summaryrefslogtreecommitdiff
path: root/gcc/ada/layout.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc/ada/layout.adb')
-rw-r--r--gcc/ada/layout.adb2573
1 files changed, 2573 insertions, 0 deletions
diff --git a/gcc/ada/layout.adb b/gcc/ada/layout.adb
new file mode 100644
index 00000000000..2ac451768a6
--- /dev/null
+++ b/gcc/ada/layout.adb
@@ -0,0 +1,2573 @@
+------------------------------------------------------------------------------
+-- --
+-- GNAT COMPILER COMPONENTS --
+-- --
+-- L A Y O U T --
+-- --
+-- B o d y --
+-- --
+-- $Revision: 1.33 $
+-- --
+-- Copyright (C) 2001 Free Software Foundation, Inc. --
+-- --
+-- GNAT is free software; you can redistribute it and/or modify it under --
+-- terms of the GNU General Public License as published by the Free Soft- --
+-- ware Foundation; either version 2, or (at your option) any later ver- --
+-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
+-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
+-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
+-- for more details. You should have received a copy of the GNU General --
+-- Public License distributed with GNAT; see file COPYING. If not, write --
+-- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
+-- MA 02111-1307, USA. --
+-- --
+-- GNAT was originally developed by the GNAT team at New York University. --
+-- It is now maintained by Ada Core Technologies Inc (http://www.gnat.com). --
+-- --
+------------------------------------------------------------------------------
+
+with Atree; use Atree;
+with Checks; use Checks;
+with Debug; use Debug;
+with Einfo; use Einfo;
+with Errout; use Errout;
+with Exp_Ch3; use Exp_Ch3;
+with Exp_Util; use Exp_Util;
+with Nlists; use Nlists;
+with Nmake; use Nmake;
+with Repinfo; use Repinfo;
+with Sem; use Sem;
+with Sem_Ch13; use Sem_Ch13;
+with Sem_Eval; use Sem_Eval;
+with Sem_Res; use Sem_Res;
+with Sem_Util; use Sem_Util;
+with Sinfo; use Sinfo;
+with Snames; use Snames;
+with Stand; use Stand;
+with Targparm; use Targparm;
+with Tbuild; use Tbuild;
+with Ttypes; use Ttypes;
+with Uintp; use Uintp;
+
+package body Layout is
+
+ ------------------------
+ -- Local Declarations --
+ ------------------------
+
+ SSU : constant Int := Ttypes.System_Storage_Unit;
+ -- Short hand for System_Storage_Unit
+
+ Vname : constant Name_Id := Name_uV;
+ -- Formal parameter name used for functions generated for size offset
+ -- values that depend on the discriminant. All such functions have the
+ -- following form:
+ --
+ -- function xxx (V : vtyp) return Unsigned is
+ -- begin
+ -- return ... expression involving V.discrim
+ -- end xxx;
+
+ -----------------------
+ -- Local Subprograms --
+ -----------------------
+
+ procedure Adjust_Esize_Alignment (E : Entity_Id);
+ -- E is the entity for a type or object. This procedure checks that the
+ -- size and alignment are compatible, and if not either gives an error
+ -- message if they cannot be adjusted or else adjusts them appropriately.
+
+ function Assoc_Add
+ (Loc : Source_Ptr;
+ Left_Opnd : Node_Id;
+ Right_Opnd : Node_Id)
+ return Node_Id;
+ -- This is like Make_Op_Add except that it optimizes some cases knowing
+ -- that associative rearrangement is allowed for constant folding if one
+ -- of the operands is a compile time known value.
+
+ function Assoc_Multiply
+ (Loc : Source_Ptr;
+ Left_Opnd : Node_Id;
+ Right_Opnd : Node_Id)
+ return Node_Id;
+ -- This is like Make_Op_Multiply except that it optimizes some cases
+ -- knowing that associative rearrangement is allowed for constant
+ -- folding if one of the operands is a compile time known value
+
+ function Assoc_Subtract
+ (Loc : Source_Ptr;
+ Left_Opnd : Node_Id;
+ Right_Opnd : Node_Id)
+ return Node_Id;
+ -- This is like Make_Op_Subtract except that it optimizes some cases
+ -- knowing that associative rearrangement is allowed for constant
+ -- folding if one of the operands is a compile time known value
+
+ function Compute_Length (Lo : Node_Id; Hi : Node_Id) return Node_Id;
+ -- Given expressions for the low bound (Lo) and the high bound (Hi),
+ -- Build an expression for the value hi-lo+1, converted to type
+ -- Standard.Unsigned. Takes care of the case where the operands
+ -- are of an enumeration type (so that the subtraction cannot be
+ -- done directly) by applying the Pos operator to Hi/Lo first.
+
+ function Expr_From_SO_Ref
+ (Loc : Source_Ptr;
+ D : SO_Ref)
+ return Node_Id;
+ -- Given a value D from a size or offset field, return an expression
+ -- representing the value stored. If the value is known at compile time,
+ -- then an N_Integer_Literal is returned with the appropriate value. If
+ -- the value references a constant entity, then an N_Identifier node
+ -- referencing this entity is returned. The Loc value is used for the
+ -- Sloc value of constructed notes.
+
+ function SO_Ref_From_Expr
+ (Expr : Node_Id;
+ Ins_Type : Entity_Id;
+ Vtype : Entity_Id := Empty)
+ return Dynamic_SO_Ref;
+ -- This routine is used in the case where a size/offset value is dynamic
+ -- and is represented by the expression Expr. SO_Ref_From_Expr checks if
+ -- the Expr contains a reference to the identifier V, and if so builds
+ -- a function depending on discriminants of the formal parameter V which
+ -- is of type Vtype. If not, then a constant entity with the value Expr
+ -- is built. The result is a Dynamic_SO_Ref to the created entity. Note
+ -- that Vtype can be omitted if Expr does not contain any reference to V.
+ -- the created entity. The declaration created is inserted in the freeze
+ -- actions of Ins_Type, which also supplies the Sloc for created nodes.
+ -- This function also takes care of making sure that the expression is
+ -- properly analyzed and resolved (which may not be the case yet if we
+ -- build the expression in this unit).
+
+ function Get_Max_Size (E : Entity_Id) return Node_Id;
+ -- E is an array type or subtype that has at least one index bound that
+ -- is the value of a record discriminant. For such an array, the function
+ -- computes an expression that yields the maximum possible size of the
+ -- array in storage units. The result is not defined for any other type,
+ -- or for arrays that do not depend on discriminants, and it is a fatal
+ -- error to call this unless Size_Depends_On_Discrminant (E) is True.
+
+ procedure Layout_Array_Type (E : Entity_Id);
+ -- Front end layout of non-bit-packed array type or subtype
+
+ procedure Layout_Record_Type (E : Entity_Id);
+ -- Front end layout of record type
+ -- Variant records not handled yet ???
+
+ procedure Rewrite_Integer (N : Node_Id; V : Uint);
+ -- Rewrite node N with an integer literal whose value is V. The Sloc
+ -- for the new node is taken from N, and the type of the literal is
+ -- set to a copy of the type of N on entry.
+
+ procedure Set_And_Check_Static_Size
+ (E : Entity_Id;
+ Esiz : SO_Ref;
+ RM_Siz : SO_Ref);
+ -- This procedure is called to check explicit given sizes (possibly
+ -- stored in the Esize and RM_Size fields of E) against computed
+ -- Object_Size (Esiz) and Value_Size (RM_Siz) values. Appropriate
+ -- errors and warnings are posted if specified sizes are inconsistent
+ -- with specified sizes. On return, the Esize and RM_Size fields of
+ -- E are set (either from previously given values, or from the newly
+ -- computed values, as appropriate).
+
+ ----------------------------
+ -- Adjust_Esize_Alignment --
+ ----------------------------
+
+ procedure Adjust_Esize_Alignment (E : Entity_Id) is
+ Abits : Int;
+ Esize_Set : Boolean;
+
+ begin
+ -- Nothing to do if size unknown
+
+ if Unknown_Esize (E) then
+ return;
+ end if;
+
+ -- Determine if size is constrained by an attribute definition clause
+ -- which must be obeyed. If so, we cannot increase the size in this
+ -- routine.
+
+ -- For a type, the issue is whether an object size clause has been
+ -- set. A normal size clause constrains only the value size (RM_Size)
+
+ if Is_Type (E) then
+ Esize_Set := Has_Object_Size_Clause (E);
+
+ -- For an object, the issue is whether a size clause is present
+
+ else
+ Esize_Set := Has_Size_Clause (E);
+ end if;
+
+ -- If size is known it must be a multiple of the byte size
+
+ if Esize (E) mod SSU /= 0 then
+
+ -- If not, and size specified, then give error
+
+ if Esize_Set then
+ Error_Msg_NE
+ ("size for& not a multiple of byte size", Size_Clause (E), E);
+ return;
+
+ -- Otherwise bump up size to a byte boundary
+
+ else
+ Set_Esize (E, (Esize (E) + SSU - 1) / SSU * SSU);
+ end if;
+ end if;
+
+ -- Now we have the size set, it must be a multiple of the alignment
+ -- nothing more we can do here if the alignment is unknown here.
+
+ if Unknown_Alignment (E) then
+ return;
+ end if;
+
+ -- At this point both the Esize and Alignment are known, so we need
+ -- to make sure they are consistent.
+
+ Abits := UI_To_Int (Alignment (E)) * SSU;
+
+ if Esize (E) mod Abits = 0 then
+ return;
+ end if;
+
+ -- Here we have a situation where the Esize is not a multiple of
+ -- the alignment. We must either increase Esize or reduce the
+ -- alignment to correct this situation.
+
+ -- The case in which we can decrease the alignment is where the
+ -- alignment was not set by an alignment clause, and the type in
+ -- question is a discrete type, where it is definitely safe to
+ -- reduce the alignment. For example:
+
+ -- t : integer range 1 .. 2;
+ -- for t'size use 8;
+
+ -- In this situation, the initial alignment of t is 4, copied from
+ -- the Integer base type, but it is safe to reduce it to 1 at this
+ -- stage, since we will only be loading a single byte.
+
+ if Is_Discrete_Type (Etype (E))
+ and then not Has_Alignment_Clause (E)
+ then
+ loop
+ Abits := Abits / 2;
+ exit when Esize (E) mod Abits = 0;
+ end loop;
+
+ Init_Alignment (E, Abits / SSU);
+ return;
+ end if;
+
+ -- Now the only possible approach left is to increase the Esize
+ -- but we can't do that if the size was set by a specific clause.
+
+ if Esize_Set then
+ Error_Msg_NE
+ ("size for& is not a multiple of alignment",
+ Size_Clause (E), E);
+
+ -- Otherwise we can indeed increase the size to a multiple of alignment
+
+ else
+ Set_Esize (E, ((Esize (E) + (Abits - 1)) / Abits) * Abits);
+ end if;
+ end Adjust_Esize_Alignment;
+
+ ---------------
+ -- Assoc_Add --
+ ---------------
+
+ function Assoc_Add
+ (Loc : Source_Ptr;
+ Left_Opnd : Node_Id;
+ Right_Opnd : Node_Id)
+ return Node_Id
+ is
+ L : Node_Id;
+ R : Uint;
+
+ begin
+ -- Case of right operand is a constant
+
+ if Compile_Time_Known_Value (Right_Opnd) then
+ L := Left_Opnd;
+ R := Expr_Value (Right_Opnd);
+
+ -- Case of left operand is a constant
+
+ elsif Compile_Time_Known_Value (Left_Opnd) then
+ L := Right_Opnd;
+ R := Expr_Value (Left_Opnd);
+
+ -- Neither operand is a constant, do the addition with no optimization
+
+ else
+ return Make_Op_Add (Loc, Left_Opnd, Right_Opnd);
+ end if;
+
+ -- Case of left operand is an addition
+
+ if Nkind (L) = N_Op_Add then
+
+ -- (C1 + E) + C2 = (C1 + C2) + E
+
+ if Compile_Time_Known_Value (Sinfo.Left_Opnd (L)) then
+ Rewrite_Integer
+ (Sinfo.Left_Opnd (L),
+ Expr_Value (Sinfo.Left_Opnd (L)) + R);
+ return L;
+
+ -- (E + C1) + C2 = E + (C1 + C2)
+
+ elsif Compile_Time_Known_Value (Sinfo.Right_Opnd (L)) then
+ Rewrite_Integer
+ (Sinfo.Right_Opnd (L),
+ Expr_Value (Sinfo.Right_Opnd (L)) + R);
+ return L;
+ end if;
+
+ -- Case of left operand is a subtraction
+
+ elsif Nkind (L) = N_Op_Subtract then
+
+ -- (C1 - E) + C2 = (C1 + C2) + E
+
+ if Compile_Time_Known_Value (Sinfo.Left_Opnd (L)) then
+ Rewrite_Integer
+ (Sinfo.Left_Opnd (L),
+ Expr_Value (Sinfo.Left_Opnd (L)) + R);
+ return L;
+
+ -- (E - C1) + C2 = E - (C1 - C2)
+
+ elsif Compile_Time_Known_Value (Sinfo.Right_Opnd (L)) then
+ Rewrite_Integer
+ (Sinfo.Right_Opnd (L),
+ Expr_Value (Sinfo.Right_Opnd (L)) - R);
+ return L;
+ end if;
+ end if;
+
+ -- Not optimizable, do the addition
+
+ return Make_Op_Add (Loc, Left_Opnd, Right_Opnd);
+ end Assoc_Add;
+
+ --------------------
+ -- Assoc_Multiply --
+ --------------------
+
+ function Assoc_Multiply
+ (Loc : Source_Ptr;
+ Left_Opnd : Node_Id;
+ Right_Opnd : Node_Id)
+ return Node_Id
+ is
+ L : Node_Id;
+ R : Uint;
+
+ begin
+ -- Case of right operand is a constant
+
+ if Compile_Time_Known_Value (Right_Opnd) then
+ L := Left_Opnd;
+ R := Expr_Value (Right_Opnd);
+
+ -- Case of left operand is a constant
+
+ elsif Compile_Time_Known_Value (Left_Opnd) then
+ L := Right_Opnd;
+ R := Expr_Value (Left_Opnd);
+
+ -- Neither operand is a constant, do the multiply with no optimization
+
+ else
+ return Make_Op_Multiply (Loc, Left_Opnd, Right_Opnd);
+ end if;
+
+ -- Case of left operand is an multiplication
+
+ if Nkind (L) = N_Op_Multiply then
+
+ -- (C1 * E) * C2 = (C1 * C2) + E
+
+ if Compile_Time_Known_Value (Sinfo.Left_Opnd (L)) then
+ Rewrite_Integer
+ (Sinfo.Left_Opnd (L),
+ Expr_Value (Sinfo.Left_Opnd (L)) * R);
+ return L;
+
+ -- (E * C1) * C2 = E * (C1 * C2)
+
+ elsif Compile_Time_Known_Value (Sinfo.Right_Opnd (L)) then
+ Rewrite_Integer
+ (Sinfo.Right_Opnd (L),
+ Expr_Value (Sinfo.Right_Opnd (L)) * R);
+ return L;
+ end if;
+ end if;
+
+ -- Not optimizable, do the multiplication
+
+ return Make_Op_Multiply (Loc, Left_Opnd, Right_Opnd);
+ end Assoc_Multiply;
+
+ --------------------
+ -- Assoc_Subtract --
+ --------------------
+
+ function Assoc_Subtract
+ (Loc : Source_Ptr;
+ Left_Opnd : Node_Id;
+ Right_Opnd : Node_Id)
+ return Node_Id
+ is
+ L : Node_Id;
+ R : Uint;
+
+ begin
+ -- Case of right operand is a constant
+
+ if Compile_Time_Known_Value (Right_Opnd) then
+ L := Left_Opnd;
+ R := Expr_Value (Right_Opnd);
+
+ -- Right operand is a constant, do the subtract with no optimization
+
+ else
+ return Make_Op_Subtract (Loc, Left_Opnd, Right_Opnd);
+ end if;
+
+ -- Case of left operand is an addition
+
+ if Nkind (L) = N_Op_Add then
+
+ -- (C1 + E) - C2 = (C1 - C2) + E
+
+ if Compile_Time_Known_Value (Sinfo.Left_Opnd (L)) then
+ Rewrite_Integer
+ (Sinfo.Left_Opnd (L),
+ Expr_Value (Sinfo.Left_Opnd (L)) - R);
+ return L;
+
+ -- (E + C1) - C2 = E + (C1 - C2)
+
+ elsif Compile_Time_Known_Value (Sinfo.Right_Opnd (L)) then
+ Rewrite_Integer
+ (Sinfo.Right_Opnd (L),
+ Expr_Value (Sinfo.Right_Opnd (L)) - R);
+ return L;
+ end if;
+
+ -- Case of left operand is a subtraction
+
+ elsif Nkind (L) = N_Op_Subtract then
+
+ -- (C1 - E) - C2 = (C1 - C2) + E
+
+ if Compile_Time_Known_Value (Sinfo.Left_Opnd (L)) then
+ Rewrite_Integer
+ (Sinfo.Left_Opnd (L),
+ Expr_Value (Sinfo.Left_Opnd (L)) + R);
+ return L;
+
+ -- (E - C1) - C2 = E - (C1 + C2)
+
+ elsif Compile_Time_Known_Value (Sinfo.Right_Opnd (L)) then
+ Rewrite_Integer
+ (Sinfo.Right_Opnd (L),
+ Expr_Value (Sinfo.Right_Opnd (L)) + R);
+ return L;
+ end if;
+ end if;
+
+ -- Not optimizable, do the subtraction
+
+ return Make_Op_Subtract (Loc, Left_Opnd, Right_Opnd);
+ end Assoc_Subtract;
+
+ --------------------
+ -- Compute_Length --
+ --------------------
+
+ function Compute_Length (Lo : Node_Id; Hi : Node_Id) return Node_Id is
+ Loc : constant Source_Ptr := Sloc (Lo);
+ Typ : constant Entity_Id := Etype (Lo);
+ Lo_Op : Node_Id;
+ Hi_Op : Node_Id;
+
+ begin
+ Lo_Op := New_Copy_Tree (Lo);
+ Hi_Op := New_Copy_Tree (Hi);
+
+ -- If type is enumeration type, then use Pos attribute to convert
+ -- to integer type for which subtraction is a permitted operation.
+
+ if Is_Enumeration_Type (Typ) then
+ Lo_Op :=
+ Make_Attribute_Reference (Loc,
+ Prefix => New_Occurrence_Of (Typ, Loc),
+ Attribute_Name => Name_Pos,
+ Expressions => New_List (Lo_Op));
+
+ Hi_Op :=
+ Make_Attribute_Reference (Loc,
+ Prefix => New_Occurrence_Of (Typ, Loc),
+ Attribute_Name => Name_Pos,
+ Expressions => New_List (Hi_Op));
+ end if;
+
+ return
+ Convert_To (Standard_Unsigned,
+ Assoc_Add (Loc,
+ Left_Opnd =>
+ Assoc_Subtract (Loc,
+ Left_Opnd => Hi_Op,
+ Right_Opnd => Lo_Op),
+ Right_Opnd => Make_Integer_Literal (Loc, 1)));
+ end Compute_Length;
+
+ ----------------------
+ -- Expr_From_SO_Ref --
+ ----------------------
+
+ function Expr_From_SO_Ref
+ (Loc : Source_Ptr;
+ D : SO_Ref)
+ return Node_Id
+ is
+ Ent : Entity_Id;
+
+ begin
+ if Is_Dynamic_SO_Ref (D) then
+ Ent := Get_Dynamic_SO_Entity (D);
+
+ if Is_Discrim_SO_Function (Ent) then
+ return
+ Make_Function_Call (Loc,
+ Name => New_Occurrence_Of (Ent, Loc),
+ Parameter_Associations => New_List (
+ Make_Identifier (Loc, Chars => Vname)));
+
+ else
+ return New_Occurrence_Of (Ent, Loc);
+ end if;
+
+ else
+ return Make_Integer_Literal (Loc, D);
+ end if;
+ end Expr_From_SO_Ref;
+
+ ------------------
+ -- Get_Max_Size --
+ ------------------
+
+ function Get_Max_Size (E : Entity_Id) return Node_Id is
+ Loc : constant Source_Ptr := Sloc (E);
+ Indx : Node_Id;
+ Ityp : Entity_Id;
+ Lo : Node_Id;
+ Hi : Node_Id;
+ S : Uint;
+ Len : Node_Id;
+
+ type Val_Status_Type is (Const, Dynamic);
+ -- Shows the status of the value so far. Const means that the value
+ -- is constant, and Sval is the current constant value. Dynamic means
+ -- that the value is dynamic, and in this case Snod is the Node_Id of
+ -- the expression to compute the value.
+
+ Val_Status : Val_Status_Type;
+ -- Indicate status of value so far
+
+ Sval : Uint := Uint_0;
+ -- Calculated value so far if Val_Status = Const
+ -- (initialized to prevent junk warning)
+
+ Snod : Node_Id;
+ -- Expression value so far if Val_Status = Dynamic
+
+ SU_Convert_Required : Boolean := False;
+ -- This is set to True if the final result must be converted from
+ -- bits to storage units (rounding up to a storage unit boundary).
+
+ -----------------------
+ -- Local Subprograms --
+ -----------------------
+
+ procedure Max_Discrim (N : in out Node_Id);
+ -- If the node N represents a discriminant, replace it by the maximum
+ -- value of the discriminant.
+
+ procedure Min_Discrim (N : in out Node_Id);
+ -- If the node N represents a discriminant, replace it by the minimum
+ -- value of the discriminant.
+
+ -----------------
+ -- Max_Discrim --
+ -----------------
+
+ procedure Max_Discrim (N : in out Node_Id) is
+ begin
+ if Nkind (N) = N_Identifier
+ and then Ekind (Entity (N)) = E_Discriminant
+ then
+ N := Type_High_Bound (Etype (N));
+ end if;
+ end Max_Discrim;
+
+ -----------------
+ -- Min_Discrim --
+ -----------------
+
+ procedure Min_Discrim (N : in out Node_Id) is
+ begin
+ if Nkind (N) = N_Identifier
+ and then Ekind (Entity (N)) = E_Discriminant
+ then
+ N := Type_Low_Bound (Etype (N));
+ end if;
+ end Min_Discrim;
+
+ -- Start of processing for Layout_Array_Type
+
+ begin
+ pragma Assert (Size_Depends_On_Discriminant (E));
+
+ -- Initialize status from component size
+
+ if Known_Static_Component_Size (E) then
+ Val_Status := Const;
+ Sval := Component_Size (E);
+
+ else
+ Val_Status := Dynamic;
+ Snod := Expr_From_SO_Ref (Loc, Component_Size (E));
+ end if;
+
+ -- Loop through indices
+
+ Indx := First_Index (E);
+ while Present (Indx) loop
+ Ityp := Etype (Indx);
+ Lo := Type_Low_Bound (Ityp);
+ Hi := Type_High_Bound (Ityp);
+
+ Min_Discrim (Lo);
+ Max_Discrim (Hi);
+
+ -- Value of the current subscript range is statically known
+
+ if Compile_Time_Known_Value (Lo)
+ and then Compile_Time_Known_Value (Hi)
+ then
+ S := Expr_Value (Hi) - Expr_Value (Lo) + 1;
+
+ -- If known flat bound, entire size of array is zero!
+
+ if S <= 0 then
+ return Make_Integer_Literal (Loc, 0);
+ end if;
+
+ -- Current value is constant, evolve value
+
+ if Val_Status = Const then
+ Sval := Sval * S;
+
+ -- Current value is dynamic
+
+ else
+ -- An interesting little optimization, if we have a pending
+ -- conversion from bits to storage units, and the current
+ -- length is a multiple of the storage unit size, then we
+ -- can take the factor out here statically, avoiding some
+ -- extra dynamic computations at the end.
+
+ if SU_Convert_Required and then S mod SSU = 0 then
+ S := S / SSU;
+ SU_Convert_Required := False;
+ end if;
+
+ Snod :=
+ Assoc_Multiply (Loc,
+ Left_Opnd => Snod,
+ Right_Opnd =>
+ Make_Integer_Literal (Loc, Intval => S));
+ end if;
+
+ -- Value of the current subscript range is dynamic
+
+ else
+ -- If the current size value is constant, then here is where we
+ -- make a transition to dynamic values, which are always stored
+ -- in storage units, However, we do not want to convert to SU's
+ -- too soon, consider the case of a packed array of single bits,
+ -- we want to do the SU conversion after computing the size in
+ -- this case.
+
+ if Val_Status = Const then
+ Val_Status := Dynamic;
+
+ -- If the current value is a multiple of the storage unit,
+ -- then most certainly we can do the conversion now, simply
+ -- by dividing the current value by the storage unit value.
+ -- If this works, we set SU_Convert_Required to False.
+
+ if Sval mod SSU = 0 then
+ Snod := Make_Integer_Literal (Loc, Sval / SSU);
+ SU_Convert_Required := False;
+
+ -- Otherwise, we go ahead and convert the value in bits,
+ -- and set SU_Convert_Required to True to ensure that the
+ -- final value is indeed properly converted.
+
+ else
+ Snod := Make_Integer_Literal (Loc, Sval);
+ SU_Convert_Required := True;
+ end if;
+ end if;
+
+ -- Length is hi-lo+1
+
+ Len := Compute_Length (Lo, Hi);
+
+ -- Check possible range of Len
+
+ declare
+ OK : Boolean;
+ LLo : Uint;
+ LHi : Uint;
+
+ begin
+ Set_Parent (Len, E);
+ Determine_Range (Len, OK, LLo, LHi);
+
+ -- If we cannot verify that range cannot be super-flat,
+ -- we need a max with zero, since length must be non-neg.
+
+ if not OK or else LLo < 0 then
+ Len :=
+ Make_Attribute_Reference (Loc,
+ Prefix =>
+ New_Occurrence_Of (Standard_Unsigned, Loc),
+ Attribute_Name => Name_Max,
+ Expressions => New_List (
+ Make_Integer_Literal (Loc, 0),
+ Len));
+ end if;
+ end;
+ end if;
+
+ Next_Index (Indx);
+ end loop;
+
+ -- Here after processing all bounds to set sizes. If the value is
+ -- a constant, then it is bits, and we just return the value.
+
+ if Val_Status = Const then
+ return Make_Integer_Literal (Loc, Sval);
+
+ -- Case where the value is dynamic
+
+ else
+ -- Do convert from bits to SU's if needed
+
+ if SU_Convert_Required then
+
+ -- The expression required is (Snod + SU - 1) / SU
+
+ Snod :=
+ Make_Op_Divide (Loc,
+ Left_Opnd =>
+ Make_Op_Add (Loc,
+ Left_Opnd => Snod,
+ Right_Opnd => Make_Integer_Literal (Loc, SSU - 1)),
+ Right_Opnd => Make_Integer_Literal (Loc, SSU));
+ end if;
+
+ return Snod;
+ end if;
+ end Get_Max_Size;
+
+ -----------------------
+ -- Layout_Array_Type --
+ -----------------------
+
+ procedure Layout_Array_Type (E : Entity_Id) is
+ Loc : constant Source_Ptr := Sloc (E);
+ Ctyp : constant Entity_Id := Component_Type (E);
+ Indx : Node_Id;
+ Ityp : Entity_Id;
+ Lo : Node_Id;
+ Hi : Node_Id;
+ S : Uint;
+ Len : Node_Id;
+
+ Insert_Typ : Entity_Id;
+ -- This is the type with which any generated constants or functions
+ -- will be associated (i.e. inserted into the freeze actions). This
+ -- is normally the type being layed out. The exception occurs when
+ -- we are laying out Itype's which are local to a record type, and
+ -- whose scope is this record type. Such types do not have freeze
+ -- nodes (because we have no place to put them).
+
+ ------------------------------------
+ -- How An Array Type is Layed Out --
+ ------------------------------------
+
+ -- Here is what goes on. We need to multiply the component size of
+ -- the array (which has already been set) by the length of each of
+ -- the indexes. If all these values are known at compile time, then
+ -- the resulting size of the array is the appropriate constant value.
+
+ -- If the component size or at least one bound is dynamic (but no
+ -- discriminants are present), then the size will be computed as an
+ -- expression that calculates the proper size.
+
+ -- If there is at least one discriminant bound, then the size is also
+ -- computed as an expression, but this expression contains discriminant
+ -- values which are obtained by selecting from a function parameter, and
+ -- the size is given by a function that is passed the variant record in
+ -- question, and whose body is the expression.
+
+ type Val_Status_Type is (Const, Dynamic, Discrim);
+ -- Shows the status of the value so far. Const means that the value
+ -- is constant, and Sval is the current constant value. Dynamic means
+ -- that the value is dynamic, and in this case Snod is the Node_Id of
+ -- the expression to compute the value, and Discrim means that at least
+ -- one bound is a discriminant, in which case Snod is the expression so
+ -- far (which will be the body of the function).
+
+ Val_Status : Val_Status_Type;
+ -- Indicate status of value so far
+
+ Sval : Uint := Uint_0;
+ -- Calculated value so far if Val_Status = Const
+ -- Initialized to prevent junk warning
+
+ Snod : Node_Id;
+ -- Expression value so far if Val_Status /= Const
+
+ Vtyp : Entity_Id;
+ -- Variant record type for the formal parameter of the discriminant
+ -- function V if Val_Status = Discrim.
+
+ SU_Convert_Required : Boolean := False;
+ -- This is set to True if the final result must be converted from
+ -- bits to storage units (rounding up to a storage unit boundary).
+
+ procedure Discrimify (N : in out Node_Id);
+ -- If N represents a discriminant, then the Val_Status is set to
+ -- Discrim, and Vtyp is set. The parameter N is replaced with the
+ -- proper expression to extract the discriminant value from V.
+
+ ----------------
+ -- Discrimify --
+ ----------------
+
+ procedure Discrimify (N : in out Node_Id) is
+ Decl : Node_Id;
+ Typ : Entity_Id;
+
+ begin
+ if Nkind (N) = N_Identifier
+ and then Ekind (Entity (N)) = E_Discriminant
+ then
+ Set_Size_Depends_On_Discriminant (E);
+
+ if Val_Status /= Discrim then
+ Val_Status := Discrim;
+ Decl := Parent (Parent (Entity (N)));
+ Vtyp := Defining_Identifier (Decl);
+ end if;
+
+ Typ := Etype (N);
+
+ N :=
+ Make_Selected_Component (Loc,
+ Prefix => Make_Identifier (Loc, Chars => Vname),
+ Selector_Name => New_Occurrence_Of (Entity (N), Loc));
+
+ Analyze_And_Resolve (N, Typ);
+ end if;
+ end Discrimify;
+
+ -- Start of processing for Layout_Array_Type
+
+ begin
+ -- Default alignment is component alignment
+
+ if Unknown_Alignment (E) then
+ Set_Alignment (E, Alignment (Ctyp));
+ end if;
+
+ -- Calculate proper type for insertions
+
+ if Is_Record_Type (Scope (E)) then
+ Insert_Typ := Scope (E);
+ else
+ Insert_Typ := E;
+ end if;
+
+ -- Cannot do anything if Esize of component type unknown
+
+ if Unknown_Esize (Ctyp) then
+ return;
+ end if;
+
+ -- Set component size if not set already
+
+ if Unknown_Component_Size (E) then
+ Set_Component_Size (E, Esize (Ctyp));
+ end if;
+
+ -- (RM 13.3 (48)) says that the size of an unconstrained array
+ -- is implementation defined. We choose to leave it as Unknown
+ -- here, and the actual behavior is determined by the back end.
+
+ if not Is_Constrained (E) then
+ return;
+ end if;
+
+ -- Initialize status from component size
+
+ if Known_Static_Component_Size (E) then
+ Val_Status := Const;
+ Sval := Component_Size (E);
+
+ else
+ Val_Status := Dynamic;
+ Snod := Expr_From_SO_Ref (Loc, Component_Size (E));
+ end if;
+
+ -- Loop to process array indices
+
+ Indx := First_Index (E);
+ while Present (Indx) loop
+ Ityp := Etype (Indx);
+ Lo := Type_Low_Bound (Ityp);
+ Hi := Type_High_Bound (Ityp);
+
+ -- Value of the current subscript range is statically known
+
+ if Compile_Time_Known_Value (Lo)
+ and then Compile_Time_Known_Value (Hi)
+ then
+ S := Expr_Value (Hi) - Expr_Value (Lo) + 1;
+
+ -- If known flat bound, entire size of array is zero!
+
+ if S <= 0 then
+ Set_Esize (E, Uint_0);
+ Set_RM_Size (E, Uint_0);
+ return;
+ end if;
+
+ -- If constant, evolve value
+
+ if Val_Status = Const then
+ Sval := Sval * S;
+
+ -- Current value is dynamic
+
+ else
+ -- An interesting little optimization, if we have a pending
+ -- conversion from bits to storage units, and the current
+ -- length is a multiple of the storage unit size, then we
+ -- can take the factor out here statically, avoiding some
+ -- extra dynamic computations at the end.
+
+ if SU_Convert_Required and then S mod SSU = 0 then
+ S := S / SSU;
+ SU_Convert_Required := False;
+ end if;
+
+ -- Now go ahead and evolve the expression
+
+ Snod :=
+ Assoc_Multiply (Loc,
+ Left_Opnd => Snod,
+ Right_Opnd =>
+ Make_Integer_Literal (Loc, Intval => S));
+ end if;
+
+ -- Value of the current subscript range is dynamic
+
+ else
+ -- If the current size value is constant, then here is where we
+ -- make a transition to dynamic values, which are always stored
+ -- in storage units, However, we do not want to convert to SU's
+ -- too soon, consider the case of a packed array of single bits,
+ -- we want to do the SU conversion after computing the size in
+ -- this case.
+
+ if Val_Status = Const then
+ Val_Status := Dynamic;
+
+ -- If the current value is a multiple of the storage unit,
+ -- then most certainly we can do the conversion now, simply
+ -- by dividing the current value by the storage unit value.
+ -- If this works, we set SU_Convert_Required to False.
+
+ if Sval mod SSU = 0 then
+ Snod := Make_Integer_Literal (Loc, Sval / SSU);
+ SU_Convert_Required := False;
+
+ -- Otherwise, we go ahead and convert the value in bits,
+ -- and set SU_Convert_Required to True to ensure that the
+ -- final value is indeed properly converted.
+
+ else
+ Snod := Make_Integer_Literal (Loc, Sval);
+ SU_Convert_Required := True;
+ end if;
+ end if;
+
+ Discrimify (Lo);
+ Discrimify (Hi);
+
+ -- Length is hi-lo+1
+
+ Len := Compute_Length (Lo, Hi);
+
+ -- Check possible range of Len
+
+ declare
+ OK : Boolean;
+ LLo : Uint;
+ LHi : Uint;
+
+ begin
+ Set_Parent (Len, E);
+ Determine_Range (Len, OK, LLo, LHi);
+
+ -- If range definitely flat or superflat, result size is zero
+
+ if OK and then LHi <= 0 then
+ Set_Esize (E, Uint_0);
+ Set_RM_Size (E, Uint_0);
+ return;
+ end if;
+
+ -- If we cannot verify that range cannot be super-flat, we
+ -- need a maximum with zero, since length cannot be negative.
+
+ if not OK or else LLo < 0 then
+ Len :=
+ Make_Attribute_Reference (Loc,
+ Prefix =>
+ New_Occurrence_Of (Standard_Unsigned, Loc),
+ Attribute_Name => Name_Max,
+ Expressions => New_List (
+ Make_Integer_Literal (Loc, 0),
+ Len));
+ end if;
+ end;
+
+ -- At this stage, Len has the expression for the length
+
+ Snod :=
+ Assoc_Multiply (Loc,
+ Left_Opnd => Snod,
+ Right_Opnd => Len);
+ end if;
+
+ Next_Index (Indx);
+ end loop;
+
+ -- Here after processing all bounds to set sizes. If the value is
+ -- a constant, then it is bits, and the only thing we need to do
+ -- is to check against explicit given size and do alignment adjust.
+
+ if Val_Status = Const then
+ Set_And_Check_Static_Size (E, Sval, Sval);
+ Adjust_Esize_Alignment (E);
+
+ -- Case where the value is dynamic
+
+ else
+ -- Do convert from bits to SU's if needed
+
+ if SU_Convert_Required then
+
+ -- The expression required is (Snod + SU - 1) / SU
+
+ Snod :=
+ Make_Op_Divide (Loc,
+ Left_Opnd =>
+ Make_Op_Add (Loc,
+ Left_Opnd => Snod,
+ Right_Opnd => Make_Integer_Literal (Loc, SSU - 1)),
+ Right_Opnd => Make_Integer_Literal (Loc, SSU));
+ end if;
+
+ -- Now set the dynamic size (the Value_Size is always the same
+ -- as the Object_Size for arrays whose length is dynamic).
+
+ Set_Esize (E, SO_Ref_From_Expr (Snod, Insert_Typ, Vtyp));
+ Set_RM_Size (E, Esize (E));
+ end if;
+ end Layout_Array_Type;
+
+ -------------------
+ -- Layout_Object --
+ -------------------
+
+ procedure Layout_Object (E : Entity_Id) is
+ T : constant Entity_Id := Etype (E);
+
+ begin
+ -- Nothing to do if backend does layout
+
+ if not Frontend_Layout_On_Target then
+ return;
+ end if;
+
+ -- Set size if not set for object and known for type. Use the
+ -- RM_Size if that is known for the type and Esize is not.
+
+ if Unknown_Esize (E) then
+ if Known_Esize (T) then
+ Set_Esize (E, Esize (T));
+
+ elsif Known_RM_Size (T) then
+ Set_Esize (E, RM_Size (T));
+ end if;
+ end if;
+
+ -- Set alignment from type if unknown and type alignment known
+
+ if Unknown_Alignment (E) and then Known_Alignment (T) then
+ Set_Alignment (E, Alignment (T));
+ end if;
+
+ -- Make sure size and alignment are consistent
+
+ Adjust_Esize_Alignment (E);
+
+ -- Final adjustment, if we don't know the alignment, and the Esize
+ -- was not set by an explicit Object_Size attribute clause, then
+ -- we reset the Esize to unknown, since we really don't know it.
+
+ if Unknown_Alignment (E)
+ and then not Has_Size_Clause (E)
+ then
+ Set_Esize (E, Uint_0);
+ end if;
+ end Layout_Object;
+
+ ------------------------
+ -- Layout_Record_Type --
+ ------------------------
+
+ procedure Layout_Record_Type (E : Entity_Id) is
+ Loc : constant Source_Ptr := Sloc (E);
+ Decl : Node_Id;
+
+ Comp : Entity_Id;
+ -- Current component being layed out
+
+ Prev_Comp : Entity_Id;
+ -- Previous layed out component
+
+ procedure Get_Next_Component_Location
+ (Prev_Comp : Entity_Id;
+ Align : Uint;
+ New_Npos : out SO_Ref;
+ New_Fbit : out SO_Ref;
+ New_NPMax : out SO_Ref;
+ Force_SU : Boolean);
+ -- Given the previous component in Prev_Comp, which is already laid
+ -- out, and the alignment of the following component, lays out the
+ -- following component, and returns its starting position in New_Npos
+ -- (Normalized_Position value), New_Fbit (Normalized_First_Bit value),
+ -- and New_NPMax (Normalized_Position_Max value). If Prev_Comp is empty
+ -- (no previous component is present), then New_Npos, New_Fbit and
+ -- New_NPMax are all set to zero on return. This procedure is also
+ -- used to compute the size of a record or variant by giving it the
+ -- last component, and the record alignment. Force_SU is used to force
+ -- the new component location to be aligned on a storage unit boundary,
+ -- even in a packed record, False means that the new position does not
+ -- need to be bumped to a storage unit boundary, True means a storage
+ -- unit boundary is always required.
+
+ procedure Layout_Component (Comp : Entity_Id; Prev_Comp : Entity_Id);
+ -- Lays out component Comp, given Prev_Comp, the previously laid-out
+ -- component (Prev_Comp = Empty if no components laid out yet). The
+ -- alignment of the record itself is also updated if needed. Both
+ -- Comp and Prev_Comp can be either components or discriminants. A
+ -- special case is when Comp is Empty, this is used at the end
+ -- to determine the size of the entire record. For this special
+ -- call the resulting offset is placed in Final_Offset.
+
+ procedure Layout_Components
+ (From : Entity_Id;
+ To : Entity_Id;
+ Esiz : out SO_Ref;
+ RM_Siz : out SO_Ref);
+ -- This procedure lays out the components of the given component list
+ -- which contains the components starting with From, and ending with To.
+ -- The Next_Entity chain is used to traverse the components. On entry
+ -- Prev_Comp is set to the component preceding the list, so that the
+ -- list is layed out after this component. Prev_Comp is set to Empty if
+ -- the component list is to be layed out starting at the start of the
+ -- record. On return, the components are all layed out, and Prev_Comp is
+ -- set to the last layed out component. On return, Esiz is set to the
+ -- resulting Object_Size value, which is the length of the record up
+ -- to and including the last layed out entity. For Esiz, the value is
+ -- adjusted to match the alignment of the record. RM_Siz is similarly
+ -- set to the resulting Value_Size value, which is the same length, but
+ -- not adjusted to meet the alignment. Note that in the case of variant
+ -- records, Esiz represents the maximum size.
+
+ procedure Layout_Non_Variant_Record;
+ -- Procedure called to layout a non-variant record type or subtype
+
+ procedure Layout_Variant_Record;
+ -- Procedure called to layout a variant record type. Decl is set to the
+ -- full type declaration for the variant record.
+
+ ---------------------------------
+ -- Get_Next_Component_Location --
+ ---------------------------------
+
+ procedure Get_Next_Component_Location
+ (Prev_Comp : Entity_Id;
+ Align : Uint;
+ New_Npos : out SO_Ref;
+ New_Fbit : out SO_Ref;
+ New_NPMax : out SO_Ref;
+ Force_SU : Boolean)
+ is
+ begin
+ -- No previous component, return zero position
+
+ if No (Prev_Comp) then
+ New_Npos := Uint_0;
+ New_Fbit := Uint_0;
+ New_NPMax := Uint_0;
+ return;
+ end if;
+
+ -- Here we have a previous component
+
+ declare
+ Loc : constant Source_Ptr := Sloc (Prev_Comp);
+
+ Old_Npos : constant SO_Ref := Normalized_Position (Prev_Comp);
+ Old_Fbit : constant SO_Ref := Normalized_First_Bit (Prev_Comp);
+ Old_NPMax : constant SO_Ref := Normalized_Position_Max (Prev_Comp);
+ Old_Esiz : constant SO_Ref := Esize (Prev_Comp);
+
+ Old_Maxsz : Node_Id;
+ -- Expression representing maximum size of previous component
+
+ begin
+ -- Case where previous field had a dynamic size
+
+ if Is_Dynamic_SO_Ref (Esize (Prev_Comp)) then
+
+ -- If the previous field had a dynamic length, then it is
+ -- required to occupy an integral number of storage units,
+ -- and start on a storage unit boundary. This means that
+ -- the Normalized_First_Bit value is zero in the previous
+ -- component, and the new value is also set to zero.
+
+ New_Fbit := Uint_0;
+
+ -- In this case, the new position is given by an expression
+ -- that is the sum of old normalized position and old size.
+
+ New_Npos :=
+ SO_Ref_From_Expr
+ (Assoc_Add (Loc,
+ Left_Opnd => Expr_From_SO_Ref (Loc, Old_Npos),
+ Right_Opnd => Expr_From_SO_Ref (Loc, Old_Esiz)),
+ Ins_Type => E,
+ Vtype => E);
+
+ -- Get maximum size of previous component
+
+ if Size_Depends_On_Discriminant (Etype (Prev_Comp)) then
+ Old_Maxsz := Get_Max_Size (Etype (Prev_Comp));
+ else
+ Old_Maxsz := Expr_From_SO_Ref (Loc, Old_Esiz);
+ end if;
+
+ -- Now we can compute the new max position. If the max size
+ -- is static and the old position is static, then we can
+ -- compute the new position statically.
+
+ if Nkind (Old_Maxsz) = N_Integer_Literal
+ and then Known_Static_Normalized_Position_Max (Prev_Comp)
+ then
+ New_NPMax := Old_NPMax + Intval (Old_Maxsz);
+
+ -- Otherwise new max position is dynamic
+
+ else
+ New_NPMax :=
+ SO_Ref_From_Expr
+ (Assoc_Add (Loc,
+ Left_Opnd => Expr_From_SO_Ref (Loc, Old_NPMax),
+ Right_Opnd => Old_Maxsz),
+ Ins_Type => E,
+ Vtype => E);
+ end if;
+
+ -- Previous field has known static Esize
+
+ else
+ New_Fbit := Old_Fbit + Old_Esiz;
+
+ -- Bump New_Fbit to storage unit boundary if required
+
+ if New_Fbit /= 0 and then Force_SU then
+ New_Fbit := (New_Fbit + SSU - 1) / SSU * SSU;
+ end if;
+
+ -- If old normalized position is static, we can go ahead
+ -- and compute the new normalized position directly.
+
+ if Known_Static_Normalized_Position (Prev_Comp) then
+ New_Npos := Old_Npos;
+
+ if New_Fbit >= SSU then
+ New_Npos := New_Npos + New_Fbit / SSU;
+ New_Fbit := New_Fbit mod SSU;
+ end if;
+
+ -- Bump alignment if stricter than prev
+
+ if Align > Alignment (Prev_Comp) then
+ New_Npos := (New_Npos + Align - 1) / Align * Align;
+ end if;
+
+ -- The max position is always equal to the position if
+ -- the latter is static, since arrays depending on the
+ -- values of discriminants never have static sizes.
+
+ New_NPMax := New_Npos;
+ return;
+
+ -- Case of old normalized position is dynamic
+
+ else
+ -- If new bit position is within the current storage unit,
+ -- we can just copy the old position as the result position
+ -- (we have already set the new first bit value).
+
+ if New_Fbit < SSU then
+ New_Npos := Old_Npos;
+ New_NPMax := Old_NPMax;
+
+ -- If new bit position is past the current storage unit, we
+ -- need to generate a new dynamic value for the position
+ -- ??? need to deal with alignment
+
+ else
+ New_Npos :=
+ SO_Ref_From_Expr
+ (Assoc_Add (Loc,
+ Left_Opnd => Expr_From_SO_Ref (Loc, Old_Npos),
+ Right_Opnd =>
+ Make_Integer_Literal (Loc,
+ Intval => New_Fbit / SSU)),
+ Ins_Type => E,
+ Vtype => E);
+
+ New_NPMax :=
+ SO_Ref_From_Expr
+ (Assoc_Add (Loc,
+ Left_Opnd => Expr_From_SO_Ref (Loc, Old_NPMax),
+ Right_Opnd =>
+ Make_Integer_Literal (Loc,
+ Intval => New_Fbit / SSU)),
+ Ins_Type => E,
+ Vtype => E);
+ New_Fbit := New_Fbit mod SSU;
+ end if;
+ end if;
+ end if;
+ end;
+ end Get_Next_Component_Location;
+
+ ----------------------
+ -- Layout_Component --
+ ----------------------
+
+ procedure Layout_Component (Comp : Entity_Id; Prev_Comp : Entity_Id) is
+ Ctyp : constant Entity_Id := Etype (Comp);
+ Npos : SO_Ref;
+ Fbit : SO_Ref;
+ NPMax : SO_Ref;
+ Forc : Boolean;
+
+ begin
+ -- Parent field is always at start of record, this will overlap
+ -- the actual fields that are part of the parent, and that's fine
+
+ if Chars (Comp) = Name_uParent then
+ Set_Normalized_Position (Comp, Uint_0);
+ Set_Normalized_First_Bit (Comp, Uint_0);
+ Set_Normalized_Position_Max (Comp, Uint_0);
+ Set_Component_Bit_Offset (Comp, Uint_0);
+ Set_Esize (Comp, Esize (Ctyp));
+ return;
+ end if;
+
+ -- Check case of type of component has a scope of the record we
+ -- are laying out. When this happens, the type in question is an
+ -- Itype that has not yet been layed out (that's because such
+ -- types do not get frozen in the normal manner, because there
+ -- is no place for the freeze nodes).
+
+ if Scope (Ctyp) = E then
+ Layout_Type (Ctyp);
+ end if;
+
+ -- Increase alignment of record if necessary. Note that we do not
+ -- do this for packed records, which have an alignment of one by
+ -- default, or for records for which an explicit alignment was
+ -- specified with an alignment clause.
+
+ if not Is_Packed (E)
+ and then not Has_Alignment_Clause (E)
+ and then Alignment (Ctyp) > Alignment (E)
+ then
+ Set_Alignment (E, Alignment (Ctyp));
+ end if;
+
+ -- If component already laid out, then we are done
+
+ if Known_Normalized_Position (Comp) then
+ return;
+ end if;
+
+ -- Set size of component from type. We use the Esize except in a
+ -- packed record, where we use the RM_Size (since that is exactly
+ -- what the RM_Size value, as distinct from the Object_Size is
+ -- useful for!)
+
+ if Is_Packed (E) then
+ Set_Esize (Comp, RM_Size (Ctyp));
+ else
+ Set_Esize (Comp, Esize (Ctyp));
+ end if;
+
+ -- Compute the component position from the previous one. See if
+ -- current component requires being on a storage unit boundary.
+
+ -- If record is not packed, we always go to a storage unit boundary
+
+ if not Is_Packed (E) then
+ Forc := True;
+
+ -- Packed cases
+
+ else
+ -- Elementary types do not need SU boundary in packed record
+
+ if Is_Elementary_Type (Ctyp) then
+ Forc := False;
+
+ -- Packed array types with a modular packed array type do not
+ -- force a storage unit boundary (since the code generation
+ -- treats these as equivalent to the underlying modular type),
+
+ elsif Is_Array_Type (Ctyp)
+ and then Is_Bit_Packed_Array (Ctyp)
+ and then Is_Modular_Integer_Type (Packed_Array_Type (Ctyp))
+ then
+ Forc := False;
+
+ -- Record types with known length less than or equal to the length
+ -- of long long integer can also be unaligned, since they can be
+ -- treated as scalars.
+
+ elsif Is_Record_Type (Ctyp)
+ and then not Is_Dynamic_SO_Ref (Esize (Ctyp))
+ and then Esize (Ctyp) <= Esize (Standard_Long_Long_Integer)
+ then
+ Forc := False;
+
+ -- All other cases force a storage unit boundary, even when packed
+
+ else
+ Forc := True;
+ end if;
+ end if;
+
+ -- Now get the next component location
+
+ Get_Next_Component_Location
+ (Prev_Comp, Alignment (Ctyp), Npos, Fbit, NPMax, Forc);
+ Set_Normalized_Position (Comp, Npos);
+ Set_Normalized_First_Bit (Comp, Fbit);
+ Set_Normalized_Position_Max (Comp, NPMax);
+
+ -- Set Component_Bit_Offset in the static case
+
+ if Known_Static_Normalized_Position (Comp)
+ and then Known_Normalized_First_Bit (Comp)
+ then
+ Set_Component_Bit_Offset (Comp, SSU * Npos + Fbit);
+ end if;
+ end Layout_Component;
+
+ -----------------------
+ -- Layout_Components --
+ -----------------------
+
+ procedure Layout_Components
+ (From : Entity_Id;
+ To : Entity_Id;
+ Esiz : out SO_Ref;
+ RM_Siz : out SO_Ref)
+ is
+ End_Npos : SO_Ref;
+ End_Fbit : SO_Ref;
+ End_NPMax : SO_Ref;
+
+ begin
+ -- Only layout components if there are some to layout!
+
+ if Present (From) then
+
+ -- Layout components with no component clauses
+
+ Comp := From;
+ loop
+ if (Ekind (Comp) = E_Component
+ or else Ekind (Comp) = E_Discriminant)
+ and then No (Component_Clause (Comp))
+ then
+ Layout_Component (Comp, Prev_Comp);
+ Prev_Comp := Comp;
+ end if;
+
+ exit when Comp = To;
+ Next_Entity (Comp);
+ end loop;
+ end if;
+
+ -- Set size fields, both are zero if no components
+
+ if No (Prev_Comp) then
+ Esiz := Uint_0;
+ RM_Siz := Uint_0;
+
+ else
+ -- First the object size, for which we align past the last
+ -- field to the alignment of the record (the object size
+ -- is required to be a multiple of the alignment).
+
+ Get_Next_Component_Location
+ (Prev_Comp,
+ Alignment (E),
+ End_Npos,
+ End_Fbit,
+ End_NPMax,
+ Force_SU => True);
+
+ -- If the resulting normalized position is a dynamic reference,
+ -- then the size is dynamic, and is stored in storage units.
+ -- In this case, we set the RM_Size to the same value, it is
+ -- simply not worth distinguishing Esize and RM_Size values in
+ -- the dynamic case, since the RM has nothing to say about them.
+
+ -- Note that a size cannot have been given in this case, since
+ -- size specifications cannot be given for variable length types.
+
+ declare
+ Align : constant Uint := Alignment (E);
+
+ begin
+ if Is_Dynamic_SO_Ref (End_Npos) then
+ RM_Siz := End_Npos;
+
+ -- Set the Object_Size allowing for alignment. In the
+ -- dynamic case, we have to actually do the runtime
+ -- computation. We can skip this in the non-packed
+ -- record case if the last component has a smaller
+ -- alignment than the overall record alignment.
+
+ if Is_Dynamic_SO_Ref (End_NPMax) then
+ Esiz := End_NPMax;
+
+ if Is_Packed (E)
+ or else Alignment (Prev_Comp) < Align
+ then
+ -- The expression we build is
+ -- (expr + align - 1) / align * align
+
+ Esiz :=
+ SO_Ref_From_Expr
+ (Expr =>
+ Make_Op_Multiply (Loc,
+ Left_Opnd =>
+ Make_Op_Divide (Loc,
+ Left_Opnd =>
+ Make_Op_Add (Loc,
+ Left_Opnd =>
+ Expr_From_SO_Ref (Loc, Esiz),
+ Right_Opnd =>
+ Make_Integer_Literal (Loc,
+ Intval => Align - 1)),
+ Right_Opnd =>
+ Make_Integer_Literal (Loc, Align)),
+ Right_Opnd =>
+ Make_Integer_Literal (Loc, Align)),
+ Ins_Type => E,
+ Vtype => E);
+ end if;
+
+ -- Here Esiz is static, so we can adjust the alignment
+ -- directly go give the required aligned value.
+
+ else
+ Esiz := (End_NPMax + Align - 1) / Align * Align * SSU;
+ end if;
+
+ -- Case where computed size is static
+
+ else
+ -- The ending size was computed in Npos in storage units,
+ -- but the actual size is stored in bits, so adjust
+ -- accordingly. We also adjust the size to match the
+ -- alignment here.
+
+ Esiz := (End_NPMax + Align - 1) / Align * Align * SSU;
+
+ -- Compute the resulting Value_Size (RM_Size). For this
+ -- purpose we do not force alignment of the record or
+ -- storage size alignment of the result.
+
+ Get_Next_Component_Location
+ (Prev_Comp,
+ Uint_0,
+ End_Npos,
+ End_Fbit,
+ End_NPMax,
+ Force_SU => False);
+
+ RM_Siz := End_Npos * SSU + End_Fbit;
+ Set_And_Check_Static_Size (E, Esiz, RM_Siz);
+ end if;
+ end;
+ end if;
+ end Layout_Components;
+
+ -------------------------------
+ -- Layout_Non_Variant_Record --
+ -------------------------------
+
+ procedure Layout_Non_Variant_Record is
+ Esiz : SO_Ref;
+ RM_Siz : SO_Ref;
+
+ begin
+ Layout_Components (First_Entity (E), Last_Entity (E), Esiz, RM_Siz);
+ Set_Esize (E, Esiz);
+ Set_RM_Size (E, RM_Siz);
+ end Layout_Non_Variant_Record;
+
+ ---------------------------
+ -- Layout_Variant_Record --
+ ---------------------------
+
+ procedure Layout_Variant_Record is
+ Tdef : constant Node_Id := Type_Definition (Decl);
+ Dlist : constant List_Id := Discriminant_Specifications (Decl);
+ Esiz : SO_Ref;
+ RM_Siz : SO_Ref;
+
+ RM_Siz_Expr : Node_Id := Empty;
+ -- Expression for the evolving RM_Siz value. This is typically a
+ -- conditional expression which involves tests of discriminant
+ -- values that are formed as references to the entity V. At
+ -- the end of scanning all the components, a suitable function
+ -- is constructed in which V is the parameter.
+
+ -----------------------
+ -- Local Subprograms --
+ -----------------------
+
+ procedure Layout_Component_List
+ (Clist : Node_Id;
+ Esiz : out SO_Ref;
+ RM_Siz_Expr : out Node_Id);
+ -- Recursive procedure, called to layout one component list
+ -- Esiz and RM_Siz_Expr are set to the Object_Size and Value_Size
+ -- values respectively representing the record size up to and
+ -- including the last component in the component list (including
+ -- any variants in this component list). RM_Siz_Expr is returned
+ -- as an expression which may in the general case involve some
+ -- references to the discriminants of the current record value,
+ -- referenced by selecting from the entity V.
+
+ ---------------------------
+ -- Layout_Component_List --
+ ---------------------------
+
+ procedure Layout_Component_List
+ (Clist : Node_Id;
+ Esiz : out SO_Ref;
+ RM_Siz_Expr : out Node_Id)
+ is
+ Citems : constant List_Id := Component_Items (Clist);
+ Vpart : constant Node_Id := Variant_Part (Clist);
+ Prv : Node_Id;
+ Var : Node_Id;
+ RM_Siz : Uint;
+ RMS_Ent : Entity_Id;
+
+ begin
+ if Is_Non_Empty_List (Citems) then
+ Layout_Components
+ (From => Defining_Identifier (First (Citems)),
+ To => Defining_Identifier (Last (Citems)),
+ Esiz => Esiz,
+ RM_Siz => RM_Siz);
+ else
+ Layout_Components (Empty, Empty, Esiz, RM_Siz);
+ end if;
+
+ -- Case where no variants are present in the component list
+
+ if No (Vpart) then
+
+ -- The Esiz value has been correctly set by the call to
+ -- Layout_Components, so there is nothing more to be done.
+
+ -- For RM_Siz, we have an SO_Ref value, which we must convert
+ -- to an appropriate expression.
+
+ if Is_Static_SO_Ref (RM_Siz) then
+ RM_Siz_Expr :=
+ Make_Integer_Literal (Loc,
+ Intval => RM_Siz);
+
+ else
+ RMS_Ent := Get_Dynamic_SO_Entity (RM_Siz);
+
+ -- If the size is represented by a function, then we
+ -- create an appropriate function call using V as
+ -- the parameter to the call.
+
+ if Is_Discrim_SO_Function (RMS_Ent) then
+ RM_Siz_Expr :=
+ Make_Function_Call (Loc,
+ Name => New_Occurrence_Of (RMS_Ent, Loc),
+ Parameter_Associations => New_List (
+ Make_Identifier (Loc, Chars => Vname)));
+
+ -- If the size is represented by a constant, then the
+ -- expression we want is a reference to this constant
+
+ else
+ RM_Siz_Expr := New_Occurrence_Of (RMS_Ent, Loc);
+ end if;
+ end if;
+
+ -- Case where variants are present in this component list
+
+ else
+ declare
+ EsizV : SO_Ref;
+ RM_SizV : Node_Id;
+ Dchoice : Node_Id;
+ Discrim : Node_Id;
+ Dtest : Node_Id;
+
+ begin
+ RM_Siz_Expr := Empty;
+ Prv := Prev_Comp;
+
+ Var := Last (Variants (Vpart));
+ while Present (Var) loop
+ Prev_Comp := Prv;
+ Layout_Component_List
+ (Component_List (Var), EsizV, RM_SizV);
+
+ -- Set the Object_Size. If this is the first variant,
+ -- we just set the size of this first variant.
+
+ if Var = Last (Variants (Vpart)) then
+ Esiz := EsizV;
+
+ -- Otherwise the Object_Size is formed as a maximum
+ -- of Esiz so far from previous variants, and the new
+ -- Esiz value from the variant we just processed.
+
+ -- If both values are static, we can just compute the
+ -- maximum directly to save building junk nodes.
+
+ elsif not Is_Dynamic_SO_Ref (Esiz)
+ and then not Is_Dynamic_SO_Ref (EsizV)
+ then
+ Esiz := UI_Max (Esiz, EsizV);
+
+ -- If either value is dynamic, then we have to generate
+ -- an appropriate Standard_Unsigned'Max attribute call.
+
+ else
+ Esiz :=
+ SO_Ref_From_Expr
+ (Make_Attribute_Reference (Loc,
+ Attribute_Name => Name_Max,
+ Prefix =>
+ New_Occurrence_Of (Standard_Unsigned, Loc),
+ Expressions => New_List (
+ Expr_From_SO_Ref (Loc, Esiz),
+ Expr_From_SO_Ref (Loc, EsizV))),
+ Ins_Type => E,
+ Vtype => E);
+ end if;
+
+ -- Now deal with Value_Size (RM_Siz). We are aiming at
+ -- an expression that looks like:
+
+ -- if xxDx (V.disc) then rmsiz1
+ -- else if xxDx (V.disc) then rmsiz2
+ -- else ...
+
+ -- Where rmsiz1, rmsiz2... are the RM_Siz values for the
+ -- individual variants, and xxDx are the discriminant
+ -- checking functions generated for the variant type.
+
+ -- If this is the first variant, we simply set the
+ -- result as the expression. Note that this takes
+ -- care of the others case.
+
+ if No (RM_Siz_Expr) then
+ RM_Siz_Expr := RM_SizV;
+
+ -- Otherwise construct the appropriate test
+
+ else
+ -- Discriminant to be tested
+
+ Discrim :=
+ Make_Selected_Component (Loc,
+ Prefix =>
+ Make_Identifier (Loc, Chars => Vname),
+ Selector_Name =>
+ New_Occurrence_Of
+ (Entity (Name (Vpart)), Loc));
+
+ -- The test to be used in general is a call to the
+ -- discriminant checking function. However, it is
+ -- definitely worth special casing the very common
+ -- case where a single value is involved.
+
+ Dchoice := First (Discrete_Choices (Var));
+
+ if No (Next (Dchoice))
+ and then Nkind (Dchoice) /= N_Range
+ then
+ Dtest :=
+ Make_Op_Eq (Loc,
+ Left_Opnd => Discrim,
+ Right_Opnd => New_Copy (Dchoice));
+
+ else
+ Dtest :=
+ Make_Function_Call (Loc,
+ Name =>
+ New_Occurrence_Of
+ (Dcheck_Function (Var), Loc),
+ Parameter_Associations => New_List (Discrim));
+ end if;
+
+ RM_Siz_Expr :=
+ Make_Conditional_Expression (Loc,
+ Expressions =>
+ New_List (Dtest, RM_SizV, RM_Siz_Expr));
+ end if;
+
+ Prev (Var);
+ end loop;
+ end;
+ end if;
+ end Layout_Component_List;
+
+ -- Start of processing for Layout_Variant_Record
+
+ begin
+ -- We need the discriminant checking functions, since we generate
+ -- calls to these functions for the RM_Size expression, so make
+ -- sure that these functions have been constructed in time.
+
+ Build_Discr_Checking_Funcs (Decl);
+
+ -- Layout the discriminants
+
+ Layout_Components
+ (From => Defining_Identifier (First (Dlist)),
+ To => Defining_Identifier (Last (Dlist)),
+ Esiz => Esiz,
+ RM_Siz => RM_Siz);
+
+ -- Layout the main component list (this will make recursive calls
+ -- to layout all component lists nested within variants).
+
+ Layout_Component_List (Component_List (Tdef), Esiz, RM_Siz_Expr);
+ Set_Esize (E, Esiz);
+
+ -- If the RM_Size is a literal, set its value
+
+ if Nkind (RM_Siz_Expr) = N_Integer_Literal then
+ Set_RM_Size (E, Intval (RM_Siz_Expr));
+
+ -- Otherwise we construct a dynamic SO_Ref
+
+ else
+ Set_RM_Size (E,
+ SO_Ref_From_Expr
+ (RM_Siz_Expr,
+ Ins_Type => E,
+ Vtype => E));
+ end if;
+ end Layout_Variant_Record;
+
+ -- Start of processing for Layout_Record_Type
+
+ begin
+ -- If this is a cloned subtype, just copy the size fields from the
+ -- original, nothing else needs to be done in this case, since the
+ -- components themselves are all shared.
+
+ if (Ekind (E) = E_Record_Subtype
+ or else Ekind (E) = E_Class_Wide_Subtype)
+ and then Present (Cloned_Subtype (E))
+ then
+ Set_Esize (E, Esize (Cloned_Subtype (E)));
+ Set_RM_Size (E, RM_Size (Cloned_Subtype (E)));
+ Set_Alignment (E, Alignment (Cloned_Subtype (E)));
+
+ -- Another special case, class-wide types. The RM says that the size
+ -- of such types is implementation defined (RM 13.3(48)). What we do
+ -- here is to leave the fields set as unknown values, and the backend
+ -- determines the actual behavior.
+
+ elsif Ekind (E) = E_Class_Wide_Type then
+ null;
+
+ -- All other cases
+
+ else
+ -- Initialize aligment conservatively to 1. This value will
+ -- be increased as necessary during processing of the record.
+
+ if Unknown_Alignment (E) then
+ Set_Alignment (E, Uint_1);
+ end if;
+
+ -- Initialize previous component. This is Empty unless there
+ -- are components which have already been laid out by component
+ -- clauses. If there are such components, we start our layout of
+ -- the remaining components following the last such component
+
+ Prev_Comp := Empty;
+
+ Comp := First_Entity (E);
+ while Present (Comp) loop
+ if (Ekind (Comp) = E_Component
+ or else Ekind (Comp) = E_Discriminant)
+ and then Present (Component_Clause (Comp))
+ then
+ if No (Prev_Comp)
+ or else
+ Component_Bit_Offset (Comp) >
+ Component_Bit_Offset (Prev_Comp)
+ then
+ Prev_Comp := Comp;
+ end if;
+ end if;
+
+ Next_Entity (Comp);
+ end loop;
+
+ -- We have two separate circuits, one for non-variant records and
+ -- one for variant records. For non-variant records, we simply go
+ -- through the list of components. This handles all the non-variant
+ -- cases including those cases of subtypes where there is no full
+ -- type declaration, so the tree cannot be used to drive the layout.
+ -- For variant records, we have to drive the layout from the tree
+ -- since we need to understand the variant structure in this case.
+
+ if Present (Full_View (E)) then
+ Decl := Declaration_Node (Full_View (E));
+ else
+ Decl := Declaration_Node (E);
+ end if;
+
+ -- Scan all the components
+
+ if Nkind (Decl) = N_Full_Type_Declaration
+ and then Has_Discriminants (E)
+ and then Nkind (Type_Definition (Decl)) = N_Record_Definition
+ and then
+ Present (Variant_Part (Component_List (Type_Definition (Decl))))
+ then
+ Layout_Variant_Record;
+ else
+ Layout_Non_Variant_Record;
+ end if;
+ end if;
+ end Layout_Record_Type;
+
+ -----------------
+ -- Layout_Type --
+ -----------------
+
+ procedure Layout_Type (E : Entity_Id) is
+ begin
+ -- For string literal types, for now, kill the size always, this
+ -- is because gigi does not like or need the size to be set ???
+
+ if Ekind (E) = E_String_Literal_Subtype then
+ Set_Esize (E, Uint_0);
+ Set_RM_Size (E, Uint_0);
+ return;
+ end if;
+
+ -- For access types, set size/alignment. This is system address
+ -- size, except for fat pointers (unconstrained array access types),
+ -- where the size is two times the address size, to accomodate the
+ -- two pointers that are required for a fat pointer (data and
+ -- template). Note that E_Access_Protected_Subprogram_Type is not
+ -- an access type for this purpose since it is not a pointer but is
+ -- equivalent to a record. For access subtypes, copy the size from
+ -- the base type since Gigi represents them the same way.
+
+ if Is_Access_Type (E) then
+
+ -- If Esize already set (e.g. by a size clause), then nothing
+ -- further to be done here.
+
+ if Known_Esize (E) then
+ null;
+
+ -- Access to subprogram is a strange beast, and we let the
+ -- backend figure out what is needed (it may be some kind
+ -- of fat pointer, including the static link for example.
+
+ elsif Ekind (E) = E_Access_Protected_Subprogram_Type then
+ null;
+
+ -- For access subtypes, copy the size information from base type
+
+ elsif Ekind (E) = E_Access_Subtype then
+ Set_Size_Info (E, Base_Type (E));
+ Set_RM_Size (E, RM_Size (Base_Type (E)));
+
+ -- For other access types, we use either address size, or, if
+ -- a fat pointer is used (pointer-to-unconstrained array case),
+ -- twice the address size to accomodate a fat pointer.
+
+ else
+ declare
+ Desig : Entity_Id := Designated_Type (E);
+
+ begin
+ if Is_Private_Type (Desig)
+ and then Present (Full_View (Desig))
+ then
+ Desig := Full_View (Desig);
+ end if;
+
+ if (Is_Array_Type (Desig)
+ and then not Is_Constrained (Desig)
+ and then not Has_Completion_In_Body (Desig)
+ and then not Debug_Flag_6)
+ then
+ Init_Size (E, 2 * System_Address_Size);
+
+ -- Check for bad convention set
+
+ if Convention (E) = Convention_C
+ or else
+ Convention (E) = Convention_CPP
+ then
+ Error_Msg_N
+ ("?this access type does not " &
+ "correspond to C pointer", E);
+ end if;
+
+ else
+ Init_Size (E, System_Address_Size);
+ end if;
+ end;
+ end if;
+
+ Set_Prim_Alignment (E);
+
+ -- Scalar types: set size and alignment
+
+ elsif Is_Scalar_Type (E) then
+
+ -- For discrete types, the RM_Size and Esize must be set
+ -- already, since this is part of the earlier processing
+ -- and the front end is always required to layout the
+ -- sizes of such types (since they are available as static
+ -- attributes). All we do is to check that this rule is
+ -- indeed obeyed!
+
+ if Is_Discrete_Type (E) then
+
+ -- If the RM_Size is not set, then here is where we set it.
+
+ -- Note: an RM_Size of zero looks like not set here, but this
+ -- is a rare case, and we can simply reset it without any harm.
+
+ if not Known_RM_Size (E) then
+ Set_Discrete_RM_Size (E);
+ end if;
+
+ -- If Esize for a discrete type is not set then set it
+
+ if not Known_Esize (E) then
+ declare
+ S : Int := 8;
+
+ begin
+ loop
+ -- If size is big enough, set it and exit
+
+ if S >= RM_Size (E) then
+ Init_Esize (E, S);
+ exit;
+
+ -- If the RM_Size is greater than 64 (happens only
+ -- when strange values are specified by the user,
+ -- then Esize is simply a copy of RM_Size, it will
+ -- be further refined later on)
+
+ elsif S = 64 then
+ Set_Esize (E, RM_Size (E));
+ exit;
+
+ -- Otherwise double possible size and keep trying
+
+ else
+ S := S * 2;
+ end if;
+ end loop;
+ end;
+ end if;
+
+ -- For non-discrete sclar types, if the RM_Size is not set,
+ -- then set it now to a copy of the Esize if the Esize is set.
+
+ else
+ if Known_Esize (E) and then Unknown_RM_Size (E) then
+ Set_RM_Size (E, Esize (E));
+ end if;
+ end if;
+
+ Set_Prim_Alignment (E);
+
+ -- Non-primitive types
+
+ else
+ -- If RM_Size is known, set Esize if not known
+
+ if Known_RM_Size (E) and then Unknown_Esize (E) then
+
+ -- If the alignment is known, we bump the Esize up to the
+ -- next alignment boundary if it is not already on one.
+
+ if Known_Alignment (E) then
+ declare
+ A : constant Uint := Alignment_In_Bits (E);
+ S : constant SO_Ref := RM_Size (E);
+
+ begin
+ Set_Esize (E, (S * A + A - 1) / A);
+ end;
+ end if;
+
+ -- If Esize is set, and RM_Size is not, RM_Size is copied from
+ -- Esize at least for now this seems reasonable, and is in any
+ -- case needed for compatibility with old versions of gigi.
+ -- look to be unknown.
+
+ elsif Known_Esize (E) and then Unknown_RM_Size (E) then
+ Set_RM_Size (E, Esize (E));
+ end if;
+
+ -- For array base types, set component size if object size of
+ -- the component type is known and is a small power of 2 (8,
+ -- 16, 32, 64), since this is what will always be used.
+
+ if Ekind (E) = E_Array_Type
+ and then Unknown_Component_Size (E)
+ then
+ declare
+ CT : constant Entity_Id := Component_Type (E);
+
+ begin
+ -- For some reasons, access types can cause trouble,
+ -- So let's just do this for discrete types ???
+
+ if Present (CT)
+ and then Is_Discrete_Type (CT)
+ and then Known_Static_Esize (CT)
+ then
+ declare
+ S : constant Uint := Esize (CT);
+
+ begin
+ if S = 8 or else
+ S = 16 or else
+ S = 32 or else
+ S = 64
+ then
+ Set_Component_Size (E, Esize (CT));
+ end if;
+ end;
+ end if;
+ end;
+ end if;
+ end if;
+
+ -- Layout array and record types if front end layout set
+
+ if Frontend_Layout_On_Target then
+ if Is_Array_Type (E) and then not Is_Bit_Packed_Array (E) then
+ Layout_Array_Type (E);
+ elsif Is_Record_Type (E) then
+ Layout_Record_Type (E);
+ end if;
+ end if;
+ end Layout_Type;
+
+ ---------------------
+ -- Rewrite_Integer --
+ ---------------------
+
+ procedure Rewrite_Integer (N : Node_Id; V : Uint) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Typ : constant Entity_Id := Etype (N);
+
+ begin
+ Rewrite (N, Make_Integer_Literal (Loc, Intval => V));
+ Set_Etype (N, Typ);
+ end Rewrite_Integer;
+
+ -------------------------------
+ -- Set_And_Check_Static_Size --
+ -------------------------------
+
+ procedure Set_And_Check_Static_Size
+ (E : Entity_Id;
+ Esiz : SO_Ref;
+ RM_Siz : SO_Ref)
+ is
+ SC : Node_Id;
+
+ procedure Check_Size_Too_Small (Spec : Uint; Min : Uint);
+ -- Spec is the number of bit specified in the size clause, and
+ -- Min is the minimum computed size. An error is given that the
+ -- specified size is too small if Spec < Min, and in this case
+ -- both Esize and RM_Size are set to unknown in E. The error
+ -- message is posted on node SC.
+
+ procedure Check_Unused_Bits (Spec : Uint; Max : Uint);
+ -- Spec is the number of bits specified in the size clause, and
+ -- Max is the maximum computed size. A warning is given about
+ -- unused bits if Spec > Max. This warning is posted on node SC.
+
+ --------------------------
+ -- Check_Size_Too_Small --
+ --------------------------
+
+ procedure Check_Size_Too_Small (Spec : Uint; Min : Uint) is
+ begin
+ if Spec < Min then
+ Error_Msg_Uint_1 := Min;
+ Error_Msg_NE
+ ("size for & too small, minimum allowed is ^", SC, E);
+ Init_Esize (E);
+ Init_RM_Size (E);
+ end if;
+ end Check_Size_Too_Small;
+
+ -----------------------
+ -- Check_Unused_Bits --
+ -----------------------
+
+ procedure Check_Unused_Bits (Spec : Uint; Max : Uint) is
+ begin
+ if Spec > Max then
+ Error_Msg_Uint_1 := Spec - Max;
+ Error_Msg_NE ("?^ bits of & unused", SC, E);
+ end if;
+ end Check_Unused_Bits;
+
+ -- Start of processing for Set_And_Check_Static_Size
+
+ begin
+ -- Case where Object_Size (Esize) is already set by a size clause
+
+ if Known_Static_Esize (E) then
+ SC := Size_Clause (E);
+
+ if No (SC) then
+ SC := Get_Attribute_Definition_Clause (E, Attribute_Object_Size);
+ end if;
+
+ -- Perform checks on specified size against computed sizes
+
+ if Present (SC) then
+ Check_Unused_Bits (Esize (E), Esiz);
+ Check_Size_Too_Small (Esize (E), RM_Siz);
+ end if;
+ end if;
+
+ -- Case where Value_Size (RM_Size) is set by specific Value_Size
+ -- clause (we do not need to worry about Value_Size being set by
+ -- a Size clause, since that will have set Esize as well, and we
+ -- already took care of that case).
+
+ if Known_Static_RM_Size (E) then
+ SC := Get_Attribute_Definition_Clause (E, Attribute_Value_Size);
+
+ -- Perform checks on specified size against computed sizes
+
+ if Present (SC) then
+ Check_Unused_Bits (RM_Size (E), Esiz);
+ Check_Size_Too_Small (RM_Size (E), RM_Siz);
+ end if;
+ end if;
+
+ -- Set sizes if unknown
+
+ if Unknown_Esize (E) then
+ Set_Esize (E, Esiz);
+ end if;
+
+ if Unknown_RM_Size (E) then
+ Set_RM_Size (E, RM_Siz);
+ end if;
+ end Set_And_Check_Static_Size;
+
+ --------------------------
+ -- Set_Discrete_RM_Size --
+ --------------------------
+
+ procedure Set_Discrete_RM_Size (Def_Id : Entity_Id) is
+ FST : constant Entity_Id := First_Subtype (Def_Id);
+
+ begin
+ -- All discrete types except for the base types in standard
+ -- are constrained, so indicate this by setting Is_Constrained.
+
+ Set_Is_Constrained (Def_Id);
+
+ -- We set generic types to have an unknown size, since the
+ -- representation of a generic type is irrelevant, in view
+ -- of the fact that they have nothing to do with code.
+
+ if Is_Generic_Type (Root_Type (FST)) then
+ Set_RM_Size (Def_Id, Uint_0);
+
+ -- If the subtype statically matches the first subtype, then
+ -- it is required to have exactly the same layout. This is
+ -- required by aliasing considerations.
+
+ elsif Def_Id /= FST and then
+ Subtypes_Statically_Match (Def_Id, FST)
+ then
+ Set_RM_Size (Def_Id, RM_Size (FST));
+ Set_Size_Info (Def_Id, FST);
+
+ -- In all other cases the RM_Size is set to the minimum size.
+ -- Note that this routine is never called for subtypes for which
+ -- the RM_Size is set explicitly by an attribute clause.
+
+ else
+ Set_RM_Size (Def_Id, UI_From_Int (Minimum_Size (Def_Id)));
+ end if;
+ end Set_Discrete_RM_Size;
+
+ ------------------------
+ -- Set_Prim_Alignment --
+ ------------------------
+
+ procedure Set_Prim_Alignment (E : Entity_Id) is
+ begin
+ -- Do not set alignment for packed array types, unless we are doing
+ -- front end layout, because otherwise this is always handled in the
+ -- backend.
+
+ if Is_Packed_Array_Type (E) and then not Frontend_Layout_On_Target then
+ return;
+
+ -- If there is an alignment clause, then we respect it
+
+ elsif Has_Alignment_Clause (E) then
+ return;
+
+ -- If the size is not set, then don't attempt to set the alignment. This
+ -- happens in the backend layout case for access to subprogram types.
+
+ elsif not Known_Static_Esize (E) then
+ return;
+
+ -- For access types, do not set the alignment if the size is less than
+ -- the allowed minimum size. This avoids cascaded error messages.
+
+ elsif Is_Access_Type (E)
+ and then Esize (E) < System_Address_Size
+ then
+ return;
+ end if;
+
+ -- Here we calculate the alignment as the largest power of two
+ -- multiple of System.Storage_Unit that does not exceed either
+ -- the actual size of the type, or the maximum allowed alignment.
+
+ declare
+ S : constant Int :=
+ UI_To_Int (Esize (E)) / SSU;
+ A : Nat;
+
+ begin
+ A := 1;
+ while 2 * A <= Ttypes.Maximum_Alignment
+ and then 2 * A <= S
+ loop
+ A := 2 * A;
+ end loop;
+
+ -- Now we think we should set the alignment to A, but we
+ -- skip this if an alignment is already set to a value
+ -- greater than A (happens for derived types).
+
+ -- However, if the alignment is known and too small it
+ -- must be increased, this happens in a case like:
+
+ -- type R is new Character;
+ -- for R'Size use 16;
+
+ -- Here the alignment inherited from Character is 1, but
+ -- it must be increased to 2 to reflect the increased size.
+
+ if Unknown_Alignment (E) or else Alignment (E) < A then
+ Init_Alignment (E, A);
+ end if;
+ end;
+ end Set_Prim_Alignment;
+
+ ----------------------
+ -- SO_Ref_From_Expr --
+ ----------------------
+
+ function SO_Ref_From_Expr
+ (Expr : Node_Id;
+ Ins_Type : Entity_Id;
+ Vtype : Entity_Id := Empty)
+ return Dynamic_SO_Ref
+ is
+ Loc : constant Source_Ptr := Sloc (Ins_Type);
+
+ K : constant Entity_Id :=
+ Make_Defining_Identifier (Loc,
+ Chars => New_Internal_Name ('K'));
+
+ Decl : Node_Id;
+
+ function Check_Node_V_Ref (N : Node_Id) return Traverse_Result;
+ -- Function used to check one node for reference to V
+
+ function Has_V_Ref is new Traverse_Func (Check_Node_V_Ref);
+ -- Function used to traverse tree to check for reference to V
+
+ ----------------------
+ -- Check_Node_V_Ref --
+ ----------------------
+
+ function Check_Node_V_Ref (N : Node_Id) return Traverse_Result is
+ begin
+ if Nkind (N) = N_Identifier then
+ if Chars (N) = Vname then
+ return Abandon;
+ else
+ return Skip;
+ end if;
+
+ else
+ return OK;
+ end if;
+ end Check_Node_V_Ref;
+
+ -- Start of processing for SO_Ref_From_Expr
+
+ begin
+ -- Case of expression is an integer literal, in this case we just
+ -- return the value (which must always be non-negative, since size
+ -- and offset values can never be negative).
+
+ if Nkind (Expr) = N_Integer_Literal then
+ pragma Assert (Intval (Expr) >= 0);
+ return Intval (Expr);
+ end if;
+
+ -- Case where there is a reference to V, create function
+
+ if Has_V_Ref (Expr) = Abandon then
+
+ pragma Assert (Present (Vtype));
+ Set_Is_Discrim_SO_Function (K);
+
+ Decl :=
+ Make_Subprogram_Body (Loc,
+
+ Specification =>
+ Make_Function_Specification (Loc,
+ Defining_Unit_Name => K,
+ Parameter_Specifications => New_List (
+ Make_Parameter_Specification (Loc,
+ Defining_Identifier =>
+ Make_Defining_Identifier (Loc, Chars => Vname),
+ Parameter_Type =>
+ New_Occurrence_Of (Vtype, Loc))),
+ Subtype_Mark =>
+ New_Occurrence_Of (Standard_Unsigned, Loc)),
+
+ Declarations => Empty_List,
+
+ Handled_Statement_Sequence =>
+ Make_Handled_Sequence_Of_Statements (Loc,
+ Statements => New_List (
+ Make_Return_Statement (Loc,
+ Expression => Expr))));
+
+ -- No reference to V, create constant
+
+ else
+ Decl :=
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => K,
+ Object_Definition =>
+ New_Occurrence_Of (Standard_Unsigned, Loc),
+ Constant_Present => True,
+ Expression => Expr);
+ end if;
+
+ Append_Freeze_Action (Ins_Type, Decl);
+ Analyze (Decl);
+ return Create_Dynamic_SO_Ref (K);
+ end SO_Ref_From_Expr;
+
+end Layout;