summaryrefslogtreecommitdiff
path: root/libsanitizer/sanitizer_common/sanitizer_allocator.h
diff options
context:
space:
mode:
authorkcc <kcc@138bc75d-0d04-0410-961f-82ee72b054a4>2012-12-05 13:19:55 +0000
committerkcc <kcc@138bc75d-0d04-0410-961f-82ee72b054a4>2012-12-05 13:19:55 +0000
commit4ab070fc750612ffbe12b7a67de3fa3e8d9d81ea (patch)
tree1a9c1fa8fc461362f209a6c9b1abdadaacf74938 /libsanitizer/sanitizer_common/sanitizer_allocator.h
parent14799b23a661479a4f3d2ec15471afb3618af00d (diff)
downloadgcc-4ab070fc750612ffbe12b7a67de3fa3e8d9d81ea.tar.gz
[libsanitizer] merge from upstream r169371
git-svn-id: svn+ssh://gcc.gnu.org/svn/gcc/trunk@194221 138bc75d-0d04-0410-961f-82ee72b054a4
Diffstat (limited to 'libsanitizer/sanitizer_common/sanitizer_allocator.h')
-rw-r--r--libsanitizer/sanitizer_common/sanitizer_allocator.h582
1 files changed, 582 insertions, 0 deletions
diff --git a/libsanitizer/sanitizer_common/sanitizer_allocator.h b/libsanitizer/sanitizer_common/sanitizer_allocator.h
new file mode 100644
index 00000000000..63107bdbdb0
--- /dev/null
+++ b/libsanitizer/sanitizer_common/sanitizer_allocator.h
@@ -0,0 +1,582 @@
+//===-- sanitizer_allocator.h -----------------------------------*- C++ -*-===//
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Specialized memory allocator for ThreadSanitizer, MemorySanitizer, etc.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef SANITIZER_ALLOCATOR_H
+#define SANITIZER_ALLOCATOR_H
+
+#include "sanitizer_internal_defs.h"
+#include "sanitizer_common.h"
+#include "sanitizer_libc.h"
+#include "sanitizer_list.h"
+#include "sanitizer_mutex.h"
+
+namespace __sanitizer {
+
+// Maps size class id to size and back.
+template <uptr l0, uptr l1, uptr l2, uptr l3, uptr l4, uptr l5,
+ uptr s0, uptr s1, uptr s2, uptr s3, uptr s4,
+ uptr c0, uptr c1, uptr c2, uptr c3, uptr c4>
+class SplineSizeClassMap {
+ private:
+ // Here we use a spline composed of 5 polynomials of oder 1.
+ // The first size class is l0, then the classes go with step s0
+ // untill they reach l1, after which they go with step s1 and so on.
+ // Steps should be powers of two for cheap division.
+ // The size of the last size class should be a power of two.
+ // There should be at most 256 size classes.
+ static const uptr u0 = 0 + (l1 - l0) / s0;
+ static const uptr u1 = u0 + (l2 - l1) / s1;
+ static const uptr u2 = u1 + (l3 - l2) / s2;
+ static const uptr u3 = u2 + (l4 - l3) / s3;
+ static const uptr u4 = u3 + (l5 - l4) / s4;
+
+ public:
+ // The number of size classes should be a power of two for fast division.
+ static const uptr kNumClasses = u4 + 1;
+ static const uptr kMaxSize = l5;
+ static const uptr kMinSize = l0;
+
+ COMPILER_CHECK(kNumClasses <= 256);
+ COMPILER_CHECK((kNumClasses & (kNumClasses - 1)) == 0);
+ COMPILER_CHECK((kMaxSize & (kMaxSize - 1)) == 0);
+
+ static uptr Size(uptr class_id) {
+ if (class_id <= u0) return l0 + s0 * (class_id - 0);
+ if (class_id <= u1) return l1 + s1 * (class_id - u0);
+ if (class_id <= u2) return l2 + s2 * (class_id - u1);
+ if (class_id <= u3) return l3 + s3 * (class_id - u2);
+ if (class_id <= u4) return l4 + s4 * (class_id - u3);
+ return 0;
+ }
+ static uptr ClassID(uptr size) {
+ if (size <= l1) return 0 + (size - l0 + s0 - 1) / s0;
+ if (size <= l2) return u0 + (size - l1 + s1 - 1) / s1;
+ if (size <= l3) return u1 + (size - l2 + s2 - 1) / s2;
+ if (size <= l4) return u2 + (size - l3 + s3 - 1) / s3;
+ if (size <= l5) return u3 + (size - l4 + s4 - 1) / s4;
+ return 0;
+ }
+
+ static uptr MaxCached(uptr class_id) {
+ if (class_id <= u0) return c0;
+ if (class_id <= u1) return c1;
+ if (class_id <= u2) return c2;
+ if (class_id <= u3) return c3;
+ if (class_id <= u4) return c4;
+ return 0;
+ }
+};
+
+class DefaultSizeClassMap: public SplineSizeClassMap<
+ /* l: */1 << 4, 1 << 9, 1 << 12, 1 << 15, 1 << 18, 1 << 21,
+ /* s: */1 << 4, 1 << 6, 1 << 9, 1 << 12, 1 << 15,
+ /* c: */256, 64, 16, 4, 1> {
+ private:
+ COMPILER_CHECK(kNumClasses == 256);
+};
+
+class CompactSizeClassMap: public SplineSizeClassMap<
+ /* l: */1 << 3, 1 << 4, 1 << 7, 1 << 8, 1 << 12, 1 << 15,
+ /* s: */1 << 3, 1 << 4, 1 << 7, 1 << 8, 1 << 12,
+ /* c: */256, 64, 16, 4, 1> {
+ private:
+ COMPILER_CHECK(kNumClasses <= 32);
+};
+
+struct AllocatorListNode {
+ AllocatorListNode *next;
+};
+
+typedef IntrusiveList<AllocatorListNode> AllocatorFreeList;
+
+// SizeClassAllocator64 -- allocator for 64-bit address space.
+//
+// Space: a portion of address space of kSpaceSize bytes starting at
+// a fixed address (kSpaceBeg). Both constants are powers of two and
+// kSpaceBeg is kSpaceSize-aligned.
+//
+// Region: a part of Space dedicated to a single size class.
+// There are kNumClasses Regions of equal size.
+//
+// UserChunk: a piece of memory returned to user.
+// MetaChunk: kMetadataSize bytes of metadata associated with a UserChunk.
+//
+// A Region looks like this:
+// UserChunk1 ... UserChunkN <gap> MetaChunkN ... MetaChunk1
+template <const uptr kSpaceBeg, const uptr kSpaceSize,
+ const uptr kMetadataSize, class SizeClassMap>
+class SizeClassAllocator64 {
+ public:
+ void Init() {
+ CHECK_EQ(AllocBeg(), reinterpret_cast<uptr>(MmapFixedNoReserve(
+ AllocBeg(), AllocSize())));
+ }
+
+ bool CanAllocate(uptr size, uptr alignment) {
+ return size <= SizeClassMap::kMaxSize &&
+ alignment <= SizeClassMap::kMaxSize;
+ }
+
+ void *Allocate(uptr size, uptr alignment) {
+ CHECK(CanAllocate(size, alignment));
+ return AllocateBySizeClass(SizeClassMap::ClassID(size));
+ }
+
+ void Deallocate(void *p) {
+ CHECK(PointerIsMine(p));
+ DeallocateBySizeClass(p, GetSizeClass(p));
+ }
+
+ // Allocate several chunks of the given class_id.
+ void BulkAllocate(uptr class_id, AllocatorFreeList *free_list) {
+ CHECK_LT(class_id, kNumClasses);
+ RegionInfo *region = GetRegionInfo(class_id);
+ SpinMutexLock l(&region->mutex);
+ if (region->free_list.empty()) {
+ PopulateFreeList(class_id, region);
+ }
+ CHECK(!region->free_list.empty());
+ uptr count = SizeClassMap::MaxCached(class_id);
+ if (region->free_list.size() <= count) {
+ free_list->append_front(&region->free_list);
+ } else {
+ for (uptr i = 0; i < count; i++) {
+ AllocatorListNode *node = region->free_list.front();
+ region->free_list.pop_front();
+ free_list->push_front(node);
+ }
+ }
+ CHECK(!free_list->empty());
+ }
+
+ // Swallow the entire free_list for the given class_id.
+ void BulkDeallocate(uptr class_id, AllocatorFreeList *free_list) {
+ CHECK_LT(class_id, kNumClasses);
+ RegionInfo *region = GetRegionInfo(class_id);
+ SpinMutexLock l(&region->mutex);
+ region->free_list.append_front(free_list);
+ }
+
+ static bool PointerIsMine(void *p) {
+ return reinterpret_cast<uptr>(p) / kSpaceSize == kSpaceBeg / kSpaceSize;
+ }
+
+ static uptr GetSizeClass(void *p) {
+ return (reinterpret_cast<uptr>(p) / kRegionSize) % kNumClasses;
+ }
+
+ static void *GetBlockBegin(void *p) {
+ uptr class_id = GetSizeClass(p);
+ uptr size = SizeClassMap::Size(class_id);
+ uptr chunk_idx = GetChunkIdx((uptr)p, size);
+ uptr reg_beg = (uptr)p & ~(kRegionSize - 1);
+ uptr begin = reg_beg + chunk_idx * size;
+ return (void*)begin;
+ }
+
+ static uptr GetActuallyAllocatedSize(void *p) {
+ CHECK(PointerIsMine(p));
+ return SizeClassMap::Size(GetSizeClass(p));
+ }
+
+ uptr ClassID(uptr size) { return SizeClassMap::ClassID(size); }
+
+ void *GetMetaData(void *p) {
+ uptr class_id = GetSizeClass(p);
+ uptr size = SizeClassMap::Size(class_id);
+ uptr chunk_idx = GetChunkIdx(reinterpret_cast<uptr>(p), size);
+ return reinterpret_cast<void*>(kSpaceBeg + (kRegionSize * (class_id + 1)) -
+ (1 + chunk_idx) * kMetadataSize);
+ }
+
+ uptr TotalMemoryUsed() {
+ uptr res = 0;
+ for (uptr i = 0; i < kNumClasses; i++)
+ res += GetRegionInfo(i)->allocated_user;
+ return res;
+ }
+
+ // Test-only.
+ void TestOnlyUnmap() {
+ UnmapOrDie(reinterpret_cast<void*>(AllocBeg()), AllocSize());
+ }
+
+ static uptr AllocBeg() { return kSpaceBeg; }
+ static uptr AllocSize() { return kSpaceSize + AdditionalSize(); }
+
+ typedef SizeClassMap SizeClassMapT;
+ static const uptr kNumClasses = SizeClassMap::kNumClasses; // 2^k <= 256
+
+ private:
+ static const uptr kRegionSize = kSpaceSize / kNumClasses;
+ COMPILER_CHECK(kSpaceBeg % kSpaceSize == 0);
+ COMPILER_CHECK(kNumClasses <= SizeClassMap::kNumClasses);
+ // kRegionSize must be >= 2^32.
+ COMPILER_CHECK((kRegionSize) >= (1ULL << (SANITIZER_WORDSIZE / 2)));
+ // Populate the free list with at most this number of bytes at once
+ // or with one element if its size is greater.
+ static const uptr kPopulateSize = 1 << 18;
+
+ struct RegionInfo {
+ SpinMutex mutex;
+ AllocatorFreeList free_list;
+ uptr allocated_user; // Bytes allocated for user memory.
+ uptr allocated_meta; // Bytes allocated for metadata.
+ char padding[kCacheLineSize - 3 * sizeof(uptr) - sizeof(AllocatorFreeList)];
+ };
+ COMPILER_CHECK(sizeof(RegionInfo) == kCacheLineSize);
+
+ static uptr AdditionalSize() {
+ uptr PageSize = GetPageSizeCached();
+ uptr res = Max(sizeof(RegionInfo) * kNumClasses, PageSize);
+ CHECK_EQ(res % PageSize, 0);
+ return res;
+ }
+
+ RegionInfo *GetRegionInfo(uptr class_id) {
+ CHECK_LT(class_id, kNumClasses);
+ RegionInfo *regions = reinterpret_cast<RegionInfo*>(kSpaceBeg + kSpaceSize);
+ return &regions[class_id];
+ }
+
+ static uptr GetChunkIdx(uptr chunk, uptr size) {
+ u32 offset = chunk % kRegionSize;
+ // Here we divide by a non-constant. This is costly.
+ // We require that kRegionSize is at least 2^32 so that offset is 32-bit.
+ // We save 2x by using 32-bit div, but may need to use a 256-way switch.
+ return offset / (u32)size;
+ }
+
+ void PopulateFreeList(uptr class_id, RegionInfo *region) {
+ uptr size = SizeClassMap::Size(class_id);
+ uptr beg_idx = region->allocated_user;
+ uptr end_idx = beg_idx + kPopulateSize;
+ region->free_list.clear();
+ uptr region_beg = kSpaceBeg + kRegionSize * class_id;
+ uptr idx = beg_idx;
+ uptr i = 0;
+ do { // do-while loop because we need to put at least one item.
+ uptr p = region_beg + idx;
+ region->free_list.push_front(reinterpret_cast<AllocatorListNode*>(p));
+ idx += size;
+ i++;
+ } while (idx < end_idx);
+ region->allocated_user += idx - beg_idx;
+ region->allocated_meta += i * kMetadataSize;
+ if (region->allocated_user + region->allocated_meta > kRegionSize) {
+ Printf("Out of memory. Dying.\n");
+ Printf("The process has exhausted %zuMB for size class %zu.\n",
+ kRegionSize / 1024 / 1024, size);
+ Die();
+ }
+ }
+
+ void *AllocateBySizeClass(uptr class_id) {
+ CHECK_LT(class_id, kNumClasses);
+ RegionInfo *region = GetRegionInfo(class_id);
+ SpinMutexLock l(&region->mutex);
+ if (region->free_list.empty()) {
+ PopulateFreeList(class_id, region);
+ }
+ CHECK(!region->free_list.empty());
+ AllocatorListNode *node = region->free_list.front();
+ region->free_list.pop_front();
+ return reinterpret_cast<void*>(node);
+ }
+
+ void DeallocateBySizeClass(void *p, uptr class_id) {
+ RegionInfo *region = GetRegionInfo(class_id);
+ SpinMutexLock l(&region->mutex);
+ region->free_list.push_front(reinterpret_cast<AllocatorListNode*>(p));
+ }
+};
+
+// Objects of this type should be used as local caches for SizeClassAllocator64.
+// Since the typical use of this class is to have one object per thread in TLS,
+// is has to be POD.
+template<class SizeClassAllocator>
+struct SizeClassAllocatorLocalCache {
+ typedef SizeClassAllocator Allocator;
+ static const uptr kNumClasses = SizeClassAllocator::kNumClasses;
+ // Don't need to call Init if the object is a global (i.e. zero-initialized).
+ void Init() {
+ internal_memset(this, 0, sizeof(*this));
+ }
+
+ void *Allocate(SizeClassAllocator *allocator, uptr class_id) {
+ CHECK_LT(class_id, kNumClasses);
+ AllocatorFreeList *free_list = &free_lists_[class_id];
+ if (free_list->empty())
+ allocator->BulkAllocate(class_id, free_list);
+ CHECK(!free_list->empty());
+ void *res = free_list->front();
+ free_list->pop_front();
+ return res;
+ }
+
+ void Deallocate(SizeClassAllocator *allocator, uptr class_id, void *p) {
+ CHECK_LT(class_id, kNumClasses);
+ AllocatorFreeList *free_list = &free_lists_[class_id];
+ free_list->push_front(reinterpret_cast<AllocatorListNode*>(p));
+ if (free_list->size() >= 2 * SizeClassMap::MaxCached(class_id))
+ DrainHalf(allocator, class_id);
+ }
+
+ void Drain(SizeClassAllocator *allocator) {
+ for (uptr i = 0; i < kNumClasses; i++) {
+ allocator->BulkDeallocate(i, &free_lists_[i]);
+ CHECK(free_lists_[i].empty());
+ }
+ }
+
+ // private:
+ typedef typename SizeClassAllocator::SizeClassMapT SizeClassMap;
+ AllocatorFreeList free_lists_[kNumClasses];
+
+ void DrainHalf(SizeClassAllocator *allocator, uptr class_id) {
+ AllocatorFreeList *free_list = &free_lists_[class_id];
+ AllocatorFreeList half;
+ half.clear();
+ const uptr count = free_list->size() / 2;
+ for (uptr i = 0; i < count; i++) {
+ AllocatorListNode *node = free_list->front();
+ free_list->pop_front();
+ half.push_front(node);
+ }
+ allocator->BulkDeallocate(class_id, &half);
+ }
+};
+
+// This class can (de)allocate only large chunks of memory using mmap/unmap.
+// The main purpose of this allocator is to cover large and rare allocation
+// sizes not covered by more efficient allocators (e.g. SizeClassAllocator64).
+class LargeMmapAllocator {
+ public:
+ void Init() {
+ internal_memset(this, 0, sizeof(*this));
+ page_size_ = GetPageSizeCached();
+ }
+ void *Allocate(uptr size, uptr alignment) {
+ CHECK(IsPowerOfTwo(alignment));
+ uptr map_size = RoundUpMapSize(size);
+ if (alignment > page_size_)
+ map_size += alignment;
+ if (map_size < size) return 0; // Overflow.
+ uptr map_beg = reinterpret_cast<uptr>(
+ MmapOrDie(map_size, "LargeMmapAllocator"));
+ uptr map_end = map_beg + map_size;
+ uptr res = map_beg + page_size_;
+ if (res & (alignment - 1)) // Align.
+ res += alignment - (res & (alignment - 1));
+ CHECK_EQ(0, res & (alignment - 1));
+ CHECK_LE(res + size, map_end);
+ Header *h = GetHeader(res);
+ h->size = size;
+ h->map_beg = map_beg;
+ h->map_size = map_size;
+ {
+ SpinMutexLock l(&mutex_);
+ h->next = list_;
+ h->prev = 0;
+ if (list_)
+ list_->prev = h;
+ list_ = h;
+ }
+ return reinterpret_cast<void*>(res);
+ }
+
+ void Deallocate(void *p) {
+ Header *h = GetHeader(p);
+ {
+ SpinMutexLock l(&mutex_);
+ Header *prev = h->prev;
+ Header *next = h->next;
+ if (prev)
+ prev->next = next;
+ if (next)
+ next->prev = prev;
+ if (h == list_)
+ list_ = next;
+ }
+ UnmapOrDie(reinterpret_cast<void*>(h->map_beg), h->map_size);
+ }
+
+ uptr TotalMemoryUsed() {
+ SpinMutexLock l(&mutex_);
+ uptr res = 0;
+ for (Header *l = list_; l; l = l->next) {
+ res += RoundUpMapSize(l->size);
+ }
+ return res;
+ }
+
+ bool PointerIsMine(void *p) {
+ // Fast check.
+ if ((reinterpret_cast<uptr>(p) & (page_size_ - 1))) return false;
+ SpinMutexLock l(&mutex_);
+ for (Header *l = list_; l; l = l->next) {
+ if (GetUser(l) == p) return true;
+ }
+ return false;
+ }
+
+ uptr GetActuallyAllocatedSize(void *p) {
+ return RoundUpMapSize(GetHeader(p)->size) - page_size_;
+ }
+
+ // At least page_size_/2 metadata bytes is available.
+ void *GetMetaData(void *p) {
+ return GetHeader(p) + 1;
+ }
+
+ void *GetBlockBegin(void *p) {
+ SpinMutexLock l(&mutex_);
+ for (Header *l = list_; l; l = l->next) {
+ void *b = GetUser(l);
+ if (p >= b && p < (u8*)b + l->size)
+ return b;
+ }
+ return 0;
+ }
+
+ private:
+ struct Header {
+ uptr map_beg;
+ uptr map_size;
+ uptr size;
+ Header *next;
+ Header *prev;
+ };
+
+ Header *GetHeader(uptr p) {
+ CHECK_EQ(p % page_size_, 0);
+ return reinterpret_cast<Header*>(p - page_size_);
+ }
+ Header *GetHeader(void *p) { return GetHeader(reinterpret_cast<uptr>(p)); }
+
+ void *GetUser(Header *h) {
+ CHECK_EQ((uptr)h % page_size_, 0);
+ return reinterpret_cast<void*>(reinterpret_cast<uptr>(h) + page_size_);
+ }
+
+ uptr RoundUpMapSize(uptr size) {
+ return RoundUpTo(size, page_size_) + page_size_;
+ }
+
+ uptr page_size_;
+ Header *list_;
+ SpinMutex mutex_;
+};
+
+// This class implements a complete memory allocator by using two
+// internal allocators:
+// PrimaryAllocator is efficient, but may not allocate some sizes (alignments).
+// When allocating 2^x bytes it should return 2^x aligned chunk.
+// PrimaryAllocator is used via a local AllocatorCache.
+// SecondaryAllocator can allocate anything, but is not efficient.
+template <class PrimaryAllocator, class AllocatorCache,
+ class SecondaryAllocator> // NOLINT
+class CombinedAllocator {
+ public:
+ void Init() {
+ primary_.Init();
+ secondary_.Init();
+ }
+
+ void *Allocate(AllocatorCache *cache, uptr size, uptr alignment,
+ bool cleared = false) {
+ // Returning 0 on malloc(0) may break a lot of code.
+ if (size == 0)
+ size = 1;
+ if (size + alignment < size)
+ return 0;
+ if (alignment > 8)
+ size = RoundUpTo(size, alignment);
+ void *res;
+ if (primary_.CanAllocate(size, alignment))
+ res = cache->Allocate(&primary_, primary_.ClassID(size));
+ else
+ res = secondary_.Allocate(size, alignment);
+ if (alignment > 8)
+ CHECK_EQ(reinterpret_cast<uptr>(res) & (alignment - 1), 0);
+ if (cleared && res)
+ internal_memset(res, 0, size);
+ return res;
+ }
+
+ void Deallocate(AllocatorCache *cache, void *p) {
+ if (!p) return;
+ if (primary_.PointerIsMine(p))
+ cache->Deallocate(&primary_, primary_.GetSizeClass(p), p);
+ else
+ secondary_.Deallocate(p);
+ }
+
+ void *Reallocate(AllocatorCache *cache, void *p, uptr new_size,
+ uptr alignment) {
+ if (!p)
+ return Allocate(cache, new_size, alignment);
+ if (!new_size) {
+ Deallocate(cache, p);
+ return 0;
+ }
+ CHECK(PointerIsMine(p));
+ uptr old_size = GetActuallyAllocatedSize(p);
+ uptr memcpy_size = Min(new_size, old_size);
+ void *new_p = Allocate(cache, new_size, alignment);
+ if (new_p)
+ internal_memcpy(new_p, p, memcpy_size);
+ Deallocate(cache, p);
+ return new_p;
+ }
+
+ bool PointerIsMine(void *p) {
+ if (primary_.PointerIsMine(p))
+ return true;
+ return secondary_.PointerIsMine(p);
+ }
+
+ void *GetMetaData(void *p) {
+ if (primary_.PointerIsMine(p))
+ return primary_.GetMetaData(p);
+ return secondary_.GetMetaData(p);
+ }
+
+ void *GetBlockBegin(void *p) {
+ if (primary_.PointerIsMine(p))
+ return primary_.GetBlockBegin(p);
+ return secondary_.GetBlockBegin(p);
+ }
+
+ uptr GetActuallyAllocatedSize(void *p) {
+ if (primary_.PointerIsMine(p))
+ return primary_.GetActuallyAllocatedSize(p);
+ return secondary_.GetActuallyAllocatedSize(p);
+ }
+
+ uptr TotalMemoryUsed() {
+ return primary_.TotalMemoryUsed() + secondary_.TotalMemoryUsed();
+ }
+
+ void TestOnlyUnmap() { primary_.TestOnlyUnmap(); }
+
+ void SwallowCache(AllocatorCache *cache) {
+ cache->Drain(&primary_);
+ }
+
+ private:
+ PrimaryAllocator primary_;
+ SecondaryAllocator secondary_;
+};
+
+} // namespace __sanitizer
+
+#endif // SANITIZER_ALLOCATOR_H