summaryrefslogtreecommitdiff
path: root/gcc/ada/checks.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc/ada/checks.adb')
-rw-r--r--gcc/ada/checks.adb4093
1 files changed, 4093 insertions, 0 deletions
diff --git a/gcc/ada/checks.adb b/gcc/ada/checks.adb
new file mode 100644
index 00000000000..b71b3ff99c1
--- /dev/null
+++ b/gcc/ada/checks.adb
@@ -0,0 +1,4093 @@
+------------------------------------------------------------------------------
+-- --
+-- GNAT COMPILER COMPONENTS --
+-- --
+-- C H E C K S --
+-- --
+-- B o d y --
+-- --
+-- $Revision: 1.205 $
+-- --
+-- Copyright (C) 1992-2001 Free Software Foundation, Inc. --
+-- --
+-- GNAT is free software; you can redistribute it and/or modify it under --
+-- terms of the GNU General Public License as published by the Free Soft- --
+-- ware Foundation; either version 2, or (at your option) any later ver- --
+-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
+-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
+-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
+-- for more details. You should have received a copy of the GNU General --
+-- Public License distributed with GNAT; see file COPYING. If not, write --
+-- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
+-- MA 02111-1307, USA. --
+-- --
+-- GNAT was originally developed by the GNAT team at New York University. --
+-- It is now maintained by Ada Core Technologies Inc (http://www.gnat.com). --
+-- --
+------------------------------------------------------------------------------
+
+with Atree; use Atree;
+with Debug; use Debug;
+with Einfo; use Einfo;
+with Errout; use Errout;
+with Exp_Ch2; use Exp_Ch2;
+with Exp_Util; use Exp_Util;
+with Elists; use Elists;
+with Freeze; use Freeze;
+with Nlists; use Nlists;
+with Nmake; use Nmake;
+with Opt; use Opt;
+with Rtsfind; use Rtsfind;
+with Sem; use Sem;
+with Sem_Eval; use Sem_Eval;
+with Sem_Res; use Sem_Res;
+with Sem_Util; use Sem_Util;
+with Sem_Warn; use Sem_Warn;
+with Sinfo; use Sinfo;
+with Snames; use Snames;
+with Stand; use Stand;
+with Tbuild; use Tbuild;
+with Ttypes; use Ttypes;
+with Urealp; use Urealp;
+with Validsw; use Validsw;
+
+package body Checks is
+
+ -- General note: many of these routines are concerned with generating
+ -- checking code to make sure that constraint error is raised at runtime.
+ -- Clearly this code is only needed if the expander is active, since
+ -- otherwise we will not be generating code or going into the runtime
+ -- execution anyway.
+
+ -- We therefore disconnect most of these checks if the expander is
+ -- inactive. This has the additional benefit that we do not need to
+ -- worry about the tree being messed up by previous errors (since errors
+ -- turn off expansion anyway).
+
+ -- There are a few exceptions to the above rule. For instance routines
+ -- such as Apply_Scalar_Range_Check that do not insert any code can be
+ -- safely called even when the Expander is inactive (but Errors_Detected
+ -- is 0). The benefit of executing this code when expansion is off, is
+ -- the ability to emit constraint error warning for static expressions
+ -- even when we are not generating code.
+
+ ----------------------------
+ -- Local Subprogram Specs --
+ ----------------------------
+
+ procedure Apply_Selected_Length_Checks
+ (Ck_Node : Node_Id;
+ Target_Typ : Entity_Id;
+ Source_Typ : Entity_Id;
+ Do_Static : Boolean);
+ -- This is the subprogram that does all the work for Apply_Length_Check
+ -- and Apply_Static_Length_Check. Expr, Target_Typ and Source_Typ are as
+ -- described for the above routines. The Do_Static flag indicates that
+ -- only a static check is to be done.
+
+ procedure Apply_Selected_Range_Checks
+ (Ck_Node : Node_Id;
+ Target_Typ : Entity_Id;
+ Source_Typ : Entity_Id;
+ Do_Static : Boolean);
+ -- This is the subprogram that does all the work for Apply_Range_Check.
+ -- Expr, Target_Typ and Source_Typ are as described for the above
+ -- routine. The Do_Static flag indicates that only a static check is
+ -- to be done.
+
+ function Get_Discriminal (E : Entity_Id; Bound : Node_Id) return Node_Id;
+ -- If a discriminal is used in constraining a prival, Return reference
+ -- to the discriminal of the protected body (which renames the parameter
+ -- of the enclosing protected operation). This clumsy transformation is
+ -- needed because privals are created too late and their actual subtypes
+ -- are not available when analysing the bodies of the protected operations.
+ -- To be cleaned up???
+
+ function Guard_Access
+ (Cond : Node_Id;
+ Loc : Source_Ptr;
+ Ck_Node : Node_Id)
+ return Node_Id;
+ -- In the access type case, guard the test with a test to ensure
+ -- that the access value is non-null, since the checks do not
+ -- not apply to null access values.
+
+ procedure Install_Static_Check (R_Cno : Node_Id; Loc : Source_Ptr);
+ -- Called by Apply_{Length,Range}_Checks to rewrite the tree with the
+ -- Constraint_Error node.
+
+ function Selected_Length_Checks
+ (Ck_Node : Node_Id;
+ Target_Typ : Entity_Id;
+ Source_Typ : Entity_Id;
+ Warn_Node : Node_Id)
+ return Check_Result;
+ -- Like Apply_Selected_Length_Checks, except it doesn't modify
+ -- anything, just returns a list of nodes as described in the spec of
+ -- this package for the Range_Check function.
+
+ function Selected_Range_Checks
+ (Ck_Node : Node_Id;
+ Target_Typ : Entity_Id;
+ Source_Typ : Entity_Id;
+ Warn_Node : Node_Id)
+ return Check_Result;
+ -- Like Apply_Selected_Range_Checks, except it doesn't modify anything,
+ -- just returns a list of nodes as described in the spec of this package
+ -- for the Range_Check function.
+
+ ------------------------------
+ -- Access_Checks_Suppressed --
+ ------------------------------
+
+ function Access_Checks_Suppressed (E : Entity_Id) return Boolean is
+ begin
+ return Scope_Suppress.Access_Checks
+ or else (Present (E) and then Suppress_Access_Checks (E));
+ end Access_Checks_Suppressed;
+
+ -------------------------------------
+ -- Accessibility_Checks_Suppressed --
+ -------------------------------------
+
+ function Accessibility_Checks_Suppressed (E : Entity_Id) return Boolean is
+ begin
+ return Scope_Suppress.Accessibility_Checks
+ or else (Present (E) and then Suppress_Accessibility_Checks (E));
+ end Accessibility_Checks_Suppressed;
+
+ -------------------------
+ -- Append_Range_Checks --
+ -------------------------
+
+ procedure Append_Range_Checks
+ (Checks : Check_Result;
+ Stmts : List_Id;
+ Suppress_Typ : Entity_Id;
+ Static_Sloc : Source_Ptr;
+ Flag_Node : Node_Id)
+ is
+ Internal_Flag_Node : Node_Id := Flag_Node;
+ Internal_Static_Sloc : Source_Ptr := Static_Sloc;
+ Checks_On : constant Boolean :=
+ (not Index_Checks_Suppressed (Suppress_Typ))
+ or else
+ (not Range_Checks_Suppressed (Suppress_Typ));
+
+ begin
+ -- For now we just return if Checks_On is false, however this should
+ -- be enhanced to check for an always True value in the condition
+ -- and to generate a compilation warning???
+
+ if not Checks_On then
+ return;
+ end if;
+
+ for J in 1 .. 2 loop
+ exit when No (Checks (J));
+
+ if Nkind (Checks (J)) = N_Raise_Constraint_Error
+ and then Present (Condition (Checks (J)))
+ then
+ if not Has_Dynamic_Range_Check (Internal_Flag_Node) then
+ Append_To (Stmts, Checks (J));
+ Set_Has_Dynamic_Range_Check (Internal_Flag_Node);
+ end if;
+
+ else
+ Append_To
+ (Stmts, Make_Raise_Constraint_Error (Internal_Static_Sloc));
+ end if;
+ end loop;
+ end Append_Range_Checks;
+
+ ------------------------
+ -- Apply_Access_Check --
+ ------------------------
+
+ procedure Apply_Access_Check (N : Node_Id) is
+ P : constant Node_Id := Prefix (N);
+
+ begin
+ if Inside_A_Generic then
+ return;
+ end if;
+
+ if Is_Entity_Name (P) then
+ Check_Unset_Reference (P);
+ end if;
+
+ if Is_Entity_Name (P)
+ and then Access_Checks_Suppressed (Entity (P))
+ then
+ return;
+
+ elsif Access_Checks_Suppressed (Etype (P)) then
+ return;
+
+ else
+ Set_Do_Access_Check (N, True);
+ end if;
+ end Apply_Access_Check;
+
+ -------------------------------
+ -- Apply_Accessibility_Check --
+ -------------------------------
+
+ procedure Apply_Accessibility_Check (N : Node_Id; Typ : Entity_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Param_Ent : constant Entity_Id := Param_Entity (N);
+ Param_Level : Node_Id;
+ Type_Level : Node_Id;
+
+ begin
+ if Inside_A_Generic then
+ return;
+
+ -- Only apply the run-time check if the access parameter
+ -- has an associated extra access level parameter and
+ -- when the level of the type is less deep than the level
+ -- of the access parameter.
+
+ elsif Present (Param_Ent)
+ and then Present (Extra_Accessibility (Param_Ent))
+ and then UI_Gt (Object_Access_Level (N),
+ Type_Access_Level (Typ))
+ and then not Accessibility_Checks_Suppressed (Param_Ent)
+ and then not Accessibility_Checks_Suppressed (Typ)
+ then
+ Param_Level :=
+ New_Occurrence_Of (Extra_Accessibility (Param_Ent), Loc);
+
+ Type_Level :=
+ Make_Integer_Literal (Loc, Type_Access_Level (Typ));
+
+ -- Raise Program_Error if the accessibility level of the
+ -- the access parameter is deeper than the level of the
+ -- target access type.
+
+ Insert_Action (N,
+ Make_Raise_Program_Error (Loc,
+ Condition =>
+ Make_Op_Gt (Loc,
+ Left_Opnd => Param_Level,
+ Right_Opnd => Type_Level)));
+
+ Analyze_And_Resolve (N);
+ end if;
+ end Apply_Accessibility_Check;
+
+ -------------------------------------
+ -- Apply_Arithmetic_Overflow_Check --
+ -------------------------------------
+
+ -- This routine is called only if the type is an integer type, and
+ -- a software arithmetic overflow check must be performed for op
+ -- (add, subtract, multiply). The check is performed only if
+ -- Software_Overflow_Checking is enabled and Do_Overflow_Check
+ -- is set. In this case we expand the operation into a more complex
+ -- sequence of tests that ensures that overflow is properly caught.
+
+ procedure Apply_Arithmetic_Overflow_Check (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Typ : constant Entity_Id := Etype (N);
+ Rtyp : constant Entity_Id := Root_Type (Typ);
+ Siz : constant Int := UI_To_Int (Esize (Rtyp));
+ Dsiz : constant Int := Siz * 2;
+ Opnod : Node_Id;
+ Ctyp : Entity_Id;
+ Opnd : Node_Id;
+ Cent : RE_Id;
+ Lo : Uint;
+ Hi : Uint;
+ OK : Boolean;
+
+ begin
+ if not Software_Overflow_Checking
+ or else not Do_Overflow_Check (N)
+ or else not Expander_Active
+ then
+ return;
+ end if;
+
+ -- Nothing to do if the range of the result is known OK
+
+ Determine_Range (N, OK, Lo, Hi);
+
+ -- Note in the test below that we assume that if a bound of the
+ -- range is equal to that of the type. That's not quite accurate
+ -- but we do this for the following reasons:
+
+ -- a) The way that Determine_Range works, it will typically report
+ -- the bounds of the value are the bounds of the type, because
+ -- it either can't tell anything more precise, or does not think
+ -- it is worth the effort to be more precise.
+
+ -- b) It is very unusual to have a situation in which this would
+ -- generate an unnecessary overflow check (an example would be
+ -- a subtype with a range 0 .. Integer'Last - 1 to which the
+ -- literal value one is added.
+
+ -- c) The alternative is a lot of special casing in this routine
+ -- which would partially duplicate the Determine_Range processing.
+
+ if OK
+ and then Lo > Expr_Value (Type_Low_Bound (Typ))
+ and then Hi < Expr_Value (Type_High_Bound (Typ))
+ then
+ return;
+ end if;
+
+ -- None of the special case optimizations worked, so there is nothing
+ -- for it but to generate the full general case code:
+
+ -- x op y
+
+ -- is expanded into
+
+ -- Typ (Checktyp (x) op Checktyp (y));
+
+ -- where Typ is the type of the original expression, and Checktyp is
+ -- an integer type of sufficient length to hold the largest possible
+ -- result.
+
+ -- In the case where check type exceeds the size of Long_Long_Integer,
+ -- we use a different approach, expanding to:
+
+ -- typ (xxx_With_Ovflo_Check (Integer_64 (x), Integer (y)))
+
+ -- where xxx is Add, Multiply or Subtract as appropriate
+
+ -- Find check type if one exists
+
+ if Dsiz <= Standard_Integer_Size then
+ Ctyp := Standard_Integer;
+
+ elsif Dsiz <= Standard_Long_Long_Integer_Size then
+ Ctyp := Standard_Long_Long_Integer;
+
+ -- No check type exists, use runtime call
+
+ else
+ if Nkind (N) = N_Op_Add then
+ Cent := RE_Add_With_Ovflo_Check;
+
+ elsif Nkind (N) = N_Op_Multiply then
+ Cent := RE_Multiply_With_Ovflo_Check;
+
+ else
+ pragma Assert (Nkind (N) = N_Op_Subtract);
+ Cent := RE_Subtract_With_Ovflo_Check;
+ end if;
+
+ Rewrite (N,
+ OK_Convert_To (Typ,
+ Make_Function_Call (Loc,
+ Name => New_Reference_To (RTE (Cent), Loc),
+ Parameter_Associations => New_List (
+ OK_Convert_To (RTE (RE_Integer_64), Left_Opnd (N)),
+ OK_Convert_To (RTE (RE_Integer_64), Right_Opnd (N))))));
+
+ Analyze_And_Resolve (N, Typ);
+ return;
+ end if;
+
+ -- If we fall through, we have the case where we do the arithmetic in
+ -- the next higher type and get the check by conversion. In these cases
+ -- Ctyp is set to the type to be used as the check type.
+
+ Opnod := Relocate_Node (N);
+
+ Opnd := OK_Convert_To (Ctyp, Left_Opnd (Opnod));
+
+ Analyze (Opnd);
+ Set_Etype (Opnd, Ctyp);
+ Set_Analyzed (Opnd, True);
+ Set_Left_Opnd (Opnod, Opnd);
+
+ Opnd := OK_Convert_To (Ctyp, Right_Opnd (Opnod));
+
+ Analyze (Opnd);
+ Set_Etype (Opnd, Ctyp);
+ Set_Analyzed (Opnd, True);
+ Set_Right_Opnd (Opnod, Opnd);
+
+ -- The type of the operation changes to the base type of the check
+ -- type, and we reset the overflow check indication, since clearly
+ -- no overflow is possible now that we are using a double length
+ -- type. We also set the Analyzed flag to avoid a recursive attempt
+ -- to expand the node.
+
+ Set_Etype (Opnod, Base_Type (Ctyp));
+ Set_Do_Overflow_Check (Opnod, False);
+ Set_Analyzed (Opnod, True);
+
+ -- Now build the outer conversion
+
+ Opnd := OK_Convert_To (Typ, Opnod);
+
+ Analyze (Opnd);
+ Set_Etype (Opnd, Typ);
+ Set_Analyzed (Opnd, True);
+ Set_Do_Overflow_Check (Opnd, True);
+
+ Rewrite (N, Opnd);
+ end Apply_Arithmetic_Overflow_Check;
+
+ ----------------------------
+ -- Apply_Array_Size_Check --
+ ----------------------------
+
+ -- Note: Really of course this entre check should be in the backend,
+ -- and perhaps this is not quite the right value, but it is good
+ -- enough to catch the normal cases (and the relevant ACVC tests!)
+
+ procedure Apply_Array_Size_Check (N : Node_Id; Typ : Entity_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Ctyp : constant Entity_Id := Component_Type (Typ);
+ Ent : constant Entity_Id := Defining_Identifier (N);
+ Decl : Node_Id;
+ Lo : Node_Id;
+ Hi : Node_Id;
+ Lob : Uint;
+ Hib : Uint;
+ Siz : Uint;
+ Xtyp : Entity_Id;
+ Indx : Node_Id;
+ Sizx : Node_Id;
+ Code : Node_Id;
+
+ Static : Boolean := True;
+ -- Set false if any index subtye bound is non-static
+
+ Umark : constant Uintp.Save_Mark := Uintp.Mark;
+ -- We can throw away all the Uint computations here, since they are
+ -- done only to generate boolean test results.
+
+ Check_Siz : Uint;
+ -- Size to check against
+
+ function Is_Address_Or_Import (Decl : Node_Id) return Boolean;
+ -- Determines if Decl is an address clause or Import/Interface pragma
+ -- that references the defining identifier of the current declaration.
+
+ --------------------------
+ -- Is_Address_Or_Import --
+ --------------------------
+
+ function Is_Address_Or_Import (Decl : Node_Id) return Boolean is
+ begin
+ if Nkind (Decl) = N_At_Clause then
+ return Chars (Identifier (Decl)) = Chars (Ent);
+
+ elsif Nkind (Decl) = N_Attribute_Definition_Clause then
+ return
+ Chars (Decl) = Name_Address
+ and then
+ Nkind (Name (Decl)) = N_Identifier
+ and then
+ Chars (Name (Decl)) = Chars (Ent);
+
+ elsif Nkind (Decl) = N_Pragma then
+ if (Chars (Decl) = Name_Import
+ or else
+ Chars (Decl) = Name_Interface)
+ and then Present (Pragma_Argument_Associations (Decl))
+ then
+ declare
+ F : constant Node_Id :=
+ First (Pragma_Argument_Associations (Decl));
+
+ begin
+ return
+ Present (F)
+ and then
+ Present (Next (F))
+ and then
+ Nkind (Expression (Next (F))) = N_Identifier
+ and then
+ Chars (Expression (Next (F))) = Chars (Ent);
+ end;
+
+ else
+ return False;
+ end if;
+
+ else
+ return False;
+ end if;
+ end Is_Address_Or_Import;
+
+ -- Start of processing for Apply_Array_Size_Check
+
+ begin
+ if not Expander_Active
+ or else Storage_Checks_Suppressed (Typ)
+ then
+ return;
+ end if;
+
+ -- It is pointless to insert this check inside an _init_proc, because
+ -- that's too late, we have already built the object to be the right
+ -- size, and if it's too large, too bad!
+
+ if Inside_Init_Proc then
+ return;
+ end if;
+
+ -- Look head for pragma interface/import or address clause applying
+ -- to this entity. If found, we suppress the check entirely. For now
+ -- we only look ahead 20 declarations to stop this becoming too slow
+ -- Note that eventually this whole routine gets moved to gigi.
+
+ Decl := N;
+ for Ctr in 1 .. 20 loop
+ Next (Decl);
+ exit when No (Decl);
+
+ if Is_Address_Or_Import (Decl) then
+ return;
+ end if;
+ end loop;
+
+ -- First step is to calculate the maximum number of elements. For this
+ -- calculation, we use the actual size of the subtype if it is static,
+ -- and if a bound of a subtype is non-static, we go to the bound of the
+ -- base type.
+
+ Siz := Uint_1;
+ Indx := First_Index (Typ);
+ while Present (Indx) loop
+ Xtyp := Etype (Indx);
+ Lo := Type_Low_Bound (Xtyp);
+ Hi := Type_High_Bound (Xtyp);
+
+ -- If any bound raises constraint error, we will never get this
+ -- far, so there is no need to generate any kind of check.
+
+ if Raises_Constraint_Error (Lo)
+ or else
+ Raises_Constraint_Error (Hi)
+ then
+ Uintp.Release (Umark);
+ return;
+ end if;
+
+ -- Otherwise get bounds values
+
+ if Is_Static_Expression (Lo) then
+ Lob := Expr_Value (Lo);
+ else
+ Lob := Expr_Value (Type_Low_Bound (Base_Type (Xtyp)));
+ Static := False;
+ end if;
+
+ if Is_Static_Expression (Hi) then
+ Hib := Expr_Value (Hi);
+ else
+ Hib := Expr_Value (Type_High_Bound (Base_Type (Xtyp)));
+ Static := False;
+ end if;
+
+ Siz := Siz * UI_Max (Hib - Lob + 1, Uint_0);
+ Next_Index (Indx);
+ end loop;
+
+ -- Compute the limit against which we want to check. For subprograms,
+ -- where the array will go on the stack, we use 8*2**24, which (in
+ -- bits) is the size of a 16 megabyte array.
+
+ if Is_Subprogram (Scope (Ent)) then
+ Check_Siz := Uint_2 ** 27;
+ else
+ Check_Siz := Uint_2 ** 31;
+ end if;
+
+ -- If we have all static bounds and Siz is too large, then we know we
+ -- know we have a storage error right now, so generate message
+
+ if Static and then Siz >= Check_Siz then
+ Insert_Action (N,
+ Make_Raise_Storage_Error (Loc));
+ Warn_On_Instance := True;
+ Error_Msg_N ("?Storage_Error will be raised at run-time", N);
+ Warn_On_Instance := False;
+ Uintp.Release (Umark);
+ return;
+ end if;
+
+ -- Case of component size known at compile time. If the array
+ -- size is definitely in range, then we do not need a check.
+
+ if Known_Esize (Ctyp)
+ and then Siz * Esize (Ctyp) < Check_Siz
+ then
+ Uintp.Release (Umark);
+ return;
+ end if;
+
+ -- Here if a dynamic check is required
+
+ -- What we do is to build an expression for the size of the array,
+ -- which is computed as the 'Size of the array component, times
+ -- the size of each dimension.
+
+ Uintp.Release (Umark);
+
+ Sizx :=
+ Make_Attribute_Reference (Loc,
+ Prefix => New_Occurrence_Of (Ctyp, Loc),
+ Attribute_Name => Name_Size);
+
+ Indx := First_Index (Typ);
+
+ for J in 1 .. Number_Dimensions (Typ) loop
+
+ if Sloc (Etype (Indx)) = Sloc (N) then
+ Ensure_Defined (Etype (Indx), N);
+ end if;
+
+ Sizx :=
+ Make_Op_Multiply (Loc,
+ Left_Opnd => Sizx,
+ Right_Opnd =>
+ Make_Attribute_Reference (Loc,
+ Prefix => New_Occurrence_Of (Typ, Loc),
+ Attribute_Name => Name_Length,
+ Expressions => New_List (
+ Make_Integer_Literal (Loc, J))));
+ Next_Index (Indx);
+ end loop;
+
+ Code :=
+ Make_Raise_Storage_Error (Loc,
+ Condition =>
+ Make_Op_Ge (Loc,
+ Left_Opnd => Sizx,
+ Right_Opnd =>
+ Make_Integer_Literal (Loc, Check_Siz)));
+
+ Set_Size_Check_Code (Defining_Identifier (N), Code);
+ Insert_Action (N, Code);
+
+ end Apply_Array_Size_Check;
+
+ ----------------------------
+ -- Apply_Constraint_Check --
+ ----------------------------
+
+ procedure Apply_Constraint_Check
+ (N : Node_Id;
+ Typ : Entity_Id;
+ No_Sliding : Boolean := False)
+ is
+ Desig_Typ : Entity_Id;
+
+ begin
+ if Inside_A_Generic then
+ return;
+
+ elsif Is_Scalar_Type (Typ) then
+ Apply_Scalar_Range_Check (N, Typ);
+
+ elsif Is_Array_Type (Typ) then
+
+ if Is_Constrained (Typ) then
+ Apply_Length_Check (N, Typ);
+
+ if No_Sliding then
+ Apply_Range_Check (N, Typ);
+ end if;
+ else
+ Apply_Range_Check (N, Typ);
+ end if;
+
+ elsif (Is_Record_Type (Typ)
+ or else Is_Private_Type (Typ))
+ and then Has_Discriminants (Base_Type (Typ))
+ and then Is_Constrained (Typ)
+ then
+ Apply_Discriminant_Check (N, Typ);
+
+ elsif Is_Access_Type (Typ) then
+
+ Desig_Typ := Designated_Type (Typ);
+
+ -- No checks necessary if expression statically null
+
+ if Nkind (N) = N_Null then
+ null;
+
+ -- No sliding possible on access to arrays
+
+ elsif Is_Array_Type (Desig_Typ) then
+ if Is_Constrained (Desig_Typ) then
+ Apply_Length_Check (N, Typ);
+ end if;
+
+ Apply_Range_Check (N, Typ);
+
+ elsif Has_Discriminants (Base_Type (Desig_Typ))
+ and then Is_Constrained (Desig_Typ)
+ then
+ Apply_Discriminant_Check (N, Typ);
+ end if;
+ end if;
+ end Apply_Constraint_Check;
+
+ ------------------------------
+ -- Apply_Discriminant_Check --
+ ------------------------------
+
+ procedure Apply_Discriminant_Check
+ (N : Node_Id;
+ Typ : Entity_Id;
+ Lhs : Node_Id := Empty)
+ is
+ Loc : constant Source_Ptr := Sloc (N);
+ Do_Access : constant Boolean := Is_Access_Type (Typ);
+ S_Typ : Entity_Id := Etype (N);
+ Cond : Node_Id;
+ T_Typ : Entity_Id;
+
+ function Is_Aliased_Unconstrained_Component return Boolean;
+ -- It is possible for an aliased component to have a nominal
+ -- unconstrained subtype (through instantiation). If this is a
+ -- discriminated component assigned in the expansion of an aggregate
+ -- in an initialization, the check must be suppressed. This unusual
+ -- situation requires a predicate of its own (see 7503-008).
+
+ ----------------------------------------
+ -- Is_Aliased_Unconstrained_Component --
+ ----------------------------------------
+
+ function Is_Aliased_Unconstrained_Component return Boolean is
+ Comp : Entity_Id;
+ Pref : Node_Id;
+
+ begin
+ if Nkind (Lhs) /= N_Selected_Component then
+ return False;
+ else
+ Comp := Entity (Selector_Name (Lhs));
+ Pref := Prefix (Lhs);
+ end if;
+
+ if Ekind (Comp) /= E_Component
+ or else not Is_Aliased (Comp)
+ then
+ return False;
+ end if;
+
+ return not Comes_From_Source (Pref)
+ and then In_Instance
+ and then not Is_Constrained (Etype (Comp));
+ end Is_Aliased_Unconstrained_Component;
+
+ -- Start of processing for Apply_Discriminant_Check
+
+ begin
+ if Do_Access then
+ T_Typ := Designated_Type (Typ);
+ else
+ T_Typ := Typ;
+ end if;
+
+ -- Nothing to do if discriminant checks are suppressed or else no code
+ -- is to be generated
+
+ if not Expander_Active
+ or else Discriminant_Checks_Suppressed (T_Typ)
+ then
+ return;
+ end if;
+
+ -- No discriminant checks necessary for access when expression
+ -- is statically Null. This is not only an optimization, this is
+ -- fundamental because otherwise discriminant checks may be generated
+ -- in init procs for types containing an access to a non-frozen yet
+ -- record, causing a deadly forward reference.
+
+ -- Also, if the expression is of an access type whose designated
+ -- type is incomplete, then the access value must be null and
+ -- we suppress the check.
+
+ if Nkind (N) = N_Null then
+ return;
+
+ elsif Is_Access_Type (S_Typ) then
+ S_Typ := Designated_Type (S_Typ);
+
+ if Ekind (S_Typ) = E_Incomplete_Type then
+ return;
+ end if;
+ end if;
+
+ -- If an assignment target is present, then we need to generate
+ -- the actual subtype if the target is a parameter or aliased
+ -- object with an unconstrained nominal subtype.
+
+ if Present (Lhs)
+ and then (Present (Param_Entity (Lhs))
+ or else (not Is_Constrained (T_Typ)
+ and then Is_Aliased_View (Lhs)
+ and then not Is_Aliased_Unconstrained_Component))
+ then
+ T_Typ := Get_Actual_Subtype (Lhs);
+ end if;
+
+ -- Nothing to do if the type is unconstrained (this is the case
+ -- where the actual subtype in the RM sense of N is unconstrained
+ -- and no check is required).
+
+ if not Is_Constrained (T_Typ) then
+ return;
+ end if;
+
+ -- Suppress checks if the subtypes are the same.
+ -- the check must be preserved in an assignment to a formal, because
+ -- the constraint is given by the actual.
+
+ if Nkind (Original_Node (N)) /= N_Allocator
+ and then (No (Lhs)
+ or else not Is_Entity_Name (Lhs)
+ or else (Ekind (Entity (Lhs)) /= E_In_Out_Parameter
+ and then Ekind (Entity (Lhs)) /= E_Out_Parameter))
+ then
+ if (Etype (N) = Typ
+ or else (Do_Access and then Designated_Type (Typ) = S_Typ))
+ and then not Is_Aliased_View (Lhs)
+ then
+ return;
+ end if;
+
+ -- We can also eliminate checks on allocators with a subtype mark
+ -- that coincides with the context type. The context type may be a
+ -- subtype without a constraint (common case, a generic actual).
+
+ elsif Nkind (Original_Node (N)) = N_Allocator
+ and then Is_Entity_Name (Expression (Original_Node (N)))
+ then
+ declare
+ Alloc_Typ : Entity_Id := Entity (Expression (Original_Node (N)));
+
+ begin
+ if Alloc_Typ = T_Typ
+ or else (Nkind (Parent (T_Typ)) = N_Subtype_Declaration
+ and then Is_Entity_Name (
+ Subtype_Indication (Parent (T_Typ)))
+ and then Alloc_Typ = Base_Type (T_Typ))
+
+ then
+ return;
+ end if;
+ end;
+ end if;
+
+ -- See if we have a case where the types are both constrained, and
+ -- all the constraints are constants. In this case, we can do the
+ -- check successfully at compile time.
+
+ -- we skip this check for the case where the node is a rewritten`
+ -- allocator, because it already carries the context subtype, and
+ -- extracting the discriminants from the aggregate is messy.
+
+ if Is_Constrained (S_Typ)
+ and then Nkind (Original_Node (N)) /= N_Allocator
+ then
+ declare
+ DconT : Elmt_Id;
+ Discr : Entity_Id;
+ DconS : Elmt_Id;
+ ItemS : Node_Id;
+ ItemT : Node_Id;
+
+ begin
+ -- S_Typ may not have discriminants in the case where it is a
+ -- private type completed by a default discriminated type. In
+ -- that case, we need to get the constraints from the
+ -- underlying_type. If the underlying type is unconstrained (i.e.
+ -- has no default discriminants) no check is needed.
+
+ if Has_Discriminants (S_Typ) then
+ Discr := First_Discriminant (S_Typ);
+ DconS := First_Elmt (Discriminant_Constraint (S_Typ));
+
+ else
+ Discr := First_Discriminant (Underlying_Type (S_Typ));
+ DconS :=
+ First_Elmt
+ (Discriminant_Constraint (Underlying_Type (S_Typ)));
+
+ if No (DconS) then
+ return;
+ end if;
+ end if;
+
+ DconT := First_Elmt (Discriminant_Constraint (T_Typ));
+
+ while Present (Discr) loop
+ ItemS := Node (DconS);
+ ItemT := Node (DconT);
+
+ exit when
+ not Is_OK_Static_Expression (ItemS)
+ or else
+ not Is_OK_Static_Expression (ItemT);
+
+ if Expr_Value (ItemS) /= Expr_Value (ItemT) then
+ if Do_Access then -- needs run-time check.
+ exit;
+ else
+ Apply_Compile_Time_Constraint_Error
+ (N, "incorrect value for discriminant&?", Ent => Discr);
+ return;
+ end if;
+ end if;
+
+ Next_Elmt (DconS);
+ Next_Elmt (DconT);
+ Next_Discriminant (Discr);
+ end loop;
+
+ if No (Discr) then
+ return;
+ end if;
+ end;
+ end if;
+
+ -- Here we need a discriminant check. First build the expression
+ -- for the comparisons of the discriminants:
+
+ -- (n.disc1 /= typ.disc1) or else
+ -- (n.disc2 /= typ.disc2) or else
+ -- ...
+ -- (n.discn /= typ.discn)
+
+ Cond := Build_Discriminant_Checks (N, T_Typ);
+
+ -- If Lhs is set and is a parameter, then the condition is
+ -- guarded by: lhs'constrained and then (condition built above)
+
+ if Present (Param_Entity (Lhs)) then
+ Cond :=
+ Make_And_Then (Loc,
+ Left_Opnd =>
+ Make_Attribute_Reference (Loc,
+ Prefix => New_Occurrence_Of (Param_Entity (Lhs), Loc),
+ Attribute_Name => Name_Constrained),
+ Right_Opnd => Cond);
+ end if;
+
+ if Do_Access then
+ Cond := Guard_Access (Cond, Loc, N);
+ end if;
+
+ Insert_Action (N,
+ Make_Raise_Constraint_Error (Loc, Condition => Cond));
+
+ end Apply_Discriminant_Check;
+
+ ------------------------
+ -- Apply_Divide_Check --
+ ------------------------
+
+ procedure Apply_Divide_Check (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Typ : constant Entity_Id := Etype (N);
+ Left : constant Node_Id := Left_Opnd (N);
+ Right : constant Node_Id := Right_Opnd (N);
+
+ LLB : Uint;
+ Llo : Uint;
+ Lhi : Uint;
+ LOK : Boolean;
+ Rlo : Uint;
+ Rhi : Uint;
+ ROK : Boolean;
+
+ begin
+ if Expander_Active
+ and then Software_Overflow_Checking
+ then
+ Determine_Range (Right, ROK, Rlo, Rhi);
+
+ -- See if division by zero possible, and if so generate test. This
+ -- part of the test is not controlled by the -gnato switch.
+
+ if Do_Division_Check (N) then
+
+ if (not ROK) or else (Rlo <= 0 and then 0 <= Rhi) then
+ Insert_Action (N,
+ Make_Raise_Constraint_Error (Loc,
+ Condition =>
+ Make_Op_Eq (Loc,
+ Left_Opnd => Duplicate_Subexpr (Right),
+ Right_Opnd => Make_Integer_Literal (Loc, 0))));
+ end if;
+ end if;
+
+ -- Test for extremely annoying case of xxx'First divided by -1
+
+ if Do_Overflow_Check (N) then
+
+ if Nkind (N) = N_Op_Divide
+ and then Is_Signed_Integer_Type (Typ)
+ then
+ Determine_Range (Left, LOK, Llo, Lhi);
+ LLB := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
+
+ if ((not ROK) or else (Rlo <= (-1) and then (-1) <= Rhi))
+ and then
+ ((not LOK) or else (Llo = LLB))
+ then
+ Insert_Action (N,
+ Make_Raise_Constraint_Error (Loc,
+ Condition =>
+ Make_And_Then (Loc,
+
+ Make_Op_Eq (Loc,
+ Left_Opnd => Duplicate_Subexpr (Left),
+ Right_Opnd => Make_Integer_Literal (Loc, LLB)),
+
+ Make_Op_Eq (Loc,
+ Left_Opnd => Duplicate_Subexpr (Right),
+ Right_Opnd =>
+ Make_Integer_Literal (Loc, -1)))));
+ end if;
+ end if;
+ end if;
+ end if;
+ end Apply_Divide_Check;
+
+ ------------------------
+ -- Apply_Length_Check --
+ ------------------------
+
+ procedure Apply_Length_Check
+ (Ck_Node : Node_Id;
+ Target_Typ : Entity_Id;
+ Source_Typ : Entity_Id := Empty)
+ is
+ begin
+ Apply_Selected_Length_Checks
+ (Ck_Node, Target_Typ, Source_Typ, Do_Static => False);
+ end Apply_Length_Check;
+
+ -----------------------
+ -- Apply_Range_Check --
+ -----------------------
+
+ procedure Apply_Range_Check
+ (Ck_Node : Node_Id;
+ Target_Typ : Entity_Id;
+ Source_Typ : Entity_Id := Empty)
+ is
+ begin
+ Apply_Selected_Range_Checks
+ (Ck_Node, Target_Typ, Source_Typ, Do_Static => False);
+ end Apply_Range_Check;
+
+ ------------------------------
+ -- Apply_Scalar_Range_Check --
+ ------------------------------
+
+ -- Note that Apply_Scalar_Range_Check never turns the Do_Range_Check
+ -- flag off if it is already set on.
+
+ procedure Apply_Scalar_Range_Check
+ (Expr : Node_Id;
+ Target_Typ : Entity_Id;
+ Source_Typ : Entity_Id := Empty;
+ Fixed_Int : Boolean := False)
+ is
+ Parnt : constant Node_Id := Parent (Expr);
+ S_Typ : Entity_Id;
+ Arr : Node_Id := Empty; -- initialize to prevent warning
+ Arr_Typ : Entity_Id := Empty; -- initialize to prevent warning
+ OK : Boolean;
+
+ Is_Subscr_Ref : Boolean;
+ -- Set true if Expr is a subscript
+
+ Is_Unconstrained_Subscr_Ref : Boolean;
+ -- Set true if Expr is a subscript of an unconstrained array. In this
+ -- case we do not attempt to do an analysis of the value against the
+ -- range of the subscript, since we don't know the actual subtype.
+
+ Int_Real : Boolean;
+ -- Set to True if Expr should be regarded as a real value
+ -- even though the type of Expr might be discrete.
+
+ procedure Bad_Value;
+ -- Procedure called if value is determined to be out of range
+
+ procedure Bad_Value is
+ begin
+ Apply_Compile_Time_Constraint_Error
+ (Expr, "value not in range of}?",
+ Ent => Target_Typ,
+ Typ => Target_Typ);
+ end Bad_Value;
+
+ begin
+ if Inside_A_Generic then
+ return;
+
+ -- Return if check obviously not needed. Note that we do not check
+ -- for the expander being inactive, since this routine does not
+ -- insert any code, but it does generate useful warnings sometimes,
+ -- which we would like even if we are in semantics only mode.
+
+ elsif Target_Typ = Any_Type
+ or else not Is_Scalar_Type (Target_Typ)
+ or else Raises_Constraint_Error (Expr)
+ then
+ return;
+ end if;
+
+ -- Now, see if checks are suppressed
+
+ Is_Subscr_Ref :=
+ Is_List_Member (Expr) and then Nkind (Parnt) = N_Indexed_Component;
+
+ if Is_Subscr_Ref then
+ Arr := Prefix (Parnt);
+ Arr_Typ := Get_Actual_Subtype_If_Available (Arr);
+ end if;
+
+ if not Do_Range_Check (Expr) then
+
+ -- Subscript reference. Check for Index_Checks suppressed
+
+ if Is_Subscr_Ref then
+
+ -- Check array type and its base type
+
+ if Index_Checks_Suppressed (Arr_Typ)
+ or else Suppress_Index_Checks (Base_Type (Arr_Typ))
+ then
+ return;
+
+ -- Check array itself if it is an entity name
+
+ elsif Is_Entity_Name (Arr)
+ and then Suppress_Index_Checks (Entity (Arr))
+ then
+ return;
+
+ -- Check expression itself if it is an entity name
+
+ elsif Is_Entity_Name (Expr)
+ and then Suppress_Index_Checks (Entity (Expr))
+ then
+ return;
+ end if;
+
+ -- All other cases, check for Range_Checks suppressed
+
+ else
+ -- Check target type and its base type
+
+ if Range_Checks_Suppressed (Target_Typ)
+ or else Suppress_Range_Checks (Base_Type (Target_Typ))
+ then
+ return;
+
+ -- Check expression itself if it is an entity name
+
+ elsif Is_Entity_Name (Expr)
+ and then Suppress_Range_Checks (Entity (Expr))
+ then
+ return;
+
+ -- If Expr is part of an assignment statement, then check
+ -- left side of assignment if it is an entity name.
+
+ elsif Nkind (Parnt) = N_Assignment_Statement
+ and then Is_Entity_Name (Name (Parnt))
+ and then Suppress_Range_Checks (Entity (Name (Parnt)))
+ then
+ return;
+ end if;
+ end if;
+ end if;
+
+ -- Now see if we need a check
+
+ if No (Source_Typ) then
+ S_Typ := Etype (Expr);
+ else
+ S_Typ := Source_Typ;
+ end if;
+
+ if not Is_Scalar_Type (S_Typ) or else S_Typ = Any_Type then
+ return;
+ end if;
+
+ Is_Unconstrained_Subscr_Ref :=
+ Is_Subscr_Ref and then not Is_Constrained (Arr_Typ);
+
+ -- Always do a range check if the source type includes infinities
+ -- and the target type does not include infinities.
+
+ if Is_Floating_Point_Type (S_Typ)
+ and then Has_Infinities (S_Typ)
+ and then not Has_Infinities (Target_Typ)
+ then
+ Enable_Range_Check (Expr);
+ end if;
+
+ -- Return if we know expression is definitely in the range of
+ -- the target type as determined by Determine_Range. Right now
+ -- we only do this for discrete types, and not fixed-point or
+ -- floating-point types.
+
+ -- The additional less-precise tests below catch these cases.
+
+ -- Note: skip this if we are given a source_typ, since the point
+ -- of supplying a Source_Typ is to stop us looking at the expression.
+ -- could sharpen this test to be out parameters only ???
+
+ if Is_Discrete_Type (Target_Typ)
+ and then Is_Discrete_Type (Etype (Expr))
+ and then not Is_Unconstrained_Subscr_Ref
+ and then No (Source_Typ)
+ then
+ declare
+ Tlo : constant Node_Id := Type_Low_Bound (Target_Typ);
+ Thi : constant Node_Id := Type_High_Bound (Target_Typ);
+ Lo : Uint;
+ Hi : Uint;
+
+ begin
+ if Compile_Time_Known_Value (Tlo)
+ and then Compile_Time_Known_Value (Thi)
+ then
+ Determine_Range (Expr, OK, Lo, Hi);
+
+ if OK then
+ declare
+ Lov : constant Uint := Expr_Value (Tlo);
+ Hiv : constant Uint := Expr_Value (Thi);
+
+ begin
+ if Lo >= Lov and then Hi <= Hiv then
+ return;
+
+ elsif Lov > Hi or else Hiv < Lo then
+ Bad_Value;
+ return;
+ end if;
+ end;
+ end if;
+ end if;
+ end;
+ end if;
+
+ Int_Real :=
+ Is_Floating_Point_Type (S_Typ)
+ or else (Is_Fixed_Point_Type (S_Typ) and then not Fixed_Int);
+
+ -- Check if we can determine at compile time whether Expr is in the
+ -- range of the target type. Note that if S_Typ is within the
+ -- bounds of Target_Typ then this must be the case. This checks is
+ -- only meaningful if this is not a conversion between integer and
+ -- real types.
+
+ if not Is_Unconstrained_Subscr_Ref
+ and then
+ Is_Discrete_Type (S_Typ) = Is_Discrete_Type (Target_Typ)
+ and then
+ (In_Subrange_Of (S_Typ, Target_Typ, Fixed_Int)
+ or else
+ Is_In_Range (Expr, Target_Typ, Fixed_Int, Int_Real))
+ then
+ return;
+
+ elsif Is_Out_Of_Range (Expr, Target_Typ, Fixed_Int, Int_Real) then
+ Bad_Value;
+ return;
+
+ -- Do not set range checks if they are killed
+
+ elsif Nkind (Expr) = N_Unchecked_Type_Conversion
+ and then Kill_Range_Check (Expr)
+ then
+ return;
+
+ -- ??? We only need a runtime check if the target type is constrained
+ -- (the predefined type Float is not for instance).
+ -- so the following should really be
+ --
+ -- elsif Is_Constrained (Target_Typ) then
+ --
+ -- but it isn't because certain types do not have the Is_Constrained
+ -- flag properly set (see 1503-003).
+
+ else
+ Enable_Range_Check (Expr);
+ return;
+ end if;
+
+ end Apply_Scalar_Range_Check;
+
+ ----------------------------------
+ -- Apply_Selected_Length_Checks --
+ ----------------------------------
+
+ procedure Apply_Selected_Length_Checks
+ (Ck_Node : Node_Id;
+ Target_Typ : Entity_Id;
+ Source_Typ : Entity_Id;
+ Do_Static : Boolean)
+ is
+ Cond : Node_Id;
+ R_Result : Check_Result;
+ R_Cno : Node_Id;
+
+ Loc : constant Source_Ptr := Sloc (Ck_Node);
+ Checks_On : constant Boolean :=
+ (not Index_Checks_Suppressed (Target_Typ))
+ or else
+ (not Length_Checks_Suppressed (Target_Typ));
+
+ begin
+ if not Expander_Active or else not Checks_On then
+ return;
+ end if;
+
+ R_Result :=
+ Selected_Length_Checks (Ck_Node, Target_Typ, Source_Typ, Empty);
+
+ for J in 1 .. 2 loop
+
+ R_Cno := R_Result (J);
+ exit when No (R_Cno);
+
+ -- A length check may mention an Itype which is attached to a
+ -- subsequent node. At the top level in a package this can cause
+ -- an order-of-elaboration problem, so we make sure that the itype
+ -- is referenced now.
+
+ if Ekind (Current_Scope) = E_Package
+ and then Is_Compilation_Unit (Current_Scope)
+ then
+ Ensure_Defined (Target_Typ, Ck_Node);
+
+ if Present (Source_Typ) then
+ Ensure_Defined (Source_Typ, Ck_Node);
+
+ elsif Is_Itype (Etype (Ck_Node)) then
+ Ensure_Defined (Etype (Ck_Node), Ck_Node);
+ end if;
+ end if;
+
+ -- If the item is a conditional raise of constraint error,
+ -- then have a look at what check is being performed and
+ -- ???
+
+ if Nkind (R_Cno) = N_Raise_Constraint_Error
+ and then Present (Condition (R_Cno))
+ then
+ Cond := Condition (R_Cno);
+
+ if not Has_Dynamic_Length_Check (Ck_Node) then
+ Insert_Action (Ck_Node, R_Cno);
+
+ if not Do_Static then
+ Set_Has_Dynamic_Length_Check (Ck_Node);
+ end if;
+
+ end if;
+
+ -- Output a warning if the condition is known to be True
+
+ if Is_Entity_Name (Cond)
+ and then Entity (Cond) = Standard_True
+ then
+ Apply_Compile_Time_Constraint_Error
+ (Ck_Node, "wrong length for array of}?",
+ Ent => Target_Typ,
+ Typ => Target_Typ);
+
+ -- If we were only doing a static check, or if checks are not
+ -- on, then we want to delete the check, since it is not needed.
+ -- We do this by replacing the if statement by a null statement
+
+ elsif Do_Static or else not Checks_On then
+ Rewrite (R_Cno, Make_Null_Statement (Loc));
+ end if;
+
+ else
+ Install_Static_Check (R_Cno, Loc);
+ end if;
+
+ end loop;
+
+ end Apply_Selected_Length_Checks;
+
+ ---------------------------------
+ -- Apply_Selected_Range_Checks --
+ ---------------------------------
+
+ procedure Apply_Selected_Range_Checks
+ (Ck_Node : Node_Id;
+ Target_Typ : Entity_Id;
+ Source_Typ : Entity_Id;
+ Do_Static : Boolean)
+ is
+ Cond : Node_Id;
+ R_Result : Check_Result;
+ R_Cno : Node_Id;
+
+ Loc : constant Source_Ptr := Sloc (Ck_Node);
+ Checks_On : constant Boolean :=
+ (not Index_Checks_Suppressed (Target_Typ))
+ or else
+ (not Range_Checks_Suppressed (Target_Typ));
+
+ begin
+ if not Expander_Active or else not Checks_On then
+ return;
+ end if;
+
+ R_Result :=
+ Selected_Range_Checks (Ck_Node, Target_Typ, Source_Typ, Empty);
+
+ for J in 1 .. 2 loop
+
+ R_Cno := R_Result (J);
+ exit when No (R_Cno);
+
+ -- If the item is a conditional raise of constraint error,
+ -- then have a look at what check is being performed and
+ -- ???
+
+ if Nkind (R_Cno) = N_Raise_Constraint_Error
+ and then Present (Condition (R_Cno))
+ then
+ Cond := Condition (R_Cno);
+
+ if not Has_Dynamic_Range_Check (Ck_Node) then
+ Insert_Action (Ck_Node, R_Cno);
+
+ if not Do_Static then
+ Set_Has_Dynamic_Range_Check (Ck_Node);
+ end if;
+ end if;
+
+ -- Output a warning if the condition is known to be True
+
+ if Is_Entity_Name (Cond)
+ and then Entity (Cond) = Standard_True
+ then
+ -- Since an N_Range is technically not an expression, we
+ -- have to set one of the bounds to C_E and then just flag
+ -- the N_Range. The warning message will point to the
+ -- lower bound and complain about a range, which seems OK.
+
+ if Nkind (Ck_Node) = N_Range then
+ Apply_Compile_Time_Constraint_Error
+ (Low_Bound (Ck_Node), "static range out of bounds of}?",
+ Ent => Target_Typ,
+ Typ => Target_Typ);
+
+ Set_Raises_Constraint_Error (Ck_Node);
+
+ else
+ Apply_Compile_Time_Constraint_Error
+ (Ck_Node, "static value out of range of}?",
+ Ent => Target_Typ,
+ Typ => Target_Typ);
+ end if;
+
+ -- If we were only doing a static check, or if checks are not
+ -- on, then we want to delete the check, since it is not needed.
+ -- We do this by replacing the if statement by a null statement
+
+ elsif Do_Static or else not Checks_On then
+ Rewrite (R_Cno, Make_Null_Statement (Loc));
+ end if;
+
+ else
+ Install_Static_Check (R_Cno, Loc);
+ end if;
+
+ end loop;
+
+ end Apply_Selected_Range_Checks;
+
+ -------------------------------
+ -- Apply_Static_Length_Check --
+ -------------------------------
+
+ procedure Apply_Static_Length_Check
+ (Expr : Node_Id;
+ Target_Typ : Entity_Id;
+ Source_Typ : Entity_Id := Empty)
+ is
+ begin
+ Apply_Selected_Length_Checks
+ (Expr, Target_Typ, Source_Typ, Do_Static => True);
+ end Apply_Static_Length_Check;
+
+ -------------------------------------
+ -- Apply_Subscript_Validity_Checks --
+ -------------------------------------
+
+ procedure Apply_Subscript_Validity_Checks (Expr : Node_Id) is
+ Sub : Node_Id;
+
+ begin
+ pragma Assert (Nkind (Expr) = N_Indexed_Component);
+
+ -- Loop through subscripts
+
+ Sub := First (Expressions (Expr));
+ while Present (Sub) loop
+
+ -- Check one subscript. Note that we do not worry about
+ -- enumeration type with holes, since we will convert the
+ -- value to a Pos value for the subscript, and that convert
+ -- will do the necessary validity check.
+
+ Ensure_Valid (Sub, Holes_OK => True);
+
+ -- Move to next subscript
+
+ Sub := Next (Sub);
+ end loop;
+ end Apply_Subscript_Validity_Checks;
+
+ ----------------------------------
+ -- Apply_Type_Conversion_Checks --
+ ----------------------------------
+
+ procedure Apply_Type_Conversion_Checks (N : Node_Id) is
+ Target_Type : constant Entity_Id := Etype (N);
+ Target_Base : constant Entity_Id := Base_Type (Target_Type);
+
+ Expr : constant Node_Id := Expression (N);
+ Expr_Type : constant Entity_Id := Etype (Expr);
+
+ begin
+ if Inside_A_Generic then
+ return;
+
+ -- Skip these checks if errors detected, there are some nasty
+ -- situations of incomplete trees that blow things up.
+
+ elsif Errors_Detected > 0 then
+ return;
+
+ -- Scalar type conversions of the form Target_Type (Expr) require
+ -- two checks:
+ --
+ -- - First there is an overflow check to insure that Expr is
+ -- in the base type of Target_Typ (4.6 (28)),
+ --
+ -- - After we know Expr fits into the base type, we must perform a
+ -- range check to ensure that Expr meets the constraints of the
+ -- Target_Type.
+
+ elsif Is_Scalar_Type (Target_Type) then
+ declare
+ Conv_OK : constant Boolean := Conversion_OK (N);
+ -- If the Conversion_OK flag on the type conversion is set
+ -- and no floating point type is involved in the type conversion
+ -- then fixed point values must be read as integral values.
+
+ begin
+ -- Overflow check.
+
+ if not Overflow_Checks_Suppressed (Target_Base)
+ and then not In_Subrange_Of (Expr_Type, Target_Base, Conv_OK)
+ then
+ Set_Do_Overflow_Check (N);
+ end if;
+
+ if not Range_Checks_Suppressed (Target_Type)
+ and then not Range_Checks_Suppressed (Expr_Type)
+ then
+ Apply_Scalar_Range_Check
+ (Expr, Target_Type, Fixed_Int => Conv_OK);
+ end if;
+ end;
+
+ elsif Comes_From_Source (N)
+ and then Is_Record_Type (Target_Type)
+ and then Is_Derived_Type (Target_Type)
+ and then not Is_Tagged_Type (Target_Type)
+ and then not Is_Constrained (Target_Type)
+ and then Present (Girder_Constraint (Target_Type))
+ then
+ -- A unconstrained derived type may have inherited discriminants.
+ -- Build an actual discriminant constraint list using the girder
+ -- constraint, to verify that the expression of the parent type
+ -- satisfies the constraints imposed by the (unconstrained!)
+ -- derived type. This applies to value conversions, not to view
+ -- conversions of tagged types.
+
+ declare
+ Loc : constant Source_Ptr := Sloc (N);
+ Cond : Node_Id;
+ Constraint : Elmt_Id;
+ Discr_Value : Node_Id;
+ Discr : Entity_Id;
+ New_Constraints : Elist_Id := New_Elmt_List;
+ Old_Constraints : Elist_Id := Discriminant_Constraint (Expr_Type);
+
+ begin
+ Constraint := First_Elmt (Girder_Constraint (Target_Type));
+
+ while Present (Constraint) loop
+ Discr_Value := Node (Constraint);
+
+ if Is_Entity_Name (Discr_Value)
+ and then Ekind (Entity (Discr_Value)) = E_Discriminant
+ then
+ Discr := Corresponding_Discriminant (Entity (Discr_Value));
+
+ if Present (Discr)
+ and then Scope (Discr) = Base_Type (Expr_Type)
+ then
+ -- Parent is constrained by new discriminant. Obtain
+ -- Value of original discriminant in expression. If
+ -- the new discriminant has been used to constrain more
+ -- than one of the girder ones, this will provide the
+ -- required consistency check.
+
+ Append_Elmt (
+ Make_Selected_Component (Loc,
+ Prefix =>
+ Duplicate_Subexpr (Expr, Name_Req => True),
+ Selector_Name =>
+ Make_Identifier (Loc, Chars (Discr))),
+ New_Constraints);
+
+ else
+ -- Discriminant of more remote ancestor ???
+
+ return;
+ end if;
+
+ -- Derived type definition has an explicit value for
+ -- this girder discriminant.
+
+ else
+ Append_Elmt
+ (Duplicate_Subexpr (Discr_Value), New_Constraints);
+ end if;
+
+ Next_Elmt (Constraint);
+ end loop;
+
+ -- Use the unconstrained expression type to retrieve the
+ -- discriminants of the parent, and apply momentarily the
+ -- discriminant constraint synthesized above.
+
+ Set_Discriminant_Constraint (Expr_Type, New_Constraints);
+ Cond := Build_Discriminant_Checks (Expr, Expr_Type);
+ Set_Discriminant_Constraint (Expr_Type, Old_Constraints);
+
+ Insert_Action (N,
+ Make_Raise_Constraint_Error (Loc, Condition => Cond));
+ end;
+
+ -- should there be other checks here for array types ???
+
+ else
+ null;
+ end if;
+
+ end Apply_Type_Conversion_Checks;
+
+ ----------------------------------------------
+ -- Apply_Universal_Integer_Attribute_Checks --
+ ----------------------------------------------
+
+ procedure Apply_Universal_Integer_Attribute_Checks (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Typ : constant Entity_Id := Etype (N);
+
+ begin
+ if Inside_A_Generic then
+ return;
+
+ -- Nothing to do if checks are suppressed
+
+ elsif Range_Checks_Suppressed (Typ)
+ and then Overflow_Checks_Suppressed (Typ)
+ then
+ return;
+
+ -- Nothing to do if the attribute does not come from source. The
+ -- internal attributes we generate of this type do not need checks,
+ -- and furthermore the attempt to check them causes some circular
+ -- elaboration orders when dealing with packed types.
+
+ elsif not Comes_From_Source (N) then
+ return;
+
+ -- Otherwise, replace the attribute node with a type conversion
+ -- node whose expression is the attribute, retyped to universal
+ -- integer, and whose subtype mark is the target type. The call
+ -- to analyze this conversion will set range and overflow checks
+ -- as required for proper detection of an out of range value.
+
+ else
+ Set_Etype (N, Universal_Integer);
+ Set_Analyzed (N, True);
+
+ Rewrite (N,
+ Make_Type_Conversion (Loc,
+ Subtype_Mark => New_Occurrence_Of (Typ, Loc),
+ Expression => Relocate_Node (N)));
+
+ Analyze_And_Resolve (N, Typ);
+ return;
+ end if;
+
+ end Apply_Universal_Integer_Attribute_Checks;
+
+ -------------------------------
+ -- Build_Discriminant_Checks --
+ -------------------------------
+
+ function Build_Discriminant_Checks
+ (N : Node_Id;
+ T_Typ : Entity_Id)
+ return Node_Id
+ is
+ Loc : constant Source_Ptr := Sloc (N);
+ Cond : Node_Id;
+ Disc : Elmt_Id;
+ Disc_Ent : Entity_Id;
+ Dval : Node_Id;
+
+ begin
+ Cond := Empty;
+ Disc := First_Elmt (Discriminant_Constraint (T_Typ));
+
+ -- For a fully private type, use the discriminants of the parent
+ -- type.
+
+ if Is_Private_Type (T_Typ)
+ and then No (Full_View (T_Typ))
+ then
+ Disc_Ent := First_Discriminant (Etype (Base_Type (T_Typ)));
+ else
+ Disc_Ent := First_Discriminant (T_Typ);
+ end if;
+
+ while Present (Disc) loop
+
+ Dval := Node (Disc);
+
+ if Nkind (Dval) = N_Identifier
+ and then Ekind (Entity (Dval)) = E_Discriminant
+ then
+ Dval := New_Occurrence_Of (Discriminal (Entity (Dval)), Loc);
+ else
+ Dval := Duplicate_Subexpr (Dval);
+ end if;
+
+ Evolve_Or_Else (Cond,
+ Make_Op_Ne (Loc,
+ Left_Opnd =>
+ Make_Selected_Component (Loc,
+ Prefix =>
+ Duplicate_Subexpr (N, Name_Req => True),
+ Selector_Name =>
+ Make_Identifier (Loc, Chars (Disc_Ent))),
+ Right_Opnd => Dval));
+
+ Next_Elmt (Disc);
+ Next_Discriminant (Disc_Ent);
+ end loop;
+
+ return Cond;
+ end Build_Discriminant_Checks;
+
+ -----------------------------------
+ -- Check_Valid_Lvalue_Subscripts --
+ -----------------------------------
+
+ procedure Check_Valid_Lvalue_Subscripts (Expr : Node_Id) is
+ begin
+ -- Skip this if range checks are suppressed
+
+ if Range_Checks_Suppressed (Etype (Expr)) then
+ return;
+
+ -- Only do this check for expressions that come from source. We
+ -- assume that expander generated assignments explicitly include
+ -- any necessary checks. Note that this is not just an optimization,
+ -- it avoids infinite recursions!
+
+ elsif not Comes_From_Source (Expr) then
+ return;
+
+ -- For a selected component, check the prefix
+
+ elsif Nkind (Expr) = N_Selected_Component then
+ Check_Valid_Lvalue_Subscripts (Prefix (Expr));
+ return;
+
+ -- Case of indexed component
+
+ elsif Nkind (Expr) = N_Indexed_Component then
+ Apply_Subscript_Validity_Checks (Expr);
+
+ -- Prefix may itself be or contain an indexed component, and
+ -- these subscripts need checking as well
+
+ Check_Valid_Lvalue_Subscripts (Prefix (Expr));
+ end if;
+ end Check_Valid_Lvalue_Subscripts;
+
+ ---------------------
+ -- Determine_Range --
+ ---------------------
+
+ Cache_Size : constant := 2 ** 6;
+ type Cache_Index is range 0 .. Cache_Size - 1;
+ -- Determine size of below cache (power of 2 is more efficient!)
+
+ Determine_Range_Cache_N : array (Cache_Index) of Node_Id;
+ Determine_Range_Cache_Lo : array (Cache_Index) of Uint;
+ Determine_Range_Cache_Hi : array (Cache_Index) of Uint;
+ -- The above arrays are used to implement a small direct cache
+ -- for Determine_Range calls. Because of the way Determine_Range
+ -- recursively traces subexpressions, and because overflow checking
+ -- calls the routine on the way up the tree, a quadratic behavior
+ -- can otherwise be encountered in large expressions. The cache
+ -- entry for node N is stored in the (N mod Cache_Size) entry, and
+ -- can be validated by checking the actual node value stored there.
+
+ procedure Determine_Range
+ (N : Node_Id;
+ OK : out Boolean;
+ Lo : out Uint;
+ Hi : out Uint)
+ is
+ Typ : constant Entity_Id := Etype (N);
+
+ Lo_Left : Uint;
+ Lo_Right : Uint;
+ Hi_Left : Uint;
+ Hi_Right : Uint;
+ Bound : Node_Id;
+ Hbound : Uint;
+ Lor : Uint;
+ Hir : Uint;
+ OK1 : Boolean;
+ Cindex : Cache_Index;
+
+ function OK_Operands return Boolean;
+ -- Used for binary operators. Determines the ranges of the left and
+ -- right operands, and if they are both OK, returns True, and puts
+ -- the results in Lo_Right, Hi_Right, Lo_Left, Hi_Left
+
+ -----------------
+ -- OK_Operands --
+ -----------------
+
+ function OK_Operands return Boolean is
+ begin
+ Determine_Range (Left_Opnd (N), OK1, Lo_Left, Hi_Left);
+
+ if not OK1 then
+ return False;
+ end if;
+
+ Determine_Range (Right_Opnd (N), OK1, Lo_Right, Hi_Right);
+ return OK1;
+ end OK_Operands;
+
+ -- Start of processing for Determine_Range
+
+ begin
+ -- Prevent junk warnings by initializing range variables
+
+ Lo := No_Uint;
+ Hi := No_Uint;
+ Lor := No_Uint;
+ Hir := No_Uint;
+
+ -- If the type is not discrete, or is undefined, then we can't
+ -- do anything about determining the range.
+
+ if No (Typ) or else not Is_Discrete_Type (Typ)
+ or else Error_Posted (N)
+ then
+ OK := False;
+ return;
+ end if;
+
+ -- For all other cases, we can determine the range
+
+ OK := True;
+
+ -- If value is compile time known, then the possible range is the
+ -- one value that we know this expression definitely has!
+
+ if Compile_Time_Known_Value (N) then
+ Lo := Expr_Value (N);
+ Hi := Lo;
+ return;
+ end if;
+
+ -- Return if already in the cache
+
+ Cindex := Cache_Index (N mod Cache_Size);
+
+ if Determine_Range_Cache_N (Cindex) = N then
+ Lo := Determine_Range_Cache_Lo (Cindex);
+ Hi := Determine_Range_Cache_Hi (Cindex);
+ return;
+ end if;
+
+ -- Otherwise, start by finding the bounds of the type of the
+ -- expression, the value cannot be outside this range (if it
+ -- is, then we have an overflow situation, which is a separate
+ -- check, we are talking here only about the expression value).
+
+ -- We use the actual bound unless it is dynamic, in which case
+ -- use the corresponding base type bound if possible. If we can't
+ -- get a bound then
+
+ Bound := Type_Low_Bound (Typ);
+
+ if Compile_Time_Known_Value (Bound) then
+ Lo := Expr_Value (Bound);
+
+ elsif Compile_Time_Known_Value (Type_Low_Bound (Base_Type (Typ))) then
+ Lo := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
+
+ else
+ OK := False;
+ return;
+ end if;
+
+ Bound := Type_High_Bound (Typ);
+
+ if Compile_Time_Known_Value (Bound) then
+ Hi := Expr_Value (Bound);
+
+ elsif Compile_Time_Known_Value (Type_High_Bound (Base_Type (Typ))) then
+ Hbound := Expr_Value (Type_High_Bound (Base_Type (Typ)));
+ Hi := Hbound;
+
+ else
+ OK := False;
+ return;
+ end if;
+
+ -- We may be able to refine this value in certain situations. If
+ -- refinement is possible, then Lor and Hir are set to possibly
+ -- tighter bounds, and OK1 is set to True.
+
+ case Nkind (N) is
+
+ -- For unary plus, result is limited by range of operand
+
+ when N_Op_Plus =>
+ Determine_Range (Right_Opnd (N), OK1, Lor, Hir);
+
+ -- For unary minus, determine range of operand, and negate it
+
+ when N_Op_Minus =>
+ Determine_Range (Right_Opnd (N), OK1, Lo_Right, Hi_Right);
+
+ if OK1 then
+ Lor := -Hi_Right;
+ Hir := -Lo_Right;
+ end if;
+
+ -- For binary addition, get range of each operand and do the
+ -- addition to get the result range.
+
+ when N_Op_Add =>
+ if OK_Operands then
+ Lor := Lo_Left + Lo_Right;
+ Hir := Hi_Left + Hi_Right;
+ end if;
+
+ -- Division is tricky. The only case we consider is where the
+ -- right operand is a positive constant, and in this case we
+ -- simply divide the bounds of the left operand
+
+ when N_Op_Divide =>
+ if OK_Operands then
+ if Lo_Right = Hi_Right
+ and then Lo_Right > 0
+ then
+ Lor := Lo_Left / Lo_Right;
+ Hir := Hi_Left / Lo_Right;
+
+ else
+ OK1 := False;
+ end if;
+ end if;
+
+ -- For binary subtraction, get range of each operand and do
+ -- the worst case subtraction to get the result range.
+
+ when N_Op_Subtract =>
+ if OK_Operands then
+ Lor := Lo_Left - Hi_Right;
+ Hir := Hi_Left - Lo_Right;
+ end if;
+
+ -- For MOD, if right operand is a positive constant, then
+ -- result must be in the allowable range of mod results.
+
+ when N_Op_Mod =>
+ if OK_Operands then
+ if Lo_Right = Hi_Right then
+ if Lo_Right > 0 then
+ Lor := Uint_0;
+ Hir := Lo_Right - 1;
+
+ elsif Lo_Right < 0 then
+ Lor := Lo_Right + 1;
+ Hir := Uint_0;
+ end if;
+
+ else
+ OK1 := False;
+ end if;
+ end if;
+
+ -- For REM, if right operand is a positive constant, then
+ -- result must be in the allowable range of mod results.
+
+ when N_Op_Rem =>
+ if OK_Operands then
+ if Lo_Right = Hi_Right then
+ declare
+ Dval : constant Uint := (abs Lo_Right) - 1;
+
+ begin
+ -- The sign of the result depends on the sign of the
+ -- dividend (but not on the sign of the divisor, hence
+ -- the abs operation above).
+
+ if Lo_Left < 0 then
+ Lor := -Dval;
+ else
+ Lor := Uint_0;
+ end if;
+
+ if Hi_Left < 0 then
+ Hir := Uint_0;
+ else
+ Hir := Dval;
+ end if;
+ end;
+
+ else
+ OK1 := False;
+ end if;
+ end if;
+
+ -- Attribute reference cases
+
+ when N_Attribute_Reference =>
+ case Attribute_Name (N) is
+
+ -- For Pos/Val attributes, we can refine the range using the
+ -- possible range of values of the attribute expression
+
+ when Name_Pos | Name_Val =>
+ Determine_Range (First (Expressions (N)), OK1, Lor, Hir);
+
+ -- For Length attribute, use the bounds of the corresponding
+ -- index type to refine the range.
+
+ when Name_Length =>
+ declare
+ Atyp : Entity_Id := Etype (Prefix (N));
+ Inum : Nat;
+ Indx : Node_Id;
+
+ LL, LU : Uint;
+ UL, UU : Uint;
+
+ begin
+ if Is_Access_Type (Atyp) then
+ Atyp := Designated_Type (Atyp);
+ end if;
+
+ -- For string literal, we know exact value
+
+ if Ekind (Atyp) = E_String_Literal_Subtype then
+ OK := True;
+ Lo := String_Literal_Length (Atyp);
+ Hi := String_Literal_Length (Atyp);
+ return;
+ end if;
+
+ -- Otherwise check for expression given
+
+ if No (Expressions (N)) then
+ Inum := 1;
+ else
+ Inum :=
+ UI_To_Int (Expr_Value (First (Expressions (N))));
+ end if;
+
+ Indx := First_Index (Atyp);
+ for J in 2 .. Inum loop
+ Indx := Next_Index (Indx);
+ end loop;
+
+ Determine_Range
+ (Type_Low_Bound (Etype (Indx)), OK1, LL, LU);
+
+ if OK1 then
+ Determine_Range
+ (Type_High_Bound (Etype (Indx)), OK1, UL, UU);
+
+ if OK1 then
+
+ -- The maximum value for Length is the biggest
+ -- possible gap between the values of the bounds.
+ -- But of course, this value cannot be negative.
+
+ Hir := UI_Max (Uint_0, UU - LL);
+
+ -- For constrained arrays, the minimum value for
+ -- Length is taken from the actual value of the
+ -- bounds, since the index will be exactly of
+ -- this subtype.
+
+ if Is_Constrained (Atyp) then
+ Lor := UI_Max (Uint_0, UL - LU);
+
+ -- For an unconstrained array, the minimum value
+ -- for length is always zero.
+
+ else
+ Lor := Uint_0;
+ end if;
+ end if;
+ end if;
+ end;
+
+ -- No special handling for other attributes
+ -- Probably more opportunities exist here ???
+
+ when others =>
+ OK1 := False;
+
+ end case;
+
+ -- For type conversion from one discrete type to another, we
+ -- can refine the range using the converted value.
+
+ when N_Type_Conversion =>
+ Determine_Range (Expression (N), OK1, Lor, Hir);
+
+ -- Nothing special to do for all other expression kinds
+
+ when others =>
+ OK1 := False;
+ Lor := No_Uint;
+ Hir := No_Uint;
+ end case;
+
+ -- At this stage, if OK1 is true, then we know that the actual
+ -- result of the computed expression is in the range Lor .. Hir.
+ -- We can use this to restrict the possible range of results.
+
+ if OK1 then
+
+ -- If the refined value of the low bound is greater than the
+ -- type high bound, then reset it to the more restrictive
+ -- value. However, we do NOT do this for the case of a modular
+ -- type where the possible upper bound on the value is above the
+ -- base type high bound, because that means the result could wrap.
+
+ if Lor > Lo
+ and then not (Is_Modular_Integer_Type (Typ)
+ and then Hir > Hbound)
+ then
+ Lo := Lor;
+ end if;
+
+ -- Similarly, if the refined value of the high bound is less
+ -- than the value so far, then reset it to the more restrictive
+ -- value. Again, we do not do this if the refined low bound is
+ -- negative for a modular type, since this would wrap.
+
+ if Hir < Hi
+ and then not (Is_Modular_Integer_Type (Typ)
+ and then Lor < Uint_0)
+ then
+ Hi := Hir;
+ end if;
+ end if;
+
+ -- Set cache entry for future call and we are all done
+
+ Determine_Range_Cache_N (Cindex) := N;
+ Determine_Range_Cache_Lo (Cindex) := Lo;
+ Determine_Range_Cache_Hi (Cindex) := Hi;
+ return;
+
+ -- If any exception occurs, it means that we have some bug in the compiler
+ -- possibly triggered by a previous error, or by some unforseen peculiar
+ -- occurrence. However, this is only an optimization attempt, so there is
+ -- really no point in crashing the compiler. Instead we just decide, too
+ -- bad, we can't figure out a range in this case after all.
+
+ exception
+ when others =>
+
+ -- Debug flag K disables this behavior (useful for debugging)
+
+ if Debug_Flag_K then
+ raise;
+ else
+ OK := False;
+ Lo := No_Uint;
+ Hi := No_Uint;
+ return;
+ end if;
+
+ end Determine_Range;
+
+ ------------------------------------
+ -- Discriminant_Checks_Suppressed --
+ ------------------------------------
+
+ function Discriminant_Checks_Suppressed (E : Entity_Id) return Boolean is
+ begin
+ return Scope_Suppress.Discriminant_Checks
+ or else (Present (E) and then Suppress_Discriminant_Checks (E));
+ end Discriminant_Checks_Suppressed;
+
+ --------------------------------
+ -- Division_Checks_Suppressed --
+ --------------------------------
+
+ function Division_Checks_Suppressed (E : Entity_Id) return Boolean is
+ begin
+ return Scope_Suppress.Division_Checks
+ or else (Present (E) and then Suppress_Division_Checks (E));
+ end Division_Checks_Suppressed;
+
+ -----------------------------------
+ -- Elaboration_Checks_Suppressed --
+ -----------------------------------
+
+ function Elaboration_Checks_Suppressed (E : Entity_Id) return Boolean is
+ begin
+ return Scope_Suppress.Elaboration_Checks
+ or else (Present (E) and then Suppress_Elaboration_Checks (E));
+ end Elaboration_Checks_Suppressed;
+
+ ------------------------
+ -- Enable_Range_Check --
+ ------------------------
+
+ procedure Enable_Range_Check (N : Node_Id) is
+ begin
+ if Nkind (N) = N_Unchecked_Type_Conversion
+ and then Kill_Range_Check (N)
+ then
+ return;
+ else
+ Set_Do_Range_Check (N, True);
+ end if;
+ end Enable_Range_Check;
+
+ ------------------
+ -- Ensure_Valid --
+ ------------------
+
+ procedure Ensure_Valid (Expr : Node_Id; Holes_OK : Boolean := False) is
+ Typ : constant Entity_Id := Etype (Expr);
+
+ begin
+ -- Ignore call if we are not doing any validity checking
+
+ if not Validity_Checks_On then
+ return;
+
+ -- No check required if expression is from the expander, we assume
+ -- the expander will generate whatever checks are needed. Note that
+ -- this is not just an optimization, it avoids infinite recursions!
+
+ -- Unchecked conversions must be checked, unless they are initialized
+ -- scalar values, as in a component assignment in an init_proc.
+
+ elsif not Comes_From_Source (Expr)
+ and then (Nkind (Expr) /= N_Unchecked_Type_Conversion
+ or else Kill_Range_Check (Expr))
+ then
+ return;
+
+ -- No check required if expression is known to have valid value
+
+ elsif Expr_Known_Valid (Expr) then
+ return;
+
+ -- No check required if checks off
+
+ elsif Range_Checks_Suppressed (Typ) then
+ return;
+
+ -- Ignore case of enumeration with holes where the flag is set not
+ -- to worry about holes, since no special validity check is needed
+
+ elsif Is_Enumeration_Type (Typ)
+ and then Has_Non_Standard_Rep (Typ)
+ and then Holes_OK
+ then
+ return;
+
+ -- No check required on the left-hand side of an assignment.
+
+ elsif Nkind (Parent (Expr)) = N_Assignment_Statement
+ and then Expr = Name (Parent (Expr))
+ then
+ return;
+
+ -- An annoying special case. If this is an out parameter of a scalar
+ -- type, then the value is not going to be accessed, therefore it is
+ -- inappropriate to do any validity check at the call site.
+
+ else
+ -- Only need to worry about scalar types
+
+ if Is_Scalar_Type (Typ) then
+ declare
+ P : Node_Id;
+ N : Node_Id;
+ E : Entity_Id;
+ F : Entity_Id;
+ A : Node_Id;
+ L : List_Id;
+
+ begin
+ -- Find actual argument (which may be a parameter association)
+ -- and the parent of the actual argument (the call statement)
+
+ N := Expr;
+ P := Parent (Expr);
+
+ if Nkind (P) = N_Parameter_Association then
+ N := P;
+ P := Parent (N);
+ end if;
+
+ -- Only need to worry if we are argument of a procedure
+ -- call since functions don't have out parameters.
+
+ if Nkind (P) = N_Procedure_Call_Statement then
+ L := Parameter_Associations (P);
+ E := Entity (Name (P));
+
+ -- Only need to worry if there are indeed actuals, and
+ -- if this could be a procedure call, otherwise we cannot
+ -- get a match (either we are not an argument, or the
+ -- mode of the formal is not OUT). This test also filters
+ -- out the generic case.
+
+ if Is_Non_Empty_List (L)
+ and then Is_Subprogram (E)
+ then
+ -- This is the loop through parameters, looking to
+ -- see if there is an OUT parameter for which we are
+ -- the argument.
+
+ F := First_Formal (E);
+ A := First (L);
+
+ while Present (F) loop
+ if Ekind (F) = E_Out_Parameter and then A = N then
+ return;
+ end if;
+
+ Next_Formal (F);
+ Next (A);
+ end loop;
+ end if;
+ end if;
+ end;
+ end if;
+ end if;
+
+ -- If we fall through, a validity check is required. Note that it would
+ -- not be good to set Do_Range_Check, even in contexts where this is
+ -- permissible, since this flag causes checking against the target type,
+ -- not the source type in contexts such as assignments
+
+ Insert_Valid_Check (Expr);
+ end Ensure_Valid;
+
+ ----------------------
+ -- Expr_Known_Valid --
+ ----------------------
+
+ function Expr_Known_Valid (Expr : Node_Id) return Boolean is
+ Typ : constant Entity_Id := Etype (Expr);
+
+ begin
+ -- Non-scalar types are always consdered valid, since they never
+ -- give rise to the issues of erroneous or bounded error behavior
+ -- that are the concern. In formal reference manual terms the
+ -- notion of validity only applies to scalar types.
+
+ if not Is_Scalar_Type (Typ) then
+ return True;
+
+ -- If no validity checking, then everything is considered valid
+
+ elsif not Validity_Checks_On then
+ return True;
+
+ -- Floating-point types are considered valid unless floating-point
+ -- validity checks have been specifically turned on.
+
+ elsif Is_Floating_Point_Type (Typ)
+ and then not Validity_Check_Floating_Point
+ then
+ return True;
+
+ -- If the expression is the value of an object that is known to
+ -- be valid, then clearly the expression value itself is valid.
+
+ elsif Is_Entity_Name (Expr)
+ and then Is_Known_Valid (Entity (Expr))
+ then
+ return True;
+
+ -- If the type is one for which all values are known valid, then
+ -- we are sure that the value is valid except in the slightly odd
+ -- case where the expression is a reference to a variable whose size
+ -- has been explicitly set to a value greater than the object size.
+
+ elsif Is_Known_Valid (Typ) then
+ if Is_Entity_Name (Expr)
+ and then Ekind (Entity (Expr)) = E_Variable
+ and then Esize (Entity (Expr)) > Esize (Typ)
+ then
+ return False;
+ else
+ return True;
+ end if;
+
+ -- Integer and character literals always have valid values, where
+ -- appropriate these will be range checked in any case.
+
+ elsif Nkind (Expr) = N_Integer_Literal
+ or else
+ Nkind (Expr) = N_Character_Literal
+ then
+ return True;
+
+ -- If we have a type conversion or a qualification of a known valid
+ -- value, then the result will always be valid.
+
+ elsif Nkind (Expr) = N_Type_Conversion
+ or else
+ Nkind (Expr) = N_Qualified_Expression
+ then
+ return Expr_Known_Valid (Expression (Expr));
+
+ -- The result of any function call or operator is always considered
+ -- valid, since we assume the necessary checks are done by the call.
+
+ elsif Nkind (Expr) in N_Binary_Op
+ or else
+ Nkind (Expr) in N_Unary_Op
+ or else
+ Nkind (Expr) = N_Function_Call
+ then
+ return True;
+
+ -- For all other cases, we do not know the expression is valid
+
+ else
+ return False;
+ end if;
+ end Expr_Known_Valid;
+
+ ---------------------
+ -- Get_Discriminal --
+ ---------------------
+
+ function Get_Discriminal (E : Entity_Id; Bound : Node_Id) return Node_Id is
+ Loc : constant Source_Ptr := Sloc (E);
+ D : Entity_Id;
+ Sc : Entity_Id;
+
+ begin
+ -- The entity E is the type of a private component of the protected
+ -- type, or the type of a renaming of that component within a protected
+ -- operation of that type.
+
+ Sc := Scope (E);
+
+ if Ekind (Sc) /= E_Protected_Type then
+ Sc := Scope (Sc);
+
+ if Ekind (Sc) /= E_Protected_Type then
+ return Bound;
+ end if;
+ end if;
+
+ D := First_Discriminant (Sc);
+
+ while Present (D)
+ and then Chars (D) /= Chars (Bound)
+ loop
+ Next_Discriminant (D);
+ end loop;
+
+ return New_Occurrence_Of (Discriminal (D), Loc);
+ end Get_Discriminal;
+
+ ------------------
+ -- Guard_Access --
+ ------------------
+
+ function Guard_Access
+ (Cond : Node_Id;
+ Loc : Source_Ptr;
+ Ck_Node : Node_Id)
+ return Node_Id
+ is
+ begin
+ if Nkind (Cond) = N_Or_Else then
+ Set_Paren_Count (Cond, 1);
+ end if;
+
+ if Nkind (Ck_Node) = N_Allocator then
+ return Cond;
+ else
+ return
+ Make_And_Then (Loc,
+ Left_Opnd =>
+ Make_Op_Ne (Loc,
+ Left_Opnd => Duplicate_Subexpr (Ck_Node),
+ Right_Opnd => Make_Null (Loc)),
+ Right_Opnd => Cond);
+ end if;
+ end Guard_Access;
+
+ -----------------------------
+ -- Index_Checks_Suppressed --
+ -----------------------------
+
+ function Index_Checks_Suppressed (E : Entity_Id) return Boolean is
+ begin
+ return Scope_Suppress.Index_Checks
+ or else (Present (E) and then Suppress_Index_Checks (E));
+ end Index_Checks_Suppressed;
+
+ ----------------
+ -- Initialize --
+ ----------------
+
+ procedure Initialize is
+ begin
+ for J in Determine_Range_Cache_N'Range loop
+ Determine_Range_Cache_N (J) := Empty;
+ end loop;
+ end Initialize;
+
+ -------------------------
+ -- Insert_Range_Checks --
+ -------------------------
+
+ procedure Insert_Range_Checks
+ (Checks : Check_Result;
+ Node : Node_Id;
+ Suppress_Typ : Entity_Id;
+ Static_Sloc : Source_Ptr := No_Location;
+ Flag_Node : Node_Id := Empty;
+ Do_Before : Boolean := False)
+ is
+ Internal_Flag_Node : Node_Id := Flag_Node;
+ Internal_Static_Sloc : Source_Ptr := Static_Sloc;
+
+ Check_Node : Node_Id;
+ Checks_On : constant Boolean :=
+ (not Index_Checks_Suppressed (Suppress_Typ))
+ or else
+ (not Range_Checks_Suppressed (Suppress_Typ));
+
+ begin
+ -- For now we just return if Checks_On is false, however this should
+ -- be enhanced to check for an always True value in the condition
+ -- and to generate a compilation warning???
+
+ if not Expander_Active or else not Checks_On then
+ return;
+ end if;
+
+ if Static_Sloc = No_Location then
+ Internal_Static_Sloc := Sloc (Node);
+ end if;
+
+ if No (Flag_Node) then
+ Internal_Flag_Node := Node;
+ end if;
+
+ for J in 1 .. 2 loop
+ exit when No (Checks (J));
+
+ if Nkind (Checks (J)) = N_Raise_Constraint_Error
+ and then Present (Condition (Checks (J)))
+ then
+ if not Has_Dynamic_Range_Check (Internal_Flag_Node) then
+ Check_Node := Checks (J);
+ Mark_Rewrite_Insertion (Check_Node);
+
+ if Do_Before then
+ Insert_Before_And_Analyze (Node, Check_Node);
+ else
+ Insert_After_And_Analyze (Node, Check_Node);
+ end if;
+
+ Set_Has_Dynamic_Range_Check (Internal_Flag_Node);
+ end if;
+
+ else
+ Check_Node :=
+ Make_Raise_Constraint_Error (Internal_Static_Sloc);
+ Mark_Rewrite_Insertion (Check_Node);
+
+ if Do_Before then
+ Insert_Before_And_Analyze (Node, Check_Node);
+ else
+ Insert_After_And_Analyze (Node, Check_Node);
+ end if;
+ end if;
+ end loop;
+ end Insert_Range_Checks;
+
+ ------------------------
+ -- Insert_Valid_Check --
+ ------------------------
+
+ procedure Insert_Valid_Check (Expr : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (Expr);
+
+ begin
+ -- Do not insert if checks off, or if not checking validity
+
+ if Range_Checks_Suppressed (Etype (Expr))
+ or else (not Validity_Checks_On)
+ then
+ null;
+
+ -- Otherwise insert the validity check. Note that we do this with
+ -- validity checks turned off, to avoid recursion, we do not want
+ -- validity checks on the validity checking code itself!
+
+ else
+ Validity_Checks_On := False;
+ Insert_Action
+ (Expr,
+ Make_Raise_Constraint_Error (Loc,
+ Condition =>
+ Make_Op_Not (Loc,
+ Right_Opnd =>
+ Make_Attribute_Reference (Loc,
+ Prefix =>
+ Duplicate_Subexpr (Expr, Name_Req => True),
+ Attribute_Name => Name_Valid))),
+ Suppress => All_Checks);
+ Validity_Checks_On := True;
+ end if;
+ end Insert_Valid_Check;
+
+ --------------------------
+ -- Install_Static_Check --
+ --------------------------
+
+ procedure Install_Static_Check (R_Cno : Node_Id; Loc : Source_Ptr) is
+ Stat : constant Boolean := Is_Static_Expression (R_Cno);
+ Typ : constant Entity_Id := Etype (R_Cno);
+
+ begin
+ Rewrite (R_Cno, Make_Raise_Constraint_Error (Loc));
+ Set_Analyzed (R_Cno);
+ Set_Etype (R_Cno, Typ);
+ Set_Raises_Constraint_Error (R_Cno);
+ Set_Is_Static_Expression (R_Cno, Stat);
+ end Install_Static_Check;
+
+ ------------------------------
+ -- Length_Checks_Suppressed --
+ ------------------------------
+
+ function Length_Checks_Suppressed (E : Entity_Id) return Boolean is
+ begin
+ return Scope_Suppress.Length_Checks
+ or else (Present (E) and then Suppress_Length_Checks (E));
+ end Length_Checks_Suppressed;
+
+ --------------------------------
+ -- Overflow_Checks_Suppressed --
+ --------------------------------
+
+ function Overflow_Checks_Suppressed (E : Entity_Id) return Boolean is
+ begin
+ return Scope_Suppress.Overflow_Checks
+ or else (Present (E) and then Suppress_Overflow_Checks (E));
+ end Overflow_Checks_Suppressed;
+
+ -----------------
+ -- Range_Check --
+ -----------------
+
+ function Range_Check
+ (Ck_Node : Node_Id;
+ Target_Typ : Entity_Id;
+ Source_Typ : Entity_Id := Empty;
+ Warn_Node : Node_Id := Empty)
+ return Check_Result
+ is
+ begin
+ return Selected_Range_Checks
+ (Ck_Node, Target_Typ, Source_Typ, Warn_Node);
+ end Range_Check;
+
+ -----------------------------
+ -- Range_Checks_Suppressed --
+ -----------------------------
+
+ function Range_Checks_Suppressed (E : Entity_Id) return Boolean is
+ begin
+ -- Note: for now we always suppress range checks on Vax float types,
+ -- since Gigi does not know how to generate these checks.
+
+ return Scope_Suppress.Range_Checks
+ or else (Present (E) and then Suppress_Range_Checks (E))
+ or else Vax_Float (E);
+ end Range_Checks_Suppressed;
+
+ ----------------------------
+ -- Selected_Length_Checks --
+ ----------------------------
+
+ function Selected_Length_Checks
+ (Ck_Node : Node_Id;
+ Target_Typ : Entity_Id;
+ Source_Typ : Entity_Id;
+ Warn_Node : Node_Id)
+ return Check_Result
+ is
+ Loc : constant Source_Ptr := Sloc (Ck_Node);
+ S_Typ : Entity_Id;
+ T_Typ : Entity_Id;
+ Expr_Actual : Node_Id;
+ Exptyp : Entity_Id;
+ Cond : Node_Id := Empty;
+ Do_Access : Boolean := False;
+ Wnode : Node_Id := Warn_Node;
+ Ret_Result : Check_Result := (Empty, Empty);
+ Num_Checks : Natural := 0;
+
+ procedure Add_Check (N : Node_Id);
+ -- Adds the action given to Ret_Result if N is non-Empty
+
+ function Get_E_Length (E : Entity_Id; Indx : Nat) return Node_Id;
+ function Get_N_Length (N : Node_Id; Indx : Nat) return Node_Id;
+
+ function Same_Bounds (L : Node_Id; R : Node_Id) return Boolean;
+ -- True for equal literals and for nodes that denote the same constant
+ -- entity, even if its value is not a static constant. This removes
+ -- some obviously superfluous checks.
+
+ function Length_E_Cond
+ (Exptyp : Entity_Id;
+ Typ : Entity_Id;
+ Indx : Nat)
+ return Node_Id;
+ -- Returns expression to compute:
+ -- Typ'Length /= Exptyp'Length
+
+ function Length_N_Cond
+ (Expr : Node_Id;
+ Typ : Entity_Id;
+ Indx : Nat)
+ return Node_Id;
+ -- Returns expression to compute:
+ -- Typ'Length /= Expr'Length
+
+ ---------------
+ -- Add_Check --
+ ---------------
+
+ procedure Add_Check (N : Node_Id) is
+ begin
+ if Present (N) then
+
+ -- For now, ignore attempt to place more than 2 checks ???
+
+ if Num_Checks = 2 then
+ return;
+ end if;
+
+ pragma Assert (Num_Checks <= 1);
+ Num_Checks := Num_Checks + 1;
+ Ret_Result (Num_Checks) := N;
+ end if;
+ end Add_Check;
+
+ ------------------
+ -- Get_E_Length --
+ ------------------
+
+ function Get_E_Length (E : Entity_Id; Indx : Nat) return Node_Id is
+ N : Node_Id;
+ E1 : Entity_Id := E;
+ Pt : Entity_Id := Scope (Scope (E));
+
+ begin
+ if Ekind (Scope (E)) = E_Record_Type
+ and then Has_Discriminants (Scope (E))
+ then
+ N := Build_Discriminal_Subtype_Of_Component (E);
+
+ if Present (N) then
+ Insert_Action (Ck_Node, N);
+ E1 := Defining_Identifier (N);
+ end if;
+ end if;
+
+ if Ekind (E1) = E_String_Literal_Subtype then
+ return
+ Make_Integer_Literal (Loc,
+ Intval => String_Literal_Length (E1));
+
+ elsif Ekind (Pt) = E_Protected_Type
+ and then Has_Discriminants (Pt)
+ and then Has_Completion (Pt)
+ and then not Inside_Init_Proc
+ then
+
+ -- If the type whose length is needed is a private component
+ -- constrained by a discriminant, we must expand the 'Length
+ -- attribute into an explicit computation, using the discriminal
+ -- of the current protected operation. This is because the actual
+ -- type of the prival is constructed after the protected opera-
+ -- tion has been fully expanded.
+
+ declare
+ Indx_Type : Node_Id;
+ Lo : Node_Id;
+ Hi : Node_Id;
+ Do_Expand : Boolean := False;
+
+ begin
+ Indx_Type := First_Index (E);
+
+ for J in 1 .. Indx - 1 loop
+ Next_Index (Indx_Type);
+ end loop;
+
+ Get_Index_Bounds (Indx_Type, Lo, Hi);
+
+ if Nkind (Lo) = N_Identifier
+ and then Ekind (Entity (Lo)) = E_In_Parameter
+ then
+ Lo := Get_Discriminal (E, Lo);
+ Do_Expand := True;
+ end if;
+
+ if Nkind (Hi) = N_Identifier
+ and then Ekind (Entity (Hi)) = E_In_Parameter
+ then
+ Hi := Get_Discriminal (E, Hi);
+ Do_Expand := True;
+ end if;
+
+ if Do_Expand then
+ if not Is_Entity_Name (Lo) then
+ Lo := Duplicate_Subexpr (Lo);
+ end if;
+
+ if not Is_Entity_Name (Hi) then
+ Lo := Duplicate_Subexpr (Hi);
+ end if;
+
+ N :=
+ Make_Op_Add (Loc,
+ Left_Opnd =>
+ Make_Op_Subtract (Loc,
+ Left_Opnd => Hi,
+ Right_Opnd => Lo),
+
+ Right_Opnd => Make_Integer_Literal (Loc, 1));
+ return N;
+
+ else
+ N :=
+ Make_Attribute_Reference (Loc,
+ Attribute_Name => Name_Length,
+ Prefix =>
+ New_Occurrence_Of (E1, Loc));
+
+ if Indx > 1 then
+ Set_Expressions (N, New_List (
+ Make_Integer_Literal (Loc, Indx)));
+ end if;
+
+ return N;
+ end if;
+ end;
+
+ else
+ N :=
+ Make_Attribute_Reference (Loc,
+ Attribute_Name => Name_Length,
+ Prefix =>
+ New_Occurrence_Of (E1, Loc));
+
+ if Indx > 1 then
+ Set_Expressions (N, New_List (
+ Make_Integer_Literal (Loc, Indx)));
+ end if;
+
+ return N;
+
+ end if;
+ end Get_E_Length;
+
+ ------------------
+ -- Get_N_Length --
+ ------------------
+
+ function Get_N_Length (N : Node_Id; Indx : Nat) return Node_Id is
+ begin
+ return
+ Make_Attribute_Reference (Loc,
+ Attribute_Name => Name_Length,
+ Prefix =>
+ Duplicate_Subexpr (N, Name_Req => True),
+ Expressions => New_List (
+ Make_Integer_Literal (Loc, Indx)));
+
+ end Get_N_Length;
+
+ -------------------
+ -- Length_E_Cond --
+ -------------------
+
+ function Length_E_Cond
+ (Exptyp : Entity_Id;
+ Typ : Entity_Id;
+ Indx : Nat)
+ return Node_Id
+ is
+ begin
+ return
+ Make_Op_Ne (Loc,
+ Left_Opnd => Get_E_Length (Typ, Indx),
+ Right_Opnd => Get_E_Length (Exptyp, Indx));
+
+ end Length_E_Cond;
+
+ -------------------
+ -- Length_N_Cond --
+ -------------------
+
+ function Length_N_Cond
+ (Expr : Node_Id;
+ Typ : Entity_Id;
+ Indx : Nat)
+ return Node_Id
+ is
+ begin
+ return
+ Make_Op_Ne (Loc,
+ Left_Opnd => Get_E_Length (Typ, Indx),
+ Right_Opnd => Get_N_Length (Expr, Indx));
+
+ end Length_N_Cond;
+
+ function Same_Bounds (L : Node_Id; R : Node_Id) return Boolean is
+ begin
+ return
+ (Nkind (L) = N_Integer_Literal
+ and then Nkind (R) = N_Integer_Literal
+ and then Intval (L) = Intval (R))
+
+ or else
+ (Is_Entity_Name (L)
+ and then Ekind (Entity (L)) = E_Constant
+ and then ((Is_Entity_Name (R)
+ and then Entity (L) = Entity (R))
+ or else
+ (Nkind (R) = N_Type_Conversion
+ and then Is_Entity_Name (Expression (R))
+ and then Entity (L) = Entity (Expression (R)))))
+
+ or else
+ (Is_Entity_Name (R)
+ and then Ekind (Entity (R)) = E_Constant
+ and then Nkind (L) = N_Type_Conversion
+ and then Is_Entity_Name (Expression (L))
+ and then Entity (R) = Entity (Expression (L)));
+ end Same_Bounds;
+
+ -- Start of processing for Selected_Length_Checks
+
+ begin
+ if not Expander_Active then
+ return Ret_Result;
+ end if;
+
+ if Target_Typ = Any_Type
+ or else Target_Typ = Any_Composite
+ or else Raises_Constraint_Error (Ck_Node)
+ then
+ return Ret_Result;
+ end if;
+
+ if No (Wnode) then
+ Wnode := Ck_Node;
+ end if;
+
+ T_Typ := Target_Typ;
+
+ if No (Source_Typ) then
+ S_Typ := Etype (Ck_Node);
+ else
+ S_Typ := Source_Typ;
+ end if;
+
+ if S_Typ = Any_Type or else S_Typ = Any_Composite then
+ return Ret_Result;
+ end if;
+
+ if Is_Access_Type (T_Typ) and then Is_Access_Type (S_Typ) then
+ S_Typ := Designated_Type (S_Typ);
+ T_Typ := Designated_Type (T_Typ);
+ Do_Access := True;
+
+ -- A simple optimization
+
+ if Nkind (Ck_Node) = N_Null then
+ return Ret_Result;
+ end if;
+ end if;
+
+ if Is_Array_Type (T_Typ) and then Is_Array_Type (S_Typ) then
+ if Is_Constrained (T_Typ) then
+
+ -- The checking code to be generated will freeze the
+ -- corresponding array type. However, we must freeze the
+ -- type now, so that the freeze node does not appear within
+ -- the generated condional expression, but ahead of it.
+
+ Freeze_Before (Ck_Node, T_Typ);
+
+ Expr_Actual := Get_Referenced_Object (Ck_Node);
+ Exptyp := Get_Actual_Subtype (Expr_Actual);
+
+ if Is_Access_Type (Exptyp) then
+ Exptyp := Designated_Type (Exptyp);
+ end if;
+
+ -- String_Literal case. This needs to be handled specially be-
+ -- cause no index types are available for string literals. The
+ -- condition is simply:
+
+ -- T_Typ'Length = string-literal-length
+
+ if Nkind (Expr_Actual) = N_String_Literal then
+ Cond :=
+ Make_Op_Ne (Loc,
+ Left_Opnd => Get_E_Length (T_Typ, 1),
+ Right_Opnd =>
+ Make_Integer_Literal (Loc,
+ Intval =>
+ String_Literal_Length (Etype (Expr_Actual))));
+
+ -- General array case. Here we have a usable actual subtype for
+ -- the expression, and the condition is built from the two types
+ -- (Do_Length):
+
+ -- T_Typ'Length /= Exptyp'Length or else
+ -- T_Typ'Length (2) /= Exptyp'Length (2) or else
+ -- T_Typ'Length (3) /= Exptyp'Length (3) or else
+ -- ...
+
+ elsif Is_Constrained (Exptyp) then
+ declare
+ L_Index : Node_Id;
+ R_Index : Node_Id;
+ Ndims : Nat := Number_Dimensions (T_Typ);
+
+ L_Low : Node_Id;
+ L_High : Node_Id;
+ R_Low : Node_Id;
+ R_High : Node_Id;
+
+ L_Length : Uint;
+ R_Length : Uint;
+
+ begin
+ L_Index := First_Index (T_Typ);
+ R_Index := First_Index (Exptyp);
+
+ for Indx in 1 .. Ndims loop
+ if not (Nkind (L_Index) = N_Raise_Constraint_Error
+ or else Nkind (R_Index) = N_Raise_Constraint_Error)
+ then
+ Get_Index_Bounds (L_Index, L_Low, L_High);
+ Get_Index_Bounds (R_Index, R_Low, R_High);
+
+ -- Deal with compile time length check. Note that we
+ -- skip this in the access case, because the access
+ -- value may be null, so we cannot know statically.
+
+ if not Do_Access
+ and then Compile_Time_Known_Value (L_Low)
+ and then Compile_Time_Known_Value (L_High)
+ and then Compile_Time_Known_Value (R_Low)
+ and then Compile_Time_Known_Value (R_High)
+ then
+ if Expr_Value (L_High) >= Expr_Value (L_Low) then
+ L_Length := Expr_Value (L_High) -
+ Expr_Value (L_Low) + 1;
+ else
+ L_Length := UI_From_Int (0);
+ end if;
+
+ if Expr_Value (R_High) >= Expr_Value (R_Low) then
+ R_Length := Expr_Value (R_High) -
+ Expr_Value (R_Low) + 1;
+ else
+ R_Length := UI_From_Int (0);
+ end if;
+
+ if L_Length > R_Length then
+ Add_Check
+ (Compile_Time_Constraint_Error
+ (Wnode, "too few elements for}?", T_Typ));
+
+ elsif L_Length < R_Length then
+ Add_Check
+ (Compile_Time_Constraint_Error
+ (Wnode, "too many elements for}?", T_Typ));
+ end if;
+
+ -- The comparison for an individual index subtype
+ -- is omitted if the corresponding index subtypes
+ -- statically match, since the result is known to
+ -- be true. Note that this test is worth while even
+ -- though we do static evaluation, because non-static
+ -- subtypes can statically match.
+
+ elsif not
+ Subtypes_Statically_Match
+ (Etype (L_Index), Etype (R_Index))
+
+ and then not
+ (Same_Bounds (L_Low, R_Low)
+ and then Same_Bounds (L_High, R_High))
+ then
+ Evolve_Or_Else
+ (Cond, Length_E_Cond (Exptyp, T_Typ, Indx));
+ end if;
+
+ Next (L_Index);
+ Next (R_Index);
+ end if;
+ end loop;
+ end;
+
+ -- Handle cases where we do not get a usable actual subtype that
+ -- is constrained. This happens for example in the function call
+ -- and explicit dereference cases. In these cases, we have to get
+ -- the length or range from the expression itself, making sure we
+ -- do not evaluate it more than once.
+
+ -- Here Ck_Node is the original expression, or more properly the
+ -- result of applying Duplicate_Expr to the original tree,
+ -- forcing the result to be a name.
+
+ else
+ declare
+ Ndims : Nat := Number_Dimensions (T_Typ);
+
+ begin
+ -- Build the condition for the explicit dereference case
+
+ for Indx in 1 .. Ndims loop
+ Evolve_Or_Else
+ (Cond, Length_N_Cond (Ck_Node, T_Typ, Indx));
+ end loop;
+ end;
+ end if;
+ end if;
+ end if;
+
+ -- Construct the test and insert into the tree
+
+ if Present (Cond) then
+ if Do_Access then
+ Cond := Guard_Access (Cond, Loc, Ck_Node);
+ end if;
+
+ Add_Check (Make_Raise_Constraint_Error (Loc, Condition => Cond));
+ end if;
+
+ return Ret_Result;
+
+ end Selected_Length_Checks;
+
+ ---------------------------
+ -- Selected_Range_Checks --
+ ---------------------------
+
+ function Selected_Range_Checks
+ (Ck_Node : Node_Id;
+ Target_Typ : Entity_Id;
+ Source_Typ : Entity_Id;
+ Warn_Node : Node_Id)
+ return Check_Result
+ is
+ Loc : constant Source_Ptr := Sloc (Ck_Node);
+ S_Typ : Entity_Id;
+ T_Typ : Entity_Id;
+ Expr_Actual : Node_Id;
+ Exptyp : Entity_Id;
+ Cond : Node_Id := Empty;
+ Do_Access : Boolean := False;
+ Wnode : Node_Id := Warn_Node;
+ Ret_Result : Check_Result := (Empty, Empty);
+ Num_Checks : Integer := 0;
+
+ procedure Add_Check (N : Node_Id);
+ -- Adds the action given to Ret_Result if N is non-Empty
+
+ function Discrete_Range_Cond
+ (Expr : Node_Id;
+ Typ : Entity_Id)
+ return Node_Id;
+ -- Returns expression to compute:
+ -- Low_Bound (Expr) < Typ'First
+ -- or else
+ -- High_Bound (Expr) > Typ'Last
+
+ function Discrete_Expr_Cond
+ (Expr : Node_Id;
+ Typ : Entity_Id)
+ return Node_Id;
+ -- Returns expression to compute:
+ -- Expr < Typ'First
+ -- or else
+ -- Expr > Typ'Last
+
+ function Get_E_First_Or_Last
+ (E : Entity_Id;
+ Indx : Nat;
+ Nam : Name_Id)
+ return Node_Id;
+ -- Returns expression to compute:
+ -- E'First or E'Last
+
+ function Get_N_First (N : Node_Id; Indx : Nat) return Node_Id;
+ function Get_N_Last (N : Node_Id; Indx : Nat) return Node_Id;
+ -- Returns expression to compute:
+ -- N'First or N'Last using Duplicate_Subexpr
+
+ function Range_E_Cond
+ (Exptyp : Entity_Id;
+ Typ : Entity_Id;
+ Indx : Nat)
+ return Node_Id;
+ -- Returns expression to compute:
+ -- Exptyp'First < Typ'First or else Exptyp'Last > Typ'Last
+
+ function Range_Equal_E_Cond
+ (Exptyp : Entity_Id;
+ Typ : Entity_Id;
+ Indx : Nat)
+ return Node_Id;
+ -- Returns expression to compute:
+ -- Exptyp'First /= Typ'First or else Exptyp'Last /= Typ'Last
+
+ function Range_N_Cond
+ (Expr : Node_Id;
+ Typ : Entity_Id;
+ Indx : Nat)
+ return Node_Id;
+ -- Return expression to compute:
+ -- Expr'First < Typ'First or else Expr'Last > Typ'Last
+
+ ---------------
+ -- Add_Check --
+ ---------------
+
+ procedure Add_Check (N : Node_Id) is
+ begin
+ if Present (N) then
+
+ -- For now, ignore attempt to place more than 2 checks ???
+
+ if Num_Checks = 2 then
+ return;
+ end if;
+
+ pragma Assert (Num_Checks <= 1);
+ Num_Checks := Num_Checks + 1;
+ Ret_Result (Num_Checks) := N;
+ end if;
+ end Add_Check;
+
+ -------------------------
+ -- Discrete_Expr_Cond --
+ -------------------------
+
+ function Discrete_Expr_Cond
+ (Expr : Node_Id;
+ Typ : Entity_Id)
+ return Node_Id
+ is
+ begin
+ return
+ Make_Or_Else (Loc,
+ Left_Opnd =>
+ Make_Op_Lt (Loc,
+ Left_Opnd =>
+ Convert_To (Base_Type (Typ), Duplicate_Subexpr (Expr)),
+ Right_Opnd =>
+ Convert_To (Base_Type (Typ),
+ Get_E_First_Or_Last (Typ, 0, Name_First))),
+
+ Right_Opnd =>
+ Make_Op_Gt (Loc,
+ Left_Opnd =>
+ Convert_To (Base_Type (Typ), Duplicate_Subexpr (Expr)),
+ Right_Opnd =>
+ Convert_To
+ (Base_Type (Typ),
+ Get_E_First_Or_Last (Typ, 0, Name_Last))));
+ end Discrete_Expr_Cond;
+
+ -------------------------
+ -- Discrete_Range_Cond --
+ -------------------------
+
+ function Discrete_Range_Cond
+ (Expr : Node_Id;
+ Typ : Entity_Id)
+ return Node_Id
+ is
+ LB : Node_Id := Low_Bound (Expr);
+ HB : Node_Id := High_Bound (Expr);
+
+ Left_Opnd : Node_Id;
+ Right_Opnd : Node_Id;
+
+ begin
+ if Nkind (LB) = N_Identifier
+ and then Ekind (Entity (LB)) = E_Discriminant then
+ LB := New_Occurrence_Of (Discriminal (Entity (LB)), Loc);
+ end if;
+
+ if Nkind (HB) = N_Identifier
+ and then Ekind (Entity (HB)) = E_Discriminant then
+ HB := New_Occurrence_Of (Discriminal (Entity (HB)), Loc);
+ end if;
+
+ Left_Opnd :=
+ Make_Op_Lt (Loc,
+ Left_Opnd =>
+ Convert_To
+ (Base_Type (Typ), Duplicate_Subexpr (LB)),
+
+ Right_Opnd =>
+ Convert_To
+ (Base_Type (Typ), Get_E_First_Or_Last (Typ, 0, Name_First)));
+
+ if Base_Type (Typ) = Typ then
+ return Left_Opnd;
+
+ elsif Compile_Time_Known_Value (High_Bound (Scalar_Range (Typ)))
+ and then
+ Compile_Time_Known_Value (High_Bound (Scalar_Range
+ (Base_Type (Typ))))
+ then
+ if Is_Floating_Point_Type (Typ) then
+ if Expr_Value_R (High_Bound (Scalar_Range (Typ))) =
+ Expr_Value_R (High_Bound (Scalar_Range (Base_Type (Typ))))
+ then
+ return Left_Opnd;
+ end if;
+
+ else
+ if Expr_Value (High_Bound (Scalar_Range (Typ))) =
+ Expr_Value (High_Bound (Scalar_Range (Base_Type (Typ))))
+ then
+ return Left_Opnd;
+ end if;
+ end if;
+ end if;
+
+ Right_Opnd :=
+ Make_Op_Gt (Loc,
+ Left_Opnd =>
+ Convert_To
+ (Base_Type (Typ), Duplicate_Subexpr (HB)),
+
+ Right_Opnd =>
+ Convert_To
+ (Base_Type (Typ),
+ Get_E_First_Or_Last (Typ, 0, Name_Last)));
+
+ return Make_Or_Else (Loc, Left_Opnd, Right_Opnd);
+ end Discrete_Range_Cond;
+
+ -------------------------
+ -- Get_E_First_Or_Last --
+ -------------------------
+
+ function Get_E_First_Or_Last
+ (E : Entity_Id;
+ Indx : Nat;
+ Nam : Name_Id)
+ return Node_Id
+ is
+ N : Node_Id;
+ LB : Node_Id;
+ HB : Node_Id;
+ Bound : Node_Id;
+
+ begin
+ if Is_Array_Type (E) then
+ N := First_Index (E);
+
+ for J in 2 .. Indx loop
+ Next_Index (N);
+ end loop;
+
+ else
+ N := Scalar_Range (E);
+ end if;
+
+ if Nkind (N) = N_Subtype_Indication then
+ LB := Low_Bound (Range_Expression (Constraint (N)));
+ HB := High_Bound (Range_Expression (Constraint (N)));
+
+ elsif Is_Entity_Name (N) then
+ LB := Type_Low_Bound (Etype (N));
+ HB := Type_High_Bound (Etype (N));
+
+ else
+ LB := Low_Bound (N);
+ HB := High_Bound (N);
+ end if;
+
+ if Nam = Name_First then
+ Bound := LB;
+ else
+ Bound := HB;
+ end if;
+
+ if Nkind (Bound) = N_Identifier
+ and then Ekind (Entity (Bound)) = E_Discriminant
+ then
+ return New_Occurrence_Of (Discriminal (Entity (Bound)), Loc);
+
+ elsif Nkind (Bound) = N_Identifier
+ and then Ekind (Entity (Bound)) = E_In_Parameter
+ and then not Inside_Init_Proc
+ then
+ return Get_Discriminal (E, Bound);
+
+ elsif Nkind (Bound) = N_Integer_Literal then
+ return Make_Integer_Literal (Loc, Intval (Bound));
+
+ else
+ return Duplicate_Subexpr (Bound);
+ end if;
+ end Get_E_First_Or_Last;
+
+ -----------------
+ -- Get_N_First --
+ -----------------
+
+ function Get_N_First (N : Node_Id; Indx : Nat) return Node_Id is
+ begin
+ return
+ Make_Attribute_Reference (Loc,
+ Attribute_Name => Name_First,
+ Prefix =>
+ Duplicate_Subexpr (N, Name_Req => True),
+ Expressions => New_List (
+ Make_Integer_Literal (Loc, Indx)));
+
+ end Get_N_First;
+
+ ----------------
+ -- Get_N_Last --
+ ----------------
+
+ function Get_N_Last (N : Node_Id; Indx : Nat) return Node_Id is
+ begin
+ return
+ Make_Attribute_Reference (Loc,
+ Attribute_Name => Name_Last,
+ Prefix =>
+ Duplicate_Subexpr (N, Name_Req => True),
+ Expressions => New_List (
+ Make_Integer_Literal (Loc, Indx)));
+
+ end Get_N_Last;
+
+ ------------------
+ -- Range_E_Cond --
+ ------------------
+
+ function Range_E_Cond
+ (Exptyp : Entity_Id;
+ Typ : Entity_Id;
+ Indx : Nat)
+ return Node_Id
+ is
+ begin
+ return
+ Make_Or_Else (Loc,
+ Left_Opnd =>
+ Make_Op_Lt (Loc,
+ Left_Opnd => Get_E_First_Or_Last (Exptyp, Indx, Name_First),
+ Right_Opnd => Get_E_First_Or_Last (Typ, Indx, Name_First)),
+
+ Right_Opnd =>
+ Make_Op_Gt (Loc,
+ Left_Opnd => Get_E_First_Or_Last (Exptyp, Indx, Name_Last),
+ Right_Opnd => Get_E_First_Or_Last (Typ, Indx, Name_Last)));
+
+ end Range_E_Cond;
+
+ ------------------------
+ -- Range_Equal_E_Cond --
+ ------------------------
+
+ function Range_Equal_E_Cond
+ (Exptyp : Entity_Id;
+ Typ : Entity_Id;
+ Indx : Nat)
+ return Node_Id
+ is
+ begin
+ return
+ Make_Or_Else (Loc,
+ Left_Opnd =>
+ Make_Op_Ne (Loc,
+ Left_Opnd => Get_E_First_Or_Last (Exptyp, Indx, Name_First),
+ Right_Opnd => Get_E_First_Or_Last (Typ, Indx, Name_First)),
+ Right_Opnd =>
+ Make_Op_Ne (Loc,
+ Left_Opnd => Get_E_First_Or_Last (Exptyp, Indx, Name_Last),
+ Right_Opnd => Get_E_First_Or_Last (Typ, Indx, Name_Last)));
+ end Range_Equal_E_Cond;
+
+ ------------------
+ -- Range_N_Cond --
+ ------------------
+
+ function Range_N_Cond
+ (Expr : Node_Id;
+ Typ : Entity_Id;
+ Indx : Nat)
+ return Node_Id
+ is
+ begin
+ return
+ Make_Or_Else (Loc,
+ Left_Opnd =>
+ Make_Op_Lt (Loc,
+ Left_Opnd => Get_N_First (Expr, Indx),
+ Right_Opnd => Get_E_First_Or_Last (Typ, Indx, Name_First)),
+
+ Right_Opnd =>
+ Make_Op_Gt (Loc,
+ Left_Opnd => Get_N_Last (Expr, Indx),
+ Right_Opnd => Get_E_First_Or_Last (Typ, Indx, Name_Last)));
+ end Range_N_Cond;
+
+ -- Start of processing for Selected_Range_Checks
+
+ begin
+ if not Expander_Active then
+ return Ret_Result;
+ end if;
+
+ if Target_Typ = Any_Type
+ or else Target_Typ = Any_Composite
+ or else Raises_Constraint_Error (Ck_Node)
+ then
+ return Ret_Result;
+ end if;
+
+ if No (Wnode) then
+ Wnode := Ck_Node;
+ end if;
+
+ T_Typ := Target_Typ;
+
+ if No (Source_Typ) then
+ S_Typ := Etype (Ck_Node);
+ else
+ S_Typ := Source_Typ;
+ end if;
+
+ if S_Typ = Any_Type or else S_Typ = Any_Composite then
+ return Ret_Result;
+ end if;
+
+ -- The order of evaluating T_Typ before S_Typ seems to be critical
+ -- because S_Typ can be derived from Etype (Ck_Node), if it's not passed
+ -- in, and since Node can be an N_Range node, it might be invalid.
+ -- Should there be an assert check somewhere for taking the Etype of
+ -- an N_Range node ???
+
+ if Is_Access_Type (T_Typ) and then Is_Access_Type (S_Typ) then
+ S_Typ := Designated_Type (S_Typ);
+ T_Typ := Designated_Type (T_Typ);
+ Do_Access := True;
+
+ -- A simple optimization
+
+ if Nkind (Ck_Node) = N_Null then
+ return Ret_Result;
+ end if;
+ end if;
+
+ -- For an N_Range Node, check for a null range and then if not
+ -- null generate a range check action.
+
+ if Nkind (Ck_Node) = N_Range then
+
+ -- There's no point in checking a range against itself
+
+ if Ck_Node = Scalar_Range (T_Typ) then
+ return Ret_Result;
+ end if;
+
+ declare
+ T_LB : constant Node_Id := Type_Low_Bound (T_Typ);
+ T_HB : constant Node_Id := Type_High_Bound (T_Typ);
+ LB : constant Node_Id := Low_Bound (Ck_Node);
+ HB : constant Node_Id := High_Bound (Ck_Node);
+ Null_Range : Boolean;
+
+ Out_Of_Range_L : Boolean;
+ Out_Of_Range_H : Boolean;
+
+ begin
+ -- Check for case where everything is static and we can
+ -- do the check at compile time. This is skipped if we
+ -- have an access type, since the access value may be null.
+
+ -- ??? This code can be improved since you only need to know
+ -- that the two respective bounds (LB & T_LB or HB & T_HB)
+ -- are known at compile time to emit pertinent messages.
+
+ if Compile_Time_Known_Value (LB)
+ and then Compile_Time_Known_Value (HB)
+ and then Compile_Time_Known_Value (T_LB)
+ and then Compile_Time_Known_Value (T_HB)
+ and then not Do_Access
+ then
+ -- Floating-point case
+
+ if Is_Floating_Point_Type (S_Typ) then
+ Null_Range := Expr_Value_R (HB) < Expr_Value_R (LB);
+ Out_Of_Range_L :=
+ (Expr_Value_R (LB) < Expr_Value_R (T_LB))
+ or else
+ (Expr_Value_R (LB) > Expr_Value_R (T_HB));
+
+ Out_Of_Range_H :=
+ (Expr_Value_R (HB) > Expr_Value_R (T_HB))
+ or else
+ (Expr_Value_R (HB) < Expr_Value_R (T_LB));
+
+ -- Fixed or discrete type case
+
+ else
+ Null_Range := Expr_Value (HB) < Expr_Value (LB);
+ Out_Of_Range_L :=
+ (Expr_Value (LB) < Expr_Value (T_LB))
+ or else
+ (Expr_Value (LB) > Expr_Value (T_HB));
+
+ Out_Of_Range_H :=
+ (Expr_Value (HB) > Expr_Value (T_HB))
+ or else
+ (Expr_Value (HB) < Expr_Value (T_LB));
+ end if;
+
+ if not Null_Range then
+ if Out_Of_Range_L then
+ if No (Warn_Node) then
+ Add_Check
+ (Compile_Time_Constraint_Error
+ (Low_Bound (Ck_Node),
+ "static value out of range of}?", T_Typ));
+
+ else
+ Add_Check
+ (Compile_Time_Constraint_Error
+ (Wnode,
+ "static range out of bounds of}?", T_Typ));
+ end if;
+ end if;
+
+ if Out_Of_Range_H then
+ if No (Warn_Node) then
+ Add_Check
+ (Compile_Time_Constraint_Error
+ (High_Bound (Ck_Node),
+ "static value out of range of}?", T_Typ));
+
+ else
+ Add_Check
+ (Compile_Time_Constraint_Error
+ (Wnode,
+ "static range out of bounds of}?", T_Typ));
+ end if;
+ end if;
+
+ end if;
+
+ else
+ declare
+ LB : Node_Id := Low_Bound (Ck_Node);
+ HB : Node_Id := High_Bound (Ck_Node);
+
+ begin
+
+ -- If either bound is a discriminant and we are within
+ -- the record declaration, it is a use of the discriminant
+ -- in a constraint of a component, and nothing can be
+ -- checked here. The check will be emitted within the
+ -- init_proc. Before then, the discriminal has no real
+ -- meaning.
+
+ if Nkind (LB) = N_Identifier
+ and then Ekind (Entity (LB)) = E_Discriminant
+ then
+ if Current_Scope = Scope (Entity (LB)) then
+ return Ret_Result;
+ else
+ LB :=
+ New_Occurrence_Of (Discriminal (Entity (LB)), Loc);
+ end if;
+ end if;
+
+ if Nkind (HB) = N_Identifier
+ and then Ekind (Entity (HB)) = E_Discriminant
+ then
+ if Current_Scope = Scope (Entity (HB)) then
+ return Ret_Result;
+ else
+ HB :=
+ New_Occurrence_Of (Discriminal (Entity (HB)), Loc);
+ end if;
+ end if;
+
+ Cond := Discrete_Range_Cond (Ck_Node, T_Typ);
+ Set_Paren_Count (Cond, 1);
+
+ Cond :=
+ Make_And_Then (Loc,
+ Left_Opnd =>
+ Make_Op_Ge (Loc,
+ Left_Opnd => Duplicate_Subexpr (HB),
+ Right_Opnd => Duplicate_Subexpr (LB)),
+ Right_Opnd => Cond);
+ end;
+
+ end if;
+ end;
+
+ elsif Is_Scalar_Type (S_Typ) then
+
+ -- This somewhat duplicates what Apply_Scalar_Range_Check does,
+ -- except the above simply sets a flag in the node and lets
+ -- gigi generate the check base on the Etype of the expression.
+ -- Sometimes, however we want to do a dynamic check against an
+ -- arbitrary target type, so we do that here.
+
+ if Ekind (Base_Type (S_Typ)) /= Ekind (Base_Type (T_Typ)) then
+ Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
+
+ -- For literals, we can tell if the constraint error will be
+ -- raised at compile time, so we never need a dynamic check, but
+ -- if the exception will be raised, then post the usual warning,
+ -- and replace the literal with a raise constraint error
+ -- expression. As usual, skip this for access types
+
+ elsif Compile_Time_Known_Value (Ck_Node)
+ and then not Do_Access
+ then
+ declare
+ LB : constant Node_Id := Type_Low_Bound (T_Typ);
+ UB : constant Node_Id := Type_High_Bound (T_Typ);
+
+ Out_Of_Range : Boolean;
+ Static_Bounds : constant Boolean :=
+ Compile_Time_Known_Value (LB)
+ and Compile_Time_Known_Value (UB);
+
+ begin
+ -- Following range tests should use Sem_Eval routine ???
+
+ if Static_Bounds then
+ if Is_Floating_Point_Type (S_Typ) then
+ Out_Of_Range :=
+ (Expr_Value_R (Ck_Node) < Expr_Value_R (LB))
+ or else
+ (Expr_Value_R (Ck_Node) > Expr_Value_R (UB));
+
+ else -- fixed or discrete type
+ Out_Of_Range :=
+ Expr_Value (Ck_Node) < Expr_Value (LB)
+ or else
+ Expr_Value (Ck_Node) > Expr_Value (UB);
+ end if;
+
+ -- Bounds of the type are static and the literal is
+ -- out of range so make a warning message.
+
+ if Out_Of_Range then
+ if No (Warn_Node) then
+ Add_Check
+ (Compile_Time_Constraint_Error
+ (Ck_Node,
+ "static value out of range of}?", T_Typ));
+
+ else
+ Add_Check
+ (Compile_Time_Constraint_Error
+ (Wnode,
+ "static value out of range of}?", T_Typ));
+ end if;
+ end if;
+
+ else
+ Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
+ end if;
+ end;
+
+ -- Here for the case of a non-static expression, we need a runtime
+ -- check unless the source type range is guaranteed to be in the
+ -- range of the target type.
+
+ else
+ if not In_Subrange_Of (S_Typ, T_Typ) then
+ Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
+ end if;
+ end if;
+ end if;
+
+ if Is_Array_Type (T_Typ) and then Is_Array_Type (S_Typ) then
+ if Is_Constrained (T_Typ) then
+
+ Expr_Actual := Get_Referenced_Object (Ck_Node);
+ Exptyp := Get_Actual_Subtype (Expr_Actual);
+
+ if Is_Access_Type (Exptyp) then
+ Exptyp := Designated_Type (Exptyp);
+ end if;
+
+ -- String_Literal case. This needs to be handled specially be-
+ -- cause no index types are available for string literals. The
+ -- condition is simply:
+
+ -- T_Typ'Length = string-literal-length
+
+ if Nkind (Expr_Actual) = N_String_Literal then
+ null;
+
+ -- General array case. Here we have a usable actual subtype for
+ -- the expression, and the condition is built from the two types
+
+ -- T_Typ'First < Exptyp'First or else
+ -- T_Typ'Last > Exptyp'Last or else
+ -- T_Typ'First(1) < Exptyp'First(1) or else
+ -- T_Typ'Last(1) > Exptyp'Last(1) or else
+ -- ...
+
+ elsif Is_Constrained (Exptyp) then
+ declare
+ L_Index : Node_Id;
+ R_Index : Node_Id;
+ Ndims : Nat := Number_Dimensions (T_Typ);
+
+ L_Low : Node_Id;
+ L_High : Node_Id;
+ R_Low : Node_Id;
+ R_High : Node_Id;
+
+ begin
+ L_Index := First_Index (T_Typ);
+ R_Index := First_Index (Exptyp);
+
+ for Indx in 1 .. Ndims loop
+ if not (Nkind (L_Index) = N_Raise_Constraint_Error
+ or else Nkind (R_Index) = N_Raise_Constraint_Error)
+ then
+ Get_Index_Bounds (L_Index, L_Low, L_High);
+ Get_Index_Bounds (R_Index, R_Low, R_High);
+
+ -- Deal with compile time length check. Note that we
+ -- skip this in the access case, because the access
+ -- value may be null, so we cannot know statically.
+
+ if not
+ Subtypes_Statically_Match
+ (Etype (L_Index), Etype (R_Index))
+ then
+ -- If the target type is constrained then we
+ -- have to check for exact equality of bounds
+ -- (required for qualified expressions).
+
+ if Is_Constrained (T_Typ) then
+ Evolve_Or_Else
+ (Cond,
+ Range_Equal_E_Cond (Exptyp, T_Typ, Indx));
+
+ else
+ Evolve_Or_Else
+ (Cond, Range_E_Cond (Exptyp, T_Typ, Indx));
+ end if;
+ end if;
+
+ Next (L_Index);
+ Next (R_Index);
+
+ end if;
+ end loop;
+ end;
+
+ -- Handle cases where we do not get a usable actual subtype that
+ -- is constrained. This happens for example in the function call
+ -- and explicit dereference cases. In these cases, we have to get
+ -- the length or range from the expression itself, making sure we
+ -- do not evaluate it more than once.
+
+ -- Here Ck_Node is the original expression, or more properly the
+ -- result of applying Duplicate_Expr to the original tree,
+ -- forcing the result to be a name.
+
+ else
+ declare
+ Ndims : Nat := Number_Dimensions (T_Typ);
+
+ begin
+ -- Build the condition for the explicit dereference case
+
+ for Indx in 1 .. Ndims loop
+ Evolve_Or_Else
+ (Cond, Range_N_Cond (Ck_Node, T_Typ, Indx));
+ end loop;
+ end;
+
+ end if;
+
+ else
+ -- Generate an Action to check that the bounds of the
+ -- source value are within the constraints imposed by the
+ -- target type for a conversion to an unconstrained type.
+ -- Rule is 4.6(38).
+
+ if Nkind (Parent (Ck_Node)) = N_Type_Conversion then
+ declare
+ Opnd_Index : Node_Id;
+ Targ_Index : Node_Id;
+
+ begin
+ Opnd_Index
+ := First_Index (Get_Actual_Subtype (Ck_Node));
+ Targ_Index := First_Index (T_Typ);
+
+ while Opnd_Index /= Empty loop
+ if Nkind (Opnd_Index) = N_Range then
+ if Is_In_Range
+ (Low_Bound (Opnd_Index), Etype (Targ_Index))
+ and then
+ Is_In_Range
+ (High_Bound (Opnd_Index), Etype (Targ_Index))
+ then
+ null;
+
+ elsif Is_Out_Of_Range
+ (Low_Bound (Opnd_Index), Etype (Targ_Index))
+ or else
+ Is_Out_Of_Range
+ (High_Bound (Opnd_Index), Etype (Targ_Index))
+ then
+ Add_Check
+ (Compile_Time_Constraint_Error
+ (Wnode, "value out of range of}?", T_Typ));
+
+ else
+ Evolve_Or_Else
+ (Cond,
+ Discrete_Range_Cond
+ (Opnd_Index, Etype (Targ_Index)));
+ end if;
+ end if;
+
+ Next_Index (Opnd_Index);
+ Next_Index (Targ_Index);
+ end loop;
+ end;
+ end if;
+ end if;
+ end if;
+
+ -- Construct the test and insert into the tree
+
+ if Present (Cond) then
+ if Do_Access then
+ Cond := Guard_Access (Cond, Loc, Ck_Node);
+ end if;
+
+ Add_Check (Make_Raise_Constraint_Error (Loc, Condition => Cond));
+ end if;
+
+ return Ret_Result;
+
+ end Selected_Range_Checks;
+
+ -------------------------------
+ -- Storage_Checks_Suppressed --
+ -------------------------------
+
+ function Storage_Checks_Suppressed (E : Entity_Id) return Boolean is
+ begin
+ return Scope_Suppress.Storage_Checks
+ or else (Present (E) and then Suppress_Storage_Checks (E));
+ end Storage_Checks_Suppressed;
+
+ ---------------------------
+ -- Tag_Checks_Suppressed --
+ ---------------------------
+
+ function Tag_Checks_Suppressed (E : Entity_Id) return Boolean is
+ begin
+ return Scope_Suppress.Tag_Checks
+ or else (Present (E) and then Suppress_Tag_Checks (E));
+ end Tag_Checks_Suppressed;
+
+end Checks;