquadmath/math/erfq.c935
1 files changed, 935 insertions, 0 deletions
diff --git a/libquadmath/math/erfq.c b/libquadmath/math/erfq.c
new file mode 100644
index 00000000000..50db88ae821
--- /dev/null
+++ b/libquadmath/math/erfq.c
@@ -0,0 +1,935 @@
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+/* Modifications and expansions for 128-bit long double are
+ Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
+ and are incorporated herein by permission of the author. The author
+ reserves the right to distribute this material elsewhere under different
+ copying permissions. These modifications are distributed here under
+ the following terms:
+
+ This library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Lesser General Public
+ License as published by the Free Software Foundation; either
+ version 2.1 of the License, or (at your option) any later version.
+
+ This library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Lesser General Public License for more details.
+
+ You should have received a copy of the GNU Lesser General Public
+ License along with this library; if not, write to the Free Software
+ Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
+
+/* double erf(double x)
+ * double erfc(double x)
+ * x
+ * 2 |\
+ * erf(x) = --------- | exp(-t*t)dt
+ * sqrt(pi) \|
+ * 0
+ *
+ * erfc(x) = 1-erf(x)
+ * Note that
+ * erf(-x) = -erf(x)
+ * erfc(-x) = 2 - erfc(x)
+ *
+ * Method:
+ * 1. erf(x) = x + x*R(x^2) for |x| in [0, 7/8]
+ * Remark. The formula is derived by noting
+ * erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
+ * and that
+ * 2/sqrt(pi) = 1.128379167095512573896158903121545171688
+ * is close to one.
+ *
+ * 1a. erf(x) = 1 - erfc(x), for |x| > 1.0
+ * erfc(x) = 1 - erf(x) if |x| < 1/4
+ *
+ * 2. For |x| in [7/8, 1], let s = |x| - 1, and
+ * c = 0.84506291151 rounded to single (24 bits)
+ * erf(s + c) = sign(x) * (c + P1(s)/Q1(s))
+ * Remark: here we use the taylor series expansion at x=1.
+ * erf(1+s) = erf(1) + s*Poly(s)
+ * = 0.845.. + P1(s)/Q1(s)
+ * Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
+ *
+ * 3. For x in [1/4, 5/4],
+ * erfc(s + const) = erfc(const) + s P1(s)/Q1(s)
+ * for const = 1/4, 3/8, ..., 9/8
+ * and 0 <= s <= 1/8 .
+ *
+ * 4. For x in [5/4, 107],
+ * erfc(x) = (1/x)*exp(-x*x-0.5625 + R(z))
+ * z=1/x^2
+ * The interval is partitioned into several segments
+ * of width 1/8 in 1/x.
+ *
+ * Note1:
+ * To compute exp(-x*x-0.5625+R/S), let s be a single
+ * precision number and s := x; then
+ * -x*x = -s*s + (s-x)*(s+x)
+ * exp(-x*x-0.5626+R/S) =
+ * exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);
+ * Note2:
+ * Here 4 and 5 make use of the asymptotic series
+ * exp(-x*x)
+ * erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) )
+ * x*sqrt(pi)
+ *
+ * 5. For inf > x >= 107
+ * erf(x) = sign(x) *(1 - tiny) (raise inexact)
+ * erfc(x) = tiny*tiny (raise underflow) if x > 0
+ * = 2 - tiny if x<0
+ *
+ * 7. Special case:
+ * erf(0) = 0, erf(inf) = 1, erf(-inf) = -1,
+ * erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
+ * erfc/erf(NaN) is NaN
+ */
+
+#include "quadmath-imp.h"
+
+
+
+__float128 erfcq (__float128);
+
+
+/* Evaluate P[n] x^n + P[n-1] x^(n-1) + ... + P[0] */
+
+static __float128
+neval (__float128 x, const __float128 *p, int n)
+{
+ __float128 y;
+
+ p += n;
+ y = *p--;
+ do
+ {
+ y = y * x + *p--;
+ }
+ while (--n > 0);
+ return y;
+}
+
+
+/* Evaluate x^n+1 + P[n] x^(n) + P[n-1] x^(n-1) + ... + P[0] */
+
+static __float128
+deval (__float128 x, const __float128 *p, int n)
+{
+ __float128 y;
+
+ p += n;
+ y = x + *p--;
+ do
+ {
+ y = y * x + *p--;
+ }
+ while (--n > 0);
+ return y;
+}
+
+
+
+static const __float128
+tiny = 1e-4931Q,
+ half = 0.5Q,
+ one = 1.0Q,
+ two = 2.0Q,
+ /* 2/sqrt(pi) - 1 */
+ efx = 1.2837916709551257389615890312154517168810E-1Q,
+ /* 8 * (2/sqrt(pi) - 1) */
+ efx8 = 1.0270333367641005911692712249723613735048E0Q;
+
+
+/* erf(x) = x + x R(x^2)
+ 0 <= x <= 7/8
+ Peak relative error 1.8e-35 */
+#define NTN1 8
+static const __float128 TN1[NTN1 + 1] =
+{
+ -3.858252324254637124543172907442106422373E10Q,
+ 9.580319248590464682316366876952214879858E10Q,
+ 1.302170519734879977595901236693040544854E10Q,
+ 2.922956950426397417800321486727032845006E9Q,
+ 1.764317520783319397868923218385468729799E8Q,
+ 1.573436014601118630105796794840834145120E7Q,
+ 4.028077380105721388745632295157816229289E5Q,
+ 1.644056806467289066852135096352853491530E4Q,
+ 3.390868480059991640235675479463287886081E1Q
+};
+#define NTD1 8
+static const __float128 TD1[NTD1 + 1] =
+{
+ -3.005357030696532927149885530689529032152E11Q,
+ -1.342602283126282827411658673839982164042E11Q,
+ -2.777153893355340961288511024443668743399E10Q,
+ -3.483826391033531996955620074072768276974E9Q,
+ -2.906321047071299585682722511260895227921E8Q,
+ -1.653347985722154162439387878512427542691E7Q,
+ -6.245520581562848778466500301865173123136E5Q,
+ -1.402124304177498828590239373389110545142E4Q,
+ -1.209368072473510674493129989468348633579E2Q
+/* 1.0E0 */
+};
+
+
+/* erf(z+1) = erf_const + P(z)/Q(z)
+ -.125 <= z <= 0
+ Peak relative error 7.3e-36 */
+static const __float128 erf_const = 0.845062911510467529296875Q;
+#define NTN2 8
+static const __float128 TN2[NTN2 + 1] =
+{
+ -4.088889697077485301010486931817357000235E1Q,
+ 7.157046430681808553842307502826960051036E3Q,
+ -2.191561912574409865550015485451373731780E3Q,
+ 2.180174916555316874988981177654057337219E3Q,
+ 2.848578658049670668231333682379720943455E2Q,
+ 1.630362490952512836762810462174798925274E2Q,
+ 6.317712353961866974143739396865293596895E0Q,
+ 2.450441034183492434655586496522857578066E1Q,
+ 5.127662277706787664956025545897050896203E-1Q
+};
+#define NTD2 8
+static const __float128 TD2[NTD2 + 1] =
+{
+ 1.731026445926834008273768924015161048885E4Q,
+ 1.209682239007990370796112604286048173750E4Q,
+ 1.160950290217993641320602282462976163857E4Q,
+ 5.394294645127126577825507169061355698157E3Q,
+ 2.791239340533632669442158497532521776093E3Q,
+ 8.989365571337319032943005387378993827684E2Q,
+ 2.974016493766349409725385710897298069677E2Q,
+ 6.148192754590376378740261072533527271947E1Q,
+ 1.178502892490738445655468927408440847480E1Q
+ /* 1.0E0 */
+};
+
+
+/* erfc(x + 0.25) = erfc(0.25) + x R(x)
+ 0 <= x < 0.125
+ Peak relative error 1.4e-35 */
+#define NRNr13 8
+static const __float128 RNr13[NRNr13 + 1] =
+{
+ -2.353707097641280550282633036456457014829E3Q,
+ 3.871159656228743599994116143079870279866E2Q,
+ -3.888105134258266192210485617504098426679E2Q,
+ -2.129998539120061668038806696199343094971E1Q,
+ -8.125462263594034672468446317145384108734E1Q,
+ 8.151549093983505810118308635926270319660E0Q,
+ -5.033362032729207310462422357772568553670E0Q,
+ -4.253956621135136090295893547735851168471E-2Q,
+ -8.098602878463854789780108161581050357814E-2Q
+};
+#define NRDr13 7
+static const __float128 RDr13[NRDr13 + 1] =
+{
+ 2.220448796306693503549505450626652881752E3Q,
+ 1.899133258779578688791041599040951431383E2Q,
+ 1.061906712284961110196427571557149268454E3Q,
+ 7.497086072306967965180978101974566760042E1Q,
+ 2.146796115662672795876463568170441327274E2Q,
+ 1.120156008362573736664338015952284925592E1Q,
+ 2.211014952075052616409845051695042741074E1Q,
+ 6.469655675326150785692908453094054988938E-1Q
+ /* 1.0E0 */
+};
+/* erfc(0.25) = C13a + C13b to extra precision. */
+static const __float128 C13a = 0.723663330078125Q;
+static const __float128 C13b = 1.0279753638067014931732235184287934646022E-5Q;
+
+
+/* erfc(x + 0.375) = erfc(0.375) + x R(x)
+ 0 <= x < 0.125
+ Peak relative error 1.2e-35 */
+#define NRNr14 8
+static const __float128 RNr14[NRNr14 + 1] =
+{
+ -2.446164016404426277577283038988918202456E3Q,
+ 6.718753324496563913392217011618096698140E2Q,
+ -4.581631138049836157425391886957389240794E2Q,
+ -2.382844088987092233033215402335026078208E1Q,
+ -7.119237852400600507927038680970936336458E1Q,
+ 1.313609646108420136332418282286454287146E1Q,
+ -6.188608702082264389155862490056401365834E0Q,
+ -2.787116601106678287277373011101132659279E-2Q,
+ -2.230395570574153963203348263549700967918E-2Q
+};
+#define NRDr14 7
+static const __float128 RDr14[NRDr14 + 1] =
+{
+ 2.495187439241869732696223349840963702875E3Q,
+ 2.503549449872925580011284635695738412162E2Q,
+ 1.159033560988895481698051531263861842461E3Q,
+ 9.493751466542304491261487998684383688622E1Q,
+ 2.276214929562354328261422263078480321204E2Q,
+ 1.367697521219069280358984081407807931847E1Q,
+ 2.276988395995528495055594829206582732682E1Q,
+ 7.647745753648996559837591812375456641163E-1Q
+ /* 1.0E0 */
+};
+/* erfc(0.375) = C14a + C14b to extra precision. */
+static const __float128 C14a = 0.5958709716796875Q;
+static const __float128 C14b = 1.2118885490201676174914080878232469565953E-5Q;
+
+/* erfc(x + 0.5) = erfc(0.5) + x R(x)
+ 0 <= x < 0.125
+ Peak relative error 4.7e-36 */
+#define NRNr15 8
+static const __float128 RNr15[NRNr15 + 1] =
+{
+ -2.624212418011181487924855581955853461925E3Q,
+ 8.473828904647825181073831556439301342756E2Q,
+ -5.286207458628380765099405359607331669027E2Q,
+ -3.895781234155315729088407259045269652318E1Q,
+ -6.200857908065163618041240848728398496256E1Q,
+ 1.469324610346924001393137895116129204737E1Q,
+ -6.961356525370658572800674953305625578903E0Q,
+ 5.145724386641163809595512876629030548495E-3Q,
+ 1.990253655948179713415957791776180406812E-2Q
+};
+#define NRDr15 7
+static const __float128 RDr15[NRDr15 + 1] =
+{
+ 2.986190760847974943034021764693341524962E3Q,
+ 5.288262758961073066335410218650047725985E2Q,
+ 1.363649178071006978355113026427856008978E3Q,
+ 1.921707975649915894241864988942255320833E2Q,
+ 2.588651100651029023069013885900085533226E2Q,
+ 2.628752920321455606558942309396855629459E1Q,
+ 2.455649035885114308978333741080991380610E1Q,
+ 1.378826653595128464383127836412100939126E0Q
+ /* 1.0E0 */
+};
+/* erfc(0.5) = C15a + C15b to extra precision. */
+static const __float128 C15a = 0.4794921875Q;
+static const __float128 C15b = 7.9346869534623172533461080354712635484242E-6Q;
+
+/* erfc(x + 0.625) = erfc(0.625) + x R(x)
+ 0 <= x < 0.125
+ Peak relative error 5.1e-36 */
+#define NRNr16 8
+static const __float128 RNr16[NRNr16 + 1] =
+{
+ -2.347887943200680563784690094002722906820E3Q,
+ 8.008590660692105004780722726421020136482E2Q,
+ -5.257363310384119728760181252132311447963E2Q,
+ -4.471737717857801230450290232600243795637E1Q,
+ -4.849540386452573306708795324759300320304E1Q,
+ 1.140885264677134679275986782978655952843E1Q,
+ -6.731591085460269447926746876983786152300E0Q,
+ 1.370831653033047440345050025876085121231E-1Q,
+ 2.022958279982138755020825717073966576670E-2Q,
+};
+#define NRDr16 7
+static const __float128 RDr16[NRDr16 + 1] =
+{
+ 3.075166170024837215399323264868308087281E3Q,
+ 8.730468942160798031608053127270430036627E2Q,
+ 1.458472799166340479742581949088453244767E3Q,
+ 3.230423687568019709453130785873540386217E2Q,
+ 2.804009872719893612081109617983169474655E2Q,
+ 4.465334221323222943418085830026979293091E1Q,
+ 2.612723259683205928103787842214809134746E1Q,
+ 2.341526751185244109722204018543276124997E0Q,
+ /* 1.0E0 */
+};
+/* erfc(0.625) = C16a + C16b to extra precision. */
+static const __float128 C16a = 0.3767547607421875Q;
+static const __float128 C16b = 4.3570693945275513594941232097252997287766E-6Q;
+
+/* erfc(x + 0.75) = erfc(0.75) + x R(x)
+ 0 <= x < 0.125
+ Peak relative error 1.7e-35 */
+#define NRNr17 8
+static const __float128 RNr17[NRNr17 + 1] =
+{
+ -1.767068734220277728233364375724380366826E3Q,
+ 6.693746645665242832426891888805363898707E2Q,
+ -4.746224241837275958126060307406616817753E2Q,
+ -2.274160637728782675145666064841883803196E1Q,
+ -3.541232266140939050094370552538987982637E1Q,
+ 6.988950514747052676394491563585179503865E0Q,
+ -5.807687216836540830881352383529281215100E0Q,
+ 3.631915988567346438830283503729569443642E-1Q,
+ -1.488945487149634820537348176770282391202E-2Q
+};
+#define NRDr17 7
+static const __float128 RDr17[NRDr17 + 1] =
+{
+ 2.748457523498150741964464942246913394647E3Q,
+ 1.020213390713477686776037331757871252652E3Q,
+ 1.388857635935432621972601695296561952738E3Q,
+ 3.903363681143817750895999579637315491087E2Q,
+ 2.784568344378139499217928969529219886578E2Q,
+ 5.555800830216764702779238020065345401144E1Q,
+ 2.646215470959050279430447295801291168941E1Q,
+ 2.984905282103517497081766758550112011265E0Q,
+ /* 1.0E0 */
+};
+/* erfc(0.75) = C17a + C17b to extra precision. */
+static const __float128 C17a = 0.2888336181640625Q;
+static const __float128 C17b = 1.0748182422368401062165408589222625794046E-5Q;
+
+
+/* erfc(x + 0.875) = erfc(0.875) + x R(x)
+ 0 <= x < 0.125
+ Peak relative error 2.2e-35 */
+#define NRNr18 8
+static const __float128 RNr18[NRNr18 + 1] =
+{
+ -1.342044899087593397419622771847219619588E3Q,
+ 6.127221294229172997509252330961641850598E2Q,
+ -4.519821356522291185621206350470820610727E2Q,
+ 1.223275177825128732497510264197915160235E1Q,
+ -2.730789571382971355625020710543532867692E1Q,
+ 4.045181204921538886880171727755445395862E0Q,
+ -4.925146477876592723401384464691452700539E0Q,
+ 5.933878036611279244654299924101068088582E-1Q,
+ -5.557645435858916025452563379795159124753E-2Q
+};
+#define NRDr18 7
+static const __float128 RDr18[NRDr18 + 1] =
+{
+ 2.557518000661700588758505116291983092951E3Q,
+ 1.070171433382888994954602511991940418588E3Q,
+ 1.344842834423493081054489613250688918709E3Q,
+ 4.161144478449381901208660598266288188426E2Q,
+ 2.763670252219855198052378138756906980422E2Q,
+ 5.998153487868943708236273854747564557632E1Q,
+ 2.657695108438628847733050476209037025318E1Q,
+ 3.252140524394421868923289114410336976512E0Q,
+ /* 1.0E0 */
+};
+/* erfc(0.875) = C18a + C18b to extra precision. */
+static const __float128 C18a = 0.215911865234375Q;
+static const __float128 C18b = 1.3073705765341685464282101150637224028267E-5Q;
+
+/* erfc(x + 1.0) = erfc(1.0) + x R(x)
+ 0 <= x < 0.125
+ Peak relative error 1.6e-35 */
+#define NRNr19 8
+static const __float128 RNr19[NRNr19 + 1] =
+{
+ -1.139180936454157193495882956565663294826E3Q,
+ 6.134903129086899737514712477207945973616E2Q,
+ -4.628909024715329562325555164720732868263E2Q,
+ 4.165702387210732352564932347500364010833E1Q,
+ -2.286979913515229747204101330405771801610E1Q,
+ 1.870695256449872743066783202326943667722E0Q,
+ -4.177486601273105752879868187237000032364E0Q,
+ 7.533980372789646140112424811291782526263E-1Q,
+ -8.629945436917752003058064731308767664446E-2Q
+};
+#define NRDr19 7
+static const __float128 RDr19[NRDr19 + 1] =
+{
+ 2.744303447981132701432716278363418643778E3Q,
+ 1.266396359526187065222528050591302171471E3Q,
+ 1.466739461422073351497972255511919814273E3Q,
+ 4.868710570759693955597496520298058147162E2Q,
+ 2.993694301559756046478189634131722579643E2Q,
+ 6.868976819510254139741559102693828237440E1Q,
+ 2.801505816247677193480190483913753613630E1Q,
+ 3.604439909194350263552750347742663954481E0Q,
+ /* 1.0E0 */
+};
+/* erfc(1.0) = C19a + C19b to extra precision. */
+static const __float128 C19a = 0.15728759765625Q;
+static const __float128 C19b = 1.1609394035130658779364917390740703933002E-5Q;
+
+/* erfc(x + 1.125) = erfc(1.125) + x R(x)
+ 0 <= x < 0.125
+ Peak relative error 3.6e-36 */
+#define NRNr20 8
+static const __float128 RNr20[NRNr20 + 1] =
+{
+ -9.652706916457973956366721379612508047640E2Q,
+ 5.577066396050932776683469951773643880634E2Q,
+ -4.406335508848496713572223098693575485978E2Q,
+ 5.202893466490242733570232680736966655434E1Q,
+ -1.931311847665757913322495948705563937159E1Q,
+ -9.364318268748287664267341457164918090611E-2Q,
+ -3.306390351286352764891355375882586201069E0Q,
+ 7.573806045289044647727613003096916516475E-1Q,
+ -9.611744011489092894027478899545635991213E-2Q
+};
+#define NRDr20 7
+static const __float128 RDr20[NRDr20 + 1] =
+{
+ 3.032829629520142564106649167182428189014E3Q,
+ 1.659648470721967719961167083684972196891E3Q,
+ 1.703545128657284619402511356932569292535E3Q,
+ 6.393465677731598872500200253155257708763E2Q,
+ 3.489131397281030947405287112726059221934E2Q,
+ 8.848641738570783406484348434387611713070E1Q,
+ 3.132269062552392974833215844236160958502E1Q,
+ 4.430131663290563523933419966185230513168E0Q
+ /* 1.0E0 */
+};
+/* erfc(1.125) = C20a + C20b to extra precision. */
+static const __float128 C20a = 0.111602783203125Q;
+static const __float128 C20b = 8.9850951672359304215530728365232161564636E-6Q;
+
+/* erfc(1/x) = 1/x exp (-1/x^2 - 0.5625 + R(1/x^2))
+ 7/8 <= 1/x < 1
+ Peak relative error 1.4e-35 */
+#define NRNr8 9
+static const __float128 RNr8[NRNr8 + 1] =
+{
+ 3.587451489255356250759834295199296936784E1Q,
+ 5.406249749087340431871378009874875889602E2Q,
+ 2.931301290625250886238822286506381194157E3Q,
+ 7.359254185241795584113047248898753470923E3Q,
+ 9.201031849810636104112101947312492532314E3Q,
+ 5.749697096193191467751650366613289284777E3Q,
+ 1.710415234419860825710780802678697889231E3Q,
+ 2.150753982543378580859546706243022719599E2Q,
+ 8.740953582272147335100537849981160931197E0Q,
+ 4.876422978828717219629814794707963640913E-2Q
+};
+#define NRDr8 8
+static const __float128 RDr8[NRDr8 + 1] =
+{
+ 6.358593134096908350929496535931630140282E1Q,
+ 9.900253816552450073757174323424051765523E2Q,
+ 5.642928777856801020545245437089490805186E3Q,
+ 1.524195375199570868195152698617273739609E4Q,
+ 2.113829644500006749947332935305800887345E4Q,
+ 1.526438562626465706267943737310282977138E4Q,
+ 5.561370922149241457131421914140039411782E3Q,
+ 9.394035530179705051609070428036834496942E2Q,
+ 6.147019596150394577984175188032707343615E1Q
+ /* 1.0E0 */
+};
+
+/* erfc(1/x) = 1/x exp (-1/x^2 - 0.5625 + R(1/x^2))
+ 0.75 <= 1/x <= 0.875
+ Peak relative error 2.0e-36 */
+#define NRNr7 9
+static const __float128 RNr7[NRNr7 + 1] =
+{
+ 1.686222193385987690785945787708644476545E1Q,
+ 1.178224543567604215602418571310612066594E3Q,
+ 1.764550584290149466653899886088166091093E4Q,
+ 1.073758321890334822002849369898232811561E5Q,
+ 3.132840749205943137619839114451290324371E5Q,
+ 4.607864939974100224615527007793867585915E5Q,
+ 3.389781820105852303125270837910972384510E5Q,
+ 1.174042187110565202875011358512564753399E5Q,
+ 1.660013606011167144046604892622504338313E4Q,
+ 6.700393957480661937695573729183733234400E2Q
+};
+#define NRDr7 9
+static const __float128 RDr7[NRDr7 + 1] =
+{
+-1.709305024718358874701575813642933561169E3Q,
+-3.280033887481333199580464617020514788369E4Q,
+-2.345284228022521885093072363418750835214E5Q,
+-8.086758123097763971926711729242327554917E5Q,
+-1.456900414510108718402423999575992450138E6Q,
+-1.391654264881255068392389037292702041855E6Q,
+-6.842360801869939983674527468509852583855E5Q,
+-1.597430214446573566179675395199807533371E5Q,
+-1.488876130609876681421645314851760773480E4Q,
+-3.511762950935060301403599443436465645703E2Q
+ /* 1.0E0 */
+};
+
+/* erfc(1/x) = 1/x exp(-1/x^2 - 0.5625 + R(1/x^2))
+ 5/8 <= 1/x < 3/4
+ Peak relative error 1.9e-35 */
+#define NRNr6 9
+static const __float128 RNr6[NRNr6 + 1] =
+{
+ 1.642076876176834390623842732352935761108E0Q,
+ 1.207150003611117689000664385596211076662E2Q,
+ 2.119260779316389904742873816462800103939E3Q,
+ 1.562942227734663441801452930916044224174E4Q,
+ 5.656779189549710079988084081145693580479E4Q,
+ 1.052166241021481691922831746350942786299E5Q,
+ 9.949798524786000595621602790068349165758E4Q,
+ 4.491790734080265043407035220188849562856E4Q,
+ 8.377074098301530326270432059434791287601E3Q,
+ 4.506934806567986810091824791963991057083E2Q
+};
+#define NRDr6 9
+static const __float128 RDr6[NRDr6 + 1] =
+{
+-1.664557643928263091879301304019826629067E2Q,
+-3.800035902507656624590531122291160668452E3Q,
+-3.277028191591734928360050685359277076056E4Q,
+-1.381359471502885446400589109566587443987E5Q,
+-3.082204287382581873532528989283748656546E5Q,
+-3.691071488256738343008271448234631037095E5Q,
+-2.300482443038349815750714219117566715043E5Q,
+-6.873955300927636236692803579555752171530E4Q,
+-8.262158817978334142081581542749986845399E3Q,
+-2.517122254384430859629423488157361983661E2Q
+ /* 1.00 */
+};
+
+/* erfc(1/x) = 1/x exp(-1/x^2 - 0.5625 + R(1/x^2))
+ 1/2 <= 1/x < 5/8
+ Peak relative error 4.6e-36 */
+#define NRNr5 10
+static const __float128 RNr5[NRNr5 + 1] =
+{
+-3.332258927455285458355550878136506961608E-3Q,
+-2.697100758900280402659586595884478660721E-1Q,
+-6.083328551139621521416618424949137195536E0Q,
+-6.119863528983308012970821226810162441263E1Q,
+-3.176535282475593173248810678636522589861E2Q,
+-8.933395175080560925809992467187963260693E2Q,
+-1.360019508488475978060917477620199499560E3Q,
+-1.075075579828188621541398761300910213280E3Q,
+-4.017346561586014822824459436695197089916E2Q,
+-5.857581368145266249509589726077645791341E1Q,
+-2.077715925587834606379119585995758954399E0Q
+};
+#define NRDr5 9
+static const __float128 RDr5[NRDr5 + 1] =
+{
+ 3.377879570417399341550710467744693125385E-1Q,
+ 1.021963322742390735430008860602594456187E1Q,
+ 1.200847646592942095192766255154827011939E2Q,
+ 7.118915528142927104078182863387116942836E2Q,
+ 2.318159380062066469386544552429625026238E3Q,
+ 4.238729853534009221025582008928765281620E3Q,
+ 4.279114907284825886266493994833515580782E3Q,
+ 2.257277186663261531053293222591851737504E3Q,
+ 5.570475501285054293371908382916063822957E2Q,
+ 5.142189243856288981145786492585432443560E1Q
+ /* 1.0E0 */
+};
+
+/* erfc(1/x) = 1/x exp(-1/x^2 - 0.5625 + R(1/x^2))
+ 3/8 <= 1/x < 1/2
+ Peak relative error 2.0e-36 */
+#define NRNr4 10
+static const __float128 RNr4[NRNr4 + 1] =
+{
+ 3.258530712024527835089319075288494524465E-3Q,
+ 2.987056016877277929720231688689431056567E-1Q,
+ 8.738729089340199750734409156830371528862E0Q,
+ 1.207211160148647782396337792426311125923E2Q,
+ 8.997558632489032902250523945248208224445E2Q,
+ 3.798025197699757225978410230530640879762E3Q,
+ 9.113203668683080975637043118209210146846E3Q,
+ 1.203285891339933238608683715194034900149E4Q,
+ 8.100647057919140328536743641735339740855E3Q,
+ 2.383888249907144945837976899822927411769E3Q,
+ 2.127493573166454249221983582495245662319E2Q
+};
+#define NRDr4 10
+static const __float128 RDr4[NRDr4 + 1] =
+{
+-3.303141981514540274165450687270180479586E-1Q,
+-1.353768629363605300707949368917687066724E1Q,
+-2.206127630303621521950193783894598987033E2Q,
+-1.861800338758066696514480386180875607204E3Q,
+-8.889048775872605708249140016201753255599E3Q,
+-2.465888106627948210478692168261494857089E4Q,
+-3.934642211710774494879042116768390014289E4Q,
+-3.455077258242252974937480623730228841003E4Q,
+-1.524083977439690284820586063729912653196E4Q,
+-2.810541887397984804237552337349093953857E3Q,
+-1.343929553541159933824901621702567066156E2Q
+ /* 1.0E0 */
+};
+
+/* erfc(1/x) = 1/x exp(-1/x^2 - 0.5625 + R(1/x^2))
+ 1/4 <= 1/x < 3/8
+ Peak relative error 8.4e-37 */
+#define NRNr3 11
+static const __float128 RNr3[NRNr3 + 1] =
+{
+-1.952401126551202208698629992497306292987E-6Q,
+-2.130881743066372952515162564941682716125E-4Q,
+-8.376493958090190943737529486107282224387E-3Q,
+-1.650592646560987700661598877522831234791E-1Q,
+-1.839290818933317338111364667708678163199E0Q,
+-1.216278715570882422410442318517814388470E1Q,
+-4.818759344462360427612133632533779091386E1Q,
+-1.120994661297476876804405329172164436784E2Q,
+-1.452850765662319264191141091859300126931E2Q,
+-9.485207851128957108648038238656777241333E1Q,
+-2.563663855025796641216191848818620020073E1Q,
+-1.787995944187565676837847610706317833247E0Q
+};
+#define NRDr3 10
+static const __float128 RDr3[NRDr3 + 1] =
+{
+ 1.979130686770349481460559711878399476903E-4Q,
+ 1.156941716128488266238105813374635099057E-2Q,
+ 2.752657634309886336431266395637285974292E-1Q,
+ 3.482245457248318787349778336603569327521E0Q,
+ 2.569347069372696358578399521203959253162E1Q,
+ 1.142279000180457419740314694631879921561E2Q,
+ 3.056503977190564294341422623108332700840E2Q,
+ 4.780844020923794821656358157128719184422E2Q,
+ 4.105972727212554277496256802312730410518E2Q,
+ 1.724072188063746970865027817017067646246E2Q,
+ 2.815939183464818198705278118326590370435E1Q
+ /* 1.0E0 */
+};
+
+/* erfc(1/x) = 1/x exp(-1/x^2 - 0.5625 + R(1/x^2))
+ 1/8 <= 1/x < 1/4
+ Peak relative error 1.5e-36 */
+#define NRNr2 11
+static const __float128 RNr2[NRNr2 + 1] =
+{
+-2.638914383420287212401687401284326363787E-8Q,
+-3.479198370260633977258201271399116766619E-6Q,
+-1.783985295335697686382487087502222519983E-4Q,
+-4.777876933122576014266349277217559356276E-3Q,
+-7.450634738987325004070761301045014986520E-2Q,
+-7.068318854874733315971973707247467326619E-1Q,
+-4.113919921935944795764071670806867038732E0Q,
+-1.440447573226906222417767283691888875082E1Q,
+-2.883484031530718428417168042141288943905E1Q,
+-2.990886974328476387277797361464279931446E1Q,
+-1.325283914915104866248279787536128997331E1Q,
+-1.572436106228070195510230310658206154374E0Q
+};
+#define NRDr2 10
+static const __float128 RDr2[NRDr2 + 1] =
+{
+ 2.675042728136731923554119302571867799673E-6Q,
+ 2.170997868451812708585443282998329996268E-4Q,
+ 7.249969752687540289422684951196241427445E-3Q,
+ 1.302040375859768674620410563307838448508E-1Q,
+ 1.380202483082910888897654537144485285549E0Q,
+ 8.926594113174165352623847870299170069350E0Q,
+ 3.521089584782616472372909095331572607185E1Q,
+ 8.233547427533181375185259050330809105570E1Q,
+ 1.072971579885803033079469639073292840135E2Q,
+ 6.943803113337964469736022094105143158033E1Q,
+ 1.775695341031607738233608307835017282662E1Q
+ /* 1.0E0 */
+};
+
+/* erfc(1/x) = 1/x exp(-1/x^2 - 0.5625 + R(1/x^2))
+ 1/128 <= 1/x < 1/8
+ Peak relative error 2.2e-36 */
+#define NRNr1 9
+static const __float128 RNr1[NRNr1 + 1] =
+{
+-4.250780883202361946697751475473042685782E-8Q,
+-5.375777053288612282487696975623206383019E-6Q,
+-2.573645949220896816208565944117382460452E-4Q,
+-6.199032928113542080263152610799113086319E-3Q,
+-8.262721198693404060380104048479916247786E-2Q,
+-6.242615227257324746371284637695778043982E-1Q,
+-2.609874739199595400225113299437099626386E0Q,
+-5.581967563336676737146358534602770006970E0Q,
+-5.124398923356022609707490956634280573882E0Q,
+-1.290865243944292370661544030414667556649E0Q
+};
+#define NRDr1 8
+static const __float128 RDr1[NRDr1 + 1] =
+{
+ 4.308976661749509034845251315983612976224E-6Q,
+ 3.265390126432780184125233455960049294580E-4Q,
+ 9.811328839187040701901866531796570418691E-3Q,
+ 1.511222515036021033410078631914783519649E-1Q,
+ 1.289264341917429958858379585970225092274E0Q,
+ 6.147640356182230769548007536914983522270E0Q,
+ 1.573966871337739784518246317003956180750E1Q,
+ 1.955534123435095067199574045529218238263E1Q,
+ 9.472613121363135472247929109615785855865E0Q
+ /* 1.0E0 */
+};
+
+
+__float128
+erfq (__float128 x)
+{
+ __float128 a, y, z;
+ int32_t i, ix, sign;
+ ieee854_float128 u;
+
+ u.value = x;
+ sign = u.words32.w0;
+ ix = sign & 0x7fffffff;
+
+ if (ix >= 0x7fff0000)
+ { /* erf(nan)=nan */
+ i = ((sign & 0xffff0000) >> 31) << 1;
+ return (__float128) (1 - i) + one / x; /* erf(+-inf)=+-1 */
+ }
+
+ if (ix >= 0x3fff0000) /* |x| >= 1.0 */
+ {
+ y = erfcq (x);
+ return (one - y);
+ /* return (one - erfcq (x)); */
+ }
+ u.words32.w0 = ix;
+ a = u.value;
+ z = x * x;
+ if (ix < 0x3ffec000) /* a < 0.875 */
+ {
+ if (ix < 0x3fc60000) /* |x|<2**-57 */
+ {
+ if (ix < 0x00080000)
+ return 0.125 * (8.0 * x + efx8 * x); /*avoid underflow */
+ return x + efx * x;
+ }
+ y = a + a * neval (z, TN1, NTN1) / deval (z, TD1, NTD1);
+ }
+ else
+ {
+ a = a - one;
+ y = erf_const + neval (a, TN2, NTN2) / deval (a, TD2, NTD2);
+ }
+
+ if (sign & 0x80000000) /* x < 0 */
+ y = -y;
+ return( y );
+}
+
+
+__float128
+erfcq (__float128 x)
+{
+ __float128 y = 0.0Q, z, p, r;
+ int32_t i, ix, sign;
+ ieee854_float128 u;
+
+ u.value = x;
+ sign = u.words32.w0;
+ ix = sign & 0x7fffffff;
+ u.words32.w0 = ix;
+
+ if (ix >= 0x7fff0000)
+ { /* erfc(nan)=nan */
+ /* erfc(+-inf)=0,2 */
+ return (__float128) (((uint32_t) sign >> 31) << 1) + one / x;
+ }
+
+ if (ix < 0x3ffd0000) /* |x| <1/4 */
+ {
+ if (ix < 0x3f8d0000) /* |x|<2**-114 */
+ return one - x;
+ return one - erfq (x);
+ }
+ if (ix < 0x3fff4000) /* 1.25 */
+ {
+ x = u.value;
+ i = 8.0 * x;
+ switch (i)
+ {
+ case 2:
+ z = x - 0.25Q;
+ y = C13b + z * neval (z, RNr13, NRNr13) / deval (z, RDr13, NRDr13);
+ y += C13a;
+ break;
+ case 3:
+ z = x - 0.375Q;
+ y = C14b + z * neval (z, RNr14, NRNr14) / deval (z, RDr14, NRDr14);
+ y += C14a;
+ break;
+ case 4:
+ z = x - 0.5Q;
+ y = C15b + z * neval (z, RNr15, NRNr15) / deval (z, RDr15, NRDr15);
+ y += C15a;
+ break;
+ case 5:
+ z = x - 0.625Q;
+ y = C16b + z * neval (z, RNr16, NRNr16) / deval (z, RDr16, NRDr16);
+ y += C16a;
+ break;
+ case 6:
+ z = x - 0.75Q;
+ y = C17b + z * neval (z, RNr17, NRNr17) / deval (z, RDr17, NRDr17);
+ y += C17a;
+ break;
+ case 7:
+ z = x - 0.875Q;
+ y = C18b + z * neval (z, RNr18, NRNr18) / deval (z, RDr18, NRDr18);
+ y += C18a;
+ break;
+ case 8:
+ z = x - 1.0Q;
+ y = C19b + z * neval (z, RNr19, NRNr19) / deval (z, RDr19, NRDr19);
+ y += C19a;
+ break;
+ case 9:
+ z = x - 1.125Q;
+ y = C20b + z * neval (z, RNr20, NRNr20) / deval (z, RDr20, NRDr20);
+ y += C20a;
+ break;
+ }
+ if (sign & 0x80000000)
+ y = 2.0Q - y;
+ return y;
+ }
+ /* 1.25 < |x| < 107 */
+ if (ix < 0x4005ac00)
+ {
+ /* x < -9 */
+ if ((ix >= 0x40022000) && (sign & 0x80000000))
+ return two - tiny;
+
+ x = fabsq (x);
+ z = one / (x * x);
+ i = 8.0 / x;
+ switch (i)
+ {
+ default:
+ case 0:
+ p = neval (z, RNr1, NRNr1) / deval (z, RDr1, NRDr1);
+ break;
+ case 1:
+ p = neval (z, RNr2, NRNr2) / deval (z, RDr2, NRDr2);
+ break;
+ case 2:
+ p = neval (z, RNr3, NRNr3) / deval (z, RDr3, NRDr3);
+ break;
+ case 3:
+ p = neval (z, RNr4, NRNr4) / deval (z, RDr4, NRDr4);
+ break;
+ case 4:
+ p = neval (z, RNr5, NRNr5) / deval (z, RDr5, NRDr5);
+ break;
+ case 5:
+ p = neval (z, RNr6, NRNr6) / deval (z, RDr6, NRDr6);
+ break;
+ case 6:
+ p = neval (z, RNr7, NRNr7) / deval (z, RDr7, NRDr7);
+ break;
+ case 7:
+ p = neval (z, RNr8, NRNr8) / deval (z, RDr8, NRDr8);
+ break;
+ }
+ u.value = x;
+ u.words32.w3 = 0;
+ u.words32.w2 &= 0xfe000000;
+ z = u.value;
+ r = expq (-z * z - 0.5625) * expq ((z - x) * (z + x) + p);
+ if ((sign & 0x80000000) == 0)
+ return r / x;
+ else
+ return two - r / x;
+ }
+ else
+ {
+ if ((sign & 0x80000000) == 0)
+ return tiny * tiny;
+ else
+ return two - tiny;
+ }
+}