summaryrefslogtreecommitdiff
path: root/gcc/ada/a-ngelfu.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc/ada/a-ngelfu.adb')
-rw-r--r--gcc/ada/a-ngelfu.adb1051
1 files changed, 1051 insertions, 0 deletions
diff --git a/gcc/ada/a-ngelfu.adb b/gcc/ada/a-ngelfu.adb
new file mode 100644
index 00000000000..2a7201e874f
--- /dev/null
+++ b/gcc/ada/a-ngelfu.adb
@@ -0,0 +1,1051 @@
+------------------------------------------------------------------------------
+-- --
+-- GNAT RUNTIME COMPONENTS --
+-- --
+-- ADA.NUMERICS.GENERIC_ELEMENTARY_FUNCTIONS --
+-- --
+-- B o d y --
+-- --
+-- $Revision: 1.44 $
+-- --
+-- Copyright (C) 1992-2000, Free Software Foundation, Inc. --
+-- --
+-- GNAT is free software; you can redistribute it and/or modify it under --
+-- terms of the GNU General Public License as published by the Free Soft- --
+-- ware Foundation; either version 2, or (at your option) any later ver- --
+-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
+-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
+-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
+-- for more details. You should have received a copy of the GNU General --
+-- Public License distributed with GNAT; see file COPYING. If not, write --
+-- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
+-- MA 02111-1307, USA. --
+-- --
+-- As a special exception, if other files instantiate generics from this --
+-- unit, or you link this unit with other files to produce an executable, --
+-- this unit does not by itself cause the resulting executable to be --
+-- covered by the GNU General Public License. This exception does not --
+-- however invalidate any other reasons why the executable file might be --
+-- covered by the GNU Public License. --
+-- --
+-- GNAT was originally developed by the GNAT team at New York University. --
+-- It is now maintained by Ada Core Technologies Inc (http://www.gnat.com). --
+-- --
+------------------------------------------------------------------------------
+
+-- This body is specifically for using an Ada interface to C math.h to get
+-- the computation engine. Many special cases are handled locally to avoid
+-- unnecessary calls. This is not a "strict" implementation, but takes full
+-- advantage of the C functions, e.g. in providing interface to hardware
+-- provided versions of the elementary functions.
+
+-- Uses functions sqrt, exp, log, pow, sin, asin, cos, acos, tan, atan,
+-- sinh, cosh, tanh from C library via math.h
+
+with Ada.Numerics.Aux;
+
+package body Ada.Numerics.Generic_Elementary_Functions is
+
+ use type Ada.Numerics.Aux.Double;
+
+ Sqrt_Two : constant := 1.41421_35623_73095_04880_16887_24209_69807_85696;
+ Log_Two : constant := 0.69314_71805_59945_30941_72321_21458_17656_80755;
+ Half_Log_Two : constant := Log_Two / 2;
+
+
+ subtype T is Float_Type'Base;
+ subtype Double is Aux.Double;
+
+
+ Two_Pi : constant T := 2.0 * Pi;
+ Half_Pi : constant T := Pi / 2.0;
+ Fourth_Pi : constant T := Pi / 4.0;
+
+ Epsilon : constant T := 2.0 ** (1 - T'Model_Mantissa);
+ IEpsilon : constant T := 2.0 ** (T'Model_Mantissa - 1);
+ Log_Epsilon : constant T := T (1 - T'Model_Mantissa) * Log_Two;
+ Half_Log_Epsilon : constant T := T (1 - T'Model_Mantissa) * Half_Log_Two;
+ Log_Inverse_Epsilon : constant T := T (T'Model_Mantissa - 1) * Log_Two;
+ Sqrt_Epsilon : constant T := Sqrt_Two ** (1 - T'Model_Mantissa);
+
+
+ DEpsilon : constant Double := Double (Epsilon);
+ DIEpsilon : constant Double := Double (IEpsilon);
+
+ -----------------------
+ -- Local Subprograms --
+ -----------------------
+
+ function Exp_Strict (X : Float_Type'Base) return Float_Type'Base;
+ -- Cody/Waite routine, supposedly more precise than the library
+ -- version. Currently only needed for Sinh/Cosh on X86 with the largest
+ -- FP type.
+
+ function Local_Atan
+ (Y : Float_Type'Base;
+ X : Float_Type'Base := 1.0)
+ return Float_Type'Base;
+ -- Common code for arc tangent after cyele reduction
+
+ ----------
+ -- "**" --
+ ----------
+
+ function "**" (Left, Right : Float_Type'Base) return Float_Type'Base is
+ A_Right : Float_Type'Base;
+ Int_Part : Integer;
+ Result : Float_Type'Base;
+ R1 : Float_Type'Base;
+ Rest : Float_Type'Base;
+
+ begin
+ if Left = 0.0
+ and then Right = 0.0
+ then
+ raise Argument_Error;
+
+ elsif Left < 0.0 then
+ raise Argument_Error;
+
+ elsif Right = 0.0 then
+ return 1.0;
+
+ elsif Left = 0.0 then
+ if Right < 0.0 then
+ raise Constraint_Error;
+ else
+ return 0.0;
+ end if;
+
+ elsif Left = 1.0 then
+ return 1.0;
+
+ elsif Right = 1.0 then
+ return Left;
+
+ else
+ begin
+ if Right = 2.0 then
+ return Left * Left;
+
+ elsif Right = 0.5 then
+ return Sqrt (Left);
+
+ else
+ A_Right := abs (Right);
+
+ -- If exponent is larger than one, compute integer exponen-
+ -- tiation if possible, and evaluate fractional part with
+ -- more precision. The relative error is now proportional
+ -- to the fractional part of the exponent only.
+
+ if A_Right > 1.0
+ and then A_Right < Float_Type'Base (Integer'Last)
+ then
+ Int_Part := Integer (Float_Type'Base'Truncation (A_Right));
+ Result := Left ** Int_Part;
+ Rest := A_Right - Float_Type'Base (Int_Part);
+
+ -- Compute with two leading bits of the mantissa using
+ -- square roots. Bound to be better than logarithms, and
+ -- easily extended to greater precision.
+
+ if Rest >= 0.5 then
+ R1 := Sqrt (Left);
+ Result := Result * R1;
+ Rest := Rest - 0.5;
+
+ if Rest >= 0.25 then
+ Result := Result * Sqrt (R1);
+ Rest := Rest - 0.25;
+ end if;
+
+ elsif Rest >= 0.25 then
+ Result := Result * Sqrt (Sqrt (Left));
+ Rest := Rest - 0.25;
+ end if;
+
+ Result := Result *
+ Float_Type'Base (Aux.Pow (Double (Left), Double (Rest)));
+
+ if Right >= 0.0 then
+ return Result;
+ else
+ return (1.0 / Result);
+ end if;
+ else
+ return
+ Float_Type'Base (Aux.Pow (Double (Left), Double (Right)));
+ end if;
+ end if;
+
+ exception
+ when others =>
+ raise Constraint_Error;
+ end;
+ end if;
+ end "**";
+
+ ------------
+ -- Arccos --
+ ------------
+
+ -- Natural cycle
+
+ function Arccos (X : Float_Type'Base) return Float_Type'Base is
+ Temp : Float_Type'Base;
+
+ begin
+ if abs X > 1.0 then
+ raise Argument_Error;
+
+ elsif abs X < Sqrt_Epsilon then
+ return Pi / 2.0 - X;
+
+ elsif X = 1.0 then
+ return 0.0;
+
+ elsif X = -1.0 then
+ return Pi;
+ end if;
+
+ Temp := Float_Type'Base (Aux.Acos (Double (X)));
+
+ if Temp < 0.0 then
+ Temp := Pi + Temp;
+ end if;
+
+ return Temp;
+ end Arccos;
+
+ -- Arbitrary cycle
+
+ function Arccos (X, Cycle : Float_Type'Base) return Float_Type'Base is
+ Temp : Float_Type'Base;
+
+ begin
+ if Cycle <= 0.0 then
+ raise Argument_Error;
+
+ elsif abs X > 1.0 then
+ raise Argument_Error;
+
+ elsif abs X < Sqrt_Epsilon then
+ return Cycle / 4.0;
+
+ elsif X = 1.0 then
+ return 0.0;
+
+ elsif X = -1.0 then
+ return Cycle / 2.0;
+ end if;
+
+ Temp := Arctan (Sqrt ((1.0 - X) * (1.0 + X)) / X, 1.0, Cycle);
+
+ if Temp < 0.0 then
+ Temp := Cycle / 2.0 + Temp;
+ end if;
+
+ return Temp;
+ end Arccos;
+
+ -------------
+ -- Arccosh --
+ -------------
+
+ function Arccosh (X : Float_Type'Base) return Float_Type'Base is
+ begin
+ -- Return positive branch of Log (X - Sqrt (X * X - 1.0)), or
+ -- the proper approximation for X close to 1 or >> 1.
+
+ if X < 1.0 then
+ raise Argument_Error;
+
+ elsif X < 1.0 + Sqrt_Epsilon then
+ return Sqrt (2.0 * (X - 1.0));
+
+ elsif X > 1.0 / Sqrt_Epsilon then
+ return Log (X) + Log_Two;
+
+ else
+ return Log (X + Sqrt ((X - 1.0) * (X + 1.0)));
+ end if;
+ end Arccosh;
+
+ ------------
+ -- Arccot --
+ ------------
+
+ -- Natural cycle
+
+ function Arccot
+ (X : Float_Type'Base;
+ Y : Float_Type'Base := 1.0)
+ return Float_Type'Base
+ is
+ begin
+ -- Just reverse arguments
+
+ return Arctan (Y, X);
+ end Arccot;
+
+ -- Arbitrary cycle
+
+ function Arccot
+ (X : Float_Type'Base;
+ Y : Float_Type'Base := 1.0;
+ Cycle : Float_Type'Base)
+ return Float_Type'Base
+ is
+ begin
+ -- Just reverse arguments
+
+ return Arctan (Y, X, Cycle);
+ end Arccot;
+
+ -------------
+ -- Arccoth --
+ -------------
+
+ function Arccoth (X : Float_Type'Base) return Float_Type'Base is
+ begin
+ if abs X > 2.0 then
+ return Arctanh (1.0 / X);
+
+ elsif abs X = 1.0 then
+ raise Constraint_Error;
+
+ elsif abs X < 1.0 then
+ raise Argument_Error;
+
+ else
+ -- 1.0 < abs X <= 2.0. One of X + 1.0 and X - 1.0 is exact, the
+ -- other has error 0 or Epsilon.
+
+ return 0.5 * (Log (abs (X + 1.0)) - Log (abs (X - 1.0)));
+ end if;
+ end Arccoth;
+
+ ------------
+ -- Arcsin --
+ ------------
+
+ -- Natural cycle
+
+ function Arcsin (X : Float_Type'Base) return Float_Type'Base is
+ begin
+ if abs X > 1.0 then
+ raise Argument_Error;
+
+ elsif abs X < Sqrt_Epsilon then
+ return X;
+
+ elsif X = 1.0 then
+ return Pi / 2.0;
+
+ elsif X = -1.0 then
+ return -Pi / 2.0;
+ end if;
+
+ return Float_Type'Base (Aux.Asin (Double (X)));
+ end Arcsin;
+
+ -- Arbitrary cycle
+
+ function Arcsin (X, Cycle : Float_Type'Base) return Float_Type'Base is
+ begin
+ if Cycle <= 0.0 then
+ raise Argument_Error;
+
+ elsif abs X > 1.0 then
+ raise Argument_Error;
+
+ elsif X = 0.0 then
+ return X;
+
+ elsif X = 1.0 then
+ return Cycle / 4.0;
+
+ elsif X = -1.0 then
+ return -Cycle / 4.0;
+ end if;
+
+ return Arctan (X / Sqrt ((1.0 - X) * (1.0 + X)), 1.0, Cycle);
+ end Arcsin;
+
+ -------------
+ -- Arcsinh --
+ -------------
+
+ function Arcsinh (X : Float_Type'Base) return Float_Type'Base is
+ begin
+ if abs X < Sqrt_Epsilon then
+ return X;
+
+ elsif X > 1.0 / Sqrt_Epsilon then
+ return Log (X) + Log_Two;
+
+ elsif X < -1.0 / Sqrt_Epsilon then
+ return -(Log (-X) + Log_Two);
+
+ elsif X < 0.0 then
+ return -Log (abs X + Sqrt (X * X + 1.0));
+
+ else
+ return Log (X + Sqrt (X * X + 1.0));
+ end if;
+ end Arcsinh;
+
+ ------------
+ -- Arctan --
+ ------------
+
+ -- Natural cycle
+
+ function Arctan
+ (Y : Float_Type'Base;
+ X : Float_Type'Base := 1.0)
+ return Float_Type'Base
+ is
+ begin
+ if X = 0.0
+ and then Y = 0.0
+ then
+ raise Argument_Error;
+
+ elsif Y = 0.0 then
+ if X > 0.0 then
+ return 0.0;
+ else -- X < 0.0
+ return Pi * Float_Type'Copy_Sign (1.0, Y);
+ end if;
+
+ elsif X = 0.0 then
+ if Y > 0.0 then
+ return Half_Pi;
+ else -- Y < 0.0
+ return -Half_Pi;
+ end if;
+
+ else
+ return Local_Atan (Y, X);
+ end if;
+ end Arctan;
+
+ -- Arbitrary cycle
+
+ function Arctan
+ (Y : Float_Type'Base;
+ X : Float_Type'Base := 1.0;
+ Cycle : Float_Type'Base)
+ return Float_Type'Base
+ is
+ begin
+ if Cycle <= 0.0 then
+ raise Argument_Error;
+
+ elsif X = 0.0
+ and then Y = 0.0
+ then
+ raise Argument_Error;
+
+ elsif Y = 0.0 then
+ if X > 0.0 then
+ return 0.0;
+ else -- X < 0.0
+ return Cycle / 2.0 * Float_Type'Copy_Sign (1.0, Y);
+ end if;
+
+ elsif X = 0.0 then
+ if Y > 0.0 then
+ return Cycle / 4.0;
+ else -- Y < 0.0
+ return -Cycle / 4.0;
+ end if;
+
+ else
+ return Local_Atan (Y, X) * Cycle / Two_Pi;
+ end if;
+ end Arctan;
+
+ -------------
+ -- Arctanh --
+ -------------
+
+ function Arctanh (X : Float_Type'Base) return Float_Type'Base is
+ A, B, D, A_Plus_1, A_From_1 : Float_Type'Base;
+ Mantissa : constant Integer := Float_Type'Base'Machine_Mantissa;
+
+ begin
+ -- The naive formula:
+
+ -- Arctanh (X) := (1/2) * Log (1 + X) / (1 - X)
+
+ -- is not well-behaved numerically when X < 0.5 and when X is close
+ -- to one. The following is accurate but probably not optimal.
+
+ if abs X = 1.0 then
+ raise Constraint_Error;
+
+ elsif abs X >= 1.0 - 2.0 ** (-Mantissa) then
+
+ if abs X >= 1.0 then
+ raise Argument_Error;
+ else
+
+ -- The one case that overflows if put through the method below:
+ -- abs X = 1.0 - Epsilon. In this case (1/2) log (2/Epsilon) is
+ -- accurate. This simplifies to:
+
+ return Float_Type'Copy_Sign (
+ Half_Log_Two * Float_Type'Base (Mantissa + 1), X);
+ end if;
+
+ -- elsif abs X <= 0.5 then
+ -- why is above line commented out ???
+
+ else
+ -- Use several piecewise linear approximations.
+ -- A is close to X, chosen so 1.0 + A, 1.0 - A, and X - A are exact.
+ -- The two scalings remove the low-order bits of X.
+
+ A := Float_Type'Base'Scaling (
+ Float_Type'Base (Long_Long_Integer
+ (Float_Type'Base'Scaling (X, Mantissa - 1))), 1 - Mantissa);
+
+ B := X - A; -- This is exact; abs B <= 2**(-Mantissa).
+ A_Plus_1 := 1.0 + A; -- This is exact.
+ A_From_1 := 1.0 - A; -- Ditto.
+ D := A_Plus_1 * A_From_1; -- 1 - A*A.
+
+ -- use one term of the series expansion:
+ -- f (x + e) = f(x) + e * f'(x) + ..
+
+ -- The derivative of Arctanh at A is 1/(1-A*A). Next term is
+ -- A*(B/D)**2 (if a quadratic approximation is ever needed).
+
+ return 0.5 * (Log (A_Plus_1) - Log (A_From_1)) + B / D;
+
+ -- else
+ -- return 0.5 * Log ((X + 1.0) / (1.0 - X));
+ -- why are above lines commented out ???
+ end if;
+ end Arctanh;
+
+ ---------
+ -- Cos --
+ ---------
+
+ -- Natural cycle
+
+ function Cos (X : Float_Type'Base) return Float_Type'Base is
+ begin
+ if X = 0.0 then
+ return 1.0;
+
+ elsif abs X < Sqrt_Epsilon then
+ return 1.0;
+
+ end if;
+
+ return Float_Type'Base (Aux.Cos (Double (X)));
+ end Cos;
+
+ -- Arbitrary cycle
+
+ function Cos (X, Cycle : Float_Type'Base) return Float_Type'Base is
+ begin
+ -- Just reuse the code for Sin. The potential small
+ -- loss of speed is negligible with proper (front-end) inlining.
+
+ -- ??? Add pragma Inline_Always in spec when this is supported
+ return -Sin (abs X - Cycle * 0.25, Cycle);
+ end Cos;
+
+ ----------
+ -- Cosh --
+ ----------
+
+ function Cosh (X : Float_Type'Base) return Float_Type'Base is
+ Lnv : constant Float_Type'Base := 8#0.542714#;
+ V2minus1 : constant Float_Type'Base := 0.13830_27787_96019_02638E-4;
+ Y : Float_Type'Base := abs X;
+ Z : Float_Type'Base;
+
+ begin
+ if Y < Sqrt_Epsilon then
+ return 1.0;
+
+ elsif Y > Log_Inverse_Epsilon then
+ Z := Exp_Strict (Y - Lnv);
+ return (Z + V2minus1 * Z);
+
+ else
+ Z := Exp_Strict (Y);
+ return 0.5 * (Z + 1.0 / Z);
+ end if;
+
+ end Cosh;
+
+ ---------
+ -- Cot --
+ ---------
+
+ -- Natural cycle
+
+ function Cot (X : Float_Type'Base) return Float_Type'Base is
+ begin
+ if X = 0.0 then
+ raise Constraint_Error;
+
+ elsif abs X < Sqrt_Epsilon then
+ return 1.0 / X;
+ end if;
+
+ return 1.0 / Float_Type'Base (Aux.Tan (Double (X)));
+ end Cot;
+
+ -- Arbitrary cycle
+
+ function Cot (X, Cycle : Float_Type'Base) return Float_Type'Base is
+ T : Float_Type'Base;
+
+ begin
+ if Cycle <= 0.0 then
+ raise Argument_Error;
+ end if;
+
+ T := Float_Type'Base'Remainder (X, Cycle);
+
+ if T = 0.0 or abs T = 0.5 * Cycle then
+ raise Constraint_Error;
+
+ elsif abs T < Sqrt_Epsilon then
+ return 1.0 / T;
+
+ elsif abs T = 0.25 * Cycle then
+ return 0.0;
+
+ else
+ T := T / Cycle * Two_Pi;
+ return Cos (T) / Sin (T);
+ end if;
+ end Cot;
+
+ ----------
+ -- Coth --
+ ----------
+
+ function Coth (X : Float_Type'Base) return Float_Type'Base is
+ begin
+ if X = 0.0 then
+ raise Constraint_Error;
+
+ elsif X < Half_Log_Epsilon then
+ return -1.0;
+
+ elsif X > -Half_Log_Epsilon then
+ return 1.0;
+
+ elsif abs X < Sqrt_Epsilon then
+ return 1.0 / X;
+ end if;
+
+ return 1.0 / Float_Type'Base (Aux.Tanh (Double (X)));
+ end Coth;
+
+ ---------
+ -- Exp --
+ ---------
+
+ function Exp (X : Float_Type'Base) return Float_Type'Base is
+ Result : Float_Type'Base;
+
+ begin
+ if X = 0.0 then
+ return 1.0;
+ end if;
+
+ Result := Float_Type'Base (Aux.Exp (Double (X)));
+
+ -- Deal with case of Exp returning IEEE infinity. If Machine_Overflows
+ -- is False, then we can just leave it as an infinity (and indeed we
+ -- prefer to do so). But if Machine_Overflows is True, then we have
+ -- to raise a Constraint_Error exception as required by the RM.
+
+ if Float_Type'Machine_Overflows and then not Result'Valid then
+ raise Constraint_Error;
+ end if;
+
+ return Result;
+ end Exp;
+
+ ----------------
+ -- Exp_Strict --
+ ----------------
+
+ function Exp_Strict (X : Float_Type'Base) return Float_Type'Base is
+ G : Float_Type'Base;
+ Z : Float_Type'Base;
+
+ P0 : constant := 0.25000_00000_00000_00000;
+ P1 : constant := 0.75753_18015_94227_76666E-2;
+ P2 : constant := 0.31555_19276_56846_46356E-4;
+
+ Q0 : constant := 0.5;
+ Q1 : constant := 0.56817_30269_85512_21787E-1;
+ Q2 : constant := 0.63121_89437_43985_02557E-3;
+ Q3 : constant := 0.75104_02839_98700_46114E-6;
+
+ C1 : constant := 8#0.543#;
+ C2 : constant := -2.1219_44400_54690_58277E-4;
+ Le : constant := 1.4426_95040_88896_34074;
+
+ XN : Float_Type'Base;
+ P, Q, R : Float_Type'Base;
+
+ begin
+ if X = 0.0 then
+ return 1.0;
+ end if;
+
+ XN := Float_Type'Base'Rounding (X * Le);
+ G := (X - XN * C1) - XN * C2;
+ Z := G * G;
+ P := G * ((P2 * Z + P1) * Z + P0);
+ Q := ((Q3 * Z + Q2) * Z + Q1) * Z + Q0;
+ R := 0.5 + P / (Q - P);
+
+
+ R := Float_Type'Base'Scaling (R, Integer (XN) + 1);
+
+ -- Deal with case of Exp returning IEEE infinity. If Machine_Overflows
+ -- is False, then we can just leave it as an infinity (and indeed we
+ -- prefer to do so). But if Machine_Overflows is True, then we have
+ -- to raise a Constraint_Error exception as required by the RM.
+
+ if Float_Type'Machine_Overflows and then not R'Valid then
+ raise Constraint_Error;
+ else
+ return R;
+ end if;
+
+ end Exp_Strict;
+
+
+ ----------------
+ -- Local_Atan --
+ ----------------
+
+ function Local_Atan
+ (Y : Float_Type'Base;
+ X : Float_Type'Base := 1.0)
+ return Float_Type'Base
+ is
+ Z : Float_Type'Base;
+ Raw_Atan : Float_Type'Base;
+
+ begin
+ if abs Y > abs X then
+ Z := abs (X / Y);
+ else
+ Z := abs (Y / X);
+ end if;
+
+ if Z < Sqrt_Epsilon then
+ Raw_Atan := Z;
+
+ elsif Z = 1.0 then
+ Raw_Atan := Pi / 4.0;
+
+ else
+ Raw_Atan := Float_Type'Base (Aux.Atan (Double (Z)));
+ end if;
+
+ if abs Y > abs X then
+ Raw_Atan := Half_Pi - Raw_Atan;
+ end if;
+
+ if X > 0.0 then
+ if Y > 0.0 then
+ return Raw_Atan;
+ else -- Y < 0.0
+ return -Raw_Atan;
+ end if;
+
+ else -- X < 0.0
+ if Y > 0.0 then
+ return Pi - Raw_Atan;
+ else -- Y < 0.0
+ return -(Pi - Raw_Atan);
+ end if;
+ end if;
+ end Local_Atan;
+
+ ---------
+ -- Log --
+ ---------
+
+ -- Natural base
+
+ function Log (X : Float_Type'Base) return Float_Type'Base is
+ begin
+ if X < 0.0 then
+ raise Argument_Error;
+
+ elsif X = 0.0 then
+ raise Constraint_Error;
+
+ elsif X = 1.0 then
+ return 0.0;
+ end if;
+
+ return Float_Type'Base (Aux.Log (Double (X)));
+ end Log;
+
+ -- Arbitrary base
+
+ function Log (X, Base : Float_Type'Base) return Float_Type'Base is
+ begin
+ if X < 0.0 then
+ raise Argument_Error;
+
+ elsif Base <= 0.0 or else Base = 1.0 then
+ raise Argument_Error;
+
+ elsif X = 0.0 then
+ raise Constraint_Error;
+
+ elsif X = 1.0 then
+ return 0.0;
+ end if;
+
+ return Float_Type'Base (Aux.Log (Double (X)) / Aux.Log (Double (Base)));
+ end Log;
+
+ ---------
+ -- Sin --
+ ---------
+
+ -- Natural cycle
+
+ function Sin (X : Float_Type'Base) return Float_Type'Base is
+ begin
+ if abs X < Sqrt_Epsilon then
+ return X;
+ end if;
+
+ return Float_Type'Base (Aux.Sin (Double (X)));
+ end Sin;
+
+ -- Arbitrary cycle
+
+ function Sin (X, Cycle : Float_Type'Base) return Float_Type'Base is
+ T : Float_Type'Base;
+
+ begin
+ if Cycle <= 0.0 then
+ raise Argument_Error;
+
+ elsif X = 0.0 then
+ -- Is this test really needed on any machine ???
+ return X;
+ end if;
+
+ T := Float_Type'Base'Remainder (X, Cycle);
+
+ -- The following two reductions reduce the argument
+ -- to the interval [-0.25 * Cycle, 0.25 * Cycle].
+ -- This reduction is exact and is needed to prevent
+ -- inaccuracy that may result if the sinus function
+ -- a different (more accurate) value of Pi in its
+ -- reduction than is used in the multiplication with Two_Pi.
+
+ if abs T > 0.25 * Cycle then
+ T := 0.5 * Float_Type'Copy_Sign (Cycle, T) - T;
+ end if;
+
+ -- Could test for 12.0 * abs T = Cycle, and return
+ -- an exact value in those cases. It is not clear that
+ -- this is worth the extra test though.
+
+ return Float_Type'Base (Aux.Sin (Double (T / Cycle * Two_Pi)));
+ end Sin;
+
+ ----------
+ -- Sinh --
+ ----------
+
+ function Sinh (X : Float_Type'Base) return Float_Type'Base is
+ Lnv : constant Float_Type'Base := 8#0.542714#;
+ V2minus1 : constant Float_Type'Base := 0.13830_27787_96019_02638E-4;
+ Y : Float_Type'Base := abs X;
+ F : constant Float_Type'Base := Y * Y;
+ Z : Float_Type'Base;
+
+ Float_Digits_1_6 : constant Boolean := Float_Type'Digits < 7;
+
+ begin
+ if Y < Sqrt_Epsilon then
+ return X;
+
+ elsif Y > Log_Inverse_Epsilon then
+ Z := Exp_Strict (Y - Lnv);
+ Z := Z + V2minus1 * Z;
+
+ elsif Y < 1.0 then
+
+ if Float_Digits_1_6 then
+
+ -- Use expansion provided by Cody and Waite, p. 226. Note that
+ -- leading term of the polynomial in Q is exactly 1.0.
+
+ declare
+ P0 : constant := -0.71379_3159E+1;
+ P1 : constant := -0.19033_3399E+0;
+ Q0 : constant := -0.42827_7109E+2;
+
+ begin
+ Z := Y + Y * F * (P1 * F + P0) / (F + Q0);
+ end;
+
+ else
+ declare
+ P0 : constant := -0.35181_28343_01771_17881E+6;
+ P1 : constant := -0.11563_52119_68517_68270E+5;
+ P2 : constant := -0.16375_79820_26307_51372E+3;
+ P3 : constant := -0.78966_12741_73570_99479E+0;
+ Q0 : constant := -0.21108_77005_81062_71242E+7;
+ Q1 : constant := 0.36162_72310_94218_36460E+5;
+ Q2 : constant := -0.27773_52311_96507_01667E+3;
+
+ begin
+ Z := Y + Y * F * (((P3 * F + P2) * F + P1) * F + P0)
+ / (((F + Q2) * F + Q1) * F + Q0);
+ end;
+ end if;
+
+ else
+ Z := Exp_Strict (Y);
+ Z := 0.5 * (Z - 1.0 / Z);
+ end if;
+
+ if X > 0.0 then
+ return Z;
+ else
+ return -Z;
+ end if;
+ end Sinh;
+
+ ----------
+ -- Sqrt --
+ ----------
+
+ function Sqrt (X : Float_Type'Base) return Float_Type'Base is
+ begin
+ if X < 0.0 then
+ raise Argument_Error;
+
+ -- Special case Sqrt (0.0) to preserve possible minus sign per IEEE
+
+ elsif X = 0.0 then
+ return X;
+
+ end if;
+
+ return Float_Type'Base (Aux.Sqrt (Double (X)));
+ end Sqrt;
+
+ ---------
+ -- Tan --
+ ---------
+
+ -- Natural cycle
+
+ function Tan (X : Float_Type'Base) return Float_Type'Base is
+ begin
+ if abs X < Sqrt_Epsilon then
+ return X;
+
+ elsif abs X = Pi / 2.0 then
+ raise Constraint_Error;
+ end if;
+
+ return Float_Type'Base (Aux.Tan (Double (X)));
+ end Tan;
+
+ -- Arbitrary cycle
+
+ function Tan (X, Cycle : Float_Type'Base) return Float_Type'Base is
+ T : Float_Type'Base;
+
+ begin
+ if Cycle <= 0.0 then
+ raise Argument_Error;
+
+ elsif X = 0.0 then
+ return X;
+ end if;
+
+ T := Float_Type'Base'Remainder (X, Cycle);
+
+ if abs T = 0.25 * Cycle then
+ raise Constraint_Error;
+
+ elsif abs T = 0.5 * Cycle then
+ return 0.0;
+
+ else
+ T := T / Cycle * Two_Pi;
+ return Sin (T) / Cos (T);
+ end if;
+
+ end Tan;
+
+ ----------
+ -- Tanh --
+ ----------
+
+ function Tanh (X : Float_Type'Base) return Float_Type'Base is
+ P0 : constant Float_Type'Base := -0.16134_11902E4;
+ P1 : constant Float_Type'Base := -0.99225_92967E2;
+ P2 : constant Float_Type'Base := -0.96437_49299E0;
+
+ Q0 : constant Float_Type'Base := 0.48402_35707E4;
+ Q1 : constant Float_Type'Base := 0.22337_72071E4;
+ Q2 : constant Float_Type'Base := 0.11274_47438E3;
+ Q3 : constant Float_Type'Base := 0.10000000000E1;
+
+ Half_Ln3 : constant Float_Type'Base := 0.54930_61443;
+
+ P, Q, R : Float_Type'Base;
+ Y : Float_Type'Base := abs X;
+ G : Float_Type'Base := Y * Y;
+
+ Float_Type_Digits_15_Or_More : constant Boolean :=
+ Float_Type'Digits > 14;
+
+ begin
+ if X < Half_Log_Epsilon then
+ return -1.0;
+
+ elsif X > -Half_Log_Epsilon then
+ return 1.0;
+
+ elsif Y < Sqrt_Epsilon then
+ return X;
+
+ elsif Y < Half_Ln3
+ and then Float_Type_Digits_15_Or_More
+ then
+ P := (P2 * G + P1) * G + P0;
+ Q := ((Q3 * G + Q2) * G + Q1) * G + Q0;
+ R := G * (P / Q);
+ return X + X * R;
+
+ else
+ return Float_Type'Base (Aux.Tanh (Double (X)));
+ end if;
+ end Tanh;
+
+end Ada.Numerics.Generic_Elementary_Functions;