summaryrefslogtreecommitdiff
path: root/gcc/ada/sem_aggr.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc/ada/sem_aggr.adb')
-rw-r--r--gcc/ada/sem_aggr.adb2848
1 files changed, 2848 insertions, 0 deletions
diff --git a/gcc/ada/sem_aggr.adb b/gcc/ada/sem_aggr.adb
new file mode 100644
index 00000000000..29778ff49b0
--- /dev/null
+++ b/gcc/ada/sem_aggr.adb
@@ -0,0 +1,2848 @@
+------------------------------------------------------------------------------
+-- --
+-- GNAT COMPILER COMPONENTS --
+-- --
+-- S E M _ A G G R --
+-- --
+-- B o d y --
+-- --
+-- $Revision: 1.232 $
+-- --
+-- Copyright (C) 1992-2001 Free Software Foundation, Inc. --
+-- --
+-- GNAT is free software; you can redistribute it and/or modify it under --
+-- terms of the GNU General Public License as published by the Free Soft- --
+-- ware Foundation; either version 2, or (at your option) any later ver- --
+-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
+-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
+-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
+-- for more details. You should have received a copy of the GNU General --
+-- Public License distributed with GNAT; see file COPYING. If not, write --
+-- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
+-- MA 02111-1307, USA. --
+-- --
+-- GNAT was originally developed by the GNAT team at New York University. --
+-- It is now maintained by Ada Core Technologies Inc (http://www.gnat.com). --
+-- --
+------------------------------------------------------------------------------
+
+with Atree; use Atree;
+with Checks; use Checks;
+with Einfo; use Einfo;
+with Elists; use Elists;
+with Errout; use Errout;
+with Exp_Util; use Exp_Util;
+with Freeze; use Freeze;
+with Itypes; use Itypes;
+with Namet; use Namet;
+with Nmake; use Nmake;
+with Nlists; use Nlists;
+with Opt; use Opt;
+with Sem; use Sem;
+with Sem_Cat; use Sem_Cat;
+with Sem_Ch8; use Sem_Ch8;
+with Sem_Ch13; use Sem_Ch13;
+with Sem_Eval; use Sem_Eval;
+with Sem_Res; use Sem_Res;
+with Sem_Util; use Sem_Util;
+with Sem_Type; use Sem_Type;
+with Sinfo; use Sinfo;
+with Snames; use Snames;
+with Stringt; use Stringt;
+with Stand; use Stand;
+with Tbuild; use Tbuild;
+with Uintp; use Uintp;
+
+with GNAT.Spelling_Checker; use GNAT.Spelling_Checker;
+
+package body Sem_Aggr is
+
+ type Case_Bounds is record
+ Choice_Lo : Node_Id;
+ Choice_Hi : Node_Id;
+ Choice_Node : Node_Id;
+ end record;
+
+ type Case_Table_Type is array (Nat range <>) of Case_Bounds;
+ -- Table type used by Check_Case_Choices procedure
+
+ -----------------------
+ -- Local Subprograms --
+ -----------------------
+
+ procedure Sort_Case_Table (Case_Table : in out Case_Table_Type);
+ -- Sort the Case Table using the Lower Bound of each Choice as the key.
+ -- A simple insertion sort is used since the number of choices in a case
+ -- statement of variant part will usually be small and probably in near
+ -- sorted order.
+
+ ------------------------------------------------------
+ -- Subprograms used for RECORD AGGREGATE Processing --
+ ------------------------------------------------------
+
+ procedure Resolve_Record_Aggregate (N : Node_Id; Typ : Entity_Id);
+ -- This procedure performs all the semantic checks required for record
+ -- aggregates. Note that for aggregates analysis and resolution go
+ -- hand in hand. Aggregate analysis has been delayed up to here and
+ -- it is done while resolving the aggregate.
+ --
+ -- N is the N_Aggregate node.
+ -- Typ is the record type for the aggregate resolution
+ --
+ -- While performing the semantic checks, this procedure
+ -- builds a new Component_Association_List where each record field
+ -- appears alone in a Component_Choice_List along with its corresponding
+ -- expression. The record fields in the Component_Association_List
+ -- appear in the same order in which they appear in the record type Typ.
+ --
+ -- Once this new Component_Association_List is built and all the
+ -- semantic checks performed, the original aggregate subtree is replaced
+ -- with the new named record aggregate just built. Note that the subtree
+ -- substitution is performed with Rewrite so as to be
+ -- able to retrieve the original aggregate.
+ --
+ -- The aggregate subtree manipulation performed by Resolve_Record_Aggregate
+ -- yields the aggregate format expected by Gigi. Typically, this kind of
+ -- tree manipulations are done in the expander. However, because the
+ -- semantic checks that need to be performed on record aggregates really
+ -- go hand in hand with the record aggreagate normalization, the aggregate
+ -- subtree transformation is performed during resolution rather than
+ -- expansion. Had we decided otherwise we would have had to duplicate
+ -- most of the code in the expansion procedure Expand_Record_Aggregate.
+ -- Note, however, that all the expansion concerning aggegates for tagged
+ -- records is done in Expand_Record_Aggregate.
+ --
+ -- The algorithm of Resolve_Record_Aggregate proceeds as follows:
+ --
+ -- 1. Make sure that the record type against which the record aggregate
+ -- has to be resolved is not abstract. Furthermore if the type is
+ -- a null aggregate make sure the input aggregate N is also null.
+ --
+ -- 2. Verify that the structure of the aggregate is that of a record
+ -- aggregate. Specifically, look for component associations and ensure
+ -- that each choice list only has identifiers or the N_Others_Choice
+ -- node. Also make sure that if present, the N_Others_Choice occurs
+ -- last and by itself.
+ --
+ -- 3. If Typ contains discriminants, the values for each discriminant
+ -- is looked for. If the record type Typ has variants, we check
+ -- that the expressions corresponding to each discriminant ruling
+ -- the (possibly nested) variant parts of Typ, are static. This
+ -- allows us to determine the variant parts to which the rest of
+ -- the aggregate must conform. The names of discriminants with their
+ -- values are saved in a new association list, New_Assoc_List which
+ -- is later augmented with the names and values of the remaining
+ -- components in the record type.
+ --
+ -- During this phase we also make sure that every discriminant is
+ -- assigned exactly one value. Note that when several values
+ -- for a given discriminant are found, semantic processing continues
+ -- looking for further errors. In this case it's the first
+ -- discriminant value found which we will be recorded.
+ --
+ -- IMPORTANT NOTE: For derived tagged types this procedure expects
+ -- First_Discriminant and Next_Discriminant to give the correct list
+ -- of discriminants, in the correct order.
+ --
+ -- 4. After all the discriminant values have been gathered, we can
+ -- set the Etype of the record aggregate. If Typ contains no
+ -- discriminants this is straightforward: the Etype of N is just
+ -- Typ, otherwise a new implicit constrained subtype of Typ is
+ -- built to be the Etype of N.
+ --
+ -- 5. Gather the remaining record components according to the discriminant
+ -- values. This involves recursively traversing the record type
+ -- structure to see what variants are selected by the given discriminant
+ -- values. This processing is a little more convoluted if Typ is a
+ -- derived tagged types since we need to retrieve the record structure
+ -- of all the ancestors of Typ.
+ --
+ -- 6. After gathering the record components we look for their values
+ -- in the record aggregate and emit appropriate error messages
+ -- should we not find such values or should they be duplicated.
+ --
+ -- 7. We then make sure no illegal component names appear in the
+ -- record aggegate and make sure that the type of the record
+ -- components appearing in a same choice list is the same.
+ -- Finally we ensure that the others choice, if present, is
+ -- used to provide the value of at least a record component.
+ --
+ -- 8. The original aggregate node is replaced with the new named
+ -- aggregate built in steps 3 through 6, as explained earlier.
+ --
+ -- Given the complexity of record aggregate resolution, the primary
+ -- goal of this routine is clarity and simplicity rather than execution
+ -- and storage efficiency. If there are only positional components in the
+ -- aggregate the running time is linear. If there are associations
+ -- the running time is still linear as long as the order of the
+ -- associations is not too far off the order of the components in the
+ -- record type. If this is not the case the running time is at worst
+ -- quadratic in the size of the association list.
+
+ procedure Check_Misspelled_Component
+ (Elements : Elist_Id;
+ Component : Node_Id);
+ -- Give possible misspelling diagnostic if Component is likely to be
+ -- a misspelling of one of the components of the Assoc_List.
+ -- This is called by Resolv_Aggr_Expr after producing
+ -- an invalid component error message.
+
+ procedure Check_Static_Discriminated_Subtype (T : Entity_Id; V : Node_Id);
+ -- An optimization: determine whether a discriminated subtype has a
+ -- static constraint, and contains array components whose length is also
+ -- static, either because they are constrained by the discriminant, or
+ -- because the original component bounds are static.
+
+ -----------------------------------------------------
+ -- Subprograms used for ARRAY AGGREGATE Processing --
+ -----------------------------------------------------
+
+ function Resolve_Array_Aggregate
+ (N : Node_Id;
+ Index : Node_Id;
+ Index_Constr : Node_Id;
+ Component_Typ : Entity_Id;
+ Others_Allowed : Boolean)
+ return Boolean;
+ -- This procedure performs the semantic checks for an array aggregate.
+ -- True is returned if the aggregate resolution succeeds.
+ -- The procedure works by recursively checking each nested aggregate.
+ -- Specifically, after checking a sub-aggreate nested at the i-th level
+ -- we recursively check all the subaggregates at the i+1-st level (if any).
+ -- Note that for aggregates analysis and resolution go hand in hand.
+ -- Aggregate analysis has been delayed up to here and it is done while
+ -- resolving the aggregate.
+ --
+ -- N is the current N_Aggregate node to be checked.
+ --
+ -- Index is the index node corresponding to the array sub-aggregate that
+ -- we are currently checking (RM 4.3.3 (8)). Its Etype is the
+ -- corresponding index type (or subtype).
+ --
+ -- Index_Constr is the node giving the applicable index constraint if
+ -- any (RM 4.3.3 (10)). It "is a constraint provided by certain
+ -- contexts [...] that can be used to determine the bounds of the array
+ -- value specified by the aggregate". If Others_Allowed below is False
+ -- there is no applicable index constraint and this node is set to Index.
+ --
+ -- Component_Typ is the array component type.
+ --
+ -- Others_Allowed indicates whether an others choice is allowed
+ -- in the context where the top-level aggregate appeared.
+ --
+ -- The algorithm of Resolve_Array_Aggregate proceeds as follows:
+ --
+ -- 1. Make sure that the others choice, if present, is by itself and
+ -- appears last in the sub-aggregate. Check that we do not have
+ -- positional and named components in the array sub-aggregate (unless
+ -- the named association is an others choice). Finally if an others
+ -- choice is present, make sure it is allowed in the aggregate contex.
+ --
+ -- 2. If the array sub-aggregate contains discrete_choices:
+ --
+ -- (A) Verify their validity. Specifically verify that:
+ --
+ -- (a) If a null range is present it must be the only possible
+ -- choice in the array aggregate.
+ --
+ -- (b) Ditto for a non static range.
+ --
+ -- (c) Ditto for a non static expression.
+ --
+ -- In addition this step analyzes and resolves each discrete_choice,
+ -- making sure that its type is the type of the corresponding Index.
+ -- If we are not at the lowest array aggregate level (in the case of
+ -- multi-dimensional aggregates) then invoke Resolve_Array_Aggregate
+ -- recursively on each component expression. Otherwise, resolve the
+ -- bottom level component expressions against the expected component
+ -- type ONLY IF the component corresponds to a single discrete choice
+ -- which is not an others choice (to see why read the DELAYED
+ -- COMPONENT RESOLUTION below).
+ --
+ -- (B) Determine the bounds of the sub-aggregate and lowest and
+ -- highest choice values.
+ --
+ -- 3. For positional aggregates:
+ --
+ -- (A) Loop over the component expressions either recursively invoking
+ -- Resolve_Array_Aggregate on each of these for multi-dimensional
+ -- array aggregates or resolving the bottom level component
+ -- expressions against the expected component type.
+ --
+ -- (B) Determine the bounds of the positional sub-aggregates.
+ --
+ -- 4. Try to determine statically whether the evaluation of the array
+ -- sub-aggregate raises Constraint_Error. If yes emit proper
+ -- warnings. The precise checks are the following:
+ --
+ -- (A) Check that the index range defined by aggregate bounds is
+ -- compatible with corresponding index subtype.
+ -- We also check against the base type. In fact it could be that
+ -- Low/High bounds of the base type are static whereas those of
+ -- the index subtype are not. Thus if we can statically catch
+ -- a problem with respect to the base type we are guaranteed
+ -- that the same problem will arise with the index subtype
+ --
+ -- (B) If we are dealing with a named aggregate containing an others
+ -- choice and at least one discrete choice then make sure the range
+ -- specified by the discrete choices does not overflow the
+ -- aggregate bounds. We also check against the index type and base
+ -- type bounds for the same reasons given in (A).
+ --
+ -- (C) If we are dealing with a positional aggregate with an others
+ -- choice make sure the number of positional elements specified
+ -- does not overflow the aggregate bounds. We also check against
+ -- the index type and base type bounds as mentioned in (A).
+ --
+ -- Finally construct an N_Range node giving the sub-aggregate bounds.
+ -- Set the Aggregate_Bounds field of the sub-aggregate to be this
+ -- N_Range. The routine Array_Aggr_Subtype below uses such N_Ranges
+ -- to build the appropriate aggregate subtype. Aggregate_Bounds
+ -- information is needed during expansion.
+ --
+ -- DELAYED COMPONENT RESOLUTION: The resolution of bottom level component
+ -- expressions in an array aggregate may call Duplicate_Subexpr or some
+ -- other routine that inserts code just outside the outermost aggregate.
+ -- If the array aggregate contains discrete choices or an others choice,
+ -- this may be wrong. Consider for instance the following example.
+ --
+ -- type Rec is record
+ -- V : Integer := 0;
+ -- end record;
+ --
+ -- type Acc_Rec is access Rec;
+ -- Arr : array (1..3) of Acc_Rec := (1 .. 3 => new Rec);
+ --
+ -- Then the transformation of "new Rec" that occurs during resolution
+ -- entails the following code modifications
+ --
+ -- P7b : constant Acc_Rec := new Rec;
+ -- Rec_init_proc (P7b.all);
+ -- Arr : array (1..3) of Acc_Rec := (1 .. 3 => P7b);
+ --
+ -- This code transformation is clearly wrong, since we need to call
+ -- "new Rec" for each of the 3 array elements. To avoid this problem we
+ -- delay resolution of the components of non positional array aggregates
+ -- to the expansion phase. As an optimization, if the discrete choice
+ -- specifies a single value we do not delay resolution.
+
+ function Array_Aggr_Subtype (N : Node_Id; Typ : Node_Id) return Entity_Id;
+ -- This routine returns the type or subtype of an array aggregate.
+ --
+ -- N is the array aggregate node whose type we return.
+ --
+ -- Typ is the context type in which N occurs.
+ --
+ -- This routine creates an implicit array subtype whose bouds are
+ -- those defined by the aggregate. When this routine is invoked
+ -- Resolve_Array_Aggregate has already processed aggregate N. Thus the
+ -- Aggregate_Bounds of each sub-aggregate, is an N_Range node giving the
+ -- sub-aggregate bounds. When building the aggegate itype, this function
+ -- traverses the array aggregate N collecting such Aggregate_Bounds and
+ -- constructs the proper array aggregate itype.
+ --
+ -- Note that in the case of multidimensional aggregates each inner
+ -- sub-aggregate corresponding to a given array dimension, may provide a
+ -- different bounds. If it is possible to determine statically that
+ -- some sub-aggregates corresponding to the same index do not have the
+ -- same bounds, then a warning is emitted. If such check is not possible
+ -- statically (because some sub-aggregate bounds are dynamic expressions)
+ -- then this job is left to the expander. In all cases the particular
+ -- bounds that this function will chose for a given dimension is the first
+ -- N_Range node for a sub-aggregate corresponding to that dimension.
+ --
+ -- Note that the Raises_Constraint_Error flag of an array aggregate
+ -- whose evaluation is determined to raise CE by Resolve_Array_Aggregate,
+ -- is set in Resolve_Array_Aggregate but the aggregate is not
+ -- immediately replaced with a raise CE. In fact, Array_Aggr_Subtype must
+ -- first construct the proper itype for the aggregate (Gigi needs
+ -- this). After constructing the proper itype we will eventually replace
+ -- the top-level aggregate with a raise CE (done in Resolve_Aggregate).
+ -- Of course in cases such as:
+ --
+ -- type Arr is array (integer range <>) of Integer;
+ -- A : Arr := (positive range -1 .. 2 => 0);
+ --
+ -- The bounds of the aggregate itype are cooked up to look reasonable
+ -- (in this particular case the bounds will be 1 .. 2).
+
+ procedure Aggregate_Constraint_Checks
+ (Exp : Node_Id;
+ Check_Typ : Entity_Id);
+ -- Checks expression Exp against subtype Check_Typ. If Exp is an
+ -- aggregate and Check_Typ a constrained record type with discriminants,
+ -- we generate the appropriate discriminant checks. If Exp is an array
+ -- aggregate then emit the appropriate length checks. If Exp is a scalar
+ -- type, or a string literal, Exp is changed into Check_Typ'(Exp) to
+ -- ensure that range checks are performed at run time.
+
+ procedure Make_String_Into_Aggregate (N : Node_Id);
+ -- A string literal can appear in a context in which a one dimensional
+ -- array of characters is expected. This procedure simply rewrites the
+ -- string as an aggregate, prior to resolution.
+
+ ---------------------------------
+ -- Aggregate_Constraint_Checks --
+ ---------------------------------
+
+ procedure Aggregate_Constraint_Checks
+ (Exp : Node_Id;
+ Check_Typ : Entity_Id)
+ is
+ Exp_Typ : constant Entity_Id := Etype (Exp);
+
+ begin
+ if Raises_Constraint_Error (Exp) then
+ return;
+ end if;
+
+ -- This is really expansion activity, so make sure that expansion
+ -- is on and is allowed.
+
+ if not Expander_Active or else In_Default_Expression then
+ return;
+ end if;
+
+ -- First check if we have to insert discriminant checks
+
+ if Has_Discriminants (Exp_Typ) then
+ Apply_Discriminant_Check (Exp, Check_Typ);
+
+ -- Next emit length checks for array aggregates
+
+ elsif Is_Array_Type (Exp_Typ) then
+ Apply_Length_Check (Exp, Check_Typ);
+
+ -- Finally emit scalar and string checks. If we are dealing with a
+ -- scalar literal we need to check by hand because the Etype of
+ -- literals is not necessarily correct.
+
+ elsif Is_Scalar_Type (Exp_Typ)
+ and then Compile_Time_Known_Value (Exp)
+ then
+ if Is_Out_Of_Range (Exp, Base_Type (Check_Typ)) then
+ Apply_Compile_Time_Constraint_Error
+ (Exp, "value not in range of}?",
+ Ent => Base_Type (Check_Typ),
+ Typ => Base_Type (Check_Typ));
+
+ elsif Is_Out_Of_Range (Exp, Check_Typ) then
+ Apply_Compile_Time_Constraint_Error
+ (Exp, "value not in range of}?",
+ Ent => Check_Typ,
+ Typ => Check_Typ);
+
+ elsif not Range_Checks_Suppressed (Check_Typ) then
+ Apply_Scalar_Range_Check (Exp, Check_Typ);
+ end if;
+
+ elsif (Is_Scalar_Type (Exp_Typ)
+ or else Nkind (Exp) = N_String_Literal)
+ and then Exp_Typ /= Check_Typ
+ then
+ if Is_Entity_Name (Exp)
+ and then Ekind (Entity (Exp)) = E_Constant
+ then
+ -- If expression is a constant, it is worthwhile checking whether
+ -- it is a bound of the type.
+
+ if (Is_Entity_Name (Type_Low_Bound (Check_Typ))
+ and then Entity (Exp) = Entity (Type_Low_Bound (Check_Typ)))
+ or else (Is_Entity_Name (Type_High_Bound (Check_Typ))
+ and then Entity (Exp) = Entity (Type_High_Bound (Check_Typ)))
+ then
+ return;
+
+ else
+ Rewrite (Exp, Convert_To (Check_Typ, Relocate_Node (Exp)));
+ Analyze_And_Resolve (Exp, Check_Typ);
+ end if;
+ else
+ Rewrite (Exp, Convert_To (Check_Typ, Relocate_Node (Exp)));
+ Analyze_And_Resolve (Exp, Check_Typ);
+ end if;
+
+ end if;
+ end Aggregate_Constraint_Checks;
+
+ ------------------------
+ -- Array_Aggr_Subtype --
+ ------------------------
+
+ function Array_Aggr_Subtype
+ (N : Node_Id;
+ Typ : Entity_Id)
+ return Entity_Id
+ is
+ Aggr_Dimension : constant Pos := Number_Dimensions (Typ);
+ -- Number of aggregate index dimensions.
+
+ Aggr_Range : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
+ -- Constrained N_Range of each index dimension in our aggregate itype.
+
+ Aggr_Low : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
+ Aggr_High : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
+ -- Low and High bounds for each index dimension in our aggregate itype.
+
+ Is_Fully_Positional : Boolean := True;
+
+ procedure Collect_Aggr_Bounds (N : Node_Id; Dim : Pos);
+ -- N is an array (sub-)aggregate. Dim is the dimension corresponding to
+ -- (sub-)aggregate N. This procedure collects the constrained N_Range
+ -- nodes corresponding to each index dimension of our aggregate itype.
+ -- These N_Range nodes are collected in Aggr_Range above.
+ -- Likewise collect in Aggr_Low & Aggr_High above the low and high
+ -- bounds of each index dimension. If, when collecting, two bounds
+ -- corresponding to the same dimension are static and found to differ,
+ -- then emit a warning, and mark N as raising Constraint_Error.
+
+ -------------------------
+ -- Collect_Aggr_Bounds --
+ -------------------------
+
+ procedure Collect_Aggr_Bounds (N : Node_Id; Dim : Pos) is
+ This_Range : constant Node_Id := Aggregate_Bounds (N);
+ -- The aggregate range node of this specific sub-aggregate.
+
+ This_Low : constant Node_Id := Low_Bound (Aggregate_Bounds (N));
+ This_High : constant Node_Id := High_Bound (Aggregate_Bounds (N));
+ -- The aggregate bounds of this specific sub-aggregate.
+
+ Assoc : Node_Id;
+ Expr : Node_Id;
+
+ begin
+ -- Collect the first N_Range for a given dimension that you find.
+ -- For a given dimension they must be all equal anyway.
+
+ if No (Aggr_Range (Dim)) then
+ Aggr_Low (Dim) := This_Low;
+ Aggr_High (Dim) := This_High;
+ Aggr_Range (Dim) := This_Range;
+
+ else
+ if Compile_Time_Known_Value (This_Low) then
+ if not Compile_Time_Known_Value (Aggr_Low (Dim)) then
+ Aggr_Low (Dim) := This_Low;
+
+ elsif Expr_Value (This_Low) /= Expr_Value (Aggr_Low (Dim)) then
+ Set_Raises_Constraint_Error (N);
+ Error_Msg_N ("Sub-aggregate low bound mismatch?", N);
+ Error_Msg_N ("Constraint_Error will be raised at run-time?",
+ N);
+ end if;
+ end if;
+
+ if Compile_Time_Known_Value (This_High) then
+ if not Compile_Time_Known_Value (Aggr_High (Dim)) then
+ Aggr_High (Dim) := This_High;
+
+ elsif
+ Expr_Value (This_High) /= Expr_Value (Aggr_High (Dim))
+ then
+ Set_Raises_Constraint_Error (N);
+ Error_Msg_N ("Sub-aggregate high bound mismatch?", N);
+ Error_Msg_N ("Constraint_Error will be raised at run-time?",
+ N);
+ end if;
+ end if;
+ end if;
+
+ if Dim < Aggr_Dimension then
+
+ -- Process positional components
+
+ if Present (Expressions (N)) then
+ Expr := First (Expressions (N));
+ while Present (Expr) loop
+ Collect_Aggr_Bounds (Expr, Dim + 1);
+ Next (Expr);
+ end loop;
+ end if;
+
+ -- Process component associations
+
+ if Present (Component_Associations (N)) then
+ Is_Fully_Positional := False;
+
+ Assoc := First (Component_Associations (N));
+ while Present (Assoc) loop
+ Expr := Expression (Assoc);
+ Collect_Aggr_Bounds (Expr, Dim + 1);
+ Next (Assoc);
+ end loop;
+ end if;
+ end if;
+ end Collect_Aggr_Bounds;
+
+ -- Array_Aggr_Subtype variables
+
+ Itype : Entity_Id;
+ -- the final itype of the overall aggregate
+
+ Index_Constraints : List_Id := New_List;
+ -- The list of index constraints of the aggregate itype.
+
+ -- Start of processing for Array_Aggr_Subtype
+
+ begin
+ -- Make sure that the list of index constraints is properly attached
+ -- to the tree, and then collect the aggregate bounds.
+
+ Set_Parent (Index_Constraints, N);
+ Collect_Aggr_Bounds (N, 1);
+
+ -- Build the list of constrained indices of our aggregate itype.
+
+ for J in 1 .. Aggr_Dimension loop
+ Create_Index : declare
+ Index_Base : Entity_Id := Base_Type (Etype (Aggr_Range (J)));
+ Index_Typ : Entity_Id;
+
+ begin
+ -- Construct the Index subtype
+
+ Index_Typ := Create_Itype (Subtype_Kind (Ekind (Index_Base)), N);
+
+ Set_Etype (Index_Typ, Index_Base);
+
+ if Is_Character_Type (Index_Base) then
+ Set_Is_Character_Type (Index_Typ);
+ end if;
+
+ Set_Size_Info (Index_Typ, (Index_Base));
+ Set_RM_Size (Index_Typ, RM_Size (Index_Base));
+ Set_First_Rep_Item (Index_Typ, First_Rep_Item (Index_Base));
+ Set_Scalar_Range (Index_Typ, Aggr_Range (J));
+
+ if Is_Discrete_Or_Fixed_Point_Type (Index_Typ) then
+ Set_RM_Size (Index_Typ, UI_From_Int (Minimum_Size (Index_Typ)));
+ end if;
+
+ Set_Etype (Aggr_Range (J), Index_Typ);
+
+ Append (Aggr_Range (J), To => Index_Constraints);
+ end Create_Index;
+ end loop;
+
+ -- Now build the Itype
+
+ Itype := Create_Itype (E_Array_Subtype, N);
+
+ Set_First_Rep_Item (Itype, First_Rep_Item (Typ));
+ Set_Component_Type (Itype, Component_Type (Typ));
+ Set_Convention (Itype, Convention (Typ));
+ Set_Depends_On_Private (Itype, Has_Private_Component (Typ));
+ Set_Etype (Itype, Base_Type (Typ));
+ Set_Has_Alignment_Clause (Itype, Has_Alignment_Clause (Typ));
+ Set_Is_Aliased (Itype, Is_Aliased (Typ));
+ Set_Suppress_Index_Checks (Itype, Suppress_Index_Checks (Typ));
+ Set_Suppress_Length_Checks (Itype, Suppress_Length_Checks (Typ));
+ Set_Depends_On_Private (Itype, Depends_On_Private (Typ));
+
+ Set_First_Index (Itype, First (Index_Constraints));
+ Set_Is_Constrained (Itype, True);
+ Set_Is_Internal (Itype, True);
+ Init_Size_Align (Itype);
+
+ -- A simple optimization: purely positional aggregates of static
+ -- components should be passed to gigi unexpanded whenever possible,
+ -- and regardless of the staticness of the bounds themselves. Subse-
+ -- quent checks in exp_aggr verify that type is not packed, etc.
+
+ Set_Size_Known_At_Compile_Time (Itype,
+ Is_Fully_Positional
+ and then Comes_From_Source (N)
+ and then Size_Known_At_Compile_Time (Component_Type (Typ)));
+
+ -- We always need a freeze node for a packed array subtype, so that
+ -- we can build the Packed_Array_Type corresponding to the subtype.
+ -- If expansion is disabled, the packed array subtype is not built,
+ -- and we must not generate a freeze node for the type, or else it
+ -- will appear incomplete to gigi.
+
+ if Is_Packed (Itype) and then not In_Default_Expression
+ and then Expander_Active
+ then
+ Freeze_Itype (Itype, N);
+ end if;
+
+ return Itype;
+ end Array_Aggr_Subtype;
+
+ --------------------------------
+ -- Check_Misspelled_Component --
+ --------------------------------
+
+ procedure Check_Misspelled_Component
+ (Elements : Elist_Id;
+ Component : Node_Id)
+ is
+ Max_Suggestions : constant := 2;
+
+ Nr_Of_Suggestions : Natural := 0;
+ Suggestion_1 : Entity_Id := Empty;
+ Suggestion_2 : Entity_Id := Empty;
+ Component_Elmt : Elmt_Id;
+
+ begin
+ -- All the components of List are matched against Component and
+ -- a count is maintained of possible misspellings. When at the
+ -- end of the analysis there are one or two (not more!) possible
+ -- misspellings, these misspellings will be suggested as
+ -- possible correction.
+
+ Get_Name_String (Chars (Component));
+
+ declare
+ S : constant String (1 .. Name_Len) :=
+ Name_Buffer (1 .. Name_Len);
+
+ begin
+
+ Component_Elmt := First_Elmt (Elements);
+
+ while Nr_Of_Suggestions <= Max_Suggestions
+ and then Present (Component_Elmt)
+ loop
+
+ Get_Name_String (Chars (Node (Component_Elmt)));
+
+ if Is_Bad_Spelling_Of (Name_Buffer (1 .. Name_Len), S) then
+ Nr_Of_Suggestions := Nr_Of_Suggestions + 1;
+
+ case Nr_Of_Suggestions is
+ when 1 => Suggestion_1 := Node (Component_Elmt);
+ when 2 => Suggestion_2 := Node (Component_Elmt);
+ when others => exit;
+ end case;
+ end if;
+
+ Next_Elmt (Component_Elmt);
+ end loop;
+
+ -- Report at most two suggestions
+
+ if Nr_Of_Suggestions = 1 then
+ Error_Msg_NE ("\possible misspelling of&",
+ Component, Suggestion_1);
+
+ elsif Nr_Of_Suggestions = 2 then
+ Error_Msg_Node_2 := Suggestion_2;
+ Error_Msg_NE ("\possible misspelling of& or&",
+ Component, Suggestion_1);
+ end if;
+ end;
+ end Check_Misspelled_Component;
+
+ ----------------------------------------
+ -- Check_Static_Discriminated_Subtype --
+ ----------------------------------------
+
+ procedure Check_Static_Discriminated_Subtype (T : Entity_Id; V : Node_Id) is
+ Disc : constant Entity_Id := First_Discriminant (T);
+ Comp : Entity_Id;
+ Ind : Entity_Id;
+
+ begin
+ if Has_Record_Rep_Clause (Base_Type (T)) then
+ return;
+
+ elsif Present (Next_Discriminant (Disc)) then
+ return;
+
+ elsif Nkind (V) /= N_Integer_Literal then
+ return;
+ end if;
+
+ Comp := First_Component (T);
+
+ while Present (Comp) loop
+
+ if Is_Scalar_Type (Etype (Comp)) then
+ null;
+
+ elsif Is_Private_Type (Etype (Comp))
+ and then Present (Full_View (Etype (Comp)))
+ and then Is_Scalar_Type (Full_View (Etype (Comp)))
+ then
+ null;
+
+ elsif Is_Array_Type (Etype (Comp)) then
+
+ if Is_Bit_Packed_Array (Etype (Comp)) then
+ return;
+ end if;
+
+ Ind := First_Index (Etype (Comp));
+
+ while Present (Ind) loop
+
+ if Nkind (Ind) /= N_Range
+ or else Nkind (Low_Bound (Ind)) /= N_Integer_Literal
+ or else Nkind (High_Bound (Ind)) /= N_Integer_Literal
+ then
+ return;
+ end if;
+
+ Next_Index (Ind);
+ end loop;
+
+ else
+ return;
+ end if;
+
+ Next_Component (Comp);
+ end loop;
+
+ -- On exit, all components have statically known sizes.
+
+ Set_Size_Known_At_Compile_Time (T);
+ end Check_Static_Discriminated_Subtype;
+
+ --------------------------------
+ -- Make_String_Into_Aggregate --
+ --------------------------------
+
+ procedure Make_String_Into_Aggregate (N : Node_Id) is
+ C : Char_Code;
+ C_Node : Node_Id;
+ Exprs : List_Id := New_List;
+ Loc : constant Source_Ptr := Sloc (N);
+ New_N : Node_Id;
+ P : Source_Ptr := Loc + 1;
+ Str : constant String_Id := Strval (N);
+ Strlen : constant Nat := String_Length (Str);
+
+ begin
+ for J in 1 .. Strlen loop
+ C := Get_String_Char (Str, J);
+ Set_Character_Literal_Name (C);
+
+ C_Node := Make_Character_Literal (P, Name_Find, C);
+ Set_Etype (C_Node, Any_Character);
+ Set_Analyzed (C_Node);
+ Append_To (Exprs, C_Node);
+
+ P := P + 1;
+ -- something special for wide strings ?
+ end loop;
+
+ New_N := Make_Aggregate (Loc, Expressions => Exprs);
+ Set_Analyzed (New_N);
+ Set_Etype (New_N, Any_Composite);
+
+ Rewrite (N, New_N);
+ end Make_String_Into_Aggregate;
+
+ -----------------------
+ -- Resolve_Aggregate --
+ -----------------------
+
+ procedure Resolve_Aggregate (N : Node_Id; Typ : Entity_Id) is
+ Pkind : constant Node_Kind := Nkind (Parent (N));
+
+ Aggr_Subtyp : Entity_Id;
+ -- The actual aggregate subtype. This is not necessarily the same as Typ
+ -- which is the subtype of the context in which the aggregate was found.
+
+ begin
+ if Is_Limited_Type (Typ) then
+ Error_Msg_N ("aggregate type cannot be limited", N);
+
+ elsif Is_Limited_Composite (Typ) then
+ Error_Msg_N ("aggregate type cannot have limited component", N);
+
+ elsif Is_Class_Wide_Type (Typ) then
+ Error_Msg_N ("type of aggregate cannot be class-wide", N);
+
+ elsif Typ = Any_String
+ or else Typ = Any_Composite
+ then
+ Error_Msg_N ("no unique type for aggregate", N);
+ Set_Etype (N, Any_Composite);
+
+ elsif Is_Array_Type (Typ) and then Null_Record_Present (N) then
+ Error_Msg_N ("null record forbidden in array aggregate", N);
+
+ elsif Is_Record_Type (Typ) then
+ Resolve_Record_Aggregate (N, Typ);
+
+ elsif Is_Array_Type (Typ) then
+
+ -- First a special test, for the case of a positional aggregate
+ -- of characters which can be replaced by a string literal.
+ -- Do not perform this transformation if this was a string literal
+ -- to start with, whose components needed constraint checks, or if
+ -- the component type is non-static, because it will require those
+ -- checks and be transformed back into an aggregate.
+
+ if Number_Dimensions (Typ) = 1
+ and then
+ (Root_Type (Component_Type (Typ)) = Standard_Character
+ or else
+ Root_Type (Component_Type (Typ)) = Standard_Wide_Character)
+ and then No (Component_Associations (N))
+ and then not Is_Limited_Composite (Typ)
+ and then not Is_Private_Composite (Typ)
+ and then not Is_Bit_Packed_Array (Typ)
+ and then Nkind (Original_Node (Parent (N))) /= N_String_Literal
+ and then Is_Static_Subtype (Component_Type (Typ))
+ then
+ declare
+ Expr : Node_Id;
+
+ begin
+ Expr := First (Expressions (N));
+ while Present (Expr) loop
+ exit when Nkind (Expr) /= N_Character_Literal;
+ Next (Expr);
+ end loop;
+
+ if No (Expr) then
+ Start_String;
+
+ Expr := First (Expressions (N));
+ while Present (Expr) loop
+ Store_String_Char (Char_Literal_Value (Expr));
+ Next (Expr);
+ end loop;
+
+ Rewrite (N,
+ Make_String_Literal (Sloc (N), End_String));
+
+ Analyze_And_Resolve (N, Typ);
+ return;
+ end if;
+ end;
+ end if;
+
+ -- Here if we have a real aggregate to deal with
+
+ Array_Aggregate : declare
+ Aggr_Resolved : Boolean;
+ Aggr_Typ : Entity_Id := Etype (Typ);
+ -- This is the unconstrained array type, which is the type
+ -- against which the aggregate is to be resoved. Typ itself
+ -- is the array type of the context which may not be the same
+ -- subtype as the subtype for the final aggregate.
+
+ begin
+ -- In the following we determine whether an others choice is
+ -- allowed inside the array aggregate. The test checks the context
+ -- in which the array aggregate occurs. If the context does not
+ -- permit it, or the aggregate type is unconstrained, an others
+ -- choice is not allowed.
+ --
+ -- Note that there is no node for Explicit_Actual_Parameter.
+ -- To test for this context we therefore have to test for node
+ -- N_Parameter_Association which itself appears only if there is a
+ -- formal parameter. Consequently we also need to test for
+ -- N_Procedure_Call_Statement or N_Function_Call.
+
+ if Is_Constrained (Typ) and then
+ (Pkind = N_Assignment_Statement or else
+ Pkind = N_Parameter_Association or else
+ Pkind = N_Function_Call or else
+ Pkind = N_Procedure_Call_Statement or else
+ Pkind = N_Generic_Association or else
+ Pkind = N_Formal_Object_Declaration or else
+ Pkind = N_Return_Statement or else
+ Pkind = N_Object_Declaration or else
+ Pkind = N_Component_Declaration or else
+ Pkind = N_Parameter_Specification or else
+ Pkind = N_Qualified_Expression or else
+ Pkind = N_Aggregate or else
+ Pkind = N_Extension_Aggregate or else
+ Pkind = N_Component_Association)
+ then
+ Aggr_Resolved :=
+ Resolve_Array_Aggregate
+ (N,
+ Index => First_Index (Aggr_Typ),
+ Index_Constr => First_Index (Typ),
+ Component_Typ => Component_Type (Typ),
+ Others_Allowed => True);
+
+ else
+ Aggr_Resolved :=
+ Resolve_Array_Aggregate
+ (N,
+ Index => First_Index (Aggr_Typ),
+ Index_Constr => First_Index (Aggr_Typ),
+ Component_Typ => Component_Type (Typ),
+ Others_Allowed => False);
+ end if;
+
+ if not Aggr_Resolved then
+ Aggr_Subtyp := Any_Composite;
+ else
+ Aggr_Subtyp := Array_Aggr_Subtype (N, Typ);
+ end if;
+
+ Set_Etype (N, Aggr_Subtyp);
+ end Array_Aggregate;
+
+ else
+ Error_Msg_N ("illegal context for aggregate", N);
+
+ end if;
+
+ -- If we can determine statically that the evaluation of the
+ -- aggregate raises Constraint_Error, then replace the
+ -- aggregate with an N_Raise_Constraint_Error node, but set the
+ -- Etype to the right aggregate subtype. Gigi needs this.
+
+ if Raises_Constraint_Error (N) then
+ Aggr_Subtyp := Etype (N);
+ Rewrite (N, Make_Raise_Constraint_Error (Sloc (N)));
+ Set_Raises_Constraint_Error (N);
+ Set_Etype (N, Aggr_Subtyp);
+ Set_Analyzed (N);
+ end if;
+
+ end Resolve_Aggregate;
+
+ -----------------------------
+ -- Resolve_Array_Aggregate --
+ -----------------------------
+
+ function Resolve_Array_Aggregate
+ (N : Node_Id;
+ Index : Node_Id;
+ Index_Constr : Node_Id;
+ Component_Typ : Entity_Id;
+ Others_Allowed : Boolean)
+ return Boolean
+ is
+ Loc : constant Source_Ptr := Sloc (N);
+
+ Failure : constant Boolean := False;
+ Success : constant Boolean := True;
+
+ Index_Typ : constant Entity_Id := Etype (Index);
+ Index_Typ_Low : constant Node_Id := Type_Low_Bound (Index_Typ);
+ Index_Typ_High : constant Node_Id := Type_High_Bound (Index_Typ);
+ -- The type of the index corresponding to the array sub-aggregate
+ -- along with its low and upper bounds
+
+ Index_Base : constant Entity_Id := Base_Type (Index_Typ);
+ Index_Base_Low : constant Node_Id := Type_Low_Bound (Index_Base);
+ Index_Base_High : constant Node_Id := Type_High_Bound (Index_Base);
+ -- ditto for the base type
+
+ function Add (Val : Uint; To : Node_Id) return Node_Id;
+ -- Creates a new expression node where Val is added to expression To.
+ -- Tries to constant fold whenever possible. To must be an already
+ -- analyzed expression.
+
+ procedure Check_Bound (BH : Node_Id; AH : in out Node_Id);
+ -- Checks that AH (the upper bound of an array aggregate) is <= BH
+ -- (the upper bound of the index base type). If the check fails a
+ -- warning is emitted, the Raises_Constraint_Error Flag of N is set,
+ -- and AH is replaced with a duplicate of BH.
+
+ procedure Check_Bounds (L, H : Node_Id; AL, AH : Node_Id);
+ -- Checks that range AL .. AH is compatible with range L .. H. Emits a
+ -- warning if not and sets the Raises_Constraint_Error Flag in N.
+
+ procedure Check_Length (L, H : Node_Id; Len : Uint);
+ -- Checks that range L .. H contains at least Len elements. Emits a
+ -- warning if not and sets the Raises_Constraint_Error Flag in N.
+
+ function Dynamic_Or_Null_Range (L, H : Node_Id) return Boolean;
+ -- Returns True if range L .. H is dynamic or null.
+
+ procedure Get (Value : out Uint; From : Node_Id; OK : out Boolean);
+ -- Given expression node From, this routine sets OK to False if it
+ -- cannot statically evaluate From. Otherwise it stores this static
+ -- value into Value.
+
+ function Resolve_Aggr_Expr
+ (Expr : Node_Id;
+ Single_Elmt : Boolean)
+ return Boolean;
+ -- Resolves aggregate expression Expr. Returs False if resolution
+ -- fails. If Single_Elmt is set to False, the expression Expr may be
+ -- used to initialize several array aggregate elements (this can
+ -- happen for discrete choices such as "L .. H => Expr" or the others
+ -- choice). In this event we do not resolve Expr unless expansion is
+ -- disabled. To know why, see the DELAYED COMPONENT RESOLUTION
+ -- note above.
+
+ ---------
+ -- Add --
+ ---------
+
+ function Add (Val : Uint; To : Node_Id) return Node_Id is
+ Expr_Pos : Node_Id;
+ Expr : Node_Id;
+ To_Pos : Node_Id;
+
+ begin
+ if Raises_Constraint_Error (To) then
+ return To;
+ end if;
+
+ -- First test if we can do constant folding
+
+ if Compile_Time_Known_Value (To)
+ or else Nkind (To) = N_Integer_Literal
+ then
+ Expr_Pos := Make_Integer_Literal (Loc, Expr_Value (To) + Val);
+ Set_Is_Static_Expression (Expr_Pos);
+ Set_Etype (Expr_Pos, Etype (To));
+ Set_Analyzed (Expr_Pos, Analyzed (To));
+
+ if not Is_Enumeration_Type (Index_Typ) then
+ Expr := Expr_Pos;
+
+ -- If we are dealing with enumeration return
+ -- Index_Typ'Val (Expr_Pos)
+
+ else
+ Expr :=
+ Make_Attribute_Reference
+ (Loc,
+ Prefix => New_Reference_To (Index_Typ, Loc),
+ Attribute_Name => Name_Val,
+ Expressions => New_List (Expr_Pos));
+ end if;
+
+ return Expr;
+ end if;
+
+ -- If we are here no constant folding possible
+
+ if not Is_Enumeration_Type (Index_Base) then
+ Expr :=
+ Make_Op_Add (Loc,
+ Left_Opnd => Duplicate_Subexpr (To),
+ Right_Opnd => Make_Integer_Literal (Loc, Val));
+
+ -- If we are dealing with enumeration return
+ -- Index_Typ'Val (Index_Typ'Pos (To) + Val)
+
+ else
+ To_Pos :=
+ Make_Attribute_Reference
+ (Loc,
+ Prefix => New_Reference_To (Index_Typ, Loc),
+ Attribute_Name => Name_Pos,
+ Expressions => New_List (Duplicate_Subexpr (To)));
+
+ Expr_Pos :=
+ Make_Op_Add (Loc,
+ Left_Opnd => To_Pos,
+ Right_Opnd => Make_Integer_Literal (Loc, Val));
+
+ Expr :=
+ Make_Attribute_Reference
+ (Loc,
+ Prefix => New_Reference_To (Index_Typ, Loc),
+ Attribute_Name => Name_Val,
+ Expressions => New_List (Expr_Pos));
+ end if;
+
+ return Expr;
+ end Add;
+
+ -----------------
+ -- Check_Bound --
+ -----------------
+
+ procedure Check_Bound (BH : Node_Id; AH : in out Node_Id) is
+ Val_BH : Uint;
+ Val_AH : Uint;
+
+ OK_BH : Boolean;
+ OK_AH : Boolean;
+
+ begin
+ Get (Value => Val_BH, From => BH, OK => OK_BH);
+ Get (Value => Val_AH, From => AH, OK => OK_AH);
+
+ if OK_BH and then OK_AH and then Val_BH < Val_AH then
+ Set_Raises_Constraint_Error (N);
+ Error_Msg_N ("upper bound out of range?", AH);
+ Error_Msg_N ("Constraint_Error will be raised at run-time?", AH);
+
+ -- You need to set AH to BH or else in the case of enumerations
+ -- indices we will not be able to resolve the aggregate bounds.
+
+ AH := Duplicate_Subexpr (BH);
+ end if;
+ end Check_Bound;
+
+ ------------------
+ -- Check_Bounds --
+ ------------------
+
+ procedure Check_Bounds (L, H : Node_Id; AL, AH : Node_Id) is
+ Val_L : Uint;
+ Val_H : Uint;
+ Val_AL : Uint;
+ Val_AH : Uint;
+
+ OK_L : Boolean;
+ OK_H : Boolean;
+ OK_AL : Boolean;
+ OK_AH : Boolean;
+
+ begin
+ if Raises_Constraint_Error (N)
+ or else Dynamic_Or_Null_Range (AL, AH)
+ then
+ return;
+ end if;
+
+ Get (Value => Val_L, From => L, OK => OK_L);
+ Get (Value => Val_H, From => H, OK => OK_H);
+
+ Get (Value => Val_AL, From => AL, OK => OK_AL);
+ Get (Value => Val_AH, From => AH, OK => OK_AH);
+
+ if OK_L and then Val_L > Val_AL then
+ Set_Raises_Constraint_Error (N);
+ Error_Msg_N ("lower bound of aggregate out of range?", N);
+ Error_Msg_N ("Constraint_Error will be raised at run-time?", N);
+ end if;
+
+ if OK_H and then Val_H < Val_AH then
+ Set_Raises_Constraint_Error (N);
+ Error_Msg_N ("upper bound of aggregate out of range?", N);
+ Error_Msg_N ("Constraint_Error will be raised at run-time?", N);
+ end if;
+ end Check_Bounds;
+
+ ------------------
+ -- Check_Length --
+ ------------------
+
+ procedure Check_Length (L, H : Node_Id; Len : Uint) is
+ Val_L : Uint;
+ Val_H : Uint;
+
+ OK_L : Boolean;
+ OK_H : Boolean;
+
+ Range_Len : Uint;
+
+ begin
+ if Raises_Constraint_Error (N) then
+ return;
+ end if;
+
+ Get (Value => Val_L, From => L, OK => OK_L);
+ Get (Value => Val_H, From => H, OK => OK_H);
+
+ if not OK_L or else not OK_H then
+ return;
+ end if;
+
+ -- If null range length is zero
+
+ if Val_L > Val_H then
+ Range_Len := Uint_0;
+ else
+ Range_Len := Val_H - Val_L + 1;
+ end if;
+
+ if Range_Len < Len then
+ Set_Raises_Constraint_Error (N);
+ Error_Msg_N ("Too many elements?", N);
+ Error_Msg_N ("Constraint_Error will be raised at run-time?", N);
+ end if;
+ end Check_Length;
+
+ ---------------------------
+ -- Dynamic_Or_Null_Range --
+ ---------------------------
+
+ function Dynamic_Or_Null_Range (L, H : Node_Id) return Boolean is
+ Val_L : Uint;
+ Val_H : Uint;
+
+ OK_L : Boolean;
+ OK_H : Boolean;
+
+ begin
+ Get (Value => Val_L, From => L, OK => OK_L);
+ Get (Value => Val_H, From => H, OK => OK_H);
+
+ return not OK_L or else not OK_H
+ or else not Is_OK_Static_Expression (L)
+ or else not Is_OK_Static_Expression (H)
+ or else Val_L > Val_H;
+ end Dynamic_Or_Null_Range;
+
+ ---------
+ -- Get --
+ ---------
+
+ procedure Get (Value : out Uint; From : Node_Id; OK : out Boolean) is
+ begin
+ OK := True;
+
+ if Compile_Time_Known_Value (From) then
+ Value := Expr_Value (From);
+
+ -- If expression From is something like Some_Type'Val (10) then
+ -- Value = 10
+
+ elsif Nkind (From) = N_Attribute_Reference
+ and then Attribute_Name (From) = Name_Val
+ and then Compile_Time_Known_Value (First (Expressions (From)))
+ then
+ Value := Expr_Value (First (Expressions (From)));
+
+ else
+ Value := Uint_0;
+ OK := False;
+ end if;
+ end Get;
+
+ -----------------------
+ -- Resolve_Aggr_Expr --
+ -----------------------
+
+ function Resolve_Aggr_Expr
+ (Expr : Node_Id;
+ Single_Elmt : Boolean)
+ return Boolean
+ is
+ Nxt_Ind : Node_Id := Next_Index (Index);
+ Nxt_Ind_Constr : Node_Id := Next_Index (Index_Constr);
+ -- Index is the current index corresponding to the expresion.
+
+ Resolution_OK : Boolean := True;
+ -- Set to False if resolution of the expression failed.
+
+ begin
+ -- If the array type against which we are resolving the aggregate
+ -- has several dimensions, the expressions nested inside the
+ -- aggregate must be further aggregates (or strings).
+
+ if Present (Nxt_Ind) then
+ if Nkind (Expr) /= N_Aggregate then
+
+ -- A string literal can appear where a one-dimensional array
+ -- of characters is expected. If the literal looks like an
+ -- operator, it is still an operator symbol, which will be
+ -- transformed into a string when analyzed.
+
+ if Is_Character_Type (Component_Typ)
+ and then No (Next_Index (Nxt_Ind))
+ and then (Nkind (Expr) = N_String_Literal
+ or else Nkind (Expr) = N_Operator_Symbol)
+ then
+ -- A string literal used in a multidimensional array
+ -- aggregate in place of the final one-dimensional
+ -- aggregate must not be enclosed in parentheses.
+
+ if Paren_Count (Expr) /= 0 then
+ Error_Msg_N ("No parenthesis allowed here", Expr);
+ end if;
+
+ Make_String_Into_Aggregate (Expr);
+
+ else
+ Error_Msg_N ("nested array aggregate expected", Expr);
+ return Failure;
+ end if;
+ end if;
+
+ Resolution_OK := Resolve_Array_Aggregate
+ (Expr, Nxt_Ind, Nxt_Ind_Constr, Component_Typ, Others_Allowed);
+
+ -- Do not resolve the expressions of discrete or others choices
+ -- unless the expression covers a single component, or the expander
+ -- is inactive.
+
+ elsif Single_Elmt
+ or else not Expander_Active
+ or else In_Default_Expression
+ then
+ Analyze_And_Resolve (Expr, Component_Typ);
+ Check_Non_Static_Context (Expr);
+ Aggregate_Constraint_Checks (Expr, Component_Typ);
+ end if;
+
+ if Raises_Constraint_Error (Expr)
+ and then Nkind (Parent (Expr)) /= N_Component_Association
+ then
+ Set_Raises_Constraint_Error (N);
+ end if;
+
+ return Resolution_OK;
+ end Resolve_Aggr_Expr;
+
+ -- Variables local to Resolve_Array_Aggregate
+
+ Assoc : Node_Id;
+ Choice : Node_Id;
+ Expr : Node_Id;
+
+ Who_Cares : Node_Id;
+
+ Aggr_Low : Node_Id := Empty;
+ Aggr_High : Node_Id := Empty;
+ -- The actual low and high bounds of this sub-aggegate
+
+ Choices_Low : Node_Id := Empty;
+ Choices_High : Node_Id := Empty;
+ -- The lowest and highest discrete choices values for a named aggregate
+
+ Nb_Elements : Uint := Uint_0;
+ -- The number of elements in a positional aggegate
+
+ Others_Present : Boolean := False;
+
+ Nb_Choices : Nat := 0;
+ -- Contains the overall number of named choices in this sub-aggregate
+
+ Nb_Discrete_Choices : Nat := 0;
+ -- The overall number of discrete choices (not counting others choice)
+
+ Case_Table_Size : Nat;
+ -- Contains the size of the case table needed to sort aggregate choices
+
+ -- Start of processing for Resolve_Array_Aggregate
+
+ begin
+ -- STEP 1: make sure the aggregate is correctly formatted
+
+ if Present (Component_Associations (N)) then
+ Assoc := First (Component_Associations (N));
+ while Present (Assoc) loop
+ Choice := First (Choices (Assoc));
+ while Present (Choice) loop
+ if Nkind (Choice) = N_Others_Choice then
+ Others_Present := True;
+
+ if Choice /= First (Choices (Assoc))
+ or else Present (Next (Choice))
+ then
+ Error_Msg_N
+ ("OTHERS must appear alone in a choice list", Choice);
+ return Failure;
+ end if;
+
+ if Present (Next (Assoc)) then
+ Error_Msg_N
+ ("OTHERS must appear last in an aggregate", Choice);
+ return Failure;
+ end if;
+
+ if Ada_83
+ and then Assoc /= First (Component_Associations (N))
+ and then (Nkind (Parent (N)) = N_Assignment_Statement
+ or else
+ Nkind (Parent (N)) = N_Object_Declaration)
+ then
+ Error_Msg_N
+ ("(Ada 83) illegal context for OTHERS choice", N);
+ end if;
+ end if;
+
+ Nb_Choices := Nb_Choices + 1;
+ Next (Choice);
+ end loop;
+
+ Next (Assoc);
+ end loop;
+ end if;
+
+ -- At this point we know that the others choice, if present, is by
+ -- itself and appears last in the aggregate. Check if we have mixed
+ -- positional and discrete associations (other than the others choice).
+
+ if Present (Expressions (N))
+ and then (Nb_Choices > 1
+ or else (Nb_Choices = 1 and then not Others_Present))
+ then
+ Error_Msg_N
+ ("named association cannot follow positional association",
+ First (Choices (First (Component_Associations (N)))));
+ return Failure;
+ end if;
+
+ -- Test for the validity of an others choice if present
+
+ if Others_Present and then not Others_Allowed then
+ Error_Msg_N
+ ("OTHERS choice not allowed here",
+ First (Choices (First (Component_Associations (N)))));
+ return Failure;
+ end if;
+
+ -- STEP 2: Process named components
+
+ if No (Expressions (N)) then
+
+ if Others_Present then
+ Case_Table_Size := Nb_Choices - 1;
+ else
+ Case_Table_Size := Nb_Choices;
+ end if;
+
+ Step_2 : declare
+ Low : Node_Id;
+ High : Node_Id;
+ -- Denote the lowest and highest values in an aggregate choice
+
+ Hi_Val : Uint;
+ Lo_Val : Uint;
+ -- High end of one range and Low end of the next. Should be
+ -- contiguous if there is no hole in the list of values.
+
+ Missing_Values : Boolean;
+ -- Set True if missing index values
+
+ S_Low : Node_Id := Empty;
+ S_High : Node_Id := Empty;
+ -- if a choice in an aggregate is a subtype indication these
+ -- denote the lowest and highest values of the subtype
+
+ Table : Case_Table_Type (1 .. Case_Table_Size);
+ -- Used to sort all the different choice values
+
+ Single_Choice : Boolean;
+ -- Set to true every time there is a single discrete choice in a
+ -- discrete association
+
+ Prev_Nb_Discrete_Choices : Nat;
+ -- Used to keep track of the number of discrete choices
+ -- in the current association.
+
+ begin
+ -- STEP 2 (A): Check discrete choices validity.
+
+ Assoc := First (Component_Associations (N));
+ while Present (Assoc) loop
+
+ Prev_Nb_Discrete_Choices := Nb_Discrete_Choices;
+ Choice := First (Choices (Assoc));
+ loop
+ Analyze (Choice);
+
+ if Nkind (Choice) = N_Others_Choice then
+ Single_Choice := False;
+ exit;
+
+ -- Test for subtype mark without constraint
+
+ elsif Is_Entity_Name (Choice) and then
+ Is_Type (Entity (Choice))
+ then
+ if Base_Type (Entity (Choice)) /= Index_Base then
+ Error_Msg_N
+ ("invalid subtype mark in aggregate choice",
+ Choice);
+ return Failure;
+ end if;
+
+ elsif Nkind (Choice) = N_Subtype_Indication then
+ Resolve_Discrete_Subtype_Indication (Choice, Index_Base);
+
+ -- Does the subtype indication evaluation raise CE ?
+
+ Get_Index_Bounds (Subtype_Mark (Choice), S_Low, S_High);
+ Get_Index_Bounds (Choice, Low, High);
+ Check_Bounds (S_Low, S_High, Low, High);
+
+ else -- Choice is a range or an expression
+ Resolve (Choice, Index_Base);
+ Check_Non_Static_Context (Choice);
+
+ -- Do not range check a choice. This check is redundant
+ -- since this test is already performed when we check
+ -- that the bounds of the array aggregate are within
+ -- range.
+
+ Set_Do_Range_Check (Choice, False);
+ end if;
+
+ -- If we could not resolve the discrete choice stop here
+
+ if Etype (Choice) = Any_Type then
+ return Failure;
+
+ -- If the discrete choice raises CE get its original bounds.
+
+ elsif Nkind (Choice) = N_Raise_Constraint_Error then
+ Set_Raises_Constraint_Error (N);
+ Get_Index_Bounds (Original_Node (Choice), Low, High);
+
+ -- Otherwise get its bounds as usual
+
+ else
+ Get_Index_Bounds (Choice, Low, High);
+ end if;
+
+ if (Dynamic_Or_Null_Range (Low, High)
+ or else (Nkind (Choice) = N_Subtype_Indication
+ and then
+ Dynamic_Or_Null_Range (S_Low, S_High)))
+ and then Nb_Choices /= 1
+ then
+ Error_Msg_N
+ ("dynamic or empty choice in aggregate " &
+ "must be the only choice", Choice);
+ return Failure;
+ end if;
+
+ Nb_Discrete_Choices := Nb_Discrete_Choices + 1;
+ Table (Nb_Discrete_Choices).Choice_Lo := Low;
+ Table (Nb_Discrete_Choices).Choice_Hi := High;
+
+ Next (Choice);
+
+ if No (Choice) then
+ -- Check if we have a single discrete choice and whether
+ -- this discrete choice specifies a single value.
+
+ Single_Choice :=
+ (Nb_Discrete_Choices = Prev_Nb_Discrete_Choices + 1)
+ and then (Low = High);
+
+ exit;
+ end if;
+ end loop;
+
+ if not
+ Resolve_Aggr_Expr
+ (Expression (Assoc), Single_Elmt => Single_Choice)
+ then
+ return Failure;
+ end if;
+
+ Next (Assoc);
+ end loop;
+
+ -- If aggregate contains more than one choice then these must be
+ -- static. Sort them and check that they are contiguous
+
+ if Nb_Discrete_Choices > 1 then
+ Sort_Case_Table (Table);
+ Missing_Values := False;
+
+ Outer : for J in 1 .. Nb_Discrete_Choices - 1 loop
+ if Expr_Value (Table (J).Choice_Hi) >=
+ Expr_Value (Table (J + 1).Choice_Lo)
+ then
+ Error_Msg_N
+ ("duplicate choice values in array aggregate",
+ Table (J).Choice_Hi);
+ return Failure;
+
+ elsif not Others_Present then
+
+ Hi_Val := Expr_Value (Table (J).Choice_Hi);
+ Lo_Val := Expr_Value (Table (J + 1).Choice_Lo);
+
+ -- If missing values, output error messages
+
+ if Lo_Val - Hi_Val > 1 then
+
+ -- Header message if not first missing value
+
+ if not Missing_Values then
+ Error_Msg_N
+ ("missing index value(s) in array aggregate", N);
+ Missing_Values := True;
+ end if;
+
+ -- Output values of missing indexes
+
+ Lo_Val := Lo_Val - 1;
+ Hi_Val := Hi_Val + 1;
+
+ -- Enumeration type case
+
+ if Is_Enumeration_Type (Index_Typ) then
+ Error_Msg_Name_1 :=
+ Chars
+ (Get_Enum_Lit_From_Pos
+ (Index_Typ, Hi_Val, Loc));
+
+ if Lo_Val = Hi_Val then
+ Error_Msg_N ("\ %", N);
+ else
+ Error_Msg_Name_2 :=
+ Chars
+ (Get_Enum_Lit_From_Pos
+ (Index_Typ, Lo_Val, Loc));
+ Error_Msg_N ("\ % .. %", N);
+ end if;
+
+ -- Integer types case
+
+ else
+ Error_Msg_Uint_1 := Hi_Val;
+
+ if Lo_Val = Hi_Val then
+ Error_Msg_N ("\ ^", N);
+ else
+ Error_Msg_Uint_2 := Lo_Val;
+ Error_Msg_N ("\ ^ .. ^", N);
+ end if;
+ end if;
+ end if;
+ end if;
+ end loop Outer;
+
+ if Missing_Values then
+ Set_Etype (N, Any_Composite);
+ return Failure;
+ end if;
+ end if;
+
+ -- STEP 2 (B): Compute aggregate bounds and min/max choices values
+
+ if Nb_Discrete_Choices > 0 then
+ Choices_Low := Table (1).Choice_Lo;
+ Choices_High := Table (Nb_Discrete_Choices).Choice_Hi;
+ end if;
+
+ if Others_Present then
+ Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High);
+
+ else
+ Aggr_Low := Choices_Low;
+ Aggr_High := Choices_High;
+ end if;
+ end Step_2;
+
+ -- STEP 3: Process positional components
+
+ else
+ -- STEP 3 (A): Process positional elements
+
+ Expr := First (Expressions (N));
+ Nb_Elements := Uint_0;
+ while Present (Expr) loop
+ Nb_Elements := Nb_Elements + 1;
+
+ if not Resolve_Aggr_Expr (Expr, Single_Elmt => True) then
+ return Failure;
+ end if;
+
+ Next (Expr);
+ end loop;
+
+ if Others_Present then
+ Assoc := Last (Component_Associations (N));
+ if not Resolve_Aggr_Expr (Expression (Assoc),
+ Single_Elmt => False)
+ then
+ return Failure;
+ end if;
+ end if;
+
+ -- STEP 3 (B): Compute the aggregate bounds
+
+ if Others_Present then
+ Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High);
+
+ else
+ if Others_Allowed then
+ Get_Index_Bounds (Index_Constr, Aggr_Low, Who_Cares);
+ else
+ Aggr_Low := Index_Typ_Low;
+ end if;
+
+ Aggr_High := Add (Nb_Elements - 1, To => Aggr_Low);
+ Check_Bound (Index_Base_High, Aggr_High);
+ end if;
+ end if;
+
+ -- STEP 4: Perform static aggregate checks and save the bounds
+
+ -- Check (A)
+
+ Check_Bounds (Index_Typ_Low, Index_Typ_High, Aggr_Low, Aggr_High);
+ Check_Bounds (Index_Base_Low, Index_Base_High, Aggr_Low, Aggr_High);
+
+ -- Check (B)
+
+ if Others_Present and then Nb_Discrete_Choices > 0 then
+ Check_Bounds (Aggr_Low, Aggr_High, Choices_Low, Choices_High);
+ Check_Bounds (Index_Typ_Low, Index_Typ_High,
+ Choices_Low, Choices_High);
+ Check_Bounds (Index_Base_Low, Index_Base_High,
+ Choices_Low, Choices_High);
+
+ -- Check (C)
+
+ elsif Others_Present and then Nb_Elements > 0 then
+ Check_Length (Aggr_Low, Aggr_High, Nb_Elements);
+ Check_Length (Index_Typ_Low, Index_Typ_High, Nb_Elements);
+ Check_Length (Index_Base_Low, Index_Base_High, Nb_Elements);
+
+ end if;
+
+ if Raises_Constraint_Error (Aggr_Low)
+ or else Raises_Constraint_Error (Aggr_High)
+ then
+ Set_Raises_Constraint_Error (N);
+ end if;
+
+ Aggr_Low := Duplicate_Subexpr (Aggr_Low);
+
+ -- Do not duplicate Aggr_High if Aggr_High = Aggr_Low + Nb_Elements
+ -- since the addition node returned by Add is not yet analyzed. Attach
+ -- to tree and analyze first. Reset analyzed flag to insure it will get
+ -- analyzed when it is a literal bound whose type must be properly
+ -- set.
+
+ if Others_Present or else Nb_Discrete_Choices > 0 then
+ Aggr_High := Duplicate_Subexpr (Aggr_High);
+
+ if Etype (Aggr_High) = Universal_Integer then
+ Set_Analyzed (Aggr_High, False);
+ end if;
+ end if;
+
+ Set_Aggregate_Bounds
+ (N, Make_Range (Loc, Low_Bound => Aggr_Low, High_Bound => Aggr_High));
+
+ -- The bounds may contain expressions that must be inserted upwards.
+ -- Attach them fully to the tree. After analysis, remove side effects
+ -- from upper bound, if still needed.
+
+ Set_Parent (Aggregate_Bounds (N), N);
+ Analyze_And_Resolve (Aggregate_Bounds (N), Index_Typ);
+
+ if not Others_Present and then Nb_Discrete_Choices = 0 then
+ Set_High_Bound (Aggregate_Bounds (N),
+ Duplicate_Subexpr (High_Bound (Aggregate_Bounds (N))));
+ end if;
+
+ return Success;
+ end Resolve_Array_Aggregate;
+
+ ---------------------------------
+ -- Resolve_Extension_Aggregate --
+ ---------------------------------
+
+ -- There are two cases to consider:
+
+ -- a) If the ancestor part is a type mark, the components needed are
+ -- the difference between the components of the expected type and the
+ -- components of the given type mark.
+
+ -- b) If the ancestor part is an expression, it must be unambiguous,
+ -- and once we have its type we can also compute the needed components
+ -- as in the previous case. In both cases, if the ancestor type is not
+ -- the immediate ancestor, we have to build this ancestor recursively.
+
+ -- In both cases discriminants of the ancestor type do not play a
+ -- role in the resolution of the needed components, because inherited
+ -- discriminants cannot be used in a type extension. As a result we can
+ -- compute independently the list of components of the ancestor type and
+ -- of the expected type.
+
+ procedure Resolve_Extension_Aggregate (N : Node_Id; Typ : Entity_Id) is
+ A : constant Node_Id := Ancestor_Part (N);
+ A_Type : Entity_Id;
+ I : Interp_Index;
+ It : Interp;
+ Imm_Type : Entity_Id;
+
+ function Valid_Ancestor_Type return Boolean;
+ -- Verify that the type of the ancestor part is a non-private ancestor
+ -- of the expected type.
+
+ function Valid_Ancestor_Type return Boolean is
+ Imm_Type : Entity_Id;
+
+ begin
+ Imm_Type := Base_Type (Typ);
+ while Is_Derived_Type (Imm_Type)
+ and then Etype (Imm_Type) /= Base_Type (A_Type)
+ loop
+ Imm_Type := Etype (Base_Type (Imm_Type));
+ end loop;
+
+ if Etype (Imm_Type) /= Base_Type (A_Type) then
+ Error_Msg_NE ("expect ancestor type of &", A, Typ);
+ return False;
+ else
+ return True;
+ end if;
+ end Valid_Ancestor_Type;
+
+ -- Start of processing for Resolve_Extension_Aggregate
+
+ begin
+ Analyze (A);
+
+ if not Is_Tagged_Type (Typ) then
+ Error_Msg_N ("type of extension aggregate must be tagged", N);
+ return;
+
+ elsif Is_Limited_Type (Typ) then
+ Error_Msg_N ("aggregate type cannot be limited", N);
+ return;
+
+ elsif Is_Class_Wide_Type (Typ) then
+ Error_Msg_N ("aggregate cannot be of a class-wide type", N);
+ return;
+ end if;
+
+ if Is_Entity_Name (A)
+ and then Is_Type (Entity (A))
+ then
+ A_Type := Get_Full_View (Entity (A));
+ Imm_Type := Base_Type (Typ);
+
+ if Valid_Ancestor_Type then
+ Set_Entity (A, A_Type);
+ Set_Etype (A, A_Type);
+
+ Validate_Ancestor_Part (N);
+ Resolve_Record_Aggregate (N, Typ);
+ end if;
+
+ elsif Nkind (A) /= N_Aggregate then
+ if Is_Overloaded (A) then
+ A_Type := Any_Type;
+ Get_First_Interp (A, I, It);
+
+ while Present (It.Typ) loop
+
+ if Is_Tagged_Type (It.Typ)
+ and then not Is_Limited_Type (It.Typ)
+ then
+ if A_Type /= Any_Type then
+ Error_Msg_N ("cannot resolve expression", A);
+ return;
+ else
+ A_Type := It.Typ;
+ end if;
+ end if;
+
+ Get_Next_Interp (I, It);
+ end loop;
+
+ if A_Type = Any_Type then
+ Error_Msg_N
+ ("ancestor part must be non-limited tagged type", A);
+ return;
+ end if;
+
+ else
+ A_Type := Etype (A);
+ end if;
+
+ if Valid_Ancestor_Type then
+ Resolve (A, A_Type);
+ Check_Non_Static_Context (A);
+ Resolve_Record_Aggregate (N, Typ);
+ end if;
+
+ else
+ Error_Msg_N (" No unique type for this aggregate", A);
+ end if;
+
+ end Resolve_Extension_Aggregate;
+
+ ------------------------------
+ -- Resolve_Record_Aggregate --
+ ------------------------------
+
+ procedure Resolve_Record_Aggregate (N : Node_Id; Typ : Entity_Id) is
+ Regular_Aggr : constant Boolean := Nkind (N) /= N_Extension_Aggregate;
+
+ New_Assoc_List : List_Id := New_List;
+ New_Assoc : Node_Id;
+ -- New_Assoc_List is the newly built list of N_Component_Association
+ -- nodes. New_Assoc is one such N_Component_Association node in it.
+ -- Please note that while Assoc and New_Assoc contain the same
+ -- kind of nodes, they are used to iterate over two different
+ -- N_Component_Association lists.
+
+ Others_Etype : Entity_Id := Empty;
+ -- This variable is used to save the Etype of the last record component
+ -- that takes its value from the others choice. Its purpose is:
+ --
+ -- (a) make sure the others choice is useful
+ --
+ -- (b) make sure the type of all the components whose value is
+ -- subsumed by the others choice are the same.
+ --
+ -- This variable is updated as a side effect of function Get_Value
+
+ procedure Add_Association (Component : Entity_Id; Expr : Node_Id);
+ -- Builds a new N_Component_Association node which associates
+ -- Component to expression Expr and adds it to the new association
+ -- list New_Assoc_List being built.
+
+ function Discr_Present (Discr : Entity_Id) return Boolean;
+ -- If aggregate N is a regular aggregate this routine will return True.
+ -- Otherwise, if N is an extension aggreagte, Discr is a discriminant
+ -- whose value may already have been specified by N's ancestor part,
+ -- this routine checks whether this is indeed the case and if so
+ -- returns False, signaling that no value for Discr should appear in the
+ -- N's aggregate part. Also, in this case, the routine appends to
+ -- New_Assoc_List Discr the discriminant value specified in the ancestor
+ -- part.
+
+ function Get_Value
+ (Compon : Node_Id;
+ From : List_Id;
+ Consider_Others_Choice : Boolean := False)
+ return Node_Id;
+ -- Given a record component stored in parameter Compon, the
+ -- following function returns its value as it appears in the list
+ -- From, which is a list of N_Component_Association nodes. If no
+ -- component association has a choice for the searched component,
+ -- the value provided by the others choice is returned, if there
+ -- is one and Consider_Others_Choice is set to true. Otherwise
+ -- Empty is returned. If there is more than one component association
+ -- giving a value for the searched record component, an error message
+ -- is emitted and the first found value is returned.
+ --
+ -- If Consider_Others_Choice is set and the returned expression comes
+ -- from the others choice, then Others_Etype is set as a side effect.
+ -- An error message is emitted if the components taking their value
+ -- from the others choice do not have same type.
+
+ procedure Resolve_Aggr_Expr (Expr : Node_Id; Component : Node_Id);
+ -- Analyzes and resolves expression Expr against the Etype of the
+ -- Component. This routine also applies all appropiate checks to Expr.
+ -- It finally saves a Expr in the newly created association list that
+ -- will be attached to the final record aggregate. Note that if the
+ -- Parent pointer of Expr is not set then Expr was produced with a
+ -- New_copy_Tree or some such.
+
+ ---------------------
+ -- Add_Association --
+ ---------------------
+
+ procedure Add_Association (Component : Entity_Id; Expr : Node_Id) is
+ New_Assoc : Node_Id;
+ Choice_List : List_Id := New_List;
+
+ begin
+ Append (New_Occurrence_Of (Component, Sloc (Expr)), Choice_List);
+ New_Assoc :=
+ Make_Component_Association (Sloc (Expr),
+ Choices => Choice_List,
+ Expression => Expr);
+ Append (New_Assoc, New_Assoc_List);
+ end Add_Association;
+
+ -------------------
+ -- Discr_Present --
+ -------------------
+
+ function Discr_Present (Discr : Entity_Id) return Boolean is
+ Loc : Source_Ptr;
+
+ Ancestor : Node_Id;
+ Discr_Expr : Node_Id;
+
+ Ancestor_Typ : Entity_Id;
+ Orig_Discr : Entity_Id;
+ D : Entity_Id;
+ D_Val : Elmt_Id := No_Elmt; -- stop junk warning
+
+ Ancestor_Is_Subtyp : Boolean;
+
+ begin
+ if Regular_Aggr then
+ return True;
+ end if;
+
+ Ancestor := Ancestor_Part (N);
+ Ancestor_Typ := Etype (Ancestor);
+ Loc := Sloc (Ancestor);
+
+ Ancestor_Is_Subtyp :=
+ Is_Entity_Name (Ancestor) and then Is_Type (Entity (Ancestor));
+
+ -- If the ancestor part has no discriminants clearly N's aggregate
+ -- part must provide a value for Discr.
+
+ if not Has_Discriminants (Ancestor_Typ) then
+ return True;
+
+ -- If the ancestor part is an unconstrained subtype mark then the
+ -- Discr must be present in N's aggregate part.
+
+ elsif Ancestor_Is_Subtyp
+ and then not Is_Constrained (Entity (Ancestor))
+ then
+ return True;
+ end if;
+
+ -- Now look to see if Discr was specified in the ancestor part.
+
+ Orig_Discr := Original_Record_Component (Discr);
+ D := First_Discriminant (Ancestor_Typ);
+
+ if Ancestor_Is_Subtyp then
+ D_Val := First_Elmt (Discriminant_Constraint (Entity (Ancestor)));
+ end if;
+
+ while Present (D) loop
+ -- If Ancestor has already specified Disc value than
+ -- insert its value in the final aggregate.
+
+ if Original_Record_Component (D) = Orig_Discr then
+ if Ancestor_Is_Subtyp then
+ Discr_Expr := New_Copy_Tree (Node (D_Val));
+ else
+ Discr_Expr :=
+ Make_Selected_Component (Loc,
+ Prefix => Duplicate_Subexpr (Ancestor),
+ Selector_Name => New_Occurrence_Of (Discr, Loc));
+ end if;
+
+ Resolve_Aggr_Expr (Discr_Expr, Discr);
+ return False;
+ end if;
+
+ Next_Discriminant (D);
+
+ if Ancestor_Is_Subtyp then
+ Next_Elmt (D_Val);
+ end if;
+ end loop;
+
+ return True;
+ end Discr_Present;
+
+ ---------------
+ -- Get_Value --
+ ---------------
+
+ function Get_Value
+ (Compon : Node_Id;
+ From : List_Id;
+ Consider_Others_Choice : Boolean := False)
+ return Node_Id
+ is
+ Assoc : Node_Id;
+ Expr : Node_Id := Empty;
+ Selector_Name : Node_Id;
+
+ begin
+ if Present (From) then
+ Assoc := First (From);
+ else
+ return Empty;
+ end if;
+
+ while Present (Assoc) loop
+ Selector_Name := First (Choices (Assoc));
+ while Present (Selector_Name) loop
+ if Nkind (Selector_Name) = N_Others_Choice then
+ if Consider_Others_Choice and then No (Expr) then
+ if Present (Others_Etype) and then
+ Base_Type (Others_Etype) /= Base_Type (Etype (Compon))
+ then
+ Error_Msg_N ("components in OTHERS choice must " &
+ "have same type", Selector_Name);
+ end if;
+
+ Others_Etype := Etype (Compon);
+
+ -- We need to duplicate the expression for each
+ -- successive component covered by the others choice.
+ -- If the expression is itself an array aggregate with
+ -- "others", its subtype must be obtained from the
+ -- current component, and therefore it must be (at least
+ -- partly) reanalyzed.
+
+ if Analyzed (Expression (Assoc)) then
+ Expr := New_Copy_Tree (Expression (Assoc));
+
+ if Nkind (Expr) = N_Aggregate
+ and then Is_Array_Type (Etype (Expr))
+ and then No (Expressions (Expr))
+ and then
+ Nkind (First (Choices
+ (First (Component_Associations (Expr)))))
+ = N_Others_Choice
+ then
+ Set_Analyzed (Expr, False);
+ end if;
+
+ return Expr;
+
+ else
+ return Expression (Assoc);
+ end if;
+ end if;
+
+ elsif Chars (Compon) = Chars (Selector_Name) then
+ if No (Expr) then
+ -- We need to duplicate the expression when several
+ -- components are grouped together with a "|" choice.
+ -- For instance "filed1 | filed2 => Expr"
+
+ if Present (Next (Selector_Name)) then
+ Expr := New_Copy_Tree (Expression (Assoc));
+ else
+ Expr := Expression (Assoc);
+ end if;
+
+ else
+ Error_Msg_NE
+ ("more than one value supplied for &",
+ Selector_Name, Compon);
+
+ end if;
+ end if;
+
+ Next (Selector_Name);
+ end loop;
+
+ Next (Assoc);
+ end loop;
+
+ return Expr;
+ end Get_Value;
+
+ -----------------------
+ -- Resolve_Aggr_Expr --
+ -----------------------
+
+ procedure Resolve_Aggr_Expr (Expr : Node_Id; Component : Node_Id) is
+ New_C : Entity_Id := Component;
+ Expr_Type : Entity_Id := Empty;
+
+ function Has_Expansion_Delayed (Expr : Node_Id) return Boolean;
+ -- If the expression is an aggregate (possibly qualified) then its
+ -- expansion is delayed until the enclosing aggregate is expanded
+ -- into assignments. In that case, do not generate checks on the
+ -- expression, because they will be generated later, and will other-
+ -- wise force a copy (to remove side-effects) that would leave a
+ -- dynamic-sized aggregate in the code, something that gigi cannot
+ -- handle.
+
+ Relocate : Boolean;
+ -- Set to True if the resolved Expr node needs to be relocated
+ -- when attached to the newly created association list. This node
+ -- need not be relocated if its parent pointer is not set.
+ -- In fact in this case Expr is the output of a New_Copy_Tree call.
+ -- if Relocate is True then we have analyzed the expression node
+ -- in the original aggregate and hence it needs to be relocated
+ -- when moved over the new association list.
+
+ function Has_Expansion_Delayed (Expr : Node_Id) return Boolean is
+ Kind : constant Node_Kind := Nkind (Expr);
+
+ begin
+ return ((Kind = N_Aggregate
+ or else Kind = N_Extension_Aggregate)
+ and then Present (Etype (Expr))
+ and then Is_Record_Type (Etype (Expr))
+ and then Expansion_Delayed (Expr))
+
+ or else (Kind = N_Qualified_Expression
+ and then Has_Expansion_Delayed (Expression (Expr)));
+ end Has_Expansion_Delayed;
+
+ -- Start of processing for Resolve_Aggr_Expr
+
+ begin
+ -- If the type of the component is elementary or the type of the
+ -- aggregate does not contain discriminants, use the type of the
+ -- component to resolve Expr.
+
+ if Is_Elementary_Type (Etype (Component))
+ or else not Has_Discriminants (Etype (N))
+ then
+ Expr_Type := Etype (Component);
+
+ -- Otherwise we have to pick up the new type of the component from
+ -- the new costrained subtype of the aggregate. In fact components
+ -- which are of a composite type might be constrained by a
+ -- discriminant, and we want to resolve Expr against the subtype were
+ -- all discriminant occurrences are replaced with their actual value.
+
+ else
+ New_C := First_Component (Etype (N));
+ while Present (New_C) loop
+ if Chars (New_C) = Chars (Component) then
+ Expr_Type := Etype (New_C);
+ exit;
+ end if;
+
+ Next_Component (New_C);
+ end loop;
+
+ pragma Assert (Present (Expr_Type));
+
+ -- For each range in an array type where a discriminant has been
+ -- replaced with the constraint, check that this range is within
+ -- the range of the base type. This checks is done in the
+ -- _init_proc for regular objects, but has to be done here for
+ -- aggregates since no _init_proc is called for them.
+
+ if Is_Array_Type (Expr_Type) then
+ declare
+ Index : Node_Id := First_Index (Expr_Type);
+ -- Range of the current constrained index in the array.
+
+ Orig_Index : Node_Id := First_Index (Etype (Component));
+ -- Range corresponding to the range Index above in the
+ -- original unconstrained record type. The bounds of this
+ -- range may be governed by discriminants.
+
+ Unconstr_Index : Node_Id := First_Index (Etype (Expr_Type));
+ -- Range corresponding to the range Index above for the
+ -- unconstrained array type. This range is needed to apply
+ -- range checks.
+
+ begin
+ while Present (Index) loop
+ if Depends_On_Discriminant (Orig_Index) then
+ Apply_Range_Check (Index, Etype (Unconstr_Index));
+ end if;
+
+ Next_Index (Index);
+ Next_Index (Orig_Index);
+ Next_Index (Unconstr_Index);
+ end loop;
+ end;
+ end if;
+ end if;
+
+ -- If the Parent pointer of Expr is not set, Expr is an expression
+ -- duplicated by New_Tree_Copy (this happens for record aggregates
+ -- that look like (Field1 | Filed2 => Expr) or (others => Expr)).
+ -- Such a duplicated expression must be attached to the tree
+ -- before analysis and resolution to enforce the rule that a tree
+ -- fragment should never be analyzed or resolved unless it is
+ -- attached to the current compilation unit.
+
+ if No (Parent (Expr)) then
+ Set_Parent (Expr, N);
+ Relocate := False;
+ else
+ Relocate := True;
+ end if;
+
+ Analyze_And_Resolve (Expr, Expr_Type);
+ Check_Non_Static_Context (Expr);
+
+ if not Has_Expansion_Delayed (Expr) then
+ Aggregate_Constraint_Checks (Expr, Expr_Type);
+ end if;
+
+ if Raises_Constraint_Error (Expr) then
+ Set_Raises_Constraint_Error (N);
+ end if;
+
+ if Relocate then
+ Add_Association (New_C, Relocate_Node (Expr));
+ else
+ Add_Association (New_C, Expr);
+ end if;
+
+ end Resolve_Aggr_Expr;
+
+ -- Resolve_Record_Aggregate local variables
+
+ Assoc : Node_Id;
+ -- N_Component_Association node belonging to the input aggregate N
+
+ Expr : Node_Id;
+ Positional_Expr : Node_Id;
+
+ Component : Entity_Id;
+ Component_Elmt : Elmt_Id;
+ Components : Elist_Id := New_Elmt_List;
+ -- Components is the list of the record components whose value must
+ -- be provided in the aggregate. This list does include discriminants.
+
+ -- Start of processing for Resolve_Record_Aggregate
+
+ begin
+ -- We may end up calling Duplicate_Subexpr on expressions that are
+ -- attached to New_Assoc_List. For this reason we need to attach it
+ -- to the tree by setting its parent pointer to N. This parent point
+ -- will change in STEP 8 below.
+
+ Set_Parent (New_Assoc_List, N);
+
+ -- STEP 1: abstract type and null record verification
+
+ if Is_Abstract (Typ) then
+ Error_Msg_N ("type of aggregate cannot be abstract", N);
+ end if;
+
+ if No (First_Entity (Typ)) and then Null_Record_Present (N) then
+ Set_Etype (N, Typ);
+ return;
+
+ elsif Present (First_Entity (Typ))
+ and then Null_Record_Present (N)
+ and then not Is_Tagged_Type (Typ)
+ then
+ Error_Msg_N ("record aggregate cannot be null", N);
+ return;
+
+ elsif No (First_Entity (Typ)) then
+ Error_Msg_N ("record aggregate must be null", N);
+ return;
+ end if;
+
+ -- STEP 2: Verify aggregate structure
+
+ Step_2 : declare
+ Selector_Name : Node_Id;
+ Bad_Aggregate : Boolean := False;
+
+ begin
+ if Present (Component_Associations (N)) then
+ Assoc := First (Component_Associations (N));
+ else
+ Assoc := Empty;
+ end if;
+
+ while Present (Assoc) loop
+ Selector_Name := First (Choices (Assoc));
+ while Present (Selector_Name) loop
+ if Nkind (Selector_Name) = N_Identifier then
+ null;
+
+ elsif Nkind (Selector_Name) = N_Others_Choice then
+ if Selector_Name /= First (Choices (Assoc))
+ or else Present (Next (Selector_Name))
+ then
+ Error_Msg_N ("OTHERS must appear alone in a choice list",
+ Selector_Name);
+ return;
+
+ elsif Present (Next (Assoc)) then
+ Error_Msg_N ("OTHERS must appear last in an aggregate",
+ Selector_Name);
+ return;
+ end if;
+
+ else
+ Error_Msg_N
+ ("selector name should be identifier or OTHERS",
+ Selector_Name);
+ Bad_Aggregate := True;
+ end if;
+
+ Next (Selector_Name);
+ end loop;
+
+ Next (Assoc);
+ end loop;
+
+ if Bad_Aggregate then
+ return;
+ end if;
+ end Step_2;
+
+ -- STEP 3: Find discriminant Values
+
+ Step_3 : declare
+ Discrim : Entity_Id;
+ Missing_Discriminants : Boolean := False;
+
+ begin
+ if Present (Expressions (N)) then
+ Positional_Expr := First (Expressions (N));
+ else
+ Positional_Expr := Empty;
+ end if;
+
+ if Has_Discriminants (Typ) then
+ Discrim := First_Discriminant (Typ);
+ else
+ Discrim := Empty;
+ end if;
+
+ -- First find the discriminant values in the positional components
+
+ while Present (Discrim) and then Present (Positional_Expr) loop
+ if Discr_Present (Discrim) then
+ Resolve_Aggr_Expr (Positional_Expr, Discrim);
+ Next (Positional_Expr);
+ end if;
+
+ if Present (Get_Value (Discrim, Component_Associations (N))) then
+ Error_Msg_NE
+ ("more than one value supplied for discriminant&",
+ N, Discrim);
+ end if;
+
+ Next_Discriminant (Discrim);
+ end loop;
+
+ -- Find remaining discriminant values, if any, among named components
+
+ while Present (Discrim) loop
+ Expr := Get_Value (Discrim, Component_Associations (N), True);
+
+ if not Discr_Present (Discrim) then
+ if Present (Expr) then
+ Error_Msg_NE
+ ("more than one value supplied for discriminant&",
+ N, Discrim);
+ end if;
+
+ elsif No (Expr) then
+ Error_Msg_NE
+ ("no value supplied for discriminant &", N, Discrim);
+ Missing_Discriminants := True;
+
+ else
+ Resolve_Aggr_Expr (Expr, Discrim);
+ end if;
+
+ Next_Discriminant (Discrim);
+ end loop;
+
+ if Missing_Discriminants then
+ return;
+ end if;
+
+ -- At this point and until the beginning of STEP 6, New_Assoc_List
+ -- contains only the discriminants and their values.
+
+ end Step_3;
+
+ -- STEP 4: Set the Etype of the record aggregate
+
+ -- ??? This code is pretty much a copy of Sem_Ch3.Build_Subtype. That
+ -- routine should really be exported in sem_util or some such and used
+ -- in sem_ch3 and here rather than have a copy of the code which is a
+ -- maintenance nightmare.
+
+ -- ??? Performace WARNING. The current implementation creates a new
+ -- itype for all aggregates whose base type is discriminated.
+ -- This means that for record aggregates nested inside an array
+ -- aggregate we will create a new itype for each record aggregate
+ -- if the array cmponent type has discriminants. For large aggregates
+ -- this may be a problem. What should be done in this case is
+ -- to reuse itypes as much as possible.
+
+ if Has_Discriminants (Typ) then
+ Build_Constrained_Itype : declare
+ Loc : constant Source_Ptr := Sloc (N);
+ Indic : Node_Id;
+ Subtyp_Decl : Node_Id;
+ Def_Id : Entity_Id;
+
+ C : List_Id := New_List;
+
+ begin
+ New_Assoc := First (New_Assoc_List);
+ while Present (New_Assoc) loop
+ Append (Duplicate_Subexpr (Expression (New_Assoc)), To => C);
+ Next (New_Assoc);
+ end loop;
+
+ Indic :=
+ Make_Subtype_Indication (Loc,
+ Subtype_Mark => New_Occurrence_Of (Base_Type (Typ), Loc),
+ Constraint => Make_Index_Or_Discriminant_Constraint (Loc, C));
+
+ Def_Id := Create_Itype (Ekind (Typ), N);
+
+ Subtyp_Decl :=
+ Make_Subtype_Declaration (Loc,
+ Defining_Identifier => Def_Id,
+ Subtype_Indication => Indic);
+ Set_Parent (Subtyp_Decl, Parent (N));
+
+ -- Itypes must be analyzed with checks off (see itypes.ads).
+
+ Analyze (Subtyp_Decl, Suppress => All_Checks);
+
+ Set_Etype (N, Def_Id);
+ Check_Static_Discriminated_Subtype
+ (Def_Id, Expression (First (New_Assoc_List)));
+ end Build_Constrained_Itype;
+
+ else
+ Set_Etype (N, Typ);
+ end if;
+
+ -- STEP 5: Get remaining components according to discriminant values
+
+ Step_5 : declare
+ Record_Def : Node_Id;
+ Parent_Typ : Entity_Id;
+ Root_Typ : Entity_Id;
+ Parent_Typ_List : Elist_Id;
+ Parent_Elmt : Elmt_Id;
+ Errors_Found : Boolean := False;
+ Dnode : Node_Id;
+
+ begin
+ if Is_Derived_Type (Typ) and then Is_Tagged_Type (Typ) then
+ Parent_Typ_List := New_Elmt_List;
+
+ -- If this is an extension aggregate, the component list must
+ -- include all components that are not in the given ancestor
+ -- type. Otherwise, the component list must include components
+ -- of all ancestors.
+
+ if Nkind (N) = N_Extension_Aggregate then
+ Root_Typ := Base_Type (Etype (Ancestor_Part (N)));
+ else
+ Root_Typ := Root_Type (Typ);
+
+ if Nkind (Parent (Base_Type (Root_Typ)))
+ = N_Private_Type_Declaration
+ then
+ Error_Msg_NE
+ ("type of aggregate has private ancestor&!",
+ N, Root_Typ);
+ Error_Msg_N ("must use extension aggregate!", N);
+ return;
+ end if;
+
+ Dnode := Declaration_Node (Base_Type (Root_Typ));
+
+ -- If we don't get a full declaration, then we have some
+ -- error which will get signalled later so skip this part.
+
+ if Nkind (Dnode) = N_Full_Type_Declaration then
+ Record_Def := Type_Definition (Dnode);
+ Gather_Components (Typ,
+ Component_List (Record_Def),
+ Governed_By => New_Assoc_List,
+ Into => Components,
+ Report_Errors => Errors_Found);
+ end if;
+ end if;
+
+ Parent_Typ := Base_Type (Typ);
+ while Parent_Typ /= Root_Typ loop
+
+ Prepend_Elmt (Parent_Typ, To => Parent_Typ_List);
+ Parent_Typ := Etype (Parent_Typ);
+
+ if (Nkind (Parent (Base_Type (Parent_Typ))) =
+ N_Private_Type_Declaration
+ or else Nkind (Parent (Base_Type (Parent_Typ))) =
+ N_Private_Extension_Declaration)
+ then
+ if Nkind (N) /= N_Extension_Aggregate then
+ Error_Msg_NE
+ ("type of aggregate has private ancestor&!",
+ N, Parent_Typ);
+ Error_Msg_N ("must use extension aggregate!", N);
+ return;
+
+ elsif Parent_Typ /= Root_Typ then
+ Error_Msg_NE
+ ("ancestor part of aggregate must be private type&",
+ Ancestor_Part (N), Parent_Typ);
+ return;
+ end if;
+ end if;
+ end loop;
+
+ -- Now collect components from all other ancestors.
+
+ Parent_Elmt := First_Elmt (Parent_Typ_List);
+ while Present (Parent_Elmt) loop
+ Parent_Typ := Node (Parent_Elmt);
+ Record_Def := Type_Definition (Parent (Base_Type (Parent_Typ)));
+ Gather_Components (Empty,
+ Component_List (Record_Extension_Part (Record_Def)),
+ Governed_By => New_Assoc_List,
+ Into => Components,
+ Report_Errors => Errors_Found);
+
+ Next_Elmt (Parent_Elmt);
+ end loop;
+
+ else
+ Record_Def := Type_Definition (Parent (Base_Type (Typ)));
+
+ if Null_Present (Record_Def) then
+ null;
+ else
+ Gather_Components (Typ,
+ Component_List (Record_Def),
+ Governed_By => New_Assoc_List,
+ Into => Components,
+ Report_Errors => Errors_Found);
+ end if;
+ end if;
+
+ if Errors_Found then
+ return;
+ end if;
+ end Step_5;
+
+ -- STEP 6: Find component Values
+
+ Component := Empty;
+ Component_Elmt := First_Elmt (Components);
+
+ -- First scan the remaining positional associations in the aggregate.
+ -- Remember that at this point Positional_Expr contains the current
+ -- positional association if any is left after looking for discriminant
+ -- values in step 3.
+
+ while Present (Positional_Expr) and then Present (Component_Elmt) loop
+ Component := Node (Component_Elmt);
+ Resolve_Aggr_Expr (Positional_Expr, Component);
+
+ if Present (Get_Value (Component, Component_Associations (N))) then
+ Error_Msg_NE
+ ("more than one value supplied for Component &", N, Component);
+ end if;
+
+ Next (Positional_Expr);
+ Next_Elmt (Component_Elmt);
+ end loop;
+
+ if Present (Positional_Expr) then
+ Error_Msg_N
+ ("too many components for record aggregate", Positional_Expr);
+ end if;
+
+ -- Now scan for the named arguments of the aggregate
+
+ while Present (Component_Elmt) loop
+ Component := Node (Component_Elmt);
+ Expr := Get_Value (Component, Component_Associations (N), True);
+
+ if No (Expr) then
+ Error_Msg_NE ("no value supplied for component &!", N, Component);
+ else
+ Resolve_Aggr_Expr (Expr, Component);
+ end if;
+
+ Next_Elmt (Component_Elmt);
+ end loop;
+
+ -- STEP 7: check for invalid components + check type in choice list
+
+ Step_7 : declare
+ Selectr : Node_Id;
+ -- Selector name
+
+ Typech : Entity_Id;
+ -- Type of first component in choice list
+
+ begin
+ if Present (Component_Associations (N)) then
+ Assoc := First (Component_Associations (N));
+ else
+ Assoc := Empty;
+ end if;
+
+ Verification : while Present (Assoc) loop
+ Selectr := First (Choices (Assoc));
+ Typech := Empty;
+
+ if Nkind (Selectr) = N_Others_Choice then
+ if No (Others_Etype) then
+ Error_Msg_N
+ ("OTHERS must represent at least one component", Selectr);
+ end if;
+
+ exit Verification;
+ end if;
+
+ while Present (Selectr) loop
+ New_Assoc := First (New_Assoc_List);
+ while Present (New_Assoc) loop
+ Component := First (Choices (New_Assoc));
+ exit when Chars (Selectr) = Chars (Component);
+ Next (New_Assoc);
+ end loop;
+
+ -- If no association, this is not a legal component of
+ -- of the type in question, except if this is an internal
+ -- component supplied by a previous expansion.
+
+ if No (New_Assoc) then
+
+ if Chars (Selectr) /= Name_uTag
+ and then Chars (Selectr) /= Name_uParent
+ and then Chars (Selectr) /= Name_uController
+ then
+ if not Has_Discriminants (Typ) then
+ Error_Msg_Node_2 := Typ;
+ Error_Msg_N
+ ("& is not a component of}",
+ Selectr);
+ else
+ Error_Msg_N
+ ("& is not a component of the aggregate subtype",
+ Selectr);
+ end if;
+
+ Check_Misspelled_Component (Components, Selectr);
+ end if;
+
+ elsif No (Typech) then
+ Typech := Base_Type (Etype (Component));
+
+ elsif Typech /= Base_Type (Etype (Component)) then
+ Error_Msg_N
+ ("components in choice list must have same type", Selectr);
+ end if;
+
+ Next (Selectr);
+ end loop;
+
+ Next (Assoc);
+ end loop Verification;
+ end Step_7;
+
+ -- STEP 8: replace the original aggregate
+
+ Step_8 : declare
+ New_Aggregate : Node_Id := New_Copy (N);
+
+ begin
+ Set_Expressions (New_Aggregate, No_List);
+ Set_Etype (New_Aggregate, Etype (N));
+ Set_Component_Associations (New_Aggregate, New_Assoc_List);
+
+ Rewrite (N, New_Aggregate);
+ end Step_8;
+ end Resolve_Record_Aggregate;
+
+ ---------------------
+ -- Sort_Case_Table --
+ ---------------------
+
+ procedure Sort_Case_Table (Case_Table : in out Case_Table_Type) is
+ L : Int := Case_Table'First;
+ U : Int := Case_Table'Last;
+ K : Int;
+ J : Int;
+ T : Case_Bounds;
+
+ begin
+ K := L;
+
+ while K /= U loop
+ T := Case_Table (K + 1);
+ J := K + 1;
+
+ while J /= L
+ and then Expr_Value (Case_Table (J - 1).Choice_Lo) >
+ Expr_Value (T.Choice_Lo)
+ loop
+ Case_Table (J) := Case_Table (J - 1);
+ J := J - 1;
+ end loop;
+
+ Case_Table (J) := T;
+ K := K + 1;
+ end loop;
+ end Sort_Case_Table;
+
+end Sem_Aggr;