summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--gcc/ChangeLog15
-rw-r--r--gcc/Makefile.in3
-rw-r--r--gcc/config/dfp-bit.c74
-rw-r--r--gcc/dfp.c90
-rw-r--r--libdecnumber/ChangeLog51
-rw-r--r--libdecnumber/Makefile.in19
-rw-r--r--libdecnumber/bid/decimal128Local.h1
-rw-r--r--libdecnumber/bid/decimal128Symbols.h1
-rw-r--r--libdecnumber/bid/decimal32Symbols.h1
-rw-r--r--libdecnumber/bid/decimal64Symbols.h1
-rw-r--r--libdecnumber/bid/host-ieee128.c38
-rw-r--r--libdecnumber/bid/host-ieee32.c52
-rw-r--r--libdecnumber/bid/host-ieee64.c33
-rw-r--r--libdecnumber/decBasic.c3769
-rw-r--r--libdecnumber/decCommon.c1771
-rw-r--r--libdecnumber/decContext.c548
-rw-r--r--libdecnumber/decContext.h373
-rw-r--r--libdecnumber/decContextSymbols.h22
-rw-r--r--libdecnumber/decDPD.h1662
-rw-r--r--libdecnumber/decDouble.c154
-rw-r--r--libdecnumber/decDouble.h164
-rw-r--r--libdecnumber/decDoubleSymbols.h84
-rw-r--r--libdecnumber/decLibrary.c19
-rw-r--r--libdecnumber/decNumber.c12717
-rw-r--r--libdecnumber/decNumber.h326
-rw-r--r--libdecnumber/decNumberLocal.h717
-rw-r--r--libdecnumber/decNumberSymbols.h69
-rw-r--r--libdecnumber/decPacked.c235
-rw-r--r--libdecnumber/decPacked.h70
-rw-r--r--libdecnumber/decPackedSymbols.h9
-rw-r--r--libdecnumber/decQuad.c146
-rw-r--r--libdecnumber/decQuad.h186
-rw-r--r--libdecnumber/decQuadSymbols.h82
-rw-r--r--libdecnumber/decSingle.c85
-rw-r--r--libdecnumber/decSingle.h101
-rw-r--r--libdecnumber/decSingleSymbols.h24
-rw-r--r--libdecnumber/decUtility.c360
-rw-r--r--libdecnumber/dpd/decimal128.c729
-rw-r--r--libdecnumber/dpd/decimal128.h165
-rw-r--r--libdecnumber/dpd/decimal128Local.h (renamed from libdecnumber/decUtility.h)28
-rw-r--r--libdecnumber/dpd/decimal128Symbols.h16
-rw-r--r--libdecnumber/dpd/decimal32.c656
-rw-r--r--libdecnumber/dpd/decimal32.h149
-rw-r--r--libdecnumber/dpd/decimal32Symbols.h16
-rw-r--r--libdecnumber/dpd/decimal64.c1009
-rw-r--r--libdecnumber/dpd/decimal64.h163
-rw-r--r--libdecnumber/dpd/decimal64Symbols.h16
-rw-r--r--libgcc/ChangeLog5
-rw-r--r--libgcc/Makefile.in2
49 files changed, 19000 insertions, 8026 deletions
diff --git a/gcc/ChangeLog b/gcc/ChangeLog
index 9360ae05cf1..9bcfca14751 100644
--- a/gcc/ChangeLog
+++ b/gcc/ChangeLog
@@ -1,3 +1,18 @@
+2007-09-10 Janis Johnson <janis187@us.ibm.com>
+ Ben Elliston <bje@au.ibm.com>
+
+ * dfp.c: Include decimal128Local.h;
+ (dfp_byte_swap): Remove.
+ (encode_decimal32, decode_decimal32): Don't handle endianness.
+ (encode_decimal64, decode_decimal64): Ditto.
+ (encode_decimal128, decode_decimal128): Ditto.
+ * config/dfp-bit.c (host_to_ieee32, ieee_to_host_32): Ditto.
+ (__swap64): Remove.
+ (host_to_ieee_64, ieee_to_host_64): Don't handle endianness.
+ (__swap128): Remove
+ (host_to_ieee_128, ieee_to_host_128): Don't handle endianness.
+ * Makefile.in (DECNUM_H): Add decimal128Local.h.
+
2007-09-10 David Daney <ddaney@avtrex.com>
* config/mips/mips.md (UNSPEC_MEMORY_BARRIER): New entry in
diff --git a/gcc/Makefile.in b/gcc/Makefile.in
index 273dda52cc5..ef7a949f121 100644
--- a/gcc/Makefile.in
+++ b/gcc/Makefile.in
@@ -815,7 +815,8 @@ PREDICT_H = predict.h predict.def
CPPLIB_H = $(srcdir)/../libcpp/include/line-map.h \
$(srcdir)/../libcpp/include/cpplib.h
DECNUM_H = $(DECNUM)/decContext.h $(DECNUM)/decDPD.h $(DECNUM)/decNumber.h \
- $(DECNUMFMT)/decimal32.h $(DECNUMFMT)/decimal64.h $(DECNUMFMT)/decimal128.h
+ $(DECNUMFMT)/decimal32.h $(DECNUMFMT)/decimal64.h \
+ $(DECNUMFMT)/decimal128.h $(DECNUMFMT)/decimal128Local.h
MKDEPS_H = $(srcdir)/../libcpp/include/mkdeps.h
SYMTAB_H = $(srcdir)/../libcpp/include/symtab.h
CPP_ID_DATA_H = $(CPPLIB_H) $(srcdir)/../libcpp/include/cpp-id-data.h
diff --git a/gcc/config/dfp-bit.c b/gcc/config/dfp-bit.c
index 325306a5460..252abe0224c 100644
--- a/gcc/config/dfp-bit.c
+++ b/gcc/config/dfp-bit.c
@@ -70,8 +70,6 @@ typedef decNumber* (*dfp_unary_func)
/* A pointer to a binary decNumber operation. */
typedef decNumber* (*dfp_binary_func)
(decNumber *, const decNumber *, const decNumber *, decContext *);
-
-extern uint32_t __dec_byte_swap (uint32_t);
/* Unary operations. */
@@ -190,101 +188,41 @@ dfp_compare_op (dfp_binary_func op, DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
void
__host_to_ieee_32 (_Decimal32 in, decimal32 *out)
{
- uint32_t t;
-
- if (!LIBGCC2_FLOAT_WORDS_BIG_ENDIAN)
- {
- memcpy (&t, &in, 4);
- t = __dec_byte_swap (t);
- memcpy (out, &t, 4);
- }
- else
- memcpy (out, &in, 4);
+ memcpy (out, &in, 4);
}
void
__ieee_to_host_32 (decimal32 in, _Decimal32 *out)
{
- uint32_t t;
-
- if (!LIBGCC2_FLOAT_WORDS_BIG_ENDIAN)
- {
- memcpy (&t, &in, 4);
- t = __dec_byte_swap (t);
- memcpy (out, &t, 4);
- }
- else
- memcpy (out, &in, 4);
+ memcpy (out, &in, 4);
}
#endif /* L_conv_sd */
#if defined(L_conv_dd)
-static void
-__swap64 (char *src, char *dst)
-{
- uint32_t t1, t2;
-
- if (!LIBGCC2_FLOAT_WORDS_BIG_ENDIAN)
- {
- memcpy (&t1, src, 4);
- memcpy (&t2, src + 4, 4);
- t1 = __dec_byte_swap (t1);
- t2 = __dec_byte_swap (t2);
- memcpy (dst, &t2, 4);
- memcpy (dst + 4, &t1, 4);
- }
- else
- memcpy (dst, src, 8);
-}
-
void
__host_to_ieee_64 (_Decimal64 in, decimal64 *out)
{
- __swap64 ((char *) &in, (char *) out);
+ memcpy (out, &in, 8);
}
void
__ieee_to_host_64 (decimal64 in, _Decimal64 *out)
{
- __swap64 ((char *) &in, (char *) out);
+ memcpy (out, &in, 8);
}
#endif /* L_conv_dd */
#if defined(L_conv_td)
-static void
-__swap128 (char *src, char *dst)
-{
- uint32_t t1, t2, t3, t4;
-
- if (!LIBGCC2_FLOAT_WORDS_BIG_ENDIAN)
- {
- memcpy (&t1, src, 4);
- memcpy (&t2, src + 4, 4);
- memcpy (&t3, src + 8, 4);
- memcpy (&t4, src + 12, 4);
- t1 = __dec_byte_swap (t1);
- t2 = __dec_byte_swap (t2);
- t3 = __dec_byte_swap (t3);
- t4 = __dec_byte_swap (t4);
- memcpy (dst, &t4, 4);
- memcpy (dst + 4, &t3, 4);
- memcpy (dst + 8, &t2, 4);
- memcpy (dst + 12, &t1, 4);
- }
- else
- memcpy (dst, src, 16);
-}
-
void
__host_to_ieee_128 (_Decimal128 in, decimal128 *out)
{
- __swap128 ((char *) &in, (char *) out);
+ memcpy (out, &in, 16);
}
void
__ieee_to_host_128 (decimal128 in, _Decimal128 *out)
{
- __swap128 ((char *) &in, (char *) out);
+ memcpy (out, &in, 16);
}
#endif /* L_conv_td */
diff --git a/gcc/dfp.c b/gcc/dfp.c
index 23285892d9b..88ffdedbcfb 100644
--- a/gcc/dfp.c
+++ b/gcc/dfp.c
@@ -31,29 +31,11 @@ along with GCC; see the file COPYING3. If not see
decNumber structure is large enough to hold decimal128 digits. */
#include "decimal128.h"
+#include "decimal128Local.h"
#include "decimal64.h"
#include "decimal32.h"
#include "decNumber.h"
-static uint32_t
-dfp_byte_swap (uint32_t in)
-{
- uint32_t out = 0;
- unsigned char *p = (unsigned char *) &out;
- union {
- uint32_t i;
- unsigned char b[4];
- } u;
-
- u.i = in;
- p[0] = u.b[3];
- p[1] = u.b[2];
- p[2] = u.b[1];
- p[3] = u.b[0];
-
- return out;
-}
-
/* Initialize R (a real with the decimal flag set) from DN. Can
utilize status passed in via CONTEXT, if a previous operation had
interesting status. */
@@ -155,10 +137,7 @@ encode_decimal32 (const struct real_format *fmt ATTRIBUTE_UNUSED,
decimal_to_decnumber (r, &dn);
decimal32FromNumber (&d32, &dn, &set);
- if (FLOAT_WORDS_BIG_ENDIAN)
- buf[0] = *(uint32_t *) d32.bytes;
- else
- buf[0] = dfp_byte_swap (*(uint32_t *) d32.bytes);
+ buf[0] = *(uint32_t *) d32.bytes;
}
/* Decode an IEEE 754R decimal32 type into a real. */
@@ -174,10 +153,7 @@ decode_decimal32 (const struct real_format *fmt ATTRIBUTE_UNUSED,
decContextDefault (&set, DEC_INIT_DECIMAL128);
set.traps = 0;
- if (FLOAT_WORDS_BIG_ENDIAN)
- *((uint32_t *) d32.bytes) = (uint32_t) buf[0];
- else
- *((uint32_t *) d32.bytes) = dfp_byte_swap ((uint32_t) buf[0]);
+ *((uint32_t *) d32.bytes) = (uint32_t) buf[0];
decimal32ToNumber (&d32, &dn);
decimal_from_decnumber (r, &dn, &set);
@@ -199,16 +175,8 @@ encode_decimal64 (const struct real_format *fmt ATTRIBUTE_UNUSED,
decimal_to_decnumber (r, &dn);
decimal64FromNumber (&d64, &dn, &set);
- if (FLOAT_WORDS_BIG_ENDIAN)
- {
- buf[0] = *(uint32_t *) &d64.bytes[0];
- buf[1] = *(uint32_t *) &d64.bytes[4];
- }
- else
- {
- buf[1] = dfp_byte_swap (*(uint32_t *) &d64.bytes[0]);
- buf[0] = dfp_byte_swap (*(uint32_t *) &d64.bytes[4]);
- }
+ buf[0] = *(uint32_t *) &d64.bytes[0];
+ buf[1] = *(uint32_t *) &d64.bytes[4];
}
/* Decode an IEEE 754R decimal64 type into a real. */
@@ -224,16 +192,8 @@ decode_decimal64 (const struct real_format *fmt ATTRIBUTE_UNUSED,
decContextDefault (&set, DEC_INIT_DECIMAL128);
set.traps = 0;
- if (FLOAT_WORDS_BIG_ENDIAN)
- {
- *((uint32_t *) &d64.bytes[0]) = (uint32_t) buf[0];
- *((uint32_t *) &d64.bytes[4]) = (uint32_t) buf[1];
- }
- else
- {
- *((uint32_t *) &d64.bytes[0]) = dfp_byte_swap ((uint32_t) buf[1]);
- *((uint32_t *) &d64.bytes[4]) = dfp_byte_swap ((uint32_t) buf[0]);
- }
+ *((uint32_t *) &d64.bytes[0]) = (uint32_t) buf[0];
+ *((uint32_t *) &d64.bytes[4]) = (uint32_t) buf[1];
decimal64ToNumber (&d64, &dn);
decimal_from_decnumber (r, &dn, &set);
@@ -255,20 +215,10 @@ encode_decimal128 (const struct real_format *fmt ATTRIBUTE_UNUSED,
decimal_to_decnumber (r, &dn);
decimal128FromNumber (&d128, &dn, &set);
- if (FLOAT_WORDS_BIG_ENDIAN)
- {
- buf[0] = *(uint32_t *) &d128.bytes[0];
- buf[1] = *(uint32_t *) &d128.bytes[4];
- buf[2] = *(uint32_t *) &d128.bytes[8];
- buf[3] = *(uint32_t *) &d128.bytes[12];
- }
- else
- {
- buf[0] = dfp_byte_swap (*(uint32_t *) &d128.bytes[12]);
- buf[1] = dfp_byte_swap (*(uint32_t *) &d128.bytes[8]);
- buf[2] = dfp_byte_swap (*(uint32_t *) &d128.bytes[4]);
- buf[3] = dfp_byte_swap (*(uint32_t *) &d128.bytes[0]);
- }
+ buf[0] = *(uint32_t *) &d128.bytes[0];
+ buf[1] = *(uint32_t *) &d128.bytes[4];
+ buf[2] = *(uint32_t *) &d128.bytes[8];
+ buf[3] = *(uint32_t *) &d128.bytes[12];
}
/* Decode an IEEE 754R decimal128 type into a real. */
@@ -284,20 +234,10 @@ decode_decimal128 (const struct real_format *fmt ATTRIBUTE_UNUSED,
decContextDefault (&set, DEC_INIT_DECIMAL128);
set.traps = 0;
- if (FLOAT_WORDS_BIG_ENDIAN)
- {
- *((uint32_t *) &d128.bytes[0]) = (uint32_t) buf[0];
- *((uint32_t *) &d128.bytes[4]) = (uint32_t) buf[1];
- *((uint32_t *) &d128.bytes[8]) = (uint32_t) buf[2];
- *((uint32_t *) &d128.bytes[12]) = (uint32_t) buf[3];
- }
- else
- {
- *((uint32_t *) &d128.bytes[0]) = dfp_byte_swap ((uint32_t) buf[3]);
- *((uint32_t *) &d128.bytes[4]) = dfp_byte_swap ((uint32_t) buf[2]);
- *((uint32_t *) &d128.bytes[8]) = dfp_byte_swap ((uint32_t) buf[1]);
- *((uint32_t *) &d128.bytes[12]) = dfp_byte_swap ((uint32_t) buf[0]);
- }
+ *((uint32_t *) &d128.bytes[0]) = (uint32_t) buf[0];
+ *((uint32_t *) &d128.bytes[4]) = (uint32_t) buf[1];
+ *((uint32_t *) &d128.bytes[8]) = (uint32_t) buf[2];
+ *((uint32_t *) &d128.bytes[12]) = (uint32_t) buf[3];
decimal128ToNumber (&d128, &dn);
decimal_from_decnumber (r, &dn, &set);
diff --git a/libdecnumber/ChangeLog b/libdecnumber/ChangeLog
index dd1804f0437..38b42539205 100644
--- a/libdecnumber/ChangeLog
+++ b/libdecnumber/ChangeLog
@@ -1,3 +1,54 @@
+2007-09-10 Janis Johnson <janis187@us.ibm.com>
+ Ben Elliston <bje@au.ibm.com>
+
+ * Makefile.in (libdecnumber_a_OBJS): Remove decUtility.o
+ (dependencies): Add Symbols headers.
+ * decContext.c: Upgrade to decNumber 3.53.
+ * decContext.h: Ditto.
+ * decDPD.h: Ditto.
+ * decNumber.c: Ditto.
+ * decNumber.h: Ditto.
+ * decNumberLocal.h: Ditto.
+ * decBasic.c: New file from decNumber 3.53.
+ * decCommon.c: Ditto.
+ * decDouble.c: Ditto.
+ * decDouble.h: Ditto.
+ * decQuad.c: Ditto.
+ * decQuad.h: Ditto.
+ * decSingle.c: Ditto.
+ * decSingle.h: Ditto.
+ * decPacked.c: Ditto.
+ * decPacked.h: Ditto.
+ * dpd/decimal128.c: Upgrade to decNumber 3.53.
+ * dpd/decimal128.h: Ditto.
+ * dpd/decimal32.c: Ditto.
+ * dpd/decimal32.h: Ditto.
+ * dpd/decimal64.c: Ditto.
+ * dpd/decimal64.h: Ditto.
+ * decLibrary.c (__dec_byte_swap): Remove.
+ * decContextSymbols.h: New file.
+ * decDoubleSymbols.h: New file.
+ * decNumberSymbols.h: New file.
+ * decPackedSymbols.h: New file.
+ * decQuadSymbols.h: New file.
+ * decSingleSymbols.h: New file.
+ * decUtility.c: Delete file.
+ * decUtility.h: Delete file.
+ * bid/decimal128Symbols.h: New file.
+ * bid/decimal128Local.h: New file.
+ * bid/decimal32Symbols.h: New file.
+ * bid/decimal64Symbols.h: New file.
+ * bid/host-ieee128.c (__swap128): Remove.
+ (__host_to_ieee_128, __ieee_to_host_128): Don't handle endianness.
+ * bid/host-ieee32.c (__dec_type_swap): Remove.
+ (__host_to_ieee_32, __ieee_to_host_32): Don't handle endianness.
+ * bid/host-ieee64.c (__swap64): Remove.
+ (__host_to_ieee_64, __ieee_to_host_64): Don't handle endianness.
+ * dpd/decimal32Symbols.h: New file.
+ * dpd/decimal64Symbols.h: New file.
+ * dpd/decimal128Symbols.h: New file.
+ * dpd/decimal128Local.h: New file.
+
2007-06-18 Martin Michlmayr <tbm@cyrius.com>
H.J. Lu <hongjiu.lu@intel.com>
diff --git a/libdecnumber/Makefile.in b/libdecnumber/Makefile.in
index 730e1eb43fa..98ae9eac78c 100644
--- a/libdecnumber/Makefile.in
+++ b/libdecnumber/Makefile.in
@@ -56,7 +56,7 @@ INCLUDES = -I$(srcdir) -I.
ALL_CFLAGS = $(CFLAGS) $(WARN_CFLAGS) $(INCLUDES) $(CPPFLAGS)
-libdecnumber_a_OBJS = decNumber.o decContext.o decUtility.o \
+libdecnumber_a_OBJS = decNumber.o decContext.o \
decimal32.o decimal64.o decimal128.o
ifeq ($(enable_decimal_float),bid)
@@ -66,7 +66,6 @@ endif
libdecnumber_a_SOURCES = decContext.c decContext.h decDPD.h \
decNumber.c decNumber.h decNumberLocal.h \
- decUtility.c decUtility.h \
dpd/decimal128.c dpd/decimal128.h \
dpd/decimal32.c dpd/decimal32.h \
dpd/decimal64.c dpd/decimal64.h \
@@ -113,19 +112,25 @@ $(srcdir)/config.in: @MAINT@ $(srcdir)/configure
# Dependencies.
-decContext.o: decContext.c decContext.h decNumberLocal.h
-decNumber.o: decNumber.c decNumber.h decContext.h decNumberLocal.h
+decContext.o: decContext.c decContext.h decNumberLocal.h \
+ decContextSymbols.h
+decNumber.o: decNumber.c decNumber.h decContext.h decNumberLocal.h \
+ decNumberSymbols.h
decimal32.o: $(enable_decimal_float)/decimal32.c \
$(enable_decimal_float)/decimal32.h \
- decNumber.h decContext.h decNumberLocal.h decUtility.h
+ $(enable_decimal_float)/decimal32Symbols.h \
+ decNumber.h decContext.h decNumberLocal.h
$(COMPILE) $<
decimal64.o: $(enable_decimal_float)/decimal64.c \
$(enable_decimal_float)/decimal64.h \
- decNumber.h decContext.h decNumberLocal.h decUtility.h
+ $(enable_decimal_float)/decimal64Symbols.h \
+ decNumber.h decContext.h decNumberLocal.h
$(COMPILE) $<
decimal128.o: $(enable_decimal_float)/decimal128.c \
$(enable_decimal_float)/decimal128.h \
- decNumber.h decContext.h decNumberLocal.h decUtility.h
+ $(enable_decimal_float)/decimal128Symbols.h\
+ $(enable_decimal_float)/decimal128Local.h\
+ decNumber.h decContext.h decNumberLocal.h
$(COMPILE) $<
bid2dpd_dpd2bid.o : bid/bid2dpd_dpd2bid.c bid/bid2dpd_dpd2bid.h
$(COMPILE) $<
diff --git a/libdecnumber/bid/decimal128Local.h b/libdecnumber/bid/decimal128Local.h
new file mode 100644
index 00000000000..e499d73bf04
--- /dev/null
+++ b/libdecnumber/bid/decimal128Local.h
@@ -0,0 +1 @@
+#include "dpd/decimal128Local.h"
diff --git a/libdecnumber/bid/decimal128Symbols.h b/libdecnumber/bid/decimal128Symbols.h
new file mode 100644
index 00000000000..17757114ae7
--- /dev/null
+++ b/libdecnumber/bid/decimal128Symbols.h
@@ -0,0 +1 @@
+#include "dpd/decimal128Symbols.h"
diff --git a/libdecnumber/bid/decimal32Symbols.h b/libdecnumber/bid/decimal32Symbols.h
new file mode 100644
index 00000000000..a0c4bf8cd3c
--- /dev/null
+++ b/libdecnumber/bid/decimal32Symbols.h
@@ -0,0 +1 @@
+#include "dpd/decimal32Symbols.h"
diff --git a/libdecnumber/bid/decimal64Symbols.h b/libdecnumber/bid/decimal64Symbols.h
new file mode 100644
index 00000000000..5f3069cd62e
--- /dev/null
+++ b/libdecnumber/bid/decimal64Symbols.h
@@ -0,0 +1 @@
+#include "dpd/decimal64Symbols.h"
diff --git a/libdecnumber/bid/host-ieee128.c b/libdecnumber/bid/host-ieee128.c
index 2c8ea32746a..6d493e5c9d8 100644
--- a/libdecnumber/bid/host-ieee128.c
+++ b/libdecnumber/bid/host-ieee128.c
@@ -27,56 +27,22 @@ along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA. */
-#include <stdio.h>
-#include <stdlib.h>
#include <string.h>
-#include <limits.h>
-#include "config.h"
-#include "gstdint.h"
#include "bid-dpd.h"
#include "decimal128.h"
-extern uint32_t __dec_byte_swap (uint32_t);
void __host_to_ieee_128 (_Decimal128 in, decimal128 *out);
void __ieee_to_host_128 (decimal128 in, _Decimal128 *out);
-#ifndef WORDS_BIGENDIAN
-#define WORDS_BIGENDIAN 0
-#endif
-
-static void
-__swap128 (char *src, char *dst)
-{
- uint32_t t1, t2, t3, t4;
-
- if (!WORDS_BIGENDIAN)
- {
- memcpy (&t1, src, 4);
- memcpy (&t2, src + 4, 4);
- memcpy (&t3, src + 8, 4);
- memcpy (&t4, src + 12, 4);
- t1 = __dec_byte_swap (t1);
- t2 = __dec_byte_swap (t2);
- t3 = __dec_byte_swap (t3);
- t4 = __dec_byte_swap (t4);
- memcpy (dst, &t4, 4);
- memcpy (dst + 4, &t3, 4);
- memcpy (dst + 8, &t2, 4);
- memcpy (dst + 12, &t1, 4);
- }
- else
- memcpy (dst, src, 16);
-}
-
void
__host_to_ieee_128 (_Decimal128 in, decimal128 *out)
{
- __swap128 ((char *) &in, (char *) out);
+ memcpy ((char *) out, (char *) &in, 16);
}
void
__ieee_to_host_128 (decimal128 in, _Decimal128 *out)
{
- __swap128 ((char *) &in, (char *) out);
+ memcpy ((char *) out, (char *) &in, 16);
}
diff --git a/libdecnumber/bid/host-ieee32.c b/libdecnumber/bid/host-ieee32.c
index 639662edfee..9a59c938644 100644
--- a/libdecnumber/bid/host-ieee32.c
+++ b/libdecnumber/bid/host-ieee32.c
@@ -37,69 +37,21 @@ Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
/* The intended way to use this file is to make two copies, add `#define '
to one copy, then compile both copies and add them to libgcc.a. */
-#include <stdio.h>
-#include <stdlib.h>
#include <string.h>
-#include <limits.h>
-
-#include "config.h"
-#include "gstdint.h"
#include "bid-dpd.h"
#include "decimal32.h"
-uint32_t __dec_byte_swap (uint32_t);
void __host_to_ieee_32 (_Decimal32 in, decimal32 *out);
void __ieee_to_host_32 (decimal32 in, _Decimal32 *out);
-#ifndef WORDS_BIGENDIAN
-#define WORDS_BIGENDIAN 0
-#endif
-
-uint32_t
-__dec_byte_swap (uint32_t in)
-{
- uint32_t out = 0;
- unsigned char *p = (unsigned char *) &out;
- union {
- uint32_t i;
- unsigned char b[4];
- } u;
-
- u.i = in;
- p[0] = u.b[3];
- p[1] = u.b[2];
- p[2] = u.b[1];
- p[3] = u.b[0];
-
- return out;
-}
-
void
__host_to_ieee_32 (_Decimal32 in, decimal32 *out)
{
- uint32_t t;
-
- if (!WORDS_BIGENDIAN)
- {
- memcpy (&t, &in, 4);
- t = __dec_byte_swap (t);
- memcpy (out, &t, 4);
- }
- else
- memcpy (out, &in, 4);
+ memcpy ((char *) out, (char *) &in, 4);
}
void
__ieee_to_host_32 (decimal32 in, _Decimal32 *out)
{
- uint32_t t;
-
- if (!WORDS_BIGENDIAN)
- {
- memcpy (&t, &in, 4);
- t = __dec_byte_swap (t);
- memcpy (out, &t, 4);
- }
- else
- memcpy (out, &in, 4);
+ memcpy ((char *) out, (char *) &in, 4);
}
diff --git a/libdecnumber/bid/host-ieee64.c b/libdecnumber/bid/host-ieee64.c
index 3c98985244d..ac6cd849efe 100644
--- a/libdecnumber/bid/host-ieee64.c
+++ b/libdecnumber/bid/host-ieee64.c
@@ -37,50 +37,21 @@ Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
/* The intended way to use this file is to make two copies, add `#define '
to one copy, then compile both copies and add them to libgcc.a. */
-#include <stdio.h>
-#include <stdlib.h>
#include <string.h>
-#include <limits.h>
-
-#include "config.h"
-#include "gstdint.h"
#include "bid-dpd.h"
#include "decimal64.h"
-uint32_t __dec_byte_swap (uint32_t);
void __host_to_ieee_64 (_Decimal64 in, decimal64 *out);
void __ieee_to_host_64 (decimal64 in, _Decimal64 *out);
-#ifndef WORDS_BIGENDIAN
-#define WORDS_BIGENDIAN 0
-#endif
-
-static void
-__swap64 (char *src, char *dst)
-{
- uint32_t t1, t2;
-
- if (!WORDS_BIGENDIAN)
- {
- memcpy (&t1, src, 4);
- memcpy (&t2, src + 4, 4);
- t1 = __dec_byte_swap (t1);
- t2 = __dec_byte_swap (t2);
- memcpy (dst, &t2, 4);
- memcpy (dst + 4, &t1, 4);
- }
- else
- memcpy (dst, src, 8);
-}
-
void
__host_to_ieee_64 (_Decimal64 in, decimal64 *out)
{
- __swap64 ((char *) &in, (char *) out);
+ memcpy ((char *) out, (char *) &in, 8);
}
void
__ieee_to_host_64 (decimal64 in, _Decimal64 *out)
{
- __swap64 ((char *) &in, (char *) out);
+ memcpy ((char *) out, (char *) &in, 8);
}
diff --git a/libdecnumber/decBasic.c b/libdecnumber/decBasic.c
new file mode 100644
index 00000000000..9ce277d2c30
--- /dev/null
+++ b/libdecnumber/decBasic.c
@@ -0,0 +1,3769 @@
+/* Common base code for the decNumber C Library.
+ Copyright (C) 2007 Free Software Foundation, Inc.
+ Contributed by IBM Corporation. Author Mike Cowlishaw.
+
+ This file is part of GCC.
+
+ GCC is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License as published by the Free
+ Software Foundation; either version 2, or (at your option) any later
+ version.
+
+ In addition to the permissions in the GNU General Public License,
+ the Free Software Foundation gives you unlimited permission to link
+ the compiled version of this file into combinations with other
+ programs, and to distribute those combinations without any
+ restriction coming from the use of this file. (The General Public
+ License restrictions do apply in other respects; for example, they
+ cover modification of the file, and distribution when not linked
+ into a combine executable.)
+
+ GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with GCC; see the file COPYING. If not, write to the Free
+ Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
+ 02110-1301, USA. */
+
+/* ------------------------------------------------------------------ */
+/* decBasic.c -- common base code for Basic decimal types */
+/* ------------------------------------------------------------------ */
+/* This module comprises code that is shared between decDouble and */
+/* decQuad (but not decSingle). The main arithmetic operations are */
+/* here (Add, Subtract, Multiply, FMA, and Division operators). */
+/* */
+/* Unlike decNumber, parameterization takes place at compile time */
+/* rather than at runtime. The parameters are set in the decDouble.c */
+/* (etc.) files, which then include this one to produce the compiled */
+/* code. The functions here, therefore, are code shared between */
+/* multiple formats. */
+/* */
+/* This must be included after decCommon.c. */
+/* ------------------------------------------------------------------ */
+/* Names here refer to decFloat rather than to decDouble, etc., and */
+/* the functions are in strict alphabetical order. */
+
+/* The compile-time flags SINGLE, DOUBLE, and QUAD are set up in */
+/* decCommon.c */
+#if !defined(QUAD)
+ #error decBasic.c must be included after decCommon.c
+#endif
+#if SINGLE
+ #error Routines in decBasic.c are for decDouble and decQuad only
+#endif
+
+/* Private constants */
+#define DIVIDE 0x80000000 /* Divide operations [as flags] */
+#define REMAINDER 0x40000000 /* .. */
+#define DIVIDEINT 0x20000000 /* .. */
+#define REMNEAR 0x10000000 /* .. */
+
+/* Private functions (local, used only by routines in this module) */
+static decFloat *decDivide(decFloat *, const decFloat *,
+ const decFloat *, decContext *, uInt);
+static decFloat *decCanonical(decFloat *, const decFloat *);
+static void decFiniteMultiply(bcdnum *, uByte *, const decFloat *,
+ const decFloat *);
+static decFloat *decInfinity(decFloat *, const decFloat *);
+static decFloat *decInvalid(decFloat *, decContext *);
+static decFloat *decNaNs(decFloat *, const decFloat *, const decFloat *,
+ decContext *);
+static Int decNumCompare(const decFloat *, const decFloat *, Flag);
+static decFloat *decToIntegral(decFloat *, const decFloat *, decContext *,
+ enum rounding, Flag);
+static uInt decToInt32(const decFloat *, decContext *, enum rounding,
+ Flag, Flag);
+
+/* ------------------------------------------------------------------ */
+/* decCanonical -- copy a decFloat, making canonical */
+/* */
+/* result gets the canonicalized df */
+/* df is the decFloat to copy and make canonical */
+/* returns result */
+/* */
+/* This is exposed via decFloatCanonical for Double and Quad only. */
+/* This works on specials, too; no error or exception is possible. */
+/* ------------------------------------------------------------------ */
+static decFloat * decCanonical(decFloat *result, const decFloat *df) {
+ uInt encode, precode, dpd; /* work */
+ uInt inword, uoff, canon; /* .. */
+ Int n; /* counter (down) */
+ if (df!=result) *result=*df; /* effect copy if needed */
+ if (DFISSPECIAL(result)) {
+ if (DFISINF(result)) return decInfinity(result, df); /* clean Infinity */
+ /* is a NaN */
+ DFWORD(result, 0)&=~ECONNANMASK; /* clear ECON except selector */
+ if (DFISCCZERO(df)) return result; /* coefficient continuation is 0 */
+ /* drop through to check payload */
+ }
+ /* return quickly if the coefficient continuation is canonical */
+ { /* declare block */
+ #if DOUBLE
+ uInt sourhi=DFWORD(df, 0);
+ uInt sourlo=DFWORD(df, 1);
+ if (CANONDPDOFF(sourhi, 8)
+ && CANONDPDTWO(sourhi, sourlo, 30)
+ && CANONDPDOFF(sourlo, 20)
+ && CANONDPDOFF(sourlo, 10)
+ && CANONDPDOFF(sourlo, 0)) return result;
+ #elif QUAD
+ uInt sourhi=DFWORD(df, 0);
+ uInt sourmh=DFWORD(df, 1);
+ uInt sourml=DFWORD(df, 2);
+ uInt sourlo=DFWORD(df, 3);
+ if (CANONDPDOFF(sourhi, 4)
+ && CANONDPDTWO(sourhi, sourmh, 26)
+ && CANONDPDOFF(sourmh, 16)
+ && CANONDPDOFF(sourmh, 6)
+ && CANONDPDTWO(sourmh, sourml, 28)
+ && CANONDPDOFF(sourml, 18)
+ && CANONDPDOFF(sourml, 8)
+ && CANONDPDTWO(sourml, sourlo, 30)
+ && CANONDPDOFF(sourlo, 20)
+ && CANONDPDOFF(sourlo, 10)
+ && CANONDPDOFF(sourlo, 0)) return result;
+ #endif
+ } /* block */
+
+ /* Loop to repair a non-canonical coefficent, as needed */
+ inword=DECWORDS-1; /* current input word */
+ uoff=0; /* bit offset of declet */
+ encode=DFWORD(result, inword);
+ for (n=DECLETS-1; n>=0; n--) { /* count down declets of 10 bits */
+ dpd=encode>>uoff;
+ uoff+=10;
+ if (uoff>32) { /* crossed uInt boundary */
+ inword--;
+ encode=DFWORD(result, inword);
+ uoff-=32;
+ dpd|=encode<<(10-uoff); /* get pending bits */
+ }
+ dpd&=0x3ff; /* clear uninteresting bits */
+ if (dpd<0x16e) continue; /* must be canonical */
+ canon=BIN2DPD[DPD2BIN[dpd]]; /* determine canonical declet */
+ if (canon==dpd) continue; /* have canonical declet */
+ /* need to replace declet */
+ if (uoff>=10) { /* all within current word */
+ encode&=~(0x3ff<<(uoff-10)); /* clear the 10 bits ready for replace */
+ encode|=canon<<(uoff-10); /* insert the canonical form */
+ DFWORD(result, inword)=encode; /* .. and save */
+ continue;
+ }
+ /* straddled words */
+ precode=DFWORD(result, inword+1); /* get previous */
+ precode&=0xffffffff>>(10-uoff); /* clear top bits */
+ DFWORD(result, inword+1)=precode|(canon<<(32-(10-uoff)));
+ encode&=0xffffffff<<uoff; /* clear bottom bits */
+ encode|=canon>>(10-uoff); /* insert canonical */
+ DFWORD(result, inword)=encode; /* .. and save */
+ } /* n */
+ return result;
+ } /* decCanonical */
+
+/* ------------------------------------------------------------------ */
+/* decDivide -- divide operations */
+/* */
+/* result gets the result of dividing dfl by dfr: */
+/* dfl is the first decFloat (lhs) */
+/* dfr is the second decFloat (rhs) */
+/* set is the context */
+/* op is the operation selector */
+/* returns result */
+/* */
+/* op is one of DIVIDE, REMAINDER, DIVIDEINT, or REMNEAR. */
+/* ------------------------------------------------------------------ */
+#define DIVCOUNT 0 /* 1 to instrument subtractions counter */
+#define DIVBASE BILLION /* the base used for divide */
+#define DIVOPLEN DECPMAX9 /* operand length ('digits' base 10**9) */
+#define DIVACCLEN (DIVOPLEN*3) /* accumulator length (ditto) */
+static decFloat * decDivide(decFloat *result, const decFloat *dfl,
+ const decFloat *dfr, decContext *set, uInt op) {
+ decFloat quotient; /* for remainders */
+ bcdnum num; /* for final conversion */
+ uInt acc[DIVACCLEN]; /* coefficent in base-billion .. */
+ uInt div[DIVOPLEN]; /* divisor in base-billion .. */
+ uInt quo[DIVOPLEN+1]; /* quotient in base-billion .. */
+ uByte bcdacc[(DIVOPLEN+1)*9+2]; /* for quotient in BCD, +1, +1 */
+ uInt *msua, *msud, *msuq; /* -> msu of acc, div, and quo */
+ Int divunits, accunits; /* lengths */
+ Int quodigits; /* digits in quotient */
+ uInt *lsua, *lsuq; /* -> current acc and quo lsus */
+ Int length, multiplier; /* work */
+ uInt carry, sign; /* .. */
+ uInt *ua, *ud, *uq; /* .. */
+ uByte *ub; /* .. */
+ uInt divtop; /* top unit of div adjusted for estimating */
+ #if DIVCOUNT
+ static uInt maxcount=0; /* worst-seen subtractions count */
+ uInt divcount=0; /* subtractions count [this divide] */
+ #endif
+
+ /* calculate sign */
+ num.sign=(DFWORD(dfl, 0)^DFWORD(dfr, 0)) & DECFLOAT_Sign;
+
+ if (DFISSPECIAL(dfl) || DFISSPECIAL(dfr)) { /* either is special? */
+ /* NaNs are handled as usual */
+ if (DFISNAN(dfl) || DFISNAN(dfr)) return decNaNs(result, dfl, dfr, set);
+ /* one or two infinities */
+ if (DFISINF(dfl)) {
+ if (DFISINF(dfr)) return decInvalid(result, set); /* Two infinities bad */
+ if (op&(REMAINDER|REMNEAR)) return decInvalid(result, set); /* as is rem */
+ /* Infinity/x is infinite and quiet, even if x=0 */
+ DFWORD(result, 0)=num.sign;
+ return decInfinity(result, result);
+ }
+ /* must be x/Infinity -- remainders are lhs */
+ if (op&(REMAINDER|REMNEAR)) return decCanonical(result, dfl);
+ /* divides: return zero with correct sign and exponent depending */
+ /* on op (Etiny for divide, 0 for divideInt) */
+ decFloatZero(result);
+ if (op==DIVIDEINT) DFWORD(result, 0)|=num.sign; /* add sign */
+ else DFWORD(result, 0)=num.sign; /* zeros the exponent, too */
+ return result;
+ }
+ /* next, handle zero operands (x/0 and 0/x) */
+ if (DFISZERO(dfr)) { /* x/0 */
+ if (DFISZERO(dfl)) { /* 0/0 is undefined */
+ decFloatZero(result);
+ DFWORD(result, 0)=DECFLOAT_qNaN;
+ set->status|=DEC_Division_undefined;
+ return result;
+ }
+ if (op&(REMAINDER|REMNEAR)) return decInvalid(result, set); /* bad rem */
+ set->status|=DEC_Division_by_zero;
+ DFWORD(result, 0)=num.sign;
+ return decInfinity(result, result); /* x/0 -> signed Infinity */
+ }
+ num.exponent=GETEXPUN(dfl)-GETEXPUN(dfr); /* ideal exponent */
+ if (DFISZERO(dfl)) { /* 0/x (x!=0) */
+ /* if divide, result is 0 with ideal exponent; divideInt has */
+ /* exponent=0, remainders give zero with lower exponent */
+ if (op&DIVIDEINT) {
+ decFloatZero(result);
+ DFWORD(result, 0)|=num.sign; /* add sign */
+ return result;
+ }
+ if (!(op&DIVIDE)) { /* a remainder */
+ /* exponent is the minimum of the operands */
+ num.exponent=MINI(GETEXPUN(dfl), GETEXPUN(dfr));
+ /* if the result is zero the sign shall be sign of dfl */
+ num.sign=DFWORD(dfl, 0)&DECFLOAT_Sign;
+ }
+ bcdacc[0]=0;
+ num.msd=bcdacc; /* -> 0 */
+ num.lsd=bcdacc; /* .. */
+ return decFinalize(result, &num, set); /* [divide may clamp exponent] */
+ } /* 0/x */
+ /* [here, both operands are known to be finite and non-zero] */
+
+ /* extract the operand coefficents into 'units' which are */
+ /* base-billion; the lhs is high-aligned in acc and the msu of both */
+ /* acc and div is at the right-hand end of array (offset length-1); */
+ /* the quotient can need one more unit than the operands as digits */
+ /* in it are not necessarily aligned neatly; further, the quotient */
+ /* may not start accumulating until after the end of the initial */
+ /* operand in acc if that is small (e.g., 1) so the accumulator */
+ /* must have at least that number of units extra (at the ls end) */
+ GETCOEFFBILL(dfl, acc+DIVACCLEN-DIVOPLEN);
+ GETCOEFFBILL(dfr, div);
+ /* zero the low uInts of acc */
+ acc[0]=0;
+ acc[1]=0;
+ acc[2]=0;
+ acc[3]=0;
+ #if DOUBLE
+ #if DIVOPLEN!=2
+ #error Unexpected Double DIVOPLEN
+ #endif
+ #elif QUAD
+ acc[4]=0;
+ acc[5]=0;
+ acc[6]=0;
+ acc[7]=0;
+ #if DIVOPLEN!=4
+ #error Unexpected Quad DIVOPLEN
+ #endif
+ #endif
+
+ /* set msu and lsu pointers */
+ msua=acc+DIVACCLEN-1; /* [leading zeros removed below] */
+ msuq=quo+DIVOPLEN;
+ /*[loop for div will terminate because operands are non-zero] */
+ for (msud=div+DIVOPLEN-1; *msud==0;) msud--;
+ /* the initial least-significant unit of acc is set so acc appears */
+ /* to have the same length as div. */
+ /* This moves one position towards the least possible for each */
+ /* iteration */
+ divunits=(Int)(msud-div+1); /* precalculate */
+ lsua=msua-divunits+1; /* initial working lsu of acc */
+ lsuq=msuq; /* and of quo */
+
+ /* set up the estimator for the multiplier; this is the msu of div, */
+ /* plus two bits from the unit below (if any) rounded up by one if */
+ /* there are any non-zero bits or units below that [the extra two */
+ /* bits makes for a much better estimate when the top unit is small] */
+ divtop=*msud<<2;
+ if (divunits>1) {
+ uInt *um=msud-1;
+ uInt d=*um;
+ if (d>=750000000) {divtop+=3; d-=750000000;}
+ else if (d>=500000000) {divtop+=2; d-=500000000;}
+ else if (d>=250000000) {divtop++; d-=250000000;}
+ if (d) divtop++;
+ else for (um--; um>=div; um--) if (*um) {
+ divtop++;
+ break;
+ }
+ } /* >1 unit */
+
+ #if DECTRACE
+ {Int i;
+ printf("----- div=");
+ for (i=divunits-1; i>=0; i--) printf("%09ld ", (LI)div[i]);
+ printf("\n");}
+ #endif
+
+ /* now collect up to DECPMAX+1 digits in the quotient (this may */
+ /* need OPLEN+1 uInts if unaligned) */
+ quodigits=0; /* no digits yet */
+ for (;; lsua--) { /* outer loop -- each input position */
+ #if DECCHECK
+ if (lsua<acc) {
+ printf("Acc underrun...\n");
+ break;
+ }
+ #endif
+ #if DECTRACE
+ printf("Outer: quodigits=%ld acc=", (LI)quodigits);
+ for (ua=msua; ua>=lsua; ua--) printf("%09ld ", (LI)*ua);
+ printf("\n");
+ #endif
+ *lsuq=0; /* default unit result is 0 */
+ for (;;) { /* inner loop -- calculate quotient unit */
+ /* strip leading zero units from acc (either there initially or */
+ /* from subtraction below); this may strip all if exactly 0 */
+ for (; *msua==0 && msua>=lsua;) msua--;
+ accunits=(Int)(msua-lsua+1); /* [maybe 0] */
+ /* subtraction is only necessary and possible if there are as */
+ /* least as many units remaining in acc for this iteration as */
+ /* there are in div */
+ if (accunits<divunits) {
+ if (accunits==0) msua++; /* restore */
+ break;
+ }
+
+ /* If acc is longer than div then subtraction is definitely */
+ /* possible (as msu of both is non-zero), but if they are the */
+ /* same length a comparison is needed. */
+ /* If a subtraction is needed then a good estimate of the */
+ /* multiplier for the subtraction is also needed in order to */
+ /* minimise the iterations of this inner loop because the */
+ /* subtractions needed dominate division performance. */
+ if (accunits==divunits) {
+ /* compare the high divunits of acc and div: */
+ /* acc<div: this quotient unit is unchanged; subtraction */
+ /* will be possible on the next iteration */
+ /* acc==div: quotient gains 1, set acc=0 */
+ /* acc>div: subtraction necessary at this position */
+ for (ud=msud, ua=msua; ud>div; ud--, ua--) if (*ud!=*ua) break;
+ /* [now at first mismatch or lsu] */
+ if (*ud>*ua) break; /* next time... */
+ if (*ud==*ua) { /* all compared equal */
+ *lsuq+=1; /* increment result */
+ msua=lsua; /* collapse acc units */
+ *msua=0; /* .. to a zero */
+ break;
+ }
+
+ /* subtraction necessary; estimate multiplier [see above] */
+ /* if both *msud and *msua are small it is cost-effective to */
+ /* bring in part of the following units (if any) to get a */
+ /* better estimate (assume some other non-zero in div) */
+ #define DIVLO 1000000U
+ #define DIVHI (DIVBASE/DIVLO)
+ #if DECUSE64
+ if (divunits>1) {
+ /* there cannot be a *(msud-2) for DECDOUBLE so next is */
+ /* an exact calculation unless DECQUAD (which needs to */
+ /* assume bits out there if divunits>2) */
+ uLong mul=(uLong)*msua * DIVBASE + *(msua-1);
+ uLong div=(uLong)*msud * DIVBASE + *(msud-1);
+ #if QUAD
+ if (divunits>2) div++;
+ #endif
+ mul/=div;
+ multiplier=(Int)mul;
+ }
+ else multiplier=*msua/(*msud);
+ #else
+ if (divunits>1 && *msua<DIVLO && *msud<DIVLO) {
+ multiplier=(*msua*DIVHI + *(msua-1)/DIVLO)
+ /(*msud*DIVHI + *(msud-1)/DIVLO +1);
+ }
+ else multiplier=(*msua<<2)/divtop;
+ #endif
+ }
+ else { /* accunits>divunits */
+ /* msud is one unit 'lower' than msua, so estimate differently */
+ #if DECUSE64
+ uLong mul;
+ /* as before, bring in extra digits if possible */
+ if (divunits>1 && *msua<DIVLO && *msud<DIVLO) {
+ mul=((uLong)*msua * DIVHI * DIVBASE) + *(msua-1) * DIVHI
+ + *(msua-2)/DIVLO;
+ mul/=(*msud*DIVHI + *(msud-1)/DIVLO +1);
+ }
+ else if (divunits==1) {
+ mul=(uLong)*msua * DIVBASE + *(msua-1);
+ mul/=*msud; /* no more to the right */
+ }
+ else {
+ mul=(uLong)(*msua) * (uInt)(DIVBASE<<2) + (*(msua-1)<<2);
+ mul/=divtop; /* [divtop already allows for sticky bits] */
+ }
+ multiplier=(Int)mul;
+ #else
+ multiplier=*msua * ((DIVBASE<<2)/divtop);
+ #endif
+ }
+ if (multiplier==0) multiplier=1; /* marginal case */
+ *lsuq+=multiplier;
+
+ #if DIVCOUNT
+ /* printf("Multiplier: %ld\n", (LI)multiplier); */
+ divcount++;
+ #endif
+
+ /* Carry out the subtraction acc-(div*multiplier); for each */
+ /* unit in div, do the multiply, split to units (see */
+ /* decFloatMultiply for the algorithm), and subtract from acc */
+ #define DIVMAGIC 2305843009U /* 2**61/10**9 */
+ #define DIVSHIFTA 29
+ #define DIVSHIFTB 32
+ carry=0;
+ for (ud=div, ua=lsua; ud<=msud; ud++, ua++) {
+ uInt lo, hop;
+ #if DECUSE64
+ uLong sub=(uLong)multiplier*(*ud)+carry;
+ if (sub<DIVBASE) {
+ carry=0;
+ lo=(uInt)sub;
+ }
+ else {
+ hop=(uInt)(sub>>DIVSHIFTA);
+ carry=(uInt)(((uLong)hop*DIVMAGIC)>>DIVSHIFTB);
+ /* the estimate is now in hi; now calculate sub-hi*10**9 */
+ /* to get the remainder (which will be <DIVBASE)) */
+ lo=(uInt)sub;
+ lo-=carry*DIVBASE; /* low word of result */
+ if (lo>=DIVBASE) {
+ lo-=DIVBASE; /* correct by +1 */
+ carry++;
+ }
+ }
+ #else /* 32-bit */
+ uInt hi;
+ /* calculate multiplier*(*ud) into hi and lo */
+ LONGMUL32HI(hi, *ud, multiplier); /* get the high word */
+ lo=multiplier*(*ud); /* .. and the low */
+ lo+=carry; /* add the old hi */
+ carry=hi+(lo<carry); /* .. with any carry */
+ if (carry || lo>=DIVBASE) { /* split is needed */
+ hop=(carry<<3)+(lo>>DIVSHIFTA); /* hi:lo/2**29 */
+ LONGMUL32HI(carry, hop, DIVMAGIC); /* only need the high word */
+ /* [DIVSHIFTB is 32, so carry can be used directly] */
+ /* the estimate is now in carry; now calculate hi:lo-est*10**9; */
+ /* happily the top word of the result is irrelevant because it */
+ /* will always be zero so this needs only one multiplication */
+ lo-=(carry*DIVBASE);
+ /* the correction here will be at most +1; do it */
+ if (lo>=DIVBASE) {
+ lo-=DIVBASE;
+ carry++;
+ }
+ }
+ #endif
+ if (lo>*ua) { /* borrow needed */
+ *ua+=DIVBASE;
+ carry++;
+ }
+ *ua-=lo;
+ } /* ud loop */
+ if (carry) *ua-=carry; /* accdigits>divdigits [cannot borrow] */
+ } /* inner loop */
+
+ /* the outer loop terminates when there is either an exact result */
+ /* or enough digits; first update the quotient digit count and */
+ /* pointer (if any significant digits) */
+ #if DECTRACE
+ if (*lsuq || quodigits) printf("*lsuq=%09ld\n", (LI)*lsuq);
+ #endif
+ if (quodigits) {
+ quodigits+=9; /* had leading unit earlier */
+ lsuq--;
+ if (quodigits>DECPMAX+1) break; /* have enough */
+ }
+ else if (*lsuq) { /* first quotient digits */
+ const uInt *pow;
+ for (pow=DECPOWERS; *lsuq>=*pow; pow++) quodigits++;
+ lsuq--;
+ /* [cannot have >DECPMAX+1 on first unit] */
+ }
+
+ if (*msua!=0) continue; /* not an exact result */
+ /* acc is zero iff used all of original units and zero down to lsua */
+ /* (must also continue to original lsu for correct quotient length) */
+ if (lsua>acc+DIVACCLEN-DIVOPLEN) continue;
+ for (; msua>lsua && *msua==0;) msua--;
+ if (*msua==0 && msua==lsua) break;
+ } /* outer loop */
+
+ /* all of the original operand in acc has been covered at this point */
+ /* quotient now has at least DECPMAX+2 digits */
+ /* *msua is now non-0 if inexact and sticky bits */
+ /* lsuq is one below the last uint of the quotient */
+ lsuq++; /* set -> true lsu of quo */
+ if (*msua) *lsuq|=1; /* apply sticky bit */
+
+ /* quo now holds the (unrounded) quotient in base-billion; one */
+ /* base-billion 'digit' per uInt. */
+ #if DECTRACE
+ printf("DivQuo:");
+ for (uq=msuq; uq>=lsuq; uq--) printf(" %09ld", (LI)*uq);
+ printf("\n");
+ #endif
+
+ /* Now convert to BCD for rounding and cleanup, starting from the */
+ /* most significant end [offset by one into bcdacc to leave room */
+ /* for a possible carry digit if rounding for REMNEAR is needed] */
+ for (uq=msuq, ub=bcdacc+1; uq>=lsuq; uq--, ub+=9) {
+ uInt top, mid, rem; /* work */
+ if (*uq==0) { /* no split needed */
+ UINTAT(ub)=0; /* clear 9 BCD8s */
+ UINTAT(ub+4)=0; /* .. */
+ *(ub+8)=0; /* .. */
+ continue;
+ }
+ /* *uq is non-zero -- split the base-billion digit into */
+ /* hi, mid, and low three-digits */
+ #define divsplit9 1000000 /* divisor */
+ #define divsplit6 1000 /* divisor */
+ /* The splitting is done by simple divides and remainders, */
+ /* assuming the compiler will optimize these [GCC does] */
+ top=*uq/divsplit9;
+ rem=*uq%divsplit9;
+ mid=rem/divsplit6;
+ rem=rem%divsplit6;
+ /* lay out the nine BCD digits (plus one unwanted byte) */
+ UINTAT(ub) =UINTAT(&BIN2BCD8[top*4]);
+ UINTAT(ub+3)=UINTAT(&BIN2BCD8[mid*4]);
+ UINTAT(ub+6)=UINTAT(&BIN2BCD8[rem*4]);
+ } /* BCD conversion loop */
+ ub--; /* -> lsu */
+
+ /* complete the bcdnum; quodigits is correct, so the position of */
+ /* the first non-zero is known */
+ num.msd=bcdacc+1+(msuq-lsuq+1)*9-quodigits;
+ num.lsd=ub;
+
+ /* make exponent adjustments, etc */
+ if (lsua<acc+DIVACCLEN-DIVOPLEN) { /* used extra digits */
+ num.exponent-=(Int)((acc+DIVACCLEN-DIVOPLEN-lsua)*9);
+ /* if the result was exact then there may be up to 8 extra */
+ /* trailing zeros in the overflowed quotient final unit */
+ if (*msua==0) {
+ for (; *ub==0;) ub--; /* drop zeros */
+ num.exponent+=(Int)(num.lsd-ub); /* and adjust exponent */
+ num.lsd=ub;
+ }
+ } /* adjustment needed */
+
+ #if DIVCOUNT
+ if (divcount>maxcount) { /* new high-water nark */
+ maxcount=divcount;
+ printf("DivNewMaxCount: %ld\n", (LI)maxcount);
+ }
+ #endif
+
+ if (op&DIVIDE) return decFinalize(result, &num, set); /* all done */
+
+ /* Is DIVIDEINT or a remainder; there is more to do -- first form */
+ /* the integer (this is done 'after the fact', unlike as in */
+ /* decNumber, so as not to tax DIVIDE) */
+
+ /* The first non-zero digit will be in the first 9 digits, known */
+ /* from quodigits and num.msd, so there is always space for DECPMAX */
+ /* digits */
+
+ length=(Int)(num.lsd-num.msd+1);
+ /*printf("Length exp: %ld %ld\n", (LI)length, (LI)num.exponent); */
+
+ if (length+num.exponent>DECPMAX) { /* cannot fit */
+ decFloatZero(result);
+ DFWORD(result, 0)=DECFLOAT_qNaN;
+ set->status|=DEC_Division_impossible;
+ return result;
+ }
+
+ if (num.exponent>=0) { /* already an int, or need pad zeros */
+ for (ub=num.lsd+1; ub<=num.lsd+num.exponent; ub++) *ub=0;
+ num.lsd+=num.exponent;
+ }
+ else { /* too long: round or truncate needed */
+ Int drop=-num.exponent;
+ if (!(op&REMNEAR)) { /* simple truncate */
+ num.lsd-=drop;
+ if (num.lsd<num.msd) { /* truncated all */
+ num.lsd=num.msd; /* make 0 */
+ *num.lsd=0; /* .. [sign still relevant] */
+ }
+ }
+ else { /* round to nearest even [sigh] */
+ /* round-to-nearest, in-place; msd is at or to right of bcdacc+1 */
+ /* (this is a special case of Quantize -- q.v. for commentary) */
+ uByte *roundat; /* -> re-round digit */
+ uByte reround; /* reround value */
+ *(num.msd-1)=0; /* in case of left carry, or make 0 */
+ if (drop<length) roundat=num.lsd-drop+1;
+ else if (drop==length) roundat=num.msd;
+ else roundat=num.msd-1; /* [-> 0] */
+ reround=*roundat;
+ for (ub=roundat+1; ub<=num.lsd; ub++) {
+ if (*ub!=0) {
+ reround=DECSTICKYTAB[reround];
+ break;
+ }
+ } /* check stickies */
+ if (roundat>num.msd) num.lsd=roundat-1;
+ else {
+ num.msd--; /* use the 0 .. */
+ num.lsd=num.msd; /* .. at the new MSD place */
+ }
+ if (reround!=0) { /* discarding non-zero */
+ uInt bump=0;
+ /* rounding is DEC_ROUND_HALF_EVEN always */
+ if (reround>5) bump=1; /* >0.5 goes up */
+ else if (reround==5) /* exactly 0.5000 .. */
+ bump=*(num.lsd) & 0x01; /* .. up iff [new] lsd is odd */
+ if (bump!=0) { /* need increment */
+ /* increment the coefficient; this might end up with 1000... */
+ ub=num.lsd;
+ for (; UINTAT(ub-3)==0x09090909; ub-=4) UINTAT(ub-3)=0;
+ for (; *ub==9; ub--) *ub=0; /* at most 3 more */
+ *ub+=1;
+ if (ub<num.msd) num.msd--; /* carried */
+ } /* bump needed */
+ } /* reround!=0 */
+ } /* remnear */
+ } /* round or truncate needed */
+ num.exponent=0; /* all paths */
+ /*decShowNum(&num, "int"); */
+
+ if (op&DIVIDEINT) return decFinalize(result, &num, set); /* all done */
+
+ /* Have a remainder to calculate */
+ decFinalize(&quotient, &num, set); /* lay out the integer so far */
+ DFWORD(&quotient, 0)^=DECFLOAT_Sign; /* negate it */
+ sign=DFWORD(dfl, 0); /* save sign of dfl */
+ decFloatFMA(result, &quotient, dfr, dfl, set);
+ if (!DFISZERO(result)) return result;
+ /* if the result is zero the sign shall be sign of dfl */
+ DFWORD(&quotient, 0)=sign; /* construct decFloat of sign */
+ return decFloatCopySign(result, result, &quotient);
+ } /* decDivide */
+
+/* ------------------------------------------------------------------ */
+/* decFiniteMultiply -- multiply two finite decFloats */
+/* */
+/* num gets the result of multiplying dfl and dfr */
+/* bcdacc .. with the coefficient in this array */
+/* dfl is the first decFloat (lhs) */
+/* dfr is the second decFloat (rhs) */
+/* */
+/* This effects the multiplication of two decFloats, both known to be */
+/* finite, leaving the result in a bcdnum ready for decFinalize (for */
+/* use in Multiply) or in a following addition (FMA). */
+/* */
+/* bcdacc must have space for at least DECPMAX9*18+1 bytes. */
+/* No error is possible and no status is set. */
+/* ------------------------------------------------------------------ */
+/* This routine has two separate implementations of the core */
+/* multiplication; both using base-billion. One uses only 32-bit */
+/* variables (Ints and uInts) or smaller; the other uses uLongs (for */
+/* multiplication and addition only). Both implementations cover */
+/* both arithmetic sizes (DOUBLE and QUAD) in order to allow timing */
+/* comparisons. In any one compilation only one implementation for */
+/* each size can be used, and if DECUSE64 is 0 then use of the 32-bit */
+/* version is forced. */
+/* */
+/* Historical note: an earlier version of this code also supported the */
+/* 256-bit format and has been preserved. That is somewhat trickier */
+/* during lazy carry splitting because the initial quotient estimate */
+/* (est) can exceed 32 bits. */
+
+#define MULTBASE BILLION /* the base used for multiply */
+#define MULOPLEN DECPMAX9 /* operand length ('digits' base 10**9) */
+#define MULACCLEN (MULOPLEN*2) /* accumulator length (ditto) */
+#define LEADZEROS (MULACCLEN*9 - DECPMAX*2) /* leading zeros always */
+
+/* Assertions: exponent not too large and MULACCLEN is a multiple of 4 */
+#if DECEMAXD>9
+ #error Exponent may overflow when doubled for Multiply
+#endif
+#if MULACCLEN!=(MULACCLEN/4)*4
+ /* This assumption is used below only for initialization */
+ #error MULACCLEN is not a multiple of 4
+#endif
+
+static void decFiniteMultiply(bcdnum *num, uByte *bcdacc,
+ const decFloat *dfl, const decFloat *dfr) {
+ uInt bufl[MULOPLEN]; /* left coefficient (base-billion) */
+ uInt bufr[MULOPLEN]; /* right coefficient (base-billion) */
+ uInt *ui, *uj; /* work */
+ uByte *ub; /* .. */
+
+ #if DECUSE64
+ uLong accl[MULACCLEN]; /* lazy accumulator (base-billion+) */
+ uLong *pl; /* work -> lazy accumulator */
+ uInt acc[MULACCLEN]; /* coefficent in base-billion .. */
+ #else
+ uInt acc[MULACCLEN*2]; /* accumulator in base-billion .. */
+ #endif
+ uInt *pa; /* work -> accumulator */
+ /*printf("Base10**9: OpLen=%d MulAcclen=%d\n", OPLEN, MULACCLEN); */
+
+ /* Calculate sign and exponent */
+ num->sign=(DFWORD(dfl, 0)^DFWORD(dfr, 0)) & DECFLOAT_Sign;
+ num->exponent=GETEXPUN(dfl)+GETEXPUN(dfr); /* [see assertion above] */
+
+ /* Extract the coefficients and prepare the accumulator */
+ /* the coefficients of the operands are decoded into base-billion */
+ /* numbers in uInt arrays (bufl and bufr, LSD at offset 0) of the */
+ /* appropriate size. */
+ GETCOEFFBILL(dfl, bufl);
+ GETCOEFFBILL(dfr, bufr);
+ #if DECTRACE && 0
+ printf("CoeffbL:");
+ for (ui=bufl+MULOPLEN-1; ui>=bufl; ui--) printf(" %08lx", (LI)*ui);
+ printf("\n");
+ printf("CoeffbR:");
+ for (uj=bufr+MULOPLEN-1; uj>=bufr; uj--) printf(" %08lx", (LI)*uj);
+ printf("\n");
+ #endif
+
+ /* start the 64-bit/32-bit differing paths... */
+#if DECUSE64
+
+ /* zero the accumulator */
+ #if MULACCLEN==4
+ accl[0]=0; accl[1]=0; accl[2]=0; accl[3]=0;
+ #else /* use a loop */
+ /* MULACCLEN is a multiple of four, asserted above */
+ for (pl=accl; pl<accl+MULACCLEN; pl+=4) {
+ *pl=0; *(pl+1)=0; *(pl+2)=0; *(pl+3)=0;/* [reduce overhead] */
+ } /* pl */
+ #endif
+
+ /* Effect the multiplication */
+ /* The multiplcation proceeds using MFC's lazy-carry resolution */
+ /* algorithm from decNumber. First, the multiplication is */
+ /* effected, allowing accumulation of the partial products (which */
+ /* are in base-billion at each column position) into 64 bits */
+ /* without resolving back to base=billion after each addition. */
+ /* These 64-bit numbers (which may contain up to 19 decimal digits) */
+ /* are then split using the Clark & Cowlishaw algorithm (see below). */
+ /* [Testing for 0 in the inner loop is not really a 'win'] */
+ for (ui=bufr; ui<bufr+MULOPLEN; ui++) { /* over each item in rhs */
+ if (*ui==0) continue; /* product cannot affect result */
+ pl=accl+(ui-bufr); /* where to add the lhs */
+ for (uj=bufl; uj<bufl+MULOPLEN; uj++, pl++) { /* over each item in lhs */
+ /* if (*uj==0) continue; // product cannot affect result */
+ *pl+=((uLong)*ui)*(*uj);
+ } /* uj */
+ } /* ui */
+
+ /* The 64-bit carries must now be resolved; this means that a */
+ /* quotient/remainder has to be calculated for base-billion (1E+9). */
+ /* For this, Clark & Cowlishaw's quotient estimation approach (also */
+ /* used in decNumber) is needed, because 64-bit divide is generally */
+ /* extremely slow on 32-bit machines, and may be slower than this */
+ /* approach even on 64-bit machines. This algorithm splits X */
+ /* using: */
+ /* */
+ /* magic=2**(A+B)/1E+9; // 'magic number' */
+ /* hop=X/2**A; // high order part of X (by shift) */
+ /* est=magic*hop/2**B // quotient estimate (may be low by 1) */
+ /* */
+ /* A and B are quite constrained; hop and magic must fit in 32 bits, */
+ /* and 2**(A+B) must be as large as possible (which is 2**61 if */
+ /* magic is to fit). Further, maxX increases with the length of */
+ /* the operands (and hence the number of partial products */
+ /* accumulated); maxX is OPLEN*(10**18), which is up to 19 digits. */
+ /* */
+ /* It can be shown that when OPLEN is 2 then the maximum error in */
+ /* the estimated quotient is <1, but for larger maximum x the */
+ /* maximum error is above 1 so a correction that is >1 may be */
+ /* needed. Values of A and B are chosen to satisfy the constraints */
+ /* just mentioned while minimizing the maximum error (and hence the */
+ /* maximum correction), as shown in the following table: */
+ /* */
+ /* Type OPLEN A B maxX maxError maxCorrection */
+ /* --------------------------------------------------------- */
+ /* DOUBLE 2 29 32 <2*10**18 0.63 1 */
+ /* QUAD 4 30 31 <4*10**18 1.17 2 */
+ /* */
+ /* In the OPLEN==2 case there is most choice, but the value for B */
+ /* of 32 has a big advantage as then the calculation of the */
+ /* estimate requires no shifting; the compiler can extract the high */
+ /* word directly after multiplying magic*hop. */
+ #define MULMAGIC 2305843009U /* 2**61/10**9 [both cases] */
+ #if DOUBLE
+ #define MULSHIFTA 29
+ #define MULSHIFTB 32
+ #elif QUAD
+ #define MULSHIFTA 30
+ #define MULSHIFTB 31
+ #else
+ #error Unexpected type
+ #endif
+
+ #if DECTRACE
+ printf("MulAccl:");
+ for (pl=accl+MULACCLEN-1; pl>=accl; pl--)
+ printf(" %08lx:%08lx", (LI)(*pl>>32), (LI)(*pl&0xffffffff));
+ printf("\n");
+ #endif
+
+ for (pl=accl, pa=acc; pl<accl+MULACCLEN; pl++, pa++) { /* each column position */
+ uInt lo, hop; /* work */
+ uInt est; /* cannot exceed 4E+9 */
+ if (*pl>MULTBASE) {
+ /* *pl holds a binary number which needs to be split */
+ hop=(uInt)(*pl>>MULSHIFTA);
+ est=(uInt)(((uLong)hop*MULMAGIC)>>MULSHIFTB);
+ /* the estimate is now in est; now calculate hi:lo-est*10**9; */
+ /* happily the top word of the result is irrelevant because it */
+ /* will always be zero so this needs only one multiplication */
+ lo=(uInt)(*pl-((uLong)est*MULTBASE)); /* low word of result */
+ /* If QUAD, the correction here could be +2 */
+ if (lo>=MULTBASE) {
+ lo-=MULTBASE; /* correct by +1 */
+ est++;
+ #if QUAD
+ /* may need to correct by +2 */
+ if (lo>=MULTBASE) {
+ lo-=MULTBASE;
+ est++;
+ }
+ #endif
+ }
+ /* finally place lo as the new coefficient 'digit' and add est to */
+ /* the next place up [this is safe because this path is never */
+ /* taken on the final iteration as *pl will fit] */
+ *pa=lo;
+ *(pl+1)+=est;
+ } /* *pl needed split */
+ else { /* *pl<MULTBASE */
+ *pa=(uInt)*pl; /* just copy across */
+ }
+ } /* pl loop */
+
+#else /* 32-bit */
+ for (pa=acc;; pa+=4) { /* zero the accumulator */
+ *pa=0; *(pa+1)=0; *(pa+2)=0; *(pa+3)=0; /* [reduce overhead] */
+ if (pa==acc+MULACCLEN*2-4) break; /* multiple of 4 asserted */
+ } /* pa */
+
+ /* Effect the multiplication */
+ /* uLongs are not available (and in particular, there is no uLong */
+ /* divide) but it is still possible to use MFC's lazy-carry */
+ /* resolution algorithm from decNumber. First, the multiplication */
+ /* is effected, allowing accumulation of the partial products */
+ /* (which are in base-billion at each column position) into 64 bits */
+ /* [with the high-order 32 bits in each position being held at */
+ /* offset +ACCLEN from the low-order 32 bits in the accumulator]. */
+ /* These 64-bit numbers (which may contain up to 19 decimal digits) */
+ /* are then split using the Clark & Cowlishaw algorithm (see */
+ /* below). */
+ for (ui=bufr;; ui++) { /* over each item in rhs */
+ uInt hi, lo; /* words of exact multiply result */
+ pa=acc+(ui-bufr); /* where to add the lhs */
+ for (uj=bufl;; uj++, pa++) { /* over each item in lhs */
+ LONGMUL32HI(hi, *ui, *uj); /* calculate product of digits */
+ lo=(*ui)*(*uj); /* .. */
+ *pa+=lo; /* accumulate low bits and .. */
+ *(pa+MULACCLEN)+=hi+(*pa<lo); /* .. high bits with any carry */
+ if (uj==bufl+MULOPLEN-1) break;
+ }
+ if (ui==bufr+MULOPLEN-1) break;
+ }
+
+ /* The 64-bit carries must now be resolved; this means that a */
+ /* quotient/remainder has to be calculated for base-billion (1E+9). */
+ /* For this, Clark & Cowlishaw's quotient estimation approach (also */
+ /* used in decNumber) is needed, because 64-bit divide is generally */
+ /* extremely slow on 32-bit machines. This algorithm splits X */
+ /* using: */
+ /* */
+ /* magic=2**(A+B)/1E+9; // 'magic number' */
+ /* hop=X/2**A; // high order part of X (by shift) */
+ /* est=magic*hop/2**B // quotient estimate (may be low by 1) */
+ /* */
+ /* A and B are quite constrained; hop and magic must fit in 32 bits, */
+ /* and 2**(A+B) must be as large as possible (which is 2**61 if */
+ /* magic is to fit). Further, maxX increases with the length of */
+ /* the operands (and hence the number of partial products */
+ /* accumulated); maxX is OPLEN*(10**18), which is up to 19 digits. */
+ /* */
+ /* It can be shown that when OPLEN is 2 then the maximum error in */
+ /* the estimated quotient is <1, but for larger maximum x the */
+ /* maximum error is above 1 so a correction that is >1 may be */
+ /* needed. Values of A and B are chosen to satisfy the constraints */
+ /* just mentioned while minimizing the maximum error (and hence the */
+ /* maximum correction), as shown in the following table: */
+ /* */
+ /* Type OPLEN A B maxX maxError maxCorrection */
+ /* --------------------------------------------------------- */
+ /* DOUBLE 2 29 32 <2*10**18 0.63 1 */
+ /* QUAD 4 30 31 <4*10**18 1.17 2 */
+ /* */
+ /* In the OPLEN==2 case there is most choice, but the value for B */
+ /* of 32 has a big advantage as then the calculation of the */
+ /* estimate requires no shifting; the high word is simply */
+ /* calculated from multiplying magic*hop. */
+ #define MULMAGIC 2305843009U /* 2**61/10**9 [both cases] */
+ #if DOUBLE
+ #define MULSHIFTA 29
+ #define MULSHIFTB 32
+ #elif QUAD
+ #define MULSHIFTA 30
+ #define MULSHIFTB 31
+ #else
+ #error Unexpected type
+ #endif
+
+ #if DECTRACE
+ printf("MulHiLo:");
+ for (pa=acc+MULACCLEN-1; pa>=acc; pa--)
+ printf(" %08lx:%08lx", (LI)*(pa+MULACCLEN), (LI)*pa);
+ printf("\n");
+ #endif
+
+ for (pa=acc;; pa++) { /* each low uInt */
+ uInt hi, lo; /* words of exact multiply result */
+ uInt hop, estlo; /* work */
+ #if QUAD
+ uInt esthi; /* .. */
+ #endif
+
+ lo=*pa;
+ hi=*(pa+MULACCLEN); /* top 32 bits */
+ /* hi and lo now hold a binary number which needs to be split */
+
+ #if DOUBLE
+ hop=(hi<<3)+(lo>>MULSHIFTA); /* hi:lo/2**29 */
+ LONGMUL32HI(estlo, hop, MULMAGIC);/* only need the high word */
+ /* [MULSHIFTB is 32, so estlo can be used directly] */
+ /* the estimate is now in estlo; now calculate hi:lo-est*10**9; */
+ /* happily the top word of the result is irrelevant because it */
+ /* will always be zero so this needs only one multiplication */
+ lo-=(estlo*MULTBASE);
+ /* esthi=0; // high word is ignored below */
+ /* the correction here will be at most +1; do it */
+ if (lo>=MULTBASE) {
+ lo-=MULTBASE;
+ estlo++;
+ }
+ #elif QUAD
+ hop=(hi<<2)+(lo>>MULSHIFTA); /* hi:lo/2**30 */
+ LONGMUL32HI(esthi, hop, MULMAGIC);/* shift will be 31 .. */
+ estlo=hop*MULMAGIC; /* .. so low word needed */
+ estlo=(esthi<<1)+(estlo>>MULSHIFTB); /* [just the top bit] */
+ /* esthi=0; // high word is ignored below */
+ lo-=(estlo*MULTBASE); /* as above */
+ /* the correction here could be +1 or +2 */
+ if (lo>=MULTBASE) {
+ lo-=MULTBASE;
+ estlo++;
+ }
+ if (lo>=MULTBASE) {
+ lo-=MULTBASE;
+ estlo++;
+ }
+ #else
+ #error Unexpected type
+ #endif
+
+ /* finally place lo as the new accumulator digit and add est to */
+ /* the next place up; this latter add could cause a carry of 1 */
+ /* to the high word of the next place */
+ *pa=lo;
+ *(pa+1)+=estlo;
+ /* esthi is always 0 for DOUBLE and QUAD so this is skipped */
+ /* *(pa+1+MULACCLEN)+=esthi; */
+ if (*(pa+1)<estlo) *(pa+1+MULACCLEN)+=1; /* carry */
+ if (pa==acc+MULACCLEN-2) break; /* [MULACCLEN-1 will never need split] */
+ } /* pa loop */
+#endif
+
+ /* At this point, whether using the 64-bit or the 32-bit paths, the */
+ /* accumulator now holds the (unrounded) result in base-billion; */
+ /* one base-billion 'digit' per uInt. */
+ #if DECTRACE
+ printf("MultAcc:");
+ for (pa=acc+MULACCLEN-1; pa>=acc; pa--) printf(" %09ld", (LI)*pa);
+ printf("\n");
+ #endif
+
+ /* Now convert to BCD for rounding and cleanup, starting from the */
+ /* most significant end */
+ pa=acc+MULACCLEN-1;
+ if (*pa!=0) num->msd=bcdacc+LEADZEROS;/* drop known lead zeros */
+ else { /* >=1 word of leading zeros */
+ num->msd=bcdacc; /* known leading zeros are gone */
+ pa--; /* skip first word .. */
+ for (; *pa==0; pa--) if (pa==acc) break; /* .. and any more leading 0s */
+ }
+ for (ub=bcdacc;; pa--, ub+=9) {
+ if (*pa!=0) { /* split(s) needed */
+ uInt top, mid, rem; /* work */
+ /* *pa is non-zero -- split the base-billion acc digit into */
+ /* hi, mid, and low three-digits */
+ #define mulsplit9 1000000 /* divisor */
+ #define mulsplit6 1000 /* divisor */
+ /* The splitting is done by simple divides and remainders, */
+ /* assuming the compiler will optimize these where useful */
+ /* [GCC does] */
+ top=*pa/mulsplit9;
+ rem=*pa%mulsplit9;
+ mid=rem/mulsplit6;
+ rem=rem%mulsplit6;
+ /* lay out the nine BCD digits (plus one unwanted byte) */
+ UINTAT(ub) =UINTAT(&BIN2BCD8[top*4]);
+ UINTAT(ub+3)=UINTAT(&BIN2BCD8[mid*4]);
+ UINTAT(ub+6)=UINTAT(&BIN2BCD8[rem*4]);
+ }
+ else { /* *pa==0 */
+ UINTAT(ub)=0; /* clear 9 BCD8s */
+ UINTAT(ub+4)=0; /* .. */
+ *(ub+8)=0; /* .. */
+ }
+ if (pa==acc) break;
+ } /* BCD conversion loop */
+
+ num->lsd=ub+8; /* complete the bcdnum .. */
+
+ #if DECTRACE
+ decShowNum(num, "postmult");
+ decFloatShow(dfl, "dfl");
+ decFloatShow(dfr, "dfr");
+ #endif
+ return;
+ } /* decFiniteMultiply */
+
+/* ------------------------------------------------------------------ */
+/* decFloatAbs -- absolute value, heeding NaNs, etc. */
+/* */
+/* result gets the canonicalized df with sign 0 */
+/* df is the decFloat to abs */
+/* set is the context */
+/* returns result */
+/* */
+/* This has the same effect as decFloatPlus unless df is negative, */
+/* in which case it has the same effect as decFloatMinus. The */
+/* effect is also the same as decFloatCopyAbs except that NaNs are */
+/* handled normally (the sign of a NaN is not affected, and an sNaN */
+/* will signal) and the result will be canonical. */
+/* ------------------------------------------------------------------ */
+decFloat * decFloatAbs(decFloat *result, const decFloat *df,
+ decContext *set) {
+ if (DFISNAN(df)) return decNaNs(result, df, NULL, set);
+ decCanonical(result, df); /* copy and check */
+ DFBYTE(result, 0)&=~0x80; /* zero sign bit */
+ return result;
+ } /* decFloatAbs */
+
+/* ------------------------------------------------------------------ */
+/* decFloatAdd -- add two decFloats */
+/* */
+/* result gets the result of adding dfl and dfr: */
+/* dfl is the first decFloat (lhs) */
+/* dfr is the second decFloat (rhs) */
+/* set is the context */
+/* returns result */
+/* */
+/* ------------------------------------------------------------------ */
+decFloat * decFloatAdd(decFloat *result,
+ const decFloat *dfl, const decFloat *dfr,
+ decContext *set) {
+ bcdnum num; /* for final conversion */
+ Int expl, expr; /* left and right exponents */
+ uInt *ui, *uj; /* work */
+ uByte *ub; /* .. */
+
+ uInt sourhil, sourhir; /* top words from source decFloats */
+ /* [valid only until specials */
+ /* handled or exponents decoded] */
+ uInt diffsign; /* non-zero if signs differ */
+ uInt carry; /* carry: 0 or 1 before add loop */
+ Int overlap; /* coefficient overlap (if full) */
+ /* the following buffers hold coefficients with various alignments */
+ /* (see commentary and diagrams below) */
+ uByte acc[4+2+DECPMAX*3+8];
+ uByte buf[4+2+DECPMAX*2];
+ uByte *umsd, *ulsd; /* local MSD and LSD pointers */
+
+ #if DECLITEND
+ #define CARRYPAT 0x01000000 /* carry=1 pattern */
+ #else
+ #define CARRYPAT 0x00000001 /* carry=1 pattern */
+ #endif
+
+ /* Start decoding the arguments */
+ /* the initial exponents are placed into the opposite Ints to */
+ /* that which might be expected; there are two sets of data to */
+ /* keep track of (each decFloat and the corresponding exponent), */
+ /* and this scheme means that at the swap point (after comparing */
+ /* exponents) only one pair of words needs to be swapped */
+ /* whichever path is taken (thereby minimising worst-case path) */
+ sourhil=DFWORD(dfl, 0); /* LHS top word */
+ expr=DECCOMBEXP[sourhil>>26]; /* get exponent high bits (in place) */
+ sourhir=DFWORD(dfr, 0); /* RHS top word */
+ expl=DECCOMBEXP[sourhir>>26];
+
+ diffsign=(sourhil^sourhir)&DECFLOAT_Sign;
+
+ if (EXPISSPECIAL(expl | expr)) { /* either is special? */
+ if (DFISNAN(dfl) || DFISNAN(dfr)) return decNaNs(result, dfl, dfr, set);
+ /* one or two infinities */
+ /* two infinities with different signs is invalid */
+ if (diffsign && DFISINF(dfl) && DFISINF(dfr))
+ return decInvalid(result, set);
+ if (DFISINF(dfl)) return decInfinity(result, dfl); /* LHS is infinite */
+ return decInfinity(result, dfr); /* RHS must be Infinite */
+ }
+
+ /* Here when both arguments are finite */
+
+ /* complete exponent gathering (keeping swapped) */
+ expr+=GETECON(dfl)-DECBIAS; /* .. + continuation and unbias */
+ expl+=GETECON(dfr)-DECBIAS;
+ /* here expr has exponent from lhs, and vice versa */
+
+ /* now swap either exponents or argument pointers */
+ if (expl<=expr) {
+ /* original left is bigger */
+ Int expswap=expl;
+ expl=expr;
+ expr=expswap;
+ /* printf("left bigger\n"); */
+ }
+ else {
+ const decFloat *dfswap=dfl;
+ dfl=dfr;
+ dfr=dfswap;
+ /* printf("right bigger\n"); */
+ }
+ /* [here dfl and expl refer to the datum with the larger exponent, */
+ /* of if the exponents are equal then the original LHS argument] */
+
+ /* if lhs is zero then result will be the rhs (now known to have */
+ /* the smaller exponent), which also may need to be tested for zero */
+ /* for the weird IEEE 754 sign rules */
+ if (DFISZERO(dfl)) {
+ decCanonical(result, dfr); /* clean copy */
+ /* "When the sum of two operands with opposite signs is */
+ /* exactly zero, the sign of that sum shall be '+' in all */
+ /* rounding modes except round toward -Infinity, in which */
+ /* mode that sign shall be '-'." */
+ if (diffsign && DFISZERO(result)) {
+ DFWORD(result, 0)&=~DECFLOAT_Sign; /* assume sign 0 */
+ if (set->round==DEC_ROUND_FLOOR) DFWORD(result, 0)|=DECFLOAT_Sign;
+ }
+ return result;
+ } /* numfl is zero */
+ /* [here, LHS is non-zero; code below assumes that] */
+
+ /* Coefficients layout during the calculations to follow: */
+ /* */
+ /* Overlap case: */
+ /* +------------------------------------------------+ */
+ /* acc: |0000| coeffa | tail B | | */
+ /* +------------------------------------------------+ */
+ /* buf: |0000| pad0s | coeffb | | */
+ /* +------------------------------------------------+ */
+ /* */
+ /* Touching coefficients or gap: */
+ /* +------------------------------------------------+ */
+ /* acc: |0000| coeffa | gap | coeffb | */
+ /* +------------------------------------------------+ */
+ /* [buf not used or needed; gap clamped to Pmax] */
+
+ /* lay out lhs coefficient into accumulator; this starts at acc+4 */
+ /* for decDouble or acc+6 for decQuad so the LSD is word- */
+ /* aligned; the top word gap is there only in case a carry digit */
+ /* is prefixed after the add -- it does not need to be zeroed */
+ #if DOUBLE
+ #define COFF 4 /* offset into acc */
+ #elif QUAD
+ USHORTAT(acc+4)=0; /* prefix 00 */
+ #define COFF 6 /* offset into acc */
+ #endif
+
+ GETCOEFF(dfl, acc+COFF); /* decode from decFloat */
+ ulsd=acc+COFF+DECPMAX-1;
+ umsd=acc+4; /* [having this here avoids */
+ /* weird GCC optimizer failure] */
+ #if DECTRACE
+ {bcdnum tum;
+ tum.msd=umsd;
+ tum.lsd=ulsd;
+ tum.exponent=expl;
+ tum.sign=DFWORD(dfl, 0) & DECFLOAT_Sign;
+ decShowNum(&tum, "dflx");}
+ #endif
+
+ /* if signs differ, take ten's complement of lhs (here the */
+ /* coefficient is subtracted from all-nines; the 1 is added during */
+ /* the later add cycle -- zeros to the right do not matter because */
+ /* the complement of zero is zero); these are fixed-length inverts */
+ /* where the lsd is known to be at a 4-byte boundary (so no borrow */
+ /* possible) */
+ carry=0; /* assume no carry */
+ if (diffsign) {
+ carry=CARRYPAT; /* for +1 during add */
+ UINTAT(acc+ 4)=0x09090909-UINTAT(acc+ 4);
+ UINTAT(acc+ 8)=0x09090909-UINTAT(acc+ 8);
+ UINTAT(acc+12)=0x09090909-UINTAT(acc+12);
+ UINTAT(acc+16)=0x09090909-UINTAT(acc+16);
+ #if QUAD
+ UINTAT(acc+20)=0x09090909-UINTAT(acc+20);
+ UINTAT(acc+24)=0x09090909-UINTAT(acc+24);
+ UINTAT(acc+28)=0x09090909-UINTAT(acc+28);
+ UINTAT(acc+32)=0x09090909-UINTAT(acc+32);
+ UINTAT(acc+36)=0x09090909-UINTAT(acc+36);
+ #endif
+ } /* diffsign */
+
+ /* now process the rhs coefficient; if it cannot overlap lhs then */
+ /* it can be put straight into acc (with an appropriate gap, if */
+ /* needed) because no actual addition will be needed (except */
+ /* possibly to complete ten's complement) */
+ overlap=DECPMAX-(expl-expr);
+ #if DECTRACE
+ printf("exps: %ld %ld\n", (LI)expl, (LI)expr);
+ printf("Overlap=%ld carry=%08lx\n", (LI)overlap, (LI)carry);
+ #endif
+
+ if (overlap<=0) { /* no overlap possible */
+ uInt gap; /* local work */
+ /* since a full addition is not needed, a ten's complement */
+ /* calculation started above may need to be completed */
+ if (carry) {
+ for (ub=ulsd; *ub==9; ub--) *ub=0;
+ *ub+=1;
+ carry=0; /* taken care of */
+ }
+ /* up to DECPMAX-1 digits of the final result can extend down */
+ /* below the LSD of the lhs, so if the gap is >DECPMAX then the */
+ /* rhs will be simply sticky bits. In this case the gap is */
+ /* clamped to DECPMAX and the exponent adjusted to suit [this is */
+ /* safe because the lhs is non-zero]. */
+ gap=-overlap;
+ if (gap>DECPMAX) {
+ expr+=gap-1;
+ gap=DECPMAX;
+ }
+ ub=ulsd+gap+1; /* where MSD will go */
+ /* Fill the gap with 0s; note that there is no addition to do */
+ ui=&UINTAT(acc+COFF+DECPMAX); /* start of gap */
+ for (; ui<&UINTAT(ub); ui++) *ui=0; /* mind the gap */
+ if (overlap<-DECPMAX) { /* gap was > DECPMAX */
+ *ub=(uByte)(!DFISZERO(dfr)); /* make sticky digit */
+ }
+ else { /* need full coefficient */
+ GETCOEFF(dfr, ub); /* decode from decFloat */
+ ub+=DECPMAX-1; /* new LSD... */
+ }
+ ulsd=ub; /* save new LSD */
+ } /* no overlap possible */
+
+ else { /* overlap>0 */
+ /* coefficients overlap (perhaps completely, although also */
+ /* perhaps only where zeros) */
+ ub=buf+COFF+DECPMAX-overlap; /* where MSD will go */
+ /* Fill the prefix gap with 0s; 8 will cover most common */
+ /* unalignments, so start with direct assignments (a loop is */
+ /* then used for any remaining -- the loop (and the one in a */
+ /* moment) is not then on the critical path because the number */
+ /* of additions is reduced by (at least) two in this case) */
+ UINTAT(buf+4)=0; /* [clears decQuad 00 too] */
+ UINTAT(buf+8)=0;
+ if (ub>buf+12) {
+ ui=&UINTAT(buf+12); /* start of any remaining */
+ for (; ui<&UINTAT(ub); ui++) *ui=0; /* fill them */
+ }
+ GETCOEFF(dfr, ub); /* decode from decFloat */
+
+ /* now move tail of rhs across to main acc; again use direct */
+ /* assignment for 8 digits-worth */
+ UINTAT(acc+COFF+DECPMAX)=UINTAT(buf+COFF+DECPMAX);
+ UINTAT(acc+COFF+DECPMAX+4)=UINTAT(buf+COFF+DECPMAX+4);
+ if (buf+COFF+DECPMAX+8<ub+DECPMAX) {
+ uj=&UINTAT(buf+COFF+DECPMAX+8); /* source */
+ ui=&UINTAT(acc+COFF+DECPMAX+8); /* target */
+ for (; uj<&UINTAT(ub+DECPMAX); ui++, uj++) *ui=*uj;
+ }
+
+ ulsd=acc+(ub-buf+DECPMAX-1); /* update LSD pointer */
+
+ /* now do the add of the non-tail; this is all nicely aligned, */
+ /* and is over a multiple of four digits (because for Quad two */
+ /* two 0 digits were added on the left); words in both acc and */
+ /* buf (buf especially) will often be zero */
+ /* [byte-by-byte add, here, is about 15% slower than the by-fours] */
+
+ /* Now effect the add; this is harder on a little-endian */
+ /* machine as the inter-digit carry cannot use the usual BCD */
+ /* addition trick because the bytes are loaded in the wrong order */
+ /* [this loop could be unrolled, but probably scarcely worth it] */
+
+ ui=&UINTAT(acc+COFF+DECPMAX-4); /* target LSW (acc) */
+ uj=&UINTAT(buf+COFF+DECPMAX-4); /* source LSW (buf, to add to acc) */
+
+ #if !DECLITEND
+ for (; ui>=&UINTAT(acc+4); ui--, uj--) {
+ /* bcd8 add */
+ carry+=*uj; /* rhs + carry */
+ if (carry==0) continue; /* no-op */
+ carry+=*ui; /* lhs */
+ /* Big-endian BCD adjust (uses internal carry) */
+ carry+=0x76f6f6f6; /* note top nibble not all bits */
+ *ui=(carry & 0x0f0f0f0f) - ((carry & 0x60606060)>>4); /* BCD adjust */
+ carry>>=31; /* true carry was at far left */
+ } /* add loop */
+ #else
+ for (; ui>=&UINTAT(acc+4); ui--, uj--) {
+ /* bcd8 add */
+ carry+=*uj; /* rhs + carry */
+ if (carry==0) continue; /* no-op [common if unaligned] */
+ carry+=*ui; /* lhs */
+ /* Little-endian BCD adjust; inter-digit carry must be manual */
+ /* because the lsb from the array will be in the most-significant */
+ /* byte of carry */
+ carry+=0x76767676; /* note no inter-byte carries */
+ carry+=(carry & 0x80000000)>>15;
+ carry+=(carry & 0x00800000)>>15;
+ carry+=(carry & 0x00008000)>>15;
+ carry-=(carry & 0x60606060)>>4; /* BCD adjust back */
+ *ui=carry & 0x0f0f0f0f; /* clear debris and save */
+ /* here, final carry-out bit is at 0x00000080; move it ready */
+ /* for next word-add (i.e., to 0x01000000) */
+ carry=(carry & 0x00000080)<<17;
+ } /* add loop */
+ #endif
+ #if DECTRACE
+ {bcdnum tum;
+ printf("Add done, carry=%08lx, diffsign=%ld\n", (LI)carry, (LI)diffsign);
+ tum.msd=umsd; /* acc+4; */
+ tum.lsd=ulsd;
+ tum.exponent=0;
+ tum.sign=0;
+ decShowNum(&tum, "dfadd");}
+ #endif
+ } /* overlap possible */
+
+ /* ordering here is a little strange in order to have slowest path */
+ /* first in GCC asm listing */
+ if (diffsign) { /* subtraction */
+ if (!carry) { /* no carry out means RHS<LHS */
+ /* borrowed -- take ten's complement */
+ /* sign is lhs sign */
+ num.sign=DFWORD(dfl, 0) & DECFLOAT_Sign;
+
+ /* invert the coefficient first by fours, then add one; space */
+ /* at the end of the buffer ensures the by-fours is always */
+ /* safe, but lsd+1 must be cleared to prevent a borrow */
+ /* if big-endian */
+ #if !DECLITEND
+ *(ulsd+1)=0;
+ #endif
+ /* there are always at least four coefficient words */
+ UINTAT(umsd) =0x09090909-UINTAT(umsd);
+ UINTAT(umsd+4) =0x09090909-UINTAT(umsd+4);
+ UINTAT(umsd+8) =0x09090909-UINTAT(umsd+8);
+ UINTAT(umsd+12)=0x09090909-UINTAT(umsd+12);
+ #if DOUBLE
+ #define BNEXT 16
+ #elif QUAD
+ UINTAT(umsd+16)=0x09090909-UINTAT(umsd+16);
+ UINTAT(umsd+20)=0x09090909-UINTAT(umsd+20);
+ UINTAT(umsd+24)=0x09090909-UINTAT(umsd+24);
+ UINTAT(umsd+28)=0x09090909-UINTAT(umsd+28);
+ UINTAT(umsd+32)=0x09090909-UINTAT(umsd+32);
+ #define BNEXT 36
+ #endif
+ if (ulsd>=umsd+BNEXT) { /* unaligned */
+ /* eight will handle most unaligments for Double; 16 for Quad */
+ UINTAT(umsd+BNEXT)=0x09090909-UINTAT(umsd+BNEXT);
+ UINTAT(umsd+BNEXT+4)=0x09090909-UINTAT(umsd+BNEXT+4);
+ #if DOUBLE
+ #define BNEXTY (BNEXT+8)
+ #elif QUAD
+ UINTAT(umsd+BNEXT+8)=0x09090909-UINTAT(umsd+BNEXT+8);
+ UINTAT(umsd+BNEXT+12)=0x09090909-UINTAT(umsd+BNEXT+12);
+ #define BNEXTY (BNEXT+16)
+ #endif
+ if (ulsd>=umsd+BNEXTY) { /* very unaligned */
+ ui=&UINTAT(umsd+BNEXTY); /* -> continue */
+ for (;;ui++) {
+ *ui=0x09090909-*ui; /* invert four digits */
+ if (ui>=&UINTAT(ulsd-3)) break; /* all done */
+ }
+ }
+ }
+ /* complete the ten's complement by adding 1 */
+ for (ub=ulsd; *ub==9; ub--) *ub=0;
+ *ub+=1;
+ } /* borrowed */
+
+ else { /* carry out means RHS>=LHS */
+ num.sign=DFWORD(dfr, 0) & DECFLOAT_Sign;
+ /* all done except for the special IEEE 754 exact-zero-result */
+ /* rule (see above); while testing for zero, strip leading */
+ /* zeros (which will save decFinalize doing it) (this is in */
+ /* diffsign path, so carry impossible and true umsd is */
+ /* acc+COFF) */
+
+ /* Check the initial coefficient area using the fast macro; */
+ /* this will often be all that needs to be done (as on the */
+ /* worst-case path when the subtraction was aligned and */
+ /* full-length) */
+ if (ISCOEFFZERO(acc+COFF)) {
+ umsd=acc+COFF+DECPMAX-1; /* so far, so zero */
+ if (ulsd>umsd) { /* more to check */
+ umsd++; /* to align after checked area */
+ for (; UINTAT(umsd)==0 && umsd+3<ulsd;) umsd+=4;
+ for (; *umsd==0 && umsd<ulsd;) umsd++;
+ }
+ if (*umsd==0) { /* must be true zero (and diffsign) */
+ num.sign=0; /* assume + */
+ if (set->round==DEC_ROUND_FLOOR) num.sign=DECFLOAT_Sign;
+ }
+ }
+ /* [else was not zero, might still have leading zeros] */
+ } /* subtraction gave positive result */
+ } /* diffsign */
+
+ else { /* same-sign addition */
+ num.sign=DFWORD(dfl, 0)&DECFLOAT_Sign;
+ #if DOUBLE
+ if (carry) { /* only possible with decDouble */
+ *(acc+3)=1; /* [Quad has leading 00] */
+ umsd=acc+3;
+ }
+ #endif
+ } /* same sign */
+
+ num.msd=umsd; /* set MSD .. */
+ num.lsd=ulsd; /* .. and LSD */
+ num.exponent=expr; /* set exponent to smaller */
+
+ #if DECTRACE
+ decFloatShow(dfl, "dfl");
+ decFloatShow(dfr, "dfr");
+ decShowNum(&num, "postadd");
+ #endif
+ return decFinalize(result, &num, set); /* round, check, and lay out */
+ } /* decFloatAdd */
+
+/* ------------------------------------------------------------------ */
+/* decFloatAnd -- logical digitwise AND of two decFloats */
+/* */
+/* result gets the result of ANDing dfl and dfr */
+/* dfl is the first decFloat (lhs) */
+/* dfr is the second decFloat (rhs) */
+/* set is the context */
+/* returns result, which will be canonical with sign=0 */
+/* */
+/* The operands must be positive, finite with exponent q=0, and */
+/* comprise just zeros and ones; if not, Invalid operation results. */
+/* ------------------------------------------------------------------ */
+decFloat * decFloatAnd(decFloat *result,
+ const decFloat *dfl, const decFloat *dfr,
+ decContext *set) {
+ if (!DFISUINT01(dfl) || !DFISUINT01(dfr)
+ || !DFISCC01(dfl) || !DFISCC01(dfr)) return decInvalid(result, set);
+ /* the operands are positive finite integers (q=0) with just 0s and 1s */
+ #if DOUBLE
+ DFWORD(result, 0)=ZEROWORD
+ |((DFWORD(dfl, 0) & DFWORD(dfr, 0))&0x04009124);
+ DFWORD(result, 1)=(DFWORD(dfl, 1) & DFWORD(dfr, 1))&0x49124491;
+ #elif QUAD
+ DFWORD(result, 0)=ZEROWORD
+ |((DFWORD(dfl, 0) & DFWORD(dfr, 0))&0x04000912);
+ DFWORD(result, 1)=(DFWORD(dfl, 1) & DFWORD(dfr, 1))&0x44912449;
+ DFWORD(result, 2)=(DFWORD(dfl, 2) & DFWORD(dfr, 2))&0x12449124;
+ DFWORD(result, 3)=(DFWORD(dfl, 3) & DFWORD(dfr, 3))&0x49124491;
+ #endif
+ return result;
+ } /* decFloatAnd */
+
+/* ------------------------------------------------------------------ */
+/* decFloatCanonical -- copy a decFloat, making canonical */
+/* */
+/* result gets the canonicalized df */
+/* df is the decFloat to copy and make canonical */
+/* returns result */
+/* */
+/* This works on specials, too; no error or exception is possible. */
+/* ------------------------------------------------------------------ */
+decFloat * decFloatCanonical(decFloat *result, const decFloat *df) {
+ return decCanonical(result, df);
+ } /* decFloatCanonical */
+
+/* ------------------------------------------------------------------ */
+/* decFloatClass -- return the class of a decFloat */
+/* */
+/* df is the decFloat to test */
+/* returns the decClass that df falls into */
+/* ------------------------------------------------------------------ */
+enum decClass decFloatClass(const decFloat *df) {
+ Int exp; /* exponent */
+ if (DFISSPECIAL(df)) {
+ if (DFISQNAN(df)) return DEC_CLASS_QNAN;
+ if (DFISSNAN(df)) return DEC_CLASS_SNAN;
+ /* must be an infinity */
+ if (DFISSIGNED(df)) return DEC_CLASS_NEG_INF;
+ return DEC_CLASS_POS_INF;
+ }
+ if (DFISZERO(df)) { /* quite common */
+ if (DFISSIGNED(df)) return DEC_CLASS_NEG_ZERO;
+ return DEC_CLASS_POS_ZERO;
+ }
+ /* is finite and non-zero; similar code to decFloatIsNormal, here */
+ /* [this could be speeded up slightly by in-lining decFloatDigits] */
+ exp=GETEXPUN(df) /* get unbiased exponent .. */
+ +decFloatDigits(df)-1; /* .. and make adjusted exponent */
+ if (exp>=DECEMIN) { /* is normal */
+ if (DFISSIGNED(df)) return DEC_CLASS_NEG_NORMAL;
+ return DEC_CLASS_POS_NORMAL;
+ }
+ /* is subnormal */
+ if (DFISSIGNED(df)) return DEC_CLASS_NEG_SUBNORMAL;
+ return DEC_CLASS_POS_SUBNORMAL;
+ } /* decFloatClass */
+
+/* ------------------------------------------------------------------ */
+/* decFloatClassString -- return the class of a decFloat as a string */
+/* */
+/* df is the decFloat to test */
+/* returns a constant string describing the class df falls into */
+/* ------------------------------------------------------------------ */
+const char *decFloatClassString(const decFloat *df) {
+ enum decClass eclass=decFloatClass(df);
+ if (eclass==DEC_CLASS_POS_NORMAL) return DEC_ClassString_PN;
+ if (eclass==DEC_CLASS_NEG_NORMAL) return DEC_ClassString_NN;
+ if (eclass==DEC_CLASS_POS_ZERO) return DEC_ClassString_PZ;
+ if (eclass==DEC_CLASS_NEG_ZERO) return DEC_ClassString_NZ;
+ if (eclass==DEC_CLASS_POS_SUBNORMAL) return DEC_ClassString_PS;
+ if (eclass==DEC_CLASS_NEG_SUBNORMAL) return DEC_ClassString_NS;
+ if (eclass==DEC_CLASS_POS_INF) return DEC_ClassString_PI;
+ if (eclass==DEC_CLASS_NEG_INF) return DEC_ClassString_NI;
+ if (eclass==DEC_CLASS_QNAN) return DEC_ClassString_QN;
+ if (eclass==DEC_CLASS_SNAN) return DEC_ClassString_SN;
+ return DEC_ClassString_UN; /* Unknown */
+ } /* decFloatClassString */
+
+/* ------------------------------------------------------------------ */
+/* decFloatCompare -- compare two decFloats; quiet NaNs allowed */
+/* */
+/* result gets the result of comparing dfl and dfr */
+/* dfl is the first decFloat (lhs) */
+/* dfr is the second decFloat (rhs) */
+/* set is the context */
+/* returns result, which may be -1, 0, 1, or NaN (Unordered) */
+/* ------------------------------------------------------------------ */
+decFloat * decFloatCompare(decFloat *result,
+ const decFloat *dfl, const decFloat *dfr,
+ decContext *set) {
+ Int comp; /* work */
+ /* NaNs are handled as usual */
+ if (DFISNAN(dfl) || DFISNAN(dfr)) return decNaNs(result, dfl, dfr, set);
+ /* numeric comparison needed */
+ comp=decNumCompare(dfl, dfr, 0);
+ decFloatZero(result);
+ if (comp==0) return result;
+ DFBYTE(result, DECBYTES-1)=0x01; /* LSD=1 */
+ if (comp<0) DFBYTE(result, 0)|=0x80; /* set sign bit */
+ return result;
+ } /* decFloatCompare */
+
+/* ------------------------------------------------------------------ */
+/* decFloatCompareSignal -- compare two decFloats; all NaNs signal */
+/* */
+/* result gets the result of comparing dfl and dfr */
+/* dfl is the first decFloat (lhs) */
+/* dfr is the second decFloat (rhs) */
+/* set is the context */
+/* returns result, which may be -1, 0, 1, or NaN (Unordered) */
+/* ------------------------------------------------------------------ */
+decFloat * decFloatCompareSignal(decFloat *result,
+ const decFloat *dfl, const decFloat *dfr,
+ decContext *set) {
+ Int comp; /* work */
+ /* NaNs are handled as usual, except that all NaNs signal */
+ if (DFISNAN(dfl) || DFISNAN(dfr)) {
+ set->status|=DEC_Invalid_operation;
+ return decNaNs(result, dfl, dfr, set);
+ }
+ /* numeric comparison needed */
+ comp=decNumCompare(dfl, dfr, 0);
+ decFloatZero(result);
+ if (comp==0) return result;
+ DFBYTE(result, DECBYTES-1)=0x01; /* LSD=1 */
+ if (comp<0) DFBYTE(result, 0)|=0x80; /* set sign bit */
+ return result;
+ } /* decFloatCompareSignal */
+
+/* ------------------------------------------------------------------ */
+/* decFloatCompareTotal -- compare two decFloats with total ordering */
+/* */
+/* result gets the result of comparing dfl and dfr */
+/* dfl is the first decFloat (lhs) */
+/* dfr is the second decFloat (rhs) */
+/* returns result, which may be -1, 0, or 1 */
+/* ------------------------------------------------------------------ */
+decFloat * decFloatCompareTotal(decFloat *result,
+ const decFloat *dfl, const decFloat *dfr) {
+ Int comp; /* work */
+ if (DFISNAN(dfl) || DFISNAN(dfr)) {
+ Int nanl, nanr; /* work */
+ /* morph NaNs to +/- 1 or 2, leave numbers as 0 */
+ nanl=DFISSNAN(dfl)+DFISQNAN(dfl)*2; /* quiet > signalling */
+ if (DFISSIGNED(dfl)) nanl=-nanl;
+ nanr=DFISSNAN(dfr)+DFISQNAN(dfr)*2;
+ if (DFISSIGNED(dfr)) nanr=-nanr;
+ if (nanl>nanr) comp=+1;
+ else if (nanl<nanr) comp=-1;
+ else { /* NaNs are the same type and sign .. must compare payload */
+ /* buffers need +2 for QUAD */
+ uByte bufl[DECPMAX+4]; /* for LHS coefficient + foot */
+ uByte bufr[DECPMAX+4]; /* for RHS coefficient + foot */
+ uByte *ub, *uc; /* work */
+ Int sigl; /* signum of LHS */
+ sigl=(DFISSIGNED(dfl) ? -1 : +1);
+
+ /* decode the coefficients */
+ /* (shift both right two if Quad to make a multiple of four) */
+ #if QUAD
+ USHORTAT(bufl)=0;
+ USHORTAT(bufr)=0;
+ #endif
+ GETCOEFF(dfl, bufl+QUAD*2); /* decode from decFloat */
+ GETCOEFF(dfr, bufr+QUAD*2); /* .. */
+ /* all multiples of four, here */
+ comp=0; /* assume equal */
+ for (ub=bufl, uc=bufr; ub<bufl+DECPMAX+QUAD*2; ub+=4, uc+=4) {
+ if (UINTAT(ub)==UINTAT(uc)) continue; /* so far so same */
+ /* about to find a winner; go by bytes in case little-endian */
+ for (;; ub++, uc++) {
+ if (*ub==*uc) continue;
+ if (*ub>*uc) comp=sigl; /* difference found */
+ else comp=-sigl; /* .. */
+ break;
+ }
+ }
+ } /* same NaN type and sign */
+ }
+ else {
+ /* numeric comparison needed */
+ comp=decNumCompare(dfl, dfr, 1); /* total ordering */
+ }
+ decFloatZero(result);
+ if (comp==0) return result;
+ DFBYTE(result, DECBYTES-1)=0x01; /* LSD=1 */
+ if (comp<0) DFBYTE(result, 0)|=0x80; /* set sign bit */
+ return result;
+ } /* decFloatCompareTotal */
+
+/* ------------------------------------------------------------------ */
+/* decFloatCompareTotalMag -- compare magnitudes with total ordering */
+/* */
+/* result gets the result of comparing abs(dfl) and abs(dfr) */
+/* dfl is the first decFloat (lhs) */
+/* dfr is the second decFloat (rhs) */
+/* returns result, which may be -1, 0, or 1 */
+/* ------------------------------------------------------------------ */
+decFloat * decFloatCompareTotalMag(decFloat *result,
+ const decFloat *dfl, const decFloat *dfr) {
+ decFloat a, b; /* for copy if needed */
+ /* copy and redirect signed operand(s) */
+ if (DFISSIGNED(dfl)) {
+ decFloatCopyAbs(&a, dfl);
+ dfl=&a;
+ }
+ if (DFISSIGNED(dfr)) {
+ decFloatCopyAbs(&b, dfr);
+ dfr=&b;
+ }
+ return decFloatCompareTotal(result, dfl, dfr);
+ } /* decFloatCompareTotalMag */
+
+/* ------------------------------------------------------------------ */
+/* decFloatCopy -- copy a decFloat as-is */
+/* */
+/* result gets the copy of dfl */
+/* dfl is the decFloat to copy */
+/* returns result */
+/* */
+/* This is a bitwise operation; no errors or exceptions are possible. */
+/* ------------------------------------------------------------------ */
+decFloat * decFloatCopy(decFloat *result, const decFloat *dfl) {
+ if (dfl!=result) *result=*dfl; /* copy needed */
+ return result;
+ } /* decFloatCopy */
+
+/* ------------------------------------------------------------------ */
+/* decFloatCopyAbs -- copy a decFloat as-is and set sign bit to 0 */
+/* */
+/* result gets the copy of dfl with sign bit 0 */
+/* dfl is the decFloat to copy */
+/* returns result */
+/* */
+/* This is a bitwise operation; no errors or exceptions are possible. */
+/* ------------------------------------------------------------------ */
+decFloat * decFloatCopyAbs(decFloat *result, const decFloat *dfl) {
+ if (dfl!=result) *result=*dfl; /* copy needed */
+ DFBYTE(result, 0)&=~0x80; /* zero sign bit */
+ return result;
+ } /* decFloatCopyAbs */
+
+/* ------------------------------------------------------------------ */
+/* decFloatCopyNegate -- copy a decFloat as-is with inverted sign bit */
+/* */
+/* result gets the copy of dfl with sign bit inverted */
+/* dfl is the decFloat to copy */
+/* returns result */
+/* */
+/* This is a bitwise operation; no errors or exceptions are possible. */
+/* ------------------------------------------------------------------ */
+decFloat * decFloatCopyNegate(decFloat *result, const decFloat *dfl) {
+ if (dfl!=result) *result=*dfl; /* copy needed */
+ DFBYTE(result, 0)^=0x80; /* invert sign bit */
+ return result;
+ } /* decFloatCopyNegate */
+
+/* ------------------------------------------------------------------ */
+/* decFloatCopySign -- copy a decFloat with the sign of another */
+/* */
+/* result gets the result of copying dfl with the sign of dfr */
+/* dfl is the first decFloat (lhs) */
+/* dfr is the second decFloat (rhs) */
+/* returns result */
+/* */
+/* This is a bitwise operation; no errors or exceptions are possible. */
+/* ------------------------------------------------------------------ */
+decFloat * decFloatCopySign(decFloat *result,
+ const decFloat *dfl, const decFloat *dfr) {
+ uByte sign=(uByte)(DFBYTE(dfr, 0)&0x80); /* save sign bit */
+ if (dfl!=result) *result=*dfl; /* copy needed */
+ DFBYTE(result, 0)&=~0x80; /* clear sign .. */
+ DFBYTE(result, 0)=(uByte)(DFBYTE(result, 0)|sign); /* .. and set saved */
+ return result;
+ } /* decFloatCopySign */
+
+/* ------------------------------------------------------------------ */
+/* decFloatDigits -- return the number of digits in a decFloat */
+/* */
+/* df is the decFloat to investigate */
+/* returns the number of significant digits in the decFloat; a */
+/* zero coefficient returns 1 as does an infinity (a NaN returns */
+/* the number of digits in the payload) */
+/* ------------------------------------------------------------------ */
+/* private macro to extract a declet according to provided formula */
+/* (form), and if it is non-zero then return the calculated digits */
+/* depending on the declet number (n), where n=0 for the most */
+/* significant declet; uses uInt dpd for work */
+#define dpdlenchk(n, form) {dpd=(form)&0x3ff; \
+ if (dpd) return (DECPMAX-1-3*(n))-(3-DPD2BCD8[dpd*4+3]);}
+/* next one is used when it is known that the declet must be */
+/* non-zero, or is the final zero declet */
+#define dpdlendun(n, form) {dpd=(form)&0x3ff; \
+ if (dpd==0) return 1; \
+ return (DECPMAX-1-3*(n))-(3-DPD2BCD8[dpd*4+3]);}
+
+uInt decFloatDigits(const decFloat *df) {
+ uInt dpd; /* work */
+ uInt sourhi=DFWORD(df, 0); /* top word from source decFloat */
+ #if QUAD
+ uInt sourmh, sourml;
+ #endif
+ uInt sourlo;
+
+ if (DFISINF(df)) return 1;
+ /* A NaN effectively has an MSD of 0; otherwise if non-zero MSD */
+ /* then the coefficient is full-length */
+ if (!DFISNAN(df) && DECCOMBMSD[sourhi>>26]) return DECPMAX;
+
+ #if DOUBLE
+ if (sourhi&0x0003ffff) { /* ends in first */
+ dpdlenchk(0, sourhi>>8);
+ sourlo=DFWORD(df, 1);
+ dpdlendun(1, (sourhi<<2) | (sourlo>>30));
+ } /* [cannot drop through] */
+ sourlo=DFWORD(df, 1); /* sourhi not involved now */
+ if (sourlo&0xfff00000) { /* in one of first two */
+ dpdlenchk(1, sourlo>>30); /* very rare */
+ dpdlendun(2, sourlo>>20);
+ } /* [cannot drop through] */
+ dpdlenchk(3, sourlo>>10);
+ dpdlendun(4, sourlo);
+ /* [cannot drop through] */
+
+ #elif QUAD
+ if (sourhi&0x00003fff) { /* ends in first */
+ dpdlenchk(0, sourhi>>4);
+ sourmh=DFWORD(df, 1);
+ dpdlendun(1, ((sourhi)<<6) | (sourmh>>26));
+ } /* [cannot drop through] */
+ sourmh=DFWORD(df, 1);
+ if (sourmh) {
+ dpdlenchk(1, sourmh>>26);
+ dpdlenchk(2, sourmh>>16);
+ dpdlenchk(3, sourmh>>6);
+ sourml=DFWORD(df, 2);
+ dpdlendun(4, ((sourmh)<<4) | (sourml>>28));
+ } /* [cannot drop through] */
+ sourml=DFWORD(df, 2);
+ if (sourml) {
+ dpdlenchk(4, sourml>>28);
+ dpdlenchk(5, sourml>>18);
+ dpdlenchk(6, sourml>>8);
+ sourlo=DFWORD(df, 3);
+ dpdlendun(7, ((sourml)<<2) | (sourlo>>30));
+ } /* [cannot drop through] */
+ sourlo=DFWORD(df, 3);
+ if (sourlo&0xfff00000) { /* in one of first two */
+ dpdlenchk(7, sourlo>>30); /* very rare */
+ dpdlendun(8, sourlo>>20);
+ } /* [cannot drop through] */
+ dpdlenchk(9, sourlo>>10);
+ dpdlendun(10, sourlo);
+ /* [cannot drop through] */
+ #endif
+ } /* decFloatDigits */
+
+/* ------------------------------------------------------------------ */
+/* decFloatDivide -- divide a decFloat by another */
+/* */
+/* result gets the result of dividing dfl by dfr: */
+/* dfl is the first decFloat (lhs) */
+/* dfr is the second decFloat (rhs) */
+/* set is the context */
+/* returns result */
+/* */
+/* ------------------------------------------------------------------ */
+/* This is just a wrapper. */
+decFloat * decFloatDivide(decFloat *result,
+ const decFloat *dfl, const decFloat *dfr,
+ decContext *set) {
+ return decDivide(result, dfl, dfr, set, DIVIDE);
+ } /* decFloatDivide */
+
+/* ------------------------------------------------------------------ */
+/* decFloatDivideInteger -- integer divide a decFloat by another */
+/* */
+/* result gets the result of dividing dfl by dfr: */
+/* dfl is the first decFloat (lhs) */
+/* dfr is the second decFloat (rhs) */
+/* set is the context */
+/* returns result */
+/* */
+/* ------------------------------------------------------------------ */
+decFloat * decFloatDivideInteger(decFloat *result,
+ const decFloat *dfl, const decFloat *dfr,
+ decContext *set) {
+ return decDivide(result, dfl, dfr, set, DIVIDEINT);
+ } /* decFloatDivideInteger */
+
+/* ------------------------------------------------------------------ */
+/* decFloatFMA -- multiply and add three decFloats, fused */
+/* */
+/* result gets the result of (dfl*dfr)+dff with a single rounding */
+/* dfl is the first decFloat (lhs) */
+/* dfr is the second decFloat (rhs) */
+/* dff is the final decFloat (fhs) */
+/* set is the context */
+/* returns result */
+/* */
+/* ------------------------------------------------------------------ */
+decFloat * decFloatFMA(decFloat *result, const decFloat *dfl,
+ const decFloat *dfr, const decFloat *dff,
+ decContext *set) {
+ /* The accumulator has the bytes needed for FiniteMultiply, plus */
+ /* one byte to the left in case of carry, plus DECPMAX+2 to the */
+ /* right for the final addition (up to full fhs + round & sticky) */
+ #define FMALEN (1+ (DECPMAX9*18) +DECPMAX+2)
+ uByte acc[FMALEN]; /* for multiplied coefficient in BCD */
+ /* .. and for final result */
+ bcdnum mul; /* for multiplication result */
+ bcdnum fin; /* for final operand, expanded */
+ uByte coe[DECPMAX]; /* dff coefficient in BCD */
+ bcdnum *hi, *lo; /* bcdnum with higher/lower exponent */
+ uInt diffsign; /* non-zero if signs differ */
+ uInt hipad; /* pad digit for hi if needed */
+ Int padding; /* excess exponent */
+ uInt carry; /* +1 for ten's complement and during add */
+ uByte *ub, *uh, *ul; /* work */
+
+ /* handle all the special values [any special operand leads to a */
+ /* special result] */
+ if (DFISSPECIAL(dfl) || DFISSPECIAL(dfr) || DFISSPECIAL(dff)) {
+ decFloat proxy; /* multiplication result proxy */
+ /* NaNs are handled as usual, giving priority to sNaNs */
+ if (DFISSNAN(dfl) || DFISSNAN(dfr)) return decNaNs(result, dfl, dfr, set);
+ if (DFISSNAN(dff)) return decNaNs(result, dff, NULL, set);
+ if (DFISNAN(dfl) || DFISNAN(dfr)) return decNaNs(result, dfl, dfr, set);
+ if (DFISNAN(dff)) return decNaNs(result, dff, NULL, set);
+ /* One or more of the three is infinite */
+ /* infinity times zero is bad */
+ decFloatZero(&proxy);
+ if (DFISINF(dfl)) {
+ if (DFISZERO(dfr)) return decInvalid(result, set);
+ decInfinity(&proxy, &proxy);
+ }
+ else if (DFISINF(dfr)) {
+ if (DFISZERO(dfl)) return decInvalid(result, set);
+ decInfinity(&proxy, &proxy);
+ }
+ /* compute sign of multiplication and place in proxy */
+ DFWORD(&proxy, 0)|=(DFWORD(dfl, 0)^DFWORD(dfr, 0))&DECFLOAT_Sign;
+ if (!DFISINF(dff)) return decFloatCopy(result, &proxy);
+ /* dff is Infinite */
+ if (!DFISINF(&proxy)) return decInfinity(result, dff);
+ /* both sides of addition are infinite; different sign is bad */
+ if ((DFWORD(dff, 0)&DECFLOAT_Sign)!=(DFWORD(&proxy, 0)&DECFLOAT_Sign))
+ return decInvalid(result, set);
+ return decFloatCopy(result, &proxy);
+ }
+
+ /* Here when all operands are finite */
+
+ /* First multiply dfl*dfr */
+ decFiniteMultiply(&mul, acc+1, dfl, dfr);
+ /* The multiply is complete, exact and unbounded, and described in */
+ /* mul with the coefficient held in acc[1...] */
+
+ /* now add in dff; the algorithm is essentially the same as */
+ /* decFloatAdd, but the code is different because the code there */
+ /* is highly optimized for adding two numbers of the same size */
+ fin.exponent=GETEXPUN(dff); /* get dff exponent and sign */
+ fin.sign=DFWORD(dff, 0)&DECFLOAT_Sign;
+ diffsign=mul.sign^fin.sign; /* note if signs differ */
+ fin.msd=coe;
+ fin.lsd=coe+DECPMAX-1;
+ GETCOEFF(dff, coe); /* extract the coefficient */
+
+ /* now set hi and lo so that hi points to whichever of mul and fin */
+ /* has the higher exponent and lo point to the other [don't care if */
+ /* the same] */
+ if (mul.exponent>=fin.exponent) {
+ hi=&mul;
+ lo=&fin;
+ }
+ else {
+ hi=&fin;
+ lo=&mul;
+ }
+
+ /* remove leading zeros on both operands; this will save time later */
+ /* and make testing for zero trivial */
+ for (; UINTAT(hi->msd)==0 && hi->msd+3<hi->lsd;) hi->msd+=4;
+ for (; *hi->msd==0 && hi->msd<hi->lsd;) hi->msd++;
+ for (; UINTAT(lo->msd)==0 && lo->msd+3<lo->lsd;) lo->msd+=4;
+ for (; *lo->msd==0 && lo->msd<lo->lsd;) lo->msd++;
+
+ /* if hi is zero then result will be lo (which has the smaller */
+ /* exponent), which also may need to be tested for zero for the */
+ /* weird IEEE 754 sign rules */
+ if (*hi->msd==0 && hi->msd==hi->lsd) { /* hi is zero */
+ /* "When the sum of two operands with opposite signs is */
+ /* exactly zero, the sign of that sum shall be '+' in all */
+ /* rounding modes except round toward -Infinity, in which */
+ /* mode that sign shall be '-'." */
+ if (diffsign) {
+ if (*lo->msd==0 && lo->msd==lo->lsd) { /* lo is zero */
+ lo->sign=0;
+ if (set->round==DEC_ROUND_FLOOR) lo->sign=DECFLOAT_Sign;
+ } /* diffsign && lo=0 */
+ } /* diffsign */
+ return decFinalize(result, lo, set); /* may need clamping */
+ } /* numfl is zero */
+ /* [here, both are minimal length and hi is non-zero] */
+
+ /* if signs differ, take the ten's complement of hi (zeros to the */
+ /* right do not matter because the complement of zero is zero); */
+ /* the +1 is done later, as part of the addition, inserted at the */
+ /* correct digit */
+ hipad=0;
+ carry=0;
+ if (diffsign) {
+ hipad=9;
+ carry=1;
+ /* exactly the correct number of digits must be inverted */
+ for (uh=hi->msd; uh<hi->lsd-3; uh+=4) UINTAT(uh)=0x09090909-UINTAT(uh);
+ for (; uh<=hi->lsd; uh++) *uh=(uByte)(0x09-*uh);
+ }
+
+ /* ready to add; note that hi has no leading zeros so gap */
+ /* calculation does not have to be as pessimistic as in decFloatAdd */
+ /* (this is much more like the arbitrary-precision algorithm in */
+ /* Rexx and decNumber) */
+
+ /* padding is the number of zeros that would need to be added to hi */
+ /* for its lsd to be aligned with the lsd of lo */
+ padding=hi->exponent-lo->exponent;
+ /* printf("FMA pad %ld\n", (LI)padding); */
+
+ /* the result of the addition will be built into the accumulator, */
+ /* starting from the far right; this could be either hi or lo */
+ ub=acc+FMALEN-1; /* where lsd of result will go */
+ ul=lo->lsd; /* lsd of rhs */
+
+ if (padding!=0) { /* unaligned */
+ /* if the msd of lo is more than DECPMAX+2 digits to the right of */
+ /* the original msd of hi then it can be reduced to a single */
+ /* digit at the right place, as it stays clear of hi digits */
+ /* [it must be DECPMAX+2 because during a subtraction the msd */
+ /* could become 0 after a borrow from 1.000 to 0.9999...] */
+ Int hilen=(Int)(hi->lsd-hi->msd+1); /* lengths */
+ Int lolen=(Int)(lo->lsd-lo->msd+1); /* .. */
+ Int newexp=MINI(hi->exponent, hi->exponent+hilen-DECPMAX)-3;
+ Int reduce=newexp-lo->exponent;
+ if (reduce>0) { /* [= case gives reduce=0 nop] */
+ /* printf("FMA reduce: %ld\n", (LI)reduce); */
+ if (reduce>=lolen) { /* eating all */
+ lo->lsd=lo->msd; /* reduce to single digit */
+ lo->exponent=newexp; /* [known to be non-zero] */
+ }
+ else { /* < */
+ uByte *up=lo->lsd;
+ lo->lsd=lo->lsd-reduce;
+ if (*lo->lsd==0) /* could need sticky bit */
+ for (; up>lo->lsd; up--) { /* search discarded digits */
+ if (*up!=0) { /* found one... */
+ *lo->lsd=1; /* set sticky bit */
+ break;
+ }
+ }
+ lo->exponent+=reduce;
+ }
+ padding=hi->exponent-lo->exponent; /* recalculate */
+ ul=lo->lsd; /* .. */
+ } /* maybe reduce */
+ /* padding is now <= DECPMAX+2 but still > 0; tricky DOUBLE case */
+ /* is when hi is a 1 that will become a 0.9999... by subtraction: */
+ /* hi: 1 E+16 */
+ /* lo: .................1000000000000000 E-16 */
+ /* which for the addition pads and reduces to: */
+ /* hi: 1000000000000000000 E-2 */
+ /* lo: .................1 E-2 */
+ #if DECCHECK
+ if (padding>DECPMAX+2) printf("FMA excess padding: %ld\n", (LI)padding);
+ if (padding<=0) printf("FMA low padding: %ld\n", (LI)padding);
+ /* printf("FMA padding: %ld\n", (LI)padding); */
+ #endif
+ /* padding digits can now be set in the result; one or more of */
+ /* these will come from lo; others will be zeros in the gap */
+ for (; ul>=lo->msd && padding>0; padding--, ul--, ub--) *ub=*ul;
+ for (;padding>0; padding--, ub--) *ub=0; /* mind the gap */
+ }
+
+ /* addition now complete to the right of the rightmost digit of hi */
+ uh=hi->lsd;
+
+ /* carry was set up depending on ten's complement above; do the add... */
+ for (;; ub--) {
+ uInt hid, lod;
+ if (uh<hi->msd) {
+ if (ul<lo->msd) break;
+ hid=hipad;
+ }
+ else hid=*uh--;
+ if (ul<lo->msd) lod=0;
+ else lod=*ul--;
+ *ub=(uByte)(carry+hid+lod);
+ if (*ub<10) carry=0;
+ else {
+ *ub-=10;
+ carry=1;
+ }
+ } /* addition loop */
+
+ /* addition complete -- now handle carry, borrow, etc. */
+ /* use lo to set up the num (its exponent is already correct, and */
+ /* sign usually is) */
+ lo->msd=ub+1;
+ lo->lsd=acc+FMALEN-1;
+ /* decShowNum(lo, "lo"); */
+ if (!diffsign) { /* same-sign addition */
+ if (carry) { /* carry out */
+ *ub=1; /* place the 1 .. */
+ lo->msd--; /* .. and update */
+ }
+ } /* same sign */
+ else { /* signs differed (subtraction) */
+ if (!carry) { /* no carry out means hi<lo */
+ /* borrowed -- take ten's complement of the right digits */
+ lo->sign=hi->sign; /* sign is lhs sign */
+ for (ul=lo->msd; ul<lo->lsd-3; ul+=4) UINTAT(ul)=0x09090909-UINTAT(ul);
+ for (; ul<=lo->lsd; ul++) *ul=(uByte)(0x09-*ul); /* [leaves ul at lsd+1] */
+ /* complete the ten's complement by adding 1 [cannot overrun] */
+ for (ul--; *ul==9; ul--) *ul=0;
+ *ul+=1;
+ } /* borrowed */
+ else { /* carry out means hi>=lo */
+ /* sign to use is lo->sign */
+ /* all done except for the special IEEE 754 exact-zero-result */
+ /* rule (see above); while testing for zero, strip leading */
+ /* zeros (which will save decFinalize doing it) */
+ for (; UINTAT(lo->msd)==0 && lo->msd+3<lo->lsd;) lo->msd+=4;
+ for (; *lo->msd==0 && lo->msd<lo->lsd;) lo->msd++;
+ if (*lo->msd==0) { /* must be true zero (and diffsign) */
+ lo->sign=0; /* assume + */
+ if (set->round==DEC_ROUND_FLOOR) lo->sign=DECFLOAT_Sign;
+ }
+ /* [else was not zero, might still have leading zeros] */
+ } /* subtraction gave positive result */
+ } /* diffsign */
+
+ return decFinalize(result, lo, set); /* round, check, and lay out */
+ } /* decFloatFMA */
+
+/* ------------------------------------------------------------------ */
+/* decFloatFromInt -- initialise a decFloat from an Int */
+/* */
+/* result gets the converted Int */
+/* n is the Int to convert */
+/* returns result */
+/* */
+/* The result is Exact; no errors or exceptions are possible. */
+/* ------------------------------------------------------------------ */
+decFloat * decFloatFromInt32(decFloat *result, Int n) {
+ uInt u=(uInt)n; /* copy as bits */
+ uInt encode; /* work */
+ DFWORD(result, 0)=ZEROWORD; /* always */
+ #if QUAD
+ DFWORD(result, 1)=0;
+ DFWORD(result, 2)=0;
+ #endif
+ if (n<0) { /* handle -n with care */
+ /* [This can be done without the test, but is then slightly slower] */
+ u=(~u)+1;
+ DFWORD(result, 0)|=DECFLOAT_Sign;
+ }
+ /* Since the maximum value of u now is 2**31, only the low word of */
+ /* result is affected */
+ encode=BIN2DPD[u%1000];
+ u/=1000;
+ encode|=BIN2DPD[u%1000]<<10;
+ u/=1000;
+ encode|=BIN2DPD[u%1000]<<20;
+ u/=1000; /* now 0, 1, or 2 */
+ encode|=u<<30;
+ DFWORD(result, DECWORDS-1)=encode;
+ return result;
+ } /* decFloatFromInt32 */
+
+/* ------------------------------------------------------------------ */
+/* decFloatFromUInt -- initialise a decFloat from a uInt */
+/* */
+/* result gets the converted uInt */
+/* n is the uInt to convert */
+/* returns result */
+/* */
+/* The result is Exact; no errors or exceptions are possible. */
+/* ------------------------------------------------------------------ */
+decFloat * decFloatFromUInt32(decFloat *result, uInt u) {
+ uInt encode; /* work */
+ DFWORD(result, 0)=ZEROWORD; /* always */
+ #if QUAD
+ DFWORD(result, 1)=0;
+ DFWORD(result, 2)=0;
+ #endif
+ encode=BIN2DPD[u%1000];
+ u/=1000;
+ encode|=BIN2DPD[u%1000]<<10;
+ u/=1000;
+ encode|=BIN2DPD[u%1000]<<20;
+ u/=1000; /* now 0 -> 4 */
+ encode|=u<<30;
+ DFWORD(result, DECWORDS-1)=encode;
+ DFWORD(result, DECWORDS-2)|=u>>2; /* rarely non-zero */
+ return result;
+ } /* decFloatFromUInt32 */
+
+/* ------------------------------------------------------------------ */
+/* decFloatInvert -- logical digitwise INVERT of a decFloat */
+/* */
+/* result gets the result of INVERTing df */
+/* df is the decFloat to invert */
+/* set is the context */
+/* returns result, which will be canonical with sign=0 */
+/* */
+/* The operand must be positive, finite with exponent q=0, and */
+/* comprise just zeros and ones; if not, Invalid operation results. */
+/* ------------------------------------------------------------------ */
+decFloat * decFloatInvert(decFloat *result, const decFloat *df,
+ decContext *set) {
+ uInt sourhi=DFWORD(df, 0); /* top word of dfs */
+
+ if (!DFISUINT01(df) || !DFISCC01(df)) return decInvalid(result, set);
+ /* the operand is a finite integer (q=0) */
+ #if DOUBLE
+ DFWORD(result, 0)=ZEROWORD|((~sourhi)&0x04009124);
+ DFWORD(result, 1)=(~DFWORD(df, 1)) &0x49124491;
+ #elif QUAD
+ DFWORD(result, 0)=ZEROWORD|((~sourhi)&0x04000912);
+ DFWORD(result, 1)=(~DFWORD(df, 1)) &0x44912449;
+ DFWORD(result, 2)=(~DFWORD(df, 2)) &0x12449124;
+ DFWORD(result, 3)=(~DFWORD(df, 3)) &0x49124491;
+ #endif
+ return result;
+ } /* decFloatInvert */
+
+/* ------------------------------------------------------------------ */
+/* decFloatIs -- decFloat tests (IsSigned, etc.) */
+/* */
+/* df is the decFloat to test */
+/* returns 0 or 1 in an int32_t */
+/* */
+/* Many of these could be macros, but having them as real functions */
+/* is a bit cleaner (and they can be referred to here by the generic */
+/* names) */
+/* ------------------------------------------------------------------ */
+uInt decFloatIsCanonical(const decFloat *df) {
+ if (DFISSPECIAL(df)) {
+ if (DFISINF(df)) {
+ if (DFWORD(df, 0)&ECONMASK) return 0; /* exponent continuation */
+ if (!DFISCCZERO(df)) return 0; /* coefficient continuation */
+ return 1;
+ }
+ /* is a NaN */
+ if (DFWORD(df, 0)&ECONNANMASK) return 0; /* exponent continuation */
+ if (DFISCCZERO(df)) return 1; /* coefficient continuation */
+ /* drop through to check payload */
+ }
+ { /* declare block */
+ #if DOUBLE
+ uInt sourhi=DFWORD(df, 0);
+ uInt sourlo=DFWORD(df, 1);
+ if (CANONDPDOFF(sourhi, 8)
+ && CANONDPDTWO(sourhi, sourlo, 30)
+ && CANONDPDOFF(sourlo, 20)
+ && CANONDPDOFF(sourlo, 10)
+ && CANONDPDOFF(sourlo, 0)) return 1;
+ #elif QUAD
+ uInt sourhi=DFWORD(df, 0);
+ uInt sourmh=DFWORD(df, 1);
+ uInt sourml=DFWORD(df, 2);
+ uInt sourlo=DFWORD(df, 3);
+ if (CANONDPDOFF(sourhi, 4)
+ && CANONDPDTWO(sourhi, sourmh, 26)
+ && CANONDPDOFF(sourmh, 16)
+ && CANONDPDOFF(sourmh, 6)
+ && CANONDPDTWO(sourmh, sourml, 28)
+ && CANONDPDOFF(sourml, 18)
+ && CANONDPDOFF(sourml, 8)
+ && CANONDPDTWO(sourml, sourlo, 30)
+ && CANONDPDOFF(sourlo, 20)
+ && CANONDPDOFF(sourlo, 10)
+ && CANONDPDOFF(sourlo, 0)) return 1;
+ #endif
+ } /* block */
+ return 0; /* a declet is non-canonical */
+ }
+
+uInt decFloatIsFinite(const decFloat *df) {
+ return !DFISSPECIAL(df);
+ }
+uInt decFloatIsInfinite(const decFloat *df) {
+ return DFISINF(df);
+ }
+uInt decFloatIsInteger(const decFloat *df) {
+ return DFISINT(df);
+ }
+uInt decFloatIsNaN(const decFloat *df) {
+ return DFISNAN(df);
+ }
+uInt decFloatIsNormal(const decFloat *df) {
+ Int exp; /* exponent */
+ if (DFISSPECIAL(df)) return 0;
+ if (DFISZERO(df)) return 0;
+ /* is finite and non-zero */
+ exp=GETEXPUN(df) /* get unbiased exponent .. */
+ +decFloatDigits(df)-1; /* .. and make adjusted exponent */
+ return (exp>=DECEMIN); /* < DECEMIN is subnormal */
+ }
+uInt decFloatIsSignaling(const decFloat *df) {
+ return DFISSNAN(df);
+ }
+uInt decFloatIsSignalling(const decFloat *df) {
+ return DFISSNAN(df);
+ }
+uInt decFloatIsSigned(const decFloat *df) {
+ return DFISSIGNED(df);
+ }
+uInt decFloatIsSubnormal(const decFloat *df) {
+ if (DFISSPECIAL(df)) return 0;
+ /* is finite */
+ if (decFloatIsNormal(df)) return 0;
+ /* it is <Nmin, but could be zero */
+ if (DFISZERO(df)) return 0;
+ return 1; /* is subnormal */
+ }
+uInt decFloatIsZero(const decFloat *df) {
+ return DFISZERO(df);
+ } /* decFloatIs... */
+
+/* ------------------------------------------------------------------ */
+/* decFloatLogB -- return adjusted exponent, by 754r rules */
+/* */
+/* result gets the adjusted exponent as an integer, or a NaN etc. */
+/* df is the decFloat to be examined */
+/* set is the context */
+/* returns result */
+/* */
+/* Notable cases: */
+/* A<0 -> Use |A| */
+/* A=0 -> -Infinity (Division by zero) */
+/* A=Infinite -> +Infinity (Exact) */
+/* A=1 exactly -> 0 (Exact) */
+/* NaNs are propagated as usual */
+/* ------------------------------------------------------------------ */
+decFloat * decFloatLogB(decFloat *result, const decFloat *df,
+ decContext *set) {
+ Int ae; /* adjusted exponent */
+ if (DFISNAN(df)) return decNaNs(result, df, NULL, set);
+ if (DFISINF(df)) {
+ DFWORD(result, 0)=0; /* need +ve */
+ return decInfinity(result, result); /* canonical +Infinity */
+ }
+ if (DFISZERO(df)) {
+ set->status|=DEC_Division_by_zero; /* as per 754r */
+ DFWORD(result, 0)=DECFLOAT_Sign; /* make negative */
+ return decInfinity(result, result); /* canonical -Infinity */
+ }
+ ae=GETEXPUN(df) /* get unbiased exponent .. */
+ +decFloatDigits(df)-1; /* .. and make adjusted exponent */
+ /* ae has limited range (3 digits for DOUBLE and 4 for QUAD), so */
+ /* it is worth using a special case of decFloatFromInt32 */
+ DFWORD(result, 0)=ZEROWORD; /* always */
+ if (ae<0) {
+ DFWORD(result, 0)|=DECFLOAT_Sign; /* -0 so far */
+ ae=-ae;
+ }
+ #if DOUBLE
+ DFWORD(result, 1)=BIN2DPD[ae]; /* a single declet */
+ #elif QUAD
+ DFWORD(result, 1)=0;
+ DFWORD(result, 2)=0;
+ DFWORD(result, 3)=(ae/1000)<<10; /* is <10, so need no DPD encode */
+ DFWORD(result, 3)|=BIN2DPD[ae%1000];
+ #endif
+ return result;
+ } /* decFloatLogB */
+
+/* ------------------------------------------------------------------ */
+/* decFloatMax -- return maxnum of two operands */
+/* */
+/* result gets the chosen decFloat */
+/* dfl is the first decFloat (lhs) */
+/* dfr is the second decFloat (rhs) */
+/* set is the context */
+/* returns result */
+/* */
+/* If just one operand is a quiet NaN it is ignored. */
+/* ------------------------------------------------------------------ */
+decFloat * decFloatMax(decFloat *result,
+ const decFloat *dfl, const decFloat *dfr,
+ decContext *set) {
+ Int comp;
+ if (DFISNAN(dfl)) {
+ /* sNaN or both NaNs leads to normal NaN processing */
+ if (DFISNAN(dfr) || DFISSNAN(dfl)) return decNaNs(result, dfl, dfr, set);
+ return decCanonical(result, dfr); /* RHS is numeric */
+ }
+ if (DFISNAN(dfr)) {
+ /* sNaN leads to normal NaN processing (both NaN handled above) */
+ if (DFISSNAN(dfr)) return decNaNs(result, dfl, dfr, set);
+ return decCanonical(result, dfl); /* LHS is numeric */
+ }
+ /* Both operands are numeric; numeric comparison needed -- use */
+ /* total order for a well-defined choice (and +0 > -0) */
+ comp=decNumCompare(dfl, dfr, 1);
+ if (comp>=0) return decCanonical(result, dfl);
+ return decCanonical(result, dfr);
+ } /* decFloatMax */
+
+/* ------------------------------------------------------------------ */
+/* decFloatMaxMag -- return maxnummag of two operands */
+/* */
+/* result gets the chosen decFloat */
+/* dfl is the first decFloat (lhs) */
+/* dfr is the second decFloat (rhs) */
+/* set is the context */
+/* returns result */
+/* */
+/* Returns according to the magnitude comparisons if both numeric and */
+/* unequal, otherwise returns maxnum */
+/* ------------------------------------------------------------------ */
+decFloat * decFloatMaxMag(decFloat *result,
+ const decFloat *dfl, const decFloat *dfr,
+ decContext *set) {
+ Int comp;
+ decFloat absl, absr;
+ if (DFISNAN(dfl) || DFISNAN(dfr)) return decFloatMax(result, dfl, dfr, set);
+
+ decFloatCopyAbs(&absl, dfl);
+ decFloatCopyAbs(&absr, dfr);
+ comp=decNumCompare(&absl, &absr, 0);
+ if (comp>0) return decCanonical(result, dfl);
+ if (comp<0) return decCanonical(result, dfr);
+ return decFloatMax(result, dfl, dfr, set);
+ } /* decFloatMaxMag */
+
+/* ------------------------------------------------------------------ */
+/* decFloatMin -- return minnum of two operands */
+/* */
+/* result gets the chosen decFloat */
+/* dfl is the first decFloat (lhs) */
+/* dfr is the second decFloat (rhs) */
+/* set is the context */
+/* returns result */
+/* */
+/* If just one operand is a quiet NaN it is ignored. */
+/* ------------------------------------------------------------------ */
+decFloat * decFloatMin(decFloat *result,
+ const decFloat *dfl, const decFloat *dfr,
+ decContext *set) {
+ Int comp;
+ if (DFISNAN(dfl)) {
+ /* sNaN or both NaNs leads to normal NaN processing */
+ if (DFISNAN(dfr) || DFISSNAN(dfl)) return decNaNs(result, dfl, dfr, set);
+ return decCanonical(result, dfr); /* RHS is numeric */
+ }
+ if (DFISNAN(dfr)) {
+ /* sNaN leads to normal NaN processing (both NaN handled above) */
+ if (DFISSNAN(dfr)) return decNaNs(result, dfl, dfr, set);
+ return decCanonical(result, dfl); /* LHS is numeric */
+ }
+ /* Both operands are numeric; numeric comparison needed -- use */
+ /* total order for a well-defined choice (and +0 > -0) */
+ comp=decNumCompare(dfl, dfr, 1);
+ if (comp<=0) return decCanonical(result, dfl);
+ return decCanonical(result, dfr);
+ } /* decFloatMin */
+
+/* ------------------------------------------------------------------ */
+/* decFloatMinMag -- return minnummag of two operands */
+/* */
+/* result gets the chosen decFloat */
+/* dfl is the first decFloat (lhs) */
+/* dfr is the second decFloat (rhs) */
+/* set is the context */
+/* returns result */
+/* */
+/* Returns according to the magnitude comparisons if both numeric and */
+/* unequal, otherwise returns minnum */
+/* ------------------------------------------------------------------ */
+decFloat * decFloatMinMag(decFloat *result,
+ const decFloat *dfl, const decFloat *dfr,
+ decContext *set) {
+ Int comp;
+ decFloat absl, absr;
+ if (DFISNAN(dfl) || DFISNAN(dfr)) return decFloatMin(result, dfl, dfr, set);
+
+ decFloatCopyAbs(&absl, dfl);
+ decFloatCopyAbs(&absr, dfr);
+ comp=decNumCompare(&absl, &absr, 0);
+ if (comp<0) return decCanonical(result, dfl);
+ if (comp>0) return decCanonical(result, dfr);
+ return decFloatMin(result, dfl, dfr, set);
+ } /* decFloatMinMag */
+
+/* ------------------------------------------------------------------ */
+/* decFloatMinus -- negate value, heeding NaNs, etc. */
+/* */
+/* result gets the canonicalized 0-df */
+/* df is the decFloat to minus */
+/* set is the context */
+/* returns result */
+/* */
+/* This has the same effect as 0-df where the exponent of the zero is */
+/* the same as that of df (if df is finite). */
+/* The effect is also the same as decFloatCopyNegate except that NaNs */
+/* are handled normally (the sign of a NaN is not affected, and an */
+/* sNaN will signal), the result is canonical, and zero gets sign 0. */
+/* ------------------------------------------------------------------ */
+decFloat * decFloatMinus(decFloat *result, const decFloat *df,
+ decContext *set) {
+ if (DFISNAN(df)) return decNaNs(result, df, NULL, set);
+ decCanonical(result, df); /* copy and check */
+ if (DFISZERO(df)) DFBYTE(result, 0)&=~0x80; /* turn off sign bit */
+ else DFBYTE(result, 0)^=0x80; /* flip sign bit */
+ return result;
+ } /* decFloatMinus */
+
+/* ------------------------------------------------------------------ */
+/* decFloatMultiply -- multiply two decFloats */
+/* */
+/* result gets the result of multiplying dfl and dfr: */
+/* dfl is the first decFloat (lhs) */
+/* dfr is the second decFloat (rhs) */
+/* set is the context */
+/* returns result */
+/* */
+/* ------------------------------------------------------------------ */
+decFloat * decFloatMultiply(decFloat *result,
+ const decFloat *dfl, const decFloat *dfr,
+ decContext *set) {
+ bcdnum num; /* for final conversion */
+ uByte bcdacc[DECPMAX9*18+1]; /* for coefficent in BCD */
+
+ if (DFISSPECIAL(dfl) || DFISSPECIAL(dfr)) { /* either is special? */
+ /* NaNs are handled as usual */
+ if (DFISNAN(dfl) || DFISNAN(dfr)) return decNaNs(result, dfl, dfr, set);
+ /* infinity times zero is bad */
+ if (DFISINF(dfl) && DFISZERO(dfr)) return decInvalid(result, set);
+ if (DFISINF(dfr) && DFISZERO(dfl)) return decInvalid(result, set);
+ /* both infinite; return canonical infinity with computed sign */
+ DFWORD(result, 0)=DFWORD(dfl, 0)^DFWORD(dfr, 0); /* compute sign */
+ return decInfinity(result, result);
+ }
+
+ /* Here when both operands are finite */
+ decFiniteMultiply(&num, bcdacc, dfl, dfr);
+ return decFinalize(result, &num, set); /* round, check, and lay out */
+ } /* decFloatMultiply */
+
+/* ------------------------------------------------------------------ */
+/* decFloatNextMinus -- next towards -Infinity */
+/* */
+/* result gets the next lesser decFloat */
+/* dfl is the decFloat to start with */
+/* set is the context */
+/* returns result */
+/* */
+/* This is 754r nextdown; Invalid is the only status possible (from */
+/* an sNaN). */
+/* ------------------------------------------------------------------ */
+decFloat * decFloatNextMinus(decFloat *result, const decFloat *dfl,
+ decContext *set) {
+ decFloat delta; /* tiny increment */
+ uInt savestat; /* saves status */
+ enum rounding saveround; /* .. and mode */
+
+ /* +Infinity is the special case */
+ if (DFISINF(dfl) && !DFISSIGNED(dfl)) {
+ DFSETNMAX(result);
+ return result; /* [no status to set] */
+ }
+ /* other cases are effected by sutracting a tiny delta -- this */
+ /* should be done in a wider format as the delta is unrepresentable */
+ /* here (but can be done with normal add if the sign of zero is */
+ /* treated carefully, because no Inexactitude is interesting); */
+ /* rounding to -Infinity then pushes the result to next below */
+ decFloatZero(&delta); /* set up tiny delta */
+ DFWORD(&delta, DECWORDS-1)=1; /* coefficient=1 */
+ DFWORD(&delta, 0)=DECFLOAT_Sign; /* Sign=1 + biased exponent=0 */
+ /* set up for the directional round */
+ saveround=set->round; /* save mode */
+ set->round=DEC_ROUND_FLOOR; /* .. round towards -Infinity */
+ savestat=set->status; /* save status */
+ decFloatAdd(result, dfl, &delta, set);
+ /* Add rules mess up the sign when going from +Ntiny to 0 */
+ if (DFISZERO(result)) DFWORD(result, 0)^=DECFLOAT_Sign; /* correct */
+ set->status&=DEC_Invalid_operation; /* preserve only sNaN status */
+ set->status|=savestat; /* restore pending flags */
+ set->round=saveround; /* .. and mode */
+ return result;
+ } /* decFloatNextMinus */
+
+/* ------------------------------------------------------------------ */
+/* decFloatNextPlus -- next towards +Infinity */
+/* */
+/* result gets the next larger decFloat */
+/* dfl is the decFloat to start with */
+/* set is the context */
+/* returns result */
+/* */
+/* This is 754r nextup; Invalid is the only status possible (from */
+/* an sNaN). */
+/* ------------------------------------------------------------------ */
+decFloat * decFloatNextPlus(decFloat *result, const decFloat *dfl,
+ decContext *set) {
+ uInt savestat; /* saves status */
+ enum rounding saveround; /* .. and mode */
+ decFloat delta; /* tiny increment */
+
+ /* -Infinity is the special case */
+ if (DFISINF(dfl) && DFISSIGNED(dfl)) {
+ DFSETNMAX(result);
+ DFWORD(result, 0)|=DECFLOAT_Sign; /* make negative */
+ return result; /* [no status to set] */
+ }
+ /* other cases are effected by sutracting a tiny delta -- this */
+ /* should be done in a wider format as the delta is unrepresentable */
+ /* here (but can be done with normal add if the sign of zero is */
+ /* treated carefully, because no Inexactitude is interesting); */
+ /* rounding to +Infinity then pushes the result to next above */
+ decFloatZero(&delta); /* set up tiny delta */
+ DFWORD(&delta, DECWORDS-1)=1; /* coefficient=1 */
+ DFWORD(&delta, 0)=0; /* Sign=0 + biased exponent=0 */
+ /* set up for the directional round */
+ saveround=set->round; /* save mode */
+ set->round=DEC_ROUND_CEILING; /* .. round towards +Infinity */
+ savestat=set->status; /* save status */
+ decFloatAdd(result, dfl, &delta, set);
+ /* Add rules mess up the sign when going from -Ntiny to -0 */
+ if (DFISZERO(result)) DFWORD(result, 0)^=DECFLOAT_Sign; /* correct */
+ set->status&=DEC_Invalid_operation; /* preserve only sNaN status */
+ set->status|=savestat; /* restore pending flags */
+ set->round=saveround; /* .. and mode */
+ return result;
+ } /* decFloatNextPlus */
+
+/* ------------------------------------------------------------------ */
+/* decFloatNextToward -- next towards a decFloat */
+/* */
+/* result gets the next decFloat */
+/* dfl is the decFloat to start with */
+/* dfr is the decFloat to move toward */
+/* set is the context */
+/* returns result */
+/* */
+/* This is 754r nextafter; status may be set unless the result is a */
+/* normal number. */
+/* ------------------------------------------------------------------ */
+decFloat * decFloatNextToward(decFloat *result,
+ const decFloat *dfl, const decFloat *dfr,
+ decContext *set) {
+ decFloat delta; /* tiny increment or decrement */
+ decFloat pointone; /* 1e-1 */
+ uInt savestat; /* saves status */
+ enum rounding saveround; /* .. and mode */
+ uInt deltatop; /* top word for delta */
+ Int comp; /* work */
+
+ if (DFISNAN(dfl) || DFISNAN(dfr)) return decNaNs(result, dfl, dfr, set);
+ /* Both are numeric, so Invalid no longer a possibility */
+ comp=decNumCompare(dfl, dfr, 0);
+ if (comp==0) return decFloatCopySign(result, dfl, dfr); /* equal */
+ /* unequal; do NextPlus or NextMinus but with different status rules */
+
+ if (comp<0) { /* lhs<rhs, do NextPlus, see above for commentary */
+ if (DFISINF(dfl) && DFISSIGNED(dfl)) { /* -Infinity special case */
+ DFSETNMAX(result);
+ DFWORD(result, 0)|=DECFLOAT_Sign;
+ return result;
+ }
+ saveround=set->round; /* save mode */
+ set->round=DEC_ROUND_CEILING; /* .. round towards +Infinity */
+ deltatop=0; /* positive delta */
+ }
+ else { /* lhs>rhs, do NextMinus, see above for commentary */
+ if (DFISINF(dfl) && !DFISSIGNED(dfl)) { /* +Infinity special case */
+ DFSETNMAX(result);
+ return result;
+ }
+ saveround=set->round; /* save mode */
+ set->round=DEC_ROUND_FLOOR; /* .. round towards -Infinity */
+ deltatop=DECFLOAT_Sign; /* negative delta */
+ }
+ savestat=set->status; /* save status */
+ /* Here, Inexact is needed where appropriate (and hence Underflow, */
+ /* etc.). Therefore the tiny delta which is otherwise */
+ /* unrepresentable (see NextPlus and NextMinus) is constructed */
+ /* using the multiplication of FMA. */
+ decFloatZero(&delta); /* set up tiny delta */
+ DFWORD(&delta, DECWORDS-1)=1; /* coefficient=1 */
+ DFWORD(&delta, 0)=deltatop; /* Sign + biased exponent=0 */
+ decFloatFromString(&pointone, "1E-1", set); /* set up multiplier */
+ decFloatFMA(result, &delta, &pointone, dfl, set);
+ /* [Delta is truly tiny, so no need to correct sign of zero] */
+ /* use new status unless the result is normal */
+ if (decFloatIsNormal(result)) set->status=savestat; /* else goes forward */
+ set->round=saveround; /* restore mode */
+ return result;
+ } /* decFloatNextToward */
+
+/* ------------------------------------------------------------------ */
+/* decFloatOr -- logical digitwise OR of two decFloats */
+/* */
+/* result gets the result of ORing dfl and dfr */
+/* dfl is the first decFloat (lhs) */
+/* dfr is the second decFloat (rhs) */
+/* set is the context */
+/* returns result, which will be canonical with sign=0 */
+/* */
+/* The operands must be positive, finite with exponent q=0, and */
+/* comprise just zeros and ones; if not, Invalid operation results. */
+/* ------------------------------------------------------------------ */
+decFloat * decFloatOr(decFloat *result,
+ const decFloat *dfl, const decFloat *dfr,
+ decContext *set) {
+ if (!DFISUINT01(dfl) || !DFISUINT01(dfr)
+ || !DFISCC01(dfl) || !DFISCC01(dfr)) return decInvalid(result, set);
+ /* the operands are positive finite integers (q=0) with just 0s and 1s */
+ #if DOUBLE
+ DFWORD(result, 0)=ZEROWORD
+ |((DFWORD(dfl, 0) | DFWORD(dfr, 0))&0x04009124);
+ DFWORD(result, 1)=(DFWORD(dfl, 1) | DFWORD(dfr, 1))&0x49124491;
+ #elif QUAD
+ DFWORD(result, 0)=ZEROWORD
+ |((DFWORD(dfl, 0) | DFWORD(dfr, 0))&0x04000912);
+ DFWORD(result, 1)=(DFWORD(dfl, 1) | DFWORD(dfr, 1))&0x44912449;
+ DFWORD(result, 2)=(DFWORD(dfl, 2) | DFWORD(dfr, 2))&0x12449124;
+ DFWORD(result, 3)=(DFWORD(dfl, 3) | DFWORD(dfr, 3))&0x49124491;
+ #endif
+ return result;
+ } /* decFloatOr */
+
+/* ------------------------------------------------------------------ */
+/* decFloatPlus -- add value to 0, heeding NaNs, etc. */
+/* */
+/* result gets the canonicalized 0+df */
+/* df is the decFloat to plus */
+/* set is the context */
+/* returns result */
+/* */
+/* This has the same effect as 0+df where the exponent of the zero is */
+/* the same as that of df (if df is finite). */
+/* The effect is also the same as decFloatCopy except that NaNs */
+/* are handled normally (the sign of a NaN is not affected, and an */
+/* sNaN will signal), the result is canonical, and zero gets sign 0. */
+/* ------------------------------------------------------------------ */
+decFloat * decFloatPlus(decFloat *result, const decFloat *df,
+ decContext *set) {
+ if (DFISNAN(df)) return decNaNs(result, df, NULL, set);
+ decCanonical(result, df); /* copy and check */
+ if (DFISZERO(df)) DFBYTE(result, 0)&=~0x80; /* turn off sign bit */
+ return result;
+ } /* decFloatPlus */
+
+/* ------------------------------------------------------------------ */
+/* decFloatQuantize -- quantize a decFloat */
+/* */
+/* result gets the result of quantizing dfl to match dfr */
+/* dfl is the first decFloat (lhs) */
+/* dfr is the second decFloat (rhs), which sets the exponent */
+/* set is the context */
+/* returns result */
+/* */
+/* Unless there is an error or the result is infinite, the exponent */
+/* of result is guaranteed to be the same as that of dfr. */
+/* ------------------------------------------------------------------ */
+decFloat * decFloatQuantize(decFloat *result,
+ const decFloat *dfl, const decFloat *dfr,
+ decContext *set) {
+ Int explb, exprb; /* left and right biased exponents */
+ uByte *ulsd; /* local LSD pointer */
+ uInt *ui; /* work */
+ uByte *ub; /* .. */
+ Int drop; /* .. */
+ uInt dpd; /* .. */
+ uInt encode; /* encoding accumulator */
+ uInt sourhil, sourhir; /* top words from source decFloats */
+ /* the following buffer holds the coefficient for manipulation */
+ uByte buf[4+DECPMAX*3]; /* + space for zeros to left or right */
+ #if DECTRACE
+ bcdnum num; /* for trace displays */
+ #endif
+
+ /* Start decoding the arguments */
+ sourhil=DFWORD(dfl, 0); /* LHS top word */
+ explb=DECCOMBEXP[sourhil>>26]; /* get exponent high bits (in place) */
+ sourhir=DFWORD(dfr, 0); /* RHS top word */
+ exprb=DECCOMBEXP[sourhir>>26];
+
+ if (EXPISSPECIAL(explb | exprb)) { /* either is special? */
+ /* NaNs are handled as usual */
+ if (DFISNAN(dfl) || DFISNAN(dfr)) return decNaNs(result, dfl, dfr, set);
+ /* one infinity but not both is bad */
+ if (DFISINF(dfl)!=DFISINF(dfr)) return decInvalid(result, set);
+ /* both infinite; return canonical infinity with sign of LHS */
+ return decInfinity(result, dfl);
+ }
+
+ /* Here when both arguments are finite */
+ /* complete extraction of the exponents [no need to unbias] */
+ explb+=GETECON(dfl); /* + continuation */
+ exprb+=GETECON(dfr); /* .. */
+
+ /* calculate the number of digits to drop from the coefficient */
+ drop=exprb-explb; /* 0 if nothing to do */
+ if (drop==0) return decCanonical(result, dfl); /* return canonical */
+
+ /* the coefficient is needed; lay it out into buf, offset so zeros */
+ /* can be added before or after as needed -- an extra heading is */
+ /* added so can safely pad Quad DECPMAX-1 zeros to the left by */
+ /* fours */
+ #define BUFOFF (buf+4+DECPMAX)
+ GETCOEFF(dfl, BUFOFF); /* decode from decFloat */
+ /* [now the msd is at BUFOFF and the lsd is at BUFOFF+DECPMAX-1] */
+
+ #if DECTRACE
+ num.msd=BUFOFF;
+ num.lsd=BUFOFF+DECPMAX-1;
+ num.exponent=explb-DECBIAS;
+ num.sign=sourhil & DECFLOAT_Sign;
+ decShowNum(&num, "dfl");
+ #endif
+
+ if (drop>0) { /* [most common case] */
+ /* (this code is very similar to that in decFloatFinalize, but */
+ /* has many differences so is duplicated here -- so any changes */
+ /* may need to be made there, too) */
+ uByte *roundat; /* -> re-round digit */
+ uByte reround; /* reround value */
+ /* printf("Rounding; drop=%ld\n", (LI)drop); */
+
+ /* there is at least one zero needed to the left, in all but one */
+ /* exceptional (all-nines) case, so place four zeros now; this is */
+ /* needed almost always and makes rounding all-nines by fours safe */
+ UINTAT(BUFOFF-4)=0;
+
+ /* Three cases here: */
+ /* 1. new LSD is in coefficient (almost always) */
+ /* 2. new LSD is digit to left of coefficient (so MSD is */
+ /* round-for-reround digit) */
+ /* 3. new LSD is to left of case 2 (whole coefficient is sticky) */
+ /* Note that leading zeros can safely be treated as useful digits */
+
+ /* [duplicate check-stickies code to save a test] */
+ /* [by-digit check for stickies as runs of zeros are rare] */
+ if (drop<DECPMAX) { /* NB lengths not addresses */
+ roundat=BUFOFF+DECPMAX-drop;
+ reround=*roundat;
+ for (ub=roundat+1; ub<BUFOFF+DECPMAX; ub++) {
+ if (*ub!=0) { /* non-zero to be discarded */
+ reround=DECSTICKYTAB[reround]; /* apply sticky bit */
+ break; /* [remainder don't-care] */
+ }
+ } /* check stickies */
+ ulsd=roundat-1; /* set LSD */
+ }
+ else { /* edge case */
+ if (drop==DECPMAX) {
+ roundat=BUFOFF;
+ reround=*roundat;
+ }
+ else {
+ roundat=BUFOFF-1;
+ reround=0;
+ }
+ for (ub=roundat+1; ub<BUFOFF+DECPMAX; ub++) {
+ if (*ub!=0) { /* non-zero to be discarded */
+ reround=DECSTICKYTAB[reround]; /* apply sticky bit */
+ break; /* [remainder don't-care] */
+ }
+ } /* check stickies */
+ *BUFOFF=0; /* make a coefficient of 0 */
+ ulsd=BUFOFF; /* .. at the MSD place */
+ }
+
+ if (reround!=0) { /* discarding non-zero */
+ uInt bump=0;
+ set->status|=DEC_Inexact;
+
+ /* next decide whether to increment the coefficient */
+ if (set->round==DEC_ROUND_HALF_EVEN) { /* fastpath slowest case */
+ if (reround>5) bump=1; /* >0.5 goes up */
+ else if (reround==5) /* exactly 0.5000 .. */
+ bump=*ulsd & 0x01; /* .. up iff [new] lsd is odd */
+ } /* r-h-e */
+ else switch (set->round) {
+ case DEC_ROUND_DOWN: {
+ /* no change */
+ break;} /* r-d */
+ case DEC_ROUND_HALF_DOWN: {
+ if (reround>5) bump=1;
+ break;} /* r-h-d */
+ case DEC_ROUND_HALF_UP: {
+ if (reround>=5) bump=1;
+ break;} /* r-h-u */
+ case DEC_ROUND_UP: {
+ if (reround>0) bump=1;
+ break;} /* r-u */
+ case DEC_ROUND_CEILING: {
+ /* same as _UP for positive numbers, and as _DOWN for negatives */
+ if (!(sourhil&DECFLOAT_Sign) && reround>0) bump=1;
+ break;} /* r-c */
+ case DEC_ROUND_FLOOR: {
+ /* same as _UP for negative numbers, and as _DOWN for positive */
+ /* [negative reround cannot occur on 0] */
+ if (sourhil&DECFLOAT_Sign && reround>0) bump=1;
+ break;} /* r-f */
+ case DEC_ROUND_05UP: {
+ if (reround>0) { /* anything out there is 'sticky' */
+ /* bump iff lsd=0 or 5; this cannot carry so it could be */
+ /* effected immediately with no bump -- but the code */
+ /* is clearer if this is done the same way as the others */
+ if (*ulsd==0 || *ulsd==5) bump=1;
+ }
+ break;} /* r-r */
+ default: { /* e.g., DEC_ROUND_MAX */
+ set->status|=DEC_Invalid_context;
+ #if DECCHECK
+ printf("Unknown rounding mode: %ld\n", (LI)set->round);
+ #endif
+ break;}
+ } /* switch (not r-h-e) */
+ /* printf("ReRound: %ld bump: %ld\n", (LI)reround, (LI)bump); */
+
+ if (bump!=0) { /* need increment */
+ /* increment the coefficient; this could give 1000... (after */
+ /* the all nines case) */
+ ub=ulsd;
+ for (; UINTAT(ub-3)==0x09090909; ub-=4) UINTAT(ub-3)=0;
+ /* now at most 3 digits left to non-9 (usually just the one) */
+ for (; *ub==9; ub--) *ub=0;
+ *ub+=1;
+ /* [the all-nines case will have carried one digit to the */
+ /* left of the original MSD -- just where it is needed] */
+ } /* bump needed */
+ } /* inexact rounding */
+
+ /* now clear zeros to the left so exactly DECPMAX digits will be */
+ /* available in the coefficent -- the first word to the left was */
+ /* cleared earlier for safe carry; now add any more needed */
+ if (drop>4) {
+ UINTAT(BUFOFF-8)=0; /* must be at least 5 */
+ for (ui=&UINTAT(BUFOFF-12); ui>&UINTAT(ulsd-DECPMAX-3); ui--) *ui=0;
+ }
+ } /* need round (drop>0) */
+
+ else { /* drop<0; padding with -drop digits is needed */
+ /* This is the case where an error can occur if the padded */
+ /* coefficient will not fit; checking for this can be done in the */
+ /* same loop as padding for zeros if the no-hope and zero cases */
+ /* are checked first */
+ if (-drop>DECPMAX-1) { /* cannot fit unless 0 */
+ if (!ISCOEFFZERO(BUFOFF)) return decInvalid(result, set);
+ /* a zero can have any exponent; just drop through and use it */
+ ulsd=BUFOFF+DECPMAX-1;
+ }
+ else { /* padding will fit (but may still be too long) */
+ /* final-word mask depends on endianess */
+ #if DECLITEND
+ static const uInt dmask[]={0, 0x000000ff, 0x0000ffff, 0x00ffffff};
+ #else
+ static const uInt dmask[]={0, 0xff000000, 0xffff0000, 0xffffff00};
+ #endif
+ for (ui=&UINTAT(BUFOFF+DECPMAX);; ui++) {
+ *ui=0;
+ if (UINTAT(&UBYTEAT(ui)-DECPMAX)!=0) { /* could be bad */
+ /* if all four digits should be zero, definitely bad */
+ if (ui<=&UINTAT(BUFOFF+DECPMAX+(-drop)-4))
+ return decInvalid(result, set);
+ /* must be a 1- to 3-digit sequence; check more carefully */
+ if ((UINTAT(&UBYTEAT(ui)-DECPMAX)&dmask[(-drop)%4])!=0)
+ return decInvalid(result, set);
+ break; /* no need for loop end test */
+ }
+ if (ui>=&UINTAT(BUFOFF+DECPMAX+(-drop)-4)) break; /* done */
+ }
+ ulsd=BUFOFF+DECPMAX+(-drop)-1;
+ } /* pad and check leading zeros */
+ } /* drop<0 */
+
+ #if DECTRACE
+ num.msd=ulsd-DECPMAX+1;
+ num.lsd=ulsd;
+ num.exponent=explb-DECBIAS;
+ num.sign=sourhil & DECFLOAT_Sign;
+ decShowNum(&num, "res");
+ #endif
+
+ /*------------------------------------------------------------------*/
+ /* At this point the result is DECPMAX digits, ending at ulsd, so */
+ /* fits the encoding exactly; there is no possibility of error */
+ /*------------------------------------------------------------------*/
+ encode=((exprb>>DECECONL)<<4) + *(ulsd-DECPMAX+1); /* make index */
+ encode=DECCOMBFROM[encode]; /* indexed by (0-2)*16+msd */
+ /* the exponent continuation can be extracted from the original RHS */
+ encode|=sourhir & ECONMASK;
+ encode|=sourhil&DECFLOAT_Sign; /* add the sign from LHS */
+
+ /* finally encode the coefficient */
+ /* private macro to encode a declet; this version can be used */
+ /* because all coefficient digits exist */
+ #define getDPD3q(dpd, n) ub=ulsd-(3*(n))-2; \
+ dpd=BCD2DPD[(*ub*256)+(*(ub+1)*16)+*(ub+2)];
+
+ #if DOUBLE
+ getDPD3q(dpd, 4); encode|=dpd<<8;
+ getDPD3q(dpd, 3); encode|=dpd>>2;
+ DFWORD(result, 0)=encode;
+ encode=dpd<<30;
+ getDPD3q(dpd, 2); encode|=dpd<<20;
+ getDPD3q(dpd, 1); encode|=dpd<<10;
+ getDPD3q(dpd, 0); encode|=dpd;
+ DFWORD(result, 1)=encode;
+
+ #elif QUAD
+ getDPD3q(dpd,10); encode|=dpd<<4;
+ getDPD3q(dpd, 9); encode|=dpd>>6;
+ DFWORD(result, 0)=encode;
+ encode=dpd<<26;
+ getDPD3q(dpd, 8); encode|=dpd<<16;
+ getDPD3q(dpd, 7); encode|=dpd<<6;
+ getDPD3q(dpd, 6); encode|=dpd>>4;
+ DFWORD(result, 1)=encode;
+ encode=dpd<<28;
+ getDPD3q(dpd, 5); encode|=dpd<<18;
+ getDPD3q(dpd, 4); encode|=dpd<<8;
+ getDPD3q(dpd, 3); encode|=dpd>>2;
+ DFWORD(result, 2)=encode;
+ encode=dpd<<30;
+ getDPD3q(dpd, 2); encode|=dpd<<20;
+ getDPD3q(dpd, 1); encode|=dpd<<10;
+ getDPD3q(dpd, 0); encode|=dpd;
+ DFWORD(result, 3)=encode;
+ #endif
+ return result;
+ } /* decFloatQuantize */
+
+/* ------------------------------------------------------------------ */
+/* decFloatReduce -- reduce finite coefficient to minimum length */
+/* */
+/* result gets the reduced decFloat */
+/* df is the source decFloat */
+/* set is the context */
+/* returns result, which will be canonical */
+/* */
+/* This removes all possible trailing zeros from the coefficient; */
+/* some may remain when the number is very close to Nmax. */
+/* Special values are unchanged and no status is set unless df=sNaN. */
+/* Reduced zero has an exponent q=0. */
+/* ------------------------------------------------------------------ */
+decFloat * decFloatReduce(decFloat *result, const decFloat *df,
+ decContext *set) {
+ bcdnum num; /* work */
+ uByte buf[DECPMAX], *ub; /* coefficient and pointer */
+ if (df!=result) *result=*df; /* copy, if needed */
+ if (DFISNAN(df)) return decNaNs(result, df, NULL, set); /* sNaN */
+ /* zeros and infinites propagate too */
+ if (DFISINF(df)) return decInfinity(result, df); /* canonical */
+ if (DFISZERO(df)) {
+ uInt sign=DFWORD(df, 0)&DECFLOAT_Sign;
+ decFloatZero(result);
+ DFWORD(result, 0)|=sign;
+ return result; /* exponent dropped, sign OK */
+ }
+ /* non-zero finite */
+ GETCOEFF(df, buf);
+ ub=buf+DECPMAX-1; /* -> lsd */
+ if (*ub) return result; /* no trailing zeros */
+ for (ub--; *ub==0;) ub--; /* terminates because non-zero */
+ /* *ub is the first non-zero from the right */
+ num.sign=DFWORD(df, 0)&DECFLOAT_Sign; /* set up number... */
+ num.exponent=GETEXPUN(df)+(Int)(buf+DECPMAX-1-ub); /* adjusted exponent */
+ num.msd=buf;
+ num.lsd=ub;
+ return decFinalize(result, &num, set);
+ } /* decFloatReduce */
+
+/* ------------------------------------------------------------------ */
+/* decFloatRemainder -- integer divide and return remainder */
+/* */
+/* result gets the remainder of dividing dfl by dfr: */
+/* dfl is the first decFloat (lhs) */
+/* dfr is the second decFloat (rhs) */
+/* set is the context */
+/* returns result */
+/* */
+/* ------------------------------------------------------------------ */
+decFloat * decFloatRemainder(decFloat *result,
+ const decFloat *dfl, const decFloat *dfr,
+ decContext *set) {
+ return decDivide(result, dfl, dfr, set, REMAINDER);
+ } /* decFloatRemainder */
+
+/* ------------------------------------------------------------------ */
+/* decFloatRemainderNear -- integer divide to nearest and remainder */
+/* */
+/* result gets the remainder of dividing dfl by dfr: */
+/* dfl is the first decFloat (lhs) */
+/* dfr is the second decFloat (rhs) */
+/* set is the context */
+/* returns result */
+/* */
+/* This is the IEEE remainder, where the nearest integer is used. */
+/* ------------------------------------------------------------------ */
+decFloat * decFloatRemainderNear(decFloat *result,
+ const decFloat *dfl, const decFloat *dfr,
+ decContext *set) {
+ return decDivide(result, dfl, dfr, set, REMNEAR);
+ } /* decFloatRemainderNear */
+
+/* ------------------------------------------------------------------ */
+/* decFloatRotate -- rotate the coefficient of a decFloat left/right */
+/* */
+/* result gets the result of rotating dfl */
+/* dfl is the source decFloat to rotate */
+/* dfr is the count of digits to rotate, an integer (with q=0) */
+/* set is the context */
+/* returns result */
+/* */
+/* The digits of the coefficient of dfl are rotated to the left (if */
+/* dfr is positive) or to the right (if dfr is negative) without */
+/* adjusting the exponent or the sign of dfl. */
+/* */
+/* dfr must be in the range -DECPMAX through +DECPMAX. */
+/* NaNs are propagated as usual. An infinite dfl is unaffected (but */
+/* dfr must be valid). No status is set unless dfr is invalid or an */
+/* operand is an sNaN. The result is canonical. */
+/* ------------------------------------------------------------------ */
+#define PHALF (ROUNDUP(DECPMAX/2, 4)) /* half length, rounded up */
+decFloat * decFloatRotate(decFloat *result,
+ const decFloat *dfl, const decFloat *dfr,
+ decContext *set) {
+ Int rotate; /* dfr as an Int */
+ uByte buf[DECPMAX+PHALF]; /* coefficient + half */
+ uInt digits, savestat; /* work */
+ bcdnum num; /* .. */
+ uByte *ub; /* .. */
+
+ if (DFISNAN(dfl)||DFISNAN(dfr)) return decNaNs(result, dfl, dfr, set);
+ if (!DFISINT(dfr)) return decInvalid(result, set);
+ digits=decFloatDigits(dfr); /* calculate digits */
+ if (digits>2) return decInvalid(result, set); /* definitely out of range */
+ rotate=DPD2BIN[DFWORD(dfr, DECWORDS-1)&0x3ff]; /* is in bottom declet */
+ if (rotate>DECPMAX) return decInvalid(result, set); /* too big */
+ /* [from here on no error or status change is possible] */
+ if (DFISINF(dfl)) return decInfinity(result, dfl); /* canonical */
+ /* handle no-rotate cases */
+ if (rotate==0 || rotate==DECPMAX) return decCanonical(result, dfl);
+ /* a real rotate is needed: 0 < rotate < DECPMAX */
+ /* reduce the rotation to no more than half to reduce copying later */
+ /* (for QUAD in fact half + 2 digits) */
+ if (DFISSIGNED(dfr)) rotate=-rotate;
+ if (abs(rotate)>PHALF) {
+ if (rotate<0) rotate=DECPMAX+rotate;
+ else rotate=rotate-DECPMAX;
+ }
+ /* now lay out the coefficient, leaving room to the right or the */
+ /* left depending on the direction of rotation */
+ ub=buf;
+ if (rotate<0) ub+=PHALF; /* rotate right, so space to left */
+ GETCOEFF(dfl, ub);
+ /* copy half the digits to left or right, and set num.msd */
+ if (rotate<0) {
+ memcpy(buf, buf+DECPMAX, PHALF);
+ num.msd=buf+PHALF+rotate;
+ }
+ else {
+ memcpy(buf+DECPMAX, buf, PHALF);
+ num.msd=buf+rotate;
+ }
+ /* fill in rest of num */
+ num.lsd=num.msd+DECPMAX-1;
+ num.sign=DFWORD(dfl, 0)&DECFLOAT_Sign;
+ num.exponent=GETEXPUN(dfl);
+ savestat=set->status; /* record */
+ decFinalize(result, &num, set);
+ set->status=savestat; /* restore */
+ return result;
+ } /* decFloatRotate */
+
+/* ------------------------------------------------------------------ */
+/* decFloatSameQuantum -- test decFloats for same quantum */
+/* */
+/* dfl is the first decFloat (lhs) */
+/* dfr is the second decFloat (rhs) */
+/* returns 1 if the operands have the same quantum, 0 otherwise */
+/* */
+/* No error is possible and no status results. */
+/* ------------------------------------------------------------------ */
+uInt decFloatSameQuantum(const decFloat *dfl, const decFloat *dfr) {
+ if (DFISSPECIAL(dfl) || DFISSPECIAL(dfr)) {
+ if (DFISNAN(dfl) && DFISNAN(dfr)) return 1;
+ if (DFISINF(dfl) && DFISINF(dfr)) return 1;
+ return 0; /* any other special mixture gives false */
+ }
+ if (GETEXP(dfl)==GETEXP(dfr)) return 1; /* biased exponents match */
+ return 0;
+ } /* decFloatSameQuantum */
+
+/* ------------------------------------------------------------------ */
+/* decFloatScaleB -- multiply by a power of 10, as per 754r */
+/* */
+/* result gets the result of the operation */
+/* dfl is the first decFloat (lhs) */
+/* dfr is the second decFloat (rhs), am integer (with q=0) */
+/* set is the context */
+/* returns result */
+/* */
+/* This computes result=dfl x 10**dfr where dfr is an integer in the */
+/* range +/-2*(emax+pmax), typically resulting from LogB. */
+/* Underflow and Overflow (with Inexact) may occur. NaNs propagate */
+/* as usual. */
+/* ------------------------------------------------------------------ */
+#define SCALEBMAX 2*(DECEMAX+DECPMAX) /* D=800, Q=12356 */
+decFloat * decFloatScaleB(decFloat *result,
+ const decFloat *dfl, const decFloat *dfr,
+ decContext *set) {
+ uInt digits; /* work */
+ Int expr; /* dfr as an Int */
+
+ if (DFISNAN(dfl)||DFISNAN(dfr)) return decNaNs(result, dfl, dfr, set);
+ if (!DFISINT(dfr)) return decInvalid(result, set);
+ digits=decFloatDigits(dfr); /* calculate digits */
+
+ #if DOUBLE
+ if (digits>3) return decInvalid(result, set); /* definitely out of range */
+ expr=DPD2BIN[DFWORD(dfr, 1)&0x3ff]; /* must be in bottom declet */
+ #elif QUAD
+ if (digits>5) return decInvalid(result, set); /* definitely out of range */
+ expr=DPD2BIN[DFWORD(dfr, 3)&0x3ff] /* in bottom 2 declets .. */
+ +DPD2BIN[(DFWORD(dfr, 3)>>10)&0x3ff]*1000; /* .. */
+ #endif
+ if (expr>SCALEBMAX) return decInvalid(result, set); /* oops */
+ /* [from now on no error possible] */
+ if (DFISINF(dfl)) return decInfinity(result, dfl); /* canonical */
+ if (DFISSIGNED(dfr)) expr=-expr;
+ /* dfl is finite and expr is valid */
+ *result=*dfl; /* copy to target */
+ return decFloatSetExponent(result, set, GETEXPUN(result)+expr);
+ } /* decFloatScaleB */
+
+/* ------------------------------------------------------------------ */
+/* decFloatShift -- shift the coefficient of a decFloat left or right */
+/* */
+/* result gets the result of shifting dfl */
+/* dfl is the source decFloat to shift */
+/* dfr is the count of digits to shift, an integer (with q=0) */
+/* set is the context */
+/* returns result */
+/* */
+/* The digits of the coefficient of dfl are shifted to the left (if */
+/* dfr is positive) or to the right (if dfr is negative) without */
+/* adjusting the exponent or the sign of dfl. */
+/* */
+/* dfr must be in the range -DECPMAX through +DECPMAX. */
+/* NaNs are propagated as usual. An infinite dfl is unaffected (but */
+/* dfr must be valid). No status is set unless dfr is invalid or an */
+/* operand is an sNaN. The result is canonical. */
+/* ------------------------------------------------------------------ */
+decFloat * decFloatShift(decFloat *result,
+ const decFloat *dfl, const decFloat *dfr,
+ decContext *set) {
+ Int shift; /* dfr as an Int */
+ uByte buf[DECPMAX*2]; /* coefficient + padding */
+ uInt digits, savestat; /* work */
+ bcdnum num; /* .. */
+
+ if (DFISNAN(dfl)||DFISNAN(dfr)) return decNaNs(result, dfl, dfr, set);
+ if (!DFISINT(dfr)) return decInvalid(result, set);
+ digits=decFloatDigits(dfr); /* calculate digits */
+ if (digits>2) return decInvalid(result, set); /* definitely out of range */
+ shift=DPD2BIN[DFWORD(dfr, DECWORDS-1)&0x3ff]; /* is in bottom declet */
+ if (shift>DECPMAX) return decInvalid(result, set); /* too big */
+ /* [from here on no error or status change is possible] */
+
+ if (DFISINF(dfl)) return decInfinity(result, dfl); /* canonical */
+ /* handle no-shift and all-shift (clear to zero) cases */
+ if (shift==0) return decCanonical(result, dfl);
+ if (shift==DECPMAX) { /* zero with sign */
+ uByte sign=(uByte)(DFBYTE(dfl, 0)&0x80); /* save sign bit */
+ decFloatZero(result); /* make +0 */
+ DFBYTE(result, 0)=(uByte)(DFBYTE(result, 0)|sign); /* and set sign */
+ /* [cannot safely use CopySign] */
+ return result;
+ }
+ /* a real shift is needed: 0 < shift < DECPMAX */
+ num.sign=DFWORD(dfl, 0)&DECFLOAT_Sign;
+ num.exponent=GETEXPUN(dfl);
+ num.msd=buf;
+ GETCOEFF(dfl, buf);
+ if (DFISSIGNED(dfr)) { /* shift right */
+ /* edge cases are taken care of, so this is easy */
+ num.lsd=buf+DECPMAX-shift-1;
+ }
+ else { /* shift left -- zero padding needed to right */
+ UINTAT(buf+DECPMAX)=0; /* 8 will handle most cases */
+ UINTAT(buf+DECPMAX+4)=0; /* .. */
+ if (shift>8) memset(buf+DECPMAX+8, 0, 8+QUAD*18); /* all other cases */
+ num.msd+=shift;
+ num.lsd=num.msd+DECPMAX-1;
+ }
+ savestat=set->status; /* record */
+ decFinalize(result, &num, set);
+ set->status=savestat; /* restore */
+ return result;
+ } /* decFloatShift */
+
+/* ------------------------------------------------------------------ */
+/* decFloatSubtract -- subtract a decFloat from another */
+/* */
+/* result gets the result of subtracting dfr from dfl: */
+/* dfl is the first decFloat (lhs) */
+/* dfr is the second decFloat (rhs) */
+/* set is the context */
+/* returns result */
+/* */
+/* ------------------------------------------------------------------ */
+decFloat * decFloatSubtract(decFloat *result,
+ const decFloat *dfl, const decFloat *dfr,
+ decContext *set) {
+ decFloat temp;
+ /* NaNs must propagate without sign change */
+ if (DFISNAN(dfr)) return decFloatAdd(result, dfl, dfr, set);
+ temp=*dfr; /* make a copy */
+ DFBYTE(&temp, 0)^=0x80; /* flip sign */
+ return decFloatAdd(result, dfl, &temp, set); /* and add to the lhs */
+ } /* decFloatSubtract */
+
+/* ------------------------------------------------------------------ */
+/* decFloatToInt -- round to 32-bit binary integer (4 flavours) */
+/* */
+/* df is the decFloat to round */
+/* set is the context */
+/* round is the rounding mode to use */
+/* returns a uInt or an Int, rounded according to the name */
+/* */
+/* Invalid will always be signaled if df is a NaN, is Infinite, or is */
+/* outside the range of the target; Inexact will not be signaled for */
+/* simple rounding unless 'Exact' appears in the name. */
+/* ------------------------------------------------------------------ */
+uInt decFloatToUInt32(const decFloat *df, decContext *set,
+ enum rounding round) {
+ return decToInt32(df, set, round, 0, 1);}
+
+uInt decFloatToUInt32Exact(const decFloat *df, decContext *set,
+ enum rounding round) {
+ return decToInt32(df, set, round, 1, 1);}
+
+Int decFloatToInt32(const decFloat *df, decContext *set,
+ enum rounding round) {
+ return (Int)decToInt32(df, set, round, 0, 0);}
+
+Int decFloatToInt32Exact(const decFloat *df, decContext *set,
+ enum rounding round) {
+ return (Int)decToInt32(df, set, round, 1, 0);}
+
+/* ------------------------------------------------------------------ */
+/* decFloatToIntegral -- round to integral value (two flavours) */
+/* */
+/* result gets the result */
+/* df is the decFloat to round */
+/* set is the context */
+/* round is the rounding mode to use */
+/* returns result */
+/* */
+/* No exceptions, even Inexact, are raised except for sNaN input, or */
+/* if 'Exact' appears in the name. */
+/* ------------------------------------------------------------------ */
+decFloat * decFloatToIntegralValue(decFloat *result, const decFloat *df,
+ decContext *set, enum rounding round) {
+ return decToIntegral(result, df, set, round, 0);}
+
+decFloat * decFloatToIntegralExact(decFloat *result, const decFloat *df,
+ decContext *set) {
+ return decToIntegral(result, df, set, set->round, 1);}
+
+/* ------------------------------------------------------------------ */
+/* decFloatXor -- logical digitwise XOR of two decFloats */
+/* */
+/* result gets the result of XORing dfl and dfr */
+/* dfl is the first decFloat (lhs) */
+/* dfr is the second decFloat (rhs) */
+/* set is the context */
+/* returns result, which will be canonical with sign=0 */
+/* */
+/* The operands must be positive, finite with exponent q=0, and */
+/* comprise just zeros and ones; if not, Invalid operation results. */
+/* ------------------------------------------------------------------ */
+decFloat * decFloatXor(decFloat *result,
+ const decFloat *dfl, const decFloat *dfr,
+ decContext *set) {
+ if (!DFISUINT01(dfl) || !DFISUINT01(dfr)
+ || !DFISCC01(dfl) || !DFISCC01(dfr)) return decInvalid(result, set);
+ /* the operands are positive finite integers (q=0) with just 0s and 1s */
+ #if DOUBLE
+ DFWORD(result, 0)=ZEROWORD
+ |((DFWORD(dfl, 0) ^ DFWORD(dfr, 0))&0x04009124);
+ DFWORD(result, 1)=(DFWORD(dfl, 1) ^ DFWORD(dfr, 1))&0x49124491;
+ #elif QUAD
+ DFWORD(result, 0)=ZEROWORD
+ |((DFWORD(dfl, 0) ^ DFWORD(dfr, 0))&0x04000912);
+ DFWORD(result, 1)=(DFWORD(dfl, 1) ^ DFWORD(dfr, 1))&0x44912449;
+ DFWORD(result, 2)=(DFWORD(dfl, 2) ^ DFWORD(dfr, 2))&0x12449124;
+ DFWORD(result, 3)=(DFWORD(dfl, 3) ^ DFWORD(dfr, 3))&0x49124491;
+ #endif
+ return result;
+ } /* decFloatXor */
+
+/* ------------------------------------------------------------------ */
+/* decInvalid -- set Invalid_operation result */
+/* */
+/* result gets a canonical NaN */
+/* set is the context */
+/* returns result */
+/* */
+/* status has Invalid_operation added */
+/* ------------------------------------------------------------------ */
+static decFloat *decInvalid(decFloat *result, decContext *set) {
+ decFloatZero(result);
+ DFWORD(result, 0)=DECFLOAT_qNaN;
+ set->status|=DEC_Invalid_operation;
+ return result;
+ } /* decInvalid */
+
+/* ------------------------------------------------------------------ */
+/* decInfinity -- set canonical Infinity with sign from a decFloat */
+/* */
+/* result gets a canonical Infinity */
+/* df is source decFloat (only the sign is used) */
+/* returns result */
+/* */
+/* df may be the same as result */
+/* ------------------------------------------------------------------ */
+static decFloat *decInfinity(decFloat *result, const decFloat *df) {
+ uInt sign=DFWORD(df, 0); /* save source signword */
+ decFloatZero(result); /* clear everything */
+ DFWORD(result, 0)=DECFLOAT_Inf | (sign & DECFLOAT_Sign);
+ return result;
+ } /* decInfinity */
+
+/* ------------------------------------------------------------------ */
+/* decNaNs -- handle NaN argument(s) */
+/* */
+/* result gets the result of handling dfl and dfr, one or both of */
+/* which is a NaN */
+/* dfl is the first decFloat (lhs) */
+/* dfr is the second decFloat (rhs) -- may be NULL for a single- */
+/* operand operation */
+/* set is the context */
+/* returns result */
+/* */
+/* Called when one or both operands is a NaN, and propagates the */
+/* appropriate result to res. When an sNaN is found, it is changed */
+/* to a qNaN and Invalid operation is set. */
+/* ------------------------------------------------------------------ */
+static decFloat *decNaNs(decFloat *result,
+ const decFloat *dfl, const decFloat *dfr,
+ decContext *set) {
+ /* handle sNaNs first */
+ if (dfr!=NULL && DFISSNAN(dfr) && !DFISSNAN(dfl)) dfl=dfr; /* use RHS */
+ if (DFISSNAN(dfl)) {
+ decCanonical(result, dfl); /* propagate canonical sNaN */
+ DFWORD(result, 0)&=~(DECFLOAT_qNaN ^ DECFLOAT_sNaN); /* quiet */
+ set->status|=DEC_Invalid_operation;
+ return result;
+ }
+ /* one or both is a quiet NaN */
+ if (!DFISNAN(dfl)) dfl=dfr; /* RHS must be NaN, use it */
+ return decCanonical(result, dfl); /* propagate canonical qNaN */
+ } /* decNaNs */
+
+/* ------------------------------------------------------------------ */
+/* decNumCompare -- numeric comparison of two decFloats */
+/* */
+/* dfl is the left-hand decFloat, which is not a NaN */
+/* dfr is the right-hand decFloat, which is not a NaN */
+/* tot is 1 for total order compare, 0 for simple numeric */
+/* returns -1, 0, or +1 for dfl<dfr, dfl=dfr, dfl>dfr */
+/* */
+/* No error is possible; status and mode are unchanged. */
+/* ------------------------------------------------------------------ */
+static Int decNumCompare(const decFloat *dfl, const decFloat *dfr, Flag tot) {
+ Int sigl, sigr; /* LHS and RHS non-0 signums */
+ Int shift; /* shift needed to align operands */
+ uByte *ub, *uc; /* work */
+ /* buffers +2 if Quad (36 digits), need double plus 4 for safe padding */
+ uByte bufl[DECPMAX*2+QUAD*2+4]; /* for LHS coefficient + padding */
+ uByte bufr[DECPMAX*2+QUAD*2+4]; /* for RHS coefficient + padding */
+
+ sigl=1;
+ if (DFISSIGNED(dfl)) {
+ if (!DFISSIGNED(dfr)) { /* -LHS +RHS */
+ if (DFISZERO(dfl) && DFISZERO(dfr) && !tot) return 0;
+ return -1; /* RHS wins */
+ }
+ sigl=-1;
+ }
+ if (DFISSIGNED(dfr)) {
+ if (!DFISSIGNED(dfl)) { /* +LHS -RHS */
+ if (DFISZERO(dfl) && DFISZERO(dfr) && !tot) return 0;
+ return +1; /* LHS wins */
+ }
+ }
+
+ /* signs are the same; operand(s) could be zero */
+ sigr=-sigl; /* sign to return if abs(RHS) wins */
+
+ if (DFISINF(dfl)) {
+ if (DFISINF(dfr)) return 0; /* both infinite & same sign */
+ return sigl; /* inf > n */
+ }
+ if (DFISINF(dfr)) return sigr; /* n < inf [dfl is finite] */
+
+ /* here, both are same sign and finite; calculate their offset */
+ shift=GETEXP(dfl)-GETEXP(dfr); /* [0 means aligned] */
+ /* [bias can be ignored -- the absolute exponent is not relevant] */
+
+ if (DFISZERO(dfl)) {
+ if (!DFISZERO(dfr)) return sigr; /* LHS=0, RHS!=0 */
+ /* both are zero, return 0 if both same exponent or numeric compare */
+ if (shift==0 || !tot) return 0;
+ if (shift>0) return sigl;
+ return sigr; /* [shift<0] */
+ }
+ else { /* LHS!=0 */
+ if (DFISZERO(dfr)) return sigl; /* LHS!=0, RHS=0 */
+ }
+ /* both are known to be non-zero at this point */
+
+ /* if the exponents are so different that the coefficients do not */
+ /* overlap (by even one digit) then a full comparison is not needed */
+ if (abs(shift)>=DECPMAX) { /* no overlap */
+ /* coefficients are known to be non-zero */
+ if (shift>0) return sigl;
+ return sigr; /* [shift<0] */
+ }
+
+ /* decode the coefficients */
+ /* (shift both right two if Quad to make a multiple of four) */
+ #if QUAD
+ UINTAT(bufl)=0;
+ UINTAT(bufr)=0;
+ #endif
+ GETCOEFF(dfl, bufl+QUAD*2); /* decode from decFloat */
+ GETCOEFF(dfr, bufr+QUAD*2); /* .. */
+ if (shift==0) { /* aligned; common and easy */
+ /* all multiples of four, here */
+ for (ub=bufl, uc=bufr; ub<bufl+DECPMAX+QUAD*2; ub+=4, uc+=4) {
+ if (UINTAT(ub)==UINTAT(uc)) continue; /* so far so same */
+ /* about to find a winner; go by bytes in case little-endian */
+ for (;; ub++, uc++) {
+ if (*ub>*uc) return sigl; /* difference found */
+ if (*ub<*uc) return sigr; /* .. */
+ }
+ }
+ } /* aligned */
+ else if (shift>0) { /* lhs to left */
+ ub=bufl; /* RHS pointer */
+ /* pad bufl so right-aligned; most shifts will fit in 8 */
+ UINTAT(bufl+DECPMAX+QUAD*2)=0; /* add eight zeros */
+ UINTAT(bufl+DECPMAX+QUAD*2+4)=0; /* .. */
+ if (shift>8) {
+ /* more than eight; fill the rest, and also worth doing the */
+ /* lead-in by fours */
+ uByte *up; /* work */
+ uByte *upend=bufl+DECPMAX+QUAD*2+shift;
+ for (up=bufl+DECPMAX+QUAD*2+8; up<upend; up+=4) UINTAT(up)=0;
+ /* [pads up to 36 in all for Quad] */
+ for (;; ub+=4) {
+ if (UINTAT(ub)!=0) return sigl;
+ if (ub+4>bufl+shift-4) break;
+ }
+ }
+ /* check remaining leading digits */
+ for (; ub<bufl+shift; ub++) if (*ub!=0) return sigl;
+ /* now start the overlapped part; bufl has been padded, so the */
+ /* comparison can go for the full length of bufr, which is a */
+ /* multiple of 4 bytes */
+ for (uc=bufr; ; uc+=4, ub+=4) {
+ if (UINTAT(uc)!=UINTAT(ub)) { /* mismatch found */
+ for (;; uc++, ub++) { /* check from left [little-endian?] */
+ if (*ub>*uc) return sigl; /* difference found */
+ if (*ub<*uc) return sigr; /* .. */
+ }
+ } /* mismatch */
+ if (uc==bufr+QUAD*2+DECPMAX-4) break; /* all checked */
+ }
+ } /* shift>0 */
+
+ else { /* shift<0) .. RHS is to left of LHS; mirror shift>0 */
+ uc=bufr; /* RHS pointer */
+ /* pad bufr so right-aligned; most shifts will fit in 8 */
+ UINTAT(bufr+DECPMAX+QUAD*2)=0; /* add eight zeros */
+ UINTAT(bufr+DECPMAX+QUAD*2+4)=0; /* .. */
+ if (shift<-8) {
+ /* more than eight; fill the rest, and also worth doing the */
+ /* lead-in by fours */
+ uByte *up; /* work */
+ uByte *upend=bufr+DECPMAX+QUAD*2-shift;
+ for (up=bufr+DECPMAX+QUAD*2+8; up<upend; up+=4) UINTAT(up)=0;
+ /* [pads up to 36 in all for Quad] */
+ for (;; uc+=4) {
+ if (UINTAT(uc)!=0) return sigr;
+ if (uc+4>bufr-shift-4) break;
+ }
+ }
+ /* check remaining leading digits */
+ for (; uc<bufr-shift; uc++) if (*uc!=0) return sigr;
+ /* now start the overlapped part; bufr has been padded, so the */
+ /* comparison can go for the full length of bufl, which is a */
+ /* multiple of 4 bytes */
+ for (ub=bufl; ; ub+=4, uc+=4) {
+ if (UINTAT(ub)!=UINTAT(uc)) { /* mismatch found */
+ for (;; ub++, uc++) { /* check from left [little-endian?] */
+ if (*ub>*uc) return sigl; /* difference found */
+ if (*ub<*uc) return sigr; /* .. */
+ }
+ } /* mismatch */
+ if (ub==bufl+QUAD*2+DECPMAX-4) break; /* all checked */
+ }
+ } /* shift<0 */
+
+ /* Here when compare equal */
+ if (!tot) return 0; /* numerically equal */
+ /* total ordering .. exponent matters */
+ if (shift>0) return sigl; /* total order by exponent */
+ if (shift<0) return sigr; /* .. */
+ return 0;
+ } /* decNumCompare */
+
+/* ------------------------------------------------------------------ */
+/* decToInt32 -- local routine to effect ToInteger conversions */
+/* */
+/* df is the decFloat to convert */
+/* set is the context */
+/* rmode is the rounding mode to use */
+/* exact is 1 if Inexact should be signalled */
+/* unsign is 1 if the result a uInt, 0 if an Int (cast to uInt) */
+/* returns 32-bit result as a uInt */
+/* */
+/* Invalid is set is df is a NaN, is infinite, or is out-of-range; in */
+/* these cases 0 is returned. */
+/* ------------------------------------------------------------------ */
+static uInt decToInt32(const decFloat *df, decContext *set,
+ enum rounding rmode, Flag exact, Flag unsign) {
+ Int exp; /* exponent */
+ uInt sourhi, sourpen, sourlo; /* top word from source decFloat .. */
+ uInt hi, lo; /* .. penultimate, least, etc. */
+ decFloat zero, result; /* work */
+ Int i; /* .. */
+
+ /* Start decoding the argument */
+ sourhi=DFWORD(df, 0); /* top word */
+ exp=DECCOMBEXP[sourhi>>26]; /* get exponent high bits (in place) */
+ if (EXPISSPECIAL(exp)) { /* is special? */
+ set->status|=DEC_Invalid_operation; /* signal */
+ return 0;
+ }
+
+ /* Here when the argument is finite */
+ if (GETEXPUN(df)==0) result=*df; /* already a true integer */
+ else { /* need to round to integer */
+ enum rounding saveround; /* saver */
+ uInt savestatus; /* .. */
+ saveround=set->round; /* save rounding mode .. */
+ savestatus=set->status; /* .. and status */
+ set->round=rmode; /* set mode */
+ decFloatZero(&zero); /* make 0E+0 */
+ set->status=0; /* clear */
+ decFloatQuantize(&result, df, &zero, set); /* [this may fail] */
+ set->round=saveround; /* restore rounding mode .. */
+ if (exact) set->status|=savestatus; /* include Inexact */
+ else set->status=savestatus; /* .. or just original status */
+ }
+
+ /* only the last four declets of the coefficient can contain */
+ /* non-zero; check for others (and also NaN or Infinity from the */
+ /* Quantize) first (see DFISZERO for explanation): */
+ /* decFloatShow(&result, "sofar"); */
+ #if DOUBLE
+ if ((DFWORD(&result, 0)&0x1c03ff00)!=0
+ || (DFWORD(&result, 0)&0x60000000)==0x60000000) {
+ #elif QUAD
+ if ((DFWORD(&result, 2)&0xffffff00)!=0
+ || DFWORD(&result, 1)!=0
+ || (DFWORD(&result, 0)&0x1c003fff)!=0
+ || (DFWORD(&result, 0)&0x60000000)==0x60000000) {
+ #endif
+ set->status|=DEC_Invalid_operation; /* Invalid or out of range */
+ return 0;
+ }
+ /* get last twelve digits of the coefficent into hi & ho, base */
+ /* 10**9 (see GETCOEFFBILL): */
+ sourlo=DFWORD(&result, DECWORDS-1);
+ lo=DPD2BIN0[sourlo&0x3ff]
+ +DPD2BINK[(sourlo>>10)&0x3ff]
+ +DPD2BINM[(sourlo>>20)&0x3ff];
+ sourpen=DFWORD(&result, DECWORDS-2);
+ hi=DPD2BIN0[((sourpen<<2) | (sourlo>>30))&0x3ff];
+
+ /* according to request, check range carefully */
+ if (unsign) {
+ if (hi>4 || (hi==4 && lo>294967295) || (hi+lo!=0 && DFISSIGNED(&result))) {
+ set->status|=DEC_Invalid_operation; /* out of range */
+ return 0;
+ }
+ return hi*BILLION+lo;
+ }
+ /* signed */
+ if (hi>2 || (hi==2 && lo>147483647)) {
+ /* handle the usual edge case */
+ if (lo==147483648 && hi==2 && DFISSIGNED(&result)) return 0x80000000;
+ set->status|=DEC_Invalid_operation; /* truly out of range */
+ return 0;
+ }
+ i=hi*BILLION+lo;
+ if (DFISSIGNED(&result)) i=-i;
+ return (uInt)i;
+ } /* decToInt32 */
+
+/* ------------------------------------------------------------------ */
+/* decToIntegral -- local routine to effect ToIntegral value */
+/* */
+/* result gets the result */
+/* df is the decFloat to round */
+/* set is the context */
+/* rmode is the rounding mode to use */
+/* exact is 1 if Inexact should be signalled */
+/* returns result */
+/* ------------------------------------------------------------------ */
+static decFloat * decToIntegral(decFloat *result, const decFloat *df,
+ decContext *set, enum rounding rmode,
+ Flag exact) {
+ Int exp; /* exponent */
+ uInt sourhi; /* top word from source decFloat */
+ enum rounding saveround; /* saver */
+ uInt savestatus; /* .. */
+ decFloat zero; /* work */
+
+ /* Start decoding the argument */
+ sourhi=DFWORD(df, 0); /* top word */
+ exp=DECCOMBEXP[sourhi>>26]; /* get exponent high bits (in place) */
+
+ if (EXPISSPECIAL(exp)) { /* is special? */
+ /* NaNs are handled as usual */
+ if (DFISNAN(df)) return decNaNs(result, df, NULL, set);
+ /* must be infinite; return canonical infinity with sign of df */
+ return decInfinity(result, df);
+ }
+
+ /* Here when the argument is finite */
+ /* complete extraction of the exponent */
+ exp+=GETECON(df)-DECBIAS; /* .. + continuation and unbias */
+
+ if (exp>=0) return decCanonical(result, df); /* already integral */
+
+ saveround=set->round; /* save rounding mode .. */
+ savestatus=set->status; /* .. and status */
+ set->round=rmode; /* set mode */
+ decFloatZero(&zero); /* make 0E+0 */
+ decFloatQuantize(result, df, &zero, set); /* 'integrate'; cannot fail */
+ set->round=saveround; /* restore rounding mode .. */
+ if (!exact) set->status=savestatus; /* .. and status, unless exact */
+ return result;
+ } /* decToIntegral */
diff --git a/libdecnumber/decCommon.c b/libdecnumber/decCommon.c
new file mode 100644
index 00000000000..84e1b2ad530
--- /dev/null
+++ b/libdecnumber/decCommon.c
@@ -0,0 +1,1771 @@
+/* Common code for fixed-size types in the decNumber C Library.
+ Copyright (C) 2007 Free Software Foundation, Inc.
+ Contributed by IBM Corporation. Author Mike Cowlishaw.
+
+ This file is part of GCC.
+
+ GCC is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License as published by the Free
+ Software Foundation; either version 2, or (at your option) any later
+ version.
+
+ In addition to the permissions in the GNU General Public License,
+ the Free Software Foundation gives you unlimited permission to link
+ the compiled version of this file into combinations with other
+ programs, and to distribute those combinations without any
+ restriction coming from the use of this file. (The General Public
+ License restrictions do apply in other respects; for example, they
+ cover modification of the file, and distribution when not linked
+ into a combine executable.)
+
+ GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with GCC; see the file COPYING. If not, write to the Free
+ Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
+ 02110-1301, USA. */
+
+/* ------------------------------------------------------------------ */
+/* decCommon.c -- common code for all three fixed-size types */
+/* ------------------------------------------------------------------ */
+/* This module comprises code that is shared between all the formats */
+/* (decSingle, decDouble, and decQuad); it includes set and extract */
+/* of format components, widening, narrowing, and string conversions. */
+/* */
+/* Unlike decNumber, parameterization takes place at compile time */
+/* rather than at runtime. The parameters are set in the decDouble.c */
+/* (etc.) files, which then include this one to produce the compiled */
+/* code. The functions here, therefore, are code shared between */
+/* multiple formats. */
+/* ------------------------------------------------------------------ */
+/* Names here refer to decFloat rather than to decDouble, etc., and */
+/* the functions are in strict alphabetical order. */
+/* Constants, tables, and debug function(s) are included only for QUAD */
+/* (which will always be compiled if DOUBLE or SINGLE are used). */
+/* */
+/* Whenever a decContext is used, only the status may be set (using */
+/* OR) or the rounding mode read; all other fields are ignored and */
+/* untouched. */
+
+/* names for simpler testing and default context */
+#if DECPMAX==7
+ #define SINGLE 1
+ #define DOUBLE 0
+ #define QUAD 0
+ #define DEFCONTEXT DEC_INIT_DECIMAL32
+#elif DECPMAX==16
+ #define SINGLE 0
+ #define DOUBLE 1
+ #define QUAD 0
+ #define DEFCONTEXT DEC_INIT_DECIMAL64
+#elif DECPMAX==34
+ #define SINGLE 0
+ #define DOUBLE 0
+ #define QUAD 1
+ #define DEFCONTEXT DEC_INIT_DECIMAL128
+#else
+ #error Unexpected DECPMAX value
+#endif
+
+/* Assertions */
+
+#if DECPMAX!=7 && DECPMAX!=16 && DECPMAX!=34
+ #error Unexpected Pmax (DECPMAX) value for this module
+#endif
+
+/* Assert facts about digit characters, etc. */
+#if ('9'&0x0f)!=9
+ #error This module assumes characters are of the form 0b....nnnn
+ /* where .... are don't care 4 bits and nnnn is 0000 through 1001 */
+#endif
+#if ('9'&0xf0)==('.'&0xf0)
+ #error This module assumes '.' has a different mask than a digit
+#endif
+
+/* Assert ToString lay-out conditions */
+#if DECSTRING<DECPMAX+9
+ #error ToString needs at least 8 characters for lead-in and dot
+#endif
+#if DECPMAX+DECEMAXD+5 > DECSTRING
+ #error Exponent form can be too long for ToString to lay out safely
+#endif
+#if DECEMAXD > 4
+ #error Exponent form is too long for ToString to lay out
+ /* Note: code for up to 9 digits exists in archives [decOct] */
+#endif
+
+/* Private functions used here and possibly in decBasic.c, etc. */
+static decFloat * decFinalize(decFloat *, bcdnum *, decContext *);
+static Flag decBiStr(const char *, const char *, const char *);
+
+/* Macros and private tables; those which are not format-dependent */
+/* are only included if decQuad is being built. */
+
+/* ------------------------------------------------------------------ */
+/* Combination field lookup tables (uInts to save measurable work) */
+/* */
+/* DECCOMBEXP - 2 most-significant-bits of exponent (00, 01, or */
+/* 10), shifted left for format, or DECFLOAT_Inf/NaN */
+/* DECCOMBWEXP - The same, for the next-wider format (unless QUAD) */
+/* DECCOMBMSD - 4-bit most-significant-digit */
+/* [0 if the index is a special (Infinity or NaN)] */
+/* DECCOMBFROM - 5-bit combination field from EXP top bits and MSD */
+/* (placed in uInt so no shift is needed) */
+/* */
+/* DECCOMBEXP, DECCOMBWEXP, and DECCOMBMSD are indexed by the sign */
+/* and 5-bit combination field (0-63, the second half of the table */
+/* identical to the first half) */
+/* DECCOMBFROM is indexed by expTopTwoBits*16 + msd */
+/* */
+/* DECCOMBMSD and DECCOMBFROM are not format-dependent and so are */
+/* only included once, when QUAD is being built */
+/* ------------------------------------------------------------------ */
+static const uInt DECCOMBEXP[64]={
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 1<<DECECONL, 1<<DECECONL, 1<<DECECONL, 1<<DECECONL,
+ 1<<DECECONL, 1<<DECECONL, 1<<DECECONL, 1<<DECECONL,
+ 2<<DECECONL, 2<<DECECONL, 2<<DECECONL, 2<<DECECONL,
+ 2<<DECECONL, 2<<DECECONL, 2<<DECECONL, 2<<DECECONL,
+ 0, 0, 1<<DECECONL, 1<<DECECONL,
+ 2<<DECECONL, 2<<DECECONL, DECFLOAT_Inf, DECFLOAT_NaN,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 1<<DECECONL, 1<<DECECONL, 1<<DECECONL, 1<<DECECONL,
+ 1<<DECECONL, 1<<DECECONL, 1<<DECECONL, 1<<DECECONL,
+ 2<<DECECONL, 2<<DECECONL, 2<<DECECONL, 2<<DECECONL,
+ 2<<DECECONL, 2<<DECECONL, 2<<DECECONL, 2<<DECECONL,
+ 0, 0, 1<<DECECONL, 1<<DECECONL,
+ 2<<DECECONL, 2<<DECECONL, DECFLOAT_Inf, DECFLOAT_NaN};
+#if !QUAD
+static const uInt DECCOMBWEXP[64]={
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 1<<DECWECONL, 1<<DECWECONL, 1<<DECWECONL, 1<<DECWECONL,
+ 1<<DECWECONL, 1<<DECWECONL, 1<<DECWECONL, 1<<DECWECONL,
+ 2<<DECWECONL, 2<<DECWECONL, 2<<DECWECONL, 2<<DECWECONL,
+ 2<<DECWECONL, 2<<DECWECONL, 2<<DECWECONL, 2<<DECWECONL,
+ 0, 0, 1<<DECWECONL, 1<<DECWECONL,
+ 2<<DECWECONL, 2<<DECWECONL, DECFLOAT_Inf, DECFLOAT_NaN,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 1<<DECWECONL, 1<<DECWECONL, 1<<DECWECONL, 1<<DECWECONL,
+ 1<<DECWECONL, 1<<DECWECONL, 1<<DECWECONL, 1<<DECWECONL,
+ 2<<DECWECONL, 2<<DECWECONL, 2<<DECWECONL, 2<<DECWECONL,
+ 2<<DECWECONL, 2<<DECWECONL, 2<<DECWECONL, 2<<DECWECONL,
+ 0, 0, 1<<DECWECONL, 1<<DECWECONL,
+ 2<<DECWECONL, 2<<DECWECONL, DECFLOAT_Inf, DECFLOAT_NaN};
+#endif
+
+#if QUAD
+const uInt DECCOMBMSD[64]={
+ 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7,
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 9, 8, 9, 0, 1,
+ 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7,
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 9, 8, 9, 0, 0};
+
+const uInt DECCOMBFROM[48]={
+ 0x00000000, 0x04000000, 0x08000000, 0x0C000000, 0x10000000, 0x14000000,
+ 0x18000000, 0x1C000000, 0x60000000, 0x64000000, 0x00000000, 0x00000000,
+ 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x20000000, 0x24000000,
+ 0x28000000, 0x2C000000, 0x30000000, 0x34000000, 0x38000000, 0x3C000000,
+ 0x68000000, 0x6C000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
+ 0x00000000, 0x00000000, 0x40000000, 0x44000000, 0x48000000, 0x4C000000,
+ 0x50000000, 0x54000000, 0x58000000, 0x5C000000, 0x70000000, 0x74000000,
+ 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000};
+
+/* ------------------------------------------------------------------ */
+/* Request and include the tables to use for conversions */
+/* ------------------------------------------------------------------ */
+#define DEC_BCD2DPD 1 /* 0-0x999 -> DPD */
+#define DEC_BIN2DPD 1 /* 0-999 -> DPD */
+#define DEC_BIN2BCD8 1 /* 0-999 -> ddd, len */
+#define DEC_DPD2BCD8 1 /* DPD -> ddd, len */
+#define DEC_DPD2BIN 1 /* DPD -> 0-999 */
+#define DEC_DPD2BINK 1 /* DPD -> 0-999000 */
+#define DEC_DPD2BINM 1 /* DPD -> 0-999000000 */
+#include "decDPD.h" /* source of the lookup tables */
+
+#endif
+
+/* ----------------------------------------------------------------- */
+/* decBiStr -- compare string with pairwise options */
+/* */
+/* targ is the string to compare */
+/* str1 is one of the strings to compare against (length may be 0) */
+/* str2 is the other; it must be the same length as str1 */
+/* */
+/* returns 1 if strings compare equal, (that is, targ is the same */
+/* length as str1 and str2, and each character of targ is in one */
+/* of str1 or str2 in the corresponding position), or 0 otherwise */
+/* */
+/* This is used for generic caseless compare, including the awkward */
+/* case of the Turkish dotted and dotless Is. Use as (for example): */
+/* if (decBiStr(test, "mike", "MIKE")) ... */
+/* ----------------------------------------------------------------- */
+static Flag decBiStr(const char *targ, const char *str1, const char *str2) {
+ for (;;targ++, str1++, str2++) {
+ if (*targ!=*str1 && *targ!=*str2) return 0;
+ /* *targ has a match in one (or both, if terminator) */
+ if (*targ=='\0') break;
+ } /* forever */
+ return 1;
+ } /* decBiStr */
+
+/* ------------------------------------------------------------------ */
+/* decFinalize -- adjust and store a final result */
+/* */
+/* df is the decFloat format number which gets the final result */
+/* num is the descriptor of the number to be checked and encoded */
+/* [its values, including the coefficient, may be modified] */
+/* set is the context to use */
+/* returns df */
+/* */
+/* The num descriptor may point to a bcd8 string of any length; this */
+/* string may have leading insignificant zeros. If it has more than */
+/* DECPMAX digits then the final digit can be a round-for-reround */
+/* digit (i.e., it may include a sticky bit residue). */
+/* */
+/* The exponent (q) may be one of the codes for a special value and */
+/* can be up to 999999999 for conversion from string. */
+/* */
+/* No error is possible, but Inexact, Underflow, and/or Overflow may */
+/* be set. */
+/* ------------------------------------------------------------------ */
+/* Constant whose size varies with format; also the check for surprises */
+static uByte allnines[DECPMAX]=
+#if SINGLE
+ {9, 9, 9, 9, 9, 9, 9};
+#elif DOUBLE
+ {9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9};
+#elif QUAD
+ {9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
+ 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9};
+#endif
+
+static decFloat * decFinalize(decFloat *df, bcdnum *num,
+ decContext *set) {
+ uByte *ub; /* work */
+ uInt dpd; /* .. */
+ uByte *umsd=num->msd; /* local copy */
+ uByte *ulsd=num->lsd; /* .. */
+ uInt encode; /* encoding accumulator */
+ Int length; /* coefficient length */
+
+ #if DECCHECK
+ Int clen=ulsd-umsd+1;
+ #if QUAD
+ #define COEXTRA 2 /* extra-long coefficent */
+ #else
+ #define COEXTRA 0
+ #endif
+ if (clen<1 || clen>DECPMAX*3+2+COEXTRA)
+ printf("decFinalize: suspect coefficient [length=%ld]\n", (LI)clen);
+ if (num->sign!=0 && num->sign!=DECFLOAT_Sign)
+ printf("decFinalize: bad sign [%08lx]\n", (LI)num->sign);
+ if (!EXPISSPECIAL(num->exponent)
+ && (num->exponent>1999999999 || num->exponent<-1999999999))
+ printf("decFinalize: improbable exponent [%ld]\n", (LI)num->exponent);
+ /* decShowNum(num, "final"); */
+ #endif
+
+ /* A special will have an 'exponent' which is very positive and a */
+ /* coefficient < DECPMAX */
+ length=(uInt)(ulsd-umsd+1); /* coefficient length */
+
+ if (!NUMISSPECIAL(num)) {
+ Int drop; /* digits to be dropped */
+ /* skip leading insignificant zeros to calculate an exact length */
+ /* [this is quite expensive] */
+ if (*umsd==0) {
+ for (; UINTAT(umsd)==0 && umsd+3<ulsd;) umsd+=4;
+ for (; *umsd==0 && umsd<ulsd;) umsd++;
+ length=ulsd-umsd+1; /* recalculate */
+ }
+ drop=MAXI(length-DECPMAX, DECQTINY-num->exponent);
+ /* drop can now be > digits for bottom-clamp (subnormal) cases */
+ if (drop>0) { /* rounding needed */
+ /* (decFloatQuantize has very similar code to this, so any */
+ /* changes may need to be made there, too) */
+ uByte *roundat; /* -> re-round digit */
+ uByte reround; /* reround value */
+ /* printf("Rounding; drop=%ld\n", (LI)drop); */
+
+ num->exponent+=drop; /* always update exponent */
+
+ /* Three cases here: */
+ /* 1. new LSD is in coefficient (almost always) */
+ /* 2. new LSD is digit to left of coefficient (so MSD is */
+ /* round-for-reround digit) */
+ /* 3. new LSD is to left of case 2 (whole coefficient is sticky) */
+ /* [duplicate check-stickies code to save a test] */
+ /* [by-digit check for stickies as runs of zeros are rare] */
+ if (drop<length) { /* NB lengths not addresses */
+ roundat=umsd+length-drop;
+ reround=*roundat;
+ for (ub=roundat+1; ub<=ulsd; ub++) {
+ if (*ub!=0) { /* non-zero to be discarded */
+ reround=DECSTICKYTAB[reround]; /* apply sticky bit */
+ break; /* [remainder don't-care] */
+ }
+ } /* check stickies */
+ ulsd=roundat-1; /* new LSD */
+ }
+ else { /* edge case */
+ if (drop==length) {
+ roundat=umsd;
+ reround=*roundat;
+ }
+ else {
+ roundat=umsd-1;
+ reround=0;
+ }
+ for (ub=roundat+1; ub<=ulsd; ub++) {
+ if (*ub!=0) { /* non-zero to be discarded */
+ reround=DECSTICKYTAB[reround]; /* apply sticky bit */
+ break; /* [remainder don't-care] */
+ }
+ } /* check stickies */
+ *umsd=0; /* coefficient is a 0 */
+ ulsd=umsd; /* .. */
+ }
+
+ if (reround!=0) { /* discarding non-zero */
+ uInt bump=0;
+ set->status|=DEC_Inexact;
+ /* if adjusted exponent [exp+digits-1] is < EMIN then num is */
+ /* subnormal -- so raise Underflow */
+ if (num->exponent<DECEMIN && (num->exponent+(ulsd-umsd+1)-1)<DECEMIN)
+ set->status|=DEC_Underflow;
+
+ /* next decide whether increment of the coefficient is needed */
+ if (set->round==DEC_ROUND_HALF_EVEN) { /* fastpath slowest case */
+ if (reround>5) bump=1; /* >0.5 goes up */
+ else if (reround==5) /* exactly 0.5000 .. */
+ bump=*ulsd & 0x01; /* .. up iff [new] lsd is odd */
+ } /* r-h-e */
+ else switch (set->round) {
+ case DEC_ROUND_DOWN: {
+ /* no change */
+ break;} /* r-d */
+ case DEC_ROUND_HALF_DOWN: {
+ if (reround>5) bump=1;
+ break;} /* r-h-d */
+ case DEC_ROUND_HALF_UP: {
+ if (reround>=5) bump=1;
+ break;} /* r-h-u */
+ case DEC_ROUND_UP: {
+ if (reround>0) bump=1;
+ break;} /* r-u */
+ case DEC_ROUND_CEILING: {
+ /* same as _UP for positive numbers, and as _DOWN for negatives */
+ if (!num->sign && reround>0) bump=1;
+ break;} /* r-c */
+ case DEC_ROUND_FLOOR: {
+ /* same as _UP for negative numbers, and as _DOWN for positive */
+ /* [negative reround cannot occur on 0] */
+ if (num->sign && reround>0) bump=1;
+ break;} /* r-f */
+ case DEC_ROUND_05UP: {
+ if (reround>0) { /* anything out there is 'sticky' */
+ /* bump iff lsd=0 or 5; this cannot carry so it could be */
+ /* effected immediately with no bump -- but the code */
+ /* is clearer if this is done the same way as the others */
+ if (*ulsd==0 || *ulsd==5) bump=1;
+ }
+ break;} /* r-r */
+ default: { /* e.g., DEC_ROUND_MAX */
+ set->status|=DEC_Invalid_context;
+ #if DECCHECK
+ printf("Unknown rounding mode: %ld\n", (LI)set->round);
+ #endif
+ break;}
+ } /* switch (not r-h-e) */
+ /* printf("ReRound: %ld bump: %ld\n", (LI)reround, (LI)bump); */
+
+ if (bump!=0) { /* need increment */
+ /* increment the coefficient; this might end up with 1000... */
+ /* (after the all nines case) */
+ ub=ulsd;
+ for(; ub-3>=umsd && UINTAT(ub-3)==0x09090909; ub-=4) UINTAT(ub-3)=0;
+ /* [note ub could now be to left of msd, and it is not safe */
+ /* to write to the the left of the msd] */
+ /* now at most 3 digits left to non-9 (usually just the one) */
+ for (; ub>=umsd; *ub=0, ub--) {
+ if (*ub==9) continue; /* carry */
+ *ub+=1;
+ break;
+ }
+ if (ub<umsd) { /* had all-nines */
+ *umsd=1; /* coefficient to 1000... */
+ /* usually the 1000... coefficient can be used as-is */
+ if ((ulsd-umsd+1)==DECPMAX) {
+ num->exponent++;
+ }
+ else {
+ /* if coefficient is shorter than Pmax then num is */
+ /* subnormal, so extend it; this is safe as drop>0 */
+ /* (or, if the coefficient was supplied above, it could */
+ /* not be 9); this may make the result normal. */
+ ulsd++;
+ *ulsd=0;
+ /* [exponent unchanged] */
+ #if DECCHECK
+ if (num->exponent!=DECQTINY) /* sanity check */
+ printf("decFinalize: bad all-nines extend [^%ld, %ld]\n",
+ (LI)num->exponent, (LI)(ulsd-umsd+1));
+ #endif
+ } /* subnormal extend */
+ } /* had all-nines */
+ } /* bump needed */
+ } /* inexact rounding */
+
+ length=ulsd-umsd+1; /* recalculate (may be <DECPMAX) */
+ } /* need round (drop>0) */
+
+ /* The coefficient will now fit and has final length unless overflow */
+ /* decShowNum(num, "rounded"); */
+
+ /* if exponent is >=emax may have to clamp, overflow, or fold-down */
+ if (num->exponent>DECEMAX-(DECPMAX-1)) { /* is edge case */
+ /* printf("overflow checks...\n"); */
+ if (*ulsd==0 && ulsd==umsd) { /* have zero */
+ num->exponent=DECEMAX-(DECPMAX-1); /* clamp to max */
+ }
+ else if ((num->exponent+length-1)>DECEMAX) { /* > Nmax */
+ /* Overflow -- these could go straight to encoding, here, but */
+ /* instead num is adjusted to keep the code cleaner */
+ Flag needmax=0; /* 1 for finite result */
+ set->status|=(DEC_Overflow | DEC_Inexact);
+ switch (set->round) {
+ case DEC_ROUND_DOWN: {
+ needmax=1; /* never Infinity */
+ break;} /* r-d */
+ case DEC_ROUND_05UP: {
+ needmax=1; /* never Infinity */
+ break;} /* r-05 */
+ case DEC_ROUND_CEILING: {
+ if (num->sign) needmax=1; /* Infinity iff non-negative */
+ break;} /* r-c */
+ case DEC_ROUND_FLOOR: {
+ if (!num->sign) needmax=1; /* Infinity iff negative */
+ break;} /* r-f */
+ default: break; /* Infinity in all other cases */
+ }
+ if (!needmax) { /* easy .. set Infinity */
+ num->exponent=DECFLOAT_Inf;
+ *umsd=0; /* be clean: coefficient to 0 */
+ ulsd=umsd; /* .. */
+ }
+ else { /* return Nmax */
+ umsd=allnines; /* use constant array */
+ ulsd=allnines+DECPMAX-1;
+ num->exponent=DECEMAX-(DECPMAX-1);
+ }
+ }
+ else { /* no overflow but non-zero and may have to fold-down */
+ Int shift=num->exponent-(DECEMAX-(DECPMAX-1));
+ if (shift>0) { /* fold-down needed */
+ /* fold down needed; must copy to buffer in order to pad */
+ /* with zeros safely; fortunately this is not the worst case */
+ /* path because cannot have had a round */
+ uByte buffer[ROUNDUP(DECPMAX+3, 4)]; /* [+3 allows uInt padding] */
+ uByte *s=umsd; /* source */
+ uByte *t=buffer; /* safe target */
+ uByte *tlsd=buffer+(ulsd-umsd)+shift; /* target LSD */
+ /* printf("folddown shift=%ld\n", (LI)shift); */
+ for (; s<=ulsd; s+=4, t+=4) UINTAT(t)=UINTAT(s);
+ for (t=tlsd-shift+1; t<=tlsd; t+=4) UINTAT(t)=0; /* pad */
+ num->exponent-=shift;
+ umsd=buffer;
+ ulsd=tlsd;
+ }
+ } /* fold-down? */
+ length=ulsd-umsd+1; /* recalculate length */
+ } /* high-end edge case */
+ } /* finite number */
+
+ /*------------------------------------------------------------------*/
+ /* At this point the result will properly fit the decFloat */
+ /* encoding, and it can be encoded with no possibility of error */
+ /*------------------------------------------------------------------*/
+ /* Following code does not alter coefficient (could be allnines array) */
+
+ if (length==DECPMAX) {
+ return decFloatFromBCD(df, num->exponent, umsd, num->sign);
+ }
+
+ /* Here when length is short */
+ if (!NUMISSPECIAL(num)) { /* is still finite */
+ /* encode the combination field and exponent continuation */
+ uInt uexp=(uInt)(num->exponent+DECBIAS); /* biased exponent */
+ uInt code=(uexp>>DECECONL)<<4; /* top two bits of exp */
+ /* [msd=0] */
+ /* look up the combination field and make high word */
+ encode=DECCOMBFROM[code]; /* indexed by (0-2)*16+msd */
+ encode|=(uexp<<(32-6-DECECONL)) & 0x03ffffff; /* exponent continuation */
+ }
+ else encode=num->exponent; /* special [already in word] */
+ /* [coefficient length here will be < DECPMAX] */
+
+ encode|=num->sign; /* add sign */
+
+ /* private macro to extract a declet, n (where 0<=n<DECLETS and 0 */
+ /* refers to the declet from the least significant three digits) */
+ /* and put the corresponding DPD code into dpd. Access to umsd and */
+ /* ulsd (pointers to the most and least significant digit of the */
+ /* variable-length coefficient) is assumed, along with use of a */
+ /* working pointer, uInt *ub. */
+ /* As not full-length then chances are there are many leading zeros */
+ /* [and there may be a partial triad] */
+ #define getDPD(dpd, n) ub=ulsd-(3*(n))-2; \
+ if (ub<umsd-2) dpd=0; \
+ else if (ub>=umsd) dpd=BCD2DPD[(*ub*256)+(*(ub+1)*16)+*(ub+2)]; \
+ else {dpd=*(ub+2); if (ub+1==umsd) dpd+=*(ub+1)*16; dpd=BCD2DPD[dpd];}
+
+ /* place the declets in the encoding words and copy to result (df), */
+ /* according to endianness; in all cases complete the sign word */
+ /* first */
+ #if DECPMAX==7
+ getDPD(dpd, 1);
+ encode|=dpd<<10;
+ getDPD(dpd, 0);
+ encode|=dpd;
+ DFWORD(df, 0)=encode; /* just the one word */
+
+ #elif DECPMAX==16
+ getDPD(dpd, 4); encode|=dpd<<8;
+ getDPD(dpd, 3); encode|=dpd>>2;
+ DFWORD(df, 0)=encode;
+ encode=dpd<<30;
+ getDPD(dpd, 2); encode|=dpd<<20;
+ getDPD(dpd, 1); encode|=dpd<<10;
+ getDPD(dpd, 0); encode|=dpd;
+ DFWORD(df, 1)=encode;
+
+ #elif DECPMAX==34
+ getDPD(dpd,10); encode|=dpd<<4;
+ getDPD(dpd, 9); encode|=dpd>>6;
+ DFWORD(df, 0)=encode;
+
+ encode=dpd<<26;
+ getDPD(dpd, 8); encode|=dpd<<16;
+ getDPD(dpd, 7); encode|=dpd<<6;
+ getDPD(dpd, 6); encode|=dpd>>4;
+ DFWORD(df, 1)=encode;
+
+ encode=dpd<<28;
+ getDPD(dpd, 5); encode|=dpd<<18;
+ getDPD(dpd, 4); encode|=dpd<<8;
+ getDPD(dpd, 3); encode|=dpd>>2;
+ DFWORD(df, 2)=encode;
+
+ encode=dpd<<30;
+ getDPD(dpd, 2); encode|=dpd<<20;
+ getDPD(dpd, 1); encode|=dpd<<10;
+ getDPD(dpd, 0); encode|=dpd;
+ DFWORD(df, 3)=encode;
+ #endif
+
+ /* printf("Status: %08lx\n", (LI)set->status); */
+ /* decFloatShow(df, "final"); */
+ return df;
+ } /* decFinalize */
+
+/* ------------------------------------------------------------------ */
+/* decFloatFromBCD -- set decFloat from exponent, BCD8, and sign */
+/* */
+/* df is the target decFloat */
+/* exp is the in-range unbiased exponent, q, or a special value in */
+/* the form returned by decFloatGetExponent */
+/* bcdar holds DECPMAX digits to set the coefficient from, one */
+/* digit in each byte (BCD8 encoding); the first (MSD) is ignored */
+/* if df is a NaN; all are ignored if df is infinite. */
+/* All bytes must be in 0-9; results undefined otherwise. */
+/* sig is DECFLOAT_Sign to set the sign bit, 0 otherwise */
+/* returns df, which will be canonical */
+/* */
+/* No error is possible, and no status will be set. */
+/* ------------------------------------------------------------------ */
+decFloat * decFloatFromBCD(decFloat *df, Int exp, const uByte *bcdar,
+ Int sig) {
+ uInt encode, dpd; /* work */
+ const uByte *ub; /* .. */
+
+ if (EXPISSPECIAL(exp)) encode=exp|sig;/* specials already encoded */
+ else { /* is finite */
+ /* encode the combination field and exponent continuation */
+ uInt uexp=(uInt)(exp+DECBIAS); /* biased exponent */
+ uInt code=(uexp>>DECECONL)<<4; /* top two bits of exp */
+ code+=bcdar[0]; /* add msd */
+ /* look up the combination field and make high word */
+ encode=DECCOMBFROM[code]|sig; /* indexed by (0-2)*16+msd */
+ encode|=(uexp<<(32-6-DECECONL)) & 0x03ffffff; /* exponent continuation */
+ }
+
+ /* private macro to extract a declet, n (where 0<=n<DECLETS and 0 */
+ /* refers to the declet from the least significant three digits) */
+ /* and put the corresponding DPD code into dpd. */
+ /* Use of a working pointer, uInt *ub, is assumed. */
+
+ #define getDPDf(dpd, n) ub=bcdar+DECPMAX-1-(3*(n))-2; \
+ dpd=BCD2DPD[(*ub*256)+(*(ub+1)*16)+*(ub+2)];
+
+ /* place the declets in the encoding words and copy to result (df), */
+ /* according to endianness; in all cases complete the sign word */
+ /* first */
+ #if DECPMAX==7
+ getDPDf(dpd, 1);
+ encode|=dpd<<10;
+ getDPDf(dpd, 0);
+ encode|=dpd;
+ DFWORD(df, 0)=encode; /* just the one word */
+
+ #elif DECPMAX==16
+ getDPDf(dpd, 4); encode|=dpd<<8;
+ getDPDf(dpd, 3); encode|=dpd>>2;
+ DFWORD(df, 0)=encode;
+ encode=dpd<<30;
+ getDPDf(dpd, 2); encode|=dpd<<20;
+ getDPDf(dpd, 1); encode|=dpd<<10;
+ getDPDf(dpd, 0); encode|=dpd;
+ DFWORD(df, 1)=encode;
+
+ #elif DECPMAX==34
+ getDPDf(dpd,10); encode|=dpd<<4;
+ getDPDf(dpd, 9); encode|=dpd>>6;
+ DFWORD(df, 0)=encode;
+
+ encode=dpd<<26;
+ getDPDf(dpd, 8); encode|=dpd<<16;
+ getDPDf(dpd, 7); encode|=dpd<<6;
+ getDPDf(dpd, 6); encode|=dpd>>4;
+ DFWORD(df, 1)=encode;
+
+ encode=dpd<<28;
+ getDPDf(dpd, 5); encode|=dpd<<18;
+ getDPDf(dpd, 4); encode|=dpd<<8;
+ getDPDf(dpd, 3); encode|=dpd>>2;
+ DFWORD(df, 2)=encode;
+
+ encode=dpd<<30;
+ getDPDf(dpd, 2); encode|=dpd<<20;
+ getDPDf(dpd, 1); encode|=dpd<<10;
+ getDPDf(dpd, 0); encode|=dpd;
+ DFWORD(df, 3)=encode;
+ #endif
+ /* decFloatShow(df, "final"); */
+ return df;
+ } /* decFloatFromBCD */
+
+/* ------------------------------------------------------------------ */
+/* decFloatFromPacked -- set decFloat from exponent and packed BCD */
+/* */
+/* df is the target decFloat */
+/* exp is the in-range unbiased exponent, q, or a special value in */
+/* the form returned by decFloatGetExponent */
+/* packed holds DECPMAX packed decimal digits plus a sign nibble */
+/* (all 6 codes are OK); the first (MSD) is ignored if df is a NaN */
+/* and all except sign are ignored if df is infinite. For DOUBLE */
+/* and QUAD the first (pad) nibble is also ignored in all cases. */
+/* All coefficient nibbles must be in 0-9 and sign in A-F; results */
+/* are undefined otherwise. */
+/* returns df, which will be canonical */
+/* */
+/* No error is possible, and no status will be set. */
+/* ------------------------------------------------------------------ */
+decFloat * decFloatFromPacked(decFloat *df, Int exp, const uByte *packed) {
+ uByte bcdar[DECPMAX+2]; /* work [+1 for pad, +1 for sign] */
+ const uByte *ip; /* .. */
+ uByte *op; /* .. */
+ Int sig=0; /* sign */
+
+ /* expand coefficient and sign to BCDAR */
+ #if SINGLE
+ op=bcdar+1; /* no pad digit */
+ #else
+ op=bcdar; /* first (pad) digit ignored */
+ #endif
+ for (ip=packed; ip<packed+((DECPMAX+2)/2); ip++) {
+ *op++=*ip>>4;
+ *op++=(uByte)(*ip&0x0f); /* [final nibble is sign] */
+ }
+ op--; /* -> sign byte */
+ if (*op==DECPMINUS || *op==DECPMINUSALT) sig=DECFLOAT_Sign;
+
+ if (EXPISSPECIAL(exp)) { /* Infinity or NaN */
+ if (!EXPISINF(exp)) bcdar[1]=0; /* a NaN: ignore MSD */
+ else memset(bcdar+1, 0, DECPMAX); /* Infinite: coefficient to 0 */
+ }
+ return decFloatFromBCD(df, exp, bcdar+1, sig);
+ } /* decFloatFromPacked */
+
+/* ------------------------------------------------------------------ */
+/* decFloatFromString -- conversion from numeric string */
+/* */
+/* result is the decFloat format number which gets the result of */
+/* the conversion */
+/* *string is the character string which should contain a valid */
+/* number (which may be a special value), \0-terminated */
+/* If there are too many significant digits in the */
+/* coefficient it will be rounded. */
+/* set is the context */
+/* returns result */
+/* */
+/* The length of the coefficient and the size of the exponent are */
+/* checked by this routine, so the correct error (Underflow or */
+/* Overflow) can be reported or rounding applied, as necessary. */
+/* */
+/* There is no limit to the coefficient length for finite inputs; */
+/* NaN payloads must be integers with no more than DECPMAX-1 digits. */
+/* Exponents may have up to nine significant digits. */
+/* */
+/* If bad syntax is detected, the result will be a quiet NaN. */
+/* ------------------------------------------------------------------ */
+decFloat * decFloatFromString(decFloat *result, const char *string,
+ decContext *set) {
+ Int digits; /* count of digits in coefficient */
+ const char *dotchar=NULL; /* where dot was found [NULL if none] */
+ const char *cfirst=string; /* -> first character of decimal part */
+ const char *c; /* work */
+ uByte *ub; /* .. */
+ bcdnum num; /* collects data for finishing */
+ uInt error=DEC_Conversion_syntax; /* assume the worst */
+ uByte buffer[ROUNDUP(DECSTRING+11, 8)]; /* room for most coefficents, */
+ /* some common rounding, +3, & pad */
+ #if DECTRACE
+ /* printf("FromString %s ...\n", string); */
+ #endif
+
+ for(;;) { /* once-only 'loop' */
+ num.sign=0; /* assume non-negative */
+ num.msd=buffer; /* MSD is here always */
+
+ /* detect and validate the coefficient, including any leading, */
+ /* trailing, or embedded '.' */
+ /* [could test four-at-a-time here (saving 10% for decQuads), */
+ /* but that risks storage violation because the position of the */
+ /* terminator is unknown] */
+ for (c=string;; c++) { /* -> input character */
+ if (((unsigned)(*c-'0'))<=9) continue; /* '0' through '9' is good */
+ if (*c=='\0') break; /* most common non-digit */
+ if (*c=='.') {
+ if (dotchar!=NULL) break; /* not first '.' */
+ dotchar=c; /* record offset into decimal part */
+ continue;}
+ if (c==string) { /* first in string... */
+ if (*c=='-') { /* valid - sign */
+ cfirst++;
+ num.sign=DECFLOAT_Sign;
+ continue;}
+ if (*c=='+') { /* valid + sign */
+ cfirst++;
+ continue;}
+ }
+ /* *c is not a digit, terminator, or a valid +, -, or '.' */
+ break;
+ } /* c loop */
+
+ digits=(uInt)(c-cfirst); /* digits (+1 if a dot) */
+
+ if (digits>0) { /* had digits and/or dot */
+ const char *clast=c-1; /* note last coefficient char position */
+ Int exp=0; /* exponent accumulator */
+ if (*c!='\0') { /* something follows the coefficient */
+ uInt edig; /* unsigned work */
+ /* had some digits and more to come; expect E[+|-]nnn now */
+ const char *firstexp; /* exponent first non-zero */
+ if (*c!='E' && *c!='e') break;
+ c++; /* to (optional) sign */
+ if (*c=='-' || *c=='+') c++; /* step over sign (c=clast+2) */
+ if (*c=='\0') break; /* no digits! (e.g., '1.2E') */
+ for (; *c=='0';) c++; /* skip leading zeros [even last] */
+ firstexp=c; /* remember start [maybe '\0'] */
+ /* gather exponent digits */
+ edig=(uInt)*c-(uInt)'0';
+ if (edig<=9) { /* [check not bad or terminator] */
+ exp+=edig; /* avoid initial X10 */
+ c++;
+ for (;; c++) {
+ edig=(uInt)*c-(uInt)'0';
+ if (edig>9) break;
+ exp=exp*10+edig;
+ }
+ }
+ /* if not now on the '\0', *c must not be a digit */
+ if (*c!='\0') break;
+
+ /* (this next test must be after the syntax checks) */
+ /* if definitely more than the possible digits for format then */
+ /* the exponent may have wrapped, so simply set it to a certain */
+ /* over/underflow value */
+ if (c>firstexp+DECEMAXD) exp=DECEMAX*2;
+ if (*(clast+2)=='-') exp=-exp; /* was negative */
+ } /* digits>0 */
+
+ if (dotchar!=NULL) { /* had a '.' */
+ digits--; /* remove from digits count */
+ if (digits==0) break; /* was dot alone: bad syntax */
+ exp-=(Int)(clast-dotchar); /* adjust exponent */
+ /* [the '.' can now be ignored] */
+ }
+ num.exponent=exp; /* exponent is good; store it */
+
+ /* Here when whole string has been inspected and syntax is good */
+ /* cfirst->first digit or dot, clast->last digit or dot */
+ error=0; /* no error possible now */
+
+ /* if the number of digits in the coefficient will fit in buffer */
+ /* then it can simply be converted to bcd8 and copied -- decFinalize */
+ /* will take care of leading zeros and rounding; the buffer is big */
+ /* enough for all canonical coefficients, including 0.00000nn... */
+ ub=buffer;
+ if (digits<=(Int)(sizeof(buffer)-3)) { /* [-3 allows by-4s copy] */
+ c=cfirst;
+ if (dotchar!=NULL) { /* a dot to worry about */
+ if (*(c+1)=='.') { /* common canonical case */
+ *ub++=(uByte)(*c-'0'); /* copy leading digit */
+ c+=2; /* prepare to handle rest */
+ }
+ else for (; c<=clast;) { /* '.' could be anywhere */
+ /* as usual, go by fours when safe; NB it has been asserted */
+ /* that a '.' does not have the same mask as a digit */
+ if (c<=clast-3 /* safe for four */
+ && (UINTAT(c)&0xf0f0f0f0)==CHARMASK) { /* test four */
+ UINTAT(ub)=UINTAT(c)&0x0f0f0f0f; /* to BCD8 */
+ ub+=4;
+ c+=4;
+ continue;
+ }
+ if (*c=='.') { /* found the dot */
+ c++; /* step over it .. */
+ break; /* .. and handle the rest */
+ }
+ *ub++=(uByte)(*c++-'0');
+ }
+ } /* had dot */
+ /* Now no dot; do this by fours (where safe) */
+ for (; c<=clast-3; c+=4, ub+=4) UINTAT(ub)=UINTAT(c)&0x0f0f0f0f;
+ for (; c<=clast; c++, ub++) *ub=(uByte)(*c-'0');
+ num.lsd=buffer+digits-1; /* record new LSD */
+ } /* fits */
+
+ else { /* too long for buffer */
+ /* [This is a rare and unusual case; arbitrary-length input] */
+ /* strip leading zeros [but leave final 0 if all 0's] */
+ if (*cfirst=='.') cfirst++; /* step past dot at start */
+ if (*cfirst=='0') { /* [cfirst always -> digit] */
+ for (; cfirst<clast; cfirst++) {
+ if (*cfirst!='0') { /* non-zero found */
+ if (*cfirst=='.') continue; /* [ignore] */
+ break; /* done */
+ }
+ digits--; /* 0 stripped */
+ } /* cfirst */
+ } /* at least one leading 0 */
+
+ /* the coefficient is now as short as possible, but may still */
+ /* be too long; copy up to Pmax+1 digits to the buffer, then */
+ /* just record any non-zeros (set round-for-reround digit) */
+ for (c=cfirst; c<=clast && ub<=buffer+DECPMAX; c++) {
+ /* (see commentary just above) */
+ if (c<=clast-3 /* safe for four */
+ && (UINTAT(c)&0xf0f0f0f0)==CHARMASK) { /* four digits */
+ UINTAT(ub)=UINTAT(c)&0x0f0f0f0f; /* to BCD8 */
+ ub+=4;
+ c+=3; /* [will become 4] */
+ continue;
+ }
+ if (*c=='.') continue; /* [ignore] */
+ *ub++=(uByte)(*c-'0');
+ }
+ ub--; /* -> LSD */
+ for (; c<=clast; c++) { /* inspect remaining chars */
+ if (*c!='0') { /* sticky bit needed */
+ if (*c=='.') continue; /* [ignore] */
+ *ub=DECSTICKYTAB[*ub]; /* update round-for-reround */
+ break; /* no need to look at more */
+ }
+ }
+ num.lsd=ub; /* record LSD */
+ /* adjust exponent for dropped digits */
+ num.exponent+=digits-(Int)(ub-buffer+1);
+ } /* too long for buffer */
+ } /* digits or dot */
+
+ else { /* no digits or dot were found */
+ if (*c=='\0') break; /* nothing to come is bad */
+ /* only Infinities and NaNs are allowed, here */
+ buffer[0]=0; /* default a coefficient of 0 */
+ num.lsd=buffer; /* .. */
+ if (decBiStr(c, "infinity", "INFINITY")
+ || decBiStr(c, "inf", "INF")) num.exponent=DECFLOAT_Inf;
+ else { /* should be a NaN */
+ num.exponent=DECFLOAT_qNaN; /* assume quiet NaN */
+ if (*c=='s' || *c=='S') { /* probably an sNaN */
+ c++;
+ num.exponent=DECFLOAT_sNaN; /* assume is in fact sNaN */
+ }
+ if (*c!='N' && *c!='n') break; /* check caseless "NaN" */
+ c++;
+ if (*c!='a' && *c!='A') break; /* .. */
+ c++;
+ if (*c!='N' && *c!='n') break; /* .. */
+ c++;
+ /* now either nothing, or nnnn payload (no dots), expected */
+ /* -> start of integer, and skip leading 0s [including plain 0] */
+ for (cfirst=c; *cfirst=='0';) cfirst++;
+ if (*cfirst!='\0') { /* not empty or all-0, payload */
+ /* payload found; check all valid digits and copy to buffer as bcd8 */
+ ub=buffer;
+ for (c=cfirst;; c++, ub++) {
+ if ((unsigned)(*c-'0')>9) break; /* quit if not 0-9 */
+ if (c-cfirst==DECPMAX-1) break; /* too many digits */
+ *ub=(uByte)(*c-'0'); /* good bcd8 */
+ }
+ if (*c!='\0') break; /* not all digits, or too many */
+ num.lsd=ub-1; /* record new LSD */
+ }
+ } /* NaN or sNaN */
+ error=0; /* syntax is OK */
+ break; /* done with specials */
+ } /* digits=0 (special expected) */
+ break;
+ } /* [for(;;) break] */
+
+ /* decShowNum(&num, "fromStr"); */
+
+ if (error!=0) {
+ set->status|=error;
+ num.exponent=DECFLOAT_qNaN; /* set up quiet NaN */
+ num.sign=0; /* .. with 0 sign */
+ buffer[0]=0; /* .. and coefficient */
+ num.lsd=buffer; /* .. */
+ /* decShowNum(&num, "oops"); */
+ }
+
+ /* decShowNum(&num, "dffs"); */
+ decFinalize(result, &num, set); /* round, check, and lay out */
+ /* decFloatShow(result, "fromString"); */
+ return result;
+ } /* decFloatFromString */
+
+/* ------------------------------------------------------------------ */
+/* decFloatFromWider -- conversion from next-wider format */
+/* */
+/* result is the decFloat format number which gets the result of */
+/* the conversion */
+/* wider is the decFloatWider format number which will be narrowed */
+/* set is the context */
+/* returns result */
+/* */
+/* Narrowing can cause rounding, overflow, etc., but not Invalid */
+/* operation (sNaNs are copied and do not signal). */
+/* ------------------------------------------------------------------ */
+/* narrow-to is not possible for decQuad format numbers; simply omit */
+#if !QUAD
+decFloat * decFloatFromWider(decFloat *result, const decFloatWider *wider,
+ decContext *set) {
+ bcdnum num; /* collects data for finishing */
+ uByte bcdar[DECWPMAX]; /* room for wider coefficient */
+ uInt widerhi=DFWWORD(wider, 0); /* top word */
+ Int exp;
+
+ GETWCOEFF(wider, bcdar);
+
+ num.msd=bcdar; /* MSD is here always */
+ num.lsd=bcdar+DECWPMAX-1; /* LSD is here always */
+ num.sign=widerhi&0x80000000; /* extract sign [DECFLOAT_Sign=Neg] */
+
+ /* decode the wider combination field to exponent */
+ exp=DECCOMBWEXP[widerhi>>26]; /* decode from wider combination field */
+ /* if it is a special there's nothing to do unless sNaN; if it's */
+ /* finite then add the (wider) exponent continuation and unbias */
+ if (EXPISSPECIAL(exp)) exp=widerhi&0x7e000000; /* include sNaN selector */
+ else exp+=GETWECON(wider)-DECWBIAS;
+ num.exponent=exp;
+
+ /* decShowNum(&num, "dffw"); */
+ return decFinalize(result, &num, set);/* round, check, and lay out */
+ } /* decFloatFromWider */
+#endif
+
+/* ------------------------------------------------------------------ */
+/* decFloatGetCoefficient -- get coefficient as BCD8 */
+/* */
+/* df is the decFloat from which to extract the coefficient */
+/* bcdar is where DECPMAX bytes will be written, one BCD digit in */
+/* each byte (BCD8 encoding); if df is a NaN the first byte will */
+/* be zero, and if it is infinite they will all be zero */
+/* returns the sign of the coefficient (DECFLOAT_Sign if negative, */
+/* 0 otherwise) */
+/* */
+/* No error is possible, and no status will be set. If df is a */
+/* special value the array is set to zeros (for Infinity) or to the */
+/* payload of a qNaN or sNaN. */
+/* ------------------------------------------------------------------ */
+Int decFloatGetCoefficient(const decFloat *df, uByte *bcdar) {
+ if (DFISINF(df)) memset(bcdar, 0, DECPMAX);
+ else {
+ GETCOEFF(df, bcdar); /* use macro */
+ if (DFISNAN(df)) bcdar[0]=0; /* MSD needs correcting */
+ }
+ return DFISSIGNED(df);
+ } /* decFloatGetCoefficient */
+
+/* ------------------------------------------------------------------ */
+/* decFloatGetExponent -- get unbiased exponent */
+/* */
+/* df is the decFloat from which to extract the exponent */
+/* returns the exponent, q. */
+/* */
+/* No error is possible, and no status will be set. If df is a */
+/* special value the first seven bits of the decFloat are returned, */
+/* left adjusted and with the first (sign) bit set to 0 (followed by */
+/* 25 0 bits). e.g., -sNaN would return 0x7e000000 (DECFLOAT_sNaN). */
+/* ------------------------------------------------------------------ */
+Int decFloatGetExponent(const decFloat *df) {
+ if (DFISSPECIAL(df)) return DFWORD(df, 0)&0x7e000000;
+ return GETEXPUN(df);
+ } /* decFloatGetExponent */
+
+/* ------------------------------------------------------------------ */
+/* decFloatSetCoefficient -- set coefficient from BCD8 */
+/* */
+/* df is the target decFloat (and source of exponent/special value) */
+/* bcdar holds DECPMAX digits to set the coefficient from, one */
+/* digit in each byte (BCD8 encoding); the first (MSD) is ignored */
+/* if df is a NaN; all are ignored if df is infinite. */
+/* sig is DECFLOAT_Sign to set the sign bit, 0 otherwise */
+/* returns df, which will be canonical */
+/* */
+/* No error is possible, and no status will be set. */
+/* ------------------------------------------------------------------ */
+decFloat * decFloatSetCoefficient(decFloat *df, const uByte *bcdar,
+ Int sig) {
+ uInt exp; /* for exponent */
+ uByte bcdzero[DECPMAX]; /* for infinities */
+
+ /* Exponent/special code is extracted from df */
+ if (DFISSPECIAL(df)) {
+ exp=DFWORD(df, 0)&0x7e000000;
+ if (DFISINF(df)) {
+ memset(bcdzero, 0, DECPMAX);
+ return decFloatFromBCD(df, exp, bcdzero, sig);
+ }
+ }
+ else exp=GETEXPUN(df);
+ return decFloatFromBCD(df, exp, bcdar, sig);
+ } /* decFloatSetCoefficient */
+
+/* ------------------------------------------------------------------ */
+/* decFloatSetExponent -- set exponent or special value */
+/* */
+/* df is the target decFloat (and source of coefficient/payload) */
+/* set is the context for reporting status */
+/* exp is the unbiased exponent, q, or a special value in the form */
+/* returned by decFloatGetExponent */
+/* returns df, which will be canonical */
+/* */
+/* No error is possible, but Overflow or Underflow might occur. */
+/* ------------------------------------------------------------------ */
+decFloat * decFloatSetExponent(decFloat *df, decContext *set, Int exp) {
+ uByte bcdcopy[DECPMAX]; /* for coefficient */
+ bcdnum num; /* work */
+ num.exponent=exp;
+ num.sign=decFloatGetCoefficient(df, bcdcopy); /* extract coefficient */
+ if (DFISSPECIAL(df)) { /* MSD or more needs correcting */
+ if (DFISINF(df)) memset(bcdcopy, 0, DECPMAX);
+ bcdcopy[0]=0;
+ }
+ num.msd=bcdcopy;
+ num.lsd=bcdcopy+DECPMAX-1;
+ return decFinalize(df, &num, set);
+ } /* decFloatSetExponent */
+
+/* ------------------------------------------------------------------ */
+/* decFloatRadix -- returns the base (10) */
+/* */
+/* df is any decFloat of this format */
+/* ------------------------------------------------------------------ */
+uInt decFloatRadix(const decFloat *df) {
+ if (df) return 10; /* to placate compiler */
+ return 10;
+ } /* decFloatRadix */
+
+/* ------------------------------------------------------------------ */
+/* decFloatShow -- printf a decFloat in hexadecimal and decimal */
+/* df is the decFloat to show */
+/* tag is a tag string displayed with the number */
+/* */
+/* This is a debug aid; the precise format of the string may change. */
+/* ------------------------------------------------------------------ */
+void decFloatShow(const decFloat *df, const char *tag) {
+ char hexbuf[DECBYTES*2+DECBYTES/4+1]; /* NB blank after every fourth */
+ char buff[DECSTRING]; /* for value in decimal */
+ Int i, j=0;
+
+ for (i=0; i<DECBYTES; i++) {
+ #if DECLITEND
+ sprintf(&hexbuf[j], "%02x", df->bytes[DECBYTES-1-i]);
+ #else
+ sprintf(&hexbuf[j], "%02x", df->bytes[i]);
+ #endif
+ j+=2;
+ /* the next line adds blank (and terminator) after final pair, too */
+ if ((i+1)%4==0) {strcpy(&hexbuf[j], " "); j++;}
+ }
+ decFloatToString(df, buff);
+ printf(">%s> %s [big-endian] %s\n", tag, hexbuf, buff);
+ return;
+ } /* decFloatShow */
+
+/* ------------------------------------------------------------------ */
+/* decFloatToBCD -- get sign, exponent, and BCD8 from a decFloat */
+/* */
+/* df is the source decFloat */
+/* exp will be set to the unbiased exponent, q, or to a special */
+/* value in the form returned by decFloatGetExponent */
+/* bcdar is where DECPMAX bytes will be written, one BCD digit in */
+/* each byte (BCD8 encoding); if df is a NaN the first byte will */
+/* be zero, and if it is infinite they will all be zero */
+/* returns the sign of the coefficient (DECFLOAT_Sign if negative, */
+/* 0 otherwise) */
+/* */
+/* No error is possible, and no status will be set. */
+/* ------------------------------------------------------------------ */
+Int decFloatToBCD(const decFloat *df, Int *exp, uByte *bcdar) {
+ if (DFISINF(df)) {
+ memset(bcdar, 0, DECPMAX);
+ *exp=DFWORD(df, 0)&0x7e000000;
+ }
+ else {
+ GETCOEFF(df, bcdar); /* use macro */
+ if (DFISNAN(df)) {
+ bcdar[0]=0; /* MSD needs correcting */
+ *exp=DFWORD(df, 0)&0x7e000000;
+ }
+ else { /* finite */
+ *exp=GETEXPUN(df);
+ }
+ }
+ return DFISSIGNED(df);
+ } /* decFloatToBCD */
+
+/* ------------------------------------------------------------------ */
+/* decFloatToEngString -- conversion to numeric string, engineering */
+/* */
+/* df is the decFloat format number to convert */
+/* string is the string where the result will be laid out */
+/* */
+/* string must be at least DECPMAX+9 characters (the worst case is */
+/* "-0.00000nnn...nnn\0", which is as long as the exponent form when */
+/* DECEMAXD<=4); this condition is asserted above */
+/* */
+/* No error is possible, and no status will be set */
+/* ------------------------------------------------------------------ */
+char * decFloatToEngString(const decFloat *df, char *string){
+ uInt msd; /* coefficient MSD */
+ Int exp; /* exponent top two bits or full */
+ uInt comb; /* combination field */
+ char *cstart; /* coefficient start */
+ char *c; /* output pointer in string */
+ char *s, *t; /* .. (source, target) */
+ Int pre, e; /* work */
+ const uByte *u; /* .. */
+
+ /* Source words; macro handles endianness */
+ uInt sourhi=DFWORD(df, 0); /* word with sign */
+ #if DECPMAX==16
+ uInt sourlo=DFWORD(df, 1);
+ #elif DECPMAX==34
+ uInt sourmh=DFWORD(df, 1);
+ uInt sourml=DFWORD(df, 2);
+ uInt sourlo=DFWORD(df, 3);
+ #endif
+
+ c=string; /* where result will go */
+ if (((Int)sourhi)<0) *c++='-'; /* handle sign */
+ comb=sourhi>>26; /* sign+combination field */
+ msd=DECCOMBMSD[comb]; /* decode the combination field */
+ exp=DECCOMBEXP[comb]; /* .. */
+
+ if (EXPISSPECIAL(exp)) { /* special */
+ if (exp==DECFLOAT_Inf) { /* infinity */
+ strcpy(c, "Inf");
+ strcpy(c+3, "inity");
+ return string; /* easy */
+ }
+ if (sourhi&0x02000000) *c++='s'; /* sNaN */
+ strcpy(c, "NaN"); /* complete word */
+ c+=3; /* step past */
+ /* quick exit if the payload is zero */
+ #if DECPMAX==7
+ if ((sourhi&0x000fffff)==0) return string;
+ #elif DECPMAX==16
+ if (sourlo==0 && (sourhi&0x0003ffff)==0) return string;
+ #elif DECPMAX==34
+ if (sourlo==0 && sourml==0 && sourmh==0
+ && (sourhi&0x00003fff)==0) return string;
+ #endif
+ /* otherwise drop through to add integer; set correct exp etc. */
+ exp=0; msd=0; /* setup for following code */
+ }
+ else { /* complete exponent; top two bits are in place */
+ exp+=GETECON(df)-DECBIAS; /* .. + continuation and unbias */
+ }
+
+ /* convert the digits of the significand to characters */
+ cstart=c; /* save start of coefficient */
+ if (msd) *c++=(char)('0'+(char)msd); /* non-zero most significant digit */
+
+ /* Decode the declets. After extracting each declet, it is */
+ /* decoded to a 4-uByte sequence by table lookup; the four uBytes */
+ /* are the three encoded BCD8 digits followed by a 1-byte length */
+ /* (significant digits, except that 000 has length 0). This allows */
+ /* us to left-align the first declet with non-zero content, then */
+ /* the remaining ones are full 3-char length. Fixed-length copies */
+ /* are used because variable-length memcpy causes a subroutine call */
+ /* in at least two compilers. (The copies are length 4 for speed */
+ /* and are safe because the last item in the array is of length */
+ /* three and has the length byte following.) */
+ #define dpd2char(dpdin) u=&DPD2BCD8[((dpdin)&0x3ff)*4]; \
+ if (c!=cstart) {UINTAT(c)=UINTAT(u)|CHARMASK; c+=3;} \
+ else if (*(u+3)) { \
+ UINTAT(c)=UINTAT(u+3-*(u+3))|CHARMASK; c+=*(u+3);}
+
+ #if DECPMAX==7
+ dpd2char(sourhi>>10); /* declet 1 */
+ dpd2char(sourhi); /* declet 2 */
+
+ #elif DECPMAX==16
+ dpd2char(sourhi>>8); /* declet 1 */
+ dpd2char((sourhi<<2) | (sourlo>>30)); /* declet 2 */
+ dpd2char(sourlo>>20); /* declet 3 */
+ dpd2char(sourlo>>10); /* declet 4 */
+ dpd2char(sourlo); /* declet 5 */
+
+ #elif DECPMAX==34
+ dpd2char(sourhi>>4); /* declet 1 */
+ dpd2char((sourhi<<6) | (sourmh>>26)); /* declet 2 */
+ dpd2char(sourmh>>16); /* declet 3 */
+ dpd2char(sourmh>>6); /* declet 4 */
+ dpd2char((sourmh<<4) | (sourml>>28)); /* declet 5 */
+ dpd2char(sourml>>18); /* declet 6 */
+ dpd2char(sourml>>8); /* declet 7 */
+ dpd2char((sourml<<2) | (sourlo>>30)); /* declet 8 */
+ dpd2char(sourlo>>20); /* declet 9 */
+ dpd2char(sourlo>>10); /* declet 10 */
+ dpd2char(sourlo); /* declet 11 */
+ #endif
+
+ if (c==cstart) *c++='0'; /* all zeros, empty -- make "0" */
+
+ if (exp==0) { /* integer or NaN case -- easy */
+ *c='\0'; /* terminate */
+ return string;
+ }
+ /* non-0 exponent */
+
+ e=0; /* assume no E */
+ pre=(Int)(c-cstart)+exp; /* length+exp [c->LSD+1] */
+ /* [here, pre-exp is the digits count (==1 for zero)] */
+
+ if (exp>0 || pre<-5) { /* need exponential form */
+ e=pre-1; /* calculate E value */
+ pre=1; /* assume one digit before '.' */
+ if (e!=0) { /* engineering: may need to adjust */
+ Int adj; /* adjustment */
+ /* The C remainder operator is undefined for negative numbers, so */
+ /* a positive remainder calculation must be used here */
+ if (e<0) {
+ adj=(-e)%3;
+ if (adj!=0) adj=3-adj;
+ }
+ else { /* e>0 */
+ adj=e%3;
+ }
+ e=e-adj;
+ /* if dealing with zero still produce an exponent which is a */
+ /* multiple of three, as expected, but there will only be the */
+ /* one zero before the E, still. Otherwise note the padding. */
+ if (!DFISZERO(df)) pre+=adj;
+ else { /* is zero */
+ if (adj!=0) { /* 0.00Esnn needed */
+ e=e+3;
+ pre=-(2-adj);
+ }
+ } /* zero */
+ } /* engineering adjustment */
+ } /* exponential form */
+ /* printf("e=%ld pre=%ld exp=%ld\n", (LI)e, (LI)pre, (LI)exp); */
+
+ /* modify the coefficient, adding 0s, '.', and E+nn as needed */
+ if (pre>0) { /* ddd.ddd (plain), perhaps with E */
+ /* or dd00 padding for engineering */
+ char *dotat=cstart+pre;
+ if (dotat<c) { /* if embedded dot needed... */
+ /* move by fours; there must be space for junk at the end */
+ /* because there is still space for exponent */
+ s=dotat+ROUNDDOWN4(c-dotat); /* source */
+ t=s+1; /* target */
+ /* open the gap */
+ for (; s>=dotat; s-=4, t-=4) UINTAT(t)=UINTAT(s);
+ *dotat='.';
+ c++; /* length increased by one */
+ } /* need dot? */
+ else for (; c<dotat; c++) *c='0'; /* pad for engineering */
+ } /* pre>0 */
+ else {
+ /* -5<=pre<=0: here for plain 0.ddd or 0.000ddd forms (may have
+ E, but only for 0.00E+3 kind of case -- with plenty of spare
+ space in this case */
+ pre=-pre+2; /* gap width, including "0." */
+ t=cstart+ROUNDDOWN4(c-cstart)+pre; /* preferred first target point */
+ /* backoff if too far to the right */
+ if (t>string+DECSTRING-5) t=string+DECSTRING-5; /* adjust to fit */
+ /* now shift the entire coefficient to the right, being careful not */
+ /* to access to the left of string */
+ for (s=t-pre; s>=string; s-=4, t-=4) UINTAT(t)=UINTAT(s);
+ /* for Quads and Singles there may be a character or two left... */
+ s+=3; /* where next would come from */
+ for(; s>=cstart; s--, t--) *(t+3)=*(s);
+ /* now have fill 0. through 0.00000; use overlaps to avoid tests */
+ if (pre>=4) {
+ UINTAT(cstart+pre-4)=UINTAT("0000");
+ UINTAT(cstart)=UINTAT("0.00");
+ }
+ else { /* 2 or 3 */
+ *(cstart+pre-1)='0';
+ USHORTAT(cstart)=USHORTAT("0.");
+ }
+ c+=pre; /* to end */
+ }
+
+ /* finally add the E-part, if needed; it will never be 0, and has */
+ /* a maximum length of 3 or 4 digits (asserted above) */
+ if (e!=0) {
+ USHORTAT(c)=USHORTAT("E+"); /* starts with E, assume + */
+ c++;
+ if (e<0) {
+ *c='-'; /* oops, need '-' */
+ e=-e; /* uInt, please */
+ }
+ c++;
+ /* Three-character exponents are easy; 4-character a little trickier */
+ #if DECEMAXD<=3
+ u=&BIN2BCD8[e*4]; /* -> 3 digits + length byte */
+ /* copy fixed 4 characters [is safe], starting at non-zero */
+ /* and with character mask to convert BCD to char */
+ UINTAT(c)=UINTAT(u+3-*(u+3))|CHARMASK;
+ c+=*(u+3); /* bump pointer appropriately */
+ #elif DECEMAXD==4
+ if (e<1000) { /* 3 (or fewer) digits case */
+ u=&BIN2BCD8[e*4]; /* -> 3 digits + length byte */
+ UINTAT(c)=UINTAT(u+3-*(u+3))|CHARMASK; /* [as above] */
+ c+=*(u+3); /* bump pointer appropriately */
+ }
+ else { /* 4-digits */
+ Int thou=((e>>3)*1049)>>17; /* e/1000 */
+ Int rem=e-(1000*thou); /* e%1000 */
+ *c++=(char)('0'+(char)thou); /* the thousands digit */
+ u=&BIN2BCD8[rem*4]; /* -> 3 digits + length byte */
+ UINTAT(c)=UINTAT(u)|CHARMASK; /* copy fixed 3+1 characters [is safe] */
+ c+=3; /* bump pointer, always 3 digits */
+ }
+ #endif
+ }
+ *c='\0'; /* terminate */
+ /*printf("res %s\n", string); */
+ return string;
+ } /* decFloatToEngString */
+
+/* ------------------------------------------------------------------ */
+/* decFloatToPacked -- convert decFloat to Packed decimal + exponent */
+/* */
+/* df is the source decFloat */
+/* exp will be set to the unbiased exponent, q, or to a special */
+/* value in the form returned by decFloatGetExponent */
+/* packed is where DECPMAX nibbles will be written with the sign as */
+/* final nibble (0x0c for +, 0x0d for -); a NaN has a first nibble */
+/* of zero, and an infinity is all zeros. decDouble and decQuad */
+/* have a additional leading zero nibble, leading to result */
+/* lengths of 4, 9, and 18 bytes. */
+/* returns the sign of the coefficient (DECFLOAT_Sign if negative, */
+/* 0 otherwise) */
+/* */
+/* No error is possible, and no status will be set. */
+/* ------------------------------------------------------------------ */
+Int decFloatToPacked(const decFloat *df, Int *exp, uByte *packed) {
+ uByte bcdar[DECPMAX+2]; /* work buffer */
+ uByte *ip=bcdar, *op=packed; /* work pointers */
+ if (DFISINF(df)) {
+ memset(bcdar, 0, DECPMAX+2);
+ *exp=DECFLOAT_Inf;
+ }
+ else {
+ GETCOEFF(df, bcdar+1); /* use macro */
+ if (DFISNAN(df)) {
+ bcdar[1]=0; /* MSD needs clearing */
+ *exp=DFWORD(df, 0)&0x7e000000;
+ }
+ else { /* finite */
+ *exp=GETEXPUN(df);
+ }
+ }
+ /* now pack; coefficient currently at bcdar+1 */
+ #if SINGLE
+ ip++; /* ignore first byte */
+ #else
+ *ip=0; /* need leading zero */
+ #endif
+ /* set final byte to Packed BCD sign value */
+ bcdar[DECPMAX+1]=(DFISSIGNED(df) ? DECPMINUS : DECPPLUS);
+ /* pack an even number of bytes... */
+ for (; op<packed+((DECPMAX+2)/2); op++, ip+=2) {
+ *op=(uByte)((*ip<<4)+*(ip+1));
+ }
+ return (bcdar[DECPMAX+1]==DECPMINUS ? DECFLOAT_Sign : 0);
+ } /* decFloatToPacked */
+
+/* ------------------------------------------------------------------ */
+/* decFloatToString -- conversion to numeric string */
+/* */
+/* df is the decFloat format number to convert */
+/* string is the string where the result will be laid out */
+/* */
+/* string must be at least DECPMAX+9 characters (the worst case is */
+/* "-0.00000nnn...nnn\0", which is as long as the exponent form when */
+/* DECEMAXD<=4); this condition is asserted above */
+/* */
+/* No error is possible, and no status will be set */
+/* ------------------------------------------------------------------ */
+char * decFloatToString(const decFloat *df, char *string){
+ uInt msd; /* coefficient MSD */
+ Int exp; /* exponent top two bits or full */
+ uInt comb; /* combination field */
+ char *cstart; /* coefficient start */
+ char *c; /* output pointer in string */
+ char *s, *t; /* .. (source, target) */
+ Int pre, e; /* work */
+ const uByte *u; /* .. */
+
+ /* Source words; macro handles endianness */
+ uInt sourhi=DFWORD(df, 0); /* word with sign */
+ #if DECPMAX==16
+ uInt sourlo=DFWORD(df, 1);
+ #elif DECPMAX==34
+ uInt sourmh=DFWORD(df, 1);
+ uInt sourml=DFWORD(df, 2);
+ uInt sourlo=DFWORD(df, 3);
+ #endif
+
+ c=string; /* where result will go */
+ if (((Int)sourhi)<0) *c++='-'; /* handle sign */
+ comb=sourhi>>26; /* sign+combination field */
+ msd=DECCOMBMSD[comb]; /* decode the combination field */
+ exp=DECCOMBEXP[comb]; /* .. */
+
+ if (EXPISSPECIAL(exp)) { /* special */
+ if (exp==DECFLOAT_Inf) { /* infinity */
+ strcpy(c, "Infinity");
+ return string; /* easy */
+ }
+ if (sourhi&0x02000000) *c++='s'; /* sNaN */
+ strcpy(c, "NaN"); /* complete word */
+ c+=3; /* step past */
+ /* quick exit if the payload is zero */
+ #if DECPMAX==7
+ if ((sourhi&0x000fffff)==0) return string;
+ #elif DECPMAX==16
+ if (sourlo==0 && (sourhi&0x0003ffff)==0) return string;
+ #elif DECPMAX==34
+ if (sourlo==0 && sourml==0 && sourmh==0
+ && (sourhi&0x00003fff)==0) return string;
+ #endif
+ /* otherwise drop through to add integer; set correct exp etc. */
+ exp=0; msd=0; /* setup for following code */
+ }
+ else { /* complete exponent; top two bits are in place */
+ exp+=GETECON(df)-DECBIAS; /* .. + continuation and unbias */
+ }
+
+ /* convert the digits of the significand to characters */
+ cstart=c; /* save start of coefficient */
+ if (msd) *c++=(char)('0'+(char)msd); /* non-zero most significant digit */
+
+ /* Decode the declets. After extracting each declet, it is */
+ /* decoded to a 4-uByte sequence by table lookup; the four uBytes */
+ /* are the three encoded BCD8 digits followed by a 1-byte length */
+ /* (significant digits, except that 000 has length 0). This allows */
+ /* us to left-align the first declet with non-zero content, then */
+ /* the remaining ones are full 3-char length. Fixed-length copies */
+ /* are used because variable-length memcpy causes a subroutine call */
+ /* in at least two compilers. (The copies are length 4 for speed */
+ /* and are safe because the last item in the array is of length */
+ /* three and has the length byte following.) */
+ #define dpd2char(dpdin) u=&DPD2BCD8[((dpdin)&0x3ff)*4]; \
+ if (c!=cstart) {UINTAT(c)=UINTAT(u)|CHARMASK; c+=3;} \
+ else if (*(u+3)) { \
+ UINTAT(c)=UINTAT(u+3-*(u+3))|CHARMASK; c+=*(u+3);}
+
+ #if DECPMAX==7
+ dpd2char(sourhi>>10); /* declet 1 */
+ dpd2char(sourhi); /* declet 2 */
+
+ #elif DECPMAX==16
+ dpd2char(sourhi>>8); /* declet 1 */
+ dpd2char((sourhi<<2) | (sourlo>>30)); /* declet 2 */
+ dpd2char(sourlo>>20); /* declet 3 */
+ dpd2char(sourlo>>10); /* declet 4 */
+ dpd2char(sourlo); /* declet 5 */
+
+ #elif DECPMAX==34
+ dpd2char(sourhi>>4); /* declet 1 */
+ dpd2char((sourhi<<6) | (sourmh>>26)); /* declet 2 */
+ dpd2char(sourmh>>16); /* declet 3 */
+ dpd2char(sourmh>>6); /* declet 4 */
+ dpd2char((sourmh<<4) | (sourml>>28)); /* declet 5 */
+ dpd2char(sourml>>18); /* declet 6 */
+ dpd2char(sourml>>8); /* declet 7 */
+ dpd2char((sourml<<2) | (sourlo>>30)); /* declet 8 */
+ dpd2char(sourlo>>20); /* declet 9 */
+ dpd2char(sourlo>>10); /* declet 10 */
+ dpd2char(sourlo); /* declet 11 */
+ #endif
+
+ if (c==cstart) *c++='0'; /* all zeros, empty -- make "0" */
+
+ /*[This fast path is valid but adds 3-5 cycles to worst case length] */
+ /*if (exp==0) { // integer or NaN case -- easy */
+ /* *c='\0'; // terminate */
+ /* return string; */
+ /* } */
+
+ e=0; /* assume no E */
+ pre=(Int)(c-cstart)+exp; /* length+exp [c->LSD+1] */
+ /* [here, pre-exp is the digits count (==1 for zero)] */
+
+ if (exp>0 || pre<-5) { /* need exponential form */
+ e=pre-1; /* calculate E value */
+ pre=1; /* assume one digit before '.' */
+ } /* exponential form */
+
+ /* modify the coefficient, adding 0s, '.', and E+nn as needed */
+ if (pre>0) { /* ddd.ddd (plain), perhaps with E */
+ char *dotat=cstart+pre;
+ if (dotat<c) { /* if embedded dot needed... */
+ /* move by fours; there must be space for junk at the end */
+ /* because there is still space for exponent */
+ s=dotat+ROUNDDOWN4(c-dotat); /* source */
+ t=s+1; /* target */
+ /* open the gap */
+ for (; s>=dotat; s-=4, t-=4) UINTAT(t)=UINTAT(s);
+ *dotat='.';
+ c++; /* length increased by one */
+ } /* need dot? */
+
+ /* finally add the E-part, if needed; it will never be 0, and has */
+ /* a maximum length of 3 or 4 digits (asserted above) */
+ if (e!=0) {
+ USHORTAT(c)=USHORTAT("E+"); /* starts with E, assume + */
+ c++;
+ if (e<0) {
+ *c='-'; /* oops, need '-' */
+ e=-e; /* uInt, please */
+ }
+ c++;
+ /* Three-character exponents are easy; 4-character a little trickier */
+ #if DECEMAXD<=3
+ u=&BIN2BCD8[e*4]; /* -> 3 digits + length byte */
+ /* copy fixed 4 characters [is safe], starting at non-zero */
+ /* and with character mask to convert BCD to char */
+ UINTAT(c)=UINTAT(u+3-*(u+3))|CHARMASK;
+ c+=*(u+3); /* bump pointer appropriately */
+ #elif DECEMAXD==4
+ if (e<1000) { /* 3 (or fewer) digits case */
+ u=&BIN2BCD8[e*4]; /* -> 3 digits + length byte */
+ UINTAT(c)=UINTAT(u+3-*(u+3))|CHARMASK; /* [as above] */
+ c+=*(u+3); /* bump pointer appropriately */
+ }
+ else { /* 4-digits */
+ Int thou=((e>>3)*1049)>>17; /* e/1000 */
+ Int rem=e-(1000*thou); /* e%1000 */
+ *c++=(char)('0'+(char)thou); /* the thousands digit */
+ u=&BIN2BCD8[rem*4]; /* -> 3 digits + length byte */
+ UINTAT(c)=UINTAT(u)|CHARMASK; /* copy fixed 3+1 characters [is safe] */
+ c+=3; /* bump pointer, always 3 digits */
+ }
+ #endif
+ }
+ *c='\0'; /* add terminator */
+ /*printf("res %s\n", string); */
+ return string;
+ } /* pre>0 */
+
+ /* -5<=pre<=0: here for plain 0.ddd or 0.000ddd forms (can never have E) */
+ /* Surprisingly, this is close to being the worst-case path, so the */
+ /* shift is done by fours; this is a little tricky because the */
+ /* rightmost character to be written must not be beyond where the */
+ /* rightmost terminator could be -- so backoff to not touch */
+ /* terminator position if need be (this can make exact alignments */
+ /* for full Doubles, but in some cases needs care not to access too */
+ /* far to the left) */
+
+ pre=-pre+2; /* gap width, including "0." */
+ t=cstart+ROUNDDOWN4(c-cstart)+pre; /* preferred first target point */
+ /* backoff if too far to the right */
+ if (t>string+DECSTRING-5) t=string+DECSTRING-5; /* adjust to fit */
+ /* now shift the entire coefficient to the right, being careful not */
+ /* to access to the left of string */
+ for (s=t-pre; s>=string; s-=4, t-=4) UINTAT(t)=UINTAT(s);
+ /* for Quads and Singles there may be a character or two left... */
+ s+=3; /* where next would come from */
+ for(; s>=cstart; s--, t--) *(t+3)=*(s);
+ /* now have fill 0. through 0.00000; use overlaps to avoid tests */
+ if (pre>=4) {
+ UINTAT(cstart+pre-4)=UINTAT("0000");
+ UINTAT(cstart)=UINTAT("0.00");
+ }
+ else { /* 2 or 3 */
+ *(cstart+pre-1)='0';
+ USHORTAT(cstart)=USHORTAT("0.");
+ }
+ *(c+pre)='\0'; /* terminate */
+ return string;
+ } /* decFloatToString */
+
+/* ------------------------------------------------------------------ */
+/* decFloatToWider -- conversion to next-wider format */
+/* */
+/* source is the decFloat format number which gets the result of */
+/* the conversion */
+/* wider is the decFloatWider format number which will be narrowed */
+/* returns wider */
+/* */
+/* Widening is always exact; no status is set (sNaNs are copied and */
+/* do not signal). The result will be canonical if the source is, */
+/* and may or may not be if the source is not. */
+/* ------------------------------------------------------------------ */
+/* widening is not possible for decQuad format numbers; simply omit */
+#if !QUAD
+decFloatWider * decFloatToWider(const decFloat *source, decFloatWider *wider) {
+ uInt msd;
+
+ /* Construct and copy the sign word */
+ if (DFISSPECIAL(source)) {
+ /* copy sign, combination, and first bit of exponent (sNaN selector) */
+ DFWWORD(wider, 0)=DFWORD(source, 0)&0xfe000000;
+ msd=0;
+ }
+ else { /* is finite number */
+ uInt exp=GETEXPUN(source)+DECWBIAS; /* get unbiased exponent and rebias */
+ uInt code=(exp>>DECWECONL)<<29; /* set two bits of exp [msd=0] */
+ code|=(exp<<(32-6-DECWECONL)) & 0x03ffffff; /* add exponent continuation */
+ code|=DFWORD(source, 0)&0x80000000; /* add sign */
+ DFWWORD(wider, 0)=code; /* .. and place top word in wider */
+ msd=GETMSD(source); /* get source coefficient MSD [0-9] */
+ }
+ /* Copy the coefficient and clear any 'unused' words to left */
+ #if SINGLE
+ DFWWORD(wider, 1)=(DFWORD(source, 0)&0x000fffff)|(msd<<20);
+ #elif DOUBLE
+ DFWWORD(wider, 2)=(DFWORD(source, 0)&0x0003ffff)|(msd<<18);
+ DFWWORD(wider, 3)=DFWORD(source, 1);
+ DFWWORD(wider, 1)=0;
+ #endif
+ return wider;
+ } /* decFloatToWider */
+#endif
+
+/* ------------------------------------------------------------------ */
+/* decFloatVersion -- return package version string */
+/* */
+/* returns a constant string describing this package */
+/* ------------------------------------------------------------------ */
+const char *decFloatVersion(void) {
+ return DECVERSION;
+ } /* decFloatVersion */
+
+/* ------------------------------------------------------------------ */
+/* decFloatZero -- set to canonical (integer) zero */
+/* */
+/* df is the decFloat format number to integer +0 (q=0, c=+0) */
+/* returns df */
+/* */
+/* No error is possible, and no status can be set. */
+/* ------------------------------------------------------------------ */
+decFloat * decFloatZero(decFloat *df){
+ DFWORD(df, 0)=ZEROWORD; /* set appropriate top word */
+ #if DOUBLE || QUAD
+ DFWORD(df, 1)=0;
+ #if QUAD
+ DFWORD(df, 2)=0;
+ DFWORD(df, 3)=0;
+ #endif
+ #endif
+ /* decFloatShow(df, "zero"); */
+ return df;
+ } /* decFloatZero */
+
+/* ------------------------------------------------------------------ */
+/* Private generic function (not format-specific) for development use */
+/* ------------------------------------------------------------------ */
+/* This is included once only, for all to use */
+#if QUAD && (DECCHECK || DECTRACE)
+ /* ---------------------------------------------------------------- */
+ /* decShowNum -- display bcd8 number in debug form */
+ /* */
+ /* num is the bcdnum to display */
+ /* tag is a string to label the display */
+ /* ---------------------------------------------------------------- */
+ void decShowNum(const bcdnum *num, const char *tag) {
+ const char *csign="+"; /* sign character */
+ uByte *ub; /* work */
+ if (num->sign==DECFLOAT_Sign) csign="-";
+
+ printf(">%s> ", tag);
+ if (num->exponent==DECFLOAT_Inf) printf("%sInfinity", csign);
+ else if (num->exponent==DECFLOAT_qNaN) printf("%sqNaN", csign);
+ else if (num->exponent==DECFLOAT_sNaN) printf("%ssNaN", csign);
+ else { /* finite */
+ char qbuf[10]; /* for right-aligned q */
+ char *c; /* work */
+ const uByte *u; /* .. */
+ Int e=num->exponent; /* .. exponent */
+ strcpy(qbuf, "q=");
+ c=&qbuf[2]; /* where exponent will go */
+ /* lay out the exponent */
+ if (e<0) {
+ *c++='-'; /* add '-' */
+ e=-e; /* uInt, please */
+ }
+ #if DECEMAXD>4
+ #error Exponent form is too long for ShowNum to lay out
+ #endif
+ if (e==0) *c++='0'; /* 0-length case */
+ else if (e<1000) { /* 3 (or fewer) digits case */
+ u=&BIN2BCD8[e*4]; /* -> 3 digits + length byte */
+ UINTAT(c)=UINTAT(u+3-*(u+3))|CHARMASK; /* [as above] */
+ c+=*(u+3); /* bump pointer appropriately */
+ }
+ else { /* 4-digits */
+ Int thou=((e>>3)*1049)>>17; /* e/1000 */
+ Int rem=e-(1000*thou); /* e%1000 */
+ *c++=(char)('0'+(char)thou); /* the thousands digit */
+ u=&BIN2BCD8[rem*4]; /* -> 3 digits + length byte */
+ UINTAT(c)=UINTAT(u)|CHARMASK; /* copy fixed 3+1 characters [is safe] */
+ c+=3; /* bump pointer, always 3 digits */
+ }
+ *c='\0'; /* add terminator */
+ printf("%7s c=%s", qbuf, csign);
+ }
+
+ if (!EXPISSPECIAL(num->exponent) || num->msd!=num->lsd || *num->lsd!=0) {
+ for (ub=num->msd; ub<=num->lsd; ub++) { /* coefficient... */
+ printf("%1x", *ub);
+ if ((num->lsd-ub)%3==0 && ub!=num->lsd) printf(" "); /* 4-space */
+ }
+ }
+ printf("\n");
+ } /* decShowNum */
+#endif
diff --git a/libdecnumber/decContext.c b/libdecnumber/decContext.c
index 66da2ae7956..07741931819 100644
--- a/libdecnumber/decContext.c
+++ b/libdecnumber/decContext.c
@@ -1,5 +1,5 @@
/* Decimal context module for the decNumber C Library.
- Copyright (C) 2005 Free Software Foundation, Inc.
+ Copyright (C) 2005, 2007 Free Software Foundation, Inc.
Contributed by IBM Corporation. Author Mike Cowlishaw.
This file is part of GCC.
@@ -28,201 +28,405 @@
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA. */
-/* This module compirises the routines for handling the arithmetic
- context structures. */
-
-#include <string.h> /* for strcmp */
-#include "config.h"
-#include "decContext.h" /* context and base types */
-#include "decNumberLocal.h" /* decNumber local types, etc. */
-
-/* ------------------------------------------------------------------ */
-/* decContextDefault -- initialize a context structure */
-/* */
-/* context is the structure to be initialized */
-/* kind selects the required set of default values, one of: */
-/* DEC_INIT_BASE -- select ANSI X3-274 defaults */
-/* DEC_INIT_DECIMAL32 -- select IEEE 754r defaults, 32-bit */
-/* DEC_INIT_DECIMAL64 -- select IEEE 754r defaults, 64-bit */
-/* DEC_INIT_DECIMAL128 -- select IEEE 754r defaults, 128-bit */
-/* For any other value a valid context is returned, but with */
-/* Invalid_operation set in the status field. */
+/* ------------------------------------------------------------------ */
+/* Decimal Context module */
+/* ------------------------------------------------------------------ */
+/* This module comprises the routines for handling arithmetic */
+/* context structures. */
+/* ------------------------------------------------------------------ */
+
+#include <string.h> /* for strcmp */
+#include <stdio.h> /* for printf if DECCHECK */
+#include "config.h" /* for GCC definitions */
+#include "decContext.h" /* context and base types */
+#include "decNumberLocal.h" /* decNumber local types, etc. */
+
+#if DECCHECK
+/* compile-time endian tester [assumes sizeof(Int)>1] */
+static const Int mfcone=1; /* constant 1 */
+static const Flag *mfctop=(Flag *)&mfcone; /* -> top byte */
+#define LITEND *mfctop /* named flag; 1=little-endian */
+#endif
+
+/* ------------------------------------------------------------------ */
+/* round-for-reround digits */
+/* ------------------------------------------------------------------ */
+const uByte DECSTICKYTAB[10]={1,1,2,3,4,6,6,7,8,9}; /* used if sticky */
+
+/* ------------------------------------------------------------------ */
+/* Powers of ten (powers[n]==10**n, 0<=n<=9) */
+/* ------------------------------------------------------------------ */
+const uInt DECPOWERS[10]={1, 10, 100, 1000, 10000, 100000, 1000000,
+ 10000000, 100000000, 1000000000};
+
+/* ------------------------------------------------------------------ */
+/* decContextClearStatus -- clear bits in current status */
+/* */
+/* context is the context structure to be queried */
+/* mask indicates the bits to be cleared (the status bit that */
+/* corresponds to each 1 bit in the mask is cleared) */
+/* returns context */
+/* */
+/* No error is possible. */
+/* ------------------------------------------------------------------ */
+decContext *decContextClearStatus(decContext *context, uInt mask) {
+ context->status&=~mask;
+ return context;
+ } /* decContextClearStatus */
+
+/* ------------------------------------------------------------------ */
+/* decContextDefault -- initialize a context structure */
+/* */
+/* context is the structure to be initialized */
+/* kind selects the required set of default values, one of: */
+/* DEC_INIT_BASE -- select ANSI X3-274 defaults */
+/* DEC_INIT_DECIMAL32 -- select IEEE 754r defaults, 32-bit */
+/* DEC_INIT_DECIMAL64 -- select IEEE 754r defaults, 64-bit */
+/* DEC_INIT_DECIMAL128 -- select IEEE 754r defaults, 128-bit */
+/* For any other value a valid context is returned, but with */
+/* Invalid_operation set in the status field. */
/* returns a context structure with the appropriate initial values. */
/* ------------------------------------------------------------------ */
-decContext *
-decContextDefault (decContext * context, Int kind)
-{
+decContext * decContextDefault(decContext *context, Int kind) {
/* set defaults... */
- context->digits = 9; /* 9 digits */
- context->emax = DEC_MAX_EMAX; /* 9-digit exponents */
- context->emin = DEC_MIN_EMIN; /* .. balanced */
- context->round = DEC_ROUND_HALF_UP; /* 0.5 rises */
- context->traps = DEC_Errors; /* all but informational */
- context->status = 0; /* cleared */
- context->clamp = 0; /* no clamping */
-#if DECSUBSET
- context->extended = 0; /* cleared */
-#endif
- switch (kind)
- {
+ context->digits=9; /* 9 digits */
+ context->emax=DEC_MAX_EMAX; /* 9-digit exponents */
+ context->emin=DEC_MIN_EMIN; /* .. balanced */
+ context->round=DEC_ROUND_HALF_UP; /* 0.5 rises */
+ context->traps=DEC_Errors; /* all but informational */
+ context->status=0; /* cleared */
+ context->clamp=0; /* no clamping */
+ #if DECSUBSET
+ context->extended=0; /* cleared */
+ #endif
+ switch (kind) {
case DEC_INIT_BASE:
/* [use defaults] */
break;
case DEC_INIT_DECIMAL32:
- context->digits = 7; /* digits */
- context->emax = 96; /* Emax */
- context->emin = -95; /* Emin */
- context->round = DEC_ROUND_HALF_EVEN; /* 0.5 to nearest even */
- context->traps = 0; /* no traps set */
- context->clamp = 1; /* clamp exponents */
-#if DECSUBSET
- context->extended = 1; /* set */
-#endif
+ context->digits=7; /* digits */
+ context->emax=96; /* Emax */
+ context->emin=-95; /* Emin */
+ context->round=DEC_ROUND_HALF_EVEN; /* 0.5 to nearest even */
+ context->traps=0; /* no traps set */
+ context->clamp=1; /* clamp exponents */
+ #if DECSUBSET
+ context->extended=1; /* set */
+ #endif
break;
case DEC_INIT_DECIMAL64:
- context->digits = 16; /* digits */
- context->emax = 384; /* Emax */
- context->emin = -383; /* Emin */
- context->round = DEC_ROUND_HALF_EVEN; /* 0.5 to nearest even */
- context->traps = 0; /* no traps set */
- context->clamp = 1; /* clamp exponents */
-#if DECSUBSET
- context->extended = 1; /* set */
-#endif
+ context->digits=16; /* digits */
+ context->emax=384; /* Emax */
+ context->emin=-383; /* Emin */
+ context->round=DEC_ROUND_HALF_EVEN; /* 0.5 to nearest even */
+ context->traps=0; /* no traps set */
+ context->clamp=1; /* clamp exponents */
+ #if DECSUBSET
+ context->extended=1; /* set */
+ #endif
break;
case DEC_INIT_DECIMAL128:
- context->digits = 34; /* digits */
- context->emax = 6144; /* Emax */
- context->emin = -6143; /* Emin */
- context->round = DEC_ROUND_HALF_EVEN; /* 0.5 to nearest even */
- context->traps = 0; /* no traps set */
- context->clamp = 1; /* clamp exponents */
-#if DECSUBSET
- context->extended = 1; /* set */
-#endif
+ context->digits=34; /* digits */
+ context->emax=6144; /* Emax */
+ context->emin=-6143; /* Emin */
+ context->round=DEC_ROUND_HALF_EVEN; /* 0.5 to nearest even */
+ context->traps=0; /* no traps set */
+ context->clamp=1; /* clamp exponents */
+ #if DECSUBSET
+ context->extended=1; /* set */
+ #endif
break;
- default: /* invalid Kind */
+ default: /* invalid Kind */
/* use defaults, and .. */
- decContextSetStatus (context, DEC_Invalid_operation); /* trap */
+ decContextSetStatus(context, DEC_Invalid_operation); /* trap */
+ }
+
+ #if DECCHECK
+ if (LITEND!=DECLITEND) {
+ const char *adj;
+ if (LITEND) adj="little";
+ else adj="big";
+ printf("Warning: DECLITEND is set to %d, but this computer appears to be %s-endian\n",
+ DECLITEND, adj);
}
+ #endif
+ return context;} /* decContextDefault */
+
+/* ------------------------------------------------------------------ */
+/* decContextGetRounding -- return current rounding mode */
+/* */
+/* context is the context structure to be queried */
+/* returns the rounding mode */
+/* */
+/* No error is possible. */
+/* ------------------------------------------------------------------ */
+enum rounding decContextGetRounding(decContext *context) {
+ return context->round;
+ } /* decContextGetRounding */
+
+/* ------------------------------------------------------------------ */
+/* decContextGetStatus -- return current status */
+/* */
+/* context is the context structure to be queried */
+/* returns status */
+/* */
+/* No error is possible. */
+/* ------------------------------------------------------------------ */
+uInt decContextGetStatus(decContext *context) {
+ return context->status;
+ } /* decContextGetStatus */
+
+/* ------------------------------------------------------------------ */
+/* decContextRestoreStatus -- restore bits in current status */
+/* */
+/* context is the context structure to be updated */
+/* newstatus is the source for the bits to be restored */
+/* mask indicates the bits to be restored (the status bit that */
+/* corresponds to each 1 bit in the mask is set to the value of */
+/* the correspnding bit in newstatus) */
+/* returns context */
+/* */
+/* No error is possible. */
+/* ------------------------------------------------------------------ */
+decContext *decContextRestoreStatus(decContext *context,
+ uInt newstatus, uInt mask) {
+ context->status&=~mask; /* clear the selected bits */
+ context->status|=(mask&newstatus); /* or in the new bits */
return context;
-} /* decContextDefault */
+ } /* decContextRestoreStatus */
/* ------------------------------------------------------------------ */
-/* decContextStatusToString -- convert status flags to a string */
-/* */
-/* context is a context with valid status field */
-/* */
-/* returns a constant string describing the condition. If multiple */
-/* (or no) flags are set, a generic constant message is returned. */
+/* decContextSaveStatus -- save bits in current status */
+/* */
+/* context is the context structure to be queried */
+/* mask indicates the bits to be saved (the status bits that */
+/* correspond to each 1 bit in the mask are saved) */
+/* returns the AND of the mask and the current status */
+/* */
+/* No error is possible. */
/* ------------------------------------------------------------------ */
-const char *
-decContextStatusToString (const decContext * context)
-{
- Int status = context->status;
- if (status == DEC_Conversion_syntax)
- return DEC_Condition_CS;
- if (status == DEC_Division_by_zero)
- return DEC_Condition_DZ;
- if (status == DEC_Division_impossible)
- return DEC_Condition_DI;
- if (status == DEC_Division_undefined)
- return DEC_Condition_DU;
- if (status == DEC_Inexact)
- return DEC_Condition_IE;
- if (status == DEC_Insufficient_storage)
- return DEC_Condition_IS;
- if (status == DEC_Invalid_context)
- return DEC_Condition_IC;
- if (status == DEC_Invalid_operation)
- return DEC_Condition_IO;
-#if DECSUBSET
- if (status == DEC_Lost_digits)
- return DEC_Condition_LD;
-#endif
- if (status == DEC_Overflow)
- return DEC_Condition_OV;
- if (status == DEC_Clamped)
- return DEC_Condition_PA;
- if (status == DEC_Rounded)
- return DEC_Condition_RO;
- if (status == DEC_Subnormal)
- return DEC_Condition_SU;
- if (status == DEC_Underflow)
- return DEC_Condition_UN;
- if (status == 0)
- return DEC_Condition_ZE;
- return DEC_Condition_MU; /* Multiple errors */
-} /* decContextStatusToString */
-
-/* ------------------------------------------------------------------ */
-/* decContextSetStatusFromString -- set status from a string */
-/* */
-/* context is the controlling context */
+uInt decContextSaveStatus(decContext *context, uInt mask) {
+ return context->status&mask;
+ } /* decContextSaveStatus */
+
+/* ------------------------------------------------------------------ */
+/* decContextSetRounding -- set current rounding mode */
+/* */
+/* context is the context structure to be updated */
+/* newround is the value which will replace the current mode */
+/* returns context */
+/* */
+/* No error is possible. */
+/* ------------------------------------------------------------------ */
+decContext *decContextSetRounding(decContext *context,
+ enum rounding newround) {
+ context->round=newround;
+ return context;
+ } /* decContextSetRounding */
+
+/* ------------------------------------------------------------------ */
+/* decContextSetStatus -- set status and raise trap if appropriate */
+/* */
+/* context is the context structure to be updated */
+/* status is the DEC_ exception code */
+/* returns the context structure */
+/* */
+/* Control may never return from this routine, if there is a signal */
+/* handler and it takes a long jump. */
+/* ------------------------------------------------------------------ */
+decContext * decContextSetStatus(decContext *context, uInt status) {
+ context->status|=status;
+ if (status & context->traps) raise(SIGFPE);
+ return context;} /* decContextSetStatus */
+
+/* ------------------------------------------------------------------ */
+/* decContextSetStatusFromString -- set status from a string + trap */
+/* */
+/* context is the context structure to be updated */
/* string is a string exactly equal to one that might be returned */
-/* by decContextStatusToString */
-/* */
+/* by decContextStatusToString */
+/* */
/* The status bit corresponding to the string is set, and a trap */
-/* is raised if appropriate. */
-/* */
+/* is raised if appropriate. */
+/* */
/* returns the context structure, unless the string is equal to */
/* DEC_Condition_MU or is not recognized. In these cases NULL is */
-/* returned. */
-/* ------------------------------------------------------------------ */
-decContext *
-decContextSetStatusFromString (decContext * context, const char *string)
-{
- if (strcmp (string, DEC_Condition_CS) == 0)
- return decContextSetStatus (context, DEC_Conversion_syntax);
- if (strcmp (string, DEC_Condition_DZ) == 0)
- return decContextSetStatus (context, DEC_Division_by_zero);
- if (strcmp (string, DEC_Condition_DI) == 0)
- return decContextSetStatus (context, DEC_Division_impossible);
- if (strcmp (string, DEC_Condition_DU) == 0)
- return decContextSetStatus (context, DEC_Division_undefined);
- if (strcmp (string, DEC_Condition_IE) == 0)
- return decContextSetStatus (context, DEC_Inexact);
- if (strcmp (string, DEC_Condition_IS) == 0)
- return decContextSetStatus (context, DEC_Insufficient_storage);
- if (strcmp (string, DEC_Condition_IC) == 0)
- return decContextSetStatus (context, DEC_Invalid_context);
- if (strcmp (string, DEC_Condition_IO) == 0)
- return decContextSetStatus (context, DEC_Invalid_operation);
-#if DECSUBSET
- if (strcmp (string, DEC_Condition_LD) == 0)
- return decContextSetStatus (context, DEC_Lost_digits);
-#endif
- if (strcmp (string, DEC_Condition_OV) == 0)
- return decContextSetStatus (context, DEC_Overflow);
- if (strcmp (string, DEC_Condition_PA) == 0)
- return decContextSetStatus (context, DEC_Clamped);
- if (strcmp (string, DEC_Condition_RO) == 0)
- return decContextSetStatus (context, DEC_Rounded);
- if (strcmp (string, DEC_Condition_SU) == 0)
- return decContextSetStatus (context, DEC_Subnormal);
- if (strcmp (string, DEC_Condition_UN) == 0)
- return decContextSetStatus (context, DEC_Underflow);
- if (strcmp (string, DEC_Condition_ZE) == 0)
+/* returned. */
+/* ------------------------------------------------------------------ */
+decContext * decContextSetStatusFromString(decContext *context,
+ const char *string) {
+ if (strcmp(string, DEC_Condition_CS)==0)
+ return decContextSetStatus(context, DEC_Conversion_syntax);
+ if (strcmp(string, DEC_Condition_DZ)==0)
+ return decContextSetStatus(context, DEC_Division_by_zero);
+ if (strcmp(string, DEC_Condition_DI)==0)
+ return decContextSetStatus(context, DEC_Division_impossible);
+ if (strcmp(string, DEC_Condition_DU)==0)
+ return decContextSetStatus(context, DEC_Division_undefined);
+ if (strcmp(string, DEC_Condition_IE)==0)
+ return decContextSetStatus(context, DEC_Inexact);
+ if (strcmp(string, DEC_Condition_IS)==0)
+ return decContextSetStatus(context, DEC_Insufficient_storage);
+ if (strcmp(string, DEC_Condition_IC)==0)
+ return decContextSetStatus(context, DEC_Invalid_context);
+ if (strcmp(string, DEC_Condition_IO)==0)
+ return decContextSetStatus(context, DEC_Invalid_operation);
+ #if DECSUBSET
+ if (strcmp(string, DEC_Condition_LD)==0)
+ return decContextSetStatus(context, DEC_Lost_digits);
+ #endif
+ if (strcmp(string, DEC_Condition_OV)==0)
+ return decContextSetStatus(context, DEC_Overflow);
+ if (strcmp(string, DEC_Condition_PA)==0)
+ return decContextSetStatus(context, DEC_Clamped);
+ if (strcmp(string, DEC_Condition_RO)==0)
+ return decContextSetStatus(context, DEC_Rounded);
+ if (strcmp(string, DEC_Condition_SU)==0)
+ return decContextSetStatus(context, DEC_Subnormal);
+ if (strcmp(string, DEC_Condition_UN)==0)
+ return decContextSetStatus(context, DEC_Underflow);
+ if (strcmp(string, DEC_Condition_ZE)==0)
return context;
- return NULL; /* Multiple status, or unknown */
-} /* decContextSetStatusFromString */
+ return NULL; /* Multiple status, or unknown */
+ } /* decContextSetStatusFromString */
/* ------------------------------------------------------------------ */
-/* decContextSetStatus -- set status and raise trap if appropriate */
-/* */
-/* context is the controlling context */
-/* status is the DEC_ exception code */
-/* returns the context structure */
-/* */
-/* Control may never return from this routine, if there is a signal */
-/* handler and it takes a long jump. */
-/* ------------------------------------------------------------------ */
-decContext *
-decContextSetStatus (decContext * context, uInt status)
-{
- context->status |= status;
- if (status & context->traps)
- raise (SIGFPE);
+/* decContextSetStatusFromStringQuiet -- set status from a string */
+/* */
+/* context is the context structure to be updated */
+/* string is a string exactly equal to one that might be returned */
+/* by decContextStatusToString */
+/* */
+/* The status bit corresponding to the string is set; no trap is */
+/* raised. */
+/* */
+/* returns the context structure, unless the string is equal to */
+/* DEC_Condition_MU or is not recognized. In these cases NULL is */
+/* returned. */
+/* ------------------------------------------------------------------ */
+decContext * decContextSetStatusFromStringQuiet(decContext *context,
+ const char *string) {
+ if (strcmp(string, DEC_Condition_CS)==0)
+ return decContextSetStatusQuiet(context, DEC_Conversion_syntax);
+ if (strcmp(string, DEC_Condition_DZ)==0)
+ return decContextSetStatusQuiet(context, DEC_Division_by_zero);
+ if (strcmp(string, DEC_Condition_DI)==0)
+ return decContextSetStatusQuiet(context, DEC_Division_impossible);
+ if (strcmp(string, DEC_Condition_DU)==0)
+ return decContextSetStatusQuiet(context, DEC_Division_undefined);
+ if (strcmp(string, DEC_Condition_IE)==0)
+ return decContextSetStatusQuiet(context, DEC_Inexact);
+ if (strcmp(string, DEC_Condition_IS)==0)
+ return decContextSetStatusQuiet(context, DEC_Insufficient_storage);
+ if (strcmp(string, DEC_Condition_IC)==0)
+ return decContextSetStatusQuiet(context, DEC_Invalid_context);
+ if (strcmp(string, DEC_Condition_IO)==0)
+ return decContextSetStatusQuiet(context, DEC_Invalid_operation);
+ #if DECSUBSET
+ if (strcmp(string, DEC_Condition_LD)==0)
+ return decContextSetStatusQuiet(context, DEC_Lost_digits);
+ #endif
+ if (strcmp(string, DEC_Condition_OV)==0)
+ return decContextSetStatusQuiet(context, DEC_Overflow);
+ if (strcmp(string, DEC_Condition_PA)==0)
+ return decContextSetStatusQuiet(context, DEC_Clamped);
+ if (strcmp(string, DEC_Condition_RO)==0)
+ return decContextSetStatusQuiet(context, DEC_Rounded);
+ if (strcmp(string, DEC_Condition_SU)==0)
+ return decContextSetStatusQuiet(context, DEC_Subnormal);
+ if (strcmp(string, DEC_Condition_UN)==0)
+ return decContextSetStatusQuiet(context, DEC_Underflow);
+ if (strcmp(string, DEC_Condition_ZE)==0)
+ return context;
+ return NULL; /* Multiple status, or unknown */
+ } /* decContextSetStatusFromStringQuiet */
+
+/* ------------------------------------------------------------------ */
+/* decContextSetStatusQuiet -- set status without trap */
+/* */
+/* context is the context structure to be updated */
+/* status is the DEC_ exception code */
+/* returns the context structure */
+/* */
+/* No error is possible. */
+/* ------------------------------------------------------------------ */
+decContext * decContextSetStatusQuiet(decContext *context, uInt status) {
+ context->status|=status;
+ return context;} /* decContextSetStatusQuiet */
+
+/* ------------------------------------------------------------------ */
+/* decContextStatusToString -- convert status flags to a string */
+/* */
+/* context is a context with valid status field */
+/* */
+/* returns a constant string describing the condition. If multiple */
+/* (or no) flags are set, a generic constant message is returned. */
+/* ------------------------------------------------------------------ */
+const char *decContextStatusToString(const decContext *context) {
+ Int status=context->status;
+
+ /* test the five IEEE first, as some of the others are ambiguous when */
+ /* DECEXTFLAG=0 */
+ if (status==DEC_Invalid_operation ) return DEC_Condition_IO;
+ if (status==DEC_Division_by_zero ) return DEC_Condition_DZ;
+ if (status==DEC_Overflow ) return DEC_Condition_OV;
+ if (status==DEC_Underflow ) return DEC_Condition_UN;
+ if (status==DEC_Inexact ) return DEC_Condition_IE;
+
+ if (status==DEC_Division_impossible ) return DEC_Condition_DI;
+ if (status==DEC_Division_undefined ) return DEC_Condition_DU;
+ if (status==DEC_Rounded ) return DEC_Condition_RO;
+ if (status==DEC_Clamped ) return DEC_Condition_PA;
+ if (status==DEC_Subnormal ) return DEC_Condition_SU;
+ if (status==DEC_Conversion_syntax ) return DEC_Condition_CS;
+ if (status==DEC_Insufficient_storage ) return DEC_Condition_IS;
+ if (status==DEC_Invalid_context ) return DEC_Condition_IC;
+ #if DECSUBSET
+ if (status==DEC_Lost_digits ) return DEC_Condition_LD;
+ #endif
+ if (status==0 ) return DEC_Condition_ZE;
+ return DEC_Condition_MU; /* Multiple errors */
+ } /* decContextStatusToString */
+
+/* ------------------------------------------------------------------ */
+/* decContextTestSavedStatus -- test bits in saved status */
+/* */
+/* oldstatus is the status word to be tested */
+/* mask indicates the bits to be tested (the oldstatus bits that */
+/* correspond to each 1 bit in the mask are tested) */
+/* returns 1 if any of the tested bits are 1, or 0 otherwise */
+/* */
+/* No error is possible. */
+/* ------------------------------------------------------------------ */
+uInt decContextTestSavedStatus(uInt oldstatus, uInt mask) {
+ return (oldstatus&mask)!=0;
+ } /* decContextTestSavedStatus */
+
+/* ------------------------------------------------------------------ */
+/* decContextTestStatus -- test bits in current status */
+/* */
+/* context is the context structure to be updated */
+/* mask indicates the bits to be tested (the status bits that */
+/* correspond to each 1 bit in the mask are tested) */
+/* returns 1 if any of the tested bits are 1, or 0 otherwise */
+/* */
+/* No error is possible. */
+/* ------------------------------------------------------------------ */
+uInt decContextTestStatus(decContext *context, uInt mask) {
+ return (context->status&mask)!=0;
+ } /* decContextTestStatus */
+
+/* ------------------------------------------------------------------ */
+/* decContextZeroStatus -- clear all status bits */
+/* */
+/* context is the context structure to be updated */
+/* returns context */
+/* */
+/* No error is possible. */
+/* ------------------------------------------------------------------ */
+decContext *decContextZeroStatus(decContext *context) {
+ context->status=0;
return context;
-} /* decContextSetStatus */
+ } /* decContextZeroStatus */
+
diff --git a/libdecnumber/decContext.h b/libdecnumber/decContext.h
index 5252b33d529..f80d03c50cf 100644
--- a/libdecnumber/decContext.h
+++ b/libdecnumber/decContext.h
@@ -1,5 +1,5 @@
-/* Decimal Context module header for the decNumber C Library
- Copyright (C) 2005, 2006 Free Software Foundation, Inc.
+/* Decimal context header module for the decNumber C Library.
+ Copyright (C) 2005, 2007 Free Software Foundation, Inc.
Contributed by IBM Corporation. Author Mike Cowlishaw.
This file is part of GCC.
@@ -29,159 +29,230 @@
02110-1301, USA. */
/* ------------------------------------------------------------------ */
-/* */
-/* Context must always be set correctly: */
-/* */
-/* digits -- must be in the range 1 through 999999999 */
-/* emax -- must be in the range 0 through 999999999 */
-/* emin -- must be in the range 0 through -999999999 */
-/* round -- must be one of the enumerated rounding modes */
-/* traps -- only defined bits may be set */
-/* status -- [any bits may be cleared, but not set, by user] */
-/* clamp -- must be either 0 or 1 */
+/* Decimal Context module header */
+/* ------------------------------------------------------------------ */
+/* */
+/* Context variables must always have valid values: */
+/* */
+/* status -- [any bits may be cleared, but not set, by user] */
+/* round -- must be one of the enumerated rounding modes */
+/* */
+/* The following variables are implied for fixed size formats (i.e., */
+/* they are ignored) but should still be set correctly in case used */
+/* with decNumber functions: */
+/* */
+/* clamp -- must be either 0 or 1 */
+/* digits -- must be in the range 1 through 999999999 */
+/* emax -- must be in the range 0 through 999999999 */
+/* emin -- must be in the range 0 through -999999999 */
/* extended -- must be either 0 or 1 [present only if DECSUBSET] */
-/* */
+/* traps -- only defined bits may be set */
+/* */
/* ------------------------------------------------------------------ */
#if !defined(DECCONTEXT)
-#define DECCONTEXT
-#define DECCNAME "decContext" /* Short name */
-#define DECCFULLNAME "Decimal Context Descriptor" /* Verbose name */
-#define DECCAUTHOR "Mike Cowlishaw" /* Who to blame */
-
-#include "gstdint.h" /* C99 standard integers */
-#include <signal.h> /* for traps */
-
-
- /* Conditional code flag -- set this to 0 for best performance */
-#define DECSUBSET 0 /* 1 to enable subset arithmetic */
-
- /* Context for operations, with associated constants */
-enum rounding
-{
- DEC_ROUND_CEILING, /* round towards +infinity */
- DEC_ROUND_UP, /* round away from 0 */
- DEC_ROUND_HALF_UP, /* 0.5 rounds up */
- DEC_ROUND_HALF_EVEN, /* 0.5 rounds to nearest even */
- DEC_ROUND_HALF_DOWN, /* 0.5 rounds down */
- DEC_ROUND_DOWN, /* round towards 0 (truncate) */
- DEC_ROUND_FLOOR, /* round towards -infinity */
- DEC_ROUND_MAX /* enum must be less than this */
-};
-
-typedef struct
-{
- int32_t digits; /* working precision */
- int32_t emax; /* maximum positive exponent */
- int32_t emin; /* minimum negative exponent */
- enum rounding round; /* rounding mode */
- uint32_t traps; /* trap-enabler flags */
- uint32_t status; /* status flags */
- uint8_t clamp; /* flag: apply IEEE exponent clamp */
-#if DECSUBSET
- uint8_t extended; /* flag: special-values allowed */
-#endif
-} decContext;
-
- /* Maxima and Minima */
-#define DEC_MAX_DIGITS 999999999
-#define DEC_MIN_DIGITS 1
-#define DEC_MAX_EMAX 999999999
-#define DEC_MIN_EMAX 0
-#define DEC_MAX_EMIN 0
-#define DEC_MIN_EMIN -999999999
-
- /* Trap-enabler and Status flags (exceptional conditions), and their names */
- /* Top byte is reserved for internal use */
-#define DEC_Conversion_syntax 0x00000001
-#define DEC_Division_by_zero 0x00000002
-#define DEC_Division_impossible 0x00000004
-#define DEC_Division_undefined 0x00000008
-#define DEC_Insufficient_storage 0x00000010 /* [used if malloc fails] */
-#define DEC_Inexact 0x00000020
-#define DEC_Invalid_context 0x00000040
-#define DEC_Invalid_operation 0x00000080
-#if DECSUBSET
-#define DEC_Lost_digits 0x00000100
-#endif
-#define DEC_Overflow 0x00000200
-#define DEC_Clamped 0x00000400
-#define DEC_Rounded 0x00000800
-#define DEC_Subnormal 0x00001000
-#define DEC_Underflow 0x00002000
-
- /* IEEE 854 groupings for the flags */
- /* [DEC_Clamped, DEC_Lost_digits, DEC_Rounded, and DEC_Subnormal are */
- /* not in IEEE 854] */
-#define DEC_IEEE_854_Division_by_zero (DEC_Division_by_zero)
-#if DECSUBSET
-#define DEC_IEEE_854_Inexact (DEC_Inexact | DEC_Lost_digits)
-#else
-#define DEC_IEEE_854_Inexact (DEC_Inexact)
-#endif
-#define DEC_IEEE_854_Invalid_operation (DEC_Conversion_syntax | \
- DEC_Division_impossible | \
- DEC_Division_undefined | \
- DEC_Insufficient_storage | \
- DEC_Invalid_context | \
- DEC_Invalid_operation)
-#define DEC_IEEE_854_Overflow (DEC_Overflow)
-#define DEC_IEEE_854_Underflow (DEC_Underflow)
-
- /* flags which are normally errors (results are qNaN, infinite, or 0) */
-#define DEC_Errors (DEC_IEEE_854_Division_by_zero | \
- DEC_IEEE_854_Invalid_operation | \
- DEC_IEEE_854_Overflow | DEC_IEEE_854_Underflow)
- /* flags which cause a result to become qNaN */
-#define DEC_NaNs DEC_IEEE_854_Invalid_operation
-
- /* flags which are normally for information only (have finite results) */
-#if DECSUBSET
-#define DEC_Information (DEC_Clamped | DEC_Rounded | DEC_Inexact \
- | DEC_Lost_digits)
-#else
-#define DEC_Information (DEC_Clamped | DEC_Rounded | DEC_Inexact)
-#endif
+ #define DECCONTEXT
+ #define DECCNAME "decContext" /* Short name */
+ #define DECCFULLNAME "Decimal Context Descriptor" /* Verbose name */
+ #define DECCAUTHOR "Mike Cowlishaw" /* Who to blame */
- /* name strings for the exceptional conditions */
-
-#define DEC_Condition_CS "Conversion syntax"
-#define DEC_Condition_DZ "Division by zero"
-#define DEC_Condition_DI "Division impossible"
-#define DEC_Condition_DU "Division undefined"
-#define DEC_Condition_IE "Inexact"
-#define DEC_Condition_IS "Insufficient storage"
-#define DEC_Condition_IC "Invalid context"
-#define DEC_Condition_IO "Invalid operation"
-#if DECSUBSET
-#define DEC_Condition_LD "Lost digits"
-#endif
-#define DEC_Condition_OV "Overflow"
-#define DEC_Condition_PA "Clamped"
-#define DEC_Condition_RO "Rounded"
-#define DEC_Condition_SU "Subnormal"
-#define DEC_Condition_UN "Underflow"
-#define DEC_Condition_ZE "No status"
-#define DEC_Condition_MU "Multiple status"
-#define DEC_Condition_Length 21 /* length of the longest string, */
- /* including terminator */
-
- /* Initialization descriptors, used by decContextDefault */
-#define DEC_INIT_BASE 0
-#define DEC_INIT_DECIMAL32 32
-#define DEC_INIT_DECIMAL64 64
-#define DEC_INIT_DECIMAL128 128
-
- /* decContext routines */
-#ifdef IN_LIBGCC2
-#define decContextDefault __decContextDefault
-#define decContextSetStatus __decContextSetStatus
-#define decContextStatusToString __decContextStatusToString
-#define decContextSetStatusFromString __decContextSetStatusFromString
-#endif
-decContext *decContextDefault (decContext *, int32_t);
-decContext *decContextSetStatus (decContext *, uint32_t);
-const char *decContextStatusToString (const decContext *);
-decContext *decContextSetStatusFromString (decContext *, const char *);
+ #include "gstdint.h" /* C99 standard integers */
+ #include <stdio.h> /* for printf, etc. */
+ #include <signal.h> /* for traps */
+
+ /* Extended flags setting -- set this to 0 to use only IEEE flags */
+ #define DECEXTFLAG 1 /* 1=enable extended flags */
+
+ /* Conditional code flag -- set this to 0 for best performance */
+ #define DECSUBSET 0 /* 1=enable subset arithmetic */
+
+ /* Context for operations, with associated constants */
+ enum rounding {
+ DEC_ROUND_CEILING, /* round towards +infinity */
+ DEC_ROUND_UP, /* round away from 0 */
+ DEC_ROUND_HALF_UP, /* 0.5 rounds up */
+ DEC_ROUND_HALF_EVEN, /* 0.5 rounds to nearest even */
+ DEC_ROUND_HALF_DOWN, /* 0.5 rounds down */
+ DEC_ROUND_DOWN, /* round towards 0 (truncate) */
+ DEC_ROUND_FLOOR, /* round towards -infinity */
+ DEC_ROUND_05UP, /* round for reround */
+ DEC_ROUND_MAX /* enum must be less than this */
+ };
+ #define DEC_ROUND_DEFAULT DEC_ROUND_HALF_EVEN;
+
+ typedef struct {
+ int32_t digits; /* working precision */
+ int32_t emax; /* maximum positive exponent */
+ int32_t emin; /* minimum negative exponent */
+ enum rounding round; /* rounding mode */
+ uint32_t traps; /* trap-enabler flags */
+ uint32_t status; /* status flags */
+ uint8_t clamp; /* flag: apply IEEE exponent clamp */
+ #if DECSUBSET
+ uint8_t extended; /* flag: special-values allowed */
+ #endif
+ } decContext;
+
+ /* Maxima and Minima for context settings */
+ #define DEC_MAX_DIGITS 999999999
+ #define DEC_MIN_DIGITS 1
+ #define DEC_MAX_EMAX 999999999
+ #define DEC_MIN_EMAX 0
+ #define DEC_MAX_EMIN 0
+ #define DEC_MIN_EMIN -999999999
+ #define DEC_MAX_MATH 999999 /* max emax, etc., for math funcs. */
+
+ /* Classifications for decimal numbers, aligned with 754r (note */
+ /* that 'normal' and 'subnormal' are meaningful only with a */
+ /* decContext or a fixed size format). */
+ enum decClass {
+ DEC_CLASS_SNAN,
+ DEC_CLASS_QNAN,
+ DEC_CLASS_NEG_INF,
+ DEC_CLASS_NEG_NORMAL,
+ DEC_CLASS_NEG_SUBNORMAL,
+ DEC_CLASS_NEG_ZERO,
+ DEC_CLASS_POS_ZERO,
+ DEC_CLASS_POS_SUBNORMAL,
+ DEC_CLASS_POS_NORMAL,
+ DEC_CLASS_POS_INF
+ };
+ /* Strings for the decClasses */
+ #define DEC_ClassString_SN "sNaN"
+ #define DEC_ClassString_QN "NaN"
+ #define DEC_ClassString_NI "-Infinity"
+ #define DEC_ClassString_NN "-Normal"
+ #define DEC_ClassString_NS "-Subnormal"
+ #define DEC_ClassString_NZ "-Zero"
+ #define DEC_ClassString_PZ "+Zero"
+ #define DEC_ClassString_PS "+Subnormal"
+ #define DEC_ClassString_PN "+Normal"
+ #define DEC_ClassString_PI "+Infinity"
+ #define DEC_ClassString_UN "Invalid"
+
+ /* Trap-enabler and Status flags (exceptional conditions), and */
+ /* their names. The top byte is reserved for internal use */
+ #if DECEXTFLAG
+ /* Extended flags */
+ #define DEC_Conversion_syntax 0x00000001
+ #define DEC_Division_by_zero 0x00000002
+ #define DEC_Division_impossible 0x00000004
+ #define DEC_Division_undefined 0x00000008
+ #define DEC_Insufficient_storage 0x00000010 /* [when malloc fails] */
+ #define DEC_Inexact 0x00000020
+ #define DEC_Invalid_context 0x00000040
+ #define DEC_Invalid_operation 0x00000080
+ #if DECSUBSET
+ #define DEC_Lost_digits 0x00000100
+ #endif
+ #define DEC_Overflow 0x00000200
+ #define DEC_Clamped 0x00000400
+ #define DEC_Rounded 0x00000800
+ #define DEC_Subnormal 0x00001000
+ #define DEC_Underflow 0x00002000
+ #else
+ /* IEEE flags only */
+ #define DEC_Conversion_syntax 0x00000010
+ #define DEC_Division_by_zero 0x00000002
+ #define DEC_Division_impossible 0x00000010
+ #define DEC_Division_undefined 0x00000010
+ #define DEC_Insufficient_storage 0x00000010 /* [when malloc fails] */
+ #define DEC_Inexact 0x00000001
+ #define DEC_Invalid_context 0x00000010
+ #define DEC_Invalid_operation 0x00000010
+ #if DECSUBSET
+ #define DEC_Lost_digits 0x00000000
+ #endif
+ #define DEC_Overflow 0x00000008
+ #define DEC_Clamped 0x00000000
+ #define DEC_Rounded 0x00000000
+ #define DEC_Subnormal 0x00000000
+ #define DEC_Underflow 0x00000004
+ #endif
+
+ /* IEEE 854 groupings for the flags */
+ /* [DEC_Clamped, DEC_Lost_digits, DEC_Rounded, and DEC_Subnormal */
+ /* are not in IEEE 854] */
+ #define DEC_IEEE_854_Division_by_zero (DEC_Division_by_zero)
+ #if DECSUBSET
+ #define DEC_IEEE_854_Inexact (DEC_Inexact | DEC_Lost_digits)
+ #else
+ #define DEC_IEEE_854_Inexact (DEC_Inexact)
+ #endif
+ #define DEC_IEEE_854_Invalid_operation (DEC_Conversion_syntax | \
+ DEC_Division_impossible | \
+ DEC_Division_undefined | \
+ DEC_Insufficient_storage | \
+ DEC_Invalid_context | \
+ DEC_Invalid_operation)
+ #define DEC_IEEE_854_Overflow (DEC_Overflow)
+ #define DEC_IEEE_854_Underflow (DEC_Underflow)
+
+ /* flags which are normally errors (result is qNaN, infinite, or 0) */
+ #define DEC_Errors (DEC_IEEE_854_Division_by_zero | \
+ DEC_IEEE_854_Invalid_operation | \
+ DEC_IEEE_854_Overflow | DEC_IEEE_854_Underflow)
+ /* flags which cause a result to become qNaN */
+ #define DEC_NaNs DEC_IEEE_854_Invalid_operation
+
+ /* flags which are normally for information only (finite results) */
+ #if DECSUBSET
+ #define DEC_Information (DEC_Clamped | DEC_Rounded | DEC_Inexact \
+ | DEC_Lost_digits)
+ #else
+ #define DEC_Information (DEC_Clamped | DEC_Rounded | DEC_Inexact)
+ #endif
+
+ /* Name strings for the exceptional conditions */
+ #define DEC_Condition_CS "Conversion syntax"
+ #define DEC_Condition_DZ "Division by zero"
+ #define DEC_Condition_DI "Division impossible"
+ #define DEC_Condition_DU "Division undefined"
+ #define DEC_Condition_IE "Inexact"
+ #define DEC_Condition_IS "Insufficient storage"
+ #define DEC_Condition_IC "Invalid context"
+ #define DEC_Condition_IO "Invalid operation"
+ #if DECSUBSET
+ #define DEC_Condition_LD "Lost digits"
+ #endif
+ #define DEC_Condition_OV "Overflow"
+ #define DEC_Condition_PA "Clamped"
+ #define DEC_Condition_RO "Rounded"
+ #define DEC_Condition_SU "Subnormal"
+ #define DEC_Condition_UN "Underflow"
+ #define DEC_Condition_ZE "No status"
+ #define DEC_Condition_MU "Multiple status"
+ #define DEC_Condition_Length 21 /* length of the longest string, */
+ /* including terminator */
+
+ /* Initialization descriptors, used by decContextDefault */
+ #define DEC_INIT_BASE 0
+ #define DEC_INIT_DECIMAL32 32
+ #define DEC_INIT_DECIMAL64 64
+ #define DEC_INIT_DECIMAL128 128
+ /* Synonyms */
+ #define DEC_INIT_DECSINGLE DEC_INIT_DECIMAL32
+ #define DEC_INIT_DECDOUBLE DEC_INIT_DECIMAL64
+ #define DEC_INIT_DECQUAD DEC_INIT_DECIMAL128
+
+ /* decContext routines */
+
+ #include "decContextSymbols.h"
+
+ extern decContext * decContextClearStatus(decContext *, uint32_t);
+ extern decContext * decContextDefault(decContext *, int32_t);
+ extern enum rounding decContextGetRounding(decContext *);
+ extern uint32_t decContextGetStatus(decContext *);
+ extern decContext * decContextRestoreStatus(decContext *, uint32_t, uint32_t);
+ extern uint32_t decContextSaveStatus(decContext *, uint32_t);
+ extern decContext * decContextSetRounding(decContext *, enum rounding);
+ extern decContext * decContextSetStatus(decContext *, uint32_t);
+ extern decContext * decContextSetStatusFromString(decContext *, const char *);
+ extern decContext * decContextSetStatusFromStringQuiet(decContext *, const char *);
+ extern decContext * decContextSetStatusQuiet(decContext *, uint32_t);
+ extern const char * decContextStatusToString(const decContext *);
+ extern uint32_t decContextTestSavedStatus(uint32_t, uint32_t);
+ extern uint32_t decContextTestStatus(decContext *, uint32_t);
+ extern decContext * decContextZeroStatus(decContext *);
#endif
diff --git a/libdecnumber/decContextSymbols.h b/libdecnumber/decContextSymbols.h
new file mode 100644
index 00000000000..38830a916dc
--- /dev/null
+++ b/libdecnumber/decContextSymbols.h
@@ -0,0 +1,22 @@
+#if !defined(DECCONTEXTSYMBOLS)
+#define DECCONTEXTSYMBOLS
+
+#ifdef IN_LIBGCC2
+#define decContextClearStatus __decContextClearStatus
+#define decContextDefault __decContextDefault
+#define decContextGetRounding __decContextGetRounding
+#define decContextGetStatus __decContextGetStatus
+#define decContextRestoreStatus __decContextRestoreStatus
+#define decContextSaveStatus __decContextSaveStatus
+#define decContextSetRounding __decContextSetRounding
+#define decContextSetStatus __decContextSetStatus
+#define decContextSetStatusFromString __decContextSetStatusFromString
+#define decContextSetStatusFromStringQuiet __decContextSetStatusFromStringQuiet
+#define decContextSetStatusQuiet __decContextSetStatusQuiet
+#define decContextStatusToString __decContextStatusToString
+#define decContextTestSavedStatus __decContextTestSavedStatus
+#define decContextTestStatus __decContextTestStatus
+#define decContextZeroStatus __decContextZeroStatus
+#endif
+
+#endif
diff --git a/libdecnumber/decDPD.h b/libdecnumber/decDPD.h
index 159683bb960..8e0347c6aa8 100644
--- a/libdecnumber/decDPD.h
+++ b/libdecnumber/decDPD.h
@@ -1,5 +1,5 @@
-/* Binary Coded Decimal <--> Densely Packed Decimal lookup tables.
- Copyright (C) 2005 Free Software Foundation, Inc.
+/* Conversion lookup tables for the decNumber C Library.
+ Copyright (C) 2007 Free Software Foundation, Inc.
Contributed by IBM Corporation. Author Mike Cowlishaw.
This file is part of GCC.
@@ -29,506 +29,1186 @@
02110-1301, USA. */
/* ------------------------------------------------------------------------ */
-/* For details, see: http://www2.hursley.ibm.com/decimal/DPDecimal.html */
-/* */
-/* This include file defines conversion tables for DPD, as follows. */
-/* */
-/* uint16_t BCD2DPD[2458]; // BCD -> DPD (0x999 => 2457) */
-/* uint16_t DPD2BCD[1024]; // DPD -> BCD (0x3FF => 0x999) */
-/* uint16_t BIN2DPD[1000]; // BIN -> DPD (999 => 2457) */
-/* uint16_t DPD2BIN[1024]; // DPD -> BIN (0x3FF => 999) */
-/* */
+/* Binary Coded Decimal and Densely Packed Decimal conversion lookup tables */
+/* [Automatically generated -- do not edit. 2007.05.05] */
+/* ------------------------------------------------------------------------ */
+/* ------------------------------------------------------------------------ */
+/* For details, see: http://www2.hursley.ibm.com/decimal/DPDecimal.html */
+/* */
+/* This include file defines several DPD and BCD conversion tables: */
+/* */
+/* uint16_t BCD2DPD[2458]; -- BCD -> DPD (0x999 => 2457) */
+/* uint16_t BIN2DPD[1000]; -- Bin -> DPD (999 => 2457) */
+/* uint8_t BIN2CHAR[4001]; -- Bin -> CHAR (999 => '\3' '9' '9' '9') */
+/* uint8_t BIN2BCD8[4000]; -- Bin -> bytes (999 => 9 9 9 3) */
+/* uint16_t DPD2BCD[1024]; -- DPD -> BCD (0x3FF => 0x999) */
+/* uint16_t DPD2BIN[1024]; -- DPD -> BIN (0x3FF => 999) */
+/* uint32_t DPD2BINK[1024]; -- DPD -> BIN * 1000 (0x3FF => 999000) */
+/* uint32_t DPD2BINM[1024]; -- DPD -> BIN * 1E+6 (0x3FF => 999000000) */
+/* uint8_t DPD2BCD8[4096]; -- DPD -> bytes (x3FF => 9 9 9 3) */
+/* */
/* In all cases the result (10 bits or 12 bits, or binary) is right-aligned */
-/* in the table entry. */
-/* */
-/* To use a table, its name, prefixed with DEC_, must be defined with a */
-/* value of 1 before this header file is included. For example: */
-/* #define DEC_BCD2DPD 1 */
+/* in the table entry. BIN2CHAR entries are a single byte length (0 for */
+/* value 0) followed by three digit characters; a trailing terminator is */
+/* included to allow 4-char moves always. BIN2BCD8 and DPD2BCD8 entries */
+/* are similar with the three BCD8 digits followed by a one-byte length */
+/* (again, length=0 for value 0). */
+/* */
+/* To use a table, its name, prefixed with DEC_, must be defined with a */
+/* value of 1 before this header file is included. For example: */
+/* #define DEC_BCD2DPD 1 */
+/* This mechanism allows software to only include tables that are needed. */
/* ------------------------------------------------------------------------ */
-#if DEC_BCD2DPD==1
+#if defined(DEC_BCD2DPD) && DEC_BCD2DPD==1 && !defined(DECBCD2DPD)
+#define DECBCD2DPD
+
+const uint16_t BCD2DPD[2458]={ 0, 1, 2, 3, 4, 5, 6, 7,
+ 8, 9, 0, 0, 0, 0, 0, 0, 16, 17, 18, 19, 20,
+ 21, 22, 23, 24, 25, 0, 0, 0, 0, 0, 0, 32, 33,
+ 34, 35, 36, 37, 38, 39, 40, 41, 0, 0, 0, 0, 0,
+ 0, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 0, 0,
+ 0, 0, 0, 0, 64, 65, 66, 67, 68, 69, 70, 71, 72,
+ 73, 0, 0, 0, 0, 0, 0, 80, 81, 82, 83, 84, 85,
+ 86, 87, 88, 89, 0, 0, 0, 0, 0, 0, 96, 97, 98,
+ 99, 100, 101, 102, 103, 104, 105, 0, 0, 0, 0, 0, 0,
+ 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 0, 0, 0,
+ 0, 0, 0, 10, 11, 42, 43, 74, 75, 106, 107, 78, 79,
+ 0, 0, 0, 0, 0, 0, 26, 27, 58, 59, 90, 91, 122,
+ 123, 94, 95, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 0, 0,
+ 0, 0, 0, 0, 144, 145, 146, 147, 148, 149, 150, 151, 152,
+ 153, 0, 0, 0, 0, 0, 0, 160, 161, 162, 163, 164, 165,
+ 166, 167, 168, 169, 0, 0, 0, 0, 0, 0, 176, 177, 178,
+ 179, 180, 181, 182, 183, 184, 185, 0, 0, 0, 0, 0, 0,
+ 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 0, 0, 0,
+ 0, 0, 0, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217,
+ 0, 0, 0, 0, 0, 0, 224, 225, 226, 227, 228, 229, 230,
+ 231, 232, 233, 0, 0, 0, 0, 0, 0, 240, 241, 242, 243,
+ 244, 245, 246, 247, 248, 249, 0, 0, 0, 0, 0, 0, 138,
+ 139, 170, 171, 202, 203, 234, 235, 206, 207, 0, 0, 0, 0,
+ 0, 0, 154, 155, 186, 187, 218, 219, 250, 251, 222, 223, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 257, 258,
+ 259, 260, 261, 262, 263, 264, 265, 0, 0, 0, 0, 0, 0,
+ 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 0, 0, 0,
+ 0, 0, 0, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297,
+ 0, 0, 0, 0, 0, 0, 304, 305, 306, 307, 308, 309, 310,
+ 311, 312, 313, 0, 0, 0, 0, 0, 0, 320, 321, 322, 323,
+ 324, 325, 326, 327, 328, 329, 0, 0, 0, 0, 0, 0, 336,
+ 337, 338, 339, 340, 341, 342, 343, 344, 345, 0, 0, 0, 0,
+ 0, 0, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 0,
+ 0, 0, 0, 0, 0, 368, 369, 370, 371, 372, 373, 374, 375,
+ 376, 377, 0, 0, 0, 0, 0, 0, 266, 267, 298, 299, 330,
+ 331, 362, 363, 334, 335, 0, 0, 0, 0, 0, 0, 282, 283,
+ 314, 315, 346, 347, 378, 379, 350, 351, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 384, 385, 386, 387, 388, 389, 390,
+ 391, 392, 393, 0, 0, 0, 0, 0, 0, 400, 401, 402, 403,
+ 404, 405, 406, 407, 408, 409, 0, 0, 0, 0, 0, 0, 416,
+ 417, 418, 419, 420, 421, 422, 423, 424, 425, 0, 0, 0, 0,
+ 0, 0, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 0,
+ 0, 0, 0, 0, 0, 448, 449, 450, 451, 452, 453, 454, 455,
+ 456, 457, 0, 0, 0, 0, 0, 0, 464, 465, 466, 467, 468,
+ 469, 470, 471, 472, 473, 0, 0, 0, 0, 0, 0, 480, 481,
+ 482, 483, 484, 485, 486, 487, 488, 489, 0, 0, 0, 0, 0,
+ 0, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 0, 0,
+ 0, 0, 0, 0, 394, 395, 426, 427, 458, 459, 490, 491, 462,
+ 463, 0, 0, 0, 0, 0, 0, 410, 411, 442, 443, 474, 475,
+ 506, 507, 478, 479, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 0,
+ 0, 0, 0, 0, 0, 528, 529, 530, 531, 532, 533, 534, 535,
+ 536, 537, 0, 0, 0, 0, 0, 0, 544, 545, 546, 547, 548,
+ 549, 550, 551, 552, 553, 0, 0, 0, 0, 0, 0, 560, 561,
+ 562, 563, 564, 565, 566, 567, 568, 569, 0, 0, 0, 0, 0,
+ 0, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 0, 0,
+ 0, 0, 0, 0, 592, 593, 594, 595, 596, 597, 598, 599, 600,
+ 601, 0, 0, 0, 0, 0, 0, 608, 609, 610, 611, 612, 613,
+ 614, 615, 616, 617, 0, 0, 0, 0, 0, 0, 624, 625, 626,
+ 627, 628, 629, 630, 631, 632, 633, 0, 0, 0, 0, 0, 0,
+ 522, 523, 554, 555, 586, 587, 618, 619, 590, 591, 0, 0, 0,
+ 0, 0, 0, 538, 539, 570, 571, 602, 603, 634, 635, 606, 607,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 640, 641,
+ 642, 643, 644, 645, 646, 647, 648, 649, 0, 0, 0, 0, 0,
+ 0, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 0, 0,
+ 0, 0, 0, 0, 672, 673, 674, 675, 676, 677, 678, 679, 680,
+ 681, 0, 0, 0, 0, 0, 0, 688, 689, 690, 691, 692, 693,
+ 694, 695, 696, 697, 0, 0, 0, 0, 0, 0, 704, 705, 706,
+ 707, 708, 709, 710, 711, 712, 713, 0, 0, 0, 0, 0, 0,
+ 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 0, 0, 0,
+ 0, 0, 0, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745,
+ 0, 0, 0, 0, 0, 0, 752, 753, 754, 755, 756, 757, 758,
+ 759, 760, 761, 0, 0, 0, 0, 0, 0, 650, 651, 682, 683,
+ 714, 715, 746, 747, 718, 719, 0, 0, 0, 0, 0, 0, 666,
+ 667, 698, 699, 730, 731, 762, 763, 734, 735, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 768, 769, 770, 771, 772, 773,
+ 774, 775, 776, 777, 0, 0, 0, 0, 0, 0, 784, 785, 786,
+ 787, 788, 789, 790, 791, 792, 793, 0, 0, 0, 0, 0, 0,
+ 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 0, 0, 0,
+ 0, 0, 0, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825,
+ 0, 0, 0, 0, 0, 0, 832, 833, 834, 835, 836, 837, 838,
+ 839, 840, 841, 0, 0, 0, 0, 0, 0, 848, 849, 850, 851,
+ 852, 853, 854, 855, 856, 857, 0, 0, 0, 0, 0, 0, 864,
+ 865, 866, 867, 868, 869, 870, 871, 872, 873, 0, 0, 0, 0,
+ 0, 0, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 0,
+ 0, 0, 0, 0, 0, 778, 779, 810, 811, 842, 843, 874, 875,
+ 846, 847, 0, 0, 0, 0, 0, 0, 794, 795, 826, 827, 858,
+ 859, 890, 891, 862, 863, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 896, 897, 898, 899, 900, 901, 902, 903, 904, 905,
+ 0, 0, 0, 0, 0, 0, 912, 913, 914, 915, 916, 917, 918,
+ 919, 920, 921, 0, 0, 0, 0, 0, 0, 928, 929, 930, 931,
+ 932, 933, 934, 935, 936, 937, 0, 0, 0, 0, 0, 0, 944,
+ 945, 946, 947, 948, 949, 950, 951, 952, 953, 0, 0, 0, 0,
+ 0, 0, 960, 961, 962, 963, 964, 965, 966, 967, 968, 969, 0,
+ 0, 0, 0, 0, 0, 976, 977, 978, 979, 980, 981, 982, 983,
+ 984, 985, 0, 0, 0, 0, 0, 0, 992, 993, 994, 995, 996,
+ 997, 998, 999, 1000, 1001, 0, 0, 0, 0, 0, 0, 1008, 1009,
+ 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 0, 0, 0, 0, 0,
+ 0, 906, 907, 938, 939, 970, 971, 1002, 1003, 974, 975, 0, 0,
+ 0, 0, 0, 0, 922, 923, 954, 955, 986, 987, 1018, 1019, 990,
+ 991, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12,
+ 13, 268, 269, 524, 525, 780, 781, 46, 47, 0, 0, 0, 0,
+ 0, 0, 28, 29, 284, 285, 540, 541, 796, 797, 62, 63, 0,
+ 0, 0, 0, 0, 0, 44, 45, 300, 301, 556, 557, 812, 813,
+ 302, 303, 0, 0, 0, 0, 0, 0, 60, 61, 316, 317, 572,
+ 573, 828, 829, 318, 319, 0, 0, 0, 0, 0, 0, 76, 77,
+ 332, 333, 588, 589, 844, 845, 558, 559, 0, 0, 0, 0, 0,
+ 0, 92, 93, 348, 349, 604, 605, 860, 861, 574, 575, 0, 0,
+ 0, 0, 0, 0, 108, 109, 364, 365, 620, 621, 876, 877, 814,
+ 815, 0, 0, 0, 0, 0, 0, 124, 125, 380, 381, 636, 637,
+ 892, 893, 830, 831, 0, 0, 0, 0, 0, 0, 14, 15, 270,
+ 271, 526, 527, 782, 783, 110, 111, 0, 0, 0, 0, 0, 0,
+ 30, 31, 286, 287, 542, 543, 798, 799, 126, 127, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 140, 141, 396, 397, 652,
+ 653, 908, 909, 174, 175, 0, 0, 0, 0, 0, 0, 156, 157,
+ 412, 413, 668, 669, 924, 925, 190, 191, 0, 0, 0, 0, 0,
+ 0, 172, 173, 428, 429, 684, 685, 940, 941, 430, 431, 0, 0,
+ 0, 0, 0, 0, 188, 189, 444, 445, 700, 701, 956, 957, 446,
+ 447, 0, 0, 0, 0, 0, 0, 204, 205, 460, 461, 716, 717,
+ 972, 973, 686, 687, 0, 0, 0, 0, 0, 0, 220, 221, 476,
+ 477, 732, 733, 988, 989, 702, 703, 0, 0, 0, 0, 0, 0,
+ 236, 237, 492, 493, 748, 749, 1004, 1005, 942, 943, 0, 0, 0,
+ 0, 0, 0, 252, 253, 508, 509, 764, 765, 1020, 1021, 958, 959,
+ 0, 0, 0, 0, 0, 0, 142, 143, 398, 399, 654, 655, 910,
+ 911, 238, 239, 0, 0, 0, 0, 0, 0, 158, 159, 414, 415,
+ 670, 671, 926, 927, 254, 255};
+#endif
+
+#if defined(DEC_DPD2BCD) && DEC_DPD2BCD==1 && !defined(DECDPD2BCD)
+#define DECDPD2BCD
+
+const uint16_t DPD2BCD[1024]={ 0, 1, 2, 3, 4, 5, 6, 7,
+ 8, 9, 128, 129, 2048, 2049, 2176, 2177, 16, 17, 18, 19, 20,
+ 21, 22, 23, 24, 25, 144, 145, 2064, 2065, 2192, 2193, 32, 33,
+ 34, 35, 36, 37, 38, 39, 40, 41, 130, 131, 2080, 2081, 2056,
+ 2057, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 146, 147,
+ 2096, 2097, 2072, 2073, 64, 65, 66, 67, 68, 69, 70, 71, 72,
+ 73, 132, 133, 2112, 2113, 136, 137, 80, 81, 82, 83, 84, 85,
+ 86, 87, 88, 89, 148, 149, 2128, 2129, 152, 153, 96, 97, 98,
+ 99, 100, 101, 102, 103, 104, 105, 134, 135, 2144, 2145, 2184, 2185,
+ 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 150, 151, 2160,
+ 2161, 2200, 2201, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265,
+ 384, 385, 2304, 2305, 2432, 2433, 272, 273, 274, 275, 276, 277, 278,
+ 279, 280, 281, 400, 401, 2320, 2321, 2448, 2449, 288, 289, 290, 291,
+ 292, 293, 294, 295, 296, 297, 386, 387, 2336, 2337, 2312, 2313, 304,
+ 305, 306, 307, 308, 309, 310, 311, 312, 313, 402, 403, 2352, 2353,
+ 2328, 2329, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 388,
+ 389, 2368, 2369, 392, 393, 336, 337, 338, 339, 340, 341, 342, 343,
+ 344, 345, 404, 405, 2384, 2385, 408, 409, 352, 353, 354, 355, 356,
+ 357, 358, 359, 360, 361, 390, 391, 2400, 2401, 2440, 2441, 368, 369,
+ 370, 371, 372, 373, 374, 375, 376, 377, 406, 407, 2416, 2417, 2456,
+ 2457, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 640, 641,
+ 2050, 2051, 2178, 2179, 528, 529, 530, 531, 532, 533, 534, 535, 536,
+ 537, 656, 657, 2066, 2067, 2194, 2195, 544, 545, 546, 547, 548, 549,
+ 550, 551, 552, 553, 642, 643, 2082, 2083, 2088, 2089, 560, 561, 562,
+ 563, 564, 565, 566, 567, 568, 569, 658, 659, 2098, 2099, 2104, 2105,
+ 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 644, 645, 2114,
+ 2115, 648, 649, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601,
+ 660, 661, 2130, 2131, 664, 665, 608, 609, 610, 611, 612, 613, 614,
+ 615, 616, 617, 646, 647, 2146, 2147, 2184, 2185, 624, 625, 626, 627,
+ 628, 629, 630, 631, 632, 633, 662, 663, 2162, 2163, 2200, 2201, 768,
+ 769, 770, 771, 772, 773, 774, 775, 776, 777, 896, 897, 2306, 2307,
+ 2434, 2435, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 912,
+ 913, 2322, 2323, 2450, 2451, 800, 801, 802, 803, 804, 805, 806, 807,
+ 808, 809, 898, 899, 2338, 2339, 2344, 2345, 816, 817, 818, 819, 820,
+ 821, 822, 823, 824, 825, 914, 915, 2354, 2355, 2360, 2361, 832, 833,
+ 834, 835, 836, 837, 838, 839, 840, 841, 900, 901, 2370, 2371, 904,
+ 905, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 916, 917,
+ 2386, 2387, 920, 921, 864, 865, 866, 867, 868, 869, 870, 871, 872,
+ 873, 902, 903, 2402, 2403, 2440, 2441, 880, 881, 882, 883, 884, 885,
+ 886, 887, 888, 889, 918, 919, 2418, 2419, 2456, 2457, 1024, 1025, 1026,
+ 1027, 1028, 1029, 1030, 1031, 1032, 1033, 1152, 1153, 2052, 2053, 2180, 2181,
+ 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1168, 1169, 2068,
+ 2069, 2196, 2197, 1056, 1057, 1058, 1059, 1060, 1061, 1062, 1063, 1064, 1065,
+ 1154, 1155, 2084, 2085, 2120, 2121, 1072, 1073, 1074, 1075, 1076, 1077, 1078,
+ 1079, 1080, 1081, 1170, 1171, 2100, 2101, 2136, 2137, 1088, 1089, 1090, 1091,
+ 1092, 1093, 1094, 1095, 1096, 1097, 1156, 1157, 2116, 2117, 1160, 1161, 1104,
+ 1105, 1106, 1107, 1108, 1109, 1110, 1111, 1112, 1113, 1172, 1173, 2132, 2133,
+ 1176, 1177, 1120, 1121, 1122, 1123, 1124, 1125, 1126, 1127, 1128, 1129, 1158,
+ 1159, 2148, 2149, 2184, 2185, 1136, 1137, 1138, 1139, 1140, 1141, 1142, 1143,
+ 1144, 1145, 1174, 1175, 2164, 2165, 2200, 2201, 1280, 1281, 1282, 1283, 1284,
+ 1285, 1286, 1287, 1288, 1289, 1408, 1409, 2308, 2309, 2436, 2437, 1296, 1297,
+ 1298, 1299, 1300, 1301, 1302, 1303, 1304, 1305, 1424, 1425, 2324, 2325, 2452,
+ 2453, 1312, 1313, 1314, 1315, 1316, 1317, 1318, 1319, 1320, 1321, 1410, 1411,
+ 2340, 2341, 2376, 2377, 1328, 1329, 1330, 1331, 1332, 1333, 1334, 1335, 1336,
+ 1337, 1426, 1427, 2356, 2357, 2392, 2393, 1344, 1345, 1346, 1347, 1348, 1349,
+ 1350, 1351, 1352, 1353, 1412, 1413, 2372, 2373, 1416, 1417, 1360, 1361, 1362,
+ 1363, 1364, 1365, 1366, 1367, 1368, 1369, 1428, 1429, 2388, 2389, 1432, 1433,
+ 1376, 1377, 1378, 1379, 1380, 1381, 1382, 1383, 1384, 1385, 1414, 1415, 2404,
+ 2405, 2440, 2441, 1392, 1393, 1394, 1395, 1396, 1397, 1398, 1399, 1400, 1401,
+ 1430, 1431, 2420, 2421, 2456, 2457, 1536, 1537, 1538, 1539, 1540, 1541, 1542,
+ 1543, 1544, 1545, 1664, 1665, 2054, 2055, 2182, 2183, 1552, 1553, 1554, 1555,
+ 1556, 1557, 1558, 1559, 1560, 1561, 1680, 1681, 2070, 2071, 2198, 2199, 1568,
+ 1569, 1570, 1571, 1572, 1573, 1574, 1575, 1576, 1577, 1666, 1667, 2086, 2087,
+ 2152, 2153, 1584, 1585, 1586, 1587, 1588, 1589, 1590, 1591, 1592, 1593, 1682,
+ 1683, 2102, 2103, 2168, 2169, 1600, 1601, 1602, 1603, 1604, 1605, 1606, 1607,
+ 1608, 1609, 1668, 1669, 2118, 2119, 1672, 1673, 1616, 1617, 1618, 1619, 1620,
+ 1621, 1622, 1623, 1624, 1625, 1684, 1685, 2134, 2135, 1688, 1689, 1632, 1633,
+ 1634, 1635, 1636, 1637, 1638, 1639, 1640, 1641, 1670, 1671, 2150, 2151, 2184,
+ 2185, 1648, 1649, 1650, 1651, 1652, 1653, 1654, 1655, 1656, 1657, 1686, 1687,
+ 2166, 2167, 2200, 2201, 1792, 1793, 1794, 1795, 1796, 1797, 1798, 1799, 1800,
+ 1801, 1920, 1921, 2310, 2311, 2438, 2439, 1808, 1809, 1810, 1811, 1812, 1813,
+ 1814, 1815, 1816, 1817, 1936, 1937, 2326, 2327, 2454, 2455, 1824, 1825, 1826,
+ 1827, 1828, 1829, 1830, 1831, 1832, 1833, 1922, 1923, 2342, 2343, 2408, 2409,
+ 1840, 1841, 1842, 1843, 1844, 1845, 1846, 1847, 1848, 1849, 1938, 1939, 2358,
+ 2359, 2424, 2425, 1856, 1857, 1858, 1859, 1860, 1861, 1862, 1863, 1864, 1865,
+ 1924, 1925, 2374, 2375, 1928, 1929, 1872, 1873, 1874, 1875, 1876, 1877, 1878,
+ 1879, 1880, 1881, 1940, 1941, 2390, 2391, 1944, 1945, 1888, 1889, 1890, 1891,
+ 1892, 1893, 1894, 1895, 1896, 1897, 1926, 1927, 2406, 2407, 2440, 2441, 1904,
+ 1905, 1906, 1907, 1908, 1909, 1910, 1911, 1912, 1913, 1942, 1943, 2422, 2423,
+ 2456, 2457};
+#endif
+
+#if defined(DEC_BIN2DPD) && DEC_BIN2DPD==1 && !defined(DECBIN2DPD)
+#define DECBIN2DPD
+
+const uint16_t BIN2DPD[1000]={ 0, 1, 2, 3, 4, 5, 6, 7,
+ 8, 9, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 32,
+ 33, 34, 35, 36, 37, 38, 39, 40, 41, 48, 49, 50, 51,
+ 52, 53, 54, 55, 56, 57, 64, 65, 66, 67, 68, 69, 70,
+ 71, 72, 73, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
+ 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 112, 113, 114,
+ 115, 116, 117, 118, 119, 120, 121, 10, 11, 42, 43, 74, 75,
+ 106, 107, 78, 79, 26, 27, 58, 59, 90, 91, 122, 123, 94,
+ 95, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 144, 145,
+ 146, 147, 148, 149, 150, 151, 152, 153, 160, 161, 162, 163, 164,
+ 165, 166, 167, 168, 169, 176, 177, 178, 179, 180, 181, 182, 183,
+ 184, 185, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 208,
+ 209, 210, 211, 212, 213, 214, 215, 216, 217, 224, 225, 226, 227,
+ 228, 229, 230, 231, 232, 233, 240, 241, 242, 243, 244, 245, 246,
+ 247, 248, 249, 138, 139, 170, 171, 202, 203, 234, 235, 206, 207,
+ 154, 155, 186, 187, 218, 219, 250, 251, 222, 223, 256, 257, 258,
+ 259, 260, 261, 262, 263, 264, 265, 272, 273, 274, 275, 276, 277,
+ 278, 279, 280, 281, 288, 289, 290, 291, 292, 293, 294, 295, 296,
+ 297, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 320, 321,
+ 322, 323, 324, 325, 326, 327, 328, 329, 336, 337, 338, 339, 340,
+ 341, 342, 343, 344, 345, 352, 353, 354, 355, 356, 357, 358, 359,
+ 360, 361, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 266,
+ 267, 298, 299, 330, 331, 362, 363, 334, 335, 282, 283, 314, 315,
+ 346, 347, 378, 379, 350, 351, 384, 385, 386, 387, 388, 389, 390,
+ 391, 392, 393, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409,
+ 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 432, 433, 434,
+ 435, 436, 437, 438, 439, 440, 441, 448, 449, 450, 451, 452, 453,
+ 454, 455, 456, 457, 464, 465, 466, 467, 468, 469, 470, 471, 472,
+ 473, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 496, 497,
+ 498, 499, 500, 501, 502, 503, 504, 505, 394, 395, 426, 427, 458,
+ 459, 490, 491, 462, 463, 410, 411, 442, 443, 474, 475, 506, 507,
+ 478, 479, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 528,
+ 529, 530, 531, 532, 533, 534, 535, 536, 537, 544, 545, 546, 547,
+ 548, 549, 550, 551, 552, 553, 560, 561, 562, 563, 564, 565, 566,
+ 567, 568, 569, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585,
+ 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 608, 609, 610,
+ 611, 612, 613, 614, 615, 616, 617, 624, 625, 626, 627, 628, 629,
+ 630, 631, 632, 633, 522, 523, 554, 555, 586, 587, 618, 619, 590,
+ 591, 538, 539, 570, 571, 602, 603, 634, 635, 606, 607, 640, 641,
+ 642, 643, 644, 645, 646, 647, 648, 649, 656, 657, 658, 659, 660,
+ 661, 662, 663, 664, 665, 672, 673, 674, 675, 676, 677, 678, 679,
+ 680, 681, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 704,
+ 705, 706, 707, 708, 709, 710, 711, 712, 713, 720, 721, 722, 723,
+ 724, 725, 726, 727, 728, 729, 736, 737, 738, 739, 740, 741, 742,
+ 743, 744, 745, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761,
+ 650, 651, 682, 683, 714, 715, 746, 747, 718, 719, 666, 667, 698,
+ 699, 730, 731, 762, 763, 734, 735, 768, 769, 770, 771, 772, 773,
+ 774, 775, 776, 777, 784, 785, 786, 787, 788, 789, 790, 791, 792,
+ 793, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 816, 817,
+ 818, 819, 820, 821, 822, 823, 824, 825, 832, 833, 834, 835, 836,
+ 837, 838, 839, 840, 841, 848, 849, 850, 851, 852, 853, 854, 855,
+ 856, 857, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 880,
+ 881, 882, 883, 884, 885, 886, 887, 888, 889, 778, 779, 810, 811,
+ 842, 843, 874, 875, 846, 847, 794, 795, 826, 827, 858, 859, 890,
+ 891, 862, 863, 896, 897, 898, 899, 900, 901, 902, 903, 904, 905,
+ 912, 913, 914, 915, 916, 917, 918, 919, 920, 921, 928, 929, 930,
+ 931, 932, 933, 934, 935, 936, 937, 944, 945, 946, 947, 948, 949,
+ 950, 951, 952, 953, 960, 961, 962, 963, 964, 965, 966, 967, 968,
+ 969, 976, 977, 978, 979, 980, 981, 982, 983, 984, 985, 992, 993,
+ 994, 995, 996, 997, 998, 999, 1000, 1001, 1008, 1009, 1010, 1011, 1012,
+ 1013, 1014, 1015, 1016, 1017, 906, 907, 938, 939, 970, 971, 1002, 1003,
+ 974, 975, 922, 923, 954, 955, 986, 987, 1018, 1019, 990, 991, 12,
+ 13, 268, 269, 524, 525, 780, 781, 46, 47, 28, 29, 284, 285,
+ 540, 541, 796, 797, 62, 63, 44, 45, 300, 301, 556, 557, 812,
+ 813, 302, 303, 60, 61, 316, 317, 572, 573, 828, 829, 318, 319,
+ 76, 77, 332, 333, 588, 589, 844, 845, 558, 559, 92, 93, 348,
+ 349, 604, 605, 860, 861, 574, 575, 108, 109, 364, 365, 620, 621,
+ 876, 877, 814, 815, 124, 125, 380, 381, 636, 637, 892, 893, 830,
+ 831, 14, 15, 270, 271, 526, 527, 782, 783, 110, 111, 30, 31,
+ 286, 287, 542, 543, 798, 799, 126, 127, 140, 141, 396, 397, 652,
+ 653, 908, 909, 174, 175, 156, 157, 412, 413, 668, 669, 924, 925,
+ 190, 191, 172, 173, 428, 429, 684, 685, 940, 941, 430, 431, 188,
+ 189, 444, 445, 700, 701, 956, 957, 446, 447, 204, 205, 460, 461,
+ 716, 717, 972, 973, 686, 687, 220, 221, 476, 477, 732, 733, 988,
+ 989, 702, 703, 236, 237, 492, 493, 748, 749, 1004, 1005, 942, 943,
+ 252, 253, 508, 509, 764, 765, 1020, 1021, 958, 959, 142, 143, 398,
+ 399, 654, 655, 910, 911, 238, 239, 158, 159, 414, 415, 670, 671,
+ 926, 927, 254, 255};
+#endif
+
+#if defined(DEC_DPD2BIN) && DEC_DPD2BIN==1 && !defined(DECDPD2BIN)
+#define DECDPD2BIN
+
+const uint16_t DPD2BIN[1024]={ 0, 1, 2, 3, 4, 5, 6, 7,
+ 8, 9, 80, 81, 800, 801, 880, 881, 10, 11, 12, 13, 14,
+ 15, 16, 17, 18, 19, 90, 91, 810, 811, 890, 891, 20, 21,
+ 22, 23, 24, 25, 26, 27, 28, 29, 82, 83, 820, 821, 808,
+ 809, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 92, 93,
+ 830, 831, 818, 819, 40, 41, 42, 43, 44, 45, 46, 47, 48,
+ 49, 84, 85, 840, 841, 88, 89, 50, 51, 52, 53, 54, 55,
+ 56, 57, 58, 59, 94, 95, 850, 851, 98, 99, 60, 61, 62,
+ 63, 64, 65, 66, 67, 68, 69, 86, 87, 860, 861, 888, 889,
+ 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 96, 97, 870,
+ 871, 898, 899, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109,
+ 180, 181, 900, 901, 980, 981, 110, 111, 112, 113, 114, 115, 116,
+ 117, 118, 119, 190, 191, 910, 911, 990, 991, 120, 121, 122, 123,
+ 124, 125, 126, 127, 128, 129, 182, 183, 920, 921, 908, 909, 130,
+ 131, 132, 133, 134, 135, 136, 137, 138, 139, 192, 193, 930, 931,
+ 918, 919, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 184,
+ 185, 940, 941, 188, 189, 150, 151, 152, 153, 154, 155, 156, 157,
+ 158, 159, 194, 195, 950, 951, 198, 199, 160, 161, 162, 163, 164,
+ 165, 166, 167, 168, 169, 186, 187, 960, 961, 988, 989, 170, 171,
+ 172, 173, 174, 175, 176, 177, 178, 179, 196, 197, 970, 971, 998,
+ 999, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 280, 281,
+ 802, 803, 882, 883, 210, 211, 212, 213, 214, 215, 216, 217, 218,
+ 219, 290, 291, 812, 813, 892, 893, 220, 221, 222, 223, 224, 225,
+ 226, 227, 228, 229, 282, 283, 822, 823, 828, 829, 230, 231, 232,
+ 233, 234, 235, 236, 237, 238, 239, 292, 293, 832, 833, 838, 839,
+ 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 284, 285, 842,
+ 843, 288, 289, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259,
+ 294, 295, 852, 853, 298, 299, 260, 261, 262, 263, 264, 265, 266,
+ 267, 268, 269, 286, 287, 862, 863, 888, 889, 270, 271, 272, 273,
+ 274, 275, 276, 277, 278, 279, 296, 297, 872, 873, 898, 899, 300,
+ 301, 302, 303, 304, 305, 306, 307, 308, 309, 380, 381, 902, 903,
+ 982, 983, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 390,
+ 391, 912, 913, 992, 993, 320, 321, 322, 323, 324, 325, 326, 327,
+ 328, 329, 382, 383, 922, 923, 928, 929, 330, 331, 332, 333, 334,
+ 335, 336, 337, 338, 339, 392, 393, 932, 933, 938, 939, 340, 341,
+ 342, 343, 344, 345, 346, 347, 348, 349, 384, 385, 942, 943, 388,
+ 389, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 394, 395,
+ 952, 953, 398, 399, 360, 361, 362, 363, 364, 365, 366, 367, 368,
+ 369, 386, 387, 962, 963, 988, 989, 370, 371, 372, 373, 374, 375,
+ 376, 377, 378, 379, 396, 397, 972, 973, 998, 999, 400, 401, 402,
+ 403, 404, 405, 406, 407, 408, 409, 480, 481, 804, 805, 884, 885,
+ 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 490, 491, 814,
+ 815, 894, 895, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429,
+ 482, 483, 824, 825, 848, 849, 430, 431, 432, 433, 434, 435, 436,
+ 437, 438, 439, 492, 493, 834, 835, 858, 859, 440, 441, 442, 443,
+ 444, 445, 446, 447, 448, 449, 484, 485, 844, 845, 488, 489, 450,
+ 451, 452, 453, 454, 455, 456, 457, 458, 459, 494, 495, 854, 855,
+ 498, 499, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 486,
+ 487, 864, 865, 888, 889, 470, 471, 472, 473, 474, 475, 476, 477,
+ 478, 479, 496, 497, 874, 875, 898, 899, 500, 501, 502, 503, 504,
+ 505, 506, 507, 508, 509, 580, 581, 904, 905, 984, 985, 510, 511,
+ 512, 513, 514, 515, 516, 517, 518, 519, 590, 591, 914, 915, 994,
+ 995, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 582, 583,
+ 924, 925, 948, 949, 530, 531, 532, 533, 534, 535, 536, 537, 538,
+ 539, 592, 593, 934, 935, 958, 959, 540, 541, 542, 543, 544, 545,
+ 546, 547, 548, 549, 584, 585, 944, 945, 588, 589, 550, 551, 552,
+ 553, 554, 555, 556, 557, 558, 559, 594, 595, 954, 955, 598, 599,
+ 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 586, 587, 964,
+ 965, 988, 989, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579,
+ 596, 597, 974, 975, 998, 999, 600, 601, 602, 603, 604, 605, 606,
+ 607, 608, 609, 680, 681, 806, 807, 886, 887, 610, 611, 612, 613,
+ 614, 615, 616, 617, 618, 619, 690, 691, 816, 817, 896, 897, 620,
+ 621, 622, 623, 624, 625, 626, 627, 628, 629, 682, 683, 826, 827,
+ 868, 869, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 692,
+ 693, 836, 837, 878, 879, 640, 641, 642, 643, 644, 645, 646, 647,
+ 648, 649, 684, 685, 846, 847, 688, 689, 650, 651, 652, 653, 654,
+ 655, 656, 657, 658, 659, 694, 695, 856, 857, 698, 699, 660, 661,
+ 662, 663, 664, 665, 666, 667, 668, 669, 686, 687, 866, 867, 888,
+ 889, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 696, 697,
+ 876, 877, 898, 899, 700, 701, 702, 703, 704, 705, 706, 707, 708,
+ 709, 780, 781, 906, 907, 986, 987, 710, 711, 712, 713, 714, 715,
+ 716, 717, 718, 719, 790, 791, 916, 917, 996, 997, 720, 721, 722,
+ 723, 724, 725, 726, 727, 728, 729, 782, 783, 926, 927, 968, 969,
+ 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 792, 793, 936,
+ 937, 978, 979, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749,
+ 784, 785, 946, 947, 788, 789, 750, 751, 752, 753, 754, 755, 756,
+ 757, 758, 759, 794, 795, 956, 957, 798, 799, 760, 761, 762, 763,
+ 764, 765, 766, 767, 768, 769, 786, 787, 966, 967, 988, 989, 770,
+ 771, 772, 773, 774, 775, 776, 777, 778, 779, 796, 797, 976, 977,
+ 998, 999};
+#endif
+
+#if defined(DEC_DPD2BINK) && DEC_DPD2BINK==1 && !defined(DECDPD2BINK)
+#define DECDPD2BINK
-const uint16_t BCD2DPD[2458] = { 0, 1, 2, 3, 4, 5, 6, 7,
- 8, 9, 0, 0, 0, 0, 0, 0, 16, 17, 18, 19, 20,
- 21, 22, 23, 24, 25, 0, 0, 0, 0, 0, 0, 32, 33,
- 34, 35, 36, 37, 38, 39, 40, 41, 0, 0, 0, 0, 0,
- 0, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 0, 0,
- 0, 0, 0, 0, 64, 65, 66, 67, 68, 69, 70, 71, 72,
- 73, 0, 0, 0, 0, 0, 0, 80, 81, 82, 83, 84, 85,
- 86, 87, 88, 89, 0, 0, 0, 0, 0, 0, 96, 97, 98,
- 99, 100, 101, 102, 103, 104, 105, 0, 0, 0, 0, 0, 0,
- 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 0, 0, 0,
- 0, 0, 0, 10, 11, 42, 43, 74, 75, 106, 107, 78, 79,
- 0, 0, 0, 0, 0, 0, 26, 27, 58, 59, 90, 91, 122,
- 123, 94, 95, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 10, 11, 42, 43, 74,
- 75, 106, 107, 78, 79, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 0, 0,
- 0, 0, 0, 0, 144, 145, 146, 147, 148, 149, 150, 151, 152,
- 153, 0, 0, 0, 0, 0, 0, 160, 161, 162, 163, 164, 165,
- 166, 167, 168, 169, 0, 0, 0, 0, 0, 0, 176, 177, 178,
- 179, 180, 181, 182, 183, 184, 185, 0, 0, 0, 0, 0, 0,
- 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 0, 0, 0,
- 0, 0, 0, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217,
- 0, 0, 0, 0, 0, 0, 224, 225, 226, 227, 228, 229, 230,
- 231, 232, 233, 0, 0, 0, 0, 0, 0, 240, 241, 242, 243,
- 244, 245, 246, 247, 248, 249, 0, 0, 0, 0, 0, 0, 138,
- 139, 170, 171, 202, 203, 234, 235, 206, 207, 0, 0, 0, 0,
- 0, 0, 154, 155, 186, 187, 218, 219, 250, 251, 222, 223, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 138, 139, 170, 171, 202, 203, 234, 235, 206,
- 207, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 256, 257, 258,
- 259, 260, 261, 262, 263, 264, 265, 0, 0, 0, 0, 0, 0,
- 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 0, 0, 0,
- 0, 0, 0, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297,
- 0, 0, 0, 0, 0, 0, 304, 305, 306, 307, 308, 309, 310,
- 311, 312, 313, 0, 0, 0, 0, 0, 0, 320, 321, 322, 323,
- 324, 325, 326, 327, 328, 329, 0, 0, 0, 0, 0, 0, 336,
- 337, 338, 339, 340, 341, 342, 343, 344, 345, 0, 0, 0, 0,
- 0, 0, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 0,
- 0, 0, 0, 0, 0, 368, 369, 370, 371, 372, 373, 374, 375,
- 376, 377, 0, 0, 0, 0, 0, 0, 266, 267, 298, 299, 330,
- 331, 362, 363, 334, 335, 0, 0, 0, 0, 0, 0, 282, 283,
- 314, 315, 346, 347, 378, 379, 350, 351, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 266, 267, 298, 299, 330, 331, 362, 363, 334, 335, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 384, 385, 386, 387, 388, 389, 390,
- 391, 392, 393, 0, 0, 0, 0, 0, 0, 400, 401, 402, 403,
- 404, 405, 406, 407, 408, 409, 0, 0, 0, 0, 0, 0, 416,
- 417, 418, 419, 420, 421, 422, 423, 424, 425, 0, 0, 0, 0,
- 0, 0, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 0,
- 0, 0, 0, 0, 0, 448, 449, 450, 451, 452, 453, 454, 455,
- 456, 457, 0, 0, 0, 0, 0, 0, 464, 465, 466, 467, 468,
- 469, 470, 471, 472, 473, 0, 0, 0, 0, 0, 0, 480, 481,
- 482, 483, 484, 485, 486, 487, 488, 489, 0, 0, 0, 0, 0,
- 0, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 0, 0,
- 0, 0, 0, 0, 394, 395, 426, 427, 458, 459, 490, 491, 462,
- 463, 0, 0, 0, 0, 0, 0, 410, 411, 442, 443, 474, 475,
- 506, 507, 478, 479, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 394, 395, 426, 427,
- 458, 459, 490, 491, 462, 463, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 0,
- 0, 0, 0, 0, 0, 528, 529, 530, 531, 532, 533, 534, 535,
- 536, 537, 0, 0, 0, 0, 0, 0, 544, 545, 546, 547, 548,
- 549, 550, 551, 552, 553, 0, 0, 0, 0, 0, 0, 560, 561,
- 562, 563, 564, 565, 566, 567, 568, 569, 0, 0, 0, 0, 0,
- 0, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 0, 0,
- 0, 0, 0, 0, 592, 593, 594, 595, 596, 597, 598, 599, 600,
- 601, 0, 0, 0, 0, 0, 0, 608, 609, 610, 611, 612, 613,
- 614, 615, 616, 617, 0, 0, 0, 0, 0, 0, 624, 625, 626,
- 627, 628, 629, 630, 631, 632, 633, 0, 0, 0, 0, 0, 0,
- 522, 523, 554, 555, 586, 587, 618, 619, 590, 591, 0, 0, 0,
- 0, 0, 0, 538, 539, 570, 571, 602, 603, 634, 635, 606, 607,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 522, 523, 554, 555, 586, 587, 618, 619,
- 590, 591, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 640, 641,
- 642, 643, 644, 645, 646, 647, 648, 649, 0, 0, 0, 0, 0,
- 0, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 0, 0,
- 0, 0, 0, 0, 672, 673, 674, 675, 676, 677, 678, 679, 680,
- 681, 0, 0, 0, 0, 0, 0, 688, 689, 690, 691, 692, 693,
- 694, 695, 696, 697, 0, 0, 0, 0, 0, 0, 704, 705, 706,
- 707, 708, 709, 710, 711, 712, 713, 0, 0, 0, 0, 0, 0,
- 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 0, 0, 0,
- 0, 0, 0, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745,
- 0, 0, 0, 0, 0, 0, 752, 753, 754, 755, 756, 757, 758,
- 759, 760, 761, 0, 0, 0, 0, 0, 0, 650, 651, 682, 683,
- 714, 715, 746, 747, 718, 719, 0, 0, 0, 0, 0, 0, 666,
- 667, 698, 699, 730, 731, 762, 763, 734, 735, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 650, 651, 682, 683, 714, 715, 746, 747, 718, 719, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 768, 769, 770, 771, 772, 773,
- 774, 775, 776, 777, 0, 0, 0, 0, 0, 0, 784, 785, 786,
- 787, 788, 789, 790, 791, 792, 793, 0, 0, 0, 0, 0, 0,
- 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 0, 0, 0,
- 0, 0, 0, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825,
- 0, 0, 0, 0, 0, 0, 832, 833, 834, 835, 836, 837, 838,
- 839, 840, 841, 0, 0, 0, 0, 0, 0, 848, 849, 850, 851,
- 852, 853, 854, 855, 856, 857, 0, 0, 0, 0, 0, 0, 864,
- 865, 866, 867, 868, 869, 870, 871, 872, 873, 0, 0, 0, 0,
- 0, 0, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 0,
- 0, 0, 0, 0, 0, 778, 779, 810, 811, 842, 843, 874, 875,
- 846, 847, 0, 0, 0, 0, 0, 0, 794, 795, 826, 827, 858,
- 859, 890, 891, 862, 863, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 778, 779, 810,
- 811, 842, 843, 874, 875, 846, 847, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 896, 897, 898, 899, 900, 901, 902, 903, 904, 905,
- 0, 0, 0, 0, 0, 0, 912, 913, 914, 915, 916, 917, 918,
- 919, 920, 921, 0, 0, 0, 0, 0, 0, 928, 929, 930, 931,
- 932, 933, 934, 935, 936, 937, 0, 0, 0, 0, 0, 0, 944,
- 945, 946, 947, 948, 949, 950, 951, 952, 953, 0, 0, 0, 0,
- 0, 0, 960, 961, 962, 963, 964, 965, 966, 967, 968, 969, 0,
- 0, 0, 0, 0, 0, 976, 977, 978, 979, 980, 981, 982, 983,
- 984, 985, 0, 0, 0, 0, 0, 0, 992, 993, 994, 995, 996,
- 997, 998, 999, 1000, 1001, 0, 0, 0, 0, 0, 0, 1008, 1009,
- 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 0, 0, 0, 0, 0,
- 0, 906, 907, 938, 939, 970, 971, 1002, 1003, 974, 975, 0, 0,
- 0, 0, 0, 0, 922, 923, 954, 955, 986, 987, 1018, 1019, 990,
- 991, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 906, 907, 938, 939, 970, 971, 1002,
- 1003, 974, 975, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12,
- 13, 268, 269, 524, 525, 780, 781, 46, 47, 0, 0, 0, 0,
- 0, 0, 28, 29, 284, 285, 540, 541, 796, 797, 62, 63, 0,
- 0, 0, 0, 0, 0, 44, 45, 300, 301, 556, 557, 812, 813,
- 302, 303, 0, 0, 0, 0, 0, 0, 60, 61, 316, 317, 572,
- 573, 828, 829, 318, 319, 0, 0, 0, 0, 0, 0, 76, 77,
- 332, 333, 588, 589, 844, 845, 558, 559, 0, 0, 0, 0, 0,
- 0, 92, 93, 348, 349, 604, 605, 860, 861, 574, 575, 0, 0,
- 0, 0, 0, 0, 108, 109, 364, 365, 620, 621, 876, 877, 814,
- 815, 0, 0, 0, 0, 0, 0, 124, 125, 380, 381, 636, 637,
- 892, 893, 830, 831, 0, 0, 0, 0, 0, 0, 14, 15, 270,
- 271, 526, 527, 782, 783, 110, 111, 0, 0, 0, 0, 0, 0,
- 30, 31, 286, 287, 542, 543, 798, 799, 126, 127, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 14, 15, 270, 271, 526, 527, 782, 783, 110, 111, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 140, 141, 396, 397, 652,
- 653, 908, 909, 174, 175, 0, 0, 0, 0, 0, 0, 156, 157,
- 412, 413, 668, 669, 924, 925, 190, 191, 0, 0, 0, 0, 0,
- 0, 172, 173, 428, 429, 684, 685, 940, 941, 430, 431, 0, 0,
- 0, 0, 0, 0, 188, 189, 444, 445, 700, 701, 956, 957, 446,
- 447, 0, 0, 0, 0, 0, 0, 204, 205, 460, 461, 716, 717,
- 972, 973, 686, 687, 0, 0, 0, 0, 0, 0, 220, 221, 476,
- 477, 732, 733, 988, 989, 702, 703, 0, 0, 0, 0, 0, 0,
- 236, 237, 492, 493, 748, 749, 1004, 1005, 942, 943, 0, 0, 0,
- 0, 0, 0, 252, 253, 508, 509, 764, 765, 1020, 1021, 958, 959,
- 0, 0, 0, 0, 0, 0, 142, 143, 398, 399, 654, 655, 910,
- 911, 238, 239, 0, 0, 0, 0, 0, 0, 158, 159, 414, 415,
- 670, 671, 926, 927, 254, 255
-};
+const uint32_t DPD2BINK[1024]={ 0, 1000, 2000, 3000, 4000, 5000,
+ 6000, 7000, 8000, 9000, 80000, 81000, 800000, 801000, 880000, 881000,
+ 10000, 11000, 12000, 13000, 14000, 15000, 16000, 17000, 18000, 19000,
+ 90000, 91000, 810000, 811000, 890000, 891000, 20000, 21000, 22000, 23000,
+ 24000, 25000, 26000, 27000, 28000, 29000, 82000, 83000, 820000, 821000,
+ 808000, 809000, 30000, 31000, 32000, 33000, 34000, 35000, 36000, 37000,
+ 38000, 39000, 92000, 93000, 830000, 831000, 818000, 819000, 40000, 41000,
+ 42000, 43000, 44000, 45000, 46000, 47000, 48000, 49000, 84000, 85000,
+ 840000, 841000, 88000, 89000, 50000, 51000, 52000, 53000, 54000, 55000,
+ 56000, 57000, 58000, 59000, 94000, 95000, 850000, 851000, 98000, 99000,
+ 60000, 61000, 62000, 63000, 64000, 65000, 66000, 67000, 68000, 69000,
+ 86000, 87000, 860000, 861000, 888000, 889000, 70000, 71000, 72000, 73000,
+ 74000, 75000, 76000, 77000, 78000, 79000, 96000, 97000, 870000, 871000,
+ 898000, 899000, 100000, 101000, 102000, 103000, 104000, 105000, 106000, 107000,
+ 108000, 109000, 180000, 181000, 900000, 901000, 980000, 981000, 110000, 111000,
+ 112000, 113000, 114000, 115000, 116000, 117000, 118000, 119000, 190000, 191000,
+ 910000, 911000, 990000, 991000, 120000, 121000, 122000, 123000, 124000, 125000,
+ 126000, 127000, 128000, 129000, 182000, 183000, 920000, 921000, 908000, 909000,
+ 130000, 131000, 132000, 133000, 134000, 135000, 136000, 137000, 138000, 139000,
+ 192000, 193000, 930000, 931000, 918000, 919000, 140000, 141000, 142000, 143000,
+ 144000, 145000, 146000, 147000, 148000, 149000, 184000, 185000, 940000, 941000,
+ 188000, 189000, 150000, 151000, 152000, 153000, 154000, 155000, 156000, 157000,
+ 158000, 159000, 194000, 195000, 950000, 951000, 198000, 199000, 160000, 161000,
+ 162000, 163000, 164000, 165000, 166000, 167000, 168000, 169000, 186000, 187000,
+ 960000, 961000, 988000, 989000, 170000, 171000, 172000, 173000, 174000, 175000,
+ 176000, 177000, 178000, 179000, 196000, 197000, 970000, 971000, 998000, 999000,
+ 200000, 201000, 202000, 203000, 204000, 205000, 206000, 207000, 208000, 209000,
+ 280000, 281000, 802000, 803000, 882000, 883000, 210000, 211000, 212000, 213000,
+ 214000, 215000, 216000, 217000, 218000, 219000, 290000, 291000, 812000, 813000,
+ 892000, 893000, 220000, 221000, 222000, 223000, 224000, 225000, 226000, 227000,
+ 228000, 229000, 282000, 283000, 822000, 823000, 828000, 829000, 230000, 231000,
+ 232000, 233000, 234000, 235000, 236000, 237000, 238000, 239000, 292000, 293000,
+ 832000, 833000, 838000, 839000, 240000, 241000, 242000, 243000, 244000, 245000,
+ 246000, 247000, 248000, 249000, 284000, 285000, 842000, 843000, 288000, 289000,
+ 250000, 251000, 252000, 253000, 254000, 255000, 256000, 257000, 258000, 259000,
+ 294000, 295000, 852000, 853000, 298000, 299000, 260000, 261000, 262000, 263000,
+ 264000, 265000, 266000, 267000, 268000, 269000, 286000, 287000, 862000, 863000,
+ 888000, 889000, 270000, 271000, 272000, 273000, 274000, 275000, 276000, 277000,
+ 278000, 279000, 296000, 297000, 872000, 873000, 898000, 899000, 300000, 301000,
+ 302000, 303000, 304000, 305000, 306000, 307000, 308000, 309000, 380000, 381000,
+ 902000, 903000, 982000, 983000, 310000, 311000, 312000, 313000, 314000, 315000,
+ 316000, 317000, 318000, 319000, 390000, 391000, 912000, 913000, 992000, 993000,
+ 320000, 321000, 322000, 323000, 324000, 325000, 326000, 327000, 328000, 329000,
+ 382000, 383000, 922000, 923000, 928000, 929000, 330000, 331000, 332000, 333000,
+ 334000, 335000, 336000, 337000, 338000, 339000, 392000, 393000, 932000, 933000,
+ 938000, 939000, 340000, 341000, 342000, 343000, 344000, 345000, 346000, 347000,
+ 348000, 349000, 384000, 385000, 942000, 943000, 388000, 389000, 350000, 351000,
+ 352000, 353000, 354000, 355000, 356000, 357000, 358000, 359000, 394000, 395000,
+ 952000, 953000, 398000, 399000, 360000, 361000, 362000, 363000, 364000, 365000,
+ 366000, 367000, 368000, 369000, 386000, 387000, 962000, 963000, 988000, 989000,
+ 370000, 371000, 372000, 373000, 374000, 375000, 376000, 377000, 378000, 379000,
+ 396000, 397000, 972000, 973000, 998000, 999000, 400000, 401000, 402000, 403000,
+ 404000, 405000, 406000, 407000, 408000, 409000, 480000, 481000, 804000, 805000,
+ 884000, 885000, 410000, 411000, 412000, 413000, 414000, 415000, 416000, 417000,
+ 418000, 419000, 490000, 491000, 814000, 815000, 894000, 895000, 420000, 421000,
+ 422000, 423000, 424000, 425000, 426000, 427000, 428000, 429000, 482000, 483000,
+ 824000, 825000, 848000, 849000, 430000, 431000, 432000, 433000, 434000, 435000,
+ 436000, 437000, 438000, 439000, 492000, 493000, 834000, 835000, 858000, 859000,
+ 440000, 441000, 442000, 443000, 444000, 445000, 446000, 447000, 448000, 449000,
+ 484000, 485000, 844000, 845000, 488000, 489000, 450000, 451000, 452000, 453000,
+ 454000, 455000, 456000, 457000, 458000, 459000, 494000, 495000, 854000, 855000,
+ 498000, 499000, 460000, 461000, 462000, 463000, 464000, 465000, 466000, 467000,
+ 468000, 469000, 486000, 487000, 864000, 865000, 888000, 889000, 470000, 471000,
+ 472000, 473000, 474000, 475000, 476000, 477000, 478000, 479000, 496000, 497000,
+ 874000, 875000, 898000, 899000, 500000, 501000, 502000, 503000, 504000, 505000,
+ 506000, 507000, 508000, 509000, 580000, 581000, 904000, 905000, 984000, 985000,
+ 510000, 511000, 512000, 513000, 514000, 515000, 516000, 517000, 518000, 519000,
+ 590000, 591000, 914000, 915000, 994000, 995000, 520000, 521000, 522000, 523000,
+ 524000, 525000, 526000, 527000, 528000, 529000, 582000, 583000, 924000, 925000,
+ 948000, 949000, 530000, 531000, 532000, 533000, 534000, 535000, 536000, 537000,
+ 538000, 539000, 592000, 593000, 934000, 935000, 958000, 959000, 540000, 541000,
+ 542000, 543000, 544000, 545000, 546000, 547000, 548000, 549000, 584000, 585000,
+ 944000, 945000, 588000, 589000, 550000, 551000, 552000, 553000, 554000, 555000,
+ 556000, 557000, 558000, 559000, 594000, 595000, 954000, 955000, 598000, 599000,
+ 560000, 561000, 562000, 563000, 564000, 565000, 566000, 567000, 568000, 569000,
+ 586000, 587000, 964000, 965000, 988000, 989000, 570000, 571000, 572000, 573000,
+ 574000, 575000, 576000, 577000, 578000, 579000, 596000, 597000, 974000, 975000,
+ 998000, 999000, 600000, 601000, 602000, 603000, 604000, 605000, 606000, 607000,
+ 608000, 609000, 680000, 681000, 806000, 807000, 886000, 887000, 610000, 611000,
+ 612000, 613000, 614000, 615000, 616000, 617000, 618000, 619000, 690000, 691000,
+ 816000, 817000, 896000, 897000, 620000, 621000, 622000, 623000, 624000, 625000,
+ 626000, 627000, 628000, 629000, 682000, 683000, 826000, 827000, 868000, 869000,
+ 630000, 631000, 632000, 633000, 634000, 635000, 636000, 637000, 638000, 639000,
+ 692000, 693000, 836000, 837000, 878000, 879000, 640000, 641000, 642000, 643000,
+ 644000, 645000, 646000, 647000, 648000, 649000, 684000, 685000, 846000, 847000,
+ 688000, 689000, 650000, 651000, 652000, 653000, 654000, 655000, 656000, 657000,
+ 658000, 659000, 694000, 695000, 856000, 857000, 698000, 699000, 660000, 661000,
+ 662000, 663000, 664000, 665000, 666000, 667000, 668000, 669000, 686000, 687000,
+ 866000, 867000, 888000, 889000, 670000, 671000, 672000, 673000, 674000, 675000,
+ 676000, 677000, 678000, 679000, 696000, 697000, 876000, 877000, 898000, 899000,
+ 700000, 701000, 702000, 703000, 704000, 705000, 706000, 707000, 708000, 709000,
+ 780000, 781000, 906000, 907000, 986000, 987000, 710000, 711000, 712000, 713000,
+ 714000, 715000, 716000, 717000, 718000, 719000, 790000, 791000, 916000, 917000,
+ 996000, 997000, 720000, 721000, 722000, 723000, 724000, 725000, 726000, 727000,
+ 728000, 729000, 782000, 783000, 926000, 927000, 968000, 969000, 730000, 731000,
+ 732000, 733000, 734000, 735000, 736000, 737000, 738000, 739000, 792000, 793000,
+ 936000, 937000, 978000, 979000, 740000, 741000, 742000, 743000, 744000, 745000,
+ 746000, 747000, 748000, 749000, 784000, 785000, 946000, 947000, 788000, 789000,
+ 750000, 751000, 752000, 753000, 754000, 755000, 756000, 757000, 758000, 759000,
+ 794000, 795000, 956000, 957000, 798000, 799000, 760000, 761000, 762000, 763000,
+ 764000, 765000, 766000, 767000, 768000, 769000, 786000, 787000, 966000, 967000,
+ 988000, 989000, 770000, 771000, 772000, 773000, 774000, 775000, 776000, 777000,
+ 778000, 779000, 796000, 797000, 976000, 977000, 998000, 999000};
#endif
-#if DEC_DPD2BCD==1
+#if defined(DEC_DPD2BINM) && DEC_DPD2BINM==1 && !defined(DECDPD2BINM)
+#define DECDPD2BINM
-const uint16_t DPD2BCD[1024] = { 0, 1, 2, 3, 4, 5, 6, 7,
- 8, 9, 128, 129, 2048, 2049, 2176, 2177, 16, 17, 18, 19, 20,
- 21, 22, 23, 24, 25, 144, 145, 2064, 2065, 2192, 2193, 32, 33,
- 34, 35, 36, 37, 38, 39, 40, 41, 130, 131, 2080, 2081, 2056,
- 2057, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 146, 147,
- 2096, 2097, 2072, 2073, 64, 65, 66, 67, 68, 69, 70, 71, 72,
- 73, 132, 133, 2112, 2113, 136, 137, 80, 81, 82, 83, 84, 85,
- 86, 87, 88, 89, 148, 149, 2128, 2129, 152, 153, 96, 97, 98,
- 99, 100, 101, 102, 103, 104, 105, 134, 135, 2144, 2145, 2184, 2185,
- 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 150, 151, 2160,
- 2161, 2200, 2201, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265,
- 384, 385, 2304, 2305, 2432, 2433, 272, 273, 274, 275, 276, 277, 278,
- 279, 280, 281, 400, 401, 2320, 2321, 2448, 2449, 288, 289, 290, 291,
- 292, 293, 294, 295, 296, 297, 386, 387, 2336, 2337, 2312, 2313, 304,
- 305, 306, 307, 308, 309, 310, 311, 312, 313, 402, 403, 2352, 2353,
- 2328, 2329, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 388,
- 389, 2368, 2369, 392, 393, 336, 337, 338, 339, 340, 341, 342, 343,
- 344, 345, 404, 405, 2384, 2385, 408, 409, 352, 353, 354, 355, 356,
- 357, 358, 359, 360, 361, 390, 391, 2400, 2401, 2440, 2441, 368, 369,
- 370, 371, 372, 373, 374, 375, 376, 377, 406, 407, 2416, 2417, 2456,
- 2457, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 640, 641,
- 2050, 2051, 2178, 2179, 528, 529, 530, 531, 532, 533, 534, 535, 536,
- 537, 656, 657, 2066, 2067, 2194, 2195, 544, 545, 546, 547, 548, 549,
- 550, 551, 552, 553, 642, 643, 2082, 2083, 2088, 2089, 560, 561, 562,
- 563, 564, 565, 566, 567, 568, 569, 658, 659, 2098, 2099, 2104, 2105,
- 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 644, 645, 2114,
- 2115, 648, 649, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601,
- 660, 661, 2130, 2131, 664, 665, 608, 609, 610, 611, 612, 613, 614,
- 615, 616, 617, 646, 647, 2146, 2147, 2184, 2185, 624, 625, 626, 627,
- 628, 629, 630, 631, 632, 633, 662, 663, 2162, 2163, 2200, 2201, 768,
- 769, 770, 771, 772, 773, 774, 775, 776, 777, 896, 897, 2306, 2307,
- 2434, 2435, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 912,
- 913, 2322, 2323, 2450, 2451, 800, 801, 802, 803, 804, 805, 806, 807,
- 808, 809, 898, 899, 2338, 2339, 2344, 2345, 816, 817, 818, 819, 820,
- 821, 822, 823, 824, 825, 914, 915, 2354, 2355, 2360, 2361, 832, 833,
- 834, 835, 836, 837, 838, 839, 840, 841, 900, 901, 2370, 2371, 904,
- 905, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 916, 917,
- 2386, 2387, 920, 921, 864, 865, 866, 867, 868, 869, 870, 871, 872,
- 873, 902, 903, 2402, 2403, 2440, 2441, 880, 881, 882, 883, 884, 885,
- 886, 887, 888, 889, 918, 919, 2418, 2419, 2456, 2457, 1024, 1025, 1026,
- 1027, 1028, 1029, 1030, 1031, 1032, 1033, 1152, 1153, 2052, 2053, 2180,
- 2181,
- 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049, 1168, 1169,
- 2068,
- 2069, 2196, 2197, 1056, 1057, 1058, 1059, 1060, 1061, 1062, 1063, 1064,
- 1065,
- 1154, 1155, 2084, 2085, 2120, 2121, 1072, 1073, 1074, 1075, 1076, 1077,
- 1078,
- 1079, 1080, 1081, 1170, 1171, 2100, 2101, 2136, 2137, 1088, 1089, 1090,
- 1091,
- 1092, 1093, 1094, 1095, 1096, 1097, 1156, 1157, 2116, 2117, 1160, 1161,
- 1104,
- 1105, 1106, 1107, 1108, 1109, 1110, 1111, 1112, 1113, 1172, 1173, 2132,
- 2133,
- 1176, 1177, 1120, 1121, 1122, 1123, 1124, 1125, 1126, 1127, 1128, 1129,
- 1158,
- 1159, 2148, 2149, 2184, 2185, 1136, 1137, 1138, 1139, 1140, 1141, 1142,
- 1143,
- 1144, 1145, 1174, 1175, 2164, 2165, 2200, 2201, 1280, 1281, 1282, 1283,
- 1284,
- 1285, 1286, 1287, 1288, 1289, 1408, 1409, 2308, 2309, 2436, 2437, 1296,
- 1297,
- 1298, 1299, 1300, 1301, 1302, 1303, 1304, 1305, 1424, 1425, 2324, 2325,
- 2452,
- 2453, 1312, 1313, 1314, 1315, 1316, 1317, 1318, 1319, 1320, 1321, 1410,
- 1411,
- 2340, 2341, 2376, 2377, 1328, 1329, 1330, 1331, 1332, 1333, 1334, 1335,
- 1336,
- 1337, 1426, 1427, 2356, 2357, 2392, 2393, 1344, 1345, 1346, 1347, 1348,
- 1349,
- 1350, 1351, 1352, 1353, 1412, 1413, 2372, 2373, 1416, 1417, 1360, 1361,
- 1362,
- 1363, 1364, 1365, 1366, 1367, 1368, 1369, 1428, 1429, 2388, 2389, 1432,
- 1433,
- 1376, 1377, 1378, 1379, 1380, 1381, 1382, 1383, 1384, 1385, 1414, 1415,
- 2404,
- 2405, 2440, 2441, 1392, 1393, 1394, 1395, 1396, 1397, 1398, 1399, 1400,
- 1401,
- 1430, 1431, 2420, 2421, 2456, 2457, 1536, 1537, 1538, 1539, 1540, 1541,
- 1542,
- 1543, 1544, 1545, 1664, 1665, 2054, 2055, 2182, 2183, 1552, 1553, 1554,
- 1555,
- 1556, 1557, 1558, 1559, 1560, 1561, 1680, 1681, 2070, 2071, 2198, 2199,
- 1568,
- 1569, 1570, 1571, 1572, 1573, 1574, 1575, 1576, 1577, 1666, 1667, 2086,
- 2087,
- 2152, 2153, 1584, 1585, 1586, 1587, 1588, 1589, 1590, 1591, 1592, 1593,
- 1682,
- 1683, 2102, 2103, 2168, 2169, 1600, 1601, 1602, 1603, 1604, 1605, 1606,
- 1607,
- 1608, 1609, 1668, 1669, 2118, 2119, 1672, 1673, 1616, 1617, 1618, 1619,
- 1620,
- 1621, 1622, 1623, 1624, 1625, 1684, 1685, 2134, 2135, 1688, 1689, 1632,
- 1633,
- 1634, 1635, 1636, 1637, 1638, 1639, 1640, 1641, 1670, 1671, 2150, 2151,
- 2184,
- 2185, 1648, 1649, 1650, 1651, 1652, 1653, 1654, 1655, 1656, 1657, 1686,
- 1687,
- 2166, 2167, 2200, 2201, 1792, 1793, 1794, 1795, 1796, 1797, 1798, 1799,
- 1800,
- 1801, 1920, 1921, 2310, 2311, 2438, 2439, 1808, 1809, 1810, 1811, 1812,
- 1813,
- 1814, 1815, 1816, 1817, 1936, 1937, 2326, 2327, 2454, 2455, 1824, 1825,
- 1826,
- 1827, 1828, 1829, 1830, 1831, 1832, 1833, 1922, 1923, 2342, 2343, 2408,
- 2409,
- 1840, 1841, 1842, 1843, 1844, 1845, 1846, 1847, 1848, 1849, 1938, 1939,
- 2358,
- 2359, 2424, 2425, 1856, 1857, 1858, 1859, 1860, 1861, 1862, 1863, 1864,
- 1865,
- 1924, 1925, 2374, 2375, 1928, 1929, 1872, 1873, 1874, 1875, 1876, 1877,
- 1878,
- 1879, 1880, 1881, 1940, 1941, 2390, 2391, 1944, 1945, 1888, 1889, 1890,
- 1891,
- 1892, 1893, 1894, 1895, 1896, 1897, 1926, 1927, 2406, 2407, 2440, 2441,
- 1904,
- 1905, 1906, 1907, 1908, 1909, 1910, 1911, 1912, 1913, 1942, 1943, 2422,
- 2423,
- 2456, 2457
-};
+const uint32_t DPD2BINM[1024]={0, 1000000, 2000000, 3000000, 4000000,
+ 5000000, 6000000, 7000000, 8000000, 9000000, 80000000, 81000000,
+ 800000000, 801000000, 880000000, 881000000, 10000000, 11000000, 12000000,
+ 13000000, 14000000, 15000000, 16000000, 17000000, 18000000, 19000000,
+ 90000000, 91000000, 810000000, 811000000, 890000000, 891000000, 20000000,
+ 21000000, 22000000, 23000000, 24000000, 25000000, 26000000, 27000000,
+ 28000000, 29000000, 82000000, 83000000, 820000000, 821000000, 808000000,
+ 809000000, 30000000, 31000000, 32000000, 33000000, 34000000, 35000000,
+ 36000000, 37000000, 38000000, 39000000, 92000000, 93000000, 830000000,
+ 831000000, 818000000, 819000000, 40000000, 41000000, 42000000, 43000000,
+ 44000000, 45000000, 46000000, 47000000, 48000000, 49000000, 84000000,
+ 85000000, 840000000, 841000000, 88000000, 89000000, 50000000, 51000000,
+ 52000000, 53000000, 54000000, 55000000, 56000000, 57000000, 58000000,
+ 59000000, 94000000, 95000000, 850000000, 851000000, 98000000, 99000000,
+ 60000000, 61000000, 62000000, 63000000, 64000000, 65000000, 66000000,
+ 67000000, 68000000, 69000000, 86000000, 87000000, 860000000, 861000000,
+ 888000000, 889000000, 70000000, 71000000, 72000000, 73000000, 74000000,
+ 75000000, 76000000, 77000000, 78000000, 79000000, 96000000, 97000000,
+ 870000000, 871000000, 898000000, 899000000, 100000000, 101000000, 102000000,
+ 103000000, 104000000, 105000000, 106000000, 107000000, 108000000, 109000000,
+ 180000000, 181000000, 900000000, 901000000, 980000000, 981000000, 110000000,
+ 111000000, 112000000, 113000000, 114000000, 115000000, 116000000, 117000000,
+ 118000000, 119000000, 190000000, 191000000, 910000000, 911000000, 990000000,
+ 991000000, 120000000, 121000000, 122000000, 123000000, 124000000, 125000000,
+ 126000000, 127000000, 128000000, 129000000, 182000000, 183000000, 920000000,
+ 921000000, 908000000, 909000000, 130000000, 131000000, 132000000, 133000000,
+ 134000000, 135000000, 136000000, 137000000, 138000000, 139000000, 192000000,
+ 193000000, 930000000, 931000000, 918000000, 919000000, 140000000, 141000000,
+ 142000000, 143000000, 144000000, 145000000, 146000000, 147000000, 148000000,
+ 149000000, 184000000, 185000000, 940000000, 941000000, 188000000, 189000000,
+ 150000000, 151000000, 152000000, 153000000, 154000000, 155000000, 156000000,
+ 157000000, 158000000, 159000000, 194000000, 195000000, 950000000, 951000000,
+ 198000000, 199000000, 160000000, 161000000, 162000000, 163000000, 164000000,
+ 165000000, 166000000, 167000000, 168000000, 169000000, 186000000, 187000000,
+ 960000000, 961000000, 988000000, 989000000, 170000000, 171000000, 172000000,
+ 173000000, 174000000, 175000000, 176000000, 177000000, 178000000, 179000000,
+ 196000000, 197000000, 970000000, 971000000, 998000000, 999000000, 200000000,
+ 201000000, 202000000, 203000000, 204000000, 205000000, 206000000, 207000000,
+ 208000000, 209000000, 280000000, 281000000, 802000000, 803000000, 882000000,
+ 883000000, 210000000, 211000000, 212000000, 213000000, 214000000, 215000000,
+ 216000000, 217000000, 218000000, 219000000, 290000000, 291000000, 812000000,
+ 813000000, 892000000, 893000000, 220000000, 221000000, 222000000, 223000000,
+ 224000000, 225000000, 226000000, 227000000, 228000000, 229000000, 282000000,
+ 283000000, 822000000, 823000000, 828000000, 829000000, 230000000, 231000000,
+ 232000000, 233000000, 234000000, 235000000, 236000000, 237000000, 238000000,
+ 239000000, 292000000, 293000000, 832000000, 833000000, 838000000, 839000000,
+ 240000000, 241000000, 242000000, 243000000, 244000000, 245000000, 246000000,
+ 247000000, 248000000, 249000000, 284000000, 285000000, 842000000, 843000000,
+ 288000000, 289000000, 250000000, 251000000, 252000000, 253000000, 254000000,
+ 255000000, 256000000, 257000000, 258000000, 259000000, 294000000, 295000000,
+ 852000000, 853000000, 298000000, 299000000, 260000000, 261000000, 262000000,
+ 263000000, 264000000, 265000000, 266000000, 267000000, 268000000, 269000000,
+ 286000000, 287000000, 862000000, 863000000, 888000000, 889000000, 270000000,
+ 271000000, 272000000, 273000000, 274000000, 275000000, 276000000, 277000000,
+ 278000000, 279000000, 296000000, 297000000, 872000000, 873000000, 898000000,
+ 899000000, 300000000, 301000000, 302000000, 303000000, 304000000, 305000000,
+ 306000000, 307000000, 308000000, 309000000, 380000000, 381000000, 902000000,
+ 903000000, 982000000, 983000000, 310000000, 311000000, 312000000, 313000000,
+ 314000000, 315000000, 316000000, 317000000, 318000000, 319000000, 390000000,
+ 391000000, 912000000, 913000000, 992000000, 993000000, 320000000, 321000000,
+ 322000000, 323000000, 324000000, 325000000, 326000000, 327000000, 328000000,
+ 329000000, 382000000, 383000000, 922000000, 923000000, 928000000, 929000000,
+ 330000000, 331000000, 332000000, 333000000, 334000000, 335000000, 336000000,
+ 337000000, 338000000, 339000000, 392000000, 393000000, 932000000, 933000000,
+ 938000000, 939000000, 340000000, 341000000, 342000000, 343000000, 344000000,
+ 345000000, 346000000, 347000000, 348000000, 349000000, 384000000, 385000000,
+ 942000000, 943000000, 388000000, 389000000, 350000000, 351000000, 352000000,
+ 353000000, 354000000, 355000000, 356000000, 357000000, 358000000, 359000000,
+ 394000000, 395000000, 952000000, 953000000, 398000000, 399000000, 360000000,
+ 361000000, 362000000, 363000000, 364000000, 365000000, 366000000, 367000000,
+ 368000000, 369000000, 386000000, 387000000, 962000000, 963000000, 988000000,
+ 989000000, 370000000, 371000000, 372000000, 373000000, 374000000, 375000000,
+ 376000000, 377000000, 378000000, 379000000, 396000000, 397000000, 972000000,
+ 973000000, 998000000, 999000000, 400000000, 401000000, 402000000, 403000000,
+ 404000000, 405000000, 406000000, 407000000, 408000000, 409000000, 480000000,
+ 481000000, 804000000, 805000000, 884000000, 885000000, 410000000, 411000000,
+ 412000000, 413000000, 414000000, 415000000, 416000000, 417000000, 418000000,
+ 419000000, 490000000, 491000000, 814000000, 815000000, 894000000, 895000000,
+ 420000000, 421000000, 422000000, 423000000, 424000000, 425000000, 426000000,
+ 427000000, 428000000, 429000000, 482000000, 483000000, 824000000, 825000000,
+ 848000000, 849000000, 430000000, 431000000, 432000000, 433000000, 434000000,
+ 435000000, 436000000, 437000000, 438000000, 439000000, 492000000, 493000000,
+ 834000000, 835000000, 858000000, 859000000, 440000000, 441000000, 442000000,
+ 443000000, 444000000, 445000000, 446000000, 447000000, 448000000, 449000000,
+ 484000000, 485000000, 844000000, 845000000, 488000000, 489000000, 450000000,
+ 451000000, 452000000, 453000000, 454000000, 455000000, 456000000, 457000000,
+ 458000000, 459000000, 494000000, 495000000, 854000000, 855000000, 498000000,
+ 499000000, 460000000, 461000000, 462000000, 463000000, 464000000, 465000000,
+ 466000000, 467000000, 468000000, 469000000, 486000000, 487000000, 864000000,
+ 865000000, 888000000, 889000000, 470000000, 471000000, 472000000, 473000000,
+ 474000000, 475000000, 476000000, 477000000, 478000000, 479000000, 496000000,
+ 497000000, 874000000, 875000000, 898000000, 899000000, 500000000, 501000000,
+ 502000000, 503000000, 504000000, 505000000, 506000000, 507000000, 508000000,
+ 509000000, 580000000, 581000000, 904000000, 905000000, 984000000, 985000000,
+ 510000000, 511000000, 512000000, 513000000, 514000000, 515000000, 516000000,
+ 517000000, 518000000, 519000000, 590000000, 591000000, 914000000, 915000000,
+ 994000000, 995000000, 520000000, 521000000, 522000000, 523000000, 524000000,
+ 525000000, 526000000, 527000000, 528000000, 529000000, 582000000, 583000000,
+ 924000000, 925000000, 948000000, 949000000, 530000000, 531000000, 532000000,
+ 533000000, 534000000, 535000000, 536000000, 537000000, 538000000, 539000000,
+ 592000000, 593000000, 934000000, 935000000, 958000000, 959000000, 540000000,
+ 541000000, 542000000, 543000000, 544000000, 545000000, 546000000, 547000000,
+ 548000000, 549000000, 584000000, 585000000, 944000000, 945000000, 588000000,
+ 589000000, 550000000, 551000000, 552000000, 553000000, 554000000, 555000000,
+ 556000000, 557000000, 558000000, 559000000, 594000000, 595000000, 954000000,
+ 955000000, 598000000, 599000000, 560000000, 561000000, 562000000, 563000000,
+ 564000000, 565000000, 566000000, 567000000, 568000000, 569000000, 586000000,
+ 587000000, 964000000, 965000000, 988000000, 989000000, 570000000, 571000000,
+ 572000000, 573000000, 574000000, 575000000, 576000000, 577000000, 578000000,
+ 579000000, 596000000, 597000000, 974000000, 975000000, 998000000, 999000000,
+ 600000000, 601000000, 602000000, 603000000, 604000000, 605000000, 606000000,
+ 607000000, 608000000, 609000000, 680000000, 681000000, 806000000, 807000000,
+ 886000000, 887000000, 610000000, 611000000, 612000000, 613000000, 614000000,
+ 615000000, 616000000, 617000000, 618000000, 619000000, 690000000, 691000000,
+ 816000000, 817000000, 896000000, 897000000, 620000000, 621000000, 622000000,
+ 623000000, 624000000, 625000000, 626000000, 627000000, 628000000, 629000000,
+ 682000000, 683000000, 826000000, 827000000, 868000000, 869000000, 630000000,
+ 631000000, 632000000, 633000000, 634000000, 635000000, 636000000, 637000000,
+ 638000000, 639000000, 692000000, 693000000, 836000000, 837000000, 878000000,
+ 879000000, 640000000, 641000000, 642000000, 643000000, 644000000, 645000000,
+ 646000000, 647000000, 648000000, 649000000, 684000000, 685000000, 846000000,
+ 847000000, 688000000, 689000000, 650000000, 651000000, 652000000, 653000000,
+ 654000000, 655000000, 656000000, 657000000, 658000000, 659000000, 694000000,
+ 695000000, 856000000, 857000000, 698000000, 699000000, 660000000, 661000000,
+ 662000000, 663000000, 664000000, 665000000, 666000000, 667000000, 668000000,
+ 669000000, 686000000, 687000000, 866000000, 867000000, 888000000, 889000000,
+ 670000000, 671000000, 672000000, 673000000, 674000000, 675000000, 676000000,
+ 677000000, 678000000, 679000000, 696000000, 697000000, 876000000, 877000000,
+ 898000000, 899000000, 700000000, 701000000, 702000000, 703000000, 704000000,
+ 705000000, 706000000, 707000000, 708000000, 709000000, 780000000, 781000000,
+ 906000000, 907000000, 986000000, 987000000, 710000000, 711000000, 712000000,
+ 713000000, 714000000, 715000000, 716000000, 717000000, 718000000, 719000000,
+ 790000000, 791000000, 916000000, 917000000, 996000000, 997000000, 720000000,
+ 721000000, 722000000, 723000000, 724000000, 725000000, 726000000, 727000000,
+ 728000000, 729000000, 782000000, 783000000, 926000000, 927000000, 968000000,
+ 969000000, 730000000, 731000000, 732000000, 733000000, 734000000, 735000000,
+ 736000000, 737000000, 738000000, 739000000, 792000000, 793000000, 936000000,
+ 937000000, 978000000, 979000000, 740000000, 741000000, 742000000, 743000000,
+ 744000000, 745000000, 746000000, 747000000, 748000000, 749000000, 784000000,
+ 785000000, 946000000, 947000000, 788000000, 789000000, 750000000, 751000000,
+ 752000000, 753000000, 754000000, 755000000, 756000000, 757000000, 758000000,
+ 759000000, 794000000, 795000000, 956000000, 957000000, 798000000, 799000000,
+ 760000000, 761000000, 762000000, 763000000, 764000000, 765000000, 766000000,
+ 767000000, 768000000, 769000000, 786000000, 787000000, 966000000, 967000000,
+ 988000000, 989000000, 770000000, 771000000, 772000000, 773000000, 774000000,
+ 775000000, 776000000, 777000000, 778000000, 779000000, 796000000, 797000000,
+ 976000000, 977000000, 998000000, 999000000};
#endif
-#if DEC_BIN2DPD==1
+#if defined(DEC_BIN2CHAR) && DEC_BIN2CHAR==1 && !defined(DECBIN2CHAR)
+#define DECBIN2CHAR
-const uint16_t BIN2DPD[1000] = { 0, 1, 2, 3, 4, 5, 6, 7,
- 8, 9, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 32,
- 33, 34, 35, 36, 37, 38, 39, 40, 41, 48, 49, 50, 51,
- 52, 53, 54, 55, 56, 57, 64, 65, 66, 67, 68, 69, 70,
- 71, 72, 73, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
- 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 112, 113, 114,
- 115, 116, 117, 118, 119, 120, 121, 10, 11, 42, 43, 74, 75,
- 106, 107, 78, 79, 26, 27, 58, 59, 90, 91, 122, 123, 94,
- 95, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 144, 145,
- 146, 147, 148, 149, 150, 151, 152, 153, 160, 161, 162, 163, 164,
- 165, 166, 167, 168, 169, 176, 177, 178, 179, 180, 181, 182, 183,
- 184, 185, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 208,
- 209, 210, 211, 212, 213, 214, 215, 216, 217, 224, 225, 226, 227,
- 228, 229, 230, 231, 232, 233, 240, 241, 242, 243, 244, 245, 246,
- 247, 248, 249, 138, 139, 170, 171, 202, 203, 234, 235, 206, 207,
- 154, 155, 186, 187, 218, 219, 250, 251, 222, 223, 256, 257, 258,
- 259, 260, 261, 262, 263, 264, 265, 272, 273, 274, 275, 276, 277,
- 278, 279, 280, 281, 288, 289, 290, 291, 292, 293, 294, 295, 296,
- 297, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 320, 321,
- 322, 323, 324, 325, 326, 327, 328, 329, 336, 337, 338, 339, 340,
- 341, 342, 343, 344, 345, 352, 353, 354, 355, 356, 357, 358, 359,
- 360, 361, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 266,
- 267, 298, 299, 330, 331, 362, 363, 334, 335, 282, 283, 314, 315,
- 346, 347, 378, 379, 350, 351, 384, 385, 386, 387, 388, 389, 390,
- 391, 392, 393, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409,
- 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 432, 433, 434,
- 435, 436, 437, 438, 439, 440, 441, 448, 449, 450, 451, 452, 453,
- 454, 455, 456, 457, 464, 465, 466, 467, 468, 469, 470, 471, 472,
- 473, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 496, 497,
- 498, 499, 500, 501, 502, 503, 504, 505, 394, 395, 426, 427, 458,
- 459, 490, 491, 462, 463, 410, 411, 442, 443, 474, 475, 506, 507,
- 478, 479, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 528,
- 529, 530, 531, 532, 533, 534, 535, 536, 537, 544, 545, 546, 547,
- 548, 549, 550, 551, 552, 553, 560, 561, 562, 563, 564, 565, 566,
- 567, 568, 569, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585,
- 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 608, 609, 610,
- 611, 612, 613, 614, 615, 616, 617, 624, 625, 626, 627, 628, 629,
- 630, 631, 632, 633, 522, 523, 554, 555, 586, 587, 618, 619, 590,
- 591, 538, 539, 570, 571, 602, 603, 634, 635, 606, 607, 640, 641,
- 642, 643, 644, 645, 646, 647, 648, 649, 656, 657, 658, 659, 660,
- 661, 662, 663, 664, 665, 672, 673, 674, 675, 676, 677, 678, 679,
- 680, 681, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 704,
- 705, 706, 707, 708, 709, 710, 711, 712, 713, 720, 721, 722, 723,
- 724, 725, 726, 727, 728, 729, 736, 737, 738, 739, 740, 741, 742,
- 743, 744, 745, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761,
- 650, 651, 682, 683, 714, 715, 746, 747, 718, 719, 666, 667, 698,
- 699, 730, 731, 762, 763, 734, 735, 768, 769, 770, 771, 772, 773,
- 774, 775, 776, 777, 784, 785, 786, 787, 788, 789, 790, 791, 792,
- 793, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 816, 817,
- 818, 819, 820, 821, 822, 823, 824, 825, 832, 833, 834, 835, 836,
- 837, 838, 839, 840, 841, 848, 849, 850, 851, 852, 853, 854, 855,
- 856, 857, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 880,
- 881, 882, 883, 884, 885, 886, 887, 888, 889, 778, 779, 810, 811,
- 842, 843, 874, 875, 846, 847, 794, 795, 826, 827, 858, 859, 890,
- 891, 862, 863, 896, 897, 898, 899, 900, 901, 902, 903, 904, 905,
- 912, 913, 914, 915, 916, 917, 918, 919, 920, 921, 928, 929, 930,
- 931, 932, 933, 934, 935, 936, 937, 944, 945, 946, 947, 948, 949,
- 950, 951, 952, 953, 960, 961, 962, 963, 964, 965, 966, 967, 968,
- 969, 976, 977, 978, 979, 980, 981, 982, 983, 984, 985, 992, 993,
- 994, 995, 996, 997, 998, 999, 1000, 1001, 1008, 1009, 1010, 1011, 1012,
- 1013, 1014, 1015, 1016, 1017, 906, 907, 938, 939, 970, 971, 1002, 1003,
- 974, 975, 922, 923, 954, 955, 986, 987, 1018, 1019, 990, 991, 12,
- 13, 268, 269, 524, 525, 780, 781, 46, 47, 28, 29, 284, 285,
- 540, 541, 796, 797, 62, 63, 44, 45, 300, 301, 556, 557, 812,
- 813, 302, 303, 60, 61, 316, 317, 572, 573, 828, 829, 318, 319,
- 76, 77, 332, 333, 588, 589, 844, 845, 558, 559, 92, 93, 348,
- 349, 604, 605, 860, 861, 574, 575, 108, 109, 364, 365, 620, 621,
- 876, 877, 814, 815, 124, 125, 380, 381, 636, 637, 892, 893, 830,
- 831, 14, 15, 270, 271, 526, 527, 782, 783, 110, 111, 30, 31,
- 286, 287, 542, 543, 798, 799, 126, 127, 140, 141, 396, 397, 652,
- 653, 908, 909, 174, 175, 156, 157, 412, 413, 668, 669, 924, 925,
- 190, 191, 172, 173, 428, 429, 684, 685, 940, 941, 430, 431, 188,
- 189, 444, 445, 700, 701, 956, 957, 446, 447, 204, 205, 460, 461,
- 716, 717, 972, 973, 686, 687, 220, 221, 476, 477, 732, 733, 988,
- 989, 702, 703, 236, 237, 492, 493, 748, 749, 1004, 1005, 942, 943,
- 252, 253, 508, 509, 764, 765, 1020, 1021, 958, 959, 142, 143, 398,
- 399, 654, 655, 910, 911, 238, 239, 158, 159, 414, 415, 670, 671,
- 926, 927, 254, 255
-};
+const uint8_t BIN2CHAR[4001]={
+ '\0','0','0','0', '\1','0','0','1', '\1','0','0','2', '\1','0','0','3', '\1','0','0','4',
+ '\1','0','0','5', '\1','0','0','6', '\1','0','0','7', '\1','0','0','8', '\1','0','0','9',
+ '\2','0','1','0', '\2','0','1','1', '\2','0','1','2', '\2','0','1','3', '\2','0','1','4',
+ '\2','0','1','5', '\2','0','1','6', '\2','0','1','7', '\2','0','1','8', '\2','0','1','9',
+ '\2','0','2','0', '\2','0','2','1', '\2','0','2','2', '\2','0','2','3', '\2','0','2','4',
+ '\2','0','2','5', '\2','0','2','6', '\2','0','2','7', '\2','0','2','8', '\2','0','2','9',
+ '\2','0','3','0', '\2','0','3','1', '\2','0','3','2', '\2','0','3','3', '\2','0','3','4',
+ '\2','0','3','5', '\2','0','3','6', '\2','0','3','7', '\2','0','3','8', '\2','0','3','9',
+ '\2','0','4','0', '\2','0','4','1', '\2','0','4','2', '\2','0','4','3', '\2','0','4','4',
+ '\2','0','4','5', '\2','0','4','6', '\2','0','4','7', '\2','0','4','8', '\2','0','4','9',
+ '\2','0','5','0', '\2','0','5','1', '\2','0','5','2', '\2','0','5','3', '\2','0','5','4',
+ '\2','0','5','5', '\2','0','5','6', '\2','0','5','7', '\2','0','5','8', '\2','0','5','9',
+ '\2','0','6','0', '\2','0','6','1', '\2','0','6','2', '\2','0','6','3', '\2','0','6','4',
+ '\2','0','6','5', '\2','0','6','6', '\2','0','6','7', '\2','0','6','8', '\2','0','6','9',
+ '\2','0','7','0', '\2','0','7','1', '\2','0','7','2', '\2','0','7','3', '\2','0','7','4',
+ '\2','0','7','5', '\2','0','7','6', '\2','0','7','7', '\2','0','7','8', '\2','0','7','9',
+ '\2','0','8','0', '\2','0','8','1', '\2','0','8','2', '\2','0','8','3', '\2','0','8','4',
+ '\2','0','8','5', '\2','0','8','6', '\2','0','8','7', '\2','0','8','8', '\2','0','8','9',
+ '\2','0','9','0', '\2','0','9','1', '\2','0','9','2', '\2','0','9','3', '\2','0','9','4',
+ '\2','0','9','5', '\2','0','9','6', '\2','0','9','7', '\2','0','9','8', '\2','0','9','9',
+ '\3','1','0','0', '\3','1','0','1', '\3','1','0','2', '\3','1','0','3', '\3','1','0','4',
+ '\3','1','0','5', '\3','1','0','6', '\3','1','0','7', '\3','1','0','8', '\3','1','0','9',
+ '\3','1','1','0', '\3','1','1','1', '\3','1','1','2', '\3','1','1','3', '\3','1','1','4',
+ '\3','1','1','5', '\3','1','1','6', '\3','1','1','7', '\3','1','1','8', '\3','1','1','9',
+ '\3','1','2','0', '\3','1','2','1', '\3','1','2','2', '\3','1','2','3', '\3','1','2','4',
+ '\3','1','2','5', '\3','1','2','6', '\3','1','2','7', '\3','1','2','8', '\3','1','2','9',
+ '\3','1','3','0', '\3','1','3','1', '\3','1','3','2', '\3','1','3','3', '\3','1','3','4',
+ '\3','1','3','5', '\3','1','3','6', '\3','1','3','7', '\3','1','3','8', '\3','1','3','9',
+ '\3','1','4','0', '\3','1','4','1', '\3','1','4','2', '\3','1','4','3', '\3','1','4','4',
+ '\3','1','4','5', '\3','1','4','6', '\3','1','4','7', '\3','1','4','8', '\3','1','4','9',
+ '\3','1','5','0', '\3','1','5','1', '\3','1','5','2', '\3','1','5','3', '\3','1','5','4',
+ '\3','1','5','5', '\3','1','5','6', '\3','1','5','7', '\3','1','5','8', '\3','1','5','9',
+ '\3','1','6','0', '\3','1','6','1', '\3','1','6','2', '\3','1','6','3', '\3','1','6','4',
+ '\3','1','6','5', '\3','1','6','6', '\3','1','6','7', '\3','1','6','8', '\3','1','6','9',
+ '\3','1','7','0', '\3','1','7','1', '\3','1','7','2', '\3','1','7','3', '\3','1','7','4',
+ '\3','1','7','5', '\3','1','7','6', '\3','1','7','7', '\3','1','7','8', '\3','1','7','9',
+ '\3','1','8','0', '\3','1','8','1', '\3','1','8','2', '\3','1','8','3', '\3','1','8','4',
+ '\3','1','8','5', '\3','1','8','6', '\3','1','8','7', '\3','1','8','8', '\3','1','8','9',
+ '\3','1','9','0', '\3','1','9','1', '\3','1','9','2', '\3','1','9','3', '\3','1','9','4',
+ '\3','1','9','5', '\3','1','9','6', '\3','1','9','7', '\3','1','9','8', '\3','1','9','9',
+ '\3','2','0','0', '\3','2','0','1', '\3','2','0','2', '\3','2','0','3', '\3','2','0','4',
+ '\3','2','0','5', '\3','2','0','6', '\3','2','0','7', '\3','2','0','8', '\3','2','0','9',
+ '\3','2','1','0', '\3','2','1','1', '\3','2','1','2', '\3','2','1','3', '\3','2','1','4',
+ '\3','2','1','5', '\3','2','1','6', '\3','2','1','7', '\3','2','1','8', '\3','2','1','9',
+ '\3','2','2','0', '\3','2','2','1', '\3','2','2','2', '\3','2','2','3', '\3','2','2','4',
+ '\3','2','2','5', '\3','2','2','6', '\3','2','2','7', '\3','2','2','8', '\3','2','2','9',
+ '\3','2','3','0', '\3','2','3','1', '\3','2','3','2', '\3','2','3','3', '\3','2','3','4',
+ '\3','2','3','5', '\3','2','3','6', '\3','2','3','7', '\3','2','3','8', '\3','2','3','9',
+ '\3','2','4','0', '\3','2','4','1', '\3','2','4','2', '\3','2','4','3', '\3','2','4','4',
+ '\3','2','4','5', '\3','2','4','6', '\3','2','4','7', '\3','2','4','8', '\3','2','4','9',
+ '\3','2','5','0', '\3','2','5','1', '\3','2','5','2', '\3','2','5','3', '\3','2','5','4',
+ '\3','2','5','5', '\3','2','5','6', '\3','2','5','7', '\3','2','5','8', '\3','2','5','9',
+ '\3','2','6','0', '\3','2','6','1', '\3','2','6','2', '\3','2','6','3', '\3','2','6','4',
+ '\3','2','6','5', '\3','2','6','6', '\3','2','6','7', '\3','2','6','8', '\3','2','6','9',
+ '\3','2','7','0', '\3','2','7','1', '\3','2','7','2', '\3','2','7','3', '\3','2','7','4',
+ '\3','2','7','5', '\3','2','7','6', '\3','2','7','7', '\3','2','7','8', '\3','2','7','9',
+ '\3','2','8','0', '\3','2','8','1', '\3','2','8','2', '\3','2','8','3', '\3','2','8','4',
+ '\3','2','8','5', '\3','2','8','6', '\3','2','8','7', '\3','2','8','8', '\3','2','8','9',
+ '\3','2','9','0', '\3','2','9','1', '\3','2','9','2', '\3','2','9','3', '\3','2','9','4',
+ '\3','2','9','5', '\3','2','9','6', '\3','2','9','7', '\3','2','9','8', '\3','2','9','9',
+ '\3','3','0','0', '\3','3','0','1', '\3','3','0','2', '\3','3','0','3', '\3','3','0','4',
+ '\3','3','0','5', '\3','3','0','6', '\3','3','0','7', '\3','3','0','8', '\3','3','0','9',
+ '\3','3','1','0', '\3','3','1','1', '\3','3','1','2', '\3','3','1','3', '\3','3','1','4',
+ '\3','3','1','5', '\3','3','1','6', '\3','3','1','7', '\3','3','1','8', '\3','3','1','9',
+ '\3','3','2','0', '\3','3','2','1', '\3','3','2','2', '\3','3','2','3', '\3','3','2','4',
+ '\3','3','2','5', '\3','3','2','6', '\3','3','2','7', '\3','3','2','8', '\3','3','2','9',
+ '\3','3','3','0', '\3','3','3','1', '\3','3','3','2', '\3','3','3','3', '\3','3','3','4',
+ '\3','3','3','5', '\3','3','3','6', '\3','3','3','7', '\3','3','3','8', '\3','3','3','9',
+ '\3','3','4','0', '\3','3','4','1', '\3','3','4','2', '\3','3','4','3', '\3','3','4','4',
+ '\3','3','4','5', '\3','3','4','6', '\3','3','4','7', '\3','3','4','8', '\3','3','4','9',
+ '\3','3','5','0', '\3','3','5','1', '\3','3','5','2', '\3','3','5','3', '\3','3','5','4',
+ '\3','3','5','5', '\3','3','5','6', '\3','3','5','7', '\3','3','5','8', '\3','3','5','9',
+ '\3','3','6','0', '\3','3','6','1', '\3','3','6','2', '\3','3','6','3', '\3','3','6','4',
+ '\3','3','6','5', '\3','3','6','6', '\3','3','6','7', '\3','3','6','8', '\3','3','6','9',
+ '\3','3','7','0', '\3','3','7','1', '\3','3','7','2', '\3','3','7','3', '\3','3','7','4',
+ '\3','3','7','5', '\3','3','7','6', '\3','3','7','7', '\3','3','7','8', '\3','3','7','9',
+ '\3','3','8','0', '\3','3','8','1', '\3','3','8','2', '\3','3','8','3', '\3','3','8','4',
+ '\3','3','8','5', '\3','3','8','6', '\3','3','8','7', '\3','3','8','8', '\3','3','8','9',
+ '\3','3','9','0', '\3','3','9','1', '\3','3','9','2', '\3','3','9','3', '\3','3','9','4',
+ '\3','3','9','5', '\3','3','9','6', '\3','3','9','7', '\3','3','9','8', '\3','3','9','9',
+ '\3','4','0','0', '\3','4','0','1', '\3','4','0','2', '\3','4','0','3', '\3','4','0','4',
+ '\3','4','0','5', '\3','4','0','6', '\3','4','0','7', '\3','4','0','8', '\3','4','0','9',
+ '\3','4','1','0', '\3','4','1','1', '\3','4','1','2', '\3','4','1','3', '\3','4','1','4',
+ '\3','4','1','5', '\3','4','1','6', '\3','4','1','7', '\3','4','1','8', '\3','4','1','9',
+ '\3','4','2','0', '\3','4','2','1', '\3','4','2','2', '\3','4','2','3', '\3','4','2','4',
+ '\3','4','2','5', '\3','4','2','6', '\3','4','2','7', '\3','4','2','8', '\3','4','2','9',
+ '\3','4','3','0', '\3','4','3','1', '\3','4','3','2', '\3','4','3','3', '\3','4','3','4',
+ '\3','4','3','5', '\3','4','3','6', '\3','4','3','7', '\3','4','3','8', '\3','4','3','9',
+ '\3','4','4','0', '\3','4','4','1', '\3','4','4','2', '\3','4','4','3', '\3','4','4','4',
+ '\3','4','4','5', '\3','4','4','6', '\3','4','4','7', '\3','4','4','8', '\3','4','4','9',
+ '\3','4','5','0', '\3','4','5','1', '\3','4','5','2', '\3','4','5','3', '\3','4','5','4',
+ '\3','4','5','5', '\3','4','5','6', '\3','4','5','7', '\3','4','5','8', '\3','4','5','9',
+ '\3','4','6','0', '\3','4','6','1', '\3','4','6','2', '\3','4','6','3', '\3','4','6','4',
+ '\3','4','6','5', '\3','4','6','6', '\3','4','6','7', '\3','4','6','8', '\3','4','6','9',
+ '\3','4','7','0', '\3','4','7','1', '\3','4','7','2', '\3','4','7','3', '\3','4','7','4',
+ '\3','4','7','5', '\3','4','7','6', '\3','4','7','7', '\3','4','7','8', '\3','4','7','9',
+ '\3','4','8','0', '\3','4','8','1', '\3','4','8','2', '\3','4','8','3', '\3','4','8','4',
+ '\3','4','8','5', '\3','4','8','6', '\3','4','8','7', '\3','4','8','8', '\3','4','8','9',
+ '\3','4','9','0', '\3','4','9','1', '\3','4','9','2', '\3','4','9','3', '\3','4','9','4',
+ '\3','4','9','5', '\3','4','9','6', '\3','4','9','7', '\3','4','9','8', '\3','4','9','9',
+ '\3','5','0','0', '\3','5','0','1', '\3','5','0','2', '\3','5','0','3', '\3','5','0','4',
+ '\3','5','0','5', '\3','5','0','6', '\3','5','0','7', '\3','5','0','8', '\3','5','0','9',
+ '\3','5','1','0', '\3','5','1','1', '\3','5','1','2', '\3','5','1','3', '\3','5','1','4',
+ '\3','5','1','5', '\3','5','1','6', '\3','5','1','7', '\3','5','1','8', '\3','5','1','9',
+ '\3','5','2','0', '\3','5','2','1', '\3','5','2','2', '\3','5','2','3', '\3','5','2','4',
+ '\3','5','2','5', '\3','5','2','6', '\3','5','2','7', '\3','5','2','8', '\3','5','2','9',
+ '\3','5','3','0', '\3','5','3','1', '\3','5','3','2', '\3','5','3','3', '\3','5','3','4',
+ '\3','5','3','5', '\3','5','3','6', '\3','5','3','7', '\3','5','3','8', '\3','5','3','9',
+ '\3','5','4','0', '\3','5','4','1', '\3','5','4','2', '\3','5','4','3', '\3','5','4','4',
+ '\3','5','4','5', '\3','5','4','6', '\3','5','4','7', '\3','5','4','8', '\3','5','4','9',
+ '\3','5','5','0', '\3','5','5','1', '\3','5','5','2', '\3','5','5','3', '\3','5','5','4',
+ '\3','5','5','5', '\3','5','5','6', '\3','5','5','7', '\3','5','5','8', '\3','5','5','9',
+ '\3','5','6','0', '\3','5','6','1', '\3','5','6','2', '\3','5','6','3', '\3','5','6','4',
+ '\3','5','6','5', '\3','5','6','6', '\3','5','6','7', '\3','5','6','8', '\3','5','6','9',
+ '\3','5','7','0', '\3','5','7','1', '\3','5','7','2', '\3','5','7','3', '\3','5','7','4',
+ '\3','5','7','5', '\3','5','7','6', '\3','5','7','7', '\3','5','7','8', '\3','5','7','9',
+ '\3','5','8','0', '\3','5','8','1', '\3','5','8','2', '\3','5','8','3', '\3','5','8','4',
+ '\3','5','8','5', '\3','5','8','6', '\3','5','8','7', '\3','5','8','8', '\3','5','8','9',
+ '\3','5','9','0', '\3','5','9','1', '\3','5','9','2', '\3','5','9','3', '\3','5','9','4',
+ '\3','5','9','5', '\3','5','9','6', '\3','5','9','7', '\3','5','9','8', '\3','5','9','9',
+ '\3','6','0','0', '\3','6','0','1', '\3','6','0','2', '\3','6','0','3', '\3','6','0','4',
+ '\3','6','0','5', '\3','6','0','6', '\3','6','0','7', '\3','6','0','8', '\3','6','0','9',
+ '\3','6','1','0', '\3','6','1','1', '\3','6','1','2', '\3','6','1','3', '\3','6','1','4',
+ '\3','6','1','5', '\3','6','1','6', '\3','6','1','7', '\3','6','1','8', '\3','6','1','9',
+ '\3','6','2','0', '\3','6','2','1', '\3','6','2','2', '\3','6','2','3', '\3','6','2','4',
+ '\3','6','2','5', '\3','6','2','6', '\3','6','2','7', '\3','6','2','8', '\3','6','2','9',
+ '\3','6','3','0', '\3','6','3','1', '\3','6','3','2', '\3','6','3','3', '\3','6','3','4',
+ '\3','6','3','5', '\3','6','3','6', '\3','6','3','7', '\3','6','3','8', '\3','6','3','9',
+ '\3','6','4','0', '\3','6','4','1', '\3','6','4','2', '\3','6','4','3', '\3','6','4','4',
+ '\3','6','4','5', '\3','6','4','6', '\3','6','4','7', '\3','6','4','8', '\3','6','4','9',
+ '\3','6','5','0', '\3','6','5','1', '\3','6','5','2', '\3','6','5','3', '\3','6','5','4',
+ '\3','6','5','5', '\3','6','5','6', '\3','6','5','7', '\3','6','5','8', '\3','6','5','9',
+ '\3','6','6','0', '\3','6','6','1', '\3','6','6','2', '\3','6','6','3', '\3','6','6','4',
+ '\3','6','6','5', '\3','6','6','6', '\3','6','6','7', '\3','6','6','8', '\3','6','6','9',
+ '\3','6','7','0', '\3','6','7','1', '\3','6','7','2', '\3','6','7','3', '\3','6','7','4',
+ '\3','6','7','5', '\3','6','7','6', '\3','6','7','7', '\3','6','7','8', '\3','6','7','9',
+ '\3','6','8','0', '\3','6','8','1', '\3','6','8','2', '\3','6','8','3', '\3','6','8','4',
+ '\3','6','8','5', '\3','6','8','6', '\3','6','8','7', '\3','6','8','8', '\3','6','8','9',
+ '\3','6','9','0', '\3','6','9','1', '\3','6','9','2', '\3','6','9','3', '\3','6','9','4',
+ '\3','6','9','5', '\3','6','9','6', '\3','6','9','7', '\3','6','9','8', '\3','6','9','9',
+ '\3','7','0','0', '\3','7','0','1', '\3','7','0','2', '\3','7','0','3', '\3','7','0','4',
+ '\3','7','0','5', '\3','7','0','6', '\3','7','0','7', '\3','7','0','8', '\3','7','0','9',
+ '\3','7','1','0', '\3','7','1','1', '\3','7','1','2', '\3','7','1','3', '\3','7','1','4',
+ '\3','7','1','5', '\3','7','1','6', '\3','7','1','7', '\3','7','1','8', '\3','7','1','9',
+ '\3','7','2','0', '\3','7','2','1', '\3','7','2','2', '\3','7','2','3', '\3','7','2','4',
+ '\3','7','2','5', '\3','7','2','6', '\3','7','2','7', '\3','7','2','8', '\3','7','2','9',
+ '\3','7','3','0', '\3','7','3','1', '\3','7','3','2', '\3','7','3','3', '\3','7','3','4',
+ '\3','7','3','5', '\3','7','3','6', '\3','7','3','7', '\3','7','3','8', '\3','7','3','9',
+ '\3','7','4','0', '\3','7','4','1', '\3','7','4','2', '\3','7','4','3', '\3','7','4','4',
+ '\3','7','4','5', '\3','7','4','6', '\3','7','4','7', '\3','7','4','8', '\3','7','4','9',
+ '\3','7','5','0', '\3','7','5','1', '\3','7','5','2', '\3','7','5','3', '\3','7','5','4',
+ '\3','7','5','5', '\3','7','5','6', '\3','7','5','7', '\3','7','5','8', '\3','7','5','9',
+ '\3','7','6','0', '\3','7','6','1', '\3','7','6','2', '\3','7','6','3', '\3','7','6','4',
+ '\3','7','6','5', '\3','7','6','6', '\3','7','6','7', '\3','7','6','8', '\3','7','6','9',
+ '\3','7','7','0', '\3','7','7','1', '\3','7','7','2', '\3','7','7','3', '\3','7','7','4',
+ '\3','7','7','5', '\3','7','7','6', '\3','7','7','7', '\3','7','7','8', '\3','7','7','9',
+ '\3','7','8','0', '\3','7','8','1', '\3','7','8','2', '\3','7','8','3', '\3','7','8','4',
+ '\3','7','8','5', '\3','7','8','6', '\3','7','8','7', '\3','7','8','8', '\3','7','8','9',
+ '\3','7','9','0', '\3','7','9','1', '\3','7','9','2', '\3','7','9','3', '\3','7','9','4',
+ '\3','7','9','5', '\3','7','9','6', '\3','7','9','7', '\3','7','9','8', '\3','7','9','9',
+ '\3','8','0','0', '\3','8','0','1', '\3','8','0','2', '\3','8','0','3', '\3','8','0','4',
+ '\3','8','0','5', '\3','8','0','6', '\3','8','0','7', '\3','8','0','8', '\3','8','0','9',
+ '\3','8','1','0', '\3','8','1','1', '\3','8','1','2', '\3','8','1','3', '\3','8','1','4',
+ '\3','8','1','5', '\3','8','1','6', '\3','8','1','7', '\3','8','1','8', '\3','8','1','9',
+ '\3','8','2','0', '\3','8','2','1', '\3','8','2','2', '\3','8','2','3', '\3','8','2','4',
+ '\3','8','2','5', '\3','8','2','6', '\3','8','2','7', '\3','8','2','8', '\3','8','2','9',
+ '\3','8','3','0', '\3','8','3','1', '\3','8','3','2', '\3','8','3','3', '\3','8','3','4',
+ '\3','8','3','5', '\3','8','3','6', '\3','8','3','7', '\3','8','3','8', '\3','8','3','9',
+ '\3','8','4','0', '\3','8','4','1', '\3','8','4','2', '\3','8','4','3', '\3','8','4','4',
+ '\3','8','4','5', '\3','8','4','6', '\3','8','4','7', '\3','8','4','8', '\3','8','4','9',
+ '\3','8','5','0', '\3','8','5','1', '\3','8','5','2', '\3','8','5','3', '\3','8','5','4',
+ '\3','8','5','5', '\3','8','5','6', '\3','8','5','7', '\3','8','5','8', '\3','8','5','9',
+ '\3','8','6','0', '\3','8','6','1', '\3','8','6','2', '\3','8','6','3', '\3','8','6','4',
+ '\3','8','6','5', '\3','8','6','6', '\3','8','6','7', '\3','8','6','8', '\3','8','6','9',
+ '\3','8','7','0', '\3','8','7','1', '\3','8','7','2', '\3','8','7','3', '\3','8','7','4',
+ '\3','8','7','5', '\3','8','7','6', '\3','8','7','7', '\3','8','7','8', '\3','8','7','9',
+ '\3','8','8','0', '\3','8','8','1', '\3','8','8','2', '\3','8','8','3', '\3','8','8','4',
+ '\3','8','8','5', '\3','8','8','6', '\3','8','8','7', '\3','8','8','8', '\3','8','8','9',
+ '\3','8','9','0', '\3','8','9','1', '\3','8','9','2', '\3','8','9','3', '\3','8','9','4',
+ '\3','8','9','5', '\3','8','9','6', '\3','8','9','7', '\3','8','9','8', '\3','8','9','9',
+ '\3','9','0','0', '\3','9','0','1', '\3','9','0','2', '\3','9','0','3', '\3','9','0','4',
+ '\3','9','0','5', '\3','9','0','6', '\3','9','0','7', '\3','9','0','8', '\3','9','0','9',
+ '\3','9','1','0', '\3','9','1','1', '\3','9','1','2', '\3','9','1','3', '\3','9','1','4',
+ '\3','9','1','5', '\3','9','1','6', '\3','9','1','7', '\3','9','1','8', '\3','9','1','9',
+ '\3','9','2','0', '\3','9','2','1', '\3','9','2','2', '\3','9','2','3', '\3','9','2','4',
+ '\3','9','2','5', '\3','9','2','6', '\3','9','2','7', '\3','9','2','8', '\3','9','2','9',
+ '\3','9','3','0', '\3','9','3','1', '\3','9','3','2', '\3','9','3','3', '\3','9','3','4',
+ '\3','9','3','5', '\3','9','3','6', '\3','9','3','7', '\3','9','3','8', '\3','9','3','9',
+ '\3','9','4','0', '\3','9','4','1', '\3','9','4','2', '\3','9','4','3', '\3','9','4','4',
+ '\3','9','4','5', '\3','9','4','6', '\3','9','4','7', '\3','9','4','8', '\3','9','4','9',
+ '\3','9','5','0', '\3','9','5','1', '\3','9','5','2', '\3','9','5','3', '\3','9','5','4',
+ '\3','9','5','5', '\3','9','5','6', '\3','9','5','7', '\3','9','5','8', '\3','9','5','9',
+ '\3','9','6','0', '\3','9','6','1', '\3','9','6','2', '\3','9','6','3', '\3','9','6','4',
+ '\3','9','6','5', '\3','9','6','6', '\3','9','6','7', '\3','9','6','8', '\3','9','6','9',
+ '\3','9','7','0', '\3','9','7','1', '\3','9','7','2', '\3','9','7','3', '\3','9','7','4',
+ '\3','9','7','5', '\3','9','7','6', '\3','9','7','7', '\3','9','7','8', '\3','9','7','9',
+ '\3','9','8','0', '\3','9','8','1', '\3','9','8','2', '\3','9','8','3', '\3','9','8','4',
+ '\3','9','8','5', '\3','9','8','6', '\3','9','8','7', '\3','9','8','8', '\3','9','8','9',
+ '\3','9','9','0', '\3','9','9','1', '\3','9','9','2', '\3','9','9','3', '\3','9','9','4',
+ '\3','9','9','5', '\3','9','9','6', '\3','9','9','7', '\3','9','9','8', '\3','9','9','9', '\0'};
#endif
-#if DEC_DPD2BIN==1
+#if defined(DEC_DPD2BCD8) && DEC_DPD2BCD8==1 && !defined(DECDPD2BCD8)
+#define DECDPD2BCD8
-const uint16_t DPD2BIN[1024] = { 0, 1, 2, 3, 4, 5, 6, 7,
- 8, 9, 80, 81, 800, 801, 880, 881, 10, 11, 12, 13, 14,
- 15, 16, 17, 18, 19, 90, 91, 810, 811, 890, 891, 20, 21,
- 22, 23, 24, 25, 26, 27, 28, 29, 82, 83, 820, 821, 808,
- 809, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 92, 93,
- 830, 831, 818, 819, 40, 41, 42, 43, 44, 45, 46, 47, 48,
- 49, 84, 85, 840, 841, 88, 89, 50, 51, 52, 53, 54, 55,
- 56, 57, 58, 59, 94, 95, 850, 851, 98, 99, 60, 61, 62,
- 63, 64, 65, 66, 67, 68, 69, 86, 87, 860, 861, 888, 889,
- 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 96, 97, 870,
- 871, 898, 899, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109,
- 180, 181, 900, 901, 980, 981, 110, 111, 112, 113, 114, 115, 116,
- 117, 118, 119, 190, 191, 910, 911, 990, 991, 120, 121, 122, 123,
- 124, 125, 126, 127, 128, 129, 182, 183, 920, 921, 908, 909, 130,
- 131, 132, 133, 134, 135, 136, 137, 138, 139, 192, 193, 930, 931,
- 918, 919, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 184,
- 185, 940, 941, 188, 189, 150, 151, 152, 153, 154, 155, 156, 157,
- 158, 159, 194, 195, 950, 951, 198, 199, 160, 161, 162, 163, 164,
- 165, 166, 167, 168, 169, 186, 187, 960, 961, 988, 989, 170, 171,
- 172, 173, 174, 175, 176, 177, 178, 179, 196, 197, 970, 971, 998,
- 999, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 280, 281,
- 802, 803, 882, 883, 210, 211, 212, 213, 214, 215, 216, 217, 218,
- 219, 290, 291, 812, 813, 892, 893, 220, 221, 222, 223, 224, 225,
- 226, 227, 228, 229, 282, 283, 822, 823, 828, 829, 230, 231, 232,
- 233, 234, 235, 236, 237, 238, 239, 292, 293, 832, 833, 838, 839,
- 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 284, 285, 842,
- 843, 288, 289, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259,
- 294, 295, 852, 853, 298, 299, 260, 261, 262, 263, 264, 265, 266,
- 267, 268, 269, 286, 287, 862, 863, 888, 889, 270, 271, 272, 273,
- 274, 275, 276, 277, 278, 279, 296, 297, 872, 873, 898, 899, 300,
- 301, 302, 303, 304, 305, 306, 307, 308, 309, 380, 381, 902, 903,
- 982, 983, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 390,
- 391, 912, 913, 992, 993, 320, 321, 322, 323, 324, 325, 326, 327,
- 328, 329, 382, 383, 922, 923, 928, 929, 330, 331, 332, 333, 334,
- 335, 336, 337, 338, 339, 392, 393, 932, 933, 938, 939, 340, 341,
- 342, 343, 344, 345, 346, 347, 348, 349, 384, 385, 942, 943, 388,
- 389, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 394, 395,
- 952, 953, 398, 399, 360, 361, 362, 363, 364, 365, 366, 367, 368,
- 369, 386, 387, 962, 963, 988, 989, 370, 371, 372, 373, 374, 375,
- 376, 377, 378, 379, 396, 397, 972, 973, 998, 999, 400, 401, 402,
- 403, 404, 405, 406, 407, 408, 409, 480, 481, 804, 805, 884, 885,
- 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 490, 491, 814,
- 815, 894, 895, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429,
- 482, 483, 824, 825, 848, 849, 430, 431, 432, 433, 434, 435, 436,
- 437, 438, 439, 492, 493, 834, 835, 858, 859, 440, 441, 442, 443,
- 444, 445, 446, 447, 448, 449, 484, 485, 844, 845, 488, 489, 450,
- 451, 452, 453, 454, 455, 456, 457, 458, 459, 494, 495, 854, 855,
- 498, 499, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 486,
- 487, 864, 865, 888, 889, 470, 471, 472, 473, 474, 475, 476, 477,
- 478, 479, 496, 497, 874, 875, 898, 899, 500, 501, 502, 503, 504,
- 505, 506, 507, 508, 509, 580, 581, 904, 905, 984, 985, 510, 511,
- 512, 513, 514, 515, 516, 517, 518, 519, 590, 591, 914, 915, 994,
- 995, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 582, 583,
- 924, 925, 948, 949, 530, 531, 532, 533, 534, 535, 536, 537, 538,
- 539, 592, 593, 934, 935, 958, 959, 540, 541, 542, 543, 544, 545,
- 546, 547, 548, 549, 584, 585, 944, 945, 588, 589, 550, 551, 552,
- 553, 554, 555, 556, 557, 558, 559, 594, 595, 954, 955, 598, 599,
- 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 586, 587, 964,
- 965, 988, 989, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579,
- 596, 597, 974, 975, 998, 999, 600, 601, 602, 603, 604, 605, 606,
- 607, 608, 609, 680, 681, 806, 807, 886, 887, 610, 611, 612, 613,
- 614, 615, 616, 617, 618, 619, 690, 691, 816, 817, 896, 897, 620,
- 621, 622, 623, 624, 625, 626, 627, 628, 629, 682, 683, 826, 827,
- 868, 869, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 692,
- 693, 836, 837, 878, 879, 640, 641, 642, 643, 644, 645, 646, 647,
- 648, 649, 684, 685, 846, 847, 688, 689, 650, 651, 652, 653, 654,
- 655, 656, 657, 658, 659, 694, 695, 856, 857, 698, 699, 660, 661,
- 662, 663, 664, 665, 666, 667, 668, 669, 686, 687, 866, 867, 888,
- 889, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 696, 697,
- 876, 877, 898, 899, 700, 701, 702, 703, 704, 705, 706, 707, 708,
- 709, 780, 781, 906, 907, 986, 987, 710, 711, 712, 713, 714, 715,
- 716, 717, 718, 719, 790, 791, 916, 917, 996, 997, 720, 721, 722,
- 723, 724, 725, 726, 727, 728, 729, 782, 783, 926, 927, 968, 969,
- 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 792, 793, 936,
- 937, 978, 979, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749,
- 784, 785, 946, 947, 788, 789, 750, 751, 752, 753, 754, 755, 756,
- 757, 758, 759, 794, 795, 956, 957, 798, 799, 760, 761, 762, 763,
- 764, 765, 766, 767, 768, 769, 786, 787, 966, 967, 988, 989, 770,
- 771, 772, 773, 774, 775, 776, 777, 778, 779, 796, 797, 976, 977,
- 998, 999
-};
+const uint8_t DPD2BCD8[4096]={
+ 0,0,0,0, 0,0,1,1, 0,0,2,1, 0,0,3,1, 0,0,4,1, 0,0,5,1, 0,0,6,1, 0,0,7,1, 0,0,8,1,
+ 0,0,9,1, 0,8,0,2, 0,8,1,2, 8,0,0,3, 8,0,1,3, 8,8,0,3, 8,8,1,3, 0,1,0,2, 0,1,1,2,
+ 0,1,2,2, 0,1,3,2, 0,1,4,2, 0,1,5,2, 0,1,6,2, 0,1,7,2, 0,1,8,2, 0,1,9,2, 0,9,0,2,
+ 0,9,1,2, 8,1,0,3, 8,1,1,3, 8,9,0,3, 8,9,1,3, 0,2,0,2, 0,2,1,2, 0,2,2,2, 0,2,3,2,
+ 0,2,4,2, 0,2,5,2, 0,2,6,2, 0,2,7,2, 0,2,8,2, 0,2,9,2, 0,8,2,2, 0,8,3,2, 8,2,0,3,
+ 8,2,1,3, 8,0,8,3, 8,0,9,3, 0,3,0,2, 0,3,1,2, 0,3,2,2, 0,3,3,2, 0,3,4,2, 0,3,5,2,
+ 0,3,6,2, 0,3,7,2, 0,3,8,2, 0,3,9,2, 0,9,2,2, 0,9,3,2, 8,3,0,3, 8,3,1,3, 8,1,8,3,
+ 8,1,9,3, 0,4,0,2, 0,4,1,2, 0,4,2,2, 0,4,3,2, 0,4,4,2, 0,4,5,2, 0,4,6,2, 0,4,7,2,
+ 0,4,8,2, 0,4,9,2, 0,8,4,2, 0,8,5,2, 8,4,0,3, 8,4,1,3, 0,8,8,2, 0,8,9,2, 0,5,0,2,
+ 0,5,1,2, 0,5,2,2, 0,5,3,2, 0,5,4,2, 0,5,5,2, 0,5,6,2, 0,5,7,2, 0,5,8,2, 0,5,9,2,
+ 0,9,4,2, 0,9,5,2, 8,5,0,3, 8,5,1,3, 0,9,8,2, 0,9,9,2, 0,6,0,2, 0,6,1,2, 0,6,2,2,
+ 0,6,3,2, 0,6,4,2, 0,6,5,2, 0,6,6,2, 0,6,7,2, 0,6,8,2, 0,6,9,2, 0,8,6,2, 0,8,7,2,
+ 8,6,0,3, 8,6,1,3, 8,8,8,3, 8,8,9,3, 0,7,0,2, 0,7,1,2, 0,7,2,2, 0,7,3,2, 0,7,4,2,
+ 0,7,5,2, 0,7,6,2, 0,7,7,2, 0,7,8,2, 0,7,9,2, 0,9,6,2, 0,9,7,2, 8,7,0,3, 8,7,1,3,
+ 8,9,8,3, 8,9,9,3, 1,0,0,3, 1,0,1,3, 1,0,2,3, 1,0,3,3, 1,0,4,3, 1,0,5,3, 1,0,6,3,
+ 1,0,7,3, 1,0,8,3, 1,0,9,3, 1,8,0,3, 1,8,1,3, 9,0,0,3, 9,0,1,3, 9,8,0,3, 9,8,1,3,
+ 1,1,0,3, 1,1,1,3, 1,1,2,3, 1,1,3,3, 1,1,4,3, 1,1,5,3, 1,1,6,3, 1,1,7,3, 1,1,8,3,
+ 1,1,9,3, 1,9,0,3, 1,9,1,3, 9,1,0,3, 9,1,1,3, 9,9,0,3, 9,9,1,3, 1,2,0,3, 1,2,1,3,
+ 1,2,2,3, 1,2,3,3, 1,2,4,3, 1,2,5,3, 1,2,6,3, 1,2,7,3, 1,2,8,3, 1,2,9,3, 1,8,2,3,
+ 1,8,3,3, 9,2,0,3, 9,2,1,3, 9,0,8,3, 9,0,9,3, 1,3,0,3, 1,3,1,3, 1,3,2,3, 1,3,3,3,
+ 1,3,4,3, 1,3,5,3, 1,3,6,3, 1,3,7,3, 1,3,8,3, 1,3,9,3, 1,9,2,3, 1,9,3,3, 9,3,0,3,
+ 9,3,1,3, 9,1,8,3, 9,1,9,3, 1,4,0,3, 1,4,1,3, 1,4,2,3, 1,4,3,3, 1,4,4,3, 1,4,5,3,
+ 1,4,6,3, 1,4,7,3, 1,4,8,3, 1,4,9,3, 1,8,4,3, 1,8,5,3, 9,4,0,3, 9,4,1,3, 1,8,8,3,
+ 1,8,9,3, 1,5,0,3, 1,5,1,3, 1,5,2,3, 1,5,3,3, 1,5,4,3, 1,5,5,3, 1,5,6,3, 1,5,7,3,
+ 1,5,8,3, 1,5,9,3, 1,9,4,3, 1,9,5,3, 9,5,0,3, 9,5,1,3, 1,9,8,3, 1,9,9,3, 1,6,0,3,
+ 1,6,1,3, 1,6,2,3, 1,6,3,3, 1,6,4,3, 1,6,5,3, 1,6,6,3, 1,6,7,3, 1,6,8,3, 1,6,9,3,
+ 1,8,6,3, 1,8,7,3, 9,6,0,3, 9,6,1,3, 9,8,8,3, 9,8,9,3, 1,7,0,3, 1,7,1,3, 1,7,2,3,
+ 1,7,3,3, 1,7,4,3, 1,7,5,3, 1,7,6,3, 1,7,7,3, 1,7,8,3, 1,7,9,3, 1,9,6,3, 1,9,7,3,
+ 9,7,0,3, 9,7,1,3, 9,9,8,3, 9,9,9,3, 2,0,0,3, 2,0,1,3, 2,0,2,3, 2,0,3,3, 2,0,4,3,
+ 2,0,5,3, 2,0,6,3, 2,0,7,3, 2,0,8,3, 2,0,9,3, 2,8,0,3, 2,8,1,3, 8,0,2,3, 8,0,3,3,
+ 8,8,2,3, 8,8,3,3, 2,1,0,3, 2,1,1,3, 2,1,2,3, 2,1,3,3, 2,1,4,3, 2,1,5,3, 2,1,6,3,
+ 2,1,7,3, 2,1,8,3, 2,1,9,3, 2,9,0,3, 2,9,1,3, 8,1,2,3, 8,1,3,3, 8,9,2,3, 8,9,3,3,
+ 2,2,0,3, 2,2,1,3, 2,2,2,3, 2,2,3,3, 2,2,4,3, 2,2,5,3, 2,2,6,3, 2,2,7,3, 2,2,8,3,
+ 2,2,9,3, 2,8,2,3, 2,8,3,3, 8,2,2,3, 8,2,3,3, 8,2,8,3, 8,2,9,3, 2,3,0,3, 2,3,1,3,
+ 2,3,2,3, 2,3,3,3, 2,3,4,3, 2,3,5,3, 2,3,6,3, 2,3,7,3, 2,3,8,3, 2,3,9,3, 2,9,2,3,
+ 2,9,3,3, 8,3,2,3, 8,3,3,3, 8,3,8,3, 8,3,9,3, 2,4,0,3, 2,4,1,3, 2,4,2,3, 2,4,3,3,
+ 2,4,4,3, 2,4,5,3, 2,4,6,3, 2,4,7,3, 2,4,8,3, 2,4,9,3, 2,8,4,3, 2,8,5,3, 8,4,2,3,
+ 8,4,3,3, 2,8,8,3, 2,8,9,3, 2,5,0,3, 2,5,1,3, 2,5,2,3, 2,5,3,3, 2,5,4,3, 2,5,5,3,
+ 2,5,6,3, 2,5,7,3, 2,5,8,3, 2,5,9,3, 2,9,4,3, 2,9,5,3, 8,5,2,3, 8,5,3,3, 2,9,8,3,
+ 2,9,9,3, 2,6,0,3, 2,6,1,3, 2,6,2,3, 2,6,3,3, 2,6,4,3, 2,6,5,3, 2,6,6,3, 2,6,7,3,
+ 2,6,8,3, 2,6,9,3, 2,8,6,3, 2,8,7,3, 8,6,2,3, 8,6,3,3, 8,8,8,3, 8,8,9,3, 2,7,0,3,
+ 2,7,1,3, 2,7,2,3, 2,7,3,3, 2,7,4,3, 2,7,5,3, 2,7,6,3, 2,7,7,3, 2,7,8,3, 2,7,9,3,
+ 2,9,6,3, 2,9,7,3, 8,7,2,3, 8,7,3,3, 8,9,8,3, 8,9,9,3, 3,0,0,3, 3,0,1,3, 3,0,2,3,
+ 3,0,3,3, 3,0,4,3, 3,0,5,3, 3,0,6,3, 3,0,7,3, 3,0,8,3, 3,0,9,3, 3,8,0,3, 3,8,1,3,
+ 9,0,2,3, 9,0,3,3, 9,8,2,3, 9,8,3,3, 3,1,0,3, 3,1,1,3, 3,1,2,3, 3,1,3,3, 3,1,4,3,
+ 3,1,5,3, 3,1,6,3, 3,1,7,3, 3,1,8,3, 3,1,9,3, 3,9,0,3, 3,9,1,3, 9,1,2,3, 9,1,3,3,
+ 9,9,2,3, 9,9,3,3, 3,2,0,3, 3,2,1,3, 3,2,2,3, 3,2,3,3, 3,2,4,3, 3,2,5,3, 3,2,6,3,
+ 3,2,7,3, 3,2,8,3, 3,2,9,3, 3,8,2,3, 3,8,3,3, 9,2,2,3, 9,2,3,3, 9,2,8,3, 9,2,9,3,
+ 3,3,0,3, 3,3,1,3, 3,3,2,3, 3,3,3,3, 3,3,4,3, 3,3,5,3, 3,3,6,3, 3,3,7,3, 3,3,8,3,
+ 3,3,9,3, 3,9,2,3, 3,9,3,3, 9,3,2,3, 9,3,3,3, 9,3,8,3, 9,3,9,3, 3,4,0,3, 3,4,1,3,
+ 3,4,2,3, 3,4,3,3, 3,4,4,3, 3,4,5,3, 3,4,6,3, 3,4,7,3, 3,4,8,3, 3,4,9,3, 3,8,4,3,
+ 3,8,5,3, 9,4,2,3, 9,4,3,3, 3,8,8,3, 3,8,9,3, 3,5,0,3, 3,5,1,3, 3,5,2,3, 3,5,3,3,
+ 3,5,4,3, 3,5,5,3, 3,5,6,3, 3,5,7,3, 3,5,8,3, 3,5,9,3, 3,9,4,3, 3,9,5,3, 9,5,2,3,
+ 9,5,3,3, 3,9,8,3, 3,9,9,3, 3,6,0,3, 3,6,1,3, 3,6,2,3, 3,6,3,3, 3,6,4,3, 3,6,5,3,
+ 3,6,6,3, 3,6,7,3, 3,6,8,3, 3,6,9,3, 3,8,6,3, 3,8,7,3, 9,6,2,3, 9,6,3,3, 9,8,8,3,
+ 9,8,9,3, 3,7,0,3, 3,7,1,3, 3,7,2,3, 3,7,3,3, 3,7,4,3, 3,7,5,3, 3,7,6,3, 3,7,7,3,
+ 3,7,8,3, 3,7,9,3, 3,9,6,3, 3,9,7,3, 9,7,2,3, 9,7,3,3, 9,9,8,3, 9,9,9,3, 4,0,0,3,
+ 4,0,1,3, 4,0,2,3, 4,0,3,3, 4,0,4,3, 4,0,5,3, 4,0,6,3, 4,0,7,3, 4,0,8,3, 4,0,9,3,
+ 4,8,0,3, 4,8,1,3, 8,0,4,3, 8,0,5,3, 8,8,4,3, 8,8,5,3, 4,1,0,3, 4,1,1,3, 4,1,2,3,
+ 4,1,3,3, 4,1,4,3, 4,1,5,3, 4,1,6,3, 4,1,7,3, 4,1,8,3, 4,1,9,3, 4,9,0,3, 4,9,1,3,
+ 8,1,4,3, 8,1,5,3, 8,9,4,3, 8,9,5,3, 4,2,0,3, 4,2,1,3, 4,2,2,3, 4,2,3,3, 4,2,4,3,
+ 4,2,5,3, 4,2,6,3, 4,2,7,3, 4,2,8,3, 4,2,9,3, 4,8,2,3, 4,8,3,3, 8,2,4,3, 8,2,5,3,
+ 8,4,8,3, 8,4,9,3, 4,3,0,3, 4,3,1,3, 4,3,2,3, 4,3,3,3, 4,3,4,3, 4,3,5,3, 4,3,6,3,
+ 4,3,7,3, 4,3,8,3, 4,3,9,3, 4,9,2,3, 4,9,3,3, 8,3,4,3, 8,3,5,3, 8,5,8,3, 8,5,9,3,
+ 4,4,0,3, 4,4,1,3, 4,4,2,3, 4,4,3,3, 4,4,4,3, 4,4,5,3, 4,4,6,3, 4,4,7,3, 4,4,8,3,
+ 4,4,9,3, 4,8,4,3, 4,8,5,3, 8,4,4,3, 8,4,5,3, 4,8,8,3, 4,8,9,3, 4,5,0,3, 4,5,1,3,
+ 4,5,2,3, 4,5,3,3, 4,5,4,3, 4,5,5,3, 4,5,6,3, 4,5,7,3, 4,5,8,3, 4,5,9,3, 4,9,4,3,
+ 4,9,5,3, 8,5,4,3, 8,5,5,3, 4,9,8,3, 4,9,9,3, 4,6,0,3, 4,6,1,3, 4,6,2,3, 4,6,3,3,
+ 4,6,4,3, 4,6,5,3, 4,6,6,3, 4,6,7,3, 4,6,8,3, 4,6,9,3, 4,8,6,3, 4,8,7,3, 8,6,4,3,
+ 8,6,5,3, 8,8,8,3, 8,8,9,3, 4,7,0,3, 4,7,1,3, 4,7,2,3, 4,7,3,3, 4,7,4,3, 4,7,5,3,
+ 4,7,6,3, 4,7,7,3, 4,7,8,3, 4,7,9,3, 4,9,6,3, 4,9,7,3, 8,7,4,3, 8,7,5,3, 8,9,8,3,
+ 8,9,9,3, 5,0,0,3, 5,0,1,3, 5,0,2,3, 5,0,3,3, 5,0,4,3, 5,0,5,3, 5,0,6,3, 5,0,7,3,
+ 5,0,8,3, 5,0,9,3, 5,8,0,3, 5,8,1,3, 9,0,4,3, 9,0,5,3, 9,8,4,3, 9,8,5,3, 5,1,0,3,
+ 5,1,1,3, 5,1,2,3, 5,1,3,3, 5,1,4,3, 5,1,5,3, 5,1,6,3, 5,1,7,3, 5,1,8,3, 5,1,9,3,
+ 5,9,0,3, 5,9,1,3, 9,1,4,3, 9,1,5,3, 9,9,4,3, 9,9,5,3, 5,2,0,3, 5,2,1,3, 5,2,2,3,
+ 5,2,3,3, 5,2,4,3, 5,2,5,3, 5,2,6,3, 5,2,7,3, 5,2,8,3, 5,2,9,3, 5,8,2,3, 5,8,3,3,
+ 9,2,4,3, 9,2,5,3, 9,4,8,3, 9,4,9,3, 5,3,0,3, 5,3,1,3, 5,3,2,3, 5,3,3,3, 5,3,4,3,
+ 5,3,5,3, 5,3,6,3, 5,3,7,3, 5,3,8,3, 5,3,9,3, 5,9,2,3, 5,9,3,3, 9,3,4,3, 9,3,5,3,
+ 9,5,8,3, 9,5,9,3, 5,4,0,3, 5,4,1,3, 5,4,2,3, 5,4,3,3, 5,4,4,3, 5,4,5,3, 5,4,6,3,
+ 5,4,7,3, 5,4,8,3, 5,4,9,3, 5,8,4,3, 5,8,5,3, 9,4,4,3, 9,4,5,3, 5,8,8,3, 5,8,9,3,
+ 5,5,0,3, 5,5,1,3, 5,5,2,3, 5,5,3,3, 5,5,4,3, 5,5,5,3, 5,5,6,3, 5,5,7,3, 5,5,8,3,
+ 5,5,9,3, 5,9,4,3, 5,9,5,3, 9,5,4,3, 9,5,5,3, 5,9,8,3, 5,9,9,3, 5,6,0,3, 5,6,1,3,
+ 5,6,2,3, 5,6,3,3, 5,6,4,3, 5,6,5,3, 5,6,6,3, 5,6,7,3, 5,6,8,3, 5,6,9,3, 5,8,6,3,
+ 5,8,7,3, 9,6,4,3, 9,6,5,3, 9,8,8,3, 9,8,9,3, 5,7,0,3, 5,7,1,3, 5,7,2,3, 5,7,3,3,
+ 5,7,4,3, 5,7,5,3, 5,7,6,3, 5,7,7,3, 5,7,8,3, 5,7,9,3, 5,9,6,3, 5,9,7,3, 9,7,4,3,
+ 9,7,5,3, 9,9,8,3, 9,9,9,3, 6,0,0,3, 6,0,1,3, 6,0,2,3, 6,0,3,3, 6,0,4,3, 6,0,5,3,
+ 6,0,6,3, 6,0,7,3, 6,0,8,3, 6,0,9,3, 6,8,0,3, 6,8,1,3, 8,0,6,3, 8,0,7,3, 8,8,6,3,
+ 8,8,7,3, 6,1,0,3, 6,1,1,3, 6,1,2,3, 6,1,3,3, 6,1,4,3, 6,1,5,3, 6,1,6,3, 6,1,7,3,
+ 6,1,8,3, 6,1,9,3, 6,9,0,3, 6,9,1,3, 8,1,6,3, 8,1,7,3, 8,9,6,3, 8,9,7,3, 6,2,0,3,
+ 6,2,1,3, 6,2,2,3, 6,2,3,3, 6,2,4,3, 6,2,5,3, 6,2,6,3, 6,2,7,3, 6,2,8,3, 6,2,9,3,
+ 6,8,2,3, 6,8,3,3, 8,2,6,3, 8,2,7,3, 8,6,8,3, 8,6,9,3, 6,3,0,3, 6,3,1,3, 6,3,2,3,
+ 6,3,3,3, 6,3,4,3, 6,3,5,3, 6,3,6,3, 6,3,7,3, 6,3,8,3, 6,3,9,3, 6,9,2,3, 6,9,3,3,
+ 8,3,6,3, 8,3,7,3, 8,7,8,3, 8,7,9,3, 6,4,0,3, 6,4,1,3, 6,4,2,3, 6,4,3,3, 6,4,4,3,
+ 6,4,5,3, 6,4,6,3, 6,4,7,3, 6,4,8,3, 6,4,9,3, 6,8,4,3, 6,8,5,3, 8,4,6,3, 8,4,7,3,
+ 6,8,8,3, 6,8,9,3, 6,5,0,3, 6,5,1,3, 6,5,2,3, 6,5,3,3, 6,5,4,3, 6,5,5,3, 6,5,6,3,
+ 6,5,7,3, 6,5,8,3, 6,5,9,3, 6,9,4,3, 6,9,5,3, 8,5,6,3, 8,5,7,3, 6,9,8,3, 6,9,9,3,
+ 6,6,0,3, 6,6,1,3, 6,6,2,3, 6,6,3,3, 6,6,4,3, 6,6,5,3, 6,6,6,3, 6,6,7,3, 6,6,8,3,
+ 6,6,9,3, 6,8,6,3, 6,8,7,3, 8,6,6,3, 8,6,7,3, 8,8,8,3, 8,8,9,3, 6,7,0,3, 6,7,1,3,
+ 6,7,2,3, 6,7,3,3, 6,7,4,3, 6,7,5,3, 6,7,6,3, 6,7,7,3, 6,7,8,3, 6,7,9,3, 6,9,6,3,
+ 6,9,7,3, 8,7,6,3, 8,7,7,3, 8,9,8,3, 8,9,9,3, 7,0,0,3, 7,0,1,3, 7,0,2,3, 7,0,3,3,
+ 7,0,4,3, 7,0,5,3, 7,0,6,3, 7,0,7,3, 7,0,8,3, 7,0,9,3, 7,8,0,3, 7,8,1,3, 9,0,6,3,
+ 9,0,7,3, 9,8,6,3, 9,8,7,3, 7,1,0,3, 7,1,1,3, 7,1,2,3, 7,1,3,3, 7,1,4,3, 7,1,5,3,
+ 7,1,6,3, 7,1,7,3, 7,1,8,3, 7,1,9,3, 7,9,0,3, 7,9,1,3, 9,1,6,3, 9,1,7,3, 9,9,6,3,
+ 9,9,7,3, 7,2,0,3, 7,2,1,3, 7,2,2,3, 7,2,3,3, 7,2,4,3, 7,2,5,3, 7,2,6,3, 7,2,7,3,
+ 7,2,8,3, 7,2,9,3, 7,8,2,3, 7,8,3,3, 9,2,6,3, 9,2,7,3, 9,6,8,3, 9,6,9,3, 7,3,0,3,
+ 7,3,1,3, 7,3,2,3, 7,3,3,3, 7,3,4,3, 7,3,5,3, 7,3,6,3, 7,3,7,3, 7,3,8,3, 7,3,9,3,
+ 7,9,2,3, 7,9,3,3, 9,3,6,3, 9,3,7,3, 9,7,8,3, 9,7,9,3, 7,4,0,3, 7,4,1,3, 7,4,2,3,
+ 7,4,3,3, 7,4,4,3, 7,4,5,3, 7,4,6,3, 7,4,7,3, 7,4,8,3, 7,4,9,3, 7,8,4,3, 7,8,5,3,
+ 9,4,6,3, 9,4,7,3, 7,8,8,3, 7,8,9,3, 7,5,0,3, 7,5,1,3, 7,5,2,3, 7,5,3,3, 7,5,4,3,
+ 7,5,5,3, 7,5,6,3, 7,5,7,3, 7,5,8,3, 7,5,9,3, 7,9,4,3, 7,9,5,3, 9,5,6,3, 9,5,7,3,
+ 7,9,8,3, 7,9,9,3, 7,6,0,3, 7,6,1,3, 7,6,2,3, 7,6,3,3, 7,6,4,3, 7,6,5,3, 7,6,6,3,
+ 7,6,7,3, 7,6,8,3, 7,6,9,3, 7,8,6,3, 7,8,7,3, 9,6,6,3, 9,6,7,3, 9,8,8,3, 9,8,9,3,
+ 7,7,0,3, 7,7,1,3, 7,7,2,3, 7,7,3,3, 7,7,4,3, 7,7,5,3, 7,7,6,3, 7,7,7,3, 7,7,8,3,
+ 7,7,9,3, 7,9,6,3, 7,9,7,3, 9,7,6,3, 9,7,7,3, 9,9,8,3, 9,9,9,3};
#endif
+
+#if defined(DEC_BIN2BCD8) && DEC_BIN2BCD8==1 && !defined(DECBIN2BCD8)
+#define DECBIN2BCD8
+
+const uint8_t BIN2BCD8[4000]={
+ 0,0,0,0, 0,0,1,1, 0,0,2,1, 0,0,3,1, 0,0,4,1, 0,0,5,1, 0,0,6,1, 0,0,7,1, 0,0,8,1,
+ 0,0,9,1, 0,1,0,2, 0,1,1,2, 0,1,2,2, 0,1,3,2, 0,1,4,2, 0,1,5,2, 0,1,6,2, 0,1,7,2,
+ 0,1,8,2, 0,1,9,2, 0,2,0,2, 0,2,1,2, 0,2,2,2, 0,2,3,2, 0,2,4,2, 0,2,5,2, 0,2,6,2,
+ 0,2,7,2, 0,2,8,2, 0,2,9,2, 0,3,0,2, 0,3,1,2, 0,3,2,2, 0,3,3,2, 0,3,4,2, 0,3,5,2,
+ 0,3,6,2, 0,3,7,2, 0,3,8,2, 0,3,9,2, 0,4,0,2, 0,4,1,2, 0,4,2,2, 0,4,3,2, 0,4,4,2,
+ 0,4,5,2, 0,4,6,2, 0,4,7,2, 0,4,8,2, 0,4,9,2, 0,5,0,2, 0,5,1,2, 0,5,2,2, 0,5,3,2,
+ 0,5,4,2, 0,5,5,2, 0,5,6,2, 0,5,7,2, 0,5,8,2, 0,5,9,2, 0,6,0,2, 0,6,1,2, 0,6,2,2,
+ 0,6,3,2, 0,6,4,2, 0,6,5,2, 0,6,6,2, 0,6,7,2, 0,6,8,2, 0,6,9,2, 0,7,0,2, 0,7,1,2,
+ 0,7,2,2, 0,7,3,2, 0,7,4,2, 0,7,5,2, 0,7,6,2, 0,7,7,2, 0,7,8,2, 0,7,9,2, 0,8,0,2,
+ 0,8,1,2, 0,8,2,2, 0,8,3,2, 0,8,4,2, 0,8,5,2, 0,8,6,2, 0,8,7,2, 0,8,8,2, 0,8,9,2,
+ 0,9,0,2, 0,9,1,2, 0,9,2,2, 0,9,3,2, 0,9,4,2, 0,9,5,2, 0,9,6,2, 0,9,7,2, 0,9,8,2,
+ 0,9,9,2, 1,0,0,3, 1,0,1,3, 1,0,2,3, 1,0,3,3, 1,0,4,3, 1,0,5,3, 1,0,6,3, 1,0,7,3,
+ 1,0,8,3, 1,0,9,3, 1,1,0,3, 1,1,1,3, 1,1,2,3, 1,1,3,3, 1,1,4,3, 1,1,5,3, 1,1,6,3,
+ 1,1,7,3, 1,1,8,3, 1,1,9,3, 1,2,0,3, 1,2,1,3, 1,2,2,3, 1,2,3,3, 1,2,4,3, 1,2,5,3,
+ 1,2,6,3, 1,2,7,3, 1,2,8,3, 1,2,9,3, 1,3,0,3, 1,3,1,3, 1,3,2,3, 1,3,3,3, 1,3,4,3,
+ 1,3,5,3, 1,3,6,3, 1,3,7,3, 1,3,8,3, 1,3,9,3, 1,4,0,3, 1,4,1,3, 1,4,2,3, 1,4,3,3,
+ 1,4,4,3, 1,4,5,3, 1,4,6,3, 1,4,7,3, 1,4,8,3, 1,4,9,3, 1,5,0,3, 1,5,1,3, 1,5,2,3,
+ 1,5,3,3, 1,5,4,3, 1,5,5,3, 1,5,6,3, 1,5,7,3, 1,5,8,3, 1,5,9,3, 1,6,0,3, 1,6,1,3,
+ 1,6,2,3, 1,6,3,3, 1,6,4,3, 1,6,5,3, 1,6,6,3, 1,6,7,3, 1,6,8,3, 1,6,9,3, 1,7,0,3,
+ 1,7,1,3, 1,7,2,3, 1,7,3,3, 1,7,4,3, 1,7,5,3, 1,7,6,3, 1,7,7,3, 1,7,8,3, 1,7,9,3,
+ 1,8,0,3, 1,8,1,3, 1,8,2,3, 1,8,3,3, 1,8,4,3, 1,8,5,3, 1,8,6,3, 1,8,7,3, 1,8,8,3,
+ 1,8,9,3, 1,9,0,3, 1,9,1,3, 1,9,2,3, 1,9,3,3, 1,9,4,3, 1,9,5,3, 1,9,6,3, 1,9,7,3,
+ 1,9,8,3, 1,9,9,3, 2,0,0,3, 2,0,1,3, 2,0,2,3, 2,0,3,3, 2,0,4,3, 2,0,5,3, 2,0,6,3,
+ 2,0,7,3, 2,0,8,3, 2,0,9,3, 2,1,0,3, 2,1,1,3, 2,1,2,3, 2,1,3,3, 2,1,4,3, 2,1,5,3,
+ 2,1,6,3, 2,1,7,3, 2,1,8,3, 2,1,9,3, 2,2,0,3, 2,2,1,3, 2,2,2,3, 2,2,3,3, 2,2,4,3,
+ 2,2,5,3, 2,2,6,3, 2,2,7,3, 2,2,8,3, 2,2,9,3, 2,3,0,3, 2,3,1,3, 2,3,2,3, 2,3,3,3,
+ 2,3,4,3, 2,3,5,3, 2,3,6,3, 2,3,7,3, 2,3,8,3, 2,3,9,3, 2,4,0,3, 2,4,1,3, 2,4,2,3,
+ 2,4,3,3, 2,4,4,3, 2,4,5,3, 2,4,6,3, 2,4,7,3, 2,4,8,3, 2,4,9,3, 2,5,0,3, 2,5,1,3,
+ 2,5,2,3, 2,5,3,3, 2,5,4,3, 2,5,5,3, 2,5,6,3, 2,5,7,3, 2,5,8,3, 2,5,9,3, 2,6,0,3,
+ 2,6,1,3, 2,6,2,3, 2,6,3,3, 2,6,4,3, 2,6,5,3, 2,6,6,3, 2,6,7,3, 2,6,8,3, 2,6,9,3,
+ 2,7,0,3, 2,7,1,3, 2,7,2,3, 2,7,3,3, 2,7,4,3, 2,7,5,3, 2,7,6,3, 2,7,7,3, 2,7,8,3,
+ 2,7,9,3, 2,8,0,3, 2,8,1,3, 2,8,2,3, 2,8,3,3, 2,8,4,3, 2,8,5,3, 2,8,6,3, 2,8,7,3,
+ 2,8,8,3, 2,8,9,3, 2,9,0,3, 2,9,1,3, 2,9,2,3, 2,9,3,3, 2,9,4,3, 2,9,5,3, 2,9,6,3,
+ 2,9,7,3, 2,9,8,3, 2,9,9,3, 3,0,0,3, 3,0,1,3, 3,0,2,3, 3,0,3,3, 3,0,4,3, 3,0,5,3,
+ 3,0,6,3, 3,0,7,3, 3,0,8,3, 3,0,9,3, 3,1,0,3, 3,1,1,3, 3,1,2,3, 3,1,3,3, 3,1,4,3,
+ 3,1,5,3, 3,1,6,3, 3,1,7,3, 3,1,8,3, 3,1,9,3, 3,2,0,3, 3,2,1,3, 3,2,2,3, 3,2,3,3,
+ 3,2,4,3, 3,2,5,3, 3,2,6,3, 3,2,7,3, 3,2,8,3, 3,2,9,3, 3,3,0,3, 3,3,1,3, 3,3,2,3,
+ 3,3,3,3, 3,3,4,3, 3,3,5,3, 3,3,6,3, 3,3,7,3, 3,3,8,3, 3,3,9,3, 3,4,0,3, 3,4,1,3,
+ 3,4,2,3, 3,4,3,3, 3,4,4,3, 3,4,5,3, 3,4,6,3, 3,4,7,3, 3,4,8,3, 3,4,9,3, 3,5,0,3,
+ 3,5,1,3, 3,5,2,3, 3,5,3,3, 3,5,4,3, 3,5,5,3, 3,5,6,3, 3,5,7,3, 3,5,8,3, 3,5,9,3,
+ 3,6,0,3, 3,6,1,3, 3,6,2,3, 3,6,3,3, 3,6,4,3, 3,6,5,3, 3,6,6,3, 3,6,7,3, 3,6,8,3,
+ 3,6,9,3, 3,7,0,3, 3,7,1,3, 3,7,2,3, 3,7,3,3, 3,7,4,3, 3,7,5,3, 3,7,6,3, 3,7,7,3,
+ 3,7,8,3, 3,7,9,3, 3,8,0,3, 3,8,1,3, 3,8,2,3, 3,8,3,3, 3,8,4,3, 3,8,5,3, 3,8,6,3,
+ 3,8,7,3, 3,8,8,3, 3,8,9,3, 3,9,0,3, 3,9,1,3, 3,9,2,3, 3,9,3,3, 3,9,4,3, 3,9,5,3,
+ 3,9,6,3, 3,9,7,3, 3,9,8,3, 3,9,9,3, 4,0,0,3, 4,0,1,3, 4,0,2,3, 4,0,3,3, 4,0,4,3,
+ 4,0,5,3, 4,0,6,3, 4,0,7,3, 4,0,8,3, 4,0,9,3, 4,1,0,3, 4,1,1,3, 4,1,2,3, 4,1,3,3,
+ 4,1,4,3, 4,1,5,3, 4,1,6,3, 4,1,7,3, 4,1,8,3, 4,1,9,3, 4,2,0,3, 4,2,1,3, 4,2,2,3,
+ 4,2,3,3, 4,2,4,3, 4,2,5,3, 4,2,6,3, 4,2,7,3, 4,2,8,3, 4,2,9,3, 4,3,0,3, 4,3,1,3,
+ 4,3,2,3, 4,3,3,3, 4,3,4,3, 4,3,5,3, 4,3,6,3, 4,3,7,3, 4,3,8,3, 4,3,9,3, 4,4,0,3,
+ 4,4,1,3, 4,4,2,3, 4,4,3,3, 4,4,4,3, 4,4,5,3, 4,4,6,3, 4,4,7,3, 4,4,8,3, 4,4,9,3,
+ 4,5,0,3, 4,5,1,3, 4,5,2,3, 4,5,3,3, 4,5,4,3, 4,5,5,3, 4,5,6,3, 4,5,7,3, 4,5,8,3,
+ 4,5,9,3, 4,6,0,3, 4,6,1,3, 4,6,2,3, 4,6,3,3, 4,6,4,3, 4,6,5,3, 4,6,6,3, 4,6,7,3,
+ 4,6,8,3, 4,6,9,3, 4,7,0,3, 4,7,1,3, 4,7,2,3, 4,7,3,3, 4,7,4,3, 4,7,5,3, 4,7,6,3,
+ 4,7,7,3, 4,7,8,3, 4,7,9,3, 4,8,0,3, 4,8,1,3, 4,8,2,3, 4,8,3,3, 4,8,4,3, 4,8,5,3,
+ 4,8,6,3, 4,8,7,3, 4,8,8,3, 4,8,9,3, 4,9,0,3, 4,9,1,3, 4,9,2,3, 4,9,3,3, 4,9,4,3,
+ 4,9,5,3, 4,9,6,3, 4,9,7,3, 4,9,8,3, 4,9,9,3, 5,0,0,3, 5,0,1,3, 5,0,2,3, 5,0,3,3,
+ 5,0,4,3, 5,0,5,3, 5,0,6,3, 5,0,7,3, 5,0,8,3, 5,0,9,3, 5,1,0,3, 5,1,1,3, 5,1,2,3,
+ 5,1,3,3, 5,1,4,3, 5,1,5,3, 5,1,6,3, 5,1,7,3, 5,1,8,3, 5,1,9,3, 5,2,0,3, 5,2,1,3,
+ 5,2,2,3, 5,2,3,3, 5,2,4,3, 5,2,5,3, 5,2,6,3, 5,2,7,3, 5,2,8,3, 5,2,9,3, 5,3,0,3,
+ 5,3,1,3, 5,3,2,3, 5,3,3,3, 5,3,4,3, 5,3,5,3, 5,3,6,3, 5,3,7,3, 5,3,8,3, 5,3,9,3,
+ 5,4,0,3, 5,4,1,3, 5,4,2,3, 5,4,3,3, 5,4,4,3, 5,4,5,3, 5,4,6,3, 5,4,7,3, 5,4,8,3,
+ 5,4,9,3, 5,5,0,3, 5,5,1,3, 5,5,2,3, 5,5,3,3, 5,5,4,3, 5,5,5,3, 5,5,6,3, 5,5,7,3,
+ 5,5,8,3, 5,5,9,3, 5,6,0,3, 5,6,1,3, 5,6,2,3, 5,6,3,3, 5,6,4,3, 5,6,5,3, 5,6,6,3,
+ 5,6,7,3, 5,6,8,3, 5,6,9,3, 5,7,0,3, 5,7,1,3, 5,7,2,3, 5,7,3,3, 5,7,4,3, 5,7,5,3,
+ 5,7,6,3, 5,7,7,3, 5,7,8,3, 5,7,9,3, 5,8,0,3, 5,8,1,3, 5,8,2,3, 5,8,3,3, 5,8,4,3,
+ 5,8,5,3, 5,8,6,3, 5,8,7,3, 5,8,8,3, 5,8,9,3, 5,9,0,3, 5,9,1,3, 5,9,2,3, 5,9,3,3,
+ 5,9,4,3, 5,9,5,3, 5,9,6,3, 5,9,7,3, 5,9,8,3, 5,9,9,3, 6,0,0,3, 6,0,1,3, 6,0,2,3,
+ 6,0,3,3, 6,0,4,3, 6,0,5,3, 6,0,6,3, 6,0,7,3, 6,0,8,3, 6,0,9,3, 6,1,0,3, 6,1,1,3,
+ 6,1,2,3, 6,1,3,3, 6,1,4,3, 6,1,5,3, 6,1,6,3, 6,1,7,3, 6,1,8,3, 6,1,9,3, 6,2,0,3,
+ 6,2,1,3, 6,2,2,3, 6,2,3,3, 6,2,4,3, 6,2,5,3, 6,2,6,3, 6,2,7,3, 6,2,8,3, 6,2,9,3,
+ 6,3,0,3, 6,3,1,3, 6,3,2,3, 6,3,3,3, 6,3,4,3, 6,3,5,3, 6,3,6,3, 6,3,7,3, 6,3,8,3,
+ 6,3,9,3, 6,4,0,3, 6,4,1,3, 6,4,2,3, 6,4,3,3, 6,4,4,3, 6,4,5,3, 6,4,6,3, 6,4,7,3,
+ 6,4,8,3, 6,4,9,3, 6,5,0,3, 6,5,1,3, 6,5,2,3, 6,5,3,3, 6,5,4,3, 6,5,5,3, 6,5,6,3,
+ 6,5,7,3, 6,5,8,3, 6,5,9,3, 6,6,0,3, 6,6,1,3, 6,6,2,3, 6,6,3,3, 6,6,4,3, 6,6,5,3,
+ 6,6,6,3, 6,6,7,3, 6,6,8,3, 6,6,9,3, 6,7,0,3, 6,7,1,3, 6,7,2,3, 6,7,3,3, 6,7,4,3,
+ 6,7,5,3, 6,7,6,3, 6,7,7,3, 6,7,8,3, 6,7,9,3, 6,8,0,3, 6,8,1,3, 6,8,2,3, 6,8,3,3,
+ 6,8,4,3, 6,8,5,3, 6,8,6,3, 6,8,7,3, 6,8,8,3, 6,8,9,3, 6,9,0,3, 6,9,1,3, 6,9,2,3,
+ 6,9,3,3, 6,9,4,3, 6,9,5,3, 6,9,6,3, 6,9,7,3, 6,9,8,3, 6,9,9,3, 7,0,0,3, 7,0,1,3,
+ 7,0,2,3, 7,0,3,3, 7,0,4,3, 7,0,5,3, 7,0,6,3, 7,0,7,3, 7,0,8,3, 7,0,9,3, 7,1,0,3,
+ 7,1,1,3, 7,1,2,3, 7,1,3,3, 7,1,4,3, 7,1,5,3, 7,1,6,3, 7,1,7,3, 7,1,8,3, 7,1,9,3,
+ 7,2,0,3, 7,2,1,3, 7,2,2,3, 7,2,3,3, 7,2,4,3, 7,2,5,3, 7,2,6,3, 7,2,7,3, 7,2,8,3,
+ 7,2,9,3, 7,3,0,3, 7,3,1,3, 7,3,2,3, 7,3,3,3, 7,3,4,3, 7,3,5,3, 7,3,6,3, 7,3,7,3,
+ 7,3,8,3, 7,3,9,3, 7,4,0,3, 7,4,1,3, 7,4,2,3, 7,4,3,3, 7,4,4,3, 7,4,5,3, 7,4,6,3,
+ 7,4,7,3, 7,4,8,3, 7,4,9,3, 7,5,0,3, 7,5,1,3, 7,5,2,3, 7,5,3,3, 7,5,4,3, 7,5,5,3,
+ 7,5,6,3, 7,5,7,3, 7,5,8,3, 7,5,9,3, 7,6,0,3, 7,6,1,3, 7,6,2,3, 7,6,3,3, 7,6,4,3,
+ 7,6,5,3, 7,6,6,3, 7,6,7,3, 7,6,8,3, 7,6,9,3, 7,7,0,3, 7,7,1,3, 7,7,2,3, 7,7,3,3,
+ 7,7,4,3, 7,7,5,3, 7,7,6,3, 7,7,7,3, 7,7,8,3, 7,7,9,3, 7,8,0,3, 7,8,1,3, 7,8,2,3,
+ 7,8,3,3, 7,8,4,3, 7,8,5,3, 7,8,6,3, 7,8,7,3, 7,8,8,3, 7,8,9,3, 7,9,0,3, 7,9,1,3,
+ 7,9,2,3, 7,9,3,3, 7,9,4,3, 7,9,5,3, 7,9,6,3, 7,9,7,3, 7,9,8,3, 7,9,9,3, 8,0,0,3,
+ 8,0,1,3, 8,0,2,3, 8,0,3,3, 8,0,4,3, 8,0,5,3, 8,0,6,3, 8,0,7,3, 8,0,8,3, 8,0,9,3,
+ 8,1,0,3, 8,1,1,3, 8,1,2,3, 8,1,3,3, 8,1,4,3, 8,1,5,3, 8,1,6,3, 8,1,7,3, 8,1,8,3,
+ 8,1,9,3, 8,2,0,3, 8,2,1,3, 8,2,2,3, 8,2,3,3, 8,2,4,3, 8,2,5,3, 8,2,6,3, 8,2,7,3,
+ 8,2,8,3, 8,2,9,3, 8,3,0,3, 8,3,1,3, 8,3,2,3, 8,3,3,3, 8,3,4,3, 8,3,5,3, 8,3,6,3,
+ 8,3,7,3, 8,3,8,3, 8,3,9,3, 8,4,0,3, 8,4,1,3, 8,4,2,3, 8,4,3,3, 8,4,4,3, 8,4,5,3,
+ 8,4,6,3, 8,4,7,3, 8,4,8,3, 8,4,9,3, 8,5,0,3, 8,5,1,3, 8,5,2,3, 8,5,3,3, 8,5,4,3,
+ 8,5,5,3, 8,5,6,3, 8,5,7,3, 8,5,8,3, 8,5,9,3, 8,6,0,3, 8,6,1,3, 8,6,2,3, 8,6,3,3,
+ 8,6,4,3, 8,6,5,3, 8,6,6,3, 8,6,7,3, 8,6,8,3, 8,6,9,3, 8,7,0,3, 8,7,1,3, 8,7,2,3,
+ 8,7,3,3, 8,7,4,3, 8,7,5,3, 8,7,6,3, 8,7,7,3, 8,7,8,3, 8,7,9,3, 8,8,0,3, 8,8,1,3,
+ 8,8,2,3, 8,8,3,3, 8,8,4,3, 8,8,5,3, 8,8,6,3, 8,8,7,3, 8,8,8,3, 8,8,9,3, 8,9,0,3,
+ 8,9,1,3, 8,9,2,3, 8,9,3,3, 8,9,4,3, 8,9,5,3, 8,9,6,3, 8,9,7,3, 8,9,8,3, 8,9,9,3,
+ 9,0,0,3, 9,0,1,3, 9,0,2,3, 9,0,3,3, 9,0,4,3, 9,0,5,3, 9,0,6,3, 9,0,7,3, 9,0,8,3,
+ 9,0,9,3, 9,1,0,3, 9,1,1,3, 9,1,2,3, 9,1,3,3, 9,1,4,3, 9,1,5,3, 9,1,6,3, 9,1,7,3,
+ 9,1,8,3, 9,1,9,3, 9,2,0,3, 9,2,1,3, 9,2,2,3, 9,2,3,3, 9,2,4,3, 9,2,5,3, 9,2,6,3,
+ 9,2,7,3, 9,2,8,3, 9,2,9,3, 9,3,0,3, 9,3,1,3, 9,3,2,3, 9,3,3,3, 9,3,4,3, 9,3,5,3,
+ 9,3,6,3, 9,3,7,3, 9,3,8,3, 9,3,9,3, 9,4,0,3, 9,4,1,3, 9,4,2,3, 9,4,3,3, 9,4,4,3,
+ 9,4,5,3, 9,4,6,3, 9,4,7,3, 9,4,8,3, 9,4,9,3, 9,5,0,3, 9,5,1,3, 9,5,2,3, 9,5,3,3,
+ 9,5,4,3, 9,5,5,3, 9,5,6,3, 9,5,7,3, 9,5,8,3, 9,5,9,3, 9,6,0,3, 9,6,1,3, 9,6,2,3,
+ 9,6,3,3, 9,6,4,3, 9,6,5,3, 9,6,6,3, 9,6,7,3, 9,6,8,3, 9,6,9,3, 9,7,0,3, 9,7,1,3,
+ 9,7,2,3, 9,7,3,3, 9,7,4,3, 9,7,5,3, 9,7,6,3, 9,7,7,3, 9,7,8,3, 9,7,9,3, 9,8,0,3,
+ 9,8,1,3, 9,8,2,3, 9,8,3,3, 9,8,4,3, 9,8,5,3, 9,8,6,3, 9,8,7,3, 9,8,8,3, 9,8,9,3,
+ 9,9,0,3, 9,9,1,3, 9,9,2,3, 9,9,3,3, 9,9,4,3, 9,9,5,3, 9,9,6,3, 9,9,7,3, 9,9,8,3,
+ 9,9,9,3};
+#endif
+
diff --git a/libdecnumber/decDouble.c b/libdecnumber/decDouble.c
new file mode 100644
index 00000000000..ba6a0af893b
--- /dev/null
+++ b/libdecnumber/decDouble.c
@@ -0,0 +1,154 @@
+/* decDouble module for the decNumber C Library.
+ Copyright (C) 2007 Free Software Foundation, Inc.
+ Contributed by IBM Corporation. Author Mike Cowlishaw.
+
+ This file is part of GCC.
+
+ GCC is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License as published by the Free
+ Software Foundation; either version 2, or (at your option) any later
+ version.
+
+ In addition to the permissions in the GNU General Public License,
+ the Free Software Foundation gives you unlimited permission to link
+ the compiled version of this file into combinations with other
+ programs, and to distribute those combinations without any
+ restriction coming from the use of this file. (The General Public
+ License restrictions do apply in other respects; for example, they
+ cover modification of the file, and distribution when not linked
+ into a combine executable.)
+
+ GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with GCC; see the file COPYING. If not, write to the Free
+ Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
+ 02110-1301, USA. */
+
+/* ------------------------------------------------------------------ */
+/* decDouble.c -- decDouble operations module */
+/* ------------------------------------------------------------------ */
+/* This module comprises decDouble operations (including conversions) */
+/* ------------------------------------------------------------------ */
+
+#include "decContext.h" /* public includes */
+#include "decDouble.h" /* .. */
+
+/* Constant mappings for shared code */
+#define DECPMAX DECDOUBLE_Pmax
+#define DECEMIN DECDOUBLE_Emin
+#define DECEMAX DECDOUBLE_Emax
+#define DECEMAXD DECDOUBLE_EmaxD
+#define DECBYTES DECDOUBLE_Bytes
+#define DECSTRING DECDOUBLE_String
+#define DECECONL DECDOUBLE_EconL
+#define DECBIAS DECDOUBLE_Bias
+#define DECLETS DECDOUBLE_Declets
+#define DECQTINY (-DECDOUBLE_Bias)
+/* parameters of next-wider format */
+#define DECWBYTES DECQUAD_Bytes
+#define DECWPMAX DECQUAD_Pmax
+#define DECWECONL DECQUAD_EconL
+#define DECWBIAS DECQUAD_Bias
+
+/* Type and function mappings for shared code */
+#define decFloat decDouble /* Type name */
+#define decFloatWider decQuad /* Type name */
+
+/* Utilities and conversions (binary results, extractors, etc.) */
+#define decFloatFromBCD decDoubleFromBCD
+#define decFloatFromInt32 decDoubleFromInt32
+#define decFloatFromPacked decDoubleFromPacked
+#define decFloatFromString decDoubleFromString
+#define decFloatFromUInt32 decDoubleFromUInt32
+#define decFloatFromWider decDoubleFromWider
+#define decFloatGetCoefficient decDoubleGetCoefficient
+#define decFloatGetExponent decDoubleGetExponent
+#define decFloatSetCoefficient decDoubleSetCoefficient
+#define decFloatSetExponent decDoubleSetExponent
+#define decFloatShow decDoubleShow
+#define decFloatToBCD decDoubleToBCD
+#define decFloatToEngString decDoubleToEngString
+#define decFloatToInt32 decDoubleToInt32
+#define decFloatToInt32Exact decDoubleToInt32Exact
+#define decFloatToPacked decDoubleToPacked
+#define decFloatToString decDoubleToString
+#define decFloatToUInt32 decDoubleToUInt32
+#define decFloatToUInt32Exact decDoubleToUInt32Exact
+#define decFloatToWider decDoubleToWider
+#define decFloatZero decDoubleZero
+
+/* Computational (result is a decFloat) */
+#define decFloatAbs decDoubleAbs
+#define decFloatAdd decDoubleAdd
+#define decFloatAnd decDoubleAnd
+#define decFloatDivide decDoubleDivide
+#define decFloatDivideInteger decDoubleDivideInteger
+#define decFloatFMA decDoubleFMA
+#define decFloatInvert decDoubleInvert
+#define decFloatLogB decDoubleLogB
+#define decFloatMax decDoubleMax
+#define decFloatMaxMag decDoubleMaxMag
+#define decFloatMin decDoubleMin
+#define decFloatMinMag decDoubleMinMag
+#define decFloatMinus decDoubleMinus
+#define decFloatMultiply decDoubleMultiply
+#define decFloatNextMinus decDoubleNextMinus
+#define decFloatNextPlus decDoubleNextPlus
+#define decFloatNextToward decDoubleNextToward
+#define decFloatOr decDoubleOr
+#define decFloatPlus decDoublePlus
+#define decFloatQuantize decDoubleQuantize
+#define decFloatReduce decDoubleReduce
+#define decFloatRemainder decDoubleRemainder
+#define decFloatRemainderNear decDoubleRemainderNear
+#define decFloatRotate decDoubleRotate
+#define decFloatScaleB decDoubleScaleB
+#define decFloatShift decDoubleShift
+#define decFloatSubtract decDoubleSubtract
+#define decFloatToIntegralValue decDoubleToIntegralValue
+#define decFloatToIntegralExact decDoubleToIntegralExact
+#define decFloatXor decDoubleXor
+
+/* Comparisons */
+#define decFloatCompare decDoubleCompare
+#define decFloatCompareSignal decDoubleCompareSignal
+#define decFloatCompareTotal decDoubleCompareTotal
+#define decFloatCompareTotalMag decDoubleCompareTotalMag
+
+/* Copies */
+#define decFloatCanonical decDoubleCanonical
+#define decFloatCopy decDoubleCopy
+#define decFloatCopyAbs decDoubleCopyAbs
+#define decFloatCopyNegate decDoubleCopyNegate
+#define decFloatCopySign decDoubleCopySign
+
+/* Non-computational */
+#define decFloatClass decDoubleClass
+#define decFloatClassString decDoubleClassString
+#define decFloatDigits decDoubleDigits
+#define decFloatIsCanonical decDoubleIsCanonical
+#define decFloatIsFinite decDoubleIsFinite
+#define decFloatIsInfinite decDoubleIsInfinite
+#define decFloatIsInteger decDoubleIsInteger
+#define decFloatIsNaN decDoubleIsNaN
+#define decFloatIsNormal decDoubleIsNormal
+#define decFloatIsSignaling decDoubleIsSignaling
+#define decFloatIsSignalling decDoubleIsSignalling
+#define decFloatIsSigned decDoubleIsSigned
+#define decFloatIsSubnormal decDoubleIsSubnormal
+#define decFloatIsZero decDoubleIsZero
+#define decFloatRadix decDoubleRadix
+#define decFloatSameQuantum decDoubleSameQuantum
+#define decFloatVersion decDoubleVersion
+
+
+#include "decNumberLocal.h" /* local includes (need DECPMAX) */
+#include "decCommon.c" /* non-arithmetic decFloat routines */
+#include "decBasic.c" /* basic formats routines */
+
+/* Below here will move to shared file as completed */
+
diff --git a/libdecnumber/decDouble.h b/libdecnumber/decDouble.h
new file mode 100644
index 00000000000..32eba395d85
--- /dev/null
+++ b/libdecnumber/decDouble.h
@@ -0,0 +1,164 @@
+/* decDouble module header for the decNumber C Library.
+ Copyright (C) 2007 Free Software Foundation, Inc.
+ Contributed by IBM Corporation. Author Mike Cowlishaw.
+
+ This file is part of GCC.
+
+ GCC is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License as published by the Free
+ Software Foundation; either version 2, or (at your option) any later
+ version.
+
+ In addition to the permissions in the GNU General Public License,
+ the Free Software Foundation gives you unlimited permission to link
+ the compiled version of this file into combinations with other
+ programs, and to distribute those combinations without any
+ restriction coming from the use of this file. (The General Public
+ License restrictions do apply in other respects; for example, they
+ cover modification of the file, and distribution when not linked
+ into a combine executable.)
+
+ GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with GCC; see the file COPYING. If not, write to the Free
+ Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
+ 02110-1301, USA. */
+
+/* ------------------------------------------------------------------ */
+/* decDouble.h -- Decimal 64-bit format module header */
+/* ------------------------------------------------------------------ */
+/* Please see decFloats.h for an overview and documentation details. */
+/* ------------------------------------------------------------------ */
+
+#if !defined(DECDOUBLE)
+ #define DECDOUBLE
+
+ #define DECDOUBLENAME "decimalDouble" /* Short name */
+ #define DECDOUBLETITLE "Decimal 64-bit datum" /* Verbose name */
+ #define DECDOUBLEAUTHOR "Mike Cowlishaw" /* Who to blame */
+
+ /* parameters for decDoubles */
+ #define DECDOUBLE_Bytes 8 /* length */
+ #define DECDOUBLE_Pmax 16 /* maximum precision (digits) */
+ #define DECDOUBLE_Emin -383 /* minimum adjusted exponent */
+ #define DECDOUBLE_Emax 384 /* maximum adjusted exponent */
+ #define DECDOUBLE_EmaxD 3 /* maximum exponent digits */
+ #define DECDOUBLE_Bias 398 /* bias for the exponent */
+ #define DECDOUBLE_String 25 /* maximum string length, +1 */
+ #define DECDOUBLE_EconL 8 /* exponent continuation length */
+ #define DECDOUBLE_Declets 5 /* count of declets */
+ /* highest biased exponent (Elimit-1) */
+ #define DECDOUBLE_Ehigh (DECDOUBLE_Emax + DECDOUBLE_Bias - (DECDOUBLE_Pmax-1))
+
+ /* Required includes */
+ #include "decContext.h"
+ #include "decQuad.h"
+
+ /* The decDouble decimal 64-bit type, accessible by bytes */
+ typedef struct {
+ uint8_t bytes[DECDOUBLE_Bytes]; /* fields: 1, 5, 8, 50 bits */
+ } decDouble;
+
+ /* ---------------------------------------------------------------- */
+ /* Routines -- implemented as decFloat routines in common files */
+ /* ---------------------------------------------------------------- */
+
+ #include "decDoubleSymbols.h"
+
+ /* Utilities and conversions, extractors, etc.) */
+ extern decDouble * decDoubleFromBCD(decDouble *, int32_t, const uint8_t *, int32_t);
+ extern decDouble * decDoubleFromInt32(decDouble *, int32_t);
+ extern decDouble * decDoubleFromPacked(decDouble *, int32_t, const uint8_t *);
+ extern decDouble * decDoubleFromString(decDouble *, const char *, decContext *);
+ extern decDouble * decDoubleFromUInt32(decDouble *, uint32_t);
+ extern decDouble * decDoubleFromWider(decDouble *, const decQuad *, decContext *);
+ extern int32_t decDoubleGetCoefficient(const decDouble *, uint8_t *);
+ extern int32_t decDoubleGetExponent(const decDouble *);
+ extern decDouble * decDoubleSetCoefficient(decDouble *, const uint8_t *, int32_t);
+ extern decDouble * decDoubleSetExponent(decDouble *, decContext *, int32_t);
+ extern void decDoubleShow(const decDouble *, const char *);
+ extern int32_t decDoubleToBCD(const decDouble *, int32_t *, uint8_t *);
+ extern char * decDoubleToEngString(const decDouble *, char *);
+ extern int32_t decDoubleToInt32(const decDouble *, decContext *, enum rounding);
+ extern int32_t decDoubleToInt32Exact(const decDouble *, decContext *, enum rounding);
+ extern int32_t decDoubleToPacked(const decDouble *, int32_t *, uint8_t *);
+ extern char * decDoubleToString(const decDouble *, char *);
+ extern uint32_t decDoubleToUInt32(const decDouble *, decContext *, enum rounding);
+ extern uint32_t decDoubleToUInt32Exact(const decDouble *, decContext *, enum rounding);
+ extern decQuad * decDoubleToWider(const decDouble *, decQuad *);
+ extern decDouble * decDoubleZero(decDouble *);
+
+ /* Computational (result is a decDouble) */
+ extern decDouble * decDoubleAbs(decDouble *, const decDouble *, decContext *);
+ extern decDouble * decDoubleAdd(decDouble *, const decDouble *, const decDouble *, decContext *);
+ extern decDouble * decDoubleAnd(decDouble *, const decDouble *, const decDouble *, decContext *);
+ extern decDouble * decDoubleDivide(decDouble *, const decDouble *, const decDouble *, decContext *);
+ extern decDouble * decDoubleDivideInteger(decDouble *, const decDouble *, const decDouble *, decContext *);
+ extern decDouble * decDoubleFMA(decDouble *, const decDouble *, const decDouble *, const decDouble *, decContext *);
+ extern decDouble * decDoubleInvert(decDouble *, const decDouble *, decContext *);
+ extern decDouble * decDoubleLogB(decDouble *, const decDouble *, decContext *);
+ extern decDouble * decDoubleMax(decDouble *, const decDouble *, const decDouble *, decContext *);
+ extern decDouble * decDoubleMaxMag(decDouble *, const decDouble *, const decDouble *, decContext *);
+ extern decDouble * decDoubleMin(decDouble *, const decDouble *, const decDouble *, decContext *);
+ extern decDouble * decDoubleMinMag(decDouble *, const decDouble *, const decDouble *, decContext *);
+ extern decDouble * decDoubleMinus(decDouble *, const decDouble *, decContext *);
+ extern decDouble * decDoubleMultiply(decDouble *, const decDouble *, const decDouble *, decContext *);
+ extern decDouble * decDoubleNextMinus(decDouble *, const decDouble *, decContext *);
+ extern decDouble * decDoubleNextPlus(decDouble *, const decDouble *, decContext *);
+ extern decDouble * decDoubleNextToward(decDouble *, const decDouble *, const decDouble *, decContext *);
+ extern decDouble * decDoubleOr(decDouble *, const decDouble *, const decDouble *, decContext *);
+ extern decDouble * decDoublePlus(decDouble *, const decDouble *, decContext *);
+ extern decDouble * decDoubleQuantize(decDouble *, const decDouble *, const decDouble *, decContext *);
+ extern decDouble * decDoubleReduce(decDouble *, const decDouble *, decContext *);
+ extern decDouble * decDoubleRemainder(decDouble *, const decDouble *, const decDouble *, decContext *);
+ extern decDouble * decDoubleRemainderNear(decDouble *, const decDouble *, const decDouble *, decContext *);
+ extern decDouble * decDoubleRotate(decDouble *, const decDouble *, const decDouble *, decContext *);
+ extern decDouble * decDoubleScaleB(decDouble *, const decDouble *, const decDouble *, decContext *);
+ extern decDouble * decDoubleShift(decDouble *, const decDouble *, const decDouble *, decContext *);
+ extern decDouble * decDoubleSubtract(decDouble *, const decDouble *, const decDouble *, decContext *);
+ extern decDouble * decDoubleToIntegralValue(decDouble *, const decDouble *, decContext *, enum rounding);
+ extern decDouble * decDoubleToIntegralExact(decDouble *, const decDouble *, decContext *);
+ extern decDouble * decDoubleXor(decDouble *, const decDouble *, const decDouble *, decContext *);
+
+ /* Comparisons */
+ extern decDouble * decDoubleCompare(decDouble *, const decDouble *, const decDouble *, decContext *);
+ extern decDouble * decDoubleCompareSignal(decDouble *, const decDouble *, const decDouble *, decContext *);
+ extern decDouble * decDoubleCompareTotal(decDouble *, const decDouble *, const decDouble *);
+ extern decDouble * decDoubleCompareTotalMag(decDouble *, const decDouble *, const decDouble *);
+
+ /* Copies */
+ extern decDouble * decDoubleCanonical(decDouble *, const decDouble *);
+ extern decDouble * decDoubleCopy(decDouble *, const decDouble *);
+ extern decDouble * decDoubleCopyAbs(decDouble *, const decDouble *);
+ extern decDouble * decDoubleCopyNegate(decDouble *, const decDouble *);
+ extern decDouble * decDoubleCopySign(decDouble *, const decDouble *, const decDouble *);
+
+ /* Non-computational */
+ extern enum decClass decDoubleClass(const decDouble *);
+ extern const char * decDoubleClassString(const decDouble *);
+ extern uint32_t decDoubleDigits(const decDouble *);
+ extern uint32_t decDoubleIsCanonical(const decDouble *);
+ extern uint32_t decDoubleIsFinite(const decDouble *);
+ extern uint32_t decDoubleIsInfinite(const decDouble *);
+ extern uint32_t decDoubleIsInteger(const decDouble *);
+ extern uint32_t decDoubleIsNaN(const decDouble *);
+ extern uint32_t decDoubleIsNormal(const decDouble *);
+ extern uint32_t decDoubleIsSignaling(const decDouble *);
+ extern uint32_t decDoubleIsSignalling(const decDouble *);
+ extern uint32_t decDoubleIsSigned(const decDouble *);
+ extern uint32_t decDoubleIsSubnormal(const decDouble *);
+ extern uint32_t decDoubleIsZero(const decDouble *);
+ extern uint32_t decDoubleRadix(const decDouble *);
+ extern uint32_t decDoubleSameQuantum(const decDouble *, const decDouble *);
+ extern const char * decDoubleVersion(void);
+
+ /* decNumber conversions; these are implemented as macros so as not */
+ /* to force a dependency on decimal64 and decNumber in decDouble. */
+ #define decDoubleToNumber(dq, dn) decimal64ToNumber((decimal64 *)(dq), dn)
+ #define decDoubleFromNumber(dq, dn, set) (decDouble *)decimal64FromNumber((decimal64 *)(dq), dn, set)
+
+#endif
diff --git a/libdecnumber/decDoubleSymbols.h b/libdecnumber/decDoubleSymbols.h
new file mode 100644
index 00000000000..add1248096d
--- /dev/null
+++ b/libdecnumber/decDoubleSymbols.h
@@ -0,0 +1,84 @@
+#if !defined(DECDOUBLESYMBOLS)
+#define DECDOUBLESYMBOLS
+
+#ifdef IN_LIBGCC2
+#define decDoubleAbs __decDoubleAbs
+#define decDoubleAdd __decDoubleAdd
+#define decDoubleAnd __decDoubleAnd
+#define decDoubleCanonical __decDoubleCanonical
+#define decDoubleClass __decDoubleClass
+#define decDoubleClassString __decDoubleClassString
+#define decDoubleCompare __decDoubleCompare
+#define decDoubleCompareSignal __decDoubleCompareSignal
+#define decDoubleCompareTotal __decDoubleCompareTotal
+#define decDoubleCompareTotalMag __decDoubleCompareTotalMag
+#define decDoubleCopy __decDoubleCopy
+#define decDoubleCopyAbs __decDoubleCopyAbs
+#define decDoubleCopyNegate __decDoubleCopyNegate
+#define decDoubleCopySign __decDoubleCopySign
+#define decDoubleDigits __decDoubleDigits
+#define decDoubleDivide __decDoubleDivide
+#define decDoubleDivideInteger __decDoubleDivideInteger
+#define decDoubleFMA __decDoubleFMA
+#define decDoubleFromBCD __decDoubleFromBCD
+#define decDoubleFromInt32 __decDoubleFromInt32
+#define decDoubleFromPacked __decDoubleFromPacked
+#define decDoubleFromString __decDoubleFromString
+#define decDoubleFromUInt32 __decDoubleFromUInt32
+#define decDoubleFromWider __decDoubleFromWider
+#define decDoubleGetCoefficient __decDoubleGetCoefficient
+#define decDoubleGetExponent __decDoubleGetExponent
+#define decDoubleInvert __decDoubleInvert
+#define decDoubleIsCanonical __decDoubleIsCanonical
+#define decDoubleIsFinite __decDoubleIsFinite
+#define decDoubleIsInfinite __decDoubleIsInfinite
+#define decDoubleIsInteger __decDoubleIsInteger
+#define decDoubleIsNaN __decDoubleIsNaN
+#define decDoubleIsNormal __decDoubleIsNormal
+#define decDoubleIsSignaling __decDoubleIsSignaling
+#define decDoubleIsSignalling __decDoubleIsSignalling
+#define decDoubleIsSigned __decDoubleIsSigned
+#define decDoubleIsSubnormal __decDoubleIsSubnormal
+#define decDoubleIsZero __decDoubleIsZero
+#define decDoubleLogB __decDoubleLogB
+#define decDoubleMax __decDoubleMax
+#define decDoubleMaxMag __decDoubleMaxMag
+#define decDoubleMin __decDoubleMin
+#define decDoubleMinMag __decDoubleMinMag
+#define decDoubleMinus __decDoubleMinus
+#define decDoubleMultiply __decDoubleMultiply
+#define decDoubleNextMinus __decDoubleNextMinus
+#define decDoubleNextPlus __decDoubleNextPlus
+#define decDoubleNextToward __decDoubleNextToward
+#define decDoubleOr __decDoubleOr
+#define decDoublePlus __decDoublePlus
+#define decDoubleQuantize __decDoubleQuantize
+#define decDoubleRadix __decDoubleRadix
+#define decDoubleReduce __decDoubleReduce
+#define decDoubleRemainder __decDoubleRemainder
+#define decDoubleRemainderNear __decDoubleRemainderNear
+#define decDoubleRotate __decDoubleRotate
+#define decDoubleSameQuantum __decDoubleSameQuantum
+#define decDoubleScaleB __decDoubleScaleB
+#define decDoubleSetCoefficient __decDoubleSetCoefficient
+#define decDoubleSetExponent __decDoubleSetExponent
+#define decDoubleShift __decDoubleShift
+#define decDoubleShow __decDoubleShow
+#define decDoubleSubtract __decDoubleSubtract
+#define decDoubleToBCD __decDoubleToBCD
+#define decDoubleToEngString __decDoubleToEngString
+#define decDoubleToInt32 __decDoubleToInt32
+#define decDoubleToInt32Exact __decDoubleToInt32Exact
+#define decDoubleToIntegralExact __decDoubleToIntegralExact
+#define decDoubleToIntegralValue __decDoubleToIntegralValue
+#define decDoubleToPacked __decDoubleToPacked
+#define decDoubleToString __decDoubleToString
+#define decDoubleToUInt32 __decDoubleToUInt32
+#define decDoubleToUInt32Exact __decDoubleToUInt32Exact
+#define decDoubleToWider __decDoubleToWider
+#define decDoubleVersion __decDoubleVersion
+#define decDoubleXor __decDoubleXor
+#define decDoubleZero __decDoubleZero
+#endif
+
+#endif
diff --git a/libdecnumber/decLibrary.c b/libdecnumber/decLibrary.c
index 5a172502ef0..7e5e928edc2 100644
--- a/libdecnumber/decLibrary.c
+++ b/libdecnumber/decLibrary.c
@@ -74,22 +74,3 @@ isinfd128 (_Decimal128 arg)
decimal128ToNumber (&d128, &dn);
return (decNumberIsInfinite (&dn));
}
-
-uint32_t
-__dec_byte_swap (uint32_t in)
-{
- uint32_t out = 0;
- unsigned char *p = (unsigned char *) &out;
- union {
- uint32_t i;
- unsigned char b[4];
- } u;
-
- u.i = in;
- p[0] = u.b[3];
- p[1] = u.b[2];
- p[2] = u.b[1];
- p[3] = u.b[0];
-
- return out;
-}
diff --git a/libdecnumber/decNumber.c b/libdecnumber/decNumber.c
index dbc42148985..c5e223c812f 100644
--- a/libdecnumber/decNumber.c
+++ b/libdecnumber/decNumber.c
@@ -1,5 +1,5 @@
-/* Decimal Number module for the decNumber C Library
- Copyright (C) 2005 Free Software Foundation, Inc.
+/* Decimal number arithmetic module for the decNumber C Library.
+ Copyright (C) 2005, 2007 Free Software Foundation, Inc.
Contributed by IBM Corporation. Author Mike Cowlishaw.
This file is part of GCC.
@@ -29,236 +29,257 @@
02110-1301, USA. */
/* ------------------------------------------------------------------ */
-/* This module comprises the routines for Standard Decimal Arithmetic */
-/* as defined in the specification which may be found on the */
+/* Decimal Number arithmetic module */
+/* ------------------------------------------------------------------ */
+/* This module comprises the routines for General Decimal Arithmetic */
+/* as defined in the specification which may be found on the */
/* http://www2.hursley.ibm.com/decimal web pages. It implements both */
-/* the full ('extended') arithmetic and the simpler ('subset') */
-/* arithmetic. */
-/* */
-/* Usage notes: */
-/* */
-/* 1. This code is ANSI C89 except: */
-/* */
-/* a) Line comments (double forward slash) are used. (Most C */
-/* compilers accept these. If yours does not, a simple script */
-/* can be used to convert them to ANSI C comments.) */
-/* */
-/* b) Types from C99 stdint.h are used. If you do not have this */
-/* header file, see the User's Guide section of the decNumber */
-/* documentation; this lists the necessary definitions. */
-/* */
-/* c) If DECDPUN>4, non-ANSI 64-bit 'long long' types are used. */
-/* To avoid these, set DECDPUN <= 4 (see documentation). */
-/* */
+/* the full ('extended') arithmetic and the simpler ('subset') */
+/* arithmetic. */
+/* */
+/* Usage notes: */
+/* */
+/* 1. This code is ANSI C89 except: */
+/* */
+/* If DECDPUN>4 or DECUSE64=1, the C99 64-bit int64_t and */
+/* uint64_t types may be used. To avoid these, set DECUSE64=0 */
+/* and DECDPUN<=4 (see documentation). */
+/* */
/* 2. The decNumber format which this library uses is optimized for */
/* efficient processing of relatively short numbers; in particular */
/* it allows the use of fixed sized structures and minimizes copy */
-/* and move operations. It does, however, support arbitrary */
+/* and move operations. It does, however, support arbitrary */
/* precision (up to 999,999,999 digits) and arbitrary exponent */
/* range (Emax in the range 0 through 999,999,999 and Emin in the */
-/* range -999,999,999 through 0). */
-/* */
-/* 3. Operands to operator functions are never modified unless they */
+/* range -999,999,999 through 0). Mathematical functions (for */
+/* example decNumberExp) as identified below are restricted more */
+/* tightly: digits, emax, and -emin in the context must be <= */
+/* DEC_MAX_MATH (999999), and their operand(s) must be within */
+/* these bounds. */
+/* */
+/* 3. Logical functions are further restricted; their operands must */
+/* be finite, positive, have an exponent of zero, and all digits */
+/* must be either 0 or 1. The result will only contain digits */
+/* which are 0 or 1 (and will have exponent=0 and a sign of 0). */
+/* */
+/* 4. Operands to operator functions are never modified unless they */
/* are also specified to be the result number (which is always */
-/* permitted). Other than that case, operands may not overlap. */
-/* */
-/* 4. Error handling: the type of the error is ORed into the status */
-/* flags in the current context (decContext structure). The */
+/* permitted). Other than that case, operands must not overlap. */
+/* */
+/* 5. Error handling: the type of the error is ORed into the status */
+/* flags in the current context (decContext structure). The */
/* SIGFPE signal is then raised if the corresponding trap-enabler */
-/* flag in the decContext is set (is 1). */
-/* */
+/* flag in the decContext is set (is 1). */
+/* */
/* It is the responsibility of the caller to clear the status */
-/* flags as required. */
-/* */
+/* flags as required. */
+/* */
/* The result of any routine which returns a number will always */
/* be a valid number (which may be a special value, such as an */
-/* Infinity or NaN). */
-/* */
-/* 5. The decNumber format is not an exchangeable concrete */
+/* Infinity or NaN). */
+/* */
+/* 6. The decNumber format is not an exchangeable concrete */
/* representation as it comprises fields which may be machine- */
-/* dependent (big-endian or little-endian, for example). */
+/* dependent (packed or unpacked, or special length, for example). */
/* Canonical conversions to and from strings are provided; other */
-/* conversions are available in separate modules. */
-/* */
-/* 6. Normally, input operands are assumed to be valid. Set DECCHECK */
+/* conversions are available in separate modules. */
+/* */
+/* 7. Normally, input operands are assumed to be valid. Set DECCHECK */
/* to 1 for extended operand checking (including NULL operands). */
/* Results are undefined if a badly-formed structure (or a NULL */
-/* NULL pointer to a structure) is provided, though with DECCHECK */
+/* pointer to a structure) is provided, though with DECCHECK */
/* enabled the operator routines are protected against exceptions. */
/* (Except if the result pointer is NULL, which is unrecoverable.) */
-/* */
+/* */
/* However, the routines will never cause exceptions if they are */
/* given well-formed operands, even if the value of the operands */
/* is inappropriate for the operation and DECCHECK is not set. */
-/* */
-/* 7. Subset arithmetic is available only if DECSUBSET is set to 1. */
+/* (Except for SIGFPE, as and where documented.) */
+/* */
+/* 8. Subset arithmetic is available only if DECSUBSET is set to 1. */
/* ------------------------------------------------------------------ */
-/* Implementation notes for maintenance of this module: */
-/* */
-/* 1. Storage leak protection: Routines which use malloc are not */
+/* Implementation notes for maintenance of this module: */
+/* */
+/* 1. Storage leak protection: Routines which use malloc are not */
/* permitted to use return for fastpath or error exits (i.e., */
-/* they follow strict structured programming conventions). */
+/* they follow strict structured programming conventions). */
/* Instead they have a do{}while(0); construct surrounding the */
-/* code which is protected -- break may be used from this. */
-/* Other routines are allowed to use the return statement inline. */
-/* */
-/* Storage leak accounting can be enabled using DECALLOC. */
-/* */
-/* 2. All loops use the for(;;) construct. Any do construct is for */
-/* protection as just described. */
-/* */
+/* code which is protected -- break may be used to exit this. */
+/* Other routines can safely use the return statement inline. */
+/* */
+/* Storage leak accounting can be enabled using DECALLOC. */
+/* */
+/* 2. All loops use the for(;;) construct. Any do construct does */
+/* not loop; it is for allocation protection as just described. */
+/* */
/* 3. Setting status in the context must always be the very last */
/* action in a routine, as non-0 status may raise a trap and hence */
/* the call to set status may not return (if the handler uses long */
-/* jump). Therefore all cleanup must be done first. In general, */
-/* to achieve this we accumulate status and only finally apply it */
-/* by calling decContextSetStatus (via decStatus). */
-/* */
-/* Routines which allocate storage cannot, therefore, use the */
-/* 'top level' routines which could cause a non-returning */
+/* jump). Therefore all cleanup must be done first. In general, */
+/* to achieve this status is accumulated and is only applied just */
+/* before return by calling decContextSetStatus (via decStatus). */
+/* */
+/* Routines which allocate storage cannot, in general, use the */
+/* 'top level' routines which could cause a non-returning */
/* transfer of control. The decXxxxOp routines are safe (do not */
/* call decStatus even if traps are set in the context) and should */
-/* be used instead (they are also a little faster). */
-/* */
+/* be used instead (they are also a little faster). */
+/* */
/* 4. Exponent checking is minimized by allowing the exponent to */
/* grow outside its limits during calculations, provided that */
-/* the decFinalize function is called later. Multiplication and */
+/* the decFinalize function is called later. Multiplication and */
/* division, and intermediate calculations in exponentiation, */
-/* require more careful checks because of the risk of 31-bit */
+/* require more careful checks because of the risk of 31-bit */
/* overflow (the most negative valid exponent is -1999999997, for */
/* a 999999999-digit number with adjusted exponent of -999999999). */
-/* */
+/* */
/* 5. Rounding is deferred until finalization of results, with any */
/* 'off to the right' data being represented as a single digit */
/* residue (in the range -1 through 9). This avoids any double- */
-/* rounding when more than one shortening takes place (for */
-/* example, when a result is subnormal). */
-/* */
+/* rounding when more than one shortening takes place (for */
+/* example, when a result is subnormal). */
+/* */
/* 6. The digits count is allowed to rise to a multiple of DECDPUN */
/* during many operations, so whole Units are handled and exact */
/* accounting of digits is not needed. The correct digits value */
/* is found by decGetDigits, which accounts for leading zeros. */
/* This must be called before any rounding if the number of digits */
-/* is not known exactly. */
-/* */
-/* 7. We use the multiply-by-reciprocal 'trick' for partitioning */
+/* is not known exactly. */
+/* */
+/* 7. The multiply-by-reciprocal 'trick' is used for partitioning */
/* numbers up to four digits, using appropriate constants. This */
/* is not useful for longer numbers because overflow of 32 bits */
/* would lead to 4 multiplies, which is almost as expensive as */
-/* a divide (unless we assumed floating-point multiply available). */
-/* */
-/* 8. Unusual abbreviations possibly used in the commentary: */
-/* lhs -- left hand side (operand, of an operation) */
-/* lsd -- least significant digit (of coefficient) */
-/* lsu -- least significant Unit (of coefficient) */
-/* msd -- most significant digit (of coefficient) */
-/* msu -- most significant Unit (of coefficient) */
-/* rhs -- right hand side (operand, of an operation) */
-/* +ve -- positive */
-/* -ve -- negative */
-/* ------------------------------------------------------------------ */
-
-/* Some of glibc's string inlines cause warnings. Plus we'd rather
- rely on (and therefore test) GCC's string builtins. */
-#define __NO_STRING_INLINES
-
-#include <stdlib.h> /* for malloc, free, etc. */
-#include <stdio.h> /* for printf [if needed] */
-#include <string.h> /* for strcpy */
-#include <ctype.h> /* for lower */
-#include "config.h"
-#include "decNumber.h" /* base number library */
-#include "decNumberLocal.h" /* decNumber local types, etc. */
+/* a divide (unless a floating-point or 64-bit multiply is */
+/* assumed to be available). */
+/* */
+/* 8. Unusual abbreviations that may be used in the commentary: */
+/* lhs -- left hand side (operand, of an operation) */
+/* lsd -- least significant digit (of coefficient) */
+/* lsu -- least significant Unit (of coefficient) */
+/* msd -- most significant digit (of coefficient) */
+/* msi -- most significant item (in an array) */
+/* msu -- most significant Unit (of coefficient) */
+/* rhs -- right hand side (operand, of an operation) */
+/* +ve -- positive */
+/* -ve -- negative */
+/* ** -- raise to the power */
+/* ------------------------------------------------------------------ */
+
+#include <stdlib.h> /* for malloc, free, etc. */
+#include <stdio.h> /* for printf [if needed] */
+#include <string.h> /* for strcpy */
+#include <ctype.h> /* for lower */
+#include "config.h" /* for GCC definitions */
+#include "decNumber.h" /* base number library */
+#include "decNumberLocal.h" /* decNumber local types, etc. */
/* Constants */
-/* Public constant array: powers of ten (powers[n]==10**n) */
-const uInt powers[] = { 1, 10, 100, 1000, 10000, 100000, 1000000,
- 10000000, 100000000, 1000000000
-};
-
-/* Local constants */
-#define DIVIDE 0x80 /* Divide operators */
-#define REMAINDER 0x40 /* .. */
-#define DIVIDEINT 0x20 /* .. */
-#define REMNEAR 0x10 /* .. */
-#define COMPARE 0x01 /* Compare operators */
-#define COMPMAX 0x02 /* .. */
-#define COMPMIN 0x03 /* .. */
-#define COMPNAN 0x04 /* .. [NaN processing] */
+/* Public lookup table used by the D2U macro */
+const uByte d2utable[DECMAXD2U+1]=D2UTABLE;
-#define DEC_sNaN 0x40000000 /* local status: sNaN signal */
-#define BADINT (Int)0x80000000 /* most-negative Int; error indicator */
+#define DECVERB 1 /* set to 1 for verbose DECCHECK */
+#define powers DECPOWERS /* old internal name */
-static Unit one[] = { 1 }; /* Unit array of 1, used for incrementing */
+/* Local constants */
+#define DIVIDE 0x80 /* Divide operators */
+#define REMAINDER 0x40 /* .. */
+#define DIVIDEINT 0x20 /* .. */
+#define REMNEAR 0x10 /* .. */
+#define COMPARE 0x01 /* Compare operators */
+#define COMPMAX 0x02 /* .. */
+#define COMPMIN 0x03 /* .. */
+#define COMPTOTAL 0x04 /* .. */
+#define COMPNAN 0x05 /* .. [NaN processing] */
+#define COMPSIG 0x06 /* .. [signaling COMPARE] */
+#define COMPMAXMAG 0x07 /* .. */
+#define COMPMINMAG 0x08 /* .. */
+
+#define DEC_sNaN 0x40000000 /* local status: sNaN signal */
+#define BADINT (Int)0x80000000 /* most-negative Int; error indicator */
+/* Next two indicate an integer >= 10**6, and its parity (bottom bit) */
+#define BIGEVEN (Int)0x80000002
+#define BIGODD (Int)0x80000003
+
+static Unit uarrone[1]={1}; /* Unit array of 1, used for incrementing */
/* Granularity-dependent code */
#if DECDPUN<=4
-#define eInt Int /* extended integer */
-#define ueInt uInt /* unsigned extended integer */
+ #define eInt Int /* extended integer */
+ #define ueInt uInt /* unsigned extended integer */
/* Constant multipliers for divide-by-power-of five using reciprocal */
/* multiply, after removing powers of 2 by shifting, and final shift */
/* of 17 [we only need up to **4] */
-static const uInt multies[] = { 131073, 26215, 5243, 1049, 210 };
-
+ static const uInt multies[]={131073, 26215, 5243, 1049, 210};
/* QUOT10 -- macro to return the quotient of unit u divided by 10**n */
-#define QUOT10(u, n) ((((uInt)(u)>>(n))*multies[n])>>17)
+ #define QUOT10(u, n) ((((uInt)(u)>>(n))*multies[n])>>17)
#else
- /* For DECDPUN>4 we currently use non-ANSI 64-bit types. These could */
- /* be replaced by subroutine calls later. */
-#ifdef long
-#undef long
-#endif
-typedef signed long long Long;
-typedef unsigned long long uLong;
-#define eInt Long /* extended integer */
-#define ueInt uLong /* unsigned extended integer */
+ /* For DECDPUN>4 non-ANSI-89 64-bit types are needed. */
+ #if !DECUSE64
+ #error decNumber.c: DECUSE64 must be 1 when DECDPUN>4
+ #endif
+ #define eInt Long /* extended integer */
+ #define ueInt uLong /* unsigned extended integer */
#endif
/* Local routines */
-static decNumber *decAddOp (decNumber *, const decNumber *,
- const decNumber *, decContext *,
- uByte, uInt *);
-static void decApplyRound (decNumber *, decContext *, Int, uInt *);
-static Int decCompare (const decNumber * lhs, const decNumber * rhs);
-static decNumber *decCompareOp (decNumber *, const decNumber *, const decNumber *,
- decContext *, Flag, uInt *);
-static void decCopyFit (decNumber *, const decNumber *, decContext *,
- Int *, uInt *);
-static decNumber *decDivideOp (decNumber *, const decNumber *, const decNumber *,
- decContext *, Flag, uInt *);
-static void decFinalize (decNumber *, decContext *, Int *, uInt *);
-static Int decGetDigits (const Unit *, Int);
-#if DECSUBSET
-static Int decGetInt (const decNumber *, decContext *);
-#else
-static Int decGetInt (const decNumber *);
-#endif
-static decNumber *decMultiplyOp (decNumber *, const decNumber *,
- const decNumber *, decContext *, uInt *);
-static decNumber *decNaNs (decNumber *, const decNumber *, const decNumber *, uInt *);
-static decNumber *decQuantizeOp (decNumber *, const decNumber *,
- const decNumber *, decContext *, Flag, uInt *);
-static void decSetCoeff (decNumber *, decContext *, const Unit *,
- Int, Int *, uInt *);
-static void decSetOverflow (decNumber *, decContext *, uInt *);
-static void decSetSubnormal (decNumber *, decContext *, Int *, uInt *);
-static Int decShiftToLeast (Unit *, Int, Int);
-static Int decShiftToMost (Unit *, Int, Int);
-static void decStatus (decNumber *, uInt, decContext *);
-static Flag decStrEq (const char *, const char *);
-static void decToString (const decNumber *, char[], Flag);
-static decNumber *decTrim (decNumber *, Flag, Int *);
-static Int decUnitAddSub (const Unit *, Int, const Unit *, Int, Int, Unit *, Int);
-static Int decUnitCompare (const Unit *, Int, const Unit *, Int, Int);
+static decNumber * decAddOp(decNumber *, const decNumber *, const decNumber *,
+ decContext *, uByte, uInt *);
+static Flag decBiStr(const char *, const char *, const char *);
+static uInt decCheckMath(const decNumber *, decContext *, uInt *);
+static void decApplyRound(decNumber *, decContext *, Int, uInt *);
+static Int decCompare(const decNumber *lhs, const decNumber *rhs, Flag);
+static decNumber * decCompareOp(decNumber *, const decNumber *,
+ const decNumber *, decContext *,
+ Flag, uInt *);
+static void decCopyFit(decNumber *, const decNumber *, decContext *,
+ Int *, uInt *);
+static decNumber * decDecap(decNumber *, Int);
+static decNumber * decDivideOp(decNumber *, const decNumber *,
+ const decNumber *, decContext *, Flag, uInt *);
+static decNumber * decExpOp(decNumber *, const decNumber *,
+ decContext *, uInt *);
+static void decFinalize(decNumber *, decContext *, Int *, uInt *);
+static Int decGetDigits(Unit *, Int);
+static Int decGetInt(const decNumber *);
+static decNumber * decLnOp(decNumber *, const decNumber *,
+ decContext *, uInt *);
+static decNumber * decMultiplyOp(decNumber *, const decNumber *,
+ const decNumber *, decContext *,
+ uInt *);
+static decNumber * decNaNs(decNumber *, const decNumber *,
+ const decNumber *, decContext *, uInt *);
+static decNumber * decQuantizeOp(decNumber *, const decNumber *,
+ const decNumber *, decContext *, Flag,
+ uInt *);
+static void decReverse(Unit *, Unit *);
+static void decSetCoeff(decNumber *, decContext *, const Unit *,
+ Int, Int *, uInt *);
+static void decSetMaxValue(decNumber *, decContext *);
+static void decSetOverflow(decNumber *, decContext *, uInt *);
+static void decSetSubnormal(decNumber *, decContext *, Int *, uInt *);
+static Int decShiftToLeast(Unit *, Int, Int);
+static Int decShiftToMost(Unit *, Int, Int);
+static void decStatus(decNumber *, uInt, decContext *);
+static void decToString(const decNumber *, char[], Flag);
+static decNumber * decTrim(decNumber *, decContext *, Flag, Int *);
+static Int decUnitAddSub(const Unit *, Int, const Unit *, Int, Int,
+ Unit *, Int);
+static Int decUnitCompare(const Unit *, Int, const Unit *, Int, Int);
#if !DECSUBSET
/* decFinish == decFinalize when no subset arithmetic needed */
#define decFinish(a,b,c,d) decFinalize(a,b,c,d)
#else
-static void decFinish (decNumber *, decContext *, Int *, uInt *);
-static decNumber *decRoundOperand (const decNumber *, decContext *, uInt *);
+static void decFinish(decNumber *, decContext *, Int *, uInt *);
+static decNumber * decRoundOperand(const decNumber *, decContext *, uInt *);
#endif
+/* Local macros */
+/* masked special-values bits */
+#define SPECIALARG (rhs->bits & DECSPECIAL)
+#define SPECIALARGS ((lhs->bits | rhs->bits) & DECSPECIAL)
+
/* Diagnostic macros, etc. */
#if DECALLOC
/* Handle malloc/free accounting. If enabled, our accountable routines */
@@ -266,5698 +287,7836 @@ static decNumber *decRoundOperand (const decNumber *, decContext *, uInt *);
/* and free routines. */
#define malloc(a) decMalloc(a)
#define free(a) decFree(a)
-#define DECFENCE 0x5a /* corruption detector */
+#define DECFENCE 0x5a /* corruption detector */
/* 'Our' malloc and free: */
-static void *decMalloc (size_t);
-static void decFree (void *);
-uInt decAllocBytes = 0; /* count of bytes allocated */
+static void *decMalloc(size_t);
+static void decFree(void *);
+uInt decAllocBytes=0; /* count of bytes allocated */
/* Note that DECALLOC code only checks for storage buffer overflow. */
-/* To check for memory leaks, the decAllocBytes variable should be */
+/* To check for memory leaks, the decAllocBytes variable must be */
/* checked to be 0 at appropriate times (e.g., after the test */
/* harness completes a set of tests). This checking may be unreliable */
/* if the testing is done in a multi-thread environment. */
#endif
#if DECCHECK
-/* Optional operand checking routines. Enabling these means that */
-/* decNumber and decContext operands to operator routines are checked */
-/* for correctness. This roughly doubles the execution time of the */
+/* Optional checking routines. Enabling these means that decNumber */
+/* and decContext operands to operator routines are checked for */
+/* correctness. This roughly doubles the execution time of the */
/* fastest routines (and adds 600+ bytes), so should not normally be */
/* used in 'production'. */
-#define DECUNUSED (void *)(0xffffffff)
-static Flag decCheckOperands (decNumber *, const decNumber *,
- const decNumber *, decContext *);
-static Flag decCheckNumber (const decNumber *, decContext *);
+/* decCheckInexact is used to check that inexact results have a full */
+/* complement of digits (where appropriate -- this is not the case */
+/* for Quantize, for example) */
+#define DECUNRESU ((decNumber *)(void *)0xffffffff)
+#define DECUNUSED ((const decNumber *)(void *)0xffffffff)
+#define DECUNCONT ((decContext *)(void *)(0xffffffff))
+static Flag decCheckOperands(decNumber *, const decNumber *,
+ const decNumber *, decContext *);
+static Flag decCheckNumber(const decNumber *);
+static void decCheckInexact(const decNumber *, decContext *);
#endif
#if DECTRACE || DECCHECK
-/* Optional trace/debugging routines. */
-void decNumberShow (const decNumber *); /* displays the components of a number */
-static void decDumpAr (char, const Unit *, Int);
+/* Optional trace/debugging routines (may or may not be used) */
+void decNumberShow(const decNumber *); /* displays the components of a number */
+static void decDumpAr(char, const Unit *, Int);
#endif
/* ================================================================== */
-/* Conversions */
+/* Conversions */
/* ================================================================== */
/* ------------------------------------------------------------------ */
-/* to-scientific-string -- conversion to numeric string */
-/* to-engineering-string -- conversion to numeric string */
-/* */
-/* decNumberToString(dn, string); */
-/* decNumberToEngString(dn, string); */
-/* */
-/* dn is the decNumber to convert */
-/* string is the string where the result will be laid out */
-/* */
-/* string must be at least dn->digits+14 characters long */
-/* */
-/* No error is possible, and no status can be set. */
-/* ------------------------------------------------------------------ */
-char *
-decNumberToString (const decNumber * dn, char *string)
-{
- decToString (dn, string, 0);
+/* from-int32 -- conversion from Int or uInt */
+/* */
+/* dn is the decNumber to receive the integer */
+/* in or uin is the integer to be converted */
+/* returns dn */
+/* */
+/* No error is possible. */
+/* ------------------------------------------------------------------ */
+decNumber * decNumberFromInt32(decNumber *dn, Int in) {
+ uInt unsig;
+ if (in>=0) unsig=in;
+ else { /* negative (possibly BADINT) */
+ if (in==BADINT) unsig=(uInt)1073741824*2; /* special case */
+ else unsig=-in; /* invert */
+ }
+ /* in is now positive */
+ decNumberFromUInt32(dn, unsig);
+ if (in<0) dn->bits=DECNEG; /* sign needed */
+ return dn;
+ } /* decNumberFromInt32 */
+
+decNumber * decNumberFromUInt32(decNumber *dn, uInt uin) {
+ Unit *up; /* work pointer */
+ decNumberZero(dn); /* clean */
+ if (uin==0) return dn; /* [or decGetDigits bad call] */
+ for (up=dn->lsu; uin>0; up++) {
+ *up=(Unit)(uin%(DECDPUNMAX+1));
+ uin=uin/(DECDPUNMAX+1);
+ }
+ dn->digits=decGetDigits(dn->lsu, up-dn->lsu);
+ return dn;
+ } /* decNumberFromUInt32 */
+
+/* ------------------------------------------------------------------ */
+/* to-int32 -- conversion to Int or uInt */
+/* */
+/* dn is the decNumber to convert */
+/* set is the context for reporting errors */
+/* returns the converted decNumber, or 0 if Invalid is set */
+/* */
+/* Invalid is set if the decNumber does not have exponent==0 or if */
+/* it is a NaN, Infinite, or out-of-range. */
+/* ------------------------------------------------------------------ */
+Int decNumberToInt32(const decNumber *dn, decContext *set) {
+ #if DECCHECK
+ if (decCheckOperands(DECUNRESU, DECUNUSED, dn, set)) return 0;
+ #endif
+
+ /* special or too many digits, or bad exponent */
+ if (dn->bits&DECSPECIAL || dn->digits>10 || dn->exponent!=0) ; /* bad */
+ else { /* is a finite integer with 10 or fewer digits */
+ Int d; /* work */
+ const Unit *up; /* .. */
+ uInt hi=0, lo; /* .. */
+ up=dn->lsu; /* -> lsu */
+ lo=*up; /* get 1 to 9 digits */
+ #if DECDPUN>1 /* split to higher */
+ hi=lo/10;
+ lo=lo%10;
+ #endif
+ up++;
+ /* collect remaining Units, if any, into hi */
+ for (d=DECDPUN; d<dn->digits; up++, d+=DECDPUN) hi+=*up*powers[d-1];
+ /* now low has the lsd, hi the remainder */
+ if (hi>214748364 || (hi==214748364 && lo>7)) { /* out of range? */
+ /* most-negative is a reprieve */
+ if (dn->bits&DECNEG && hi==214748364 && lo==8) return 0x80000000;
+ /* bad -- drop through */
+ }
+ else { /* in-range always */
+ Int i=X10(hi)+lo;
+ if (dn->bits&DECNEG) return -i;
+ return i;
+ }
+ } /* integer */
+ decContextSetStatus(set, DEC_Invalid_operation); /* [may not return] */
+ return 0;
+ } /* decNumberToInt32 */
+
+uInt decNumberToUInt32(const decNumber *dn, decContext *set) {
+ #if DECCHECK
+ if (decCheckOperands(DECUNRESU, DECUNUSED, dn, set)) return 0;
+ #endif
+ /* special or too many digits, or bad exponent, or negative (<0) */
+ if (dn->bits&DECSPECIAL || dn->digits>10 || dn->exponent!=0
+ || (dn->bits&DECNEG && !ISZERO(dn))); /* bad */
+ else { /* is a finite integer with 10 or fewer digits */
+ Int d; /* work */
+ const Unit *up; /* .. */
+ uInt hi=0, lo; /* .. */
+ up=dn->lsu; /* -> lsu */
+ lo=*up; /* get 1 to 9 digits */
+ #if DECDPUN>1 /* split to higher */
+ hi=lo/10;
+ lo=lo%10;
+ #endif
+ up++;
+ /* collect remaining Units, if any, into hi */
+ for (d=DECDPUN; d<dn->digits; up++, d+=DECDPUN) hi+=*up*powers[d-1];
+
+ /* now low has the lsd, hi the remainder */
+ if (hi>429496729 || (hi==429496729 && lo>5)) ; /* no reprieve possible */
+ else return X10(hi)+lo;
+ } /* integer */
+ decContextSetStatus(set, DEC_Invalid_operation); /* [may not return] */
+ return 0;
+ } /* decNumberToUInt32 */
+
+/* ------------------------------------------------------------------ */
+/* to-scientific-string -- conversion to numeric string */
+/* to-engineering-string -- conversion to numeric string */
+/* */
+/* decNumberToString(dn, string); */
+/* decNumberToEngString(dn, string); */
+/* */
+/* dn is the decNumber to convert */
+/* string is the string where the result will be laid out */
+/* */
+/* string must be at least dn->digits+14 characters long */
+/* */
+/* No error is possible, and no status can be set. */
+/* ------------------------------------------------------------------ */
+char * decNumberToString(const decNumber *dn, char *string){
+ decToString(dn, string, 0);
return string;
-}
+ } /* DecNumberToString */
-char *
-decNumberToEngString (const decNumber * dn, char *string)
-{
- decToString (dn, string, 1);
+char * decNumberToEngString(const decNumber *dn, char *string){
+ decToString(dn, string, 1);
return string;
-}
-
-/* ------------------------------------------------------------------ */
-/* to-number -- conversion from numeric string */
-/* */
-/* decNumberFromString -- convert string to decNumber */
-/* dn -- the number structure to fill */
-/* chars[] -- the string to convert ('\0' terminated) */
-/* set -- the context used for processing any error, */
-/* determining the maximum precision available */
-/* (set.digits), determining the maximum and minimum */
-/* exponent (set.emax and set.emin), determining if */
-/* extended values are allowed, and checking the */
-/* rounding mode if overflow occurs or rounding is */
-/* needed. */
-/* */
+ } /* DecNumberToEngString */
+
+/* ------------------------------------------------------------------ */
+/* to-number -- conversion from numeric string */
+/* */
+/* decNumberFromString -- convert string to decNumber */
+/* dn -- the number structure to fill */
+/* chars[] -- the string to convert ('\0' terminated) */
+/* set -- the context used for processing any error, */
+/* determining the maximum precision available */
+/* (set.digits), determining the maximum and minimum */
+/* exponent (set.emax and set.emin), determining if */
+/* extended values are allowed, and checking the */
+/* rounding mode if overflow occurs or rounding is */
+/* needed. */
+/* */
/* The length of the coefficient and the size of the exponent are */
-/* checked by this routine, so the correct error (Underflow or */
-/* Overflow) can be reported or rounding applied, as necessary. */
-/* */
-/* If bad syntax is detected, the result will be a quiet NaN. */
-/* ------------------------------------------------------------------ */
-decNumber *
-decNumberFromString (decNumber * dn, const char chars[], decContext * set)
-{
- Int exponent = 0; /* working exponent [assume 0] */
- uByte bits = 0; /* working flags [assume +ve] */
- Unit *res; /* where result will be built */
- Unit resbuff[D2U (DECBUFFER + 1)]; /* local buffer in case need temporary */
- Unit *allocres = NULL; /* -> allocated result, iff allocated */
- Int need; /* units needed for result */
- Int d = 0; /* count of digits found in decimal part */
- const char *dotchar = NULL; /* where dot was found */
- const char *cfirst; /* -> first character of decimal part */
- const char *last = NULL; /* -> last digit of decimal part */
- const char *firstexp; /* -> first significant exponent digit */
- const char *c; /* work */
- Unit *up; /* .. */
-#if DECDPUN>1
- Int i; /* .. */
-#endif
- Int residue = 0; /* rounding residue */
- uInt status = 0; /* error code */
-
-#if DECCHECK
- if (decCheckOperands (DECUNUSED, DECUNUSED, DECUNUSED, set))
- return decNumberZero (dn);
-#endif
-
- do
- { /* status & malloc protection */
- c = chars; /* -> input character */
- if (*c == '-')
- { /* handle leading '-' */
- bits = DECNEG;
- c++;
+/* checked by this routine, so the correct error (Underflow or */
+/* Overflow) can be reported or rounding applied, as necessary. */
+/* */
+/* If bad syntax is detected, the result will be a quiet NaN. */
+/* ------------------------------------------------------------------ */
+decNumber * decNumberFromString(decNumber *dn, const char chars[],
+ decContext *set) {
+ Int exponent=0; /* working exponent [assume 0] */
+ uByte bits=0; /* working flags [assume +ve] */
+ Unit *res; /* where result will be built */
+ Unit resbuff[SD2U(DECBUFFER+9)];/* local buffer in case need temporary */
+ /* [+9 allows for ln() constants] */
+ Unit *allocres=NULL; /* -> allocated result, iff allocated */
+ Int d=0; /* count of digits found in decimal part */
+ const char *dotchar=NULL; /* where dot was found */
+ const char *cfirst=chars; /* -> first character of decimal part */
+ const char *last=NULL; /* -> last digit of decimal part */
+ const char *c; /* work */
+ Unit *up; /* .. */
+ #if DECDPUN>1
+ Int cut, out; /* .. */
+ #endif
+ Int residue; /* rounding residue */
+ uInt status=0; /* error code */
+
+ #if DECCHECK
+ if (decCheckOperands(DECUNRESU, DECUNUSED, DECUNUSED, set))
+ return decNumberZero(dn);
+ #endif
+
+ do { /* status & malloc protection */
+ for (c=chars;; c++) { /* -> input character */
+ if (*c>='0' && *c<='9') { /* test for Arabic digit */
+ last=c;
+ d++; /* count of real digits */
+ continue; /* still in decimal part */
}
- else if (*c == '+')
- c++; /* step over leading '+' */
- /* We're at the start of the number [we think] */
- cfirst = c; /* save */
- for (;; c++)
- {
- if (*c >= '0' && *c <= '9')
- { /* test for Arabic digit */
- last = c;
- d++; /* count of real digits */
- continue; /* still in decimal part */
- }
- if (*c != '.')
- break; /* done with decimal part */
- /* dot: record, check, and ignore */
- if (dotchar != NULL)
- { /* two dots */
- last = NULL; /* indicate bad */
- break;
- } /* .. and go report */
- dotchar = c; /* offset into decimal part */
- } /* c */
-
- if (last == NULL)
- { /* no decimal digits, or >1 . */
-#if DECSUBSET
- /* If subset then infinities and NaNs are not allowed */
- if (!set->extended)
- {
- status = DEC_Conversion_syntax;
- break; /* all done */
- }
- else
- {
-#endif
- /* Infinities and NaNs are possible, here */
- decNumberZero (dn); /* be optimistic */
- if (decStrEq (c, "Infinity") || decStrEq (c, "Inf"))
- {
- dn->bits = bits | DECINF;
- break; /* all done */
- }
- else
- { /* a NaN expected */
- /* 2003.09.10 NaNs are now permitted to have a sign */
- status = DEC_Conversion_syntax; /* assume the worst */
- dn->bits = bits | DECNAN; /* assume simple NaN */
- if (*c == 's' || *c == 'S')
- { /* looks like an` sNaN */
- c++;
- dn->bits = bits | DECSNAN;
- }
- if (*c != 'n' && *c != 'N')
- break; /* check caseless "NaN" */
- c++;
- if (*c != 'a' && *c != 'A')
- break; /* .. */
- c++;
- if (*c != 'n' && *c != 'N')
- break; /* .. */
- c++;
- /* now nothing, or nnnn, expected */
- /* -> start of integer and skip leading 0s [including plain 0] */
- for (cfirst = c; *cfirst == '0';)
- cfirst++;
- if (*cfirst == '\0')
- { /* "NaN" or "sNaN", maybe with all 0s */
- status = 0; /* it's good */
- break; /* .. */
- }
- /* something other than 0s; setup last and d as usual [no dots] */
- for (c = cfirst;; c++, d++)
- {
- if (*c < '0' || *c > '9')
- break; /* test for Arabic digit */
- last = c;
- }
- if (*c != '\0')
- break; /* not all digits */
- if (d > set->digits)
- break; /* too many digits */
- /* good; drop through and convert the integer */
- status = 0;
- bits = dn->bits; /* for copy-back */
- } /* NaN expected */
-#if DECSUBSET
- }
-#endif
- } /* last==NULL */
-
- if (*c != '\0')
- { /* more there; exponent expected... */
- Flag nege = 0; /* 1=negative exponent */
- if (*c != 'e' && *c != 'E')
- {
- status = DEC_Conversion_syntax;
- break;
- }
-
- /* Found 'e' or 'E' -- now process explicit exponent */
- /* 1998.07.11: sign no longer required */
- c++; /* to (expected) sign */
- if (*c == '-')
- {
- nege = 1;
- c++;
- }
- else if (*c == '+')
- c++;
- if (*c == '\0')
- {
- status = DEC_Conversion_syntax;
- break;
- }
-
- for (; *c == '0' && *(c + 1) != '\0';)
- c++; /* strip insignificant zeros */
- firstexp = c; /* save exponent digit place */
- for (;; c++)
- {
- if (*c < '0' || *c > '9')
- break; /* not a digit */
- exponent = X10 (exponent) + (Int) * c - (Int) '0';
- } /* c */
- /* if we didn't end on '\0' must not be a digit */
- if (*c != '\0')
- {
- status = DEC_Conversion_syntax;
- break;
- }
-
- /* (this next test must be after the syntax check) */
- /* if it was too long the exponent may have wrapped, so check */
- /* carefully and set it to a certain overflow if wrap possible */
- if (c >= firstexp + 9 + 1)
- {
- if (c > firstexp + 9 + 1 || *firstexp > '1')
- exponent = DECNUMMAXE * 2;
- /* [up to 1999999999 is OK, for example 1E-1000000998] */
- }
- if (nege)
- exponent = -exponent; /* was negative */
- } /* had exponent */
- /* Here when all inspected; syntax is good */
-
- /* Handle decimal point... */
- if (dotchar != NULL && dotchar < last) /* embedded . found, so */
- exponent = exponent - (last - dotchar); /* .. adjust exponent */
- /* [we can now ignore the .] */
-
- /* strip leading zeros/dot (leave final if all 0's) */
- for (c = cfirst; c < last; c++)
- {
- if (*c == '0')
- d--; /* 0 stripped */
- else if (*c != '.')
- break;
- cfirst++; /* step past leader */
- } /* c */
-
-#if DECSUBSET
- /* We can now make a rapid exit for zeros if !extended */
- if (*cfirst == '0' && !set->extended)
- {
- decNumberZero (dn); /* clean result */
- break; /* [could be return] */
+ if (*c=='.' && dotchar==NULL) { /* first '.' */
+ dotchar=c; /* record offset into decimal part */
+ if (c==cfirst) cfirst++; /* first digit must follow */
+ continue;}
+ if (c==chars) { /* first in string... */
+ if (*c=='-') { /* valid - sign */
+ cfirst++;
+ bits=DECNEG;
+ continue;}
+ if (*c=='+') { /* valid + sign */
+ cfirst++;
+ continue;}
}
-#endif
-
- /* OK, the digits string is good. Copy to the decNumber, or to
- a temporary decNumber if rounding is needed */
- if (d <= set->digits)
- res = dn->lsu; /* fits into given decNumber */
- else
- { /* rounding needed */
- need = D2U (d); /* units needed */
- res = resbuff; /* assume use local buffer */
- if (need * sizeof (Unit) > sizeof (resbuff))
- { /* too big for local */
- allocres = (Unit *) malloc (need * sizeof (Unit));
- if (allocres == NULL)
- {
- status |= DEC_Insufficient_storage;
- break;
- }
- res = allocres;
- }
+ /* *c is not a digit, or a valid +, -, or '.' */
+ break;
+ } /* c */
+
+ if (last==NULL) { /* no digits yet */
+ status=DEC_Conversion_syntax;/* assume the worst */
+ if (*c=='\0') break; /* and no more to come... */
+ #if DECSUBSET
+ /* if subset then infinities and NaNs are not allowed */
+ if (!set->extended) break; /* hopeless */
+ #endif
+ /* Infinities and NaNs are possible, here */
+ if (dotchar!=NULL) break; /* .. unless had a dot */
+ decNumberZero(dn); /* be optimistic */
+ if (decBiStr(c, "infinity", "INFINITY")
+ || decBiStr(c, "inf", "INF")) {
+ dn->bits=bits | DECINF;
+ status=0; /* is OK */
+ break; /* all done */
}
- /* res now -> number lsu, buffer, or allocated storage for Unit array */
-
- /* Place the coefficient into the selected Unit array */
-#if DECDPUN>1
- i = d % DECDPUN; /* digits in top unit */
- if (i == 0)
- i = DECDPUN;
- up = res + D2U (d) - 1; /* -> msu */
- *up = 0;
- for (c = cfirst;; c++)
- { /* along the digits */
- if (*c == '.')
- { /* ignore . [don't decrement i] */
- if (c != last)
- continue;
- break;
- }
- *up = (Unit) (X10 (*up) + (Int) * c - (Int) '0');
- i--;
- if (i > 0)
- continue; /* more for this unit */
- if (up == res)
- break; /* just filled the last unit */
- i = DECDPUN;
- up--;
- *up = 0;
- } /* c */
-#else
- /* DECDPUN==1 */
- up = res; /* -> lsu */
- for (c = last; c >= cfirst; c--)
- { /* over each character, from least */
- if (*c == '.')
- continue; /* ignore . [don't step b] */
- *up = (Unit) ((Int) * c - (Int) '0');
- up++;
- } /* c */
-#endif
-
- dn->bits = bits;
- dn->exponent = exponent;
- dn->digits = d;
-
- /* if not in number (too long) shorten into the number */
- if (d > set->digits)
- decSetCoeff (dn, set, res, d, &residue, &status);
-
- /* Finally check for overflow or subnormal and round as needed */
- decFinalize (dn, set, &residue, &status);
- /* decNumberShow(dn); */
- }
- while (0); /* [for break] */
+ /* a NaN expected */
+ /* 2003.09.10 NaNs are now permitted to have a sign */
+ dn->bits=bits | DECNAN; /* assume simple NaN */
+ if (*c=='s' || *c=='S') { /* looks like an sNaN */
+ c++;
+ dn->bits=bits | DECSNAN;
+ }
+ if (*c!='n' && *c!='N') break; /* check caseless "NaN" */
+ c++;
+ if (*c!='a' && *c!='A') break; /* .. */
+ c++;
+ if (*c!='n' && *c!='N') break; /* .. */
+ c++;
+ /* now either nothing, or nnnn payload, expected */
+ /* -> start of integer and skip leading 0s [including plain 0] */
+ for (cfirst=c; *cfirst=='0';) cfirst++;
+ if (*cfirst=='\0') { /* "NaN" or "sNaN", maybe with all 0s */
+ status=0; /* it's good */
+ break; /* .. */
+ }
+ /* something other than 0s; setup last and d as usual [no dots] */
+ for (c=cfirst;; c++, d++) {
+ if (*c<'0' || *c>'9') break; /* test for Arabic digit */
+ last=c;
+ }
+ if (*c!='\0') break; /* not all digits */
+ if (d>set->digits-1) {
+ /* [NB: payload in a decNumber can be full length unless */
+ /* clamped, in which case can only be digits-1] */
+ if (set->clamp) break;
+ if (d>set->digits) break;
+ } /* too many digits? */
+ /* good; drop through to convert the integer to coefficient */
+ status=0; /* syntax is OK */
+ bits=dn->bits; /* for copy-back */
+ } /* last==NULL */
+
+ else if (*c!='\0') { /* more to process... */
+ /* had some digits; exponent is only valid sequence now */
+ Flag nege; /* 1=negative exponent */
+ const char *firstexp; /* -> first significant exponent digit */
+ status=DEC_Conversion_syntax;/* assume the worst */
+ if (*c!='e' && *c!='E') break;
+ /* Found 'e' or 'E' -- now process explicit exponent */
+ /* 1998.07.11: sign no longer required */
+ nege=0;
+ c++; /* to (possible) sign */
+ if (*c=='-') {nege=1; c++;}
+ else if (*c=='+') c++;
+ if (*c=='\0') break;
+
+ for (; *c=='0' && *(c+1)!='\0';) c++; /* strip insignificant zeros */
+ firstexp=c; /* save exponent digit place */
+ for (; ;c++) {
+ if (*c<'0' || *c>'9') break; /* not a digit */
+ exponent=X10(exponent)+(Int)*c-(Int)'0';
+ } /* c */
+ /* if not now on a '\0', *c must not be a digit */
+ if (*c!='\0') break;
+
+ /* (this next test must be after the syntax checks) */
+ /* if it was too long the exponent may have wrapped, so check */
+ /* carefully and set it to a certain overflow if wrap possible */
+ if (c>=firstexp+9+1) {
+ if (c>firstexp+9+1 || *firstexp>'1') exponent=DECNUMMAXE*2;
+ /* [up to 1999999999 is OK, for example 1E-1000000998] */
+ }
+ if (nege) exponent=-exponent; /* was negative */
+ status=0; /* is OK */
+ } /* stuff after digits */
+
+ /* Here when whole string has been inspected; syntax is good */
+ /* cfirst->first digit (never dot), last->last digit (ditto) */
+
+ /* strip leading zeros/dot [leave final 0 if all 0's] */
+ if (*cfirst=='0') { /* [cfirst has stepped over .] */
+ for (c=cfirst; c<last; c++, cfirst++) {
+ if (*c=='.') continue; /* ignore dots */
+ if (*c!='0') break; /* non-zero found */
+ d--; /* 0 stripped */
+ } /* c */
+ #if DECSUBSET
+ /* make a rapid exit for easy zeros if !extended */
+ if (*cfirst=='0' && !set->extended) {
+ decNumberZero(dn); /* clean result */
+ break; /* [could be return] */
+ }
+ #endif
+ } /* at least one leading 0 */
+
+ /* Handle decimal point... */
+ if (dotchar!=NULL && dotchar<last) /* non-trailing '.' found? */
+ exponent-=(last-dotchar); /* adjust exponent */
+ /* [we can now ignore the .] */
+
+ /* OK, the digits string is good. Assemble in the decNumber, or in */
+ /* a temporary units array if rounding is needed */
+ if (d<=set->digits) res=dn->lsu; /* fits into supplied decNumber */
+ else { /* rounding needed */
+ Int needbytes=D2U(d)*sizeof(Unit);/* bytes needed */
+ res=resbuff; /* assume use local buffer */
+ if (needbytes>(Int)sizeof(resbuff)) { /* too big for local */
+ allocres=(Unit *)malloc(needbytes);
+ if (allocres==NULL) {status|=DEC_Insufficient_storage; break;}
+ res=allocres;
+ }
+ }
+ /* res now -> number lsu, buffer, or allocated storage for Unit array */
+
+ /* Place the coefficient into the selected Unit array */
+ /* [this is often 70% of the cost of this function when DECDPUN>1] */
+ #if DECDPUN>1
+ out=0; /* accumulator */
+ up=res+D2U(d)-1; /* -> msu */
+ cut=d-(up-res)*DECDPUN; /* digits in top unit */
+ for (c=cfirst;; c++) { /* along the digits */
+ if (*c=='.') continue; /* ignore '.' [don't decrement cut] */
+ out=X10(out)+(Int)*c-(Int)'0';
+ if (c==last) break; /* done [never get to trailing '.'] */
+ cut--;
+ if (cut>0) continue; /* more for this unit */
+ *up=(Unit)out; /* write unit */
+ up--; /* prepare for unit below.. */
+ cut=DECDPUN; /* .. */
+ out=0; /* .. */
+ } /* c */
+ *up=(Unit)out; /* write lsu */
+
+ #else
+ /* DECDPUN==1 */
+ up=res; /* -> lsu */
+ for (c=last; c>=cfirst; c--) { /* over each character, from least */
+ if (*c=='.') continue; /* ignore . [don't step up] */
+ *up=(Unit)((Int)*c-(Int)'0');
+ up++;
+ } /* c */
+ #endif
+
+ dn->bits=bits;
+ dn->exponent=exponent;
+ dn->digits=d;
+
+ /* if not in number (too long) shorten into the number */
+ if (d>set->digits) {
+ residue=0;
+ decSetCoeff(dn, set, res, d, &residue, &status);
+ /* always check for overflow or subnormal and round as needed */
+ decFinalize(dn, set, &residue, &status);
+ }
+ else { /* no rounding, but may still have overflow or subnormal */
+ /* [these tests are just for performance; finalize repeats them] */
+ if ((dn->exponent-1<set->emin-dn->digits)
+ || (dn->exponent-1>set->emax-set->digits)) {
+ residue=0;
+ decFinalize(dn, set, &residue, &status);
+ }
+ }
+ /* decNumberShow(dn); */
+ } while(0); /* [for break] */
- if (allocres != NULL)
- free (allocres); /* drop any storage we used */
- if (status != 0)
- decStatus (dn, status, set);
+ if (allocres!=NULL) free(allocres); /* drop any storage used */
+ if (status!=0) decStatus(dn, status, set);
return dn;
-}
+ } /* decNumberFromString */
/* ================================================================== */
-/* Operators */
+/* Operators */
/* ================================================================== */
/* ------------------------------------------------------------------ */
-/* decNumberAbs -- absolute value operator */
-/* */
-/* This computes C = abs(A) */
-/* */
-/* res is C, the result. C may be A */
-/* rhs is A */
-/* set is the context */
-/* */
-/* C must have space for set->digits digits. */
+/* decNumberAbs -- absolute value operator */
+/* */
+/* This computes C = abs(A) */
+/* */
+/* res is C, the result. C may be A */
+/* rhs is A */
+/* set is the context */
+/* */
+/* See also decNumberCopyAbs for a quiet bitwise version of this. */
+/* C must have space for set->digits digits. */
/* ------------------------------------------------------------------ */
/* This has the same effect as decNumberPlus unless A is negative, */
-/* in which case it has the same effect as decNumberMinus. */
-/* ------------------------------------------------------------------ */
-decNumber *
-decNumberAbs (decNumber * res, const decNumber * rhs, decContext * set)
-{
- decNumber dzero; /* for 0 */
- uInt status = 0; /* accumulator */
-
-#if DECCHECK
- if (decCheckOperands (res, DECUNUSED, rhs, set))
+/* in which case it has the same effect as decNumberMinus. */
+/* ------------------------------------------------------------------ */
+decNumber * decNumberAbs(decNumber *res, const decNumber *rhs,
+ decContext *set) {
+ decNumber dzero; /* for 0 */
+ uInt status=0; /* accumulator */
+
+ #if DECCHECK
+ if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
+ #endif
+
+ decNumberZero(&dzero); /* set 0 */
+ dzero.exponent=rhs->exponent; /* [no coefficient expansion] */
+ decAddOp(res, &dzero, rhs, set, (uByte)(rhs->bits & DECNEG), &status);
+ if (status!=0) decStatus(res, status, set);
+ #if DECCHECK
+ decCheckInexact(res, set);
+ #endif
+ return res;
+ } /* decNumberAbs */
+
+/* ------------------------------------------------------------------ */
+/* decNumberAdd -- add two Numbers */
+/* */
+/* This computes C = A + B */
+/* */
+/* res is C, the result. C may be A and/or B (e.g., X=X+X) */
+/* lhs is A */
+/* rhs is B */
+/* set is the context */
+/* */
+/* C must have space for set->digits digits. */
+/* ------------------------------------------------------------------ */
+/* This just calls the routine shared with Subtract */
+decNumber * decNumberAdd(decNumber *res, const decNumber *lhs,
+ const decNumber *rhs, decContext *set) {
+ uInt status=0; /* accumulator */
+ decAddOp(res, lhs, rhs, set, 0, &status);
+ if (status!=0) decStatus(res, status, set);
+ #if DECCHECK
+ decCheckInexact(res, set);
+ #endif
+ return res;
+ } /* decNumberAdd */
+
+/* ------------------------------------------------------------------ */
+/* decNumberAnd -- AND two Numbers, digitwise */
+/* */
+/* This computes C = A & B */
+/* */
+/* res is C, the result. C may be A and/or B (e.g., X=X&X) */
+/* lhs is A */
+/* rhs is B */
+/* set is the context (used for result length and error report) */
+/* */
+/* C must have space for set->digits digits. */
+/* */
+/* Logical function restrictions apply (see above); a NaN is */
+/* returned with Invalid_operation if a restriction is violated. */
+/* ------------------------------------------------------------------ */
+decNumber * decNumberAnd(decNumber *res, const decNumber *lhs,
+ const decNumber *rhs, decContext *set) {
+ const Unit *ua, *ub; /* -> operands */
+ const Unit *msua, *msub; /* -> operand msus */
+ Unit *uc, *msuc; /* -> result and its msu */
+ Int msudigs; /* digits in res msu */
+ #if DECCHECK
+ if (decCheckOperands(res, lhs, rhs, set)) return res;
+ #endif
+
+ if (lhs->exponent!=0 || decNumberIsSpecial(lhs) || decNumberIsNegative(lhs)
+ || rhs->exponent!=0 || decNumberIsSpecial(rhs) || decNumberIsNegative(rhs)) {
+ decStatus(res, DEC_Invalid_operation, set);
return res;
-#endif
+ }
- decNumberZero (&dzero); /* set 0 */
- dzero.exponent = rhs->exponent; /* [no coefficient expansion] */
- decAddOp (res, &dzero, rhs, set, (uByte) (rhs->bits & DECNEG), &status);
- if (status != 0)
- decStatus (res, status, set);
+ /* operands are valid */
+ ua=lhs->lsu; /* bottom-up */
+ ub=rhs->lsu; /* .. */
+ uc=res->lsu; /* .. */
+ msua=ua+D2U(lhs->digits)-1; /* -> msu of lhs */
+ msub=ub+D2U(rhs->digits)-1; /* -> msu of rhs */
+ msuc=uc+D2U(set->digits)-1; /* -> msu of result */
+ msudigs=MSUDIGITS(set->digits); /* [faster than remainder] */
+ for (; uc<=msuc; ua++, ub++, uc++) { /* Unit loop */
+ Unit a, b; /* extract units */
+ if (ua>msua) a=0;
+ else a=*ua;
+ if (ub>msub) b=0;
+ else b=*ub;
+ *uc=0; /* can now write back */
+ if (a|b) { /* maybe 1 bits to examine */
+ Int i, j;
+ *uc=0; /* can now write back */
+ /* This loop could be unrolled and/or use BIN2BCD tables */
+ for (i=0; i<DECDPUN; i++) {
+ if (a&b&1) *uc=*uc+(Unit)powers[i]; /* effect AND */
+ j=a%10;
+ a=a/10;
+ j|=b%10;
+ b=b/10;
+ if (j>1) {
+ decStatus(res, DEC_Invalid_operation, set);
+ return res;
+ }
+ if (uc==msuc && i==msudigs-1) break; /* just did final digit */
+ } /* each digit */
+ } /* both OK */
+ } /* each unit */
+ /* [here uc-1 is the msu of the result] */
+ res->digits=decGetDigits(res->lsu, uc-res->lsu);
+ res->exponent=0; /* integer */
+ res->bits=0; /* sign=0 */
+ return res; /* [no status to set] */
+ } /* decNumberAnd */
+
+/* ------------------------------------------------------------------ */
+/* decNumberCompare -- compare two Numbers */
+/* */
+/* This computes C = A ? B */
+/* */
+/* res is C, the result. C may be A and/or B (e.g., X=X?X) */
+/* lhs is A */
+/* rhs is B */
+/* set is the context */
+/* */
+/* C must have space for one digit (or NaN). */
+/* ------------------------------------------------------------------ */
+decNumber * decNumberCompare(decNumber *res, const decNumber *lhs,
+ const decNumber *rhs, decContext *set) {
+ uInt status=0; /* accumulator */
+ decCompareOp(res, lhs, rhs, set, COMPARE, &status);
+ if (status!=0) decStatus(res, status, set);
return res;
-}
-
-/* ------------------------------------------------------------------ */
-/* decNumberAdd -- add two Numbers */
-/* */
-/* This computes C = A + B */
-/* */
-/* res is C, the result. C may be A and/or B (e.g., X=X+X) */
-/* lhs is A */
-/* rhs is B */
-/* set is the context */
-/* */
-/* C must have space for set->digits digits. */
-/* ------------------------------------------------------------------ */
-/* This just calls the routine shared with Subtract */
-decNumber *
-decNumberAdd (decNumber * res, const decNumber * lhs,
- const decNumber * rhs, decContext * set)
-{
- uInt status = 0; /* accumulator */
- decAddOp (res, lhs, rhs, set, 0, &status);
- if (status != 0)
- decStatus (res, status, set);
+ } /* decNumberCompare */
+
+/* ------------------------------------------------------------------ */
+/* decNumberCompareSignal -- compare, signalling on all NaNs */
+/* */
+/* This computes C = A ? B */
+/* */
+/* res is C, the result. C may be A and/or B (e.g., X=X?X) */
+/* lhs is A */
+/* rhs is B */
+/* set is the context */
+/* */
+/* C must have space for one digit (or NaN). */
+/* ------------------------------------------------------------------ */
+decNumber * decNumberCompareSignal(decNumber *res, const decNumber *lhs,
+ const decNumber *rhs, decContext *set) {
+ uInt status=0; /* accumulator */
+ decCompareOp(res, lhs, rhs, set, COMPSIG, &status);
+ if (status!=0) decStatus(res, status, set);
return res;
-}
-
-/* ------------------------------------------------------------------ */
-/* decNumberCompare -- compare two Numbers */
-/* */
-/* This computes C = A ? B */
-/* */
-/* res is C, the result. C may be A and/or B (e.g., X=X?X) */
-/* lhs is A */
-/* rhs is B */
-/* set is the context */
-/* */
-/* C must have space for one digit. */
-/* ------------------------------------------------------------------ */
-decNumber *
-decNumberCompare (decNumber * res, const decNumber * lhs,
- const decNumber * rhs, decContext * set)
-{
- uInt status = 0; /* accumulator */
- decCompareOp (res, lhs, rhs, set, COMPARE, &status);
- if (status != 0)
- decStatus (res, status, set);
+ } /* decNumberCompareSignal */
+
+/* ------------------------------------------------------------------ */
+/* decNumberCompareTotal -- compare two Numbers, using total ordering */
+/* */
+/* This computes C = A ? B, under total ordering */
+/* */
+/* res is C, the result. C may be A and/or B (e.g., X=X?X) */
+/* lhs is A */
+/* rhs is B */
+/* set is the context */
+/* */
+/* C must have space for one digit; the result will always be one of */
+/* -1, 0, or 1. */
+/* ------------------------------------------------------------------ */
+decNumber * decNumberCompareTotal(decNumber *res, const decNumber *lhs,
+ const decNumber *rhs, decContext *set) {
+ uInt status=0; /* accumulator */
+ decCompareOp(res, lhs, rhs, set, COMPTOTAL, &status);
+ if (status!=0) decStatus(res, status, set);
+ return res;
+ } /* decNumberCompareTotal */
+
+/* ------------------------------------------------------------------ */
+/* decNumberCompareTotalMag -- compare, total ordering of magnitudes */
+/* */
+/* This computes C = |A| ? |B|, under total ordering */
+/* */
+/* res is C, the result. C may be A and/or B (e.g., X=X?X) */
+/* lhs is A */
+/* rhs is B */
+/* set is the context */
+/* */
+/* C must have space for one digit; the result will always be one of */
+/* -1, 0, or 1. */
+/* ------------------------------------------------------------------ */
+decNumber * decNumberCompareTotalMag(decNumber *res, const decNumber *lhs,
+ const decNumber *rhs, decContext *set) {
+ uInt status=0; /* accumulator */
+ uInt needbytes; /* for space calculations */
+ decNumber bufa[D2N(DECBUFFER+1)];/* +1 in case DECBUFFER=0 */
+ decNumber *allocbufa=NULL; /* -> allocated bufa, iff allocated */
+ decNumber bufb[D2N(DECBUFFER+1)];
+ decNumber *allocbufb=NULL; /* -> allocated bufb, iff allocated */
+ decNumber *a, *b; /* temporary pointers */
+
+ #if DECCHECK
+ if (decCheckOperands(res, lhs, rhs, set)) return res;
+ #endif
+
+ do { /* protect allocated storage */
+ /* if either is negative, take a copy and absolute */
+ if (decNumberIsNegative(lhs)) { /* lhs<0 */
+ a=bufa;
+ needbytes=sizeof(decNumber)+(D2U(lhs->digits)-1)*sizeof(Unit);
+ if (needbytes>sizeof(bufa)) { /* need malloc space */
+ allocbufa=(decNumber *)malloc(needbytes);
+ if (allocbufa==NULL) { /* hopeless -- abandon */
+ status|=DEC_Insufficient_storage;
+ break;}
+ a=allocbufa; /* use the allocated space */
+ }
+ decNumberCopy(a, lhs); /* copy content */
+ a->bits&=~DECNEG; /* .. and clear the sign */
+ lhs=a; /* use copy from here on */
+ }
+ if (decNumberIsNegative(rhs)) { /* rhs<0 */
+ b=bufb;
+ needbytes=sizeof(decNumber)+(D2U(rhs->digits)-1)*sizeof(Unit);
+ if (needbytes>sizeof(bufb)) { /* need malloc space */
+ allocbufb=(decNumber *)malloc(needbytes);
+ if (allocbufb==NULL) { /* hopeless -- abandon */
+ status|=DEC_Insufficient_storage;
+ break;}
+ b=allocbufb; /* use the allocated space */
+ }
+ decNumberCopy(b, rhs); /* copy content */
+ b->bits&=~DECNEG; /* .. and clear the sign */
+ rhs=b; /* use copy from here on */
+ }
+ decCompareOp(res, lhs, rhs, set, COMPTOTAL, &status);
+ } while(0); /* end protected */
+
+ if (allocbufa!=NULL) free(allocbufa); /* drop any storage used */
+ if (allocbufb!=NULL) free(allocbufb); /* .. */
+ if (status!=0) decStatus(res, status, set);
return res;
-}
-
-/* ------------------------------------------------------------------ */
-/* decNumberDivide -- divide one number by another */
-/* */
-/* This computes C = A / B */
-/* */
-/* res is C, the result. C may be A and/or B (e.g., X=X/X) */
-/* lhs is A */
-/* rhs is B */
-/* set is the context */
-/* */
-/* C must have space for set->digits digits. */
-/* ------------------------------------------------------------------ */
-decNumber *
-decNumberDivide (decNumber * res, const decNumber * lhs,
- const decNumber * rhs, decContext * set)
-{
- uInt status = 0; /* accumulator */
- decDivideOp (res, lhs, rhs, set, DIVIDE, &status);
- if (status != 0)
- decStatus (res, status, set);
+ } /* decNumberCompareTotalMag */
+
+/* ------------------------------------------------------------------ */
+/* decNumberDivide -- divide one number by another */
+/* */
+/* This computes C = A / B */
+/* */
+/* res is C, the result. C may be A and/or B (e.g., X=X/X) */
+/* lhs is A */
+/* rhs is B */
+/* set is the context */
+/* */
+/* C must have space for set->digits digits. */
+/* ------------------------------------------------------------------ */
+decNumber * decNumberDivide(decNumber *res, const decNumber *lhs,
+ const decNumber *rhs, decContext *set) {
+ uInt status=0; /* accumulator */
+ decDivideOp(res, lhs, rhs, set, DIVIDE, &status);
+ if (status!=0) decStatus(res, status, set);
+ #if DECCHECK
+ decCheckInexact(res, set);
+ #endif
return res;
-}
+ } /* decNumberDivide */
/* ------------------------------------------------------------------ */
-/* decNumberDivideInteger -- divide and return integer quotient */
-/* */
+/* decNumberDivideInteger -- divide and return integer quotient */
+/* */
/* This computes C = A # B, where # is the integer divide operator */
-/* */
-/* res is C, the result. C may be A and/or B (e.g., X=X#X) */
-/* lhs is A */
-/* rhs is B */
-/* set is the context */
-/* */
-/* C must have space for set->digits digits. */
-/* ------------------------------------------------------------------ */
-decNumber *
-decNumberDivideInteger (decNumber * res, const decNumber * lhs,
- const decNumber * rhs, decContext * set)
-{
- uInt status = 0; /* accumulator */
- decDivideOp (res, lhs, rhs, set, DIVIDEINT, &status);
- if (status != 0)
- decStatus (res, status, set);
+/* */
+/* res is C, the result. C may be A and/or B (e.g., X=X#X) */
+/* lhs is A */
+/* rhs is B */
+/* set is the context */
+/* */
+/* C must have space for set->digits digits. */
+/* ------------------------------------------------------------------ */
+decNumber * decNumberDivideInteger(decNumber *res, const decNumber *lhs,
+ const decNumber *rhs, decContext *set) {
+ uInt status=0; /* accumulator */
+ decDivideOp(res, lhs, rhs, set, DIVIDEINT, &status);
+ if (status!=0) decStatus(res, status, set);
return res;
-}
-
-/* ------------------------------------------------------------------ */
-/* decNumberMax -- compare two Numbers and return the maximum */
-/* */
-/* This computes C = A ? B, returning the maximum or A if equal */
-/* */
-/* res is C, the result. C may be A and/or B (e.g., X=X?X) */
-/* lhs is A */
-/* rhs is B */
-/* set is the context */
-/* */
-/* C must have space for set->digits digits. */
-/* ------------------------------------------------------------------ */
-decNumber *
-decNumberMax (decNumber * res, const decNumber * lhs,
- const decNumber * rhs, decContext * set)
-{
- uInt status = 0; /* accumulator */
- decCompareOp (res, lhs, rhs, set, COMPMAX, &status);
- if (status != 0)
- decStatus (res, status, set);
+ } /* decNumberDivideInteger */
+
+/* ------------------------------------------------------------------ */
+/* decNumberExp -- exponentiation */
+/* */
+/* This computes C = exp(A) */
+/* */
+/* res is C, the result. C may be A */
+/* rhs is A */
+/* set is the context; note that rounding mode has no effect */
+/* */
+/* C must have space for set->digits digits. */
+/* */
+/* Mathematical function restrictions apply (see above); a NaN is */
+/* returned with Invalid_operation if a restriction is violated. */
+/* */
+/* Finite results will always be full precision and Inexact, except */
+/* when A is a zero or -Infinity (giving 1 or 0 respectively). */
+/* */
+/* An Inexact result is rounded using DEC_ROUND_HALF_EVEN; it will */
+/* almost always be correctly rounded, but may be up to 1 ulp in */
+/* error in rare cases. */
+/* ------------------------------------------------------------------ */
+/* This is a wrapper for decExpOp which can handle the slightly wider */
+/* (double) range needed by Ln (which has to be able to calculate */
+/* exp(-a) where a can be the tiniest number (Ntiny). */
+/* ------------------------------------------------------------------ */
+decNumber * decNumberExp(decNumber *res, const decNumber *rhs,
+ decContext *set) {
+ uInt status=0; /* accumulator */
+ #if DECSUBSET
+ decNumber *allocrhs=NULL; /* non-NULL if rounded rhs allocated */
+ #endif
+
+ #if DECCHECK
+ if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
+ #endif
+
+ /* Check restrictions; these restrictions ensure that if h=8 (see */
+ /* decExpOp) then the result will either overflow or underflow to 0. */
+ /* Other math functions restrict the input range, too, for inverses. */
+ /* If not violated then carry out the operation. */
+ if (!decCheckMath(rhs, set, &status)) do { /* protect allocation */
+ #if DECSUBSET
+ if (!set->extended) {
+ /* reduce operand and set lostDigits status, as needed */
+ if (rhs->digits>set->digits) {
+ allocrhs=decRoundOperand(rhs, set, &status);
+ if (allocrhs==NULL) break;
+ rhs=allocrhs;
+ }
+ }
+ #endif
+ decExpOp(res, rhs, set, &status);
+ } while(0); /* end protected */
+
+ #if DECSUBSET
+ if (allocrhs !=NULL) free(allocrhs); /* drop any storage used */
+ #endif
+ /* apply significant status */
+ if (status!=0) decStatus(res, status, set);
+ #if DECCHECK
+ decCheckInexact(res, set);
+ #endif
return res;
-}
-
-/* ------------------------------------------------------------------ */
-/* decNumberMin -- compare two Numbers and return the minimum */
-/* */
-/* This computes C = A ? B, returning the minimum or A if equal */
-/* */
-/* res is C, the result. C may be A and/or B (e.g., X=X?X) */
-/* lhs is A */
-/* rhs is B */
-/* set is the context */
-/* */
-/* C must have space for set->digits digits. */
-/* ------------------------------------------------------------------ */
-decNumber *
-decNumberMin (decNumber * res, const decNumber * lhs,
- const decNumber * rhs, decContext * set)
-{
- uInt status = 0; /* accumulator */
- decCompareOp (res, lhs, rhs, set, COMPMIN, &status);
- if (status != 0)
- decStatus (res, status, set);
+ } /* decNumberExp */
+
+/* ------------------------------------------------------------------ */
+/* decNumberFMA -- fused multiply add */
+/* */
+/* This computes D = (A * B) + C with only one rounding */
+/* */
+/* res is D, the result. D may be A or B or C (e.g., X=FMA(X,X,X)) */
+/* lhs is A */
+/* rhs is B */
+/* fhs is C [far hand side] */
+/* set is the context */
+/* */
+/* Mathematical function restrictions apply (see above); a NaN is */
+/* returned with Invalid_operation if a restriction is violated. */
+/* */
+/* C must have space for set->digits digits. */
+/* ------------------------------------------------------------------ */
+decNumber * decNumberFMA(decNumber *res, const decNumber *lhs,
+ const decNumber *rhs, const decNumber *fhs,
+ decContext *set) {
+ uInt status=0; /* accumulator */
+ decContext dcmul; /* context for the multiplication */
+ uInt needbytes; /* for space calculations */
+ decNumber bufa[D2N(DECBUFFER*2+1)];
+ decNumber *allocbufa=NULL; /* -> allocated bufa, iff allocated */
+ decNumber *acc; /* accumulator pointer */
+ decNumber dzero; /* work */
+
+ #if DECCHECK
+ if (decCheckOperands(res, lhs, rhs, set)) return res;
+ if (decCheckOperands(res, fhs, DECUNUSED, set)) return res;
+ #endif
+
+ do { /* protect allocated storage */
+ #if DECSUBSET
+ if (!set->extended) { /* [undefined if subset] */
+ status|=DEC_Invalid_operation;
+ break;}
+ #endif
+ /* Check math restrictions [these ensure no overflow or underflow] */
+ if ((!decNumberIsSpecial(lhs) && decCheckMath(lhs, set, &status))
+ || (!decNumberIsSpecial(rhs) && decCheckMath(rhs, set, &status))
+ || (!decNumberIsSpecial(fhs) && decCheckMath(fhs, set, &status))) break;
+ /* set up context for multiply */
+ dcmul=*set;
+ dcmul.digits=lhs->digits+rhs->digits; /* just enough */
+ /* [The above may be an over-estimate for subset arithmetic, but that's OK] */
+ dcmul.emax=DEC_MAX_EMAX; /* effectively unbounded .. */
+ dcmul.emin=DEC_MIN_EMIN; /* [thanks to Math restrictions] */
+ /* set up decNumber space to receive the result of the multiply */
+ acc=bufa; /* may fit */
+ needbytes=sizeof(decNumber)+(D2U(dcmul.digits)-1)*sizeof(Unit);
+ if (needbytes>sizeof(bufa)) { /* need malloc space */
+ allocbufa=(decNumber *)malloc(needbytes);
+ if (allocbufa==NULL) { /* hopeless -- abandon */
+ status|=DEC_Insufficient_storage;
+ break;}
+ acc=allocbufa; /* use the allocated space */
+ }
+ /* multiply with extended range and necessary precision */
+ /*printf("emin=%ld\n", dcmul.emin); */
+ decMultiplyOp(acc, lhs, rhs, &dcmul, &status);
+ /* Only Invalid operation (from sNaN or Inf * 0) is possible in */
+ /* status; if either is seen than ignore fhs (in case it is */
+ /* another sNaN) and set acc to NaN unless we had an sNaN */
+ /* [decMultiplyOp leaves that to caller] */
+ /* Note sNaN has to go through addOp to shorten payload if */
+ /* necessary */
+ if ((status&DEC_Invalid_operation)!=0) {
+ if (!(status&DEC_sNaN)) { /* but be true invalid */
+ decNumberZero(res); /* acc not yet set */
+ res->bits=DECNAN;
+ break;
+ }
+ decNumberZero(&dzero); /* make 0 (any non-NaN would do) */
+ fhs=&dzero; /* use that */
+ }
+ #if DECCHECK
+ else { /* multiply was OK */
+ if (status!=0) printf("Status=%08lx after FMA multiply\n", status);
+ }
+ #endif
+ /* add the third operand and result -> res, and all is done */
+ decAddOp(res, acc, fhs, set, 0, &status);
+ } while(0); /* end protected */
+
+ if (allocbufa!=NULL) free(allocbufa); /* drop any storage used */
+ if (status!=0) decStatus(res, status, set);
+ #if DECCHECK
+ decCheckInexact(res, set);
+ #endif
return res;
-}
-
-/* ------------------------------------------------------------------ */
-/* decNumberMinus -- prefix minus operator */
-/* */
-/* This computes C = 0 - A */
-/* */
-/* res is C, the result. C may be A */
-/* rhs is A */
-/* set is the context */
-/* */
-/* C must have space for set->digits digits. */
-/* ------------------------------------------------------------------ */
-/* We simply use AddOp for the subtract, which will do the necessary. */
-/* ------------------------------------------------------------------ */
-decNumber *
-decNumberMinus (decNumber * res, const decNumber * rhs, decContext * set)
-{
- decNumber dzero;
- uInt status = 0; /* accumulator */
-
-#if DECCHECK
- if (decCheckOperands (res, DECUNUSED, rhs, set))
+ } /* decNumberFMA */
+
+/* ------------------------------------------------------------------ */
+/* decNumberInvert -- invert a Number, digitwise */
+/* */
+/* This computes C = ~A */
+/* */
+/* res is C, the result. C may be A (e.g., X=~X) */
+/* rhs is A */
+/* set is the context (used for result length and error report) */
+/* */
+/* C must have space for set->digits digits. */
+/* */
+/* Logical function restrictions apply (see above); a NaN is */
+/* returned with Invalid_operation if a restriction is violated. */
+/* ------------------------------------------------------------------ */
+decNumber * decNumberInvert(decNumber *res, const decNumber *rhs,
+ decContext *set) {
+ const Unit *ua, *msua; /* -> operand and its msu */
+ Unit *uc, *msuc; /* -> result and its msu */
+ Int msudigs; /* digits in res msu */
+ #if DECCHECK
+ if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
+ #endif
+
+ if (rhs->exponent!=0 || decNumberIsSpecial(rhs) || decNumberIsNegative(rhs)) {
+ decStatus(res, DEC_Invalid_operation, set);
return res;
-#endif
+ }
+ /* operand is valid */
+ ua=rhs->lsu; /* bottom-up */
+ uc=res->lsu; /* .. */
+ msua=ua+D2U(rhs->digits)-1; /* -> msu of rhs */
+ msuc=uc+D2U(set->digits)-1; /* -> msu of result */
+ msudigs=MSUDIGITS(set->digits); /* [faster than remainder] */
+ for (; uc<=msuc; ua++, uc++) { /* Unit loop */
+ Unit a; /* extract unit */
+ Int i, j; /* work */
+ if (ua>msua) a=0;
+ else a=*ua;
+ *uc=0; /* can now write back */
+ /* always need to examine all bits in rhs */
+ /* This loop could be unrolled and/or use BIN2BCD tables */
+ for (i=0; i<DECDPUN; i++) {
+ if ((~a)&1) *uc=*uc+(Unit)powers[i]; /* effect INVERT */
+ j=a%10;
+ a=a/10;
+ if (j>1) {
+ decStatus(res, DEC_Invalid_operation, set);
+ return res;
+ }
+ if (uc==msuc && i==msudigs-1) break; /* just did final digit */
+ } /* each digit */
+ } /* each unit */
+ /* [here uc-1 is the msu of the result] */
+ res->digits=decGetDigits(res->lsu, uc-res->lsu);
+ res->exponent=0; /* integer */
+ res->bits=0; /* sign=0 */
+ return res; /* [no status to set] */
+ } /* decNumberInvert */
+
+/* ------------------------------------------------------------------ */
+/* decNumberLn -- natural logarithm */
+/* */
+/* This computes C = ln(A) */
+/* */
+/* res is C, the result. C may be A */
+/* rhs is A */
+/* set is the context; note that rounding mode has no effect */
+/* */
+/* C must have space for set->digits digits. */
+/* */
+/* Notable cases: */
+/* A<0 -> Invalid */
+/* A=0 -> -Infinity (Exact) */
+/* A=+Infinity -> +Infinity (Exact) */
+/* A=1 exactly -> 0 (Exact) */
+/* */
+/* Mathematical function restrictions apply (see above); a NaN is */
+/* returned with Invalid_operation if a restriction is violated. */
+/* */
+/* An Inexact result is rounded using DEC_ROUND_HALF_EVEN; it will */
+/* almost always be correctly rounded, but may be up to 1 ulp in */
+/* error in rare cases. */
+/* ------------------------------------------------------------------ */
+/* This is a wrapper for decLnOp which can handle the slightly wider */
+/* (+11) range needed by Ln, Log10, etc. (which may have to be able */
+/* to calculate at p+e+2). */
+/* ------------------------------------------------------------------ */
+decNumber * decNumberLn(decNumber *res, const decNumber *rhs,
+ decContext *set) {
+ uInt status=0; /* accumulator */
+ #if DECSUBSET
+ decNumber *allocrhs=NULL; /* non-NULL if rounded rhs allocated */
+ #endif
+
+ #if DECCHECK
+ if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
+ #endif
+
+ /* Check restrictions; this is a math function; if not violated */
+ /* then carry out the operation. */
+ if (!decCheckMath(rhs, set, &status)) do { /* protect allocation */
+ #if DECSUBSET
+ if (!set->extended) {
+ /* reduce operand and set lostDigits status, as needed */
+ if (rhs->digits>set->digits) {
+ allocrhs=decRoundOperand(rhs, set, &status);
+ if (allocrhs==NULL) break;
+ rhs=allocrhs;
+ }
+ /* special check in subset for rhs=0 */
+ if (ISZERO(rhs)) { /* +/- zeros -> error */
+ status|=DEC_Invalid_operation;
+ break;}
+ } /* extended=0 */
+ #endif
+ decLnOp(res, rhs, set, &status);
+ } while(0); /* end protected */
+
+ #if DECSUBSET
+ if (allocrhs !=NULL) free(allocrhs); /* drop any storage used */
+ #endif
+ /* apply significant status */
+ if (status!=0) decStatus(res, status, set);
+ #if DECCHECK
+ decCheckInexact(res, set);
+ #endif
+ return res;
+ } /* decNumberLn */
+
+/* ------------------------------------------------------------------ */
+/* decNumberLogB - get adjusted exponent, by 754r rules */
+/* */
+/* This computes C = adjustedexponent(A) */
+/* */
+/* res is C, the result. C may be A */
+/* rhs is A */
+/* set is the context, used only for digits and status */
+/* */
+/* C must have space for 10 digits (A might have 10**9 digits and */
+/* an exponent of +999999999, or one digit and an exponent of */
+/* -1999999999). */
+/* */
+/* This returns the adjusted exponent of A after (in theory) padding */
+/* with zeros on the right to set->digits digits while keeping the */
+/* same value. The exponent is not limited by emin/emax. */
+/* */
+/* Notable cases: */
+/* A<0 -> Use |A| */
+/* A=0 -> -Infinity (Division by zero) */
+/* A=Infinite -> +Infinity (Exact) */
+/* A=1 exactly -> 0 (Exact) */
+/* NaNs are propagated as usual */
+/* ------------------------------------------------------------------ */
+decNumber * decNumberLogB(decNumber *res, const decNumber *rhs,
+ decContext *set) {
+ uInt status=0; /* accumulator */
+
+ #if DECCHECK
+ if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
+ #endif
+
+ /* NaNs as usual; Infinities return +Infinity; 0->oops */
+ if (decNumberIsNaN(rhs)) decNaNs(res, rhs, NULL, set, &status);
+ else if (decNumberIsInfinite(rhs)) decNumberCopyAbs(res, rhs);
+ else if (decNumberIsZero(rhs)) {
+ decNumberZero(res); /* prepare for Infinity */
+ res->bits=DECNEG|DECINF; /* -Infinity */
+ status|=DEC_Division_by_zero; /* as per 754r */
+ }
+ else { /* finite non-zero */
+ Int ae=rhs->exponent+rhs->digits-1; /* adjusted exponent */
+ decNumberFromInt32(res, ae); /* lay it out */
+ }
- decNumberZero (&dzero); /* make 0 */
- dzero.exponent = rhs->exponent; /* [no coefficient expansion] */
- decAddOp (res, &dzero, rhs, set, DECNEG, &status);
- if (status != 0)
- decStatus (res, status, set);
+ if (status!=0) decStatus(res, status, set);
+ return res;
+ } /* decNumberLogB */
+
+/* ------------------------------------------------------------------ */
+/* decNumberLog10 -- logarithm in base 10 */
+/* */
+/* This computes C = log10(A) */
+/* */
+/* res is C, the result. C may be A */
+/* rhs is A */
+/* set is the context; note that rounding mode has no effect */
+/* */
+/* C must have space for set->digits digits. */
+/* */
+/* Notable cases: */
+/* A<0 -> Invalid */
+/* A=0 -> -Infinity (Exact) */
+/* A=+Infinity -> +Infinity (Exact) */
+/* A=10**n (if n is an integer) -> n (Exact) */
+/* */
+/* Mathematical function restrictions apply (see above); a NaN is */
+/* returned with Invalid_operation if a restriction is violated. */
+/* */
+/* An Inexact result is rounded using DEC_ROUND_HALF_EVEN; it will */
+/* almost always be correctly rounded, but may be up to 1 ulp in */
+/* error in rare cases. */
+/* ------------------------------------------------------------------ */
+/* This calculates ln(A)/ln(10) using appropriate precision. For */
+/* ln(A) this is the max(p, rhs->digits + t) + 3, where p is the */
+/* requested digits and t is the number of digits in the exponent */
+/* (maximum 6). For ln(10) it is p + 3; this is often handled by the */
+/* fastpath in decLnOp. The final division is done to the requested */
+/* precision. */
+/* ------------------------------------------------------------------ */
+decNumber * decNumberLog10(decNumber *res, const decNumber *rhs,
+ decContext *set) {
+ uInt status=0, ignore=0; /* status accumulators */
+ uInt needbytes; /* for space calculations */
+ Int p; /* working precision */
+ Int t; /* digits in exponent of A */
+
+ /* buffers for a and b working decimals */
+ /* (adjustment calculator, same size) */
+ decNumber bufa[D2N(DECBUFFER+2)];
+ decNumber *allocbufa=NULL; /* -> allocated bufa, iff allocated */
+ decNumber *a=bufa; /* temporary a */
+ decNumber bufb[D2N(DECBUFFER+2)];
+ decNumber *allocbufb=NULL; /* -> allocated bufb, iff allocated */
+ decNumber *b=bufb; /* temporary b */
+ decNumber bufw[D2N(10)]; /* working 2-10 digit number */
+ decNumber *w=bufw; /* .. */
+ #if DECSUBSET
+ decNumber *allocrhs=NULL; /* non-NULL if rounded rhs allocated */
+ #endif
+
+ decContext aset; /* working context */
+
+ #if DECCHECK
+ if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
+ #endif
+
+ /* Check restrictions; this is a math function; if not violated */
+ /* then carry out the operation. */
+ if (!decCheckMath(rhs, set, &status)) do { /* protect malloc */
+ #if DECSUBSET
+ if (!set->extended) {
+ /* reduce operand and set lostDigits status, as needed */
+ if (rhs->digits>set->digits) {
+ allocrhs=decRoundOperand(rhs, set, &status);
+ if (allocrhs==NULL) break;
+ rhs=allocrhs;
+ }
+ /* special check in subset for rhs=0 */
+ if (ISZERO(rhs)) { /* +/- zeros -> error */
+ status|=DEC_Invalid_operation;
+ break;}
+ } /* extended=0 */
+ #endif
+
+ decContextDefault(&aset, DEC_INIT_DECIMAL64); /* clean context */
+
+ /* handle exact powers of 10; only check if +ve finite */
+ if (!(rhs->bits&(DECNEG|DECSPECIAL)) && !ISZERO(rhs)) {
+ Int residue=0; /* (no residue) */
+ uInt copystat=0; /* clean status */
+
+ /* round to a single digit... */
+ aset.digits=1;
+ decCopyFit(w, rhs, &aset, &residue, &copystat); /* copy & shorten */
+ /* if exact and the digit is 1, rhs is a power of 10 */
+ if (!(copystat&DEC_Inexact) && w->lsu[0]==1) {
+ /* the exponent, conveniently, is the power of 10; making */
+ /* this the result needs a little care as it might not fit, */
+ /* so first convert it into the working number, and then move */
+ /* to res */
+ decNumberFromInt32(w, w->exponent);
+ residue=0;
+ decCopyFit(res, w, set, &residue, &status); /* copy & round */
+ decFinish(res, set, &residue, &status); /* cleanup/set flags */
+ break;
+ } /* not a power of 10 */
+ } /* not a candidate for exact */
+
+ /* simplify the information-content calculation to use 'total */
+ /* number of digits in a, including exponent' as compared to the */
+ /* requested digits, as increasing this will only rarely cost an */
+ /* iteration in ln(a) anyway */
+ t=6; /* it can never be >6 */
+
+ /* allocate space when needed... */
+ p=(rhs->digits+t>set->digits?rhs->digits+t:set->digits)+3;
+ needbytes=sizeof(decNumber)+(D2U(p)-1)*sizeof(Unit);
+ if (needbytes>sizeof(bufa)) { /* need malloc space */
+ allocbufa=(decNumber *)malloc(needbytes);
+ if (allocbufa==NULL) { /* hopeless -- abandon */
+ status|=DEC_Insufficient_storage;
+ break;}
+ a=allocbufa; /* use the allocated space */
+ }
+ aset.digits=p; /* as calculated */
+ aset.emax=DEC_MAX_MATH; /* usual bounds */
+ aset.emin=-DEC_MAX_MATH; /* .. */
+ aset.clamp=0; /* and no concrete format */
+ decLnOp(a, rhs, &aset, &status); /* a=ln(rhs) */
+
+ /* skip the division if the result so far is infinite, NaN, or */
+ /* zero, or there was an error; note NaN from sNaN needs copy */
+ if (status&DEC_NaNs && !(status&DEC_sNaN)) break;
+ if (a->bits&DECSPECIAL || ISZERO(a)) {
+ decNumberCopy(res, a); /* [will fit] */
+ break;}
+
+ /* for ln(10) an extra 3 digits of precision are needed */
+ p=set->digits+3;
+ needbytes=sizeof(decNumber)+(D2U(p)-1)*sizeof(Unit);
+ if (needbytes>sizeof(bufb)) { /* need malloc space */
+ allocbufb=(decNumber *)malloc(needbytes);
+ if (allocbufb==NULL) { /* hopeless -- abandon */
+ status|=DEC_Insufficient_storage;
+ break;}
+ b=allocbufb; /* use the allocated space */
+ }
+ decNumberZero(w); /* set up 10... */
+ #if DECDPUN==1
+ w->lsu[1]=1; w->lsu[0]=0; /* .. */
+ #else
+ w->lsu[0]=10; /* .. */
+ #endif
+ w->digits=2; /* .. */
+
+ aset.digits=p;
+ decLnOp(b, w, &aset, &ignore); /* b=ln(10) */
+
+ aset.digits=set->digits; /* for final divide */
+ decDivideOp(res, a, b, &aset, DIVIDE, &status); /* into result */
+ } while(0); /* [for break] */
+
+ if (allocbufa!=NULL) free(allocbufa); /* drop any storage used */
+ if (allocbufb!=NULL) free(allocbufb); /* .. */
+ #if DECSUBSET
+ if (allocrhs !=NULL) free(allocrhs); /* .. */
+ #endif
+ /* apply significant status */
+ if (status!=0) decStatus(res, status, set);
+ #if DECCHECK
+ decCheckInexact(res, set);
+ #endif
+ return res;
+ } /* decNumberLog10 */
+
+/* ------------------------------------------------------------------ */
+/* decNumberMax -- compare two Numbers and return the maximum */
+/* */
+/* This computes C = A ? B, returning the maximum by 754R rules */
+/* */
+/* res is C, the result. C may be A and/or B (e.g., X=X?X) */
+/* lhs is A */
+/* rhs is B */
+/* set is the context */
+/* */
+/* C must have space for set->digits digits. */
+/* ------------------------------------------------------------------ */
+decNumber * decNumberMax(decNumber *res, const decNumber *lhs,
+ const decNumber *rhs, decContext *set) {
+ uInt status=0; /* accumulator */
+ decCompareOp(res, lhs, rhs, set, COMPMAX, &status);
+ if (status!=0) decStatus(res, status, set);
+ #if DECCHECK
+ decCheckInexact(res, set);
+ #endif
return res;
-}
+ } /* decNumberMax */
+
+/* ------------------------------------------------------------------ */
+/* decNumberMaxMag -- compare and return the maximum by magnitude */
+/* */
+/* This computes C = A ? B, returning the maximum by 754R rules */
+/* */
+/* res is C, the result. C may be A and/or B (e.g., X=X?X) */
+/* lhs is A */
+/* rhs is B */
+/* set is the context */
+/* */
+/* C must have space for set->digits digits. */
+/* ------------------------------------------------------------------ */
+decNumber * decNumberMaxMag(decNumber *res, const decNumber *lhs,
+ const decNumber *rhs, decContext *set) {
+ uInt status=0; /* accumulator */
+ decCompareOp(res, lhs, rhs, set, COMPMAXMAG, &status);
+ if (status!=0) decStatus(res, status, set);
+ #if DECCHECK
+ decCheckInexact(res, set);
+ #endif
+ return res;
+ } /* decNumberMaxMag */
+
+/* ------------------------------------------------------------------ */
+/* decNumberMin -- compare two Numbers and return the minimum */
+/* */
+/* This computes C = A ? B, returning the minimum by 754R rules */
+/* */
+/* res is C, the result. C may be A and/or B (e.g., X=X?X) */
+/* lhs is A */
+/* rhs is B */
+/* set is the context */
+/* */
+/* C must have space for set->digits digits. */
+/* ------------------------------------------------------------------ */
+decNumber * decNumberMin(decNumber *res, const decNumber *lhs,
+ const decNumber *rhs, decContext *set) {
+ uInt status=0; /* accumulator */
+ decCompareOp(res, lhs, rhs, set, COMPMIN, &status);
+ if (status!=0) decStatus(res, status, set);
+ #if DECCHECK
+ decCheckInexact(res, set);
+ #endif
+ return res;
+ } /* decNumberMin */
+
+/* ------------------------------------------------------------------ */
+/* decNumberMinMag -- compare and return the minimum by magnitude */
+/* */
+/* This computes C = A ? B, returning the minimum by 754R rules */
+/* */
+/* res is C, the result. C may be A and/or B (e.g., X=X?X) */
+/* lhs is A */
+/* rhs is B */
+/* set is the context */
+/* */
+/* C must have space for set->digits digits. */
+/* ------------------------------------------------------------------ */
+decNumber * decNumberMinMag(decNumber *res, const decNumber *lhs,
+ const decNumber *rhs, decContext *set) {
+ uInt status=0; /* accumulator */
+ decCompareOp(res, lhs, rhs, set, COMPMINMAG, &status);
+ if (status!=0) decStatus(res, status, set);
+ #if DECCHECK
+ decCheckInexact(res, set);
+ #endif
+ return res;
+ } /* decNumberMinMag */
/* ------------------------------------------------------------------ */
-/* decNumberPlus -- prefix plus operator */
-/* */
-/* This computes C = 0 + A */
-/* */
-/* res is C, the result. C may be A */
-/* rhs is A */
-/* set is the context */
-/* */
-/* C must have space for set->digits digits. */
+/* decNumberMinus -- prefix minus operator */
+/* */
+/* This computes C = 0 - A */
+/* */
+/* res is C, the result. C may be A */
+/* rhs is A */
+/* set is the context */
+/* */
+/* See also decNumberCopyNegate for a quiet bitwise version of this. */
+/* C must have space for set->digits digits. */
/* ------------------------------------------------------------------ */
-/* We simply use AddOp; Add will take fast path after preparing A. */
-/* Performance is a concern here, as this routine is often used to */
-/* check operands and apply rounding and overflow/underflow testing. */
+/* Simply use AddOp for the subtract, which will do the necessary. */
/* ------------------------------------------------------------------ */
-decNumber *
-decNumberPlus (decNumber * res, const decNumber * rhs, decContext * set)
-{
+decNumber * decNumberMinus(decNumber *res, const decNumber *rhs,
+ decContext *set) {
decNumber dzero;
- uInt status = 0; /* accumulator */
-
-#if DECCHECK
- if (decCheckOperands (res, DECUNUSED, rhs, set))
- return res;
-#endif
-
- decNumberZero (&dzero); /* make 0 */
- dzero.exponent = rhs->exponent; /* [no coefficient expansion] */
- decAddOp (res, &dzero, rhs, set, 0, &status);
- if (status != 0)
- decStatus (res, status, set);
+ uInt status=0; /* accumulator */
+
+ #if DECCHECK
+ if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
+ #endif
+
+ decNumberZero(&dzero); /* make 0 */
+ dzero.exponent=rhs->exponent; /* [no coefficient expansion] */
+ decAddOp(res, &dzero, rhs, set, DECNEG, &status);
+ if (status!=0) decStatus(res, status, set);
+ #if DECCHECK
+ decCheckInexact(res, set);
+ #endif
return res;
-}
-
-/* ------------------------------------------------------------------ */
-/* decNumberMultiply -- multiply two Numbers */
-/* */
-/* This computes C = A x B */
-/* */
-/* res is C, the result. C may be A and/or B (e.g., X=X+X) */
-/* lhs is A */
-/* rhs is B */
-/* set is the context */
-/* */
-/* C must have space for set->digits digits. */
-/* ------------------------------------------------------------------ */
-decNumber *
-decNumberMultiply (decNumber * res, const decNumber * lhs,
- const decNumber * rhs, decContext * set)
-{
- uInt status = 0; /* accumulator */
- decMultiplyOp (res, lhs, rhs, set, &status);
- if (status != 0)
- decStatus (res, status, set);
+ } /* decNumberMinus */
+
+/* ------------------------------------------------------------------ */
+/* decNumberNextMinus -- next towards -Infinity */
+/* */
+/* This computes C = A - infinitesimal, rounded towards -Infinity */
+/* */
+/* res is C, the result. C may be A */
+/* rhs is A */
+/* set is the context */
+/* */
+/* This is a generalization of 754r NextDown. */
+/* ------------------------------------------------------------------ */
+decNumber * decNumberNextMinus(decNumber *res, const decNumber *rhs,
+ decContext *set) {
+ decNumber dtiny; /* constant */
+ decContext workset=*set; /* work */
+ uInt status=0; /* accumulator */
+ #if DECCHECK
+ if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
+ #endif
+
+ /* +Infinity is the special case */
+ if ((rhs->bits&(DECINF|DECNEG))==DECINF) {
+ decSetMaxValue(res, set); /* is +ve */
+ /* there is no status to set */
+ return res;
+ }
+ decNumberZero(&dtiny); /* start with 0 */
+ dtiny.lsu[0]=1; /* make number that is .. */
+ dtiny.exponent=DEC_MIN_EMIN-1; /* .. smaller than tiniest */
+ workset.round=DEC_ROUND_FLOOR;
+ decAddOp(res, rhs, &dtiny, &workset, DECNEG, &status);
+ status&=DEC_Invalid_operation|DEC_sNaN; /* only sNaN Invalid please */
+ if (status!=0) decStatus(res, status, set);
return res;
-}
-
-/* ------------------------------------------------------------------ */
-/* decNumberNormalize -- remove trailing zeros */
-/* */
-/* This computes C = 0 + A, and normalizes the result */
-/* */
-/* res is C, the result. C may be A */
-/* rhs is A */
-/* set is the context */
-/* */
-/* C must have space for set->digits digits. */
-/* ------------------------------------------------------------------ */
-decNumber *
-decNumberNormalize (decNumber * res, const decNumber * rhs, decContext * set)
-{
- decNumber *allocrhs = NULL; /* non-NULL if rounded rhs allocated */
- uInt status = 0; /* as usual */
- Int residue = 0; /* as usual */
- Int dropped; /* work */
-
-#if DECCHECK
- if (decCheckOperands (res, DECUNUSED, rhs, set))
+ } /* decNumberNextMinus */
+
+/* ------------------------------------------------------------------ */
+/* decNumberNextPlus -- next towards +Infinity */
+/* */
+/* This computes C = A + infinitesimal, rounded towards +Infinity */
+/* */
+/* res is C, the result. C may be A */
+/* rhs is A */
+/* set is the context */
+/* */
+/* This is a generalization of 754r NextUp. */
+/* ------------------------------------------------------------------ */
+decNumber * decNumberNextPlus(decNumber *res, const decNumber *rhs,
+ decContext *set) {
+ decNumber dtiny; /* constant */
+ decContext workset=*set; /* work */
+ uInt status=0; /* accumulator */
+ #if DECCHECK
+ if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
+ #endif
+
+ /* -Infinity is the special case */
+ if ((rhs->bits&(DECINF|DECNEG))==(DECINF|DECNEG)) {
+ decSetMaxValue(res, set);
+ res->bits=DECNEG; /* negative */
+ /* there is no status to set */
return res;
-#endif
-
- do
- { /* protect allocated storage */
-#if DECSUBSET
- if (!set->extended)
- {
- /* reduce operand and set lostDigits status, as needed */
- if (rhs->digits > set->digits)
- {
- allocrhs = decRoundOperand (rhs, set, &status);
- if (allocrhs == NULL)
- break;
- rhs = allocrhs;
+ }
+ decNumberZero(&dtiny); /* start with 0 */
+ dtiny.lsu[0]=1; /* make number that is .. */
+ dtiny.exponent=DEC_MIN_EMIN-1; /* .. smaller than tiniest */
+ workset.round=DEC_ROUND_CEILING;
+ decAddOp(res, rhs, &dtiny, &workset, 0, &status);
+ status&=DEC_Invalid_operation|DEC_sNaN; /* only sNaN Invalid please */
+ if (status!=0) decStatus(res, status, set);
+ return res;
+ } /* decNumberNextPlus */
+
+/* ------------------------------------------------------------------ */
+/* decNumberNextToward -- next towards rhs */
+/* */
+/* This computes C = A +/- infinitesimal, rounded towards */
+/* +/-Infinity in the direction of B, as per 754r nextafter rules */
+/* */
+/* res is C, the result. C may be A or B. */
+/* lhs is A */
+/* rhs is B */
+/* set is the context */
+/* */
+/* This is a generalization of 754r NextAfter. */
+/* ------------------------------------------------------------------ */
+decNumber * decNumberNextToward(decNumber *res, const decNumber *lhs,
+ const decNumber *rhs, decContext *set) {
+ decNumber dtiny; /* constant */
+ decContext workset=*set; /* work */
+ Int result; /* .. */
+ uInt status=0; /* accumulator */
+ #if DECCHECK
+ if (decCheckOperands(res, lhs, rhs, set)) return res;
+ #endif
+
+ if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs)) {
+ decNaNs(res, lhs, rhs, set, &status);
+ }
+ else { /* Is numeric, so no chance of sNaN Invalid, etc. */
+ result=decCompare(lhs, rhs, 0); /* sign matters */
+ if (result==BADINT) status|=DEC_Insufficient_storage; /* rare */
+ else { /* valid compare */
+ if (result==0) decNumberCopySign(res, lhs, rhs); /* easy */
+ else { /* differ: need NextPlus or NextMinus */
+ uByte sub; /* add or subtract */
+ if (result<0) { /* lhs<rhs, do nextplus */
+ /* -Infinity is the special case */
+ if ((lhs->bits&(DECINF|DECNEG))==(DECINF|DECNEG)) {
+ decSetMaxValue(res, set);
+ res->bits=DECNEG; /* negative */
+ return res; /* there is no status to set */
}
- }
-#endif
- /* [following code does not require input rounding] */
-
- /* specials copy through, except NaNs need care */
- if (decNumberIsNaN (rhs))
- {
- decNaNs (res, rhs, NULL, &status);
- break;
- }
-
- /* reduce result to the requested length and copy to result */
- decCopyFit (res, rhs, set, &residue, &status); /* copy & round */
- decFinish (res, set, &residue, &status); /* cleanup/set flags */
- decTrim (res, 1, &dropped); /* normalize in place */
+ workset.round=DEC_ROUND_CEILING;
+ sub=0; /* add, please */
+ } /* plus */
+ else { /* lhs>rhs, do nextminus */
+ /* +Infinity is the special case */
+ if ((lhs->bits&(DECINF|DECNEG))==DECINF) {
+ decSetMaxValue(res, set);
+ return res; /* there is no status to set */
+ }
+ workset.round=DEC_ROUND_FLOOR;
+ sub=DECNEG; /* subtract, please */
+ } /* minus */
+ decNumberZero(&dtiny); /* start with 0 */
+ dtiny.lsu[0]=1; /* make number that is .. */
+ dtiny.exponent=DEC_MIN_EMIN-1; /* .. smaller than tiniest */
+ decAddOp(res, lhs, &dtiny, &workset, sub, &status); /* + or - */
+ /* turn off exceptions if the result is a normal number */
+ /* (including Nmin), otherwise let all status through */
+ if (decNumberIsNormal(res, set)) status=0;
+ } /* unequal */
+ } /* compare OK */
+ } /* numeric */
+ if (status!=0) decStatus(res, status, set);
+ return res;
+ } /* decNumberNextToward */
+
+/* ------------------------------------------------------------------ */
+/* decNumberOr -- OR two Numbers, digitwise */
+/* */
+/* This computes C = A | B */
+/* */
+/* res is C, the result. C may be A and/or B (e.g., X=X|X) */
+/* lhs is A */
+/* rhs is B */
+/* set is the context (used for result length and error report) */
+/* */
+/* C must have space for set->digits digits. */
+/* */
+/* Logical function restrictions apply (see above); a NaN is */
+/* returned with Invalid_operation if a restriction is violated. */
+/* ------------------------------------------------------------------ */
+decNumber * decNumberOr(decNumber *res, const decNumber *lhs,
+ const decNumber *rhs, decContext *set) {
+ const Unit *ua, *ub; /* -> operands */
+ const Unit *msua, *msub; /* -> operand msus */
+ Unit *uc, *msuc; /* -> result and its msu */
+ Int msudigs; /* digits in res msu */
+ #if DECCHECK
+ if (decCheckOperands(res, lhs, rhs, set)) return res;
+ #endif
+
+ if (lhs->exponent!=0 || decNumberIsSpecial(lhs) || decNumberIsNegative(lhs)
+ || rhs->exponent!=0 || decNumberIsSpecial(rhs) || decNumberIsNegative(rhs)) {
+ decStatus(res, DEC_Invalid_operation, set);
+ return res;
}
- while (0); /* end protected */
-
- if (allocrhs != NULL)
- free (allocrhs); /* .. */
- if (status != 0)
- decStatus (res, status, set); /* then report status */
+ /* operands are valid */
+ ua=lhs->lsu; /* bottom-up */
+ ub=rhs->lsu; /* .. */
+ uc=res->lsu; /* .. */
+ msua=ua+D2U(lhs->digits)-1; /* -> msu of lhs */
+ msub=ub+D2U(rhs->digits)-1; /* -> msu of rhs */
+ msuc=uc+D2U(set->digits)-1; /* -> msu of result */
+ msudigs=MSUDIGITS(set->digits); /* [faster than remainder] */
+ for (; uc<=msuc; ua++, ub++, uc++) { /* Unit loop */
+ Unit a, b; /* extract units */
+ if (ua>msua) a=0;
+ else a=*ua;
+ if (ub>msub) b=0;
+ else b=*ub;
+ *uc=0; /* can now write back */
+ if (a|b) { /* maybe 1 bits to examine */
+ Int i, j;
+ /* This loop could be unrolled and/or use BIN2BCD tables */
+ for (i=0; i<DECDPUN; i++) {
+ if ((a|b)&1) *uc=*uc+(Unit)powers[i]; /* effect OR */
+ j=a%10;
+ a=a/10;
+ j|=b%10;
+ b=b/10;
+ if (j>1) {
+ decStatus(res, DEC_Invalid_operation, set);
+ return res;
+ }
+ if (uc==msuc && i==msudigs-1) break; /* just did final digit */
+ } /* each digit */
+ } /* non-zero */
+ } /* each unit */
+ /* [here uc-1 is the msu of the result] */
+ res->digits=decGetDigits(res->lsu, uc-res->lsu);
+ res->exponent=0; /* integer */
+ res->bits=0; /* sign=0 */
+ return res; /* [no status to set] */
+ } /* decNumberOr */
+
+/* ------------------------------------------------------------------ */
+/* decNumberPlus -- prefix plus operator */
+/* */
+/* This computes C = 0 + A */
+/* */
+/* res is C, the result. C may be A */
+/* rhs is A */
+/* set is the context */
+/* */
+/* See also decNumberCopy for a quiet bitwise version of this. */
+/* C must have space for set->digits digits. */
+/* ------------------------------------------------------------------ */
+/* This simply uses AddOp; Add will take fast path after preparing A. */
+/* Performance is a concern here, as this routine is often used to */
+/* check operands and apply rounding and overflow/underflow testing. */
+/* ------------------------------------------------------------------ */
+decNumber * decNumberPlus(decNumber *res, const decNumber *rhs,
+ decContext *set) {
+ decNumber dzero;
+ uInt status=0; /* accumulator */
+ #if DECCHECK
+ if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
+ #endif
+
+ decNumberZero(&dzero); /* make 0 */
+ dzero.exponent=rhs->exponent; /* [no coefficient expansion] */
+ decAddOp(res, &dzero, rhs, set, 0, &status);
+ if (status!=0) decStatus(res, status, set);
+ #if DECCHECK
+ decCheckInexact(res, set);
+ #endif
return res;
-}
-
-/* ------------------------------------------------------------------ */
-/* decNumberPower -- raise a number to an integer power */
-/* */
-/* This computes C = A ** B */
-/* */
-/* res is C, the result. C may be A and/or B (e.g., X=X**X) */
-/* lhs is A */
-/* rhs is B */
-/* set is the context */
-/* */
-/* C must have space for set->digits digits. */
-/* */
-/* Specification restriction: abs(n) must be <=999999999 */
-/* ------------------------------------------------------------------ */
-decNumber *
-decNumberPower (decNumber * res, const decNumber * lhs,
- const decNumber * rhs, decContext * set)
-{
- decNumber *alloclhs = NULL; /* non-NULL if rounded lhs allocated */
- decNumber *allocrhs = NULL; /* .., rhs */
- decNumber *allocdac = NULL; /* -> allocated acc buffer, iff used */
- const decNumber *inrhs = rhs; /* save original rhs */
- Int reqdigits = set->digits; /* requested DIGITS */
- Int n; /* RHS in binary */
- Int i; /* work */
-#if DECSUBSET
- Int dropped; /* .. */
-#endif
- uInt needbytes; /* buffer size needed */
- Flag seenbit; /* seen a bit while powering */
- Int residue = 0; /* rounding residue */
- uInt status = 0; /* accumulator */
- uByte bits = 0; /* result sign if errors */
- decContext workset; /* working context */
- decNumber dnOne; /* work value 1... */
+ } /* decNumberPlus */
+
+/* ------------------------------------------------------------------ */
+/* decNumberMultiply -- multiply two Numbers */
+/* */
+/* This computes C = A x B */
+/* */
+/* res is C, the result. C may be A and/or B (e.g., X=X+X) */
+/* lhs is A */
+/* rhs is B */
+/* set is the context */
+/* */
+/* C must have space for set->digits digits. */
+/* ------------------------------------------------------------------ */
+decNumber * decNumberMultiply(decNumber *res, const decNumber *lhs,
+ const decNumber *rhs, decContext *set) {
+ uInt status=0; /* accumulator */
+ decMultiplyOp(res, lhs, rhs, set, &status);
+ if (status!=0) decStatus(res, status, set);
+ #if DECCHECK
+ decCheckInexact(res, set);
+ #endif
+ return res;
+ } /* decNumberMultiply */
+
+/* ------------------------------------------------------------------ */
+/* decNumberPower -- raise a number to a power */
+/* */
+/* This computes C = A ** B */
+/* */
+/* res is C, the result. C may be A and/or B (e.g., X=X**X) */
+/* lhs is A */
+/* rhs is B */
+/* set is the context */
+/* */
+/* C must have space for set->digits digits. */
+/* */
+/* Mathematical function restrictions apply (see above); a NaN is */
+/* returned with Invalid_operation if a restriction is violated. */
+/* */
+/* However, if 1999999997<=B<=999999999 and B is an integer then the */
+/* restrictions on A and the context are relaxed to the usual bounds, */
+/* for compatibility with the earlier (integer power only) version */
+/* of this function. */
+/* */
+/* When B is an integer, the result may be exact, even if rounded. */
+/* */
+/* The final result is rounded according to the context; it will */
+/* almost always be correctly rounded, but may be up to 1 ulp in */
+/* error in rare cases. */
+/* ------------------------------------------------------------------ */
+decNumber * decNumberPower(decNumber *res, const decNumber *lhs,
+ const decNumber *rhs, decContext *set) {
+ #if DECSUBSET
+ decNumber *alloclhs=NULL; /* non-NULL if rounded lhs allocated */
+ decNumber *allocrhs=NULL; /* .., rhs */
+ #endif
+ decNumber *allocdac=NULL; /* -> allocated acc buffer, iff used */
+ decNumber *allocinv=NULL; /* -> allocated 1/x buffer, iff used */
+ Int reqdigits=set->digits; /* requested DIGITS */
+ Int n; /* rhs in binary */
+ Flag rhsint=0; /* 1 if rhs is an integer */
+ Flag useint=0; /* 1 if can use integer calculation */
+ Flag isoddint=0; /* 1 if rhs is an integer and odd */
+ Int i; /* work */
+ #if DECSUBSET
+ Int dropped; /* .. */
+ #endif
+ uInt needbytes; /* buffer size needed */
+ Flag seenbit; /* seen a bit while powering */
+ Int residue=0; /* rounding residue */
+ uInt status=0; /* accumulators */
+ uByte bits=0; /* result sign if errors */
+ decContext aset; /* working context */
+ decNumber dnOne; /* work value 1... */
/* local accumulator buffer [a decNumber, with digits+elength+1 digits] */
- uByte dacbuff[sizeof (decNumber) + D2U (DECBUFFER + 9) * sizeof (Unit)];
+ decNumber dacbuff[D2N(DECBUFFER+9)];
+ decNumber *dac=dacbuff; /* -> result accumulator */
/* same again for possible 1/lhs calculation */
- uByte lhsbuff[sizeof (decNumber) + D2U (DECBUFFER + 9) * sizeof (Unit)];
- decNumber *dac = (decNumber *) dacbuff; /* -> result accumulator */
-
-#if DECCHECK
- if (decCheckOperands (res, lhs, rhs, set))
- return res;
-#endif
-
- do
- { /* protect allocated storage */
-#if DECSUBSET
- if (!set->extended)
- {
- /* reduce operands and set lostDigits status, as needed */
- if (lhs->digits > reqdigits)
- {
- alloclhs = decRoundOperand (lhs, set, &status);
- if (alloclhs == NULL)
- break;
- lhs = alloclhs;
- }
- /* rounding won't affect the result, but we might signal lostDigits */
- /* as well as the error for non-integer [x**y would need this too] */
- if (rhs->digits > reqdigits)
- {
- allocrhs = decRoundOperand (rhs, set, &status);
- if (allocrhs == NULL)
- break;
- rhs = allocrhs;
- }
- }
-#endif
- /* [following code does not require input rounding] */
-
- /* handle rhs Infinity */
- if (decNumberIsInfinite (rhs))
- {
- status |= DEC_Invalid_operation; /* bad */
- break;
+ decNumber invbuff[D2N(DECBUFFER+9)];
+
+ #if DECCHECK
+ if (decCheckOperands(res, lhs, rhs, set)) return res;
+ #endif
+
+ do { /* protect allocated storage */
+ #if DECSUBSET
+ if (!set->extended) { /* reduce operands and set status, as needed */
+ if (lhs->digits>reqdigits) {
+ alloclhs=decRoundOperand(lhs, set, &status);
+ if (alloclhs==NULL) break;
+ lhs=alloclhs;
}
- /* handle NaNs */
- if ((lhs->bits | rhs->bits) & (DECNAN | DECSNAN))
- {
- decNaNs (res, lhs, rhs, &status);
- break;
+ if (rhs->digits>reqdigits) {
+ allocrhs=decRoundOperand(rhs, set, &status);
+ if (allocrhs==NULL) break;
+ rhs=allocrhs;
}
+ }
+ #endif
+ /* [following code does not require input rounding] */
+
+ /* handle NaNs and rhs Infinity (lhs infinity is harder) */
+ if (SPECIALARGS) {
+ if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs)) { /* NaNs */
+ decNaNs(res, lhs, rhs, set, &status);
+ break;}
+ if (decNumberIsInfinite(rhs)) { /* rhs Infinity */
+ Flag rhsneg=rhs->bits&DECNEG; /* save rhs sign */
+ if (decNumberIsNegative(lhs) /* lhs<0 */
+ && !decNumberIsZero(lhs)) /* .. */
+ status|=DEC_Invalid_operation;
+ else { /* lhs >=0 */
+ decNumberZero(&dnOne); /* set up 1 */
+ dnOne.lsu[0]=1;
+ decNumberCompare(dac, lhs, &dnOne, set); /* lhs ? 1 */
+ decNumberZero(res); /* prepare for 0/1/Infinity */
+ if (decNumberIsNegative(dac)) { /* lhs<1 */
+ if (rhsneg) res->bits|=DECINF; /* +Infinity [else is +0] */
+ }
+ else if (dac->lsu[0]==0) { /* lhs=1 */
+ /* 1**Infinity is inexact, so return fully-padded 1.0000 */
+ Int shift=set->digits-1;
+ *res->lsu=1; /* was 0, make int 1 */
+ res->digits=decShiftToMost(res->lsu, 1, shift);
+ res->exponent=-shift; /* make 1.0000... */
+ status|=DEC_Inexact|DEC_Rounded; /* deemed inexact */
+ }
+ else { /* lhs>1 */
+ if (!rhsneg) res->bits|=DECINF; /* +Infinity [else is +0] */
+ }
+ } /* lhs>=0 */
+ break;}
+ /* [lhs infinity drops through] */
+ } /* specials */
+
+ /* Original rhs may be an integer that fits and is in range */
+ n=decGetInt(rhs);
+ if (n!=BADINT) { /* it is an integer */
+ rhsint=1; /* record the fact for 1**n */
+ isoddint=(Flag)n&1; /* [works even if big] */
+ if (n!=BIGEVEN && n!=BIGODD) /* can use integer path? */
+ useint=1; /* looks good */
+ }
- /* Original rhs must be an integer that fits and is in range */
-#if DECSUBSET
- n = decGetInt (inrhs, set);
-#else
- n = decGetInt (inrhs);
-#endif
- if (n == BADINT || n > 999999999 || n < -999999999)
- {
- status |= DEC_Invalid_operation;
- break;
+ if (decNumberIsNegative(lhs) /* -x .. */
+ && isoddint) bits=DECNEG; /* .. to an odd power */
+
+ /* handle LHS infinity */
+ if (decNumberIsInfinite(lhs)) { /* [NaNs already handled] */
+ uByte rbits=rhs->bits; /* save */
+ decNumberZero(res); /* prepare */
+ if (n==0) *res->lsu=1; /* [-]Inf**0 => 1 */
+ else {
+ /* -Inf**nonint -> error */
+ if (!rhsint && decNumberIsNegative(lhs)) {
+ status|=DEC_Invalid_operation; /* -Inf**nonint is error */
+ break;}
+ if (!(rbits & DECNEG)) bits|=DECINF; /* was not a **-n */
+ /* [otherwise will be 0 or -0] */
+ res->bits=bits;
}
- if (n < 0)
- { /* negative */
- n = -n; /* use the absolute value */
+ break;}
+
+ /* similarly handle LHS zero */
+ if (decNumberIsZero(lhs)) {
+ if (n==0) { /* 0**0 => Error */
+ #if DECSUBSET
+ if (!set->extended) { /* [unless subset] */
+ decNumberZero(res);
+ *res->lsu=1; /* return 1 */
+ break;}
+ #endif
+ status|=DEC_Invalid_operation;
}
- if (decNumberIsNegative (lhs) /* -x .. */
- && (n & 0x00000001))
- bits = DECNEG; /* .. to an odd power */
-
- /* handle LHS infinity */
- if (decNumberIsInfinite (lhs))
- { /* [NaNs already handled] */
- uByte rbits = rhs->bits; /* save */
- decNumberZero (res);
- if (n == 0)
- *res->lsu = 1; /* [-]Inf**0 => 1 */
- else
- {
- if (!(rbits & DECNEG))
- bits |= DECINF; /* was not a **-n */
- /* [otherwise will be 0 or -0] */
- res->bits = bits;
- }
- break;
+ else { /* 0**x */
+ uByte rbits=rhs->bits; /* save */
+ if (rbits & DECNEG) { /* was a 0**(-n) */
+ #if DECSUBSET
+ if (!set->extended) { /* [bad if subset] */
+ status|=DEC_Invalid_operation;
+ break;}
+ #endif
+ bits|=DECINF;
+ }
+ decNumberZero(res); /* prepare */
+ /* [otherwise will be 0 or -0] */
+ res->bits=bits;
}
-
- /* clone the context */
- workset = *set; /* copy all fields */
+ break;}
+
+ /* here both lhs and rhs are finite; rhs==0 is handled in the */
+ /* integer path. Next handle the non-integer cases */
+ if (!useint) { /* non-integral rhs */
+ /* any -ve lhs is bad, as is either operand or context out of */
+ /* bounds */
+ if (decNumberIsNegative(lhs)) {
+ status|=DEC_Invalid_operation;
+ break;}
+ if (decCheckMath(lhs, set, &status)
+ || decCheckMath(rhs, set, &status)) break; /* variable status */
+
+ decContextDefault(&aset, DEC_INIT_DECIMAL64); /* clean context */
+ aset.emax=DEC_MAX_MATH; /* usual bounds */
+ aset.emin=-DEC_MAX_MATH; /* .. */
+ aset.clamp=0; /* and no concrete format */
+
+ /* calculate the result using exp(ln(lhs)*rhs), which can */
+ /* all be done into the accumulator, dac. The precision needed */
+ /* is enough to contain the full information in the lhs (which */
+ /* is the total digits, including exponent), or the requested */
+ /* precision, if larger, + 4; 6 is used for the exponent */
+ /* maximum length, and this is also used when it is shorter */
+ /* than the requested digits as it greatly reduces the >0.5 ulp */
+ /* cases at little cost (because Ln doubles digits each */
+ /* iteration so a few extra digits rarely causes an extra */
+ /* iteration) */
+ aset.digits=MAXI(lhs->digits, set->digits)+6+4;
+ } /* non-integer rhs */
+
+ else { /* rhs is in-range integer */
+ if (n==0) { /* x**0 = 1 */
+ /* (0**0 was handled above) */
+ decNumberZero(res); /* result=1 */
+ *res->lsu=1; /* .. */
+ break;}
+ /* rhs is a non-zero integer */
+ if (n<0) n=-n; /* use abs(n) */
+
+ aset=*set; /* clone the context */
+ aset.round=DEC_ROUND_HALF_EVEN; /* internally use balanced */
/* calculate the working DIGITS */
- workset.digits = reqdigits + (inrhs->digits + inrhs->exponent) + 1;
- /* it's an error if this is more than we can handle */
- if (workset.digits > DECNUMMAXP)
- {
- status |= DEC_Invalid_operation;
- break;
- }
-
- /* workset.digits is the count of digits for the accumulator we need */
- /* if accumulator is too long for local storage, then allocate */
- needbytes =
- sizeof (decNumber) + (D2U (workset.digits) - 1) * sizeof (Unit);
- /* [needbytes also used below if 1/lhs needed] */
- if (needbytes > sizeof (dacbuff))
- {
- allocdac = (decNumber *) malloc (needbytes);
- if (allocdac == NULL)
- { /* hopeless -- abandon */
- status |= DEC_Insufficient_storage;
- break;
- }
- dac = allocdac; /* use the allocated space */
+ aset.digits=reqdigits+(rhs->digits+rhs->exponent)+2;
+ #if DECSUBSET
+ if (!set->extended) aset.digits--; /* use classic precision */
+ #endif
+ /* it's an error if this is more than can be handled */
+ if (aset.digits>DECNUMMAXP) {status|=DEC_Invalid_operation; break;}
+ } /* integer path */
+
+ /* aset.digits is the count of digits for the accumulator needed */
+ /* if accumulator is too long for local storage, then allocate */
+ needbytes=sizeof(decNumber)+(D2U(aset.digits)-1)*sizeof(Unit);
+ /* [needbytes also used below if 1/lhs needed] */
+ if (needbytes>sizeof(dacbuff)) {
+ allocdac=(decNumber *)malloc(needbytes);
+ if (allocdac==NULL) { /* hopeless -- abandon */
+ status|=DEC_Insufficient_storage;
+ break;}
+ dac=allocdac; /* use the allocated space */
+ }
+ /* here, aset is set up and accumulator is ready for use */
+
+ if (!useint) { /* non-integral rhs */
+ /* x ** y; special-case x=1 here as it will otherwise always */
+ /* reduce to integer 1; decLnOp has a fastpath which detects */
+ /* the case of x=1 */
+ decLnOp(dac, lhs, &aset, &status); /* dac=ln(lhs) */
+ /* [no error possible, as lhs 0 already handled] */
+ if (ISZERO(dac)) { /* x==1, 1.0, etc. */
+ /* need to return fully-padded 1.0000 etc., but rhsint->1 */
+ *dac->lsu=1; /* was 0, make int 1 */
+ if (!rhsint) { /* add padding */
+ Int shift=set->digits-1;
+ dac->digits=decShiftToMost(dac->lsu, 1, shift);
+ dac->exponent=-shift; /* make 1.0000... */
+ status|=DEC_Inexact|DEC_Rounded; /* deemed inexact */
+ }
}
- decNumberZero (dac); /* acc=1 */
- *dac->lsu = 1; /* .. */
-
- if (n == 0)
- { /* x**0 is usually 1 */
- /* 0**0 is bad unless subset, when it becomes 1 */
- if (ISZERO (lhs)
-#if DECSUBSET
- && set->extended
-#endif
- )
- status |= DEC_Invalid_operation;
- else
- decNumberCopy (res, dac); /* copy the 1 */
- break;
+ else {
+ decMultiplyOp(dac, dac, rhs, &aset, &status); /* dac=dac*rhs */
+ decExpOp(dac, dac, &aset, &status); /* dac=exp(dac) */
}
-
- /* if a negative power we'll need the constant 1, and if not subset */
- /* we'll invert the lhs now rather than inverting the result later */
- if (decNumberIsNegative (rhs))
- { /* was a **-n [hence digits>0] */
- decNumber * newlhs;
- decNumberCopy (&dnOne, dac); /* dnOne=1; [needed now or later] */
-#if DECSUBSET
- if (set->extended)
- { /* need to calculate 1/lhs */
-#endif
- /* divide lhs into 1, putting result in dac [dac=1/dac] */
- decDivideOp (dac, &dnOne, lhs, &workset, DIVIDE, &status);
- if (alloclhs != NULL)
- {
- free (alloclhs); /* done with intermediate */
- alloclhs = NULL; /* indicate freed */
- }
- /* now locate or allocate space for the inverted lhs */
- if (needbytes > sizeof (lhsbuff))
- {
- alloclhs = (decNumber *) malloc (needbytes);
- if (alloclhs == NULL)
- { /* hopeless -- abandon */
- status |= DEC_Insufficient_storage;
- break;
- }
- newlhs = alloclhs; /* use the allocated space */
- }
- else
- newlhs = (decNumber *) lhsbuff; /* use stack storage */
- /* [lhs now points to buffer or allocated storage] */
- decNumberCopy (newlhs, dac); /* copy the 1/lhs */
- decNumberCopy (dac, &dnOne); /* restore acc=1 */
- lhs = newlhs;
-#if DECSUBSET
+ /* and drop through for final rounding */
+ } /* non-integer rhs */
+
+ else { /* carry on with integer */
+ decNumberZero(dac); /* acc=1 */
+ *dac->lsu=1; /* .. */
+
+ /* if a negative power the constant 1 is needed, and if not subset */
+ /* invert the lhs now rather than inverting the result later */
+ if (decNumberIsNegative(rhs)) { /* was a **-n [hence digits>0] */
+ decNumber *inv=invbuff; /* asssume use fixed buffer */
+ decNumberCopy(&dnOne, dac); /* dnOne=1; [needed now or later] */
+ #if DECSUBSET
+ if (set->extended) { /* need to calculate 1/lhs */
+ #endif
+ /* divide lhs into 1, putting result in dac [dac=1/dac] */
+ decDivideOp(dac, &dnOne, lhs, &aset, DIVIDE, &status);
+ /* now locate or allocate space for the inverted lhs */
+ if (needbytes>sizeof(invbuff)) {
+ allocinv=(decNumber *)malloc(needbytes);
+ if (allocinv==NULL) { /* hopeless -- abandon */
+ status|=DEC_Insufficient_storage;
+ break;}
+ inv=allocinv; /* use the allocated space */
}
-#endif
+ /* [inv now points to big-enough buffer or allocated storage] */
+ decNumberCopy(inv, dac); /* copy the 1/lhs */
+ decNumberCopy(dac, &dnOne); /* restore acc=1 */
+ lhs=inv; /* .. and go forward with new lhs */
+ #if DECSUBSET
+ }
+ #endif
}
/* Raise-to-the-power loop... */
- seenbit = 0; /* set once we've seen a 1-bit */
- for (i = 1;; i++)
- { /* for each bit [top bit ignored] */
- /* abandon if we have had overflow or terminal underflow */
- if (status & (DEC_Overflow | DEC_Underflow))
- { /* interesting? */
- if (status & DEC_Overflow || ISZERO (dac))
- break;
- }
- /* [the following two lines revealed an optimizer bug in a C++ */
- /* compiler, with symptom: 5**3 -> 25, when n=n+n was used] */
- n = n << 1; /* move next bit to testable position */
- if (n < 0)
- { /* top bit is set */
- seenbit = 1; /* OK, we're off */
- decMultiplyOp (dac, dac, lhs, &workset, &status); /* dac=dac*x */
- }
- if (i == 31)
- break; /* that was the last bit */
- if (!seenbit)
- continue; /* we don't have to square 1 */
- decMultiplyOp (dac, dac, dac, &workset, &status); /* dac=dac*dac [square] */
- } /*i *//* 32 bits */
+ seenbit=0; /* set once a 1-bit is encountered */
+ for (i=1;;i++){ /* for each bit [top bit ignored] */
+ /* abandon if had overflow or terminal underflow */
+ if (status & (DEC_Overflow|DEC_Underflow)) { /* interesting? */
+ if (status&DEC_Overflow || ISZERO(dac)) break;
+ }
+ /* [the following two lines revealed an optimizer bug in a C++ */
+ /* compiler, with symptom: 5**3 -> 25, when n=n+n was used] */
+ n=n<<1; /* move next bit to testable position */
+ if (n<0) { /* top bit is set */
+ seenbit=1; /* OK, significant bit seen */
+ decMultiplyOp(dac, dac, lhs, &aset, &status); /* dac=dac*x */
+ }
+ if (i==31) break; /* that was the last bit */
+ if (!seenbit) continue; /* no need to square 1 */
+ decMultiplyOp(dac, dac, dac, &aset, &status); /* dac=dac*dac [square] */
+ } /*i*/ /* 32 bits */
/* complete internal overflow or underflow processing */
- if (status & (DEC_Overflow | DEC_Subnormal))
- {
-#if DECSUBSET
- /* If subset, and power was negative, reverse the kind of -erflow */
- /* [1/x not yet done] */
- if (!set->extended && decNumberIsNegative (rhs))
- {
- if (status & DEC_Overflow)
- status ^= DEC_Overflow | DEC_Underflow | DEC_Subnormal;
- else
- { /* trickier -- Underflow may or may not be set */
- status &= ~(DEC_Underflow | DEC_Subnormal); /* [one or both] */
- status |= DEC_Overflow;
- }
+ if (status & (DEC_Overflow|DEC_Underflow)) {
+ #if DECSUBSET
+ /* If subset, and power was negative, reverse the kind of -erflow */
+ /* [1/x not yet done] */
+ if (!set->extended && decNumberIsNegative(rhs)) {
+ if (status & DEC_Overflow)
+ status^=DEC_Overflow | DEC_Underflow | DEC_Subnormal;
+ else { /* trickier -- Underflow may or may not be set */
+ status&=~(DEC_Underflow | DEC_Subnormal); /* [one or both] */
+ status|=DEC_Overflow;
}
-#endif
- dac->bits = (dac->bits & ~DECNEG) | bits; /* force correct sign */
- /* round subnormals [to set.digits rather than workset.digits] */
- /* or set overflow result similarly as required */
- decFinalize (dac, set, &residue, &status);
- decNumberCopy (res, dac); /* copy to result (is now OK length) */
- break;
+ }
+ #endif
+ dac->bits=(dac->bits & ~DECNEG) | bits; /* force correct sign */
+ /* round subnormals [to set.digits rather than aset.digits] */
+ /* or set overflow result similarly as required */
+ decFinalize(dac, set, &residue, &status);
+ decNumberCopy(res, dac); /* copy to result (is now OK length) */
+ break;
}
-#if DECSUBSET
- if (!set->extended && /* subset math */
- decNumberIsNegative (rhs))
- { /* was a **-n [hence digits>0] */
- /* so divide result into 1 [dac=1/dac] */
- decDivideOp (dac, &dnOne, dac, &workset, DIVIDE, &status);
+ #if DECSUBSET
+ if (!set->extended && /* subset math */
+ decNumberIsNegative(rhs)) { /* was a **-n [hence digits>0] */
+ /* so divide result into 1 [dac=1/dac] */
+ decDivideOp(dac, &dnOne, dac, &aset, DIVIDE, &status);
}
-#endif
-
- /* reduce result to the requested length and copy to result */
- decCopyFit (res, dac, set, &residue, &status);
- decFinish (res, set, &residue, &status); /* final cleanup */
-#if DECSUBSET
- if (!set->extended)
- decTrim (res, 0, &dropped); /* trailing zeros */
-#endif
- }
- while (0); /* end protected */
-
- if (allocdac != NULL)
- free (allocdac); /* drop any storage we used */
- if (allocrhs != NULL)
- free (allocrhs); /* .. */
- if (alloclhs != NULL)
- free (alloclhs); /* .. */
- if (status != 0)
- decStatus (res, status, set);
+ #endif
+ } /* rhs integer path */
+
+ /* reduce result to the requested length and copy to result */
+ decCopyFit(res, dac, set, &residue, &status);
+ decFinish(res, set, &residue, &status); /* final cleanup */
+ #if DECSUBSET
+ if (!set->extended) decTrim(res, set, 0, &dropped); /* trailing zeros */
+ #endif
+ } while(0); /* end protected */
+
+ if (allocdac!=NULL) free(allocdac); /* drop any storage used */
+ if (allocinv!=NULL) free(allocinv); /* .. */
+ #if DECSUBSET
+ if (alloclhs!=NULL) free(alloclhs); /* .. */
+ if (allocrhs!=NULL) free(allocrhs); /* .. */
+ #endif
+ if (status!=0) decStatus(res, status, set);
+ #if DECCHECK
+ decCheckInexact(res, set);
+ #endif
return res;
-}
+ } /* decNumberPower */
/* ------------------------------------------------------------------ */
-/* decNumberQuantize -- force exponent to requested value */
-/* */
+/* decNumberQuantize -- force exponent to requested value */
+/* */
/* This computes C = op(A, B), where op adjusts the coefficient */
/* of C (by rounding or shifting) such that the exponent (-scale) */
/* of C has exponent of B. The numerical value of C will equal A, */
-/* except for the effects of any rounding that occurred. */
-/* */
-/* res is C, the result. C may be A or B */
-/* lhs is A, the number to adjust */
-/* rhs is B, the number with exponent to match */
-/* set is the context */
-/* */
-/* C must have space for set->digits digits. */
-/* */
+/* except for the effects of any rounding that occurred. */
+/* */
+/* res is C, the result. C may be A or B */
+/* lhs is A, the number to adjust */
+/* rhs is B, the number with exponent to match */
+/* set is the context */
+/* */
+/* C must have space for set->digits digits. */
+/* */
/* Unless there is an error or the result is infinite, the exponent */
-/* after the operation is guaranteed to be equal to that of B. */
-/* ------------------------------------------------------------------ */
-decNumber *
-decNumberQuantize (decNumber * res, const decNumber * lhs,
- const decNumber * rhs, decContext * set)
-{
- uInt status = 0; /* accumulator */
- decQuantizeOp (res, lhs, rhs, set, 1, &status);
- if (status != 0)
- decStatus (res, status, set);
+/* after the operation is guaranteed to be equal to that of B. */
+/* ------------------------------------------------------------------ */
+decNumber * decNumberQuantize(decNumber *res, const decNumber *lhs,
+ const decNumber *rhs, decContext *set) {
+ uInt status=0; /* accumulator */
+ decQuantizeOp(res, lhs, rhs, set, 1, &status);
+ if (status!=0) decStatus(res, status, set);
+ return res;
+ } /* decNumberQuantize */
+
+/* ------------------------------------------------------------------ */
+/* decNumberReduce -- remove trailing zeros */
+/* */
+/* This computes C = 0 + A, and normalizes the result */
+/* */
+/* res is C, the result. C may be A */
+/* rhs is A */
+/* set is the context */
+/* */
+/* C must have space for set->digits digits. */
+/* ------------------------------------------------------------------ */
+/* Previously known as Normalize */
+decNumber * decNumberNormalize(decNumber *res, const decNumber *rhs,
+ decContext *set) {
+ return decNumberReduce(res, rhs, set);
+ } /* decNumberNormalize */
+
+decNumber * decNumberReduce(decNumber *res, const decNumber *rhs,
+ decContext *set) {
+ #if DECSUBSET
+ decNumber *allocrhs=NULL; /* non-NULL if rounded rhs allocated */
+ #endif
+ uInt status=0; /* as usual */
+ Int residue=0; /* as usual */
+ Int dropped; /* work */
+
+ #if DECCHECK
+ if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
+ #endif
+
+ do { /* protect allocated storage */
+ #if DECSUBSET
+ if (!set->extended) {
+ /* reduce operand and set lostDigits status, as needed */
+ if (rhs->digits>set->digits) {
+ allocrhs=decRoundOperand(rhs, set, &status);
+ if (allocrhs==NULL) break;
+ rhs=allocrhs;
+ }
+ }
+ #endif
+ /* [following code does not require input rounding] */
+
+ /* Infinities copy through; NaNs need usual treatment */
+ if (decNumberIsNaN(rhs)) {
+ decNaNs(res, rhs, NULL, set, &status);
+ break;
+ }
+
+ /* reduce result to the requested length and copy to result */
+ decCopyFit(res, rhs, set, &residue, &status); /* copy & round */
+ decFinish(res, set, &residue, &status); /* cleanup/set flags */
+ decTrim(res, set, 1, &dropped); /* normalize in place */
+ } while(0); /* end protected */
+
+ #if DECSUBSET
+ if (allocrhs !=NULL) free(allocrhs); /* .. */
+ #endif
+ if (status!=0) decStatus(res, status, set);/* then report status */
return res;
-}
+ } /* decNumberReduce */
/* ------------------------------------------------------------------ */
-/* decNumberRescale -- force exponent to requested value */
-/* */
+/* decNumberRescale -- force exponent to requested value */
+/* */
/* This computes C = op(A, B), where op adjusts the coefficient */
/* of C (by rounding or shifting) such that the exponent (-scale) */
/* of C has the value B. The numerical value of C will equal A, */
-/* except for the effects of any rounding that occurred. */
-/* */
-/* res is C, the result. C may be A or B */
-/* lhs is A, the number to adjust */
-/* rhs is B, the requested exponent */
-/* set is the context */
-/* */
-/* C must have space for set->digits digits. */
-/* */
+/* except for the effects of any rounding that occurred. */
+/* */
+/* res is C, the result. C may be A or B */
+/* lhs is A, the number to adjust */
+/* rhs is B, the requested exponent */
+/* set is the context */
+/* */
+/* C must have space for set->digits digits. */
+/* */
/* Unless there is an error or the result is infinite, the exponent */
-/* after the operation is guaranteed to be equal to B. */
-/* ------------------------------------------------------------------ */
-decNumber *
-decNumberRescale (decNumber * res, const decNumber * lhs,
- const decNumber * rhs, decContext * set)
-{
- uInt status = 0; /* accumulator */
- decQuantizeOp (res, lhs, rhs, set, 0, &status);
- if (status != 0)
- decStatus (res, status, set);
+/* after the operation is guaranteed to be equal to B. */
+/* ------------------------------------------------------------------ */
+decNumber * decNumberRescale(decNumber *res, const decNumber *lhs,
+ const decNumber *rhs, decContext *set) {
+ uInt status=0; /* accumulator */
+ decQuantizeOp(res, lhs, rhs, set, 0, &status);
+ if (status!=0) decStatus(res, status, set);
return res;
-}
-
-/* ------------------------------------------------------------------ */
-/* decNumberRemainder -- divide and return remainder */
-/* */
-/* This computes C = A % B */
-/* */
-/* res is C, the result. C may be A and/or B (e.g., X=X%X) */
-/* lhs is A */
-/* rhs is B */
-/* set is the context */
-/* */
-/* C must have space for set->digits digits. */
-/* ------------------------------------------------------------------ */
-decNumber *
-decNumberRemainder (decNumber * res, const decNumber * lhs,
- const decNumber * rhs, decContext * set)
-{
- uInt status = 0; /* accumulator */
- decDivideOp (res, lhs, rhs, set, REMAINDER, &status);
- if (status != 0)
- decStatus (res, status, set);
+ } /* decNumberRescale */
+
+/* ------------------------------------------------------------------ */
+/* decNumberRemainder -- divide and return remainder */
+/* */
+/* This computes C = A % B */
+/* */
+/* res is C, the result. C may be A and/or B (e.g., X=X%X) */
+/* lhs is A */
+/* rhs is B */
+/* set is the context */
+/* */
+/* C must have space for set->digits digits. */
+/* ------------------------------------------------------------------ */
+decNumber * decNumberRemainder(decNumber *res, const decNumber *lhs,
+ const decNumber *rhs, decContext *set) {
+ uInt status=0; /* accumulator */
+ decDivideOp(res, lhs, rhs, set, REMAINDER, &status);
+ if (status!=0) decStatus(res, status, set);
+ #if DECCHECK
+ decCheckInexact(res, set);
+ #endif
return res;
-}
+ } /* decNumberRemainder */
/* ------------------------------------------------------------------ */
/* decNumberRemainderNear -- divide and return remainder from nearest */
-/* */
+/* */
/* This computes C = A % B, where % is the IEEE remainder operator */
-/* */
-/* res is C, the result. C may be A and/or B (e.g., X=X%X) */
-/* lhs is A */
-/* rhs is B */
-/* set is the context */
-/* */
-/* C must have space for set->digits digits. */
-/* ------------------------------------------------------------------ */
-decNumber *
-decNumberRemainderNear (decNumber * res, const decNumber * lhs,
- const decNumber * rhs, decContext * set)
-{
- uInt status = 0; /* accumulator */
- decDivideOp (res, lhs, rhs, set, REMNEAR, &status);
- if (status != 0)
- decStatus (res, status, set);
+/* */
+/* res is C, the result. C may be A and/or B (e.g., X=X%X) */
+/* lhs is A */
+/* rhs is B */
+/* set is the context */
+/* */
+/* C must have space for set->digits digits. */
+/* ------------------------------------------------------------------ */
+decNumber * decNumberRemainderNear(decNumber *res, const decNumber *lhs,
+ const decNumber *rhs, decContext *set) {
+ uInt status=0; /* accumulator */
+ decDivideOp(res, lhs, rhs, set, REMNEAR, &status);
+ if (status!=0) decStatus(res, status, set);
+ #if DECCHECK
+ decCheckInexact(res, set);
+ #endif
return res;
-}
+ } /* decNumberRemainderNear */
+
+/* ------------------------------------------------------------------ */
+/* decNumberRotate -- rotate the coefficient of a Number left/right */
+/* */
+/* This computes C = A rot B (in base ten and rotating set->digits */
+/* digits). */
+/* */
+/* res is C, the result. C may be A and/or B (e.g., X=XrotX) */
+/* lhs is A */
+/* rhs is B, the number of digits to rotate (-ve to right) */
+/* set is the context */
+/* */
+/* The digits of the coefficient of A are rotated to the left (if B */
+/* is positive) or to the right (if B is negative) without adjusting */
+/* the exponent or the sign of A. If lhs->digits is less than */
+/* set->digits the coefficient is padded with zeros on the left */
+/* before the rotate. Any leading zeros in the result are removed */
+/* as usual. */
+/* */
+/* B must be an integer (q=0) and in the range -set->digits through */
+/* +set->digits. */
+/* C must have space for set->digits digits. */
+/* NaNs are propagated as usual. Infinities are unaffected (but */
+/* B must be valid). No status is set unless B is invalid or an */
+/* operand is an sNaN. */
+/* ------------------------------------------------------------------ */
+decNumber * decNumberRotate(decNumber *res, const decNumber *lhs,
+ const decNumber *rhs, decContext *set) {
+ uInt status=0; /* accumulator */
+ Int rotate; /* rhs as an Int */
+
+ #if DECCHECK
+ if (decCheckOperands(res, lhs, rhs, set)) return res;
+ #endif
+
+ /* NaNs propagate as normal */
+ if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs))
+ decNaNs(res, lhs, rhs, set, &status);
+ /* rhs must be an integer */
+ else if (decNumberIsInfinite(rhs) || rhs->exponent!=0)
+ status=DEC_Invalid_operation;
+ else { /* both numeric, rhs is an integer */
+ rotate=decGetInt(rhs); /* [cannot fail] */
+ if (rotate==BADINT /* something bad .. */
+ || rotate==BIGODD || rotate==BIGEVEN /* .. very big .. */
+ || abs(rotate)>set->digits) /* .. or out of range */
+ status=DEC_Invalid_operation;
+ else { /* rhs is OK */
+ decNumberCopy(res, lhs);
+ /* convert -ve rotate to equivalent positive rotation */
+ if (rotate<0) rotate=set->digits+rotate;
+ if (rotate!=0 && rotate!=set->digits /* zero or full rotation */
+ && !decNumberIsInfinite(res)) { /* lhs was infinite */
+ /* left-rotate to do; 0 < rotate < set->digits */
+ uInt units, shift; /* work */
+ uInt msudigits; /* digits in result msu */
+ Unit *msu=res->lsu+D2U(res->digits)-1; /* current msu */
+ Unit *msumax=res->lsu+D2U(set->digits)-1; /* rotation msu */
+ for (msu++; msu<=msumax; msu++) *msu=0; /* ensure high units=0 */
+ res->digits=set->digits; /* now full-length */
+ msudigits=MSUDIGITS(res->digits); /* actual digits in msu */
+
+ /* rotation here is done in-place, in three steps */
+ /* 1. shift all to least up to one unit to unit-align final */
+ /* lsd [any digits shifted out are rotated to the left, */
+ /* abutted to the original msd (which may require split)] */
+ /* */
+ /* [if there are no whole units left to rotate, the */
+ /* rotation is now complete] */
+ /* */
+ /* 2. shift to least, from below the split point only, so that */
+ /* the final msd is in the right place in its Unit [any */
+ /* digits shifted out will fit exactly in the current msu, */
+ /* left aligned, no split required] */
+ /* */
+ /* 3. rotate all the units by reversing left part, right */
+ /* part, and then whole */
+ /* */
+ /* example: rotate right 8 digits (2 units + 2), DECDPUN=3. */
+ /* */
+ /* start: 00a bcd efg hij klm npq */
+ /* */
+ /* 1a 000 0ab cde fgh|ijk lmn [pq saved] */
+ /* 1b 00p qab cde fgh|ijk lmn */
+ /* */
+ /* 2a 00p qab cde fgh|00i jkl [mn saved] */
+ /* 2b mnp qab cde fgh|00i jkl */
+ /* */
+ /* 3a fgh cde qab mnp|00i jkl */
+ /* 3b fgh cde qab mnp|jkl 00i */
+ /* 3c 00i jkl mnp qab cde fgh */
+
+ /* Step 1: amount to shift is the partial right-rotate count */
+ rotate=set->digits-rotate; /* make it right-rotate */
+ units=rotate/DECDPUN; /* whole units to rotate */
+ shift=rotate%DECDPUN; /* left-over digits count */
+ if (shift>0) { /* not an exact number of units */
+ uInt save=res->lsu[0]%powers[shift]; /* save low digit(s) */
+ decShiftToLeast(res->lsu, D2U(res->digits), shift);
+ if (shift>msudigits) { /* msumax-1 needs >0 digits */
+ uInt rem=save%powers[shift-msudigits];/* split save */
+ *msumax=(Unit)(save/powers[shift-msudigits]); /* and insert */
+ *(msumax-1)=*(msumax-1)
+ +(Unit)(rem*powers[DECDPUN-(shift-msudigits)]); /* .. */
+ }
+ else { /* all fits in msumax */
+ *msumax=*msumax+(Unit)(save*powers[msudigits-shift]); /* [maybe *1] */
+ }
+ } /* digits shift needed */
+
+ /* If whole units to rotate... */
+ if (units>0) { /* some to do */
+ /* Step 2: the units to touch are the whole ones in rotate, */
+ /* if any, and the shift is DECDPUN-msudigits (which may be */
+ /* 0, again) */
+ shift=DECDPUN-msudigits;
+ if (shift>0) { /* not an exact number of units */
+ uInt save=res->lsu[0]%powers[shift]; /* save low digit(s) */
+ decShiftToLeast(res->lsu, units, shift);
+ *msumax=*msumax+(Unit)(save*powers[msudigits]);
+ } /* partial shift needed */
+
+ /* Step 3: rotate the units array using triple reverse */
+ /* (reversing is easy and fast) */
+ decReverse(res->lsu+units, msumax); /* left part */
+ decReverse(res->lsu, res->lsu+units-1); /* right part */
+ decReverse(res->lsu, msumax); /* whole */
+ } /* whole units to rotate */
+ /* the rotation may have left an undetermined number of zeros */
+ /* on the left, so true length needs to be calculated */
+ res->digits=decGetDigits(res->lsu, msumax-res->lsu+1);
+ } /* rotate needed */
+ } /* rhs OK */
+ } /* numerics */
+ if (status!=0) decStatus(res, status, set);
+ return res;
+ } /* decNumberRotate */
/* ------------------------------------------------------------------ */
-/* decNumberSameQuantum -- test for equal exponents */
-/* */
-/* res is the result number, which will contain either 0 or 1 */
-/* lhs is a number to test */
-/* rhs is the second (usually a pattern) */
-/* */
-/* No errors are possible and no context is needed. */
+/* decNumberSameQuantum -- test for equal exponents */
+/* */
+/* res is the result number, which will contain either 0 or 1 */
+/* lhs is a number to test */
+/* rhs is the second (usually a pattern) */
+/* */
+/* No errors are possible and no context is needed. */
/* ------------------------------------------------------------------ */
-decNumber *
-decNumberSameQuantum (decNumber * res, const decNumber * lhs, const decNumber * rhs)
-{
- uByte merged; /* merged flags */
- Unit ret = 0; /* return value */
+decNumber * decNumberSameQuantum(decNumber *res, const decNumber *lhs,
+ const decNumber *rhs) {
+ Unit ret=0; /* return value */
-#if DECCHECK
- if (decCheckOperands (res, lhs, rhs, DECUNUSED))
- return res;
-#endif
+ #if DECCHECK
+ if (decCheckOperands(res, lhs, rhs, DECUNCONT)) return res;
+ #endif
- merged = (lhs->bits | rhs->bits) & DECSPECIAL;
- if (merged)
- {
- if (decNumberIsNaN (lhs) && decNumberIsNaN (rhs))
- ret = 1;
- else if (decNumberIsInfinite (lhs) && decNumberIsInfinite (rhs))
- ret = 1;
- /* [anything else with a special gives 0] */
+ if (SPECIALARGS) {
+ if (decNumberIsNaN(lhs) && decNumberIsNaN(rhs)) ret=1;
+ else if (decNumberIsInfinite(lhs) && decNumberIsInfinite(rhs)) ret=1;
+ /* [anything else with a special gives 0] */
}
- else if (lhs->exponent == rhs->exponent)
- ret = 1;
+ else if (lhs->exponent==rhs->exponent) ret=1;
- decNumberZero (res); /* OK to overwrite an operand */
- *res->lsu = ret;
+ decNumberZero(res); /* OK to overwrite an operand now */
+ *res->lsu=ret;
+ return res;
+ } /* decNumberSameQuantum */
+
+/* ------------------------------------------------------------------ */
+/* decNumberScaleB -- multiply by a power of 10 */
+/* */
+/* This computes C = A x 10**B where B is an integer (q=0) with */
+/* maximum magnitude 2*(emax+digits) */
+/* */
+/* res is C, the result. C may be A or B */
+/* lhs is A, the number to adjust */
+/* rhs is B, the requested power of ten to use */
+/* set is the context */
+/* */
+/* C must have space for set->digits digits. */
+/* */
+/* The result may underflow or overflow. */
+/* ------------------------------------------------------------------ */
+decNumber * decNumberScaleB(decNumber *res, const decNumber *lhs,
+ const decNumber *rhs, decContext *set) {
+ Int reqexp; /* requested exponent change [B] */
+ uInt status=0; /* accumulator */
+ Int residue; /* work */
+
+ #if DECCHECK
+ if (decCheckOperands(res, lhs, rhs, set)) return res;
+ #endif
+
+ /* Handle special values except lhs infinite */
+ if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs))
+ decNaNs(res, lhs, rhs, set, &status);
+ /* rhs must be an integer */
+ else if (decNumberIsInfinite(rhs) || rhs->exponent!=0)
+ status=DEC_Invalid_operation;
+ else {
+ /* lhs is a number; rhs is a finite with q==0 */
+ reqexp=decGetInt(rhs); /* [cannot fail] */
+ if (reqexp==BADINT /* something bad .. */
+ || reqexp==BIGODD || reqexp==BIGEVEN /* .. very big .. */
+ || abs(reqexp)>(2*(set->digits+set->emax))) /* .. or out of range */
+ status=DEC_Invalid_operation;
+ else { /* rhs is OK */
+ decNumberCopy(res, lhs); /* all done if infinite lhs */
+ if (!decNumberIsInfinite(res)) { /* prepare to scale */
+ res->exponent+=reqexp; /* adjust the exponent */
+ residue=0;
+ decFinalize(res, set, &residue, &status); /* .. and check */
+ } /* finite LHS */
+ } /* rhs OK */
+ } /* rhs finite */
+ if (status!=0) decStatus(res, status, set);
return res;
-}
+ } /* decNumberScaleB */
+
+/* ------------------------------------------------------------------ */
+/* decNumberShift -- shift the coefficient of a Number left or right */
+/* */
+/* This computes C = A << B or C = A >> -B (in base ten). */
+/* */
+/* res is C, the result. C may be A and/or B (e.g., X=X<<X) */
+/* lhs is A */
+/* rhs is B, the number of digits to shift (-ve to right) */
+/* set is the context */
+/* */
+/* The digits of the coefficient of A are shifted to the left (if B */
+/* is positive) or to the right (if B is negative) without adjusting */
+/* the exponent or the sign of A. */
+/* */
+/* B must be an integer (q=0) and in the range -set->digits through */
+/* +set->digits. */
+/* C must have space for set->digits digits. */
+/* NaNs are propagated as usual. Infinities are unaffected (but */
+/* B must be valid). No status is set unless B is invalid or an */
+/* operand is an sNaN. */
+/* ------------------------------------------------------------------ */
+decNumber * decNumberShift(decNumber *res, const decNumber *lhs,
+ const decNumber *rhs, decContext *set) {
+ uInt status=0; /* accumulator */
+ Int shift; /* rhs as an Int */
+
+ #if DECCHECK
+ if (decCheckOperands(res, lhs, rhs, set)) return res;
+ #endif
+
+ /* NaNs propagate as normal */
+ if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs))
+ decNaNs(res, lhs, rhs, set, &status);
+ /* rhs must be an integer */
+ else if (decNumberIsInfinite(rhs) || rhs->exponent!=0)
+ status=DEC_Invalid_operation;
+ else { /* both numeric, rhs is an integer */
+ shift=decGetInt(rhs); /* [cannot fail] */
+ if (shift==BADINT /* something bad .. */
+ || shift==BIGODD || shift==BIGEVEN /* .. very big .. */
+ || abs(shift)>set->digits) /* .. or out of range */
+ status=DEC_Invalid_operation;
+ else { /* rhs is OK */
+ decNumberCopy(res, lhs);
+ if (shift!=0 && !decNumberIsInfinite(res)) { /* something to do */
+ if (shift>0) { /* to left */
+ if (shift==set->digits) { /* removing all */
+ *res->lsu=0; /* so place 0 */
+ res->digits=1; /* .. */
+ }
+ else { /* */
+ /* first remove leading digits if necessary */
+ if (res->digits+shift>set->digits) {
+ decDecap(res, res->digits+shift-set->digits);
+ /* that updated res->digits; may have gone to 1 (for a */
+ /* single digit or for zero */
+ }
+ if (res->digits>1 || *res->lsu) /* if non-zero.. */
+ res->digits=decShiftToMost(res->lsu, res->digits, shift);
+ } /* partial left */
+ } /* left */
+ else { /* to right */
+ if (-shift>=res->digits) { /* discarding all */
+ *res->lsu=0; /* so place 0 */
+ res->digits=1; /* .. */
+ }
+ else {
+ decShiftToLeast(res->lsu, D2U(res->digits), -shift);
+ res->digits-=(-shift);
+ }
+ } /* to right */
+ } /* non-0 non-Inf shift */
+ } /* rhs OK */
+ } /* numerics */
+ if (status!=0) decStatus(res, status, set);
+ return res;
+ } /* decNumberShift */
/* ------------------------------------------------------------------ */
-/* decNumberSquareRoot -- square root operator */
-/* */
-/* This computes C = squareroot(A) */
-/* */
-/* res is C, the result. C may be A */
-/* rhs is A */
-/* set is the context; note that rounding mode has no effect */
-/* */
-/* C must have space for set->digits digits. */
+/* decNumberSquareRoot -- square root operator */
+/* */
+/* This computes C = squareroot(A) */
+/* */
+/* res is C, the result. C may be A */
+/* rhs is A */
+/* set is the context; note that rounding mode has no effect */
+/* */
+/* C must have space for set->digits digits. */
/* ------------------------------------------------------------------ */
-/* This uses the following varying-precision algorithm in: */
-/* */
+/* This uses the following varying-precision algorithm in: */
+/* */
/* Properly Rounded Variable Precision Square Root, T. E. Hull and */
/* A. Abrham, ACM Transactions on Mathematical Software, Vol 11 #3, */
-/* pp229-237, ACM, September 1985. */
-/* */
+/* pp229-237, ACM, September 1985. */
+/* */
+/* The square-root is calculated using Newton's method, after which */
+/* a check is made to ensure the result is correctly rounded. */
+/* */
/* % [Reformatted original Numerical Turing source code follows.] */
-/* function sqrt(x : real) : real */
+/* function sqrt(x : real) : real */
/* % sqrt(x) returns the properly rounded approximation to the square */
/* % root of x, in the precision of the calling environment, or it */
-/* % fails if x < 0. */
-/* % t e hull and a abrham, august, 1984 */
-/* if x <= 0 then */
-/* if x < 0 then */
-/* assert false */
-/* else */
-/* result 0 */
-/* end if */
-/* end if */
-/* var f := setexp(x, 0) % fraction part of x [0.1 <= x < 1] */
-/* var e := getexp(x) % exponent part of x */
-/* var approx : real */
-/* if e mod 2 = 0 then */
-/* approx := .259 + .819 * f % approx to root of f */
-/* else */
-/* f := f/l0 % adjustments */
-/* e := e + 1 % for odd */
-/* approx := .0819 + 2.59 * f % exponent */
-/* end if */
-/* */
-/* var p:= 3 */
-/* const maxp := currentprecision + 2 */
-/* loop */
-/* p := min(2*p - 2, maxp) % p = 4,6,10, . . . , maxp */
-/* precision p */
-/* approx := .5 * (approx + f/approx) */
-/* exit when p = maxp */
-/* end loop */
-/* */
+/* % fails if x < 0. */
+/* % t e hull and a abrham, august, 1984 */
+/* if x <= 0 then */
+/* if x < 0 then */
+/* assert false */
+/* else */
+/* result 0 */
+/* end if */
+/* end if */
+/* var f := setexp(x, 0) % fraction part of x [0.1 <= x < 1] */
+/* var e := getexp(x) % exponent part of x */
+/* var approx : real */
+/* if e mod 2 = 0 then */
+/* approx := .259 + .819 * f % approx to root of f */
+/* else */
+/* f := f/l0 % adjustments */
+/* e := e + 1 % for odd */
+/* approx := .0819 + 2.59 * f % exponent */
+/* end if */
+/* */
+/* var p:= 3 */
+/* const maxp := currentprecision + 2 */
+/* loop */
+/* p := min(2*p - 2, maxp) % p = 4,6,10, . . . , maxp */
+/* precision p */
+/* approx := .5 * (approx + f/approx) */
+/* exit when p = maxp */
+/* end loop */
+/* */
/* % approx is now within 1 ulp of the properly rounded square root */
/* % of f; to ensure proper rounding, compare squares of (approx - */
-/* % l/2 ulp) and (approx + l/2 ulp) with f. */
-/* p := currentprecision */
-/* begin */
-/* precision p + 2 */
-/* const approxsubhalf := approx - setexp(.5, -p) */
-/* if mulru(approxsubhalf, approxsubhalf) > f then */
-/* approx := approx - setexp(.l, -p + 1) */
-/* else */
-/* const approxaddhalf := approx + setexp(.5, -p) */
-/* if mulrd(approxaddhalf, approxaddhalf) < f then */
-/* approx := approx + setexp(.l, -p + 1) */
-/* end if */
-/* end if */
-/* end */
-/* result setexp(approx, e div 2) % fix exponent */
-/* end sqrt */
-/* ------------------------------------------------------------------ */
-decNumber *
-decNumberSquareRoot (decNumber * res, const decNumber * rhs, decContext * set)
-{
- decContext workset, approxset; /* work contexts */
- decNumber dzero; /* used for constant zero */
- Int maxp = set->digits + 2; /* largest working precision */
- Int residue = 0; /* rounding residue */
- uInt status = 0, ignore = 0; /* status accumulators */
- Int exp; /* working exponent */
- Int ideal; /* ideal (preferred) exponent */
- uInt needbytes; /* work */
- Int dropped; /* .. */
-
- decNumber *allocrhs = NULL; /* non-NULL if rounded rhs allocated */
+/* % l/2 ulp) and (approx + l/2 ulp) with f. */
+/* p := currentprecision */
+/* begin */
+/* precision p + 2 */
+/* const approxsubhalf := approx - setexp(.5, -p) */
+/* if mulru(approxsubhalf, approxsubhalf) > f then */
+/* approx := approx - setexp(.l, -p + 1) */
+/* else */
+/* const approxaddhalf := approx + setexp(.5, -p) */
+/* if mulrd(approxaddhalf, approxaddhalf) < f then */
+/* approx := approx + setexp(.l, -p + 1) */
+/* end if */
+/* end if */
+/* end */
+/* result setexp(approx, e div 2) % fix exponent */
+/* end sqrt */
+/* ------------------------------------------------------------------ */
+decNumber * decNumberSquareRoot(decNumber *res, const decNumber *rhs,
+ decContext *set) {
+ decContext workset, approxset; /* work contexts */
+ decNumber dzero; /* used for constant zero */
+ Int maxp; /* largest working precision */
+ Int workp; /* working precision */
+ Int residue=0; /* rounding residue */
+ uInt status=0, ignore=0; /* status accumulators */
+ uInt rstatus; /* .. */
+ Int exp; /* working exponent */
+ Int ideal; /* ideal (preferred) exponent */
+ Int needbytes; /* work */
+ Int dropped; /* .. */
+
+ #if DECSUBSET
+ decNumber *allocrhs=NULL; /* non-NULL if rounded rhs allocated */
+ #endif
/* buffer for f [needs +1 in case DECBUFFER 0] */
- uByte buff[sizeof (decNumber) + (D2U (DECBUFFER + 1) - 1) * sizeof (Unit)];
- /* buffer for a [needs +2 to match maxp] */
- uByte bufa[sizeof (decNumber) + (D2U (DECBUFFER + 2) - 1) * sizeof (Unit)];
+ decNumber buff[D2N(DECBUFFER+1)];
+ /* buffer for a [needs +2 to match likely maxp] */
+ decNumber bufa[D2N(DECBUFFER+2)];
/* buffer for temporary, b [must be same size as a] */
- uByte bufb[sizeof (decNumber) + (D2U (DECBUFFER + 2) - 1) * sizeof (Unit)];
- decNumber *allocbuff = NULL; /* -> allocated buff, iff allocated */
- decNumber *allocbufa = NULL; /* -> allocated bufa, iff allocated */
- decNumber *allocbufb = NULL; /* -> allocated bufb, iff allocated */
- decNumber *f = (decNumber *) buff; /* reduced fraction */
- decNumber *a = (decNumber *) bufa; /* approximation to result */
- decNumber *b = (decNumber *) bufb; /* intermediate result */
+ decNumber bufb[D2N(DECBUFFER+2)];
+ decNumber *allocbuff=NULL; /* -> allocated buff, iff allocated */
+ decNumber *allocbufa=NULL; /* -> allocated bufa, iff allocated */
+ decNumber *allocbufb=NULL; /* -> allocated bufb, iff allocated */
+ decNumber *f=buff; /* reduced fraction */
+ decNumber *a=bufa; /* approximation to result */
+ decNumber *b=bufb; /* intermediate result */
/* buffer for temporary variable, up to 3 digits */
- uByte buft[sizeof (decNumber) + (D2U (3) - 1) * sizeof (Unit)];
- decNumber *t = (decNumber *) buft; /* up-to-3-digit constant or work */
-
-#if DECCHECK
- if (decCheckOperands (res, DECUNUSED, rhs, set))
- return res;
-#endif
-
- do
- { /* protect allocated storage */
-#if DECSUBSET
- if (!set->extended)
- {
- /* reduce operand and set lostDigits status, as needed */
- if (rhs->digits > set->digits)
- {
- allocrhs = decRoundOperand (rhs, set, &status);
- if (allocrhs == NULL)
- break;
- /* [Note: 'f' allocation below could reuse this buffer if */
- /* used, but as this is rare we keep them separate for clarity.] */
- rhs = allocrhs;
- }
+ decNumber buft[D2N(3)];
+ decNumber *t=buft; /* up-to-3-digit constant or work */
+
+ #if DECCHECK
+ if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
+ #endif
+
+ do { /* protect allocated storage */
+ #if DECSUBSET
+ if (!set->extended) {
+ /* reduce operand and set lostDigits status, as needed */
+ if (rhs->digits>set->digits) {
+ allocrhs=decRoundOperand(rhs, set, &status);
+ if (allocrhs==NULL) break;
+ /* [Note: 'f' allocation below could reuse this buffer if */
+ /* used, but as this is rare they are kept separate for clarity.] */
+ rhs=allocrhs;
}
-#endif
- /* [following code does not require input rounding] */
-
- /* handle infinities and NaNs */
- if (rhs->bits & DECSPECIAL)
- {
- if (decNumberIsInfinite (rhs))
- { /* an infinity */
- if (decNumberIsNegative (rhs))
- status |= DEC_Invalid_operation;
- else
- decNumberCopy (res, rhs); /* +Infinity */
- }
- else
- decNaNs (res, rhs, NULL, &status); /* a NaN */
- break;
+ }
+ #endif
+ /* [following code does not require input rounding] */
+
+ /* handle infinities and NaNs */
+ if (SPECIALARG) {
+ if (decNumberIsInfinite(rhs)) { /* an infinity */
+ if (decNumberIsNegative(rhs)) status|=DEC_Invalid_operation;
+ else decNumberCopy(res, rhs); /* +Infinity */
}
+ else decNaNs(res, rhs, NULL, set, &status); /* a NaN */
+ break;
+ }
- /* calculate the ideal (preferred) exponent [floor(exp/2)] */
- /* [We would like to write: ideal=rhs->exponent>>1, but this */
- /* generates a compiler warning. Generated code is the same.] */
- ideal = (rhs->exponent & ~1) / 2; /* target */
+ /* calculate the ideal (preferred) exponent [floor(exp/2)] */
+ /* [We would like to write: ideal=rhs->exponent>>1, but this */
+ /* generates a compiler warning. Generated code is the same.] */
+ ideal=(rhs->exponent&~1)/2; /* target */
+
+ /* handle zeros */
+ if (ISZERO(rhs)) {
+ decNumberCopy(res, rhs); /* could be 0 or -0 */
+ res->exponent=ideal; /* use the ideal [safe] */
+ /* use decFinish to clamp any out-of-range exponent, etc. */
+ decFinish(res, set, &residue, &status);
+ break;
+ }
- /* handle zeros */
- if (ISZERO (rhs))
- {
- decNumberCopy (res, rhs); /* could be 0 or -0 */
- res->exponent = ideal; /* use the ideal [safe] */
- break;
- }
+ /* any other -x is an oops */
+ if (decNumberIsNegative(rhs)) {
+ status|=DEC_Invalid_operation;
+ break;
+ }
- /* any other -x is an oops */
- if (decNumberIsNegative (rhs))
- {
- status |= DEC_Invalid_operation;
- break;
- }
+ /* space is needed for three working variables */
+ /* f -- the same precision as the RHS, reduced to 0.01->0.99... */
+ /* a -- Hull's approximation -- precision, when assigned, is */
+ /* currentprecision+1 or the input argument precision, */
+ /* whichever is larger (+2 for use as temporary) */
+ /* b -- intermediate temporary result (same size as a) */
+ /* if any is too long for local storage, then allocate */
+ workp=MAXI(set->digits+1, rhs->digits); /* actual rounding precision */
+ maxp=workp+2; /* largest working precision */
+
+ needbytes=sizeof(decNumber)+(D2U(rhs->digits)-1)*sizeof(Unit);
+ if (needbytes>(Int)sizeof(buff)) {
+ allocbuff=(decNumber *)malloc(needbytes);
+ if (allocbuff==NULL) { /* hopeless -- abandon */
+ status|=DEC_Insufficient_storage;
+ break;}
+ f=allocbuff; /* use the allocated space */
+ }
+ /* a and b both need to be able to hold a maxp-length number */
+ needbytes=sizeof(decNumber)+(D2U(maxp)-1)*sizeof(Unit);
+ if (needbytes>(Int)sizeof(bufa)) { /* [same applies to b] */
+ allocbufa=(decNumber *)malloc(needbytes);
+ allocbufb=(decNumber *)malloc(needbytes);
+ if (allocbufa==NULL || allocbufb==NULL) { /* hopeless */
+ status|=DEC_Insufficient_storage;
+ break;}
+ a=allocbufa; /* use the allocated spaces */
+ b=allocbufb; /* .. */
+ }
- /* we need space for three working variables */
- /* f -- the same precision as the RHS, reduced to 0.01->0.99... */
- /* a -- Hull's approx -- precision, when assigned, is */
- /* currentprecision (we allow +2 for use as temporary) */
- /* b -- intermediate temporary result */
- /* if any is too long for local storage, then allocate */
- needbytes =
- sizeof (decNumber) + (D2U (rhs->digits) - 1) * sizeof (Unit);
- if (needbytes > sizeof (buff))
- {
- allocbuff = (decNumber *) malloc (needbytes);
- if (allocbuff == NULL)
- { /* hopeless -- abandon */
- status |= DEC_Insufficient_storage;
- break;
- }
- f = allocbuff; /* use the allocated space */
- }
- /* a and b both need to be able to hold a maxp-length number */
- needbytes = sizeof (decNumber) + (D2U (maxp) - 1) * sizeof (Unit);
- if (needbytes > sizeof (bufa))
- { /* [same applies to b] */
- allocbufa = (decNumber *) malloc (needbytes);
- allocbufb = (decNumber *) malloc (needbytes);
- if (allocbufa == NULL || allocbufb == NULL)
- { /* hopeless */
- status |= DEC_Insufficient_storage;
- break;
- }
- a = allocbufa; /* use the allocated space */
- b = allocbufb; /* .. */
- }
+ /* copy rhs -> f, save exponent, and reduce so 0.1 <= f < 1 */
+ decNumberCopy(f, rhs);
+ exp=f->exponent+f->digits; /* adjusted to Hull rules */
+ f->exponent=-(f->digits); /* to range */
+
+ /* set up working context */
+ decContextDefault(&workset, DEC_INIT_DECIMAL64);
+
+ /* [Until further notice, no error is possible and status bits */
+ /* (Rounded, etc.) should be ignored, not accumulated.] */
+
+ /* Calculate initial approximation, and allow for odd exponent */
+ workset.digits=workp; /* p for initial calculation */
+ t->bits=0; t->digits=3;
+ a->bits=0; a->digits=3;
+ if ((exp & 1)==0) { /* even exponent */
+ /* Set t=0.259, a=0.819 */
+ t->exponent=-3;
+ a->exponent=-3;
+ #if DECDPUN>=3
+ t->lsu[0]=259;
+ a->lsu[0]=819;
+ #elif DECDPUN==2
+ t->lsu[0]=59; t->lsu[1]=2;
+ a->lsu[0]=19; a->lsu[1]=8;
+ #else
+ t->lsu[0]=9; t->lsu[1]=5; t->lsu[2]=2;
+ a->lsu[0]=9; a->lsu[1]=1; a->lsu[2]=8;
+ #endif
+ }
+ else { /* odd exponent */
+ /* Set t=0.0819, a=2.59 */
+ f->exponent--; /* f=f/10 */
+ exp++; /* e=e+1 */
+ t->exponent=-4;
+ a->exponent=-2;
+ #if DECDPUN>=3
+ t->lsu[0]=819;
+ a->lsu[0]=259;
+ #elif DECDPUN==2
+ t->lsu[0]=19; t->lsu[1]=8;
+ a->lsu[0]=59; a->lsu[1]=2;
+ #else
+ t->lsu[0]=9; t->lsu[1]=1; t->lsu[2]=8;
+ a->lsu[0]=9; a->lsu[1]=5; a->lsu[2]=2;
+ #endif
+ }
+ decMultiplyOp(a, a, f, &workset, &ignore); /* a=a*f */
+ decAddOp(a, a, t, &workset, 0, &ignore); /* ..+t */
+ /* [a is now the initial approximation for sqrt(f), calculated with */
+ /* currentprecision, which is also a's precision.] */
+
+ /* the main calculation loop */
+ decNumberZero(&dzero); /* make 0 */
+ decNumberZero(t); /* set t = 0.5 */
+ t->lsu[0]=5; /* .. */
+ t->exponent=-1; /* .. */
+ workset.digits=3; /* initial p */
+ for (;;) {
+ /* set p to min(2*p - 2, maxp) [hence 3; or: 4, 6, 10, ... , maxp] */
+ workset.digits=workset.digits*2-2;
+ if (workset.digits>maxp) workset.digits=maxp;
+ /* a = 0.5 * (a + f/a) */
+ /* [calculated at p then rounded to currentprecision] */
+ decDivideOp(b, f, a, &workset, DIVIDE, &ignore); /* b=f/a */
+ decAddOp(b, b, a, &workset, 0, &ignore); /* b=b+a */
+ decMultiplyOp(a, b, t, &workset, &ignore); /* a=b*0.5 */
+ if (a->digits==maxp) break; /* have required digits */
+ } /* loop */
+
+ /* Here, 0.1 <= a < 1 [Hull], and a has maxp digits */
+ /* now reduce to length, etc.; this needs to be done with a */
+ /* having the correct exponent so as to handle subnormals */
+ /* correctly */
+ approxset=*set; /* get emin, emax, etc. */
+ approxset.round=DEC_ROUND_HALF_EVEN;
+ a->exponent+=exp/2; /* set correct exponent */
+
+ rstatus=0; /* clear status */
+ residue=0; /* .. and accumulator */
+ decCopyFit(a, a, &approxset, &residue, &rstatus); /* reduce (if needed) */
+ decFinish(a, &approxset, &residue, &rstatus); /* clean and finalize */
+
+ /* Overflow was possible if the input exponent was out-of-range, */
+ /* in which case quit */
+ if (rstatus&DEC_Overflow) {
+ status=rstatus; /* use the status as-is */
+ decNumberCopy(res, a); /* copy to result */
+ break;
+ }
- /* copy rhs -> f, save exponent, and reduce so 0.1 <= f < 1 */
- decNumberCopy (f, rhs);
- exp = f->exponent + f->digits; /* adjusted to Hull rules */
- f->exponent = -(f->digits); /* to range */
-
- /* set up working contexts (the second is used for Numerical */
- /* Turing assignment) */
- decContextDefault (&workset, DEC_INIT_DECIMAL64);
- decContextDefault (&approxset, DEC_INIT_DECIMAL64);
- approxset.digits = set->digits; /* approx's length */
-
- /* [Until further notice, no error is possible and status bits */
- /* (Rounded, etc.) should be ignored, not accumulated.] */
-
- /* Calculate initial approximation, and allow for odd exponent */
- workset.digits = set->digits; /* p for initial calculation */
- t->bits = 0;
- t->digits = 3;
- a->bits = 0;
- a->digits = 3;
- if ((exp & 1) == 0)
- { /* even exponent */
- /* Set t=0.259, a=0.819 */
- t->exponent = -3;
- a->exponent = -3;
-#if DECDPUN>=3
- t->lsu[0] = 259;
- a->lsu[0] = 819;
-#elif DECDPUN==2
- t->lsu[0] = 59;
- t->lsu[1] = 2;
- a->lsu[0] = 19;
- a->lsu[1] = 8;
-#else
- t->lsu[0] = 9;
- t->lsu[1] = 5;
- t->lsu[2] = 2;
- a->lsu[0] = 9;
- a->lsu[1] = 1;
- a->lsu[2] = 8;
-#endif
- }
- else
- { /* odd exponent */
- /* Set t=0.0819, a=2.59 */
- f->exponent--; /* f=f/10 */
- exp++; /* e=e+1 */
- t->exponent = -4;
- a->exponent = -2;
-#if DECDPUN>=3
- t->lsu[0] = 819;
- a->lsu[0] = 259;
-#elif DECDPUN==2
- t->lsu[0] = 19;
- t->lsu[1] = 8;
- a->lsu[0] = 59;
- a->lsu[1] = 2;
-#else
- t->lsu[0] = 9;
- t->lsu[1] = 1;
- t->lsu[2] = 8;
- a->lsu[0] = 9;
- a->lsu[1] = 5;
- a->lsu[2] = 2;
-#endif
- }
- decMultiplyOp (a, a, f, &workset, &ignore); /* a=a*f */
- decAddOp (a, a, t, &workset, 0, &ignore); /* ..+t */
- /* [a is now the initial approximation for sqrt(f), calculated with */
- /* currentprecision, which is also a's precision.] */
-
- /* the main calculation loop */
- decNumberZero (&dzero); /* make 0 */
- decNumberZero (t); /* set t = 0.5 */
- t->lsu[0] = 5; /* .. */
- t->exponent = -1; /* .. */
- workset.digits = 3; /* initial p */
- for (;;)
- {
- /* set p to min(2*p - 2, maxp) [hence 3; or: 4, 6, 10, ... , maxp] */
- workset.digits = workset.digits * 2 - 2;
- if (workset.digits > maxp)
- workset.digits = maxp;
- /* a = 0.5 * (a + f/a) */
- /* [calculated at p then rounded to currentprecision] */
- decDivideOp (b, f, a, &workset, DIVIDE, &ignore); /* b=f/a */
- decAddOp (b, b, a, &workset, 0, &ignore); /* b=b+a */
- decMultiplyOp (a, b, t, &workset, &ignore); /* a=b*0.5 */
- /* assign to approx [round to length] */
- decAddOp (a, &dzero, a, &approxset, 0, &ignore);
- if (workset.digits == maxp)
- break; /* just did final */
- } /* loop */
-
- /* a is now at currentprecision and within 1 ulp of the properly */
- /* rounded square root of f; to ensure proper rounding, compare */
- /* squares of (a - l/2 ulp) and (a + l/2 ulp) with f. */
- /* Here workset.digits=maxp and t=0.5 */
- workset.digits--; /* maxp-1 is OK now */
- t->exponent = -set->digits - 1; /* make 0.5 ulp */
- decNumberCopy (b, a);
- decAddOp (b, b, t, &workset, DECNEG, &ignore); /* b = a - 0.5 ulp */
- workset.round = DEC_ROUND_UP;
- decMultiplyOp (b, b, b, &workset, &ignore); /* b = mulru(b, b) */
- decCompareOp (b, f, b, &workset, COMPARE, &ignore); /* b ? f, reversed */
- if (decNumberIsNegative (b))
- { /* f < b [i.e., b > f] */
- /* this is the more common adjustment, though both are rare */
- t->exponent++; /* make 1.0 ulp */
- t->lsu[0] = 1; /* .. */
- decAddOp (a, a, t, &workset, DECNEG, &ignore); /* a = a - 1 ulp */
- /* assign to approx [round to length] */
- decAddOp (a, &dzero, a, &approxset, 0, &ignore);
- }
- else
- {
- decNumberCopy (b, a);
- decAddOp (b, b, t, &workset, 0, &ignore); /* b = a + 0.5 ulp */
- workset.round = DEC_ROUND_DOWN;
- decMultiplyOp (b, b, b, &workset, &ignore); /* b = mulrd(b, b) */
- decCompareOp (b, b, f, &workset, COMPARE, &ignore); /* b ? f */
- if (decNumberIsNegative (b))
- { /* b < f */
- t->exponent++; /* make 1.0 ulp */
- t->lsu[0] = 1; /* .. */
- decAddOp (a, a, t, &workset, 0, &ignore); /* a = a + 1 ulp */
- /* assign to approx [round to length] */
- decAddOp (a, &dzero, a, &approxset, 0, &ignore);
- }
+ /* Preserve status except Inexact/Rounded */
+ status|=(rstatus & ~(DEC_Rounded|DEC_Inexact));
+
+ /* Carry out the Hull correction */
+ a->exponent-=exp/2; /* back to 0.1->1 */
+
+ /* a is now at final precision and within 1 ulp of the properly */
+ /* rounded square root of f; to ensure proper rounding, compare */
+ /* squares of (a - l/2 ulp) and (a + l/2 ulp) with f. */
+ /* Here workset.digits=maxp and t=0.5, and a->digits determines */
+ /* the ulp */
+ workset.digits--; /* maxp-1 is OK now */
+ t->exponent=-a->digits-1; /* make 0.5 ulp */
+ decAddOp(b, a, t, &workset, DECNEG, &ignore); /* b = a - 0.5 ulp */
+ workset.round=DEC_ROUND_UP;
+ decMultiplyOp(b, b, b, &workset, &ignore); /* b = mulru(b, b) */
+ decCompareOp(b, f, b, &workset, COMPARE, &ignore); /* b ? f, reversed */
+ if (decNumberIsNegative(b)) { /* f < b [i.e., b > f] */
+ /* this is the more common adjustment, though both are rare */
+ t->exponent++; /* make 1.0 ulp */
+ t->lsu[0]=1; /* .. */
+ decAddOp(a, a, t, &workset, DECNEG, &ignore); /* a = a - 1 ulp */
+ /* assign to approx [round to length] */
+ approxset.emin-=exp/2; /* adjust to match a */
+ approxset.emax-=exp/2;
+ decAddOp(a, &dzero, a, &approxset, 0, &ignore);
+ }
+ else {
+ decAddOp(b, a, t, &workset, 0, &ignore); /* b = a + 0.5 ulp */
+ workset.round=DEC_ROUND_DOWN;
+ decMultiplyOp(b, b, b, &workset, &ignore); /* b = mulrd(b, b) */
+ decCompareOp(b, b, f, &workset, COMPARE, &ignore); /* b ? f */
+ if (decNumberIsNegative(b)) { /* b < f */
+ t->exponent++; /* make 1.0 ulp */
+ t->lsu[0]=1; /* .. */
+ decAddOp(a, a, t, &workset, 0, &ignore); /* a = a + 1 ulp */
+ /* assign to approx [round to length] */
+ approxset.emin-=exp/2; /* adjust to match a */
+ approxset.emax-=exp/2;
+ decAddOp(a, &dzero, a, &approxset, 0, &ignore);
}
- /* [no errors are possible in the above, and rounding/inexact during */
- /* estimation are irrelevant, so status was not accumulated] */
-
- /* Here, 0.1 <= a < 1 [Hull] */
- a->exponent += exp / 2; /* set correct exponent */
-
- /* Process Subnormals */
- decFinalize (a, set, &residue, &status);
-
- /* count dropable zeros [after any subnormal rounding] */
- decNumberCopy (b, a);
- decTrim (b, 1, &dropped); /* [drops trailing zeros] */
-
- /* Finally set Inexact and Rounded. The answer can only be exact if */
- /* it is short enough so that squaring it could fit in set->digits, */
- /* so this is the only (relatively rare) time we have to check */
- /* carefully */
- if (b->digits * 2 - 1 > set->digits)
- { /* cannot fit */
- status |= DEC_Inexact | DEC_Rounded;
+ }
+ /* [no errors are possible in the above, and rounding/inexact during */
+ /* estimation are irrelevant, so status was not accumulated] */
+
+ /* Here, 0.1 <= a < 1 (still), so adjust back */
+ a->exponent+=exp/2; /* set correct exponent */
+
+ /* count droppable zeros [after any subnormal rounding] by */
+ /* trimming a copy */
+ decNumberCopy(b, a);
+ decTrim(b, set, 1, &dropped); /* [drops trailing zeros] */
+
+ /* Set Inexact and Rounded. The answer can only be exact if */
+ /* it is short enough so that squaring it could fit in workp digits, */
+ /* and it cannot have trailing zeros due to clamping, so these are */
+ /* the only (relatively rare) conditions a careful check is needed */
+ if (b->digits*2-1 > workp && !set->clamp) { /* cannot fit */
+ status|=DEC_Inexact|DEC_Rounded;
+ }
+ else { /* could be exact/unrounded */
+ uInt mstatus=0; /* local status */
+ decMultiplyOp(b, b, b, &workset, &mstatus); /* try the multiply */
+ if (mstatus&DEC_Overflow) { /* result just won't fit */
+ status|=DEC_Inexact|DEC_Rounded;
}
- else
- { /* could be exact/unrounded */
- uInt mstatus = 0; /* local status */
- decMultiplyOp (b, b, b, &workset, &mstatus); /* try the multiply */
- if (mstatus != 0)
- { /* result won't fit */
- status |= DEC_Inexact | DEC_Rounded;
- }
- else
- { /* plausible */
- decCompareOp (t, b, rhs, &workset, COMPARE, &mstatus); /* b ? rhs */
- if (!ISZERO (t))
- {
- status |= DEC_Inexact | DEC_Rounded;
- }
- else
- { /* is Exact */
- /* here, dropped is the count of trailing zeros in 'a' */
- /* use closest exponent to ideal... */
- Int todrop = ideal - a->exponent; /* most we can drop */
-
- if (todrop < 0)
- { /* ideally would add 0s */
- status |= DEC_Rounded;
- }
- else
- { /* unrounded */
- if (dropped < todrop)
- todrop = dropped; /* clamp to those available */
- if (todrop > 0)
- { /* OK, some to drop */
- decShiftToLeast (a->lsu, D2U (a->digits), todrop);
- a->exponent += todrop; /* maintain numerical value */
- a->digits -= todrop; /* new length */
- }
- }
- }
+ else { /* plausible */
+ decCompareOp(t, b, rhs, &workset, COMPARE, &mstatus); /* b ? rhs */
+ if (!ISZERO(t)) status|=DEC_Inexact|DEC_Rounded; /* not equal */
+ else { /* is Exact */
+ /* here, dropped is the count of trailing zeros in 'a' */
+ /* use closest exponent to ideal... */
+ Int todrop=ideal-a->exponent; /* most that can be dropped */
+ if (todrop<0) status|=DEC_Rounded; /* ideally would add 0s */
+ else { /* unrounded */
+ if (dropped<todrop) { /* clamp to those available */
+ todrop=dropped;
+ status|=DEC_Clamped;
+ }
+ if (todrop>0) { /* have some to drop */
+ decShiftToLeast(a->lsu, D2U(a->digits), todrop);
+ a->exponent+=todrop; /* maintain numerical value */
+ a->digits-=todrop; /* new length */
+ }
}
+ }
}
- decNumberCopy (res, a); /* assume this is the result */
- }
- while (0); /* end protected */
-
- if (allocbuff != NULL)
- free (allocbuff); /* drop any storage we used */
- if (allocbufa != NULL)
- free (allocbufa); /* .. */
- if (allocbufb != NULL)
- free (allocbufb); /* .. */
- if (allocrhs != NULL)
- free (allocrhs); /* .. */
- if (status != 0)
- decStatus (res, status, set); /* then report status */
+ }
+
+ /* double-check Underflow, as perhaps the result could not have */
+ /* been subnormal (initial argument too big), or it is now Exact */
+ if (status&DEC_Underflow) {
+ Int ae=rhs->exponent+rhs->digits-1; /* adjusted exponent */
+ /* check if truly subnormal */
+ #if DECEXTFLAG /* DEC_Subnormal too */
+ if (ae>=set->emin*2) status&=~(DEC_Subnormal|DEC_Underflow);
+ #else
+ if (ae>=set->emin*2) status&=~DEC_Underflow;
+ #endif
+ /* check if truly inexact */
+ if (!(status&DEC_Inexact)) status&=~DEC_Underflow;
+ }
+
+ decNumberCopy(res, a); /* a is now the result */
+ } while(0); /* end protected */
+
+ if (allocbuff!=NULL) free(allocbuff); /* drop any storage used */
+ if (allocbufa!=NULL) free(allocbufa); /* .. */
+ if (allocbufb!=NULL) free(allocbufb); /* .. */
+ #if DECSUBSET
+ if (allocrhs !=NULL) free(allocrhs); /* .. */
+ #endif
+ if (status!=0) decStatus(res, status, set);/* then report status */
+ #if DECCHECK
+ decCheckInexact(res, set);
+ #endif
return res;
-}
-
-/* ------------------------------------------------------------------ */
-/* decNumberSubtract -- subtract two Numbers */
-/* */
-/* This computes C = A - B */
-/* */
-/* res is C, the result. C may be A and/or B (e.g., X=X-X) */
-/* lhs is A */
-/* rhs is B */
-/* set is the context */
-/* */
-/* C must have space for set->digits digits. */
-/* ------------------------------------------------------------------ */
-decNumber *
-decNumberSubtract (decNumber * res, const decNumber * lhs,
- const decNumber * rhs, decContext * set)
-{
- uInt status = 0; /* accumulator */
-
- decAddOp (res, lhs, rhs, set, DECNEG, &status);
- if (status != 0)
- decStatus (res, status, set);
+ } /* decNumberSquareRoot */
+
+/* ------------------------------------------------------------------ */
+/* decNumberSubtract -- subtract two Numbers */
+/* */
+/* This computes C = A - B */
+/* */
+/* res is C, the result. C may be A and/or B (e.g., X=X-X) */
+/* lhs is A */
+/* rhs is B */
+/* set is the context */
+/* */
+/* C must have space for set->digits digits. */
+/* ------------------------------------------------------------------ */
+decNumber * decNumberSubtract(decNumber *res, const decNumber *lhs,
+ const decNumber *rhs, decContext *set) {
+ uInt status=0; /* accumulator */
+
+ decAddOp(res, lhs, rhs, set, DECNEG, &status);
+ if (status!=0) decStatus(res, status, set);
+ #if DECCHECK
+ decCheckInexact(res, set);
+ #endif
return res;
-}
-
-/* ------------------------------------------------------------------ */
-/* decNumberToIntegralValue -- round-to-integral-value */
-/* */
-/* res is the result */
-/* rhs is input number */
-/* set is the context */
-/* */
-/* res must have space for any value of rhs. */
-/* */
-/* This implements the IEEE special operator and therefore treats */
-/* special values as valid, and also never sets Inexact. For finite */
-/* numbers it returns rescale(rhs, 0) if rhs->exponent is <0. */
-/* Otherwise the result is rhs (so no error is possible). */
-/* */
+ } /* decNumberSubtract */
+
+/* ------------------------------------------------------------------ */
+/* decNumberToIntegralExact -- round-to-integral-value with InExact */
+/* decNumberToIntegralValue -- round-to-integral-value */
+/* */
+/* res is the result */
+/* rhs is input number */
+/* set is the context */
+/* */
+/* res must have space for any value of rhs. */
+/* */
+/* This implements the IEEE special operators and therefore treats */
+/* special values as valid. For finite numbers it returns */
+/* rescale(rhs, 0) if rhs->exponent is <0. */
+/* Otherwise the result is rhs (so no error is possible, except for */
+/* sNaN). */
+/* */
/* The context is used for rounding mode and status after sNaN, but */
-/* the digits setting is ignored. */
+/* the digits setting is ignored. The Exact version will signal */
+/* Inexact if the result differs numerically from rhs; the other */
+/* never signals Inexact. */
/* ------------------------------------------------------------------ */
-decNumber *
-decNumberToIntegralValue (decNumber * res, const decNumber * rhs, decContext * set)
-{
+decNumber * decNumberToIntegralExact(decNumber *res, const decNumber *rhs,
+ decContext *set) {
decNumber dn;
- decContext workset; /* working context */
+ decContext workset; /* working context */
+ uInt status=0; /* accumulator */
-#if DECCHECK
- if (decCheckOperands (res, DECUNUSED, rhs, set))
- return res;
-#endif
+ #if DECCHECK
+ if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
+ #endif
/* handle infinities and NaNs */
- if (rhs->bits & DECSPECIAL)
- {
- uInt status = 0;
- if (decNumberIsInfinite (rhs))
- decNumberCopy (res, rhs); /* an Infinity */
- else
- decNaNs (res, rhs, NULL, &status); /* a NaN */
- if (status != 0)
- decStatus (res, status, set);
- return res;
+ if (SPECIALARG) {
+ if (decNumberIsInfinite(rhs)) decNumberCopy(res, rhs); /* an Infinity */
+ else decNaNs(res, rhs, NULL, set, &status); /* a NaN */
+ }
+ else { /* finite */
+ /* have a finite number; no error possible (res must be big enough) */
+ if (rhs->exponent>=0) return decNumberCopy(res, rhs);
+ /* that was easy, but if negative exponent there is work to do... */
+ workset=*set; /* clone rounding, etc. */
+ workset.digits=rhs->digits; /* no length rounding */
+ workset.traps=0; /* no traps */
+ decNumberZero(&dn); /* make a number with exponent 0 */
+ decNumberQuantize(res, rhs, &dn, &workset);
+ status|=workset.status;
+ }
+ if (status!=0) decStatus(res, status, set);
+ return res;
+ } /* decNumberToIntegralExact */
+
+decNumber * decNumberToIntegralValue(decNumber *res, const decNumber *rhs,
+ decContext *set) {
+ decContext workset=*set; /* working context */
+ workset.traps=0; /* no traps */
+ decNumberToIntegralExact(res, rhs, &workset);
+ /* this never affects set, except for sNaNs; NaN will have been set */
+ /* or propagated already, so no need to call decStatus */
+ set->status|=workset.status&DEC_Invalid_operation;
+ return res;
+ } /* decNumberToIntegralValue */
+
+/* ------------------------------------------------------------------ */
+/* decNumberXor -- XOR two Numbers, digitwise */
+/* */
+/* This computes C = A ^ B */
+/* */
+/* res is C, the result. C may be A and/or B (e.g., X=X^X) */
+/* lhs is A */
+/* rhs is B */
+/* set is the context (used for result length and error report) */
+/* */
+/* C must have space for set->digits digits. */
+/* */
+/* Logical function restrictions apply (see above); a NaN is */
+/* returned with Invalid_operation if a restriction is violated. */
+/* ------------------------------------------------------------------ */
+decNumber * decNumberXor(decNumber *res, const decNumber *lhs,
+ const decNumber *rhs, decContext *set) {
+ const Unit *ua, *ub; /* -> operands */
+ const Unit *msua, *msub; /* -> operand msus */
+ Unit *uc, *msuc; /* -> result and its msu */
+ Int msudigs; /* digits in res msu */
+ #if DECCHECK
+ if (decCheckOperands(res, lhs, rhs, set)) return res;
+ #endif
+
+ if (lhs->exponent!=0 || decNumberIsSpecial(lhs) || decNumberIsNegative(lhs)
+ || rhs->exponent!=0 || decNumberIsSpecial(rhs) || decNumberIsNegative(rhs)) {
+ decStatus(res, DEC_Invalid_operation, set);
+ return res;
}
+ /* operands are valid */
+ ua=lhs->lsu; /* bottom-up */
+ ub=rhs->lsu; /* .. */
+ uc=res->lsu; /* .. */
+ msua=ua+D2U(lhs->digits)-1; /* -> msu of lhs */
+ msub=ub+D2U(rhs->digits)-1; /* -> msu of rhs */
+ msuc=uc+D2U(set->digits)-1; /* -> msu of result */
+ msudigs=MSUDIGITS(set->digits); /* [faster than remainder] */
+ for (; uc<=msuc; ua++, ub++, uc++) { /* Unit loop */
+ Unit a, b; /* extract units */
+ if (ua>msua) a=0;
+ else a=*ua;
+ if (ub>msub) b=0;
+ else b=*ub;
+ *uc=0; /* can now write back */
+ if (a|b) { /* maybe 1 bits to examine */
+ Int i, j;
+ /* This loop could be unrolled and/or use BIN2BCD tables */
+ for (i=0; i<DECDPUN; i++) {
+ if ((a^b)&1) *uc=*uc+(Unit)powers[i]; /* effect XOR */
+ j=a%10;
+ a=a/10;
+ j|=b%10;
+ b=b/10;
+ if (j>1) {
+ decStatus(res, DEC_Invalid_operation, set);
+ return res;
+ }
+ if (uc==msuc && i==msudigs-1) break; /* just did final digit */
+ } /* each digit */
+ } /* non-zero */
+ } /* each unit */
+ /* [here uc-1 is the msu of the result] */
+ res->digits=decGetDigits(res->lsu, uc-res->lsu);
+ res->exponent=0; /* integer */
+ res->bits=0; /* sign=0 */
+ return res; /* [no status to set] */
+ } /* decNumberXor */
- /* we have a finite number; no error possible */
- if (rhs->exponent >= 0)
- return decNumberCopy (res, rhs);
- /* that was easy, but if negative exponent we have work to do... */
- workset = *set; /* clone rounding, etc. */
- workset.digits = rhs->digits; /* no length rounding */
- workset.traps = 0; /* no traps */
- decNumberZero (&dn); /* make a number with exponent 0 */
- return decNumberQuantize (res, rhs, &dn, &workset);
-}
/* ================================================================== */
-/* Utility routines */
+/* Utility routines */
/* ================================================================== */
/* ------------------------------------------------------------------ */
-/* decNumberCopy -- copy a number */
-/* */
-/* dest is the target decNumber */
-/* src is the source decNumber */
-/* returns dest */
-/* */
-/* (dest==src is allowed and is a no-op) */
-/* All fields are updated as required. This is a utility operation, */
-/* so special values are unchanged and no error is possible. */
+/* decNumberClass -- return the decClass of a decNumber */
+/* dn -- the decNumber to test */
+/* set -- the context to use for Emin */
+/* returns the decClass enum */
/* ------------------------------------------------------------------ */
-decNumber *
-decNumberCopy (decNumber * dest, const decNumber * src)
-{
-
-#if DECCHECK
- if (src == NULL)
- return decNumberZero (dest);
-#endif
-
- if (dest == src)
- return dest; /* no copy required */
-
- /* We use explicit assignments here as structure assignment can copy */
+enum decClass decNumberClass(const decNumber *dn, decContext *set) {
+ if (decNumberIsSpecial(dn)) {
+ if (decNumberIsQNaN(dn)) return DEC_CLASS_QNAN;
+ if (decNumberIsSNaN(dn)) return DEC_CLASS_SNAN;
+ /* must be an infinity */
+ if (decNumberIsNegative(dn)) return DEC_CLASS_NEG_INF;
+ return DEC_CLASS_POS_INF;
+ }
+ /* is finite */
+ if (decNumberIsNormal(dn, set)) { /* most common */
+ if (decNumberIsNegative(dn)) return DEC_CLASS_NEG_NORMAL;
+ return DEC_CLASS_POS_NORMAL;
+ }
+ /* is subnormal or zero */
+ if (decNumberIsZero(dn)) { /* most common */
+ if (decNumberIsNegative(dn)) return DEC_CLASS_NEG_ZERO;
+ return DEC_CLASS_POS_ZERO;
+ }
+ if (decNumberIsNegative(dn)) return DEC_CLASS_NEG_SUBNORMAL;
+ return DEC_CLASS_POS_SUBNORMAL;
+ } /* decNumberClass */
+
+/* ------------------------------------------------------------------ */
+/* decNumberClassToString -- convert decClass to a string */
+/* */
+/* eclass is a valid decClass */
+/* returns a constant string describing the class (max 13+1 chars) */
+/* ------------------------------------------------------------------ */
+const char *decNumberClassToString(enum decClass eclass) {
+ if (eclass==DEC_CLASS_POS_NORMAL) return DEC_ClassString_PN;
+ if (eclass==DEC_CLASS_NEG_NORMAL) return DEC_ClassString_NN;
+ if (eclass==DEC_CLASS_POS_ZERO) return DEC_ClassString_PZ;
+ if (eclass==DEC_CLASS_NEG_ZERO) return DEC_ClassString_NZ;
+ if (eclass==DEC_CLASS_POS_SUBNORMAL) return DEC_ClassString_PS;
+ if (eclass==DEC_CLASS_NEG_SUBNORMAL) return DEC_ClassString_NS;
+ if (eclass==DEC_CLASS_POS_INF) return DEC_ClassString_PI;
+ if (eclass==DEC_CLASS_NEG_INF) return DEC_ClassString_NI;
+ if (eclass==DEC_CLASS_QNAN) return DEC_ClassString_QN;
+ if (eclass==DEC_CLASS_SNAN) return DEC_ClassString_SN;
+ return DEC_ClassString_UN; /* Unknown */
+ } /* decNumberClassToString */
+
+/* ------------------------------------------------------------------ */
+/* decNumberCopy -- copy a number */
+/* */
+/* dest is the target decNumber */
+/* src is the source decNumber */
+/* returns dest */
+/* */
+/* (dest==src is allowed and is a no-op) */
+/* All fields are updated as required. This is a utility operation, */
+/* so special values are unchanged and no error is possible. */
+/* ------------------------------------------------------------------ */
+decNumber * decNumberCopy(decNumber *dest, const decNumber *src) {
+
+ #if DECCHECK
+ if (src==NULL) return decNumberZero(dest);
+ #endif
+
+ if (dest==src) return dest; /* no copy required */
+
+ /* Use explicit assignments here as structure assignment could copy */
/* more than just the lsu (for small DECDPUN). This would not affect */
- /* the value of the results, but would disturb test harness spill */
+ /* the value of the results, but could disturb test harness spill */
/* checking. */
- dest->bits = src->bits;
- dest->exponent = src->exponent;
- dest->digits = src->digits;
- dest->lsu[0] = src->lsu[0];
- if (src->digits > DECDPUN)
- { /* more Units to come */
- Unit *d; /* work */
- const Unit *s, *smsup; /* work */
- /* memcpy for the remaining Units would be safe as they cannot */
- /* overlap. However, this explicit loop is faster in short cases. */
- d = dest->lsu + 1; /* -> first destination */
- smsup = src->lsu + D2U (src->digits); /* -> source msu+1 */
- for (s = src->lsu + 1; s < smsup; s++, d++)
- *d = *s;
+ dest->bits=src->bits;
+ dest->exponent=src->exponent;
+ dest->digits=src->digits;
+ dest->lsu[0]=src->lsu[0];
+ if (src->digits>DECDPUN) { /* more Units to come */
+ const Unit *smsup, *s; /* work */
+ Unit *d; /* .. */
+ /* memcpy for the remaining Units would be safe as they cannot */
+ /* overlap. However, this explicit loop is faster in short cases. */
+ d=dest->lsu+1; /* -> first destination */
+ smsup=src->lsu+D2U(src->digits); /* -> source msu+1 */
+ for (s=src->lsu+1; s<smsup; s++, d++) *d=*s;
}
return dest;
-}
+ } /* decNumberCopy */
+
+/* ------------------------------------------------------------------ */
+/* decNumberCopyAbs -- quiet absolute value operator */
+/* */
+/* This sets C = abs(A) */
+/* */
+/* res is C, the result. C may be A */
+/* rhs is A */
+/* */
+/* C must have space for set->digits digits. */
+/* No exception or error can occur; this is a quiet bitwise operation.*/
+/* See also decNumberAbs for a checking version of this. */
+/* ------------------------------------------------------------------ */
+decNumber * decNumberCopyAbs(decNumber *res, const decNumber *rhs) {
+ #if DECCHECK
+ if (decCheckOperands(res, DECUNUSED, rhs, DECUNCONT)) return res;
+ #endif
+ decNumberCopy(res, rhs);
+ res->bits&=~DECNEG; /* turn off sign */
+ return res;
+ } /* decNumberCopyAbs */
+
+/* ------------------------------------------------------------------ */
+/* decNumberCopyNegate -- quiet negate value operator */
+/* */
+/* This sets C = negate(A) */
+/* */
+/* res is C, the result. C may be A */
+/* rhs is A */
+/* */
+/* C must have space for set->digits digits. */
+/* No exception or error can occur; this is a quiet bitwise operation.*/
+/* See also decNumberMinus for a checking version of this. */
+/* ------------------------------------------------------------------ */
+decNumber * decNumberCopyNegate(decNumber *res, const decNumber *rhs) {
+ #if DECCHECK
+ if (decCheckOperands(res, DECUNUSED, rhs, DECUNCONT)) return res;
+ #endif
+ decNumberCopy(res, rhs);
+ res->bits^=DECNEG; /* invert the sign */
+ return res;
+ } /* decNumberCopyNegate */
+
+/* ------------------------------------------------------------------ */
+/* decNumberCopySign -- quiet copy and set sign operator */
+/* */
+/* This sets C = A with the sign of B */
+/* */
+/* res is C, the result. C may be A */
+/* lhs is A */
+/* rhs is B */
+/* */
+/* C must have space for set->digits digits. */
+/* No exception or error can occur; this is a quiet bitwise operation.*/
+/* ------------------------------------------------------------------ */
+decNumber * decNumberCopySign(decNumber *res, const decNumber *lhs,
+ const decNumber *rhs) {
+ uByte sign; /* rhs sign */
+ #if DECCHECK
+ if (decCheckOperands(res, DECUNUSED, rhs, DECUNCONT)) return res;
+ #endif
+ sign=rhs->bits & DECNEG; /* save sign bit */
+ decNumberCopy(res, lhs);
+ res->bits&=~DECNEG; /* clear the sign */
+ res->bits|=sign; /* set from rhs */
+ return res;
+ } /* decNumberCopySign */
+
+/* ------------------------------------------------------------------ */
+/* decNumberGetBCD -- get the coefficient in BCD8 */
+/* dn is the source decNumber */
+/* bcd is the uInt array that will receive dn->digits BCD bytes, */
+/* most-significant at offset 0 */
+/* returns bcd */
+/* */
+/* bcd must have at least dn->digits bytes. No error is possible; if */
+/* dn is a NaN or Infinite, digits must be 1 and the coefficient 0. */
+/* ------------------------------------------------------------------ */
+uByte * decNumberGetBCD(const decNumber *dn, uint8_t *bcd) {
+ uByte *ub=bcd+dn->digits-1; /* -> lsd */
+ const Unit *up=dn->lsu; /* Unit pointer, -> lsu */
+
+ #if DECDPUN==1 /* trivial simple copy */
+ for (; ub>=bcd; ub--, up++) *ub=*up;
+ #else /* chopping needed */
+ uInt u=*up; /* work */
+ uInt cut=DECDPUN; /* downcounter through unit */
+ for (; ub>=bcd; ub--) {
+ *ub=(uByte)(u%10); /* [*6554 trick inhibits, here] */
+ u=u/10;
+ cut--;
+ if (cut>0) continue; /* more in this unit */
+ up++;
+ u=*up;
+ cut=DECDPUN;
+ }
+ #endif
+ return bcd;
+ } /* decNumberGetBCD */
+
+/* ------------------------------------------------------------------ */
+/* decNumberSetBCD -- set (replace) the coefficient from BCD8 */
+/* dn is the target decNumber */
+/* bcd is the uInt array that will source n BCD bytes, most- */
+/* significant at offset 0 */
+/* n is the number of digits in the source BCD array (bcd) */
+/* returns dn */
+/* */
+/* dn must have space for at least n digits. No error is possible; */
+/* if dn is a NaN, or Infinite, or is to become a zero, n must be 1 */
+/* and bcd[0] zero. */
+/* ------------------------------------------------------------------ */
+decNumber * decNumberSetBCD(decNumber *dn, const uByte *bcd, uInt n) {
+ Unit *up=dn->lsu+D2U(dn->digits)-1; /* -> msu [target pointer] */
+ const uByte *ub=bcd; /* -> source msd */
+
+ #if DECDPUN==1 /* trivial simple copy */
+ for (; ub<bcd+n; ub++, up--) *up=*ub;
+ #else /* some assembly needed */
+ /* calculate how many digits in msu, and hence first cut */
+ Int cut=MSUDIGITS(n); /* [faster than remainder] */
+ for (;up>=dn->lsu; up--) { /* each Unit from msu */
+ *up=0; /* will take <=DECDPUN digits */
+ for (; cut>0; ub++, cut--) *up=X10(*up)+*ub;
+ cut=DECDPUN; /* next Unit has all digits */
+ }
+ #endif
+ dn->digits=n; /* set digit count */
+ return dn;
+ } /* decNumberSetBCD */
+
+/* ------------------------------------------------------------------ */
+/* decNumberIsNormal -- test normality of a decNumber */
+/* dn is the decNumber to test */
+/* set is the context to use for Emin */
+/* returns 1 if |dn| is finite and >=Nmin, 0 otherwise */
+/* ------------------------------------------------------------------ */
+Int decNumberIsNormal(const decNumber *dn, decContext *set) {
+ Int ae; /* adjusted exponent */
+ #if DECCHECK
+ if (decCheckOperands(DECUNRESU, DECUNUSED, dn, set)) return 0;
+ #endif
+
+ if (decNumberIsSpecial(dn)) return 0; /* not finite */
+ if (decNumberIsZero(dn)) return 0; /* not non-zero */
+
+ ae=dn->exponent+dn->digits-1; /* adjusted exponent */
+ if (ae<set->emin) return 0; /* is subnormal */
+ return 1;
+ } /* decNumberIsNormal */
/* ------------------------------------------------------------------ */
-/* decNumberTrim -- remove insignificant zeros */
-/* */
-/* dn is the number to trim */
-/* returns dn */
-/* */
-/* All fields are updated as required. This is a utility operation, */
-/* so special values are unchanged and no error is possible. */
+/* decNumberIsSubnormal -- test subnormality of a decNumber */
+/* dn is the decNumber to test */
+/* set is the context to use for Emin */
+/* returns 1 if |dn| is finite, non-zero, and <Nmin, 0 otherwise */
/* ------------------------------------------------------------------ */
-decNumber *
-decNumberTrim (decNumber * dn)
-{
- Int dropped; /* work */
- return decTrim (dn, 0, &dropped);
-}
+Int decNumberIsSubnormal(const decNumber *dn, decContext *set) {
+ Int ae; /* adjusted exponent */
+ #if DECCHECK
+ if (decCheckOperands(DECUNRESU, DECUNUSED, dn, set)) return 0;
+ #endif
+
+ if (decNumberIsSpecial(dn)) return 0; /* not finite */
+ if (decNumberIsZero(dn)) return 0; /* not non-zero */
+
+ ae=dn->exponent+dn->digits-1; /* adjusted exponent */
+ if (ae<set->emin) return 1; /* is subnormal */
+ return 0;
+ } /* decNumberIsSubnormal */
+
+/* ------------------------------------------------------------------ */
+/* decNumberTrim -- remove insignificant zeros */
+/* */
+/* dn is the number to trim */
+/* returns dn */
+/* */
+/* All fields are updated as required. This is a utility operation, */
+/* so special values are unchanged and no error is possible. */
+/* ------------------------------------------------------------------ */
+decNumber * decNumberTrim(decNumber *dn) {
+ Int dropped; /* work */
+ decContext set; /* .. */
+ #if DECCHECK
+ if (decCheckOperands(DECUNRESU, DECUNUSED, dn, DECUNCONT)) return dn;
+ #endif
+ decContextDefault(&set, DEC_INIT_BASE); /* clamp=0 */
+ return decTrim(dn, &set, 0, &dropped);
+ } /* decNumberTrim */
/* ------------------------------------------------------------------ */
/* decNumberVersion -- return the name and version of this module */
-/* */
-/* No error is possible. */
+/* */
+/* No error is possible. */
/* ------------------------------------------------------------------ */
-const char *
-decNumberVersion (void)
-{
+const char * decNumberVersion(void) {
return DECVERSION;
-}
+ } /* decNumberVersion */
/* ------------------------------------------------------------------ */
-/* decNumberZero -- set a number to 0 */
-/* */
-/* dn is the number to set, with space for one digit */
-/* returns dn */
-/* */
-/* No error is possible. */
+/* decNumberZero -- set a number to 0 */
+/* */
+/* dn is the number to set, with space for one digit */
+/* returns dn */
+/* */
+/* No error is possible. */
/* ------------------------------------------------------------------ */
/* Memset is not used as it is much slower in some environments. */
-decNumber *
-decNumberZero (decNumber * dn)
-{
+decNumber * decNumberZero(decNumber *dn) {
-#if DECCHECK
- if (decCheckOperands (dn, DECUNUSED, DECUNUSED, DECUNUSED))
- return dn;
-#endif
+ #if DECCHECK
+ if (decCheckOperands(dn, DECUNUSED, DECUNUSED, DECUNCONT)) return dn;
+ #endif
- dn->bits = 0;
- dn->exponent = 0;
- dn->digits = 1;
- dn->lsu[0] = 0;
+ dn->bits=0;
+ dn->exponent=0;
+ dn->digits=1;
+ dn->lsu[0]=0;
return dn;
-}
+ } /* decNumberZero */
/* ================================================================== */
-/* Local routines */
+/* Local routines */
/* ================================================================== */
/* ------------------------------------------------------------------ */
-/* decToString -- lay out a number into a string */
-/* */
-/* dn is the number to lay out */
-/* string is where to lay out the number */
-/* eng is 1 if Engineering, 0 if Scientific */
-/* */
-/* str must be at least dn->digits+14 characters long */
-/* No error is possible. */
-/* */
+/* decToString -- lay out a number into a string */
+/* */
+/* dn is the number to lay out */
+/* string is where to lay out the number */
+/* eng is 1 if Engineering, 0 if Scientific */
+/* */
+/* string must be at least dn->digits+14 characters long */
+/* No error is possible. */
+/* */
/* Note that this routine can generate a -0 or 0.000. These are */
/* never generated in subset to-number or arithmetic, but can occur */
-/* in non-subset arithmetic (e.g., -1*0 or 1.234-1.234). */
+/* in non-subset arithmetic (e.g., -1*0 or 1.234-1.234). */
/* ------------------------------------------------------------------ */
/* If DECCHECK is enabled the string "?" is returned if a number is */
/* invalid. */
-
-/* TODIGIT -- macro to remove the leading digit from the unsigned */
-/* integer u at column cut (counting from the right, LSD=0) and place */
-/* it as an ASCII character into the character pointed to by c. Note */
-/* that cut must be <= 9, and the maximum value for u is 2,000,000,000 */
-/* (as is needed for negative exponents of subnormals). The unsigned */
-/* integer pow is used as a temporary variable. */
-#define TODIGIT(u, cut, c) { \
- *(c)='0'; \
- pow=powers[cut]*2; \
- if ((u)>pow) { \
- pow*=4; \
- if ((u)>=pow) {(u)-=pow; *(c)+=8;} \
- pow/=2; \
- if ((u)>=pow) {(u)-=pow; *(c)+=4;} \
- pow/=2; \
- } \
- if ((u)>=pow) {(u)-=pow; *(c)+=2;} \
- pow/=2; \
- if ((u)>=pow) {(u)-=pow; *(c)+=1;} \
- }
-
-static void
-decToString (const decNumber * dn, char *string, Flag eng)
-{
- Int exp = dn->exponent; /* local copy */
- Int e; /* E-part value */
- Int pre; /* digits before the '.' */
- Int cut; /* for counting digits in a Unit */
- char *c = string; /* work [output pointer] */
- const Unit *up = dn->lsu + D2U (dn->digits) - 1; /* -> msu [input pointer] */
- uInt u, pow; /* work */
-
-#if DECCHECK
- if (decCheckOperands (DECUNUSED, dn, DECUNUSED, DECUNUSED))
- {
- strcpy (string, "?");
- return;
+static void decToString(const decNumber *dn, char *string, Flag eng) {
+ Int exp=dn->exponent; /* local copy */
+ Int e; /* E-part value */
+ Int pre; /* digits before the '.' */
+ Int cut; /* for counting digits in a Unit */
+ char *c=string; /* work [output pointer] */
+ const Unit *up=dn->lsu+D2U(dn->digits)-1; /* -> msu [input pointer] */
+ uInt u, pow; /* work */
+
+ #if DECCHECK
+ if (decCheckOperands(DECUNRESU, dn, DECUNUSED, DECUNCONT)) {
+ strcpy(string, "?");
+ return;}
+ #endif
+
+ if (decNumberIsNegative(dn)) { /* Negatives get a minus */
+ *c='-';
+ c++;
}
-#endif
-
- if (decNumberIsNegative (dn))
- { /* Negatives get a minus (except */
- *c = '-'; /* NaNs, which remove the '-' below) */
+ if (dn->bits&DECSPECIAL) { /* Is a special value */
+ if (decNumberIsInfinite(dn)) {
+ strcpy(c, "Inf");
+ strcpy(c+3, "inity");
+ return;}
+ /* a NaN */
+ if (dn->bits&DECSNAN) { /* signalling NaN */
+ *c='s';
c++;
- }
- if (dn->bits & DECSPECIAL)
- { /* Is a special value */
- if (decNumberIsInfinite (dn))
- {
- strcpy (c, "Infinity");
- return;
- }
- /* a NaN */
- if (dn->bits & DECSNAN)
- { /* signalling NaN */
- *c = 's';
- c++;
- }
- strcpy (c, "NaN");
- c += 3; /* step past */
- /* if not a clean non-zero coefficient, that's all we have in a */
- /* NaN string */
- if (exp != 0 || (*dn->lsu == 0 && dn->digits == 1))
- return;
- /* [drop through to add integer] */
+ }
+ strcpy(c, "NaN");
+ c+=3; /* step past */
+ /* if not a clean non-zero coefficient, that's all there is in a */
+ /* NaN string */
+ if (exp!=0 || (*dn->lsu==0 && dn->digits==1)) return;
+ /* [drop through to add integer] */
}
/* calculate how many digits in msu, and hence first cut */
- cut = dn->digits % DECDPUN;
- if (cut == 0)
- cut = DECDPUN; /* msu is full */
- cut--; /* power of ten for digit */
-
- if (exp == 0)
- { /* simple integer [common fastpath, */
- /* used for NaNs, too] */
- for (; up >= dn->lsu; up--)
- { /* each Unit from msu */
- u = *up; /* contains DECDPUN digits to lay out */
- for (; cut >= 0; c++, cut--)
- TODIGIT (u, cut, c);
- cut = DECDPUN - 1; /* next Unit has all digits */
- }
- *c = '\0'; /* terminate the string */
- return;
- }
+ cut=MSUDIGITS(dn->digits); /* [faster than remainder] */
+ cut--; /* power of ten for digit */
+
+ if (exp==0) { /* simple integer [common fastpath] */
+ for (;up>=dn->lsu; up--) { /* each Unit from msu */
+ u=*up; /* contains DECDPUN digits to lay out */
+ for (; cut>=0; c++, cut--) TODIGIT(u, cut, c, pow);
+ cut=DECDPUN-1; /* next Unit has all digits */
+ }
+ *c='\0'; /* terminate the string */
+ return;}
/* non-0 exponent -- assume plain form */
- pre = dn->digits + exp; /* digits before '.' */
- e = 0; /* no E */
- if ((exp > 0) || (pre < -5))
- { /* need exponential form */
- e = exp + dn->digits - 1; /* calculate E value */
- pre = 1; /* assume one digit before '.' */
- if (eng && (e != 0))
- { /* may need to adjust */
- Int adj; /* adjustment */
- /* The C remainder operator is undefined for negative numbers, so */
- /* we must use positive remainder calculation here */
- if (e < 0)
- {
- adj = (-e) % 3;
- if (adj != 0)
- adj = 3 - adj;
- }
- else
- { /* e>0 */
- adj = e % 3;
- }
- e = e - adj;
- /* if we are dealing with zero we will use exponent which is a */
- /* multiple of three, as expected, but there will only be the */
- /* one zero before the E, still. Otherwise note the padding. */
- if (!ISZERO (dn))
- pre += adj;
- else
- { /* is zero */
- if (adj != 0)
- { /* 0.00Esnn needed */
- e = e + 3;
- pre = -(2 - adj);
- }
- } /* zero */
- } /* eng */
- }
+ pre=dn->digits+exp; /* digits before '.' */
+ e=0; /* no E */
+ if ((exp>0) || (pre<-5)) { /* need exponential form */
+ e=exp+dn->digits-1; /* calculate E value */
+ pre=1; /* assume one digit before '.' */
+ if (eng && (e!=0)) { /* engineering: may need to adjust */
+ Int adj; /* adjustment */
+ /* The C remainder operator is undefined for negative numbers, so */
+ /* a positive remainder calculation must be used here */
+ if (e<0) {
+ adj=(-e)%3;
+ if (adj!=0) adj=3-adj;
+ }
+ else { /* e>0 */
+ adj=e%3;
+ }
+ e=e-adj;
+ /* if dealing with zero still produce an exponent which is a */
+ /* multiple of three, as expected, but there will only be the */
+ /* one zero before the E, still. Otherwise note the padding. */
+ if (!ISZERO(dn)) pre+=adj;
+ else { /* is zero */
+ if (adj!=0) { /* 0.00Esnn needed */
+ e=e+3;
+ pre=-(2-adj);
+ }
+ } /* zero */
+ } /* eng */
+ } /* need exponent */
/* lay out the digits of the coefficient, adding 0s and . as needed */
- u = *up;
- if (pre > 0)
- { /* xxx.xxx or xx00 (engineering) form */
- for (; pre > 0; pre--, c++, cut--)
- {
- if (cut < 0)
- { /* need new Unit */
- if (up == dn->lsu)
- break; /* out of input digits (pre>digits) */
- up--;
- cut = DECDPUN - 1;
- u = *up;
- }
- TODIGIT (u, cut, c);
+ u=*up;
+ if (pre>0) { /* xxx.xxx or xx00 (engineering) form */
+ Int n=pre;
+ for (; pre>0; pre--, c++, cut--) {
+ if (cut<0) { /* need new Unit */
+ if (up==dn->lsu) break; /* out of input digits (pre>digits) */
+ up--;
+ cut=DECDPUN-1;
+ u=*up;
}
- if (up > dn->lsu || (up == dn->lsu && cut >= 0))
- { /* more to come, after '.' */
- *c = '.';
- c++;
- for (;; c++, cut--)
- {
- if (cut < 0)
- { /* need new Unit */
- if (up == dn->lsu)
- break; /* out of input digits */
- up--;
- cut = DECDPUN - 1;
- u = *up;
- }
- TODIGIT (u, cut, c);
- }
+ TODIGIT(u, cut, c, pow);
+ }
+ if (n<dn->digits) { /* more to come, after '.' */
+ *c='.'; c++;
+ for (;; c++, cut--) {
+ if (cut<0) { /* need new Unit */
+ if (up==dn->lsu) break; /* out of input digits */
+ up--;
+ cut=DECDPUN-1;
+ u=*up;
+ }
+ TODIGIT(u, cut, c, pow);
}
- else
- for (; pre > 0; pre--, c++)
- *c = '0'; /* 0 padding (for engineering) needed */
+ }
+ else for (; pre>0; pre--, c++) *c='0'; /* 0 padding (for engineering) needed */
}
- else
- { /* 0.xxx or 0.000xxx form */
- *c = '0';
- c++;
- *c = '.';
- c++;
- for (; pre < 0; pre++, c++)
- *c = '0'; /* add any 0's after '.' */
- for (;; c++, cut--)
- {
- if (cut < 0)
- { /* need new Unit */
- if (up == dn->lsu)
- break; /* out of input digits */
- up--;
- cut = DECDPUN - 1;
- u = *up;
- }
- TODIGIT (u, cut, c);
+ else { /* 0.xxx or 0.000xxx form */
+ *c='0'; c++;
+ *c='.'; c++;
+ for (; pre<0; pre++, c++) *c='0'; /* add any 0's after '.' */
+ for (; ; c++, cut--) {
+ if (cut<0) { /* need new Unit */
+ if (up==dn->lsu) break; /* out of input digits */
+ up--;
+ cut=DECDPUN-1;
+ u=*up;
}
+ TODIGIT(u, cut, c, pow);
+ }
}
- /* Finally add the E-part, if needed. It will never be 0, has a
+ /* Finally add the E-part, if needed. It will never be 0, has a
base maximum and minimum of +999999999 through -999999999, but
- could range down to -1999999998 for subnormal numbers */
- if (e != 0)
- {
- Flag had = 0; /* 1=had non-zero */
- *c = 'E';
- c++;
- *c = '+';
- c++; /* assume positive */
- u = e; /* .. */
- if (e < 0)
- {
- *(c - 1) = '-'; /* oops, need - */
- u = -e; /* uInt, please */
- }
- /* layout the exponent (_itoa is not ANSI C) */
- for (cut = 9; cut >= 0; cut--)
- {
- TODIGIT (u, cut, c);
- if (*c == '0' && !had)
- continue; /* skip leading zeros */
- had = 1; /* had non-0 */
- c++; /* step for next */
- } /* cut */
+ could range down to -1999999998 for anormal numbers */
+ if (e!=0) {
+ Flag had=0; /* 1=had non-zero */
+ *c='E'; c++;
+ *c='+'; c++; /* assume positive */
+ u=e; /* .. */
+ if (e<0) {
+ *(c-1)='-'; /* oops, need - */
+ u=-e; /* uInt, please */
+ }
+ /* lay out the exponent [_itoa or equivalent is not ANSI C] */
+ for (cut=9; cut>=0; cut--) {
+ TODIGIT(u, cut, c, pow);
+ if (*c=='0' && !had) continue; /* skip leading zeros */
+ had=1; /* had non-0 */
+ c++; /* step for next */
+ } /* cut */
}
- *c = '\0'; /* terminate the string (all paths) */
+ *c='\0'; /* terminate the string (all paths) */
return;
-}
-
-/* ------------------------------------------------------------------ */
-/* decAddOp -- add/subtract operation */
-/* */
-/* This computes C = A + B */
-/* */
-/* res is C, the result. C may be A and/or B (e.g., X=X+X) */
-/* lhs is A */
-/* rhs is B */
-/* set is the context */
-/* negate is DECNEG if rhs should be negated, or 0 otherwise */
-/* status accumulates status for the caller */
-/* */
-/* C must have space for set->digits digits. */
-/* ------------------------------------------------------------------ */
-/* If possible, we calculate the coefficient directly into C. */
-/* However, if: */
-/* -- we need a digits+1 calculation because numbers are unaligned */
-/* and span more than set->digits digits */
-/* -- a carry to digits+1 digits looks possible */
+ } /* decToString */
+
+/* ------------------------------------------------------------------ */
+/* decAddOp -- add/subtract operation */
+/* */
+/* This computes C = A + B */
+/* */
+/* res is C, the result. C may be A and/or B (e.g., X=X+X) */
+/* lhs is A */
+/* rhs is B */
+/* set is the context */
+/* negate is DECNEG if rhs should be negated, or 0 otherwise */
+/* status accumulates status for the caller */
+/* */
+/* C must have space for set->digits digits. */
+/* Inexact in status must be 0 for correct Exact zero sign in result */
+/* ------------------------------------------------------------------ */
+/* If possible, the coefficient is calculated directly into C. */
+/* However, if: */
+/* -- a digits+1 calculation is needed because the numbers are */
+/* unaligned and span more than set->digits digits */
+/* -- a carry to digits+1 digits looks possible */
/* -- C is the same as A or B, and the result would destructively */
-/* overlap the A or B coefficient */
-/* then we must calculate into a temporary buffer. In this latter */
-/* case we use the local (stack) buffer if possible, and only if too */
-/* long for that do we resort to malloc. */
-/* */
-/* Misalignment is handled as follows: */
+/* overlap the A or B coefficient */
+/* then the result must be calculated into a temporary buffer. In */
+/* this case a local (stack) buffer is used if possible, and only if */
+/* too long for that does malloc become the final resort. */
+/* */
+/* Misalignment is handled as follows: */
/* Apad: (AExp>BExp) Swap operands and proceed as for BExp>AExp. */
/* BPad: Apply the padding by a combination of shifting (whole */
-/* units) and multiplication (part units). */
-/* */
-/* Addition, especially x=x+1, is speed-critical, so we take pains */
-/* to make returning as fast as possible, by flagging any allocation. */
-/* ------------------------------------------------------------------ */
-static decNumber *
-decAddOp (decNumber * res, const decNumber * lhs,
- const decNumber * rhs, decContext * set, uByte negate, uInt * status)
-{
- decNumber *alloclhs = NULL; /* non-NULL if rounded lhs allocated */
- decNumber *allocrhs = NULL; /* .., rhs */
- Int rhsshift; /* working shift (in Units) */
- Int maxdigits; /* longest logical length */
- Int mult; /* multiplier */
- Int residue; /* rounding accumulator */
- uByte bits; /* result bits */
- Flag diffsign; /* non-0 if arguments have different sign */
- Unit *acc; /* accumulator for result */
- Unit accbuff[D2U (DECBUFFER + 1)]; /* local buffer [+1 is for possible */
- /* final carry digit or DECBUFFER=0] */
- Unit *allocacc = NULL; /* -> allocated acc buffer, iff allocated */
- Flag alloced = 0; /* set non-0 if any allocations */
- Int reqdigits = set->digits; /* local copy; requested DIGITS */
- uByte merged; /* merged flags */
- Int padding; /* work */
-
-#if DECCHECK
- if (decCheckOperands (res, lhs, rhs, set))
- return res;
-#endif
+/* units) and multiplication (part units). */
+/* */
+/* Addition, especially x=x+1, is speed-critical. */
+/* The static buffer is larger than might be expected to allow for */
+/* calls from higher-level funtions (notable exp). */
+/* ------------------------------------------------------------------ */
+static decNumber * decAddOp(decNumber *res, const decNumber *lhs,
+ const decNumber *rhs, decContext *set,
+ uByte negate, uInt *status) {
+ #if DECSUBSET
+ decNumber *alloclhs=NULL; /* non-NULL if rounded lhs allocated */
+ decNumber *allocrhs=NULL; /* .., rhs */
+ #endif
+ Int rhsshift; /* working shift (in Units) */
+ Int maxdigits; /* longest logical length */
+ Int mult; /* multiplier */
+ Int residue; /* rounding accumulator */
+ uByte bits; /* result bits */
+ Flag diffsign; /* non-0 if arguments have different sign */
+ Unit *acc; /* accumulator for result */
+ Unit accbuff[SD2U(DECBUFFER*2+20)]; /* local buffer [*2+20 reduces many */
+ /* allocations when called from */
+ /* other operations, notable exp] */
+ Unit *allocacc=NULL; /* -> allocated acc buffer, iff allocated */
+ Int reqdigits=set->digits; /* local copy; requested DIGITS */
+ Int padding; /* work */
+
+ #if DECCHECK
+ if (decCheckOperands(res, lhs, rhs, set)) return res;
+ #endif
+
+ do { /* protect allocated storage */
+ #if DECSUBSET
+ if (!set->extended) {
+ /* reduce operands and set lostDigits status, as needed */
+ if (lhs->digits>reqdigits) {
+ alloclhs=decRoundOperand(lhs, set, status);
+ if (alloclhs==NULL) break;
+ lhs=alloclhs;
+ }
+ if (rhs->digits>reqdigits) {
+ allocrhs=decRoundOperand(rhs, set, status);
+ if (allocrhs==NULL) break;
+ rhs=allocrhs;
+ }
+ }
+ #endif
+ /* [following code does not require input rounding] */
+
+ /* note whether signs differ [used all paths] */
+ diffsign=(Flag)((lhs->bits^rhs->bits^negate)&DECNEG);
+
+ /* handle infinities and NaNs */
+ if (SPECIALARGS) { /* a special bit set */
+ if (SPECIALARGS & (DECSNAN | DECNAN)) /* a NaN */
+ decNaNs(res, lhs, rhs, set, status);
+ else { /* one or two infinities */
+ if (decNumberIsInfinite(lhs)) { /* LHS is infinity */
+ /* two infinities with different signs is invalid */
+ if (decNumberIsInfinite(rhs) && diffsign) {
+ *status|=DEC_Invalid_operation;
+ break;
+ }
+ bits=lhs->bits & DECNEG; /* get sign from LHS */
+ }
+ else bits=(rhs->bits^negate) & DECNEG;/* RHS must be Infinity */
+ bits|=DECINF;
+ decNumberZero(res);
+ res->bits=bits; /* set +/- infinity */
+ } /* an infinity */
+ break;
+ }
- do
- { /* protect allocated storage */
-#if DECSUBSET
- if (!set->extended)
- {
- /* reduce operands and set lostDigits status, as needed */
- if (lhs->digits > reqdigits)
- {
- alloclhs = decRoundOperand (lhs, set, status);
- if (alloclhs == NULL)
- break;
- lhs = alloclhs;
- alloced = 1;
+ /* Quick exit for add 0s; return the non-0, modified as need be */
+ if (ISZERO(lhs)) {
+ Int adjust; /* work */
+ Int lexp=lhs->exponent; /* save in case LHS==RES */
+ bits=lhs->bits; /* .. */
+ residue=0; /* clear accumulator */
+ decCopyFit(res, rhs, set, &residue, status); /* copy (as needed) */
+ res->bits^=negate; /* flip if rhs was negated */
+ #if DECSUBSET
+ if (set->extended) { /* exponents on zeros count */
+ #endif
+ /* exponent will be the lower of the two */
+ adjust=lexp-res->exponent; /* adjustment needed [if -ve] */
+ if (ISZERO(res)) { /* both 0: special IEEE 854 rules */
+ if (adjust<0) res->exponent=lexp; /* set exponent */
+ /* 0-0 gives +0 unless rounding to -infinity, and -0-0 gives -0 */
+ if (diffsign) {
+ if (set->round!=DEC_ROUND_FLOOR) res->bits=0;
+ else res->bits=DECNEG; /* preserve 0 sign */
+ }
+ }
+ else { /* non-0 res */
+ if (adjust<0) { /* 0-padding needed */
+ if ((res->digits-adjust)>set->digits) {
+ adjust=res->digits-set->digits; /* to fit exactly */
+ *status|=DEC_Rounded; /* [but exact] */
+ }
+ res->digits=decShiftToMost(res->lsu, res->digits, -adjust);
+ res->exponent+=adjust; /* set the exponent. */
}
- if (rhs->digits > reqdigits)
- {
- allocrhs = decRoundOperand (rhs, set, status);
- if (allocrhs == NULL)
- break;
- rhs = allocrhs;
- alloced = 1;
+ } /* non-0 res */
+ #if DECSUBSET
+ } /* extended */
+ #endif
+ decFinish(res, set, &residue, status); /* clean and finalize */
+ break;}
+
+ if (ISZERO(rhs)) { /* [lhs is non-zero] */
+ Int adjust; /* work */
+ Int rexp=rhs->exponent; /* save in case RHS==RES */
+ bits=rhs->bits; /* be clean */
+ residue=0; /* clear accumulator */
+ decCopyFit(res, lhs, set, &residue, status); /* copy (as needed) */
+ #if DECSUBSET
+ if (set->extended) { /* exponents on zeros count */
+ #endif
+ /* exponent will be the lower of the two */
+ /* [0-0 case handled above] */
+ adjust=rexp-res->exponent; /* adjustment needed [if -ve] */
+ if (adjust<0) { /* 0-padding needed */
+ if ((res->digits-adjust)>set->digits) {
+ adjust=res->digits-set->digits; /* to fit exactly */
+ *status|=DEC_Rounded; /* [but exact] */
}
- }
-#endif
- /* [following code does not require input rounding] */
-
- /* note whether signs differ */
- diffsign = (Flag) ((lhs->bits ^ rhs->bits ^ negate) & DECNEG);
-
- /* handle infinities and NaNs */
- merged = (lhs->bits | rhs->bits) & DECSPECIAL;
- if (merged)
- { /* a special bit set */
- if (merged & (DECSNAN | DECNAN)) /* a NaN */
- decNaNs (res, lhs, rhs, status);
- else
- { /* one or two infinities */
- if (decNumberIsInfinite (lhs))
- { /* LHS is infinity */
- /* two infinities with different signs is invalid */
- if (decNumberIsInfinite (rhs) && diffsign)
- {
- *status |= DEC_Invalid_operation;
- break;
- }
- bits = lhs->bits & DECNEG; /* get sign from LHS */
- }
- else
- bits = (rhs->bits ^ negate) & DECNEG; /* RHS must be Infinity */
- bits |= DECINF;
- decNumberZero (res);
- res->bits = bits; /* set +/- infinity */
- } /* an infinity */
+ res->digits=decShiftToMost(res->lsu, res->digits, -adjust);
+ res->exponent+=adjust; /* set the exponent. */
+ }
+ #if DECSUBSET
+ } /* extended */
+ #endif
+ decFinish(res, set, &residue, status); /* clean and finalize */
+ break;}
+
+ /* [NB: both fastpath and mainpath code below assume these cases */
+ /* (notably 0-0) have already been handled] */
+
+ /* calculate the padding needed to align the operands */
+ padding=rhs->exponent-lhs->exponent;
+
+ /* Fastpath cases where the numbers are aligned and normal, the RHS */
+ /* is all in one unit, no operand rounding is needed, and no carry, */
+ /* lengthening, or borrow is needed */
+ if (padding==0
+ && rhs->digits<=DECDPUN
+ && rhs->exponent>=set->emin /* [some normals drop through] */
+ && rhs->exponent<=set->emax-set->digits+1 /* [could clamp] */
+ && rhs->digits<=reqdigits
+ && lhs->digits<=reqdigits) {
+ Int partial=*lhs->lsu;
+ if (!diffsign) { /* adding */
+ partial+=*rhs->lsu;
+ if ((partial<=DECDPUNMAX) /* result fits in unit */
+ && (lhs->digits>=DECDPUN || /* .. and no digits-count change */
+ partial<(Int)powers[lhs->digits])) { /* .. */
+ if (res!=lhs) decNumberCopy(res, lhs); /* not in place */
+ *res->lsu=(Unit)partial; /* [copy could have overwritten RHS] */
break;
+ }
+ /* else drop out for careful add */
}
-
- /* Quick exit for add 0s; return the non-0, modified as need be */
- if (ISZERO (lhs))
- {
- Int adjust; /* work */
- Int lexp = lhs->exponent; /* save in case LHS==RES */
- bits = lhs->bits; /* .. */
- residue = 0; /* clear accumulator */
- decCopyFit (res, rhs, set, &residue, status); /* copy (as needed) */
- res->bits ^= negate; /* flip if rhs was negated */
-#if DECSUBSET
- if (set->extended)
- { /* exponents on zeros count */
-#endif
- /* exponent will be the lower of the two */
- adjust = lexp - res->exponent; /* adjustment needed [if -ve] */
- if (ISZERO (res))
- { /* both 0: special IEEE 854 rules */
- if (adjust < 0)
- res->exponent = lexp; /* set exponent */
- /* 0-0 gives +0 unless rounding to -infinity, and -0-0 gives -0 */
- if (diffsign)
- {
- if (set->round != DEC_ROUND_FLOOR)
- res->bits = 0;
- else
- res->bits = DECNEG; /* preserve 0 sign */
- }
- }
- else
- { /* non-0 res */
- if (adjust < 0)
- { /* 0-padding needed */
- if ((res->digits - adjust) > set->digits)
- {
- adjust = res->digits - set->digits; /* to fit exactly */
- *status |= DEC_Rounded; /* [but exact] */
- }
- res->digits =
- decShiftToMost (res->lsu, res->digits, -adjust);
- res->exponent += adjust; /* set the exponent. */
- }
- } /* non-0 res */
-#if DECSUBSET
- } /* extended */
-#endif
- decFinish (res, set, &residue, status); /* clean and finalize */
+ else { /* signs differ */
+ partial-=*rhs->lsu;
+ if (partial>0) { /* no borrow needed, and non-0 result */
+ if (res!=lhs) decNumberCopy(res, lhs); /* not in place */
+ *res->lsu=(Unit)partial;
+ /* this could have reduced digits [but result>0] */
+ res->digits=decGetDigits(res->lsu, D2U(res->digits));
break;
+ }
+ /* else drop out for careful subtract */
}
+ }
- if (ISZERO (rhs))
- { /* [lhs is non-zero] */
- Int adjust; /* work */
- Int rexp = rhs->exponent; /* save in case RHS==RES */
- bits = rhs->bits; /* be clean */
- residue = 0; /* clear accumulator */
- decCopyFit (res, lhs, set, &residue, status); /* copy (as needed) */
-#if DECSUBSET
- if (set->extended)
- { /* exponents on zeros count */
-#endif
- /* exponent will be the lower of the two */
- /* [0-0 case handled above] */
- adjust = rexp - res->exponent; /* adjustment needed [if -ve] */
- if (adjust < 0)
- { /* 0-padding needed */
- if ((res->digits - adjust) > set->digits)
- {
- adjust = res->digits - set->digits; /* to fit exactly */
- *status |= DEC_Rounded; /* [but exact] */
- }
- res->digits =
- decShiftToMost (res->lsu, res->digits, -adjust);
- res->exponent += adjust; /* set the exponent. */
- }
-#if DECSUBSET
- } /* extended */
-#endif
- decFinish (res, set, &residue, status); /* clean and finalize */
- break;
- }
- /* [both fastpath and mainpath code below assume these cases */
- /* (notably 0-0) have already been handled] */
-
- /* calculate the padding needed to align the operands */
- padding = rhs->exponent - lhs->exponent;
-
- /* Fastpath cases where the numbers are aligned and normal, the RHS */
- /* is all in one unit, no operand rounding is needed, and no carry, */
- /* lengthening, or borrow is needed */
- if (rhs->digits <= DECDPUN && padding == 0 && rhs->exponent >= set->emin /* [some normals drop through] */
- && rhs->digits <= reqdigits && lhs->digits <= reqdigits)
- {
- Int partial = *lhs->lsu;
- if (!diffsign)
- { /* adding */
- Int maxv = DECDPUNMAX; /* highest no-overflow */
- if (lhs->digits < DECDPUN)
- maxv = powers[lhs->digits] - 1;
- partial += *rhs->lsu;
- if (partial <= maxv)
- { /* no carry */
- if (res != lhs)
- decNumberCopy (res, lhs); /* not in place */
- *res->lsu = (Unit) partial; /* [copy could have overwritten RHS] */
- break;
- }
- /* else drop out for careful add */
- }
- else
- { /* signs differ */
- partial -= *rhs->lsu;
- if (partial > 0)
- { /* no borrow needed, and non-0 result */
- if (res != lhs)
- decNumberCopy (res, lhs); /* not in place */
- *res->lsu = (Unit) partial;
- /* this could have reduced digits [but result>0] */
- res->digits = decGetDigits (res->lsu, D2U (res->digits));
- break;
- }
- /* else drop out for careful subtract */
- }
+ /* Now align (pad) the lhs or rhs so they can be added or */
+ /* subtracted, as necessary. If one number is much larger than */
+ /* the other (that is, if in plain form there is a least one */
+ /* digit between the lowest digit of one and the highest of the */
+ /* other) padding with up to DIGITS-1 trailing zeros may be */
+ /* needed; then apply rounding (as exotic rounding modes may be */
+ /* affected by the residue). */
+ rhsshift=0; /* rhs shift to left (padding) in Units */
+ bits=lhs->bits; /* assume sign is that of LHS */
+ mult=1; /* likely multiplier */
+
+ /* [if padding==0 the operands are aligned; no padding is needed] */
+ if (padding!=0) {
+ /* some padding needed; always pad the RHS, as any required */
+ /* padding can then be effected by a simple combination of */
+ /* shifts and a multiply */
+ Flag swapped=0;
+ if (padding<0) { /* LHS needs the padding */
+ const decNumber *t;
+ padding=-padding; /* will be +ve */
+ bits=(uByte)(rhs->bits^negate); /* assumed sign is now that of RHS */
+ t=lhs; lhs=rhs; rhs=t;
+ swapped=1;
}
- /* Now align (pad) the lhs or rhs so we can add or subtract them, as
- necessary. If one number is much larger than the other (that is,
- if in plain form there is a least one digit between the lowest
- digit or one and the highest of the other) we need to pad with up
- to DIGITS-1 trailing zeros, and then apply rounding (as exotic
- rounding modes may be affected by the residue).
- */
- rhsshift = 0; /* rhs shift to left (padding) in Units */
- bits = lhs->bits; /* assume sign is that of LHS */
- mult = 1; /* likely multiplier */
-
- /* if padding==0 the operands are aligned; no padding needed */
- if (padding != 0)
- {
- /* some padding needed */
- /* We always pad the RHS, as we can then effect any required */
- /* padding by a combination of shifts and a multiply */
- Flag swapped = 0;
- if (padding < 0)
- { /* LHS needs the padding */
- const decNumber *t;
- padding = -padding; /* will be +ve */
- bits = (uByte) (rhs->bits ^ negate); /* assumed sign is now that of RHS */
- t = lhs;
- lhs = rhs;
- rhs = t;
- swapped = 1;
- }
-
- /* If, after pad, rhs would be longer than lhs by digits+1 or */
- /* more then lhs cannot affect the answer, except as a residue, */
- /* so we only need to pad up to a length of DIGITS+1. */
- if (rhs->digits + padding > lhs->digits + reqdigits + 1)
- {
- /* The RHS is sufficient */
- /* for residue we use the relative sign indication... */
- Int shift = reqdigits - rhs->digits; /* left shift needed */
- residue = 1; /* residue for rounding */
- if (diffsign)
- residue = -residue; /* signs differ */
- /* copy, shortening if necessary */
- decCopyFit (res, rhs, set, &residue, status);
- /* if it was already shorter, then need to pad with zeros */
- if (shift > 0)
- {
- res->digits = decShiftToMost (res->lsu, res->digits, shift);
- res->exponent -= shift; /* adjust the exponent. */
- }
- /* flip the result sign if unswapped and rhs was negated */
- if (!swapped)
- res->bits ^= negate;
- decFinish (res, set, &residue, status); /* done */
- break;
- }
-
- /* LHS digits may affect result */
- rhsshift = D2U (padding + 1) - 1; /* this much by Unit shift .. */
- mult = powers[padding - (rhsshift * DECDPUN)]; /* .. this by multiplication */
- } /* padding needed */
-
- if (diffsign)
- mult = -mult; /* signs differ */
-
- /* determine the longer operand */
- maxdigits = rhs->digits + padding; /* virtual length of RHS */
- if (lhs->digits > maxdigits)
- maxdigits = lhs->digits;
-
- /* Decide on the result buffer to use; if possible place directly */
- /* into result. */
- acc = res->lsu; /* assume build direct */
- /* If destructive overlap, or the number is too long, or a carry or */
- /* borrow to DIGITS+1 might be possible we must use a buffer. */
- /* [Might be worth more sophisticated tests when maxdigits==reqdigits] */
- if ((maxdigits >= reqdigits) /* is, or could be, too large */
- || (res == rhs && rhsshift > 0))
- { /* destructive overlap */
- /* buffer needed; choose it */
- /* we'll need units for maxdigits digits, +1 Unit for carry or borrow */
- Int need = D2U (maxdigits) + 1;
- acc = accbuff; /* assume use local buffer */
- if (need * sizeof (Unit) > sizeof (accbuff))
- {
- allocacc = (Unit *) malloc (need * sizeof (Unit));
- if (allocacc == NULL)
- { /* hopeless -- abandon */
- *status |= DEC_Insufficient_storage;
- break;
- }
- acc = allocacc;
- alloced = 1;
- }
+ /* If, after pad, rhs would be longer than lhs by digits+1 or */
+ /* more then lhs cannot affect the answer, except as a residue, */
+ /* so only need to pad up to a length of DIGITS+1. */
+ if (rhs->digits+padding > lhs->digits+reqdigits+1) {
+ /* The RHS is sufficient */
+ /* for residue use the relative sign indication... */
+ Int shift=reqdigits-rhs->digits; /* left shift needed */
+ residue=1; /* residue for rounding */
+ if (diffsign) residue=-residue; /* signs differ */
+ /* copy, shortening if necessary */
+ decCopyFit(res, rhs, set, &residue, status);
+ /* if it was already shorter, then need to pad with zeros */
+ if (shift>0) {
+ res->digits=decShiftToMost(res->lsu, res->digits, shift);
+ res->exponent-=shift; /* adjust the exponent. */
+ }
+ /* flip the result sign if unswapped and rhs was negated */
+ if (!swapped) res->bits^=negate;
+ decFinish(res, set, &residue, status); /* done */
+ break;}
+
+ /* LHS digits may affect result */
+ rhsshift=D2U(padding+1)-1; /* this much by Unit shift .. */
+ mult=powers[padding-(rhsshift*DECDPUN)]; /* .. this by multiplication */
+ } /* padding needed */
+
+ if (diffsign) mult=-mult; /* signs differ */
+
+ /* determine the longer operand */
+ maxdigits=rhs->digits+padding; /* virtual length of RHS */
+ if (lhs->digits>maxdigits) maxdigits=lhs->digits;
+
+ /* Decide on the result buffer to use; if possible place directly */
+ /* into result. */
+ acc=res->lsu; /* assume add direct to result */
+ /* If destructive overlap, or the number is too long, or a carry or */
+ /* borrow to DIGITS+1 might be possible, a buffer must be used. */
+ /* [Might be worth more sophisticated tests when maxdigits==reqdigits] */
+ if ((maxdigits>=reqdigits) /* is, or could be, too large */
+ || (res==rhs && rhsshift>0)) { /* destructive overlap */
+ /* buffer needed, choose it; units for maxdigits digits will be */
+ /* needed, +1 Unit for carry or borrow */
+ Int need=D2U(maxdigits)+1;
+ acc=accbuff; /* assume use local buffer */
+ if (need*sizeof(Unit)>sizeof(accbuff)) {
+ /* printf("malloc add %ld %ld\n", need, sizeof(accbuff)); */
+ allocacc=(Unit *)malloc(need*sizeof(Unit));
+ if (allocacc==NULL) { /* hopeless -- abandon */
+ *status|=DEC_Insufficient_storage;
+ break;}
+ acc=allocacc;
}
+ }
- res->bits = (uByte) (bits & DECNEG); /* it's now safe to overwrite.. */
- res->exponent = lhs->exponent; /* .. operands (even if aliased) */
-
-#if DECTRACE
- decDumpAr ('A', lhs->lsu, D2U (lhs->digits));
- decDumpAr ('B', rhs->lsu, D2U (rhs->digits));
- printf (" :h: %d %d\n", rhsshift, mult);
-#endif
-
- /* add [A+B*m] or subtract [A+B*(-m)] */
- res->digits = decUnitAddSub (lhs->lsu, D2U (lhs->digits), rhs->lsu, D2U (rhs->digits), rhsshift, acc, mult) * DECDPUN; /* [units -> digits] */
- if (res->digits < 0)
- { /* we borrowed */
- res->digits = -res->digits;
- res->bits ^= DECNEG; /* flip the sign */
+ res->bits=(uByte)(bits&DECNEG); /* it's now safe to overwrite.. */
+ res->exponent=lhs->exponent; /* .. operands (even if aliased) */
+
+ #if DECTRACE
+ decDumpAr('A', lhs->lsu, D2U(lhs->digits));
+ decDumpAr('B', rhs->lsu, D2U(rhs->digits));
+ printf(" :h: %ld %ld\n", rhsshift, mult);
+ #endif
+
+ /* add [A+B*m] or subtract [A+B*(-m)] */
+ res->digits=decUnitAddSub(lhs->lsu, D2U(lhs->digits),
+ rhs->lsu, D2U(rhs->digits),
+ rhsshift, acc, mult)
+ *DECDPUN; /* [units -> digits] */
+ if (res->digits<0) { /* borrowed... */
+ res->digits=-res->digits;
+ res->bits^=DECNEG; /* flip the sign */
+ }
+ #if DECTRACE
+ decDumpAr('+', acc, D2U(res->digits));
+ #endif
+
+ /* If a buffer was used the result must be copied back, possibly */
+ /* shortening. (If no buffer was used then the result must have */
+ /* fit, so can't need rounding and residue must be 0.) */
+ residue=0; /* clear accumulator */
+ if (acc!=res->lsu) {
+ #if DECSUBSET
+ if (set->extended) { /* round from first significant digit */
+ #endif
+ /* remove leading zeros that were added due to rounding up to */
+ /* integral Units -- before the test for rounding. */
+ if (res->digits>reqdigits)
+ res->digits=decGetDigits(acc, D2U(res->digits));
+ decSetCoeff(res, set, acc, res->digits, &residue, status);
+ #if DECSUBSET
}
-#if DECTRACE
- decDumpAr ('+', acc, D2U (res->digits));
-#endif
-
- /* If we used a buffer we need to copy back, possibly shortening */
- /* (If we didn't use buffer it must have fit, so can't need rounding */
- /* and residue must be 0.) */
- residue = 0; /* clear accumulator */
- if (acc != res->lsu)
- {
-#if DECSUBSET
- if (set->extended)
- { /* round from first significant digit */
-#endif
- /* remove leading zeros that we added due to rounding up to */
- /* integral Units -- before the test for rounding. */
- if (res->digits > reqdigits)
- res->digits = decGetDigits (acc, D2U (res->digits));
- decSetCoeff (res, set, acc, res->digits, &residue, status);
-#if DECSUBSET
+ else { /* subset arithmetic rounds from original significant digit */
+ /* May have an underestimate. This only occurs when both */
+ /* numbers fit in DECDPUN digits and are padding with a */
+ /* negative multiple (-10, -100...) and the top digit(s) become */
+ /* 0. (This only matters when using X3.274 rules where the */
+ /* leading zero could be included in the rounding.) */
+ if (res->digits<maxdigits) {
+ *(acc+D2U(res->digits))=0; /* ensure leading 0 is there */
+ res->digits=maxdigits;
+ }
+ else {
+ /* remove leading zeros that added due to rounding up to */
+ /* integral Units (but only those in excess of the original */
+ /* maxdigits length, unless extended) before test for rounding. */
+ if (res->digits>reqdigits) {
+ res->digits=decGetDigits(acc, D2U(res->digits));
+ if (res->digits<maxdigits) res->digits=maxdigits;
}
- else
- { /* subset arithmetic rounds from original significant digit */
- /* We may have an underestimate. This only occurs when both */
- /* numbers fit in DECDPUN digits and we are padding with a */
- /* negative multiple (-10, -100...) and the top digit(s) become */
- /* 0. (This only matters if we are using X3.274 rules where the */
- /* leading zero could be included in the rounding.) */
- if (res->digits < maxdigits)
- {
- *(acc + D2U (res->digits)) = 0; /* ensure leading 0 is there */
- res->digits = maxdigits;
- }
- else
- {
- /* remove leading zeros that we added due to rounding up to */
- /* integral Units (but only those in excess of the original */
- /* maxdigits length, unless extended) before test for rounding. */
- if (res->digits > reqdigits)
- {
- res->digits = decGetDigits (acc, D2U (res->digits));
- if (res->digits < maxdigits)
- res->digits = maxdigits;
- }
- }
- decSetCoeff (res, set, acc, res->digits, &residue, status);
- /* Now apply rounding if needed before removing leading zeros. */
- /* This is safe because subnormals are not a possibility */
- if (residue != 0)
- {
- decApplyRound (res, set, residue, status);
- residue = 0; /* we did what we had to do */
- }
- } /* subset */
-#endif
- } /* used buffer */
-
- /* strip leading zeros [these were left on in case of subset subtract] */
- res->digits = decGetDigits (res->lsu, D2U (res->digits));
-
- /* apply checks and rounding */
- decFinish (res, set, &residue, status);
+ }
+ decSetCoeff(res, set, acc, res->digits, &residue, status);
+ /* Now apply rounding if needed before removing leading zeros. */
+ /* This is safe because subnormals are not a possibility */
+ if (residue!=0) {
+ decApplyRound(res, set, residue, status);
+ residue=0; /* did what needed to be done */
+ }
+ } /* subset */
+ #endif
+ } /* used buffer */
+
+ /* strip leading zeros [these were left on in case of subset subtract] */
+ res->digits=decGetDigits(res->lsu, D2U(res->digits));
+
+ /* apply checks and rounding */
+ decFinish(res, set, &residue, status);
+
+ /* "When the sum of two operands with opposite signs is exactly */
+ /* zero, the sign of that sum shall be '+' in all rounding modes */
+ /* except round toward -Infinity, in which mode that sign shall be */
+ /* '-'." [Subset zeros also never have '-', set by decFinish.] */
+ if (ISZERO(res) && diffsign
+ #if DECSUBSET
+ && set->extended
+ #endif
+ && (*status&DEC_Inexact)==0) {
+ if (set->round==DEC_ROUND_FLOOR) res->bits|=DECNEG; /* sign - */
+ else res->bits&=~DECNEG; /* sign + */
+ }
+ } while(0); /* end protected */
- /* "When the sum of two operands with opposite signs is exactly */
- /* zero, the sign of that sum shall be '+' in all rounding modes */
- /* except round toward -Infinity, in which mode that sign shall be */
- /* '-'." [Subset zeros also never have '-', set by decFinish.] */
- if (ISZERO (res) && diffsign
-#if DECSUBSET
- && set->extended
-#endif
- && (*status & DEC_Inexact) == 0)
- {
- if (set->round == DEC_ROUND_FLOOR)
- res->bits |= DECNEG; /* sign - */
- else
- res->bits &= ~DECNEG; /* sign + */
- }
- }
- while (0); /* end protected */
-
- if (alloced)
- {
- if (allocacc != NULL)
- free (allocacc); /* drop any storage we used */
- if (allocrhs != NULL)
- free (allocrhs); /* .. */
- if (alloclhs != NULL)
- free (alloclhs); /* .. */
- }
+ if (allocacc!=NULL) free(allocacc); /* drop any storage used */
+ #if DECSUBSET
+ if (allocrhs!=NULL) free(allocrhs); /* .. */
+ if (alloclhs!=NULL) free(alloclhs); /* .. */
+ #endif
return res;
-}
+ } /* decAddOp */
/* ------------------------------------------------------------------ */
-/* decDivideOp -- division operation */
-/* */
+/* decDivideOp -- division operation */
+/* */
/* This routine performs the calculations for all four division */
/* operators (divide, divideInteger, remainder, remainderNear). */
-/* */
-/* C=A op B */
-/* */
-/* res is C, the result. C may be A and/or B (e.g., X=X/X) */
-/* lhs is A */
-/* rhs is B */
-/* set is the context */
-/* op is DIVIDE, DIVIDEINT, REMAINDER, or REMNEAR respectively. */
-/* status is the usual accumulator */
-/* */
-/* C must have space for set->digits digits. */
-/* */
+/* */
+/* C=A op B */
+/* */
+/* res is C, the result. C may be A and/or B (e.g., X=X/X) */
+/* lhs is A */
+/* rhs is B */
+/* set is the context */
+/* op is DIVIDE, DIVIDEINT, REMAINDER, or REMNEAR respectively. */
+/* status is the usual accumulator */
+/* */
+/* C must have space for set->digits digits. */
+/* */
/* ------------------------------------------------------------------ */
/* The underlying algorithm of this routine is the same as in the */
/* 1981 S/370 implementation, that is, non-restoring long division */
/* with bi-unit (rather than bi-digit) estimation for each unit */
/* multiplier. In this pseudocode overview, complications for the */
/* Remainder operators and division residues for exact rounding are */
-/* omitted for clarity. */
-/* */
-/* Prepare operands and handle special values */
-/* Test for x/0 and then 0/x */
-/* Exp =Exp1 - Exp2 */
-/* Exp =Exp +len(var1) -len(var2) */
-/* Sign=Sign1 * Sign2 */
-/* Pad accumulator (Var1) to double-length with 0's (pad1) */
-/* Pad Var2 to same length as Var1 */
+/* omitted for clarity. */
+/* */
+/* Prepare operands and handle special values */
+/* Test for x/0 and then 0/x */
+/* Exp =Exp1 - Exp2 */
+/* Exp =Exp +len(var1) -len(var2) */
+/* Sign=Sign1 * Sign2 */
+/* Pad accumulator (Var1) to double-length with 0's (pad1) */
+/* Pad Var2 to same length as Var1 */
/* msu2pair/plus=1st 2 or 1 units of var2, +1 to allow for round */
-/* have=0 */
-/* Do until (have=digits+1 OR residue=0) */
-/* if exp<0 then if integer divide/residue then leave */
-/* this_unit=0 */
-/* Do forever */
-/* compare numbers */
-/* if <0 then leave inner_loop */
-/* if =0 then (* quick exit without subtract *) do */
-/* this_unit=this_unit+1; output this_unit */
-/* leave outer_loop; end */
-/* Compare lengths of numbers (mantissae): */
-/* If same then tops2=msu2pair -- {units 1&2 of var2} */
-/* else tops2=msu2plus -- {0, unit 1 of var2} */
-/* tops1=first_unit_of_Var1*10**DECDPUN +second_unit_of_var1 */
-/* mult=tops1/tops2 -- Good and safe guess at divisor */
-/* if mult=0 then mult=1 */
-/* this_unit=this_unit+mult */
-/* subtract */
-/* end inner_loop */
-/* if have\=0 | this_unit\=0 then do */
-/* output this_unit */
-/* have=have+1; end */
-/* var2=var2/10 */
-/* exp=exp-1 */
-/* end outer_loop */
-/* exp=exp+1 -- set the proper exponent */
-/* if have=0 then generate answer=0 */
-/* Return (Result is defined by Var1) */
-/* */
-/* ------------------------------------------------------------------ */
-/* We need two working buffers during the long division; one (digits+ */
+/* have=0 */
+/* Do until (have=digits+1 OR residue=0) */
+/* if exp<0 then if integer divide/residue then leave */
+/* this_unit=0 */
+/* Do forever */
+/* compare numbers */
+/* if <0 then leave inner_loop */
+/* if =0 then (* quick exit without subtract *) do */
+/* this_unit=this_unit+1; output this_unit */
+/* leave outer_loop; end */
+/* Compare lengths of numbers (mantissae): */
+/* If same then tops2=msu2pair -- {units 1&2 of var2} */
+/* else tops2=msu2plus -- {0, unit 1 of var2} */
+/* tops1=first_unit_of_Var1*10**DECDPUN +second_unit_of_var1 */
+/* mult=tops1/tops2 -- Good and safe guess at divisor */
+/* if mult=0 then mult=1 */
+/* this_unit=this_unit+mult */
+/* subtract */
+/* end inner_loop */
+/* if have\=0 | this_unit\=0 then do */
+/* output this_unit */
+/* have=have+1; end */
+/* var2=var2/10 */
+/* exp=exp-1 */
+/* end outer_loop */
+/* exp=exp+1 -- set the proper exponent */
+/* if have=0 then generate answer=0 */
+/* Return (Result is defined by Var1) */
+/* */
+/* ------------------------------------------------------------------ */
+/* Two working buffers are needed during the division; one (digits+ */
/* 1) to accumulate the result, and the other (up to 2*digits+1) for */
-/* long subtractions. These are acc and var1 respectively. */
+/* long subtractions. These are acc and var1 respectively. */
/* var1 is a copy of the lhs coefficient, var2 is the rhs coefficient.*/
-/* ------------------------------------------------------------------ */
-static decNumber *
-decDivideOp (decNumber * res,
- const decNumber * lhs, const decNumber * rhs,
- decContext * set, Flag op, uInt * status)
-{
- decNumber *alloclhs = NULL; /* non-NULL if rounded lhs allocated */
- decNumber *allocrhs = NULL; /* .., rhs */
- Unit accbuff[D2U (DECBUFFER + DECDPUN)]; /* local buffer */
- Unit *acc = accbuff; /* -> accumulator array for result */
- Unit *allocacc = NULL; /* -> allocated buffer, iff allocated */
- Unit *accnext; /* -> where next digit will go */
- Int acclength; /* length of acc needed [Units] */
- Int accunits; /* count of units accumulated */
- Int accdigits; /* count of digits accumulated */
-
- Unit varbuff[D2U (DECBUFFER * 2 + DECDPUN) * sizeof (Unit)]; /* buffer for var1 */
- Unit *var1 = varbuff; /* -> var1 array for long subtraction */
- Unit *varalloc = NULL; /* -> allocated buffer, iff used */
-
- const Unit *var2; /* -> var2 array */
-
- Int var1units, var2units; /* actual lengths */
- Int var2ulen; /* logical length (units) */
- Int var1initpad = 0; /* var1 initial padding (digits) */
- Unit *msu1; /* -> msu of each var */
- const Unit *msu2; /* -> msu of each var */
- Int msu2plus; /* msu2 plus one [does not vary] */
- eInt msu2pair; /* msu2 pair plus one [does not vary] */
- Int maxdigits; /* longest LHS or required acc length */
- Int mult; /* multiplier for subtraction */
- Unit thisunit; /* current unit being accumulated */
- Int residue; /* for rounding */
- Int reqdigits = set->digits; /* requested DIGITS */
- Int exponent; /* working exponent */
- Int maxexponent = 0; /* DIVIDE maximum exponent if unrounded */
- uByte bits; /* working sign */
- uByte merged; /* merged flags */
- Unit *target; /* work */
- const Unit *source; /* work */
- uInt const *pow; /* .. */
- Int shift, cut; /* .. */
-#if DECSUBSET
- Int dropped; /* work */
-#endif
+/* The static buffers may be larger than might be expected to allow */
+/* for calls from higher-level funtions (notable exp). */
+/* ------------------------------------------------------------------ */
+static decNumber * decDivideOp(decNumber *res,
+ const decNumber *lhs, const decNumber *rhs,
+ decContext *set, Flag op, uInt *status) {
+ #if DECSUBSET
+ decNumber *alloclhs=NULL; /* non-NULL if rounded lhs allocated */
+ decNumber *allocrhs=NULL; /* .., rhs */
+ #endif
+ Unit accbuff[SD2U(DECBUFFER+DECDPUN+10)]; /* local buffer */
+ Unit *acc=accbuff; /* -> accumulator array for result */
+ Unit *allocacc=NULL; /* -> allocated buffer, iff allocated */
+ Unit *accnext; /* -> where next digit will go */
+ Int acclength; /* length of acc needed [Units] */
+ Int accunits; /* count of units accumulated */
+ Int accdigits; /* count of digits accumulated */
+
+ Unit varbuff[SD2U(DECBUFFER*2+DECDPUN)*sizeof(Unit)]; /* buffer for var1 */
+ Unit *var1=varbuff; /* -> var1 array for long subtraction */
+ Unit *varalloc=NULL; /* -> allocated buffer, iff used */
+ Unit *msu1; /* -> msu of var1 */
+
+ const Unit *var2; /* -> var2 array */
+ const Unit *msu2; /* -> msu of var2 */
+ Int msu2plus; /* msu2 plus one [does not vary] */
+ eInt msu2pair; /* msu2 pair plus one [does not vary] */
+
+ Int var1units, var2units; /* actual lengths */
+ Int var2ulen; /* logical length (units) */
+ Int var1initpad=0; /* var1 initial padding (digits) */
+ Int maxdigits; /* longest LHS or required acc length */
+ Int mult; /* multiplier for subtraction */
+ Unit thisunit; /* current unit being accumulated */
+ Int residue; /* for rounding */
+ Int reqdigits=set->digits; /* requested DIGITS */
+ Int exponent; /* working exponent */
+ Int maxexponent=0; /* DIVIDE maximum exponent if unrounded */
+ uByte bits; /* working sign */
+ Unit *target; /* work */
+ const Unit *source; /* .. */
+ uInt const *pow; /* .. */
+ Int shift, cut; /* .. */
+ #if DECSUBSET
+ Int dropped; /* work */
+ #endif
+
+ #if DECCHECK
+ if (decCheckOperands(res, lhs, rhs, set)) return res;
+ #endif
+
+ do { /* protect allocated storage */
+ #if DECSUBSET
+ if (!set->extended) {
+ /* reduce operands and set lostDigits status, as needed */
+ if (lhs->digits>reqdigits) {
+ alloclhs=decRoundOperand(lhs, set, status);
+ if (alloclhs==NULL) break;
+ lhs=alloclhs;
+ }
+ if (rhs->digits>reqdigits) {
+ allocrhs=decRoundOperand(rhs, set, status);
+ if (allocrhs==NULL) break;
+ rhs=allocrhs;
+ }
+ }
+ #endif
+ /* [following code does not require input rounding] */
-#if DECCHECK
- if (decCheckOperands (res, lhs, rhs, set))
- return res;
-#endif
+ bits=(lhs->bits^rhs->bits)&DECNEG; /* assumed sign for divisions */
- do
- { /* protect allocated storage */
-#if DECSUBSET
- if (!set->extended)
- {
- /* reduce operands and set lostDigits status, as needed */
- if (lhs->digits > reqdigits)
- {
- alloclhs = decRoundOperand (lhs, set, status);
- if (alloclhs == NULL)
- break;
- lhs = alloclhs;
- }
- if (rhs->digits > reqdigits)
- {
- allocrhs = decRoundOperand (rhs, set, status);
- if (allocrhs == NULL)
- break;
- rhs = allocrhs;
- }
+ /* handle infinities and NaNs */
+ if (SPECIALARGS) { /* a special bit set */
+ if (SPECIALARGS & (DECSNAN | DECNAN)) { /* one or two NaNs */
+ decNaNs(res, lhs, rhs, set, status);
+ break;
}
-#endif
- /* [following code does not require input rounding] */
-
- bits = (lhs->bits ^ rhs->bits) & DECNEG; /* assumed sign for divisions */
-
- /* handle infinities and NaNs */
- merged = (lhs->bits | rhs->bits) & DECSPECIAL;
- if (merged)
- { /* a special bit set */
- if (merged & (DECSNAN | DECNAN))
- { /* one or two NaNs */
- decNaNs (res, lhs, rhs, status);
- break;
- }
- /* one or two infinities */
- if (decNumberIsInfinite (lhs))
- { /* LHS (dividend) is infinite */
- if (decNumberIsInfinite (rhs) || /* two infinities are invalid .. */
- op & (REMAINDER | REMNEAR))
- { /* as is remainder of infinity */
- *status |= DEC_Invalid_operation;
- break;
- }
- /* [Note that infinity/0 raises no exceptions] */
- decNumberZero (res);
- res->bits = bits | DECINF; /* set +/- infinity */
- break;
- }
- else
- { /* RHS (divisor) is infinite */
- residue = 0;
- if (op & (REMAINDER | REMNEAR))
- {
- /* result is [finished clone of] lhs */
- decCopyFit (res, lhs, set, &residue, status);
- }
- else
- { /* a division */
- decNumberZero (res);
- res->bits = bits; /* set +/- zero */
- /* for DIVIDEINT the exponent is always 0. For DIVIDE, result */
- /* is a 0 with infinitely negative exponent, clamped to minimum */
- if (op & DIVIDE)
- {
- res->exponent = set->emin - set->digits + 1;
- *status |= DEC_Clamped;
- }
- }
- decFinish (res, set, &residue, status);
- break;
- }
+ /* one or two infinities */
+ if (decNumberIsInfinite(lhs)) { /* LHS (dividend) is infinite */
+ if (decNumberIsInfinite(rhs) || /* two infinities are invalid .. */
+ op & (REMAINDER | REMNEAR)) { /* as is remainder of infinity */
+ *status|=DEC_Invalid_operation;
+ break;
+ }
+ /* [Note that infinity/0 raises no exceptions] */
+ decNumberZero(res);
+ res->bits=bits|DECINF; /* set +/- infinity */
+ break;
}
-
- /* handle 0 rhs (x/0) */
- if (ISZERO (rhs))
- { /* x/0 is always exceptional */
- if (ISZERO (lhs))
- {
- decNumberZero (res); /* [after lhs test] */
- *status |= DEC_Division_undefined; /* 0/0 will become NaN */
- }
- else
- {
- decNumberZero (res);
- if (op & (REMAINDER | REMNEAR))
- *status |= DEC_Invalid_operation;
- else
- {
- *status |= DEC_Division_by_zero; /* x/0 */
- res->bits = bits | DECINF; /* .. is +/- Infinity */
- }
+ else { /* RHS (divisor) is infinite */
+ residue=0;
+ if (op&(REMAINDER|REMNEAR)) {
+ /* result is [finished clone of] lhs */
+ decCopyFit(res, lhs, set, &residue, status);
+ }
+ else { /* a division */
+ decNumberZero(res);
+ res->bits=bits; /* set +/- zero */
+ /* for DIVIDEINT the exponent is always 0. For DIVIDE, result */
+ /* is a 0 with infinitely negative exponent, clamped to minimum */
+ if (op&DIVIDE) {
+ res->exponent=set->emin-set->digits+1;
+ *status|=DEC_Clamped;
}
- break;
+ }
+ decFinish(res, set, &residue, status);
+ break;
}
+ }
- /* handle 0 lhs (0/x) */
- if (ISZERO (lhs))
- { /* 0/x [x!=0] */
-#if DECSUBSET
- if (!set->extended)
- decNumberZero (res);
- else
- {
-#endif
- if (op & DIVIDE)
- {
- residue = 0;
- exponent = lhs->exponent - rhs->exponent; /* ideal exponent */
- decNumberCopy (res, lhs); /* [zeros always fit] */
- res->bits = bits; /* sign as computed */
- res->exponent = exponent; /* exponent, too */
- decFinalize (res, set, &residue, status); /* check exponent */
- }
- else if (op & DIVIDEINT)
- {
- decNumberZero (res); /* integer 0 */
- res->bits = bits; /* sign as computed */
- }
- else
- { /* a remainder */
- exponent = rhs->exponent; /* [save in case overwrite] */
- decNumberCopy (res, lhs); /* [zeros always fit] */
- if (exponent < res->exponent)
- res->exponent = exponent; /* use lower */
- }
-#if DECSUBSET
- }
-#endif
+ /* handle 0 rhs (x/0) */
+ if (ISZERO(rhs)) { /* x/0 is always exceptional */
+ if (ISZERO(lhs)) {
+ decNumberZero(res); /* [after lhs test] */
+ *status|=DEC_Division_undefined;/* 0/0 will become NaN */
+ }
+ else {
+ decNumberZero(res);
+ if (op&(REMAINDER|REMNEAR)) *status|=DEC_Invalid_operation;
+ else {
+ *status|=DEC_Division_by_zero; /* x/0 */
+ res->bits=bits|DECINF; /* .. is +/- Infinity */
+ }
+ }
+ break;}
+
+ /* handle 0 lhs (0/x) */
+ if (ISZERO(lhs)) { /* 0/x [x!=0] */
+ #if DECSUBSET
+ if (!set->extended) decNumberZero(res);
+ else {
+ #endif
+ if (op&DIVIDE) {
+ residue=0;
+ exponent=lhs->exponent-rhs->exponent; /* ideal exponent */
+ decNumberCopy(res, lhs); /* [zeros always fit] */
+ res->bits=bits; /* sign as computed */
+ res->exponent=exponent; /* exponent, too */
+ decFinalize(res, set, &residue, status); /* check exponent */
+ }
+ else if (op&DIVIDEINT) {
+ decNumberZero(res); /* integer 0 */
+ res->bits=bits; /* sign as computed */
+ }
+ else { /* a remainder */
+ exponent=rhs->exponent; /* [save in case overwrite] */
+ decNumberCopy(res, lhs); /* [zeros always fit] */
+ if (exponent<res->exponent) res->exponent=exponent; /* use lower */
+ }
+ #if DECSUBSET
+ }
+ #endif
+ break;}
+
+ /* Precalculate exponent. This starts off adjusted (and hence fits */
+ /* in 31 bits) and becomes the usual unadjusted exponent as the */
+ /* division proceeds. The order of evaluation is important, here, */
+ /* to avoid wrap. */
+ exponent=(lhs->exponent+lhs->digits)-(rhs->exponent+rhs->digits);
+
+ /* If the working exponent is -ve, then some quick exits are */
+ /* possible because the quotient is known to be <1 */
+ /* [for REMNEAR, it needs to be < -1, as -0.5 could need work] */
+ if (exponent<0 && !(op==DIVIDE)) {
+ if (op&DIVIDEINT) {
+ decNumberZero(res); /* integer part is 0 */
+ #if DECSUBSET
+ if (set->extended)
+ #endif
+ res->bits=bits; /* set +/- zero */
+ break;}
+ /* fastpath remainders so long as the lhs has the smaller */
+ /* (or equal) exponent */
+ if (lhs->exponent<=rhs->exponent) {
+ if (op&REMAINDER || exponent<-1) {
+ /* It is REMAINDER or safe REMNEAR; result is [finished */
+ /* clone of] lhs (r = x - 0*y) */
+ residue=0;
+ decCopyFit(res, lhs, set, &residue, status);
+ decFinish(res, set, &residue, status);
break;
+ }
+ /* [unsafe REMNEAR drops through] */
}
+ } /* fastpaths */
+
+ /* Long (slow) division is needed; roll up the sleeves... */
+
+ /* The accumulator will hold the quotient of the division. */
+ /* If it needs to be too long for stack storage, then allocate. */
+ acclength=D2U(reqdigits+DECDPUN); /* in Units */
+ if (acclength*sizeof(Unit)>sizeof(accbuff)) {
+ /* printf("malloc dvacc %ld units\n", acclength); */
+ allocacc=(Unit *)malloc(acclength*sizeof(Unit));
+ if (allocacc==NULL) { /* hopeless -- abandon */
+ *status|=DEC_Insufficient_storage;
+ break;}
+ acc=allocacc; /* use the allocated space */
+ }
- /* Precalculate exponent. This starts off adjusted (and hence fits */
- /* in 31 bits) and becomes the usual unadjusted exponent as the */
- /* division proceeds. The order of evaluation is important, here, */
- /* to avoid wrap. */
- exponent =
- (lhs->exponent + lhs->digits) - (rhs->exponent + rhs->digits);
-
- /* If the working exponent is -ve, then some quick exits are */
- /* possible because the quotient is known to be <1 */
- /* [for REMNEAR, it needs to be < -1, as -0.5 could need work] */
- if (exponent < 0 && !(op == DIVIDE))
- {
- if (op & DIVIDEINT)
- {
- decNumberZero (res); /* integer part is 0 */
-#if DECSUBSET
- if (set->extended)
-#endif
- res->bits = bits; /* set +/- zero */
- break;
- }
- /* we can fastpath remainders so long as the lhs has the */
- /* smaller (or equal) exponent */
- if (lhs->exponent <= rhs->exponent)
- {
- if (op & REMAINDER || exponent < -1)
- {
- /* It is REMAINDER or safe REMNEAR; result is [finished */
- /* clone of] lhs (r = x - 0*y) */
- residue = 0;
- decCopyFit (res, lhs, set, &residue, status);
- decFinish (res, set, &residue, status);
- break;
- }
- /* [unsafe REMNEAR drops through] */
- }
- } /* fastpaths */
-
- /* We need long (slow) division; roll up the sleeves... */
-
- /* The accumulator will hold the quotient of the division. */
- /* If it needs to be too long for stack storage, then allocate. */
- acclength = D2U (reqdigits + DECDPUN); /* in Units */
- if (acclength * sizeof (Unit) > sizeof (accbuff))
- {
- allocacc = (Unit *) malloc (acclength * sizeof (Unit));
- if (allocacc == NULL)
- { /* hopeless -- abandon */
- *status |= DEC_Insufficient_storage;
- break;
- }
- acc = allocacc; /* use the allocated space */
- }
+ /* var1 is the padded LHS ready for subtractions. */
+ /* If it needs to be too long for stack storage, then allocate. */
+ /* The maximum units needed for var1 (long subtraction) is: */
+ /* Enough for */
+ /* (rhs->digits+reqdigits-1) -- to allow full slide to right */
+ /* or (lhs->digits) -- to allow for long lhs */
+ /* whichever is larger */
+ /* +1 -- for rounding of slide to right */
+ /* +1 -- for leading 0s */
+ /* +1 -- for pre-adjust if a remainder or DIVIDEINT */
+ /* [Note: unused units do not participate in decUnitAddSub data] */
+ maxdigits=rhs->digits+reqdigits-1;
+ if (lhs->digits>maxdigits) maxdigits=lhs->digits;
+ var1units=D2U(maxdigits)+2;
+ /* allocate a guard unit above msu1 for REMAINDERNEAR */
+ if (!(op&DIVIDE)) var1units++;
+ if ((var1units+1)*sizeof(Unit)>sizeof(varbuff)) {
+ /* printf("malloc dvvar %ld units\n", var1units+1); */
+ varalloc=(Unit *)malloc((var1units+1)*sizeof(Unit));
+ if (varalloc==NULL) { /* hopeless -- abandon */
+ *status|=DEC_Insufficient_storage;
+ break;}
+ var1=varalloc; /* use the allocated space */
+ }
- /* var1 is the padded LHS ready for subtractions. */
- /* If it needs to be too long for stack storage, then allocate. */
- /* The maximum units we need for var1 (long subtraction) is: */
- /* Enough for */
- /* (rhs->digits+reqdigits-1) -- to allow full slide to right */
- /* or (lhs->digits) -- to allow for long lhs */
- /* whichever is larger */
- /* +1 -- for rounding of slide to right */
- /* +1 -- for leading 0s */
- /* +1 -- for pre-adjust if a remainder or DIVIDEINT */
- /* [Note: unused units do not participate in decUnitAddSub data] */
- maxdigits = rhs->digits + reqdigits - 1;
- if (lhs->digits > maxdigits)
- maxdigits = lhs->digits;
- var1units = D2U (maxdigits) + 2;
- /* allocate a guard unit above msu1 for REMAINDERNEAR */
- if (!(op & DIVIDE))
- var1units++;
- if ((var1units + 1) * sizeof (Unit) > sizeof (varbuff))
- {
- varalloc = (Unit *) malloc ((var1units + 1) * sizeof (Unit));
- if (varalloc == NULL)
- { /* hopeless -- abandon */
- *status |= DEC_Insufficient_storage;
- break;
- }
- var1 = varalloc; /* use the allocated space */
- }
+ /* Extend the lhs and rhs to full long subtraction length. The lhs */
+ /* is truly extended into the var1 buffer, with 0 padding, so a */
+ /* subtract in place is always possible. The rhs (var2) has */
+ /* virtual padding (implemented by decUnitAddSub). */
+ /* One guard unit was allocated above msu1 for rem=rem+rem in */
+ /* REMAINDERNEAR. */
+ msu1=var1+var1units-1; /* msu of var1 */
+ source=lhs->lsu+D2U(lhs->digits)-1; /* msu of input array */
+ for (target=msu1; source>=lhs->lsu; source--, target--) *target=*source;
+ for (; target>=var1; target--) *target=0;
+
+ /* rhs (var2) is left-aligned with var1 at the start */
+ var2ulen=var1units; /* rhs logical length (units) */
+ var2units=D2U(rhs->digits); /* rhs actual length (units) */
+ var2=rhs->lsu; /* -> rhs array */
+ msu2=var2+var2units-1; /* -> msu of var2 [never changes] */
+ /* now set up the variables which will be used for estimating the */
+ /* multiplication factor. If these variables are not exact, add */
+ /* 1 to make sure that the multiplier is never overestimated. */
+ msu2plus=*msu2; /* it's value .. */
+ if (var2units>1) msu2plus++; /* .. +1 if any more */
+ msu2pair=(eInt)*msu2*(DECDPUNMAX+1);/* top two pair .. */
+ if (var2units>1) { /* .. [else treat 2nd as 0] */
+ msu2pair+=*(msu2-1); /* .. */
+ if (var2units>2) msu2pair++; /* .. +1 if any more */
+ }
- /* Extend the lhs and rhs to full long subtraction length. The lhs */
- /* is truly extended into the var1 buffer, with 0 padding, so we can */
- /* subtract in place. The rhs (var2) has virtual padding */
- /* (implemented by decUnitAddSub). */
- /* We allocated one guard unit above msu1 for rem=rem+rem in REMAINDERNEAR */
- msu1 = var1 + var1units - 1; /* msu of var1 */
- source = lhs->lsu + D2U (lhs->digits) - 1; /* msu of input array */
- for (target = msu1; source >= lhs->lsu; source--, target--)
- *target = *source;
- for (; target >= var1; target--)
- *target = 0;
-
- /* rhs (var2) is left-aligned with var1 at the start */
- var2ulen = var1units; /* rhs logical length (units) */
- var2units = D2U (rhs->digits); /* rhs actual length (units) */
- var2 = rhs->lsu; /* -> rhs array */
- msu2 = var2 + var2units - 1; /* -> msu of var2 [never changes] */
- /* now set up the variables which we'll use for estimating the */
- /* multiplication factor. If these variables are not exact, we add */
- /* 1 to make sure that we never overestimate the multiplier. */
- msu2plus = *msu2; /* it's value .. */
- if (var2units > 1)
- msu2plus++; /* .. +1 if any more */
- msu2pair = (eInt) * msu2 * (DECDPUNMAX + 1); /* top two pair .. */
- if (var2units > 1)
- { /* .. [else treat 2nd as 0] */
- msu2pair += *(msu2 - 1); /* .. */
- if (var2units > 2)
- msu2pair++; /* .. +1 if any more */
+ /* The calculation is working in units, which may have leading zeros, */
+ /* but the exponent was calculated on the assumption that they are */
+ /* both left-aligned. Adjust the exponent to compensate: add the */
+ /* number of leading zeros in var1 msu and subtract those in var2 msu. */
+ /* [This is actually done by counting the digits and negating, as */
+ /* lead1=DECDPUN-digits1, and similarly for lead2.] */
+ for (pow=&powers[1]; *msu1>=*pow; pow++) exponent--;
+ for (pow=&powers[1]; *msu2>=*pow; pow++) exponent++;
+
+ /* Now, if doing an integer divide or remainder, ensure that */
+ /* the result will be Unit-aligned. To do this, shift the var1 */
+ /* accumulator towards least if need be. (It's much easier to */
+ /* do this now than to reassemble the residue afterwards, if */
+ /* doing a remainder.) Also ensure the exponent is not negative. */
+ if (!(op&DIVIDE)) {
+ Unit *u; /* work */
+ /* save the initial 'false' padding of var1, in digits */
+ var1initpad=(var1units-D2U(lhs->digits))*DECDPUN;
+ /* Determine the shift to do. */
+ if (exponent<0) cut=-exponent;
+ else cut=DECDPUN-exponent%DECDPUN;
+ decShiftToLeast(var1, var1units, cut);
+ exponent+=cut; /* maintain numerical value */
+ var1initpad-=cut; /* .. and reduce padding */
+ /* clean any most-significant units which were just emptied */
+ for (u=msu1; cut>=DECDPUN; cut-=DECDPUN, u--) *u=0;
+ } /* align */
+ else { /* is DIVIDE */
+ maxexponent=lhs->exponent-rhs->exponent; /* save */
+ /* optimization: if the first iteration will just produce 0, */
+ /* preadjust to skip it [valid for DIVIDE only] */
+ if (*msu1<*msu2) {
+ var2ulen--; /* shift down */
+ exponent-=DECDPUN; /* update the exponent */
}
+ }
- /* Since we are working in units, the units may have leading zeros, */
- /* but we calculated the exponent on the assumption that they are */
- /* both left-aligned. Adjust the exponent to compensate: add the */
- /* number of leading zeros in var1 msu and subtract those in var2 msu. */
- /* [We actually do this by counting the digits and negating, as */
- /* lead1=DECDPUN-digits1, and similarly for lead2.] */
- for (pow = &powers[1]; *msu1 >= *pow; pow++)
- exponent--;
- for (pow = &powers[1]; *msu2 >= *pow; pow++)
- exponent++;
-
- /* Now, if doing an integer divide or remainder, we want to ensure */
- /* that the result will be Unit-aligned. To do this, we shift the */
- /* var1 accumulator towards least if need be. (It's much easier to */
- /* do this now than to reassemble the residue afterwards, if we are */
- /* doing a remainder.) Also ensure the exponent is not negative. */
- if (!(op & DIVIDE))
- {
- Unit *u;
- /* save the initial 'false' padding of var1, in digits */
- var1initpad = (var1units - D2U (lhs->digits)) * DECDPUN;
- /* Determine the shift to do. */
- if (exponent < 0)
- cut = -exponent;
- else
- cut = DECDPUN - exponent % DECDPUN;
- decShiftToLeast (var1, var1units, cut);
- exponent += cut; /* maintain numerical value */
- var1initpad -= cut; /* .. and reduce padding */
- /* clean any most-significant units we just emptied */
- for (u = msu1; cut >= DECDPUN; cut -= DECDPUN, u--)
- *u = 0;
- } /* align */
- else
- { /* is DIVIDE */
- maxexponent = lhs->exponent - rhs->exponent; /* save */
- /* optimization: if the first iteration will just produce 0, */
- /* preadjust to skip it [valid for DIVIDE only] */
- if (*msu1 < *msu2)
- {
- var2ulen--; /* shift down */
- exponent -= DECDPUN; /* update the exponent */
+ /* ---- start the long-division loops ------------------------------ */
+ accunits=0; /* no units accumulated yet */
+ accdigits=0; /* .. or digits */
+ accnext=acc+acclength-1; /* -> msu of acc [NB: allows digits+1] */
+ for (;;) { /* outer forever loop */
+ thisunit=0; /* current unit assumed 0 */
+ /* find the next unit */
+ for (;;) { /* inner forever loop */
+ /* strip leading zero units [from either pre-adjust or from */
+ /* subtract last time around]. Leave at least one unit. */
+ for (; *msu1==0 && msu1>var1; msu1--) var1units--;
+
+ if (var1units<var2ulen) break; /* var1 too low for subtract */
+ if (var1units==var2ulen) { /* unit-by-unit compare needed */
+ /* compare the two numbers, from msu */
+ const Unit *pv1, *pv2;
+ Unit v2; /* units to compare */
+ pv2=msu2; /* -> msu */
+ for (pv1=msu1; ; pv1--, pv2--) {
+ /* v1=*pv1 -- always OK */
+ v2=0; /* assume in padding */
+ if (pv2>=var2) v2=*pv2; /* in range */
+ if (*pv1!=v2) break; /* no longer the same */
+ if (pv1==var1) break; /* done; leave pv1 as is */
}
+ /* here when all inspected or a difference seen */
+ if (*pv1<v2) break; /* var1 too low to subtract */
+ if (*pv1==v2) { /* var1 == var2 */
+ /* reach here if var1 and var2 are identical; subtraction */
+ /* would increase digit by one, and the residue will be 0 so */
+ /* the calculation is done; leave the loop with residue=0. */
+ thisunit++; /* as though subtracted */
+ *var1=0; /* set var1 to 0 */
+ var1units=1; /* .. */
+ break; /* from inner */
+ } /* var1 == var2 */
+ /* *pv1>v2. Prepare for real subtraction; the lengths are equal */
+ /* Estimate the multiplier (there's always a msu1-1)... */
+ /* Bring in two units of var2 to provide a good estimate. */
+ mult=(Int)(((eInt)*msu1*(DECDPUNMAX+1)+*(msu1-1))/msu2pair);
+ } /* lengths the same */
+ else { /* var1units > var2ulen, so subtraction is safe */
+ /* The var2 msu is one unit towards the lsu of the var1 msu, */
+ /* so only one unit for var2 can be used. */
+ mult=(Int)(((eInt)*msu1*(DECDPUNMAX+1)+*(msu1-1))/msu2plus);
+ }
+ if (mult==0) mult=1; /* must always be at least 1 */
+ /* subtraction needed; var1 is > var2 */
+ thisunit=(Unit)(thisunit+mult); /* accumulate */
+ /* subtract var1-var2, into var1; only the overlap needs */
+ /* processing, as this is an in-place calculation */
+ shift=var2ulen-var2units;
+ #if DECTRACE
+ decDumpAr('1', &var1[shift], var1units-shift);
+ decDumpAr('2', var2, var2units);
+ printf("m=%ld\n", -mult);
+ #endif
+ decUnitAddSub(&var1[shift], var1units-shift,
+ var2, var2units, 0,
+ &var1[shift], -mult);
+ #if DECTRACE
+ decDumpAr('#', &var1[shift], var1units-shift);
+ #endif
+ /* var1 now probably has leading zeros; these are removed at the */
+ /* top of the inner loop. */
+ } /* inner loop */
+
+ /* The next unit has been calculated in full; unless it's a */
+ /* leading zero, add to acc */
+ if (accunits!=0 || thisunit!=0) { /* is first or non-zero */
+ *accnext=thisunit; /* store in accumulator */
+ /* account exactly for the new digits */
+ if (accunits==0) {
+ accdigits++; /* at least one */
+ for (pow=&powers[1]; thisunit>=*pow; pow++) accdigits++;
+ }
+ else accdigits+=DECDPUN;
+ accunits++; /* update count */
+ accnext--; /* ready for next */
+ if (accdigits>reqdigits) break; /* have enough digits */
}
- /* ---- start the long-division loops ------------------------------ */
- accunits = 0; /* no units accumulated yet */
- accdigits = 0; /* .. or digits */
- accnext = acc + acclength - 1; /* -> msu of acc [NB: allows digits+1] */
- for (;;)
- { /* outer forever loop */
- thisunit = 0; /* current unit assumed 0 */
- /* find the next unit */
- for (;;)
- { /* inner forever loop */
- /* strip leading zero units [from either pre-adjust or from */
- /* subtract last time around]. Leave at least one unit. */
- for (; *msu1 == 0 && msu1 > var1; msu1--)
- var1units--;
-
- if (var1units < var2ulen)
- break; /* var1 too low for subtract */
- if (var1units == var2ulen)
- { /* unit-by-unit compare needed */
- /* compare the two numbers, from msu */
- Unit *pv1, v2; /* units to compare */
- const Unit *pv2; /* units to compare */
- pv2 = msu2; /* -> msu */
- for (pv1 = msu1;; pv1--, pv2--)
- {
- /* v1=*pv1 -- always OK */
- v2 = 0; /* assume in padding */
- if (pv2 >= var2)
- v2 = *pv2; /* in range */
- if (*pv1 != v2)
- break; /* no longer the same */
- if (pv1 == var1)
- break; /* done; leave pv1 as is */
- }
- /* here when all inspected or a difference seen */
- if (*pv1 < v2)
- break; /* var1 too low to subtract */
- if (*pv1 == v2)
- { /* var1 == var2 */
- /* reach here if var1 and var2 are identical; subtraction */
- /* would increase digit by one, and the residue will be 0 so */
- /* we are done; leave the loop with residue set to 0. */
- thisunit++; /* as though subtracted */
- *var1 = 0; /* set var1 to 0 */
- var1units = 1; /* .. */
- break; /* from inner */
- } /* var1 == var2 */
- /* *pv1>v2. Prepare for real subtraction; the lengths are equal */
- /* Estimate the multiplier (there's always a msu1-1)... */
- /* Bring in two units of var2 to provide a good estimate. */
- mult =
- (Int) (((eInt) * msu1 * (DECDPUNMAX + 1) +
- *(msu1 - 1)) / msu2pair);
- } /* lengths the same */
- else
- { /* var1units > var2ulen, so subtraction is safe */
- /* The var2 msu is one unit towards the lsu of the var1 msu, */
- /* so we can only use one unit for var2. */
- mult =
- (Int) (((eInt) * msu1 * (DECDPUNMAX + 1) +
- *(msu1 - 1)) / msu2plus);
- }
- if (mult == 0)
- mult = 1; /* must always be at least 1 */
- /* subtraction needed; var1 is > var2 */
- thisunit = (Unit) (thisunit + mult); /* accumulate */
- /* subtract var1-var2, into var1; only the overlap needs */
- /* processing, as we are in place */
- shift = var2ulen - var2units;
-#if DECTRACE
- decDumpAr ('1', &var1[shift], var1units - shift);
- decDumpAr ('2', var2, var2units);
- printf ("m=%d\n", -mult);
-#endif
- decUnitAddSub (&var1[shift], var1units - shift,
- var2, var2units, 0, &var1[shift], -mult);
-#if DECTRACE
- decDumpAr ('#', &var1[shift], var1units - shift);
-#endif
- /* var1 now probably has leading zeros; these are removed at the */
- /* top of the inner loop. */
- } /* inner loop */
-
- /* We have the next unit; unless it's a leading zero, add to acc */
- if (accunits != 0 || thisunit != 0)
- { /* put the unit we got */
- *accnext = thisunit; /* store in accumulator */
- /* account exactly for the digits we got */
- if (accunits == 0)
- {
- accdigits++; /* at least one */
- for (pow = &powers[1]; thisunit >= *pow; pow++)
- accdigits++;
- }
- else
- accdigits += DECDPUN;
- accunits++; /* update count */
- accnext--; /* ready for next */
- if (accdigits > reqdigits)
- break; /* we have all we need */
+ /* if the residue is zero, the operation is done (unless divide */
+ /* or divideInteger and still not enough digits yet) */
+ if (*var1==0 && var1units==1) { /* residue is 0 */
+ if (op&(REMAINDER|REMNEAR)) break;
+ if ((op&DIVIDE) && (exponent<=maxexponent)) break;
+ /* [drop through if divideInteger] */
+ }
+ /* also done enough if calculating remainder or integer */
+ /* divide and just did the last ('units') unit */
+ if (exponent==0 && !(op&DIVIDE)) break;
+
+ /* to get here, var1 is less than var2, so divide var2 by the per- */
+ /* Unit power of ten and go for the next digit */
+ var2ulen--; /* shift down */
+ exponent-=DECDPUN; /* update the exponent */
+ } /* outer loop */
+
+ /* ---- division is complete --------------------------------------- */
+ /* here: acc has at least reqdigits+1 of good results (or fewer */
+ /* if early stop), starting at accnext+1 (its lsu) */
+ /* var1 has any residue at the stopping point */
+ /* accunits is the number of digits collected in acc */
+ if (accunits==0) { /* acc is 0 */
+ accunits=1; /* show have a unit .. */
+ accdigits=1; /* .. */
+ *accnext=0; /* .. whose value is 0 */
+ }
+ else accnext++; /* back to last placed */
+ /* accnext now -> lowest unit of result */
+
+ residue=0; /* assume no residue */
+ if (op&DIVIDE) {
+ /* record the presence of any residue, for rounding */
+ if (*var1!=0 || var1units>1) residue=1;
+ else { /* no residue */
+ /* Had an exact division; clean up spurious trailing 0s. */
+ /* There will be at most DECDPUN-1, from the final multiply, */
+ /* and then only if the result is non-0 (and even) and the */
+ /* exponent is 'loose'. */
+ #if DECDPUN>1
+ Unit lsu=*accnext;
+ if (!(lsu&0x01) && (lsu!=0)) {
+ /* count the trailing zeros */
+ Int drop=0;
+ for (;; drop++) { /* [will terminate because lsu!=0] */
+ if (exponent>=maxexponent) break; /* don't chop real 0s */
+ #if DECDPUN<=4
+ if ((lsu-QUOT10(lsu, drop+1)
+ *powers[drop+1])!=0) break; /* found non-0 digit */
+ #else
+ if (lsu%powers[drop+1]!=0) break; /* found non-0 digit */
+ #endif
+ exponent++;
}
-
- /* if the residue is zero, we're done (unless divide or */
- /* divideInteger and we haven't got enough digits yet) */
- if (*var1 == 0 && var1units == 1)
- { /* residue is 0 */
- if (op & (REMAINDER | REMNEAR))
- break;
- if ((op & DIVIDE) && (exponent <= maxexponent))
- break;
- /* [drop through if divideInteger] */
+ if (drop>0) {
+ accunits=decShiftToLeast(accnext, accunits, drop);
+ accdigits=decGetDigits(accnext, accunits);
+ accunits=D2U(accdigits);
+ /* [exponent was adjusted in the loop] */
}
- /* we've also done enough if calculating remainder or integer */
- /* divide and we just did the last ('units') unit */
- if (exponent == 0 && !(op & DIVIDE))
- break;
-
- /* to get here, var1 is less than var2, so divide var2 by the per- */
- /* Unit power of ten and go for the next digit */
- var2ulen--; /* shift down */
- exponent -= DECDPUN; /* update the exponent */
- } /* outer loop */
-
- /* ---- division is complete --------------------------------------- */
- /* here: acc has at least reqdigits+1 of good results (or fewer */
- /* if early stop), starting at accnext+1 (its lsu) */
- /* var1 has any residue at the stopping point */
- /* accunits is the number of digits we collected in acc */
- if (accunits == 0)
- { /* acc is 0 */
- accunits = 1; /* show we have one .. */
- accdigits = 1; /* .. */
- *accnext = 0; /* .. whose value is 0 */
+ } /* neither odd nor 0 */
+ #endif
+ } /* exact divide */
+ } /* divide */
+ else /* op!=DIVIDE */ {
+ /* check for coefficient overflow */
+ if (accdigits+exponent>reqdigits) {
+ *status|=DEC_Division_impossible;
+ break;
}
- else
- accnext++; /* back to last placed */
- /* accnext now -> lowest unit of result */
-
- residue = 0; /* assume no residue */
- if (op & DIVIDE)
- {
- /* record the presence of any residue, for rounding */
- if (*var1 != 0 || var1units > 1)
- residue = 1;
- else
- { /* no residue */
- /* We had an exact division; clean up spurious trailing 0s. */
- /* There will be at most DECDPUN-1, from the final multiply, */
- /* and then only if the result is non-0 (and even) and the */
- /* exponent is 'loose'. */
-#if DECDPUN>1
- Unit lsu = *accnext;
- if (!(lsu & 0x01) && (lsu != 0))
- {
- /* count the trailing zeros */
- Int drop = 0;
- for (;; drop++)
- { /* [will terminate because lsu!=0] */
- if (exponent >= maxexponent)
- break; /* don't chop real 0s */
-#if DECDPUN<=4
- if ((lsu - QUOT10 (lsu, drop + 1)
- * powers[drop + 1]) != 0)
- break; /* found non-0 digit */
-#else
- if (lsu % powers[drop + 1] != 0)
- break; /* found non-0 digit */
-#endif
- exponent++;
- }
- if (drop > 0)
- {
- accunits = decShiftToLeast (accnext, accunits, drop);
- accdigits = decGetDigits (accnext, accunits);
- accunits = D2U (accdigits);
- /* [exponent was adjusted in the loop] */
- }
- } /* neither odd nor 0 */
-#endif
- } /* exact divide */
- } /* divide */
- else /* op!=DIVIDE */
- {
- /* check for coefficient overflow */
- if (accdigits + exponent > reqdigits)
- {
- *status |= DEC_Division_impossible;
- break;
+ if (op & (REMAINDER|REMNEAR)) {
+ /* [Here, the exponent will be 0, because var1 was adjusted */
+ /* appropriately.] */
+ Int postshift; /* work */
+ Flag wasodd=0; /* integer was odd */
+ Unit *quotlsu; /* for save */
+ Int quotdigits; /* .. */
+
+ bits=lhs->bits; /* remainder sign is always as lhs */
+
+ /* Fastpath when residue is truly 0 is worthwhile [and */
+ /* simplifies the code below] */
+ if (*var1==0 && var1units==1) { /* residue is 0 */
+ Int exp=lhs->exponent; /* save min(exponents) */
+ if (rhs->exponent<exp) exp=rhs->exponent;
+ decNumberZero(res); /* 0 coefficient */
+ #if DECSUBSET
+ if (set->extended)
+ #endif
+ res->exponent=exp; /* .. with proper exponent */
+ res->bits=(uByte)(bits&DECNEG); /* [cleaned] */
+ decFinish(res, set, &residue, status); /* might clamp */
+ break;
+ }
+ /* note if the quotient was odd */
+ if (*accnext & 0x01) wasodd=1; /* acc is odd */
+ quotlsu=accnext; /* save in case need to reinspect */
+ quotdigits=accdigits; /* .. */
+
+ /* treat the residue, in var1, as the value to return, via acc */
+ /* calculate the unused zero digits. This is the smaller of: */
+ /* var1 initial padding (saved above) */
+ /* var2 residual padding, which happens to be given by: */
+ postshift=var1initpad+exponent-lhs->exponent+rhs->exponent;
+ /* [the 'exponent' term accounts for the shifts during divide] */
+ if (var1initpad<postshift) postshift=var1initpad;
+
+ /* shift var1 the requested amount, and adjust its digits */
+ var1units=decShiftToLeast(var1, var1units, postshift);
+ accnext=var1;
+ accdigits=decGetDigits(var1, var1units);
+ accunits=D2U(accdigits);
+
+ exponent=lhs->exponent; /* exponent is smaller of lhs & rhs */
+ if (rhs->exponent<exponent) exponent=rhs->exponent;
+
+ /* Now correct the result if doing remainderNear; if it */
+ /* (looking just at coefficients) is > rhs/2, or == rhs/2 and */
+ /* the integer was odd then the result should be rem-rhs. */
+ if (op&REMNEAR) {
+ Int compare, tarunits; /* work */
+ Unit *up; /* .. */
+ /* calculate remainder*2 into the var1 buffer (which has */
+ /* 'headroom' of an extra unit and hence enough space) */
+ /* [a dedicated 'double' loop would be faster, here] */
+ tarunits=decUnitAddSub(accnext, accunits, accnext, accunits,
+ 0, accnext, 1);
+ /* decDumpAr('r', accnext, tarunits); */
+
+ /* Here, accnext (var1) holds tarunits Units with twice the */
+ /* remainder's coefficient, which must now be compared to the */
+ /* RHS. The remainder's exponent may be smaller than the RHS's. */
+ compare=decUnitCompare(accnext, tarunits, rhs->lsu, D2U(rhs->digits),
+ rhs->exponent-exponent);
+ if (compare==BADINT) { /* deep trouble */
+ *status|=DEC_Insufficient_storage;
+ break;}
+
+ /* now restore the remainder by dividing by two; the lsu */
+ /* is known to be even. */
+ for (up=accnext; up<accnext+tarunits; up++) {
+ Int half; /* half to add to lower unit */
+ half=*up & 0x01;
+ *up/=2; /* [shift] */
+ if (!half) continue;
+ *(up-1)+=(DECDPUNMAX+1)/2;
}
- if (op & (REMAINDER | REMNEAR))
- {
- /* [Here, the exponent will be 0, because we adjusted var1 */
- /* appropriately.] */
- Int postshift; /* work */
- Flag wasodd = 0; /* integer was odd */
- Unit *quotlsu; /* for save */
- Int quotdigits; /* .. */
-
- /* Fastpath when residue is truly 0 is worthwhile [and */
- /* simplifies the code below] */
- if (*var1 == 0 && var1units == 1)
- { /* residue is 0 */
- Int exp = lhs->exponent; /* save min(exponents) */
- if (rhs->exponent < exp)
- exp = rhs->exponent;
- decNumberZero (res); /* 0 coefficient */
-#if DECSUBSET
- if (set->extended)
-#endif
- res->exponent = exp; /* .. with proper exponent */
+ /* [accunits still describes the original remainder length] */
+
+ if (compare>0 || (compare==0 && wasodd)) { /* adjustment needed */
+ Int exp, expunits, exprem; /* work */
+ /* This is effectively causing round-up of the quotient, */
+ /* so if it was the rare case where it was full and all */
+ /* nines, it would overflow and hence division-impossible */
+ /* should be raised */
+ Flag allnines=0; /* 1 if quotient all nines */
+ if (quotdigits==reqdigits) { /* could be borderline */
+ for (up=quotlsu; ; up++) {
+ if (quotdigits>DECDPUN) {
+ if (*up!=DECDPUNMAX) break;/* non-nines */
+ }
+ else { /* this is the last Unit */
+ if (*up==powers[quotdigits]-1) allnines=1;
break;
- }
- /* note if the quotient was odd */
- if (*accnext & 0x01)
- wasodd = 1; /* acc is odd */
- quotlsu = accnext; /* save in case need to reinspect */
- quotdigits = accdigits; /* .. */
-
- /* treat the residue, in var1, as the value to return, via acc */
- /* calculate the unused zero digits. This is the smaller of: */
- /* var1 initial padding (saved above) */
- /* var2 residual padding, which happens to be given by: */
- postshift =
- var1initpad + exponent - lhs->exponent + rhs->exponent;
- /* [the 'exponent' term accounts for the shifts during divide] */
- if (var1initpad < postshift)
- postshift = var1initpad;
-
- /* shift var1 the requested amount, and adjust its digits */
- var1units = decShiftToLeast (var1, var1units, postshift);
- accnext = var1;
- accdigits = decGetDigits (var1, var1units);
- accunits = D2U (accdigits);
-
- exponent = lhs->exponent; /* exponent is smaller of lhs & rhs */
- if (rhs->exponent < exponent)
- exponent = rhs->exponent;
- bits = lhs->bits; /* remainder sign is always as lhs */
-
- /* Now correct the result if we are doing remainderNear; if it */
- /* (looking just at coefficients) is > rhs/2, or == rhs/2 and */
- /* the integer was odd then the result should be rem-rhs. */
- if (op & REMNEAR)
- {
- Int compare, tarunits; /* work */
- Unit *up; /* .. */
-
-
- /* calculate remainder*2 into the var1 buffer (which has */
- /* 'headroom' of an extra unit and hence enough space) */
- /* [a dedicated 'double' loop would be faster, here] */
- tarunits =
- decUnitAddSub (accnext, accunits, accnext, accunits, 0,
- accnext, 1);
- /* decDumpAr('r', accnext, tarunits); */
-
- /* Here, accnext (var1) holds tarunits Units with twice the */
- /* remainder's coefficient, which we must now compare to the */
- /* RHS. The remainder's exponent may be smaller than the RHS's. */
- compare =
- decUnitCompare (accnext, tarunits, rhs->lsu,
- D2U (rhs->digits),
- rhs->exponent - exponent);
- if (compare == BADINT)
- { /* deep trouble */
- *status |= DEC_Insufficient_storage;
- break;
- }
-
- /* now restore the remainder by dividing by two; we know the */
- /* lsu is even. */
- for (up = accnext; up < accnext + tarunits; up++)
- {
- Int half; /* half to add to lower unit */
- half = *up & 0x01;
- *up /= 2; /* [shift] */
- if (!half)
- continue;
- *(up - 1) += (DECDPUNMAX + 1) / 2;
- }
- /* [accunits still describes the original remainder length] */
-
- if (compare > 0 || (compare == 0 && wasodd))
- { /* adjustment needed */
- Int exp, expunits, exprem; /* work */
- /* This is effectively causing round-up of the quotient, */
- /* so if it was the rare case where it was full and all */
- /* nines, it would overflow and hence division-impossible */
- /* should be raised */
- Flag allnines = 0; /* 1 if quotient all nines */
- if (quotdigits == reqdigits)
- { /* could be borderline */
- for (up = quotlsu;; up++)
- {
- if (quotdigits > DECDPUN)
- {
- if (*up != DECDPUNMAX)
- break; /* non-nines */
- }
- else
- { /* this is the last Unit */
- if (*up == powers[quotdigits] - 1)
- allnines = 1;
- break;
- }
- quotdigits -= DECDPUN; /* checked those digits */
- } /* up */
- } /* borderline check */
- if (allnines)
- {
- *status |= DEC_Division_impossible;
- break;
- }
-
- /* we need rem-rhs; the sign will invert. Again we can */
- /* safely use var1 for the working Units array. */
- exp = rhs->exponent - exponent; /* RHS padding needed */
- /* Calculate units and remainder from exponent. */
- expunits = exp / DECDPUN;
- exprem = exp % DECDPUN;
- /* subtract [A+B*(-m)]; the result will always be negative */
- accunits = -decUnitAddSub (accnext, accunits,
- rhs->lsu, D2U (rhs->digits),
- expunits, accnext,
- -(Int) powers[exprem]);
- accdigits = decGetDigits (accnext, accunits); /* count digits exactly */
- accunits = D2U (accdigits); /* and recalculate the units for copy */
- /* [exponent is as for original remainder] */
- bits ^= DECNEG; /* flip the sign */
- }
- } /* REMNEAR */
- } /* REMAINDER or REMNEAR */
- } /* not DIVIDE */
-
- /* Set exponent and bits */
- res->exponent = exponent;
- res->bits = (uByte) (bits & DECNEG); /* [cleaned] */
-
- /* Now the coefficient. */
- decSetCoeff (res, set, accnext, accdigits, &residue, status);
-
- decFinish (res, set, &residue, status); /* final cleanup */
-
-#if DECSUBSET
- /* If a divide then strip trailing zeros if subset [after round] */
- if (!set->extended && (op == DIVIDE))
- decTrim (res, 0, &dropped);
-#endif
- }
- while (0); /* end protected */
-
- if (varalloc != NULL)
- free (varalloc); /* drop any storage we used */
- if (allocacc != NULL)
- free (allocacc); /* .. */
- if (allocrhs != NULL)
- free (allocrhs); /* .. */
- if (alloclhs != NULL)
- free (alloclhs); /* .. */
+ }
+ quotdigits-=DECDPUN; /* checked those digits */
+ } /* up */
+ } /* borderline check */
+ if (allnines) {
+ *status|=DEC_Division_impossible;
+ break;}
+
+ /* rem-rhs is needed; the sign will invert. Again, var1 */
+ /* can safely be used for the working Units array. */
+ exp=rhs->exponent-exponent; /* RHS padding needed */
+ /* Calculate units and remainder from exponent. */
+ expunits=exp/DECDPUN;
+ exprem=exp%DECDPUN;
+ /* subtract [A+B*(-m)]; the result will always be negative */
+ accunits=-decUnitAddSub(accnext, accunits,
+ rhs->lsu, D2U(rhs->digits),
+ expunits, accnext, -(Int)powers[exprem]);
+ accdigits=decGetDigits(accnext, accunits); /* count digits exactly */
+ accunits=D2U(accdigits); /* and recalculate the units for copy */
+ /* [exponent is as for original remainder] */
+ bits^=DECNEG; /* flip the sign */
+ }
+ } /* REMNEAR */
+ } /* REMAINDER or REMNEAR */
+ } /* not DIVIDE */
+
+ /* Set exponent and bits */
+ res->exponent=exponent;
+ res->bits=(uByte)(bits&DECNEG); /* [cleaned] */
+
+ /* Now the coefficient. */
+ decSetCoeff(res, set, accnext, accdigits, &residue, status);
+
+ decFinish(res, set, &residue, status); /* final cleanup */
+
+ #if DECSUBSET
+ /* If a divide then strip trailing zeros if subset [after round] */
+ if (!set->extended && (op==DIVIDE)) decTrim(res, set, 0, &dropped);
+ #endif
+ } while(0); /* end protected */
+
+ if (varalloc!=NULL) free(varalloc); /* drop any storage used */
+ if (allocacc!=NULL) free(allocacc); /* .. */
+ #if DECSUBSET
+ if (allocrhs!=NULL) free(allocrhs); /* .. */
+ if (alloclhs!=NULL) free(alloclhs); /* .. */
+ #endif
return res;
-}
-
-/* ------------------------------------------------------------------ */
-/* decMultiplyOp -- multiplication operation */
-/* */
-/* This routine performs the multiplication C=A x B. */
-/* */
-/* res is C, the result. C may be A and/or B (e.g., X=X*X) */
-/* lhs is A */
-/* rhs is B */
-/* set is the context */
-/* status is the usual accumulator */
-/* */
-/* C must have space for set->digits digits. */
-/* */
-/* ------------------------------------------------------------------ */
-/* Note: We use 'long' multiplication rather than Karatsuba, as the */
+ } /* decDivideOp */
+
+/* ------------------------------------------------------------------ */
+/* decMultiplyOp -- multiplication operation */
+/* */
+/* This routine performs the multiplication C=A x B. */
+/* */
+/* res is C, the result. C may be A and/or B (e.g., X=X*X) */
+/* lhs is A */
+/* rhs is B */
+/* set is the context */
+/* status is the usual accumulator */
+/* */
+/* C must have space for set->digits digits. */
+/* */
+/* ------------------------------------------------------------------ */
+/* 'Classic' multiplication is used rather than Karatsuba, as the */
/* latter would give only a minor improvement for the short numbers */
-/* we expect to handle most (and uses much more memory). */
-/* */
-/* We always have to use a buffer for the accumulator. */
-/* ------------------------------------------------------------------ */
-static decNumber *
-decMultiplyOp (decNumber * res, const decNumber * lhs,
- const decNumber * rhs, decContext * set, uInt * status)
-{
- decNumber *alloclhs = NULL; /* non-NULL if rounded lhs allocated */
- decNumber *allocrhs = NULL; /* .., rhs */
- Unit accbuff[D2U (DECBUFFER * 2 + 1)]; /* local buffer (+1 in case DECBUFFER==0) */
- Unit *acc = accbuff; /* -> accumulator array for exact result */
- Unit *allocacc = NULL; /* -> allocated buffer, iff allocated */
- const Unit *mer, *mermsup; /* work */
- Int accunits; /* Units of accumulator in use */
- Int madlength; /* Units in multiplicand */
- Int shift; /* Units to shift multiplicand by */
- Int need; /* Accumulator units needed */
- Int exponent; /* work */
- Int residue = 0; /* rounding residue */
- uByte bits; /* result sign */
- uByte merged; /* merged flags */
+/* expected to be handled most (and uses much more memory). */
+/* */
+/* There are two major paths here: the general-purpose ('old code') */
+/* path which handles all DECDPUN values, and a fastpath version */
+/* which is used if 64-bit ints are available, DECDPUN<=4, and more */
+/* than two calls to decUnitAddSub would be made. */
+/* */
+/* The fastpath version lumps units together into 8-digit or 9-digit */
+/* chunks, and also uses a lazy carry strategy to minimise expensive */
+/* 64-bit divisions. The chunks are then broken apart again into */
+/* units for continuing processing. Despite this overhead, the */
+/* fastpath can speed up some 16-digit operations by 10x (and much */
+/* more for higher-precision calculations). */
+/* */
+/* A buffer always has to be used for the accumulator; in the */
+/* fastpath, buffers are also always needed for the chunked copies of */
+/* of the operand coefficients. */
+/* Static buffers are larger than needed just for multiply, to allow */
+/* for calls from other operations (notably exp). */
+/* ------------------------------------------------------------------ */
+#define FASTMUL (DECUSE64 && DECDPUN<5)
+static decNumber * decMultiplyOp(decNumber *res, const decNumber *lhs,
+ const decNumber *rhs, decContext *set,
+ uInt *status) {
+ Int accunits; /* Units of accumulator in use */
+ Int exponent; /* work */
+ Int residue=0; /* rounding residue */
+ uByte bits; /* result sign */
+ Unit *acc; /* -> accumulator Unit array */
+ Int needbytes; /* size calculator */
+ void *allocacc=NULL; /* -> allocated accumulator, iff allocated */
+ Unit accbuff[SD2U(DECBUFFER*4+1)]; /* buffer (+1 for DECBUFFER==0, */
+ /* *4 for calls from other operations) */
+ const Unit *mer, *mermsup; /* work */
+ Int madlength; /* Units in multiplicand */
+ Int shift; /* Units to shift multiplicand by */
+
+ #if FASTMUL
+ /* if DECDPUN is 1 or 3 work in base 10**9, otherwise */
+ /* (DECDPUN is 2 or 4) then work in base 10**8 */
+ #if DECDPUN & 1 /* odd */
+ #define FASTBASE 1000000000 /* base */
+ #define FASTDIGS 9 /* digits in base */
+ #define FASTLAZY 18 /* carry resolution point [1->18] */
+ #else
+ #define FASTBASE 100000000
+ #define FASTDIGS 8
+ #define FASTLAZY 1844 /* carry resolution point [1->1844] */
+ #endif
+ /* three buffers are used, two for chunked copies of the operands */
+ /* (base 10**8 or base 10**9) and one base 2**64 accumulator with */
+ /* lazy carry evaluation */
+ uInt zlhibuff[(DECBUFFER*2+1)/8+1]; /* buffer (+1 for DECBUFFER==0) */
+ uInt *zlhi=zlhibuff; /* -> lhs array */
+ uInt *alloclhi=NULL; /* -> allocated buffer, iff allocated */
+ uInt zrhibuff[(DECBUFFER*2+1)/8+1]; /* buffer (+1 for DECBUFFER==0) */
+ uInt *zrhi=zrhibuff; /* -> rhs array */
+ uInt *allocrhi=NULL; /* -> allocated buffer, iff allocated */
+ uLong zaccbuff[(DECBUFFER*2+1)/4+2]; /* buffer (+1 for DECBUFFER==0) */
+ /* [allocacc is shared for both paths, as only one will run] */
+ uLong *zacc=zaccbuff; /* -> accumulator array for exact result */
+ #if DECDPUN==1
+ Int zoff; /* accumulator offset */
+ #endif
+ uInt *lip, *rip; /* item pointers */
+ uInt *lmsi, *rmsi; /* most significant items */
+ Int ilhs, irhs, iacc; /* item counts in the arrays */
+ Int lazy; /* lazy carry counter */
+ uLong lcarry; /* uLong carry */
+ uInt carry; /* carry (NB not uLong) */
+ Int count; /* work */
+ const Unit *cup; /* .. */
+ Unit *up; /* .. */
+ uLong *lp; /* .. */
+ Int p; /* .. */
+ #endif
+
+ #if DECSUBSET
+ decNumber *alloclhs=NULL; /* -> allocated buffer, iff allocated */
+ decNumber *allocrhs=NULL; /* -> allocated buffer, iff allocated */
+ #endif
+
+ #if DECCHECK
+ if (decCheckOperands(res, lhs, rhs, set)) return res;
+ #endif
+
+ /* precalculate result sign */
+ bits=(uByte)((lhs->bits^rhs->bits)&DECNEG);
-#if DECCHECK
- if (decCheckOperands (res, lhs, rhs, set))
- return res;
-#endif
+ /* handle infinities and NaNs */
+ if (SPECIALARGS) { /* a special bit set */
+ if (SPECIALARGS & (DECSNAN | DECNAN)) { /* one or two NaNs */
+ decNaNs(res, lhs, rhs, set, status);
+ return res;}
+ /* one or two infinities; Infinity * 0 is invalid */
+ if (((lhs->bits & DECINF)==0 && ISZERO(lhs))
+ ||((rhs->bits & DECINF)==0 && ISZERO(rhs))) {
+ *status|=DEC_Invalid_operation;
+ return res;}
+ decNumberZero(res);
+ res->bits=bits|DECINF; /* infinity */
+ return res;}
+
+ /* For best speed, as in DMSRCN [the original Rexx numerics */
+ /* module], use the shorter number as the multiplier (rhs) and */
+ /* the longer as the multiplicand (lhs) to minimise the number of */
+ /* adds (partial products) */
+ if (lhs->digits<rhs->digits) { /* swap... */
+ const decNumber *hold=lhs;
+ lhs=rhs;
+ rhs=hold;
+ }
- do
- { /* protect allocated storage */
-#if DECSUBSET
- if (!set->extended)
- {
- /* reduce operands and set lostDigits status, as needed */
- if (lhs->digits > set->digits)
- {
- alloclhs = decRoundOperand (lhs, set, status);
- if (alloclhs == NULL)
- break;
- lhs = alloclhs;
- }
- if (rhs->digits > set->digits)
- {
- allocrhs = decRoundOperand (rhs, set, status);
- if (allocrhs == NULL)
- break;
- rhs = allocrhs;
- }
- }
-#endif
- /* [following code does not require input rounding] */
-
- /* precalculate result sign */
- bits = (uByte) ((lhs->bits ^ rhs->bits) & DECNEG);
-
- /* handle infinities and NaNs */
- merged = (lhs->bits | rhs->bits) & DECSPECIAL;
- if (merged)
- { /* a special bit set */
- if (merged & (DECSNAN | DECNAN))
- { /* one or two NaNs */
- decNaNs (res, lhs, rhs, status);
- break;
- }
- /* one or two infinities. Infinity * 0 is invalid */
- if (((lhs->bits & DECSPECIAL) == 0 && ISZERO (lhs))
- || ((rhs->bits & DECSPECIAL) == 0 && ISZERO (rhs)))
- {
- *status |= DEC_Invalid_operation;
- break;
- }
- decNumberZero (res);
- res->bits = bits | DECINF; /* infinity */
- break;
+ do { /* protect allocated storage */
+ #if DECSUBSET
+ if (!set->extended) {
+ /* reduce operands and set lostDigits status, as needed */
+ if (lhs->digits>set->digits) {
+ alloclhs=decRoundOperand(lhs, set, status);
+ if (alloclhs==NULL) break;
+ lhs=alloclhs;
}
-
- /* For best speed, as in DMSRCN, we use the shorter number as the */
- /* multiplier (rhs) and the longer as the multiplicand (lhs) */
- if (lhs->digits < rhs->digits)
- { /* swap... */
- const decNumber *hold = lhs;
- lhs = rhs;
- rhs = hold;
+ if (rhs->digits>set->digits) {
+ allocrhs=decRoundOperand(rhs, set, status);
+ if (allocrhs==NULL) break;
+ rhs=allocrhs;
}
-
- /* if accumulator is too long for local storage, then allocate */
- need = D2U (lhs->digits) + D2U (rhs->digits); /* maximum units in result */
- if (need * sizeof (Unit) > sizeof (accbuff))
- {
- allocacc = (Unit *) malloc (need * sizeof (Unit));
- if (allocacc == NULL)
- {
- *status |= DEC_Insufficient_storage;
- break;
+ }
+ #endif
+ /* [following code does not require input rounding] */
+
+ #if FASTMUL /* fastpath can be used */
+ /* use the fast path if there are enough digits in the shorter */
+ /* operand to make the setup and takedown worthwhile */
+ #define NEEDTWO (DECDPUN*2) /* within two decUnitAddSub calls */
+ if (rhs->digits>NEEDTWO) { /* use fastpath... */
+ /* calculate the number of elements in each array */
+ ilhs=(lhs->digits+FASTDIGS-1)/FASTDIGS; /* [ceiling] */
+ irhs=(rhs->digits+FASTDIGS-1)/FASTDIGS; /* .. */
+ iacc=ilhs+irhs;
+
+ /* allocate buffers if required, as usual */
+ needbytes=ilhs*sizeof(uInt);
+ if (needbytes>(Int)sizeof(zlhibuff)) {
+ alloclhi=(uInt *)malloc(needbytes);
+ zlhi=alloclhi;}
+ needbytes=irhs*sizeof(uInt);
+ if (needbytes>(Int)sizeof(zrhibuff)) {
+ allocrhi=(uInt *)malloc(needbytes);
+ zrhi=allocrhi;}
+
+ /* Allocating the accumulator space needs a special case when */
+ /* DECDPUN=1 because when converting the accumulator to Units */
+ /* after the multiplication each 8-byte item becomes 9 1-byte */
+ /* units. Therefore iacc extra bytes are needed at the front */
+ /* (rounded up to a multiple of 8 bytes), and the uLong */
+ /* accumulator starts offset the appropriate number of units */
+ /* to the right to avoid overwrite during the unchunking. */
+ needbytes=iacc*sizeof(uLong);
+ #if DECDPUN==1
+ zoff=(iacc+7)/8; /* items to offset by */
+ needbytes+=zoff*8;
+ #endif
+ if (needbytes>(Int)sizeof(zaccbuff)) {
+ allocacc=(uLong *)malloc(needbytes);
+ zacc=(uLong *)allocacc;}
+ if (zlhi==NULL||zrhi==NULL||zacc==NULL) {
+ *status|=DEC_Insufficient_storage;
+ break;}
+
+ acc=(Unit *)zacc; /* -> target Unit array */
+ #if DECDPUN==1
+ zacc+=zoff; /* start uLong accumulator to right */
+ #endif
+
+ /* assemble the chunked copies of the left and right sides */
+ for (count=lhs->digits, cup=lhs->lsu, lip=zlhi; count>0; lip++)
+ for (p=0, *lip=0; p<FASTDIGS && count>0;
+ p+=DECDPUN, cup++, count-=DECDPUN)
+ *lip+=*cup*powers[p];
+ lmsi=lip-1; /* save -> msi */
+ for (count=rhs->digits, cup=rhs->lsu, rip=zrhi; count>0; rip++)
+ for (p=0, *rip=0; p<FASTDIGS && count>0;
+ p+=DECDPUN, cup++, count-=DECDPUN)
+ *rip+=*cup*powers[p];
+ rmsi=rip-1; /* save -> msi */
+
+ /* zero the accumulator */
+ for (lp=zacc; lp<zacc+iacc; lp++) *lp=0;
+
+ /* Start the multiplication */
+ /* Resolving carries can dominate the cost of accumulating the */
+ /* partial products, so this is only done when necessary. */
+ /* Each uLong item in the accumulator can hold values up to */
+ /* 2**64-1, and each partial product can be as large as */
+ /* (10**FASTDIGS-1)**2. When FASTDIGS=9, this can be added to */
+ /* itself 18.4 times in a uLong without overflowing, so during */
+ /* the main calculation resolution is carried out every 18th */
+ /* add -- every 162 digits. Similarly, when FASTDIGS=8, the */
+ /* partial products can be added to themselves 1844.6 times in */
+ /* a uLong without overflowing, so intermediate carry */
+ /* resolution occurs only every 14752 digits. Hence for common */
+ /* short numbers usually only the one final carry resolution */
+ /* occurs. */
+ /* (The count is set via FASTLAZY to simplify experiments to */
+ /* measure the value of this approach: a 35% improvement on a */
+ /* [34x34] multiply.) */
+ lazy=FASTLAZY; /* carry delay count */
+ for (rip=zrhi; rip<=rmsi; rip++) { /* over each item in rhs */
+ lp=zacc+(rip-zrhi); /* where to add the lhs */
+ for (lip=zlhi; lip<=lmsi; lip++, lp++) { /* over each item in lhs */
+ *lp+=(uLong)(*lip)*(*rip); /* [this should in-line] */
+ } /* lip loop */
+ lazy--;
+ if (lazy>0 && rip!=rmsi) continue;
+ lazy=FASTLAZY; /* reset delay count */
+ /* spin up the accumulator resolving overflows */
+ for (lp=zacc; lp<zacc+iacc; lp++) {
+ if (*lp<FASTBASE) continue; /* it fits */
+ lcarry=*lp/FASTBASE; /* top part [slow divide] */
+ /* lcarry can exceed 2**32-1, so check again; this check */
+ /* and occasional extra divide (slow) is well worth it, as */
+ /* it allows FASTLAZY to be increased to 18 rather than 4 */
+ /* in the FASTDIGS=9 case */
+ if (lcarry<FASTBASE) carry=(uInt)lcarry; /* [usual] */
+ else { /* two-place carry [fairly rare] */
+ uInt carry2=(uInt)(lcarry/FASTBASE); /* top top part */
+ *(lp+2)+=carry2; /* add to item+2 */
+ *lp-=((uLong)FASTBASE*FASTBASE*carry2); /* [slow] */
+ carry=(uInt)(lcarry-((uLong)FASTBASE*carry2)); /* [inline] */
}
- acc = allocacc; /* use the allocated space */
+ *(lp+1)+=carry; /* add to item above [inline] */
+ *lp-=((uLong)FASTBASE*carry); /* [inline] */
+ } /* carry resolution */
+ } /* rip loop */
+
+ /* The multiplication is complete; time to convert back into */
+ /* units. This can be done in-place in the accumulator and in */
+ /* 32-bit operations, because carries were resolved after the */
+ /* final add. This needs N-1 divides and multiplies for */
+ /* each item in the accumulator (which will become up to N */
+ /* units, where 2<=N<=9). */
+ for (lp=zacc, up=acc; lp<zacc+iacc; lp++) {
+ uInt item=(uInt)*lp; /* decapitate to uInt */
+ for (p=0; p<FASTDIGS-DECDPUN; p+=DECDPUN, up++) {
+ uInt part=item/(DECDPUNMAX+1);
+ *up=(Unit)(item-(part*(DECDPUNMAX+1)));
+ item=part;
+ } /* p */
+ *up=(Unit)item; up++; /* [final needs no division] */
+ } /* lp */
+ accunits=up-acc; /* count of units */
+ }
+ else { /* here to use units directly, without chunking ['old code'] */
+ #endif
+
+ /* if accumulator will be too long for local storage, then allocate */
+ acc=accbuff; /* -> assume buffer for accumulator */
+ needbytes=(D2U(lhs->digits)+D2U(rhs->digits))*sizeof(Unit);
+ if (needbytes>(Int)sizeof(accbuff)) {
+ allocacc=(Unit *)malloc(needbytes);
+ if (allocacc==NULL) {*status|=DEC_Insufficient_storage; break;}
+ acc=(Unit *)allocacc; /* use the allocated space */
}
/* Now the main long multiplication loop */
/* Unlike the equivalent in the IBM Java implementation, there */
- /* is no advantage in calculating from msu to lsu. So we do it */
+ /* is no advantage in calculating from msu to lsu. So, do it */
/* by the book, as it were. */
/* Each iteration calculates ACC=ACC+MULTAND*MULT */
- accunits = 1; /* accumulator starts at '0' */
- *acc = 0; /* .. (lsu=0) */
- shift = 0; /* no multiplicand shift at first */
- madlength = D2U (lhs->digits); /* we know this won't change */
- mermsup = rhs->lsu + D2U (rhs->digits); /* -> msu+1 of multiplier */
-
- for (mer = rhs->lsu; mer < mermsup; mer++)
- {
- /* Here, *mer is the next Unit in the multiplier to use */
- /* If non-zero [optimization] add it... */
- if (*mer != 0)
- {
- accunits =
- decUnitAddSub (&acc[shift], accunits - shift, lhs->lsu,
- madlength, 0, &acc[shift], *mer) + shift;
- }
- else
- { /* extend acc with a 0; we'll use it shortly */
- /* [this avoids length of <=0 later] */
- *(acc + accunits) = 0;
- accunits++;
- }
- /* multiply multiplicand by 10**DECDPUN for next Unit to left */
- shift++; /* add this for 'logical length' */
- } /* n */
-#if DECTRACE
- /* Show exact result */
- decDumpAr ('*', acc, accunits);
-#endif
+ accunits=1; /* accumulator starts at '0' */
+ *acc=0; /* .. (lsu=0) */
+ shift=0; /* no multiplicand shift at first */
+ madlength=D2U(lhs->digits); /* this won't change */
+ mermsup=rhs->lsu+D2U(rhs->digits); /* -> msu+1 of multiplier */
+
+ for (mer=rhs->lsu; mer<mermsup; mer++) {
+ /* Here, *mer is the next Unit in the multiplier to use */
+ /* If non-zero [optimization] add it... */
+ if (*mer!=0) accunits=decUnitAddSub(&acc[shift], accunits-shift,
+ lhs->lsu, madlength, 0,
+ &acc[shift], *mer)
+ + shift;
+ else { /* extend acc with a 0; it will be used shortly */
+ *(acc+accunits)=0; /* [this avoids length of <=0 later] */
+ accunits++;
+ }
+ /* multiply multiplicand by 10**DECDPUN for next Unit to left */
+ shift++; /* add this for 'logical length' */
+ } /* n */
+ #if FASTMUL
+ } /* unchunked units */
+ #endif
+ /* common end-path */
+ #if DECTRACE
+ decDumpAr('*', acc, accunits); /* Show exact result */
+ #endif
+
+ /* acc now contains the exact result of the multiplication, */
+ /* possibly with a leading zero unit; build the decNumber from */
+ /* it, noting if any residue */
+ res->bits=bits; /* set sign */
+ res->digits=decGetDigits(acc, accunits); /* count digits exactly */
+
+ /* There can be a 31-bit wrap in calculating the exponent. */
+ /* This can only happen if both input exponents are negative and */
+ /* both their magnitudes are large. If there was a wrap, set a */
+ /* safe very negative exponent, from which decFinalize() will */
+ /* raise a hard underflow shortly. */
+ exponent=lhs->exponent+rhs->exponent; /* calculate exponent */
+ if (lhs->exponent<0 && rhs->exponent<0 && exponent>0)
+ exponent=-2*DECNUMMAXE; /* force underflow */
+ res->exponent=exponent; /* OK to overwrite now */
+
+
+ /* Set the coefficient. If any rounding, residue records */
+ decSetCoeff(res, set, acc, res->digits, &residue, status);
+ decFinish(res, set, &residue, status); /* final cleanup */
+ } while(0); /* end protected */
+
+ if (allocacc!=NULL) free(allocacc); /* drop any storage used */
+ #if DECSUBSET
+ if (allocrhs!=NULL) free(allocrhs); /* .. */
+ if (alloclhs!=NULL) free(alloclhs); /* .. */
+ #endif
+ #if FASTMUL
+ if (allocrhi!=NULL) free(allocrhi); /* .. */
+ if (alloclhi!=NULL) free(alloclhi); /* .. */
+ #endif
+ return res;
+ } /* decMultiplyOp */
+
+/* ------------------------------------------------------------------ */
+/* decExpOp -- effect exponentiation */
+/* */
+/* This computes C = exp(A) */
+/* */
+/* res is C, the result. C may be A */
+/* rhs is A */
+/* set is the context; note that rounding mode has no effect */
+/* */
+/* C must have space for set->digits digits. status is updated but */
+/* not set. */
+/* */
+/* Restrictions: */
+/* */
+/* digits, emax, and -emin in the context must be less than */
+/* 2*DEC_MAX_MATH (1999998), and the rhs must be within these */
+/* bounds or a zero. This is an internal routine, so these */
+/* restrictions are contractual and not enforced. */
+/* */
+/* A finite result is rounded using DEC_ROUND_HALF_EVEN; it will */
+/* almost always be correctly rounded, but may be up to 1 ulp in */
+/* error in rare cases. */
+/* */
+/* Finite results will always be full precision and Inexact, except */
+/* when A is a zero or -Infinity (giving 1 or 0 respectively). */
+/* ------------------------------------------------------------------ */
+/* This approach used here is similar to the algorithm described in */
+/* */
+/* Variable Precision Exponential Function, T. E. Hull and */
+/* A. Abrham, ACM Transactions on Mathematical Software, Vol 12 #2, */
+/* pp79-91, ACM, June 1986. */
+/* */
+/* with the main difference being that the iterations in the series */
+/* evaluation are terminated dynamically (which does not require the */
+/* extra variable-precision variables which are expensive in this */
+/* context). */
+/* */
+/* The error analysis in Hull & Abrham's paper applies except for the */
+/* round-off error accumulation during the series evaluation. This */
+/* code does not precalculate the number of iterations and so cannot */
+/* use Horner's scheme. Instead, the accumulation is done at double- */
+/* precision, which ensures that the additions of the terms are exact */
+/* and do not accumulate round-off (and any round-off errors in the */
+/* terms themselves move 'to the right' faster than they can */
+/* accumulate). This code also extends the calculation by allowing, */
+/* in the spirit of other decNumber operators, the input to be more */
+/* precise than the result (the precision used is based on the more */
+/* precise of the input or requested result). */
+/* */
+/* Implementation notes: */
+/* */
+/* 1. This is separated out as decExpOp so it can be called from */
+/* other Mathematical functions (notably Ln) with a wider range */
+/* than normal. In particular, it can handle the slightly wider */
+/* (double) range needed by Ln (which has to be able to calculate */
+/* exp(-x) where x can be the tiniest number (Ntiny). */
+/* */
+/* 2. Normalizing x to be <=0.1 (instead of <=1) reduces loop */
+/* iterations by appoximately a third with additional (although */
+/* diminishing) returns as the range is reduced to even smaller */
+/* fractions. However, h (the power of 10 used to correct the */
+/* result at the end, see below) must be kept <=8 as otherwise */
+/* the final result cannot be computed. Hence the leverage is a */
+/* sliding value (8-h), where potentially the range is reduced */
+/* more for smaller values. */
+/* */
+/* The leverage that can be applied in this way is severely */
+/* limited by the cost of the raise-to-the power at the end, */
+/* which dominates when the number of iterations is small (less */
+/* than ten) or when rhs is short. As an example, the adjustment */
+/* x**10,000,000 needs 31 multiplications, all but one full-width. */
+/* */
+/* 3. The restrictions (especially precision) could be raised with */
+/* care, but the full decNumber range seems very hard within the */
+/* 32-bit limits. */
+/* */
+/* 4. The working precisions for the static buffers are twice the */
+/* obvious size to allow for calls from decNumberPower. */
+/* ------------------------------------------------------------------ */
+decNumber * decExpOp(decNumber *res, const decNumber *rhs,
+ decContext *set, uInt *status) {
+ uInt ignore=0; /* working status */
+ Int h; /* adjusted exponent for 0.xxxx */
+ Int p; /* working precision */
+ Int residue; /* rounding residue */
+ uInt needbytes; /* for space calculations */
+ const decNumber *x=rhs; /* (may point to safe copy later) */
+ decContext aset, tset, dset; /* working contexts */
+ Int comp; /* work */
+
+ /* the argument is often copied to normalize it, so (unusually) it */
+ /* is treated like other buffers, using DECBUFFER, +1 in case */
+ /* DECBUFFER is 0 */
+ decNumber bufr[D2N(DECBUFFER*2+1)];
+ decNumber *allocrhs=NULL; /* non-NULL if rhs buffer allocated */
+
+ /* the working precision will be no more than set->digits+8+1 */
+ /* so for on-stack buffers DECBUFFER+9 is used, +1 in case DECBUFFER */
+ /* is 0 (and twice that for the accumulator) */
+
+ /* buffer for t, term (working precision plus) */
+ decNumber buft[D2N(DECBUFFER*2+9+1)];
+ decNumber *allocbuft=NULL; /* -> allocated buft, iff allocated */
+ decNumber *t=buft; /* term */
+ /* buffer for a, accumulator (working precision * 2), at least 9 */
+ decNumber bufa[D2N(DECBUFFER*4+18+1)];
+ decNumber *allocbufa=NULL; /* -> allocated bufa, iff allocated */
+ decNumber *a=bufa; /* accumulator */
+ /* decNumber for the divisor term; this needs at most 9 digits */
+ /* and so can be fixed size [16 so can use standard context] */
+ decNumber bufd[D2N(16)];
+ decNumber *d=bufd; /* divisor */
+ decNumber numone; /* constant 1 */
+
+ #if DECCHECK
+ Int iterations=0; /* for later sanity check */
+ if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
+ #endif
+
+ do { /* protect allocated storage */
+ if (SPECIALARG) { /* handle infinities and NaNs */
+ if (decNumberIsInfinite(rhs)) { /* an infinity */
+ if (decNumberIsNegative(rhs)) /* -Infinity -> +0 */
+ decNumberZero(res);
+ else decNumberCopy(res, rhs); /* +Infinity -> self */
+ }
+ else decNaNs(res, rhs, NULL, set, status); /* a NaN */
+ break;}
+
+ if (ISZERO(rhs)) { /* zeros -> exact 1 */
+ decNumberZero(res); /* make clean 1 */
+ *res->lsu=1; /* .. */
+ break;} /* [no status to set] */
+
+ /* e**x when 0 < x < 0.66 is < 1+3x/2, hence can fast-path */
+ /* positive and negative tiny cases which will result in inexact */
+ /* 1. This also allows the later add-accumulate to always be */
+ /* exact (because its length will never be more than twice the */
+ /* working precision). */
+ /* The comparator (tiny) needs just one digit, so use the */
+ /* decNumber d for it (reused as the divisor, etc., below); its */
+ /* exponent is such that if x is positive it will have */
+ /* set->digits-1 zeros between the decimal point and the digit, */
+ /* which is 4, and if x is negative one more zero there as the */
+ /* more precise result will be of the form 0.9999999 rather than */
+ /* 1.0000001. Hence, tiny will be 0.0000004 if digits=7 and x>0 */
+ /* or 0.00000004 if digits=7 and x<0. If RHS not larger than */
+ /* this then the result will be 1.000000 */
+ decNumberZero(d); /* clean */
+ *d->lsu=4; /* set 4 .. */
+ d->exponent=-set->digits; /* * 10**(-d) */
+ if (decNumberIsNegative(rhs)) d->exponent--; /* negative case */
+ comp=decCompare(d, rhs, 1); /* signless compare */
+ if (comp==BADINT) {
+ *status|=DEC_Insufficient_storage;
+ break;}
+ if (comp>=0) { /* rhs < d */
+ Int shift=set->digits-1;
+ decNumberZero(res); /* set 1 */
+ *res->lsu=1; /* .. */
+ res->digits=decShiftToMost(res->lsu, 1, shift);
+ res->exponent=-shift; /* make 1.0000... */
+ *status|=DEC_Inexact | DEC_Rounded; /* .. inexactly */
+ break;} /* tiny */
+
+ /* set up the context to be used for calculating a, as this is */
+ /* used on both paths below */
+ decContextDefault(&aset, DEC_INIT_DECIMAL64);
+ /* accumulator bounds are as requested (could underflow) */
+ aset.emax=set->emax; /* usual bounds */
+ aset.emin=set->emin; /* .. */
+ aset.clamp=0; /* and no concrete format */
+
+ /* calculate the adjusted (Hull & Abrham) exponent (where the */
+ /* decimal point is just to the left of the coefficient msd) */
+ h=rhs->exponent+rhs->digits;
+ /* if h>8 then 10**h cannot be calculated safely; however, when */
+ /* h=8 then exp(|rhs|) will be at least exp(1E+7) which is at */
+ /* least 6.59E+4342944, so (due to the restriction on Emax/Emin) */
+ /* overflow (or underflow to 0) is guaranteed -- so this case can */
+ /* be handled by simply forcing the appropriate excess */
+ if (h>8) { /* overflow/underflow */
+ /* set up here so Power call below will over or underflow to */
+ /* zero; set accumulator to either 2 or 0.02 */
+ /* [stack buffer for a is always big enough for this] */
+ decNumberZero(a);
+ *a->lsu=2; /* not 1 but < exp(1) */
+ if (decNumberIsNegative(rhs)) a->exponent=-2; /* make 0.02 */
+ h=8; /* clamp so 10**h computable */
+ p=9; /* set a working precision */
+ }
+ else { /* h<=8 */
+ Int maxlever=(rhs->digits>8?1:0);
+ /* [could/should increase this for precisions >40 or so, too] */
+
+ /* if h is 8, cannot normalize to a lower upper limit because */
+ /* the final result will not be computable (see notes above), */
+ /* but leverage can be applied whenever h is less than 8. */
+ /* Apply as much as possible, up to a MAXLEVER digits, which */
+ /* sets the tradeoff against the cost of the later a**(10**h). */
+ /* As h is increased, the working precision below also */
+ /* increases to compensate for the "constant digits at the */
+ /* front" effect. */
+ Int lever=MINI(8-h, maxlever); /* leverage attainable */
+ Int use=-rhs->digits-lever; /* exponent to use for RHS */
+ h+=lever; /* apply leverage selected */
+ if (h<0) { /* clamp */
+ use+=h; /* [may end up subnormal] */
+ h=0;
+ }
+ /* Take a copy of RHS if it needs normalization (true whenever x>=1) */
+ if (rhs->exponent!=use) {
+ decNumber *newrhs=bufr; /* assume will fit on stack */
+ needbytes=sizeof(decNumber)+(D2U(rhs->digits)-1)*sizeof(Unit);
+ if (needbytes>sizeof(bufr)) { /* need malloc space */
+ allocrhs=(decNumber *)malloc(needbytes);
+ if (allocrhs==NULL) { /* hopeless -- abandon */
+ *status|=DEC_Insufficient_storage;
+ break;}
+ newrhs=allocrhs; /* use the allocated space */
+ }
+ decNumberCopy(newrhs, rhs); /* copy to safe space */
+ newrhs->exponent=use; /* normalize; now <1 */
+ x=newrhs; /* ready for use */
+ /* decNumberShow(x); */
+ }
- /* acc now contains the exact result of the multiplication */
- /* Build a decNumber from it, noting if any residue */
- res->bits = bits; /* set sign */
- res->digits = decGetDigits (acc, accunits); /* count digits exactly */
-
- /* We might have a 31-bit wrap in calculating the exponent. */
- /* This can only happen if both input exponents are negative and */
- /* both their magnitudes are large. If we did wrap, we set a safe */
- /* very negative exponent, from which decFinalize() will raise a */
- /* hard underflow. */
- exponent = lhs->exponent + rhs->exponent; /* calculate exponent */
- if (lhs->exponent < 0 && rhs->exponent < 0 && exponent > 0)
- exponent = -2 * DECNUMMAXE; /* force underflow */
- res->exponent = exponent; /* OK to overwrite now */
-
- /* Set the coefficient. If any rounding, residue records */
- decSetCoeff (res, set, acc, res->digits, &residue, status);
-
- decFinish (res, set, &residue, status); /* final cleanup */
- }
- while (0); /* end protected */
-
- if (allocacc != NULL)
- free (allocacc); /* drop any storage we used */
- if (allocrhs != NULL)
- free (allocrhs); /* .. */
- if (alloclhs != NULL)
- free (alloclhs); /* .. */
+ /* Now use the usual power series to evaluate exp(x). The */
+ /* series starts as 1 + x + x^2/2 ... so prime ready for the */
+ /* third term by setting the term variable t=x, the accumulator */
+ /* a=1, and the divisor d=2. */
+
+ /* First determine the working precision. From Hull & Abrham */
+ /* this is set->digits+h+2. However, if x is 'over-precise' we */
+ /* need to allow for all its digits to potentially participate */
+ /* (consider an x where all the excess digits are 9s) so in */
+ /* this case use x->digits+h+2 */
+ p=MAXI(x->digits, set->digits)+h+2; /* [h<=8] */
+
+ /* a and t are variable precision, and depend on p, so space */
+ /* must be allocated for them if necessary */
+
+ /* the accumulator needs to be able to hold 2p digits so that */
+ /* the additions on the second and subsequent iterations are */
+ /* sufficiently exact. */
+ needbytes=sizeof(decNumber)+(D2U(p*2)-1)*sizeof(Unit);
+ if (needbytes>sizeof(bufa)) { /* need malloc space */
+ allocbufa=(decNumber *)malloc(needbytes);
+ if (allocbufa==NULL) { /* hopeless -- abandon */
+ *status|=DEC_Insufficient_storage;
+ break;}
+ a=allocbufa; /* use the allocated space */
+ }
+ /* the term needs to be able to hold p digits (which is */
+ /* guaranteed to be larger than x->digits, so the initial copy */
+ /* is safe); it may also be used for the raise-to-power */
+ /* calculation below, which needs an extra two digits */
+ needbytes=sizeof(decNumber)+(D2U(p+2)-1)*sizeof(Unit);
+ if (needbytes>sizeof(buft)) { /* need malloc space */
+ allocbuft=(decNumber *)malloc(needbytes);
+ if (allocbuft==NULL) { /* hopeless -- abandon */
+ *status|=DEC_Insufficient_storage;
+ break;}
+ t=allocbuft; /* use the allocated space */
+ }
+
+ decNumberCopy(t, x); /* term=x */
+ decNumberZero(a); *a->lsu=1; /* accumulator=1 */
+ decNumberZero(d); *d->lsu=2; /* divisor=2 */
+ decNumberZero(&numone); *numone.lsu=1; /* constant 1 for increment */
+
+ /* set up the contexts for calculating a, t, and d */
+ decContextDefault(&tset, DEC_INIT_DECIMAL64);
+ dset=tset;
+ /* accumulator bounds are set above, set precision now */
+ aset.digits=p*2; /* double */
+ /* term bounds avoid any underflow or overflow */
+ tset.digits=p;
+ tset.emin=DEC_MIN_EMIN; /* [emax is plenty] */
+ /* [dset.digits=16, etc., are sufficient] */
+
+ /* finally ready to roll */
+ for (;;) {
+ #if DECCHECK
+ iterations++;
+ #endif
+ /* only the status from the accumulation is interesting */
+ /* [but it should remain unchanged after first add] */
+ decAddOp(a, a, t, &aset, 0, status); /* a=a+t */
+ decMultiplyOp(t, t, x, &tset, &ignore); /* t=t*x */
+ decDivideOp(t, t, d, &tset, DIVIDE, &ignore); /* t=t/d */
+ /* the iteration ends when the term cannot affect the result, */
+ /* if rounded to p digits, which is when its value is smaller */
+ /* than the accumulator by p+1 digits. There must also be */
+ /* full precision in a. */
+ if (((a->digits+a->exponent)>=(t->digits+t->exponent+p+1))
+ && (a->digits>=p)) break;
+ decAddOp(d, d, &numone, &dset, 0, &ignore); /* d=d+1 */
+ } /* iterate */
+
+ #if DECCHECK
+ /* just a sanity check; comment out test to show always */
+ if (iterations>p+3)
+ printf("Exp iterations=%ld, status=%08lx, p=%ld, d=%ld\n",
+ iterations, *status, p, x->digits);
+ #endif
+ } /* h<=8 */
+
+ /* apply postconditioning: a=a**(10**h) -- this is calculated */
+ /* at a slightly higher precision than Hull & Abrham suggest */
+ if (h>0) {
+ Int seenbit=0; /* set once a 1-bit is seen */
+ Int i; /* counter */
+ Int n=powers[h]; /* always positive */
+ aset.digits=p+2; /* sufficient precision */
+ /* avoid the overhead and many extra digits of decNumberPower */
+ /* as all that is needed is the short 'multipliers' loop; here */
+ /* accumulate the answer into t */
+ decNumberZero(t); *t->lsu=1; /* acc=1 */
+ for (i=1;;i++){ /* for each bit [top bit ignored] */
+ /* abandon if have had overflow or terminal underflow */
+ if (*status & (DEC_Overflow|DEC_Underflow)) { /* interesting? */
+ if (*status&DEC_Overflow || ISZERO(t)) break;}
+ n=n<<1; /* move next bit to testable position */
+ if (n<0) { /* top bit is set */
+ seenbit=1; /* OK, have a significant bit */
+ decMultiplyOp(t, t, a, &aset, status); /* acc=acc*x */
+ }
+ if (i==31) break; /* that was the last bit */
+ if (!seenbit) continue; /* no need to square 1 */
+ decMultiplyOp(t, t, t, &aset, status); /* acc=acc*acc [square] */
+ } /*i*/ /* 32 bits */
+ /* decNumberShow(t); */
+ a=t; /* and carry on using t instead of a */
+ }
+
+ /* Copy and round the result to res */
+ residue=1; /* indicate dirt to right .. */
+ if (ISZERO(a)) residue=0; /* .. unless underflowed to 0 */
+ aset.digits=set->digits; /* [use default rounding] */
+ decCopyFit(res, a, &aset, &residue, status); /* copy & shorten */
+ decFinish(res, set, &residue, status); /* cleanup/set flags */
+ } while(0); /* end protected */
+
+ if (allocrhs !=NULL) free(allocrhs); /* drop any storage used */
+ if (allocbufa!=NULL) free(allocbufa); /* .. */
+ if (allocbuft!=NULL) free(allocbuft); /* .. */
+ /* [status is handled by caller] */
+ return res;
+ } /* decExpOp */
+
+/* ------------------------------------------------------------------ */
+/* Initial-estimate natural logarithm table */
+/* */
+/* LNnn -- 90-entry 16-bit table for values from .10 through .99. */
+/* The result is a 4-digit encode of the coefficient (c=the */
+/* top 14 bits encoding 0-9999) and a 2-digit encode of the */
+/* exponent (e=the bottom 2 bits encoding 0-3) */
+/* */
+/* The resulting value is given by: */
+/* */
+/* v = -c * 10**(-e-3) */
+/* */
+/* where e and c are extracted from entry k = LNnn[x-10] */
+/* where x is truncated (NB) into the range 10 through 99, */
+/* and then c = k>>2 and e = k&3. */
+/* ------------------------------------------------------------------ */
+const uShort LNnn[90]={9016, 8652, 8316, 8008, 7724, 7456, 7208,
+ 6972, 6748, 6540, 6340, 6148, 5968, 5792, 5628, 5464, 5312,
+ 5164, 5020, 4884, 4748, 4620, 4496, 4376, 4256, 4144, 4032,
+ 39233, 38181, 37157, 36157, 35181, 34229, 33297, 32389, 31501, 30629,
+ 29777, 28945, 28129, 27329, 26545, 25777, 25021, 24281, 23553, 22837,
+ 22137, 21445, 20769, 20101, 19445, 18801, 18165, 17541, 16925, 16321,
+ 15721, 15133, 14553, 13985, 13421, 12865, 12317, 11777, 11241, 10717,
+ 10197, 9685, 9177, 8677, 8185, 7697, 7213, 6737, 6269, 5801,
+ 5341, 4889, 4437, 39930, 35534, 31186, 26886, 22630, 18418, 14254,
+ 10130, 6046, 20055};
+
+/* ------------------------------------------------------------------ */
+/* decLnOp -- effect natural logarithm */
+/* */
+/* This computes C = ln(A) */
+/* */
+/* res is C, the result. C may be A */
+/* rhs is A */
+/* set is the context; note that rounding mode has no effect */
+/* */
+/* C must have space for set->digits digits. */
+/* */
+/* Notable cases: */
+/* A<0 -> Invalid */
+/* A=0 -> -Infinity (Exact) */
+/* A=+Infinity -> +Infinity (Exact) */
+/* A=1 exactly -> 0 (Exact) */
+/* */
+/* Restrictions (as for Exp): */
+/* */
+/* digits, emax, and -emin in the context must be less than */
+/* DEC_MAX_MATH+11 (1000010), and the rhs must be within these */
+/* bounds or a zero. This is an internal routine, so these */
+/* restrictions are contractual and not enforced. */
+/* */
+/* A finite result is rounded using DEC_ROUND_HALF_EVEN; it will */
+/* almost always be correctly rounded, but may be up to 1 ulp in */
+/* error in rare cases. */
+/* ------------------------------------------------------------------ */
+/* The result is calculated using Newton's method, with each */
+/* iteration calculating a' = a + x * exp(-a) - 1. See, for example, */
+/* Epperson 1989. */
+/* */
+/* The iteration ends when the adjustment x*exp(-a)-1 is tiny enough. */
+/* This has to be calculated at the sum of the precision of x and the */
+/* working precision. */
+/* */
+/* Implementation notes: */
+/* */
+/* 1. This is separated out as decLnOp so it can be called from */
+/* other Mathematical functions (e.g., Log 10) with a wider range */
+/* than normal. In particular, it can handle the slightly wider */
+/* (+9+2) range needed by a power function. */
+/* */
+/* 2. The speed of this function is about 10x slower than exp, as */
+/* it typically needs 4-6 iterations for short numbers, and the */
+/* extra precision needed adds a squaring effect, twice. */
+/* */
+/* 3. Fastpaths are included for ln(10) and ln(2), up to length 40, */
+/* as these are common requests. ln(10) is used by log10(x). */
+/* */
+/* 4. An iteration might be saved by widening the LNnn table, and */
+/* would certainly save at least one if it were made ten times */
+/* bigger, too (for truncated fractions 0.100 through 0.999). */
+/* However, for most practical evaluations, at least four or five */
+/* iterations will be neede -- so this would only speed up by */
+/* 20-25% and that probably does not justify increasing the table */
+/* size. */
+/* */
+/* 5. The static buffers are larger than might be expected to allow */
+/* for calls from decNumberPower. */
+/* ------------------------------------------------------------------ */
+decNumber * decLnOp(decNumber *res, const decNumber *rhs,
+ decContext *set, uInt *status) {
+ uInt ignore=0; /* working status accumulator */
+ uInt needbytes; /* for space calculations */
+ Int residue; /* rounding residue */
+ Int r; /* rhs=f*10**r [see below] */
+ Int p; /* working precision */
+ Int pp; /* precision for iteration */
+ Int t; /* work */
+
+ /* buffers for a (accumulator, typically precision+2) and b */
+ /* (adjustment calculator, same size) */
+ decNumber bufa[D2N(DECBUFFER+12)];
+ decNumber *allocbufa=NULL; /* -> allocated bufa, iff allocated */
+ decNumber *a=bufa; /* accumulator/work */
+ decNumber bufb[D2N(DECBUFFER*2+2)];
+ decNumber *allocbufb=NULL; /* -> allocated bufa, iff allocated */
+ decNumber *b=bufb; /* adjustment/work */
+
+ decNumber numone; /* constant 1 */
+ decNumber cmp; /* work */
+ decContext aset, bset; /* working contexts */
+
+ #if DECCHECK
+ Int iterations=0; /* for later sanity check */
+ if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
+ #endif
+
+ do { /* protect allocated storage */
+ if (SPECIALARG) { /* handle infinities and NaNs */
+ if (decNumberIsInfinite(rhs)) { /* an infinity */
+ if (decNumberIsNegative(rhs)) /* -Infinity -> error */
+ *status|=DEC_Invalid_operation;
+ else decNumberCopy(res, rhs); /* +Infinity -> self */
+ }
+ else decNaNs(res, rhs, NULL, set, status); /* a NaN */
+ break;}
+
+ if (ISZERO(rhs)) { /* +/- zeros -> -Infinity */
+ decNumberZero(res); /* make clean */
+ res->bits=DECINF|DECNEG; /* set - infinity */
+ break;} /* [no status to set] */
+
+ /* Non-zero negatives are bad... */
+ if (decNumberIsNegative(rhs)) { /* -x -> error */
+ *status|=DEC_Invalid_operation;
+ break;}
+
+ /* Here, rhs is positive, finite, and in range */
+
+ /* lookaside fastpath code for ln(2) and ln(10) at common lengths */
+ if (rhs->exponent==0 && set->digits<=40) {
+ #if DECDPUN==1
+ if (rhs->lsu[0]==0 && rhs->lsu[1]==1 && rhs->digits==2) { /* ln(10) */
+ #else
+ if (rhs->lsu[0]==10 && rhs->digits==2) { /* ln(10) */
+ #endif
+ aset=*set; aset.round=DEC_ROUND_HALF_EVEN;
+ #define LN10 "2.302585092994045684017991454684364207601"
+ decNumberFromString(res, LN10, &aset);
+ *status|=(DEC_Inexact | DEC_Rounded); /* is inexact */
+ break;}
+ if (rhs->lsu[0]==2 && rhs->digits==1) { /* ln(2) */
+ aset=*set; aset.round=DEC_ROUND_HALF_EVEN;
+ #define LN2 "0.6931471805599453094172321214581765680755"
+ decNumberFromString(res, LN2, &aset);
+ *status|=(DEC_Inexact | DEC_Rounded);
+ break;}
+ } /* integer and short */
+
+ /* Determine the working precision. This is normally the */
+ /* requested precision + 2, with a minimum of 9. However, if */
+ /* the rhs is 'over-precise' then allow for all its digits to */
+ /* potentially participate (consider an rhs where all the excess */
+ /* digits are 9s) so in this case use rhs->digits+2. */
+ p=MAXI(rhs->digits, MAXI(set->digits, 7))+2;
+
+ /* Allocate space for the accumulator and the high-precision */
+ /* adjustment calculator, if necessary. The accumulator must */
+ /* be able to hold p digits, and the adjustment up to */
+ /* rhs->digits+p digits. They are also made big enough for 16 */
+ /* digits so that they can be used for calculating the initial */
+ /* estimate. */
+ needbytes=sizeof(decNumber)+(D2U(MAXI(p,16))-1)*sizeof(Unit);
+ if (needbytes>sizeof(bufa)) { /* need malloc space */
+ allocbufa=(decNumber *)malloc(needbytes);
+ if (allocbufa==NULL) { /* hopeless -- abandon */
+ *status|=DEC_Insufficient_storage;
+ break;}
+ a=allocbufa; /* use the allocated space */
+ }
+ pp=p+rhs->digits;
+ needbytes=sizeof(decNumber)+(D2U(MAXI(pp,16))-1)*sizeof(Unit);
+ if (needbytes>sizeof(bufb)) { /* need malloc space */
+ allocbufb=(decNumber *)malloc(needbytes);
+ if (allocbufb==NULL) { /* hopeless -- abandon */
+ *status|=DEC_Insufficient_storage;
+ break;}
+ b=allocbufb; /* use the allocated space */
+ }
+
+ /* Prepare an initial estimate in acc. Calculate this by */
+ /* considering the coefficient of x to be a normalized fraction, */
+ /* f, with the decimal point at far left and multiplied by */
+ /* 10**r. Then, rhs=f*10**r and 0.1<=f<1, and */
+ /* ln(x) = ln(f) + ln(10)*r */
+ /* Get the initial estimate for ln(f) from a small lookup */
+ /* table (see above) indexed by the first two digits of f, */
+ /* truncated. */
+
+ decContextDefault(&aset, DEC_INIT_DECIMAL64); /* 16-digit extended */
+ r=rhs->exponent+rhs->digits; /* 'normalised' exponent */
+ decNumberFromInt32(a, r); /* a=r */
+ decNumberFromInt32(b, 2302585); /* b=ln(10) (2.302585) */
+ b->exponent=-6; /* .. */
+ decMultiplyOp(a, a, b, &aset, &ignore); /* a=a*b */
+ /* now get top two digits of rhs into b by simple truncate and */
+ /* force to integer */
+ residue=0; /* (no residue) */
+ aset.digits=2; aset.round=DEC_ROUND_DOWN;
+ decCopyFit(b, rhs, &aset, &residue, &ignore); /* copy & shorten */
+ b->exponent=0; /* make integer */
+ t=decGetInt(b); /* [cannot fail] */
+ if (t<10) t=X10(t); /* adjust single-digit b */
+ t=LNnn[t-10]; /* look up ln(b) */
+ decNumberFromInt32(b, t>>2); /* b=ln(b) coefficient */
+ b->exponent=-(t&3)-3; /* set exponent */
+ b->bits=DECNEG; /* ln(0.10)->ln(0.99) always -ve */
+ aset.digits=16; aset.round=DEC_ROUND_HALF_EVEN; /* restore */
+ decAddOp(a, a, b, &aset, 0, &ignore); /* acc=a+b */
+ /* the initial estimate is now in a, with up to 4 digits correct. */
+ /* When rhs is at or near Nmax the estimate will be low, so we */
+ /* will approach it from below, avoiding overflow when calling exp. */
+
+ decNumberZero(&numone); *numone.lsu=1; /* constant 1 for adjustment */
+
+ /* accumulator bounds are as requested (could underflow, but */
+ /* cannot overflow) */
+ aset.emax=set->emax;
+ aset.emin=set->emin;
+ aset.clamp=0; /* no concrete format */
+ /* set up a context to be used for the multiply and subtract */
+ bset=aset;
+ bset.emax=DEC_MAX_MATH*2; /* use double bounds for the */
+ bset.emin=-DEC_MAX_MATH*2; /* adjustment calculation */
+ /* [see decExpOp call below] */
+ /* for each iteration double the number of digits to calculate, */
+ /* up to a maximum of p */
+ pp=9; /* initial precision */
+ /* [initially 9 as then the sequence starts 7+2, 16+2, and */
+ /* 34+2, which is ideal for standard-sized numbers] */
+ aset.digits=pp; /* working context */
+ bset.digits=pp+rhs->digits; /* wider context */
+ for (;;) { /* iterate */
+ #if DECCHECK
+ iterations++;
+ if (iterations>24) break; /* consider 9 * 2**24 */
+ #endif
+ /* calculate the adjustment (exp(-a)*x-1) into b. This is a */
+ /* catastrophic subtraction but it really is the difference */
+ /* from 1 that is of interest. */
+ /* Use the internal entry point to Exp as it allows the double */
+ /* range for calculating exp(-a) when a is the tiniest subnormal. */
+ a->bits^=DECNEG; /* make -a */
+ decExpOp(b, a, &bset, &ignore); /* b=exp(-a) */
+ a->bits^=DECNEG; /* restore sign of a */
+ /* now multiply by rhs and subtract 1, at the wider precision */
+ decMultiplyOp(b, b, rhs, &bset, &ignore); /* b=b*rhs */
+ decAddOp(b, b, &numone, &bset, DECNEG, &ignore); /* b=b-1 */
+
+ /* the iteration ends when the adjustment cannot affect the */
+ /* result by >=0.5 ulp (at the requested digits), which */
+ /* is when its value is smaller than the accumulator by */
+ /* set->digits+1 digits (or it is zero) -- this is a looser */
+ /* requirement than for Exp because all that happens to the */
+ /* accumulator after this is the final rounding (but note that */
+ /* there must also be full precision in a, or a=0). */
+
+ if (decNumberIsZero(b) ||
+ (a->digits+a->exponent)>=(b->digits+b->exponent+set->digits+1)) {
+ if (a->digits==p) break;
+ if (decNumberIsZero(a)) {
+ decCompareOp(&cmp, rhs, &numone, &aset, COMPARE, &ignore); /* rhs=1 ? */
+ if (cmp.lsu[0]==0) a->exponent=0; /* yes, exact 0 */
+ else *status|=(DEC_Inexact | DEC_Rounded); /* no, inexact */
+ break;
+ }
+ /* force padding if adjustment has gone to 0 before full length */
+ if (decNumberIsZero(b)) b->exponent=a->exponent-p;
+ }
+
+ /* not done yet ... */
+ decAddOp(a, a, b, &aset, 0, &ignore); /* a=a+b for next estimate */
+ if (pp==p) continue; /* precision is at maximum */
+ /* lengthen the next calculation */
+ pp=pp*2; /* double precision */
+ if (pp>p) pp=p; /* clamp to maximum */
+ aset.digits=pp; /* working context */
+ bset.digits=pp+rhs->digits; /* wider context */
+ } /* Newton's iteration */
+
+ #if DECCHECK
+ /* just a sanity check; remove the test to show always */
+ if (iterations>24)
+ printf("Ln iterations=%ld, status=%08lx, p=%ld, d=%ld\n",
+ iterations, *status, p, rhs->digits);
+ #endif
+
+ /* Copy and round the result to res */
+ residue=1; /* indicate dirt to right */
+ if (ISZERO(a)) residue=0; /* .. unless underflowed to 0 */
+ aset.digits=set->digits; /* [use default rounding] */
+ decCopyFit(res, a, &aset, &residue, status); /* copy & shorten */
+ decFinish(res, set, &residue, status); /* cleanup/set flags */
+ } while(0); /* end protected */
+
+ if (allocbufa!=NULL) free(allocbufa); /* drop any storage used */
+ if (allocbufb!=NULL) free(allocbufb); /* .. */
+ /* [status is handled by caller] */
return res;
-}
+ } /* decLnOp */
/* ------------------------------------------------------------------ */
-/* decQuantizeOp -- force exponent to requested value */
-/* */
+/* decQuantizeOp -- force exponent to requested value */
+/* */
/* This computes C = op(A, B), where op adjusts the coefficient */
/* of C (by rounding or shifting) such that the exponent (-scale) */
-/* of C has the value B or matches the exponent of B. */
+/* of C has the value B or matches the exponent of B. */
/* The numerical value of C will equal A, except for the effects of */
-/* any rounding that occurred. */
-/* */
-/* res is C, the result. C may be A or B */
-/* lhs is A, the number to adjust */
-/* rhs is B, the requested exponent */
-/* set is the context */
-/* quant is 1 for quantize or 0 for rescale */
+/* any rounding that occurred. */
+/* */
+/* res is C, the result. C may be A or B */
+/* lhs is A, the number to adjust */
+/* rhs is B, the requested exponent */
+/* set is the context */
+/* quant is 1 for quantize or 0 for rescale */
/* status is the status accumulator (this can be called without */
-/* risk of control loss) */
-/* */
-/* C must have space for set->digits digits. */
-/* */
+/* risk of control loss) */
+/* */
+/* C must have space for set->digits digits. */
+/* */
/* Unless there is an error or the result is infinite, the exponent */
-/* after the operation is guaranteed to be that requested. */
-/* ------------------------------------------------------------------ */
-static decNumber *
-decQuantizeOp (decNumber * res, const decNumber * lhs,
- const decNumber * rhs, decContext * set, Flag quant, uInt * status)
-{
- decNumber *alloclhs = NULL; /* non-NULL if rounded lhs allocated */
- decNumber *allocrhs = NULL; /* .., rhs */
- const decNumber *inrhs = rhs; /* save original rhs */
- Int reqdigits = set->digits; /* requested DIGITS */
- Int reqexp; /* requested exponent [-scale] */
- Int residue = 0; /* rounding residue */
- uByte merged; /* merged flags */
- Int etiny = set->emin - (set->digits - 1);
-
-#if DECCHECK
- if (decCheckOperands (res, lhs, rhs, set))
- return res;
-#endif
-
- do
- { /* protect allocated storage */
-#if DECSUBSET
- if (!set->extended)
- {
- /* reduce operands and set lostDigits status, as needed */
- if (lhs->digits > reqdigits)
- {
- alloclhs = decRoundOperand (lhs, set, status);
- if (alloclhs == NULL)
- break;
- lhs = alloclhs;
- }
- if (rhs->digits > reqdigits)
- { /* [this only checks lostDigits] */
- allocrhs = decRoundOperand (rhs, set, status);
- if (allocrhs == NULL)
- break;
- rhs = allocrhs;
- }
+/* after the operation is guaranteed to be that requested. */
+/* ------------------------------------------------------------------ */
+static decNumber * decQuantizeOp(decNumber *res, const decNumber *lhs,
+ const decNumber *rhs, decContext *set,
+ Flag quant, uInt *status) {
+ #if DECSUBSET
+ decNumber *alloclhs=NULL; /* non-NULL if rounded lhs allocated */
+ decNumber *allocrhs=NULL; /* .., rhs */
+ #endif
+ const decNumber *inrhs=rhs; /* save original rhs */
+ Int reqdigits=set->digits; /* requested DIGITS */
+ Int reqexp; /* requested exponent [-scale] */
+ Int residue=0; /* rounding residue */
+ Int etiny=set->emin-(reqdigits-1);
+
+ #if DECCHECK
+ if (decCheckOperands(res, lhs, rhs, set)) return res;
+ #endif
+
+ do { /* protect allocated storage */
+ #if DECSUBSET
+ if (!set->extended) {
+ /* reduce operands and set lostDigits status, as needed */
+ if (lhs->digits>reqdigits) {
+ alloclhs=decRoundOperand(lhs, set, status);
+ if (alloclhs==NULL) break;
+ lhs=alloclhs;
}
-#endif
- /* [following code does not require input rounding] */
-
- /* Handle special values */
- merged = (lhs->bits | rhs->bits) & DECSPECIAL;
- if ((lhs->bits | rhs->bits) & DECSPECIAL)
- {
- /* NaNs get usual processing */
- if (merged & (DECSNAN | DECNAN))
- decNaNs (res, lhs, rhs, status);
- /* one infinity but not both is bad */
- else if ((lhs->bits ^ rhs->bits) & DECINF)
- *status |= DEC_Invalid_operation;
- /* both infinity: return lhs */
- else
- decNumberCopy (res, lhs); /* [nop if in place] */
- break;
- }
-
- /* set requested exponent */
- if (quant)
- reqexp = inrhs->exponent; /* quantize -- match exponents */
- else
- { /* rescale -- use value of rhs */
- /* Original rhs must be an integer that fits and is in range */
-#if DECSUBSET
- reqexp = decGetInt (inrhs, set);
-#else
- reqexp = decGetInt (inrhs);
-#endif
+ if (rhs->digits>reqdigits) { /* [this only checks lostDigits] */
+ allocrhs=decRoundOperand(rhs, set, status);
+ if (allocrhs==NULL) break;
+ rhs=allocrhs;
}
+ }
+ #endif
+ /* [following code does not require input rounding] */
+
+ /* Handle special values */
+ if (SPECIALARGS) {
+ /* NaNs get usual processing */
+ if (SPECIALARGS & (DECSNAN | DECNAN))
+ decNaNs(res, lhs, rhs, set, status);
+ /* one infinity but not both is bad */
+ else if ((lhs->bits ^ rhs->bits) & DECINF)
+ *status|=DEC_Invalid_operation;
+ /* both infinity: return lhs */
+ else decNumberCopy(res, lhs); /* [nop if in place] */
+ break;
+ }
-#if DECSUBSET
- if (!set->extended)
- etiny = set->emin; /* no subnormals */
-#endif
+ /* set requested exponent */
+ if (quant) reqexp=inrhs->exponent; /* quantize -- match exponents */
+ else { /* rescale -- use value of rhs */
+ /* Original rhs must be an integer that fits and is in range, */
+ /* which could be from -1999999997 to +999999999, thanks to */
+ /* subnormals */
+ reqexp=decGetInt(inrhs); /* [cannot fail] */
+ }
- if (reqexp == BADINT /* bad (rescale only) or .. */
- || (reqexp < etiny) /* < lowest */
- || (reqexp > set->emax))
- { /* > Emax */
- *status |= DEC_Invalid_operation;
- break;
+ #if DECSUBSET
+ if (!set->extended) etiny=set->emin; /* no subnormals */
+ #endif
+
+ if (reqexp==BADINT /* bad (rescale only) or .. */
+ || reqexp==BIGODD || reqexp==BIGEVEN /* very big (ditto) or .. */
+ || (reqexp<etiny) /* < lowest */
+ || (reqexp>set->emax)) { /* > emax */
+ *status|=DEC_Invalid_operation;
+ break;}
+
+ /* the RHS has been processed, so it can be overwritten now if necessary */
+ if (ISZERO(lhs)) { /* zero coefficient unchanged */
+ decNumberCopy(res, lhs); /* [nop if in place] */
+ res->exponent=reqexp; /* .. just set exponent */
+ #if DECSUBSET
+ if (!set->extended) res->bits=0; /* subset specification; no -0 */
+ #endif
+ }
+ else { /* non-zero lhs */
+ Int adjust=reqexp-lhs->exponent; /* digit adjustment needed */
+ /* if adjusted coefficient will definitely not fit, give up now */
+ if ((lhs->digits-adjust)>reqdigits) {
+ *status|=DEC_Invalid_operation;
+ break;
}
- /* we've processed the RHS, so we can overwrite it now if necessary */
- if (ISZERO (lhs))
- { /* zero coefficient unchanged */
- decNumberCopy (res, lhs); /* [nop if in place] */
- res->exponent = reqexp; /* .. just set exponent */
-#if DECSUBSET
- if (!set->extended)
- res->bits = 0; /* subset specification; no -0 */
-#endif
- }
- else
- { /* non-zero lhs */
- Int adjust = reqexp - lhs->exponent; /* digit adjustment needed */
- /* if adjusted coefficient will not fit, give up now */
- if ((lhs->digits - adjust) > reqdigits)
- {
- *status |= DEC_Invalid_operation;
- break;
+ if (adjust>0) { /* increasing exponent */
+ /* this will decrease the length of the coefficient by adjust */
+ /* digits, and must round as it does so */
+ decContext workset; /* work */
+ workset=*set; /* clone rounding, etc. */
+ workset.digits=lhs->digits-adjust; /* set requested length */
+ /* [note that the latter can be <1, here] */
+ decCopyFit(res, lhs, &workset, &residue, status); /* fit to result */
+ decApplyRound(res, &workset, residue, status); /* .. and round */
+ residue=0; /* [used] */
+ /* If just rounded a 999s case, exponent will be off by one; */
+ /* adjust back (after checking space), if so. */
+ if (res->exponent>reqexp) {
+ /* re-check needed, e.g., for quantize(0.9999, 0.001) under */
+ /* set->digits==3 */
+ if (res->digits==reqdigits) { /* cannot shift by 1 */
+ *status&=~(DEC_Inexact | DEC_Rounded); /* [clean these] */
+ *status|=DEC_Invalid_operation;
+ break;
}
+ res->digits=decShiftToMost(res->lsu, res->digits, 1); /* shift */
+ res->exponent--; /* (re)adjust the exponent. */
+ }
+ #if DECSUBSET
+ if (ISZERO(res) && !set->extended) res->bits=0; /* subset; no -0 */
+ #endif
+ } /* increase */
+ else /* adjust<=0 */ { /* decreasing or = exponent */
+ /* this will increase the length of the coefficient by -adjust */
+ /* digits, by adding zero or more trailing zeros; this is */
+ /* already checked for fit, above */
+ decNumberCopy(res, lhs); /* [it will fit] */
+ /* if padding needed (adjust<0), add it now... */
+ if (adjust<0) {
+ res->digits=decShiftToMost(res->lsu, res->digits, -adjust);
+ res->exponent+=adjust; /* adjust the exponent */
+ }
+ } /* decrease */
+ } /* non-zero */
- if (adjust > 0)
- { /* increasing exponent */
- /* this will decrease the length of the coefficient by adjust */
- /* digits, and must round as it does so */
- decContext workset; /* work */
- workset = *set; /* clone rounding, etc. */
- workset.digits = lhs->digits - adjust; /* set requested length */
- /* [note that the latter can be <1, here] */
- decCopyFit (res, lhs, &workset, &residue, status); /* fit to result */
- decApplyRound (res, &workset, residue, status); /* .. and round */
- residue = 0; /* [used] */
- /* If we rounded a 999s case, exponent will be off by one; */
- /* adjust back if so. */
- if (res->exponent > reqexp)
- {
- res->digits = decShiftToMost (res->lsu, res->digits, 1); /* shift */
- res->exponent--; /* (re)adjust the exponent. */
- }
-#if DECSUBSET
- if (ISZERO (res) && !set->extended)
- res->bits = 0; /* subset; no -0 */
-#endif
- } /* increase */
- else /* adjust<=0 */
- { /* decreasing or = exponent */
- /* this will increase the length of the coefficient by -adjust */
- /* digits, by adding trailing zeros. */
- decNumberCopy (res, lhs); /* [it will fit] */
- /* if padding needed (adjust<0), add it now... */
- if (adjust < 0)
- {
- res->digits =
- decShiftToMost (res->lsu, res->digits, -adjust);
- res->exponent += adjust; /* adjust the exponent */
- }
- } /* decrease */
- } /* non-zero */
-
- /* Check for overflow [do not use Finalize in this case, as an */
- /* overflow here is a "don't fit" situation] */
- if (res->exponent > set->emax - res->digits + 1)
- { /* too big */
- *status |= DEC_Invalid_operation;
- break;
- }
- else
- {
- decFinalize (res, set, &residue, status); /* set subnormal flags */
- *status &= ~DEC_Underflow; /* suppress Underflow [754r] */
- }
- }
- while (0); /* end protected */
+ /* Check for overflow [do not use Finalize in this case, as an */
+ /* overflow here is a "don't fit" situation] */
+ if (res->exponent>set->emax-res->digits+1) { /* too big */
+ *status|=DEC_Invalid_operation;
+ break;
+ }
+ else {
+ decFinalize(res, set, &residue, status); /* set subnormal flags */
+ *status&=~DEC_Underflow; /* suppress Underflow [754r] */
+ }
+ } while(0); /* end protected */
- if (allocrhs != NULL)
- free (allocrhs); /* drop any storage we used */
- if (alloclhs != NULL)
- free (alloclhs); /* .. */
+ #if DECSUBSET
+ if (allocrhs!=NULL) free(allocrhs); /* drop any storage used */
+ if (alloclhs!=NULL) free(alloclhs); /* .. */
+ #endif
return res;
-}
-
-/* ------------------------------------------------------------------ */
-/* decCompareOp -- compare, min, or max two Numbers */
-/* */
-/* This computes C = A ? B and returns the signum (as a Number) */
-/* for COMPARE or the maximum or minimum (for COMPMAX and COMPMIN). */
-/* */
-/* res is C, the result. C may be A and/or B (e.g., X=X?X) */
-/* lhs is A */
-/* rhs is B */
-/* set is the context */
-/* op is the operation flag */
-/* status is the usual accumulator */
-/* */
+ } /* decQuantizeOp */
+
+/* ------------------------------------------------------------------ */
+/* decCompareOp -- compare, min, or max two Numbers */
+/* */
+/* This computes C = A ? B and carries out one of four operations: */
+/* COMPARE -- returns the signum (as a number) giving the */
+/* result of a comparison unless one or both */
+/* operands is a NaN (in which case a NaN results) */
+/* COMPSIG -- as COMPARE except that a quiet NaN raises */
+/* Invalid operation. */
+/* COMPMAX -- returns the larger of the operands, using the */
+/* 754r maxnum operation */
+/* COMPMAXMAG -- ditto, comparing absolute values */
+/* COMPMIN -- the 754r minnum operation */
+/* COMPMINMAG -- ditto, comparing absolute values */
+/* COMTOTAL -- returns the signum (as a number) giving the */
+/* result of a comparison using 754r total ordering */
+/* */
+/* res is C, the result. C may be A and/or B (e.g., X=X?X) */
+/* lhs is A */
+/* rhs is B */
+/* set is the context */
+/* op is the operation flag */
+/* status is the usual accumulator */
+/* */
/* C must have space for one digit for COMPARE or set->digits for */
-/* COMPMAX and COMPMIN. */
-/* ------------------------------------------------------------------ */
-/* The emphasis here is on speed for common cases, and avoiding */
-/* coefficient comparison if possible. */
-/* ------------------------------------------------------------------ */
-decNumber *
-decCompareOp (decNumber * res, const decNumber * lhs, const decNumber * rhs,
- decContext * set, Flag op, uInt * status)
-{
- decNumber *alloclhs = NULL; /* non-NULL if rounded lhs allocated */
- decNumber *allocrhs = NULL; /* .., rhs */
- Int result = 0; /* default result value */
- uByte merged; /* merged flags */
- uByte bits = 0; /* non-0 for NaN */
-
-#if DECCHECK
- if (decCheckOperands (res, lhs, rhs, set))
- return res;
-#endif
-
- do
- { /* protect allocated storage */
-#if DECSUBSET
- if (!set->extended)
- {
- /* reduce operands and set lostDigits status, as needed */
- if (lhs->digits > set->digits)
- {
- alloclhs = decRoundOperand (lhs, set, status);
- if (alloclhs == NULL)
- {
- result = BADINT;
- break;
- }
- lhs = alloclhs;
- }
- if (rhs->digits > set->digits)
- {
- allocrhs = decRoundOperand (rhs, set, status);
- if (allocrhs == NULL)
- {
- result = BADINT;
- break;
- }
- rhs = allocrhs;
- }
+/* COMPMAX, COMPMIN, COMPMAXMAG, or COMPMINMAG. */
+/* ------------------------------------------------------------------ */
+/* The emphasis here is on speed for common cases, and avoiding */
+/* coefficient comparison if possible. */
+/* ------------------------------------------------------------------ */
+decNumber * decCompareOp(decNumber *res, const decNumber *lhs,
+ const decNumber *rhs, decContext *set,
+ Flag op, uInt *status) {
+ #if DECSUBSET
+ decNumber *alloclhs=NULL; /* non-NULL if rounded lhs allocated */
+ decNumber *allocrhs=NULL; /* .., rhs */
+ #endif
+ Int result=0; /* default result value */
+ uByte merged; /* work */
+
+ #if DECCHECK
+ if (decCheckOperands(res, lhs, rhs, set)) return res;
+ #endif
+
+ do { /* protect allocated storage */
+ #if DECSUBSET
+ if (!set->extended) {
+ /* reduce operands and set lostDigits status, as needed */
+ if (lhs->digits>set->digits) {
+ alloclhs=decRoundOperand(lhs, set, status);
+ if (alloclhs==NULL) {result=BADINT; break;}
+ lhs=alloclhs;
}
-#endif
- /* [following code does not require input rounding] */
-
- /* handle NaNs now; let infinities drop through */
- /* +++ review sNaN handling with 754r, for now assumes sNaN */
- /* (even just one) leads to NaN. */
- merged = (lhs->bits | rhs->bits) & (DECSNAN | DECNAN);
- if (merged)
- { /* a NaN bit set */
- if (op == COMPARE);
- else if (merged & DECSNAN);
- else
- { /* 754r rules for MIN and MAX ignore single NaN */
- /* here if MIN or MAX, and one or two quiet NaNs */
- if (lhs->bits & rhs->bits & DECNAN);
- else
- { /* just one quiet NaN */
- /* force choice to be the non-NaN operand */
- op = COMPMAX;
- if (lhs->bits & DECNAN)
- result = -1; /* pick rhs */
- else
- result = +1; /* pick lhs */
- break;
- }
- }
- op = COMPNAN; /* use special path */
- decNaNs (res, lhs, rhs, status);
- break;
+ if (rhs->digits>set->digits) {
+ allocrhs=decRoundOperand(rhs, set, status);
+ if (allocrhs==NULL) {result=BADINT; break;}
+ rhs=allocrhs;
}
+ }
+ #endif
+ /* [following code does not require input rounding] */
- result = decCompare (lhs, rhs); /* we have numbers */
- }
- while (0); /* end protected */
-
- if (result == BADINT)
- *status |= DEC_Insufficient_storage; /* rare */
- else
- {
- if (op == COMPARE)
- { /* return signum */
- decNumberZero (res); /* [always a valid result] */
- if (result == 0)
- res->bits = bits; /* (maybe qNaN) */
- else
- {
- *res->lsu = 1;
- if (result < 0)
- res->bits = DECNEG;
- }
+ /* If total ordering then handle differing signs 'up front' */
+ if (op==COMPTOTAL) { /* total ordering */
+ if (decNumberIsNegative(lhs) & !decNumberIsNegative(rhs)) {
+ result=-1;
+ break;
}
- else if (op == COMPNAN); /* special, drop through */
- else
- { /* MAX or MIN, non-NaN result */
- Int residue = 0; /* rounding accumulator */
- /* choose the operand for the result */
- const decNumber *choice;
- if (result == 0)
- { /* operands are numerically equal */
- /* choose according to sign then exponent (see 754r) */
- uByte slhs = (lhs->bits & DECNEG);
- uByte srhs = (rhs->bits & DECNEG);
-#if DECSUBSET
- if (!set->extended)
- { /* subset: force left-hand */
- op = COMPMAX;
- result = +1;
- }
- else
-#endif
- if (slhs != srhs)
- { /* signs differ */
- if (slhs)
- result = -1; /* rhs is max */
- else
- result = +1; /* lhs is max */
- }
- else if (slhs && srhs)
- { /* both negative */
- if (lhs->exponent < rhs->exponent)
- result = +1;
- else
- result = -1;
- /* [if equal, we use lhs, technically identical] */
- }
- else
- { /* both positive */
- if (lhs->exponent > rhs->exponent)
- result = +1;
- else
- result = -1;
- /* [ditto] */
- }
- } /* numerically equal */
- /* here result will be non-0 */
- if (op == COMPMIN)
- result = -result; /* reverse if looking for MIN */
- choice = (result > 0 ? lhs : rhs); /* choose */
- /* copy chosen to result, rounding if need be */
- decCopyFit (res, choice, set, &residue, status);
- decFinish (res, set, &residue, status);
+ if (!decNumberIsNegative(lhs) & decNumberIsNegative(rhs)) {
+ result=+1;
+ break;
+ }
+ }
+
+ /* handle NaNs specially; let infinities drop through */
+ /* This assumes sNaN (even just one) leads to NaN. */
+ merged=(lhs->bits | rhs->bits) & (DECSNAN | DECNAN);
+ if (merged) { /* a NaN bit set */
+ if (op==COMPARE); /* result will be NaN */
+ else if (op==COMPSIG) /* treat qNaN as sNaN */
+ *status|=DEC_Invalid_operation | DEC_sNaN;
+ else if (op==COMPTOTAL) { /* total ordering, always finite */
+ /* signs are known to be the same; compute the ordering here */
+ /* as if the signs are both positive, then invert for negatives */
+ if (!decNumberIsNaN(lhs)) result=-1;
+ else if (!decNumberIsNaN(rhs)) result=+1;
+ /* here if both NaNs */
+ else if (decNumberIsSNaN(lhs) && decNumberIsQNaN(rhs)) result=-1;
+ else if (decNumberIsQNaN(lhs) && decNumberIsSNaN(rhs)) result=+1;
+ else { /* both NaN or both sNaN */
+ /* now it just depends on the payload */
+ result=decUnitCompare(lhs->lsu, D2U(lhs->digits),
+ rhs->lsu, D2U(rhs->digits), 0);
+ /* [Error not possible, as these are 'aligned'] */
+ } /* both same NaNs */
+ if (decNumberIsNegative(lhs)) result=-result;
+ break;
+ } /* total order */
+
+ else if (merged & DECSNAN); /* sNaN -> qNaN */
+ else { /* here if MIN or MAX and one or two quiet NaNs */
+ /* min or max -- 754r rules ignore single NaN */
+ if (!decNumberIsNaN(lhs) || !decNumberIsNaN(rhs)) {
+ /* just one NaN; force choice to be the non-NaN operand */
+ op=COMPMAX;
+ if (lhs->bits & DECNAN) result=-1; /* pick rhs */
+ else result=+1; /* pick lhs */
+ break;
+ }
+ } /* max or min */
+ op=COMPNAN; /* use special path */
+ decNaNs(res, lhs, rhs, set, status); /* propagate NaN */
+ break;
+ }
+ /* have numbers */
+ if (op==COMPMAXMAG || op==COMPMINMAG) result=decCompare(lhs, rhs, 1);
+ else result=decCompare(lhs, rhs, 0); /* sign matters */
+ } while(0); /* end protected */
+
+ if (result==BADINT) *status|=DEC_Insufficient_storage; /* rare */
+ else {
+ if (op==COMPARE || op==COMPSIG ||op==COMPTOTAL) { /* returning signum */
+ if (op==COMPTOTAL && result==0) {
+ /* operands are numerically equal or same NaN (and same sign, */
+ /* tested first); if identical, leave result 0 */
+ if (lhs->exponent!=rhs->exponent) {
+ if (lhs->exponent<rhs->exponent) result=-1;
+ else result=+1;
+ if (decNumberIsNegative(lhs)) result=-result;
+ } /* lexp!=rexp */
+ } /* total-order by exponent */
+ decNumberZero(res); /* [always a valid result] */
+ if (result!=0) { /* must be -1 or +1 */
+ *res->lsu=1;
+ if (result<0) res->bits=DECNEG;
}
+ }
+ else if (op==COMPNAN); /* special, drop through */
+ else { /* MAX or MIN, non-NaN result */
+ Int residue=0; /* rounding accumulator */
+ /* choose the operand for the result */
+ const decNumber *choice;
+ if (result==0) { /* operands are numerically equal */
+ /* choose according to sign then exponent (see 754r) */
+ uByte slhs=(lhs->bits & DECNEG);
+ uByte srhs=(rhs->bits & DECNEG);
+ #if DECSUBSET
+ if (!set->extended) { /* subset: force left-hand */
+ op=COMPMAX;
+ result=+1;
+ }
+ else
+ #endif
+ if (slhs!=srhs) { /* signs differ */
+ if (slhs) result=-1; /* rhs is max */
+ else result=+1; /* lhs is max */
+ }
+ else if (slhs && srhs) { /* both negative */
+ if (lhs->exponent<rhs->exponent) result=+1;
+ else result=-1;
+ /* [if equal, use lhs, technically identical] */
+ }
+ else { /* both positive */
+ if (lhs->exponent>rhs->exponent) result=+1;
+ else result=-1;
+ /* [ditto] */
+ }
+ } /* numerically equal */
+ /* here result will be non-0; reverse if looking for MIN */
+ if (op==COMPMIN || op==COMPMINMAG) result=-result;
+ choice=(result>0 ? lhs : rhs); /* choose */
+ /* copy chosen to result, rounding if need be */
+ decCopyFit(res, choice, set, &residue, status);
+ decFinish(res, set, &residue, status);
+ }
}
- if (allocrhs != NULL)
- free (allocrhs); /* free any storage we used */
- if (alloclhs != NULL)
- free (alloclhs); /* .. */
+ #if DECSUBSET
+ if (allocrhs!=NULL) free(allocrhs); /* free any storage used */
+ if (alloclhs!=NULL) free(alloclhs); /* .. */
+ #endif
return res;
-}
+ } /* decCompareOp */
/* ------------------------------------------------------------------ */
-/* decCompare -- compare two decNumbers by numerical value */
-/* */
-/* This routine compares A ? B without altering them. */
-/* */
-/* Arg1 is A, a decNumber which is not a NaN */
-/* Arg2 is B, a decNumber which is not a NaN */
-/* */
+/* decCompare -- compare two decNumbers by numerical value */
+/* */
+/* This routine compares A ? B without altering them. */
+/* */
+/* Arg1 is A, a decNumber which is not a NaN */
+/* Arg2 is B, a decNumber which is not a NaN */
+/* Arg3 is 1 for a sign-independent compare, 0 otherwise */
+/* */
/* returns -1, 0, or 1 for A<B, A==B, or A>B, or BADINT if failure */
-/* (the only possible failure is an allocation error) */
-/* ------------------------------------------------------------------ */
-/* This could be merged into decCompareOp */
-static Int
-decCompare (const decNumber * lhs, const decNumber * rhs)
-{
- Int result; /* result value */
- Int sigr; /* rhs signum */
- Int compare; /* work */
- result = 1; /* assume signum(lhs) */
- if (ISZERO (lhs))
- result = 0;
- else if (decNumberIsNegative (lhs))
- result = -1;
- sigr = 1; /* compute signum(rhs) */
- if (ISZERO (rhs))
- sigr = 0;
- else if (decNumberIsNegative (rhs))
- sigr = -1;
- if (result > sigr)
- return +1; /* L > R, return 1 */
- if (result < sigr)
- return -1; /* R < L, return -1 */
-
- /* signums are the same */
- if (result == 0)
- return 0; /* both 0 */
- /* Both non-zero */
- if ((lhs->bits | rhs->bits) & DECINF)
- { /* one or more infinities */
- if (lhs->bits == rhs->bits)
- result = 0; /* both the same */
- else if (decNumberIsInfinite (rhs))
- result = -result;
- return result;
+/* (the only possible failure is an allocation error) */
+/* ------------------------------------------------------------------ */
+static Int decCompare(const decNumber *lhs, const decNumber *rhs,
+ Flag abs) {
+ Int result; /* result value */
+ Int sigr; /* rhs signum */
+ Int compare; /* work */
+
+ result=1; /* assume signum(lhs) */
+ if (ISZERO(lhs)) result=0;
+ if (abs) {
+ if (ISZERO(rhs)) return result; /* LHS wins or both 0 */
+ /* RHS is non-zero */
+ if (result==0) return -1; /* LHS is 0; RHS wins */
+ /* [here, both non-zero, result=1] */
}
-
- /* we must compare the coefficients, allowing for exponents */
- if (lhs->exponent > rhs->exponent)
- { /* LHS exponent larger */
- /* swap sides, and sign */
- const decNumber *temp = lhs;
- lhs = rhs;
- rhs = temp;
- result = -result;
+ else { /* signs matter */
+ if (result && decNumberIsNegative(lhs)) result=-1;
+ sigr=1; /* compute signum(rhs) */
+ if (ISZERO(rhs)) sigr=0;
+ else if (decNumberIsNegative(rhs)) sigr=-1;
+ if (result > sigr) return +1; /* L > R, return 1 */
+ if (result < sigr) return -1; /* L < R, return -1 */
+ if (result==0) return 0; /* both 0 */
}
- compare = decUnitCompare (lhs->lsu, D2U (lhs->digits),
- rhs->lsu, D2U (rhs->digits),
- rhs->exponent - lhs->exponent);
-
- if (compare != BADINT)
- compare *= result; /* comparison succeeded */
- return compare; /* what we got */
-}
+ /* signums are the same; both are non-zero */
+ if ((lhs->bits | rhs->bits) & DECINF) { /* one or more infinities */
+ if (decNumberIsInfinite(rhs)) {
+ if (decNumberIsInfinite(lhs)) result=0;/* both infinite */
+ else result=-result; /* only rhs infinite */
+ }
+ return result;
+ }
+ /* must compare the coefficients, allowing for exponents */
+ if (lhs->exponent>rhs->exponent) { /* LHS exponent larger */
+ /* swap sides, and sign */
+ const decNumber *temp=lhs;
+ lhs=rhs;
+ rhs=temp;
+ result=-result;
+ }
+ compare=decUnitCompare(lhs->lsu, D2U(lhs->digits),
+ rhs->lsu, D2U(rhs->digits),
+ rhs->exponent-lhs->exponent);
+ if (compare!=BADINT) compare*=result; /* comparison succeeded */
+ return compare;
+ } /* decCompare */
/* ------------------------------------------------------------------ */
-/* decUnitCompare -- compare two >=0 integers in Unit arrays */
-/* */
+/* decUnitCompare -- compare two >=0 integers in Unit arrays */
+/* */
/* This routine compares A ? B*10**E where A and B are unit arrays */
-/* A is a plain integer */
-/* B has an exponent of E (which must be non-negative) */
-/* */
-/* Arg1 is A first Unit (lsu) */
-/* Arg2 is A length in Units */
-/* Arg3 is B first Unit (lsu) */
-/* Arg4 is B length in Units */
-/* Arg5 is E */
-/* */
+/* A is a plain integer */
+/* B has an exponent of E (which must be non-negative) */
+/* */
+/* Arg1 is A first Unit (lsu) */
+/* Arg2 is A length in Units */
+/* Arg3 is B first Unit (lsu) */
+/* Arg4 is B length in Units */
+/* Arg5 is E (0 if the units are aligned) */
+/* */
/* returns -1, 0, or 1 for A<B, A==B, or A>B, or BADINT if failure */
-/* (the only possible failure is an allocation error) */
-/* ------------------------------------------------------------------ */
-static Int
-decUnitCompare (const Unit * a, Int alength, const Unit * b, Int blength, Int exp)
-{
- Unit *acc; /* accumulator for result */
- Unit accbuff[D2U (DECBUFFER + 1)]; /* local buffer */
- Unit *allocacc = NULL; /* -> allocated acc buffer, iff allocated */
- Int accunits, need; /* units in use or needed for acc */
- const Unit *l, *r, *u; /* work */
- Int expunits, exprem, result; /* .. */
-
- if (exp == 0)
- { /* aligned; fastpath */
- if (alength > blength)
- return 1;
- if (alength < blength)
- return -1;
- /* same number of units in both -- need unit-by-unit compare */
- l = a + alength - 1;
- r = b + alength - 1;
- for (; l >= a; l--, r--)
- {
- if (*l > *r)
- return 1;
- if (*l < *r)
- return -1;
- }
- return 0; /* all units match */
- } /* aligned */
-
- /* Unaligned. If one is >1 unit longer than the other, padded */
- /* approximately, then we can return easily */
- if (alength > blength + (Int) D2U (exp))
- return 1;
- if (alength + 1 < blength + (Int) D2U (exp))
- return -1;
-
- /* We need to do a real subtract. For this, we need a result buffer */
- /* even though we only are interested in the sign. Its length needs */
+/* (the only possible failure is an allocation error, which can */
+/* only occur if E!=0) */
+/* ------------------------------------------------------------------ */
+static Int decUnitCompare(const Unit *a, Int alength,
+ const Unit *b, Int blength, Int exp) {
+ Unit *acc; /* accumulator for result */
+ Unit accbuff[SD2U(DECBUFFER*2+1)]; /* local buffer */
+ Unit *allocacc=NULL; /* -> allocated acc buffer, iff allocated */
+ Int accunits, need; /* units in use or needed for acc */
+ const Unit *l, *r, *u; /* work */
+ Int expunits, exprem, result; /* .. */
+
+ if (exp==0) { /* aligned; fastpath */
+ if (alength>blength) return 1;
+ if (alength<blength) return -1;
+ /* same number of units in both -- need unit-by-unit compare */
+ l=a+alength-1;
+ r=b+alength-1;
+ for (;l>=a; l--, r--) {
+ if (*l>*r) return 1;
+ if (*l<*r) return -1;
+ }
+ return 0; /* all units match */
+ } /* aligned */
+
+ /* Unaligned. If one is >1 unit longer than the other, padded */
+ /* approximately, then can return easily */
+ if (alength>blength+(Int)D2U(exp)) return 1;
+ if (alength+1<blength+(Int)D2U(exp)) return -1;
+
+ /* Need to do a real subtract. For this, a result buffer is needed */
+ /* even though only the sign is of interest. Its length needs */
/* to be the larger of alength and padded blength, +2 */
- need = blength + D2U (exp); /* maximum real length of B */
- if (need < alength)
- need = alength;
- need += 2;
- acc = accbuff; /* assume use local buffer */
- if (need * sizeof (Unit) > sizeof (accbuff))
- {
- allocacc = (Unit *) malloc (need * sizeof (Unit));
- if (allocacc == NULL)
- return BADINT; /* hopeless -- abandon */
- acc = allocacc;
+ need=blength+D2U(exp); /* maximum real length of B */
+ if (need<alength) need=alength;
+ need+=2;
+ acc=accbuff; /* assume use local buffer */
+ if (need*sizeof(Unit)>sizeof(accbuff)) {
+ allocacc=(Unit *)malloc(need*sizeof(Unit));
+ if (allocacc==NULL) return BADINT; /* hopeless -- abandon */
+ acc=allocacc;
}
/* Calculate units and remainder from exponent. */
- expunits = exp / DECDPUN;
- exprem = exp % DECDPUN;
+ expunits=exp/DECDPUN;
+ exprem=exp%DECDPUN;
/* subtract [A+B*(-m)] */
- accunits = decUnitAddSub (a, alength, b, blength, expunits, acc,
- -(Int) powers[exprem]);
+ accunits=decUnitAddSub(a, alength, b, blength, expunits, acc,
+ -(Int)powers[exprem]);
/* [UnitAddSub result may have leading zeros, even on zero] */
- if (accunits < 0)
- result = -1; /* negative result */
- else
- { /* non-negative result */
- /* check units of the result before freeing any storage */
- for (u = acc; u < acc + accunits - 1 && *u == 0;)
- u++;
- result = (*u == 0 ? 0 : +1);
+ if (accunits<0) result=-1; /* negative result */
+ else { /* non-negative result */
+ /* check units of the result before freeing any storage */
+ for (u=acc; u<acc+accunits-1 && *u==0;) u++;
+ result=(*u==0 ? 0 : +1);
}
/* clean up and return the result */
- if (allocacc != NULL)
- free (allocacc); /* drop any storage we used */
+ if (allocacc!=NULL) free(allocacc); /* drop any storage used */
return result;
-}
+ } /* decUnitCompare */
/* ------------------------------------------------------------------ */
/* decUnitAddSub -- add or subtract two >=0 integers in Unit arrays */
-/* */
-/* This routine performs the calculation: */
-/* */
-/* C=A+(B*M) */
-/* */
-/* Where M is in the range -DECDPUNMAX through +DECDPUNMAX. */
-/* */
-/* A may be shorter or longer than B. */
-/* */
-/* Leading zeros are not removed after a calculation. The result is */
-/* either the same length as the longer of A and B (adding any */
+/* */
+/* This routine performs the calculation: */
+/* */
+/* C=A+(B*M) */
+/* */
+/* Where M is in the range -DECDPUNMAX through +DECDPUNMAX. */
+/* */
+/* A may be shorter or longer than B. */
+/* */
+/* Leading zeros are not removed after a calculation. The result is */
+/* either the same length as the longer of A and B (adding any */
/* shift), or one Unit longer than that (if a Unit carry occurred). */
-/* */
-/* A and B content are not altered unless C is also A or B. */
+/* */
+/* A and B content are not altered unless C is also A or B. */
/* C may be the same array as A or B, but only if no zero padding is */
-/* requested (that is, C may be B only if bshift==0). */
+/* requested (that is, C may be B only if bshift==0). */
/* C is filled from the lsu; only those units necessary to complete */
-/* the calculation are referenced. */
-/* */
-/* Arg1 is A first Unit (lsu) */
-/* Arg2 is A length in Units */
-/* Arg3 is B first Unit (lsu) */
-/* Arg4 is B length in Units */
+/* the calculation are referenced. */
+/* */
+/* Arg1 is A first Unit (lsu) */
+/* Arg2 is A length in Units */
+/* Arg3 is B first Unit (lsu) */
+/* Arg4 is B length in Units */
/* Arg5 is B shift in Units (>=0; pads with 0 units if positive) */
-/* Arg6 is C first Unit (lsu) */
-/* Arg7 is M, the multiplier */
-/* */
+/* Arg6 is C first Unit (lsu) */
+/* Arg7 is M, the multiplier */
+/* */
/* returns the count of Units written to C, which will be non-zero */
/* and negated if the result is negative. That is, the sign of the */
/* returned Int is the sign of the result (positive for zero) and */
-/* the absolute value of the Int is the count of Units. */
-/* */
+/* the absolute value of the Int is the count of Units. */
+/* */
/* It is the caller's responsibility to make sure that C size is */
-/* safe, allowing space if necessary for a one-Unit carry. */
-/* */
+/* safe, allowing space if necessary for a one-Unit carry. */
+/* */
/* This routine is severely performance-critical; *any* change here */
/* must be measured (timed) to assure no performance degradation. */
/* In particular, trickery here tends to be counter-productive, as */
/* increased complexity of code hurts register optimizations on */
-/* register-poor architectures. Avoiding divisions is nearly */
-/* always a Good Idea, however. */
-/* */
+/* register-poor architectures. Avoiding divisions is nearly */
+/* always a Good Idea, however. */
+/* */
/* Special thanks to Rick McGuire (IBM Cambridge, MA) and Dave Clark */
/* (IBM Warwick, UK) for some of the ideas used in this routine. */
/* ------------------------------------------------------------------ */
-static Int
-decUnitAddSub (const Unit * a, Int alength,
- const Unit * b, Int blength, Int bshift, Unit * c, Int m)
-{
- const Unit *alsu = a; /* A lsu [need to remember it] */
- Unit *clsu = c; /* C ditto */
- Unit *minC; /* low water mark for C */
- Unit *maxC; /* high water mark for C */
- eInt carry = 0; /* carry integer (could be Long) */
- Int add; /* work */
-#if DECDPUN==4 /* myriadal */
- Int est; /* estimated quotient */
-#endif
-
-#if DECTRACE
- if (alength < 1 || blength < 1)
- printf ("decUnitAddSub: alen blen m %d %d [%d]\n", alength, blength, m);
-#endif
-
- maxC = c + alength; /* A is usually the longer */
- minC = c + blength; /* .. and B the shorter */
- if (bshift != 0)
- { /* B is shifted; low As copy across */
- minC += bshift;
- /* if in place [common], skip copy unless there's a gap [rare] */
- if (a == c && bshift <= alength)
- {
- c += bshift;
- a += bshift;
- }
- else
- for (; c < clsu + bshift; a++, c++)
- { /* copy needed */
- if (a < alsu + alength)
- *c = *a;
- else
- *c = 0;
- }
+static Int decUnitAddSub(const Unit *a, Int alength,
+ const Unit *b, Int blength, Int bshift,
+ Unit *c, Int m) {
+ const Unit *alsu=a; /* A lsu [need to remember it] */
+ Unit *clsu=c; /* C ditto */
+ Unit *minC; /* low water mark for C */
+ Unit *maxC; /* high water mark for C */
+ eInt carry=0; /* carry integer (could be Long) */
+ Int add; /* work */
+ #if DECDPUN<=4 /* myriadal, millenary, etc. */
+ Int est; /* estimated quotient */
+ #endif
+
+ #if DECTRACE
+ if (alength<1 || blength<1)
+ printf("decUnitAddSub: alen blen m %ld %ld [%ld]\n", alength, blength, m);
+ #endif
+
+ maxC=c+alength; /* A is usually the longer */
+ minC=c+blength; /* .. and B the shorter */
+ if (bshift!=0) { /* B is shifted; low As copy across */
+ minC+=bshift;
+ /* if in place [common], skip copy unless there's a gap [rare] */
+ if (a==c && bshift<=alength) {
+ c+=bshift;
+ a+=bshift;
+ }
+ else for (; c<clsu+bshift; a++, c++) { /* copy needed */
+ if (a<alsu+alength) *c=*a;
+ else *c=0;
+ }
}
- if (minC > maxC)
- { /* swap */
- Unit *hold = minC;
- minC = maxC;
- maxC = hold;
+ if (minC>maxC) { /* swap */
+ Unit *hold=minC;
+ minC=maxC;
+ maxC=hold;
}
- /* For speed, we do the addition as two loops; the first where both A */
+ /* For speed, do the addition as two loops; the first where both A */
/* and B contribute, and the second (if necessary) where only one or */
/* other of the numbers contribute. */
/* Carry handling is the same (i.e., duplicated) in each case. */
- for (; c < minC; c++)
- {
- carry += *a;
- a++;
- carry += ((eInt) * b) * m; /* [special-casing m=1/-1 */
- b++; /* here is not a win] */
- /* here carry is new Unit of digits; it could be +ve or -ve */
- if ((ueInt) carry <= DECDPUNMAX)
- { /* fastpath 0-DECDPUNMAX */
- *c = (Unit) carry;
- carry = 0;
- continue;
+ for (; c<minC; c++) {
+ carry+=*a;
+ a++;
+ carry+=((eInt)*b)*m; /* [special-casing m=1/-1 */
+ b++; /* here is not a win] */
+ /* here carry is new Unit of digits; it could be +ve or -ve */
+ if ((ueInt)carry<=DECDPUNMAX) { /* fastpath 0-DECDPUNMAX */
+ *c=(Unit)carry;
+ carry=0;
+ continue;
+ }
+ #if DECDPUN==4 /* use divide-by-multiply */
+ if (carry>=0) {
+ est=(((ueInt)carry>>11)*53687)>>18;
+ *c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder */
+ carry=est; /* likely quotient [89%] */
+ if (*c<DECDPUNMAX+1) continue; /* estimate was correct */
+ carry++;
+ *c-=DECDPUNMAX+1;
+ continue;
}
- /* remainder operator is undefined if negative, so we must test */
-#if DECDPUN==4 /* use divide-by-multiply */
- if (carry >= 0)
- {
- est = (((ueInt) carry >> 11) * 53687) >> 18;
- *c = (Unit) (carry - est * (DECDPUNMAX + 1)); /* remainder */
- carry = est; /* likely quotient [89%] */
- if (*c < DECDPUNMAX + 1)
- continue; /* estimate was correct */
- carry++;
- *c -= DECDPUNMAX + 1;
- continue;
+ /* negative case */
+ carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */
+ est=(((ueInt)carry>>11)*53687)>>18;
+ *c=(Unit)(carry-est*(DECDPUNMAX+1));
+ carry=est-(DECDPUNMAX+1); /* correctly negative */
+ if (*c<DECDPUNMAX+1) continue; /* was OK */
+ carry++;
+ *c-=DECDPUNMAX+1;
+ #elif DECDPUN==3
+ if (carry>=0) {
+ est=(((ueInt)carry>>3)*16777)>>21;
+ *c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder */
+ carry=est; /* likely quotient [99%] */
+ if (*c<DECDPUNMAX+1) continue; /* estimate was correct */
+ carry++;
+ *c-=DECDPUNMAX+1;
+ continue;
}
/* negative case */
- carry = carry + (eInt) (DECDPUNMAX + 1) * (DECDPUNMAX + 1); /* make positive */
- est = (((ueInt) carry >> 11) * 53687) >> 18;
- *c = (Unit) (carry - est * (DECDPUNMAX + 1));
- carry = est - (DECDPUNMAX + 1); /* correctly negative */
- if (*c < DECDPUNMAX + 1)
- continue; /* was OK */
+ carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */
+ est=(((ueInt)carry>>3)*16777)>>21;
+ *c=(Unit)(carry-est*(DECDPUNMAX+1));
+ carry=est-(DECDPUNMAX+1); /* correctly negative */
+ if (*c<DECDPUNMAX+1) continue; /* was OK */
carry++;
- *c -= DECDPUNMAX + 1;
-#else
- if ((ueInt) carry < (DECDPUNMAX + 1) * 2)
- { /* fastpath carry +1 */
- *c = (Unit) (carry - (DECDPUNMAX + 1)); /* [helps additions] */
- carry = 1;
- continue;
+ *c-=DECDPUNMAX+1;
+ #elif DECDPUN<=2
+ /* Can use QUOT10 as carry <= 4 digits */
+ if (carry>=0) {
+ est=QUOT10(carry, DECDPUN);
+ *c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder */
+ carry=est; /* quotient */
+ continue;
+ }
+ /* negative case */
+ carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */
+ est=QUOT10(carry, DECDPUN);
+ *c=(Unit)(carry-est*(DECDPUNMAX+1));
+ carry=est-(DECDPUNMAX+1); /* correctly negative */
+ #else
+ /* remainder operator is undefined if negative, so must test */
+ if ((ueInt)carry<(DECDPUNMAX+1)*2) { /* fastpath carry +1 */
+ *c=(Unit)(carry-(DECDPUNMAX+1)); /* [helps additions] */
+ carry=1;
+ continue;
}
- if (carry >= 0)
- {
- *c = (Unit) (carry % (DECDPUNMAX + 1));
- carry = carry / (DECDPUNMAX + 1);
- continue;
+ if (carry>=0) {
+ *c=(Unit)(carry%(DECDPUNMAX+1));
+ carry=carry/(DECDPUNMAX+1);
+ continue;
}
/* negative case */
- carry = carry + (eInt) (DECDPUNMAX + 1) * (DECDPUNMAX + 1); /* make positive */
- *c = (Unit) (carry % (DECDPUNMAX + 1));
- carry = carry / (DECDPUNMAX + 1) - (DECDPUNMAX + 1);
-#endif
- } /* c */
+ carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */
+ *c=(Unit)(carry%(DECDPUNMAX+1));
+ carry=carry/(DECDPUNMAX+1)-(DECDPUNMAX+1);
+ #endif
+ } /* c */
- /* we now may have one or other to complete */
+ /* now may have one or other to complete */
/* [pretest to avoid loop setup/shutdown] */
- if (c < maxC)
- for (; c < maxC; c++)
- {
- if (a < alsu + alength)
- { /* still in A */
- carry += *a;
- a++;
- }
- else
- { /* inside B */
- carry += ((eInt) * b) * m;
- b++;
- }
- /* here carry is new Unit of digits; it could be +ve or -ve and */
- /* magnitude up to DECDPUNMAX squared */
- if ((ueInt) carry <= DECDPUNMAX)
- { /* fastpath 0-DECDPUNMAX */
- *c = (Unit) carry;
- carry = 0;
- continue;
- }
- /* result for this unit is negative or >DECDPUNMAX */
-#if DECDPUN==4 /* use divide-by-multiply */
- /* remainder is undefined if negative, so we must test */
- if (carry >= 0)
- {
- est = (((ueInt) carry >> 11) * 53687) >> 18;
- *c = (Unit) (carry - est * (DECDPUNMAX + 1)); /* remainder */
- carry = est; /* likely quotient [79.7%] */
- if (*c < DECDPUNMAX + 1)
- continue; /* estimate was correct */
- carry++;
- *c -= DECDPUNMAX + 1;
- continue;
- }
- /* negative case */
- carry = carry + (eInt) (DECDPUNMAX + 1) * (DECDPUNMAX + 1); /* make positive */
- est = (((ueInt) carry >> 11) * 53687) >> 18;
- *c = (Unit) (carry - est * (DECDPUNMAX + 1));
- carry = est - (DECDPUNMAX + 1); /* correctly negative */
- if (*c < DECDPUNMAX + 1)
- continue; /* was OK */
+ if (c<maxC) for (; c<maxC; c++) {
+ if (a<alsu+alength) { /* still in A */
+ carry+=*a;
+ a++;
+ }
+ else { /* inside B */
+ carry+=((eInt)*b)*m;
+ b++;
+ }
+ /* here carry is new Unit of digits; it could be +ve or -ve and */
+ /* magnitude up to DECDPUNMAX squared */
+ if ((ueInt)carry<=DECDPUNMAX) { /* fastpath 0-DECDPUNMAX */
+ *c=(Unit)carry;
+ carry=0;
+ continue;
+ }
+ /* result for this unit is negative or >DECDPUNMAX */
+ #if DECDPUN==4 /* use divide-by-multiply */
+ if (carry>=0) {
+ est=(((ueInt)carry>>11)*53687)>>18;
+ *c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder */
+ carry=est; /* likely quotient [79.7%] */
+ if (*c<DECDPUNMAX+1) continue; /* estimate was correct */
carry++;
- *c -= DECDPUNMAX + 1;
-#else
- if ((ueInt) carry < (DECDPUNMAX + 1) * 2)
- { /* fastpath carry 1 */
- *c = (Unit) (carry - (DECDPUNMAX + 1));
- carry = 1;
- continue;
- }
- /* remainder is undefined if negative, so we must test */
- if (carry >= 0)
- {
- *c = (Unit) (carry % (DECDPUNMAX + 1));
- carry = carry / (DECDPUNMAX + 1);
- continue;
- }
- /* negative case */
- carry = carry + (eInt) (DECDPUNMAX + 1) * (DECDPUNMAX + 1); /* make positive */
- *c = (Unit) (carry % (DECDPUNMAX + 1));
- carry = carry / (DECDPUNMAX + 1) - (DECDPUNMAX + 1);
-#endif
- } /* c */
+ *c-=DECDPUNMAX+1;
+ continue;
+ }
+ /* negative case */
+ carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */
+ est=(((ueInt)carry>>11)*53687)>>18;
+ *c=(Unit)(carry-est*(DECDPUNMAX+1));
+ carry=est-(DECDPUNMAX+1); /* correctly negative */
+ if (*c<DECDPUNMAX+1) continue; /* was OK */
+ carry++;
+ *c-=DECDPUNMAX+1;
+ #elif DECDPUN==3
+ if (carry>=0) {
+ est=(((ueInt)carry>>3)*16777)>>21;
+ *c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder */
+ carry=est; /* likely quotient [99%] */
+ if (*c<DECDPUNMAX+1) continue; /* estimate was correct */
+ carry++;
+ *c-=DECDPUNMAX+1;
+ continue;
+ }
+ /* negative case */
+ carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */
+ est=(((ueInt)carry>>3)*16777)>>21;
+ *c=(Unit)(carry-est*(DECDPUNMAX+1));
+ carry=est-(DECDPUNMAX+1); /* correctly negative */
+ if (*c<DECDPUNMAX+1) continue; /* was OK */
+ carry++;
+ *c-=DECDPUNMAX+1;
+ #elif DECDPUN<=2
+ if (carry>=0) {
+ est=QUOT10(carry, DECDPUN);
+ *c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder */
+ carry=est; /* quotient */
+ continue;
+ }
+ /* negative case */
+ carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */
+ est=QUOT10(carry, DECDPUN);
+ *c=(Unit)(carry-est*(DECDPUNMAX+1));
+ carry=est-(DECDPUNMAX+1); /* correctly negative */
+ #else
+ if ((ueInt)carry<(DECDPUNMAX+1)*2){ /* fastpath carry 1 */
+ *c=(Unit)(carry-(DECDPUNMAX+1));
+ carry=1;
+ continue;
+ }
+ /* remainder operator is undefined if negative, so must test */
+ if (carry>=0) {
+ *c=(Unit)(carry%(DECDPUNMAX+1));
+ carry=carry/(DECDPUNMAX+1);
+ continue;
+ }
+ /* negative case */
+ carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */
+ *c=(Unit)(carry%(DECDPUNMAX+1));
+ carry=carry/(DECDPUNMAX+1)-(DECDPUNMAX+1);
+ #endif
+ } /* c */
/* OK, all A and B processed; might still have carry or borrow */
/* return number of Units in the result, negated if a borrow */
- if (carry == 0)
- return c - clsu; /* no carry, we're done */
- if (carry > 0)
- { /* positive carry */
- *c = (Unit) carry; /* place as new unit */
- c++; /* .. */
- return c - clsu;
+ if (carry==0) return c-clsu; /* no carry, so no more to do */
+ if (carry>0) { /* positive carry */
+ *c=(Unit)carry; /* place as new unit */
+ c++; /* .. */
+ return c-clsu;
}
/* -ve carry: it's a borrow; complement needed */
- add = 1; /* temporary carry... */
- for (c = clsu; c < maxC; c++)
- {
- add = DECDPUNMAX + add - *c;
- if (add <= DECDPUNMAX)
- {
- *c = (Unit) add;
- add = 0;
- }
- else
- {
- *c = 0;
- add = 1;
- }
+ add=1; /* temporary carry... */
+ for (c=clsu; c<maxC; c++) {
+ add=DECDPUNMAX+add-*c;
+ if (add<=DECDPUNMAX) {
+ *c=(Unit)add;
+ add=0;
+ }
+ else {
+ *c=0;
+ add=1;
+ }
}
/* add an extra unit iff it would be non-zero */
-#if DECTRACE
- printf ("UAS borrow: add %d, carry %d\n", add, carry);
-#endif
- if ((add - carry - 1) != 0)
- {
- *c = (Unit) (add - carry - 1);
- c++; /* interesting, include it */
+ #if DECTRACE
+ printf("UAS borrow: add %ld, carry %ld\n", add, carry);
+ #endif
+ if ((add-carry-1)!=0) {
+ *c=(Unit)(add-carry-1);
+ c++; /* interesting, include it */
}
- return clsu - c; /* -ve result indicates borrowed */
-}
+ return clsu-c; /* -ve result indicates borrowed */
+ } /* decUnitAddSub */
/* ------------------------------------------------------------------ */
-/* decTrim -- trim trailing zeros or normalize */
-/* */
-/* dn is the number to trim or normalize */
+/* decTrim -- trim trailing zeros or normalize */
+/* */
+/* dn is the number to trim or normalize */
+/* set is the context to use to check for clamp */
/* all is 1 to remove all trailing zeros, 0 for just fraction ones */
-/* dropped returns the number of discarded trailing zeros */
-/* returns dn */
-/* */
-/* All fields are updated as required. This is a utility operation, */
-/* so special values are unchanged and no error is possible. */
-/* ------------------------------------------------------------------ */
-static decNumber *
-decTrim (decNumber * dn, Flag all, Int * dropped)
-{
- Int d, exp; /* work */
- uInt cut; /* .. */
- Unit *up; /* -> current Unit */
-
-#if DECCHECK
- if (decCheckOperands (dn, DECUNUSED, DECUNUSED, DECUNUSED))
+/* dropped returns the number of discarded trailing zeros */
+/* returns dn */
+/* */
+/* If clamp is set in the context then the number of zeros trimmed */
+/* may be limited if the exponent is high. */
+/* All fields are updated as required. This is a utility operation, */
+/* so special values are unchanged and no error is possible. */
+/* ------------------------------------------------------------------ */
+static decNumber * decTrim(decNumber *dn, decContext *set, Flag all,
+ Int *dropped) {
+ Int d, exp; /* work */
+ uInt cut; /* .. */
+ Unit *up; /* -> current Unit */
+
+ #if DECCHECK
+ if (decCheckOperands(dn, DECUNUSED, DECUNUSED, DECUNCONT)) return dn;
+ #endif
+
+ *dropped=0; /* assume no zeros dropped */
+ if ((dn->bits & DECSPECIAL) /* fast exit if special .. */
+ || (*dn->lsu & 0x01)) return dn; /* .. or odd */
+ if (ISZERO(dn)) { /* .. or 0 */
+ dn->exponent=0; /* (sign is preserved) */
return dn;
-#endif
-
- *dropped = 0; /* assume no zeros dropped */
- if ((dn->bits & DECSPECIAL) /* fast exit if special .. */
- || (*dn->lsu & 0x01))
- return dn; /* .. or odd */
- if (ISZERO (dn))
- { /* .. or 0 */
- dn->exponent = 0; /* (sign is preserved) */
- return dn;
}
- /* we have a finite number which is even */
- exp = dn->exponent;
- cut = 1; /* digit (1-DECDPUN) in Unit */
- up = dn->lsu; /* -> current Unit */
- for (d = 0; d < dn->digits - 1; d++)
- { /* [don't strip the final digit] */
- /* slice by powers */
-#if DECDPUN<=4
- uInt quot = QUOT10 (*up, cut);
- if ((*up - quot * powers[cut]) != 0)
- break; /* found non-0 digit */
-#else
- if (*up % powers[cut] != 0)
- break; /* found non-0 digit */
-#endif
- /* have a trailing 0 */
- if (!all)
- { /* trimming */
- /* [if exp>0 then all trailing 0s are significant for trim] */
- if (exp <= 0)
- { /* if digit might be significant */
- if (exp == 0)
- break; /* then quit */
- exp++; /* next digit might be significant */
- }
+ /* have a finite number which is even */
+ exp=dn->exponent;
+ cut=1; /* digit (1-DECDPUN) in Unit */
+ up=dn->lsu; /* -> current Unit */
+ for (d=0; d<dn->digits-1; d++) { /* [don't strip the final digit] */
+ /* slice by powers */
+ #if DECDPUN<=4
+ uInt quot=QUOT10(*up, cut);
+ if ((*up-quot*powers[cut])!=0) break; /* found non-0 digit */
+ #else
+ if (*up%powers[cut]!=0) break; /* found non-0 digit */
+ #endif
+ /* have a trailing 0 */
+ if (!all) { /* trimming */
+ /* [if exp>0 then all trailing 0s are significant for trim] */
+ if (exp<=0) { /* if digit might be significant */
+ if (exp==0) break; /* then quit */
+ exp++; /* next digit might be significant */
}
- cut++; /* next power */
- if (cut > DECDPUN)
- { /* need new Unit */
- up++;
- cut = 1;
- }
- } /* d */
- if (d == 0)
- return dn; /* none dropped */
+ }
+ cut++; /* next power */
+ if (cut>DECDPUN) { /* need new Unit */
+ up++;
+ cut=1;
+ }
+ } /* d */
+ if (d==0) return dn; /* none to drop */
+
+ /* may need to limit drop if clamping */
+ if (set->clamp) {
+ Int maxd=set->emax-set->digits+1-dn->exponent;
+ if (maxd<=0) return dn; /* nothing possible */
+ if (d>maxd) d=maxd;
+ }
/* effect the drop */
- decShiftToLeast (dn->lsu, D2U (dn->digits), d);
- dn->exponent += d; /* maintain numerical value */
- dn->digits -= d; /* new length */
- *dropped = d; /* report the count */
+ decShiftToLeast(dn->lsu, D2U(dn->digits), d);
+ dn->exponent+=d; /* maintain numerical value */
+ dn->digits-=d; /* new length */
+ *dropped=d; /* report the count */
return dn;
-}
+ } /* decTrim */
+
+/* ------------------------------------------------------------------ */
+/* decReverse -- reverse a Unit array in place */
+/* */
+/* ulo is the start of the array */
+/* uhi is the end of the array (highest Unit to include) */
+/* */
+/* The units ulo through uhi are reversed in place (if the number */
+/* of units is odd, the middle one is untouched). Note that the */
+/* digit(s) in each unit are unaffected. */
+/* ------------------------------------------------------------------ */
+static void decReverse(Unit *ulo, Unit *uhi) {
+ Unit temp;
+ for (; ulo<uhi; ulo++, uhi--) {
+ temp=*ulo;
+ *ulo=*uhi;
+ *uhi=temp;
+ }
+ return;
+ } /* decReverse */
/* ------------------------------------------------------------------ */
/* decShiftToMost -- shift digits in array towards most significant */
-/* */
-/* uar is the array */
-/* digits is the count of digits in use in the array */
+/* */
+/* uar is the array */
+/* digits is the count of digits in use in the array */
/* shift is the number of zeros to pad with (least significant); */
-/* it must be zero or positive */
-/* */
+/* it must be zero or positive */
+/* */
/* returns the new length of the integer in the array, in digits */
-/* */
+/* */
/* No overflow is permitted (that is, the uar array must be known to */
-/* be large enough to hold the result, after shifting). */
-/* ------------------------------------------------------------------ */
-static Int
-decShiftToMost (Unit * uar, Int digits, Int shift)
-{
- Unit *target, *source, *first; /* work */
- uInt rem; /* for division */
- Int cut; /* odd 0's to add */
- uInt next; /* work */
-
- if (shift == 0)
- return digits; /* [fastpath] nothing to do */
- if ((digits + shift) <= DECDPUN)
- { /* [fastpath] single-unit case */
- *uar = (Unit) (*uar * powers[shift]);
- return digits + shift;
- }
+/* be large enough to hold the result, after shifting). */
+/* ------------------------------------------------------------------ */
+static Int decShiftToMost(Unit *uar, Int digits, Int shift) {
+ Unit *target, *source, *first; /* work */
+ Int cut; /* odd 0's to add */
+ uInt next; /* work */
- cut = (DECDPUN - shift % DECDPUN) % DECDPUN;
- source = uar + D2U (digits) - 1; /* where msu comes from */
- first = uar + D2U (digits + shift) - 1; /* where msu of source will end up */
- target = source + D2U (shift); /* where upper part of first cut goes */
- next = 0;
+ if (shift==0) return digits; /* [fastpath] nothing to do */
+ if ((digits+shift)<=DECDPUN) { /* [fastpath] single-unit case */
+ *uar=(Unit)(*uar*powers[shift]);
+ return digits+shift;
+ }
- for (; source >= uar; source--, target--)
- {
- /* split the source Unit and accumulate remainder for next */
-#if DECDPUN<=4
- uInt quot = QUOT10 (*source, cut);
- rem = *source - quot * powers[cut];
- next += quot;
-#else
- rem = *source % powers[cut];
- next += *source / powers[cut];
-#endif
- if (target <= first)
- *target = (Unit) next; /* write to target iff valid */
- next = rem * powers[DECDPUN - cut]; /* save remainder for next Unit */
+ next=0; /* all paths */
+ source=uar+D2U(digits)-1; /* where msu comes from */
+ target=source+D2U(shift); /* where upper part of first cut goes */
+ cut=DECDPUN-MSUDIGITS(shift); /* where to slice */
+ if (cut==0) { /* unit-boundary case */
+ for (; source>=uar; source--, target--) *target=*source;
}
- /* propagate to one below and clear the rest */
- for (; target >= uar; target--)
- {
- *target = (Unit) next;
- next = 0;
+ else {
+ first=uar+D2U(digits+shift)-1; /* where msu of source will end up */
+ for (; source>=uar; source--, target--) {
+ /* split the source Unit and accumulate remainder for next */
+ #if DECDPUN<=4
+ uInt quot=QUOT10(*source, cut);
+ uInt rem=*source-quot*powers[cut];
+ next+=quot;
+ #else
+ uInt rem=*source%powers[cut];
+ next+=*source/powers[cut];
+ #endif
+ if (target<=first) *target=(Unit)next; /* write to target iff valid */
+ next=rem*powers[DECDPUN-cut]; /* save remainder for next Unit */
+ }
+ } /* shift-move */
+
+ /* propagate any partial unit to one below and clear the rest */
+ for (; target>=uar; target--) {
+ *target=(Unit)next;
+ next=0;
}
- return digits + shift;
-}
+ return digits+shift;
+ } /* decShiftToMost */
/* ------------------------------------------------------------------ */
/* decShiftToLeast -- shift digits in array towards least significant */
-/* */
-/* uar is the array */
-/* units is length of the array, in units */
+/* */
+/* uar is the array */
+/* units is length of the array, in units */
/* shift is the number of digits to remove from the lsu end; it */
-/* must be zero or positive and less than units*DECDPUN. */
-/* */
+/* must be zero or positive and <= than units*DECDPUN. */
+/* */
/* returns the new length of the integer in the array, in units */
-/* */
-/* Removed digits are discarded (lost). Units not required to hold */
-/* the final result are unchanged. */
-/* ------------------------------------------------------------------ */
-static Int
-decShiftToLeast (Unit * uar, Int units, Int shift)
-{
- Unit *target, *up; /* work */
- Int cut, count; /* work */
- Int quot, rem; /* for division */
-
- if (shift == 0)
- return units; /* [fastpath] nothing to do */
-
- up = uar + shift / DECDPUN; /* source; allow for whole Units */
- cut = shift % DECDPUN; /* odd 0's to drop */
- target = uar; /* both paths */
- if (cut == 0)
- { /* whole units shift */
- for (; up < uar + units; target++, up++)
- *target = *up;
- return target - uar;
+/* */
+/* Removed digits are discarded (lost). Units not required to hold */
+/* the final result are unchanged. */
+/* ------------------------------------------------------------------ */
+static Int decShiftToLeast(Unit *uar, Int units, Int shift) {
+ Unit *target, *up; /* work */
+ Int cut, count; /* work */
+ Int quot, rem; /* for division */
+
+ if (shift==0) return units; /* [fastpath] nothing to do */
+ if (shift==units*DECDPUN) { /* [fastpath] little to do */
+ *uar=0; /* all digits cleared gives zero */
+ return 1; /* leaves just the one */
+ }
+
+ target=uar; /* both paths */
+ cut=MSUDIGITS(shift);
+ if (cut==DECDPUN) { /* unit-boundary case; easy */
+ up=uar+D2U(shift);
+ for (; up<uar+units; target++, up++) *target=*up;
+ return target-uar;
}
+
/* messier */
- count = units * DECDPUN - shift; /* the maximum new length */
-#if DECDPUN<=4
- quot = QUOT10 (*up, cut);
-#else
- quot = *up / powers[cut];
-#endif
- for (;; target++)
- {
- *target = (Unit) quot;
- count -= (DECDPUN - cut);
- if (count <= 0)
- break;
- up++;
- quot = *up;
-#if DECDPUN<=4
- quot = QUOT10 (quot, cut);
- rem = *up - quot * powers[cut];
-#else
- rem = quot % powers[cut];
- quot = quot / powers[cut];
-#endif
- *target = (Unit) (*target + rem * powers[DECDPUN - cut]);
- count -= cut;
- if (count <= 0)
- break;
+ up=uar+D2U(shift-cut); /* source; correct to whole Units */
+ count=units*DECDPUN-shift; /* the maximum new length */
+ #if DECDPUN<=4
+ quot=QUOT10(*up, cut);
+ #else
+ quot=*up/powers[cut];
+ #endif
+ for (; ; target++) {
+ *target=(Unit)quot;
+ count-=(DECDPUN-cut);
+ if (count<=0) break;
+ up++;
+ quot=*up;
+ #if DECDPUN<=4
+ quot=QUOT10(quot, cut);
+ rem=*up-quot*powers[cut];
+ #else
+ rem=quot%powers[cut];
+ quot=quot/powers[cut];
+ #endif
+ *target=(Unit)(*target+rem*powers[DECDPUN-cut]);
+ count-=cut;
+ if (count<=0) break;
}
- return target - uar + 1;
-}
+ return target-uar+1;
+ } /* decShiftToLeast */
#if DECSUBSET
/* ------------------------------------------------------------------ */
-/* decRoundOperand -- round an operand [used for subset only] */
-/* */
-/* dn is the number to round (dn->digits is > set->digits) */
-/* set is the relevant context */
-/* status is the status accumulator */
-/* */
-/* returns an allocated decNumber with the rounded result. */
-/* */
-/* lostDigits and other status may be set by this. */
-/* */
-/* Since the input is an operand, we are not permitted to modify it. */
-/* We therefore return an allocated decNumber, rounded as required. */
+/* decRoundOperand -- round an operand [used for subset only] */
+/* */
+/* dn is the number to round (dn->digits is > set->digits) */
+/* set is the relevant context */
+/* status is the status accumulator */
+/* */
+/* returns an allocated decNumber with the rounded result. */
+/* */
+/* lostDigits and other status may be set by this. */
+/* */
+/* Since the input is an operand, it must not be modified. */
+/* Instead, return an allocated decNumber, rounded as required. */
/* It is the caller's responsibility to free the allocated storage. */
-/* */
+/* */
/* If no storage is available then the result cannot be used, so NULL */
-/* is returned. */
+/* is returned. */
/* ------------------------------------------------------------------ */
-static decNumber *
-decRoundOperand (const decNumber * dn, decContext * set, uInt * status)
-{
- decNumber *res; /* result structure */
- uInt newstatus = 0; /* status from round */
- Int residue = 0; /* rounding accumulator */
+static decNumber *decRoundOperand(const decNumber *dn, decContext *set,
+ uInt *status) {
+ decNumber *res; /* result structure */
+ uInt newstatus=0; /* status from round */
+ Int residue=0; /* rounding accumulator */
/* Allocate storage for the returned decNumber, big enough for the */
/* length specified by the context */
- res = (decNumber *) malloc (sizeof (decNumber)
- + (D2U (set->digits) - 1) * sizeof (Unit));
- if (res == NULL)
- {
- *status |= DEC_Insufficient_storage;
- return NULL;
+ res=(decNumber *)malloc(sizeof(decNumber)
+ +(D2U(set->digits)-1)*sizeof(Unit));
+ if (res==NULL) {
+ *status|=DEC_Insufficient_storage;
+ return NULL;
}
- decCopyFit (res, dn, set, &residue, &newstatus);
- decApplyRound (res, set, residue, &newstatus);
+ decCopyFit(res, dn, set, &residue, &newstatus);
+ decApplyRound(res, set, residue, &newstatus);
- /* If that set Inexact then we "lost digits" */
- if (newstatus & DEC_Inexact)
- newstatus |= DEC_Lost_digits;
- *status |= newstatus;
+ /* If that set Inexact then "lost digits" is raised... */
+ if (newstatus & DEC_Inexact) newstatus|=DEC_Lost_digits;
+ *status|=newstatus;
return res;
-}
+ } /* decRoundOperand */
#endif
/* ------------------------------------------------------------------ */
-/* decCopyFit -- copy a number, shortening the coefficient if needed */
-/* */
-/* dest is the target decNumber */
-/* src is the source decNumber */
+/* decCopyFit -- copy a number, truncating the coefficient if needed */
+/* */
+/* dest is the target decNumber */
+/* src is the source decNumber */
/* set is the context [used for length (digits) and rounding mode] */
-/* residue is the residue accumulator */
-/* status contains the current status to be updated */
-/* */
-/* (dest==src is allowed and will be a no-op if fits) */
-/* All fields are updated as required. */
-/* ------------------------------------------------------------------ */
-static void
-decCopyFit (decNumber * dest, const decNumber * src, decContext * set,
- Int * residue, uInt * status)
-{
- dest->bits = src->bits;
- dest->exponent = src->exponent;
- decSetCoeff (dest, set, src->lsu, src->digits, residue, status);
-}
-
-/* ------------------------------------------------------------------ */
-/* decSetCoeff -- set the coefficient of a number */
-/* */
-/* dn is the number whose coefficient array is to be set. */
-/* It must have space for set->digits digits */
-/* set is the context [for size] */
-/* lsu -> lsu of the source coefficient [may be dn->lsu] */
+/* residue is the residue accumulator */
+/* status contains the current status to be updated */
+/* */
+/* (dest==src is allowed and will be a no-op if fits) */
+/* All fields are updated as required. */
+/* ------------------------------------------------------------------ */
+static void decCopyFit(decNumber *dest, const decNumber *src,
+ decContext *set, Int *residue, uInt *status) {
+ dest->bits=src->bits;
+ dest->exponent=src->exponent;
+ decSetCoeff(dest, set, src->lsu, src->digits, residue, status);
+ } /* decCopyFit */
+
+/* ------------------------------------------------------------------ */
+/* decSetCoeff -- set the coefficient of a number */
+/* */
+/* dn is the number whose coefficient array is to be set. */
+/* It must have space for set->digits digits */
+/* set is the context [for size] */
+/* lsu -> lsu of the source coefficient [may be dn->lsu] */
/* len is digits in the source coefficient [may be dn->digits] */
-/* residue is the residue accumulator. This has values as in */
-/* decApplyRound, and will be unchanged unless the */
-/* target size is less than len. In this case, the */
-/* coefficient is truncated and the residue is updated to */
-/* reflect the previous residue and the dropped digits. */
-/* status is the status accumulator, as usual */
-/* */
+/* residue is the residue accumulator. This has values as in */
+/* decApplyRound, and will be unchanged unless the */
+/* target size is less than len. In this case, the */
+/* coefficient is truncated and the residue is updated to */
+/* reflect the previous residue and the dropped digits. */
+/* status is the status accumulator, as usual */
+/* */
/* The coefficient may already be in the number, or it can be an */
-/* external intermediate array. If it is in the number, lsu must == */
-/* dn->lsu and len must == dn->digits. */
-/* */
+/* external intermediate array. If it is in the number, lsu must == */
+/* dn->lsu and len must == dn->digits. */
+/* */
/* Note that the coefficient length (len) may be < set->digits, and */
/* in this case this merely copies the coefficient (or is a no-op */
-/* if dn->lsu==lsu). */
-/* */
-/* Note also that (only internally, from decNumberRescale and */
+/* if dn->lsu==lsu). */
+/* */
+/* Note also that (only internally, from decQuantizeOp and */
/* decSetSubnormal) the value of set->digits may be less than one, */
-/* indicating a round to left. */
-/* This routine handles that case correctly; caller ensures space. */
-/* */
-/* dn->digits, dn->lsu (and as required), and dn->exponent are */
-/* updated as necessary. dn->bits (sign) is unchanged. */
-/* */
-/* DEC_Rounded status is set if any digits are discarded. */
+/* indicating a round to left. This routine handles that case */
+/* correctly; caller ensures space. */
+/* */
+/* dn->digits, dn->lsu (and as required), and dn->exponent are */
+/* updated as necessary. dn->bits (sign) is unchanged. */
+/* */
+/* DEC_Rounded status is set if any digits are discarded. */
/* DEC_Inexact status is set if any non-zero digits are discarded, or */
-/* incoming residue was non-0 (implies rounded) */
-/* ------------------------------------------------------------------ */
-/* mapping array: maps 0-9 to canonical residues, so that we can */
-/* adjust by a residue in range [-1, +1] and achieve correct rounding */
-/* 0 1 2 3 4 5 6 7 8 9 */
-static const uByte resmap[10] = { 0, 3, 3, 3, 3, 5, 7, 7, 7, 7 };
-static void
-decSetCoeff (decNumber * dn, decContext * set, const Unit * lsu,
- Int len, Int * residue, uInt * status)
-{
- Int discard; /* number of digits to discard */
- uInt discard1; /* first discarded digit */
- uInt cut; /* cut point in Unit */
- uInt quot, rem; /* for divisions */
- Unit *target; /* work */
- const Unit *up; /* work */
- Int count; /* .. */
-#if DECDPUN<=4
- uInt temp; /* .. */
-#endif
-
- discard = len - set->digits; /* digits to discard */
- if (discard <= 0)
- { /* no digits are being discarded */
- if (dn->lsu != lsu)
- { /* copy needed */
- /* copy the coefficient array to the result number; no shift needed */
- up = lsu;
- for (target = dn->lsu; target < dn->lsu + D2U (len); target++, up++)
- {
- *target = *up;
- }
- dn->digits = len; /* set the new length */
- }
- /* dn->exponent and residue are unchanged */
- if (*residue != 0)
- *status |= (DEC_Inexact | DEC_Rounded); /* record inexactitude */
- return;
+/* incoming residue was non-0 (implies rounded) */
+/* ------------------------------------------------------------------ */
+/* mapping array: maps 0-9 to canonical residues, so that a residue */
+/* can be adjusted in the range [-1, +1] and achieve correct rounding */
+/* 0 1 2 3 4 5 6 7 8 9 */
+static const uByte resmap[10]={0, 3, 3, 3, 3, 5, 7, 7, 7, 7};
+static void decSetCoeff(decNumber *dn, decContext *set, const Unit *lsu,
+ Int len, Int *residue, uInt *status) {
+ Int discard; /* number of digits to discard */
+ uInt cut; /* cut point in Unit */
+ const Unit *up; /* work */
+ Unit *target; /* .. */
+ Int count; /* .. */
+ #if DECDPUN<=4
+ uInt temp; /* .. */
+ #endif
+
+ discard=len-set->digits; /* digits to discard */
+ if (discard<=0) { /* no digits are being discarded */
+ if (dn->lsu!=lsu) { /* copy needed */
+ /* copy the coefficient array to the result number; no shift needed */
+ count=len; /* avoids D2U */
+ up=lsu;
+ for (target=dn->lsu; count>0; target++, up++, count-=DECDPUN)
+ *target=*up;
+ dn->digits=len; /* set the new length */
+ }
+ /* dn->exponent and residue are unchanged, record any inexactitude */
+ if (*residue!=0) *status|=(DEC_Inexact | DEC_Rounded);
+ return;
}
- /* we have to discard some digits */
- *status |= DEC_Rounded; /* accumulate Rounded status */
- if (*residue > 1)
- *residue = 1; /* previous residue now to right, so -1 to +1 */
-
- if (discard > len)
- { /* everything, +1, is being discarded */
- /* guard digit is 0 */
- /* residue is all the number [NB could be all 0s] */
- if (*residue <= 0)
- for (up = lsu + D2U (len) - 1; up >= lsu; up--)
- {
- if (*up != 0)
- { /* found a non-0 */
- *residue = 1;
- break; /* no need to check any others */
- }
- }
- if (*residue != 0)
- *status |= DEC_Inexact; /* record inexactitude */
- *dn->lsu = 0; /* coefficient will now be 0 */
- dn->digits = 1; /* .. */
- dn->exponent += discard; /* maintain numerical value */
- return;
- } /* total discard */
+ /* some digits must be discarded ... */
+ dn->exponent+=discard; /* maintain numerical value */
+ *status|=DEC_Rounded; /* accumulate Rounded status */
+ if (*residue>1) *residue=1; /* previous residue now to right, so reduce */
+
+ if (discard>len) { /* everything, +1, is being discarded */
+ /* guard digit is 0 */
+ /* residue is all the number [NB could be all 0s] */
+ if (*residue<=0) { /* not already positive */
+ count=len; /* avoids D2U */
+ for (up=lsu; count>0; up++, count-=DECDPUN) if (*up!=0) { /* found non-0 */
+ *residue=1;
+ break; /* no need to check any others */
+ }
+ }
+ if (*residue!=0) *status|=DEC_Inexact; /* record inexactitude */
+ *dn->lsu=0; /* coefficient will now be 0 */
+ dn->digits=1; /* .. */
+ return;
+ } /* total discard */
/* partial discard [most common case] */
/* here, at least the first (most significant) discarded digit exists */
- /* spin up the number, noting residue as we pass, until we get to */
- /* the Unit with the first discarded digit. When we get there, */
- /* extract it and remember where we're at */
- count = 0;
- for (up = lsu;; up++)
- {
- count += DECDPUN;
- if (count >= discard)
- break; /* full ones all checked */
- if (*up != 0)
- *residue = 1;
- } /* up */
-
- /* here up -> Unit with discarded digit */
- cut = discard - (count - DECDPUN) - 1;
- if (cut == DECDPUN - 1)
- { /* discard digit is at top */
-#if DECDPUN<=4
- discard1 = QUOT10 (*up, DECDPUN - 1);
- rem = *up - discard1 * powers[DECDPUN - 1];
-#else
- rem = *up % powers[DECDPUN - 1];
- discard1 = *up / powers[DECDPUN - 1];
-#endif
- if (rem != 0)
- *residue = 1;
- up++; /* move to next */
- cut = 0; /* bottom digit of result */
- quot = 0; /* keep a certain compiler happy */
- }
- else
- {
- /* discard digit is in low digit(s), not top digit */
- if (cut == 0)
- quot = *up;
- else /* cut>0 */
- { /* it's not at bottom of Unit */
-#if DECDPUN<=4
- quot = QUOT10 (*up, cut);
- rem = *up - quot * powers[cut];
-#else
- rem = *up % powers[cut];
- quot = *up / powers[cut];
-#endif
- if (rem != 0)
- *residue = 1;
- }
- /* discard digit is now at bottom of quot */
-#if DECDPUN<=4
- temp = (quot * 6554) >> 16; /* fast /10 */
+ /* spin up the number, noting residue during the spin, until get to */
+ /* the Unit with the first discarded digit. When reach it, extract */
+ /* it and remember its position */
+ count=0;
+ for (up=lsu;; up++) {
+ count+=DECDPUN;
+ if (count>=discard) break; /* full ones all checked */
+ if (*up!=0) *residue=1;
+ } /* up */
+
+ /* here up -> Unit with first discarded digit */
+ cut=discard-(count-DECDPUN)-1;
+ if (cut==DECDPUN-1) { /* unit-boundary case (fast) */
+ Unit half=(Unit)powers[DECDPUN]>>1;
+ /* set residue directly */
+ if (*up>=half) {
+ if (*up>half) *residue=7;
+ else *residue+=5; /* add sticky bit */
+ }
+ else { /* <half */
+ if (*up!=0) *residue=3; /* [else is 0, leave as sticky bit] */
+ }
+ if (set->digits<=0) { /* special for Quantize/Subnormal :-( */
+ *dn->lsu=0; /* .. result is 0 */
+ dn->digits=1; /* .. */
+ }
+ else { /* shift to least */
+ count=set->digits; /* now digits to end up with */
+ dn->digits=count; /* set the new length */
+ up++; /* move to next */
+ /* on unit boundary, so shift-down copy loop is simple */
+ for (target=dn->lsu; count>0; target++, up++, count-=DECDPUN)
+ *target=*up;
+ }
+ } /* unit-boundary case */
+
+ else { /* discard digit is in low digit(s), and not top digit */
+ uInt discard1; /* first discarded digit */
+ uInt quot, rem; /* for divisions */
+ if (cut==0) quot=*up; /* is at bottom of unit */
+ else /* cut>0 */ { /* it's not at bottom of unit */
+ #if DECDPUN<=4
+ quot=QUOT10(*up, cut);
+ rem=*up-quot*powers[cut];
+ #else
+ rem=*up%powers[cut];
+ quot=*up/powers[cut];
+ #endif
+ if (rem!=0) *residue=1;
+ }
+ /* discard digit is now at bottom of quot */
+ #if DECDPUN<=4
+ temp=(quot*6554)>>16; /* fast /10 */
/* Vowels algorithm here not a win (9 instructions) */
- discard1 = quot - X10 (temp);
- quot = temp;
-#else
- discard1 = quot % 10;
- quot = quot / 10;
-#endif
- cut++; /* update cut */
- }
-
- /* here: up -> Unit of the array with discarded digit */
- /* cut is the division point for each Unit */
- /* quot holds the uncut high-order digits for the current */
- /* Unit, unless cut==0 in which case it's still in *up */
- /* copy the coefficient array to the result number, shifting as we go */
- count = set->digits; /* digits to end up with */
- if (count <= 0)
- { /* special for Rescale/Subnormal :-( */
- *dn->lsu = 0; /* .. result is 0 */
- dn->digits = 1; /* .. */
- }
- else
- { /* shift to least */
- /* [this is similar to decShiftToLeast code, with copy] */
- dn->digits = count; /* set the new length */
- if (cut == 0)
- {
- /* on unit boundary, so simple shift down copy loop suffices */
- for (target = dn->lsu; target < dn->lsu + D2U (count);
- target++, up++)
- {
- *target = *up;
- }
- }
- else
- for (target = dn->lsu;; target++)
- {
- *target = (Unit) quot;
- count -= (DECDPUN - cut);
- if (count <= 0)
- break;
- up++;
- quot = *up;
-#if DECDPUN<=4
- quot = QUOT10 (quot, cut);
- rem = *up - quot * powers[cut];
-#else
- rem = quot % powers[cut];
- quot = quot / powers[cut];
-#endif
- *target = (Unit) (*target + rem * powers[DECDPUN - cut]);
- count -= cut;
- if (count <= 0)
- break;
- }
- } /* shift to least needed */
- dn->exponent += discard; /* maintain numerical value */
-
- /* here, discard1 is the guard digit, and residue is everything else */
- /* [use mapping to accumulate residue safely] */
- *residue += resmap[discard1];
-
- if (*residue != 0)
- *status |= DEC_Inexact; /* record inexactitude */
+ discard1=quot-X10(temp);
+ quot=temp;
+ #else
+ discard1=quot%10;
+ quot=quot/10;
+ #endif
+ /* here, discard1 is the guard digit, and residue is everything */
+ /* else [use mapping array to accumulate residue safely] */
+ *residue+=resmap[discard1];
+ cut++; /* update cut */
+ /* here: up -> Unit of the array with bottom digit */
+ /* cut is the division point for each Unit */
+ /* quot holds the uncut high-order digits for the current unit */
+ if (set->digits<=0) { /* special for Quantize/Subnormal :-( */
+ *dn->lsu=0; /* .. result is 0 */
+ dn->digits=1; /* .. */
+ }
+ else { /* shift to least needed */
+ count=set->digits; /* now digits to end up with */
+ dn->digits=count; /* set the new length */
+ /* shift-copy the coefficient array to the result number */
+ for (target=dn->lsu; ; target++) {
+ *target=(Unit)quot;
+ count-=(DECDPUN-cut);
+ if (count<=0) break;
+ up++;
+ quot=*up;
+ #if DECDPUN<=4
+ quot=QUOT10(quot, cut);
+ rem=*up-quot*powers[cut];
+ #else
+ rem=quot%powers[cut];
+ quot=quot/powers[cut];
+ #endif
+ *target=(Unit)(*target+rem*powers[DECDPUN-cut]);
+ count-=cut;
+ if (count<=0) break;
+ } /* shift-copy loop */
+ } /* shift to least */
+ } /* not unit boundary */
+
+ if (*residue!=0) *status|=DEC_Inexact; /* record inexactitude */
return;
-}
-
-/* ------------------------------------------------------------------ */
-/* decApplyRound -- apply pending rounding to a number */
-/* */
-/* dn is the number, with space for set->digits digits */
-/* set is the context [for size and rounding mode] */
-/* residue indicates pending rounding, being any accumulated */
-/* guard and sticky information. It may be: */
-/* 6-9: rounding digit is >5 */
-/* 5: rounding digit is exactly half-way */
-/* 1-4: rounding digit is <5 and >0 */
-/* 0: the coefficient is exact */
-/* -1: as 1, but the hidden digits are subtractive, that */
-/* is, of the opposite sign to dn. In this case the */
-/* coefficient must be non-0. */
-/* status is the status accumulator, as usual */
-/* */
+ } /* decSetCoeff */
+
+/* ------------------------------------------------------------------ */
+/* decApplyRound -- apply pending rounding to a number */
+/* */
+/* dn is the number, with space for set->digits digits */
+/* set is the context [for size and rounding mode] */
+/* residue indicates pending rounding, being any accumulated */
+/* guard and sticky information. It may be: */
+/* 6-9: rounding digit is >5 */
+/* 5: rounding digit is exactly half-way */
+/* 1-4: rounding digit is <5 and >0 */
+/* 0: the coefficient is exact */
+/* -1: as 1, but the hidden digits are subtractive, that */
+/* is, of the opposite sign to dn. In this case the */
+/* coefficient must be non-0. This case occurs when */
+/* subtracting a small number (which can be reduced to */
+/* a sticky bit); see decAddOp. */
+/* status is the status accumulator, as usual */
+/* */
/* This routine applies rounding while keeping the length of the */
-/* coefficient constant. The exponent and status are unchanged */
-/* except if: */
-/* */
+/* coefficient constant. The exponent and status are unchanged */
+/* except if: */
+/* */
/* -- the coefficient was increased and is all nines (in which */
-/* case Overflow could occur, and is handled directly here so */
-/* the caller does not need to re-test for overflow) */
-/* */
+/* case Overflow could occur, and is handled directly here so */
+/* the caller does not need to re-test for overflow) */
+/* */
/* -- the coefficient was decreased and becomes all nines (in which */
-/* case Underflow could occur, and is also handled directly). */
-/* */
-/* All fields in dn are updated as required. */
-/* */
+/* case Underflow could occur, and is also handled directly). */
+/* */
+/* All fields in dn are updated as required. */
+/* */
/* ------------------------------------------------------------------ */
-static void
-decApplyRound (decNumber * dn, decContext * set, Int residue, uInt * status)
-{
- Int bump; /* 1 if coefficient needs to be incremented */
- /* -1 if coefficient needs to be decremented */
+static void decApplyRound(decNumber *dn, decContext *set, Int residue,
+ uInt *status) {
+ Int bump; /* 1 if coefficient needs to be incremented */
+ /* -1 if coefficient needs to be decremented */
- if (residue == 0)
- return; /* nothing to apply */
+ if (residue==0) return; /* nothing to apply */
- bump = 0; /* assume a smooth ride */
+ bump=0; /* assume a smooth ride */
/* now decide whether, and how, to round, depending on mode */
- switch (set->round)
- {
- case DEC_ROUND_DOWN:
- {
- /* no change, except if negative residue */
- if (residue < 0)
- bump = -1;
- break;
- } /* r-d */
+ switch (set->round) {
+ case DEC_ROUND_05UP: { /* round zero or five up (for reround) */
+ /* This is the same as DEC_ROUND_DOWN unless there is a */
+ /* positive residue and the lsd of dn is 0 or 5, in which case */
+ /* it is bumped; when residue is <0, the number is therefore */
+ /* bumped down unless the final digit was 1 or 6 (in which */
+ /* case it is bumped down and then up -- a no-op) */
+ Int lsd5=*dn->lsu%5; /* get lsd and quintate */
+ if (residue<0 && lsd5!=1) bump=-1;
+ else if (residue>0 && lsd5==0) bump=1;
+ /* [bump==1 could be applied directly; use common path for clarity] */
+ break;} /* r-05 */
+
+ case DEC_ROUND_DOWN: {
+ /* no change, except if negative residue */
+ if (residue<0) bump=-1;
+ break;} /* r-d */
+
+ case DEC_ROUND_HALF_DOWN: {
+ if (residue>5) bump=1;
+ break;} /* r-h-d */
+
+ case DEC_ROUND_HALF_EVEN: {
+ if (residue>5) bump=1; /* >0.5 goes up */
+ else if (residue==5) { /* exactly 0.5000... */
+ /* 0.5 goes up iff [new] lsd is odd */
+ if (*dn->lsu & 0x01) bump=1;
+ }
+ break;} /* r-h-e */
- case DEC_ROUND_HALF_DOWN:
- {
- if (residue > 5)
- bump = 1;
- break;
- } /* r-h-d */
-
- case DEC_ROUND_HALF_EVEN:
- {
- if (residue > 5)
- bump = 1; /* >0.5 goes up */
- else if (residue == 5)
- { /* exactly 0.5000... */
- /* 0.5 goes up iff [new] lsd is odd */
- if (*dn->lsu & 0x01)
- bump = 1;
- }
- break;
- } /* r-h-e */
+ case DEC_ROUND_HALF_UP: {
+ if (residue>=5) bump=1;
+ break;} /* r-h-u */
- case DEC_ROUND_HALF_UP:
- {
- if (residue >= 5)
- bump = 1;
- break;
- } /* r-h-u */
+ case DEC_ROUND_UP: {
+ if (residue>0) bump=1;
+ break;} /* r-u */
- case DEC_ROUND_UP:
- {
- if (residue > 0)
- bump = 1;
- break;
- } /* r-u */
-
- case DEC_ROUND_CEILING:
- {
- /* same as _UP for positive numbers, and as _DOWN for negatives */
- /* [negative residue cannot occur on 0] */
- if (decNumberIsNegative (dn))
- {
- if (residue < 0)
- bump = -1;
- }
- else
- {
- if (residue > 0)
- bump = 1;
- }
- break;
- } /* r-c */
-
- case DEC_ROUND_FLOOR:
- {
- /* same as _UP for negative numbers, and as _DOWN for positive */
- /* [negative residue cannot occur on 0] */
- if (!decNumberIsNegative (dn))
- {
- if (residue < 0)
- bump = -1;
- }
- else
- {
- if (residue > 0)
- bump = 1;
- }
- break;
- } /* r-f */
+ case DEC_ROUND_CEILING: {
+ /* same as _UP for positive numbers, and as _DOWN for negatives */
+ /* [negative residue cannot occur on 0] */
+ if (decNumberIsNegative(dn)) {
+ if (residue<0) bump=-1;
+ }
+ else {
+ if (residue>0) bump=1;
+ }
+ break;} /* r-c */
- default:
- { /* e.g., DEC_ROUND_MAX */
- *status |= DEC_Invalid_context;
-#if DECTRACE
- printf ("Unknown rounding mode: %d\n", set->round);
-#endif
- break;
- }
- } /* switch */
+ case DEC_ROUND_FLOOR: {
+ /* same as _UP for negative numbers, and as _DOWN for positive */
+ /* [negative residue cannot occur on 0] */
+ if (!decNumberIsNegative(dn)) {
+ if (residue<0) bump=-1;
+ }
+ else {
+ if (residue>0) bump=1;
+ }
+ break;} /* r-f */
+
+ default: { /* e.g., DEC_ROUND_MAX */
+ *status|=DEC_Invalid_context;
+ #if DECTRACE || (DECCHECK && DECVERB)
+ printf("Unknown rounding mode: %d\n", set->round);
+ #endif
+ break;}
+ } /* switch */
/* now bump the number, up or down, if need be */
- if (bump == 0)
- return; /* no action required */
+ if (bump==0) return; /* no action required */
- /* Simply use decUnitAddSub unless we are bumping up and the number */
- /* is all nines. In this special case we set to 1000... and adjust */
- /* the exponent by one (as otherwise we could overflow the array) */
+ /* Simply use decUnitAddSub unless bumping up and the number is */
+ /* all nines. In this special case set to 100... explicitly */
+ /* and adjust the exponent by one (as otherwise could overflow */
+ /* the array) */
/* Similarly handle all-nines result if bumping down. */
- if (bump > 0)
- {
- Unit *up; /* work */
- uInt count = dn->digits; /* digits to be checked */
- for (up = dn->lsu;; up++)
- {
- if (count <= DECDPUN)
- {
- /* this is the last Unit (the msu) */
- if (*up != powers[count] - 1)
- break; /* not still 9s */
- /* here if it, too, is all nines */
- *up = (Unit) powers[count - 1]; /* here 999 -> 100 etc. */
- for (up = up - 1; up >= dn->lsu; up--)
- *up = 0; /* others all to 0 */
- dn->exponent++; /* and bump exponent */
- /* [which, very rarely, could cause Overflow...] */
- if ((dn->exponent + dn->digits) > set->emax + 1)
- {
- decSetOverflow (dn, set, status);
- }
- return; /* done */
- }
- /* a full unit to check, with more to come */
- if (*up != DECDPUNMAX)
- break; /* not still 9s */
- count -= DECDPUN;
- } /* up */
- } /* bump>0 */
- else
- { /* -1 */
- /* here we are lookng for a pre-bump of 1000... (leading 1, */
- /* all other digits zero) */
- Unit *up, *sup; /* work */
- uInt count = dn->digits; /* digits to be checked */
- for (up = dn->lsu;; up++)
- {
- if (count <= DECDPUN)
- {
- /* this is the last Unit (the msu) */
- if (*up != powers[count - 1])
- break; /* not 100.. */
- /* here if we have the 1000... case */
- sup = up; /* save msu pointer */
- *up = (Unit) powers[count] - 1; /* here 100 in msu -> 999 */
- /* others all to all-nines, too */
- for (up = up - 1; up >= dn->lsu; up--)
- *up = (Unit) powers[DECDPUN] - 1;
- dn->exponent--; /* and bump exponent */
-
- /* iff the number was at the subnormal boundary (exponent=etiny) */
- /* then the exponent is now out of range, so it will in fact get */
- /* clamped to etiny and the final 9 dropped. */
- /* printf(">> emin=%d exp=%d sdig=%d\n", set->emin, */
- /* dn->exponent, set->digits); */
- if (dn->exponent + 1 == set->emin - set->digits + 1)
- {
- if (count == 1 && dn->digits == 1)
- *sup = 0; /* here 9 -> 0[.9] */
- else
- {
- *sup = (Unit) powers[count - 1] - 1; /* here 999.. in msu -> 99.. */
- dn->digits--;
- }
- dn->exponent++;
- *status |=
- DEC_Underflow | DEC_Subnormal | DEC_Inexact | DEC_Rounded;
- }
- return; /* done */
+ if (bump>0) {
+ Unit *up; /* work */
+ uInt count=dn->digits; /* digits to be checked */
+ for (up=dn->lsu; ; up++) {
+ if (count<=DECDPUN) {
+ /* this is the last Unit (the msu) */
+ if (*up!=powers[count]-1) break; /* not still 9s */
+ /* here if it, too, is all nines */
+ *up=(Unit)powers[count-1]; /* here 999 -> 100 etc. */
+ for (up=up-1; up>=dn->lsu; up--) *up=0; /* others all to 0 */
+ dn->exponent++; /* and bump exponent */
+ /* [which, very rarely, could cause Overflow...] */
+ if ((dn->exponent+dn->digits)>set->emax+1) {
+ decSetOverflow(dn, set, status);
+ }
+ return; /* done */
+ }
+ /* a full unit to check, with more to come */
+ if (*up!=DECDPUNMAX) break; /* not still 9s */
+ count-=DECDPUN;
+ } /* up */
+ } /* bump>0 */
+ else { /* -1 */
+ /* here checking for a pre-bump of 1000... (leading 1, all */
+ /* other digits zero) */
+ Unit *up, *sup; /* work */
+ uInt count=dn->digits; /* digits to be checked */
+ for (up=dn->lsu; ; up++) {
+ if (count<=DECDPUN) {
+ /* this is the last Unit (the msu) */
+ if (*up!=powers[count-1]) break; /* not 100.. */
+ /* here if have the 1000... case */
+ sup=up; /* save msu pointer */
+ *up=(Unit)powers[count]-1; /* here 100 in msu -> 999 */
+ /* others all to all-nines, too */
+ for (up=up-1; up>=dn->lsu; up--) *up=(Unit)powers[DECDPUN]-1;
+ dn->exponent--; /* and bump exponent */
+
+ /* iff the number was at the subnormal boundary (exponent=etiny) */
+ /* then the exponent is now out of range, so it will in fact get */
+ /* clamped to etiny and the final 9 dropped. */
+ /* printf(">> emin=%d exp=%d sdig=%d\n", set->emin, */
+ /* dn->exponent, set->digits); */
+ if (dn->exponent+1==set->emin-set->digits+1) {
+ if (count==1 && dn->digits==1) *sup=0; /* here 9 -> 0[.9] */
+ else {
+ *sup=(Unit)powers[count-1]-1; /* here 999.. in msu -> 99.. */
+ dn->digits--;
}
+ dn->exponent++;
+ *status|=DEC_Underflow | DEC_Subnormal | DEC_Inexact | DEC_Rounded;
+ }
+ return; /* done */
+ }
- /* a full unit to check, with more to come */
- if (*up != 0)
- break; /* not still 0s */
- count -= DECDPUN;
- } /* up */
+ /* a full unit to check, with more to come */
+ if (*up!=0) break; /* not still 0s */
+ count-=DECDPUN;
+ } /* up */
- } /* bump<0 */
+ } /* bump<0 */
/* Actual bump needed. Do it. */
- decUnitAddSub (dn->lsu, D2U (dn->digits), one, 1, 0, dn->lsu, bump);
-}
+ decUnitAddSub(dn->lsu, D2U(dn->digits), uarrone, 1, 0, dn->lsu, bump);
+ } /* decApplyRound */
#if DECSUBSET
/* ------------------------------------------------------------------ */
-/* decFinish -- finish processing a number */
-/* */
-/* dn is the number */
-/* set is the context */
-/* residue is the rounding accumulator (as in decApplyRound) */
-/* status is the accumulator */
-/* */
-/* This finishes off the current number by: */
-/* 1. If not extended: */
-/* a. Converting a zero result to clean '0' */
-/* b. Reducing positive exponents to 0, if would fit in digits */
-/* 2. Checking for overflow and subnormals (always) */
-/* Note this is just Finalize when no subset arithmetic. */
-/* All fields are updated as required. */
-/* ------------------------------------------------------------------ */
-static void
-decFinish (decNumber * dn, decContext * set, Int * residue, uInt * status)
-{
- if (!set->extended)
- {
- if ISZERO
- (dn)
- { /* value is zero */
- dn->exponent = 0; /* clean exponent .. */
- dn->bits = 0; /* .. and sign */
- return; /* no error possible */
- }
- if (dn->exponent >= 0)
- { /* non-negative exponent */
- /* >0; reduce to integer if possible */
- if (set->digits >= (dn->exponent + dn->digits))
- {
- dn->digits = decShiftToMost (dn->lsu, dn->digits, dn->exponent);
- dn->exponent = 0;
- }
+/* decFinish -- finish processing a number */
+/* */
+/* dn is the number */
+/* set is the context */
+/* residue is the rounding accumulator (as in decApplyRound) */
+/* status is the accumulator */
+/* */
+/* This finishes off the current number by: */
+/* 1. If not extended: */
+/* a. Converting a zero result to clean '0' */
+/* b. Reducing positive exponents to 0, if would fit in digits */
+/* 2. Checking for overflow and subnormals (always) */
+/* Note this is just Finalize when no subset arithmetic. */
+/* All fields are updated as required. */
+/* ------------------------------------------------------------------ */
+static void decFinish(decNumber *dn, decContext *set, Int *residue,
+ uInt *status) {
+ if (!set->extended) {
+ if ISZERO(dn) { /* value is zero */
+ dn->exponent=0; /* clean exponent .. */
+ dn->bits=0; /* .. and sign */
+ return; /* no error possible */
+ }
+ if (dn->exponent>=0) { /* non-negative exponent */
+ /* >0; reduce to integer if possible */
+ if (set->digits >= (dn->exponent+dn->digits)) {
+ dn->digits=decShiftToMost(dn->lsu, dn->digits, dn->exponent);
+ dn->exponent=0;
}
- } /* !extended */
+ }
+ } /* !extended */
- decFinalize (dn, set, residue, status);
-}
+ decFinalize(dn, set, residue, status);
+ } /* decFinish */
#endif
/* ------------------------------------------------------------------ */
-/* decFinalize -- final check, clamp, and round of a number */
-/* */
-/* dn is the number */
-/* set is the context */
-/* residue is the rounding accumulator (as in decApplyRound) */
-/* status is the status accumulator */
-/* */
+/* decFinalize -- final check, clamp, and round of a number */
+/* */
+/* dn is the number */
+/* set is the context */
+/* residue is the rounding accumulator (as in decApplyRound) */
+/* status is the status accumulator */
+/* */
/* This finishes off the current number by checking for subnormal */
/* results, applying any pending rounding, checking for overflow, */
-/* and applying any clamping. */
-/* Underflow and overflow conditions are raised as appropriate. */
-/* All fields are updated as required. */
+/* and applying any clamping. */
+/* Underflow and overflow conditions are raised as appropriate. */
+/* All fields are updated as required. */
/* ------------------------------------------------------------------ */
-static void
-decFinalize (decNumber * dn, decContext * set, Int * residue, uInt * status)
-{
- Int shift; /* shift needed if clamping */
+static void decFinalize(decNumber *dn, decContext *set, Int *residue,
+ uInt *status) {
+ Int shift; /* shift needed if clamping */
+ Int tinyexp=set->emin-dn->digits+1; /* precalculate subnormal boundary */
- /* We have to be careful when checking the exponent as the adjusted */
- /* exponent could overflow 31 bits [because it may already be up */
- /* to twice the expected]. */
+ /* Must be careful, here, when checking the exponent as the */
+ /* adjusted exponent could overflow 31 bits [because it may already */
+ /* be up to twice the expected]. */
- /* First test for subnormal. This must be done before any final */
+ /* First test for subnormal. This must be done before any final */
/* round as the result could be rounded to Nmin or 0. */
- if (dn->exponent < 0 /* negative exponent */
- && (dn->exponent < set->emin - dn->digits + 1))
- {
+ if (dn->exponent<=tinyexp) { /* prefilter */
+ Int comp;
+ decNumber nmin;
+ /* A very nasty case here is dn == Nmin and residue<0 */
+ if (dn->exponent<tinyexp) {
/* Go handle subnormals; this will apply round if needed. */
- decSetSubnormal (dn, set, residue, status);
+ decSetSubnormal(dn, set, residue, status);
+ return;
+ }
+ /* Equals case: only subnormal if dn=Nmin and negative residue */
+ decNumberZero(&nmin);
+ nmin.lsu[0]=1;
+ nmin.exponent=set->emin;
+ comp=decCompare(dn, &nmin, 1); /* (signless compare) */
+ if (comp==BADINT) { /* oops */
+ *status|=DEC_Insufficient_storage; /* abandon... */
+ return;
+ }
+ if (*residue<0 && comp==0) { /* neg residue and dn==Nmin */
+ decApplyRound(dn, set, *residue, status); /* might force down */
+ decSetSubnormal(dn, set, residue, status);
return;
+ }
}
/* now apply any pending round (this could raise overflow). */
- if (*residue != 0)
- decApplyRound (dn, set, *residue, status);
+ if (*residue!=0) decApplyRound(dn, set, *residue, status);
/* Check for overflow [redundant in the 'rare' case] or clamp */
- if (dn->exponent <= set->emax - set->digits + 1)
- return; /* neither needed */
+ if (dn->exponent<=set->emax-set->digits+1) return; /* neither needed */
- /* here when we might have an overflow or clamp to do */
- if (dn->exponent > set->emax - dn->digits + 1)
- { /* too big */
- decSetOverflow (dn, set, status);
- return;
+
+ /* here when might have an overflow or clamp to do */
+ if (dn->exponent>set->emax-dn->digits+1) { /* too big */
+ decSetOverflow(dn, set, status);
+ return;
}
/* here when the result is normal but in clamp range */
- if (!set->clamp)
- return;
+ if (!set->clamp) return;
- /* here when we need to apply the IEEE exponent clamp (fold-down) */
- shift = dn->exponent - (set->emax - set->digits + 1);
+ /* here when need to apply the IEEE exponent clamp (fold-down) */
+ shift=dn->exponent-(set->emax-set->digits+1);
/* shift coefficient (if non-zero) */
- if (!ISZERO (dn))
- {
- dn->digits = decShiftToMost (dn->lsu, dn->digits, shift);
+ if (!ISZERO(dn)) {
+ dn->digits=decShiftToMost(dn->lsu, dn->digits, shift);
}
- dn->exponent -= shift; /* adjust the exponent to match */
- *status |= DEC_Clamped; /* and record the dirty deed */
+ dn->exponent-=shift; /* adjust the exponent to match */
+ *status|=DEC_Clamped; /* and record the dirty deed */
return;
-}
+ } /* decFinalize */
/* ------------------------------------------------------------------ */
-/* decSetOverflow -- set number to proper overflow value */
-/* */
-/* dn is the number (used for sign [only] and result) */
-/* set is the context [used for the rounding mode] */
-/* status contains the current status to be updated */
-/* */
-/* This sets the sign of a number and sets its value to either */
+/* decSetOverflow -- set number to proper overflow value */
+/* */
+/* dn is the number (used for sign [only] and result) */
+/* set is the context [used for the rounding mode, etc.] */
+/* status contains the current status to be updated */
+/* */
+/* This sets the sign of a number and sets its value to either */
/* Infinity or the maximum finite value, depending on the sign of */
-/* dn and therounding mode, following IEEE 854 rules. */
-/* ------------------------------------------------------------------ */
-static void
-decSetOverflow (decNumber * dn, decContext * set, uInt * status)
-{
- Flag needmax = 0; /* result is maximum finite value */
- uByte sign = dn->bits & DECNEG; /* clean and save sign bit */
-
- if (ISZERO (dn))
- { /* zero does not overflow magnitude */
- Int emax = set->emax; /* limit value */
- if (set->clamp)
- emax -= set->digits - 1; /* lower if clamping */
- if (dn->exponent > emax)
- { /* clamp required */
- dn->exponent = emax;
- *status |= DEC_Clamped;
- }
- return;
+/* dn and the rounding mode, following IEEE 854 rules. */
+/* ------------------------------------------------------------------ */
+static void decSetOverflow(decNumber *dn, decContext *set, uInt *status) {
+ Flag needmax=0; /* result is maximum finite value */
+ uByte sign=dn->bits&DECNEG; /* clean and save sign bit */
+
+ if (ISZERO(dn)) { /* zero does not overflow magnitude */
+ Int emax=set->emax; /* limit value */
+ if (set->clamp) emax-=set->digits-1; /* lower if clamping */
+ if (dn->exponent>emax) { /* clamp required */
+ dn->exponent=emax;
+ *status|=DEC_Clamped;
+ }
+ return;
}
- decNumberZero (dn);
- switch (set->round)
- {
- case DEC_ROUND_DOWN:
- {
- needmax = 1; /* never Infinity */
- break;
- } /* r-d */
- case DEC_ROUND_CEILING:
- {
- if (sign)
- needmax = 1; /* Infinity if non-negative */
- break;
- } /* r-c */
- case DEC_ROUND_FLOOR:
- {
- if (!sign)
- needmax = 1; /* Infinity if negative */
- break;
- } /* r-f */
- default:
- break; /* Infinity in all other cases */
+ decNumberZero(dn);
+ switch (set->round) {
+ case DEC_ROUND_DOWN: {
+ needmax=1; /* never Infinity */
+ break;} /* r-d */
+ case DEC_ROUND_05UP: {
+ needmax=1; /* never Infinity */
+ break;} /* r-05 */
+ case DEC_ROUND_CEILING: {
+ if (sign) needmax=1; /* Infinity if non-negative */
+ break;} /* r-c */
+ case DEC_ROUND_FLOOR: {
+ if (!sign) needmax=1; /* Infinity if negative */
+ break;} /* r-f */
+ default: break; /* Infinity in all other cases */
}
- if (needmax)
- {
- Unit *up; /* work */
- Int count = set->digits; /* nines to add */
- dn->digits = count;
- /* fill in all nines to set maximum value */
- for (up = dn->lsu;; up++)
- {
- if (count > DECDPUN)
- *up = DECDPUNMAX; /* unit full o'nines */
- else
- { /* this is the msu */
- *up = (Unit) (powers[count] - 1);
- break;
- }
- count -= DECDPUN; /* we filled those digits */
- } /* up */
- dn->bits = sign; /* sign */
- dn->exponent = set->emax - set->digits + 1;
+ if (needmax) {
+ decSetMaxValue(dn, set);
+ dn->bits=sign; /* set sign */
}
- else
- dn->bits = sign | DECINF; /* Value is +/-Infinity */
- *status |= DEC_Overflow | DEC_Inexact | DEC_Rounded;
-}
+ else dn->bits=sign|DECINF; /* Value is +/-Infinity */
+ *status|=DEC_Overflow | DEC_Inexact | DEC_Rounded;
+ } /* decSetOverflow */
+
+/* ------------------------------------------------------------------ */
+/* decSetMaxValue -- set number to +Nmax (maximum normal value) */
+/* */
+/* dn is the number to set */
+/* set is the context [used for digits and emax] */
+/* */
+/* This sets the number to the maximum positive value. */
+/* ------------------------------------------------------------------ */
+static void decSetMaxValue(decNumber *dn, decContext *set) {
+ Unit *up; /* work */
+ Int count=set->digits; /* nines to add */
+ dn->digits=count;
+ /* fill in all nines to set maximum value */
+ for (up=dn->lsu; ; up++) {
+ if (count>DECDPUN) *up=DECDPUNMAX; /* unit full o'nines */
+ else { /* this is the msu */
+ *up=(Unit)(powers[count]-1);
+ break;
+ }
+ count-=DECDPUN; /* filled those digits */
+ } /* up */
+ dn->bits=0; /* + sign */
+ dn->exponent=set->emax-set->digits+1;
+ } /* decSetMaxValue */
/* ------------------------------------------------------------------ */
-/* decSetSubnormal -- process value whose exponent is <Emin */
-/* */
+/* decSetSubnormal -- process value whose exponent is <Emin */
+/* */
/* dn is the number (used as input as well as output; it may have */
-/* an allowed subnormal value, which may need to be rounded) */
-/* set is the context [used for the rounding mode] */
-/* residue is any pending residue */
-/* status contains the current status to be updated */
-/* */
-/* If subset mode, set result to zero and set Underflow flags. */
-/* */
+/* an allowed subnormal value, which may need to be rounded) */
+/* set is the context [used for the rounding mode] */
+/* residue is any pending residue */
+/* status contains the current status to be updated */
+/* */
+/* If subset mode, set result to zero and set Underflow flags. */
+/* */
/* Value may be zero with a low exponent; this does not set Subnormal */
-/* but the exponent will be clamped to Etiny. */
-/* */
-/* Otherwise ensure exponent is not out of range, and round as */
-/* necessary. Underflow is set if the result is Inexact. */
-/* ------------------------------------------------------------------ */
-static void
-decSetSubnormal (decNumber * dn, decContext * set,
- Int * residue, uInt * status)
-{
- decContext workset; /* work */
- Int etiny, adjust; /* .. */
-
-#if DECSUBSET
+/* but the exponent will be clamped to Etiny. */
+/* */
+/* Otherwise ensure exponent is not out of range, and round as */
+/* necessary. Underflow is set if the result is Inexact. */
+/* ------------------------------------------------------------------ */
+static void decSetSubnormal(decNumber *dn, decContext *set, Int *residue,
+ uInt *status) {
+ Int dnexp; /* saves original exponent */
+ decContext workset; /* work */
+ Int etiny, adjust; /* .. */
+
+ #if DECSUBSET
/* simple set to zero and 'hard underflow' for subset */
- if (!set->extended)
- {
- decNumberZero (dn);
- /* always full overflow */
- *status |= DEC_Underflow | DEC_Subnormal | DEC_Inexact | DEC_Rounded;
- return;
+ if (!set->extended) {
+ decNumberZero(dn);
+ /* always full overflow */
+ *status|=DEC_Underflow | DEC_Subnormal | DEC_Inexact | DEC_Rounded;
+ return;
}
-#endif
+ #endif
/* Full arithmetic -- allow subnormals, rounded to minimum exponent */
/* (Etiny) if needed */
- etiny = set->emin - (set->digits - 1); /* smallest allowed exponent */
-
- if ISZERO
- (dn)
- { /* value is zero */
- /* residue can never be non-zero here */
-#if DECCHECK
- if (*residue != 0)
- {
- printf ("++ Subnormal 0 residue %d\n", *residue);
- *status |= DEC_Invalid_operation;
- }
-#endif
- if (dn->exponent < etiny)
- { /* clamp required */
- dn->exponent = etiny;
- *status |= DEC_Clamped;
+ etiny=set->emin-(set->digits-1); /* smallest allowed exponent */
+
+ if ISZERO(dn) { /* value is zero */
+ /* residue can never be non-zero here */
+ #if DECCHECK
+ if (*residue!=0) {
+ printf("++ Subnormal 0 residue %ld\n", (LI)*residue);
+ *status|=DEC_Invalid_operation;
}
- return;
+ #endif
+ if (dn->exponent<etiny) { /* clamp required */
+ dn->exponent=etiny;
+ *status|=DEC_Clamped;
+ }
+ return;
}
- *status |= DEC_Subnormal; /* we have a non-zero subnormal */
-
- adjust = etiny - dn->exponent; /* calculate digits to remove */
- if (adjust <= 0)
- { /* not out of range; unrounded */
- /* residue can never be non-zero here, so fast-path out */
-#if DECCHECK
- if (*residue != 0)
- {
- printf ("++ Subnormal no-adjust residue %d\n", *residue);
- *status |= DEC_Invalid_operation;
- }
-#endif
- /* it may already be inexact (from setting the coefficient) */
- if (*status & DEC_Inexact)
- *status |= DEC_Underflow;
- return;
+ *status|=DEC_Subnormal; /* have a non-zero subnormal */
+ adjust=etiny-dn->exponent; /* calculate digits to remove */
+ if (adjust<=0) { /* not out of range; unrounded */
+ /* residue can never be non-zero here, except in the Nmin-residue */
+ /* case (which is a subnormal result), so can take fast-path here */
+ /* it may already be inexact (from setting the coefficient) */
+ if (*status&DEC_Inexact) *status|=DEC_Underflow;
+ return;
}
- /* adjust>0. we need to rescale the result so exponent becomes Etiny */
+ /* adjust>0, so need to rescale the result so exponent becomes Etiny */
/* [this code is similar to that in rescale] */
- workset = *set; /* clone rounding, etc. */
- workset.digits = dn->digits - adjust; /* set requested length */
- workset.emin -= adjust; /* and adjust emin to match */
+ dnexp=dn->exponent; /* save exponent */
+ workset=*set; /* clone rounding, etc. */
+ workset.digits=dn->digits-adjust; /* set requested length */
+ workset.emin-=adjust; /* and adjust emin to match */
/* [note that the latter can be <1, here, similar to Rescale case] */
- decSetCoeff (dn, &workset, dn->lsu, dn->digits, residue, status);
- decApplyRound (dn, &workset, *residue, status);
+ decSetCoeff(dn, &workset, dn->lsu, dn->digits, residue, status);
+ decApplyRound(dn, &workset, *residue, status);
/* Use 754R/854 default rule: Underflow is set iff Inexact */
/* [independent of whether trapped] */
- if (*status & DEC_Inexact)
- *status |= DEC_Underflow;
-
- /* if we rounded up a 999s case, exponent will be off by one; adjust */
- /* back if so [it will fit, because we shortened] */
- if (dn->exponent > etiny)
- {
- dn->digits = decShiftToMost (dn->lsu, dn->digits, 1);
- dn->exponent--; /* (re)adjust the exponent. */
+ if (*status&DEC_Inexact) *status|=DEC_Underflow;
+
+ /* if rounded up a 999s case, exponent will be off by one; adjust */
+ /* back if so [it will fit, because it was shortened earlier] */
+ if (dn->exponent>etiny) {
+ dn->digits=decShiftToMost(dn->lsu, dn->digits, 1);
+ dn->exponent--; /* (re)adjust the exponent. */
}
-}
-/* ------------------------------------------------------------------ */
-/* decGetInt -- get integer from a number */
-/* */
-/* dn is the number [which will not be altered] */
-/* set is the context [requested digits], subset only */
-/* returns the converted integer, or BADINT if error */
-/* */
+ /* if rounded to zero, it is by definition clamped... */
+ if (ISZERO(dn)) *status|=DEC_Clamped;
+ } /* decSetSubnormal */
+
+/* ------------------------------------------------------------------ */
+/* decCheckMath - check entry conditions for a math function */
+/* */
+/* This checks the context and the operand */
+/* */
+/* rhs is the operand to check */
+/* set is the context to check */
+/* status is unchanged if both are good */
+/* */
+/* returns non-zero if status is changed, 0 otherwise */
+/* */
+/* Restrictions enforced: */
+/* */
+/* digits, emax, and -emin in the context must be less than */
+/* DEC_MAX_MATH (999999), and A must be within these bounds if */
+/* non-zero. Invalid_operation is set in the status if a */
+/* restriction is violated. */
+/* ------------------------------------------------------------------ */
+static uInt decCheckMath(const decNumber *rhs, decContext *set,
+ uInt *status) {
+ uInt save=*status; /* record */
+ if (set->digits>DEC_MAX_MATH
+ || set->emax>DEC_MAX_MATH
+ || -set->emin>DEC_MAX_MATH) *status|=DEC_Invalid_context;
+ else if ((rhs->digits>DEC_MAX_MATH
+ || rhs->exponent+rhs->digits>DEC_MAX_MATH+1
+ || rhs->exponent+rhs->digits<2*(1-DEC_MAX_MATH))
+ && !ISZERO(rhs)) *status|=DEC_Invalid_operation;
+ return (*status!=save);
+ } /* decCheckMath */
+
+/* ------------------------------------------------------------------ */
+/* decGetInt -- get integer from a number */
+/* */
+/* dn is the number [which will not be altered] */
+/* */
+/* returns one of: */
+/* BADINT if there is a non-zero fraction */
+/* the converted integer */
+/* BIGEVEN if the integer is even and magnitude > 2*10**9 */
+/* BIGODD if the integer is odd and magnitude > 2*10**9 */
+/* */
/* This checks and gets a whole number from the input decNumber. */
-/* The magnitude of the integer must be <2^31. */
-/* Any discarded fractional part must be 0. */
-/* If subset it must also fit in set->digits */
+/* The sign can be determined from dn by the caller when BIGEVEN or */
+/* BIGODD is returned. */
/* ------------------------------------------------------------------ */
-#if DECSUBSET
-static Int
-decGetInt (const decNumber * dn, decContext * set)
-{
-#else
-static Int
-decGetInt (const decNumber * dn)
-{
-#endif
- Int theInt; /* result accumulator */
- const Unit *up; /* work */
- Int got; /* digits (real or not) processed */
- Int ilength = dn->digits + dn->exponent; /* integral length */
+static Int decGetInt(const decNumber *dn) {
+ Int theInt; /* result accumulator */
+ const Unit *up; /* work */
+ Int got; /* digits (real or not) processed */
+ Int ilength=dn->digits+dn->exponent; /* integral length */
+ Flag neg=decNumberIsNegative(dn); /* 1 if -ve */
/* The number must be an integer that fits in 10 digits */
/* Assert, here, that 10 is enough for any rescale Etiny */
-#if DEC_MAX_EMAX > 999999999
-#error GetInt may need updating [for Emax]
-#endif
-#if DEC_MIN_EMIN < -999999999
-#error GetInt may need updating [for Emin]
-#endif
- if (ISZERO (dn))
- return 0; /* zeros are OK, with any exponent */
- if (ilength > 10)
- return BADINT; /* always too big */
-#if DECSUBSET
- if (!set->extended && ilength > set->digits)
- return BADINT;
-#endif
-
- up = dn->lsu; /* ready for lsu */
- theInt = 0; /* ready to accumulate */
- if (dn->exponent >= 0)
- { /* relatively easy */
- /* no fractional part [usual]; allow for positive exponent */
- got = dn->exponent;
+ #if DEC_MAX_EMAX > 999999999
+ #error GetInt may need updating [for Emax]
+ #endif
+ #if DEC_MIN_EMIN < -999999999
+ #error GetInt may need updating [for Emin]
+ #endif
+ if (ISZERO(dn)) return 0; /* zeros are OK, with any exponent */
+
+ up=dn->lsu; /* ready for lsu */
+ theInt=0; /* ready to accumulate */
+ if (dn->exponent>=0) { /* relatively easy */
+ /* no fractional part [usual]; allow for positive exponent */
+ got=dn->exponent;
}
- else
- { /* -ve exponent; some fractional part to check and discard */
- Int count = -dn->exponent; /* digits to discard */
- /* spin up whole units until we get to the Unit with the unit digit */
- for (; count >= DECDPUN; up++)
- {
- if (*up != 0)
- return BADINT; /* non-zero Unit to discard */
- count -= DECDPUN;
- }
- if (count == 0)
- got = 0; /* [a multiple of DECDPUN] */
- else
- { /* [not multiple of DECDPUN] */
- Int rem; /* work */
- /* slice off fraction digits and check for non-zero */
-#if DECDPUN<=4
- theInt = QUOT10 (*up, count);
- rem = *up - theInt * powers[count];
-#else
- rem = *up % powers[count]; /* slice off discards */
- theInt = *up / powers[count];
-#endif
- if (rem != 0)
- return BADINT; /* non-zero fraction */
- /* OK, we're good */
- got = DECDPUN - count; /* number of digits so far */
- up++; /* ready for next */
- }
+ else { /* -ve exponent; some fractional part to check and discard */
+ Int count=-dn->exponent; /* digits to discard */
+ /* spin up whole units until reach the Unit with the unit digit */
+ for (; count>=DECDPUN; up++) {
+ if (*up!=0) return BADINT; /* non-zero Unit to discard */
+ count-=DECDPUN;
+ }
+ if (count==0) got=0; /* [a multiple of DECDPUN] */
+ else { /* [not multiple of DECDPUN] */
+ Int rem; /* work */
+ /* slice off fraction digits and check for non-zero */
+ #if DECDPUN<=4
+ theInt=QUOT10(*up, count);
+ rem=*up-theInt*powers[count];
+ #else
+ rem=*up%powers[count]; /* slice off discards */
+ theInt=*up/powers[count];
+ #endif
+ if (rem!=0) return BADINT; /* non-zero fraction */
+ /* it looks good */
+ got=DECDPUN-count; /* number of digits so far */
+ up++; /* ready for next */
+ }
}
- /* collect the rest */
- for (; got < ilength; up++)
- {
- theInt += *up * powers[got];
- got += DECDPUN;
+ /* now it's known there's no fractional part */
+
+ /* tricky code now, to accumulate up to 9.3 digits */
+ if (got==0) {theInt=*up; got+=DECDPUN; up++;} /* ensure lsu is there */
+
+ if (ilength<11) {
+ Int save=theInt;
+ /* collect any remaining unit(s) */
+ for (; got<ilength; up++) {
+ theInt+=*up*powers[got];
+ got+=DECDPUN;
+ }
+ if (ilength==10) { /* need to check for wrap */
+ if (theInt/(Int)powers[got-DECDPUN]!=(Int)*(up-1)) ilength=11;
+ /* [that test also disallows the BADINT result case] */
+ else if (neg && theInt>1999999997) ilength=11;
+ else if (!neg && theInt>999999999) ilength=11;
+ if (ilength==11) theInt=save; /* restore correct low bit */
+ }
+ }
+
+ if (ilength>10) { /* too big */
+ if (theInt&1) return BIGODD; /* bottom bit 1 */
+ return BIGEVEN; /* bottom bit 0 */
}
- if ((ilength == 10) /* check no wrap */
- && (theInt / (Int) powers[got - DECDPUN] != *(up - 1)))
- return BADINT;
- /* [that test also disallows the BADINT result case] */
-
- /* apply any sign and return */
- if (decNumberIsNegative (dn))
- theInt = -theInt;
+
+ if (neg) theInt=-theInt; /* apply sign */
return theInt;
-}
-
-/* ------------------------------------------------------------------ */
-/* decStrEq -- caseless comparison of strings */
-/* */
-/* str1 is one of the strings to compare */
-/* str2 is the other */
-/* */
-/* returns 1 if strings caseless-compare equal, 0 otherwise */
-/* */
-/* Note that the strings must be the same length if they are to */
-/* compare equal; there is no padding. */
-/* ------------------------------------------------------------------ */
-/* [strcmpi is not in ANSI C] */
-static Flag
-decStrEq (const char *str1, const char *str2)
-{
- for (;; str1++, str2++)
- {
- unsigned char u1 = (unsigned char) *str1;
- unsigned char u2 = (unsigned char) *str2;
- if (u1 == u2)
- {
- if (u1 == '\0')
- break;
- }
- else
- {
- if (tolower (u1) != tolower (u2))
- return 0;
- }
- } /* stepping */
+ } /* decGetInt */
+
+/* ------------------------------------------------------------------ */
+/* decDecap -- decapitate the coefficient of a number */
+/* */
+/* dn is the number to be decapitated */
+/* drop is the number of digits to be removed from the left of dn; */
+/* this must be <= dn->digits (if equal, the coefficient is */
+/* set to 0) */
+/* */
+/* Returns dn; dn->digits will be <= the initial digits less drop */
+/* (after removing drop digits there may be leading zero digits */
+/* which will also be removed). Only dn->lsu and dn->digits change. */
+/* ------------------------------------------------------------------ */
+static decNumber *decDecap(decNumber *dn, Int drop) {
+ Unit *msu; /* -> target cut point */
+ Int cut; /* work */
+ if (drop>=dn->digits) { /* losing the whole thing */
+ #if DECCHECK
+ if (drop>dn->digits)
+ printf("decDecap called with drop>digits [%ld>%ld]\n",
+ (LI)drop, (LI)dn->digits);
+ #endif
+ dn->lsu[0]=0;
+ dn->digits=1;
+ return dn;
+ }
+ msu=dn->lsu+D2U(dn->digits-drop)-1; /* -> likely msu */
+ cut=MSUDIGITS(dn->digits-drop); /* digits to be in use in msu */
+ if (cut!=DECDPUN) *msu%=powers[cut]; /* clear left digits */
+ /* that may have left leading zero digits, so do a proper count... */
+ dn->digits=decGetDigits(dn->lsu, msu-dn->lsu+1);
+ return dn;
+ } /* decDecap */
+
+/* ------------------------------------------------------------------ */
+/* decBiStr -- compare string with pairwise options */
+/* */
+/* targ is the string to compare */
+/* str1 is one of the strings to compare against (length may be 0) */
+/* str2 is the other; it must be the same length as str1 */
+/* */
+/* returns 1 if strings compare equal, (that is, it is the same */
+/* length as str1 and str2, and each character of targ is in either */
+/* str1 or str2 in the corresponding position), or 0 otherwise */
+/* */
+/* This is used for generic caseless compare, including the awkward */
+/* case of the Turkish dotted and dotless Is. Use as (for example): */
+/* if (decBiStr(test, "mike", "MIKE")) ... */
+/* ------------------------------------------------------------------ */
+static Flag decBiStr(const char *targ, const char *str1, const char *str2) {
+ for (;;targ++, str1++, str2++) {
+ if (*targ!=*str1 && *targ!=*str2) return 0;
+ /* *targ has a match in one (or both, if terminator) */
+ if (*targ=='\0') break;
+ } /* forever */
return 1;
-}
-
-/* ------------------------------------------------------------------ */
-/* decNaNs -- handle NaN operand or operands */
-/* */
-/* res is the result number */
-/* lhs is the first operand */
-/* rhs is the second operand, or NULL if none */
-/* status contains the current status */
-/* returns res in case convenient */
-/* */
+ } /* decBiStr */
+
+/* ------------------------------------------------------------------ */
+/* decNaNs -- handle NaN operand or operands */
+/* */
+/* res is the result number */
+/* lhs is the first operand */
+/* rhs is the second operand, or NULL if none */
+/* context is used to limit payload length */
+/* status contains the current status */
+/* returns res in case convenient */
+/* */
/* Called when one or both operands is a NaN, and propagates the */
/* appropriate result to res. When an sNaN is found, it is changed */
-/* to a qNaN and Invalid operation is set. */
+/* to a qNaN and Invalid operation is set. */
/* ------------------------------------------------------------------ */
-static decNumber *
-decNaNs (decNumber * res, const decNumber * lhs, const decNumber * rhs, uInt * status)
-{
+static decNumber * decNaNs(decNumber *res, const decNumber *lhs,
+ const decNumber *rhs, decContext *set,
+ uInt *status) {
/* This decision tree ends up with LHS being the source pointer, */
/* and status updated if need be */
if (lhs->bits & DECSNAN)
- *status |= DEC_Invalid_operation | DEC_sNaN;
- else if (rhs == NULL);
- else if (rhs->bits & DECSNAN)
- {
- lhs = rhs;
- *status |= DEC_Invalid_operation | DEC_sNaN;
+ *status|=DEC_Invalid_operation | DEC_sNaN;
+ else if (rhs==NULL);
+ else if (rhs->bits & DECSNAN) {
+ lhs=rhs;
+ *status|=DEC_Invalid_operation | DEC_sNaN;
}
- else if (lhs->bits & DECNAN);
- else
- lhs = rhs;
-
- decNumberCopy (res, lhs);
- res->bits &= ~DECSNAN; /* convert any sNaN to NaN, while */
- res->bits |= DECNAN; /* .. preserving sign */
- res->exponent = 0; /* clean exponent */
- /* [coefficient was copied] */
+ else if (lhs->bits & DECNAN);
+ else lhs=rhs;
+
+ /* propagate the payload */
+ if (lhs->digits<=set->digits) decNumberCopy(res, lhs); /* easy */
+ else { /* too long */
+ const Unit *ul;
+ Unit *ur, *uresp1;
+ /* copy safe number of units, then decapitate */
+ res->bits=lhs->bits; /* need sign etc. */
+ uresp1=res->lsu+D2U(set->digits);
+ for (ur=res->lsu, ul=lhs->lsu; ur<uresp1; ur++, ul++) *ur=*ul;
+ res->digits=D2U(set->digits)*DECDPUN;
+ /* maybe still too long */
+ if (res->digits>set->digits) decDecap(res, res->digits-set->digits);
+ }
+
+ res->bits&=~DECSNAN; /* convert any sNaN to NaN, while */
+ res->bits|=DECNAN; /* .. preserving sign */
+ res->exponent=0; /* clean exponent */
+ /* [coefficient was copied/decapitated] */
return res;
-}
+ } /* decNaNs */
/* ------------------------------------------------------------------ */
-/* decStatus -- apply non-zero status */
-/* */
-/* dn is the number to set if error */
-/* status contains the current status (not yet in context) */
-/* set is the context */
-/* */
+/* decStatus -- apply non-zero status */
+/* */
+/* dn is the number to set if error */
+/* status contains the current status (not yet in context) */
+/* set is the context */
+/* */
/* If the status is an error status, the number is set to a NaN, */
/* unless the error was an overflow, divide-by-zero, or underflow, */
-/* in which case the number will have already been set. */
-/* */
+/* in which case the number will have already been set. */
+/* */
/* The context status is then updated with the new status. Note that */
/* this may raise a signal, so control may never return from this */
/* routine (hence resources must be recovered before it is called). */
/* ------------------------------------------------------------------ */
-static void
-decStatus (decNumber * dn, uInt status, decContext * set)
-{
- if (status & DEC_NaNs)
- { /* error status -> NaN */
- /* if cause was an sNaN, clear and propagate [NaN is already set up] */
- if (status & DEC_sNaN)
- status &= ~DEC_sNaN;
- else
- {
- decNumberZero (dn); /* other error: clean throughout */
- dn->bits = DECNAN; /* and make a quiet NaN */
- }
+static void decStatus(decNumber *dn, uInt status, decContext *set) {
+ if (status & DEC_NaNs) { /* error status -> NaN */
+ /* if cause was an sNaN, clear and propagate [NaN is already set up] */
+ if (status & DEC_sNaN) status&=~DEC_sNaN;
+ else {
+ decNumberZero(dn); /* other error: clean throughout */
+ dn->bits=DECNAN; /* and make a quiet NaN */
+ }
}
- decContextSetStatus (set, status);
+ decContextSetStatus(set, status); /* [may not return] */
return;
-}
+ } /* decStatus */
/* ------------------------------------------------------------------ */
-/* decGetDigits -- count digits in a Units array */
-/* */
-/* uar is the Unit array holding the number [this is often an */
-/* accumulator of some sort] */
-/* len is the length of the array in units */
-/* */
-/* returns the number of (significant) digits in the array */
-/* */
+/* decGetDigits -- count digits in a Units array */
+/* */
+/* uar is the Unit array holding the number (this is often an */
+/* accumulator of some sort) */
+/* len is the length of the array in units [>=1] */
+/* */
+/* returns the number of (significant) digits in the array */
+/* */
/* All leading zeros are excluded, except the last if the array has */
-/* only zero Units. */
+/* only zero Units. */
/* ------------------------------------------------------------------ */
/* This may be called twice during some operations. */
-static Int
-decGetDigits (const Unit * uar, Int len)
-{
- const Unit *up = uar + len - 1; /* -> msu */
- Int digits = len * DECDPUN; /* maximum possible digits */
- uInt const *pow; /* work */
-
- for (; up >= uar; up--)
- {
- digits -= DECDPUN;
- if (*up == 0)
- { /* unit is 0 */
- if (digits != 0)
- continue; /* more to check */
- /* all units were 0 */
- digits++; /* .. so bump digits to 1 */
- break;
- }
- /* found the first non-zero Unit */
- digits++;
- if (*up < 10)
- break; /* fastpath 1-9 */
- digits++;
- for (pow = &powers[2]; *up >= *pow; pow++)
- digits++;
- break;
- } /* up */
-
+static Int decGetDigits(Unit *uar, Int len) {
+ Unit *up=uar+(len-1); /* -> msu */
+ Int digits=(len-1)*DECDPUN+1; /* possible digits excluding msu */
+ #if DECDPUN>4
+ uInt const *pow; /* work */
+ #endif
+ /* (at least 1 in final msu) */
+ #if DECCHECK
+ if (len<1) printf("decGetDigits called with len<1 [%ld]\n", (LI)len);
+ #endif
+
+ for (; up>=uar; up--) {
+ if (*up==0) { /* unit is all 0s */
+ if (digits==1) break; /* a zero has one digit */
+ digits-=DECDPUN; /* adjust for 0 unit */
+ continue;}
+ /* found the first (most significant) non-zero Unit */
+ #if DECDPUN>1 /* not done yet */
+ if (*up<10) break; /* is 1-9 */
+ digits++;
+ #if DECDPUN>2 /* not done yet */
+ if (*up<100) break; /* is 10-99 */
+ digits++;
+ #if DECDPUN>3 /* not done yet */
+ if (*up<1000) break; /* is 100-999 */
+ digits++;
+ #if DECDPUN>4 /* count the rest ... */
+ for (pow=&powers[4]; *up>=*pow; pow++) digits++;
+ #endif
+ #endif
+ #endif
+ #endif
+ break;
+ } /* up */
return digits;
-}
-
+ } /* decGetDigits */
#if DECTRACE | DECCHECK
/* ------------------------------------------------------------------ */
-/* decNumberShow -- display a number [debug aid] */
-/* dn is the number to show */
-/* */
-/* Shows: sign, exponent, coefficient (msu first), digits */
-/* or: sign, special-value */
+/* decNumberShow -- display a number [debug aid] */
+/* dn is the number to show */
+/* */
+/* Shows: sign, exponent, coefficient (msu first), digits */
+/* or: sign, special-value */
/* ------------------------------------------------------------------ */
/* this is public so other modules can use it */
-void
-decNumberShow (const decNumber * dn)
-{
- const Unit *up; /* work */
- uInt u, d; /* .. */
- Int cut; /* .. */
- char isign = '+'; /* main sign */
- if (dn == NULL)
- {
- printf ("NULL\n");
- return;
- }
- if (decNumberIsNegative (dn))
- isign = '-';
- printf (" >> %c ", isign);
- if (dn->bits & DECSPECIAL)
- { /* Is a special value */
- if (decNumberIsInfinite (dn))
- printf ("Infinity");
- else
- { /* a NaN */
- if (dn->bits & DECSNAN)
- printf ("sNaN"); /* signalling NaN */
- else
- printf ("NaN");
- }
- /* if coefficient and exponent are 0, we're done */
- if (dn->exponent == 0 && dn->digits == 1 && *dn->lsu == 0)
- {
- printf ("\n");
- return;
- }
- /* drop through to report other information */
- printf (" ");
+void decNumberShow(const decNumber *dn) {
+ const Unit *up; /* work */
+ uInt u, d; /* .. */
+ Int cut; /* .. */
+ char isign='+'; /* main sign */
+ if (dn==NULL) {
+ printf("NULL\n");
+ return;}
+ if (decNumberIsNegative(dn)) isign='-';
+ printf(" >> %c ", isign);
+ if (dn->bits&DECSPECIAL) { /* Is a special value */
+ if (decNumberIsInfinite(dn)) printf("Infinity");
+ else { /* a NaN */
+ if (dn->bits&DECSNAN) printf("sNaN"); /* signalling NaN */
+ else printf("NaN");
+ }
+ /* if coefficient and exponent are 0, no more to do */
+ if (dn->exponent==0 && dn->digits==1 && *dn->lsu==0) {
+ printf("\n");
+ return;}
+ /* drop through to report other information */
+ printf(" ");
}
/* now carefully display the coefficient */
- up = dn->lsu + D2U (dn->digits) - 1; /* msu */
- printf ("%d", *up);
- for (up = up - 1; up >= dn->lsu; up--)
- {
- u = *up;
- printf (":");
- for (cut = DECDPUN - 1; cut >= 0; cut--)
- {
- d = u / powers[cut];
- u -= d * powers[cut];
- printf ("%d", d);
- } /* cut */
- } /* up */
- if (dn->exponent != 0)
- {
- char esign = '+';
- if (dn->exponent < 0)
- esign = '-';
- printf (" E%c%d", esign, abs (dn->exponent));
+ up=dn->lsu+D2U(dn->digits)-1; /* msu */
+ printf("%ld", (LI)*up);
+ for (up=up-1; up>=dn->lsu; up--) {
+ u=*up;
+ printf(":");
+ for (cut=DECDPUN-1; cut>=0; cut--) {
+ d=u/powers[cut];
+ u-=d*powers[cut];
+ printf("%ld", (LI)d);
+ } /* cut */
+ } /* up */
+ if (dn->exponent!=0) {
+ char esign='+';
+ if (dn->exponent<0) esign='-';
+ printf(" E%c%ld", esign, (LI)abs(dn->exponent));
}
- printf (" [%d]\n", dn->digits);
-}
+ printf(" [%ld]\n", (LI)dn->digits);
+ } /* decNumberShow */
#endif
#if DECTRACE || DECCHECK
/* ------------------------------------------------------------------ */
-/* decDumpAr -- display a unit array [debug aid] */
-/* name is a single-character tag name */
-/* ar is the array to display */
-/* len is the length of the array in Units */
+/* decDumpAr -- display a unit array [debug/check aid] */
+/* name is a single-character tag name */
+/* ar is the array to display */
+/* len is the length of the array in Units */
/* ------------------------------------------------------------------ */
-static void
-decDumpAr (char name, const Unit * ar, Int len)
-{
+static void decDumpAr(char name, const Unit *ar, Int len) {
Int i;
-#if DECDPUN==4
- const char *spec = "%04d ";
-#else
- const char *spec = "%d ";
-#endif
- printf (" :%c: ", name);
- for (i = len - 1; i >= 0; i--)
- {
- if (i == len - 1)
- printf ("%d ", ar[i]);
- else
- printf (spec, ar[i]);
+ const char *spec;
+ #if DECDPUN==9
+ spec="%09d ";
+ #elif DECDPUN==8
+ spec="%08d ";
+ #elif DECDPUN==7
+ spec="%07d ";
+ #elif DECDPUN==6
+ spec="%06d ";
+ #elif DECDPUN==5
+ spec="%05d ";
+ #elif DECDPUN==4
+ spec="%04d ";
+ #elif DECDPUN==3
+ spec="%03d ";
+ #elif DECDPUN==2
+ spec="%02d ";
+ #else
+ spec="%d ";
+ #endif
+ printf(" :%c: ", name);
+ for (i=len-1; i>=0; i--) {
+ if (i==len-1) printf("%ld ", (LI)ar[i]);
+ else printf(spec, ar[i]);
}
- printf ("\n");
- return;
-}
+ printf("\n");
+ return;}
#endif
#if DECCHECK
/* ------------------------------------------------------------------ */
-/* decCheckOperands -- check operand(s) to a routine */
+/* decCheckOperands -- check operand(s) to a routine */
/* res is the result structure (not checked; it will be set to */
-/* quiet NaN if error found (and it is not NULL)) */
-/* lhs is the first operand (may be DECUNUSED) */
-/* rhs is the second (may be DECUNUSED) */
-/* set is the context (may be DECUNUSED) */
+/* quiet NaN if error found (and it is not NULL)) */
+/* lhs is the first operand (may be DECUNRESU) */
+/* rhs is the second (may be DECUNUSED) */
+/* set is the context (may be DECUNCONT) */
/* returns 0 if both operands, and the context are clean, or 1 */
-/* otherwise (in which case the context will show an error, */
+/* otherwise (in which case the context will show an error, */
/* unless NULL). Note that res is not cleaned; caller should */
-/* handle this so res=NULL case is safe. */
+/* handle this so res=NULL case is safe. */
/* The caller is expected to abandon immediately if 1 is returned. */
/* ------------------------------------------------------------------ */
-static Flag
-decCheckOperands (decNumber * res, const decNumber * lhs,
- const decNumber * rhs, decContext * set)
-{
- Flag bad = 0;
- if (set == NULL)
- { /* oops; hopeless */
-#if DECTRACE
- printf ("Context is NULL.\n");
-#endif
- bad = 1;
- return 1;
- }
- else if (set != DECUNUSED
- && (set->digits < 1 || set->round < 0
- || set->round >= DEC_ROUND_MAX))
- {
- bad = 1;
-#if DECTRACE
- printf ("Bad context [digits=%d round=%d].\n", set->digits, set->round);
-#endif
+static Flag decCheckOperands(decNumber *res, const decNumber *lhs,
+ const decNumber *rhs, decContext *set) {
+ Flag bad=0;
+ if (set==NULL) { /* oops; hopeless */
+ #if DECTRACE || DECVERB
+ printf("Reference to context is NULL.\n");
+ #endif
+ bad=1;
+ return 1;}
+ else if (set!=DECUNCONT
+ && (set->digits<1 || set->round>=DEC_ROUND_MAX)) {
+ bad=1;
+ #if DECTRACE || DECVERB
+ printf("Bad context [digits=%ld round=%ld].\n",
+ (LI)set->digits, (LI)set->round);
+ #endif
}
- else
- {
- if (res == NULL)
- {
- bad = 1;
-#if DECTRACE
- printf ("Bad result [is NULL].\n");
-#endif
- }
- if (!bad && lhs != DECUNUSED)
- bad = (decCheckNumber (lhs, set));
- if (!bad && rhs != DECUNUSED)
- bad = (decCheckNumber (rhs, set));
+ else {
+ if (res==NULL) {
+ bad=1;
+ #if DECTRACE
+ /* this one not DECVERB as standard tests include NULL */
+ printf("Reference to result is NULL.\n");
+ #endif
+ }
+ if (!bad && lhs!=DECUNUSED) bad=(decCheckNumber(lhs));
+ if (!bad && rhs!=DECUNUSED) bad=(decCheckNumber(rhs));
}
- if (bad)
- {
- if (set != DECUNUSED)
- decContextSetStatus (set, DEC_Invalid_operation);
- if (res != DECUNUSED && res != NULL)
- {
- decNumberZero (res);
- res->bits = DECNAN; /* qNaN */
- }
+ if (bad) {
+ if (set!=DECUNCONT) decContextSetStatus(set, DEC_Invalid_operation);
+ if (res!=DECUNRESU && res!=NULL) {
+ decNumberZero(res);
+ res->bits=DECNAN; /* qNaN */
+ }
}
return bad;
-}
+ } /* decCheckOperands */
/* ------------------------------------------------------------------ */
-/* decCheckNumber -- check a number */
-/* dn is the number to check */
-/* set is the context (may be DECUNUSED) */
-/* returns 0 if the number is clean, or 1 otherwise */
-/* */
+/* decCheckNumber -- check a number */
+/* dn is the number to check */
+/* returns 0 if the number is clean, or 1 otherwise */
+/* */
/* The number is considered valid if it could be a result from some */
-/* operation in some valid context (not necessarily the current one). */
-/* ------------------------------------------------------------------ */
-Flag
-decCheckNumber (const decNumber * dn, decContext * set)
-{
- const Unit *up; /* work */
- uInt maxuint; /* .. */
- Int ae, d, digits; /* .. */
- Int emin, emax; /* .. */
-
- if (dn == NULL)
- { /* hopeless */
-#if DECTRACE
- printf ("Reference to decNumber is NULL.\n");
-#endif
- return 1;
- }
+/* operation in some valid context. */
+/* ------------------------------------------------------------------ */
+static Flag decCheckNumber(const decNumber *dn) {
+ const Unit *up; /* work */
+ uInt maxuint; /* .. */
+ Int ae, d, digits; /* .. */
+ Int emin, emax; /* .. */
- /* check special values */
- if (dn->bits & DECSPECIAL)
- {
- if (dn->exponent != 0)
- {
-#if DECTRACE
- printf ("Exponent %d (not 0) for a special value.\n", dn->exponent);
-#endif
- return 1;
- }
+ if (dn==NULL) { /* hopeless */
+ #if DECTRACE
+ /* this one not DECVERB as standard tests include NULL */
+ printf("Reference to decNumber is NULL.\n");
+ #endif
+ return 1;}
- /* 2003.09.08: NaNs may now have coefficients, so next tests Inf only */
- if (decNumberIsInfinite (dn))
- {
- if (dn->digits != 1)
- {
-#if DECTRACE
- printf ("Digits %d (not 1) for an infinity.\n", dn->digits);
-#endif
- return 1;
- }
- if (*dn->lsu != 0)
- {
-#if DECTRACE
- printf ("LSU %d (not 0) for an infinity.\n", *dn->lsu);
-#endif
- return 1;
- }
- } /* Inf */
- /* 2002.12.26: negative NaNs can now appear through proposed IEEE */
- /* concrete formats (decimal64, etc.), though they are */
- /* never visible in strings. */
- return 0;
-
- /* if ((dn->bits & DECINF) || (dn->bits & DECNEG)==0) return 0; */
- /* #if DECTRACE */
- /* printf("Negative NaN in number.\n"); */
- /* #endif */
- /* return 1; */
+ /* check special values */
+ if (dn->bits & DECSPECIAL) {
+ if (dn->exponent!=0) {
+ #if DECTRACE || DECVERB
+ printf("Exponent %ld (not 0) for a special value [%02x].\n",
+ (LI)dn->exponent, dn->bits);
+ #endif
+ return 1;}
+
+ /* 2003.09.08: NaNs may now have coefficients, so next tests Inf only */
+ if (decNumberIsInfinite(dn)) {
+ if (dn->digits!=1) {
+ #if DECTRACE || DECVERB
+ printf("Digits %ld (not 1) for an infinity.\n", (LI)dn->digits);
+ #endif
+ return 1;}
+ if (*dn->lsu!=0) {
+ #if DECTRACE || DECVERB
+ printf("LSU %ld (not 0) for an infinity.\n", (LI)*dn->lsu);
+ #endif
+ decDumpAr('I', dn->lsu, D2U(dn->digits));
+ return 1;}
+ } /* Inf */
+ /* 2002.12.26: negative NaNs can now appear through proposed IEEE */
+ /* concrete formats (decimal64, etc.). */
+ return 0;
}
/* check the coefficient */
- if (dn->digits < 1 || dn->digits > DECNUMMAXP)
- {
-#if DECTRACE
- printf ("Digits %d in number.\n", dn->digits);
-#endif
- return 1;
- }
-
- d = dn->digits;
-
- for (up = dn->lsu; d > 0; up++)
- {
- if (d > DECDPUN)
- maxuint = DECDPUNMAX;
- else
- { /* we are at the msu */
- maxuint = powers[d] - 1;
- if (dn->digits > 1 && *up < powers[d - 1])
- {
-#if DECTRACE
- printf ("Leading 0 in number.\n");
- decNumberShow (dn);
-#endif
- return 1;
- }
- }
- if (*up > maxuint)
- {
-#if DECTRACE
- printf ("Bad Unit [%08x] in number at offset %d [maxuint %d].\n",
- *up, up - dn->lsu, maxuint);
-#endif
- return 1;
- }
- d -= DECDPUN;
+ if (dn->digits<1 || dn->digits>DECNUMMAXP) {
+ #if DECTRACE || DECVERB
+ printf("Digits %ld in number.\n", (LI)dn->digits);
+ #endif
+ return 1;}
+
+ d=dn->digits;
+
+ for (up=dn->lsu; d>0; up++) {
+ if (d>DECDPUN) maxuint=DECDPUNMAX;
+ else { /* reached the msu */
+ maxuint=powers[d]-1;
+ if (dn->digits>1 && *up<powers[d-1]) {
+ #if DECTRACE || DECVERB
+ printf("Leading 0 in number.\n");
+ decNumberShow(dn);
+ #endif
+ return 1;}
+ }
+ if (*up>maxuint) {
+ #if DECTRACE || DECVERB
+ printf("Bad Unit [%08lx] in %ld-digit number at offset %ld [maxuint %ld].\n",
+ (LI)*up, (LI)dn->digits, (LI)(up-dn->lsu), (LI)maxuint);
+ #endif
+ return 1;}
+ d-=DECDPUN;
}
/* check the exponent. Note that input operands can have exponents */
/* which are out of the set->emin/set->emax and set->digits range */
/* (just as they can have more digits than set->digits). */
- ae = dn->exponent + dn->digits - 1; /* adjusted exponent */
- emax = DECNUMMAXE;
- emin = DECNUMMINE;
- digits = DECNUMMAXP;
- if (ae < emin - (digits - 1))
- {
-#if DECTRACE
- printf ("Adjusted exponent underflow [%d].\n", ae);
- decNumberShow (dn);
-#endif
- return 1;
- }
- if (ae > +emax)
- {
-#if DECTRACE
- printf ("Adjusted exponent overflow [%d].\n", ae);
- decNumberShow (dn);
-#endif
- return 1;
- }
-
- return 0; /* it's OK */
-}
+ ae=dn->exponent+dn->digits-1; /* adjusted exponent */
+ emax=DECNUMMAXE;
+ emin=DECNUMMINE;
+ digits=DECNUMMAXP;
+ if (ae<emin-(digits-1)) {
+ #if DECTRACE || DECVERB
+ printf("Adjusted exponent underflow [%ld].\n", (LI)ae);
+ decNumberShow(dn);
+ #endif
+ return 1;}
+ if (ae>+emax) {
+ #if DECTRACE || DECVERB
+ printf("Adjusted exponent overflow [%ld].\n", (LI)ae);
+ decNumberShow(dn);
+ #endif
+ return 1;}
+
+ return 0; /* it's OK */
+ } /* decCheckNumber */
+
+/* ------------------------------------------------------------------ */
+/* decCheckInexact -- check a normal finite inexact result has digits */
+/* dn is the number to check */
+/* set is the context (for status and precision) */
+/* sets Invalid operation, etc., if some digits are missing */
+/* [this check is not made for DECSUBSET compilation or when */
+/* subnormal is not set] */
+/* ------------------------------------------------------------------ */
+static void decCheckInexact(const decNumber *dn, decContext *set) {
+ #if !DECSUBSET && DECEXTFLAG
+ if ((set->status & (DEC_Inexact|DEC_Subnormal))==DEC_Inexact
+ && (set->digits!=dn->digits) && !(dn->bits & DECSPECIAL)) {
+ #if DECTRACE || DECVERB
+ printf("Insufficient digits [%ld] on normal Inexact result.\n",
+ (LI)dn->digits);
+ decNumberShow(dn);
+ #endif
+ decContextSetStatus(set, DEC_Invalid_operation);
+ }
+ #else
+ /* next is a noop for quiet compiler */
+ if (dn!=NULL && dn->digits==0) set->status|=DEC_Invalid_operation;
+ #endif
+ return;
+ } /* decCheckInexact */
#endif
#if DECALLOC
#undef malloc
#undef free
/* ------------------------------------------------------------------ */
-/* decMalloc -- accountable allocation routine */
-/* n is the number of bytes to allocate */
-/* */
+/* decMalloc -- accountable allocation routine */
+/* n is the number of bytes to allocate */
+/* */
/* Semantics is the same as the stdlib malloc routine, but bytes */
/* allocated are accounted for globally, and corruption fences are */
-/* added before and after the 'actual' storage. */
+/* added before and after the 'actual' storage. */
/* ------------------------------------------------------------------ */
/* This routine allocates storage with an extra twelve bytes; 8 are */
-/* at the start and hold: */
-/* 0-3 the original length requested */
-/* 4-7 buffer corruption detection fence (DECFENCE, x4) */
+/* at the start and hold: */
+/* 0-3 the original length requested */
+/* 4-7 buffer corruption detection fence (DECFENCE, x4) */
/* The 4 bytes at the end also hold a corruption fence (DECFENCE, x4) */
/* ------------------------------------------------------------------ */
-static void *
-decMalloc (uInt n)
-{
- uInt size = n + 12; /* true size */
- void *alloc; /* -> allocated storage */
- uInt *j; /* work */
- uByte *b, *b0; /* .. */
-
- alloc = malloc (size); /* -> allocated storage */
- if (alloc == NULL)
- return NULL; /* out of strorage */
- b0 = (uByte *) alloc; /* as bytes */
- decAllocBytes += n; /* account for storage */
- j = (uInt *) alloc; /* -> first four bytes */
- *j = n; /* save n */
- /* printf("++ alloc(%d)\n", n); */
- for (b = b0 + 4; b < b0 + 8; b++)
- *b = DECFENCE;
- for (b = b0 + n + 8; b < b0 + n + 12; b++)
- *b = DECFENCE;
- return b0 + 8; /* -> play area */
-}
-
-/* ------------------------------------------------------------------ */
-/* decFree -- accountable free routine */
-/* alloc is the storage to free */
-/* */
+static void *decMalloc(size_t n) {
+ uInt size=n+12; /* true size */
+ void *alloc; /* -> allocated storage */
+ uInt *j; /* work */
+ uByte *b, *b0; /* .. */
+
+ alloc=malloc(size); /* -> allocated storage */
+ if (alloc==NULL) return NULL; /* out of strorage */
+ b0=(uByte *)alloc; /* as bytes */
+ decAllocBytes+=n; /* account for storage */
+ j=(uInt *)alloc; /* -> first four bytes */
+ *j=n; /* save n */
+ /* printf(" alloc ++ dAB: %ld (%d)\n", decAllocBytes, n); */
+ for (b=b0+4; b<b0+8; b++) *b=DECFENCE;
+ for (b=b0+n+8; b<b0+n+12; b++) *b=DECFENCE;
+ return b0+8; /* -> play area */
+ } /* decMalloc */
+
+/* ------------------------------------------------------------------ */
+/* decFree -- accountable free routine */
+/* alloc is the storage to free */
+/* */
/* Semantics is the same as the stdlib malloc routine, except that */
-/* the global storage accounting is updated and the fences are */
+/* the global storage accounting is updated and the fences are */
/* checked to ensure that no routine has written 'out of bounds'. */
/* ------------------------------------------------------------------ */
/* This routine first checks that the fences have not been corrupted. */
/* It then frees the storage using the 'truw' storage address (that */
-/* is, offset by 8). */
-/* ------------------------------------------------------------------ */
-static void
-decFree (void *alloc)
-{
- uInt *j, n; /* pointer, original length */
- uByte *b, *b0; /* work */
-
- if (alloc == NULL)
- return; /* allowed; it's a nop */
- b0 = (uByte *) alloc; /* as bytes */
- b0 -= 8; /* -> true start of storage */
- j = (uInt *) b0; /* -> first four bytes */
- n = *j; /* lift */
- for (b = b0 + 4; b < b0 + 8; b++)
- if (*b != DECFENCE)
- printf ("=== Corrupt byte [%02x] at offset %d from %d ===\n", *b,
- b - b0 - 8, (Int) b0);
- for (b = b0 + n + 8; b < b0 + n + 12; b++)
- if (*b != DECFENCE)
- printf ("=== Corrupt byte [%02x] at offset +%d from %d, n=%d ===\n", *b,
- b - b0 - 8, (Int) b0, n);
- free (b0); /* drop the storage */
- decAllocBytes -= n; /* account for storage */
-}
+/* is, offset by 8). */
+/* ------------------------------------------------------------------ */
+static void decFree(void *alloc) {
+ uInt *j, n; /* pointer, original length */
+ uByte *b, *b0; /* work */
+
+ if (alloc==NULL) return; /* allowed; it's a nop */
+ b0=(uByte *)alloc; /* as bytes */
+ b0-=8; /* -> true start of storage */
+ j=(uInt *)b0; /* -> first four bytes */
+ n=*j; /* lift */
+ for (b=b0+4; b<b0+8; b++) if (*b!=DECFENCE)
+ printf("=== Corrupt byte [%02x] at offset %d from %ld ===\n", *b,
+ b-b0-8, (Int)b0);
+ for (b=b0+n+8; b<b0+n+12; b++) if (*b!=DECFENCE)
+ printf("=== Corrupt byte [%02x] at offset +%d from %ld, n=%ld ===\n", *b,
+ b-b0-8, (Int)b0, n);
+ free(b0); /* drop the storage */
+ decAllocBytes-=n; /* account for storage */
+ /* printf(" free -- dAB: %d (%d)\n", decAllocBytes, -n); */
+ } /* decFree */
+#define malloc(a) decMalloc(a)
+#define free(a) decFree(a)
#endif
diff --git a/libdecnumber/decNumber.h b/libdecnumber/decNumber.h
index 05a2d869e3e..0a9fdced8b3 100644
--- a/libdecnumber/decNumber.h
+++ b/libdecnumber/decNumber.h
@@ -1,5 +1,5 @@
-/* Decimal Number module header for the decNumber C Library
- Copyright (C) 2005 Free Software Foundation, Inc.
+/* Decimal number arithmetic module header for the decNumber C Library.
+ Copyright (C) 2005, 2007 Free Software Foundation, Inc.
Contributed by IBM Corporation. Author Mike Cowlishaw.
This file is part of GCC.
@@ -28,167 +28,173 @@
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA. */
-#if !defined(DECNUMBER)
-#define DECNUMBER
-#define DECNAME "decNumber" /* Short name */
-#define DECVERSION "decNumber 3.24" /* Version [16 max.] */
-#define DECFULLNAME "Decimal Number Module" /* Verbose name */
-#define DECAUTHOR "Mike Cowlishaw" /* Who to blame */
-
-#if !defined(DECCONTEXT)
-#include "decContext.h"
-#endif
-
-
- /* Bit settings for decNumber.bits */
-#define DECNEG 0x80 /* Sign; 1=negative, 0=positive or zero */
-#define DECINF 0x40 /* 1=Infinity */
-#define DECNAN 0x20 /* 1=NaN */
-#define DECSNAN 0x10 /* 1=sNaN */
- /* The remaining bits are reserved; they must be 0 */
-#define DECSPECIAL (DECINF|DECNAN|DECSNAN) /* any special value */
-
- /* DECNUMDIGITS is the default number of digits we can hold in the */
- /* structure. If undefined, 1 is assumed and it is assumed that the */
- /* structure will be immediately followed by extra space (if */
- /* required). DECNUMDIGITS is always >0. */
-#if !defined(DECNUMDIGITS)
-#define DECNUMDIGITS 1
-#endif
-
+/* ------------------------------------------------------------------ */
+/* Decimal Number arithmetic module header */
+/* ------------------------------------------------------------------ */
- /* Define the decNumber data structure. The size and shape of the */
- /* units array in the structure is determined by the following */
- /* constant. This must not be changed without recompiling the */
+#if !defined(DECNUMBER)
+ #define DECNUMBER
+ #define DECNAME "decNumber" /* Short name */
+ #define DECFULLNAME "Decimal Number Module" /* Verbose name */
+ #define DECAUTHOR "Mike Cowlishaw" /* Who to blame */
+
+ #if !defined(DECCONTEXT)
+ #include "decContext.h"
+ #endif
+
+ /* Bit settings for decNumber.bits */
+ #define DECNEG 0x80 /* Sign; 1=negative, 0=positive or zero */
+ #define DECINF 0x40 /* 1=Infinity */
+ #define DECNAN 0x20 /* 1=NaN */
+ #define DECSNAN 0x10 /* 1=sNaN */
+ /* The remaining bits are reserved; they must be 0 */
+ #define DECSPECIAL (DECINF|DECNAN|DECSNAN) /* any special value */
+
+ /* Define the decNumber data structure. The size and shape of the */
+ /* units array in the structure is determined by the following */
+ /* constant. This must not be changed without recompiling the */
/* decNumber library modules. */
-#define DECDPUN 4 /* Decimal Digits Per UNit [must be in */
- /* range 1-9; power of 2 recommended]. */
- /* The size (integer data type) of each unit is determined by the */
- /* number of digits it will hold. */
-#if DECDPUN<=2
-#define decNumberUnit uint8_t
-#elif DECDPUN<=4
-#define decNumberUnit uint16_t
-#else
-#define decNumberUnit uint32_t
-#endif
- /* The number of decNumberUnits we need is ceiling of DECNUMDIGITS/DECDPUN */
-#define DECNUMUNITS ((DECNUMDIGITS+DECDPUN-1)/DECDPUN)
- /* The data structure... */
-typedef struct
-{
- int32_t digits; /* Count of digits in the coefficient; >0 */
- int32_t exponent; /* Unadjusted exponent, unbiased, in */
- /* range: -1999999997 through 999999999 */
- uint8_t bits; /* Indicator bits (see above) */
- decNumberUnit lsu[DECNUMUNITS]; /* Coefficient, from least significant unit */
-} decNumber;
-
- /* Notes: */
- /* 1. If digits is > DECDPUN then there will be more than one */
- /* decNumberUnits immediately following the first element of lsu. */
- /* These contain the remaining (more significant) digits of the */
- /* number, and may be in the lsu array, or may be guaranteed by */
- /* some other mechanism (such as being contained in another */
- /* structure, or being overlaid on dynamically allocated storage). */
- /* */
- /* Each integer of the coefficient (except the possibly the last) */
- /* contains DECDPUN digits (e.g., a value in the range 0 through */
- /* 99999999 if DECDPUN is 8, or 0 through 9999 if DECDPUN is 4). */
- /* */
- /* 2. A decNumber converted to a string may need up to digits+14 */
- /* characters. The worst cases (non-exponential and exponential */
- /* formats) are: -0.00000{9...}# */
- /* and: -9.{9...}E+999999999# (where # is '\0') */
-
-
- /* ------------------------------------------------------------------ */
- /* decNumber public functions and macros */
- /* ------------------------------------------------------------------ */
-
-#ifdef IN_LIBGCC2
-#define decNumberFromString __decNumberFromString
-#define decNumberToString __decNumberToString
-#define decNumberToEngString __decNumberToEngString
-#define decNumberAbs __decNumberAbs
-#define decNumberAdd __decNumberAdd
-#define decNumberCompare __decNumberCompare
-#define decNumberDivide __decNumberDivide
-#define decNumberDivideInteger __decNumberDivideInteger
-#define decNumberMax __decNumberMax
-#define decNumberMin __decNumberMin
-#define decNumberMinus __decNumberMinus
-#define decNumberMultiply __decNumberMultiply
-#define decNumberNormalize __decNumberNormalize
-#define decNumberPlus __decNumberPlus
-#define decNumberPower __decNumberPower
-#define decNumberQuantize __decNumberQuantize
-#define decNumberRemainder __decNumberRemainder
-#define decNumberRemainderNear __decNumberRemainderNear
-#define decNumberRescale __decNumberRescale
-#define decNumberSameQuantum __decNumberSameQuantum
-#define decNumberSquareRoot __decNumberSquareRoot
-#define decNumberSubtract __decNumberSubtract
-#define decNumberToIntegralValue __decNumberToIntegralValue
-#define decNumberCopy __decNumberCopy
-#define decNumberTrim __decNumberTrim
-#define decNumberVersion __decNumberVersion
-#define decNumberZero __decNumberZero
-#endif
+ #define DECDPUN 3 /* DECimal Digits Per UNit [must be >0 */
+ /* and <10; 3 or powers of 2 are best]. */
+
+ /* DECNUMDIGITS is the default number of digits that can be held in */
+ /* the structure. If undefined, 1 is assumed and it is assumed */
+ /* that the structure will be immediately followed by extra space, */
+ /* as required. DECNUMDIGITS is always >0. */
+ #if !defined(DECNUMDIGITS)
+ #define DECNUMDIGITS 1
+ #endif
+
+ /* The size (integer data type) of each unit is determined by the */
+ /* number of digits it will hold. */
+ #if DECDPUN<=2
+ #define decNumberUnit uint8_t
+ #elif DECDPUN<=4
+ #define decNumberUnit uint16_t
+ #else
+ #define decNumberUnit uint32_t
+ #endif
+ /* The number of units needed is ceil(DECNUMDIGITS/DECDPUN) */
+ #define DECNUMUNITS ((DECNUMDIGITS+DECDPUN-1)/DECDPUN)
- /* Conversions */
-decNumber *decNumberFromString (decNumber *, const char *, decContext *);
-char *decNumberToString (const decNumber *, char *);
-char *decNumberToEngString (const decNumber *, char *);
-
- /* Operators */
-decNumber *decNumberAbs (decNumber *, const decNumber *, decContext *);
-decNumber *decNumberAdd (decNumber *, const decNumber *,
- const decNumber *, decContext *);
-decNumber *decNumberCompare (decNumber *, const decNumber *,
- const decNumber *, decContext *);
-decNumber *decNumberDivide (decNumber *, const decNumber *,
- const decNumber *, decContext *);
-decNumber *decNumberDivideInteger (decNumber *, const decNumber *,
- const decNumber *, decContext *);
-decNumber *decNumberMax (decNumber *, const decNumber *,
- const decNumber *, decContext *);
-decNumber *decNumberMin (decNumber *, const decNumber *,
- const decNumber *, decContext *);
-decNumber *decNumberMinus (decNumber *, const decNumber *, decContext *);
-decNumber *decNumberMultiply (decNumber *, const decNumber *,
- const decNumber *, decContext *);
-decNumber *decNumberNormalize (decNumber *, const decNumber *, decContext *);
-decNumber *decNumberPlus (decNumber *, const decNumber *, decContext *);
-decNumber *decNumberPower (decNumber *, const decNumber *,
- const decNumber *, decContext *);
-decNumber *decNumberQuantize (decNumber *, const decNumber *,
- const decNumber *, decContext *);
-decNumber *decNumberRemainder (decNumber *, const decNumber *,
- const decNumber *, decContext *);
-decNumber *decNumberRemainderNear (decNumber *, const decNumber *,
- const decNumber *, decContext *);
-decNumber *decNumberRescale (decNumber *, const decNumber *,
- const decNumber *, decContext *);
-decNumber *decNumberSameQuantum (decNumber *, const decNumber *, const decNumber *);
-decNumber *decNumberSquareRoot (decNumber *, const decNumber *, decContext *);
-decNumber *decNumberSubtract (decNumber *, const decNumber *,
- const decNumber *, decContext *);
-decNumber *decNumberToIntegralValue (decNumber *, const decNumber *, decContext *);
-
- /* Utilities */
-decNumber *decNumberCopy (decNumber *, const decNumber *);
-decNumber *decNumberTrim (decNumber *);
-const char *decNumberVersion (void);
-decNumber *decNumberZero (decNumber *);
-
- /* Macros */
-#define decNumberIsZero(dn) (*(dn)->lsu==0 \
- && (dn)->digits==1 \
- && (((dn)->bits&DECSPECIAL)==0))
-#define decNumberIsNegative(dn) (((dn)->bits&DECNEG)!=0)
-#define decNumberIsNaN(dn) (((dn)->bits&(DECNAN|DECSNAN))!=0)
-#define decNumberIsInfinite(dn) (((dn)->bits&DECINF)!=0)
+ /* The data structure... */
+ typedef struct {
+ int32_t digits; /* Count of digits in the coefficient; >0 */
+ int32_t exponent; /* Unadjusted exponent, unbiased, in */
+ /* range: -1999999997 through 999999999 */
+ uint8_t bits; /* Indicator bits (see above) */
+ /* Coefficient, from least significant unit */
+ decNumberUnit lsu[DECNUMUNITS];
+ } decNumber;
+
+ /* Notes: */
+ /* 1. If digits is > DECDPUN then there will one or more */
+ /* decNumberUnits immediately following the first element of lsu.*/
+ /* These contain the remaining (more significant) digits of the */
+ /* number, and may be in the lsu array, or may be guaranteed by */
+ /* some other mechanism (such as being contained in another */
+ /* structure, or being overlaid on dynamically allocated */
+ /* storage). */
+ /* */
+ /* Each integer of the coefficient (except potentially the last) */
+ /* contains DECDPUN digits (e.g., a value in the range 0 through */
+ /* 99999999 if DECDPUN is 8, or 0 through 999 if DECDPUN is 3). */
+ /* */
+ /* 2. A decNumber converted to a string may need up to digits+14 */
+ /* characters. The worst cases (non-exponential and exponential */
+ /* formats) are -0.00000{9...}# and -9.{9...}E+999999999# */
+ /* (where # is '\0') */
+
+
+ /* ---------------------------------------------------------------- */
+ /* decNumber public functions and macros */
+ /* ---------------------------------------------------------------- */
+
+ #include "decNumberSymbols.h"
+
+ /* Conversions */
+ decNumber * decNumberFromInt32(decNumber *, int32_t);
+ decNumber * decNumberFromUInt32(decNumber *, uint32_t);
+ decNumber * decNumberFromString(decNumber *, const char *, decContext *);
+ char * decNumberToString(const decNumber *, char *);
+ char * decNumberToEngString(const decNumber *, char *);
+ uint32_t decNumberToUInt32(const decNumber *, decContext *);
+ int32_t decNumberToInt32(const decNumber *, decContext *);
+ uint8_t * decNumberGetBCD(const decNumber *, uint8_t *);
+ decNumber * decNumberSetBCD(decNumber *, const uint8_t *, uint32_t);
+
+ /* Operators and elementary functions */
+ decNumber * decNumberAbs(decNumber *, const decNumber *, decContext *);
+ decNumber * decNumberAdd(decNumber *, const decNumber *, const decNumber *, decContext *);
+ decNumber * decNumberAnd(decNumber *, const decNumber *, const decNumber *, decContext *);
+ decNumber * decNumberCompare(decNumber *, const decNumber *, const decNumber *, decContext *);
+ decNumber * decNumberCompareSignal(decNumber *, const decNumber *, const decNumber *, decContext *);
+ decNumber * decNumberCompareTotal(decNumber *, const decNumber *, const decNumber *, decContext *);
+ decNumber * decNumberCompareTotalMag(decNumber *, const decNumber *, const decNumber *, decContext *);
+ decNumber * decNumberDivide(decNumber *, const decNumber *, const decNumber *, decContext *);
+ decNumber * decNumberDivideInteger(decNumber *, const decNumber *, const decNumber *, decContext *);
+ decNumber * decNumberExp(decNumber *, const decNumber *, decContext *);
+ decNumber * decNumberFMA(decNumber *, const decNumber *, const decNumber *, const decNumber *, decContext *);
+ decNumber * decNumberInvert(decNumber *, const decNumber *, decContext *);
+ decNumber * decNumberLn(decNumber *, const decNumber *, decContext *);
+ decNumber * decNumberLogB(decNumber *, const decNumber *, decContext *);
+ decNumber * decNumberLog10(decNumber *, const decNumber *, decContext *);
+ decNumber * decNumberMax(decNumber *, const decNumber *, const decNumber *, decContext *);
+ decNumber * decNumberMaxMag(decNumber *, const decNumber *, const decNumber *, decContext *);
+ decNumber * decNumberMin(decNumber *, const decNumber *, const decNumber *, decContext *);
+ decNumber * decNumberMinMag(decNumber *, const decNumber *, const decNumber *, decContext *);
+ decNumber * decNumberMinus(decNumber *, const decNumber *, decContext *);
+ decNumber * decNumberMultiply(decNumber *, const decNumber *, const decNumber *, decContext *);
+ decNumber * decNumberNormalize(decNumber *, const decNumber *, decContext *);
+ decNumber * decNumberOr(decNumber *, const decNumber *, const decNumber *, decContext *);
+ decNumber * decNumberPlus(decNumber *, const decNumber *, decContext *);
+ decNumber * decNumberPower(decNumber *, const decNumber *, const decNumber *, decContext *);
+ decNumber * decNumberQuantize(decNumber *, const decNumber *, const decNumber *, decContext *);
+ decNumber * decNumberReduce(decNumber *, const decNumber *, decContext *);
+ decNumber * decNumberRemainder(decNumber *, const decNumber *, const decNumber *, decContext *);
+ decNumber * decNumberRemainderNear(decNumber *, const decNumber *, const decNumber *, decContext *);
+ decNumber * decNumberRescale(decNumber *, const decNumber *, const decNumber *, decContext *);
+ decNumber * decNumberRotate(decNumber *, const decNumber *, const decNumber *, decContext *);
+ decNumber * decNumberSameQuantum(decNumber *, const decNumber *, const decNumber *);
+ decNumber * decNumberScaleB(decNumber *, const decNumber *, const decNumber *, decContext *);
+ decNumber * decNumberShift(decNumber *, const decNumber *, const decNumber *, decContext *);
+ decNumber * decNumberSquareRoot(decNumber *, const decNumber *, decContext *);
+ decNumber * decNumberSubtract(decNumber *, const decNumber *, const decNumber *, decContext *);
+ decNumber * decNumberToIntegralExact(decNumber *, const decNumber *, decContext *);
+ decNumber * decNumberToIntegralValue(decNumber *, const decNumber *, decContext *);
+ decNumber * decNumberXor(decNumber *, const decNumber *, const decNumber *, decContext *);
+
+ /* Utilities */
+ enum decClass decNumberClass(const decNumber *, decContext *);
+ const char * decNumberClassToString(enum decClass);
+ decNumber * decNumberCopy(decNumber *, const decNumber *);
+ decNumber * decNumberCopyAbs(decNumber *, const decNumber *);
+ decNumber * decNumberCopyNegate(decNumber *, const decNumber *);
+ decNumber * decNumberCopySign(decNumber *, const decNumber *, const decNumber *);
+ decNumber * decNumberNextMinus(decNumber *, const decNumber *, decContext *);
+ decNumber * decNumberNextPlus(decNumber *, const decNumber *, decContext *);
+ decNumber * decNumberNextToward(decNumber *, const decNumber *, const decNumber *, decContext *);
+ decNumber * decNumberTrim(decNumber *);
+ const char * decNumberVersion(void);
+ decNumber * decNumberZero(decNumber *);
+
+ /* Functions for testing decNumbers (normality depends on context) */
+ int32_t decNumberIsNormal(const decNumber *, decContext *);
+ int32_t decNumberIsSubnormal(const decNumber *, decContext *);
+
+ /* Macros for testing decNumber *dn */
+ #define decNumberIsCanonical(dn) (1) /* All decNumbers are saintly */
+ #define decNumberIsFinite(dn) (((dn)->bits&DECSPECIAL)==0)
+ #define decNumberIsInfinite(dn) (((dn)->bits&DECINF)!=0)
+ #define decNumberIsNaN(dn) (((dn)->bits&(DECNAN|DECSNAN))!=0)
+ #define decNumberIsNegative(dn) (((dn)->bits&DECNEG)!=0)
+ #define decNumberIsQNaN(dn) (((dn)->bits&(DECNAN))!=0)
+ #define decNumberIsSNaN(dn) (((dn)->bits&(DECSNAN))!=0)
+ #define decNumberIsSpecial(dn) (((dn)->bits&DECSPECIAL)!=0)
+ #define decNumberIsZero(dn) (*(dn)->lsu==0 \
+ && (dn)->digits==1 \
+ && (((dn)->bits&DECSPECIAL)==0))
+ #define decNumberRadix(dn) (10)
#endif
diff --git a/libdecnumber/decNumberLocal.h b/libdecnumber/decNumberLocal.h
index 0386736c6f0..891a0841c89 100644
--- a/libdecnumber/decNumberLocal.h
+++ b/libdecnumber/decNumberLocal.h
@@ -1,5 +1,5 @@
-/* decNumber package local type, tuning, and macro definitions.
- Copyright (C) 2005 Free Software Foundation, Inc.
+/* Local definitions for the decNumber C Library.
+ Copyright (C) 2007 Free Software Foundation, Inc.
Contributed by IBM Corporation. Author Mike Cowlishaw.
This file is part of GCC.
@@ -29,108 +29,637 @@
02110-1301, USA. */
/* ------------------------------------------------------------------ */
-/* This header file is included by all modules in the decNumber */
+/* decNumber package local type, tuning, and macro definitions */
+/* ------------------------------------------------------------------ */
+/* This header file is included by all modules in the decNumber */
/* library, and contains local type definitions, tuning parameters, */
-/* etc. It must only be included once, and should not need to be */
-/* used by application programs. decNumber.h must be included first. */
+/* etc. It should not need to be used by application programs. */
+/* decNumber.h or one of decDouble (etc.) must be included first. */
/* ------------------------------------------------------------------ */
#if !defined(DECNUMBERLOC)
-#define DECNUMBERLOC
-#define DECNLAUTHOR "Mike Cowlishaw" /* Who to blame */
-
- /* Local names for common types -- decNumber modules do not use int or
- long directly */
-#define Flag uint8_t
-#define Byte int8_t
-#define uByte uint8_t
-#define Short int16_t
-#define uShort uint16_t
-#define Int int32_t
-#define uInt uint32_t
-#define Unit decNumberUnit
-
-
- /* Tuning parameter */
-#define DECBUFFER 36 /* Maximum size basis for local buffers. */
- /* Should be a common maximum precision */
- /* rounded up to a multiple of 4; must */
- /* be non-negative. */
-
- /* Conditional code flags -- set these to 0 for best performance */
-#define DECCHECK 0 /* 1 to enable robust checking */
-#define DECALLOC 0 /* 1 to enable memory allocation accounting */
-#define DECTRACE 0 /* 1 to trace critical intermediates, etc. */
-
-
- /* Development use defines */
-#if DECALLOC
- /* if these interfere with your C includes, just comment them out */
-#define int ? /* enable to ensure we do not use plain C */
-#define long ?? /* .. 'int' or 'long' types from here on */
-#endif
+ #define DECNUMBERLOC
+ #define DECVERSION "decNumber 3.53" /* Package Version [16 max.] */
+ #define DECNLAUTHOR "Mike Cowlishaw" /* Who to blame */
- /* Limits and constants */
-#define DECNUMMAXP 999999999 /* maximum precision we can handle (9 digits) */
-#define DECNUMMAXE 999999999 /* maximum adjusted exponent ditto (9 digits) */
-#define DECNUMMINE -999999999 /* minimum adjusted exponent ditto (9 digits) */
-#if (DECNUMMAXP != DEC_MAX_DIGITS)
-#error Maximum digits mismatch
-#endif
-#if (DECNUMMAXE != DEC_MAX_EMAX)
-#error Maximum exponent mismatch
-#endif
-#if (DECNUMMINE != DEC_MIN_EMIN)
-#error Minimum exponent mismatch
-#endif
+ #include <stdlib.h> /* for abs */
+ #include <string.h> /* for memset, strcpy */
+ #include "config.h" /* for WORDS_BIGENDIAN */
- /* Set DECDPUNMAX -- the maximum integer that fits in DECDPUN digits */
-#if DECDPUN==1
-#define DECDPUNMAX 9
-#elif DECDPUN==2
-#define DECDPUNMAX 99
-#elif DECDPUN==3
-#define DECDPUNMAX 999
-#elif DECDPUN==4
-#define DECDPUNMAX 9999
-#elif DECDPUN==5
-#define DECDPUNMAX 99999
-#elif DECDPUN==6
-#define DECDPUNMAX 999999
-#elif DECDPUN==7
-#define DECDPUNMAX 9999999
-#elif DECDPUN==8
-#define DECDPUNMAX 99999999
-#elif DECDPUN==9
-#define DECDPUNMAX 999999999
-#elif defined(DECDPUN)
-#error DECDPUN must be in the range 1-9
-#endif
+ /* Conditional code flag -- set this to match hardware platform */
+ /* 1=little-endian, 0=big-endian */
+ #if WORDS_BIGENDIAN
+ #define DECLITEND 0
+ #else
+ #define DECLITEND 1
+ #endif
+
+ /* Conditional code flag -- set this to 1 for best performance */
+ #define DECUSE64 1 /* 1=use int64s, 0=int32 & smaller only */
+
+ /* Conditional check flags -- set these to 0 for best performance */
+ #define DECCHECK 0 /* 1 to enable robust checking */
+ #define DECALLOC 0 /* 1 to enable memory accounting */
+ #define DECTRACE 0 /* 1 to trace certain internals, etc. */
+
+ /* Tuning parameter for decNumber (arbitrary precision) module */
+ #define DECBUFFER 36 /* Size basis for local buffers. This */
+ /* should be a common maximum precision */
+ /* rounded up to a multiple of 4; must */
+ /* be zero or positive. */
+
+ /* ---------------------------------------------------------------- */
+ /* Definitions for all modules (general-purpose) */
+ /* ---------------------------------------------------------------- */
+
+ /* Local names for common types -- for safety, decNumber modules do */
+ /* not use int or long directly. */
+ #define Flag uint8_t
+ #define Byte int8_t
+ #define uByte uint8_t
+ #define Short int16_t
+ #define uShort uint16_t
+ #define Int int32_t
+ #define uInt uint32_t
+ #define Unit decNumberUnit
+ #if DECUSE64
+ #define Long int64_t
+ #define uLong uint64_t
+ #endif
+
+ /* Development-use definitions */
+ typedef long int LI; /* for printf arguments only */
+ #define DECNOINT 0 /* 1 to check no internal use of 'int' */
+ #if DECNOINT
+ /* if these interfere with your C includes, do not set DECNOINT */
+ #define int ? /* enable to ensure that plain C 'int' */
+ #define long ?? /* .. or 'long' types are not used */
+ #endif
+
+ /* Shared lookup tables */
+ extern const uByte DECSTICKYTAB[10]; /* re-round digits if sticky */
+ extern const uInt DECPOWERS[10]; /* powers of ten table */
+ /* The following are included from decDPD.h */
+ extern const uShort DPD2BIN[1024]; /* DPD -> 0-999 */
+ extern const uShort BIN2DPD[1000]; /* 0-999 -> DPD */
+ extern const uInt DPD2BINK[1024]; /* DPD -> 0-999000 */
+ extern const uInt DPD2BINM[1024]; /* DPD -> 0-999000000 */
+ extern const uByte DPD2BCD8[4096]; /* DPD -> ddd + len */
+ extern const uByte BIN2BCD8[4000]; /* 0-999 -> ddd + len */
+ extern const uShort BCD2DPD[2458]; /* 0-0x999 -> DPD (0x999=2457)*/
+
+ /* LONGMUL32HI -- set w=(u*v)>>32, where w, u, and v are uInts */
+ /* (that is, sets w to be the high-order word of the 64-bit result; */
+ /* the low-order word is simply u*v.) */
+ /* This version is derived from Knuth via Hacker's Delight; */
+ /* it seems to optimize better than some others tried */
+ #define LONGMUL32HI(w, u, v) { \
+ uInt u0, u1, v0, v1, w0, w1, w2, t; \
+ u0=u & 0xffff; u1=u>>16; \
+ v0=v & 0xffff; v1=v>>16; \
+ w0=u0*v0; \
+ t=u1*v0 + (w0>>16); \
+ w1=t & 0xffff; w2=t>>16; \
+ w1=u0*v1 + w1; \
+ (w)=u1*v1 + w2 + (w1>>16);}
+
+ /* ROUNDUP -- round an integer up to a multiple of n */
+ #define ROUNDUP(i, n) ((((i)+(n)-1)/n)*n)
+
+ /* ROUNDDOWN -- round an integer down to a multiple of n */
+ #define ROUNDDOWN(i, n) (((i)/n)*n)
+ #define ROUNDDOWN4(i) ((i)&~3) /* special for n=4 */
+
+ /* References to multi-byte sequences under different sizes */
+ /* Refer to a uInt from four bytes starting at a char* or uByte*, */
+ /* etc. */
+ #define UINTAT(b) (*((uInt *)(b)))
+ #define USHORTAT(b) (*((uShort *)(b)))
+ #define UBYTEAT(b) (*((uByte *)(b)))
+ /* X10 and X100 -- multiply integer i by 10 or 100 */
+ /* [shifts are usually faster than multiply; could be conditional] */
+ #define X10(i) (((i)<<1)+((i)<<3))
+ #define X100(i) (((i)<<2)+((i)<<5)+((i)<<6))
- /* ----- Shared data ----- */
- /* The powers of of ten array (powers[n]==10**n, 0<=n<=10) */
-extern const uInt powers[];
+ /* MAXI and MINI -- general max & min (not in ANSI) for integers */
+ #define MAXI(x,y) ((x)<(y)?(y):(x))
+ #define MINI(x,y) ((x)>(y)?(y):(x))
+
+ /* Useful constants */
+ #define BILLION 1000000000 /* 10**9 */
+ /* CHARMASK: 0x30303030 for ASCII/UTF8; 0xF0F0F0F0 for EBCDIC */
+ #define CHARMASK ((((((((uInt)'0')<<8)+'0')<<8)+'0')<<8)+'0')
+
+
+ /* ---------------------------------------------------------------- */
+ /* Definitions for arbitary-precision modules (only valid after */
+ /* decNumber.h has been included) */
+ /* ---------------------------------------------------------------- */
+
+ /* Limits and constants */
+ #define DECNUMMAXP 999999999 /* maximum precision code can handle */
+ #define DECNUMMAXE 999999999 /* maximum adjusted exponent ditto */
+ #define DECNUMMINE -999999999 /* minimum adjusted exponent ditto */
+ #if (DECNUMMAXP != DEC_MAX_DIGITS)
+ #error Maximum digits mismatch
+ #endif
+ #if (DECNUMMAXE != DEC_MAX_EMAX)
+ #error Maximum exponent mismatch
+ #endif
+ #if (DECNUMMINE != DEC_MIN_EMIN)
+ #error Minimum exponent mismatch
+ #endif
+
+ /* Set DECDPUNMAX -- the maximum integer that fits in DECDPUN */
+ /* digits, and D2UTABLE -- the initializer for the D2U table */
+ #if DECDPUN==1
+ #define DECDPUNMAX 9
+ #define D2UTABLE {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17, \
+ 18,19,20,21,22,23,24,25,26,27,28,29,30,31,32, \
+ 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47, \
+ 48,49}
+ #elif DECDPUN==2
+ #define DECDPUNMAX 99
+ #define D2UTABLE {0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10, \
+ 11,11,12,12,13,13,14,14,15,15,16,16,17,17,18, \
+ 18,19,19,20,20,21,21,22,22,23,23,24,24,25}
+ #elif DECDPUN==3
+ #define DECDPUNMAX 999
+ #define D2UTABLE {0,1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6,7,7,7, \
+ 8,8,8,9,9,9,10,10,10,11,11,11,12,12,12,13,13, \
+ 13,14,14,14,15,15,15,16,16,16,17}
+ #elif DECDPUN==4
+ #define DECDPUNMAX 9999
+ #define D2UTABLE {0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,6, \
+ 6,6,6,7,7,7,7,8,8,8,8,9,9,9,9,10,10,10,10,11, \
+ 11,11,11,12,12,12,12,13}
+ #elif DECDPUN==5
+ #define DECDPUNMAX 99999
+ #define D2UTABLE {0,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,5, \
+ 5,5,5,5,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8,9,9,9, \
+ 9,9,10,10,10,10}
+ #elif DECDPUN==6
+ #define DECDPUNMAX 999999
+ #define D2UTABLE {0,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4, \
+ 4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,7,7,8, \
+ 8,8,8,8,8,9}
+ #elif DECDPUN==7
+ #define DECDPUNMAX 9999999
+ #define D2UTABLE {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3, \
+ 4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,6,6,7, \
+ 7,7,7,7,7,7}
+ #elif DECDPUN==8
+ #define DECDPUNMAX 99999999
+ #define D2UTABLE {0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3, \
+ 3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6, \
+ 6,6,6,6,6,7}
+ #elif DECDPUN==9
+ #define DECDPUNMAX 999999999
+ #define D2UTABLE {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3, \
+ 3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5, \
+ 5,5,6,6,6,6}
+ #elif defined(DECDPUN)
+ #error DECDPUN must be in the range 1-9
+ #endif
+
+ /* ----- Shared data (in decNumber.c) ----- */
+ /* Public lookup table used by the D2U macro (see below) */
+ #define DECMAXD2U 49
+ extern const uByte d2utable[DECMAXD2U+1];
/* ----- Macros ----- */
- /* ISZERO -- return true if decNumber dn is a zero */
- /* [performance-critical in some situations] */
-#define ISZERO(dn) decNumberIsZero(dn) /* now just a local name */
-
- /* X10 and X100 -- multiply integer i by 10 or 100 */
- /* [shifts are usually faster than multiply; could be conditional] */
-#define X10(i) (((i)<<1)+((i)<<3))
-#define X100(i) (((i)<<2)+((i)<<5)+((i)<<6))
-
- /* D2U -- return the number of Units needed to hold d digits */
-#if DECDPUN==8
-#define D2U(d) ((unsigned)((d)+7)>>3)
-#elif DECDPUN==4
-#define D2U(d) ((unsigned)((d)+3)>>2)
-#else
-#define D2U(d) (((d)+DECDPUN-1)/DECDPUN)
-#endif
+ /* ISZERO -- return true if decNumber dn is a zero */
+ /* [performance-critical in some situations] */
+ #define ISZERO(dn) decNumberIsZero(dn) /* now just a local name */
+
+ /* D2U -- return the number of Units needed to hold d digits */
+ /* (runtime version, with table lookaside for small d) */
+ #if DECDPUN==8
+ #define D2U(d) ((unsigned)((d)<=DECMAXD2U?d2utable[d]:((d)+7)>>3))
+ #elif DECDPUN==4
+ #define D2U(d) ((unsigned)((d)<=DECMAXD2U?d2utable[d]:((d)+3)>>2))
+ #else
+ #define D2U(d) ((d)<=DECMAXD2U?d2utable[d]:((d)+DECDPUN-1)/DECDPUN)
+ #endif
+ /* SD2U -- static D2U macro (for compile-time calculation) */
+ #define SD2U(d) (((d)+DECDPUN-1)/DECDPUN)
+
+ /* MSUDIGITS -- returns digits in msu, from digits, calculated */
+ /* using D2U */
+ #define MSUDIGITS(d) ((d)-(D2U(d)-1)*DECDPUN)
+
+ /* D2N -- return the number of decNumber structs that would be */
+ /* needed to contain that number of digits (and the initial */
+ /* decNumber struct) safely. Note that one Unit is included in the */
+ /* initial structure. Used for allocating space that is aligned on */
+ /* a decNumber struct boundary. */
+ #define D2N(d) \
+ ((((SD2U(d)-1)*sizeof(Unit))+sizeof(decNumber)*2-1)/sizeof(decNumber))
+
+ /* TODIGIT -- macro to remove the leading digit from the unsigned */
+ /* integer u at column cut (counting from the right, LSD=0) and */
+ /* place it as an ASCII character into the character pointed to by */
+ /* c. Note that cut must be <= 9, and the maximum value for u is */
+ /* 2,000,000,000 (as is needed for negative exponents of */
+ /* subnormals). The unsigned integer pow is used as a temporary */
+ /* variable. */
+ #define TODIGIT(u, cut, c, pow) { \
+ *(c)='0'; \
+ pow=DECPOWERS[cut]*2; \
+ if ((u)>pow) { \
+ pow*=4; \
+ if ((u)>=pow) {(u)-=pow; *(c)+=8;} \
+ pow/=2; \
+ if ((u)>=pow) {(u)-=pow; *(c)+=4;} \
+ pow/=2; \
+ } \
+ if ((u)>=pow) {(u)-=pow; *(c)+=2;} \
+ pow/=2; \
+ if ((u)>=pow) {(u)-=pow; *(c)+=1;} \
+ }
+
+ /* ---------------------------------------------------------------- */
+ /* Definitions for fixed-precision modules (only valid after */
+ /* decSingle.h, decDouble.h, or decQuad.h has been included) */
+ /* ---------------------------------------------------------------- */
+
+ /* bcdnum -- a structure describing a format-independent finite */
+ /* number, whose coefficient is a string of bcd8 uBytes */
+ typedef struct {
+ uByte *msd; /* -> most significant digit */
+ uByte *lsd; /* -> least ditto */
+ uInt sign; /* 0=positive, DECFLOAT_Sign=negative */
+ Int exponent; /* Unadjusted signed exponent (q), or */
+ /* DECFLOAT_NaN etc. for a special */
+ } bcdnum;
+
+ /* Test if exponent or bcdnum exponent must be a special, etc. */
+ #define EXPISSPECIAL(exp) ((exp)>=DECFLOAT_MinSp)
+ #define EXPISINF(exp) (exp==DECFLOAT_Inf)
+ #define EXPISNAN(exp) (exp==DECFLOAT_qNaN || exp==DECFLOAT_sNaN)
+ #define NUMISSPECIAL(num) (EXPISSPECIAL((num)->exponent))
+
+ /* Refer to a 32-bit word or byte in a decFloat (df) by big-endian */
+ /* (array) notation (the 0 word or byte contains the sign bit), */
+ /* automatically adjusting for endianness; similarly address a word */
+ /* in the next-wider format (decFloatWider, or dfw) */
+ #define DECWORDS (DECBYTES/4)
+ #define DECWWORDS (DECWBYTES/4)
+ #if DECLITEND
+ #define DFWORD(df, off) UINTAT((df)->bytes+(DECWORDS-1-(off))*4)
+ #define DFBYTE(df, off) UBYTEAT((df)->bytes+(DECBYTES-1-(off)))
+ #define DFWWORD(dfw, off) UINTAT((dfw)->bytes+(DECWWORDS-1-(off))*4)
+ #else
+ #define DFWORD(df, off) UINTAT((df)->bytes+(off)*4)
+ #define DFBYTE(df, off) UBYTEAT((df)->bytes+(off))
+ #define DFWWORD(dfw, off) UINTAT((dfw)->bytes+(off)*4)
+ #endif
+
+ /* Tests for sign or specials, directly on DECFLOATs */
+ #define DFISSIGNED(df) (DFWORD(df, 0)&0x80000000)
+ #define DFISSPECIAL(df) ((DFWORD(df, 0)&0x78000000)==0x78000000)
+ #define DFISINF(df) ((DFWORD(df, 0)&0x7c000000)==0x78000000)
+ #define DFISNAN(df) ((DFWORD(df, 0)&0x7c000000)==0x7c000000)
+ #define DFISQNAN(df) ((DFWORD(df, 0)&0x7e000000)==0x7c000000)
+ #define DFISSNAN(df) ((DFWORD(df, 0)&0x7e000000)==0x7e000000)
+
+ /* Shared lookup tables */
+ extern const uInt DECCOMBMSD[64]; /* Combination field -> MSD */
+ extern const uInt DECCOMBFROM[48]; /* exp+msd -> Combination */
+
+ /* Private generic (utility) routine */
+ #if DECCHECK || DECTRACE
+ extern void decShowNum(const bcdnum *, const char *);
+ #endif
+
+ /* Format-dependent macros and constants */
+ #if defined(DECPMAX)
+
+ /* Useful constants */
+ #define DECPMAX9 (ROUNDUP(DECPMAX, 9)/9) /* 'Pmax' in 10**9s */
+ /* Top words for a zero */
+ #define SINGLEZERO 0x22500000
+ #define DOUBLEZERO 0x22380000
+ #define QUADZERO 0x22080000
+ /* [ZEROWORD is defined to be one of these in the DFISZERO macro] */
+
+ /* Format-dependent common tests: */
+ /* DFISZERO -- test for (any) zero */
+ /* DFISCCZERO -- test for coefficient continuation being zero */
+ /* DFISCC01 -- test for coefficient contains only 0s and 1s */
+ /* DFISINT -- test for finite and exponent q=0 */
+ /* DFISUINT01 -- test for sign=0, finite, exponent q=0, and */
+ /* MSD=0 or 1 */
+ /* ZEROWORD is also defined here. */
+ /* In DFISZERO the first test checks the least-significant word */
+ /* (most likely to be non-zero); the penultimate tests MSD and */
+ /* DPDs in the signword, and the final test excludes specials and */
+ /* MSD>7. DFISINT similarly has to allow for the two forms of */
+ /* MSD codes. DFISUINT01 only has to allow for one form of MSD */
+ /* code. */
+ #if DECPMAX==7
+ #define ZEROWORD SINGLEZERO
+ /* [test macros not needed except for Zero] */
+ #define DFISZERO(df) ((DFWORD(df, 0)&0x1c0fffff)==0 \
+ && (DFWORD(df, 0)&0x60000000)!=0x60000000)
+ #elif DECPMAX==16
+ #define ZEROWORD DOUBLEZERO
+ #define DFISZERO(df) ((DFWORD(df, 1)==0 \
+ && (DFWORD(df, 0)&0x1c03ffff)==0 \
+ && (DFWORD(df, 0)&0x60000000)!=0x60000000))
+ #define DFISINT(df) ((DFWORD(df, 0)&0x63fc0000)==0x22380000 \
+ ||(DFWORD(df, 0)&0x7bfc0000)==0x6a380000)
+ #define DFISUINT01(df) ((DFWORD(df, 0)&0xfbfc0000)==0x22380000)
+ #define DFISCCZERO(df) (DFWORD(df, 1)==0 \
+ && (DFWORD(df, 0)&0x0003ffff)==0)
+ #define DFISCC01(df) ((DFWORD(df, 0)&~0xfffc9124)==0 \
+ && (DFWORD(df, 1)&~0x49124491)==0)
+ #elif DECPMAX==34
+ #define ZEROWORD QUADZERO
+ #define DFISZERO(df) ((DFWORD(df, 3)==0 \
+ && DFWORD(df, 2)==0 \
+ && DFWORD(df, 1)==0 \
+ && (DFWORD(df, 0)&0x1c003fff)==0 \
+ && (DFWORD(df, 0)&0x60000000)!=0x60000000))
+ #define DFISINT(df) ((DFWORD(df, 0)&0x63ffc000)==0x22080000 \
+ ||(DFWORD(df, 0)&0x7bffc000)==0x6a080000)
+ #define DFISUINT01(df) ((DFWORD(df, 0)&0xfbffc000)==0x22080000)
+ #define DFISCCZERO(df) (DFWORD(df, 3)==0 \
+ && DFWORD(df, 2)==0 \
+ && DFWORD(df, 1)==0 \
+ && (DFWORD(df, 0)&0x00003fff)==0)
+
+ #define DFISCC01(df) ((DFWORD(df, 0)&~0xffffc912)==0 \
+ && (DFWORD(df, 1)&~0x44912449)==0 \
+ && (DFWORD(df, 2)&~0x12449124)==0 \
+ && (DFWORD(df, 3)&~0x49124491)==0)
+ #endif
+
+ /* Macros to test if a certain 10 bits of a uInt or pair of uInts */
+ /* are a canonical declet [higher or lower bits are ignored]. */
+ /* declet is at offset 0 (from the right) in a uInt: */
+ #define CANONDPD(dpd) (((dpd)&0x300)==0 || ((dpd)&0x6e)!=0x6e)
+ /* declet is at offset k (a multiple of 2) in a uInt: */
+ #define CANONDPDOFF(dpd, k) (((dpd)&(0x300<<(k)))==0 \
+ || ((dpd)&(((uInt)0x6e)<<(k)))!=(((uInt)0x6e)<<(k)))
+ /* declet is at offset k (a multiple of 2) in a pair of uInts: */
+ /* [the top 2 bits will always be in the more-significant uInt] */
+ #define CANONDPDTWO(hi, lo, k) (((hi)&(0x300>>(32-(k))))==0 \
+ || ((hi)&(0x6e>>(32-(k))))!=(0x6e>>(32-(k))) \
+ || ((lo)&(((uInt)0x6e)<<(k)))!=(((uInt)0x6e)<<(k)))
+
+ /* Macro to test whether a full-length (length DECPMAX) BCD8 */
+ /* coefficient is zero */
+ /* test just the LSWord first, then the remainder */
+ #if DECPMAX==7
+ #define ISCOEFFZERO(u) (UINTAT((u)+DECPMAX-4)==0 \
+ && UINTAT((u)+DECPMAX-7)==0)
+ #elif DECPMAX==16
+ #define ISCOEFFZERO(u) (UINTAT((u)+DECPMAX-4)==0 \
+ && (UINTAT((u)+DECPMAX-8)+UINTAT((u)+DECPMAX-12) \
+ +UINTAT((u)+DECPMAX-16))==0)
+ #elif DECPMAX==34
+ #define ISCOEFFZERO(u) (UINTAT((u)+DECPMAX-4)==0 \
+ && (UINTAT((u)+DECPMAX-8) +UINTAT((u)+DECPMAX-12) \
+ +UINTAT((u)+DECPMAX-16)+UINTAT((u)+DECPMAX-20) \
+ +UINTAT((u)+DECPMAX-24)+UINTAT((u)+DECPMAX-28) \
+ +UINTAT((u)+DECPMAX-32)+USHORTAT((u)+DECPMAX-34))==0)
+ #endif
+
+ /* Macros and masks for the exponent continuation field and MSD */
+ /* Get the exponent continuation from a decFloat *df as an Int */
+ #define GETECON(df) ((Int)((DFWORD((df), 0)&0x03ffffff)>>(32-6-DECECONL)))
+ /* Ditto, from the next-wider format */
+ #define GETWECON(df) ((Int)((DFWWORD((df), 0)&0x03ffffff)>>(32-6-DECWECONL)))
+ /* Get the biased exponent similarly */
+ #define GETEXP(df) ((Int)(DECCOMBEXP[DFWORD((df), 0)>>26]+GETECON(df)))
+ /* Get the unbiased exponent similarly */
+ #define GETEXPUN(df) ((Int)GETEXP(df)-DECBIAS)
+ /* Get the MSD similarly (as uInt) */
+ #define GETMSD(df) (DECCOMBMSD[DFWORD((df), 0)>>26])
+
+ /* Compile-time computes of the exponent continuation field masks */
+ /* full exponent continuation field: */
+ #define ECONMASK ((0x03ffffff>>(32-6-DECECONL))<<(32-6-DECECONL))
+ /* same, not including its first digit (the qNaN/sNaN selector): */
+ #define ECONNANMASK ((0x01ffffff>>(32-6-DECECONL))<<(32-6-DECECONL))
+
+ /* Macros to decode the coefficient in a finite decFloat *df into */
+ /* a BCD string (uByte *bcdin) of length DECPMAX uBytes */
+
+ /* In-line sequence to convert 10 bits at right end of uInt dpd */
+ /* to three BCD8 digits starting at uByte u. Note that an extra */
+ /* byte is written to the right of the three digits because this */
+ /* moves four at a time for speed; the alternative macro moves */
+ /* exactly three bytes */
+ #define dpd2bcd8(u, dpd) { \
+ UINTAT(u)=UINTAT(&DPD2BCD8[((dpd)&0x3ff)*4]);}
+
+ #define dpd2bcd83(u, dpd) { \
+ *(u)=DPD2BCD8[((dpd)&0x3ff)*4]; \
+ *(u+1)=DPD2BCD8[((dpd)&0x3ff)*4+1]; \
+ *(u+2)=DPD2BCD8[((dpd)&0x3ff)*4+2];}
+
+ /* Decode the declets. After extracting each one, it is decoded */
+ /* to BCD8 using a table lookup (also used for variable-length */
+ /* decode). Each DPD decode is 3 bytes BCD8 plus a one-byte */
+ /* length which is not used, here). Fixed-length 4-byte moves */
+ /* are fast, however, almost everywhere, and so are used except */
+ /* for the final three bytes (to avoid overrun). The code below */
+ /* is 36 instructions for Doubles and about 70 for Quads, even */
+ /* on IA32. */
+
+ /* Two macros are defined for each format: */
+ /* GETCOEFF extracts the coefficient of the current format */
+ /* GETWCOEFF extracts the coefficient of the next-wider format. */
+ /* The latter is a copy of the next-wider GETCOEFF using DFWWORD. */
+
+ #if DECPMAX==7
+ #define GETCOEFF(df, bcd) { \
+ uInt sourhi=DFWORD(df, 0); \
+ *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \
+ dpd2bcd8(bcd+1, sourhi>>10); \
+ dpd2bcd83(bcd+4, sourhi);}
+ #define GETWCOEFF(df, bcd) { \
+ uInt sourhi=DFWWORD(df, 0); \
+ uInt sourlo=DFWWORD(df, 1); \
+ *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \
+ dpd2bcd8(bcd+1, sourhi>>8); \
+ dpd2bcd8(bcd+4, (sourhi<<2) | (sourlo>>30)); \
+ dpd2bcd8(bcd+7, sourlo>>20); \
+ dpd2bcd8(bcd+10, sourlo>>10); \
+ dpd2bcd83(bcd+13, sourlo);}
+
+ #elif DECPMAX==16
+ #define GETCOEFF(df, bcd) { \
+ uInt sourhi=DFWORD(df, 0); \
+ uInt sourlo=DFWORD(df, 1); \
+ *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \
+ dpd2bcd8(bcd+1, sourhi>>8); \
+ dpd2bcd8(bcd+4, (sourhi<<2) | (sourlo>>30)); \
+ dpd2bcd8(bcd+7, sourlo>>20); \
+ dpd2bcd8(bcd+10, sourlo>>10); \
+ dpd2bcd83(bcd+13, sourlo);}
+ #define GETWCOEFF(df, bcd) { \
+ uInt sourhi=DFWWORD(df, 0); \
+ uInt sourmh=DFWWORD(df, 1); \
+ uInt sourml=DFWWORD(df, 2); \
+ uInt sourlo=DFWWORD(df, 3); \
+ *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \
+ dpd2bcd8(bcd+1, sourhi>>4); \
+ dpd2bcd8(bcd+4, ((sourhi)<<6) | (sourmh>>26)); \
+ dpd2bcd8(bcd+7, sourmh>>16); \
+ dpd2bcd8(bcd+10, sourmh>>6); \
+ dpd2bcd8(bcd+13, ((sourmh)<<4) | (sourml>>28)); \
+ dpd2bcd8(bcd+16, sourml>>18); \
+ dpd2bcd8(bcd+19, sourml>>8); \
+ dpd2bcd8(bcd+22, ((sourml)<<2) | (sourlo>>30)); \
+ dpd2bcd8(bcd+25, sourlo>>20); \
+ dpd2bcd8(bcd+28, sourlo>>10); \
+ dpd2bcd83(bcd+31, sourlo);}
+
+ #elif DECPMAX==34
+ #define GETCOEFF(df, bcd) { \
+ uInt sourhi=DFWORD(df, 0); \
+ uInt sourmh=DFWORD(df, 1); \
+ uInt sourml=DFWORD(df, 2); \
+ uInt sourlo=DFWORD(df, 3); \
+ *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \
+ dpd2bcd8(bcd+1, sourhi>>4); \
+ dpd2bcd8(bcd+4, ((sourhi)<<6) | (sourmh>>26)); \
+ dpd2bcd8(bcd+7, sourmh>>16); \
+ dpd2bcd8(bcd+10, sourmh>>6); \
+ dpd2bcd8(bcd+13, ((sourmh)<<4) | (sourml>>28)); \
+ dpd2bcd8(bcd+16, sourml>>18); \
+ dpd2bcd8(bcd+19, sourml>>8); \
+ dpd2bcd8(bcd+22, ((sourml)<<2) | (sourlo>>30)); \
+ dpd2bcd8(bcd+25, sourlo>>20); \
+ dpd2bcd8(bcd+28, sourlo>>10); \
+ dpd2bcd83(bcd+31, sourlo);}
+
+ #define GETWCOEFF(df, bcd) {??} /* [should never be used] */
+ #endif
+
+ /* Macros to decode the coefficient in a finite decFloat *df into */
+ /* a base-billion uInt array, with the least-significant */
+ /* 0-999999999 'digit' at offset 0. */
+
+ /* Decode the declets. After extracting each one, it is decoded */
+ /* to binary using a table lookup. Three tables are used; one */
+ /* the usual DPD to binary, the other two pre-multiplied by 1000 */
+ /* and 1000000 to avoid multiplication during decode. These */
+ /* tables can also be used for multiplying up the MSD as the DPD */
+ /* code for 0 through 9 is the identity. */
+ #define DPD2BIN0 DPD2BIN /* for prettier code */
+
+ #if DECPMAX==7
+ #define GETCOEFFBILL(df, buf) { \
+ uInt sourhi=DFWORD(df, 0); \
+ (buf)[0]=DPD2BIN0[sourhi&0x3ff] \
+ +DPD2BINK[(sourhi>>10)&0x3ff] \
+ +DPD2BINM[DECCOMBMSD[sourhi>>26]];}
+
+ #elif DECPMAX==16
+ #define GETCOEFFBILL(df, buf) { \
+ uInt sourhi, sourlo; \
+ sourlo=DFWORD(df, 1); \
+ (buf)[0]=DPD2BIN0[sourlo&0x3ff] \
+ +DPD2BINK[(sourlo>>10)&0x3ff] \
+ +DPD2BINM[(sourlo>>20)&0x3ff]; \
+ sourhi=DFWORD(df, 0); \
+ (buf)[1]=DPD2BIN0[((sourhi<<2) | (sourlo>>30))&0x3ff] \
+ +DPD2BINK[(sourhi>>8)&0x3ff] \
+ +DPD2BINM[DECCOMBMSD[sourhi>>26]];}
+
+ #elif DECPMAX==34
+ #define GETCOEFFBILL(df, buf) { \
+ uInt sourhi, sourmh, sourml, sourlo; \
+ sourlo=DFWORD(df, 3); \
+ (buf)[0]=DPD2BIN0[sourlo&0x3ff] \
+ +DPD2BINK[(sourlo>>10)&0x3ff] \
+ +DPD2BINM[(sourlo>>20)&0x3ff]; \
+ sourml=DFWORD(df, 2); \
+ (buf)[1]=DPD2BIN0[((sourml<<2) | (sourlo>>30))&0x3ff] \
+ +DPD2BINK[(sourml>>8)&0x3ff] \
+ +DPD2BINM[(sourml>>18)&0x3ff]; \
+ sourmh=DFWORD(df, 1); \
+ (buf)[2]=DPD2BIN0[((sourmh<<4) | (sourml>>28))&0x3ff] \
+ +DPD2BINK[(sourmh>>6)&0x3ff] \
+ +DPD2BINM[(sourmh>>16)&0x3ff]; \
+ sourhi=DFWORD(df, 0); \
+ (buf)[3]=DPD2BIN0[((sourhi<<6) | (sourmh>>26))&0x3ff] \
+ +DPD2BINK[(sourhi>>4)&0x3ff] \
+ +DPD2BINM[DECCOMBMSD[sourhi>>26]];}
+
+ #endif
+
+ /* Macros to decode the coefficient in a finite decFloat *df into */
+ /* a base-thousand uInt array, with the least-significant 0-999 */
+ /* 'digit' at offset 0. */
+
+ /* Decode the declets. After extracting each one, it is decoded */
+ /* to binary using a table lookup. */
+ #if DECPMAX==7
+ #define GETCOEFFTHOU(df, buf) { \
+ uInt sourhi=DFWORD(df, 0); \
+ (buf)[0]=DPD2BIN[sourhi&0x3ff]; \
+ (buf)[1]=DPD2BIN[(sourhi>>10)&0x3ff]; \
+ (buf)[2]=DECCOMBMSD[sourhi>>26];}
+
+ #elif DECPMAX==16
+ #define GETCOEFFTHOU(df, buf) { \
+ uInt sourhi, sourlo; \
+ sourlo=DFWORD(df, 1); \
+ (buf)[0]=DPD2BIN[sourlo&0x3ff]; \
+ (buf)[1]=DPD2BIN[(sourlo>>10)&0x3ff]; \
+ (buf)[2]=DPD2BIN[(sourlo>>20)&0x3ff]; \
+ sourhi=DFWORD(df, 0); \
+ (buf)[3]=DPD2BIN[((sourhi<<2) | (sourlo>>30))&0x3ff]; \
+ (buf)[4]=DPD2BIN[(sourhi>>8)&0x3ff]; \
+ (buf)[5]=DECCOMBMSD[sourhi>>26];}
+
+ #elif DECPMAX==34
+ #define GETCOEFFTHOU(df, buf) { \
+ uInt sourhi, sourmh, sourml, sourlo; \
+ sourlo=DFWORD(df, 3); \
+ (buf)[0]=DPD2BIN[sourlo&0x3ff]; \
+ (buf)[1]=DPD2BIN[(sourlo>>10)&0x3ff]; \
+ (buf)[2]=DPD2BIN[(sourlo>>20)&0x3ff]; \
+ sourml=DFWORD(df, 2); \
+ (buf)[3]=DPD2BIN[((sourml<<2) | (sourlo>>30))&0x3ff]; \
+ (buf)[4]=DPD2BIN[(sourml>>8)&0x3ff]; \
+ (buf)[5]=DPD2BIN[(sourml>>18)&0x3ff]; \
+ sourmh=DFWORD(df, 1); \
+ (buf)[6]=DPD2BIN[((sourmh<<4) | (sourml>>28))&0x3ff]; \
+ (buf)[7]=DPD2BIN[(sourmh>>6)&0x3ff]; \
+ (buf)[8]=DPD2BIN[(sourmh>>16)&0x3ff]; \
+ sourhi=DFWORD(df, 0); \
+ (buf)[9]=DPD2BIN[((sourhi<<6) | (sourmh>>26))&0x3ff]; \
+ (buf)[10]=DPD2BIN[(sourhi>>4)&0x3ff]; \
+ (buf)[11]=DECCOMBMSD[sourhi>>26];}
+
+ #endif
+
+ /* Set a decFloat to the maximum positive finite number (Nmax) */
+ #if DECPMAX==7
+ #define DFSETNMAX(df) \
+ {DFWORD(df, 0)=0x77f3fcff;}
+ #elif DECPMAX==16
+ #define DFSETNMAX(df) \
+ {DFWORD(df, 0)=0x77fcff3f; \
+ DFWORD(df, 1)=0xcff3fcff;}
+ #elif DECPMAX==34
+ #define DFSETNMAX(df) \
+ {DFWORD(df, 0)=0x77ffcff3; \
+ DFWORD(df, 1)=0xfcff3fcf; \
+ DFWORD(df, 2)=0xf3fcff3f; \
+ DFWORD(df, 3)=0xcff3fcff;}
+ #endif
+
+ /* [end of format-dependent macros and constants] */
+ #endif
#else
-#error decNumberLocal included more than once
+ #error decNumberLocal included more than once
#endif
diff --git a/libdecnumber/decNumberSymbols.h b/libdecnumber/decNumberSymbols.h
new file mode 100644
index 00000000000..e638a070b1c
--- /dev/null
+++ b/libdecnumber/decNumberSymbols.h
@@ -0,0 +1,69 @@
+#if !defined(DECNUMBERSYMBOLS)
+#define DECNUMBERSYMBOLS
+
+#ifdef IN_LIBGCC2
+#define decNumberAbs __decNumberAbs
+#define decNumberAdd __decNumberAdd
+#define decNumberAnd __decNumberAnd
+#define decNumberClass __decNumberClass
+#define decNumberClassToString __decNumberClassToString
+#define decNumberCompare __decNumberCompare
+#define decNumberCompareSignal __decNumberCompareSignal
+#define decNumberCompareTotal __decNumberCompareTotal
+#define decNumberCompareTotalMag __decNumberCompareTotalMag
+#define decNumberCopy __decNumberCopy
+#define decNumberCopyAbs __decNumberCopyAbs
+#define decNumberCopyNegate __decNumberCopyNegate
+#define decNumberCopySign __decNumberCopySign
+#define decNumberDivide __decNumberDivide
+#define decNumberDivideInteger __decNumberDivideInteger
+#define decNumberExp __decNumberExp
+#define decNumberFMA __decNumberFMA
+#define decNumberFromInt32 __decNumberFromInt32
+#define decNumberFromString __decNumberFromString
+#define decNumberFromUInt32 __decNumberFromUInt32
+#define decNumberGetBCD __decNumberGetBCD
+#define decNumberInvert __decNumberInvert
+#define decNumberIsNormal __decNumberIsNormal
+#define decNumberIsSubnormal __decNumberIsSubnormal
+#define decNumberLn __decNumberLn
+#define decNumberLog10 __decNumberLog10
+#define decNumberLogB __decNumberLogB
+#define decNumberMax __decNumberMax
+#define decNumberMaxMag __decNumberMaxMag
+#define decNumberMin __decNumberMin
+#define decNumberMinMag __decNumberMinMag
+#define decNumberMinus __decNumberMinus
+#define decNumberMultiply __decNumberMultiply
+#define decNumberNextMinus __decNumberNextMinus
+#define decNumberNextPlus __decNumberNextPlus
+#define decNumberNextToward __decNumberNextToward
+#define decNumberNormalize __decNumberNormalize
+#define decNumberOr __decNumberOr
+#define decNumberPlus __decNumberPlus
+#define decNumberPower __decNumberPower
+#define decNumberQuantize __decNumberQuantize
+#define decNumberReduce __decNumberReduce
+#define decNumberRemainder __decNumberRemainder
+#define decNumberRemainderNear __decNumberRemainderNear
+#define decNumberRescale __decNumberRescale
+#define decNumberRotate __decNumberRotate
+#define decNumberSameQuantum __decNumberSameQuantum
+#define decNumberScaleB __decNumberScaleB
+#define decNumberSetBCD __decNumberSetBCD
+#define decNumberShift __decNumberShift
+#define decNumberSquareRoot __decNumberSquareRoot
+#define decNumberSubtract __decNumberSubtract
+#define decNumberToEngString __decNumberToEngString
+#define decNumberToInt32 __decNumberToInt32
+#define decNumberToIntegralExact __decNumberToIntegralExact
+#define decNumberToIntegralValue __decNumberToIntegralValue
+#define decNumberToString __decNumberToString
+#define decNumberToUInt32 __decNumberToUInt32
+#define decNumberTrim __decNumberTrim
+#define decNumberVersion __decNumberVersion
+#define decNumberXor __decNumberXor
+#define decNumberZero __decNumberZero
+#endif
+
+#endif
diff --git a/libdecnumber/decPacked.c b/libdecnumber/decPacked.c
new file mode 100644
index 00000000000..2b912fe13bc
--- /dev/null
+++ b/libdecnumber/decPacked.c
@@ -0,0 +1,235 @@
+/* Packed decimal conversion module for the decNumber C Library.
+ Copyright (C) 2007 Free Software Foundation, Inc.
+ Contributed by IBM Corporation. Author Mike Cowlishaw.
+
+ This file is part of GCC.
+
+ GCC is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License as published by the Free
+ Software Foundation; either version 2, or (at your option) any later
+ version.
+
+ In addition to the permissions in the GNU General Public License,
+ the Free Software Foundation gives you unlimited permission to link
+ the compiled version of this file into combinations with other
+ programs, and to distribute those combinations without any
+ restriction coming from the use of this file. (The General Public
+ License restrictions do apply in other respects; for example, they
+ cover modification of the file, and distribution when not linked
+ into a combine executable.)
+
+ GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with GCC; see the file COPYING. If not, write to the Free
+ Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
+ 02110-1301, USA. */
+
+/* ------------------------------------------------------------------ */
+/* Packed Decimal conversion module */
+/* ------------------------------------------------------------------ */
+/* This module comprises the routines for Packed Decimal format */
+/* numbers. Conversions are supplied to and from decNumber, which in */
+/* turn supports: */
+/* conversions to and from string */
+/* arithmetic routines */
+/* utilities. */
+/* Conversions from decNumber to and from densely packed decimal */
+/* formats are provided by the decimal32 through decimal128 modules. */
+/* ------------------------------------------------------------------ */
+
+#include <string.h> /* for NULL */
+#include "decNumber.h" /* base number library */
+#include "decPacked.h" /* packed decimal */
+#include "decNumberLocal.h" /* decNumber local types, etc. */
+
+/* ------------------------------------------------------------------ */
+/* decPackedFromNumber -- convert decNumber to BCD Packed Decimal */
+/* */
+/* bcd is the BCD bytes */
+/* length is the length of the BCD array */
+/* scale is the scale result */
+/* dn is the decNumber */
+/* returns bcd, or NULL if error */
+/* */
+/* The number is converted to a BCD packed decimal byte array, */
+/* right aligned in the bcd array, whose length is indicated by the */
+/* second parameter. The final 4-bit nibble in the array will be a */
+/* sign nibble, C (1100) for + and D (1101) for -. Unused bytes and */
+/* nibbles to the left of the number are set to 0. */
+/* */
+/* scale is set to the scale of the number (this is the exponent, */
+/* negated). To force the number to a specified scale, first use the */
+/* decNumberRescale routine, which will round and change the exponent */
+/* as necessary. */
+/* */
+/* If there is an error (that is, the decNumber has too many digits */
+/* to fit in length bytes, or it is a NaN or Infinity), NULL is */
+/* returned and the bcd and scale results are unchanged. Otherwise */
+/* bcd is returned. */
+/* ------------------------------------------------------------------ */
+uByte * decPackedFromNumber(uByte *bcd, Int length, Int *scale,
+ const decNumber *dn) {
+ const Unit *up=dn->lsu; /* Unit array pointer */
+ uByte obyte, *out; /* current output byte, and where it goes */
+ Int indigs=dn->digits; /* digits processed */
+ uInt cut=DECDPUN; /* downcounter per Unit */
+ uInt u=*up; /* work */
+ uInt nib; /* .. */
+ #if DECDPUN<=4
+ uInt temp; /* .. */
+ #endif
+
+ if (dn->digits>length*2-1 /* too long .. */
+ ||(dn->bits & DECSPECIAL)) return NULL; /* .. or special -- hopeless */
+
+ if (dn->bits&DECNEG) obyte=DECPMINUS; /* set the sign .. */
+ else obyte=DECPPLUS;
+ *scale=-dn->exponent; /* .. and scale */
+
+ /* loop from lowest (rightmost) byte */
+ out=bcd+length-1; /* -> final byte */
+ for (; out>=bcd; out--) {
+ if (indigs>0) {
+ if (cut==0) {
+ up++;
+ u=*up;
+ cut=DECDPUN;
+ }
+ #if DECDPUN<=4
+ temp=(u*6554)>>16; /* fast /10 */
+ nib=u-X10(temp);
+ u=temp;
+ #else
+ nib=u%10; /* cannot use *6554 trick :-( */
+ u=u/10;
+ #endif
+ obyte|=(nib<<4);
+ indigs--;
+ cut--;
+ }
+ *out=obyte;
+ obyte=0; /* assume 0 */
+ if (indigs>0) {
+ if (cut==0) {
+ up++;
+ u=*up;
+ cut=DECDPUN;
+ }
+ #if DECDPUN<=4
+ temp=(u*6554)>>16; /* as above */
+ obyte=(uByte)(u-X10(temp));
+ u=temp;
+ #else
+ obyte=(uByte)(u%10);
+ u=u/10;
+ #endif
+ indigs--;
+ cut--;
+ }
+ } /* loop */
+
+ return bcd;
+ } /* decPackedFromNumber */
+
+/* ------------------------------------------------------------------ */
+/* decPackedToNumber -- convert BCD Packed Decimal to a decNumber */
+/* */
+/* bcd is the BCD bytes */
+/* length is the length of the BCD array */
+/* scale is the scale associated with the BCD integer */
+/* dn is the decNumber [with space for length*2 digits] */
+/* returns dn, or NULL if error */
+/* */
+/* The BCD packed decimal byte array, together with an associated */
+/* scale, is converted to a decNumber. The BCD array is assumed full */
+/* of digits, and must be ended by a 4-bit sign nibble in the least */
+/* significant four bits of the final byte. */
+/* */
+/* The scale is used (negated) as the exponent of the decNumber. */
+/* Note that zeros may have a sign and/or a scale. */
+/* */
+/* The decNumber structure is assumed to have sufficient space to */
+/* hold the converted number (that is, up to length*2-1 digits), so */
+/* no error is possible unless the adjusted exponent is out of range, */
+/* no sign nibble was found, or a sign nibble was found before the */
+/* final nibble. In these error cases, NULL is returned and the */
+/* decNumber will be 0. */
+/* ------------------------------------------------------------------ */
+decNumber * decPackedToNumber(const uByte *bcd, Int length,
+ const Int *scale, decNumber *dn) {
+ const uByte *last=bcd+length-1; /* -> last byte */
+ const uByte *first; /* -> first non-zero byte */
+ uInt nib; /* work nibble */
+ Unit *up=dn->lsu; /* output pointer */
+ Int digits; /* digits count */
+ Int cut=0; /* phase of output */
+
+ decNumberZero(dn); /* default result */
+ last=&bcd[length-1];
+ nib=*last & 0x0f; /* get the sign */
+ if (nib==DECPMINUS || nib==DECPMINUSALT) dn->bits=DECNEG;
+ else if (nib<=9) return NULL; /* not a sign nibble */
+
+ /* skip leading zero bytes [final byte is always non-zero, due to sign] */
+ for (first=bcd; *first==0;) first++;
+ digits=(last-first)*2+1; /* calculate digits .. */
+ if ((*first & 0xf0)==0) digits--; /* adjust for leading zero nibble */
+ if (digits!=0) dn->digits=digits; /* count of actual digits [if 0, */
+ /* leave as 1] */
+
+ /* check the adjusted exponent; note that scale could be unbounded */
+ dn->exponent=-*scale; /* set the exponent */
+ if (*scale>=0) { /* usual case */
+ if ((dn->digits-*scale-1)<-DECNUMMAXE) { /* underflow */
+ decNumberZero(dn);
+ return NULL;}
+ }
+ else { /* -ve scale; +ve exponent */
+ /* need to be careful to avoid wrap, here, also BADINT case */
+ if ((*scale<-DECNUMMAXE) /* overflow even without digits */
+ || ((dn->digits-*scale-1)>DECNUMMAXE)) { /* overflow */
+ decNumberZero(dn);
+ return NULL;}
+ }
+ if (digits==0) return dn; /* result was zero */
+
+ /* copy the digits to the number's units, starting at the lsu */
+ /* [unrolled] */
+ for (;;) { /* forever */
+ /* left nibble first */
+ nib=(unsigned)(*last & 0xf0)>>4;
+ /* got a digit, in nib */
+ if (nib>9) {decNumberZero(dn); return NULL;}
+
+ if (cut==0) *up=(Unit)nib;
+ else *up=(Unit)(*up+nib*DECPOWERS[cut]);
+ digits--;
+ if (digits==0) break; /* got them all */
+ cut++;
+ if (cut==DECDPUN) {
+ up++;
+ cut=0;
+ }
+ last--; /* ready for next */
+ nib=*last & 0x0f; /* get right nibble */
+ if (nib>9) {decNumberZero(dn); return NULL;}
+
+ /* got a digit, in nib */
+ if (cut==0) *up=(Unit)nib;
+ else *up=(Unit)(*up+nib*DECPOWERS[cut]);
+ digits--;
+ if (digits==0) break; /* got them all */
+ cut++;
+ if (cut==DECDPUN) {
+ up++;
+ cut=0;
+ }
+ } /* forever */
+
+ return dn;
+ } /* decPackedToNumber */
+
diff --git a/libdecnumber/decPacked.h b/libdecnumber/decPacked.h
new file mode 100644
index 00000000000..c76aa09631e
--- /dev/null
+++ b/libdecnumber/decPacked.h
@@ -0,0 +1,70 @@
+/* Packed decimal conversion module header for the decNumber C Library.
+ Copyright (C) 2007 Free Software Foundation, Inc.
+ Contributed by IBM Corporation. Author Mike Cowlishaw.
+
+ This file is part of GCC.
+
+ GCC is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License as published by the Free
+ Software Foundation; either version 2, or (at your option) any later
+ version.
+
+ In addition to the permissions in the GNU General Public License,
+ the Free Software Foundation gives you unlimited permission to link
+ the compiled version of this file into combinations with other
+ programs, and to distribute those combinations without any
+ restriction coming from the use of this file. (The General Public
+ License restrictions do apply in other respects; for example, they
+ cover modification of the file, and distribution when not linked
+ into a combine executable.)
+
+ GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with GCC; see the file COPYING. If not, write to the Free
+ Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
+ 02110-1301, USA. */
+
+/* ------------------------------------------------------------------ */
+/* Packed Decimal conversion module header */
+/* ------------------------------------------------------------------ */
+
+#if !defined(DECPACKED)
+ #define DECPACKED
+ #define DECPNAME "decPacked" /* Short name */
+ #define DECPFULLNAME "Packed Decimal conversions" /* Verbose name */
+ #define DECPAUTHOR "Mike Cowlishaw" /* Who to blame */
+
+ #define DECPACKED_DefP 32 /* default precision */
+
+ #ifndef DECNUMDIGITS
+ #define DECNUMDIGITS DECPACKED_DefP /* size if not already defined*/
+ #endif
+ #include "decNumber.h" /* context and number library */
+
+ /* Sign nibble constants */
+ #if !defined(DECPPLUSALT)
+ #define DECPPLUSALT 0x0A /* alternate plus nibble */
+ #define DECPMINUSALT 0x0B /* alternate minus nibble */
+ #define DECPPLUS 0x0C /* preferred plus nibble */
+ #define DECPMINUS 0x0D /* preferred minus nibble */
+ #define DECPPLUSALT2 0x0E /* alternate plus nibble */
+ #define DECPUNSIGNED 0x0F /* alternate plus nibble (unsigned) */
+ #endif
+
+ /* ---------------------------------------------------------------- */
+ /* decPacked public routines */
+ /* ---------------------------------------------------------------- */
+
+ #include "decPackedSymbols.h"
+
+ /* Conversions */
+ uint8_t * decPackedFromNumber(uint8_t *, int32_t, int32_t *,
+ const decNumber *);
+ decNumber * decPackedToNumber(const uint8_t *, int32_t, const int32_t *,
+ decNumber *);
+
+#endif
diff --git a/libdecnumber/decPackedSymbols.h b/libdecnumber/decPackedSymbols.h
new file mode 100644
index 00000000000..862db401fc9
--- /dev/null
+++ b/libdecnumber/decPackedSymbols.h
@@ -0,0 +1,9 @@
+#if !defined(DECPACKEDSYMBOLS)
+#define DECPACKEDSYMBOLS
+
+#ifdef IN_LIBGCC2
+#define decPackedFromNumber __decPackedFromNumber
+#define decPackedToNumber __decPackedToNumber
+#endif
+
+#endif
diff --git a/libdecnumber/decQuad.c b/libdecnumber/decQuad.c
new file mode 100644
index 00000000000..6ec9b7f735f
--- /dev/null
+++ b/libdecnumber/decQuad.c
@@ -0,0 +1,146 @@
+/* decQuad module for the decNumber C Library.
+ Copyright (C) 2007 Free Software Foundation, Inc.
+ Contributed by IBM Corporation. Author Mike Cowlishaw.
+
+ This file is part of GCC.
+
+ GCC is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License as published by the Free
+ Software Foundation; either version 2, or (at your option) any later
+ version.
+
+ In addition to the permissions in the GNU General Public License,
+ the Free Software Foundation gives you unlimited permission to link
+ the compiled version of this file into combinations with other
+ programs, and to distribute those combinations without any
+ restriction coming from the use of this file. (The General Public
+ License restrictions do apply in other respects; for example, they
+ cover modification of the file, and distribution when not linked
+ into a combine executable.)
+
+ GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with GCC; see the file COPYING. If not, write to the Free
+ Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
+ 02110-1301, USA. */
+
+/* ------------------------------------------------------------------ */
+/* decQuad.c -- decQuad operations module */
+/* ------------------------------------------------------------------ */
+/* This module comprises decQuad operations (including conversions) */
+/* ------------------------------------------------------------------ */
+
+#include "decContext.h" /* public includes */
+#include "decQuad.h" /* .. */
+
+/* Constant mappings for shared code */
+#define DECPMAX DECQUAD_Pmax
+#define DECEMIN DECQUAD_Emin
+#define DECEMAX DECQUAD_Emax
+#define DECEMAXD DECQUAD_EmaxD
+#define DECBYTES DECQUAD_Bytes
+#define DECSTRING DECQUAD_String
+#define DECECONL DECQUAD_EconL
+#define DECBIAS DECQUAD_Bias
+#define DECLETS DECQUAD_Declets
+#define DECQTINY (-DECQUAD_Bias)
+
+/* Type and function mappings for shared code */
+#define decFloat decQuad /* Type name */
+
+/* Utilities and conversions (binary results, extractors, etc.) */
+#define decFloatFromBCD decQuadFromBCD
+#define decFloatFromInt32 decQuadFromInt32
+#define decFloatFromPacked decQuadFromPacked
+#define decFloatFromString decQuadFromString
+#define decFloatFromUInt32 decQuadFromUInt32
+#define decFloatFromWider decQuadFromWider
+#define decFloatGetCoefficient decQuadGetCoefficient
+#define decFloatGetExponent decQuadGetExponent
+#define decFloatSetCoefficient decQuadSetCoefficient
+#define decFloatSetExponent decQuadSetExponent
+#define decFloatShow decQuadShow
+#define decFloatToBCD decQuadToBCD
+#define decFloatToEngString decQuadToEngString
+#define decFloatToInt32 decQuadToInt32
+#define decFloatToInt32Exact decQuadToInt32Exact
+#define decFloatToPacked decQuadToPacked
+#define decFloatToString decQuadToString
+#define decFloatToUInt32 decQuadToUInt32
+#define decFloatToUInt32Exact decQuadToUInt32Exact
+#define decFloatToWider decQuadToWider
+#define decFloatZero decQuadZero
+
+/* Computational (result is a decFloat) */
+#define decFloatAbs decQuadAbs
+#define decFloatAdd decQuadAdd
+#define decFloatAnd decQuadAnd
+#define decFloatDivide decQuadDivide
+#define decFloatDivideInteger decQuadDivideInteger
+#define decFloatFMA decQuadFMA
+#define decFloatInvert decQuadInvert
+#define decFloatLogB decQuadLogB
+#define decFloatMax decQuadMax
+#define decFloatMaxMag decQuadMaxMag
+#define decFloatMin decQuadMin
+#define decFloatMinMag decQuadMinMag
+#define decFloatMinus decQuadMinus
+#define decFloatMultiply decQuadMultiply
+#define decFloatNextMinus decQuadNextMinus
+#define decFloatNextPlus decQuadNextPlus
+#define decFloatNextToward decQuadNextToward
+#define decFloatOr decQuadOr
+#define decFloatPlus decQuadPlus
+#define decFloatQuantize decQuadQuantize
+#define decFloatReduce decQuadReduce
+#define decFloatRemainder decQuadRemainder
+#define decFloatRemainderNear decQuadRemainderNear
+#define decFloatRotate decQuadRotate
+#define decFloatScaleB decQuadScaleB
+#define decFloatShift decQuadShift
+#define decFloatSubtract decQuadSubtract
+#define decFloatToIntegralValue decQuadToIntegralValue
+#define decFloatToIntegralExact decQuadToIntegralExact
+#define decFloatXor decQuadXor
+
+/* Comparisons */
+#define decFloatCompare decQuadCompare
+#define decFloatCompareSignal decQuadCompareSignal
+#define decFloatCompareTotal decQuadCompareTotal
+#define decFloatCompareTotalMag decQuadCompareTotalMag
+
+/* Copies */
+#define decFloatCanonical decQuadCanonical
+#define decFloatCopy decQuadCopy
+#define decFloatCopyAbs decQuadCopyAbs
+#define decFloatCopyNegate decQuadCopyNegate
+#define decFloatCopySign decQuadCopySign
+
+/* Non-computational */
+#define decFloatClass decQuadClass
+#define decFloatClassString decQuadClassString
+#define decFloatDigits decQuadDigits
+#define decFloatIsCanonical decQuadIsCanonical
+#define decFloatIsFinite decQuadIsFinite
+#define decFloatIsInfinite decQuadIsInfinite
+#define decFloatIsInteger decQuadIsInteger
+#define decFloatIsNaN decQuadIsNaN
+#define decFloatIsNormal decQuadIsNormal
+#define decFloatIsSignaling decQuadIsSignaling
+#define decFloatIsSignalling decQuadIsSignalling
+#define decFloatIsSigned decQuadIsSigned
+#define decFloatIsSubnormal decQuadIsSubnormal
+#define decFloatIsZero decQuadIsZero
+#define decFloatRadix decQuadRadix
+#define decFloatSameQuantum decQuadSameQuantum
+#define decFloatVersion decQuadVersion
+
+
+#include "decNumberLocal.h" /* local includes (need DECPMAX) */
+#include "decCommon.c" /* non-arithmetic decFloat routines */
+#include "decBasic.c" /* basic formats routines */
+
diff --git a/libdecnumber/decQuad.h b/libdecnumber/decQuad.h
new file mode 100644
index 00000000000..39f75d33e3a
--- /dev/null
+++ b/libdecnumber/decQuad.h
@@ -0,0 +1,186 @@
+/* decQuad module header for the decNumber C Library.
+ Copyright (C) 2007 Free Software Foundation, Inc.
+ Contributed by IBM Corporation. Author Mike Cowlishaw.
+
+ This file is part of GCC.
+
+ GCC is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License as published by the Free
+ Software Foundation; either version 2, or (at your option) any later
+ version.
+
+ In addition to the permissions in the GNU General Public License,
+ the Free Software Foundation gives you unlimited permission to link
+ the compiled version of this file into combinations with other
+ programs, and to distribute those combinations without any
+ restriction coming from the use of this file. (The General Public
+ License restrictions do apply in other respects; for example, they
+ cover modification of the file, and distribution when not linked
+ into a combine executable.)
+
+ GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with GCC; see the file COPYING. If not, write to the Free
+ Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
+ 02110-1301, USA. */
+
+/* ------------------------------------------------------------------ */
+/* decQuad.h -- Decimal 128-bit format module header */
+/* ------------------------------------------------------------------ */
+/* Please see decFloats.h for an overview and documentation details. */
+/* ------------------------------------------------------------------ */
+/* This include file is always included by decSingle and decDouble, */
+/* and therefore also holds useful constants used by all three. */
+
+#if !defined(DECQUAD)
+ #define DECQUAD
+
+ #define DECQUADNAME "decimalQuad" /* Short name */
+ #define DECQUADTITLE "Decimal 128-bit datum" /* Verbose name */
+ #define DECQUADAUTHOR "Mike Cowlishaw" /* Who to blame */
+
+ /* parameters for decQuads */
+ #define DECQUAD_Bytes 16 /* length */
+ #define DECQUAD_Pmax 34 /* maximum precision (digits) */
+ #define DECQUAD_Emin -6143 /* minimum adjusted exponent */
+ #define DECQUAD_Emax 6144 /* maximum adjusted exponent */
+ #define DECQUAD_EmaxD 4 /* maximum exponent digits */
+ #define DECQUAD_Bias 6176 /* bias for the exponent */
+ #define DECQUAD_String 43 /* maximum string length, +1 */
+ #define DECQUAD_EconL 12 /* exponent continuation length */
+ #define DECQUAD_Declets 11 /* count of declets */
+ /* highest biased exponent (Elimit-1) */
+ #define DECQUAD_Ehigh (DECQUAD_Emax + DECQUAD_Bias - (DECQUAD_Pmax-1))
+
+ /* Required include */
+ #include "decContext.h"
+
+ /* The decQuad decimal 128-bit type, accessible by bytes */
+ typedef struct {
+ uint8_t bytes[DECQUAD_Bytes]; /* fields: 1, 5, 12, 110 bits */
+ } decQuad;
+
+ /* ---------------------------------------------------------------- */
+ /* Shared constants */
+ /* ---------------------------------------------------------------- */
+
+ /* sign and special values [top 32-bits; last two bits are don't-care
+ for Infinity on input, last bit don't-care for NaNs] */
+ #define DECFLOAT_Sign 0x80000000 /* 1 00000 00 Sign */
+ #define DECFLOAT_NaN 0x7c000000 /* 0 11111 00 NaN generic */
+ #define DECFLOAT_qNaN 0x7c000000 /* 0 11111 00 qNaN */
+ #define DECFLOAT_sNaN 0x7e000000 /* 0 11111 10 sNaN */
+ #define DECFLOAT_Inf 0x78000000 /* 0 11110 00 Infinity */
+ #define DECFLOAT_MinSp 0x78000000 /* minimum special value */
+ /* [specials are all >=MinSp] */
+ /* Sign nibble constants */
+ #if !defined(DECPPLUSALT)
+ #define DECPPLUSALT 0x0A /* alternate plus nibble */
+ #define DECPMINUSALT 0x0B /* alternate minus nibble */
+ #define DECPPLUS 0x0C /* preferred plus nibble */
+ #define DECPMINUS 0x0D /* preferred minus nibble */
+ #define DECPPLUSALT2 0x0E /* alternate plus nibble */
+ #define DECPUNSIGNED 0x0F /* alternate plus nibble (unsigned) */
+ #endif
+
+ /* ---------------------------------------------------------------- */
+ /* Routines -- implemented as decFloat routines in common files */
+ /* ---------------------------------------------------------------- */
+
+ #include "decQuadSymbols.h"
+
+ /* Utilities and conversions, extractors, etc.) */
+ extern decQuad * decQuadFromBCD(decQuad *, int32_t, const uint8_t *, int32_t);
+ extern decQuad * decQuadFromInt32(decQuad *, int32_t);
+ extern decQuad * decQuadFromPacked(decQuad *, int32_t, const uint8_t *);
+ extern decQuad * decQuadFromString(decQuad *, const char *, decContext *);
+ extern decQuad * decQuadFromUInt32(decQuad *, uint32_t);
+ extern int32_t decQuadGetCoefficient(const decQuad *, uint8_t *);
+ extern int32_t decQuadGetExponent(const decQuad *);
+ extern decQuad * decQuadSetCoefficient(decQuad *, const uint8_t *, int32_t);
+ extern decQuad * decQuadSetExponent(decQuad *, decContext *, int32_t);
+ extern void decQuadShow(const decQuad *, const char *);
+ extern int32_t decQuadToBCD(const decQuad *, int32_t *, uint8_t *);
+ extern char * decQuadToEngString(const decQuad *, char *);
+ extern int32_t decQuadToInt32(const decQuad *, decContext *, enum rounding);
+ extern int32_t decQuadToInt32Exact(const decQuad *, decContext *, enum rounding);
+ extern int32_t decQuadToPacked(const decQuad *, int32_t *, uint8_t *);
+ extern char * decQuadToString(const decQuad *, char *);
+ extern uint32_t decQuadToUInt32(const decQuad *, decContext *, enum rounding);
+ extern uint32_t decQuadToUInt32Exact(const decQuad *, decContext *, enum rounding);
+ extern decQuad * decQuadZero(decQuad *);
+
+ /* Computational (result is a decQuad) */
+ extern decQuad * decQuadAbs(decQuad *, const decQuad *, decContext *);
+ extern decQuad * decQuadAdd(decQuad *, const decQuad *, const decQuad *, decContext *);
+ extern decQuad * decQuadAnd(decQuad *, const decQuad *, const decQuad *, decContext *);
+ extern decQuad * decQuadDivide(decQuad *, const decQuad *, const decQuad *, decContext *);
+ extern decQuad * decQuadDivideInteger(decQuad *, const decQuad *, const decQuad *, decContext *);
+ extern decQuad * decQuadFMA(decQuad *, const decQuad *, const decQuad *, const decQuad *, decContext *);
+ extern decQuad * decQuadInvert(decQuad *, const decQuad *, decContext *);
+ extern decQuad * decQuadLogB(decQuad *, const decQuad *, decContext *);
+ extern decQuad * decQuadMax(decQuad *, const decQuad *, const decQuad *, decContext *);
+ extern decQuad * decQuadMaxMag(decQuad *, const decQuad *, const decQuad *, decContext *);
+ extern decQuad * decQuadMin(decQuad *, const decQuad *, const decQuad *, decContext *);
+ extern decQuad * decQuadMinMag(decQuad *, const decQuad *, const decQuad *, decContext *);
+ extern decQuad * decQuadMinus(decQuad *, const decQuad *, decContext *);
+ extern decQuad * decQuadMultiply(decQuad *, const decQuad *, const decQuad *, decContext *);
+ extern decQuad * decQuadNextMinus(decQuad *, const decQuad *, decContext *);
+ extern decQuad * decQuadNextPlus(decQuad *, const decQuad *, decContext *);
+ extern decQuad * decQuadNextToward(decQuad *, const decQuad *, const decQuad *, decContext *);
+ extern decQuad * decQuadOr(decQuad *, const decQuad *, const decQuad *, decContext *);
+ extern decQuad * decQuadPlus(decQuad *, const decQuad *, decContext *);
+ extern decQuad * decQuadQuantize(decQuad *, const decQuad *, const decQuad *, decContext *);
+ extern decQuad * decQuadReduce(decQuad *, const decQuad *, decContext *);
+ extern decQuad * decQuadRemainder(decQuad *, const decQuad *, const decQuad *, decContext *);
+ extern decQuad * decQuadRemainderNear(decQuad *, const decQuad *, const decQuad *, decContext *);
+ extern decQuad * decQuadRotate(decQuad *, const decQuad *, const decQuad *, decContext *);
+ extern decQuad * decQuadScaleB(decQuad *, const decQuad *, const decQuad *, decContext *);
+ extern decQuad * decQuadShift(decQuad *, const decQuad *, const decQuad *, decContext *);
+ extern decQuad * decQuadSubtract(decQuad *, const decQuad *, const decQuad *, decContext *);
+ extern decQuad * decQuadToIntegralValue(decQuad *, const decQuad *, decContext *, enum rounding);
+ extern decQuad * decQuadToIntegralExact(decQuad *, const decQuad *, decContext *);
+ extern decQuad * decQuadXor(decQuad *, const decQuad *, const decQuad *, decContext *);
+
+ /* Comparisons */
+ extern decQuad * decQuadCompare(decQuad *, const decQuad *, const decQuad *, decContext *);
+ extern decQuad * decQuadCompareSignal(decQuad *, const decQuad *, const decQuad *, decContext *);
+ extern decQuad * decQuadCompareTotal(decQuad *, const decQuad *, const decQuad *);
+ extern decQuad * decQuadCompareTotalMag(decQuad *, const decQuad *, const decQuad *);
+
+ /* Copies */
+ extern decQuad * decQuadCanonical(decQuad *, const decQuad *);
+ extern decQuad * decQuadCopy(decQuad *, const decQuad *);
+ extern decQuad * decQuadCopyAbs(decQuad *, const decQuad *);
+ extern decQuad * decQuadCopyNegate(decQuad *, const decQuad *);
+ extern decQuad * decQuadCopySign(decQuad *, const decQuad *, const decQuad *);
+
+ /* Non-computational */
+ extern enum decClass decQuadClass(const decQuad *);
+ extern const char * decQuadClassString(const decQuad *);
+ extern uint32_t decQuadDigits(const decQuad *);
+ extern uint32_t decQuadIsCanonical(const decQuad *);
+ extern uint32_t decQuadIsFinite(const decQuad *);
+ extern uint32_t decQuadIsInteger(const decQuad *);
+ extern uint32_t decQuadIsInfinite(const decQuad *);
+ extern uint32_t decQuadIsNaN(const decQuad *);
+ extern uint32_t decQuadIsNormal(const decQuad *);
+ extern uint32_t decQuadIsSignaling(const decQuad *);
+ extern uint32_t decQuadIsSignalling(const decQuad *);
+ extern uint32_t decQuadIsSigned(const decQuad *);
+ extern uint32_t decQuadIsSubnormal(const decQuad *);
+ extern uint32_t decQuadIsZero(const decQuad *);
+ extern uint32_t decQuadRadix(const decQuad *);
+ extern uint32_t decQuadSameQuantum(const decQuad *, const decQuad *);
+ extern const char * decQuadVersion(void);
+
+ /* decNumber conversions; these are implemented as macros so as not */
+ /* to force a dependency on decimal128 and decNumber in decQuad. */
+ #define decQuadToNumber(dq, dn) decimal128ToNumber((decimal128 *)(dq), dn)
+ #define decQuadFromNumber(dq, dn, set) (decQuad *)decimal128FromNumber((decimal128 *)(dq), dn, set)
+
+#endif
diff --git a/libdecnumber/decQuadSymbols.h b/libdecnumber/decQuadSymbols.h
new file mode 100644
index 00000000000..5f614d40dc4
--- /dev/null
+++ b/libdecnumber/decQuadSymbols.h
@@ -0,0 +1,82 @@
+#if !defined(DECQUADSYMBOLS)
+#define DECQUADSYMBOLS
+
+#ifdef IN_LIBGCC2
+#define decQuadAbs __decQuadAbs
+#define decQuadAdd __decQuadAdd
+#define decQuadAnd __decQuadAnd
+#define decQuadCanonical __decQuadCanonical
+#define decQuadClass __decQuadClass
+#define decQuadClassString __decQuadClassString
+#define decQuadCompare __decQuadCompare
+#define decQuadCompareSignal __decQuadCompareSignal
+#define decQuadCompareTotal __decQuadCompareTotal
+#define decQuadCompareTotalMag __decQuadCompareTotalMag
+#define decQuadCopy __decQuadCopy
+#define decQuadCopyAbs __decQuadCopyAbs
+#define decQuadCopyNegate __decQuadCopyNegate
+#define decQuadCopySign __decQuadCopySign
+#define decQuadDigits __decQuadDigits
+#define decQuadDivide __decQuadDivide
+#define decQuadDivideInteger __decQuadDivideInteger
+#define decQuadFMA __decQuadFMA
+#define decQuadFromBCD __decQuadFromBCD
+#define decQuadFromInt32 __decQuadFromInt32
+#define decQuadFromPacked __decQuadFromPacked
+#define decQuadFromString __decQuadFromString
+#define decQuadFromUInt32 __decQuadFromUInt32
+#define decQuadGetCoefficient __decQuadGetCoefficient
+#define decQuadGetExponent __decQuadGetExponent
+#define decQuadInvert __decQuadInvert
+#define decQuadIsCanonical __decQuadIsCanonical
+#define decQuadIsFinite __decQuadIsFinite
+#define decQuadIsInfinite __decQuadIsInfinite
+#define decQuadIsInteger __decQuadIsInteger
+#define decQuadIsNaN __decQuadIsNaN
+#define decQuadIsNormal __decQuadIsNormal
+#define decQuadIsSignaling __decQuadIsSignaling
+#define decQuadIsSignalling __decQuadIsSignalling
+#define decQuadIsSigned __decQuadIsSigned
+#define decQuadIsSubnormal __decQuadIsSubnormal
+#define decQuadIsZero __decQuadIsZero
+#define decQuadLogB __decQuadLogB
+#define decQuadMax __decQuadMax
+#define decQuadMaxMag __decQuadMaxMag
+#define decQuadMin __decQuadMin
+#define decQuadMinMag __decQuadMinMag
+#define decQuadMinus __decQuadMinus
+#define decQuadMultiply __decQuadMultiply
+#define decQuadNextMinus __decQuadNextMinus
+#define decQuadNextPlus __decQuadNextPlus
+#define decQuadNextToward __decQuadNextToward
+#define decQuadOr __decQuadOr
+#define decQuadPlus __decQuadPlus
+#define decQuadQuantize __decQuadQuantize
+#define decQuadRadix __decQuadRadix
+#define decQuadReduce __decQuadReduce
+#define decQuadRemainder __decQuadRemainder
+#define decQuadRemainderNear __decQuadRemainderNear
+#define decQuadRotate __decQuadRotate
+#define decQuadSameQuantum __decQuadSameQuantum
+#define decQuadScaleB __decQuadScaleB
+#define decQuadSetCoefficient __decQuadSetCoefficient
+#define decQuadSetExponent __decQuadSetExponent
+#define decQuadShift __decQuadShift
+#define decQuadShow __decQuadShow
+#define decQuadSubtract __decQuadSubtract
+#define decQuadToBCD __decQuadToBCD
+#define decQuadToEngString __decQuadToEngString
+#define decQuadToInt32 __decQuadToInt32
+#define decQuadToInt32Exact __decQuadToInt32Exact
+#define decQuadToIntegralExact __decQuadToIntegralExact
+#define decQuadToIntegralValue __decQuadToIntegralValue
+#define decQuadToPacked __decQuadToPacked
+#define decQuadToString __decQuadToString
+#define decQuadToUInt32 __decQuadToUInt32
+#define decQuadToUInt32Exact __decQuadToUInt32Exact
+#define decQuadVersion __decQuadVersion
+#define decQuadXor __decQuadXor
+#define decQuadZero __decQuadZero
+#endif
+
+#endif
diff --git a/libdecnumber/decSingle.c b/libdecnumber/decSingle.c
new file mode 100644
index 00000000000..112395970fe
--- /dev/null
+++ b/libdecnumber/decSingle.c
@@ -0,0 +1,85 @@
+/* decSingle module for the decNumber C Library.
+ Copyright (C) 2007 Free Software Foundation, Inc.
+ Contributed by IBM Corporation. Author Mike Cowlishaw.
+
+ This file is part of GCC.
+
+ GCC is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License as published by the Free
+ Software Foundation; either version 2, or (at your option) any later
+ version.
+
+ In addition to the permissions in the GNU General Public License,
+ the Free Software Foundation gives you unlimited permission to link
+ the compiled version of this file into combinations with other
+ programs, and to distribute those combinations without any
+ restriction coming from the use of this file. (The General Public
+ License restrictions do apply in other respects; for example, they
+ cover modification of the file, and distribution when not linked
+ into a combine executable.)
+
+ GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with GCC; see the file COPYING. If not, write to the Free
+ Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
+ 02110-1301, USA. */
+
+/* ------------------------------------------------------------------ */
+/* decSingle.c -- decSingle operations module */
+/* ------------------------------------------------------------------ */
+/* This module comprises decSingle operations (including conversions) */
+/* ------------------------------------------------------------------ */
+
+#include "decContext.h" /* public includes */
+#include "decSingle.h" /* public includes */
+
+/* Constant mappings for shared code */
+#define DECPMAX DECSINGLE_Pmax
+#define DECEMIN DECSINGLE_Emin
+#define DECEMAX DECSINGLE_Emax
+#define DECEMAXD DECSINGLE_EmaxD
+#define DECBYTES DECSINGLE_Bytes
+#define DECSTRING DECSINGLE_String
+#define DECECONL DECSINGLE_EconL
+#define DECBIAS DECSINGLE_Bias
+#define DECLETS DECSINGLE_Declets
+#define DECQTINY (-DECSINGLE_Bias)
+/* parameters of next-wider format */
+#define DECWBYTES DECDOUBLE_Bytes
+#define DECWPMAX DECDOUBLE_Pmax
+#define DECWECONL DECDOUBLE_EconL
+#define DECWBIAS DECDOUBLE_Bias
+
+/* Type and function mappings for shared code */
+#define decFloat decSingle /* Type name */
+#define decFloatWider decDouble /* Type name */
+
+/* Utility (binary results, extractors, etc.) */
+#define decFloatFromBCD decSingleFromBCD
+#define decFloatFromPacked decSingleFromPacked
+#define decFloatFromString decSingleFromString
+#define decFloatFromWider decSingleFromWider
+#define decFloatGetCoefficient decSingleGetCoefficient
+#define decFloatGetExponent decSingleGetExponent
+#define decFloatSetCoefficient decSingleSetCoefficient
+#define decFloatSetExponent decSingleSetExponent
+#define decFloatShow decSingleShow
+#define decFloatToBCD decSingleToBCD
+#define decFloatToEngString decSingleToEngString
+#define decFloatToPacked decSingleToPacked
+#define decFloatToString decSingleToString
+#define decFloatToWider decSingleToWider
+#define decFloatZero decSingleZero
+
+/* Non-computational */
+#define decFloatRadix decSingleRadix
+#define decFloatVersion decSingleVersion
+
+#include "decNumberLocal.h" /* local includes (need DECPMAX) */
+#include "decCommon.c" /* non-basic decFloat routines */
+/* [Do not include decBasic.c for decimal32] */
+
diff --git a/libdecnumber/decSingle.h b/libdecnumber/decSingle.h
new file mode 100644
index 00000000000..8dd1bd38ac0
--- /dev/null
+++ b/libdecnumber/decSingle.h
@@ -0,0 +1,101 @@
+/* decSingle module header for the decNumber C Library.
+ Copyright (C) 2005 Free Software Foundation, Inc.
+ Contributed by IBM Corporation. Author Mike Cowlishaw.
+
+ This file is part of GCC.
+
+ GCC is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License as published by the Free
+ Software Foundation; either version 2, or (at your option) any later
+ version.
+
+ In addition to the permissions in the GNU General Public License,
+ the Free Software Foundation gives you unlimited permission to link
+ the compiled version of this file into combinations with other
+ programs, and to distribute those combinations without any
+ restriction coming from the use of this file. (The General Public
+ License restrictions do apply in other respects; for example, they
+ cover modification of the file, and distribution when not linked
+ into a combine executable.)
+
+ GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with GCC; see the file COPYING. If not, write to the Free
+ Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
+ 02110-1301, USA. */
+
+/* ------------------------------------------------------------------ */
+/* decSingle.h -- Decimal 32-bit format module header */
+/* ------------------------------------------------------------------ */
+/* Please see decFloats.h for an overview and documentation details. */
+/* ------------------------------------------------------------------ */
+
+#if !defined(DECSINGLE)
+ #define DECSINGLE
+
+ #define DECSINGLENAME "decSingle" /* Short name */
+ #define DECSINGLETITLE "Decimal 32-bit datum" /* Verbose name */
+ #define DECSINGLEAUTHOR "Mike Cowlishaw" /* Who to blame */
+
+ /* parameters for decSingles */
+ #define DECSINGLE_Bytes 4 /* length */
+ #define DECSINGLE_Pmax 7 /* maximum precision (digits) */
+ #define DECSINGLE_Emin -95 /* minimum adjusted exponent */
+ #define DECSINGLE_Emax 96 /* maximum adjusted exponent */
+ #define DECSINGLE_EmaxD 3 /* maximum exponent digits */
+ #define DECSINGLE_Bias 101 /* bias for the exponent */
+ #define DECSINGLE_String 16 /* maximum string length, +1 */
+ #define DECSINGLE_EconL 6 /* exponent continuation length */
+ #define DECSINGLE_Declets 2 /* count of declets */
+ /* highest biased exponent (Elimit-1) */
+ #define DECSINGLE_Ehigh (DECSINGLE_Emax + DECSINGLE_Bias - (DECSINGLE_Pmax-1))
+
+ /* Required includes */
+ #include "decContext.h"
+ #include "decQuad.h"
+ #include "decDouble.h"
+
+ /* The decSingle decimal 32-bit type, accessible by bytes */
+ typedef struct {
+ uint8_t bytes[DECSINGLE_Bytes]; /* fields: 1, 5, 6, 20 bits */
+ } decSingle;
+
+ /* ---------------------------------------------------------------- */
+ /* Routines -- implemented as decFloat routines in common files */
+ /* ---------------------------------------------------------------- */
+
+ #include "decSingleSymbols.h"
+
+ /* Utilities (binary argument(s) or result, extractors, etc.) */
+ extern decSingle * decSingleFromBCD(decSingle *, int32_t, const uint8_t *, int32_t);
+ extern decSingle * decSingleFromPacked(decSingle *, int32_t, const uint8_t *);
+ extern decSingle * decSingleFromString(decSingle *, const char *, decContext *);
+ extern decSingle * decSingleFromWider(decSingle *, const decDouble *, decContext *);
+ extern int32_t decSingleGetCoefficient(const decSingle *, uint8_t *);
+ extern int32_t decSingleGetExponent(const decSingle *);
+ extern decSingle * decSingleSetCoefficient(decSingle *, const uint8_t *, int32_t);
+ extern decSingle * decSingleSetExponent(decSingle *, decContext *, int32_t);
+ extern void decSingleShow(const decSingle *, const char *);
+ extern int32_t decSingleToBCD(const decSingle *, int32_t *, uint8_t *);
+ extern char * decSingleToEngString(const decSingle *, char *);
+ extern int32_t decSingleToPacked(const decSingle *, int32_t *, uint8_t *);
+ extern char * decSingleToString(const decSingle *, char *);
+ extern decDouble * decSingleToWider(const decSingle *, decDouble *);
+ extern decSingle * decSingleZero(decSingle *);
+
+ /* (No Arithmetic routines for decSingle) */
+
+ /* Non-computational */
+ extern uint32_t decSingleRadix(const decSingle *);
+ extern const char * decSingleVersion(void);
+
+ /* decNumber conversions; these are implemented as macros so as not */
+ /* to force a dependency on decimal32 and decNumber in decSingle. */
+ #define decSingleToNumber(dq, dn) decimal32ToNumber((decimal32 *)(dq), dn)
+ #define decSingleFromNumber(dq, dn, set) (decSingle *)decimal32FromNumber((decimal32 *)(dq), dn, set)
+
+#endif
diff --git a/libdecnumber/decSingleSymbols.h b/libdecnumber/decSingleSymbols.h
new file mode 100644
index 00000000000..6eee0e5cbbc
--- /dev/null
+++ b/libdecnumber/decSingleSymbols.h
@@ -0,0 +1,24 @@
+#if !defined(DECSINGLESYMBOLS)
+#define DECSINGLESYMBOLS
+
+#ifdef IN_LIBGCC2
+#define decSingleFromBCD __decSingleFromBCD
+#define decSingleFromPacked __decSingleFromPacked
+#define decSingleFromString __decSingleFromString
+#define decSingleFromWider __decSingleFromWider
+#define decSingleGetCoefficient __decSingleGetCoefficient
+#define decSingleGetExponent __decSingleGetExponent
+#define decSingleRadix __decSingleRadix
+#define decSingleSetCoefficient __decSingleSetCoefficient
+#define decSingleSetExponent __decSingleSetExponent
+#define decSingleShow __decSingleShow
+#define decSingleToBCD __decSingleToBCD
+#define decSingleToEngString __decSingleToEngString
+#define decSingleToPacked __decSingleToPacked
+#define decSingleToString __decSingleToString
+#define decSingleToWider __decSingleToWider
+#define decSingleVersion __decSingleVersion
+#define decSingleZero __decSingleZero
+#endif
+
+#endif
diff --git a/libdecnumber/decUtility.c b/libdecnumber/decUtility.c
deleted file mode 100644
index 2cbed947ba7..00000000000
--- a/libdecnumber/decUtility.c
+++ /dev/null
@@ -1,360 +0,0 @@
-/* Utility functions for decimal floating point support via decNumber.
- Copyright (C) 2005 Free Software Foundation, Inc.
- Contributed by IBM Corporation. Author Mike Cowlishaw.
-
- This file is part of GCC.
-
- GCC is free software; you can redistribute it and/or modify it under
- the terms of the GNU General Public License as published by the Free
- Software Foundation; either version 2, or (at your option) any later
- version.
-
- In addition to the permissions in the GNU General Public License,
- the Free Software Foundation gives you unlimited permission to link
- the compiled version of this file into combinations with other
- programs, and to distribute those combinations without any
- restriction coming from the use of this file. (The General Public
- License restrictions do apply in other respects; for example, they
- cover modification of the file, and distribution when not linked
- into a combine executable.)
-
- GCC is distributed in the hope that it will be useful, but WITHOUT ANY
- WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
- for more details.
-
- You should have received a copy of the GNU General Public License
- along with GCC; see the file COPYING. If not, write to the Free
- Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
- 02110-1301, USA. */
-
-#include "config.h"
-#include "decNumber.h" /* base number library */
-#include "decNumberLocal.h" /* decNumber local types, etc. */
-#include "decUtility.h" /* utility routines */
-
-/* ================================================================== */
-/* Shared utility routines */
-/* ================================================================== */
-
-/* define and include the conversion tables to use */
-#define DEC_BIN2DPD 1 /* used for all sizes */
-#if DECDPUN==3
-#define DEC_DPD2BIN 1
-#else
-#define DEC_DPD2BCD 1
-#endif
-#include "decDPD.h" /* lookup tables */
-
-/* The maximum number of decNumberUnits we need for a working copy of */
-/* the units array is the ceiling of digits/DECDPUN, where digits is */
-/* the maximum number of digits in any of the formats for which this */
-/* is used. We do not want to include decimal128.h, so, as a very */
-/* special case, that number is defined here. */
-#define DECMAX754 34
-#define DECMAXUNITS ((DECMAX754+DECDPUN-1)/DECDPUN)
-
-/* ------------------------------------------------------------------ */
-/* decDensePackCoeff -- densely pack coefficient into DPD form */
-/* */
-/* dn is the source number (assumed valid, max DECMAX754 digits) */
-/* bytes is the target's byte array */
-/* len is length of target format's byte array */
-/* shift is the number of 0 digits to add on the right (normally 0) */
-/* */
-/* The coefficient must be known small enough to fit, and is filled */
-/* in from the right (least significant first). Note that the full */
-/* coefficient is copied, including the leading 'odd' digit. This */
-/* digit is retrieved and packed into the combination field by the */
-/* caller. */
-/* */
-/* shift is used for 'fold-down' padding. */
-/* */
-/* No error is possible. */
-/* ------------------------------------------------------------------ */
-void
-decDensePackCoeff (const decNumber * dn, uByte * bytes, Int len, Int shift)
-{
- Int cut; /* work */
- Int n; /* output bunch counter */
- Int digits = dn->digits; /* digit countdown */
- uInt dpd; /* densely packed decimal value */
- uInt bin; /* binary value 0-999 */
- uByte *bout; /* -> current output byte */
- const Unit *inu = dn->lsu; /* -> current input unit */
- Unit uar[DECMAXUNITS]; /* working copy of units, iff shifted */
-#if DECDPUN!=3 /* not fast path */
- Unit in; /* current input unit */
-#endif
-
- if (shift != 0)
- { /* shift towards most significant required */
- /* shift the units array to the left by pad digits and copy */
- /* [this code is a special case of decShiftToMost, which could */
- /* be used instead if exposed and the array were copied first] */
- Unit *target, *first; /* work */
- const Unit *source; /* work */
- uInt next = 0; /* work */
-
- source = dn->lsu + D2U (digits) - 1; /* where msu comes from */
- first = uar + D2U (digits + shift) - 1; /* where msu will end up */
- target = uar + D2U (digits) - 1 + D2U (shift); /* where upper part of first cut goes */
-
- cut = (DECDPUN - shift % DECDPUN) % DECDPUN;
- for (; source >= dn->lsu; source--, target--)
- {
- /* split the source Unit and accumulate remainder for next */
- uInt rem = *source % powers[cut];
- next += *source / powers[cut];
- if (target <= first)
- *target = (Unit) next; /* write to target iff valid */
- next = rem * powers[DECDPUN - cut]; /* save remainder for next Unit */
- }
- /* propagate remainder to one below and clear the rest */
- for (; target >= uar; target--)
- {
- *target = (Unit) next;
- next = 0;
- }
- digits += shift; /* add count (shift) of zeros added */
- inu = uar; /* use units in working array */
- }
-
- /* densely pack the coefficient into the byte array, starting from
- the right (optionally padded) */
- bout = &bytes[len - 1]; /* rightmost result byte for phase */
-
-#if DECDPUN!=3 /* not fast path */
- in = *inu; /* prime */
- cut = 0; /* at lowest digit */
- bin = 0; /* [keep compiler quiet] */
-#endif
-
- for (n = 0; digits > 0; n++)
- { /* each output bunch */
-#if DECDPUN==3 /* fast path, 3-at-a-time */
- bin = *inu; /* 3 ready for convert */
- digits -= 3; /* [may go negative] */
- inu++; /* may need another */
-
-#else /* must collect digit-by-digit */
- Unit dig; /* current digit */
- Int j; /* digit-in-bunch count */
- for (j = 0; j < 3; j++)
- {
-#if DECDPUN<=4
- Unit temp = (Unit) ((uInt) (in * 6554) >> 16);
- dig = (Unit) (in - X10 (temp));
- in = temp;
-#else
- dig = in % 10;
- in = in / 10;
-#endif
-
- if (j == 0)
- bin = dig;
- else if (j == 1)
- bin += X10 (dig);
- else /* j==2 */
- bin += X100 (dig);
-
- digits--;
- if (digits == 0)
- break; /* [also protects *inu below] */
- cut++;
- if (cut == DECDPUN)
- {
- inu++;
- in = *inu;
- cut = 0;
- }
- }
-#endif
- /* here we have 3 digits in bin, or have used all input digits */
-
- dpd = BIN2DPD[bin];
-
- /* write bunch (bcd) to byte array */
- switch (n & 0x03)
- { /* phase 0-3 */
- case 0:
- *bout = (uByte) dpd; /* [top 2 bits truncated] */
- bout--;
- *bout = (uByte) (dpd >> 8);
- break;
- case 1:
- *bout |= (uByte) (dpd << 2);
- bout--;
- *bout = (uByte) (dpd >> 6);
- break;
- case 2:
- *bout |= (uByte) (dpd << 4);
- bout--;
- *bout = (uByte) (dpd >> 4);
- break;
- case 3:
- *bout |= (uByte) (dpd << 6);
- bout--;
- *bout = (uByte) (dpd >> 2);
- bout--;
- break;
- } /* switch */
- } /* n bunches */
- return;
-}
-
-/* ------------------------------------------------------------------ */
-/* decDenseUnpackCoeff -- unpack a format's coefficient */
-/* */
-/* byte is the source's byte array */
-/* len is length of the source's byte array */
-/* dn is the target number, with 7, 16, or 34-digit space. */
-/* bunches is the count of DPD groups in the decNumber (2, 5, or 11)*/
-/* odd is 1 if there is a non-zero leading 10-bit group containing */
-/* a single digit, 0 otherwise */
-/* */
-/* (This routine works on a copy of the number, if necessary, where */
-/* an extra 10-bit group is prefixed to the coefficient continuation */
-/* to hold the most significant digit if the latter is non-0.) */
-/* */
-/* dn->digits is set, but not the sign or exponent. */
-/* No error is possible [the redundant 888 codes are allowed]. */
-/* ------------------------------------------------------------------ */
-void
-decDenseUnpackCoeff (const uByte * bytes, Int len, decNumber * dn,
- Int bunches, Int odd)
-{
- uInt dpd = 0; /* collector for 10 bits */
- Int n; /* counter */
- const uByte *bin; /* -> current input byte */
- Unit *uout = dn->lsu; /* -> current output unit */
- Unit out = 0; /* accumulator */
- Int cut = 0; /* power of ten in current unit */
- Unit *last = uout; /* will be unit containing msd */
-#if DECDPUN!=3
- uInt bcd; /* BCD result */
- uInt nibble; /* work */
-#endif
-
- /* Expand the densely-packed integer, right to left */
- bin = &bytes[len - 1]; /* next input byte to use */
- for (n = 0; n < bunches + odd; n++)
- { /* N bunches of 10 bits */
- /* assemble the 10 bits */
- switch (n & 0x03)
- { /* phase 0-3 */
- case 0:
- dpd = *bin;
- bin--;
- dpd |= (*bin & 0x03) << 8;
- break;
- case 1:
- dpd = (unsigned) *bin >> 2;
- bin--;
- dpd |= (*bin & 0x0F) << 6;
- break;
- case 2:
- dpd = (unsigned) *bin >> 4;
- bin--;
- dpd |= (*bin & 0x3F) << 4;
- break;
- case 3:
- dpd = (unsigned) *bin >> 6;
- bin--;
- dpd |= (*bin) << 2;
- bin--;
- break;
- } /*switch */
-
-#if DECDPUN==3
- if (dpd == 0)
- *uout = 0;
- else
- {
- *uout = DPD2BIN[dpd]; /* convert 10 bits to binary 0-999 */
- last = uout; /* record most significant unit */
- }
- uout++;
-
-#else /* DECDPUN!=3 */
- if (dpd == 0)
- { /* fastpath [e.g., leading zeros] */
- cut += 3;
- for (; cut >= DECDPUN;)
- {
- cut -= DECDPUN;
- *uout = out;
- uout++;
- out = 0;
- }
- continue;
- }
- bcd = DPD2BCD[dpd]; /* convert 10 bits to 12 bits BCD */
- /* now split the 3 BCD nibbles into bytes, and accumulate into units */
- /* If this is the last bunch and it is an odd one, we only have one */
- /* nibble to handle [extras could overflow a Unit] */
- nibble = bcd & 0x000f;
- if (nibble)
- {
- last = uout;
- out = (Unit) (out + nibble * powers[cut]);
- }
- cut++;
- if (cut == DECDPUN)
- {
- *uout = out;
- uout++;
- cut = 0;
- out = 0;
- }
- if (n < bunches)
- {
- nibble = bcd & 0x00f0;
- if (nibble)
- {
- nibble >>= 4;
- last = uout;
- out = (Unit) (out + nibble * powers[cut]);
- }
- cut++;
- if (cut == DECDPUN)
- {
- *uout = out;
- uout++;
- cut = 0;
- out = 0;
- }
- nibble = bcd & 0x0f00;
- if (nibble)
- {
- nibble >>= 8;
- last = uout;
- out = (Unit) (out + nibble * powers[cut]);
- }
- cut++;
- if (cut == DECDPUN)
- {
- *uout = out;
- uout++;
- cut = 0;
- out = 0;
- }
- }
-#endif
- } /* n */
- if (cut != 0)
- *uout = out; /* write out final unit */
-
- /* here, last points to the most significant unit with digits */
- /* we need to inspect it to get final digits count */
- dn->digits = (last - dn->lsu) * DECDPUN; /* floor of digits */
- for (cut = 0; cut < DECDPUN; cut++)
- {
- if (*last < powers[cut])
- break;
- dn->digits++;
- }
- if (dn->digits == 0)
- dn->digits++; /* zero has one digit */
- return;
-}
diff --git a/libdecnumber/dpd/decimal128.c b/libdecnumber/dpd/decimal128.c
index 92b4f618eff..6aa98b5a21d 100644
--- a/libdecnumber/dpd/decimal128.c
+++ b/libdecnumber/dpd/decimal128.c
@@ -1,5 +1,5 @@
-/* Decimal 128-bit format module from the decNumber C Library.
- Copyright (C) 2005 Free Software Foundation, Inc.
+/* Decimal 128-bit format module for the decNumber C Library.
+ Copyright (C) 2005, 2007 Free Software Foundation, Inc.
Contributed by IBM Corporation. Author Mike Cowlishaw.
This file is part of GCC.
@@ -29,26 +29,41 @@
02110-1301, USA. */
/* ------------------------------------------------------------------ */
+/* Decimal 128-bit format module */
+/* ------------------------------------------------------------------ */
/* This module comprises the routines for decimal128 format numbers. */
-/* Conversions are supplied to and from decNumber and String. */
-/* */
-/* No arithmetic routines are included; decNumber provides these. */
-/* */
-/* Error handling is the same as decNumber (qv.). */
+/* Conversions are supplied to and from decNumber and String. */
+/* */
+/* This is used when decNumber provides operations, either for all */
+/* operations or as a proxy between decNumber and decSingle. */
+/* */
+/* Error handling is the same as decNumber (qv.). */
/* ------------------------------------------------------------------ */
-#include <string.h> /* [for memset/memcpy] */
-#include <stdio.h> /* [for printf] */
+#include <string.h> /* [for memset/memcpy] */
+#include <stdio.h> /* [for printf] */
+
+#include "config.h" /* GCC definitions */
+#define DECNUMDIGITS 34 /* make decNumbers with space for 34 */
+#include "decNumber.h" /* base number library */
+#include "decNumberLocal.h" /* decNumber local types, etc. */
+#include "decimal128.h" /* our primary include */
-#define DECNUMDIGITS 34 /* we need decNumbers with space for 34 */
-#include "config.h"
-#include "decNumber.h" /* base number library */
-#include "decNumberLocal.h" /* decNumber local types, etc. */
-#include "decimal128.h" /* our primary include */
-#include "decUtility.h" /* utility routines */
+/* Utility routines and tables [in decimal64.c] */
+/* DPD2BIN and the reverse are renamed to prevent link-time conflict */
+/* if decQuad is also built in the same executable */
+#define DPD2BIN DPD2BINx
+#define BIN2DPD BIN2DPDx
+extern const uInt COMBEXP[32], COMBMSD[32];
+extern const uShort DPD2BIN[1024];
+extern const uShort BIN2DPD[1000]; /* [not used] */
+extern const uByte BIN2CHAR[4001];
+
+extern void decDigitsFromDPD(decNumber *, const uInt *, Int);
+extern void decDigitsToDPD(const decNumber *, uInt *, Int);
#if DECTRACE || DECCHECK
-void decimal128Show (const decimal128 *); /* for debug */
-void decNumberShow (const decNumber *); /* .. */
+void decimal128Show(const decimal128 *); /* for debug */
+extern void decNumberShow(const decNumber *); /* .. */
#endif
/* Useful macro */
@@ -56,292 +71,500 @@ void decNumberShow (const decNumber *); /* .. */
#define DEC_clear(d) memset(d, 0, sizeof(*d))
/* ------------------------------------------------------------------ */
-/* decimal128FromNumber -- convert decNumber to decimal128 */
-/* */
-/* ds is the target decimal128 */
-/* dn is the source number (assumed valid) */
-/* set is the context, used only for reporting errors */
-/* */
+/* decimal128FromNumber -- convert decNumber to decimal128 */
+/* */
+/* ds is the target decimal128 */
+/* dn is the source number (assumed valid) */
+/* set is the context, used only for reporting errors */
+/* */
/* The set argument is used only for status reporting and for the */
/* rounding mode (used if the coefficient is more than DECIMAL128_Pmax*/
-/* digits or an overflow is detected). If the exponent is out of the */
-/* valid range then Overflow or Underflow will be raised. */
-/* After Underflow a subnormal result is possible. */
-/* */
+/* digits or an overflow is detected). If the exponent is out of the */
+/* valid range then Overflow or Underflow will be raised. */
+/* After Underflow a subnormal result is possible. */
+/* */
/* DEC_Clamped is set if the number has to be 'folded down' to fit, */
/* by reducing its exponent and multiplying the coefficient by a */
/* power of ten, or if the exponent on a zero had to be clamped. */
/* ------------------------------------------------------------------ */
-decimal128 *
-decimal128FromNumber (decimal128 * d128, const decNumber * dn, decContext * set)
-{
- uInt status = 0; /* status accumulator */
- Int pad = 0; /* coefficient pad digits */
- decNumber dw; /* work */
- decContext dc; /* .. */
- uByte isneg = dn->bits & DECNEG; /* non-0 if original sign set */
- uInt comb, exp; /* work */
-
- /* If the number is finite, and has too many digits, or the exponent */
- /* could be out of range then we reduce the number under the */
- /* appropriate constraints */
- if (!(dn->bits & DECSPECIAL))
- { /* not a special value */
- Int ae = dn->exponent + dn->digits - 1; /* adjusted exponent */
- if (dn->digits > DECIMAL128_Pmax /* too many digits */
- || ae > DECIMAL128_Emax /* likely overflow */
- || ae < DECIMAL128_Emin)
- { /* likely underflow */
- decContextDefault (&dc, DEC_INIT_DECIMAL128); /* [no traps] */
- dc.round = set->round; /* use supplied rounding */
- decNumberPlus (&dw, dn, &dc); /* (round and check) */
- /* [this changes -0 to 0, but it will be restored below] */
- status |= dc.status; /* save status */
- dn = &dw; /* use the work number */
- }
- /* [this could have pushed number to Infinity or zero, so this */
- /* rounding must be done before we generate the decimal128] */
- }
+decimal128 * decimal128FromNumber(decimal128 *d128, const decNumber *dn,
+ decContext *set) {
+ uInt status=0; /* status accumulator */
+ Int ae; /* adjusted exponent */
+ decNumber dw; /* work */
+ decContext dc; /* .. */
+ uInt *pu; /* .. */
+ uInt comb, exp; /* .. */
+ uInt targar[4]={0,0,0,0}; /* target 128-bit */
+ #define targhi targar[3] /* name the word with the sign */
+ #define targmh targar[2] /* name the words */
+ #define targml targar[1] /* .. */
+ #define targlo targar[0] /* .. */
+
+ /* If the number has too many digits, or the exponent could be */
+ /* out of range then reduce the number under the appropriate */
+ /* constraints. This could push the number to Infinity or zero, */
+ /* so this check and rounding must be done before generating the */
+ /* decimal128] */
+ ae=dn->exponent+dn->digits-1; /* [0 if special] */
+ if (dn->digits>DECIMAL128_Pmax /* too many digits */
+ || ae>DECIMAL128_Emax /* likely overflow */
+ || ae<DECIMAL128_Emin) { /* likely underflow */
+ decContextDefault(&dc, DEC_INIT_DECIMAL128); /* [no traps] */
+ dc.round=set->round; /* use supplied rounding */
+ decNumberPlus(&dw, dn, &dc); /* (round and check) */
+ /* [this changes -0 to 0, so enforce the sign...] */
+ dw.bits|=dn->bits&DECNEG;
+ status=dc.status; /* save status */
+ dn=&dw; /* use the work number */
+ } /* maybe out of range */
- DEC_clear (d128); /* clean the target */
- if (dn->bits & DECSPECIAL)
- { /* a special value */
- uByte top; /* work */
- if (dn->bits & DECINF)
- top = DECIMAL_Inf;
- else
- { /* sNaN or qNaN */
- if ((*dn->lsu != 0 || dn->digits > 1) /* non-zero coefficient */
- && (dn->digits < DECIMAL128_Pmax))
- { /* coefficient fits */
- decDensePackCoeff (dn, d128->bytes, sizeof (d128->bytes), 0);
- }
- if (dn->bits & DECNAN)
- top = DECIMAL_NaN;
- else
- top = DECIMAL_sNaN;
+ if (dn->bits&DECSPECIAL) { /* a special value */
+ if (dn->bits&DECINF) targhi=DECIMAL_Inf<<24;
+ else { /* sNaN or qNaN */
+ if ((*dn->lsu!=0 || dn->digits>1) /* non-zero coefficient */
+ && (dn->digits<DECIMAL128_Pmax)) { /* coefficient fits */
+ decDigitsToDPD(dn, targar, 0);
}
- d128->bytes[0] = top;
- }
- else if (decNumberIsZero (dn))
- { /* a zero */
+ if (dn->bits&DECNAN) targhi|=DECIMAL_NaN<<24;
+ else targhi|=DECIMAL_sNaN<<24;
+ } /* a NaN */
+ } /* special */
+
+ else { /* is finite */
+ if (decNumberIsZero(dn)) { /* is a zero */
/* set and clamp exponent */
- if (dn->exponent < -DECIMAL128_Bias)
- {
- exp = 0;
- status |= DEC_Clamped;
+ if (dn->exponent<-DECIMAL128_Bias) {
+ exp=0; /* low clamp */
+ status|=DEC_Clamped;
}
- else
- {
- exp = dn->exponent + DECIMAL128_Bias; /* bias exponent */
- if (exp > DECIMAL128_Ehigh)
- { /* top clamp */
- exp = DECIMAL128_Ehigh;
- status |= DEC_Clamped;
- }
- }
- comb = (exp >> 9) & 0x18; /* combination field */
- d128->bytes[0] = (uByte) (comb << 2);
- exp &= 0xfff; /* remaining exponent bits */
- decimal128SetExpCon (d128, exp);
- }
- else
- { /* non-zero finite number */
- uInt msd; /* work */
-
- /* we have a dn that fits, but it may need to be padded */
- exp = (uInt) (dn->exponent + DECIMAL128_Bias); /* bias exponent */
-
- if (exp > DECIMAL128_Ehigh)
- { /* fold-down case */
- pad = exp - DECIMAL128_Ehigh;
- exp = DECIMAL128_Ehigh; /* [to maximum] */
- status |= DEC_Clamped;
+ else {
+ exp=dn->exponent+DECIMAL128_Bias; /* bias exponent */
+ if (exp>DECIMAL128_Ehigh) { /* top clamp */
+ exp=DECIMAL128_Ehigh;
+ status|=DEC_Clamped;
+ }
}
+ comb=(exp>>9) & 0x18; /* msd=0, exp top 2 bits .. */
+ }
+ else { /* non-zero finite number */
+ uInt msd; /* work */
+ Int pad=0; /* coefficient pad digits */
- decDensePackCoeff (dn, d128->bytes, sizeof (d128->bytes), pad);
+ /* the dn is known to fit, but it may need to be padded */
+ exp=(uInt)(dn->exponent+DECIMAL128_Bias); /* bias exponent */
+ if (exp>DECIMAL128_Ehigh) { /* fold-down case */
+ pad=exp-DECIMAL128_Ehigh;
+ exp=DECIMAL128_Ehigh; /* [to maximum] */
+ status|=DEC_Clamped;
+ }
+ /* [fastpath for common case is not a win, here] */
+ decDigitsToDPD(dn, targar, pad);
/* save and clear the top digit */
- msd = ((unsigned) d128->bytes[1] << 2) & 0x0c; /* top 2 bits */
- msd |= ((unsigned) d128->bytes[2] >> 6); /* low 2 bits */
- d128->bytes[1] &= 0xfc;
- d128->bytes[2] &= 0x3f;
+ msd=targhi>>14;
+ targhi&=0x00003fff;
/* create the combination field */
- if (msd >= 8)
- comb = 0x18 | (msd & 0x01) | ((exp >> 11) & 0x06);
- else
- comb = (msd & 0x07) | ((exp >> 9) & 0x18);
- d128->bytes[0] = (uByte) (comb << 2);
- exp &= 0xfff; /* remaining exponent bits */
- decimal128SetExpCon (d128, exp);
- }
+ if (msd>=8) comb=0x18 | ((exp>>11) & 0x06) | (msd & 0x01);
+ else comb=((exp>>9) & 0x18) | msd;
+ }
+ targhi|=comb<<26; /* add combination field .. */
+ targhi|=(exp&0xfff)<<14; /* .. and exponent continuation */
+ } /* finite */
- if (isneg)
- decimal128SetSign (d128, 1);
- if (status != 0)
- decContextSetStatus (set, status); /* pass on status */
+ if (dn->bits&DECNEG) targhi|=0x80000000; /* add sign bit */
+ /* now write to storage; this is endian */
+ pu=(uInt *)d128->bytes; /* overlay */
+ if (DECLITEND) {
+ pu[0]=targlo; /* directly store the low int */
+ pu[1]=targml; /* then the mid-low */
+ pu[2]=targmh; /* then the mid-high */
+ pu[3]=targhi; /* then the high int */
+ }
+ else {
+ pu[0]=targhi; /* directly store the high int */
+ pu[1]=targmh; /* then the mid-high */
+ pu[2]=targml; /* then the mid-low */
+ pu[3]=targlo; /* then the low int */
+ }
+
+ if (status!=0) decContextSetStatus(set, status); /* pass on status */
/* decimal128Show(d128); */
return d128;
-}
+ } /* decimal128FromNumber */
/* ------------------------------------------------------------------ */
-/* decimal128ToNumber -- convert decimal128 to decNumber */
-/* d128 is the source decimal128 */
-/* dn is the target number, with appropriate space */
-/* No error is possible. */
+/* decimal128ToNumber -- convert decimal128 to decNumber */
+/* d128 is the source decimal128 */
+/* dn is the target number, with appropriate space */
+/* No error is possible. */
/* ------------------------------------------------------------------ */
-decNumber *
-decimal128ToNumber (const decimal128 * d128, decNumber * dn)
-{
- uInt msd; /* coefficient MSD */
- decimal128 wk; /* working copy, if needed */
- uInt top = d128->bytes[0] & 0x7f; /* top byte, less sign bit */
- decNumberZero (dn); /* clean target */
- /* set the sign if negative */
- if (decimal128Sign (d128))
- dn->bits = DECNEG;
-
- if (top >= 0x78)
- { /* is a special */
- if ((top & 0x7c) == (DECIMAL_Inf & 0x7c))
- dn->bits |= DECINF;
- else if ((top & 0x7e) == (DECIMAL_NaN & 0x7e))
- dn->bits |= DECNAN;
- else
- dn->bits |= DECSNAN;
- msd = 0; /* no top digit */
+decNumber * decimal128ToNumber(const decimal128 *d128, decNumber *dn) {
+ uInt msd; /* coefficient MSD */
+ uInt exp; /* exponent top two bits */
+ uInt comb; /* combination field */
+ const uInt *pu; /* work */
+ Int need; /* .. */
+ uInt sourar[4]; /* source 128-bit */
+ #define sourhi sourar[3] /* name the word with the sign */
+ #define sourmh sourar[2] /* and the mid-high word */
+ #define sourml sourar[1] /* and the mod-low word */
+ #define sourlo sourar[0] /* and the lowest word */
+
+ /* load source from storage; this is endian */
+ pu=(const uInt *)d128->bytes; /* overlay */
+ if (DECLITEND) {
+ sourlo=pu[0]; /* directly load the low int */
+ sourml=pu[1]; /* then the mid-low */
+ sourmh=pu[2]; /* then the mid-high */
+ sourhi=pu[3]; /* then the high int */
}
- else
- { /* have a finite number */
- uInt comb = top >> 2; /* combination field */
- uInt exp; /* exponent */
-
- if (comb >= 0x18)
- {
- msd = 8 + (comb & 0x01);
- exp = (comb & 0x06) << 11; /* MSBs */
- }
- else
- {
- msd = comb & 0x07;
- exp = (comb & 0x18) << 9;
- }
- dn->exponent = exp + decimal128ExpCon (d128) - DECIMAL128_Bias; /* remove bias */
+ else {
+ sourhi=pu[0]; /* directly load the high int */
+ sourmh=pu[1]; /* then the mid-high */
+ sourml=pu[2]; /* then the mid-low */
+ sourlo=pu[3]; /* then the low int */
}
- /* get the coefficient, unless infinite */
- if (!(dn->bits & DECINF))
- {
- Int bunches = DECIMAL128_Pmax / 3; /* coefficient full bunches to convert */
- Int odd = 0; /* assume MSD is 0 (no odd bunch) */
- if (msd != 0)
- { /* coefficient has leading non-0 digit */
- /* make a copy of the decimal128, with an extra bunch which has */
- /* the top digit ready for conversion */
- wk = *d128; /* take a copy */
- wk.bytes[0] = 0; /* clear all but coecon */
- wk.bytes[1] = 0; /* .. */
- wk.bytes[2] &= 0x3f; /* .. */
- wk.bytes[1] |= (msd >> 2); /* and prefix MSD */
- wk.bytes[2] |= (msd << 6); /* .. */
- odd++; /* indicate the extra */
- d128 = &wk; /* use the work copy */
- }
- decDenseUnpackCoeff (d128->bytes, sizeof (d128->bytes), dn, bunches,
- odd);
+ comb=(sourhi>>26)&0x1f; /* combination field */
+
+ decNumberZero(dn); /* clean number */
+ if (sourhi&0x80000000) dn->bits=DECNEG; /* set sign if negative */
+
+ msd=COMBMSD[comb]; /* decode the combination field */
+ exp=COMBEXP[comb]; /* .. */
+
+ if (exp==3) { /* is a special */
+ if (msd==0) {
+ dn->bits|=DECINF;
+ return dn; /* no coefficient needed */
+ }
+ else if (sourhi&0x02000000) dn->bits|=DECSNAN;
+ else dn->bits|=DECNAN;
+ msd=0; /* no top digit */
+ }
+ else { /* is a finite number */
+ dn->exponent=(exp<<12)+((sourhi>>14)&0xfff)-DECIMAL128_Bias; /* unbiased */
}
+ /* get the coefficient */
+ sourhi&=0x00003fff; /* clean coefficient continuation */
+ if (msd) { /* non-zero msd */
+ sourhi|=msd<<14; /* prefix to coefficient */
+ need=12; /* process 12 declets */
+ }
+ else { /* msd=0 */
+ if (sourhi) need=11; /* declets to process */
+ else if (sourmh) need=10;
+ else if (sourml) need=7;
+ else if (sourlo) need=4;
+ else return dn; /* easy: coefficient is 0 */
+ } /*msd=0 */
+
+ decDigitsFromDPD(dn, sourar, need); /* process declets */
/* decNumberShow(dn); */
return dn;
-}
+ } /* decimal128ToNumber */
/* ------------------------------------------------------------------ */
-/* to-scientific-string -- conversion to numeric string */
-/* to-engineering-string -- conversion to numeric string */
-/* */
-/* decimal128ToString(d128, string); */
-/* decimal128ToEngString(d128, string); */
-/* */
-/* d128 is the decimal128 format number to convert */
-/* string is the string where the result will be laid out */
-/* */
-/* string must be at least 24 characters */
-/* */
-/* No error is possible, and no status can be set. */
+/* to-scientific-string -- conversion to numeric string */
+/* to-engineering-string -- conversion to numeric string */
+/* */
+/* decimal128ToString(d128, string); */
+/* decimal128ToEngString(d128, string); */
+/* */
+/* d128 is the decimal128 format number to convert */
+/* string is the string where the result will be laid out */
+/* */
+/* string must be at least 24 characters */
+/* */
+/* No error is possible, and no status can be set. */
/* ------------------------------------------------------------------ */
-char *
-decimal128ToString (const decimal128 * d128, char *string)
-{
- decNumber dn; /* work */
- decimal128ToNumber (d128, &dn);
- decNumberToString (&dn, string);
+char * decimal128ToEngString(const decimal128 *d128, char *string){
+ decNumber dn; /* work */
+ decimal128ToNumber(d128, &dn);
+ decNumberToEngString(&dn, string);
return string;
-}
-
-char *
-decimal128ToEngString (const decimal128 * d128, char *string)
-{
- decNumber dn; /* work */
- decimal128ToNumber (d128, &dn);
- decNumberToEngString (&dn, string);
+ } /* decimal128ToEngString */
+
+char * decimal128ToString(const decimal128 *d128, char *string){
+ uInt msd; /* coefficient MSD */
+ Int exp; /* exponent top two bits or full */
+ uInt comb; /* combination field */
+ char *cstart; /* coefficient start */
+ char *c; /* output pointer in string */
+ const uInt *pu; /* work */
+ char *s, *t; /* .. (source, target) */
+ Int dpd; /* .. */
+ Int pre, e; /* .. */
+ const uByte *u; /* .. */
+
+ uInt sourar[4]; /* source 128-bit */
+ #define sourhi sourar[3] /* name the word with the sign */
+ #define sourmh sourar[2] /* and the mid-high word */
+ #define sourml sourar[1] /* and the mod-low word */
+ #define sourlo sourar[0] /* and the lowest word */
+
+ /* load source from storage; this is endian */
+ pu=(const uInt *)d128->bytes; /* overlay */
+ if (DECLITEND) {
+ sourlo=pu[0]; /* directly load the low int */
+ sourml=pu[1]; /* then the mid-low */
+ sourmh=pu[2]; /* then the mid-high */
+ sourhi=pu[3]; /* then the high int */
+ }
+ else {
+ sourhi=pu[0]; /* directly load the high int */
+ sourmh=pu[1]; /* then the mid-high */
+ sourml=pu[2]; /* then the mid-low */
+ sourlo=pu[3]; /* then the low int */
+ }
+
+ c=string; /* where result will go */
+ if (((Int)sourhi)<0) *c++='-'; /* handle sign */
+
+ comb=(sourhi>>26)&0x1f; /* combination field */
+ msd=COMBMSD[comb]; /* decode the combination field */
+ exp=COMBEXP[comb]; /* .. */
+
+ if (exp==3) {
+ if (msd==0) { /* infinity */
+ strcpy(c, "Inf");
+ strcpy(c+3, "inity");
+ return string; /* easy */
+ }
+ if (sourhi&0x02000000) *c++='s'; /* sNaN */
+ strcpy(c, "NaN"); /* complete word */
+ c+=3; /* step past */
+ if (sourlo==0 && sourml==0 && sourmh==0
+ && (sourhi&0x0003ffff)==0) return string; /* zero payload */
+ /* otherwise drop through to add integer; set correct exp */
+ exp=0; msd=0; /* setup for following code */
+ }
+ else exp=(exp<<12)+((sourhi>>14)&0xfff)-DECIMAL128_Bias; /* unbiased */
+
+ /* convert 34 digits of significand to characters */
+ cstart=c; /* save start of coefficient */
+ if (msd) *c++='0'+(char)msd; /* non-zero most significant digit */
+
+ /* Now decode the declets. After extracting each one, it is */
+ /* decoded to binary and then to a 4-char sequence by table lookup; */
+ /* the 4-chars are a 1-char length (significant digits, except 000 */
+ /* has length 0). This allows us to left-align the first declet */
+ /* with non-zero content, then remaining ones are full 3-char */
+ /* length. We use fixed-length memcpys because variable-length */
+ /* causes a subroutine call in GCC. (These are length 4 for speed */
+ /* and are safe because the array has an extra terminator byte.) */
+ #define dpd2char u=&BIN2CHAR[DPD2BIN[dpd]*4]; \
+ if (c!=cstart) {memcpy(c, u+1, 4); c+=3;} \
+ else if (*u) {memcpy(c, u+4-*u, 4); c+=*u;}
+ dpd=(sourhi>>4)&0x3ff; /* declet 1 */
+ dpd2char;
+ dpd=((sourhi&0xf)<<6) | (sourmh>>26); /* declet 2 */
+ dpd2char;
+ dpd=(sourmh>>16)&0x3ff; /* declet 3 */
+ dpd2char;
+ dpd=(sourmh>>6)&0x3ff; /* declet 4 */
+ dpd2char;
+ dpd=((sourmh&0x3f)<<4) | (sourml>>28); /* declet 5 */
+ dpd2char;
+ dpd=(sourml>>18)&0x3ff; /* declet 6 */
+ dpd2char;
+ dpd=(sourml>>8)&0x3ff; /* declet 7 */
+ dpd2char;
+ dpd=((sourml&0xff)<<2) | (sourlo>>30); /* declet 8 */
+ dpd2char;
+ dpd=(sourlo>>20)&0x3ff; /* declet 9 */
+ dpd2char;
+ dpd=(sourlo>>10)&0x3ff; /* declet 10 */
+ dpd2char;
+ dpd=(sourlo)&0x3ff; /* declet 11 */
+ dpd2char;
+
+ if (c==cstart) *c++='0'; /* all zeros -- make 0 */
+
+ if (exp==0) { /* integer or NaN case -- easy */
+ *c='\0'; /* terminate */
+ return string;
+ }
+
+ /* non-0 exponent */
+ e=0; /* assume no E */
+ pre=c-cstart+exp;
+ /* [here, pre-exp is the digits count (==1 for zero)] */
+ if (exp>0 || pre<-5) { /* need exponential form */
+ e=pre-1; /* calculate E value */
+ pre=1; /* assume one digit before '.' */
+ } /* exponential form */
+
+ /* modify the coefficient, adding 0s, '.', and E+nn as needed */
+ s=c-1; /* source (LSD) */
+ if (pre>0) { /* ddd.ddd (plain), perhaps with E */
+ char *dotat=cstart+pre;
+ if (dotat<c) { /* if embedded dot needed... */
+ t=c; /* target */
+ for (; s>=dotat; s--, t--) *t=*s; /* open the gap; leave t at gap */
+ *t='.'; /* insert the dot */
+ c++; /* length increased by one */
+ }
+
+ /* finally add the E-part, if needed; it will never be 0, and has */
+ /* a maximum length of 4 digits */
+ if (e!=0) {
+ *c++='E'; /* starts with E */
+ *c++='+'; /* assume positive */
+ if (e<0) {
+ *(c-1)='-'; /* oops, need '-' */
+ e=-e; /* uInt, please */
+ }
+ if (e<1000) { /* 3 (or fewer) digits case */
+ u=&BIN2CHAR[e*4]; /* -> length byte */
+ memcpy(c, u+4-*u, 4); /* copy fixed 4 characters [is safe] */
+ c+=*u; /* bump pointer appropriately */
+ }
+ else { /* 4-digits */
+ Int thou=((e>>3)*1049)>>17; /* e/1000 */
+ Int rem=e-(1000*thou); /* e%1000 */
+ *c++='0'+(char)thou;
+ u=&BIN2CHAR[rem*4]; /* -> length byte */
+ memcpy(c, u+1, 4); /* copy fixed 3+1 characters [is safe] */
+ c+=3; /* bump pointer, always 3 digits */
+ }
+ }
+ *c='\0'; /* add terminator */
+ /*printf("res %s\n", string); */
+ return string;
+ } /* pre>0 */
+
+ /* -5<=pre<=0: here for plain 0.ddd or 0.000ddd forms (can never have E) */
+ t=c+1-pre;
+ *(t+1)='\0'; /* can add terminator now */
+ for (; s>=cstart; s--, t--) *t=*s; /* shift whole coefficient right */
+ c=cstart;
+ *c++='0'; /* always starts with 0. */
+ *c++='.';
+ for (; pre<0; pre++) *c++='0'; /* add any 0's after '.' */
+ /*printf("res %s\n", string); */
return string;
-}
+ } /* decimal128ToString */
/* ------------------------------------------------------------------ */
-/* to-number -- conversion from numeric string */
-/* */
-/* decimal128FromString(result, string, set); */
-/* */
+/* to-number -- conversion from numeric string */
+/* */
+/* decimal128FromString(result, string, set); */
+/* */
/* result is the decimal128 format number which gets the result of */
-/* the conversion */
+/* the conversion */
/* *string is the character string which should contain a valid */
-/* number (which may be a special value) */
-/* set is the context */
-/* */
+/* number (which may be a special value) */
+/* set is the context */
+/* */
/* The context is supplied to this routine is used for error handling */
/* (setting of status and traps) and for the rounding mode, only. */
/* If an error occurs, the result will be a valid decimal128 NaN. */
/* ------------------------------------------------------------------ */
-decimal128 *
-decimal128FromString (decimal128 * result, const char *string, decContext * set)
-{
- decContext dc; /* work */
- decNumber dn; /* .. */
-
- decContextDefault (&dc, DEC_INIT_DECIMAL128); /* no traps, please */
- dc.round = set->round; /* use supplied rounding */
-
- decNumberFromString (&dn, string, &dc); /* will round if needed */
- decimal128FromNumber (result, &dn, &dc);
- if (dc.status != 0)
- { /* something happened */
- decContextSetStatus (set, dc.status); /* .. pass it on */
+decimal128 * decimal128FromString(decimal128 *result, const char *string,
+ decContext *set) {
+ decContext dc; /* work */
+ decNumber dn; /* .. */
+
+ decContextDefault(&dc, DEC_INIT_DECIMAL128); /* no traps, please */
+ dc.round=set->round; /* use supplied rounding */
+
+ decNumberFromString(&dn, string, &dc); /* will round if needed */
+ decimal128FromNumber(result, &dn, &dc);
+ if (dc.status!=0) { /* something happened */
+ decContextSetStatus(set, dc.status); /* .. pass it on */
}
return result;
-}
+ } /* decimal128FromString */
+
+/* ------------------------------------------------------------------ */
+/* decimal128IsCanonical -- test whether encoding is canonical */
+/* d128 is the source decimal128 */
+/* returns 1 if the encoding of d128 is canonical, 0 otherwise */
+/* No error is possible. */
+/* ------------------------------------------------------------------ */
+uint32_t decimal128IsCanonical(const decimal128 *d128) {
+ decNumber dn; /* work */
+ decimal128 canon; /* .. */
+ decContext dc; /* .. */
+ decContextDefault(&dc, DEC_INIT_DECIMAL128);
+ decimal128ToNumber(d128, &dn);
+ decimal128FromNumber(&canon, &dn, &dc);/* canon will now be canonical */
+ return memcmp(d128, &canon, DECIMAL128_Bytes)==0;
+ } /* decimal128IsCanonical */
+/* ------------------------------------------------------------------ */
+/* decimal128Canonical -- copy an encoding, ensuring it is canonical */
+/* d128 is the source decimal128 */
+/* result is the target (may be the same decimal128) */
+/* returns result */
+/* No error is possible. */
+/* ------------------------------------------------------------------ */
+decimal128 * decimal128Canonical(decimal128 *result, const decimal128 *d128) {
+ decNumber dn; /* work */
+ decContext dc; /* .. */
+ decContextDefault(&dc, DEC_INIT_DECIMAL128);
+ decimal128ToNumber(d128, &dn);
+ decimal128FromNumber(result, &dn, &dc);/* result will now be canonical */
+ return result;
+ } /* decimal128Canonical */
#if DECTRACE || DECCHECK
+/* Macros for accessing decimal128 fields. These assume the argument
+ is a reference (pointer) to the decimal128 structure, and the
+ decimal128 is in network byte order (big-endian) */
+/* Get sign */
+#define decimal128Sign(d) ((unsigned)(d)->bytes[0]>>7)
+
+/* Get combination field */
+#define decimal128Comb(d) (((d)->bytes[0] & 0x7c)>>2)
+
+/* Get exponent continuation [does not remove bias] */
+#define decimal128ExpCon(d) ((((d)->bytes[0] & 0x03)<<10) \
+ | ((unsigned)(d)->bytes[1]<<2) \
+ | ((unsigned)(d)->bytes[2]>>6))
+
+/* Set sign [this assumes sign previously 0] */
+#define decimal128SetSign(d, b) { \
+ (d)->bytes[0]|=((unsigned)(b)<<7);}
+
+/* Set exponent continuation [does not apply bias] */
+/* This assumes range has been checked and exponent previously 0; */
+/* type of exponent must be unsigned */
+#define decimal128SetExpCon(d, e) { \
+ (d)->bytes[0]|=(uint8_t)((e)>>10); \
+ (d)->bytes[1] =(uint8_t)(((e)&0x3fc)>>2); \
+ (d)->bytes[2]|=(uint8_t)(((e)&0x03)<<6);}
+
/* ------------------------------------------------------------------ */
-/* decimal128Show -- display a single in hexadecimal [debug aid] */
-/* d128 -- the number to show */
+/* decimal128Show -- display a decimal128 in hexadecimal [debug aid] */
+/* d128 -- the number to show */
/* ------------------------------------------------------------------ */
/* Also shows sign/cob/expconfields extracted */
-void
-decimal128Show (const decimal128 * d128)
-{
- char buf[DECIMAL128_Bytes * 2 + 1];
- Int i, j;
- j = 0;
- for (i = 0; i < DECIMAL128_Bytes; i++)
- {
- sprintf (&buf[j], "%02x", d128->bytes[i]);
- j = j + 2;
+void decimal128Show(const decimal128 *d128) {
+ char buf[DECIMAL128_Bytes*2+1];
+ Int i, j=0;
+
+ if (DECLITEND) {
+ for (i=0; i<DECIMAL128_Bytes; i++, j+=2) {
+ sprintf(&buf[j], "%02x", d128->bytes[15-i]);
+ }
+ printf(" D128> %s [S:%d Cb:%02x Ec:%02x] LittleEndian\n", buf,
+ d128->bytes[15]>>7, (d128->bytes[15]>>2)&0x1f,
+ ((d128->bytes[15]&0x3)<<10)|(d128->bytes[14]<<2)|
+ (d128->bytes[13]>>6));
+ }
+ else {
+ for (i=0; i<DECIMAL128_Bytes; i++, j+=2) {
+ sprintf(&buf[j], "%02x", d128->bytes[i]);
+ }
+ printf(" D128> %s [S:%d Cb:%02x Ec:%02x] BigEndian\n", buf,
+ decimal128Sign(d128), decimal128Comb(d128),
+ decimal128ExpCon(d128));
}
- printf (" D128> %s [S:%d Cb:%02x E:%d]\n", buf,
- decimal128Sign (d128), decimal128Comb (d128),
- decimal128ExpCon (d128));
-}
+ } /* decimal128Show */
#endif
diff --git a/libdecnumber/dpd/decimal128.h b/libdecnumber/dpd/decimal128.h
index a6bc87bb4a3..f8f5b5a8ff2 100644
--- a/libdecnumber/dpd/decimal128.h
+++ b/libdecnumber/dpd/decimal128.h
@@ -1,5 +1,5 @@
-/* Decimal 128-bit format module header for the decNumber C Library
- Copyright (C) 2005 Free Software Foundation, Inc.
+/* Decimal 128-bit format module header for the decNumber C Library.
+ Copyright (C) 2005, 2007 Free Software Foundation, Inc.
Contributed by IBM Corporation. Author Mike Cowlishaw.
This file is part of GCC.
@@ -28,103 +28,74 @@
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA. */
+/* ------------------------------------------------------------------ */
+/* Decimal 128-bit format module header */
+/* ------------------------------------------------------------------ */
+
#if !defined(DECIMAL128)
-#define DECIMAL128
-#define DEC128NAME "decimal128" /* Short name */
-#define DEC128FULLNAME "Decimal 128-bit Number" /* Verbose name */
-#define DEC128AUTHOR "Mike Cowlishaw" /* Who to blame */
-
-#if defined(DECIMAL32)
-#error decimal128.h must precede decimal32.h for correct DECNUMDIGITS
-#else
-#if defined(DECIMAL64)
-#error decimal128.h must precede decimal64.h for correct DECNUMDIGITS
-#endif
-#endif
+ #define DECIMAL128
+ #define DEC128NAME "decimal128" /* Short name */
+ #define DEC128FULLNAME "Decimal 128-bit Number" /* Verbose name */
+ #define DEC128AUTHOR "Mike Cowlishaw" /* Who to blame */
/* parameters for decimal128s */
-#define DECIMAL128_Bytes 16 /* length */
-#define DECIMAL128_Pmax 34 /* maximum precision (digits) */
-#define DECIMAL128_Emax 6144 /* maximum adjusted exponent */
-#define DECIMAL128_Emin -6143 /* minimum adjusted exponent */
-#define DECIMAL128_Bias 6176 /* bias for the exponent */
-#define DECIMAL128_String 43 /* maximum string length, +1 */
- /* highest biased exponent (Elimit-1) */
-#define DECIMAL128_Ehigh (DECIMAL128_Emax+DECIMAL128_Bias-DECIMAL128_Pmax+1)
-
-#ifndef DECNUMDIGITS
-#define DECNUMDIGITS DECIMAL128_Pmax /* size if not already defined */
-#endif
-#ifndef DECNUMBER
-#include "decNumber.h" /* context and number library */
-#endif
-
- /* Decimal 128-bit type, accessible by bytes */
-typedef struct
-{
- uint8_t bytes[DECIMAL128_Bytes]; /* decimal128: 1, 5, 12, 110 bits */
-} decimal128;
-
- /* special values [top byte excluding sign bit; last two bits are
- don't-care for Infinity on input, last bit don't-care for NaN] */
-#if !defined(DECIMAL_NaN)
-#define DECIMAL_NaN 0x7c /* 0 11111 00 NaN */
-#define DECIMAL_sNaN 0x7e /* 0 11111 10 sNaN */
-#define DECIMAL_Inf 0x78 /* 0 11110 00 Infinity */
-#endif
-
- /* Macros for accessing decimal128 fields. These assume the argument
- is a reference (pointer) to the decimal128 structure */
- /* Get sign */
-#define decimal128Sign(d) ((unsigned)(d)->bytes[0]>>7)
-
- /* Get combination field */
-#define decimal128Comb(d) (((d)->bytes[0] & 0x7c)>>2)
-
- /* Get exponent continuation [does not remove bias] */
-#define decimal128ExpCon(d) ((((d)->bytes[0] & 0x03)<<10) \
- | ((unsigned)(d)->bytes[1]<<2) \
- | ((unsigned)(d)->bytes[2]>>6))
-
- /* Set sign [this assumes sign previously 0] */
-#define decimal128SetSign(d, b) { \
- (d)->bytes[0]|=((unsigned)(b)<<7);}
-
- /* Clear sign */
-#define decimal128ClearSign(d) {(d)->bytes[0]&=~0x80;}
-
- /* Flip sign */
-#define decimal128FlipSign(d) {(d)->bytes[0]^=0x80;}
-
- /* Set exponent continuation [does not apply bias] */
- /* This assumes range has been checked and exponent previously 0; */
- /* type of exponent must be unsigned */
-#define decimal128SetExpCon(d, e) { \
- (d)->bytes[0]|=(uint8_t)((e)>>10); \
- (d)->bytes[1] =(uint8_t)(((e)&0x3fc)>>2); \
- (d)->bytes[2]|=(uint8_t)(((e)&0x03)<<6);}
-
- /* ------------------------------------------------------------------ */
- /* Routines */
- /* ------------------------------------------------------------------ */
-
-#ifdef IN_LIBGCC2
-#ifndef decimal128FromString
-#define decimal128FromString __decimal128FromString
-#define decimal128ToString __decimal128ToString
-#define decimal128ToEngString __decimal128ToEngString
-#define decimal128FromNumber __decimal128FromNumber
-#define decimal128ToNumber __decimal128ToNumber
-#endif
-#endif
-
- /* String conversions */
-decimal128 *decimal128FromString (decimal128 *, const char *, decContext *);
-char *decimal128ToString (const decimal128 *, char *);
-char *decimal128ToEngString (const decimal128 *, char *);
-
- /* decNumber conversions */
-decimal128 *decimal128FromNumber (decimal128 *, const decNumber *, decContext *);
-decNumber *decimal128ToNumber (const decimal128 *, decNumber *);
+ #define DECIMAL128_Bytes 16 /* length */
+ #define DECIMAL128_Pmax 34 /* maximum precision (digits) */
+ #define DECIMAL128_Emax 6144 /* maximum adjusted exponent */
+ #define DECIMAL128_Emin -6143 /* minimum adjusted exponent */
+ #define DECIMAL128_Bias 6176 /* bias for the exponent */
+ #define DECIMAL128_String 43 /* maximum string length, +1 */
+ #define DECIMAL128_EconL 12 /* exp. continuation length */
+ /* highest biased exponent (Elimit-1) */
+ #define DECIMAL128_Ehigh (DECIMAL128_Emax+DECIMAL128_Bias-DECIMAL128_Pmax+1)
+
+ /* check enough digits, if pre-defined */
+ #if defined(DECNUMDIGITS)
+ #if (DECNUMDIGITS<DECIMAL128_Pmax)
+ #error decimal128.h needs pre-defined DECNUMDIGITS>=34 for safe use
+ #endif
+ #endif
+
+ #ifndef DECNUMDIGITS
+ #define DECNUMDIGITS DECIMAL128_Pmax /* size if not already defined*/
+ #endif
+ #ifndef DECNUMBER
+ #include "decNumber.h" /* context and number library */
+ #endif
+
+ /* Decimal 128-bit type, accessible by bytes */
+ typedef struct {
+ uint8_t bytes[DECIMAL128_Bytes]; /* decimal128: 1, 5, 12, 110 bits*/
+ } decimal128;
+
+ /* special values [top byte excluding sign bit; last two bits are */
+ /* don't-care for Infinity on input, last bit don't-care for NaN] */
+ #if !defined(DECIMAL_NaN)
+ #define DECIMAL_NaN 0x7c /* 0 11111 00 NaN */
+ #define DECIMAL_sNaN 0x7e /* 0 11111 10 sNaN */
+ #define DECIMAL_Inf 0x78 /* 0 11110 00 Infinity */
+ #endif
+
+ #include "decimal128Local.h"
+
+ /* ---------------------------------------------------------------- */
+ /* Routines */
+ /* ---------------------------------------------------------------- */
+
+ #include "decimal128Symbols.h"
+
+ /* String conversions */
+ decimal128 * decimal128FromString(decimal128 *, const char *, decContext *);
+ char * decimal128ToString(const decimal128 *, char *);
+ char * decimal128ToEngString(const decimal128 *, char *);
+
+ /* decNumber conversions */
+ decimal128 * decimal128FromNumber(decimal128 *, const decNumber *,
+ decContext *);
+ decNumber * decimal128ToNumber(const decimal128 *, decNumber *);
+
+ /* Format-dependent utilities */
+ uint32_t decimal128IsCanonical(const decimal128 *);
+ decimal128 * decimal128Canonical(decimal128 *, const decimal128 *);
#endif
diff --git a/libdecnumber/decUtility.h b/libdecnumber/dpd/decimal128Local.h
index 4cf65e542ba..b4130b53425 100644
--- a/libdecnumber/decUtility.h
+++ b/libdecnumber/dpd/decimal128Local.h
@@ -1,6 +1,5 @@
-/* Utility functions for decimal floating point support via decNumber.
- Copyright (C) 2005 Free Software Foundation, Inc.
- Contributed by IBM Corporation. Author Mike Cowlishaw.
+/* Local definitions for use with the decNumber C Library.
+ Copyright (C) 2007 Free Software Foundation, Inc.
This file is part of GCC.
@@ -28,10 +27,21 @@
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA. */
-#ifdef IN_LIBGCC2
-#define decDensePackCoeff __decDensePackCoeff
-#define decDenseUnpackCoeff __decDenseUnpackCoeff
-#endif
+#if !defined(DECIMAL128LOCAL)
+
+/* The compiler needs sign manipulation functions for decimal128 which
+ are not part of the decNumber package. */
+
+/* Set sign; this assumes the sign was previously zero. */
+#define decimal128SetSign(d,b) \
+ { (d)->bytes[FLOAT_WORDS_BIG_ENDIAN ? 0 : 15] |= ((unsigned) (b) << 7); }
-extern void decDensePackCoeff (const decNumber *, uByte *, Int, Int);
-extern void decDenseUnpackCoeff (const uByte *, Int, decNumber *, Int, Int);
+/* Clear sign. */
+#define decimal128ClearSign(d) \
+ { (d)->bytes[FLOAT_WORDS_BIG_ENDIAN ? 0 : 15] &= ~0x80; }
+
+/* Flip sign. */
+#define decimal128FlipSign(d) \
+ { (d)->bytes[FLOAT_WORDS_BIG_ENDIAN ? 0 : 15] ^= 0x80; }
+
+#endif
diff --git a/libdecnumber/dpd/decimal128Symbols.h b/libdecnumber/dpd/decimal128Symbols.h
new file mode 100644
index 00000000000..da9d76beaf6
--- /dev/null
+++ b/libdecnumber/dpd/decimal128Symbols.h
@@ -0,0 +1,16 @@
+#if !defined(DECIMAL128SYMBOLS)
+#define DECIMAL128SYMBOLS
+
+#ifdef IN_LIBGCC2
+#define decDigitsFromDPD __decDigitsFromDPD
+#define decDigitsToDPD __decDigitsToDPD
+#define decimal128Canonical __decimal128Canonical
+#define decimal128FromNumber __decimal128FromNumber
+#define decimal128FromString __decimal128FromString
+#define decimal128IsCanonical __decimal128IsCanonical
+#define decimal128ToEngString __decimal128ToEngString
+#define decimal128ToNumber __decimal128ToNumber
+#define decimal128ToString __decimal128ToString
+#endif
+
+#endif
diff --git a/libdecnumber/dpd/decimal32.c b/libdecnumber/dpd/decimal32.c
index 86912864c9f..692c2f70ecb 100644
--- a/libdecnumber/dpd/decimal32.c
+++ b/libdecnumber/dpd/decimal32.c
@@ -1,5 +1,5 @@
-/* Decimal 32-bit format module for the decNumber C Library
- Copyright (C) 2005 Free Software Foundation, Inc.
+/* Decimal 32-bit format module for the decNumber C Library.
+ Copyright (C) 2005, 2007 Free Software Foundation, Inc.
Contributed by IBM Corporation. Author Mike Cowlishaw.
This file is part of GCC.
@@ -29,26 +29,41 @@
02110-1301, USA. */
/* ------------------------------------------------------------------ */
+/* Decimal 32-bit format module */
+/* ------------------------------------------------------------------ */
/* This module comprises the routines for decimal32 format numbers. */
-/* Conversions are supplied to and from decNumber and String. */
-/* */
-/* No arithmetic routines are included; decNumber provides these. */
-/* */
-/* Error handling is the same as decNumber (qv.). */
+/* Conversions are supplied to and from decNumber and String. */
+/* */
+/* This is used when decNumber provides operations, either for all */
+/* operations or as a proxy between decNumber and decSingle. */
+/* */
+/* Error handling is the same as decNumber (qv.). */
/* ------------------------------------------------------------------ */
-#include <string.h> /* [for memset/memcpy] */
-#include <stdio.h> /* [for printf] */
+#include <string.h> /* [for memset/memcpy] */
+#include <stdio.h> /* [for printf] */
+
+#include "config.h" /* GCC definitions */
+#define DECNUMDIGITS 7 /* make decNumbers with space for 7 */
+#include "decNumber.h" /* base number library */
+#include "decNumberLocal.h" /* decNumber local types, etc. */
+#include "decimal32.h" /* our primary include */
-#define DECNUMDIGITS 7 /* we need decNumbers with space for 7 */
-#include "config.h"
-#include "decNumber.h" /* base number library */
-#include "decNumberLocal.h" /* decNumber local types, etc. */
-#include "decimal32.h" /* our primary include */
-#include "decUtility.h" /* utility routines */
+/* Utility tables and routines [in decimal64.c] */
+/* DPD2BIN and the reverse are renamed to prevent link-time conflict */
+/* if decQuad is also built in the same executable */
+#define DPD2BIN DPD2BINx
+#define BIN2DPD BIN2DPDx
+extern const uInt COMBEXP[32], COMBMSD[32];
+extern const uShort DPD2BIN[1024];
+extern const uShort BIN2DPD[1000];
+extern const uByte BIN2CHAR[4001];
+
+extern void decDigitsToDPD(const decNumber *, uInt *, Int);
+extern void decDigitsFromDPD(decNumber *, const uInt *, Int);
#if DECTRACE || DECCHECK
-void decimal32Show (const decimal32 *); /* for debug */
-void decNumberShow (const decNumber *); /* .. */
+void decimal32Show(const decimal32 *); /* for debug */
+extern void decNumberShow(const decNumber *); /* .. */
#endif
/* Useful macro */
@@ -56,282 +71,425 @@ void decNumberShow (const decNumber *); /* .. */
#define DEC_clear(d) memset(d, 0, sizeof(*d))
/* ------------------------------------------------------------------ */
-/* decimal32FromNumber -- convert decNumber to decimal32 */
-/* */
-/* ds is the target decimal32 */
-/* dn is the source number (assumed valid) */
-/* set is the context, used only for reporting errors */
-/* */
+/* decimal32FromNumber -- convert decNumber to decimal32 */
+/* */
+/* ds is the target decimal32 */
+/* dn is the source number (assumed valid) */
+/* set is the context, used only for reporting errors */
+/* */
/* The set argument is used only for status reporting and for the */
/* rounding mode (used if the coefficient is more than DECIMAL32_Pmax */
-/* digits or an overflow is detected). If the exponent is out of the */
-/* valid range then Overflow or Underflow will be raised. */
-/* After Underflow a subnormal result is possible. */
-/* */
+/* digits or an overflow is detected). If the exponent is out of the */
+/* valid range then Overflow or Underflow will be raised. */
+/* After Underflow a subnormal result is possible. */
+/* */
/* DEC_Clamped is set if the number has to be 'folded down' to fit, */
/* by reducing its exponent and multiplying the coefficient by a */
/* power of ten, or if the exponent on a zero had to be clamped. */
/* ------------------------------------------------------------------ */
-decimal32 *
-decimal32FromNumber (decimal32 * d32, const decNumber * dn, decContext * set)
-{
- uInt status = 0; /* status accumulator */
- Int pad = 0; /* coefficient pad digits */
- decNumber dw; /* work */
- decContext dc; /* .. */
- uByte isneg = dn->bits & DECNEG; /* non-0 if original sign set */
- uInt comb, exp; /* work */
-
- /* If the number is finite, and has too many digits, or the exponent */
- /* could be out of range then we reduce the number under the */
- /* appropriate constraints */
- if (!(dn->bits & DECSPECIAL))
- { /* not a special value */
- Int ae = dn->exponent + dn->digits - 1; /* adjusted exponent */
- if (dn->digits > DECIMAL32_Pmax /* too many digits */
- || ae > DECIMAL32_Emax /* likely overflow */
- || ae < DECIMAL32_Emin)
- { /* likely underflow */
- decContextDefault (&dc, DEC_INIT_DECIMAL32); /* [no traps] */
- dc.round = set->round; /* use supplied rounding */
- decNumberPlus (&dw, dn, &dc); /* (round and check) */
- /* [this changes -0 to 0, but it will be restored below] */
- status |= dc.status; /* save status */
- dn = &dw; /* use the work number */
- }
- /* [this could have pushed number to Infinity or zero, so this */
- /* rounding must be done before we generate the decimal32] */
- }
+decimal32 * decimal32FromNumber(decimal32 *d32, const decNumber *dn,
+ decContext *set) {
+ uInt status=0; /* status accumulator */
+ Int ae; /* adjusted exponent */
+ decNumber dw; /* work */
+ decContext dc; /* .. */
+ uInt *pu; /* .. */
+ uInt comb, exp; /* .. */
+ uInt targ=0; /* target 32-bit */
+
+ /* If the number has too many digits, or the exponent could be */
+ /* out of range then reduce the number under the appropriate */
+ /* constraints. This could push the number to Infinity or zero, */
+ /* so this check and rounding must be done before generating the */
+ /* decimal32] */
+ ae=dn->exponent+dn->digits-1; /* [0 if special] */
+ if (dn->digits>DECIMAL32_Pmax /* too many digits */
+ || ae>DECIMAL32_Emax /* likely overflow */
+ || ae<DECIMAL32_Emin) { /* likely underflow */
+ decContextDefault(&dc, DEC_INIT_DECIMAL32); /* [no traps] */
+ dc.round=set->round; /* use supplied rounding */
+ decNumberPlus(&dw, dn, &dc); /* (round and check) */
+ /* [this changes -0 to 0, so enforce the sign...] */
+ dw.bits|=dn->bits&DECNEG;
+ status=dc.status; /* save status */
+ dn=&dw; /* use the work number */
+ } /* maybe out of range */
- DEC_clear (d32); /* clean the target */
- if (dn->bits & DECSPECIAL)
- { /* a special value */
- uByte top; /* work */
- if (dn->bits & DECINF)
- top = DECIMAL_Inf;
- else
- { /* sNaN or qNaN */
- if ((*dn->lsu != 0 || dn->digits > 1) /* non-zero coefficient */
- && (dn->digits < DECIMAL32_Pmax))
- { /* coefficient fits */
- decDensePackCoeff (dn, d32->bytes, sizeof (d32->bytes), 0);
- }
- if (dn->bits & DECNAN)
- top = DECIMAL_NaN;
- else
- top = DECIMAL_sNaN;
+ if (dn->bits&DECSPECIAL) { /* a special value */
+ if (dn->bits&DECINF) targ=DECIMAL_Inf<<24;
+ else { /* sNaN or qNaN */
+ if ((*dn->lsu!=0 || dn->digits>1) /* non-zero coefficient */
+ && (dn->digits<DECIMAL32_Pmax)) { /* coefficient fits */
+ decDigitsToDPD(dn, &targ, 0);
}
- d32->bytes[0] = top;
- }
- else if (decNumberIsZero (dn))
- { /* a zero */
+ if (dn->bits&DECNAN) targ|=DECIMAL_NaN<<24;
+ else targ|=DECIMAL_sNaN<<24;
+ } /* a NaN */
+ } /* special */
+
+ else { /* is finite */
+ if (decNumberIsZero(dn)) { /* is a zero */
/* set and clamp exponent */
- if (dn->exponent < -DECIMAL32_Bias)
- {
- exp = 0;
- status |= DEC_Clamped;
+ if (dn->exponent<-DECIMAL32_Bias) {
+ exp=0; /* low clamp */
+ status|=DEC_Clamped;
}
- else
- {
- exp = dn->exponent + DECIMAL32_Bias; /* bias exponent */
- if (exp > DECIMAL32_Ehigh)
- { /* top clamp */
- exp = DECIMAL32_Ehigh;
- status |= DEC_Clamped;
- }
+ else {
+ exp=dn->exponent+DECIMAL32_Bias; /* bias exponent */
+ if (exp>DECIMAL32_Ehigh) { /* top clamp */
+ exp=DECIMAL32_Ehigh;
+ status|=DEC_Clamped;
+ }
}
- comb = (exp >> 3) & 0x18; /* combination field */
- d32->bytes[0] = (uByte) (comb << 2);
- exp &= 0x3f; /* remaining exponent bits */
- decimal32SetExpCon (d32, exp);
- }
- else
- { /* non-zero finite number */
- uInt msd; /* work */
-
- /* we have a dn that fits, but it may need to be padded */
- exp = (uInt) (dn->exponent + DECIMAL32_Bias); /* bias exponent */
-
- if (exp > DECIMAL32_Ehigh)
- { /* fold-down case */
- pad = exp - DECIMAL32_Ehigh;
- exp = DECIMAL32_Ehigh; /* [to maximum] */
- status |= DEC_Clamped;
+ comb=(exp>>3) & 0x18; /* msd=0, exp top 2 bits .. */
+ }
+ else { /* non-zero finite number */
+ uInt msd; /* work */
+ Int pad=0; /* coefficient pad digits */
+
+ /* the dn is known to fit, but it may need to be padded */
+ exp=(uInt)(dn->exponent+DECIMAL32_Bias); /* bias exponent */
+ if (exp>DECIMAL32_Ehigh) { /* fold-down case */
+ pad=exp-DECIMAL32_Ehigh;
+ exp=DECIMAL32_Ehigh; /* [to maximum] */
+ status|=DEC_Clamped;
}
- decDensePackCoeff (dn, d32->bytes, sizeof (d32->bytes), pad);
+ /* fastpath common case */
+ if (DECDPUN==3 && pad==0) {
+ targ=BIN2DPD[dn->lsu[0]];
+ if (dn->digits>3) targ|=(uInt)(BIN2DPD[dn->lsu[1]])<<10;
+ msd=(dn->digits==7 ? dn->lsu[2] : 0);
+ }
+ else { /* general case */
+ decDigitsToDPD(dn, &targ, pad);
+ /* save and clear the top digit */
+ msd=targ>>20;
+ targ&=0x000fffff;
+ }
- /* save and clear the top digit */
- msd = ((unsigned) d32->bytes[1] >> 4);
- d32->bytes[1] &= 0x0f;
/* create the combination field */
- if (msd >= 8)
- comb = 0x18 | (msd & 0x01) | ((exp >> 5) & 0x06);
- else
- comb = (msd & 0x07) | ((exp >> 3) & 0x18);
- d32->bytes[0] = (uByte) (comb << 2);
- exp &= 0x3f; /* remaining exponent bits */
- decimal32SetExpCon (d32, exp);
- }
+ if (msd>=8) comb=0x18 | ((exp>>5) & 0x06) | (msd & 0x01);
+ else comb=((exp>>3) & 0x18) | msd;
+ }
+ targ|=comb<<26; /* add combination field .. */
+ targ|=(exp&0x3f)<<20; /* .. and exponent continuation */
+ } /* finite */
+
+ if (dn->bits&DECNEG) targ|=0x80000000; /* add sign bit */
- if (isneg)
- decimal32SetSign (d32, 1);
- if (status != 0)
- decContextSetStatus (set, status); /* pass on status */
+ /* now write to storage; this is endian */
+ pu=(uInt *)d32->bytes; /* overlay */
+ *pu=targ; /* directly store the int */
- /*decimal32Show(d32); */
+ if (status!=0) decContextSetStatus(set, status); /* pass on status */
+ /* decimal32Show(d32); */
return d32;
-}
+ } /* decimal32FromNumber */
/* ------------------------------------------------------------------ */
-/* decimal32ToNumber -- convert decimal32 to decNumber */
-/* d32 is the source decimal32 */
-/* dn is the target number, with appropriate space */
-/* No error is possible. */
+/* decimal32ToNumber -- convert decimal32 to decNumber */
+/* d32 is the source decimal32 */
+/* dn is the target number, with appropriate space */
+/* No error is possible. */
/* ------------------------------------------------------------------ */
-decNumber *
-decimal32ToNumber (const decimal32 * d32, decNumber * dn)
-{
- uInt msd; /* coefficient MSD */
- decimal32 wk; /* working copy, if needed */
- uInt top = d32->bytes[0] & 0x7f; /* top byte, less sign bit */
- decNumberZero (dn); /* clean target */
- /* set the sign if negative */
- if (decimal32Sign (d32))
- dn->bits = DECNEG;
-
- if (top >= 0x78)
- { /* is a special */
- if ((top & 0x7c) == (DECIMAL_Inf & 0x7c))
- dn->bits |= DECINF;
- else if ((top & 0x7e) == (DECIMAL_NaN & 0x7e))
- dn->bits |= DECNAN;
- else
- dn->bits |= DECSNAN;
- msd = 0; /* no top digit */
+decNumber * decimal32ToNumber(const decimal32 *d32, decNumber *dn) {
+ uInt msd; /* coefficient MSD */
+ uInt exp; /* exponent top two bits */
+ uInt comb; /* combination field */
+ uInt sour; /* source 32-bit */
+ const uInt *pu; /* work */
+
+ /* load source from storage; this is endian */
+ pu=(const uInt *)d32->bytes; /* overlay */
+ sour=*pu; /* directly load the int */
+
+ comb=(sour>>26)&0x1f; /* combination field */
+
+ decNumberZero(dn); /* clean number */
+ if (sour&0x80000000) dn->bits=DECNEG; /* set sign if negative */
+
+ msd=COMBMSD[comb]; /* decode the combination field */
+ exp=COMBEXP[comb]; /* .. */
+
+ if (exp==3) { /* is a special */
+ if (msd==0) {
+ dn->bits|=DECINF;
+ return dn; /* no coefficient needed */
+ }
+ else if (sour&0x02000000) dn->bits|=DECSNAN;
+ else dn->bits|=DECNAN;
+ msd=0; /* no top digit */
}
- else
- { /* have a finite number */
- uInt comb = top >> 2; /* combination field */
- uInt exp; /* working exponent */
-
- if (comb >= 0x18)
- {
- msd = 8 + (comb & 0x01);
- exp = (comb & 0x06) << 5; /* MSBs */
- }
- else
- {
- msd = comb & 0x07;
- exp = (comb & 0x18) << 3;
- }
- dn->exponent = exp + decimal32ExpCon (d32) - DECIMAL32_Bias; /* remove bias */
+ else { /* is a finite number */
+ dn->exponent=(exp<<6)+((sour>>20)&0x3f)-DECIMAL32_Bias; /* unbiased */
}
- /* get the coefficient, unless infinite */
- if (!(dn->bits & DECINF))
- {
- Int bunches = DECIMAL32_Pmax / 3; /* coefficient full bunches to convert */
- Int odd = 0; /* assume MSD is 0 (no odd bunch) */
- if (msd != 0)
- { /* coefficient has leading non-0 digit */
- /* make a copy of the decimal32, with an extra bunch which has */
- /* the top digit ready for conversion */
- wk = *d32; /* take a copy */
- wk.bytes[0] = 0; /* clear all but coecon */
- wk.bytes[1] &= 0x0f; /* .. */
- wk.bytes[1] |= (msd << 4); /* and prefix MSD */
- odd++; /* indicate the extra */
- d32 = &wk; /* use the work copy */
- }
- decDenseUnpackCoeff (d32->bytes, sizeof (d32->bytes), dn, bunches, odd);
+ /* get the coefficient */
+ sour&=0x000fffff; /* clean coefficient continuation */
+ if (msd) { /* non-zero msd */
+ sour|=msd<<20; /* prefix to coefficient */
+ decDigitsFromDPD(dn, &sour, 3); /* process 3 declets */
+ return dn;
}
+ /* msd=0 */
+ if (!sour) return dn; /* easy: coefficient is 0 */
+ if (sour&0x000ffc00) /* need 2 declets? */
+ decDigitsFromDPD(dn, &sour, 2); /* process 2 declets */
+ else
+ decDigitsFromDPD(dn, &sour, 1); /* process 1 declet */
return dn;
-}
+ } /* decimal32ToNumber */
/* ------------------------------------------------------------------ */
-/* to-scientific-string -- conversion to numeric string */
-/* to-engineering-string -- conversion to numeric string */
-/* */
-/* decimal32ToString(d32, string); */
-/* decimal32ToEngString(d32, string); */
-/* */
-/* d32 is the decimal32 format number to convert */
-/* string is the string where the result will be laid out */
-/* */
-/* string must be at least 24 characters */
-/* */
-/* No error is possible, and no status can be set. */
+/* to-scientific-string -- conversion to numeric string */
+/* to-engineering-string -- conversion to numeric string */
+/* */
+/* decimal32ToString(d32, string); */
+/* decimal32ToEngString(d32, string); */
+/* */
+/* d32 is the decimal32 format number to convert */
+/* string is the string where the result will be laid out */
+/* */
+/* string must be at least 24 characters */
+/* */
+/* No error is possible, and no status can be set. */
/* ------------------------------------------------------------------ */
-char *
-decimal32ToString (const decimal32 * d32, char *string)
-{
- decNumber dn; /* work */
- decimal32ToNumber (d32, &dn);
- decNumberToString (&dn, string);
+char * decimal32ToEngString(const decimal32 *d32, char *string){
+ decNumber dn; /* work */
+ decimal32ToNumber(d32, &dn);
+ decNumberToEngString(&dn, string);
return string;
-}
-
-char *
-decimal32ToEngString (const decimal32 * d32, char *string)
-{
- decNumber dn; /* work */
- decimal32ToNumber (d32, &dn);
- decNumberToEngString (&dn, string);
+ } /* decimal32ToEngString */
+
+char * decimal32ToString(const decimal32 *d32, char *string){
+ uInt msd; /* coefficient MSD */
+ Int exp; /* exponent top two bits or full */
+ uInt comb; /* combination field */
+ char *cstart; /* coefficient start */
+ char *c; /* output pointer in string */
+ const uInt *pu; /* work */
+ const uByte *u; /* .. */
+ char *s, *t; /* .. (source, target) */
+ Int dpd; /* .. */
+ Int pre, e; /* .. */
+ uInt sour; /* source 32-bit */
+
+ /* load source from storage; this is endian */
+ pu=(const uInt *)d32->bytes; /* overlay */
+ sour=*pu; /* directly load the int */
+
+ c=string; /* where result will go */
+ if (((Int)sour)<0) *c++='-'; /* handle sign */
+
+ comb=(sour>>26)&0x1f; /* combination field */
+ msd=COMBMSD[comb]; /* decode the combination field */
+ exp=COMBEXP[comb]; /* .. */
+
+ if (exp==3) {
+ if (msd==0) { /* infinity */
+ strcpy(c, "Inf");
+ strcpy(c+3, "inity");
+ return string; /* easy */
+ }
+ if (sour&0x02000000) *c++='s'; /* sNaN */
+ strcpy(c, "NaN"); /* complete word */
+ c+=3; /* step past */
+ if ((sour&0x000fffff)==0) return string; /* zero payload */
+ /* otherwise drop through to add integer; set correct exp */
+ exp=0; msd=0; /* setup for following code */
+ }
+ else exp=(exp<<6)+((sour>>20)&0x3f)-DECIMAL32_Bias; /* unbiased */
+
+ /* convert 7 digits of significand to characters */
+ cstart=c; /* save start of coefficient */
+ if (msd) *c++='0'+(char)msd; /* non-zero most significant digit */
+
+ /* Now decode the declets. After extracting each one, it is */
+ /* decoded to binary and then to a 4-char sequence by table lookup; */
+ /* the 4-chars are a 1-char length (significant digits, except 000 */
+ /* has length 0). This allows us to left-align the first declet */
+ /* with non-zero content, then remaining ones are full 3-char */
+ /* length. We use fixed-length memcpys because variable-length */
+ /* causes a subroutine call in GCC. (These are length 4 for speed */
+ /* and are safe because the array has an extra terminator byte.) */
+ #define dpd2char u=&BIN2CHAR[DPD2BIN[dpd]*4]; \
+ if (c!=cstart) {memcpy(c, u+1, 4); c+=3;} \
+ else if (*u) {memcpy(c, u+4-*u, 4); c+=*u;}
+
+ dpd=(sour>>10)&0x3ff; /* declet 1 */
+ dpd2char;
+ dpd=(sour)&0x3ff; /* declet 2 */
+ dpd2char;
+
+ if (c==cstart) *c++='0'; /* all zeros -- make 0 */
+
+ if (exp==0) { /* integer or NaN case -- easy */
+ *c='\0'; /* terminate */
+ return string;
+ }
+
+ /* non-0 exponent */
+ e=0; /* assume no E */
+ pre=c-cstart+exp;
+ /* [here, pre-exp is the digits count (==1 for zero)] */
+ if (exp>0 || pre<-5) { /* need exponential form */
+ e=pre-1; /* calculate E value */
+ pre=1; /* assume one digit before '.' */
+ } /* exponential form */
+
+ /* modify the coefficient, adding 0s, '.', and E+nn as needed */
+ s=c-1; /* source (LSD) */
+ if (pre>0) { /* ddd.ddd (plain), perhaps with E */
+ char *dotat=cstart+pre;
+ if (dotat<c) { /* if embedded dot needed... */
+ t=c; /* target */
+ for (; s>=dotat; s--, t--) *t=*s; /* open the gap; leave t at gap */
+ *t='.'; /* insert the dot */
+ c++; /* length increased by one */
+ }
+
+ /* finally add the E-part, if needed; it will never be 0, and has */
+ /* a maximum length of 3 digits (E-101 case) */
+ if (e!=0) {
+ *c++='E'; /* starts with E */
+ *c++='+'; /* assume positive */
+ if (e<0) {
+ *(c-1)='-'; /* oops, need '-' */
+ e=-e; /* uInt, please */
+ }
+ u=&BIN2CHAR[e*4]; /* -> length byte */
+ memcpy(c, u+4-*u, 4); /* copy fixed 4 characters [is safe] */
+ c+=*u; /* bump pointer appropriately */
+ }
+ *c='\0'; /* add terminator */
+ /*printf("res %s\n", string); */
+ return string;
+ } /* pre>0 */
+
+ /* -5<=pre<=0: here for plain 0.ddd or 0.000ddd forms (can never have E) */
+ t=c+1-pre;
+ *(t+1)='\0'; /* can add terminator now */
+ for (; s>=cstart; s--, t--) *t=*s; /* shift whole coefficient right */
+ c=cstart;
+ *c++='0'; /* always starts with 0. */
+ *c++='.';
+ for (; pre<0; pre++) *c++='0'; /* add any 0's after '.' */
+ /*printf("res %s\n", string); */
return string;
-}
+ } /* decimal32ToString */
/* ------------------------------------------------------------------ */
-/* to-number -- conversion from numeric string */
-/* */
-/* decimal32FromString(result, string, set); */
-/* */
+/* to-number -- conversion from numeric string */
+/* */
+/* decimal32FromString(result, string, set); */
+/* */
/* result is the decimal32 format number which gets the result of */
-/* the conversion */
+/* the conversion */
/* *string is the character string which should contain a valid */
-/* number (which may be a special value) */
-/* set is the context */
-/* */
+/* number (which may be a special value) */
+/* set is the context */
+/* */
/* The context is supplied to this routine is used for error handling */
/* (setting of status and traps) and for the rounding mode, only. */
/* If an error occurs, the result will be a valid decimal32 NaN. */
/* ------------------------------------------------------------------ */
-decimal32 *
-decimal32FromString (decimal32 * result, const char *string, decContext * set)
-{
- decContext dc; /* work */
- decNumber dn; /* .. */
-
- decContextDefault (&dc, DEC_INIT_DECIMAL32); /* no traps, please */
- dc.round = set->round; /* use supplied rounding */
-
- decNumberFromString (&dn, string, &dc); /* will round if needed */
- decimal32FromNumber (result, &dn, &dc);
- if (dc.status != 0)
- { /* something happened */
- decContextSetStatus (set, dc.status); /* .. pass it on */
+decimal32 * decimal32FromString(decimal32 *result, const char *string,
+ decContext *set) {
+ decContext dc; /* work */
+ decNumber dn; /* .. */
+
+ decContextDefault(&dc, DEC_INIT_DECIMAL32); /* no traps, please */
+ dc.round=set->round; /* use supplied rounding */
+
+ decNumberFromString(&dn, string, &dc); /* will round if needed */
+ decimal32FromNumber(result, &dn, &dc);
+ if (dc.status!=0) { /* something happened */
+ decContextSetStatus(set, dc.status); /* .. pass it on */
}
return result;
-}
+ } /* decimal32FromString */
+
+/* ------------------------------------------------------------------ */
+/* decimal32IsCanonical -- test whether encoding is canonical */
+/* d32 is the source decimal32 */
+/* returns 1 if the encoding of d32 is canonical, 0 otherwise */
+/* No error is possible. */
+/* ------------------------------------------------------------------ */
+uint32_t decimal32IsCanonical(const decimal32 *d32) {
+ decNumber dn; /* work */
+ decimal32 canon; /* .. */
+ decContext dc; /* .. */
+ decContextDefault(&dc, DEC_INIT_DECIMAL32);
+ decimal32ToNumber(d32, &dn);
+ decimal32FromNumber(&canon, &dn, &dc);/* canon will now be canonical */
+ return memcmp(d32, &canon, DECIMAL32_Bytes)==0;
+ } /* decimal32IsCanonical */
+
+/* ------------------------------------------------------------------ */
+/* decimal32Canonical -- copy an encoding, ensuring it is canonical */
+/* d32 is the source decimal32 */
+/* result is the target (may be the same decimal32) */
+/* returns result */
+/* No error is possible. */
+/* ------------------------------------------------------------------ */
+decimal32 * decimal32Canonical(decimal32 *result, const decimal32 *d32) {
+ decNumber dn; /* work */
+ decContext dc; /* .. */
+ decContextDefault(&dc, DEC_INIT_DECIMAL32);
+ decimal32ToNumber(d32, &dn);
+ decimal32FromNumber(result, &dn, &dc);/* result will now be canonical */
+ return result;
+ } /* decimal32Canonical */
#if DECTRACE || DECCHECK
+/* Macros for accessing decimal32 fields. These assume the argument
+ is a reference (pointer) to the decimal32 structure, and the
+ decimal32 is in network byte order (big-endian) */
+/* Get sign */
+#define decimal32Sign(d) ((unsigned)(d)->bytes[0]>>7)
+
+/* Get combination field */
+#define decimal32Comb(d) (((d)->bytes[0] & 0x7c)>>2)
+
+/* Get exponent continuation [does not remove bias] */
+#define decimal32ExpCon(d) ((((d)->bytes[0] & 0x03)<<4) \
+ | ((unsigned)(d)->bytes[1]>>4))
+
+/* Set sign [this assumes sign previously 0] */
+#define decimal32SetSign(d, b) { \
+ (d)->bytes[0]|=((unsigned)(b)<<7);}
+
+/* Set exponent continuation [does not apply bias] */
+/* This assumes range has been checked and exponent previously 0; */
+/* type of exponent must be unsigned */
+#define decimal32SetExpCon(d, e) { \
+ (d)->bytes[0]|=(uint8_t)((e)>>4); \
+ (d)->bytes[1]|=(uint8_t)(((e)&0x0F)<<4);}
+
/* ------------------------------------------------------------------ */
-/* decimal32Show -- display a single in hexadecimal [debug aid] */
-/* d32 -- the number to show */
+/* decimal32Show -- display a decimal32 in hexadecimal [debug aid] */
+/* d32 -- the number to show */
/* ------------------------------------------------------------------ */
-/* Also shows sign/cob/expconfields extracted */
-void
-decimal32Show (const decimal32 * d32)
-{
- char buf[DECIMAL32_Bytes * 2 + 1];
- Int i, j;
- j = 0;
- for (i = 0; i < DECIMAL32_Bytes; i++)
- {
- sprintf (&buf[j], "%02x", d32->bytes[i]);
- j = j + 2;
+/* Also shows sign/cob/expconfields extracted - valid bigendian only */
+void decimal32Show(const decimal32 *d32) {
+ char buf[DECIMAL32_Bytes*2+1];
+ Int i, j=0;
+
+ if (DECLITEND) {
+ for (i=0; i<DECIMAL32_Bytes; i++, j+=2) {
+ sprintf(&buf[j], "%02x", d32->bytes[3-i]);
+ }
+ printf(" D32> %s [S:%d Cb:%02x Ec:%02x] LittleEndian\n", buf,
+ d32->bytes[3]>>7, (d32->bytes[3]>>2)&0x1f,
+ ((d32->bytes[3]&0x3)<<4)| (d32->bytes[2]>>4));
+ }
+ else {
+ for (i=0; i<DECIMAL32_Bytes; i++, j+=2) {
+ sprintf(&buf[j], "%02x", d32->bytes[i]);
+ }
+ printf(" D32> %s [S:%d Cb:%02x Ec:%02x] BigEndian\n", buf,
+ decimal32Sign(d32), decimal32Comb(d32), decimal32ExpCon(d32));
}
- printf (" D32> %s [S:%d Cb:%02x E:%d]\n", buf,
- decimal32Sign (d32), decimal32Comb (d32), decimal32ExpCon (d32));
-}
+ } /* decimal32Show */
#endif
diff --git a/libdecnumber/dpd/decimal32.h b/libdecnumber/dpd/decimal32.h
index cbe8ab4a65c..0d530464172 100644
--- a/libdecnumber/dpd/decimal32.h
+++ b/libdecnumber/dpd/decimal32.h
@@ -1,5 +1,5 @@
-/* Decimal 32-bit format module header for the decNumber C Library
- Copyright (C) 2005 Free Software Foundation, Inc.
+/* Decimal 32-bit format module header for the decNumber C Library.
+ Copyright (C) 2005, 2007 Free Software Foundation, Inc.
Contributed by IBM Corporation. Author Mike Cowlishaw.
This file is part of GCC.
@@ -28,93 +28,72 @@
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA. */
+/* ------------------------------------------------------------------ */
+/* Decimal 32-bit format module header */
+/* ------------------------------------------------------------------ */
+
#if !defined(DECIMAL32)
-#define DECIMAL32
-#define DEC32NAME "decimal32" /* Short name */
-#define DEC32FULLNAME "Decimal 32-bit Number" /* Verbose name */
-#define DEC32AUTHOR "Mike Cowlishaw" /* Who to blame */
+ #define DECIMAL32
+ #define DEC32NAME "decimal32" /* Short name */
+ #define DEC32FULLNAME "Decimal 32-bit Number" /* Verbose name */
+ #define DEC32AUTHOR "Mike Cowlishaw" /* Who to blame */
/* parameters for decimal32s */
-#define DECIMAL32_Bytes 4 /* length */
-#define DECIMAL32_Pmax 7 /* maximum precision (digits) */
-#define DECIMAL32_Emax 96 /* maximum adjusted exponent */
-#define DECIMAL32_Emin -95 /* minimum adjusted exponent */
-#define DECIMAL32_Bias 101 /* bias for the exponent */
-#define DECIMAL32_String 15 /* maximum string length, +1 */
- /* highest biased exponent (Elimit-1) */
-#define DECIMAL32_Ehigh (DECIMAL32_Emax+DECIMAL32_Bias-DECIMAL32_Pmax+1)
-
-#ifndef DECNUMDIGITS
-#define DECNUMDIGITS DECIMAL32_Pmax /* size if not already defined */
-#endif
-#ifndef DECNUMBER
-#include "decNumber.h" /* context and number library */
-#endif
+ #define DECIMAL32_Bytes 4 /* length */
+ #define DECIMAL32_Pmax 7 /* maximum precision (digits) */
+ #define DECIMAL32_Emax 96 /* maximum adjusted exponent */
+ #define DECIMAL32_Emin -95 /* minimum adjusted exponent */
+ #define DECIMAL32_Bias 101 /* bias for the exponent */
+ #define DECIMAL32_String 15 /* maximum string length, +1 */
+ #define DECIMAL32_EconL 6 /* exp. continuation length */
+ /* highest biased exponent (Elimit-1) */
+ #define DECIMAL32_Ehigh (DECIMAL32_Emax+DECIMAL32_Bias-DECIMAL32_Pmax+1)
+
+ /* check enough digits, if pre-defined */
+ #if defined(DECNUMDIGITS)
+ #if (DECNUMDIGITS<DECIMAL32_Pmax)
+ #error decimal32.h needs pre-defined DECNUMDIGITS>=7 for safe use
+ #endif
+ #endif
+
+ #ifndef DECNUMDIGITS
+ #define DECNUMDIGITS DECIMAL32_Pmax /* size if not already defined*/
+ #endif
+ #ifndef DECNUMBER
+ #include "decNumber.h" /* context and number library */
+ #endif
/* Decimal 32-bit type, accessible by bytes */
-typedef struct
-{
- uint8_t bytes[DECIMAL32_Bytes]; /* decimal32: 1, 5, 6, 20 bits */
-} decimal32;
-
- /* special values [top byte excluding sign bit; last two bits are
- don't-care for Infinity on input, last bit don't-care for NaN] */
-#if !defined(DECIMAL_NaN)
-#define DECIMAL_NaN 0x7c /* 0 11111 00 NaN */
-#define DECIMAL_sNaN 0x7e /* 0 11111 10 sNaN */
-#define DECIMAL_Inf 0x78 /* 0 11110 00 Infinity */
-#endif
-
- /* Macros for accessing decimal32 fields. These assume the argument
- is a reference (pointer) to the decimal32 structure */
- /* Get sign */
-#define decimal32Sign(d) ((unsigned)(d)->bytes[0]>>7)
-
- /* Get combination field */
-#define decimal32Comb(d) (((d)->bytes[0] & 0x7c)>>2)
-
- /* Get exponent continuation [does not remove bias] */
-#define decimal32ExpCon(d) ((((d)->bytes[0] & 0x03)<<4) \
- | ((unsigned)(d)->bytes[1]>>4))
-
- /* Set sign [this assumes sign previously 0] */
-#define decimal32SetSign(d, b) { \
- (d)->bytes[0]|=((unsigned)(b)<<7);}
-
- /* Clear sign */
-#define decimal32ClearSign(d) {(d)->bytes[0]&=~0x80;}
-
- /* Flip sign */
-#define decimal32FlipSign(d) {(d)->bytes[0]^=0x80;}
-
- /* Set exponent continuation [does not apply bias] */
- /* This assumes range has been checked and exponent previously 0; */
- /* type of exponent must be unsigned */
-#define decimal32SetExpCon(d, e) { \
- (d)->bytes[0]|=(uint8_t)((e)>>4); \
- (d)->bytes[1]|=(uint8_t)(((e)&0x0F)<<4);}
-
- /* ------------------------------------------------------------------ */
- /* Routines */
- /* ------------------------------------------------------------------ */
-
-#ifdef IN_LIBGCC2
-#ifndef decimal32FromString
-#define decimal32FromString __decimal32FromString
-#define decimal32ToString __decimal32ToString
-#define decimal32ToEngString __decimal32ToEngString
-#define decimal32FromNumber __decimal32FromNumber
-#define decimal32ToNumber __decimal32ToNumber
-#endif
-#endif
-
-/* String conversions. */
-decimal32 *decimal32FromString (decimal32 *, const char *, decContext *);
-char *decimal32ToString (const decimal32 *, char *);
-char *decimal32ToEngString (const decimal32 *, char *);
-
-/* decNumber conversions. */
-decimal32 *decimal32FromNumber (decimal32 *, const decNumber *, decContext *);
-decNumber *decimal32ToNumber (const decimal32 *, decNumber *);
+ typedef struct {
+ uint8_t bytes[DECIMAL32_Bytes]; /* decimal32: 1, 5, 6, 20 bits*/
+ } decimal32;
+
+ /* special values [top byte excluding sign bit; last two bits are */
+ /* don't-care for Infinity on input, last bit don't-care for NaN] */
+ #if !defined(DECIMAL_NaN)
+ #define DECIMAL_NaN 0x7c /* 0 11111 00 NaN */
+ #define DECIMAL_sNaN 0x7e /* 0 11111 10 sNaN */
+ #define DECIMAL_Inf 0x78 /* 0 11110 00 Infinity */
+ #endif
+
+ /* ---------------------------------------------------------------- */
+ /* Routines */
+ /* ---------------------------------------------------------------- */
+
+ #include "decimal32Symbols.h"
+
+ /* String conversions */
+ decimal32 * decimal32FromString(decimal32 *, const char *, decContext *);
+ char * decimal32ToString(const decimal32 *, char *);
+ char * decimal32ToEngString(const decimal32 *, char *);
+
+ /* decNumber conversions */
+ decimal32 * decimal32FromNumber(decimal32 *, const decNumber *,
+ decContext *);
+ decNumber * decimal32ToNumber(const decimal32 *, decNumber *);
+
+ /* Format-dependent utilities */
+ uint32_t decimal32IsCanonical(const decimal32 *);
+ decimal32 * decimal32Canonical(decimal32 *, const decimal32 *);
#endif
diff --git a/libdecnumber/dpd/decimal32Symbols.h b/libdecnumber/dpd/decimal32Symbols.h
new file mode 100644
index 00000000000..de119346c4c
--- /dev/null
+++ b/libdecnumber/dpd/decimal32Symbols.h
@@ -0,0 +1,16 @@
+#if !defined(DECIMAL32SYMBOLS)
+#define DECIMAL32SYMBOLS
+
+#ifdef IN_LIBGCC2
+#define decDigitsFromDPD __decDigitsFromDPD
+#define decDigitsToDPD __decDigitsToDPD
+#define decimal32Canonical __decimal32Canonical
+#define decimal32FromNumber __decimal32FromNumber
+#define decimal32FromString __decimal32FromString
+#define decimal32IsCanonical __decimal32IsCanonical
+#define decimal32ToEngString __decimal32ToEngString
+#define decimal32ToNumber __decimal32ToNumber
+#define decimal32ToString __decimal32ToString
+#endif
+
+#endif
diff --git a/libdecnumber/dpd/decimal64.c b/libdecnumber/dpd/decimal64.c
index c1c1c7c9b09..359214e5dbe 100644
--- a/libdecnumber/dpd/decimal64.c
+++ b/libdecnumber/dpd/decimal64.c
@@ -1,5 +1,5 @@
-/* Decimal 64-bit format module for the decNumber C Library
- Copyright (C) 2005 Free Software Foundation, Inc.
+/* Decimal 64-bit format module for the decNumber C Library.
+ Copyright (C) 2005, 2007 Free Software Foundation, Inc.
Contributed by IBM Corporation. Author Mike Cowlishaw.
This file is part of GCC.
@@ -29,309 +29,828 @@
02110-1301, USA. */
/* ------------------------------------------------------------------ */
+/* Decimal 64-bit format module */
+/* ------------------------------------------------------------------ */
/* This module comprises the routines for decimal64 format numbers. */
-/* Conversions are supplied to and from decNumber and String. */
-/* */
-/* No arithmetic routines are included; decNumber provides these. */
-/* */
-/* Error handling is the same as decNumber (qv.). */
+/* Conversions are supplied to and from decNumber and String. */
+/* */
+/* This is used when decNumber provides operations, either for all */
+/* operations or as a proxy between decNumber and decSingle. */
+/* */
+/* Error handling is the same as decNumber (qv.). */
/* ------------------------------------------------------------------ */
-#include <string.h> /* [for memset/memcpy] */
-#include <stdio.h> /* [for printf] */
+#include <string.h> /* [for memset/memcpy] */
+#include <stdio.h> /* [for printf] */
+
+#include "config.h" /* GCC definitions */
+#define DECNUMDIGITS 16 /* make decNumbers with space for 16 */
+#include "decNumber.h" /* base number library */
+#include "decNumberLocal.h" /* decNumber local types, etc. */
+#include "decimal64.h" /* our primary include */
-#define DECNUMDIGITS 16 /* we need decNumbers with space for 16 */
-#include "config.h"
-#include "decNumber.h" /* base number library */
-#include "decNumberLocal.h" /* decNumber local types, etc. */
-#include "decimal64.h" /* our primary include */
-#include "decUtility.h" /* utility routines */
+/* Utility routines and tables [in decimal64.c]; externs for C++ */
+/* DPD2BIN and the reverse are renamed to prevent link-time conflict */
+/* if decQuad is also built in the same executable */
+#define DPD2BIN DPD2BINx
+#define BIN2DPD BIN2DPDx
+extern const uInt COMBEXP[32], COMBMSD[32];
+extern const uShort DPD2BIN[1024];
+extern const uShort BIN2DPD[1000];
+extern const uByte BIN2CHAR[4001];
+
+extern void decDigitsFromDPD(decNumber *, const uInt *, Int);
+extern void decDigitsToDPD(const decNumber *, uInt *, Int);
#if DECTRACE || DECCHECK
-void decimal64Show (const decimal64 *); /* for debug */
-void decNumberShow (const decNumber *); /* .. */
+void decimal64Show(const decimal64 *); /* for debug */
+extern void decNumberShow(const decNumber *); /* .. */
#endif
/* Useful macro */
/* Clear a structure (e.g., a decNumber) */
#define DEC_clear(d) memset(d, 0, sizeof(*d))
+/* define and include the tables to use for conversions */
+#define DEC_BIN2CHAR 1
+#define DEC_DPD2BIN 1
+#define DEC_BIN2DPD 1 /* used for all sizes */
+#include "decDPD.h" /* lookup tables */
+
/* ------------------------------------------------------------------ */
-/* decimal64FromNumber -- convert decNumber to decimal64 */
-/* */
-/* ds is the target decimal64 */
-/* dn is the source number (assumed valid) */
-/* set is the context, used only for reporting errors */
-/* */
+/* decimal64FromNumber -- convert decNumber to decimal64 */
+/* */
+/* ds is the target decimal64 */
+/* dn is the source number (assumed valid) */
+/* set is the context, used only for reporting errors */
+/* */
/* The set argument is used only for status reporting and for the */
/* rounding mode (used if the coefficient is more than DECIMAL64_Pmax */
-/* digits or an overflow is detected). If the exponent is out of the */
-/* valid range then Overflow or Underflow will be raised. */
-/* After Underflow a subnormal result is possible. */
-/* */
+/* digits or an overflow is detected). If the exponent is out of the */
+/* valid range then Overflow or Underflow will be raised. */
+/* After Underflow a subnormal result is possible. */
+/* */
/* DEC_Clamped is set if the number has to be 'folded down' to fit, */
/* by reducing its exponent and multiplying the coefficient by a */
/* power of ten, or if the exponent on a zero had to be clamped. */
/* ------------------------------------------------------------------ */
-decimal64 *
-decimal64FromNumber (decimal64 * d64, const decNumber * dn, decContext * set)
-{
- uInt status = 0; /* status accumulator */
- Int pad = 0; /* coefficient pad digits */
- decNumber dw; /* work */
- decContext dc; /* .. */
- uByte isneg = dn->bits & DECNEG; /* non-0 if original sign set */
- uInt comb, exp; /* work */
-
- /* If the number is finite, and has too many digits, or the exponent */
- /* could be out of range then we reduce the number under the */
- /* appropriate constraints */
- if (!(dn->bits & DECSPECIAL))
- { /* not a special value */
- Int ae = dn->exponent + dn->digits - 1; /* adjusted exponent */
- if (dn->digits > DECIMAL64_Pmax /* too many digits */
- || ae > DECIMAL64_Emax /* likely overflow */
- || ae < DECIMAL64_Emin)
- { /* likely underflow */
- decContextDefault (&dc, DEC_INIT_DECIMAL64); /* [no traps] */
- dc.round = set->round; /* use supplied rounding */
- decNumberPlus (&dw, dn, &dc); /* (round and check) */
- /* [this changes -0 to 0, but it will be restored below] */
- status |= dc.status; /* save status */
- dn = &dw; /* use the work number */
- }
- /* [this could have pushed number to Infinity or zero, so this */
- /* rounding must be done before we generate the decimal64] */
- }
+decimal64 * decimal64FromNumber(decimal64 *d64, const decNumber *dn,
+ decContext *set) {
+ uInt status=0; /* status accumulator */
+ Int ae; /* adjusted exponent */
+ decNumber dw; /* work */
+ decContext dc; /* .. */
+ uInt *pu; /* .. */
+ uInt comb, exp; /* .. */
+ uInt targar[2]={0, 0}; /* target 64-bit */
+ #define targhi targar[1] /* name the word with the sign */
+ #define targlo targar[0] /* and the other */
+
+ /* If the number has too many digits, or the exponent could be */
+ /* out of range then reduce the number under the appropriate */
+ /* constraints. This could push the number to Infinity or zero, */
+ /* so this check and rounding must be done before generating the */
+ /* decimal64] */
+ ae=dn->exponent+dn->digits-1; /* [0 if special] */
+ if (dn->digits>DECIMAL64_Pmax /* too many digits */
+ || ae>DECIMAL64_Emax /* likely overflow */
+ || ae<DECIMAL64_Emin) { /* likely underflow */
+ decContextDefault(&dc, DEC_INIT_DECIMAL64); /* [no traps] */
+ dc.round=set->round; /* use supplied rounding */
+ decNumberPlus(&dw, dn, &dc); /* (round and check) */
+ /* [this changes -0 to 0, so enforce the sign...] */
+ dw.bits|=dn->bits&DECNEG;
+ status=dc.status; /* save status */
+ dn=&dw; /* use the work number */
+ } /* maybe out of range */
- DEC_clear (d64); /* clean the target */
- if (dn->bits & DECSPECIAL)
- { /* a special value */
- uByte top; /* work */
- if (dn->bits & DECINF)
- top = DECIMAL_Inf;
- else
- { /* sNaN or qNaN */
- if ((*dn->lsu != 0 || dn->digits > 1) /* non-zero coefficient */
- && (dn->digits < DECIMAL64_Pmax))
- { /* coefficient fits */
- decDensePackCoeff (dn, d64->bytes, sizeof (d64->bytes), 0);
- }
- if (dn->bits & DECNAN)
- top = DECIMAL_NaN;
- else
- top = DECIMAL_sNaN;
+ if (dn->bits&DECSPECIAL) { /* a special value */
+ if (dn->bits&DECINF) targhi=DECIMAL_Inf<<24;
+ else { /* sNaN or qNaN */
+ if ((*dn->lsu!=0 || dn->digits>1) /* non-zero coefficient */
+ && (dn->digits<DECIMAL64_Pmax)) { /* coefficient fits */
+ decDigitsToDPD(dn, targar, 0);
}
- d64->bytes[0] = top;
- }
- else if (decNumberIsZero (dn))
- { /* a zero */
+ if (dn->bits&DECNAN) targhi|=DECIMAL_NaN<<24;
+ else targhi|=DECIMAL_sNaN<<24;
+ } /* a NaN */
+ } /* special */
+
+ else { /* is finite */
+ if (decNumberIsZero(dn)) { /* is a zero */
/* set and clamp exponent */
- if (dn->exponent < -DECIMAL64_Bias)
- {
- exp = 0;
- status |= DEC_Clamped;
+ if (dn->exponent<-DECIMAL64_Bias) {
+ exp=0; /* low clamp */
+ status|=DEC_Clamped;
}
- else
- {
- exp = dn->exponent + DECIMAL64_Bias; /* bias exponent */
- if (exp > DECIMAL64_Ehigh)
- { /* top clamp */
- exp = DECIMAL64_Ehigh;
- status |= DEC_Clamped;
- }
+ else {
+ exp=dn->exponent+DECIMAL64_Bias; /* bias exponent */
+ if (exp>DECIMAL64_Ehigh) { /* top clamp */
+ exp=DECIMAL64_Ehigh;
+ status|=DEC_Clamped;
+ }
}
- comb = (exp >> 5) & 0x18; /* combination field */
- d64->bytes[0] = (uByte) (comb << 2);
- exp &= 0xff; /* remaining exponent bits */
- decimal64SetExpCon (d64, exp);
- }
- else
- { /* non-zero finite number */
- uInt msd; /* work */
-
- /* we have a dn that fits, but it may need to be padded */
- exp = (uInt) (dn->exponent + DECIMAL64_Bias); /* bias exponent */
- if (exp > DECIMAL64_Ehigh)
- { /* fold-down case */
- pad = exp - DECIMAL64_Ehigh;
- exp = DECIMAL64_Ehigh; /* [to maximum] */
- status |= DEC_Clamped;
+ comb=(exp>>5) & 0x18; /* msd=0, exp top 2 bits .. */
+ }
+ else { /* non-zero finite number */
+ uInt msd; /* work */
+ Int pad=0; /* coefficient pad digits */
+
+ /* the dn is known to fit, but it may need to be padded */
+ exp=(uInt)(dn->exponent+DECIMAL64_Bias); /* bias exponent */
+ if (exp>DECIMAL64_Ehigh) { /* fold-down case */
+ pad=exp-DECIMAL64_Ehigh;
+ exp=DECIMAL64_Ehigh; /* [to maximum] */
+ status|=DEC_Clamped;
}
- decDensePackCoeff (dn, d64->bytes, sizeof (d64->bytes), pad);
+ /* fastpath common case */
+ if (DECDPUN==3 && pad==0) {
+ uInt dpd[6]={0,0,0,0,0,0};
+ uInt i;
+ Int d=dn->digits;
+ for (i=0; d>0; i++, d-=3) dpd[i]=BIN2DPD[dn->lsu[i]];
+ targlo =dpd[0];
+ targlo|=dpd[1]<<10;
+ targlo|=dpd[2]<<20;
+ if (dn->digits>6) {
+ targlo|=dpd[3]<<30;
+ targhi =dpd[3]>>2;
+ targhi|=dpd[4]<<8;
+ }
+ msd=dpd[5]; /* [did not really need conversion] */
+ }
+ else { /* general case */
+ decDigitsToDPD(dn, targar, pad);
+ /* save and clear the top digit */
+ msd=targhi>>18;
+ targhi&=0x0003ffff;
+ }
- /* save and clear the top digit */
- msd = ((unsigned) d64->bytes[1] >> 2) & 0x0f;
- d64->bytes[1] &= 0x03;
/* create the combination field */
- if (msd >= 8)
- comb = 0x18 | (msd & 0x01) | ((exp >> 7) & 0x06);
- else
- comb = (msd & 0x07) | ((exp >> 5) & 0x18);
- d64->bytes[0] = (uByte) (comb << 2);
- exp &= 0xff; /* remaining exponent bits */
- decimal64SetExpCon (d64, exp);
- }
+ if (msd>=8) comb=0x18 | ((exp>>7) & 0x06) | (msd & 0x01);
+ else comb=((exp>>5) & 0x18) | msd;
+ }
+ targhi|=comb<<26; /* add combination field .. */
+ targhi|=(exp&0xff)<<18; /* .. and exponent continuation */
+ } /* finite */
+
+ if (dn->bits&DECNEG) targhi|=0x80000000; /* add sign bit */
- if (isneg)
- decimal64SetSign (d64, 1);
- if (status != 0)
- decContextSetStatus (set, status); /* pass on status */
+ /* now write to storage; this is now always endian */
+ pu=(uInt *)d64->bytes; /* overlay */
+ if (DECLITEND) {
+ pu[0]=targar[0]; /* directly store the low int */
+ pu[1]=targar[1]; /* then the high int */
+ }
+ else {
+ pu[0]=targar[1]; /* directly store the high int */
+ pu[1]=targar[0]; /* then the low int */
+ }
- /*decimal64Show(d64); */
+ if (status!=0) decContextSetStatus(set, status); /* pass on status */
+ /* decimal64Show(d64); */
return d64;
-}
+ } /* decimal64FromNumber */
/* ------------------------------------------------------------------ */
-/* decimal64ToNumber -- convert decimal64 to decNumber */
-/* d64 is the source decimal64 */
-/* dn is the target number, with appropriate space */
-/* No error is possible. */
+/* decimal64ToNumber -- convert decimal64 to decNumber */
+/* d64 is the source decimal64 */
+/* dn is the target number, with appropriate space */
+/* No error is possible. */
/* ------------------------------------------------------------------ */
-decNumber *
-decimal64ToNumber (const decimal64 * d64, decNumber * dn)
-{
- uInt msd; /* coefficient MSD */
- decimal64 wk; /* working copy, if needed */
- uInt top = d64->bytes[0] & 0x7f; /* top byte, less sign bit */
- decNumberZero (dn); /* clean target */
- /* set the sign if negative */
- if (decimal64Sign (d64))
- dn->bits = DECNEG;
-
- if (top >= 0x78)
- { /* is a special */
- if ((top & 0x7c) == (DECIMAL_Inf & 0x7c))
- dn->bits |= DECINF;
- else if ((top & 0x7e) == (DECIMAL_NaN & 0x7e))
- dn->bits |= DECNAN;
- else
- dn->bits |= DECSNAN;
- msd = 0; /* no top digit */
+decNumber * decimal64ToNumber(const decimal64 *d64, decNumber *dn) {
+ uInt msd; /* coefficient MSD */
+ uInt exp; /* exponent top two bits */
+ uInt comb; /* combination field */
+ const uInt *pu; /* work */
+ Int need; /* .. */
+ uInt sourar[2]; /* source 64-bit */
+ #define sourhi sourar[1] /* name the word with the sign */
+ #define sourlo sourar[0] /* and the lower word */
+
+ /* load source from storage; this is endian */
+ pu=(const uInt *)d64->bytes; /* overlay */
+ if (DECLITEND) {
+ sourlo=pu[0]; /* directly load the low int */
+ sourhi=pu[1]; /* then the high int */
}
- else
- { /* have a finite number */
- uInt comb = top >> 2; /* combination field */
- uInt exp; /* exponent */
-
- if (comb >= 0x18)
- {
- msd = 8 + (comb & 0x01);
- exp = (comb & 0x06) << 7; /* MSBs */
- }
- else
- {
- msd = comb & 0x07;
- exp = (comb & 0x18) << 5;
- }
- dn->exponent = exp + decimal64ExpCon (d64) - DECIMAL64_Bias; /* remove bias */
+ else {
+ sourhi=pu[0]; /* directly load the high int */
+ sourlo=pu[1]; /* then the low int */
}
- /* get the coefficient, unless infinite */
- if (!(dn->bits & DECINF))
- {
- Int bunches = DECIMAL64_Pmax / 3; /* coefficient full bunches to convert */
- Int odd = 0; /* assume MSD is 0 (no odd bunch) */
- if (msd != 0)
- { /* coefficient has leading non-0 digit */
- /* make a copy of the decimal64, with an extra bunch which has */
- /* the top digit ready for conversion */
- wk = *d64; /* take a copy */
- wk.bytes[0] = 0; /* clear all but coecon */
- wk.bytes[1] &= 0x03; /* .. */
- wk.bytes[1] |= (msd << 2); /* and prefix MSD */
- odd++; /* indicate the extra */
- d64 = &wk; /* use the work copy */
- }
- decDenseUnpackCoeff (d64->bytes, sizeof (d64->bytes), dn, bunches, odd);
+ comb=(sourhi>>26)&0x1f; /* combination field */
+
+ decNumberZero(dn); /* clean number */
+ if (sourhi&0x80000000) dn->bits=DECNEG; /* set sign if negative */
+
+ msd=COMBMSD[comb]; /* decode the combination field */
+ exp=COMBEXP[comb]; /* .. */
+
+ if (exp==3) { /* is a special */
+ if (msd==0) {
+ dn->bits|=DECINF;
+ return dn; /* no coefficient needed */
+ }
+ else if (sourhi&0x02000000) dn->bits|=DECSNAN;
+ else dn->bits|=DECNAN;
+ msd=0; /* no top digit */
+ }
+ else { /* is a finite number */
+ dn->exponent=(exp<<8)+((sourhi>>18)&0xff)-DECIMAL64_Bias; /* unbiased */
}
+
+ /* get the coefficient */
+ sourhi&=0x0003ffff; /* clean coefficient continuation */
+ if (msd) { /* non-zero msd */
+ sourhi|=msd<<18; /* prefix to coefficient */
+ need=6; /* process 6 declets */
+ }
+ else { /* msd=0 */
+ if (!sourhi) { /* top word 0 */
+ if (!sourlo) return dn; /* easy: coefficient is 0 */
+ need=3; /* process at least 3 declets */
+ if (sourlo&0xc0000000) need++; /* process 4 declets */
+ /* [could reduce some more, here] */
+ }
+ else { /* some bits in top word, msd=0 */
+ need=4; /* process at least 4 declets */
+ if (sourhi&0x0003ff00) need++; /* top declet!=0, process 5 */
+ }
+ } /*msd=0 */
+
+ decDigitsFromDPD(dn, sourar, need); /* process declets */
return dn;
-}
+ } /* decimal64ToNumber */
+
/* ------------------------------------------------------------------ */
-/* to-scientific-string -- conversion to numeric string */
-/* to-engineering-string -- conversion to numeric string */
-/* */
-/* decimal64ToString(d64, string); */
-/* decimal64ToEngString(d64, string); */
-/* */
-/* d64 is the decimal64 format number to convert */
-/* string is the string where the result will be laid out */
-/* */
-/* string must be at least 24 characters */
-/* */
-/* No error is possible, and no status can be set. */
+/* to-scientific-string -- conversion to numeric string */
+/* to-engineering-string -- conversion to numeric string */
+/* */
+/* decimal64ToString(d64, string); */
+/* decimal64ToEngString(d64, string); */
+/* */
+/* d64 is the decimal64 format number to convert */
+/* string is the string where the result will be laid out */
+/* */
+/* string must be at least 24 characters */
+/* */
+/* No error is possible, and no status can be set. */
/* ------------------------------------------------------------------ */
-char *
-decimal64ToString (const decimal64 * d64, char *string)
-{
- decNumber dn; /* work */
- decimal64ToNumber (d64, &dn);
- decNumberToString (&dn, string);
+char * decimal64ToEngString(const decimal64 *d64, char *string){
+ decNumber dn; /* work */
+ decimal64ToNumber(d64, &dn);
+ decNumberToEngString(&dn, string);
return string;
-}
-
-char *
-decimal64ToEngString (const decimal64 * d64, char *string)
-{
- decNumber dn; /* work */
- decimal64ToNumber (d64, &dn);
- decNumberToEngString (&dn, string);
+ } /* decimal64ToEngString */
+
+char * decimal64ToString(const decimal64 *d64, char *string){
+ uInt msd; /* coefficient MSD */
+ Int exp; /* exponent top two bits or full */
+ uInt comb; /* combination field */
+ char *cstart; /* coefficient start */
+ char *c; /* output pointer in string */
+ const uInt *pu; /* work */
+ char *s, *t; /* .. (source, target) */
+ Int dpd; /* .. */
+ Int pre, e; /* .. */
+ const uByte *u; /* .. */
+
+ uInt sourar[2]; /* source 64-bit */
+ #define sourhi sourar[1] /* name the word with the sign */
+ #define sourlo sourar[0] /* and the lower word */
+
+ /* load source from storage; this is endian */
+ pu=(const uInt *)d64->bytes; /* overlay */
+ if (DECLITEND) {
+ sourlo=pu[0]; /* directly load the low int */
+ sourhi=pu[1]; /* then the high int */
+ }
+ else {
+ sourhi=pu[0]; /* directly load the high int */
+ sourlo=pu[1]; /* then the low int */
+ }
+
+ c=string; /* where result will go */
+ if (((Int)sourhi)<0) *c++='-'; /* handle sign */
+
+ comb=(sourhi>>26)&0x1f; /* combination field */
+ msd=COMBMSD[comb]; /* decode the combination field */
+ exp=COMBEXP[comb]; /* .. */
+
+ if (exp==3) {
+ if (msd==0) { /* infinity */
+ strcpy(c, "Inf");
+ strcpy(c+3, "inity");
+ return string; /* easy */
+ }
+ if (sourhi&0x02000000) *c++='s'; /* sNaN */
+ strcpy(c, "NaN"); /* complete word */
+ c+=3; /* step past */
+ if (sourlo==0 && (sourhi&0x0003ffff)==0) return string; /* zero payload */
+ /* otherwise drop through to add integer; set correct exp */
+ exp=0; msd=0; /* setup for following code */
+ }
+ else exp=(exp<<8)+((sourhi>>18)&0xff)-DECIMAL64_Bias;
+
+ /* convert 16 digits of significand to characters */
+ cstart=c; /* save start of coefficient */
+ if (msd) *c++='0'+(char)msd; /* non-zero most significant digit */
+
+ /* Now decode the declets. After extracting each one, it is */
+ /* decoded to binary and then to a 4-char sequence by table lookup; */
+ /* the 4-chars are a 1-char length (significant digits, except 000 */
+ /* has length 0). This allows us to left-align the first declet */
+ /* with non-zero content, then remaining ones are full 3-char */
+ /* length. We use fixed-length memcpys because variable-length */
+ /* causes a subroutine call in GCC. (These are length 4 for speed */
+ /* and are safe because the array has an extra terminator byte.) */
+ #define dpd2char u=&BIN2CHAR[DPD2BIN[dpd]*4]; \
+ if (c!=cstart) {memcpy(c, u+1, 4); c+=3;} \
+ else if (*u) {memcpy(c, u+4-*u, 4); c+=*u;}
+
+ dpd=(sourhi>>8)&0x3ff; /* declet 1 */
+ dpd2char;
+ dpd=((sourhi&0xff)<<2) | (sourlo>>30); /* declet 2 */
+ dpd2char;
+ dpd=(sourlo>>20)&0x3ff; /* declet 3 */
+ dpd2char;
+ dpd=(sourlo>>10)&0x3ff; /* declet 4 */
+ dpd2char;
+ dpd=(sourlo)&0x3ff; /* declet 5 */
+ dpd2char;
+
+ if (c==cstart) *c++='0'; /* all zeros -- make 0 */
+
+ if (exp==0) { /* integer or NaN case -- easy */
+ *c='\0'; /* terminate */
+ return string;
+ }
+
+ /* non-0 exponent */
+ e=0; /* assume no E */
+ pre=c-cstart+exp;
+ /* [here, pre-exp is the digits count (==1 for zero)] */
+ if (exp>0 || pre<-5) { /* need exponential form */
+ e=pre-1; /* calculate E value */
+ pre=1; /* assume one digit before '.' */
+ } /* exponential form */
+
+ /* modify the coefficient, adding 0s, '.', and E+nn as needed */
+ s=c-1; /* source (LSD) */
+ if (pre>0) { /* ddd.ddd (plain), perhaps with E */
+ char *dotat=cstart+pre;
+ if (dotat<c) { /* if embedded dot needed... */
+ t=c; /* target */
+ for (; s>=dotat; s--, t--) *t=*s; /* open the gap; leave t at gap */
+ *t='.'; /* insert the dot */
+ c++; /* length increased by one */
+ }
+
+ /* finally add the E-part, if needed; it will never be 0, and has */
+ /* a maximum length of 3 digits */
+ if (e!=0) {
+ *c++='E'; /* starts with E */
+ *c++='+'; /* assume positive */
+ if (e<0) {
+ *(c-1)='-'; /* oops, need '-' */
+ e=-e; /* uInt, please */
+ }
+ u=&BIN2CHAR[e*4]; /* -> length byte */
+ memcpy(c, u+4-*u, 4); /* copy fixed 4 characters [is safe] */
+ c+=*u; /* bump pointer appropriately */
+ }
+ *c='\0'; /* add terminator */
+ /*printf("res %s\n", string); */
+ return string;
+ } /* pre>0 */
+
+ /* -5<=pre<=0: here for plain 0.ddd or 0.000ddd forms (can never have E) */
+ t=c+1-pre;
+ *(t+1)='\0'; /* can add terminator now */
+ for (; s>=cstart; s--, t--) *t=*s; /* shift whole coefficient right */
+ c=cstart;
+ *c++='0'; /* always starts with 0. */
+ *c++='.';
+ for (; pre<0; pre++) *c++='0'; /* add any 0's after '.' */
+ /*printf("res %s\n", string); */
return string;
-}
+ } /* decimal64ToString */
/* ------------------------------------------------------------------ */
-/* to-number -- conversion from numeric string */
-/* */
-/* decimal64FromString(result, string, set); */
-/* */
+/* to-number -- conversion from numeric string */
+/* */
+/* decimal64FromString(result, string, set); */
+/* */
/* result is the decimal64 format number which gets the result of */
-/* the conversion */
+/* the conversion */
/* *string is the character string which should contain a valid */
-/* number (which may be a special value) */
-/* set is the context */
-/* */
+/* number (which may be a special value) */
+/* set is the context */
+/* */
/* The context is supplied to this routine is used for error handling */
/* (setting of status and traps) and for the rounding mode, only. */
/* If an error occurs, the result will be a valid decimal64 NaN. */
/* ------------------------------------------------------------------ */
-decimal64 *
-decimal64FromString (decimal64 * result, const char *string, decContext * set)
-{
- decContext dc; /* work */
- decNumber dn; /* .. */
+decimal64 * decimal64FromString(decimal64 *result, const char *string,
+ decContext *set) {
+ decContext dc; /* work */
+ decNumber dn; /* .. */
- decContextDefault (&dc, DEC_INIT_DECIMAL64); /* no traps, please */
- dc.round = set->round; /* use supplied rounding */
+ decContextDefault(&dc, DEC_INIT_DECIMAL64); /* no traps, please */
+ dc.round=set->round; /* use supplied rounding */
- decNumberFromString (&dn, string, &dc); /* will round if needed */
+ decNumberFromString(&dn, string, &dc); /* will round if needed */
- decimal64FromNumber (result, &dn, &dc);
- if (dc.status != 0)
- { /* something happened */
- decContextSetStatus (set, dc.status); /* .. pass it on */
+ decimal64FromNumber(result, &dn, &dc);
+ if (dc.status!=0) { /* something happened */
+ decContextSetStatus(set, dc.status); /* .. pass it on */
}
return result;
-}
+ } /* decimal64FromString */
+
+/* ------------------------------------------------------------------ */
+/* decimal64IsCanonical -- test whether encoding is canonical */
+/* d64 is the source decimal64 */
+/* returns 1 if the encoding of d64 is canonical, 0 otherwise */
+/* No error is possible. */
+/* ------------------------------------------------------------------ */
+uint32_t decimal64IsCanonical(const decimal64 *d64) {
+ decNumber dn; /* work */
+ decimal64 canon; /* .. */
+ decContext dc; /* .. */
+ decContextDefault(&dc, DEC_INIT_DECIMAL64);
+ decimal64ToNumber(d64, &dn);
+ decimal64FromNumber(&canon, &dn, &dc);/* canon will now be canonical */
+ return memcmp(d64, &canon, DECIMAL64_Bytes)==0;
+ } /* decimal64IsCanonical */
+
+/* ------------------------------------------------------------------ */
+/* decimal64Canonical -- copy an encoding, ensuring it is canonical */
+/* d64 is the source decimal64 */
+/* result is the target (may be the same decimal64) */
+/* returns result */
+/* No error is possible. */
+/* ------------------------------------------------------------------ */
+decimal64 * decimal64Canonical(decimal64 *result, const decimal64 *d64) {
+ decNumber dn; /* work */
+ decContext dc; /* .. */
+ decContextDefault(&dc, DEC_INIT_DECIMAL64);
+ decimal64ToNumber(d64, &dn);
+ decimal64FromNumber(result, &dn, &dc);/* result will now be canonical */
+ return result;
+ } /* decimal64Canonical */
#if DECTRACE || DECCHECK
+/* Macros for accessing decimal64 fields. These assume the
+ argument is a reference (pointer) to the decimal64 structure,
+ and the decimal64 is in network byte order (big-endian) */
+/* Get sign */
+#define decimal64Sign(d) ((unsigned)(d)->bytes[0]>>7)
+
+/* Get combination field */
+#define decimal64Comb(d) (((d)->bytes[0] & 0x7c)>>2)
+
+/* Get exponent continuation [does not remove bias] */
+#define decimal64ExpCon(d) ((((d)->bytes[0] & 0x03)<<6) \
+ | ((unsigned)(d)->bytes[1]>>2))
+
+/* Set sign [this assumes sign previously 0] */
+#define decimal64SetSign(d, b) { \
+ (d)->bytes[0]|=((unsigned)(b)<<7);}
+
+/* Set exponent continuation [does not apply bias] */
+/* This assumes range has been checked and exponent previously 0; */
+/* type of exponent must be unsigned */
+#define decimal64SetExpCon(d, e) { \
+ (d)->bytes[0]|=(uint8_t)((e)>>6); \
+ (d)->bytes[1]|=(uint8_t)(((e)&0x3F)<<2);}
+
/* ------------------------------------------------------------------ */
-/* decimal64Show -- display a single in hexadecimal [debug aid] */
-/* d64 -- the number to show */
+/* decimal64Show -- display a decimal64 in hexadecimal [debug aid] */
+/* d64 -- the number to show */
/* ------------------------------------------------------------------ */
/* Also shows sign/cob/expconfields extracted */
-void
-decimal64Show (const decimal64 * d64)
-{
- char buf[DECIMAL64_Bytes * 2 + 1];
- Int i, j;
- j = 0;
- for (i = 0; i < DECIMAL64_Bytes; i++)
- {
- sprintf (&buf[j], "%02x", d64->bytes[i]);
- j = j + 2;
+void decimal64Show(const decimal64 *d64) {
+ char buf[DECIMAL64_Bytes*2+1];
+ Int i, j=0;
+
+ if (DECLITEND) {
+ for (i=0; i<DECIMAL64_Bytes; i++, j+=2) {
+ sprintf(&buf[j], "%02x", d64->bytes[7-i]);
+ }
+ printf(" D64> %s [S:%d Cb:%02x Ec:%02x] LittleEndian\n", buf,
+ d64->bytes[7]>>7, (d64->bytes[7]>>2)&0x1f,
+ ((d64->bytes[7]&0x3)<<6)| (d64->bytes[6]>>2));
+ }
+ else { /* big-endian */
+ for (i=0; i<DECIMAL64_Bytes; i++, j+=2) {
+ sprintf(&buf[j], "%02x", d64->bytes[i]);
+ }
+ printf(" D64> %s [S:%d Cb:%02x Ec:%02x] BigEndian\n", buf,
+ decimal64Sign(d64), decimal64Comb(d64), decimal64ExpCon(d64));
}
- printf (" D64> %s [S:%d Cb:%02x E:%d]\n", buf,
- decimal64Sign (d64), decimal64Comb (d64), decimal64ExpCon (d64));
-}
+ } /* decimal64Show */
#endif
+
+/* ================================================================== */
+/* Shared utility routines and tables */
+/* ================================================================== */
+/* define and include the conversion tables to use for shared code */
+#if DECDPUN==3
+ #define DEC_DPD2BIN 1
+#else
+ #define DEC_DPD2BCD 1
+#endif
+#include "decDPD.h" /* lookup tables */
+
+/* The maximum number of decNumberUnits needed for a working copy of */
+/* the units array is the ceiling of digits/DECDPUN, where digits is */
+/* the maximum number of digits in any of the formats for which this */
+/* is used. decimal128.h must not be included in this module, so, as */
+/* a very special case, that number is defined as a literal here. */
+#define DECMAX754 34
+#define DECMAXUNITS ((DECMAX754+DECDPUN-1)/DECDPUN)
+
+/* ------------------------------------------------------------------ */
+/* Combination field lookup tables (uInts to save measurable work) */
+/* */
+/* COMBEXP - 2-bit most-significant-bits of exponent */
+/* [11 if an Infinity or NaN] */
+/* COMBMSD - 4-bit most-significant-digit */
+/* [0=Infinity, 1=NaN if COMBEXP=11] */
+/* */
+/* Both are indexed by the 5-bit combination field (0-31) */
+/* ------------------------------------------------------------------ */
+const uInt COMBEXP[32]={0, 0, 0, 0, 0, 0, 0, 0,
+ 1, 1, 1, 1, 1, 1, 1, 1,
+ 2, 2, 2, 2, 2, 2, 2, 2,
+ 0, 0, 1, 1, 2, 2, 3, 3};
+const uInt COMBMSD[32]={0, 1, 2, 3, 4, 5, 6, 7,
+ 0, 1, 2, 3, 4, 5, 6, 7,
+ 0, 1, 2, 3, 4, 5, 6, 7,
+ 8, 9, 8, 9, 8, 9, 0, 1};
+
+/* ------------------------------------------------------------------ */
+/* decDigitsToDPD -- pack coefficient into DPD form */
+/* */
+/* dn is the source number (assumed valid, max DECMAX754 digits) */
+/* targ is 1, 2, or 4-element uInt array, which the caller must */
+/* have cleared to zeros */
+/* shift is the number of 0 digits to add on the right (normally 0) */
+/* */
+/* The coefficient must be known small enough to fit. The full */
+/* coefficient is copied, including the leading 'odd' digit. This */
+/* digit is retrieved and packed into the combination field by the */
+/* caller. */
+/* */
+/* The target uInts are altered only as necessary to receive the */
+/* digits of the decNumber. When more than one uInt is needed, they */
+/* are filled from left to right (that is, the uInt at offset 0 will */
+/* end up with the least-significant digits). */
+/* */
+/* shift is used for 'fold-down' padding. */
+/* */
+/* No error is possible. */
+/* ------------------------------------------------------------------ */
+#if DECDPUN<=4
+/* Constant multipliers for divide-by-power-of five using reciprocal */
+/* multiply, after removing powers of 2 by shifting, and final shift */
+/* of 17 [we only need up to **4] */
+static const uInt multies[]={131073, 26215, 5243, 1049, 210};
+/* QUOT10 -- macro to return the quotient of unit u divided by 10**n */
+#define QUOT10(u, n) ((((uInt)(u)>>(n))*multies[n])>>17)
+#endif
+void decDigitsToDPD(const decNumber *dn, uInt *targ, Int shift) {
+ Int cut; /* work */
+ Int n; /* output bunch counter */
+ Int digits=dn->digits; /* digit countdown */
+ uInt dpd; /* densely packed decimal value */
+ uInt bin; /* binary value 0-999 */
+ uInt *uout=targ; /* -> current output uInt */
+ uInt uoff=0; /* -> current output offset [from right] */
+ const Unit *inu=dn->lsu; /* -> current input unit */
+ Unit uar[DECMAXUNITS]; /* working copy of units, iff shifted */
+ #if DECDPUN!=3 /* not fast path */
+ Unit in; /* current unit */
+ #endif
+
+ if (shift!=0) { /* shift towards most significant required */
+ /* shift the units array to the left by pad digits and copy */
+ /* [this code is a special case of decShiftToMost, which could */
+ /* be used instead if exposed and the array were copied first] */
+ const Unit *source; /* .. */
+ Unit *target, *first; /* .. */
+ uInt next=0; /* work */
+
+ source=dn->lsu+D2U(digits)-1; /* where msu comes from */
+ target=uar+D2U(digits)-1+D2U(shift);/* where upper part of first cut goes */
+ cut=DECDPUN-MSUDIGITS(shift); /* where to slice */
+ if (cut==0) { /* unit-boundary case */
+ for (; source>=dn->lsu; source--, target--) *target=*source;
+ }
+ else {
+ first=uar+D2U(digits+shift)-1; /* where msu will end up */
+ for (; source>=dn->lsu; source--, target--) {
+ /* split the source Unit and accumulate remainder for next */
+ #if DECDPUN<=4
+ uInt quot=QUOT10(*source, cut);
+ uInt rem=*source-quot*DECPOWERS[cut];
+ next+=quot;
+ #else
+ uInt rem=*source%DECPOWERS[cut];
+ next+=*source/DECPOWERS[cut];
+ #endif
+ if (target<=first) *target=(Unit)next; /* write to target iff valid */
+ next=rem*DECPOWERS[DECDPUN-cut]; /* save remainder for next Unit */
+ }
+ } /* shift-move */
+ /* propagate remainder to one below and clear the rest */
+ for (; target>=uar; target--) {
+ *target=(Unit)next;
+ next=0;
+ }
+ digits+=shift; /* add count (shift) of zeros added */
+ inu=uar; /* use units in working array */
+ }
+
+ /* now densely pack the coefficient into DPD declets */
+
+ #if DECDPUN!=3 /* not fast path */
+ in=*inu; /* current unit */
+ cut=0; /* at lowest digit */
+ bin=0; /* [keep compiler quiet] */
+ #endif
+
+ for(n=0; digits>0; n++) { /* each output bunch */
+ #if DECDPUN==3 /* fast path, 3-at-a-time */
+ bin=*inu; /* 3 digits ready for convert */
+ digits-=3; /* [may go negative] */
+ inu++; /* may need another */
+
+ #else /* must collect digit-by-digit */
+ Unit dig; /* current digit */
+ Int j; /* digit-in-declet count */
+ for (j=0; j<3; j++) {
+ #if DECDPUN<=4
+ Unit temp=(Unit)((uInt)(in*6554)>>16);
+ dig=(Unit)(in-X10(temp));
+ in=temp;
+ #else
+ dig=in%10;
+ in=in/10;
+ #endif
+ if (j==0) bin=dig;
+ else if (j==1) bin+=X10(dig);
+ else /* j==2 */ bin+=X100(dig);
+ digits--;
+ if (digits==0) break; /* [also protects *inu below] */
+ cut++;
+ if (cut==DECDPUN) {inu++; in=*inu; cut=0;}
+ }
+ #endif
+ /* here there are 3 digits in bin, or have used all input digits */
+
+ dpd=BIN2DPD[bin];
+
+ /* write declet to uInt array */
+ *uout|=dpd<<uoff;
+ uoff+=10;
+ if (uoff<32) continue; /* no uInt boundary cross */
+ uout++;
+ uoff-=32;
+ *uout|=dpd>>(10-uoff); /* collect top bits */
+ } /* n declets */
+ return;
+ } /* decDigitsToDPD */
+
+/* ------------------------------------------------------------------ */
+/* decDigitsFromDPD -- unpack a format's coefficient */
+/* */
+/* dn is the target number, with 7, 16, or 34-digit space. */
+/* sour is a 1, 2, or 4-element uInt array containing only declets */
+/* declets is the number of (right-aligned) declets in sour to */
+/* be processed. This may be 1 more than the obvious number in */
+/* a format, as any top digit is prefixed to the coefficient */
+/* continuation field. It also may be as small as 1, as the */
+/* caller may pre-process leading zero declets. */
+/* */
+/* When doing the 'extra declet' case care is taken to avoid writing */
+/* extra digits when there are leading zeros, as these could overflow */
+/* the units array when DECDPUN is not 3. */
+/* */
+/* The target uInts are used only as necessary to process declets */
+/* declets into the decNumber. When more than one uInt is needed, */
+/* they are used from left to right (that is, the uInt at offset 0 */
+/* provides the least-significant digits). */
+/* */
+/* dn->digits is set, but not the sign or exponent. */
+/* No error is possible [the redundant 888 codes are allowed]. */
+/* ------------------------------------------------------------------ */
+void decDigitsFromDPD(decNumber *dn, const uInt *sour, Int declets) {
+
+ uInt dpd; /* collector for 10 bits */
+ Int n; /* counter */
+ Unit *uout=dn->lsu; /* -> current output unit */
+ Unit *last=uout; /* will be unit containing msd */
+ const uInt *uin=sour; /* -> current input uInt */
+ uInt uoff=0; /* -> current input offset [from right] */
+
+ #if DECDPUN!=3
+ uInt bcd; /* BCD result */
+ uInt nibble; /* work */
+ Unit out=0; /* accumulator */
+ Int cut=0; /* power of ten in current unit */
+ #endif
+ #if DECDPUN>4
+ uInt const *pow; /* work */
+ #endif
+
+ /* Expand the densely-packed integer, right to left */
+ for (n=declets-1; n>=0; n--) { /* count down declets of 10 bits */
+ dpd=*uin>>uoff;
+ uoff+=10;
+ if (uoff>32) { /* crossed uInt boundary */
+ uin++;
+ uoff-=32;
+ dpd|=*uin<<(10-uoff); /* get waiting bits */
+ }
+ dpd&=0x3ff; /* clear uninteresting bits */
+
+ #if DECDPUN==3
+ if (dpd==0) *uout=0;
+ else {
+ *uout=DPD2BIN[dpd]; /* convert 10 bits to binary 0-999 */
+ last=uout; /* record most significant unit */
+ }
+ uout++;
+ } /* n */
+
+ #else /* DECDPUN!=3 */
+ if (dpd==0) { /* fastpath [e.g., leading zeros] */
+ /* write out three 0 digits (nibbles); out may have digit(s) */
+ cut++;
+ if (cut==DECDPUN) {*uout=out; if (out) {last=uout; out=0;} uout++; cut=0;}
+ if (n==0) break; /* [as below, works even if MSD=0] */
+ cut++;
+ if (cut==DECDPUN) {*uout=out; if (out) {last=uout; out=0;} uout++; cut=0;}
+ cut++;
+ if (cut==DECDPUN) {*uout=out; if (out) {last=uout; out=0;} uout++; cut=0;}
+ continue;
+ }
+
+ bcd=DPD2BCD[dpd]; /* convert 10 bits to 12 bits BCD */
+
+ /* now accumulate the 3 BCD nibbles into units */
+ nibble=bcd & 0x00f;
+ if (nibble) out=(Unit)(out+nibble*DECPOWERS[cut]);
+ cut++;
+ if (cut==DECDPUN) {*uout=out; if (out) {last=uout; out=0;} uout++; cut=0;}
+ bcd>>=4;
+
+ /* if this is the last declet and the remaining nibbles in bcd */
+ /* are 00 then process no more nibbles, because this could be */
+ /* the 'odd' MSD declet and writing any more Units would then */
+ /* overflow the unit array */
+ if (n==0 && !bcd) break;
+
+ nibble=bcd & 0x00f;
+ if (nibble) out=(Unit)(out+nibble*DECPOWERS[cut]);
+ cut++;
+ if (cut==DECDPUN) {*uout=out; if (out) {last=uout; out=0;} uout++; cut=0;}
+ bcd>>=4;
+
+ nibble=bcd & 0x00f;
+ if (nibble) out=(Unit)(out+nibble*DECPOWERS[cut]);
+ cut++;
+ if (cut==DECDPUN) {*uout=out; if (out) {last=uout; out=0;} uout++; cut=0;}
+ } /* n */
+ if (cut!=0) { /* some more left over */
+ *uout=out; /* write out final unit */
+ if (out) last=uout; /* and note if non-zero */
+ }
+ #endif
+
+ /* here, last points to the most significant unit with digits; */
+ /* inspect it to get the final digits count -- this is essentially */
+ /* the same code as decGetDigits in decNumber.c */
+ dn->digits=(last-dn->lsu)*DECDPUN+1; /* floor of digits, plus */
+ /* must be at least 1 digit */
+ #if DECDPUN>1
+ if (*last<10) return; /* common odd digit or 0 */
+ dn->digits++; /* must be 2 at least */
+ #if DECDPUN>2
+ if (*last<100) return; /* 10-99 */
+ dn->digits++; /* must be 3 at least */
+ #if DECDPUN>3
+ if (*last<1000) return; /* 100-999 */
+ dn->digits++; /* must be 4 at least */
+ #if DECDPUN>4
+ for (pow=&DECPOWERS[4]; *last>=*pow; pow++) dn->digits++;
+ #endif
+ #endif
+ #endif
+ #endif
+ return;
+ } /*decDigitsFromDPD */
diff --git a/libdecnumber/dpd/decimal64.h b/libdecnumber/dpd/decimal64.h
index fb7339512dc..549b626536c 100644
--- a/libdecnumber/dpd/decimal64.h
+++ b/libdecnumber/dpd/decimal64.h
@@ -1,5 +1,5 @@
-/* Decimal 64-bit format module header for the decNumber C Library
- Copyright (C) 2005 Free Software Foundation, Inc.
+/* Decimal 64-bit format module header for the decNumber C Library.
+ Copyright (C) 2005, 2007 Free Software Foundation, Inc.
Contributed by IBM Corporation. Author Mike Cowlishaw.
This file is part of GCC.
@@ -28,97 +28,74 @@
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA. */
-#if !defined(DECIMAL64)
-#define DECIMAL64
-#define DEC64NAME "decimal64" /* Short name */
-#define DEC64FULLNAME "Decimal 64-bit Number" /* Verbose name */
-#define DEC64AUTHOR "Mike Cowlishaw" /* Who to blame */
-
-#if defined(DECIMAL32)
-#error decimal64.h must precede decimal32.h for correct DECNUMDIGITS
-#endif
+/* ------------------------------------------------------------------ */
+/* Decimal 64-bit format module header */
+/* ------------------------------------------------------------------ */
- /* parameters for decimal64s */
-#define DECIMAL64_Bytes 8 /* length */
-#define DECIMAL64_Pmax 16 /* maximum precision (digits) */
-#define DECIMAL64_Emax 384 /* maximum adjusted exponent */
-#define DECIMAL64_Emin -383 /* minimum adjusted exponent */
-#define DECIMAL64_Bias 398 /* bias for the exponent */
-#define DECIMAL64_String 24 /* maximum string length, +1 */
- /* highest biased exponent (Elimit-1) */
-#define DECIMAL64_Ehigh (DECIMAL64_Emax+DECIMAL64_Bias-DECIMAL64_Pmax+1)
-
-#ifndef DECNUMDIGITS
-#define DECNUMDIGITS DECIMAL64_Pmax /* size if not already defined */
-#endif
-#ifndef DECNUMBER
-#include "decNumber.h" /* context and number library */
-#endif
-
- /* Decimal 64-bit type, accessible by bytes */
-typedef struct
-{
- uint8_t bytes[DECIMAL64_Bytes]; /* decimal64: 1, 5, 8, 50 bits */
-} decimal64;
-
- /* special values [top byte excluding sign bit; last two bits are
- don't-care for Infinity on input, last bit don't-care for NaN] */
-#if !defined(DECIMAL_NaN)
-#define DECIMAL_NaN 0x7c /* 0 11111 00 NaN */
-#define DECIMAL_sNaN 0x7e /* 0 11111 10 sNaN */
-#define DECIMAL_Inf 0x78 /* 0 11110 00 Infinity */
-#endif
-
- /* Macros for accessing decimal64 fields. These assume the argument
- is a reference (pointer) to the decimal64 structure */
- /* Get sign */
-#define decimal64Sign(d) ((unsigned)(d)->bytes[0]>>7)
-
- /* Get combination field */
-#define decimal64Comb(d) (((d)->bytes[0] & 0x7c)>>2)
-
- /* Get exponent continuation [does not remove bias] */
-#define decimal64ExpCon(d) ((((d)->bytes[0] & 0x03)<<6) \
- | ((unsigned)(d)->bytes[1]>>2))
-
- /* Set sign [this assumes sign previously 0] */
-#define decimal64SetSign(d, b) { \
- (d)->bytes[0]|=((unsigned)(b)<<7);}
-
- /* Clear sign */
-#define decimal64ClearSign(d) {(d)->bytes[0]&=~0x80;}
-
- /* Flip sign */
-#define decimal64FlipSign(d) {(d)->bytes[0]^=0x80;}
-
- /* Set exponent continuation [does not apply bias] */
- /* This assumes range has been checked and exponent previously 0; type */
- /* of exponent must be unsigned */
-#define decimal64SetExpCon(d, e) { \
- (d)->bytes[0]|=(uint8_t)((e)>>6); \
- (d)->bytes[1]|=(uint8_t)(((e)&0x3F)<<2);}
-
- /* ------------------------------------------------------------------ */
- /* Routines */
- /* ------------------------------------------------------------------ */
-
-#ifdef IN_LIBGCC2
-#ifndef decimal64FromString
-#define decimal64FromString __decimal64FromString
-#define decimal64ToString __decimal64ToString
-#define decimal64ToEngString __decimal64ToEngString
-#define decimal64FromNumber __decimal64FromNumber
-#define decimal64ToNumber __decimal64ToNumber
-#endif
-#endif
-
- /* String conversions */
-decimal64 *decimal64FromString (decimal64 *, const char *, decContext *);
-char *decimal64ToString (const decimal64 *, char *);
-char *decimal64ToEngString (const decimal64 *, char *);
-
- /* decNumber conversions */
-decimal64 *decimal64FromNumber (decimal64 *, const decNumber *, decContext *);
-decNumber *decimal64ToNumber (const decimal64 *, decNumber *);
+#if !defined(DECIMAL64)
+ #define DECIMAL64
+ #define DEC64NAME "decimal64" /* Short name */
+ #define DEC64FULLNAME "Decimal 64-bit Number" /* Verbose name */
+ #define DEC64AUTHOR "Mike Cowlishaw" /* Who to blame */
+
+
+ /* parameters for decimal64s */
+ #define DECIMAL64_Bytes 8 /* length */
+ #define DECIMAL64_Pmax 16 /* maximum precision (digits) */
+ #define DECIMAL64_Emax 384 /* maximum adjusted exponent */
+ #define DECIMAL64_Emin -383 /* minimum adjusted exponent */
+ #define DECIMAL64_Bias 398 /* bias for the exponent */
+ #define DECIMAL64_String 24 /* maximum string length, +1 */
+ #define DECIMAL64_EconL 8 /* exp. continuation length */
+ /* highest biased exponent (Elimit-1) */
+ #define DECIMAL64_Ehigh (DECIMAL64_Emax+DECIMAL64_Bias-DECIMAL64_Pmax+1)
+
+ /* check enough digits, if pre-defined */
+ #if defined(DECNUMDIGITS)
+ #if (DECNUMDIGITS<DECIMAL64_Pmax)
+ #error decimal64.h needs pre-defined DECNUMDIGITS>=16 for safe use
+ #endif
+ #endif
+
+
+ #ifndef DECNUMDIGITS
+ #define DECNUMDIGITS DECIMAL64_Pmax /* size if not already defined*/
+ #endif
+ #ifndef DECNUMBER
+ #include "decNumber.h" /* context and number library */
+ #endif
+
+ /* Decimal 64-bit type, accessible by bytes */
+ typedef struct {
+ uint8_t bytes[DECIMAL64_Bytes]; /* decimal64: 1, 5, 8, 50 bits*/
+ } decimal64;
+
+ /* special values [top byte excluding sign bit; last two bits are */
+ /* don't-care for Infinity on input, last bit don't-care for NaN] */
+ #if !defined(DECIMAL_NaN)
+ #define DECIMAL_NaN 0x7c /* 0 11111 00 NaN */
+ #define DECIMAL_sNaN 0x7e /* 0 11111 10 sNaN */
+ #define DECIMAL_Inf 0x78 /* 0 11110 00 Infinity */
+ #endif
+
+ /* ---------------------------------------------------------------- */
+ /* Routines */
+ /* ---------------------------------------------------------------- */
+
+ #include "decimal64Symbols.h"
+
+ /* String conversions */
+ decimal64 * decimal64FromString(decimal64 *, const char *, decContext *);
+ char * decimal64ToString(const decimal64 *, char *);
+ char * decimal64ToEngString(const decimal64 *, char *);
+
+ /* decNumber conversions */
+ decimal64 * decimal64FromNumber(decimal64 *, const decNumber *,
+ decContext *);
+ decNumber * decimal64ToNumber(const decimal64 *, decNumber *);
+
+ /* Format-dependent utilities */
+ uint32_t decimal64IsCanonical(const decimal64 *);
+ decimal64 * decimal64Canonical(decimal64 *, const decimal64 *);
#endif
diff --git a/libdecnumber/dpd/decimal64Symbols.h b/libdecnumber/dpd/decimal64Symbols.h
new file mode 100644
index 00000000000..cf965bf5bd8
--- /dev/null
+++ b/libdecnumber/dpd/decimal64Symbols.h
@@ -0,0 +1,16 @@
+#if !defined(DECIMAL64SYMBOLS)
+#define DECIMAL64SYMBOLS
+
+#ifdef IN_LIBGCC2
+#define decDigitsFromDPD __decDigitsFromDPD
+#define decDigitsToDPD __decDigitsToDPD
+#define decimal64Canonical __decimal64Canonical
+#define decimal64FromNumber __decimal64FromNumber
+#define decimal64FromString __decimal64FromString
+#define decimal64IsCanonical __decimal64IsCanonical
+#define decimal64ToEngString __decimal64ToEngString
+#define decimal64ToNumber __decimal64ToNumber
+#define decimal64ToString __decimal64ToString
+#endif
+
+#endif
diff --git a/libgcc/ChangeLog b/libgcc/ChangeLog
index 84bb87644e1..e9fed197a83 100644
--- a/libgcc/ChangeLog
+++ b/libgcc/ChangeLog
@@ -1,3 +1,8 @@
+2007-09-10 Janis Johnson <janis187@us.ibm.com>
+
+ * Makefile.in (dfp-filenames): Remove decUtility, add
+ decDouble, decPacked, decQuad, decSingle.
+
2007-08-27 Hans Kester <hans.kester@ellips.nl>
* config.host : Add x86_64-elf target.
diff --git a/libgcc/Makefile.in b/libgcc/Makefile.in
index ca7ed066a83..4b3bcc9df9c 100644
--- a/libgcc/Makefile.in
+++ b/libgcc/Makefile.in
@@ -488,7 +488,7 @@ dfp-filenames += decimal_globals decimal_data binarydecimal \
bid128_to_int32 bid128_to_int64 \
bid128_to_uint32 bid128_to_uint64
else
-dfp-filenames += decContext decNumber decExcept decRound decLibrary decUtility
+dfp-filenames += decContext decNumber decExcept decRound decLibrary decDouble decPacked decQuad decSingle
endif
endif