summaryrefslogtreecommitdiff
path: root/gcc/ada/a-rbtgbo.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc/ada/a-rbtgbo.adb')
-rw-r--r--gcc/ada/a-rbtgbo.adb1118
1 files changed, 1118 insertions, 0 deletions
diff --git a/gcc/ada/a-rbtgbo.adb b/gcc/ada/a-rbtgbo.adb
new file mode 100644
index 00000000000..88743b3ce5b
--- /dev/null
+++ b/gcc/ada/a-rbtgbo.adb
@@ -0,0 +1,1118 @@
+------------------------------------------------------------------------------
+-- --
+-- GNAT LIBRARY COMPONENTS --
+-- --
+-- ADA.CONTAINERS.RED_BLACK_TREES.GENERIC_BOUNDED_OPERATIONS --
+-- --
+-- B o d y --
+-- --
+-- Copyright (C) 2004-2010, Free Software Foundation, Inc. --
+-- --
+-- GNAT is free software; you can redistribute it and/or modify it under --
+-- terms of the GNU General Public License as published by the Free Soft- --
+-- ware Foundation; either version 3, or (at your option) any later ver- --
+-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
+-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
+-- or FITNESS FOR A PARTICULAR PURPOSE. --
+-- --
+-- As a special exception under Section 7 of GPL version 3, you are granted --
+-- additional permissions described in the GCC Runtime Library Exception, --
+-- version 3.1, as published by the Free Software Foundation. --
+-- --
+-- You should have received a copy of the GNU General Public License and --
+-- a copy of the GCC Runtime Library Exception along with this program; --
+-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
+-- <http://www.gnu.org/licenses/>. --
+-- --
+-- This unit was originally developed by Matthew J Heaney. --
+------------------------------------------------------------------------------
+
+-- The references below to "CLR" refer to the following book, from which
+-- several of the algorithms here were adapted:
+-- Introduction to Algorithms
+-- by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest
+-- Publisher: The MIT Press (June 18, 1990)
+-- ISBN: 0262031418
+
+with System; use type System.Address;
+
+package body Ada.Containers.Red_Black_Trees.Generic_Bounded_Operations is
+
+ -----------------------
+ -- Local Subprograms --
+ -----------------------
+
+ procedure Delete_Fixup (Tree : in out Tree_Type'Class; Node : Count_Type);
+ procedure Delete_Swap (Tree : in out Tree_Type'Class; Z, Y : Count_Type);
+
+ procedure Left_Rotate (Tree : in out Tree_Type'Class; X : Count_Type);
+ procedure Right_Rotate (Tree : in out Tree_Type'Class; Y : Count_Type);
+
+ ----------------
+ -- Clear_Tree --
+ ----------------
+
+ procedure Clear_Tree (Tree : in out Tree_Type'Class) is
+ begin
+ if Tree.Busy > 0 then
+ raise Program_Error with
+ "attempt to tamper with cursors (container is busy)";
+ end if;
+
+ Tree.First := 0;
+ Tree.Last := 0;
+ Tree.Root := 0;
+ Tree.Length := 0;
+ -- Tree.Busy
+ -- Tree.Lock
+ Tree.Free := -1;
+ end Clear_Tree;
+
+ ------------------
+ -- Delete_Fixup --
+ ------------------
+
+ procedure Delete_Fixup
+ (Tree : in out Tree_Type'Class;
+ Node : Count_Type)
+ is
+
+ -- CLR p274
+
+ X : Count_Type;
+ W : Count_Type;
+ N : Nodes_Type renames Tree.Nodes;
+
+ begin
+ X := Node;
+ while X /= Tree.Root
+ and then Color (N (X)) = Black
+ loop
+ if X = Left (N (Parent (N (X)))) then
+ W := Right (N (Parent (N (X))));
+
+ if Color (N (W)) = Red then
+ Set_Color (N (W), Black);
+ Set_Color (N (Parent (N (X))), Red);
+ Left_Rotate (Tree, Parent (N (X)));
+ W := Right (N (Parent (N (X))));
+ end if;
+
+ if (Left (N (W)) = 0 or else Color (N (Left (N (W)))) = Black)
+ and then
+ (Right (N (W)) = 0 or else Color (N (Right (N (W)))) = Black)
+ then
+ Set_Color (N (W), Red);
+ X := Parent (N (X));
+
+ else
+ if Right (N (W)) = 0
+ or else Color (N (Right (N (W)))) = Black
+ then
+ -- As a condition for setting the color of the left child to
+ -- black, the left child access value must be non-null. A
+ -- truth table analysis shows that if we arrive here, that
+ -- condition holds, so there's no need for an explicit test.
+ -- The assertion is here to document what we know is true.
+
+ pragma Assert (Left (N (W)) /= 0);
+ Set_Color (N (Left (N (W))), Black);
+
+ Set_Color (N (W), Red);
+ Right_Rotate (Tree, W);
+ W := Right (N (Parent (N (X))));
+ end if;
+
+ Set_Color (N (W), Color (N (Parent (N (X)))));
+ Set_Color (N (Parent (N (X))), Black);
+ Set_Color (N (Right (N (W))), Black);
+ Left_Rotate (Tree, Parent (N (X)));
+ X := Tree.Root;
+ end if;
+
+ else
+ pragma Assert (X = Right (N (Parent (N (X)))));
+
+ W := Left (N (Parent (N (X))));
+
+ if Color (N (W)) = Red then
+ Set_Color (N (W), Black);
+ Set_Color (N (Parent (N (X))), Red);
+ Right_Rotate (Tree, Parent (N (X)));
+ W := Left (N (Parent (N (X))));
+ end if;
+
+ if (Left (N (W)) = 0 or else Color (N (Left (N (W)))) = Black)
+ and then
+ (Right (N (W)) = 0 or else Color (N (Right (N (W)))) = Black)
+ then
+ Set_Color (N (W), Red);
+ X := Parent (N (X));
+
+ else
+ if Left (N (W)) = 0
+ or else Color (N (Left (N (W)))) = Black
+ then
+ -- As a condition for setting the color of the right child
+ -- to black, the right child access value must be non-null.
+ -- A truth table analysis shows that if we arrive here, that
+ -- condition holds, so there's no need for an explicit test.
+ -- The assertion is here to document what we know is true.
+
+ pragma Assert (Right (N (W)) /= 0);
+ Set_Color (N (Right (N (W))), Black);
+
+ Set_Color (N (W), Red);
+ Left_Rotate (Tree, W);
+ W := Left (N (Parent (N (X))));
+ end if;
+
+ Set_Color (N (W), Color (N (Parent (N (X)))));
+ Set_Color (N (Parent (N (X))), Black);
+ Set_Color (N (Left (N (W))), Black);
+ Right_Rotate (Tree, Parent (N (X)));
+ X := Tree.Root;
+ end if;
+ end if;
+ end loop;
+
+ Set_Color (N (X), Black);
+ end Delete_Fixup;
+
+ ---------------------------
+ -- Delete_Node_Sans_Free --
+ ---------------------------
+
+ procedure Delete_Node_Sans_Free
+ (Tree : in out Tree_Type'Class;
+ Node : Count_Type)
+ is
+ -- CLR p273
+
+ X, Y : Count_Type;
+
+ Z : constant Count_Type := Node;
+ pragma Assert (Z /= 0);
+
+ N : Nodes_Type renames Tree.Nodes;
+
+ begin
+ if Tree.Busy > 0 then
+ raise Program_Error with
+ "attempt to tamper with cursors (container is busy)";
+ end if;
+
+ pragma Assert (Tree.Length > 0);
+ pragma Assert (Tree.Root /= 0);
+ pragma Assert (Tree.First /= 0);
+ pragma Assert (Tree.Last /= 0);
+ pragma Assert (Parent (N (Tree.Root)) = 0);
+
+ pragma Assert ((Tree.Length > 1)
+ or else (Tree.First = Tree.Last
+ and then Tree.First = Tree.Root));
+
+ pragma Assert ((Left (N (Node)) = 0)
+ or else (Parent (N (Left (N (Node)))) = Node));
+
+ pragma Assert ((Right (N (Node)) = 0)
+ or else (Parent (N (Right (N (Node)))) = Node));
+
+ pragma Assert (((Parent (N (Node)) = 0) and then (Tree.Root = Node))
+ or else ((Parent (N (Node)) /= 0) and then
+ ((Left (N (Parent (N (Node)))) = Node)
+ or else
+ (Right (N (Parent (N (Node)))) = Node))));
+
+ if Left (N (Z)) = 0 then
+ if Right (N (Z)) = 0 then
+ if Z = Tree.First then
+ Tree.First := Parent (N (Z));
+ end if;
+
+ if Z = Tree.Last then
+ Tree.Last := Parent (N (Z));
+ end if;
+
+ if Color (N (Z)) = Black then
+ Delete_Fixup (Tree, Z);
+ end if;
+
+ pragma Assert (Left (N (Z)) = 0);
+ pragma Assert (Right (N (Z)) = 0);
+
+ if Z = Tree.Root then
+ pragma Assert (Tree.Length = 1);
+ pragma Assert (Parent (N (Z)) = 0);
+ Tree.Root := 0;
+ elsif Z = Left (N (Parent (N (Z)))) then
+ Set_Left (N (Parent (N (Z))), 0);
+ else
+ pragma Assert (Z = Right (N (Parent (N (Z)))));
+ Set_Right (N (Parent (N (Z))), 0);
+ end if;
+
+ else
+ pragma Assert (Z /= Tree.Last);
+
+ X := Right (N (Z));
+
+ if Z = Tree.First then
+ Tree.First := Min (Tree, X);
+ end if;
+
+ if Z = Tree.Root then
+ Tree.Root := X;
+ elsif Z = Left (N (Parent (N (Z)))) then
+ Set_Left (N (Parent (N (Z))), X);
+ else
+ pragma Assert (Z = Right (N (Parent (N (Z)))));
+ Set_Right (N (Parent (N (Z))), X);
+ end if;
+
+ Set_Parent (N (X), Parent (N (Z)));
+
+ if Color (N (Z)) = Black then
+ Delete_Fixup (Tree, X);
+ end if;
+ end if;
+
+ elsif Right (N (Z)) = 0 then
+ pragma Assert (Z /= Tree.First);
+
+ X := Left (N (Z));
+
+ if Z = Tree.Last then
+ Tree.Last := Max (Tree, X);
+ end if;
+
+ if Z = Tree.Root then
+ Tree.Root := X;
+ elsif Z = Left (N (Parent (N (Z)))) then
+ Set_Left (N (Parent (N (Z))), X);
+ else
+ pragma Assert (Z = Right (N (Parent (N (Z)))));
+ Set_Right (N (Parent (N (Z))), X);
+ end if;
+
+ Set_Parent (N (X), Parent (N (Z)));
+
+ if Color (N (Z)) = Black then
+ Delete_Fixup (Tree, X);
+ end if;
+
+ else
+ pragma Assert (Z /= Tree.First);
+ pragma Assert (Z /= Tree.Last);
+
+ Y := Next (Tree, Z);
+ pragma Assert (Left (N (Y)) = 0);
+
+ X := Right (N (Y));
+
+ if X = 0 then
+ if Y = Left (N (Parent (N (Y)))) then
+ pragma Assert (Parent (N (Y)) /= Z);
+ Delete_Swap (Tree, Z, Y);
+ Set_Left (N (Parent (N (Z))), Z);
+
+ else
+ pragma Assert (Y = Right (N (Parent (N (Y)))));
+ pragma Assert (Parent (N (Y)) = Z);
+ Set_Parent (N (Y), Parent (N (Z)));
+
+ if Z = Tree.Root then
+ Tree.Root := Y;
+ elsif Z = Left (N (Parent (N (Z)))) then
+ Set_Left (N (Parent (N (Z))), Y);
+ else
+ pragma Assert (Z = Right (N (Parent (N (Z)))));
+ Set_Right (N (Parent (N (Z))), Y);
+ end if;
+
+ Set_Left (N (Y), Z);
+ Set_Parent (N (Left (N (Y))), Y);
+ Set_Right (N (Y), Z);
+ Set_Parent (N (Z), Y);
+ Set_Left (N (Z), 0);
+ Set_Right (N (Z), 0);
+
+ declare
+ Y_Color : constant Color_Type := Color (N (Y));
+ begin
+ Set_Color (N (Y), Color (N (Z)));
+ Set_Color (N (Z), Y_Color);
+ end;
+ end if;
+
+ if Color (N (Z)) = Black then
+ Delete_Fixup (Tree, Z);
+ end if;
+
+ pragma Assert (Left (N (Z)) = 0);
+ pragma Assert (Right (N (Z)) = 0);
+
+ if Z = Right (N (Parent (N (Z)))) then
+ Set_Right (N (Parent (N (Z))), 0);
+ else
+ pragma Assert (Z = Left (N (Parent (N (Z)))));
+ Set_Left (N (Parent (N (Z))), 0);
+ end if;
+
+ else
+ if Y = Left (N (Parent (N (Y)))) then
+ pragma Assert (Parent (N (Y)) /= Z);
+
+ Delete_Swap (Tree, Z, Y);
+
+ Set_Left (N (Parent (N (Z))), X);
+ Set_Parent (N (X), Parent (N (Z)));
+
+ else
+ pragma Assert (Y = Right (N (Parent (N (Y)))));
+ pragma Assert (Parent (N (Y)) = Z);
+
+ Set_Parent (N (Y), Parent (N (Z)));
+
+ if Z = Tree.Root then
+ Tree.Root := Y;
+ elsif Z = Left (N (Parent (N (Z)))) then
+ Set_Left (N (Parent (N (Z))), Y);
+ else
+ pragma Assert (Z = Right (N (Parent (N (Z)))));
+ Set_Right (N (Parent (N (Z))), Y);
+ end if;
+
+ Set_Left (N (Y), Left (N (Z)));
+ Set_Parent (N (Left (N (Y))), Y);
+
+ declare
+ Y_Color : constant Color_Type := Color (N (Y));
+ begin
+ Set_Color (N (Y), Color (N (Z)));
+ Set_Color (N (Z), Y_Color);
+ end;
+ end if;
+
+ if Color (N (Z)) = Black then
+ Delete_Fixup (Tree, X);
+ end if;
+ end if;
+ end if;
+
+ Tree.Length := Tree.Length - 1;
+ end Delete_Node_Sans_Free;
+
+ -----------------
+ -- Delete_Swap --
+ -----------------
+
+ procedure Delete_Swap
+ (Tree : in out Tree_Type'Class;
+ Z, Y : Count_Type)
+ is
+ N : Nodes_Type renames Tree.Nodes;
+
+ pragma Assert (Z /= Y);
+ pragma Assert (Parent (N (Y)) /= Z);
+
+ Y_Parent : constant Count_Type := Parent (N (Y));
+ Y_Color : constant Color_Type := Color (N (Y));
+
+ begin
+ Set_Parent (N (Y), Parent (N (Z)));
+ Set_Left (N (Y), Left (N (Z)));
+ Set_Right (N (Y), Right (N (Z)));
+ Set_Color (N (Y), Color (N (Z)));
+
+ if Tree.Root = Z then
+ Tree.Root := Y;
+ elsif Right (N (Parent (N (Y)))) = Z then
+ Set_Right (N (Parent (N (Y))), Y);
+ else
+ pragma Assert (Left (N (Parent (N (Y)))) = Z);
+ Set_Left (N (Parent (N (Y))), Y);
+ end if;
+
+ if Right (N (Y)) /= 0 then
+ Set_Parent (N (Right (N (Y))), Y);
+ end if;
+
+ if Left (N (Y)) /= 0 then
+ Set_Parent (N (Left (N (Y))), Y);
+ end if;
+
+ Set_Parent (N (Z), Y_Parent);
+ Set_Color (N (Z), Y_Color);
+ Set_Left (N (Z), 0);
+ Set_Right (N (Z), 0);
+ end Delete_Swap;
+
+ ----------
+ -- Free --
+ ----------
+
+ procedure Free (Tree : in out Tree_Type'Class; X : Count_Type) is
+ pragma Assert (X > 0);
+ pragma Assert (X <= Tree.Capacity);
+
+ N : Nodes_Type renames Tree.Nodes;
+ -- pragma Assert (N (X).Prev >= 0); -- node is active
+ -- Find a way to mark a node as active vs. inactive; we could
+ -- use a special value in Color_Type for this. ???
+
+ begin
+ -- The set container actually contains two data structures: a list for
+ -- the "active" nodes that contain elements that have been inserted
+ -- onto the tree, and another for the "inactive" nodes of the free
+ -- store.
+ --
+ -- We desire that merely declaring an object should have only minimal
+ -- cost; specially, we want to avoid having to initialize the free
+ -- store (to fill in the links), especially if the capacity is large.
+ --
+ -- The head of the free list is indicated by Container.Free. If its
+ -- value is non-negative, then the free store has been initialized
+ -- in the "normal" way: Container.Free points to the head of the list
+ -- of free (inactive) nodes, and the value 0 means the free list is
+ -- empty. Each node on the free list has been initialized to point
+ -- to the next free node (via its Parent component), and the value 0
+ -- means that this is the last free node.
+ --
+ -- If Container.Free is negative, then the links on the free store
+ -- have not been initialized. In this case the link values are
+ -- implied: the free store comprises the components of the node array
+ -- started with the absolute value of Container.Free, and continuing
+ -- until the end of the array (Nodes'Last).
+ --
+ -- ???
+ -- It might be possible to perform an optimization here. Suppose that
+ -- the free store can be represented as having two parts: one
+ -- comprising the non-contiguous inactive nodes linked together
+ -- in the normal way, and the other comprising the contiguous
+ -- inactive nodes (that are not linked together, at the end of the
+ -- nodes array). This would allow us to never have to initialize
+ -- the free store, except in a lazy way as nodes become inactive.
+
+ -- When an element is deleted from the list container, its node
+ -- becomes inactive, and so we set its Prev component to a negative
+ -- value, to indicate that it is now inactive. This provides a useful
+ -- way to detect a dangling cursor reference.
+
+ -- The comment above is incorrect; we need some other way to
+ -- indicate a node is inactive, for example by using a special
+ -- Color_Type value. ???
+ -- N (X).Prev := -1; -- Node is deallocated (not on active list)
+
+ if Tree.Free >= 0 then
+ -- The free store has previously been initialized. All we need to
+ -- do here is link the newly-free'd node onto the free list.
+
+ Set_Parent (N (X), Tree.Free);
+ Tree.Free := X;
+
+ elsif X + 1 = abs Tree.Free then
+ -- The free store has not been initialized, and the node becoming
+ -- inactive immediately precedes the start of the free store. All
+ -- we need to do is move the start of the free store back by one.
+
+ Tree.Free := Tree.Free + 1;
+
+ else
+ -- The free store has not been initialized, and the node becoming
+ -- inactive does not immediately precede the free store. Here we
+ -- first initialize the free store (meaning the links are given
+ -- values in the traditional way), and then link the newly-free'd
+ -- node onto the head of the free store.
+
+ -- ???
+ -- See the comments above for an optimization opportunity. If
+ -- the next link for a node on the free store is negative, then
+ -- this means the remaining nodes on the free store are
+ -- physically contiguous, starting as the absolute value of
+ -- that index value.
+
+ Tree.Free := abs Tree.Free;
+
+ if Tree.Free > Tree.Capacity then
+ Tree.Free := 0;
+
+ else
+ for I in Tree.Free .. Tree.Capacity - 1 loop
+ Set_Parent (N (I), I + 1);
+ end loop;
+
+ Set_Parent (N (Tree.Capacity), 0);
+ end if;
+
+ Set_Parent (N (X), Tree.Free);
+ Tree.Free := X;
+ end if;
+ end Free;
+
+ -----------------------
+ -- Generic_Allocate --
+ -----------------------
+
+ procedure Generic_Allocate
+ (Tree : in out Tree_Type'Class;
+ Node : out Count_Type)
+ is
+ N : Nodes_Type renames Tree.Nodes;
+
+ begin
+ if Tree.Free >= 0 then
+ Node := Tree.Free;
+
+ -- We always perform the assignment first, before we
+ -- change container state, in order to defend against
+ -- exceptions duration assignment.
+
+ Set_Element (N (Node));
+ Tree.Free := Parent (N (Node));
+
+ else
+ -- A negative free store value means that the links of the nodes
+ -- in the free store have not been initialized. In this case, the
+ -- nodes are physically contiguous in the array, starting at the
+ -- index that is the absolute value of the Container.Free, and
+ -- continuing until the end of the array (Nodes'Last).
+
+ Node := abs Tree.Free;
+
+ -- As above, we perform this assignment first, before modifying
+ -- any container state.
+
+ Set_Element (N (Node));
+ Tree.Free := Tree.Free - 1;
+ end if;
+ end Generic_Allocate;
+
+ -------------------
+ -- Generic_Equal --
+ -------------------
+
+ function Generic_Equal (Left, Right : Tree_Type'Class) return Boolean is
+ L_Node : Count_Type;
+ R_Node : Count_Type;
+
+ begin
+ if Left'Address = Right'Address then
+ return True;
+ end if;
+
+ if Left.Length /= Right.Length then
+ return False;
+ end if;
+
+ L_Node := Left.First;
+ R_Node := Right.First;
+ while L_Node /= 0 loop
+ if not Is_Equal (Left.Nodes (L_Node), Right.Nodes (R_Node)) then
+ return False;
+ end if;
+
+ L_Node := Next (Left, L_Node);
+ R_Node := Next (Right, R_Node);
+ end loop;
+
+ return True;
+ end Generic_Equal;
+
+ -----------------------
+ -- Generic_Iteration --
+ -----------------------
+
+ procedure Generic_Iteration (Tree : Tree_Type'Class) is
+ procedure Iterate (P : Count_Type);
+
+ -------------
+ -- Iterate --
+ -------------
+
+ procedure Iterate (P : Count_Type) is
+ X : Count_Type := P;
+ begin
+ while X /= 0 loop
+ Iterate (Left (Tree.Nodes (X)));
+ Process (X);
+ X := Right (Tree.Nodes (X));
+ end loop;
+ end Iterate;
+
+ -- Start of processing for Generic_Iteration
+
+ begin
+ Iterate (Tree.Root);
+ end Generic_Iteration;
+
+ ------------------
+ -- Generic_Read --
+ ------------------
+
+ procedure Generic_Read
+ (Stream : not null access Root_Stream_Type'Class;
+ Tree : in out Tree_Type'Class)
+ is
+ Len : Count_Type'Base;
+
+ Node, Last_Node : Count_Type;
+
+ N : Nodes_Type renames Tree.Nodes;
+
+ begin
+ Clear_Tree (Tree);
+ Count_Type'Base'Read (Stream, Len);
+
+ if Len < 0 then
+ raise Program_Error with "bad container length (corrupt stream)";
+ end if;
+
+ if Len = 0 then
+ return;
+ end if;
+
+ if Len > Tree.Capacity then
+ raise Constraint_Error with "length exceeds capacity";
+ end if;
+
+ -- Use Unconditional_Insert_With_Hint here instead ???
+
+ Allocate (Tree, Node);
+ pragma Assert (Node /= 0);
+
+ Set_Color (N (Node), Black);
+
+ Tree.Root := Node;
+ Tree.First := Node;
+ Tree.Last := Node;
+ Tree.Length := 1;
+
+ for J in Count_Type range 2 .. Len loop
+ Last_Node := Node;
+ pragma Assert (Last_Node = Tree.Last);
+
+ Allocate (Tree, Node);
+ pragma Assert (Node /= 0);
+
+ Set_Color (N (Node), Red);
+ Set_Right (N (Last_Node), Right => Node);
+ Tree.Last := Node;
+ Set_Parent (N (Node), Parent => Last_Node);
+
+ Rebalance_For_Insert (Tree, Node);
+ Tree.Length := Tree.Length + 1;
+ end loop;
+ end Generic_Read;
+
+ -------------------------------
+ -- Generic_Reverse_Iteration --
+ -------------------------------
+
+ procedure Generic_Reverse_Iteration (Tree : Tree_Type'Class) is
+ procedure Iterate (P : Count_Type);
+
+ -------------
+ -- Iterate --
+ -------------
+
+ procedure Iterate (P : Count_Type) is
+ X : Count_Type := P;
+ begin
+ while X /= 0 loop
+ Iterate (Right (Tree.Nodes (X)));
+ Process (X);
+ X := Left (Tree.Nodes (X));
+ end loop;
+ end Iterate;
+
+ -- Start of processing for Generic_Reverse_Iteration
+
+ begin
+ Iterate (Tree.Root);
+ end Generic_Reverse_Iteration;
+
+ -------------------
+ -- Generic_Write --
+ -------------------
+
+ procedure Generic_Write
+ (Stream : not null access Root_Stream_Type'Class;
+ Tree : Tree_Type'Class)
+ is
+ procedure Process (Node : Count_Type);
+ pragma Inline (Process);
+
+ procedure Iterate is
+ new Generic_Iteration (Process);
+
+ -------------
+ -- Process --
+ -------------
+
+ procedure Process (Node : Count_Type) is
+ begin
+ Write_Node (Stream, Tree.Nodes (Node));
+ end Process;
+
+ -- Start of processing for Generic_Write
+
+ begin
+ Count_Type'Base'Write (Stream, Tree.Length);
+ Iterate (Tree);
+ end Generic_Write;
+
+ -----------------
+ -- Left_Rotate --
+ -----------------
+
+ procedure Left_Rotate (Tree : in out Tree_Type'Class; X : Count_Type) is
+ -- CLR p266
+
+ N : Nodes_Type renames Tree.Nodes;
+
+ Y : constant Count_Type := Right (N (X));
+ pragma Assert (Y /= 0);
+
+ begin
+ Set_Right (N (X), Left (N (Y)));
+
+ if Left (N (Y)) /= 0 then
+ Set_Parent (N (Left (N (Y))), X);
+ end if;
+
+ Set_Parent (N (Y), Parent (N (X)));
+
+ if X = Tree.Root then
+ Tree.Root := Y;
+ elsif X = Left (N (Parent (N (X)))) then
+ Set_Left (N (Parent (N (X))), Y);
+ else
+ pragma Assert (X = Right (N (Parent (N (X)))));
+ Set_Right (N (Parent (N (X))), Y);
+ end if;
+
+ Set_Left (N (Y), X);
+ Set_Parent (N (X), Y);
+ end Left_Rotate;
+
+ ---------
+ -- Max --
+ ---------
+
+ function Max
+ (Tree : Tree_Type'Class;
+ Node : Count_Type) return Count_Type
+ is
+ -- CLR p248
+
+ X : Count_Type := Node;
+ Y : Count_Type;
+
+ begin
+ loop
+ Y := Right (Tree.Nodes (X));
+
+ if Y = 0 then
+ return X;
+ end if;
+
+ X := Y;
+ end loop;
+ end Max;
+
+ ---------
+ -- Min --
+ ---------
+
+ function Min
+ (Tree : Tree_Type'Class;
+ Node : Count_Type) return Count_Type
+ is
+ -- CLR p248
+
+ X : Count_Type := Node;
+ Y : Count_Type;
+
+ begin
+ loop
+ Y := Left (Tree.Nodes (X));
+
+ if Y = 0 then
+ return X;
+ end if;
+
+ X := Y;
+ end loop;
+ end Min;
+
+ ----------
+ -- Next --
+ ----------
+
+ function Next
+ (Tree : Tree_Type'Class;
+ Node : Count_Type) return Count_Type
+ is
+ begin
+ -- CLR p249
+
+ if Node = 0 then
+ return 0;
+ end if;
+
+ if Right (Tree.Nodes (Node)) /= 0 then
+ return Min (Tree, Right (Tree.Nodes (Node)));
+ end if;
+
+ declare
+ X : Count_Type := Node;
+ Y : Count_Type := Parent (Tree.Nodes (Node));
+
+ begin
+ while Y /= 0
+ and then X = Right (Tree.Nodes (Y))
+ loop
+ X := Y;
+ Y := Parent (Tree.Nodes (Y));
+ end loop;
+
+ return Y;
+ end;
+ end Next;
+
+ --------------
+ -- Previous --
+ --------------
+
+ function Previous
+ (Tree : Tree_Type'Class;
+ Node : Count_Type) return Count_Type
+ is
+ begin
+ if Node = 0 then
+ return 0;
+ end if;
+
+ if Left (Tree.Nodes (Node)) /= 0 then
+ return Max (Tree, Left (Tree.Nodes (Node)));
+ end if;
+
+ declare
+ X : Count_Type := Node;
+ Y : Count_Type := Parent (Tree.Nodes (Node));
+
+ begin
+ while Y /= 0
+ and then X = Left (Tree.Nodes (Y))
+ loop
+ X := Y;
+ Y := Parent (Tree.Nodes (Y));
+ end loop;
+
+ return Y;
+ end;
+ end Previous;
+
+ --------------------------
+ -- Rebalance_For_Insert --
+ --------------------------
+
+ procedure Rebalance_For_Insert
+ (Tree : in out Tree_Type'Class;
+ Node : Count_Type)
+ is
+ -- CLR p.268
+
+ N : Nodes_Type renames Tree.Nodes;
+
+ X : Count_Type := Node;
+ pragma Assert (X /= 0);
+ pragma Assert (Color (N (X)) = Red);
+
+ Y : Count_Type;
+
+ begin
+ while X /= Tree.Root and then Color (N (Parent (N (X)))) = Red loop
+ if Parent (N (X)) = Left (N (Parent (N (Parent (N (X)))))) then
+ Y := Right (N (Parent (N (Parent (N (X))))));
+
+ if Y /= 0 and then Color (N (Y)) = Red then
+ Set_Color (N (Parent (N (X))), Black);
+ Set_Color (N (Y), Black);
+ Set_Color (N (Parent (N (Parent (N (X))))), Red);
+ X := Parent (N (Parent (N (X))));
+
+ else
+ if X = Right (N (Parent (N (X)))) then
+ X := Parent (N (X));
+ Left_Rotate (Tree, X);
+ end if;
+
+ Set_Color (N (Parent (N (X))), Black);
+ Set_Color (N (Parent (N (Parent (N (X))))), Red);
+ Right_Rotate (Tree, Parent (N (Parent (N (X)))));
+ end if;
+
+ else
+ pragma Assert (Parent (N (X)) =
+ Right (N (Parent (N (Parent (N (X)))))));
+
+ Y := Left (N (Parent (N (Parent (N (X))))));
+
+ if Y /= 0 and then Color (N (Y)) = Red then
+ Set_Color (N (Parent (N (X))), Black);
+ Set_Color (N (Y), Black);
+ Set_Color (N (Parent (N (Parent (N (X))))), Red);
+ X := Parent (N (Parent (N (X))));
+
+ else
+ if X = Left (N (Parent (N (X)))) then
+ X := Parent (N (X));
+ Right_Rotate (Tree, X);
+ end if;
+
+ Set_Color (N (Parent (N (X))), Black);
+ Set_Color (N (Parent (N (Parent (N (X))))), Red);
+ Left_Rotate (Tree, Parent (N (Parent (N (X)))));
+ end if;
+ end if;
+ end loop;
+
+ Set_Color (N (Tree.Root), Black);
+ end Rebalance_For_Insert;
+
+ ------------------
+ -- Right_Rotate --
+ ------------------
+
+ procedure Right_Rotate (Tree : in out Tree_Type'Class; Y : Count_Type) is
+ N : Nodes_Type renames Tree.Nodes;
+
+ X : constant Count_Type := Left (N (Y));
+ pragma Assert (X /= 0);
+
+ begin
+ Set_Left (N (Y), Right (N (X)));
+
+ if Right (N (X)) /= 0 then
+ Set_Parent (N (Right (N (X))), Y);
+ end if;
+
+ Set_Parent (N (X), Parent (N (Y)));
+
+ if Y = Tree.Root then
+ Tree.Root := X;
+ elsif Y = Left (N (Parent (N (Y)))) then
+ Set_Left (N (Parent (N (Y))), X);
+ else
+ pragma Assert (Y = Right (N (Parent (N (Y)))));
+ Set_Right (N (Parent (N (Y))), X);
+ end if;
+
+ Set_Right (N (X), Y);
+ Set_Parent (N (Y), X);
+ end Right_Rotate;
+
+ ---------
+ -- Vet --
+ ---------
+
+ function Vet (Tree : Tree_Type'Class; Index : Count_Type) return Boolean is
+ Nodes : Nodes_Type renames Tree.Nodes;
+ Node : Node_Type renames Nodes (Index);
+
+ begin
+ if Parent (Node) = Index
+ or else Left (Node) = Index
+ or else Right (Node) = Index
+ then
+ return False;
+ end if;
+
+ if Tree.Length = 0
+ or else Tree.Root = 0
+ or else Tree.First = 0
+ or else Tree.Last = 0
+ then
+ return False;
+ end if;
+
+ if Parent (Nodes (Tree.Root)) /= 0 then
+ return False;
+ end if;
+
+ if Left (Nodes (Tree.First)) /= 0 then
+ return False;
+ end if;
+
+ if Right (Nodes (Tree.Last)) /= 0 then
+ return False;
+ end if;
+
+ if Tree.Length = 1 then
+ if Tree.First /= Tree.Last
+ or else Tree.First /= Tree.Root
+ then
+ return False;
+ end if;
+
+ if Index /= Tree.First then
+ return False;
+ end if;
+
+ if Parent (Node) /= 0
+ or else Left (Node) /= 0
+ or else Right (Node) /= 0
+ then
+ return False;
+ end if;
+
+ return True;
+ end if;
+
+ if Tree.First = Tree.Last then
+ return False;
+ end if;
+
+ if Tree.Length = 2 then
+ if Tree.First /= Tree.Root
+ and then Tree.Last /= Tree.Root
+ then
+ return False;
+ end if;
+
+ if Tree.First /= Index
+ and then Tree.Last /= Index
+ then
+ return False;
+ end if;
+ end if;
+
+ if Left (Node) /= 0
+ and then Parent (Nodes (Left (Node))) /= Index
+ then
+ return False;
+ end if;
+
+ if Right (Node) /= 0
+ and then Parent (Nodes (Right (Node))) /= Index
+ then
+ return False;
+ end if;
+
+ if Parent (Node) = 0 then
+ if Tree.Root /= Index then
+ return False;
+ end if;
+
+ elsif Left (Nodes (Parent (Node))) /= Index
+ and then Right (Nodes (Parent (Node))) /= Index
+ then
+ return False;
+ end if;
+
+ return True;
+ end Vet;
+
+end Ada.Containers.Red_Black_Trees.Generic_Bounded_Operations;