diff options
Diffstat (limited to 'gcc/ada/sem_aggr.adb')
-rw-r--r-- | gcc/ada/sem_aggr.adb | 2848 |
1 files changed, 2848 insertions, 0 deletions
diff --git a/gcc/ada/sem_aggr.adb b/gcc/ada/sem_aggr.adb new file mode 100644 index 00000000000..29778ff49b0 --- /dev/null +++ b/gcc/ada/sem_aggr.adb @@ -0,0 +1,2848 @@ +------------------------------------------------------------------------------ +-- -- +-- GNAT COMPILER COMPONENTS -- +-- -- +-- S E M _ A G G R -- +-- -- +-- B o d y -- +-- -- +-- $Revision: 1.232 $ +-- -- +-- Copyright (C) 1992-2001 Free Software Foundation, Inc. -- +-- -- +-- GNAT is free software; you can redistribute it and/or modify it under -- +-- terms of the GNU General Public License as published by the Free Soft- -- +-- ware Foundation; either version 2, or (at your option) any later ver- -- +-- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- +-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- +-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- +-- for more details. You should have received a copy of the GNU General -- +-- Public License distributed with GNAT; see file COPYING. If not, write -- +-- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, -- +-- MA 02111-1307, USA. -- +-- -- +-- GNAT was originally developed by the GNAT team at New York University. -- +-- It is now maintained by Ada Core Technologies Inc (http://www.gnat.com). -- +-- -- +------------------------------------------------------------------------------ + +with Atree; use Atree; +with Checks; use Checks; +with Einfo; use Einfo; +with Elists; use Elists; +with Errout; use Errout; +with Exp_Util; use Exp_Util; +with Freeze; use Freeze; +with Itypes; use Itypes; +with Namet; use Namet; +with Nmake; use Nmake; +with Nlists; use Nlists; +with Opt; use Opt; +with Sem; use Sem; +with Sem_Cat; use Sem_Cat; +with Sem_Ch8; use Sem_Ch8; +with Sem_Ch13; use Sem_Ch13; +with Sem_Eval; use Sem_Eval; +with Sem_Res; use Sem_Res; +with Sem_Util; use Sem_Util; +with Sem_Type; use Sem_Type; +with Sinfo; use Sinfo; +with Snames; use Snames; +with Stringt; use Stringt; +with Stand; use Stand; +with Tbuild; use Tbuild; +with Uintp; use Uintp; + +with GNAT.Spelling_Checker; use GNAT.Spelling_Checker; + +package body Sem_Aggr is + + type Case_Bounds is record + Choice_Lo : Node_Id; + Choice_Hi : Node_Id; + Choice_Node : Node_Id; + end record; + + type Case_Table_Type is array (Nat range <>) of Case_Bounds; + -- Table type used by Check_Case_Choices procedure + + ----------------------- + -- Local Subprograms -- + ----------------------- + + procedure Sort_Case_Table (Case_Table : in out Case_Table_Type); + -- Sort the Case Table using the Lower Bound of each Choice as the key. + -- A simple insertion sort is used since the number of choices in a case + -- statement of variant part will usually be small and probably in near + -- sorted order. + + ------------------------------------------------------ + -- Subprograms used for RECORD AGGREGATE Processing -- + ------------------------------------------------------ + + procedure Resolve_Record_Aggregate (N : Node_Id; Typ : Entity_Id); + -- This procedure performs all the semantic checks required for record + -- aggregates. Note that for aggregates analysis and resolution go + -- hand in hand. Aggregate analysis has been delayed up to here and + -- it is done while resolving the aggregate. + -- + -- N is the N_Aggregate node. + -- Typ is the record type for the aggregate resolution + -- + -- While performing the semantic checks, this procedure + -- builds a new Component_Association_List where each record field + -- appears alone in a Component_Choice_List along with its corresponding + -- expression. The record fields in the Component_Association_List + -- appear in the same order in which they appear in the record type Typ. + -- + -- Once this new Component_Association_List is built and all the + -- semantic checks performed, the original aggregate subtree is replaced + -- with the new named record aggregate just built. Note that the subtree + -- substitution is performed with Rewrite so as to be + -- able to retrieve the original aggregate. + -- + -- The aggregate subtree manipulation performed by Resolve_Record_Aggregate + -- yields the aggregate format expected by Gigi. Typically, this kind of + -- tree manipulations are done in the expander. However, because the + -- semantic checks that need to be performed on record aggregates really + -- go hand in hand with the record aggreagate normalization, the aggregate + -- subtree transformation is performed during resolution rather than + -- expansion. Had we decided otherwise we would have had to duplicate + -- most of the code in the expansion procedure Expand_Record_Aggregate. + -- Note, however, that all the expansion concerning aggegates for tagged + -- records is done in Expand_Record_Aggregate. + -- + -- The algorithm of Resolve_Record_Aggregate proceeds as follows: + -- + -- 1. Make sure that the record type against which the record aggregate + -- has to be resolved is not abstract. Furthermore if the type is + -- a null aggregate make sure the input aggregate N is also null. + -- + -- 2. Verify that the structure of the aggregate is that of a record + -- aggregate. Specifically, look for component associations and ensure + -- that each choice list only has identifiers or the N_Others_Choice + -- node. Also make sure that if present, the N_Others_Choice occurs + -- last and by itself. + -- + -- 3. If Typ contains discriminants, the values for each discriminant + -- is looked for. If the record type Typ has variants, we check + -- that the expressions corresponding to each discriminant ruling + -- the (possibly nested) variant parts of Typ, are static. This + -- allows us to determine the variant parts to which the rest of + -- the aggregate must conform. The names of discriminants with their + -- values are saved in a new association list, New_Assoc_List which + -- is later augmented with the names and values of the remaining + -- components in the record type. + -- + -- During this phase we also make sure that every discriminant is + -- assigned exactly one value. Note that when several values + -- for a given discriminant are found, semantic processing continues + -- looking for further errors. In this case it's the first + -- discriminant value found which we will be recorded. + -- + -- IMPORTANT NOTE: For derived tagged types this procedure expects + -- First_Discriminant and Next_Discriminant to give the correct list + -- of discriminants, in the correct order. + -- + -- 4. After all the discriminant values have been gathered, we can + -- set the Etype of the record aggregate. If Typ contains no + -- discriminants this is straightforward: the Etype of N is just + -- Typ, otherwise a new implicit constrained subtype of Typ is + -- built to be the Etype of N. + -- + -- 5. Gather the remaining record components according to the discriminant + -- values. This involves recursively traversing the record type + -- structure to see what variants are selected by the given discriminant + -- values. This processing is a little more convoluted if Typ is a + -- derived tagged types since we need to retrieve the record structure + -- of all the ancestors of Typ. + -- + -- 6. After gathering the record components we look for their values + -- in the record aggregate and emit appropriate error messages + -- should we not find such values or should they be duplicated. + -- + -- 7. We then make sure no illegal component names appear in the + -- record aggegate and make sure that the type of the record + -- components appearing in a same choice list is the same. + -- Finally we ensure that the others choice, if present, is + -- used to provide the value of at least a record component. + -- + -- 8. The original aggregate node is replaced with the new named + -- aggregate built in steps 3 through 6, as explained earlier. + -- + -- Given the complexity of record aggregate resolution, the primary + -- goal of this routine is clarity and simplicity rather than execution + -- and storage efficiency. If there are only positional components in the + -- aggregate the running time is linear. If there are associations + -- the running time is still linear as long as the order of the + -- associations is not too far off the order of the components in the + -- record type. If this is not the case the running time is at worst + -- quadratic in the size of the association list. + + procedure Check_Misspelled_Component + (Elements : Elist_Id; + Component : Node_Id); + -- Give possible misspelling diagnostic if Component is likely to be + -- a misspelling of one of the components of the Assoc_List. + -- This is called by Resolv_Aggr_Expr after producing + -- an invalid component error message. + + procedure Check_Static_Discriminated_Subtype (T : Entity_Id; V : Node_Id); + -- An optimization: determine whether a discriminated subtype has a + -- static constraint, and contains array components whose length is also + -- static, either because they are constrained by the discriminant, or + -- because the original component bounds are static. + + ----------------------------------------------------- + -- Subprograms used for ARRAY AGGREGATE Processing -- + ----------------------------------------------------- + + function Resolve_Array_Aggregate + (N : Node_Id; + Index : Node_Id; + Index_Constr : Node_Id; + Component_Typ : Entity_Id; + Others_Allowed : Boolean) + return Boolean; + -- This procedure performs the semantic checks for an array aggregate. + -- True is returned if the aggregate resolution succeeds. + -- The procedure works by recursively checking each nested aggregate. + -- Specifically, after checking a sub-aggreate nested at the i-th level + -- we recursively check all the subaggregates at the i+1-st level (if any). + -- Note that for aggregates analysis and resolution go hand in hand. + -- Aggregate analysis has been delayed up to here and it is done while + -- resolving the aggregate. + -- + -- N is the current N_Aggregate node to be checked. + -- + -- Index is the index node corresponding to the array sub-aggregate that + -- we are currently checking (RM 4.3.3 (8)). Its Etype is the + -- corresponding index type (or subtype). + -- + -- Index_Constr is the node giving the applicable index constraint if + -- any (RM 4.3.3 (10)). It "is a constraint provided by certain + -- contexts [...] that can be used to determine the bounds of the array + -- value specified by the aggregate". If Others_Allowed below is False + -- there is no applicable index constraint and this node is set to Index. + -- + -- Component_Typ is the array component type. + -- + -- Others_Allowed indicates whether an others choice is allowed + -- in the context where the top-level aggregate appeared. + -- + -- The algorithm of Resolve_Array_Aggregate proceeds as follows: + -- + -- 1. Make sure that the others choice, if present, is by itself and + -- appears last in the sub-aggregate. Check that we do not have + -- positional and named components in the array sub-aggregate (unless + -- the named association is an others choice). Finally if an others + -- choice is present, make sure it is allowed in the aggregate contex. + -- + -- 2. If the array sub-aggregate contains discrete_choices: + -- + -- (A) Verify their validity. Specifically verify that: + -- + -- (a) If a null range is present it must be the only possible + -- choice in the array aggregate. + -- + -- (b) Ditto for a non static range. + -- + -- (c) Ditto for a non static expression. + -- + -- In addition this step analyzes and resolves each discrete_choice, + -- making sure that its type is the type of the corresponding Index. + -- If we are not at the lowest array aggregate level (in the case of + -- multi-dimensional aggregates) then invoke Resolve_Array_Aggregate + -- recursively on each component expression. Otherwise, resolve the + -- bottom level component expressions against the expected component + -- type ONLY IF the component corresponds to a single discrete choice + -- which is not an others choice (to see why read the DELAYED + -- COMPONENT RESOLUTION below). + -- + -- (B) Determine the bounds of the sub-aggregate and lowest and + -- highest choice values. + -- + -- 3. For positional aggregates: + -- + -- (A) Loop over the component expressions either recursively invoking + -- Resolve_Array_Aggregate on each of these for multi-dimensional + -- array aggregates or resolving the bottom level component + -- expressions against the expected component type. + -- + -- (B) Determine the bounds of the positional sub-aggregates. + -- + -- 4. Try to determine statically whether the evaluation of the array + -- sub-aggregate raises Constraint_Error. If yes emit proper + -- warnings. The precise checks are the following: + -- + -- (A) Check that the index range defined by aggregate bounds is + -- compatible with corresponding index subtype. + -- We also check against the base type. In fact it could be that + -- Low/High bounds of the base type are static whereas those of + -- the index subtype are not. Thus if we can statically catch + -- a problem with respect to the base type we are guaranteed + -- that the same problem will arise with the index subtype + -- + -- (B) If we are dealing with a named aggregate containing an others + -- choice and at least one discrete choice then make sure the range + -- specified by the discrete choices does not overflow the + -- aggregate bounds. We also check against the index type and base + -- type bounds for the same reasons given in (A). + -- + -- (C) If we are dealing with a positional aggregate with an others + -- choice make sure the number of positional elements specified + -- does not overflow the aggregate bounds. We also check against + -- the index type and base type bounds as mentioned in (A). + -- + -- Finally construct an N_Range node giving the sub-aggregate bounds. + -- Set the Aggregate_Bounds field of the sub-aggregate to be this + -- N_Range. The routine Array_Aggr_Subtype below uses such N_Ranges + -- to build the appropriate aggregate subtype. Aggregate_Bounds + -- information is needed during expansion. + -- + -- DELAYED COMPONENT RESOLUTION: The resolution of bottom level component + -- expressions in an array aggregate may call Duplicate_Subexpr or some + -- other routine that inserts code just outside the outermost aggregate. + -- If the array aggregate contains discrete choices or an others choice, + -- this may be wrong. Consider for instance the following example. + -- + -- type Rec is record + -- V : Integer := 0; + -- end record; + -- + -- type Acc_Rec is access Rec; + -- Arr : array (1..3) of Acc_Rec := (1 .. 3 => new Rec); + -- + -- Then the transformation of "new Rec" that occurs during resolution + -- entails the following code modifications + -- + -- P7b : constant Acc_Rec := new Rec; + -- Rec_init_proc (P7b.all); + -- Arr : array (1..3) of Acc_Rec := (1 .. 3 => P7b); + -- + -- This code transformation is clearly wrong, since we need to call + -- "new Rec" for each of the 3 array elements. To avoid this problem we + -- delay resolution of the components of non positional array aggregates + -- to the expansion phase. As an optimization, if the discrete choice + -- specifies a single value we do not delay resolution. + + function Array_Aggr_Subtype (N : Node_Id; Typ : Node_Id) return Entity_Id; + -- This routine returns the type or subtype of an array aggregate. + -- + -- N is the array aggregate node whose type we return. + -- + -- Typ is the context type in which N occurs. + -- + -- This routine creates an implicit array subtype whose bouds are + -- those defined by the aggregate. When this routine is invoked + -- Resolve_Array_Aggregate has already processed aggregate N. Thus the + -- Aggregate_Bounds of each sub-aggregate, is an N_Range node giving the + -- sub-aggregate bounds. When building the aggegate itype, this function + -- traverses the array aggregate N collecting such Aggregate_Bounds and + -- constructs the proper array aggregate itype. + -- + -- Note that in the case of multidimensional aggregates each inner + -- sub-aggregate corresponding to a given array dimension, may provide a + -- different bounds. If it is possible to determine statically that + -- some sub-aggregates corresponding to the same index do not have the + -- same bounds, then a warning is emitted. If such check is not possible + -- statically (because some sub-aggregate bounds are dynamic expressions) + -- then this job is left to the expander. In all cases the particular + -- bounds that this function will chose for a given dimension is the first + -- N_Range node for a sub-aggregate corresponding to that dimension. + -- + -- Note that the Raises_Constraint_Error flag of an array aggregate + -- whose evaluation is determined to raise CE by Resolve_Array_Aggregate, + -- is set in Resolve_Array_Aggregate but the aggregate is not + -- immediately replaced with a raise CE. In fact, Array_Aggr_Subtype must + -- first construct the proper itype for the aggregate (Gigi needs + -- this). After constructing the proper itype we will eventually replace + -- the top-level aggregate with a raise CE (done in Resolve_Aggregate). + -- Of course in cases such as: + -- + -- type Arr is array (integer range <>) of Integer; + -- A : Arr := (positive range -1 .. 2 => 0); + -- + -- The bounds of the aggregate itype are cooked up to look reasonable + -- (in this particular case the bounds will be 1 .. 2). + + procedure Aggregate_Constraint_Checks + (Exp : Node_Id; + Check_Typ : Entity_Id); + -- Checks expression Exp against subtype Check_Typ. If Exp is an + -- aggregate and Check_Typ a constrained record type with discriminants, + -- we generate the appropriate discriminant checks. If Exp is an array + -- aggregate then emit the appropriate length checks. If Exp is a scalar + -- type, or a string literal, Exp is changed into Check_Typ'(Exp) to + -- ensure that range checks are performed at run time. + + procedure Make_String_Into_Aggregate (N : Node_Id); + -- A string literal can appear in a context in which a one dimensional + -- array of characters is expected. This procedure simply rewrites the + -- string as an aggregate, prior to resolution. + + --------------------------------- + -- Aggregate_Constraint_Checks -- + --------------------------------- + + procedure Aggregate_Constraint_Checks + (Exp : Node_Id; + Check_Typ : Entity_Id) + is + Exp_Typ : constant Entity_Id := Etype (Exp); + + begin + if Raises_Constraint_Error (Exp) then + return; + end if; + + -- This is really expansion activity, so make sure that expansion + -- is on and is allowed. + + if not Expander_Active or else In_Default_Expression then + return; + end if; + + -- First check if we have to insert discriminant checks + + if Has_Discriminants (Exp_Typ) then + Apply_Discriminant_Check (Exp, Check_Typ); + + -- Next emit length checks for array aggregates + + elsif Is_Array_Type (Exp_Typ) then + Apply_Length_Check (Exp, Check_Typ); + + -- Finally emit scalar and string checks. If we are dealing with a + -- scalar literal we need to check by hand because the Etype of + -- literals is not necessarily correct. + + elsif Is_Scalar_Type (Exp_Typ) + and then Compile_Time_Known_Value (Exp) + then + if Is_Out_Of_Range (Exp, Base_Type (Check_Typ)) then + Apply_Compile_Time_Constraint_Error + (Exp, "value not in range of}?", + Ent => Base_Type (Check_Typ), + Typ => Base_Type (Check_Typ)); + + elsif Is_Out_Of_Range (Exp, Check_Typ) then + Apply_Compile_Time_Constraint_Error + (Exp, "value not in range of}?", + Ent => Check_Typ, + Typ => Check_Typ); + + elsif not Range_Checks_Suppressed (Check_Typ) then + Apply_Scalar_Range_Check (Exp, Check_Typ); + end if; + + elsif (Is_Scalar_Type (Exp_Typ) + or else Nkind (Exp) = N_String_Literal) + and then Exp_Typ /= Check_Typ + then + if Is_Entity_Name (Exp) + and then Ekind (Entity (Exp)) = E_Constant + then + -- If expression is a constant, it is worthwhile checking whether + -- it is a bound of the type. + + if (Is_Entity_Name (Type_Low_Bound (Check_Typ)) + and then Entity (Exp) = Entity (Type_Low_Bound (Check_Typ))) + or else (Is_Entity_Name (Type_High_Bound (Check_Typ)) + and then Entity (Exp) = Entity (Type_High_Bound (Check_Typ))) + then + return; + + else + Rewrite (Exp, Convert_To (Check_Typ, Relocate_Node (Exp))); + Analyze_And_Resolve (Exp, Check_Typ); + end if; + else + Rewrite (Exp, Convert_To (Check_Typ, Relocate_Node (Exp))); + Analyze_And_Resolve (Exp, Check_Typ); + end if; + + end if; + end Aggregate_Constraint_Checks; + + ------------------------ + -- Array_Aggr_Subtype -- + ------------------------ + + function Array_Aggr_Subtype + (N : Node_Id; + Typ : Entity_Id) + return Entity_Id + is + Aggr_Dimension : constant Pos := Number_Dimensions (Typ); + -- Number of aggregate index dimensions. + + Aggr_Range : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty); + -- Constrained N_Range of each index dimension in our aggregate itype. + + Aggr_Low : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty); + Aggr_High : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty); + -- Low and High bounds for each index dimension in our aggregate itype. + + Is_Fully_Positional : Boolean := True; + + procedure Collect_Aggr_Bounds (N : Node_Id; Dim : Pos); + -- N is an array (sub-)aggregate. Dim is the dimension corresponding to + -- (sub-)aggregate N. This procedure collects the constrained N_Range + -- nodes corresponding to each index dimension of our aggregate itype. + -- These N_Range nodes are collected in Aggr_Range above. + -- Likewise collect in Aggr_Low & Aggr_High above the low and high + -- bounds of each index dimension. If, when collecting, two bounds + -- corresponding to the same dimension are static and found to differ, + -- then emit a warning, and mark N as raising Constraint_Error. + + ------------------------- + -- Collect_Aggr_Bounds -- + ------------------------- + + procedure Collect_Aggr_Bounds (N : Node_Id; Dim : Pos) is + This_Range : constant Node_Id := Aggregate_Bounds (N); + -- The aggregate range node of this specific sub-aggregate. + + This_Low : constant Node_Id := Low_Bound (Aggregate_Bounds (N)); + This_High : constant Node_Id := High_Bound (Aggregate_Bounds (N)); + -- The aggregate bounds of this specific sub-aggregate. + + Assoc : Node_Id; + Expr : Node_Id; + + begin + -- Collect the first N_Range for a given dimension that you find. + -- For a given dimension they must be all equal anyway. + + if No (Aggr_Range (Dim)) then + Aggr_Low (Dim) := This_Low; + Aggr_High (Dim) := This_High; + Aggr_Range (Dim) := This_Range; + + else + if Compile_Time_Known_Value (This_Low) then + if not Compile_Time_Known_Value (Aggr_Low (Dim)) then + Aggr_Low (Dim) := This_Low; + + elsif Expr_Value (This_Low) /= Expr_Value (Aggr_Low (Dim)) then + Set_Raises_Constraint_Error (N); + Error_Msg_N ("Sub-aggregate low bound mismatch?", N); + Error_Msg_N ("Constraint_Error will be raised at run-time?", + N); + end if; + end if; + + if Compile_Time_Known_Value (This_High) then + if not Compile_Time_Known_Value (Aggr_High (Dim)) then + Aggr_High (Dim) := This_High; + + elsif + Expr_Value (This_High) /= Expr_Value (Aggr_High (Dim)) + then + Set_Raises_Constraint_Error (N); + Error_Msg_N ("Sub-aggregate high bound mismatch?", N); + Error_Msg_N ("Constraint_Error will be raised at run-time?", + N); + end if; + end if; + end if; + + if Dim < Aggr_Dimension then + + -- Process positional components + + if Present (Expressions (N)) then + Expr := First (Expressions (N)); + while Present (Expr) loop + Collect_Aggr_Bounds (Expr, Dim + 1); + Next (Expr); + end loop; + end if; + + -- Process component associations + + if Present (Component_Associations (N)) then + Is_Fully_Positional := False; + + Assoc := First (Component_Associations (N)); + while Present (Assoc) loop + Expr := Expression (Assoc); + Collect_Aggr_Bounds (Expr, Dim + 1); + Next (Assoc); + end loop; + end if; + end if; + end Collect_Aggr_Bounds; + + -- Array_Aggr_Subtype variables + + Itype : Entity_Id; + -- the final itype of the overall aggregate + + Index_Constraints : List_Id := New_List; + -- The list of index constraints of the aggregate itype. + + -- Start of processing for Array_Aggr_Subtype + + begin + -- Make sure that the list of index constraints is properly attached + -- to the tree, and then collect the aggregate bounds. + + Set_Parent (Index_Constraints, N); + Collect_Aggr_Bounds (N, 1); + + -- Build the list of constrained indices of our aggregate itype. + + for J in 1 .. Aggr_Dimension loop + Create_Index : declare + Index_Base : Entity_Id := Base_Type (Etype (Aggr_Range (J))); + Index_Typ : Entity_Id; + + begin + -- Construct the Index subtype + + Index_Typ := Create_Itype (Subtype_Kind (Ekind (Index_Base)), N); + + Set_Etype (Index_Typ, Index_Base); + + if Is_Character_Type (Index_Base) then + Set_Is_Character_Type (Index_Typ); + end if; + + Set_Size_Info (Index_Typ, (Index_Base)); + Set_RM_Size (Index_Typ, RM_Size (Index_Base)); + Set_First_Rep_Item (Index_Typ, First_Rep_Item (Index_Base)); + Set_Scalar_Range (Index_Typ, Aggr_Range (J)); + + if Is_Discrete_Or_Fixed_Point_Type (Index_Typ) then + Set_RM_Size (Index_Typ, UI_From_Int (Minimum_Size (Index_Typ))); + end if; + + Set_Etype (Aggr_Range (J), Index_Typ); + + Append (Aggr_Range (J), To => Index_Constraints); + end Create_Index; + end loop; + + -- Now build the Itype + + Itype := Create_Itype (E_Array_Subtype, N); + + Set_First_Rep_Item (Itype, First_Rep_Item (Typ)); + Set_Component_Type (Itype, Component_Type (Typ)); + Set_Convention (Itype, Convention (Typ)); + Set_Depends_On_Private (Itype, Has_Private_Component (Typ)); + Set_Etype (Itype, Base_Type (Typ)); + Set_Has_Alignment_Clause (Itype, Has_Alignment_Clause (Typ)); + Set_Is_Aliased (Itype, Is_Aliased (Typ)); + Set_Suppress_Index_Checks (Itype, Suppress_Index_Checks (Typ)); + Set_Suppress_Length_Checks (Itype, Suppress_Length_Checks (Typ)); + Set_Depends_On_Private (Itype, Depends_On_Private (Typ)); + + Set_First_Index (Itype, First (Index_Constraints)); + Set_Is_Constrained (Itype, True); + Set_Is_Internal (Itype, True); + Init_Size_Align (Itype); + + -- A simple optimization: purely positional aggregates of static + -- components should be passed to gigi unexpanded whenever possible, + -- and regardless of the staticness of the bounds themselves. Subse- + -- quent checks in exp_aggr verify that type is not packed, etc. + + Set_Size_Known_At_Compile_Time (Itype, + Is_Fully_Positional + and then Comes_From_Source (N) + and then Size_Known_At_Compile_Time (Component_Type (Typ))); + + -- We always need a freeze node for a packed array subtype, so that + -- we can build the Packed_Array_Type corresponding to the subtype. + -- If expansion is disabled, the packed array subtype is not built, + -- and we must not generate a freeze node for the type, or else it + -- will appear incomplete to gigi. + + if Is_Packed (Itype) and then not In_Default_Expression + and then Expander_Active + then + Freeze_Itype (Itype, N); + end if; + + return Itype; + end Array_Aggr_Subtype; + + -------------------------------- + -- Check_Misspelled_Component -- + -------------------------------- + + procedure Check_Misspelled_Component + (Elements : Elist_Id; + Component : Node_Id) + is + Max_Suggestions : constant := 2; + + Nr_Of_Suggestions : Natural := 0; + Suggestion_1 : Entity_Id := Empty; + Suggestion_2 : Entity_Id := Empty; + Component_Elmt : Elmt_Id; + + begin + -- All the components of List are matched against Component and + -- a count is maintained of possible misspellings. When at the + -- end of the analysis there are one or two (not more!) possible + -- misspellings, these misspellings will be suggested as + -- possible correction. + + Get_Name_String (Chars (Component)); + + declare + S : constant String (1 .. Name_Len) := + Name_Buffer (1 .. Name_Len); + + begin + + Component_Elmt := First_Elmt (Elements); + + while Nr_Of_Suggestions <= Max_Suggestions + and then Present (Component_Elmt) + loop + + Get_Name_String (Chars (Node (Component_Elmt))); + + if Is_Bad_Spelling_Of (Name_Buffer (1 .. Name_Len), S) then + Nr_Of_Suggestions := Nr_Of_Suggestions + 1; + + case Nr_Of_Suggestions is + when 1 => Suggestion_1 := Node (Component_Elmt); + when 2 => Suggestion_2 := Node (Component_Elmt); + when others => exit; + end case; + end if; + + Next_Elmt (Component_Elmt); + end loop; + + -- Report at most two suggestions + + if Nr_Of_Suggestions = 1 then + Error_Msg_NE ("\possible misspelling of&", + Component, Suggestion_1); + + elsif Nr_Of_Suggestions = 2 then + Error_Msg_Node_2 := Suggestion_2; + Error_Msg_NE ("\possible misspelling of& or&", + Component, Suggestion_1); + end if; + end; + end Check_Misspelled_Component; + + ---------------------------------------- + -- Check_Static_Discriminated_Subtype -- + ---------------------------------------- + + procedure Check_Static_Discriminated_Subtype (T : Entity_Id; V : Node_Id) is + Disc : constant Entity_Id := First_Discriminant (T); + Comp : Entity_Id; + Ind : Entity_Id; + + begin + if Has_Record_Rep_Clause (Base_Type (T)) then + return; + + elsif Present (Next_Discriminant (Disc)) then + return; + + elsif Nkind (V) /= N_Integer_Literal then + return; + end if; + + Comp := First_Component (T); + + while Present (Comp) loop + + if Is_Scalar_Type (Etype (Comp)) then + null; + + elsif Is_Private_Type (Etype (Comp)) + and then Present (Full_View (Etype (Comp))) + and then Is_Scalar_Type (Full_View (Etype (Comp))) + then + null; + + elsif Is_Array_Type (Etype (Comp)) then + + if Is_Bit_Packed_Array (Etype (Comp)) then + return; + end if; + + Ind := First_Index (Etype (Comp)); + + while Present (Ind) loop + + if Nkind (Ind) /= N_Range + or else Nkind (Low_Bound (Ind)) /= N_Integer_Literal + or else Nkind (High_Bound (Ind)) /= N_Integer_Literal + then + return; + end if; + + Next_Index (Ind); + end loop; + + else + return; + end if; + + Next_Component (Comp); + end loop; + + -- On exit, all components have statically known sizes. + + Set_Size_Known_At_Compile_Time (T); + end Check_Static_Discriminated_Subtype; + + -------------------------------- + -- Make_String_Into_Aggregate -- + -------------------------------- + + procedure Make_String_Into_Aggregate (N : Node_Id) is + C : Char_Code; + C_Node : Node_Id; + Exprs : List_Id := New_List; + Loc : constant Source_Ptr := Sloc (N); + New_N : Node_Id; + P : Source_Ptr := Loc + 1; + Str : constant String_Id := Strval (N); + Strlen : constant Nat := String_Length (Str); + + begin + for J in 1 .. Strlen loop + C := Get_String_Char (Str, J); + Set_Character_Literal_Name (C); + + C_Node := Make_Character_Literal (P, Name_Find, C); + Set_Etype (C_Node, Any_Character); + Set_Analyzed (C_Node); + Append_To (Exprs, C_Node); + + P := P + 1; + -- something special for wide strings ? + end loop; + + New_N := Make_Aggregate (Loc, Expressions => Exprs); + Set_Analyzed (New_N); + Set_Etype (New_N, Any_Composite); + + Rewrite (N, New_N); + end Make_String_Into_Aggregate; + + ----------------------- + -- Resolve_Aggregate -- + ----------------------- + + procedure Resolve_Aggregate (N : Node_Id; Typ : Entity_Id) is + Pkind : constant Node_Kind := Nkind (Parent (N)); + + Aggr_Subtyp : Entity_Id; + -- The actual aggregate subtype. This is not necessarily the same as Typ + -- which is the subtype of the context in which the aggregate was found. + + begin + if Is_Limited_Type (Typ) then + Error_Msg_N ("aggregate type cannot be limited", N); + + elsif Is_Limited_Composite (Typ) then + Error_Msg_N ("aggregate type cannot have limited component", N); + + elsif Is_Class_Wide_Type (Typ) then + Error_Msg_N ("type of aggregate cannot be class-wide", N); + + elsif Typ = Any_String + or else Typ = Any_Composite + then + Error_Msg_N ("no unique type for aggregate", N); + Set_Etype (N, Any_Composite); + + elsif Is_Array_Type (Typ) and then Null_Record_Present (N) then + Error_Msg_N ("null record forbidden in array aggregate", N); + + elsif Is_Record_Type (Typ) then + Resolve_Record_Aggregate (N, Typ); + + elsif Is_Array_Type (Typ) then + + -- First a special test, for the case of a positional aggregate + -- of characters which can be replaced by a string literal. + -- Do not perform this transformation if this was a string literal + -- to start with, whose components needed constraint checks, or if + -- the component type is non-static, because it will require those + -- checks and be transformed back into an aggregate. + + if Number_Dimensions (Typ) = 1 + and then + (Root_Type (Component_Type (Typ)) = Standard_Character + or else + Root_Type (Component_Type (Typ)) = Standard_Wide_Character) + and then No (Component_Associations (N)) + and then not Is_Limited_Composite (Typ) + and then not Is_Private_Composite (Typ) + and then not Is_Bit_Packed_Array (Typ) + and then Nkind (Original_Node (Parent (N))) /= N_String_Literal + and then Is_Static_Subtype (Component_Type (Typ)) + then + declare + Expr : Node_Id; + + begin + Expr := First (Expressions (N)); + while Present (Expr) loop + exit when Nkind (Expr) /= N_Character_Literal; + Next (Expr); + end loop; + + if No (Expr) then + Start_String; + + Expr := First (Expressions (N)); + while Present (Expr) loop + Store_String_Char (Char_Literal_Value (Expr)); + Next (Expr); + end loop; + + Rewrite (N, + Make_String_Literal (Sloc (N), End_String)); + + Analyze_And_Resolve (N, Typ); + return; + end if; + end; + end if; + + -- Here if we have a real aggregate to deal with + + Array_Aggregate : declare + Aggr_Resolved : Boolean; + Aggr_Typ : Entity_Id := Etype (Typ); + -- This is the unconstrained array type, which is the type + -- against which the aggregate is to be resoved. Typ itself + -- is the array type of the context which may not be the same + -- subtype as the subtype for the final aggregate. + + begin + -- In the following we determine whether an others choice is + -- allowed inside the array aggregate. The test checks the context + -- in which the array aggregate occurs. If the context does not + -- permit it, or the aggregate type is unconstrained, an others + -- choice is not allowed. + -- + -- Note that there is no node for Explicit_Actual_Parameter. + -- To test for this context we therefore have to test for node + -- N_Parameter_Association which itself appears only if there is a + -- formal parameter. Consequently we also need to test for + -- N_Procedure_Call_Statement or N_Function_Call. + + if Is_Constrained (Typ) and then + (Pkind = N_Assignment_Statement or else + Pkind = N_Parameter_Association or else + Pkind = N_Function_Call or else + Pkind = N_Procedure_Call_Statement or else + Pkind = N_Generic_Association or else + Pkind = N_Formal_Object_Declaration or else + Pkind = N_Return_Statement or else + Pkind = N_Object_Declaration or else + Pkind = N_Component_Declaration or else + Pkind = N_Parameter_Specification or else + Pkind = N_Qualified_Expression or else + Pkind = N_Aggregate or else + Pkind = N_Extension_Aggregate or else + Pkind = N_Component_Association) + then + Aggr_Resolved := + Resolve_Array_Aggregate + (N, + Index => First_Index (Aggr_Typ), + Index_Constr => First_Index (Typ), + Component_Typ => Component_Type (Typ), + Others_Allowed => True); + + else + Aggr_Resolved := + Resolve_Array_Aggregate + (N, + Index => First_Index (Aggr_Typ), + Index_Constr => First_Index (Aggr_Typ), + Component_Typ => Component_Type (Typ), + Others_Allowed => False); + end if; + + if not Aggr_Resolved then + Aggr_Subtyp := Any_Composite; + else + Aggr_Subtyp := Array_Aggr_Subtype (N, Typ); + end if; + + Set_Etype (N, Aggr_Subtyp); + end Array_Aggregate; + + else + Error_Msg_N ("illegal context for aggregate", N); + + end if; + + -- If we can determine statically that the evaluation of the + -- aggregate raises Constraint_Error, then replace the + -- aggregate with an N_Raise_Constraint_Error node, but set the + -- Etype to the right aggregate subtype. Gigi needs this. + + if Raises_Constraint_Error (N) then + Aggr_Subtyp := Etype (N); + Rewrite (N, Make_Raise_Constraint_Error (Sloc (N))); + Set_Raises_Constraint_Error (N); + Set_Etype (N, Aggr_Subtyp); + Set_Analyzed (N); + end if; + + end Resolve_Aggregate; + + ----------------------------- + -- Resolve_Array_Aggregate -- + ----------------------------- + + function Resolve_Array_Aggregate + (N : Node_Id; + Index : Node_Id; + Index_Constr : Node_Id; + Component_Typ : Entity_Id; + Others_Allowed : Boolean) + return Boolean + is + Loc : constant Source_Ptr := Sloc (N); + + Failure : constant Boolean := False; + Success : constant Boolean := True; + + Index_Typ : constant Entity_Id := Etype (Index); + Index_Typ_Low : constant Node_Id := Type_Low_Bound (Index_Typ); + Index_Typ_High : constant Node_Id := Type_High_Bound (Index_Typ); + -- The type of the index corresponding to the array sub-aggregate + -- along with its low and upper bounds + + Index_Base : constant Entity_Id := Base_Type (Index_Typ); + Index_Base_Low : constant Node_Id := Type_Low_Bound (Index_Base); + Index_Base_High : constant Node_Id := Type_High_Bound (Index_Base); + -- ditto for the base type + + function Add (Val : Uint; To : Node_Id) return Node_Id; + -- Creates a new expression node where Val is added to expression To. + -- Tries to constant fold whenever possible. To must be an already + -- analyzed expression. + + procedure Check_Bound (BH : Node_Id; AH : in out Node_Id); + -- Checks that AH (the upper bound of an array aggregate) is <= BH + -- (the upper bound of the index base type). If the check fails a + -- warning is emitted, the Raises_Constraint_Error Flag of N is set, + -- and AH is replaced with a duplicate of BH. + + procedure Check_Bounds (L, H : Node_Id; AL, AH : Node_Id); + -- Checks that range AL .. AH is compatible with range L .. H. Emits a + -- warning if not and sets the Raises_Constraint_Error Flag in N. + + procedure Check_Length (L, H : Node_Id; Len : Uint); + -- Checks that range L .. H contains at least Len elements. Emits a + -- warning if not and sets the Raises_Constraint_Error Flag in N. + + function Dynamic_Or_Null_Range (L, H : Node_Id) return Boolean; + -- Returns True if range L .. H is dynamic or null. + + procedure Get (Value : out Uint; From : Node_Id; OK : out Boolean); + -- Given expression node From, this routine sets OK to False if it + -- cannot statically evaluate From. Otherwise it stores this static + -- value into Value. + + function Resolve_Aggr_Expr + (Expr : Node_Id; + Single_Elmt : Boolean) + return Boolean; + -- Resolves aggregate expression Expr. Returs False if resolution + -- fails. If Single_Elmt is set to False, the expression Expr may be + -- used to initialize several array aggregate elements (this can + -- happen for discrete choices such as "L .. H => Expr" or the others + -- choice). In this event we do not resolve Expr unless expansion is + -- disabled. To know why, see the DELAYED COMPONENT RESOLUTION + -- note above. + + --------- + -- Add -- + --------- + + function Add (Val : Uint; To : Node_Id) return Node_Id is + Expr_Pos : Node_Id; + Expr : Node_Id; + To_Pos : Node_Id; + + begin + if Raises_Constraint_Error (To) then + return To; + end if; + + -- First test if we can do constant folding + + if Compile_Time_Known_Value (To) + or else Nkind (To) = N_Integer_Literal + then + Expr_Pos := Make_Integer_Literal (Loc, Expr_Value (To) + Val); + Set_Is_Static_Expression (Expr_Pos); + Set_Etype (Expr_Pos, Etype (To)); + Set_Analyzed (Expr_Pos, Analyzed (To)); + + if not Is_Enumeration_Type (Index_Typ) then + Expr := Expr_Pos; + + -- If we are dealing with enumeration return + -- Index_Typ'Val (Expr_Pos) + + else + Expr := + Make_Attribute_Reference + (Loc, + Prefix => New_Reference_To (Index_Typ, Loc), + Attribute_Name => Name_Val, + Expressions => New_List (Expr_Pos)); + end if; + + return Expr; + end if; + + -- If we are here no constant folding possible + + if not Is_Enumeration_Type (Index_Base) then + Expr := + Make_Op_Add (Loc, + Left_Opnd => Duplicate_Subexpr (To), + Right_Opnd => Make_Integer_Literal (Loc, Val)); + + -- If we are dealing with enumeration return + -- Index_Typ'Val (Index_Typ'Pos (To) + Val) + + else + To_Pos := + Make_Attribute_Reference + (Loc, + Prefix => New_Reference_To (Index_Typ, Loc), + Attribute_Name => Name_Pos, + Expressions => New_List (Duplicate_Subexpr (To))); + + Expr_Pos := + Make_Op_Add (Loc, + Left_Opnd => To_Pos, + Right_Opnd => Make_Integer_Literal (Loc, Val)); + + Expr := + Make_Attribute_Reference + (Loc, + Prefix => New_Reference_To (Index_Typ, Loc), + Attribute_Name => Name_Val, + Expressions => New_List (Expr_Pos)); + end if; + + return Expr; + end Add; + + ----------------- + -- Check_Bound -- + ----------------- + + procedure Check_Bound (BH : Node_Id; AH : in out Node_Id) is + Val_BH : Uint; + Val_AH : Uint; + + OK_BH : Boolean; + OK_AH : Boolean; + + begin + Get (Value => Val_BH, From => BH, OK => OK_BH); + Get (Value => Val_AH, From => AH, OK => OK_AH); + + if OK_BH and then OK_AH and then Val_BH < Val_AH then + Set_Raises_Constraint_Error (N); + Error_Msg_N ("upper bound out of range?", AH); + Error_Msg_N ("Constraint_Error will be raised at run-time?", AH); + + -- You need to set AH to BH or else in the case of enumerations + -- indices we will not be able to resolve the aggregate bounds. + + AH := Duplicate_Subexpr (BH); + end if; + end Check_Bound; + + ------------------ + -- Check_Bounds -- + ------------------ + + procedure Check_Bounds (L, H : Node_Id; AL, AH : Node_Id) is + Val_L : Uint; + Val_H : Uint; + Val_AL : Uint; + Val_AH : Uint; + + OK_L : Boolean; + OK_H : Boolean; + OK_AL : Boolean; + OK_AH : Boolean; + + begin + if Raises_Constraint_Error (N) + or else Dynamic_Or_Null_Range (AL, AH) + then + return; + end if; + + Get (Value => Val_L, From => L, OK => OK_L); + Get (Value => Val_H, From => H, OK => OK_H); + + Get (Value => Val_AL, From => AL, OK => OK_AL); + Get (Value => Val_AH, From => AH, OK => OK_AH); + + if OK_L and then Val_L > Val_AL then + Set_Raises_Constraint_Error (N); + Error_Msg_N ("lower bound of aggregate out of range?", N); + Error_Msg_N ("Constraint_Error will be raised at run-time?", N); + end if; + + if OK_H and then Val_H < Val_AH then + Set_Raises_Constraint_Error (N); + Error_Msg_N ("upper bound of aggregate out of range?", N); + Error_Msg_N ("Constraint_Error will be raised at run-time?", N); + end if; + end Check_Bounds; + + ------------------ + -- Check_Length -- + ------------------ + + procedure Check_Length (L, H : Node_Id; Len : Uint) is + Val_L : Uint; + Val_H : Uint; + + OK_L : Boolean; + OK_H : Boolean; + + Range_Len : Uint; + + begin + if Raises_Constraint_Error (N) then + return; + end if; + + Get (Value => Val_L, From => L, OK => OK_L); + Get (Value => Val_H, From => H, OK => OK_H); + + if not OK_L or else not OK_H then + return; + end if; + + -- If null range length is zero + + if Val_L > Val_H then + Range_Len := Uint_0; + else + Range_Len := Val_H - Val_L + 1; + end if; + + if Range_Len < Len then + Set_Raises_Constraint_Error (N); + Error_Msg_N ("Too many elements?", N); + Error_Msg_N ("Constraint_Error will be raised at run-time?", N); + end if; + end Check_Length; + + --------------------------- + -- Dynamic_Or_Null_Range -- + --------------------------- + + function Dynamic_Or_Null_Range (L, H : Node_Id) return Boolean is + Val_L : Uint; + Val_H : Uint; + + OK_L : Boolean; + OK_H : Boolean; + + begin + Get (Value => Val_L, From => L, OK => OK_L); + Get (Value => Val_H, From => H, OK => OK_H); + + return not OK_L or else not OK_H + or else not Is_OK_Static_Expression (L) + or else not Is_OK_Static_Expression (H) + or else Val_L > Val_H; + end Dynamic_Or_Null_Range; + + --------- + -- Get -- + --------- + + procedure Get (Value : out Uint; From : Node_Id; OK : out Boolean) is + begin + OK := True; + + if Compile_Time_Known_Value (From) then + Value := Expr_Value (From); + + -- If expression From is something like Some_Type'Val (10) then + -- Value = 10 + + elsif Nkind (From) = N_Attribute_Reference + and then Attribute_Name (From) = Name_Val + and then Compile_Time_Known_Value (First (Expressions (From))) + then + Value := Expr_Value (First (Expressions (From))); + + else + Value := Uint_0; + OK := False; + end if; + end Get; + + ----------------------- + -- Resolve_Aggr_Expr -- + ----------------------- + + function Resolve_Aggr_Expr + (Expr : Node_Id; + Single_Elmt : Boolean) + return Boolean + is + Nxt_Ind : Node_Id := Next_Index (Index); + Nxt_Ind_Constr : Node_Id := Next_Index (Index_Constr); + -- Index is the current index corresponding to the expresion. + + Resolution_OK : Boolean := True; + -- Set to False if resolution of the expression failed. + + begin + -- If the array type against which we are resolving the aggregate + -- has several dimensions, the expressions nested inside the + -- aggregate must be further aggregates (or strings). + + if Present (Nxt_Ind) then + if Nkind (Expr) /= N_Aggregate then + + -- A string literal can appear where a one-dimensional array + -- of characters is expected. If the literal looks like an + -- operator, it is still an operator symbol, which will be + -- transformed into a string when analyzed. + + if Is_Character_Type (Component_Typ) + and then No (Next_Index (Nxt_Ind)) + and then (Nkind (Expr) = N_String_Literal + or else Nkind (Expr) = N_Operator_Symbol) + then + -- A string literal used in a multidimensional array + -- aggregate in place of the final one-dimensional + -- aggregate must not be enclosed in parentheses. + + if Paren_Count (Expr) /= 0 then + Error_Msg_N ("No parenthesis allowed here", Expr); + end if; + + Make_String_Into_Aggregate (Expr); + + else + Error_Msg_N ("nested array aggregate expected", Expr); + return Failure; + end if; + end if; + + Resolution_OK := Resolve_Array_Aggregate + (Expr, Nxt_Ind, Nxt_Ind_Constr, Component_Typ, Others_Allowed); + + -- Do not resolve the expressions of discrete or others choices + -- unless the expression covers a single component, or the expander + -- is inactive. + + elsif Single_Elmt + or else not Expander_Active + or else In_Default_Expression + then + Analyze_And_Resolve (Expr, Component_Typ); + Check_Non_Static_Context (Expr); + Aggregate_Constraint_Checks (Expr, Component_Typ); + end if; + + if Raises_Constraint_Error (Expr) + and then Nkind (Parent (Expr)) /= N_Component_Association + then + Set_Raises_Constraint_Error (N); + end if; + + return Resolution_OK; + end Resolve_Aggr_Expr; + + -- Variables local to Resolve_Array_Aggregate + + Assoc : Node_Id; + Choice : Node_Id; + Expr : Node_Id; + + Who_Cares : Node_Id; + + Aggr_Low : Node_Id := Empty; + Aggr_High : Node_Id := Empty; + -- The actual low and high bounds of this sub-aggegate + + Choices_Low : Node_Id := Empty; + Choices_High : Node_Id := Empty; + -- The lowest and highest discrete choices values for a named aggregate + + Nb_Elements : Uint := Uint_0; + -- The number of elements in a positional aggegate + + Others_Present : Boolean := False; + + Nb_Choices : Nat := 0; + -- Contains the overall number of named choices in this sub-aggregate + + Nb_Discrete_Choices : Nat := 0; + -- The overall number of discrete choices (not counting others choice) + + Case_Table_Size : Nat; + -- Contains the size of the case table needed to sort aggregate choices + + -- Start of processing for Resolve_Array_Aggregate + + begin + -- STEP 1: make sure the aggregate is correctly formatted + + if Present (Component_Associations (N)) then + Assoc := First (Component_Associations (N)); + while Present (Assoc) loop + Choice := First (Choices (Assoc)); + while Present (Choice) loop + if Nkind (Choice) = N_Others_Choice then + Others_Present := True; + + if Choice /= First (Choices (Assoc)) + or else Present (Next (Choice)) + then + Error_Msg_N + ("OTHERS must appear alone in a choice list", Choice); + return Failure; + end if; + + if Present (Next (Assoc)) then + Error_Msg_N + ("OTHERS must appear last in an aggregate", Choice); + return Failure; + end if; + + if Ada_83 + and then Assoc /= First (Component_Associations (N)) + and then (Nkind (Parent (N)) = N_Assignment_Statement + or else + Nkind (Parent (N)) = N_Object_Declaration) + then + Error_Msg_N + ("(Ada 83) illegal context for OTHERS choice", N); + end if; + end if; + + Nb_Choices := Nb_Choices + 1; + Next (Choice); + end loop; + + Next (Assoc); + end loop; + end if; + + -- At this point we know that the others choice, if present, is by + -- itself and appears last in the aggregate. Check if we have mixed + -- positional and discrete associations (other than the others choice). + + if Present (Expressions (N)) + and then (Nb_Choices > 1 + or else (Nb_Choices = 1 and then not Others_Present)) + then + Error_Msg_N + ("named association cannot follow positional association", + First (Choices (First (Component_Associations (N))))); + return Failure; + end if; + + -- Test for the validity of an others choice if present + + if Others_Present and then not Others_Allowed then + Error_Msg_N + ("OTHERS choice not allowed here", + First (Choices (First (Component_Associations (N))))); + return Failure; + end if; + + -- STEP 2: Process named components + + if No (Expressions (N)) then + + if Others_Present then + Case_Table_Size := Nb_Choices - 1; + else + Case_Table_Size := Nb_Choices; + end if; + + Step_2 : declare + Low : Node_Id; + High : Node_Id; + -- Denote the lowest and highest values in an aggregate choice + + Hi_Val : Uint; + Lo_Val : Uint; + -- High end of one range and Low end of the next. Should be + -- contiguous if there is no hole in the list of values. + + Missing_Values : Boolean; + -- Set True if missing index values + + S_Low : Node_Id := Empty; + S_High : Node_Id := Empty; + -- if a choice in an aggregate is a subtype indication these + -- denote the lowest and highest values of the subtype + + Table : Case_Table_Type (1 .. Case_Table_Size); + -- Used to sort all the different choice values + + Single_Choice : Boolean; + -- Set to true every time there is a single discrete choice in a + -- discrete association + + Prev_Nb_Discrete_Choices : Nat; + -- Used to keep track of the number of discrete choices + -- in the current association. + + begin + -- STEP 2 (A): Check discrete choices validity. + + Assoc := First (Component_Associations (N)); + while Present (Assoc) loop + + Prev_Nb_Discrete_Choices := Nb_Discrete_Choices; + Choice := First (Choices (Assoc)); + loop + Analyze (Choice); + + if Nkind (Choice) = N_Others_Choice then + Single_Choice := False; + exit; + + -- Test for subtype mark without constraint + + elsif Is_Entity_Name (Choice) and then + Is_Type (Entity (Choice)) + then + if Base_Type (Entity (Choice)) /= Index_Base then + Error_Msg_N + ("invalid subtype mark in aggregate choice", + Choice); + return Failure; + end if; + + elsif Nkind (Choice) = N_Subtype_Indication then + Resolve_Discrete_Subtype_Indication (Choice, Index_Base); + + -- Does the subtype indication evaluation raise CE ? + + Get_Index_Bounds (Subtype_Mark (Choice), S_Low, S_High); + Get_Index_Bounds (Choice, Low, High); + Check_Bounds (S_Low, S_High, Low, High); + + else -- Choice is a range or an expression + Resolve (Choice, Index_Base); + Check_Non_Static_Context (Choice); + + -- Do not range check a choice. This check is redundant + -- since this test is already performed when we check + -- that the bounds of the array aggregate are within + -- range. + + Set_Do_Range_Check (Choice, False); + end if; + + -- If we could not resolve the discrete choice stop here + + if Etype (Choice) = Any_Type then + return Failure; + + -- If the discrete choice raises CE get its original bounds. + + elsif Nkind (Choice) = N_Raise_Constraint_Error then + Set_Raises_Constraint_Error (N); + Get_Index_Bounds (Original_Node (Choice), Low, High); + + -- Otherwise get its bounds as usual + + else + Get_Index_Bounds (Choice, Low, High); + end if; + + if (Dynamic_Or_Null_Range (Low, High) + or else (Nkind (Choice) = N_Subtype_Indication + and then + Dynamic_Or_Null_Range (S_Low, S_High))) + and then Nb_Choices /= 1 + then + Error_Msg_N + ("dynamic or empty choice in aggregate " & + "must be the only choice", Choice); + return Failure; + end if; + + Nb_Discrete_Choices := Nb_Discrete_Choices + 1; + Table (Nb_Discrete_Choices).Choice_Lo := Low; + Table (Nb_Discrete_Choices).Choice_Hi := High; + + Next (Choice); + + if No (Choice) then + -- Check if we have a single discrete choice and whether + -- this discrete choice specifies a single value. + + Single_Choice := + (Nb_Discrete_Choices = Prev_Nb_Discrete_Choices + 1) + and then (Low = High); + + exit; + end if; + end loop; + + if not + Resolve_Aggr_Expr + (Expression (Assoc), Single_Elmt => Single_Choice) + then + return Failure; + end if; + + Next (Assoc); + end loop; + + -- If aggregate contains more than one choice then these must be + -- static. Sort them and check that they are contiguous + + if Nb_Discrete_Choices > 1 then + Sort_Case_Table (Table); + Missing_Values := False; + + Outer : for J in 1 .. Nb_Discrete_Choices - 1 loop + if Expr_Value (Table (J).Choice_Hi) >= + Expr_Value (Table (J + 1).Choice_Lo) + then + Error_Msg_N + ("duplicate choice values in array aggregate", + Table (J).Choice_Hi); + return Failure; + + elsif not Others_Present then + + Hi_Val := Expr_Value (Table (J).Choice_Hi); + Lo_Val := Expr_Value (Table (J + 1).Choice_Lo); + + -- If missing values, output error messages + + if Lo_Val - Hi_Val > 1 then + + -- Header message if not first missing value + + if not Missing_Values then + Error_Msg_N + ("missing index value(s) in array aggregate", N); + Missing_Values := True; + end if; + + -- Output values of missing indexes + + Lo_Val := Lo_Val - 1; + Hi_Val := Hi_Val + 1; + + -- Enumeration type case + + if Is_Enumeration_Type (Index_Typ) then + Error_Msg_Name_1 := + Chars + (Get_Enum_Lit_From_Pos + (Index_Typ, Hi_Val, Loc)); + + if Lo_Val = Hi_Val then + Error_Msg_N ("\ %", N); + else + Error_Msg_Name_2 := + Chars + (Get_Enum_Lit_From_Pos + (Index_Typ, Lo_Val, Loc)); + Error_Msg_N ("\ % .. %", N); + end if; + + -- Integer types case + + else + Error_Msg_Uint_1 := Hi_Val; + + if Lo_Val = Hi_Val then + Error_Msg_N ("\ ^", N); + else + Error_Msg_Uint_2 := Lo_Val; + Error_Msg_N ("\ ^ .. ^", N); + end if; + end if; + end if; + end if; + end loop Outer; + + if Missing_Values then + Set_Etype (N, Any_Composite); + return Failure; + end if; + end if; + + -- STEP 2 (B): Compute aggregate bounds and min/max choices values + + if Nb_Discrete_Choices > 0 then + Choices_Low := Table (1).Choice_Lo; + Choices_High := Table (Nb_Discrete_Choices).Choice_Hi; + end if; + + if Others_Present then + Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High); + + else + Aggr_Low := Choices_Low; + Aggr_High := Choices_High; + end if; + end Step_2; + + -- STEP 3: Process positional components + + else + -- STEP 3 (A): Process positional elements + + Expr := First (Expressions (N)); + Nb_Elements := Uint_0; + while Present (Expr) loop + Nb_Elements := Nb_Elements + 1; + + if not Resolve_Aggr_Expr (Expr, Single_Elmt => True) then + return Failure; + end if; + + Next (Expr); + end loop; + + if Others_Present then + Assoc := Last (Component_Associations (N)); + if not Resolve_Aggr_Expr (Expression (Assoc), + Single_Elmt => False) + then + return Failure; + end if; + end if; + + -- STEP 3 (B): Compute the aggregate bounds + + if Others_Present then + Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High); + + else + if Others_Allowed then + Get_Index_Bounds (Index_Constr, Aggr_Low, Who_Cares); + else + Aggr_Low := Index_Typ_Low; + end if; + + Aggr_High := Add (Nb_Elements - 1, To => Aggr_Low); + Check_Bound (Index_Base_High, Aggr_High); + end if; + end if; + + -- STEP 4: Perform static aggregate checks and save the bounds + + -- Check (A) + + Check_Bounds (Index_Typ_Low, Index_Typ_High, Aggr_Low, Aggr_High); + Check_Bounds (Index_Base_Low, Index_Base_High, Aggr_Low, Aggr_High); + + -- Check (B) + + if Others_Present and then Nb_Discrete_Choices > 0 then + Check_Bounds (Aggr_Low, Aggr_High, Choices_Low, Choices_High); + Check_Bounds (Index_Typ_Low, Index_Typ_High, + Choices_Low, Choices_High); + Check_Bounds (Index_Base_Low, Index_Base_High, + Choices_Low, Choices_High); + + -- Check (C) + + elsif Others_Present and then Nb_Elements > 0 then + Check_Length (Aggr_Low, Aggr_High, Nb_Elements); + Check_Length (Index_Typ_Low, Index_Typ_High, Nb_Elements); + Check_Length (Index_Base_Low, Index_Base_High, Nb_Elements); + + end if; + + if Raises_Constraint_Error (Aggr_Low) + or else Raises_Constraint_Error (Aggr_High) + then + Set_Raises_Constraint_Error (N); + end if; + + Aggr_Low := Duplicate_Subexpr (Aggr_Low); + + -- Do not duplicate Aggr_High if Aggr_High = Aggr_Low + Nb_Elements + -- since the addition node returned by Add is not yet analyzed. Attach + -- to tree and analyze first. Reset analyzed flag to insure it will get + -- analyzed when it is a literal bound whose type must be properly + -- set. + + if Others_Present or else Nb_Discrete_Choices > 0 then + Aggr_High := Duplicate_Subexpr (Aggr_High); + + if Etype (Aggr_High) = Universal_Integer then + Set_Analyzed (Aggr_High, False); + end if; + end if; + + Set_Aggregate_Bounds + (N, Make_Range (Loc, Low_Bound => Aggr_Low, High_Bound => Aggr_High)); + + -- The bounds may contain expressions that must be inserted upwards. + -- Attach them fully to the tree. After analysis, remove side effects + -- from upper bound, if still needed. + + Set_Parent (Aggregate_Bounds (N), N); + Analyze_And_Resolve (Aggregate_Bounds (N), Index_Typ); + + if not Others_Present and then Nb_Discrete_Choices = 0 then + Set_High_Bound (Aggregate_Bounds (N), + Duplicate_Subexpr (High_Bound (Aggregate_Bounds (N)))); + end if; + + return Success; + end Resolve_Array_Aggregate; + + --------------------------------- + -- Resolve_Extension_Aggregate -- + --------------------------------- + + -- There are two cases to consider: + + -- a) If the ancestor part is a type mark, the components needed are + -- the difference between the components of the expected type and the + -- components of the given type mark. + + -- b) If the ancestor part is an expression, it must be unambiguous, + -- and once we have its type we can also compute the needed components + -- as in the previous case. In both cases, if the ancestor type is not + -- the immediate ancestor, we have to build this ancestor recursively. + + -- In both cases discriminants of the ancestor type do not play a + -- role in the resolution of the needed components, because inherited + -- discriminants cannot be used in a type extension. As a result we can + -- compute independently the list of components of the ancestor type and + -- of the expected type. + + procedure Resolve_Extension_Aggregate (N : Node_Id; Typ : Entity_Id) is + A : constant Node_Id := Ancestor_Part (N); + A_Type : Entity_Id; + I : Interp_Index; + It : Interp; + Imm_Type : Entity_Id; + + function Valid_Ancestor_Type return Boolean; + -- Verify that the type of the ancestor part is a non-private ancestor + -- of the expected type. + + function Valid_Ancestor_Type return Boolean is + Imm_Type : Entity_Id; + + begin + Imm_Type := Base_Type (Typ); + while Is_Derived_Type (Imm_Type) + and then Etype (Imm_Type) /= Base_Type (A_Type) + loop + Imm_Type := Etype (Base_Type (Imm_Type)); + end loop; + + if Etype (Imm_Type) /= Base_Type (A_Type) then + Error_Msg_NE ("expect ancestor type of &", A, Typ); + return False; + else + return True; + end if; + end Valid_Ancestor_Type; + + -- Start of processing for Resolve_Extension_Aggregate + + begin + Analyze (A); + + if not Is_Tagged_Type (Typ) then + Error_Msg_N ("type of extension aggregate must be tagged", N); + return; + + elsif Is_Limited_Type (Typ) then + Error_Msg_N ("aggregate type cannot be limited", N); + return; + + elsif Is_Class_Wide_Type (Typ) then + Error_Msg_N ("aggregate cannot be of a class-wide type", N); + return; + end if; + + if Is_Entity_Name (A) + and then Is_Type (Entity (A)) + then + A_Type := Get_Full_View (Entity (A)); + Imm_Type := Base_Type (Typ); + + if Valid_Ancestor_Type then + Set_Entity (A, A_Type); + Set_Etype (A, A_Type); + + Validate_Ancestor_Part (N); + Resolve_Record_Aggregate (N, Typ); + end if; + + elsif Nkind (A) /= N_Aggregate then + if Is_Overloaded (A) then + A_Type := Any_Type; + Get_First_Interp (A, I, It); + + while Present (It.Typ) loop + + if Is_Tagged_Type (It.Typ) + and then not Is_Limited_Type (It.Typ) + then + if A_Type /= Any_Type then + Error_Msg_N ("cannot resolve expression", A); + return; + else + A_Type := It.Typ; + end if; + end if; + + Get_Next_Interp (I, It); + end loop; + + if A_Type = Any_Type then + Error_Msg_N + ("ancestor part must be non-limited tagged type", A); + return; + end if; + + else + A_Type := Etype (A); + end if; + + if Valid_Ancestor_Type then + Resolve (A, A_Type); + Check_Non_Static_Context (A); + Resolve_Record_Aggregate (N, Typ); + end if; + + else + Error_Msg_N (" No unique type for this aggregate", A); + end if; + + end Resolve_Extension_Aggregate; + + ------------------------------ + -- Resolve_Record_Aggregate -- + ------------------------------ + + procedure Resolve_Record_Aggregate (N : Node_Id; Typ : Entity_Id) is + Regular_Aggr : constant Boolean := Nkind (N) /= N_Extension_Aggregate; + + New_Assoc_List : List_Id := New_List; + New_Assoc : Node_Id; + -- New_Assoc_List is the newly built list of N_Component_Association + -- nodes. New_Assoc is one such N_Component_Association node in it. + -- Please note that while Assoc and New_Assoc contain the same + -- kind of nodes, they are used to iterate over two different + -- N_Component_Association lists. + + Others_Etype : Entity_Id := Empty; + -- This variable is used to save the Etype of the last record component + -- that takes its value from the others choice. Its purpose is: + -- + -- (a) make sure the others choice is useful + -- + -- (b) make sure the type of all the components whose value is + -- subsumed by the others choice are the same. + -- + -- This variable is updated as a side effect of function Get_Value + + procedure Add_Association (Component : Entity_Id; Expr : Node_Id); + -- Builds a new N_Component_Association node which associates + -- Component to expression Expr and adds it to the new association + -- list New_Assoc_List being built. + + function Discr_Present (Discr : Entity_Id) return Boolean; + -- If aggregate N is a regular aggregate this routine will return True. + -- Otherwise, if N is an extension aggreagte, Discr is a discriminant + -- whose value may already have been specified by N's ancestor part, + -- this routine checks whether this is indeed the case and if so + -- returns False, signaling that no value for Discr should appear in the + -- N's aggregate part. Also, in this case, the routine appends to + -- New_Assoc_List Discr the discriminant value specified in the ancestor + -- part. + + function Get_Value + (Compon : Node_Id; + From : List_Id; + Consider_Others_Choice : Boolean := False) + return Node_Id; + -- Given a record component stored in parameter Compon, the + -- following function returns its value as it appears in the list + -- From, which is a list of N_Component_Association nodes. If no + -- component association has a choice for the searched component, + -- the value provided by the others choice is returned, if there + -- is one and Consider_Others_Choice is set to true. Otherwise + -- Empty is returned. If there is more than one component association + -- giving a value for the searched record component, an error message + -- is emitted and the first found value is returned. + -- + -- If Consider_Others_Choice is set and the returned expression comes + -- from the others choice, then Others_Etype is set as a side effect. + -- An error message is emitted if the components taking their value + -- from the others choice do not have same type. + + procedure Resolve_Aggr_Expr (Expr : Node_Id; Component : Node_Id); + -- Analyzes and resolves expression Expr against the Etype of the + -- Component. This routine also applies all appropiate checks to Expr. + -- It finally saves a Expr in the newly created association list that + -- will be attached to the final record aggregate. Note that if the + -- Parent pointer of Expr is not set then Expr was produced with a + -- New_copy_Tree or some such. + + --------------------- + -- Add_Association -- + --------------------- + + procedure Add_Association (Component : Entity_Id; Expr : Node_Id) is + New_Assoc : Node_Id; + Choice_List : List_Id := New_List; + + begin + Append (New_Occurrence_Of (Component, Sloc (Expr)), Choice_List); + New_Assoc := + Make_Component_Association (Sloc (Expr), + Choices => Choice_List, + Expression => Expr); + Append (New_Assoc, New_Assoc_List); + end Add_Association; + + ------------------- + -- Discr_Present -- + ------------------- + + function Discr_Present (Discr : Entity_Id) return Boolean is + Loc : Source_Ptr; + + Ancestor : Node_Id; + Discr_Expr : Node_Id; + + Ancestor_Typ : Entity_Id; + Orig_Discr : Entity_Id; + D : Entity_Id; + D_Val : Elmt_Id := No_Elmt; -- stop junk warning + + Ancestor_Is_Subtyp : Boolean; + + begin + if Regular_Aggr then + return True; + end if; + + Ancestor := Ancestor_Part (N); + Ancestor_Typ := Etype (Ancestor); + Loc := Sloc (Ancestor); + + Ancestor_Is_Subtyp := + Is_Entity_Name (Ancestor) and then Is_Type (Entity (Ancestor)); + + -- If the ancestor part has no discriminants clearly N's aggregate + -- part must provide a value for Discr. + + if not Has_Discriminants (Ancestor_Typ) then + return True; + + -- If the ancestor part is an unconstrained subtype mark then the + -- Discr must be present in N's aggregate part. + + elsif Ancestor_Is_Subtyp + and then not Is_Constrained (Entity (Ancestor)) + then + return True; + end if; + + -- Now look to see if Discr was specified in the ancestor part. + + Orig_Discr := Original_Record_Component (Discr); + D := First_Discriminant (Ancestor_Typ); + + if Ancestor_Is_Subtyp then + D_Val := First_Elmt (Discriminant_Constraint (Entity (Ancestor))); + end if; + + while Present (D) loop + -- If Ancestor has already specified Disc value than + -- insert its value in the final aggregate. + + if Original_Record_Component (D) = Orig_Discr then + if Ancestor_Is_Subtyp then + Discr_Expr := New_Copy_Tree (Node (D_Val)); + else + Discr_Expr := + Make_Selected_Component (Loc, + Prefix => Duplicate_Subexpr (Ancestor), + Selector_Name => New_Occurrence_Of (Discr, Loc)); + end if; + + Resolve_Aggr_Expr (Discr_Expr, Discr); + return False; + end if; + + Next_Discriminant (D); + + if Ancestor_Is_Subtyp then + Next_Elmt (D_Val); + end if; + end loop; + + return True; + end Discr_Present; + + --------------- + -- Get_Value -- + --------------- + + function Get_Value + (Compon : Node_Id; + From : List_Id; + Consider_Others_Choice : Boolean := False) + return Node_Id + is + Assoc : Node_Id; + Expr : Node_Id := Empty; + Selector_Name : Node_Id; + + begin + if Present (From) then + Assoc := First (From); + else + return Empty; + end if; + + while Present (Assoc) loop + Selector_Name := First (Choices (Assoc)); + while Present (Selector_Name) loop + if Nkind (Selector_Name) = N_Others_Choice then + if Consider_Others_Choice and then No (Expr) then + if Present (Others_Etype) and then + Base_Type (Others_Etype) /= Base_Type (Etype (Compon)) + then + Error_Msg_N ("components in OTHERS choice must " & + "have same type", Selector_Name); + end if; + + Others_Etype := Etype (Compon); + + -- We need to duplicate the expression for each + -- successive component covered by the others choice. + -- If the expression is itself an array aggregate with + -- "others", its subtype must be obtained from the + -- current component, and therefore it must be (at least + -- partly) reanalyzed. + + if Analyzed (Expression (Assoc)) then + Expr := New_Copy_Tree (Expression (Assoc)); + + if Nkind (Expr) = N_Aggregate + and then Is_Array_Type (Etype (Expr)) + and then No (Expressions (Expr)) + and then + Nkind (First (Choices + (First (Component_Associations (Expr))))) + = N_Others_Choice + then + Set_Analyzed (Expr, False); + end if; + + return Expr; + + else + return Expression (Assoc); + end if; + end if; + + elsif Chars (Compon) = Chars (Selector_Name) then + if No (Expr) then + -- We need to duplicate the expression when several + -- components are grouped together with a "|" choice. + -- For instance "filed1 | filed2 => Expr" + + if Present (Next (Selector_Name)) then + Expr := New_Copy_Tree (Expression (Assoc)); + else + Expr := Expression (Assoc); + end if; + + else + Error_Msg_NE + ("more than one value supplied for &", + Selector_Name, Compon); + + end if; + end if; + + Next (Selector_Name); + end loop; + + Next (Assoc); + end loop; + + return Expr; + end Get_Value; + + ----------------------- + -- Resolve_Aggr_Expr -- + ----------------------- + + procedure Resolve_Aggr_Expr (Expr : Node_Id; Component : Node_Id) is + New_C : Entity_Id := Component; + Expr_Type : Entity_Id := Empty; + + function Has_Expansion_Delayed (Expr : Node_Id) return Boolean; + -- If the expression is an aggregate (possibly qualified) then its + -- expansion is delayed until the enclosing aggregate is expanded + -- into assignments. In that case, do not generate checks on the + -- expression, because they will be generated later, and will other- + -- wise force a copy (to remove side-effects) that would leave a + -- dynamic-sized aggregate in the code, something that gigi cannot + -- handle. + + Relocate : Boolean; + -- Set to True if the resolved Expr node needs to be relocated + -- when attached to the newly created association list. This node + -- need not be relocated if its parent pointer is not set. + -- In fact in this case Expr is the output of a New_Copy_Tree call. + -- if Relocate is True then we have analyzed the expression node + -- in the original aggregate and hence it needs to be relocated + -- when moved over the new association list. + + function Has_Expansion_Delayed (Expr : Node_Id) return Boolean is + Kind : constant Node_Kind := Nkind (Expr); + + begin + return ((Kind = N_Aggregate + or else Kind = N_Extension_Aggregate) + and then Present (Etype (Expr)) + and then Is_Record_Type (Etype (Expr)) + and then Expansion_Delayed (Expr)) + + or else (Kind = N_Qualified_Expression + and then Has_Expansion_Delayed (Expression (Expr))); + end Has_Expansion_Delayed; + + -- Start of processing for Resolve_Aggr_Expr + + begin + -- If the type of the component is elementary or the type of the + -- aggregate does not contain discriminants, use the type of the + -- component to resolve Expr. + + if Is_Elementary_Type (Etype (Component)) + or else not Has_Discriminants (Etype (N)) + then + Expr_Type := Etype (Component); + + -- Otherwise we have to pick up the new type of the component from + -- the new costrained subtype of the aggregate. In fact components + -- which are of a composite type might be constrained by a + -- discriminant, and we want to resolve Expr against the subtype were + -- all discriminant occurrences are replaced with their actual value. + + else + New_C := First_Component (Etype (N)); + while Present (New_C) loop + if Chars (New_C) = Chars (Component) then + Expr_Type := Etype (New_C); + exit; + end if; + + Next_Component (New_C); + end loop; + + pragma Assert (Present (Expr_Type)); + + -- For each range in an array type where a discriminant has been + -- replaced with the constraint, check that this range is within + -- the range of the base type. This checks is done in the + -- _init_proc for regular objects, but has to be done here for + -- aggregates since no _init_proc is called for them. + + if Is_Array_Type (Expr_Type) then + declare + Index : Node_Id := First_Index (Expr_Type); + -- Range of the current constrained index in the array. + + Orig_Index : Node_Id := First_Index (Etype (Component)); + -- Range corresponding to the range Index above in the + -- original unconstrained record type. The bounds of this + -- range may be governed by discriminants. + + Unconstr_Index : Node_Id := First_Index (Etype (Expr_Type)); + -- Range corresponding to the range Index above for the + -- unconstrained array type. This range is needed to apply + -- range checks. + + begin + while Present (Index) loop + if Depends_On_Discriminant (Orig_Index) then + Apply_Range_Check (Index, Etype (Unconstr_Index)); + end if; + + Next_Index (Index); + Next_Index (Orig_Index); + Next_Index (Unconstr_Index); + end loop; + end; + end if; + end if; + + -- If the Parent pointer of Expr is not set, Expr is an expression + -- duplicated by New_Tree_Copy (this happens for record aggregates + -- that look like (Field1 | Filed2 => Expr) or (others => Expr)). + -- Such a duplicated expression must be attached to the tree + -- before analysis and resolution to enforce the rule that a tree + -- fragment should never be analyzed or resolved unless it is + -- attached to the current compilation unit. + + if No (Parent (Expr)) then + Set_Parent (Expr, N); + Relocate := False; + else + Relocate := True; + end if; + + Analyze_And_Resolve (Expr, Expr_Type); + Check_Non_Static_Context (Expr); + + if not Has_Expansion_Delayed (Expr) then + Aggregate_Constraint_Checks (Expr, Expr_Type); + end if; + + if Raises_Constraint_Error (Expr) then + Set_Raises_Constraint_Error (N); + end if; + + if Relocate then + Add_Association (New_C, Relocate_Node (Expr)); + else + Add_Association (New_C, Expr); + end if; + + end Resolve_Aggr_Expr; + + -- Resolve_Record_Aggregate local variables + + Assoc : Node_Id; + -- N_Component_Association node belonging to the input aggregate N + + Expr : Node_Id; + Positional_Expr : Node_Id; + + Component : Entity_Id; + Component_Elmt : Elmt_Id; + Components : Elist_Id := New_Elmt_List; + -- Components is the list of the record components whose value must + -- be provided in the aggregate. This list does include discriminants. + + -- Start of processing for Resolve_Record_Aggregate + + begin + -- We may end up calling Duplicate_Subexpr on expressions that are + -- attached to New_Assoc_List. For this reason we need to attach it + -- to the tree by setting its parent pointer to N. This parent point + -- will change in STEP 8 below. + + Set_Parent (New_Assoc_List, N); + + -- STEP 1: abstract type and null record verification + + if Is_Abstract (Typ) then + Error_Msg_N ("type of aggregate cannot be abstract", N); + end if; + + if No (First_Entity (Typ)) and then Null_Record_Present (N) then + Set_Etype (N, Typ); + return; + + elsif Present (First_Entity (Typ)) + and then Null_Record_Present (N) + and then not Is_Tagged_Type (Typ) + then + Error_Msg_N ("record aggregate cannot be null", N); + return; + + elsif No (First_Entity (Typ)) then + Error_Msg_N ("record aggregate must be null", N); + return; + end if; + + -- STEP 2: Verify aggregate structure + + Step_2 : declare + Selector_Name : Node_Id; + Bad_Aggregate : Boolean := False; + + begin + if Present (Component_Associations (N)) then + Assoc := First (Component_Associations (N)); + else + Assoc := Empty; + end if; + + while Present (Assoc) loop + Selector_Name := First (Choices (Assoc)); + while Present (Selector_Name) loop + if Nkind (Selector_Name) = N_Identifier then + null; + + elsif Nkind (Selector_Name) = N_Others_Choice then + if Selector_Name /= First (Choices (Assoc)) + or else Present (Next (Selector_Name)) + then + Error_Msg_N ("OTHERS must appear alone in a choice list", + Selector_Name); + return; + + elsif Present (Next (Assoc)) then + Error_Msg_N ("OTHERS must appear last in an aggregate", + Selector_Name); + return; + end if; + + else + Error_Msg_N + ("selector name should be identifier or OTHERS", + Selector_Name); + Bad_Aggregate := True; + end if; + + Next (Selector_Name); + end loop; + + Next (Assoc); + end loop; + + if Bad_Aggregate then + return; + end if; + end Step_2; + + -- STEP 3: Find discriminant Values + + Step_3 : declare + Discrim : Entity_Id; + Missing_Discriminants : Boolean := False; + + begin + if Present (Expressions (N)) then + Positional_Expr := First (Expressions (N)); + else + Positional_Expr := Empty; + end if; + + if Has_Discriminants (Typ) then + Discrim := First_Discriminant (Typ); + else + Discrim := Empty; + end if; + + -- First find the discriminant values in the positional components + + while Present (Discrim) and then Present (Positional_Expr) loop + if Discr_Present (Discrim) then + Resolve_Aggr_Expr (Positional_Expr, Discrim); + Next (Positional_Expr); + end if; + + if Present (Get_Value (Discrim, Component_Associations (N))) then + Error_Msg_NE + ("more than one value supplied for discriminant&", + N, Discrim); + end if; + + Next_Discriminant (Discrim); + end loop; + + -- Find remaining discriminant values, if any, among named components + + while Present (Discrim) loop + Expr := Get_Value (Discrim, Component_Associations (N), True); + + if not Discr_Present (Discrim) then + if Present (Expr) then + Error_Msg_NE + ("more than one value supplied for discriminant&", + N, Discrim); + end if; + + elsif No (Expr) then + Error_Msg_NE + ("no value supplied for discriminant &", N, Discrim); + Missing_Discriminants := True; + + else + Resolve_Aggr_Expr (Expr, Discrim); + end if; + + Next_Discriminant (Discrim); + end loop; + + if Missing_Discriminants then + return; + end if; + + -- At this point and until the beginning of STEP 6, New_Assoc_List + -- contains only the discriminants and their values. + + end Step_3; + + -- STEP 4: Set the Etype of the record aggregate + + -- ??? This code is pretty much a copy of Sem_Ch3.Build_Subtype. That + -- routine should really be exported in sem_util or some such and used + -- in sem_ch3 and here rather than have a copy of the code which is a + -- maintenance nightmare. + + -- ??? Performace WARNING. The current implementation creates a new + -- itype for all aggregates whose base type is discriminated. + -- This means that for record aggregates nested inside an array + -- aggregate we will create a new itype for each record aggregate + -- if the array cmponent type has discriminants. For large aggregates + -- this may be a problem. What should be done in this case is + -- to reuse itypes as much as possible. + + if Has_Discriminants (Typ) then + Build_Constrained_Itype : declare + Loc : constant Source_Ptr := Sloc (N); + Indic : Node_Id; + Subtyp_Decl : Node_Id; + Def_Id : Entity_Id; + + C : List_Id := New_List; + + begin + New_Assoc := First (New_Assoc_List); + while Present (New_Assoc) loop + Append (Duplicate_Subexpr (Expression (New_Assoc)), To => C); + Next (New_Assoc); + end loop; + + Indic := + Make_Subtype_Indication (Loc, + Subtype_Mark => New_Occurrence_Of (Base_Type (Typ), Loc), + Constraint => Make_Index_Or_Discriminant_Constraint (Loc, C)); + + Def_Id := Create_Itype (Ekind (Typ), N); + + Subtyp_Decl := + Make_Subtype_Declaration (Loc, + Defining_Identifier => Def_Id, + Subtype_Indication => Indic); + Set_Parent (Subtyp_Decl, Parent (N)); + + -- Itypes must be analyzed with checks off (see itypes.ads). + + Analyze (Subtyp_Decl, Suppress => All_Checks); + + Set_Etype (N, Def_Id); + Check_Static_Discriminated_Subtype + (Def_Id, Expression (First (New_Assoc_List))); + end Build_Constrained_Itype; + + else + Set_Etype (N, Typ); + end if; + + -- STEP 5: Get remaining components according to discriminant values + + Step_5 : declare + Record_Def : Node_Id; + Parent_Typ : Entity_Id; + Root_Typ : Entity_Id; + Parent_Typ_List : Elist_Id; + Parent_Elmt : Elmt_Id; + Errors_Found : Boolean := False; + Dnode : Node_Id; + + begin + if Is_Derived_Type (Typ) and then Is_Tagged_Type (Typ) then + Parent_Typ_List := New_Elmt_List; + + -- If this is an extension aggregate, the component list must + -- include all components that are not in the given ancestor + -- type. Otherwise, the component list must include components + -- of all ancestors. + + if Nkind (N) = N_Extension_Aggregate then + Root_Typ := Base_Type (Etype (Ancestor_Part (N))); + else + Root_Typ := Root_Type (Typ); + + if Nkind (Parent (Base_Type (Root_Typ))) + = N_Private_Type_Declaration + then + Error_Msg_NE + ("type of aggregate has private ancestor&!", + N, Root_Typ); + Error_Msg_N ("must use extension aggregate!", N); + return; + end if; + + Dnode := Declaration_Node (Base_Type (Root_Typ)); + + -- If we don't get a full declaration, then we have some + -- error which will get signalled later so skip this part. + + if Nkind (Dnode) = N_Full_Type_Declaration then + Record_Def := Type_Definition (Dnode); + Gather_Components (Typ, + Component_List (Record_Def), + Governed_By => New_Assoc_List, + Into => Components, + Report_Errors => Errors_Found); + end if; + end if; + + Parent_Typ := Base_Type (Typ); + while Parent_Typ /= Root_Typ loop + + Prepend_Elmt (Parent_Typ, To => Parent_Typ_List); + Parent_Typ := Etype (Parent_Typ); + + if (Nkind (Parent (Base_Type (Parent_Typ))) = + N_Private_Type_Declaration + or else Nkind (Parent (Base_Type (Parent_Typ))) = + N_Private_Extension_Declaration) + then + if Nkind (N) /= N_Extension_Aggregate then + Error_Msg_NE + ("type of aggregate has private ancestor&!", + N, Parent_Typ); + Error_Msg_N ("must use extension aggregate!", N); + return; + + elsif Parent_Typ /= Root_Typ then + Error_Msg_NE + ("ancestor part of aggregate must be private type&", + Ancestor_Part (N), Parent_Typ); + return; + end if; + end if; + end loop; + + -- Now collect components from all other ancestors. + + Parent_Elmt := First_Elmt (Parent_Typ_List); + while Present (Parent_Elmt) loop + Parent_Typ := Node (Parent_Elmt); + Record_Def := Type_Definition (Parent (Base_Type (Parent_Typ))); + Gather_Components (Empty, + Component_List (Record_Extension_Part (Record_Def)), + Governed_By => New_Assoc_List, + Into => Components, + Report_Errors => Errors_Found); + + Next_Elmt (Parent_Elmt); + end loop; + + else + Record_Def := Type_Definition (Parent (Base_Type (Typ))); + + if Null_Present (Record_Def) then + null; + else + Gather_Components (Typ, + Component_List (Record_Def), + Governed_By => New_Assoc_List, + Into => Components, + Report_Errors => Errors_Found); + end if; + end if; + + if Errors_Found then + return; + end if; + end Step_5; + + -- STEP 6: Find component Values + + Component := Empty; + Component_Elmt := First_Elmt (Components); + + -- First scan the remaining positional associations in the aggregate. + -- Remember that at this point Positional_Expr contains the current + -- positional association if any is left after looking for discriminant + -- values in step 3. + + while Present (Positional_Expr) and then Present (Component_Elmt) loop + Component := Node (Component_Elmt); + Resolve_Aggr_Expr (Positional_Expr, Component); + + if Present (Get_Value (Component, Component_Associations (N))) then + Error_Msg_NE + ("more than one value supplied for Component &", N, Component); + end if; + + Next (Positional_Expr); + Next_Elmt (Component_Elmt); + end loop; + + if Present (Positional_Expr) then + Error_Msg_N + ("too many components for record aggregate", Positional_Expr); + end if; + + -- Now scan for the named arguments of the aggregate + + while Present (Component_Elmt) loop + Component := Node (Component_Elmt); + Expr := Get_Value (Component, Component_Associations (N), True); + + if No (Expr) then + Error_Msg_NE ("no value supplied for component &!", N, Component); + else + Resolve_Aggr_Expr (Expr, Component); + end if; + + Next_Elmt (Component_Elmt); + end loop; + + -- STEP 7: check for invalid components + check type in choice list + + Step_7 : declare + Selectr : Node_Id; + -- Selector name + + Typech : Entity_Id; + -- Type of first component in choice list + + begin + if Present (Component_Associations (N)) then + Assoc := First (Component_Associations (N)); + else + Assoc := Empty; + end if; + + Verification : while Present (Assoc) loop + Selectr := First (Choices (Assoc)); + Typech := Empty; + + if Nkind (Selectr) = N_Others_Choice then + if No (Others_Etype) then + Error_Msg_N + ("OTHERS must represent at least one component", Selectr); + end if; + + exit Verification; + end if; + + while Present (Selectr) loop + New_Assoc := First (New_Assoc_List); + while Present (New_Assoc) loop + Component := First (Choices (New_Assoc)); + exit when Chars (Selectr) = Chars (Component); + Next (New_Assoc); + end loop; + + -- If no association, this is not a legal component of + -- of the type in question, except if this is an internal + -- component supplied by a previous expansion. + + if No (New_Assoc) then + + if Chars (Selectr) /= Name_uTag + and then Chars (Selectr) /= Name_uParent + and then Chars (Selectr) /= Name_uController + then + if not Has_Discriminants (Typ) then + Error_Msg_Node_2 := Typ; + Error_Msg_N + ("& is not a component of}", + Selectr); + else + Error_Msg_N + ("& is not a component of the aggregate subtype", + Selectr); + end if; + + Check_Misspelled_Component (Components, Selectr); + end if; + + elsif No (Typech) then + Typech := Base_Type (Etype (Component)); + + elsif Typech /= Base_Type (Etype (Component)) then + Error_Msg_N + ("components in choice list must have same type", Selectr); + end if; + + Next (Selectr); + end loop; + + Next (Assoc); + end loop Verification; + end Step_7; + + -- STEP 8: replace the original aggregate + + Step_8 : declare + New_Aggregate : Node_Id := New_Copy (N); + + begin + Set_Expressions (New_Aggregate, No_List); + Set_Etype (New_Aggregate, Etype (N)); + Set_Component_Associations (New_Aggregate, New_Assoc_List); + + Rewrite (N, New_Aggregate); + end Step_8; + end Resolve_Record_Aggregate; + + --------------------- + -- Sort_Case_Table -- + --------------------- + + procedure Sort_Case_Table (Case_Table : in out Case_Table_Type) is + L : Int := Case_Table'First; + U : Int := Case_Table'Last; + K : Int; + J : Int; + T : Case_Bounds; + + begin + K := L; + + while K /= U loop + T := Case_Table (K + 1); + J := K + 1; + + while J /= L + and then Expr_Value (Case_Table (J - 1).Choice_Lo) > + Expr_Value (T.Choice_Lo) + loop + Case_Table (J) := Case_Table (J - 1); + J := J - 1; + end loop; + + Case_Table (J) := T; + K := K + 1; + end loop; + end Sort_Case_Table; + +end Sem_Aggr; |