diff options
author | kcc <kcc@138bc75d-0d04-0410-961f-82ee72b054a4> | 2012-12-05 13:19:55 +0000 |
---|---|---|
committer | kcc <kcc@138bc75d-0d04-0410-961f-82ee72b054a4> | 2012-12-05 13:19:55 +0000 |
commit | 4ab070fc750612ffbe12b7a67de3fa3e8d9d81ea (patch) | |
tree | 1a9c1fa8fc461362f209a6c9b1abdadaacf74938 /libsanitizer/sanitizer_common/sanitizer_allocator.h | |
parent | 14799b23a661479a4f3d2ec15471afb3618af00d (diff) | |
download | gcc-4ab070fc750612ffbe12b7a67de3fa3e8d9d81ea.tar.gz |
[libsanitizer] merge from upstream r169371
git-svn-id: svn+ssh://gcc.gnu.org/svn/gcc/trunk@194221 138bc75d-0d04-0410-961f-82ee72b054a4
Diffstat (limited to 'libsanitizer/sanitizer_common/sanitizer_allocator.h')
-rw-r--r-- | libsanitizer/sanitizer_common/sanitizer_allocator.h | 582 |
1 files changed, 582 insertions, 0 deletions
diff --git a/libsanitizer/sanitizer_common/sanitizer_allocator.h b/libsanitizer/sanitizer_common/sanitizer_allocator.h new file mode 100644 index 00000000000..63107bdbdb0 --- /dev/null +++ b/libsanitizer/sanitizer_common/sanitizer_allocator.h @@ -0,0 +1,582 @@ +//===-- sanitizer_allocator.h -----------------------------------*- C++ -*-===// +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// Specialized memory allocator for ThreadSanitizer, MemorySanitizer, etc. +// +//===----------------------------------------------------------------------===// + +#ifndef SANITIZER_ALLOCATOR_H +#define SANITIZER_ALLOCATOR_H + +#include "sanitizer_internal_defs.h" +#include "sanitizer_common.h" +#include "sanitizer_libc.h" +#include "sanitizer_list.h" +#include "sanitizer_mutex.h" + +namespace __sanitizer { + +// Maps size class id to size and back. +template <uptr l0, uptr l1, uptr l2, uptr l3, uptr l4, uptr l5, + uptr s0, uptr s1, uptr s2, uptr s3, uptr s4, + uptr c0, uptr c1, uptr c2, uptr c3, uptr c4> +class SplineSizeClassMap { + private: + // Here we use a spline composed of 5 polynomials of oder 1. + // The first size class is l0, then the classes go with step s0 + // untill they reach l1, after which they go with step s1 and so on. + // Steps should be powers of two for cheap division. + // The size of the last size class should be a power of two. + // There should be at most 256 size classes. + static const uptr u0 = 0 + (l1 - l0) / s0; + static const uptr u1 = u0 + (l2 - l1) / s1; + static const uptr u2 = u1 + (l3 - l2) / s2; + static const uptr u3 = u2 + (l4 - l3) / s3; + static const uptr u4 = u3 + (l5 - l4) / s4; + + public: + // The number of size classes should be a power of two for fast division. + static const uptr kNumClasses = u4 + 1; + static const uptr kMaxSize = l5; + static const uptr kMinSize = l0; + + COMPILER_CHECK(kNumClasses <= 256); + COMPILER_CHECK((kNumClasses & (kNumClasses - 1)) == 0); + COMPILER_CHECK((kMaxSize & (kMaxSize - 1)) == 0); + + static uptr Size(uptr class_id) { + if (class_id <= u0) return l0 + s0 * (class_id - 0); + if (class_id <= u1) return l1 + s1 * (class_id - u0); + if (class_id <= u2) return l2 + s2 * (class_id - u1); + if (class_id <= u3) return l3 + s3 * (class_id - u2); + if (class_id <= u4) return l4 + s4 * (class_id - u3); + return 0; + } + static uptr ClassID(uptr size) { + if (size <= l1) return 0 + (size - l0 + s0 - 1) / s0; + if (size <= l2) return u0 + (size - l1 + s1 - 1) / s1; + if (size <= l3) return u1 + (size - l2 + s2 - 1) / s2; + if (size <= l4) return u2 + (size - l3 + s3 - 1) / s3; + if (size <= l5) return u3 + (size - l4 + s4 - 1) / s4; + return 0; + } + + static uptr MaxCached(uptr class_id) { + if (class_id <= u0) return c0; + if (class_id <= u1) return c1; + if (class_id <= u2) return c2; + if (class_id <= u3) return c3; + if (class_id <= u4) return c4; + return 0; + } +}; + +class DefaultSizeClassMap: public SplineSizeClassMap< + /* l: */1 << 4, 1 << 9, 1 << 12, 1 << 15, 1 << 18, 1 << 21, + /* s: */1 << 4, 1 << 6, 1 << 9, 1 << 12, 1 << 15, + /* c: */256, 64, 16, 4, 1> { + private: + COMPILER_CHECK(kNumClasses == 256); +}; + +class CompactSizeClassMap: public SplineSizeClassMap< + /* l: */1 << 3, 1 << 4, 1 << 7, 1 << 8, 1 << 12, 1 << 15, + /* s: */1 << 3, 1 << 4, 1 << 7, 1 << 8, 1 << 12, + /* c: */256, 64, 16, 4, 1> { + private: + COMPILER_CHECK(kNumClasses <= 32); +}; + +struct AllocatorListNode { + AllocatorListNode *next; +}; + +typedef IntrusiveList<AllocatorListNode> AllocatorFreeList; + +// SizeClassAllocator64 -- allocator for 64-bit address space. +// +// Space: a portion of address space of kSpaceSize bytes starting at +// a fixed address (kSpaceBeg). Both constants are powers of two and +// kSpaceBeg is kSpaceSize-aligned. +// +// Region: a part of Space dedicated to a single size class. +// There are kNumClasses Regions of equal size. +// +// UserChunk: a piece of memory returned to user. +// MetaChunk: kMetadataSize bytes of metadata associated with a UserChunk. +// +// A Region looks like this: +// UserChunk1 ... UserChunkN <gap> MetaChunkN ... MetaChunk1 +template <const uptr kSpaceBeg, const uptr kSpaceSize, + const uptr kMetadataSize, class SizeClassMap> +class SizeClassAllocator64 { + public: + void Init() { + CHECK_EQ(AllocBeg(), reinterpret_cast<uptr>(MmapFixedNoReserve( + AllocBeg(), AllocSize()))); + } + + bool CanAllocate(uptr size, uptr alignment) { + return size <= SizeClassMap::kMaxSize && + alignment <= SizeClassMap::kMaxSize; + } + + void *Allocate(uptr size, uptr alignment) { + CHECK(CanAllocate(size, alignment)); + return AllocateBySizeClass(SizeClassMap::ClassID(size)); + } + + void Deallocate(void *p) { + CHECK(PointerIsMine(p)); + DeallocateBySizeClass(p, GetSizeClass(p)); + } + + // Allocate several chunks of the given class_id. + void BulkAllocate(uptr class_id, AllocatorFreeList *free_list) { + CHECK_LT(class_id, kNumClasses); + RegionInfo *region = GetRegionInfo(class_id); + SpinMutexLock l(®ion->mutex); + if (region->free_list.empty()) { + PopulateFreeList(class_id, region); + } + CHECK(!region->free_list.empty()); + uptr count = SizeClassMap::MaxCached(class_id); + if (region->free_list.size() <= count) { + free_list->append_front(®ion->free_list); + } else { + for (uptr i = 0; i < count; i++) { + AllocatorListNode *node = region->free_list.front(); + region->free_list.pop_front(); + free_list->push_front(node); + } + } + CHECK(!free_list->empty()); + } + + // Swallow the entire free_list for the given class_id. + void BulkDeallocate(uptr class_id, AllocatorFreeList *free_list) { + CHECK_LT(class_id, kNumClasses); + RegionInfo *region = GetRegionInfo(class_id); + SpinMutexLock l(®ion->mutex); + region->free_list.append_front(free_list); + } + + static bool PointerIsMine(void *p) { + return reinterpret_cast<uptr>(p) / kSpaceSize == kSpaceBeg / kSpaceSize; + } + + static uptr GetSizeClass(void *p) { + return (reinterpret_cast<uptr>(p) / kRegionSize) % kNumClasses; + } + + static void *GetBlockBegin(void *p) { + uptr class_id = GetSizeClass(p); + uptr size = SizeClassMap::Size(class_id); + uptr chunk_idx = GetChunkIdx((uptr)p, size); + uptr reg_beg = (uptr)p & ~(kRegionSize - 1); + uptr begin = reg_beg + chunk_idx * size; + return (void*)begin; + } + + static uptr GetActuallyAllocatedSize(void *p) { + CHECK(PointerIsMine(p)); + return SizeClassMap::Size(GetSizeClass(p)); + } + + uptr ClassID(uptr size) { return SizeClassMap::ClassID(size); } + + void *GetMetaData(void *p) { + uptr class_id = GetSizeClass(p); + uptr size = SizeClassMap::Size(class_id); + uptr chunk_idx = GetChunkIdx(reinterpret_cast<uptr>(p), size); + return reinterpret_cast<void*>(kSpaceBeg + (kRegionSize * (class_id + 1)) - + (1 + chunk_idx) * kMetadataSize); + } + + uptr TotalMemoryUsed() { + uptr res = 0; + for (uptr i = 0; i < kNumClasses; i++) + res += GetRegionInfo(i)->allocated_user; + return res; + } + + // Test-only. + void TestOnlyUnmap() { + UnmapOrDie(reinterpret_cast<void*>(AllocBeg()), AllocSize()); + } + + static uptr AllocBeg() { return kSpaceBeg; } + static uptr AllocSize() { return kSpaceSize + AdditionalSize(); } + + typedef SizeClassMap SizeClassMapT; + static const uptr kNumClasses = SizeClassMap::kNumClasses; // 2^k <= 256 + + private: + static const uptr kRegionSize = kSpaceSize / kNumClasses; + COMPILER_CHECK(kSpaceBeg % kSpaceSize == 0); + COMPILER_CHECK(kNumClasses <= SizeClassMap::kNumClasses); + // kRegionSize must be >= 2^32. + COMPILER_CHECK((kRegionSize) >= (1ULL << (SANITIZER_WORDSIZE / 2))); + // Populate the free list with at most this number of bytes at once + // or with one element if its size is greater. + static const uptr kPopulateSize = 1 << 18; + + struct RegionInfo { + SpinMutex mutex; + AllocatorFreeList free_list; + uptr allocated_user; // Bytes allocated for user memory. + uptr allocated_meta; // Bytes allocated for metadata. + char padding[kCacheLineSize - 3 * sizeof(uptr) - sizeof(AllocatorFreeList)]; + }; + COMPILER_CHECK(sizeof(RegionInfo) == kCacheLineSize); + + static uptr AdditionalSize() { + uptr PageSize = GetPageSizeCached(); + uptr res = Max(sizeof(RegionInfo) * kNumClasses, PageSize); + CHECK_EQ(res % PageSize, 0); + return res; + } + + RegionInfo *GetRegionInfo(uptr class_id) { + CHECK_LT(class_id, kNumClasses); + RegionInfo *regions = reinterpret_cast<RegionInfo*>(kSpaceBeg + kSpaceSize); + return ®ions[class_id]; + } + + static uptr GetChunkIdx(uptr chunk, uptr size) { + u32 offset = chunk % kRegionSize; + // Here we divide by a non-constant. This is costly. + // We require that kRegionSize is at least 2^32 so that offset is 32-bit. + // We save 2x by using 32-bit div, but may need to use a 256-way switch. + return offset / (u32)size; + } + + void PopulateFreeList(uptr class_id, RegionInfo *region) { + uptr size = SizeClassMap::Size(class_id); + uptr beg_idx = region->allocated_user; + uptr end_idx = beg_idx + kPopulateSize; + region->free_list.clear(); + uptr region_beg = kSpaceBeg + kRegionSize * class_id; + uptr idx = beg_idx; + uptr i = 0; + do { // do-while loop because we need to put at least one item. + uptr p = region_beg + idx; + region->free_list.push_front(reinterpret_cast<AllocatorListNode*>(p)); + idx += size; + i++; + } while (idx < end_idx); + region->allocated_user += idx - beg_idx; + region->allocated_meta += i * kMetadataSize; + if (region->allocated_user + region->allocated_meta > kRegionSize) { + Printf("Out of memory. Dying.\n"); + Printf("The process has exhausted %zuMB for size class %zu.\n", + kRegionSize / 1024 / 1024, size); + Die(); + } + } + + void *AllocateBySizeClass(uptr class_id) { + CHECK_LT(class_id, kNumClasses); + RegionInfo *region = GetRegionInfo(class_id); + SpinMutexLock l(®ion->mutex); + if (region->free_list.empty()) { + PopulateFreeList(class_id, region); + } + CHECK(!region->free_list.empty()); + AllocatorListNode *node = region->free_list.front(); + region->free_list.pop_front(); + return reinterpret_cast<void*>(node); + } + + void DeallocateBySizeClass(void *p, uptr class_id) { + RegionInfo *region = GetRegionInfo(class_id); + SpinMutexLock l(®ion->mutex); + region->free_list.push_front(reinterpret_cast<AllocatorListNode*>(p)); + } +}; + +// Objects of this type should be used as local caches for SizeClassAllocator64. +// Since the typical use of this class is to have one object per thread in TLS, +// is has to be POD. +template<class SizeClassAllocator> +struct SizeClassAllocatorLocalCache { + typedef SizeClassAllocator Allocator; + static const uptr kNumClasses = SizeClassAllocator::kNumClasses; + // Don't need to call Init if the object is a global (i.e. zero-initialized). + void Init() { + internal_memset(this, 0, sizeof(*this)); + } + + void *Allocate(SizeClassAllocator *allocator, uptr class_id) { + CHECK_LT(class_id, kNumClasses); + AllocatorFreeList *free_list = &free_lists_[class_id]; + if (free_list->empty()) + allocator->BulkAllocate(class_id, free_list); + CHECK(!free_list->empty()); + void *res = free_list->front(); + free_list->pop_front(); + return res; + } + + void Deallocate(SizeClassAllocator *allocator, uptr class_id, void *p) { + CHECK_LT(class_id, kNumClasses); + AllocatorFreeList *free_list = &free_lists_[class_id]; + free_list->push_front(reinterpret_cast<AllocatorListNode*>(p)); + if (free_list->size() >= 2 * SizeClassMap::MaxCached(class_id)) + DrainHalf(allocator, class_id); + } + + void Drain(SizeClassAllocator *allocator) { + for (uptr i = 0; i < kNumClasses; i++) { + allocator->BulkDeallocate(i, &free_lists_[i]); + CHECK(free_lists_[i].empty()); + } + } + + // private: + typedef typename SizeClassAllocator::SizeClassMapT SizeClassMap; + AllocatorFreeList free_lists_[kNumClasses]; + + void DrainHalf(SizeClassAllocator *allocator, uptr class_id) { + AllocatorFreeList *free_list = &free_lists_[class_id]; + AllocatorFreeList half; + half.clear(); + const uptr count = free_list->size() / 2; + for (uptr i = 0; i < count; i++) { + AllocatorListNode *node = free_list->front(); + free_list->pop_front(); + half.push_front(node); + } + allocator->BulkDeallocate(class_id, &half); + } +}; + +// This class can (de)allocate only large chunks of memory using mmap/unmap. +// The main purpose of this allocator is to cover large and rare allocation +// sizes not covered by more efficient allocators (e.g. SizeClassAllocator64). +class LargeMmapAllocator { + public: + void Init() { + internal_memset(this, 0, sizeof(*this)); + page_size_ = GetPageSizeCached(); + } + void *Allocate(uptr size, uptr alignment) { + CHECK(IsPowerOfTwo(alignment)); + uptr map_size = RoundUpMapSize(size); + if (alignment > page_size_) + map_size += alignment; + if (map_size < size) return 0; // Overflow. + uptr map_beg = reinterpret_cast<uptr>( + MmapOrDie(map_size, "LargeMmapAllocator")); + uptr map_end = map_beg + map_size; + uptr res = map_beg + page_size_; + if (res & (alignment - 1)) // Align. + res += alignment - (res & (alignment - 1)); + CHECK_EQ(0, res & (alignment - 1)); + CHECK_LE(res + size, map_end); + Header *h = GetHeader(res); + h->size = size; + h->map_beg = map_beg; + h->map_size = map_size; + { + SpinMutexLock l(&mutex_); + h->next = list_; + h->prev = 0; + if (list_) + list_->prev = h; + list_ = h; + } + return reinterpret_cast<void*>(res); + } + + void Deallocate(void *p) { + Header *h = GetHeader(p); + { + SpinMutexLock l(&mutex_); + Header *prev = h->prev; + Header *next = h->next; + if (prev) + prev->next = next; + if (next) + next->prev = prev; + if (h == list_) + list_ = next; + } + UnmapOrDie(reinterpret_cast<void*>(h->map_beg), h->map_size); + } + + uptr TotalMemoryUsed() { + SpinMutexLock l(&mutex_); + uptr res = 0; + for (Header *l = list_; l; l = l->next) { + res += RoundUpMapSize(l->size); + } + return res; + } + + bool PointerIsMine(void *p) { + // Fast check. + if ((reinterpret_cast<uptr>(p) & (page_size_ - 1))) return false; + SpinMutexLock l(&mutex_); + for (Header *l = list_; l; l = l->next) { + if (GetUser(l) == p) return true; + } + return false; + } + + uptr GetActuallyAllocatedSize(void *p) { + return RoundUpMapSize(GetHeader(p)->size) - page_size_; + } + + // At least page_size_/2 metadata bytes is available. + void *GetMetaData(void *p) { + return GetHeader(p) + 1; + } + + void *GetBlockBegin(void *p) { + SpinMutexLock l(&mutex_); + for (Header *l = list_; l; l = l->next) { + void *b = GetUser(l); + if (p >= b && p < (u8*)b + l->size) + return b; + } + return 0; + } + + private: + struct Header { + uptr map_beg; + uptr map_size; + uptr size; + Header *next; + Header *prev; + }; + + Header *GetHeader(uptr p) { + CHECK_EQ(p % page_size_, 0); + return reinterpret_cast<Header*>(p - page_size_); + } + Header *GetHeader(void *p) { return GetHeader(reinterpret_cast<uptr>(p)); } + + void *GetUser(Header *h) { + CHECK_EQ((uptr)h % page_size_, 0); + return reinterpret_cast<void*>(reinterpret_cast<uptr>(h) + page_size_); + } + + uptr RoundUpMapSize(uptr size) { + return RoundUpTo(size, page_size_) + page_size_; + } + + uptr page_size_; + Header *list_; + SpinMutex mutex_; +}; + +// This class implements a complete memory allocator by using two +// internal allocators: +// PrimaryAllocator is efficient, but may not allocate some sizes (alignments). +// When allocating 2^x bytes it should return 2^x aligned chunk. +// PrimaryAllocator is used via a local AllocatorCache. +// SecondaryAllocator can allocate anything, but is not efficient. +template <class PrimaryAllocator, class AllocatorCache, + class SecondaryAllocator> // NOLINT +class CombinedAllocator { + public: + void Init() { + primary_.Init(); + secondary_.Init(); + } + + void *Allocate(AllocatorCache *cache, uptr size, uptr alignment, + bool cleared = false) { + // Returning 0 on malloc(0) may break a lot of code. + if (size == 0) + size = 1; + if (size + alignment < size) + return 0; + if (alignment > 8) + size = RoundUpTo(size, alignment); + void *res; + if (primary_.CanAllocate(size, alignment)) + res = cache->Allocate(&primary_, primary_.ClassID(size)); + else + res = secondary_.Allocate(size, alignment); + if (alignment > 8) + CHECK_EQ(reinterpret_cast<uptr>(res) & (alignment - 1), 0); + if (cleared && res) + internal_memset(res, 0, size); + return res; + } + + void Deallocate(AllocatorCache *cache, void *p) { + if (!p) return; + if (primary_.PointerIsMine(p)) + cache->Deallocate(&primary_, primary_.GetSizeClass(p), p); + else + secondary_.Deallocate(p); + } + + void *Reallocate(AllocatorCache *cache, void *p, uptr new_size, + uptr alignment) { + if (!p) + return Allocate(cache, new_size, alignment); + if (!new_size) { + Deallocate(cache, p); + return 0; + } + CHECK(PointerIsMine(p)); + uptr old_size = GetActuallyAllocatedSize(p); + uptr memcpy_size = Min(new_size, old_size); + void *new_p = Allocate(cache, new_size, alignment); + if (new_p) + internal_memcpy(new_p, p, memcpy_size); + Deallocate(cache, p); + return new_p; + } + + bool PointerIsMine(void *p) { + if (primary_.PointerIsMine(p)) + return true; + return secondary_.PointerIsMine(p); + } + + void *GetMetaData(void *p) { + if (primary_.PointerIsMine(p)) + return primary_.GetMetaData(p); + return secondary_.GetMetaData(p); + } + + void *GetBlockBegin(void *p) { + if (primary_.PointerIsMine(p)) + return primary_.GetBlockBegin(p); + return secondary_.GetBlockBegin(p); + } + + uptr GetActuallyAllocatedSize(void *p) { + if (primary_.PointerIsMine(p)) + return primary_.GetActuallyAllocatedSize(p); + return secondary_.GetActuallyAllocatedSize(p); + } + + uptr TotalMemoryUsed() { + return primary_.TotalMemoryUsed() + secondary_.TotalMemoryUsed(); + } + + void TestOnlyUnmap() { primary_.TestOnlyUnmap(); } + + void SwallowCache(AllocatorCache *cache) { + cache->Drain(&primary_); + } + + private: + PrimaryAllocator primary_; + SecondaryAllocator secondary_; +}; + +} // namespace __sanitizer + +#endif // SANITIZER_ALLOCATOR_H |