summaryrefslogtreecommitdiff
path: root/gcc/ada/s-mastop-x86.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc/ada/s-mastop-x86.adb')
-rw-r--r--gcc/ada/s-mastop-x86.adb594
1 files changed, 0 insertions, 594 deletions
diff --git a/gcc/ada/s-mastop-x86.adb b/gcc/ada/s-mastop-x86.adb
deleted file mode 100644
index 9f182292317..00000000000
--- a/gcc/ada/s-mastop-x86.adb
+++ /dev/null
@@ -1,594 +0,0 @@
-------------------------------------------------------------------------------
--- --
--- GNAT COMPILER COMPONENTS --
--- --
--- SYSTEM.MACHINE_STATE_OPERATIONS --
--- --
--- B o d y --
--- (Version for x86) --
--- --
--- Copyright (C) 1999-2004 Ada Core Technologies, Inc. --
--- --
--- GNAT is free software; you can redistribute it and/or modify it under --
--- terms of the GNU General Public License as published by the Free Soft- --
--- ware Foundation; either version 2, or (at your option) any later ver- --
--- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
--- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
--- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
--- for more details. You should have received a copy of the GNU General --
--- Public License distributed with GNAT; see file COPYING. If not, write --
--- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
--- Boston, MA 02110-1301, USA. --
--- --
--- As a special exception, if other files instantiate generics from this --
--- unit, or you link this unit with other files to produce an executable, --
--- this unit does not by itself cause the resulting executable to be --
--- covered by the GNU General Public License. This exception does not --
--- however invalidate any other reasons why the executable file might be --
--- covered by the GNU Public License. --
--- --
--- GNAT was originally developed by the GNAT team at New York University. --
--- Extensive contributions were provided by Ada Core Technologies Inc. --
--- --
-------------------------------------------------------------------------------
-
--- Note: it is very important that this unit not generate any exception
--- tables of any kind. Otherwise we get a nasty rtsfind recursion problem.
--- This means no subprograms, including implicitly generated ones.
-
-with Unchecked_Conversion;
-with System.Storage_Elements;
-with System.Machine_Code; use System.Machine_Code;
-with System.Memory;
-
-package body System.Machine_State_Operations is
-
- function "+" (Left, Right : Address) return Address;
- pragma Import (Intrinsic, "+");
- -- Provide addition operation on type Address (this may not be directly
- -- available if type System.Address is non-private and the operations on
- -- the type are made abstract to hide them from public users of System).
-
- use System.Exceptions;
-
- type Uns8 is mod 2 ** 8;
- type Uns32 is mod 2 ** 32;
-
- type Bits5 is mod 2 ** 5;
- type Bits6 is mod 2 ** 6;
-
- function To_Address is new Unchecked_Conversion (Uns32, Address);
-
- type Uns32_Ptr is access all Uns32;
- function To_Uns32_Ptr is new Unchecked_Conversion (Uns32, Uns32_Ptr);
-
- -- Note: the type Uns32 has an alignment of 4. However, in some cases
- -- values of type Uns32_Ptr will not be aligned (notably in the case
- -- where we get the immediate field from an instruction). However this
- -- does not matter in practice, since the x86 does not require that
- -- operands be aligned.
-
- ----------------------
- -- General Approach --
- ----------------------
-
- -- For the x86 version of this unit, the Subprogram_Info_Type values
- -- are simply the starting code address for the subprogram. Popping
- -- of stack frames works by analyzing the code in the prolog, and
- -- deriving from this analysis the necessary information for restoring
- -- the registers, including the return point.
-
- ---------------------------
- -- Description of Prolog --
- ---------------------------
-
- -- If a frame pointer is present, the prolog looks like
-
- -- pushl %ebp
- -- movl %esp,%ebp
- -- subl $nnn,%esp omitted if nnn = 0
- -- pushl %edi omitted if edi not used
- -- pushl %esi omitted if esi not used
- -- pushl %ebx omitted if ebx not used
-
- -- If a frame pointer is not present, the prolog looks like
-
- -- subl $nnn,%esp omitted if nnn = 0
- -- pushl %ebp omitted if ebp not used
- -- pushl %edi omitted if edi not used
- -- pushl %esi omitted if esi not used
- -- pushl %ebx omitted if ebx not used
-
- -- Note: any or all of the save over call registers may be used and
- -- if so, will be saved using pushl as shown above. The order of the
- -- pushl instructions will be as shown above for gcc generated code,
- -- but the code in this unit does not assume this.
-
- -------------------------
- -- Description of Call --
- -------------------------
-
- -- A call looks like:
-
- -- pushl ... push parameters
- -- pushl ...
- -- call ... perform the call
- -- addl $nnn,%esp omitted if no parameters
-
- -- Note that we are not absolutely guaranteed that the call is always
- -- followed by an addl operation that readjusts %esp for this particular
- -- call. There are two reasons for this:
-
- -- 1) The addl can be delayed and combined in the case where more than
- -- one call appears in sequence. This can be suppressed by using the
- -- switch -fno-defer-pop and for Ada code, we automatically use
- -- this switch, but we could still be dealing with C code that was
- -- compiled without using this switch.
-
- -- 2) Scheduling may result in moving the addl instruction away from
- -- the call. It is not clear if this actually can happen at the
- -- current time, but it is certainly conceptually possible.
-
- -- The addl after the call is important, since we need to be able to
- -- restore the proper %esp value when we pop the stack. However, we do
- -- not try to compensate for either of the above effects. As noted above,
- -- case 1 does not occur for Ada code, and it does not appear in practice
- -- that case 2 occurs with any significant frequency (we have never seen
- -- an example so far for gcc generated code).
-
- -- Furthermore, it is only in the case of -fomit-frame-pointer that we
- -- really get into trouble from not properly restoring %esp. If we have
- -- a frame pointer, then the worst that happens is that %esp is slightly
- -- more depressed than it should be. This could waste a bit of space on
- -- the stack, and even in some cases cause a storage leak on the stack,
- -- but it will not affect the functional correctness of the processing.
-
- ----------------------------------------
- -- Definitions of Instruction Formats --
- ----------------------------------------
-
- type Rcode is (eax, ecx, edx, ebx, esp, ebp, esi, edi);
- pragma Warnings (Off, Rcode);
- -- Code indicating which register is referenced in an instruction
-
- -- The following define the format of a pushl instruction
-
- Op_pushl : constant Bits5 := 2#01010#;
-
- type Ins_pushl is record
- Op : Bits5 := Op_pushl;
- Reg : Rcode;
- end record;
-
- for Ins_pushl use record
- Op at 0 range 3 .. 7;
- Reg at 0 range 0 .. 2;
- end record;
-
- Ins_pushl_ebp : constant Ins_pushl := (Op_pushl, Reg => ebp);
-
- type Ins_pushl_Ptr is access all Ins_pushl;
-
- -- For the movl %esp,%ebp instruction, we only need to know the length
- -- because we simply skip past it when we analyze the prolog.
-
- Ins_movl_length : constant := 2;
-
- -- The following define the format of addl/subl esp instructions
-
- Op_Immed : constant Bits6 := 2#100000#;
-
- Op2_addl_Immed : constant Bits5 := 2#11100#;
- pragma Unreferenced (Op2_addl_Immed);
-
- Op2_subl_Immed : constant Bits5 := 2#11101#;
-
- type Word_Byte is (Word, Byte);
- pragma Unreferenced (Byte);
-
- type Ins_addl_subl_byte is record
- Op : Bits6; -- Set to Op_Immed
- w : Word_Byte; -- Word/Byte flag (set to 1 = byte)
- s : Boolean; -- Sign extension bit (1 = extend)
- Op2 : Bits5; -- Secondary opcode
- Reg : Rcode; -- Register
- Imm8 : Uns8; -- Immediate operand
- end record;
-
- for Ins_addl_subl_byte use record
- Op at 0 range 2 .. 7;
- w at 0 range 1 .. 1;
- s at 0 range 0 .. 0;
- Op2 at 1 range 3 .. 7;
- Reg at 1 range 0 .. 2;
- Imm8 at 2 range 0 .. 7;
- end record;
-
- type Ins_addl_subl_word is record
- Op : Bits6; -- Set to Op_Immed
- w : Word_Byte; -- Word/Byte flag (set to 0 = word)
- s : Boolean; -- Sign extension bit (1 = extend)
- Op2 : Bits5; -- Secondary opcode
- Reg : Rcode; -- Register
- Imm32 : Uns32; -- Immediate operand
- end record;
-
- for Ins_addl_subl_word use record
- Op at 0 range 2 .. 7;
- w at 0 range 1 .. 1;
- s at 0 range 0 .. 0;
- Op2 at 1 range 3 .. 7;
- Reg at 1 range 0 .. 2;
- Imm32 at 2 range 0 .. 31;
- end record;
-
- type Ins_addl_subl_byte_Ptr is access all Ins_addl_subl_byte;
- type Ins_addl_subl_word_Ptr is access all Ins_addl_subl_word;
-
- ---------------------
- -- Prolog Analysis --
- ---------------------
-
- -- The analysis of the prolog answers the following questions:
-
- -- 1. Is %ebp used as a frame pointer?
- -- 2. How far is SP depressed (i.e. what is the stack frame size)
- -- 3. Which registers are saved in the prolog, and in what order
-
- -- The following data structure stores the answers to these questions
-
- subtype SOC is Rcode range ebx .. edi;
- -- Possible save over call registers
-
- SOC_Max : constant := 4;
- -- Max number of SOC registers that can be pushed
-
- type SOC_Push_Regs_Type is array (1 .. 4) of Rcode;
- -- Used to hold the register codes of pushed SOC registers
-
- type Prolog_Type is record
-
- Frame_Reg : Boolean;
- -- This is set to True if %ebp is used as a frame register, and
- -- False otherwise (in the False case, %ebp may be saved in the
- -- usual manner along with the other SOC registers).
-
- Frame_Length : Uns32;
- -- Amount by which ESP is decremented on entry, includes the effects
- -- of push's of save over call registers as indicated above, e.g. if
- -- the prolog of a routine is:
- --
- -- pushl %ebp
- -- movl %esp,%ebp
- -- subl $424,%esp
- -- pushl %edi
- -- pushl %esi
- -- pushl %ebx
- --
- -- Then the value of Frame_Length would be 436 (424 + 3 * 4). A
- -- precise definition is that it is:
- --
- -- %esp on entry minus %esp after last SOC push
- --
- -- That definition applies both in the frame pointer present and
- -- the frame pointer absent cases.
-
- Num_SOC_Push : Integer range 0 .. SOC_Max;
- -- Number of save over call registers actually saved by pushl
- -- instructions (other than the initial pushl to save the frame
- -- pointer if a frame pointer is in use).
-
- SOC_Push_Regs : SOC_Push_Regs_Type;
- -- The First Num_SOC_Push entries of this array are used to contain
- -- the codes for the SOC registers, in the order in which they were
- -- pushed. Note that this array excludes %ebp if it is used as a frame
- -- register, since although %ebp is still considered an SOC register
- -- in this case, it is saved and restored by a separate mechanism.
- -- Also we will never see %esp represented in this list. Again, it is
- -- true that %esp is saved over call, but it is restored by a separate
- -- mechanism.
-
- end record;
-
- procedure Analyze_Prolog (A : Address; Prolog : out Prolog_Type);
- -- Given the address of the start of the prolog for a procedure,
- -- analyze the instructions of the prolog, and set Prolog to contain
- -- the information obtained from this analysis.
-
- ----------------------------------
- -- Machine_State_Representation --
- ----------------------------------
-
- -- The type Machine_State is defined in the body of Ada.Exceptions as
- -- a Storage_Array of length 1 .. Machine_State_Length. But really it
- -- has structure as defined here. We use the structureless declaration
- -- in Ada.Exceptions to avoid this unit from being implementation
- -- dependent. The actual definition of Machine_State is as follows:
-
- type SOC_Regs_Type is array (SOC) of Uns32;
-
- type MState is record
- eip : Uns32;
- -- The instruction pointer location (which is the return point
- -- value from the next level down in all cases).
-
- Regs : SOC_Regs_Type;
- -- Values of the save over call registers
- end record;
-
- for MState use record
- eip at 0 range 0 .. 31;
- Regs at 4 range 0 .. 5 * 32 - 1;
- end record;
- -- Note: the routines Enter_Handler, and Set_Machine_State reference
- -- the fields in this structure non-symbolically.
-
- type MState_Ptr is access all MState;
-
- function To_MState_Ptr is
- new Unchecked_Conversion (Machine_State, MState_Ptr);
-
- ----------------------------
- -- Allocate_Machine_State --
- ----------------------------
-
- function Allocate_Machine_State return Machine_State is
- use System.Storage_Elements;
-
- begin
- return Machine_State
- (Memory.Alloc (MState'Max_Size_In_Storage_Elements));
- end Allocate_Machine_State;
-
- --------------------
- -- Analyze_Prolog --
- --------------------
-
- procedure Analyze_Prolog (A : Address; Prolog : out Prolog_Type) is
- Ptr : Address;
- Ppl : Ins_pushl_Ptr;
- Pas : Ins_addl_subl_byte_Ptr;
-
- function To_Ins_pushl_Ptr is
- new Unchecked_Conversion (Address, Ins_pushl_Ptr);
-
- function To_Ins_addl_subl_byte_Ptr is
- new Unchecked_Conversion (Address, Ins_addl_subl_byte_Ptr);
-
- function To_Ins_addl_subl_word_Ptr is
- new Unchecked_Conversion (Address, Ins_addl_subl_word_Ptr);
-
- begin
- Ptr := A;
- Prolog.Frame_Length := 0;
-
- if Ptr = Null_Address then
- Prolog.Num_SOC_Push := 0;
- Prolog.Frame_Reg := True;
- return;
- end if;
-
- if To_Ins_pushl_Ptr (Ptr).all = Ins_pushl_ebp then
- Ptr := Ptr + 1 + Ins_movl_length;
- Prolog.Frame_Reg := True;
- else
- Prolog.Frame_Reg := False;
- end if;
-
- Pas := To_Ins_addl_subl_byte_Ptr (Ptr);
-
- if Pas.Op = Op_Immed
- and then Pas.Op2 = Op2_subl_Immed
- and then Pas.Reg = esp
- then
- if Pas.w = Word then
- Prolog.Frame_Length := Prolog.Frame_Length +
- To_Ins_addl_subl_word_Ptr (Ptr).Imm32;
- Ptr := Ptr + 6;
-
- else
- Prolog.Frame_Length := Prolog.Frame_Length + Uns32 (Pas.Imm8);
- Ptr := Ptr + 3;
-
- -- Note: we ignore sign extension, since a sign extended
- -- value that was negative would imply a ludicrous frame size.
- end if;
- end if;
-
- -- Now scan push instructions for SOC registers
-
- Prolog.Num_SOC_Push := 0;
-
- loop
- Ppl := To_Ins_pushl_Ptr (Ptr);
-
- if Ppl.Op = Op_pushl and then Ppl.Reg in SOC then
- Prolog.Num_SOC_Push := Prolog.Num_SOC_Push + 1;
- Prolog.SOC_Push_Regs (Prolog.Num_SOC_Push) := Ppl.Reg;
- Prolog.Frame_Length := Prolog.Frame_Length + 4;
- Ptr := Ptr + 1;
-
- else
- exit;
- end if;
- end loop;
-
- end Analyze_Prolog;
-
- -------------------
- -- Enter_Handler --
- -------------------
-
- procedure Enter_Handler (M : Machine_State; Handler : Handler_Loc) is
- begin
- Asm ("mov %0,%%edx", Inputs => Machine_State'Asm_Input ("r", M));
- Asm ("mov %0,%%eax", Inputs => Handler_Loc'Asm_Input ("r", Handler));
-
- Asm ("mov 4(%%edx),%%ebx"); -- M.Regs (ebx)
- Asm ("mov 12(%%edx),%%ebp"); -- M.Regs (ebp)
- Asm ("mov 16(%%edx),%%esi"); -- M.Regs (esi)
- Asm ("mov 20(%%edx),%%edi"); -- M.Regs (edi)
- Asm ("mov 8(%%edx),%%esp"); -- M.Regs (esp)
- Asm ("jmp %*%%eax");
- end Enter_Handler;
-
- ----------------
- -- Fetch_Code --
- ----------------
-
- function Fetch_Code (Loc : Code_Loc) return Code_Loc is
- begin
- return Loc;
- end Fetch_Code;
-
- ------------------------
- -- Free_Machine_State --
- ------------------------
-
- procedure Free_Machine_State (M : in out Machine_State) is
- begin
- Memory.Free (Address (M));
- M := Machine_State (Null_Address);
- end Free_Machine_State;
-
- ------------------
- -- Get_Code_Loc --
- ------------------
-
- function Get_Code_Loc (M : Machine_State) return Code_Loc is
-
- Asm_Call_Size : constant := 2;
- -- Minimum size for a call instruction under ix86. Using the minimum
- -- size is safe here as the call point computed from the return point
- -- will always be inside the call instruction.
-
- MS : constant MState_Ptr := To_MState_Ptr (M);
-
- begin
- if MS.eip = 0 then
- return To_Address (MS.eip);
- else
- -- When doing a call the return address is pushed to the stack.
- -- We want to return the call point address, so we subtract
- -- Asm_Call_Size from the return address. This value is set
- -- to 5 as an asm call takes 5 bytes on x86 architectures.
-
- return To_Address (MS.eip - Asm_Call_Size);
- end if;
- end Get_Code_Loc;
-
- --------------------------
- -- Machine_State_Length --
- --------------------------
-
- function Machine_State_Length
- return System.Storage_Elements.Storage_Offset
- is
- begin
- return MState'Max_Size_In_Storage_Elements;
- end Machine_State_Length;
-
- ---------------
- -- Pop_Frame --
- ---------------
-
- procedure Pop_Frame
- (M : Machine_State;
- Info : Subprogram_Info_Type)
- is
- MS : constant MState_Ptr := To_MState_Ptr (M);
- PL : Prolog_Type;
-
- SOC_Ptr : Uns32;
- -- Pointer to stack location after last SOC push
-
- Rtn_Ptr : Uns32;
- -- Pointer to stack location containing return address
-
- begin
- Analyze_Prolog (Info, PL);
-
- -- Case of frame register, use EBP, safer than ESP
-
- if PL.Frame_Reg then
- SOC_Ptr := MS.Regs (ebp) - PL.Frame_Length;
- Rtn_Ptr := MS.Regs (ebp) + 4;
- MS.Regs (ebp) := To_Uns32_Ptr (MS.Regs (ebp)).all;
-
- -- No frame pointer, use ESP, and hope we have it exactly right!
-
- else
- SOC_Ptr := MS.Regs (esp);
- Rtn_Ptr := SOC_Ptr + PL.Frame_Length;
- end if;
-
- -- Get saved values of SOC registers
-
- for J in reverse 1 .. PL.Num_SOC_Push loop
- MS.Regs (PL.SOC_Push_Regs (J)) := To_Uns32_Ptr (SOC_Ptr).all;
- SOC_Ptr := SOC_Ptr + 4;
- end loop;
-
- MS.eip := To_Uns32_Ptr (Rtn_Ptr).all;
- MS.Regs (esp) := Rtn_Ptr + 4;
- end Pop_Frame;
-
- -----------------------
- -- Set_Machine_State --
- -----------------------
-
- procedure Set_Machine_State (M : Machine_State) is
- N : constant Asm_Output_Operand := No_Output_Operands;
-
- begin
- Asm ("mov %0,%%edx", N, Machine_State'Asm_Input ("r", M));
-
- -- At this stage, we have the following situation (note that we
- -- are assuming that the -fomit-frame-pointer switch has not been
- -- used in compiling this procedure.
-
- -- (value of M)
- -- return point
- -- old ebp <------ current ebp/esp value
-
- -- The values of registers ebx/esi/edi are unchanged from entry
- -- so they have the values we want, and %edx points to the parameter
- -- value M, so we can store these values directly.
-
- Asm ("mov %%ebx,4(%%edx)"); -- M.Regs (ebx)
- Asm ("mov %%esi,16(%%edx)"); -- M.Regs (esi)
- Asm ("mov %%edi,20(%%edx)"); -- M.Regs (edi)
-
- -- The desired value of ebp is the old value
-
- Asm ("mov 0(%%ebp),%%eax");
- Asm ("mov %%eax,12(%%edx)"); -- M.Regs (ebp)
-
- -- The return point is the desired eip value
-
- Asm ("mov 4(%%ebp),%%eax");
- Asm ("mov %%eax,(%%edx)"); -- M.eip
-
- -- Finally, the desired %esp value is the value at the point of
- -- call to this routine *before* pushing the parameter value.
-
- Asm ("lea 12(%%ebp),%%eax");
- Asm ("mov %%eax,8(%%edx)"); -- M.Regs (esp)
- end Set_Machine_State;
-
- ------------------------------
- -- Set_Signal_Machine_State --
- ------------------------------
-
- procedure Set_Signal_Machine_State
- (M : Machine_State;
- Context : System.Address)
- is
- pragma Warnings (Off, M);
- pragma Warnings (Off, Context);
-
- begin
- null;
- end Set_Signal_Machine_State;
-
-end System.Machine_State_Operations;