summaryrefslogtreecommitdiff
path: root/gcc/ada/sem_ch12.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc/ada/sem_ch12.adb')
-rw-r--r--gcc/ada/sem_ch12.adb8932
1 files changed, 8932 insertions, 0 deletions
diff --git a/gcc/ada/sem_ch12.adb b/gcc/ada/sem_ch12.adb
new file mode 100644
index 00000000000..3f47a62627c
--- /dev/null
+++ b/gcc/ada/sem_ch12.adb
@@ -0,0 +1,8932 @@
+------------------------------------------------------------------------------
+-- --
+-- GNAT COMPILER COMPONENTS --
+-- --
+-- S E M _ C H 1 2 --
+-- --
+-- B o d y --
+-- --
+-- $Revision: 1.776 $
+-- --
+-- Copyright (C) 1992-2001, Free Software Foundation, Inc. --
+-- --
+-- GNAT is free software; you can redistribute it and/or modify it under --
+-- terms of the GNU General Public License as published by the Free Soft- --
+-- ware Foundation; either version 2, or (at your option) any later ver- --
+-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
+-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
+-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
+-- for more details. You should have received a copy of the GNU General --
+-- Public License distributed with GNAT; see file COPYING. If not, write --
+-- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
+-- MA 02111-1307, USA. --
+-- --
+-- GNAT was originally developed by the GNAT team at New York University. --
+-- It is now maintained by Ada Core Technologies Inc (http://www.gnat.com). --
+-- --
+------------------------------------------------------------------------------
+
+with Atree; use Atree;
+with Einfo; use Einfo;
+with Elists; use Elists;
+with Errout; use Errout;
+with Expander; use Expander;
+with Fname; use Fname;
+with Fname.UF; use Fname.UF;
+with Freeze; use Freeze;
+with Hostparm;
+with Inline; use Inline;
+with Lib; use Lib;
+with Lib.Load; use Lib.Load;
+with Lib.Xref; use Lib.Xref;
+with Nlists; use Nlists;
+with Nmake; use Nmake;
+with Opt; use Opt;
+with Restrict; use Restrict;
+with Rtsfind; use Rtsfind;
+with Sem; use Sem;
+with Sem_Cat; use Sem_Cat;
+with Sem_Ch3; use Sem_Ch3;
+with Sem_Ch6; use Sem_Ch6;
+with Sem_Ch7; use Sem_Ch7;
+with Sem_Ch8; use Sem_Ch8;
+with Sem_Ch10; use Sem_Ch10;
+with Sem_Ch13; use Sem_Ch13;
+with Sem_Elab; use Sem_Elab;
+with Sem_Elim; use Sem_Elim;
+with Sem_Eval; use Sem_Eval;
+with Sem_Res; use Sem_Res;
+with Sem_Type; use Sem_Type;
+with Sem_Util; use Sem_Util;
+with Stand; use Stand;
+with Sinfo; use Sinfo;
+with Sinfo.CN; use Sinfo.CN;
+with Sinput; use Sinput;
+with Sinput.L; use Sinput.L;
+with Snames; use Snames;
+with Stringt; use Stringt;
+with Uname; use Uname;
+with Table;
+with Tbuild; use Tbuild;
+with Uintp; use Uintp;
+with Urealp; use Urealp;
+
+with GNAT.HTable;
+
+package body Sem_Ch12 is
+
+ use Atree.Unchecked_Access;
+ -- This package performs untyped traversals of the tree, therefore it
+ -- needs direct access to the fields of a node.
+
+ ----------------------------------------------------------
+ -- Implementation of Generic Analysis and Instantiation --
+ -----------------------------------------------------------
+
+ -- GNAT implements generics by macro expansion. No attempt is made to
+ -- share generic instantiations (for now). Analysis of a generic definition
+ -- does not perform any expansion action, but the expander must be called
+ -- on the tree for each instantiation, because the expansion may of course
+ -- depend on the generic actuals. All of this is best achieved as follows:
+ --
+ -- a) Semantic analysis of a generic unit is performed on a copy of the
+ -- tree for the generic unit. All tree modifications that follow analysis
+ -- do not affect the original tree. Links are kept between the original
+ -- tree and the copy, in order to recognize non-local references within
+ -- the generic, and propagate them to each instance (recall that name
+ -- resolution is done on the generic declaration: generics are not really
+ -- macros!). This is summarized in the following diagram:
+ --
+ -- .-----------. .----------.
+ -- | semantic |<--------------| generic |
+ -- | copy | | unit |
+ -- | |==============>| |
+ -- |___________| global |__________|
+ -- references | | |
+ -- | | |
+ -- .-----|--|.
+ -- | .-----|---.
+ -- | | .----------.
+ -- | | | generic |
+ -- |__| | |
+ -- |__| instance |
+ -- |__________|
+ --
+ -- b) Each instantiation copies the original tree, and inserts into it a
+ -- series of declarations that describe the mapping between generic formals
+ -- and actuals. For example, a generic In OUT parameter is an object
+ -- renaming of the corresponing actual, etc. Generic IN parameters are
+ -- constant declarations.
+ --
+ -- c) In order to give the right visibility for these renamings, we use
+ -- a different scheme for package and subprogram instantiations. For
+ -- packages, the list of renamings is inserted into the package
+ -- specification, before the visible declarations of the package. The
+ -- renamings are analyzed before any of the text of the instance, and are
+ -- thus visible at the right place. Furthermore, outside of the instance,
+ -- the generic parameters are visible and denote their corresponding
+ -- actuals.
+
+ -- For subprograms, we create a container package to hold the renamings
+ -- and the subprogram instance itself. Analysis of the package makes the
+ -- renaming declarations visible to the subprogram. After analyzing the
+ -- package, the defining entity for the subprogram is touched-up so that
+ -- it appears declared in the current scope, and not inside the container
+ -- package.
+
+ -- If the instantiation is a compilation unit, the container package is
+ -- given the same name as the subprogram instance. This ensures that
+ -- the elaboration procedure called by the binder, using the compilation
+ -- unit name, calls in fact the elaboration procedure for the package.
+
+ -- Not surprisingly, private types complicate this approach. By saving in
+ -- the original generic object the non-local references, we guarantee that
+ -- the proper entities are referenced at the point of instantiation.
+ -- However, for private types, this by itself does not insure that the
+ -- proper VIEW of the entity is used (the full type may be visible at the
+ -- point of generic definition, but not at instantiation, or vice-versa).
+ -- In order to reference the proper view, we special-case any reference
+ -- to private types in the generic object, by saving both views, one in
+ -- the generic and one in the semantic copy. At time of instantiation, we
+ -- check whether the two views are consistent, and exchange declarations if
+ -- necessary, in order to restore the correct visibility. Similarly, if
+ -- the instance view is private when the generic view was not, we perform
+ -- the exchange. After completing the instantiation, we restore the
+ -- current visibility. The flag Has_Private_View marks identifiers in the
+ -- the generic unit that require checking.
+
+ -- Visibility within nested generic units requires special handling.
+ -- Consider the following scheme:
+ --
+ -- type Global is ... -- outside of generic unit.
+ -- generic ...
+ -- package Outer is
+ -- ...
+ -- type Semi_Global is ... -- global to inner.
+ --
+ -- generic ... -- 1
+ -- procedure inner (X1 : Global; X2 : Semi_Global);
+ --
+ -- procedure in2 is new inner (...); -- 4
+ -- end Outer;
+
+ -- package New_Outer is new Outer (...); -- 2
+ -- procedure New_Inner is new New_Outer.Inner (...); -- 3
+
+ -- The semantic analysis of Outer captures all occurrences of Global.
+ -- The semantic analysis of Inner (at 1) captures both occurrences of
+ -- Global and Semi_Global.
+
+ -- At point 2 (instantiation of Outer), we also produce a generic copy
+ -- of Inner, even though Inner is, at that point, not being instantiated.
+ -- (This is just part of the semantic analysis of New_Outer).
+
+ -- Critically, references to Global within Inner must be preserved, while
+ -- references to Semi_Global should not preserved, because they must now
+ -- resolve to an entity within New_Outer. To distinguish between these, we
+ -- use a global variable, Current_Instantiated_Parent, which is set when
+ -- performing a generic copy during instantiation (at 2). This variable is
+ -- used when performing a generic copy that is not an instantiation, but
+ -- that is nested within one, as the occurrence of 1 within 2. The analysis
+ -- of a nested generic only preserves references that are global to the
+ -- enclosing Current_Instantiated_Parent. We use the Scope_Depth value to
+ -- determine whether a reference is external to the given parent.
+
+ -- The instantiation at point 3 requires no special treatment. The method
+ -- works as well for further nestings of generic units, but of course the
+ -- variable Current_Instantiated_Parent must be stacked because nested
+ -- instantiations can occur, e.g. the occurrence of 4 within 2.
+
+ -- The instantiation of package and subprogram bodies is handled in a
+ -- similar manner, except that it is delayed until after semantic
+ -- analysis is complete. In this fashion complex cross-dependencies
+ -- between several package declarations and bodies containing generics
+ -- can be compiled which otherwise would diagnose spurious circularities.
+
+ -- For example, it is possible to compile two packages A and B that
+ -- have the following structure:
+
+ -- package A is package B is
+ -- generic ... generic ...
+ -- package G_A is package G_B is
+
+ -- with B; with A;
+ -- package body A is package body B is
+ -- package N_B is new G_B (..) package N_A is new G_A (..)
+
+ -- The table Pending_Instantiations in package Inline is used to keep
+ -- track of body instantiations that are delayed in this manner. Inline
+ -- handles the actual calls to do the body instantiations. This activity
+ -- is part of Inline, since the processing occurs at the same point, and
+ -- for essentially the same reason, as the handling of inlined routines.
+
+ ----------------------------------------------
+ -- Detection of Instantiation Circularities --
+ ----------------------------------------------
+
+ -- If we have a chain of instantiations that is circular, this is a
+ -- static error which must be detected at compile time. The detection
+ -- of these circularities is carried out at the point that we insert
+ -- a generic instance spec or body. If there is a circularity, then
+ -- the analysis of the offending spec or body will eventually result
+ -- in trying to load the same unit again, and we detect this problem
+ -- as we analyze the package instantiation for the second time.
+
+ -- At least in some cases after we have detected the circularity, we
+ -- get into trouble if we try to keep going. The following flag is
+ -- set if a circularity is detected, and used to abandon compilation
+ -- after the messages have been posted.
+
+ Circularity_Detected : Boolean := False;
+ -- This should really be reset on encountering a new main unit, but in
+ -- practice we are not using multiple main units so it is not critical.
+
+ -----------------------
+ -- Local subprograms --
+ -----------------------
+
+ procedure Abandon_Instantiation (N : Node_Id);
+ pragma No_Return (Abandon_Instantiation);
+ -- Posts an error message "instantiation abandoned" at the indicated
+ -- node and then raises the exception Instantiation_Error to do it.
+
+ procedure Analyze_Formal_Array_Type
+ (T : in out Entity_Id;
+ Def : Node_Id);
+ -- A formal array type is treated like an array type declaration, and
+ -- invokes Array_Type_Declaration (sem_ch3) whose first parameter is
+ -- in-out, because in the case of an anonymous type the entity is
+ -- actually created in the procedure.
+
+ -- The following procedures treat other kinds of formal parameters.
+
+ procedure Analyze_Formal_Derived_Type
+ (N : Node_Id;
+ T : Entity_Id;
+ Def : Node_Id);
+
+ -- All the following need comments???
+
+ procedure Analyze_Formal_Decimal_Fixed_Point_Type
+ (T : Entity_Id; Def : Node_Id);
+ procedure Analyze_Formal_Discrete_Type (T : Entity_Id; Def : Node_Id);
+ procedure Analyze_Formal_Floating_Type (T : Entity_Id; Def : Node_Id);
+ procedure Analyze_Formal_Signed_Integer_Type (T : Entity_Id; Def : Node_Id);
+ procedure Analyze_Formal_Modular_Type (T : Entity_Id; Def : Node_Id);
+ procedure Analyze_Formal_Ordinary_Fixed_Point_Type
+ (T : Entity_Id; Def : Node_Id);
+
+ procedure Analyze_Formal_Private_Type
+ (N : Node_Id;
+ T : Entity_Id;
+ Def : Node_Id);
+ -- This needs comments???
+
+ procedure Analyze_Generic_Formal_Part (N : Node_Id);
+
+ procedure Analyze_Generic_Access_Type (T : Entity_Id; Def : Node_Id);
+ -- This needs comments ???
+
+ function Analyze_Associations
+ (I_Node : Node_Id;
+ Formals : List_Id;
+ F_Copy : List_Id)
+ return List_Id;
+ -- At instantiation time, build the list of associations between formals
+ -- and actuals. Each association becomes a renaming declaration for the
+ -- formal entity. F_Copy is the analyzed list of formals in the generic
+ -- copy. It is used to apply legality checks to the actuals. I_Node is the
+ -- instantiation node itself.
+
+ procedure Analyze_Subprogram_Instantiation
+ (N : Node_Id;
+ K : Entity_Kind);
+
+ procedure Build_Instance_Compilation_Unit_Nodes
+ (N : Node_Id;
+ Act_Body : Node_Id;
+ Act_Decl : Node_Id);
+ -- This procedure is used in the case where the generic instance of a
+ -- subprogram body or package body is a library unit. In this case, the
+ -- original library unit node for the generic instantiation must be
+ -- replaced by the resulting generic body, and a link made to a new
+ -- compilation unit node for the generic declaration. The argument N is
+ -- the original generic instantiation. Act_Body and Act_Decl are the body
+ -- and declaration of the instance (either package body and declaration
+ -- nodes or subprogram body and declaration nodes depending on the case).
+ -- On return, the node N has been rewritten with the actual body.
+
+ procedure Check_Formal_Packages (P_Id : Entity_Id);
+ -- Apply the following to all formal packages in generic associations.
+
+ procedure Check_Formal_Package_Instance
+ (Formal_Pack : Entity_Id;
+ Actual_Pack : Entity_Id);
+ -- Verify that the actuals of the actual instance match the actuals of
+ -- the template for a formal package that is not declared with a box.
+
+ procedure Check_Forward_Instantiation (N : Node_Id; Decl : Node_Id);
+ -- If the generic is a local entity and the corresponding body has not
+ -- been seen yet, flag enclosing packages to indicate that it will be
+ -- elaborated after the generic body. Subprograms declared in the same
+ -- package cannot be inlined by the front-end because front-end inlining
+ -- requires a strict linear order of elaboration.
+
+ procedure Check_Hidden_Child_Unit
+ (N : Node_Id;
+ Gen_Unit : Entity_Id;
+ Act_Decl_Id : Entity_Id);
+ -- If the generic unit is an implicit child instance within a parent
+ -- instance, we need to make an explicit test that it is not hidden by
+ -- a child instance of the same name and parent.
+
+ procedure Check_Private_View (N : Node_Id);
+ -- Check whether the type of a generic entity has a different view between
+ -- the point of generic analysis and the point of instantiation. If the
+ -- view has changed, then at the point of instantiation we restore the
+ -- correct view to perform semantic analysis of the instance, and reset
+ -- the current view after instantiation. The processing is driven by the
+ -- current private status of the type of the node, and Has_Private_View,
+ -- a flag that is set at the point of generic compilation. If view and
+ -- flag are inconsistent then the type is updated appropriately.
+
+ procedure Check_Generic_Actuals
+ (Instance : Entity_Id;
+ Is_Formal_Box : Boolean);
+ -- Similar to previous one. Check the actuals in the instantiation,
+ -- whose views can change between the point of instantiation and the point
+ -- of instantiation of the body. In addition, mark the generic renamings
+ -- as generic actuals, so that they are not compatible with other actuals.
+ -- Recurse on an actual that is a formal package whose declaration has
+ -- a box.
+
+ function Contains_Instance_Of
+ (Inner : Entity_Id;
+ Outer : Entity_Id;
+ N : Node_Id)
+ return Boolean;
+ -- Inner is instantiated within the generic Outer. Check whether Inner
+ -- directly or indirectly contains an instance of Outer or of one of its
+ -- parents, in the case of a subunit. Each generic unit holds a list of
+ -- the entities instantiated within (at any depth). This procedure
+ -- determines whether the set of such lists contains a cycle, i.e. an
+ -- illegal circular instantiation.
+
+ function Denotes_Formal_Package (Pack : Entity_Id) return Boolean;
+ -- Returns True if E is a formal package of an enclosing generic, or
+ -- the actual for such a formal in an enclosing instantiation. Used in
+ -- Restore_Private_Views, to keep the formals of such a package visible
+ -- on exit from an inner instantiation.
+
+ function Find_Actual_Type
+ (Typ : Entity_Id;
+ Gen_Scope : Entity_Id)
+ return Entity_Id;
+ -- When validating the actual types of a child instance, check whether
+ -- the formal is a formal type of the parent unit, and retrieve the current
+ -- actual for it. Typ is the entity in the analyzed formal type declaration
+ -- (component or index type of an array type) and Gen_Scope is the scope of
+ -- the analyzed formal array type.
+
+ function Get_Package_Instantiation_Node (A : Entity_Id) return Node_Id;
+ -- Given the entity of a unit that is an instantiation, retrieve the
+ -- original instance node. This is used when loading the instantiations
+ -- of the ancestors of a child generic that is being instantiated.
+
+ function In_Same_Declarative_Part
+ (F_Node : Node_Id;
+ Inst : Node_Id)
+ return Boolean;
+ -- True if the instantiation Inst and the given freeze_node F_Node appear
+ -- within the same declarative part, ignoring subunits, but with no inter-
+ -- vening suprograms or concurrent units. If true, the freeze node
+ -- of the instance can be placed after the freeze node of the parent,
+ -- which it itself an instance.
+
+ procedure Set_Instance_Of (A : Entity_Id; B : Entity_Id);
+ -- Associate analyzed generic parameter with corresponding
+ -- instance. Used for semantic checks at instantiation time.
+
+ function Has_Been_Exchanged (E : Entity_Id) return Boolean;
+ -- Traverse the Exchanged_Views list to see if a type was private
+ -- and has already been flipped during this phase of instantiation.
+
+ procedure Hide_Current_Scope;
+ -- When compiling a generic child unit, the parent context must be
+ -- present, but the instance and all entities that may be generated
+ -- must be inserted in the current scope. We leave the current scope
+ -- on the stack, but make its entities invisible to avoid visibility
+ -- problems. This is reversed at the end of instantiations. This is
+ -- not done for the instantiation of the bodies, which only require the
+ -- instances of the generic parents to be in scope.
+
+ procedure Install_Body
+ (Act_Body : Node_Id;
+ N : Node_Id;
+ Gen_Body : Node_Id;
+ Gen_Decl : Node_Id);
+ -- If the instantiation happens textually before the body of the generic,
+ -- the instantiation of the body must be analyzed after the generic body,
+ -- and not at the point of instantiation. Such early instantiations can
+ -- happen if the generic and the instance appear in a package declaration
+ -- because the generic body can only appear in the corresponding package
+ -- body. Early instantiations can also appear if generic, instance and
+ -- body are all in the declarative part of a subprogram or entry. Entities
+ -- of packages that are early instantiations are delayed, and their freeze
+ -- node appears after the generic body.
+
+ procedure Insert_After_Last_Decl (N : Node_Id; F_Node : Node_Id);
+ -- Insert freeze node at the end of the declarative part that includes the
+ -- instance node N. If N is in the visible part of an enclosing package
+ -- declaration, the freeze node has to be inserted at the end of the
+ -- private declarations, if any.
+
+ procedure Freeze_Subprogram_Body
+ (Inst_Node : Node_Id;
+ Gen_Body : Node_Id;
+ Pack_Id : Entity_Id);
+ -- The generic body may appear textually after the instance, including
+ -- in the proper body of a stub, or within a different package instance.
+ -- Given that the instance can only be elaborated after the generic, we
+ -- place freeze_nodes for the instance and/or for packages that may enclose
+ -- the instance and the generic, so that the back-end can establish the
+ -- proper order of elaboration.
+
+ procedure Install_Parent (P : Entity_Id; In_Body : Boolean := False);
+ -- When compiling an instance of a child unit the parent (which is
+ -- itself an instance) is an enclosing scope that must be made
+ -- immediately visible. This procedure is also used to install the non-
+ -- generic parent of a generic child unit when compiling its body, so that
+ -- full views of types in the parent are made visible.
+
+ procedure Remove_Parent (In_Body : Boolean := False);
+ -- Reverse effect after instantiation of child is complete.
+
+ procedure Inline_Instance_Body
+ (N : Node_Id;
+ Gen_Unit : Entity_Id;
+ Act_Decl : Node_Id);
+ -- If front-end inlining is requested, instantiate the package body,
+ -- and preserve the visibility of its compilation unit, to insure
+ -- that successive instantiations succeed.
+
+ -- The functions Instantiate_XXX perform various legality checks and build
+ -- the declarations for instantiated generic parameters.
+ -- Need to describe what the parameters are ???
+
+ function Instantiate_Object
+ (Formal : Node_Id;
+ Actual : Node_Id;
+ Analyzed_Formal : Node_Id)
+ return List_Id;
+
+ function Instantiate_Type
+ (Formal : Node_Id;
+ Actual : Node_Id;
+ Analyzed_Formal : Node_Id)
+ return Node_Id;
+
+ function Instantiate_Formal_Subprogram
+ (Formal : Node_Id;
+ Actual : Node_Id;
+ Analyzed_Formal : Node_Id)
+ return Node_Id;
+
+ function Instantiate_Formal_Package
+ (Formal : Node_Id;
+ Actual : Node_Id;
+ Analyzed_Formal : Node_Id)
+ return List_Id;
+ -- If the formal package is declared with a box, special visibility rules
+ -- apply to its formals: they are in the visible part of the package. This
+ -- is true in the declarative region of the formal package, that is to say
+ -- in the enclosing generic or instantiation. For an instantiation, the
+ -- parameters of the formal package are made visible in an explicit step.
+ -- Furthermore, if the actual is a visible use_clause, these formals must
+ -- be made potentially use_visible as well. On exit from the enclosing
+ -- instantiation, the reverse must be done.
+
+ -- For a formal package declared without a box, there are conformance rules
+ -- that apply to the actuals in the generic declaration and the actuals of
+ -- the actual package in the enclosing instantiation. The simplest way to
+ -- apply these rules is to repeat the instantiation of the formal package
+ -- in the context of the enclosing instance, and compare the generic
+ -- associations of this instantiation with those of the actual package.
+
+ function Is_In_Main_Unit (N : Node_Id) return Boolean;
+ -- Test if given node is in the main unit
+
+ procedure Load_Parent_Of_Generic (N : Node_Id; Spec : Node_Id);
+ -- If the generic appears in a separate non-generic library unit,
+ -- load the corresponding body to retrieve the body of the generic.
+ -- N is the node for the generic instantiation, Spec is the generic
+ -- package declaration.
+
+ procedure Inherit_Context (Gen_Decl : Node_Id; Inst : Node_Id);
+ -- Add the context clause of the unit containing a generic unit to
+ -- an instantiation that is a compilation unit.
+
+ function Associated_Node (N : Node_Id) return Node_Id;
+ -- In order to propagate semantic information back from the analyzed
+ -- copy to the original generic, we maintain links between selected nodes
+ -- in the generic and their corresponding copies. At the end of generic
+ -- analysis, the routine Save_Global_References traverses the generic
+ -- tree, examines the semantic information, and preserves the links to
+ -- those nodes that contain global information. At instantiation, the
+ -- information from the associated node is placed on the new copy, so that
+ -- name resolution is not repeated.
+ -- Two kinds of nodes have associated nodes:
+
+ -- a) those that contain entities, that is to say identifiers, expanded_
+ -- names, and operators.
+
+ -- b) aggregates.
+
+ -- For the first class, the associated node preserves the entity if it is
+ -- global. If the generic contains nested instantiations, the associated_
+ -- node itself has been recopied, and a chain of them must be followed.
+
+ -- For aggregates, the associated node allows retrieval of the type, which
+ -- may otherwise not appear in the generic. The view of this type may be
+ -- different between generic and instantiation, and the full view can be
+ -- installed before the instantiation is analyzed. For aggregates of
+ -- type extensions, the same view exchange may have to be performed for
+ -- some of the ancestor types, if their view is private at the point of
+ -- instantiation.
+
+ -- The associated node is stored in Node4, using this field as a free
+ -- union in a fashion that should clearly be under control of sinfo ???
+
+ procedure Move_Freeze_Nodes
+ (Out_Of : Entity_Id;
+ After : Node_Id;
+ L : List_Id);
+ -- Freeze nodes can be generated in the analysis of a generic unit, but
+ -- will not be seen by the back-end. It is necessary to move those nodes
+ -- to the enclosing scope if they freeze an outer entity. We place them
+ -- at the end of the enclosing generic package, which is semantically
+ -- neutral.
+
+ procedure Pre_Analyze_Actuals (N : Node_Id);
+ -- Analyze actuals to perform name resolution. Full resolution is done
+ -- later, when the expected types are known, but names have to be captured
+ -- before installing parents of generics, that are not visible for the
+ -- actuals themselves.
+
+ procedure Set_Associated_Node
+ (Gen_Node : Node_Id;
+ Copy_Node : Node_Id);
+ -- Establish the link between an identifier in the generic unit, and the
+ -- corresponding node in the semantic copy.
+
+ procedure Valid_Default_Attribute (Nam : Entity_Id; Def : Node_Id);
+ -- Verify that an attribute that appears as the default for a formal
+ -- subprogram is a function or procedure with the correct profile.
+
+ -------------------------------------------
+ -- Data Structures for Generic Renamings --
+ -------------------------------------------
+
+ -- The map Generic_Renamings associates generic entities with their
+ -- corresponding actuals. Currently used to validate type instances.
+ -- It will eventually be used for all generic parameters to eliminate
+ -- the need for overload resolution in the instance.
+
+ type Assoc_Ptr is new Int;
+
+ Assoc_Null : constant Assoc_Ptr := -1;
+
+ type Assoc is record
+ Gen_Id : Entity_Id;
+ Act_Id : Entity_Id;
+ Next_In_HTable : Assoc_Ptr;
+ end record;
+
+ package Generic_Renamings is new Table.Table
+ (Table_Component_Type => Assoc,
+ Table_Index_Type => Assoc_Ptr,
+ Table_Low_Bound => 0,
+ Table_Initial => 10,
+ Table_Increment => 100,
+ Table_Name => "Generic_Renamings");
+
+ -- Variable to hold enclosing instantiation. When the environment is
+ -- saved for a subprogram inlining, the corresponding Act_Id is empty.
+
+ Current_Instantiated_Parent : Assoc := (Empty, Empty, Assoc_Null);
+
+ -- Hash table for associations
+
+ HTable_Size : constant := 37;
+ type HTable_Range is range 0 .. HTable_Size - 1;
+
+ procedure Set_Next_Assoc (E : Assoc_Ptr; Next : Assoc_Ptr);
+ function Next_Assoc (E : Assoc_Ptr) return Assoc_Ptr;
+ function Get_Gen_Id (E : Assoc_Ptr) return Entity_Id;
+ function Hash (F : Entity_Id) return HTable_Range;
+
+ package Generic_Renamings_HTable is new GNAT.HTable.Static_HTable (
+ Header_Num => HTable_Range,
+ Element => Assoc,
+ Elmt_Ptr => Assoc_Ptr,
+ Null_Ptr => Assoc_Null,
+ Set_Next => Set_Next_Assoc,
+ Next => Next_Assoc,
+ Key => Entity_Id,
+ Get_Key => Get_Gen_Id,
+ Hash => Hash,
+ Equal => "=");
+
+ Exchanged_Views : Elist_Id;
+ -- This list holds the private views that have been exchanged during
+ -- instantiation to restore the visibility of the generic declaration.
+ -- (see comments above). After instantiation, the current visibility is
+ -- reestablished by means of a traversal of this list.
+
+ Hidden_Entities : Elist_Id;
+ -- This list holds the entities of the current scope that are removed
+ -- from immediate visibility when instantiating a child unit. Their
+ -- visibility is restored in Remove_Parent.
+
+ -- Because instantiations can be recursive, the following must be saved
+ -- on entry and restored on exit from an instantiation (spec or body).
+ -- This is done by the two procedures Save_Env and Restore_Env.
+
+ type Instance_Env is record
+ Ada_83 : Boolean;
+ Instantiated_Parent : Assoc;
+ Exchanged_Views : Elist_Id;
+ Hidden_Entities : Elist_Id;
+ Current_Sem_Unit : Unit_Number_Type;
+ end record;
+
+ package Instance_Envs is new Table.Table (
+ Table_Component_Type => Instance_Env,
+ Table_Index_Type => Int,
+ Table_Low_Bound => 0,
+ Table_Initial => 32,
+ Table_Increment => 100,
+ Table_Name => "Instance_Envs");
+
+ procedure Restore_Private_Views
+ (Pack_Id : Entity_Id;
+ Is_Package : Boolean := True);
+ -- Restore the private views of external types, and unmark the generic
+ -- renamings of actuals, so that they become comptible subtypes again.
+ -- For subprograms, Pack_Id is the package constructed to hold the
+ -- renamings.
+
+ procedure Switch_View (T : Entity_Id);
+ -- Switch the partial and full views of a type and its private
+ -- dependents (i.e. its subtypes and derived types).
+
+ ------------------------------------
+ -- Structures for Error Reporting --
+ ------------------------------------
+
+ Instantiation_Node : Node_Id;
+ -- Used by subprograms that validate instantiation of formal parameters
+ -- where there might be no actual on which to place the error message.
+ -- Also used to locate the instantiation node for generic subunits.
+
+ Instantiation_Error : exception;
+ -- When there is a semantic error in the generic parameter matching,
+ -- there is no point in continuing the instantiation, because the
+ -- number of cascaded errors is unpredictable. This exception aborts
+ -- the instantiation process altogether.
+
+ S_Adjustment : Sloc_Adjustment;
+ -- Offset created for each node in an instantiation, in order to keep
+ -- track of the source position of the instantiation in each of its nodes.
+ -- A subsequent semantic error or warning on a construct of the instance
+ -- points to both places: the original generic node, and the point of
+ -- instantiation. See Sinput and Sinput.L for additional details.
+
+ ------------------------------------------------------------
+ -- Data structure for keeping track when inside a Generic --
+ ------------------------------------------------------------
+
+ -- The following table is used to save values of the Inside_A_Generic
+ -- flag (see spec of Sem) when they are saved by Start_Generic.
+
+ package Generic_Flags is new Table.Table (
+ Table_Component_Type => Boolean,
+ Table_Index_Type => Int,
+ Table_Low_Bound => 0,
+ Table_Initial => 32,
+ Table_Increment => 200,
+ Table_Name => "Generic_Flags");
+
+ ---------------------------
+ -- Abandon_Instantiation --
+ ---------------------------
+
+ procedure Abandon_Instantiation (N : Node_Id) is
+ begin
+ Error_Msg_N ("instantiation abandoned!", N);
+ raise Instantiation_Error;
+ end Abandon_Instantiation;
+
+ --------------------------
+ -- Analyze_Associations --
+ --------------------------
+
+ function Analyze_Associations
+ (I_Node : Node_Id;
+ Formals : List_Id;
+ F_Copy : List_Id)
+ return List_Id
+ is
+ Actuals : List_Id := Generic_Associations (I_Node);
+ Actual : Node_Id;
+ Actual_Types : Elist_Id := New_Elmt_List;
+ Assoc : List_Id := New_List;
+ Formal : Node_Id;
+ Next_Formal : Node_Id;
+ Temp_Formal : Node_Id;
+ Analyzed_Formal : Node_Id;
+ Defaults : Elist_Id := New_Elmt_List;
+ Match : Node_Id;
+ Named : Node_Id;
+ First_Named : Node_Id := Empty;
+ Found_Assoc : Node_Id;
+ Is_Named_Assoc : Boolean;
+ Num_Matched : Int := 0;
+ Num_Actuals : Int := 0;
+
+ function Matching_Actual
+ (F : Entity_Id;
+ A_F : Entity_Id)
+ return Node_Id;
+ -- Find actual that corresponds to a given a formal parameter. If the
+ -- actuals are positional, return the next one, if any. If the actuals
+ -- are named, scan the parameter associations to find the right one.
+ -- A_F is the corresponding entity in the analyzed generic,which is
+ -- placed on the selector name for ASIS use.
+
+ procedure Set_Analyzed_Formal;
+ -- Find the node in the generic copy that corresponds to a given formal.
+ -- The semantic information on this node is used to perform legality
+ -- checks on the actuals. Because semantic analysis can introduce some
+ -- anonymous entities or modify the declaration node itself, the
+ -- correspondence between the two lists is not one-one. In addition to
+ -- anonymous types, the presence a formal equality will introduce an
+ -- implicit declaration for the corresponding inequality.
+
+ ---------------------
+ -- Matching_Actual --
+ ---------------------
+
+ function Matching_Actual
+ (F : Entity_Id;
+ A_F : Entity_Id)
+ return Node_Id
+ is
+ Found : Node_Id;
+ Prev : Node_Id;
+
+ begin
+ Is_Named_Assoc := False;
+
+ -- End of list of purely positional parameters
+
+ if No (Actual) then
+ Found := Empty;
+
+ -- Case of positional parameter corresponding to current formal
+
+ elsif No (Selector_Name (Actual)) then
+ Found := Explicit_Generic_Actual_Parameter (Actual);
+ Found_Assoc := Actual;
+ Num_Matched := Num_Matched + 1;
+ Next (Actual);
+
+ -- Otherwise scan list of named actuals to find the one with the
+ -- desired name. All remaining actuals have explicit names.
+
+ else
+ Is_Named_Assoc := True;
+ Found := Empty;
+ Prev := Empty;
+
+ while Present (Actual) loop
+ if Chars (Selector_Name (Actual)) = Chars (F) then
+ Found := Explicit_Generic_Actual_Parameter (Actual);
+ Set_Entity (Selector_Name (Actual), A_F);
+ Set_Etype (Selector_Name (Actual), Etype (A_F));
+ Found_Assoc := Actual;
+ Num_Matched := Num_Matched + 1;
+ exit;
+ end if;
+
+ Prev := Actual;
+ Next (Actual);
+ end loop;
+
+ -- Reset for subsequent searches. In most cases the named
+ -- associations are in order. If they are not, we reorder them
+ -- to avoid scanning twice the same actual. This is not just a
+ -- question of efficiency: there may be multiple defaults with
+ -- boxes that have the same name. In a nested instantiation we
+ -- insert actuals for those defaults, and cannot rely on their
+ -- names to disambiguate them.
+
+ if Actual = First_Named then
+ Next (First_Named);
+
+ elsif Present (Actual) then
+ Insert_Before (First_Named, Remove_Next (Prev));
+ end if;
+
+ Actual := First_Named;
+ end if;
+
+ return Found;
+ end Matching_Actual;
+
+ -------------------------
+ -- Set_Analyzed_Formal --
+ -------------------------
+
+ procedure Set_Analyzed_Formal is
+ Kind : Node_Kind;
+ begin
+ while Present (Analyzed_Formal) loop
+ Kind := Nkind (Analyzed_Formal);
+
+ case Nkind (Formal) is
+
+ when N_Formal_Subprogram_Declaration =>
+ exit when Kind = N_Formal_Subprogram_Declaration
+ and then
+ Chars
+ (Defining_Unit_Name (Specification (Formal))) =
+ Chars
+ (Defining_Unit_Name (Specification (Analyzed_Formal)));
+
+ when N_Formal_Package_Declaration =>
+ exit when
+ Kind = N_Formal_Package_Declaration
+ or else
+ Kind = N_Generic_Package_Declaration;
+
+ when N_Use_Package_Clause | N_Use_Type_Clause => exit;
+
+ when others =>
+
+ -- Skip freeze nodes, and nodes inserted to replace
+ -- unrecognized pragmas.
+
+ exit when
+ Kind /= N_Formal_Subprogram_Declaration
+ and then Kind /= N_Subprogram_Declaration
+ and then Kind /= N_Freeze_Entity
+ and then Kind /= N_Null_Statement
+ and then Kind /= N_Itype_Reference
+ and then Chars (Defining_Identifier (Formal)) =
+ Chars (Defining_Identifier (Analyzed_Formal));
+ end case;
+
+ Next (Analyzed_Formal);
+ end loop;
+
+ end Set_Analyzed_Formal;
+
+ -- Start of processing for Analyze_Associations
+
+ begin
+ -- If named associations are present, save the first named association
+ -- (it may of course be Empty) to facilitate subsequent name search.
+
+ if Present (Actuals) then
+ First_Named := First (Actuals);
+
+ while Present (First_Named)
+ and then No (Selector_Name (First_Named))
+ loop
+ Num_Actuals := Num_Actuals + 1;
+ Next (First_Named);
+ end loop;
+ end if;
+
+ Named := First_Named;
+ while Present (Named) loop
+ if No (Selector_Name (Named)) then
+ Error_Msg_N ("invalid positional actual after named one", Named);
+ Abandon_Instantiation (Named);
+ end if;
+
+ Num_Actuals := Num_Actuals + 1;
+ Next (Named);
+ end loop;
+
+ if Present (Formals) then
+ Formal := First_Non_Pragma (Formals);
+ Analyzed_Formal := First_Non_Pragma (F_Copy);
+
+ if Present (Actuals) then
+ Actual := First (Actuals);
+
+ -- All formals should have default values
+
+ else
+ Actual := Empty;
+ end if;
+
+ while Present (Formal) loop
+ Set_Analyzed_Formal;
+ Next_Formal := Next_Non_Pragma (Formal);
+
+ case Nkind (Formal) is
+ when N_Formal_Object_Declaration =>
+ Match :=
+ Matching_Actual (
+ Defining_Identifier (Formal),
+ Defining_Identifier (Analyzed_Formal));
+
+ Append_List
+ (Instantiate_Object (Formal, Match, Analyzed_Formal),
+ Assoc);
+
+ when N_Formal_Type_Declaration =>
+ Match :=
+ Matching_Actual (
+ Defining_Identifier (Formal),
+ Defining_Identifier (Analyzed_Formal));
+
+ if No (Match) then
+ Error_Msg_NE ("missing actual for instantiation of &",
+ Instantiation_Node, Defining_Identifier (Formal));
+ Abandon_Instantiation (Instantiation_Node);
+
+ else
+ Analyze (Match);
+ Append_To (Assoc,
+ Instantiate_Type (Formal, Match, Analyzed_Formal));
+
+ -- an instantiation is a freeze point for the actuals,
+ -- unless this is a rewritten formal package.
+
+ if Nkind (I_Node) /= N_Formal_Package_Declaration then
+ Append_Elmt (Entity (Match), Actual_Types);
+ end if;
+ end if;
+
+ -- A remote access-to-class-wide type must not be an
+ -- actual parameter for a generic formal of an access
+ -- type (E.2.2 (17)).
+
+ if Nkind (Analyzed_Formal) = N_Formal_Type_Declaration
+ and then
+ Nkind (Formal_Type_Definition (Analyzed_Formal)) =
+ N_Access_To_Object_Definition
+ then
+ Validate_Remote_Access_To_Class_Wide_Type (Match);
+ end if;
+
+ when N_Formal_Subprogram_Declaration =>
+ Match :=
+ Matching_Actual (
+ Defining_Unit_Name (Specification (Formal)),
+ Defining_Unit_Name (Specification (Analyzed_Formal)));
+
+ -- If the formal subprogram has the same name as
+ -- another formal subprogram of the generic, then
+ -- a named association is illegal (12.3(9)). Exclude
+ -- named associations that are generated for a nested
+ -- instance.
+
+ if Present (Match)
+ and then Is_Named_Assoc
+ and then Comes_From_Source (Found_Assoc)
+ then
+ Temp_Formal := First (Formals);
+ while Present (Temp_Formal) loop
+ if Nkind (Temp_Formal) =
+ N_Formal_Subprogram_Declaration
+ and then Temp_Formal /= Formal
+ and then
+ Chars (Selector_Name (Found_Assoc)) =
+ Chars (Defining_Unit_Name
+ (Specification (Temp_Formal)))
+ then
+ Error_Msg_N
+ ("name not allowed for overloaded formal",
+ Found_Assoc);
+ Abandon_Instantiation (Instantiation_Node);
+ end if;
+
+ Next (Temp_Formal);
+ end loop;
+ end if;
+
+ Append_To (Assoc,
+ Instantiate_Formal_Subprogram
+ (Formal, Match, Analyzed_Formal));
+
+ if No (Match)
+ and then Box_Present (Formal)
+ then
+ Append_Elmt
+ (Defining_Unit_Name (Specification (Last (Assoc))),
+ Defaults);
+ end if;
+
+ when N_Formal_Package_Declaration =>
+ Match :=
+ Matching_Actual (
+ Defining_Identifier (Formal),
+ Defining_Identifier (Original_Node (Analyzed_Formal)));
+
+ if No (Match) then
+ Error_Msg_NE
+ ("missing actual for instantiation of&",
+ Instantiation_Node,
+ Defining_Identifier (Formal));
+
+ Abandon_Instantiation (Instantiation_Node);
+
+ else
+ Analyze (Match);
+ Append_List
+ (Instantiate_Formal_Package
+ (Formal, Match, Analyzed_Formal),
+ Assoc);
+ end if;
+
+ -- For use type and use package appearing in the context
+ -- clause, we have already copied them, so we can just
+ -- move them where they belong (we mustn't recopy them
+ -- since this would mess up the Sloc values).
+
+ when N_Use_Package_Clause |
+ N_Use_Type_Clause =>
+ Remove (Formal);
+ Append (Formal, Assoc);
+
+ when others =>
+ raise Program_Error;
+
+ end case;
+
+ Formal := Next_Formal;
+ Next_Non_Pragma (Analyzed_Formal);
+ end loop;
+
+ if Num_Actuals > Num_Matched then
+ Error_Msg_N
+ ("unmatched actuals in instantiation", Instantiation_Node);
+ end if;
+
+ elsif Present (Actuals) then
+ Error_Msg_N
+ ("too many actuals in generic instantiation", Instantiation_Node);
+ end if;
+
+ declare
+ Elmt : Elmt_Id := First_Elmt (Actual_Types);
+
+ begin
+ while Present (Elmt) loop
+ Freeze_Before (I_Node, Node (Elmt));
+ Next_Elmt (Elmt);
+ end loop;
+ end;
+
+ -- If there are default subprograms, normalize the tree by adding
+ -- explicit associations for them. This is required if the instance
+ -- appears within a generic.
+
+ declare
+ Elmt : Elmt_Id;
+ Subp : Entity_Id;
+ New_D : Node_Id;
+
+ begin
+ Elmt := First_Elmt (Defaults);
+ while Present (Elmt) loop
+ if No (Actuals) then
+ Actuals := New_List;
+ Set_Generic_Associations (I_Node, Actuals);
+ end if;
+
+ Subp := Node (Elmt);
+ New_D :=
+ Make_Generic_Association (Sloc (Subp),
+ Selector_Name => New_Occurrence_Of (Subp, Sloc (Subp)),
+ Explicit_Generic_Actual_Parameter =>
+ New_Occurrence_Of (Subp, Sloc (Subp)));
+ Mark_Rewrite_Insertion (New_D);
+ Append_To (Actuals, New_D);
+ Next_Elmt (Elmt);
+ end loop;
+ end;
+
+ return Assoc;
+ end Analyze_Associations;
+
+ -------------------------------
+ -- Analyze_Formal_Array_Type --
+ -------------------------------
+
+ procedure Analyze_Formal_Array_Type
+ (T : in out Entity_Id;
+ Def : Node_Id)
+ is
+ DSS : Node_Id;
+
+ begin
+ -- Treated like a non-generic array declaration, with
+ -- additional semantic checks.
+
+ Enter_Name (T);
+
+ if Nkind (Def) = N_Constrained_Array_Definition then
+ DSS := First (Discrete_Subtype_Definitions (Def));
+ while Present (DSS) loop
+ if Nkind (DSS) = N_Subtype_Indication
+ or else Nkind (DSS) = N_Range
+ or else Nkind (DSS) = N_Attribute_Reference
+ then
+ Error_Msg_N ("only a subtype mark is allowed in a formal", DSS);
+ end if;
+
+ Next (DSS);
+ end loop;
+ end if;
+
+ Array_Type_Declaration (T, Def);
+ Set_Is_Generic_Type (Base_Type (T));
+
+ if Ekind (Component_Type (T)) = E_Incomplete_Type
+ and then No (Full_View (Component_Type (T)))
+ then
+ Error_Msg_N ("premature usage of incomplete type", Def);
+
+ elsif Is_Internal (Component_Type (T))
+ and then Nkind (Original_Node (Subtype_Indication (Def)))
+ /= N_Attribute_Reference
+ then
+ Error_Msg_N
+ ("only a subtype mark is allowed in a formal",
+ Subtype_Indication (Def));
+ end if;
+
+ end Analyze_Formal_Array_Type;
+
+ ---------------------------------------------
+ -- Analyze_Formal_Decimal_Fixed_Point_Type --
+ ---------------------------------------------
+
+ -- As for other generic types, we create a valid type representation
+ -- with legal but arbitrary attributes, whose values are never considered
+ -- static. For all scalar types we introduce an anonymous base type, with
+ -- the same attributes. We choose the corresponding integer type to be
+ -- Standard_Integer.
+
+ procedure Analyze_Formal_Decimal_Fixed_Point_Type
+ (T : Entity_Id;
+ Def : Node_Id)
+ is
+ Loc : constant Source_Ptr := Sloc (Def);
+ Base : constant Entity_Id :=
+ New_Internal_Entity
+ (E_Decimal_Fixed_Point_Type,
+ Current_Scope, Sloc (Def), 'G');
+ Int_Base : constant Entity_Id := Standard_Integer;
+ Delta_Val : constant Ureal := Ureal_1;
+ Digs_Val : constant Uint := Uint_6;
+
+ begin
+ Enter_Name (T);
+
+ Set_Etype (Base, Base);
+ Set_Size_Info (Base, Int_Base);
+ Set_RM_Size (Base, RM_Size (Int_Base));
+ Set_First_Rep_Item (Base, First_Rep_Item (Int_Base));
+ Set_Digits_Value (Base, Digs_Val);
+ Set_Delta_Value (Base, Delta_Val);
+ Set_Small_Value (Base, Delta_Val);
+ Set_Scalar_Range (Base,
+ Make_Range (Loc,
+ Low_Bound => Make_Real_Literal (Loc, Ureal_1),
+ High_Bound => Make_Real_Literal (Loc, Ureal_1)));
+
+ Set_Is_Generic_Type (Base);
+ Set_Parent (Base, Parent (Def));
+
+ Set_Ekind (T, E_Decimal_Fixed_Point_Subtype);
+ Set_Etype (T, Base);
+ Set_Size_Info (T, Int_Base);
+ Set_RM_Size (T, RM_Size (Int_Base));
+ Set_First_Rep_Item (T, First_Rep_Item (Int_Base));
+ Set_Digits_Value (T, Digs_Val);
+ Set_Delta_Value (T, Delta_Val);
+ Set_Small_Value (T, Delta_Val);
+ Set_Scalar_Range (T, Scalar_Range (Base));
+
+ end Analyze_Formal_Decimal_Fixed_Point_Type;
+
+ ---------------------------------
+ -- Analyze_Formal_Derived_Type --
+ ---------------------------------
+
+ procedure Analyze_Formal_Derived_Type
+ (N : Node_Id;
+ T : Entity_Id;
+ Def : Node_Id)
+ is
+ Loc : constant Source_Ptr := Sloc (Def);
+ New_N : Node_Id;
+ Unk_Disc : Boolean := Unknown_Discriminants_Present (N);
+
+ begin
+ Set_Is_Generic_Type (T);
+
+ if Private_Present (Def) then
+ New_N :=
+ Make_Private_Extension_Declaration (Loc,
+ Defining_Identifier => T,
+ Discriminant_Specifications => Discriminant_Specifications (N),
+ Unknown_Discriminants_Present => Unk_Disc,
+ Subtype_Indication => Subtype_Mark (Def));
+
+ Set_Abstract_Present (New_N, Abstract_Present (Def));
+
+ else
+ New_N :=
+ Make_Full_Type_Declaration (Loc,
+ Defining_Identifier => T,
+ Discriminant_Specifications =>
+ Discriminant_Specifications (Parent (T)),
+ Type_Definition =>
+ Make_Derived_Type_Definition (Loc,
+ Subtype_Indication => Subtype_Mark (Def)));
+
+ Set_Abstract_Present
+ (Type_Definition (New_N), Abstract_Present (Def));
+ end if;
+
+ Rewrite (N, New_N);
+ Analyze (N);
+
+ if Unk_Disc then
+ if not Is_Composite_Type (T) then
+ Error_Msg_N
+ ("unknown discriminants not allowed for elementary types", N);
+ else
+ Set_Has_Unknown_Discriminants (T);
+ Set_Is_Constrained (T, False);
+ end if;
+ end if;
+
+ -- If the parent type has a known size, so does the formal, which
+ -- makes legal representation clauses that involve the formal.
+
+ Set_Size_Known_At_Compile_Time
+ (T, Size_Known_At_Compile_Time (Entity (Subtype_Mark (Def))));
+
+ end Analyze_Formal_Derived_Type;
+
+ ----------------------------------
+ -- Analyze_Formal_Discrete_Type --
+ ----------------------------------
+
+ -- The operations defined for a discrete types are those of an
+ -- enumeration type. The size is set to an arbitrary value, for use
+ -- in analyzing the generic unit.
+
+ procedure Analyze_Formal_Discrete_Type (T : Entity_Id; Def : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (Def);
+ Lo : Node_Id;
+ Hi : Node_Id;
+
+ begin
+ Enter_Name (T);
+ Set_Ekind (T, E_Enumeration_Type);
+ Set_Etype (T, T);
+ Init_Size (T, 8);
+ Init_Alignment (T);
+
+ -- For semantic analysis, the bounds of the type must be set to some
+ -- non-static value. The simplest is to create attribute nodes for
+ -- those bounds, that refer to the type itself. These bounds are never
+ -- analyzed but serve as place-holders.
+
+ Lo :=
+ Make_Attribute_Reference (Loc,
+ Attribute_Name => Name_First,
+ Prefix => New_Reference_To (T, Loc));
+ Set_Etype (Lo, T);
+
+ Hi :=
+ Make_Attribute_Reference (Loc,
+ Attribute_Name => Name_Last,
+ Prefix => New_Reference_To (T, Loc));
+ Set_Etype (Hi, T);
+
+ Set_Scalar_Range (T,
+ Make_Range (Loc,
+ Low_Bound => Lo,
+ High_Bound => Hi));
+
+ end Analyze_Formal_Discrete_Type;
+
+ ----------------------------------
+ -- Analyze_Formal_Floating_Type --
+ ---------------------------------
+
+ procedure Analyze_Formal_Floating_Type (T : Entity_Id; Def : Node_Id) is
+ Base : constant Entity_Id :=
+ New_Internal_Entity
+ (E_Floating_Point_Type, Current_Scope, Sloc (Def), 'G');
+
+ begin
+ -- The various semantic attributes are taken from the predefined type
+ -- Float, just so that all of them are initialized. Their values are
+ -- never used because no constant folding or expansion takes place in
+ -- the generic itself.
+
+ Enter_Name (T);
+ Set_Ekind (T, E_Floating_Point_Subtype);
+ Set_Etype (T, Base);
+ Set_Size_Info (T, (Standard_Float));
+ Set_RM_Size (T, RM_Size (Standard_Float));
+ Set_Digits_Value (T, Digits_Value (Standard_Float));
+ Set_Scalar_Range (T, Scalar_Range (Standard_Float));
+
+ Set_Is_Generic_Type (Base);
+ Set_Etype (Base, Base);
+ Set_Size_Info (Base, (Standard_Float));
+ Set_RM_Size (Base, RM_Size (Standard_Float));
+ Set_Digits_Value (Base, Digits_Value (Standard_Float));
+ Set_Scalar_Range (Base, Scalar_Range (Standard_Float));
+ Set_Parent (Base, Parent (Def));
+ end Analyze_Formal_Floating_Type;
+
+ ---------------------------------
+ -- Analyze_Formal_Modular_Type --
+ ---------------------------------
+
+ procedure Analyze_Formal_Modular_Type (T : Entity_Id; Def : Node_Id) is
+ begin
+ -- Apart from their entity kind, generic modular types are treated
+ -- like signed integer types, and have the same attributes.
+
+ Analyze_Formal_Signed_Integer_Type (T, Def);
+ Set_Ekind (T, E_Modular_Integer_Subtype);
+ Set_Ekind (Etype (T), E_Modular_Integer_Type);
+
+ end Analyze_Formal_Modular_Type;
+
+ ---------------------------------------
+ -- Analyze_Formal_Object_Declaration --
+ ---------------------------------------
+
+ procedure Analyze_Formal_Object_Declaration (N : Node_Id) is
+ E : constant Node_Id := Expression (N);
+ Id : Node_Id := Defining_Identifier (N);
+ K : Entity_Kind;
+ T : Node_Id;
+
+ begin
+ Enter_Name (Id);
+
+ -- Determine the mode of the formal object
+
+ if Out_Present (N) then
+ K := E_Generic_In_Out_Parameter;
+
+ if not In_Present (N) then
+ Error_Msg_N ("formal generic objects cannot have mode OUT", N);
+ end if;
+
+ else
+ K := E_Generic_In_Parameter;
+ end if;
+
+ Find_Type (Subtype_Mark (N));
+ T := Entity (Subtype_Mark (N));
+
+ if Ekind (T) = E_Incomplete_Type then
+ Error_Msg_N ("premature usage of incomplete type", Subtype_Mark (N));
+ end if;
+
+ if K = E_Generic_In_Parameter then
+ if Is_Limited_Type (T) then
+ Error_Msg_N
+ ("generic formal of mode IN must not be of limited type", N);
+ end if;
+
+ if Is_Abstract (T) then
+ Error_Msg_N
+ ("generic formal of mode IN must not be of abstract type", N);
+ end if;
+
+ if Present (E) then
+ Analyze_Default_Expression (E, T);
+ end if;
+
+ Set_Ekind (Id, K);
+ Set_Etype (Id, T);
+
+ -- Case of generic IN OUT parameter.
+
+ else
+ -- If the formal has an unconstrained type, construct its
+ -- actual subtype, as is done for subprogram formals. In this
+ -- fashion, all its uses can refer to specific bounds.
+
+ Set_Ekind (Id, K);
+ Set_Etype (Id, T);
+
+ if (Is_Array_Type (T)
+ and then not Is_Constrained (T))
+ or else
+ (Ekind (T) = E_Record_Type
+ and then Has_Discriminants (T))
+ then
+ declare
+ Non_Freezing_Ref : constant Node_Id :=
+ New_Reference_To (Id, Sloc (Id));
+ Decl : Node_Id;
+
+ begin
+ -- Make sure that the actual subtype doesn't generate
+ -- bogus freezing.
+
+ Set_Must_Not_Freeze (Non_Freezing_Ref);
+ Decl := Build_Actual_Subtype (T, Non_Freezing_Ref);
+ Insert_Before_And_Analyze (N, Decl);
+ Set_Actual_Subtype (Id, Defining_Identifier (Decl));
+ end;
+ else
+ Set_Actual_Subtype (Id, T);
+ end if;
+
+ if Present (E) then
+ Error_Msg_N
+ ("initialization not allowed for `IN OUT` formals", N);
+ end if;
+ end if;
+
+ end Analyze_Formal_Object_Declaration;
+
+ ----------------------------------------------
+ -- Analyze_Formal_Ordinary_Fixed_Point_Type --
+ ----------------------------------------------
+
+ procedure Analyze_Formal_Ordinary_Fixed_Point_Type
+ (T : Entity_Id;
+ Def : Node_Id)
+ is
+ Loc : constant Source_Ptr := Sloc (Def);
+ Base : constant Entity_Id :=
+ New_Internal_Entity
+ (E_Ordinary_Fixed_Point_Type, Current_Scope, Sloc (Def), 'G');
+ begin
+ -- The semantic attributes are set for completeness only, their
+ -- values will never be used, because all properties of the type
+ -- are non-static.
+
+ Enter_Name (T);
+ Set_Ekind (T, E_Ordinary_Fixed_Point_Subtype);
+ Set_Etype (T, Base);
+ Set_Size_Info (T, Standard_Integer);
+ Set_RM_Size (T, RM_Size (Standard_Integer));
+ Set_Small_Value (T, Ureal_1);
+ Set_Delta_Value (T, Ureal_1);
+ Set_Scalar_Range (T,
+ Make_Range (Loc,
+ Low_Bound => Make_Real_Literal (Loc, Ureal_1),
+ High_Bound => Make_Real_Literal (Loc, Ureal_1)));
+
+ Set_Is_Generic_Type (Base);
+ Set_Etype (Base, Base);
+ Set_Size_Info (Base, Standard_Integer);
+ Set_RM_Size (Base, RM_Size (Standard_Integer));
+ Set_Small_Value (Base, Ureal_1);
+ Set_Delta_Value (Base, Ureal_1);
+ Set_Scalar_Range (Base, Scalar_Range (T));
+ Set_Parent (Base, Parent (Def));
+ end Analyze_Formal_Ordinary_Fixed_Point_Type;
+
+ ----------------------------
+ -- Analyze_Formal_Package --
+ ----------------------------
+
+ procedure Analyze_Formal_Package (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Formal : Entity_Id := Defining_Identifier (N);
+ Gen_Id : constant Node_Id := Name (N);
+ Gen_Decl : Node_Id;
+ Gen_Unit : Entity_Id;
+ New_N : Node_Id;
+ Parent_Installed : Boolean := False;
+ Renaming : Node_Id;
+ Parent_Instance : Entity_Id;
+ Renaming_In_Par : Entity_Id;
+
+ begin
+ Text_IO_Kludge (Gen_Id);
+
+ Check_Generic_Child_Unit (Gen_Id, Parent_Installed);
+ Gen_Unit := Entity (Gen_Id);
+
+ if Ekind (Gen_Unit) /= E_Generic_Package then
+ Error_Msg_N ("expect generic package name", Gen_Id);
+ return;
+
+ elsif Gen_Unit = Current_Scope then
+ Error_Msg_N
+ ("generic package cannot be used as a formal package of itself",
+ Gen_Id);
+ return;
+ end if;
+
+ -- Check for a formal package that is a package renaming.
+
+ if Present (Renamed_Object (Gen_Unit)) then
+ Gen_Unit := Renamed_Object (Gen_Unit);
+ end if;
+
+ -- The formal package is treated like a regular instance, but only
+ -- the specification needs to be instantiated, to make entities visible.
+
+ if not Box_Present (N) then
+ Hidden_Entities := New_Elmt_List;
+ Analyze_Package_Instantiation (N);
+
+ if Parent_Installed then
+ Remove_Parent;
+ end if;
+
+ else
+ -- If there are no generic associations, the generic parameters
+ -- appear as local entities and are instantiated like them. We copy
+ -- the generic package declaration as if it were an instantiation,
+ -- and analyze it like a regular package, except that we treat the
+ -- formals as additional visible components.
+
+ Save_Env (Gen_Unit, Formal);
+
+ Gen_Decl := Unit_Declaration_Node (Gen_Unit);
+
+ if In_Extended_Main_Source_Unit (N) then
+ Set_Is_Instantiated (Gen_Unit);
+ Generate_Reference (Gen_Unit, N);
+ end if;
+
+ New_N :=
+ Copy_Generic_Node
+ (Original_Node (Gen_Decl), Empty, Instantiating => True);
+ Set_Defining_Unit_Name (Specification (New_N), Formal);
+ Rewrite (N, New_N);
+
+ Enter_Name (Formal);
+ Set_Ekind (Formal, E_Generic_Package);
+ Set_Etype (Formal, Standard_Void_Type);
+ Set_Inner_Instances (Formal, New_Elmt_List);
+ New_Scope (Formal);
+
+ -- Within the formal, the name of the generic package is a renaming
+ -- of the formal (as for a regular instantiation).
+
+ Renaming := Make_Package_Renaming_Declaration (Loc,
+ Defining_Unit_Name =>
+ Make_Defining_Identifier (Loc, Chars (Gen_Unit)),
+ Name => New_Reference_To (Formal, Loc));
+
+ if Present (Visible_Declarations (Specification (N))) then
+ Prepend (Renaming, To => Visible_Declarations (Specification (N)));
+ elsif Present (Private_Declarations (Specification (N))) then
+ Prepend (Renaming, To => Private_Declarations (Specification (N)));
+ end if;
+
+ if Is_Child_Unit (Gen_Unit)
+ and then Parent_Installed
+ then
+ -- Similarly, we have to make the name of the formal visible in
+ -- the parent instance, to resolve properly fully qualified names
+ -- that may appear in the generic unit. The parent instance has
+ -- been placed on the scope stack ahead of the current scope.
+
+ Parent_Instance := Scope_Stack.Table (Scope_Stack.Last - 1).Entity;
+
+ Renaming_In_Par :=
+ Make_Defining_Identifier (Loc, Chars (Gen_Unit));
+ Set_Ekind (Renaming_In_Par, E_Package);
+ Set_Etype (Renaming_In_Par, Standard_Void_Type);
+ Set_Scope (Renaming_In_Par, Parent_Instance);
+ Set_Parent (Renaming_In_Par, Parent (Formal));
+ Set_Renamed_Object (Renaming_In_Par, Formal);
+ Append_Entity (Renaming_In_Par, Parent_Instance);
+ end if;
+
+ Analyze_Generic_Formal_Part (N);
+ Analyze (Specification (N));
+ End_Package_Scope (Formal);
+
+ if Parent_Installed then
+ Remove_Parent;
+ end if;
+
+ Restore_Env;
+
+ -- Inside the generic unit, the formal package is a regular
+ -- package, but no body is needed for it. Note that after
+ -- instantiation, the defining_unit_name we need is in the
+ -- new tree and not in the original. (see Package_Instantiation).
+ -- A generic formal package is an instance, and can be used as
+ -- an actual for an inner instance. Mark its generic parent.
+
+ Set_Ekind (Formal, E_Package);
+ Set_Generic_Parent (Specification (N), Gen_Unit);
+ Set_Has_Completion (Formal, True);
+ end if;
+ end Analyze_Formal_Package;
+
+ ---------------------------------
+ -- Analyze_Formal_Private_Type --
+ ---------------------------------
+
+ procedure Analyze_Formal_Private_Type
+ (N : Node_Id;
+ T : Entity_Id;
+ Def : Node_Id)
+ is
+ begin
+ New_Private_Type (N, T, Def);
+
+ -- Set the size to an arbitrary but legal value.
+
+ Set_Size_Info (T, Standard_Integer);
+ Set_RM_Size (T, RM_Size (Standard_Integer));
+ end Analyze_Formal_Private_Type;
+
+ ----------------------------------------
+ -- Analyze_Formal_Signed_Integer_Type --
+ ----------------------------------------
+
+ procedure Analyze_Formal_Signed_Integer_Type
+ (T : Entity_Id;
+ Def : Node_Id)
+ is
+ Base : constant Entity_Id :=
+ New_Internal_Entity
+ (E_Signed_Integer_Type, Current_Scope, Sloc (Def), 'G');
+
+ begin
+ Enter_Name (T);
+
+ Set_Ekind (T, E_Signed_Integer_Subtype);
+ Set_Etype (T, Base);
+ Set_Size_Info (T, Standard_Integer);
+ Set_RM_Size (T, RM_Size (Standard_Integer));
+ Set_Scalar_Range (T, Scalar_Range (Standard_Integer));
+
+ Set_Is_Generic_Type (Base);
+ Set_Size_Info (Base, Standard_Integer);
+ Set_RM_Size (Base, RM_Size (Standard_Integer));
+ Set_Etype (Base, Base);
+ Set_Scalar_Range (Base, Scalar_Range (Standard_Integer));
+ Set_Parent (Base, Parent (Def));
+ end Analyze_Formal_Signed_Integer_Type;
+
+ -------------------------------
+ -- Analyze_Formal_Subprogram --
+ -------------------------------
+
+ procedure Analyze_Formal_Subprogram (N : Node_Id) is
+ Spec : constant Node_Id := Specification (N);
+ Def : constant Node_Id := Default_Name (N);
+ Nam : constant Entity_Id := Defining_Unit_Name (Spec);
+ Subp : Entity_Id;
+
+ begin
+ if Nkind (Nam) = N_Defining_Program_Unit_Name then
+ Error_Msg_N ("name of formal subprogram must be a direct name", Nam);
+ return;
+ end if;
+
+ Analyze_Subprogram_Declaration (N);
+ Set_Is_Formal_Subprogram (Nam);
+ Set_Has_Completion (Nam);
+
+ -- Default name is resolved at the point of instantiation
+
+ if Box_Present (N) then
+ null;
+
+ -- Else default is bound at the point of generic declaration
+
+ elsif Present (Def) then
+ if Nkind (Def) = N_Operator_Symbol then
+ Find_Direct_Name (Def);
+
+ elsif Nkind (Def) /= N_Attribute_Reference then
+ Analyze (Def);
+
+ else
+ -- For an attribute reference, analyze the prefix and verify
+ -- that it has the proper profile for the subprogram.
+
+ Analyze (Prefix (Def));
+ Valid_Default_Attribute (Nam, Def);
+ return;
+ end if;
+
+ -- Default name may be overloaded, in which case the interpretation
+ -- with the correct profile must be selected, as for a renaming.
+
+ if Etype (Def) = Any_Type then
+ return;
+
+ elsif Nkind (Def) = N_Selected_Component then
+ Subp := Entity (Selector_Name (Def));
+
+ if Ekind (Subp) /= E_Entry then
+ Error_Msg_N ("expect valid subprogram name as default", Def);
+ return;
+ end if;
+
+ elsif Nkind (Def) = N_Indexed_Component then
+
+ if Nkind (Prefix (Def)) /= N_Selected_Component then
+ Error_Msg_N ("expect valid subprogram name as default", Def);
+ return;
+
+ else
+ Subp := Entity (Selector_Name (Prefix (Def)));
+
+ if Ekind (Subp) /= E_Entry_Family then
+ Error_Msg_N ("expect valid subprogram name as default", Def);
+ return;
+ end if;
+ end if;
+
+ elsif Nkind (Def) = N_Character_Literal then
+
+ -- Needs some type checks: subprogram should be parameterless???
+
+ Resolve (Def, (Etype (Nam)));
+
+ elsif (not Is_Entity_Name (Def)
+ or else not Is_Overloadable (Entity (Def)))
+ then
+ Error_Msg_N ("expect valid subprogram name as default", Def);
+ return;
+
+ elsif not Is_Overloaded (Def) then
+ Subp := Entity (Def);
+
+ if Subp = Nam then
+ Error_Msg_N ("premature usage of formal subprogram", Def);
+
+ elsif not Entity_Matches_Spec (Subp, Nam) then
+ Error_Msg_N ("no visible entity matches specification", Def);
+ end if;
+
+ else
+ declare
+ I : Interp_Index;
+ I1 : Interp_Index := 0;
+ It : Interp;
+ It1 : Interp;
+
+ begin
+ Subp := Any_Id;
+ Get_First_Interp (Def, I, It);
+ while Present (It.Nam) loop
+
+ if Entity_Matches_Spec (It.Nam, Nam) then
+ if Subp /= Any_Id then
+ It1 := Disambiguate (Def, I1, I, Etype (Subp));
+
+ if It1 = No_Interp then
+ Error_Msg_N ("ambiguous default subprogram", Def);
+ else
+ Subp := It1.Nam;
+ end if;
+
+ exit;
+
+ else
+ I1 := I;
+ Subp := It.Nam;
+ end if;
+ end if;
+
+ Get_Next_Interp (I, It);
+ end loop;
+ end;
+
+ if Subp /= Any_Id then
+ Set_Entity (Def, Subp);
+
+ if Subp = Nam then
+ Error_Msg_N ("premature usage of formal subprogram", Def);
+
+ elsif Ekind (Subp) /= E_Operator then
+ Check_Mode_Conformant (Subp, Nam);
+ end if;
+
+ else
+ Error_Msg_N ("no visible subprogram matches specification", N);
+ end if;
+ end if;
+ end if;
+ end Analyze_Formal_Subprogram;
+
+ -------------------------------------
+ -- Analyze_Formal_Type_Declaration --
+ -------------------------------------
+
+ procedure Analyze_Formal_Type_Declaration (N : Node_Id) is
+ Def : constant Node_Id := Formal_Type_Definition (N);
+ T : Entity_Id;
+
+ begin
+ T := Defining_Identifier (N);
+
+ if Present (Discriminant_Specifications (N))
+ and then Nkind (Def) /= N_Formal_Private_Type_Definition
+ then
+ Error_Msg_N
+ ("discriminants not allowed for this formal type",
+ Defining_Identifier (First (Discriminant_Specifications (N))));
+ end if;
+
+ -- Enter the new name, and branch to specific routine.
+
+ case Nkind (Def) is
+ when N_Formal_Private_Type_Definition
+ => Analyze_Formal_Private_Type (N, T, Def);
+
+ when N_Formal_Derived_Type_Definition
+ => Analyze_Formal_Derived_Type (N, T, Def);
+
+ when N_Formal_Discrete_Type_Definition
+ => Analyze_Formal_Discrete_Type (T, Def);
+
+ when N_Formal_Signed_Integer_Type_Definition
+ => Analyze_Formal_Signed_Integer_Type (T, Def);
+
+ when N_Formal_Modular_Type_Definition
+ => Analyze_Formal_Modular_Type (T, Def);
+
+ when N_Formal_Floating_Point_Definition
+ => Analyze_Formal_Floating_Type (T, Def);
+
+ when N_Formal_Ordinary_Fixed_Point_Definition
+ => Analyze_Formal_Ordinary_Fixed_Point_Type (T, Def);
+
+ when N_Formal_Decimal_Fixed_Point_Definition
+ => Analyze_Formal_Decimal_Fixed_Point_Type (T, Def);
+
+ when N_Array_Type_Definition
+ => Analyze_Formal_Array_Type (T, Def);
+
+ when N_Access_To_Object_Definition |
+ N_Access_Function_Definition |
+ N_Access_Procedure_Definition
+ => Analyze_Generic_Access_Type (T, Def);
+
+ when others =>
+ raise Program_Error;
+
+ end case;
+
+ Set_Is_Generic_Type (T);
+
+ end Analyze_Formal_Type_Declaration;
+
+ ------------------------------------
+ -- Analyze_Function_Instantiation --
+ ------------------------------------
+
+ procedure Analyze_Function_Instantiation (N : Node_Id) is
+ begin
+ Analyze_Subprogram_Instantiation (N, E_Function);
+ end Analyze_Function_Instantiation;
+
+ ---------------------------------
+ -- Analyze_Generic_Access_Type --
+ ---------------------------------
+
+ procedure Analyze_Generic_Access_Type (T : Entity_Id; Def : Node_Id) is
+ begin
+ Enter_Name (T);
+
+ if Nkind (Def) = N_Access_To_Object_Definition then
+ Access_Type_Declaration (T, Def);
+
+ if Is_Incomplete_Or_Private_Type (Designated_Type (T))
+ and then No (Full_View (Designated_Type (T)))
+ and then not Is_Generic_Type (Designated_Type (T))
+ then
+ Error_Msg_N ("premature usage of incomplete type", Def);
+
+ elsif Is_Internal (Designated_Type (T)) then
+ Error_Msg_N
+ ("only a subtype mark is allowed in a formal", Def);
+ end if;
+
+ else
+ Access_Subprogram_Declaration (T, Def);
+ end if;
+ end Analyze_Generic_Access_Type;
+
+ ---------------------------------
+ -- Analyze_Generic_Formal_Part --
+ ---------------------------------
+
+ procedure Analyze_Generic_Formal_Part (N : Node_Id) is
+ Gen_Parm_Decl : Node_Id;
+
+ begin
+ -- The generic formals are processed in the scope of the generic
+ -- unit, where they are immediately visible. The scope is installed
+ -- by the caller.
+
+ Gen_Parm_Decl := First (Generic_Formal_Declarations (N));
+
+ while Present (Gen_Parm_Decl) loop
+ Analyze (Gen_Parm_Decl);
+ Next (Gen_Parm_Decl);
+ end loop;
+ end Analyze_Generic_Formal_Part;
+
+ ------------------------------------------
+ -- Analyze_Generic_Package_Declaration --
+ ------------------------------------------
+
+ procedure Analyze_Generic_Package_Declaration (N : Node_Id) is
+ Id : Entity_Id;
+ New_N : Node_Id;
+ Save_Parent : Node_Id;
+
+ begin
+ -- Create copy of generic unit, and save for instantiation.
+ -- If the unit is a child unit, do not copy the specifications
+ -- for the parent, which are not part of the generic tree.
+
+ Save_Parent := Parent_Spec (N);
+ Set_Parent_Spec (N, Empty);
+
+ New_N := Copy_Generic_Node (N, Empty, Instantiating => False);
+ Set_Parent_Spec (New_N, Save_Parent);
+ Rewrite (N, New_N);
+ Id := Defining_Entity (N);
+ Generate_Definition (Id);
+
+ -- Expansion is not applied to generic units.
+
+ Start_Generic;
+
+ Enter_Name (Id);
+ Set_Ekind (Id, E_Generic_Package);
+ Set_Etype (Id, Standard_Void_Type);
+ New_Scope (Id);
+ Enter_Generic_Scope (Id);
+ Set_Inner_Instances (Id, New_Elmt_List);
+
+ Set_Categorization_From_Pragmas (N);
+ Set_Is_Pure (Id, Is_Pure (Current_Scope));
+
+ -- For a library unit, we have reconstructed the entity for the
+ -- unit, and must reset it in the library tables.
+
+ if Nkind (Parent (N)) = N_Compilation_Unit then
+ Set_Cunit_Entity (Current_Sem_Unit, Id);
+ end if;
+
+ Analyze_Generic_Formal_Part (N);
+
+ -- After processing the generic formals, analysis proceeds
+ -- as for a non-generic package.
+
+ Analyze (Specification (N));
+
+ Validate_Categorization_Dependency (N, Id);
+
+ End_Generic;
+
+ End_Package_Scope (Id);
+ Exit_Generic_Scope (Id);
+
+ if Nkind (Parent (N)) /= N_Compilation_Unit then
+ Move_Freeze_Nodes (Id, N, Visible_Declarations (Specification (N)));
+ Move_Freeze_Nodes (Id, N, Private_Declarations (Specification (N)));
+ Move_Freeze_Nodes (Id, N, Generic_Formal_Declarations (N));
+
+ else
+ Set_Body_Required (Parent (N), Unit_Requires_Body (Id));
+ Validate_RT_RAT_Component (N);
+ end if;
+
+ end Analyze_Generic_Package_Declaration;
+
+ --------------------------------------------
+ -- Analyze_Generic_Subprogram_Declaration --
+ --------------------------------------------
+
+ procedure Analyze_Generic_Subprogram_Declaration (N : Node_Id) is
+ Spec : Node_Id;
+ Id : Entity_Id;
+ Formals : List_Id;
+ New_N : Node_Id;
+ Save_Parent : Node_Id;
+
+ begin
+ -- Create copy of generic unit,and save for instantiation.
+ -- If the unit is a child unit, do not copy the specifications
+ -- for the parent, which are not part of the generic tree.
+
+ Save_Parent := Parent_Spec (N);
+ Set_Parent_Spec (N, Empty);
+
+ New_N := Copy_Generic_Node (N, Empty, Instantiating => False);
+ Set_Parent_Spec (New_N, Save_Parent);
+ Rewrite (N, New_N);
+
+ Spec := Specification (N);
+ Id := Defining_Entity (Spec);
+ Generate_Definition (Id);
+
+ if Nkind (Id) = N_Defining_Operator_Symbol then
+ Error_Msg_N
+ ("operator symbol not allowed for generic subprogram", Id);
+ end if;
+
+ Start_Generic;
+
+ Enter_Name (Id);
+
+ New_Scope (Id);
+ Set_Inner_Instances (Id, New_Elmt_List);
+ Set_Is_Pure (Id, Is_Pure (Current_Scope));
+
+ Analyze_Generic_Formal_Part (N);
+
+ Formals := Parameter_Specifications (Spec);
+
+ if Present (Formals) then
+ Process_Formals (Id, Formals, Spec);
+ end if;
+
+ if Nkind (Spec) = N_Function_Specification then
+ Set_Ekind (Id, E_Generic_Function);
+ Find_Type (Subtype_Mark (Spec));
+ Set_Etype (Id, Entity (Subtype_Mark (Spec)));
+ else
+ Set_Ekind (Id, E_Generic_Procedure);
+ Set_Etype (Id, Standard_Void_Type);
+ end if;
+
+ -- For a library unit, we have reconstructed the entity for the
+ -- unit, and must reset it in the library tables. We also need
+ -- to make sure that Body_Required is set properly in the original
+ -- compilation unit node.
+
+ if Nkind (Parent (N)) = N_Compilation_Unit then
+ Set_Cunit_Entity (Current_Sem_Unit, Id);
+ Set_Body_Required (Parent (N), Unit_Requires_Body (Id));
+ end if;
+
+ Set_Categorization_From_Pragmas (N);
+ Validate_Categorization_Dependency (N, Id);
+
+ Save_Global_References (Original_Node (N));
+
+ End_Generic;
+ End_Scope;
+
+ end Analyze_Generic_Subprogram_Declaration;
+
+ -----------------------------------
+ -- Analyze_Package_Instantiation --
+ -----------------------------------
+
+ -- Note: this procedure is also used for formal package declarations,
+ -- in which case the argument N is an N_Formal_Package_Declaration
+ -- node. This should really be noted in the spec! ???
+
+ procedure Analyze_Package_Instantiation (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Gen_Id : constant Node_Id := Name (N);
+
+ Act_Decl : Node_Id;
+ Act_Decl_Name : Node_Id;
+ Act_Decl_Id : Entity_Id;
+ Act_Spec : Node_Id;
+ Act_Tree : Node_Id;
+
+ Gen_Decl : Node_Id;
+ Gen_Unit : Entity_Id;
+
+ Is_Actual_Pack : Boolean := Is_Internal (Defining_Entity (N));
+ Parent_Installed : Boolean := False;
+ Renaming_List : List_Id;
+ Unit_Renaming : Node_Id;
+ Needs_Body : Boolean;
+ Inline_Now : Boolean := False;
+
+ procedure Delay_Descriptors (E : Entity_Id);
+ -- Delay generation of subprogram descriptors for given entity
+
+ function Might_Inline_Subp return Boolean;
+ -- If inlining is active and the generic contains inlined subprograms,
+ -- we instantiate the body. This may cause superfluous instantiations,
+ -- but it is simpler than detecting the need for the body at the point
+ -- of inlining, when the context of the instance is not available.
+
+ -----------------------
+ -- Delay_Descriptors --
+ -----------------------
+
+ procedure Delay_Descriptors (E : Entity_Id) is
+ begin
+ if not Delay_Subprogram_Descriptors (E) then
+ Set_Delay_Subprogram_Descriptors (E);
+ Pending_Descriptor.Increment_Last;
+ Pending_Descriptor.Table (Pending_Descriptor.Last) := E;
+ end if;
+ end Delay_Descriptors;
+
+ -----------------------
+ -- Might_Inline_Subp --
+ -----------------------
+
+ function Might_Inline_Subp return Boolean is
+ E : Entity_Id;
+
+ begin
+ if not Inline_Processing_Required then
+ return False;
+
+ else
+ E := First_Entity (Gen_Unit);
+
+ while Present (E) loop
+
+ if Is_Subprogram (E)
+ and then Is_Inlined (E)
+ then
+ return True;
+ end if;
+
+ Next_Entity (E);
+ end loop;
+ end if;
+
+ return False;
+ end Might_Inline_Subp;
+
+ -- Start of processing for Analyze_Package_Instantiation
+
+ begin
+ -- Very first thing: apply the special kludge for Text_IO processing
+ -- in case we are instantiating one of the children of [Wide_]Text_IO.
+
+ Text_IO_Kludge (Name (N));
+
+ -- Make node global for error reporting.
+
+ Instantiation_Node := N;
+
+ -- Case of instantiation of a generic package
+
+ if Nkind (N) = N_Package_Instantiation then
+ Act_Decl_Id := New_Copy (Defining_Entity (N));
+ Set_Comes_From_Source (Act_Decl_Id, True);
+
+ if Nkind (Defining_Unit_Name (N)) = N_Defining_Program_Unit_Name then
+ Act_Decl_Name :=
+ Make_Defining_Program_Unit_Name (Loc,
+ Name => New_Copy_Tree (Name (Defining_Unit_Name (N))),
+ Defining_Identifier => Act_Decl_Id);
+ else
+ Act_Decl_Name := Act_Decl_Id;
+ end if;
+
+ -- Case of instantiation of a formal package
+
+ else
+ Act_Decl_Id := Defining_Identifier (N);
+ Act_Decl_Name := Act_Decl_Id;
+ end if;
+
+ Generate_Definition (Act_Decl_Id);
+ Pre_Analyze_Actuals (N);
+
+ Check_Generic_Child_Unit (Gen_Id, Parent_Installed);
+ Gen_Unit := Entity (Gen_Id);
+
+ -- Verify that it is the name of a generic package
+
+ if Etype (Gen_Unit) = Any_Type then
+ return;
+
+ elsif Ekind (Gen_Unit) /= E_Generic_Package then
+ Error_Msg_N
+ ("expect name of generic package in instantiation", Gen_Id);
+ return;
+ end if;
+
+ if In_Extended_Main_Source_Unit (N) then
+ Set_Is_Instantiated (Gen_Unit);
+ Generate_Reference (Gen_Unit, N);
+
+ if Present (Renamed_Object (Gen_Unit)) then
+ Set_Is_Instantiated (Renamed_Object (Gen_Unit));
+ Generate_Reference (Renamed_Object (Gen_Unit), N);
+ end if;
+ end if;
+
+ if Nkind (Gen_Id) = N_Identifier
+ and then Chars (Gen_Unit) = Chars (Defining_Entity (N))
+ then
+ Error_Msg_NE
+ ("& is hidden within declaration of instance", Gen_Id, Gen_Unit);
+
+ elsif Nkind (Gen_Id) = N_Expanded_Name
+ and then Is_Child_Unit (Gen_Unit)
+ and then Nkind (Prefix (Gen_Id)) = N_Identifier
+ and then Chars (Act_Decl_Id) = Chars (Prefix (Gen_Id))
+ then
+ Error_Msg_N
+ ("& is hidden within declaration of instance ", Prefix (Gen_Id));
+ end if;
+
+ -- If renaming, indicate this is an instantiation of renamed unit.
+
+ if Present (Renamed_Object (Gen_Unit))
+ and then Ekind (Renamed_Object (Gen_Unit)) = E_Generic_Package
+ then
+ Gen_Unit := Renamed_Object (Gen_Unit);
+ Set_Entity (Gen_Id, Gen_Unit);
+ end if;
+
+ -- Verify that there are no circular instantiations.
+
+ if In_Open_Scopes (Gen_Unit) then
+ Error_Msg_NE ("instantiation of & within itself", N, Gen_Unit);
+ return;
+
+ elsif Contains_Instance_Of (Gen_Unit, Current_Scope, Gen_Id) then
+ Error_Msg_Node_2 := Current_Scope;
+ Error_Msg_NE
+ ("circular Instantiation: & instantiated in &!", N, Gen_Unit);
+ Circularity_Detected := True;
+ return;
+
+ else
+ Save_Env (Gen_Unit, Act_Decl_Id);
+ Gen_Decl := Unit_Declaration_Node (Gen_Unit);
+
+ -- Initialize renamings map, for error checking, and the list
+ -- that holds private entities whose views have changed between
+ -- generic definition and instantiation. If this is the instance
+ -- created to validate an actual package, the instantiation
+ -- environment is that of the enclosing instance.
+
+ Generic_Renamings.Set_Last (0);
+ Generic_Renamings_HTable.Reset;
+
+ Create_Instantiation_Source (N, Gen_Unit, S_Adjustment);
+
+ -- Copy original generic tree, to produce text for instantiation.
+
+ Act_Tree :=
+ Copy_Generic_Node
+ (Original_Node (Gen_Decl), Empty, Instantiating => True);
+
+ Act_Spec := Specification (Act_Tree);
+
+ -- If this is the instance created to validate an actual package,
+ -- only the formals matter, do not examine the package spec itself.
+
+ if Is_Actual_Pack then
+ Set_Visible_Declarations (Act_Spec, New_List);
+ Set_Private_Declarations (Act_Spec, New_List);
+ end if;
+
+ Renaming_List :=
+ Analyze_Associations
+ (N,
+ Generic_Formal_Declarations (Act_Tree),
+ Generic_Formal_Declarations (Gen_Decl));
+
+ Set_Defining_Unit_Name (Act_Spec, Act_Decl_Name);
+ Set_Is_Generic_Instance (Act_Decl_Id);
+
+ Set_Generic_Parent (Act_Spec, Gen_Unit);
+
+ -- References to the generic in its own declaration or its body
+ -- are references to the instance. Add a renaming declaration for
+ -- the generic unit itself. This declaration, as well as the renaming
+ -- declarations for the generic formals, must remain private to the
+ -- unit: the formals, because this is the language semantics, and
+ -- the unit because its use is an artifact of the implementation.
+
+ Unit_Renaming :=
+ Make_Package_Renaming_Declaration (Loc,
+ Defining_Unit_Name =>
+ Make_Defining_Identifier (Loc, Chars (Gen_Unit)),
+ Name => New_Reference_To (Act_Decl_Id, Loc));
+
+ Append (Unit_Renaming, Renaming_List);
+
+ -- The renaming declarations are the first local declarations of
+ -- the new unit.
+
+ if Is_Non_Empty_List (Visible_Declarations (Act_Spec)) then
+ Insert_List_Before
+ (First (Visible_Declarations (Act_Spec)), Renaming_List);
+ else
+ Set_Visible_Declarations (Act_Spec, Renaming_List);
+ end if;
+
+ Act_Decl :=
+ Make_Package_Declaration (Loc,
+ Specification => Act_Spec);
+
+ -- Save the instantiation node, for subsequent instantiation
+ -- of the body, if there is one and we are generating code for
+ -- the current unit. Mark the unit as having a body, to avoid
+ -- a premature error message.
+
+ -- We instantiate the body if we are generating code, if we are
+ -- generating cross-reference information, or if we are building
+ -- trees for ASIS use.
+
+ declare
+ Enclosing_Body_Present : Boolean := False;
+ Scop : Entity_Id;
+
+ begin
+ if Scope (Gen_Unit) /= Standard_Standard
+ and then not Is_Child_Unit (Gen_Unit)
+ then
+ Scop := Scope (Gen_Unit);
+
+ while Present (Scop)
+ and then Scop /= Standard_Standard
+ loop
+ if Unit_Requires_Body (Scop) then
+ Enclosing_Body_Present := True;
+ exit;
+ end if;
+
+ Scop := Scope (Scop);
+ end loop;
+ end if;
+
+ -- If front-end inlining is enabled, and this is a unit for which
+ -- code will be generated, we instantiate the body at once.
+ -- This is done if the instance is not the main unit, and if the
+ -- generic is not a child unit, to avoid scope problems.
+
+ if Front_End_Inlining
+ and then Expander_Active
+ and then not Is_Child_Unit (Gen_Unit)
+ and then Is_In_Main_Unit (N)
+ and then Nkind (Parent (N)) /= N_Compilation_Unit
+ and then Might_Inline_Subp
+ then
+ Inline_Now := True;
+ end if;
+
+ Needs_Body :=
+ (Unit_Requires_Body (Gen_Unit)
+ or else Enclosing_Body_Present
+ or else Present (Corresponding_Body (Gen_Decl)))
+ and then (Is_In_Main_Unit (N)
+ or else Might_Inline_Subp)
+ and then not Is_Actual_Pack
+ and then not Inline_Now
+
+ and then (Operating_Mode = Generate_Code
+ or else (Operating_Mode = Check_Semantics
+ and then Tree_Output));
+
+ -- If front_end_inlining is enabled, do not instantiate a
+ -- body if within a generic context.
+
+ if Front_End_Inlining
+ and then not Expander_Active
+ then
+ Needs_Body := False;
+ end if;
+
+ end;
+
+ -- If we are generating the calling stubs from the instantiation
+ -- of a generic RCI package, we will not use the body of the
+ -- generic package.
+
+ if Distribution_Stub_Mode = Generate_Caller_Stub_Body
+ and then Is_Compilation_Unit (Defining_Entity (N))
+ then
+ Needs_Body := False;
+ end if;
+
+ if Needs_Body then
+
+ -- Here is a defence against a ludicrous number of instantiations
+ -- caused by a circular set of instantiation attempts.
+
+ if Pending_Instantiations.Last >
+ Hostparm.Max_Instantiations
+ then
+ Error_Msg_N ("too many instantiations", N);
+ raise Unrecoverable_Error;
+ end if;
+
+ -- Indicate that the enclosing scopes contain an instantiation,
+ -- and that cleanup actions should be delayed until after the
+ -- instance body is expanded.
+
+ Check_Forward_Instantiation (N, Gen_Decl);
+ if Nkind (N) = N_Package_Instantiation then
+ declare
+ Enclosing_Master : Entity_Id := Current_Scope;
+
+ begin
+ while Enclosing_Master /= Standard_Standard loop
+
+ if Ekind (Enclosing_Master) = E_Package then
+ if Is_Compilation_Unit (Enclosing_Master) then
+ if In_Package_Body (Enclosing_Master) then
+ Delay_Descriptors
+ (Body_Entity (Enclosing_Master));
+ else
+ Delay_Descriptors
+ (Enclosing_Master);
+ end if;
+
+ exit;
+
+ else
+ Enclosing_Master := Scope (Enclosing_Master);
+ end if;
+
+ elsif Ekind (Enclosing_Master) = E_Generic_Package then
+ Enclosing_Master := Scope (Enclosing_Master);
+
+ elsif Ekind (Enclosing_Master) = E_Generic_Function
+ or else Ekind (Enclosing_Master) = E_Generic_Procedure
+ or else Ekind (Enclosing_Master) = E_Void
+ then
+ -- Cleanup actions will eventually be performed on
+ -- the enclosing instance, if any. enclosing scope
+ -- is void in the formal part of a generic subp.
+
+ exit;
+
+ else
+ if Ekind (Enclosing_Master) = E_Entry
+ and then
+ Ekind (Scope (Enclosing_Master)) = E_Protected_Type
+ then
+ Enclosing_Master :=
+ Protected_Body_Subprogram (Enclosing_Master);
+ end if;
+
+ Set_Delay_Cleanups (Enclosing_Master);
+
+ while Ekind (Enclosing_Master) = E_Block loop
+ Enclosing_Master := Scope (Enclosing_Master);
+ end loop;
+
+ if Is_Subprogram (Enclosing_Master) then
+ Delay_Descriptors (Enclosing_Master);
+
+ elsif Is_Task_Type (Enclosing_Master) then
+ declare
+ TBP : constant Node_Id :=
+ Get_Task_Body_Procedure
+ (Enclosing_Master);
+
+ begin
+ if Present (TBP) then
+ Delay_Descriptors (TBP);
+ Set_Delay_Cleanups (TBP);
+ end if;
+ end;
+ end if;
+
+ exit;
+ end if;
+ end loop;
+ end;
+
+ -- Make entry in table
+
+ Pending_Instantiations.Increment_Last;
+ Pending_Instantiations.Table (Pending_Instantiations.Last) :=
+ (N, Act_Decl, Expander_Active, Current_Sem_Unit);
+ end if;
+ end if;
+
+ Set_Categorization_From_Pragmas (Act_Decl);
+
+ if Parent_Installed then
+ Hide_Current_Scope;
+ end if;
+
+ Set_Instance_Spec (N, Act_Decl);
+
+ -- Case of not a compilation unit
+
+ if Nkind (Parent (N)) /= N_Compilation_Unit then
+ Mark_Rewrite_Insertion (Act_Decl);
+ Insert_Before (N, Act_Decl);
+ Analyze (Act_Decl);
+
+ -- Case of compilation unit that is generic instantiation
+
+ -- Place declaration on current node so context is complete
+ -- for analysis (including nested instantiations).
+
+ else
+ if Cunit_Entity (Current_Sem_Unit) = Defining_Entity (N) then
+
+ -- The entity for the current unit is the newly created one,
+ -- and all semantic information is attached to it.
+
+ Set_Cunit_Entity (Current_Sem_Unit, Act_Decl_Id);
+
+ -- If this is the main unit, replace the main entity as well.
+
+ if Current_Sem_Unit = Main_Unit then
+ Main_Unit_Entity := Act_Decl_Id;
+ end if;
+ end if;
+
+ Set_Unit (Parent (N), Act_Decl);
+ Set_Parent_Spec (Act_Decl, Parent_Spec (N));
+ Analyze (Act_Decl);
+ Set_Unit (Parent (N), N);
+ Set_Body_Required (Parent (N), False);
+
+ -- We never need elaboration checks on instantiations, since
+ -- by definition, the body instantiation is elaborated at the
+ -- same time as the spec instantiation.
+
+ Set_Suppress_Elaboration_Warnings (Act_Decl_Id);
+ Set_Suppress_Elaboration_Checks (Act_Decl_Id);
+ end if;
+
+ Check_Elab_Instantiation (N);
+
+ if ABE_Is_Certain (N) and then Needs_Body then
+ Pending_Instantiations.Decrement_Last;
+ end if;
+ Check_Hidden_Child_Unit (N, Gen_Unit, Act_Decl_Id);
+
+ Set_First_Private_Entity (Defining_Unit_Name (Unit_Renaming),
+ First_Private_Entity (Act_Decl_Id));
+
+ if Nkind (Parent (N)) = N_Compilation_Unit
+ and then not Needs_Body
+ then
+ Rewrite (N, Act_Decl);
+ end if;
+
+ if Present (Corresponding_Body (Gen_Decl))
+ or else Unit_Requires_Body (Gen_Unit)
+ then
+ Set_Has_Completion (Act_Decl_Id);
+ end if;
+
+ Check_Formal_Packages (Act_Decl_Id);
+
+ Restore_Private_Views (Act_Decl_Id);
+
+ if not Generic_Separately_Compiled (Gen_Unit) then
+ Inherit_Context (Gen_Decl, N);
+ end if;
+
+ if Parent_Installed then
+ Remove_Parent;
+ end if;
+
+ Restore_Env;
+ end if;
+
+ Validate_Categorization_Dependency (N, Act_Decl_Id);
+
+ -- Check restriction, but skip this if something went wrong in
+ -- the above analysis, indicated by Act_Decl_Id being void.
+
+ if Ekind (Act_Decl_Id) /= E_Void
+ and then not Is_Library_Level_Entity (Act_Decl_Id)
+ then
+ Check_Restriction (No_Local_Allocators, N);
+ end if;
+
+ if Inline_Now then
+ Inline_Instance_Body (N, Gen_Unit, Act_Decl);
+ end if;
+
+ exception
+ when Instantiation_Error =>
+ if Parent_Installed then
+ Remove_Parent;
+ end if;
+
+ end Analyze_Package_Instantiation;
+
+ ---------------------------
+ -- Inline_Instance_Body --
+ ---------------------------
+
+ procedure Inline_Instance_Body
+ (N : Node_Id;
+ Gen_Unit : Entity_Id;
+ Act_Decl : Node_Id)
+ is
+ Vis : Boolean;
+ Gen_Comp : constant Entity_Id :=
+ Cunit_Entity (Get_Source_Unit (Gen_Unit));
+ Curr_Comp : constant Node_Id := Cunit (Current_Sem_Unit);
+ Curr_Scope : Entity_Id := Empty;
+ Curr_Unit : constant Entity_Id :=
+ Cunit_Entity (Current_Sem_Unit);
+ Removed : Boolean := False;
+ Num_Scopes : Int := 0;
+ Use_Clauses : array (1 .. Scope_Stack.Last) of Node_Id;
+ Instances : array (1 .. Scope_Stack.Last) of Entity_Id;
+ Inner_Scopes : array (1 .. Scope_Stack.Last) of Entity_Id;
+ Num_Inner : Int := 0;
+ N_Instances : Int := 0;
+ S : Entity_Id;
+
+ begin
+ -- Case of generic unit defined in another unit
+
+ if Gen_Comp /= Cunit_Entity (Current_Sem_Unit) then
+ Vis := Is_Immediately_Visible (Gen_Comp);
+
+ S := Current_Scope;
+
+ while Present (S)
+ and then S /= Standard_Standard
+ loop
+ Num_Scopes := Num_Scopes + 1;
+
+ Use_Clauses (Num_Scopes) :=
+ (Scope_Stack.Table
+ (Scope_Stack.Last - Num_Scopes + 1).
+ First_Use_Clause);
+ End_Use_Clauses (Use_Clauses (Num_Scopes));
+
+ exit when Is_Generic_Instance (S)
+ and then (In_Package_Body (S)
+ or else Ekind (S) = E_Procedure
+ or else Ekind (S) = E_Function);
+ S := Scope (S);
+ end loop;
+
+ -- Find and save all enclosing instances.
+
+ S := Current_Scope;
+
+ while Present (S)
+ and then S /= Standard_Standard
+ loop
+ if Is_Generic_Instance (S) then
+ N_Instances := N_Instances + 1;
+ Instances (N_Instances) := S;
+ end if;
+
+ S := Scope (S);
+ end loop;
+
+ -- Remove context of current compilation unit, unless we
+ -- are within a nested package instantiation, in which case
+ -- the context has been removed previously.
+ -- If current scope is the body of a child unit, remove context
+ -- of spec as well.
+
+ S := Current_Scope;
+
+ while Present (S)
+ and then S /= Standard_Standard
+ loop
+ exit when Is_Generic_Instance (S)
+ and then In_Package_Body (S);
+
+ if S = Curr_Unit
+ or else (Ekind (Curr_Unit) = E_Package_Body
+ and then S = Spec_Entity (Curr_Unit))
+ then
+ Removed := True;
+
+ if Is_Child_Unit (S) then
+ -- Remove child unit from stack, as well as inner scopes.
+ -- Removing its context of child unit will remove parent
+ -- units as well.
+
+ while Current_Scope /= S loop
+ Num_Inner := Num_Inner + 1;
+ Inner_Scopes (Num_Inner) := Current_Scope;
+ Pop_Scope;
+ end loop;
+
+ Pop_Scope;
+ Remove_Context (Curr_Comp);
+ Curr_Scope := S;
+
+ else
+ Remove_Context (Curr_Comp);
+ end if;
+
+ if Ekind (Curr_Unit) = E_Package_Body then
+ Remove_Context (Library_Unit (Curr_Comp));
+ end if;
+ end if;
+
+ S := Scope (S);
+ end loop;
+
+ Instantiate_Package_Body
+ ((N, Act_Decl, Expander_Active, Current_Sem_Unit));
+
+ -- Restore context.
+
+ Set_Is_Immediately_Visible (Gen_Comp, Vis);
+
+ -- Reset Generic_Instance flag so that use clauses can be installed
+ -- in the proper order. (See Use_One_Package for effect of enclosing
+ -- instances on processing of use clauses).
+
+ for J in 1 .. N_Instances loop
+ Set_Is_Generic_Instance (Instances (J), False);
+ end loop;
+
+ if Removed then
+ -- Make local entities not visible, so that when the context of
+ -- unit is restored, there are not spurious hidings of use-
+ -- visible entities (which appear in the environment before the
+ -- current scope).
+
+ if Current_Scope /= Standard_Standard then
+ S := First_Entity (Current_Scope);
+
+ while Present (S) loop
+ if Is_Overloadable (S) then
+ Set_Is_Immediately_Visible (S, False);
+ end if;
+
+ Next_Entity (S);
+ end loop;
+ end if;
+
+ Install_Context (Curr_Comp);
+
+ if Current_Scope /= Standard_Standard then
+ S := First_Entity (Current_Scope);
+
+ while Present (S) loop
+ if Is_Overloadable (S) then
+ Set_Is_Immediately_Visible (S);
+ end if;
+
+ Next_Entity (S);
+ end loop;
+ end if;
+
+ if Present (Curr_Scope)
+ and then Is_Child_Unit (Curr_Scope)
+ then
+ New_Scope (Curr_Scope);
+ Set_Is_Immediately_Visible (Curr_Scope);
+
+ -- Finally, restore inner scopes as well.
+
+ for J in reverse 1 .. Num_Inner loop
+ New_Scope (Inner_Scopes (J));
+ end loop;
+ end if;
+ end if;
+
+ for J in reverse 1 .. Num_Scopes loop
+ Install_Use_Clauses (Use_Clauses (J));
+ end loop;
+
+ for J in 1 .. N_Instances loop
+ Set_Is_Generic_Instance (Instances (J), True);
+ end loop;
+
+ -- If generic unit is in current unit, current context is correct.
+
+ else
+ Instantiate_Package_Body
+ ((N, Act_Decl, Expander_Active, Current_Sem_Unit));
+ end if;
+ end Inline_Instance_Body;
+
+ -------------------------------------
+ -- Analyze_Procedure_Instantiation --
+ -------------------------------------
+
+ procedure Analyze_Procedure_Instantiation (N : Node_Id) is
+ begin
+ Analyze_Subprogram_Instantiation (N, E_Procedure);
+ end Analyze_Procedure_Instantiation;
+
+ --------------------------------------
+ -- Analyze_Subprogram_Instantiation --
+ --------------------------------------
+
+ procedure Analyze_Subprogram_Instantiation
+ (N : Node_Id;
+ K : Entity_Kind)
+ is
+ Loc : constant Source_Ptr := Sloc (N);
+ Gen_Id : constant Node_Id := Name (N);
+
+ Act_Decl_Id : Entity_Id;
+ Anon_Id : Entity_Id :=
+ Make_Defining_Identifier
+ (Sloc (Defining_Entity (N)),
+ New_External_Name
+ (Chars (Defining_Entity (N)), 'R'));
+ Act_Decl : Node_Id;
+ Act_Spec : Node_Id;
+ Act_Tree : Node_Id;
+
+ Gen_Unit : Entity_Id;
+ Gen_Decl : Node_Id;
+ Pack_Id : Entity_Id;
+ Parent_Installed : Boolean := False;
+ Renaming_List : List_Id;
+ Spec : Node_Id;
+
+ procedure Analyze_Instance_And_Renamings;
+ -- The instance must be analyzed in a context that includes the
+ -- mappings of generic parameters into actuals. We create a package
+ -- declaration for this purpose, and a subprogram with an internal
+ -- name within the package. The subprogram instance is simply an
+ -- alias for the internal subprogram, declared in the current scope.
+
+ ------------------------------------
+ -- Analyze_Instance_And_Renamings --
+ ------------------------------------
+
+ procedure Analyze_Instance_And_Renamings is
+ Def_Ent : constant Entity_Id := Defining_Entity (N);
+ Pack_Decl : Node_Id;
+
+ begin
+ if Nkind (Parent (N)) = N_Compilation_Unit then
+
+ -- For the case of a compilation unit, the container package
+ -- has the same name as the instantiation, to insure that the
+ -- binder calls the elaboration procedure with the right name.
+ -- Copy the entity of the instance, which may have compilation
+ -- level flags (eg. is_child_unit) set.
+
+ Pack_Id := New_Copy (Def_Ent);
+
+ else
+ -- Otherwise we use the name of the instantiation concatenated
+ -- with its source position to ensure uniqueness if there are
+ -- several instantiations with the same name.
+
+ Pack_Id :=
+ Make_Defining_Identifier (Loc,
+ Chars => New_External_Name
+ (Related_Id => Chars (Def_Ent),
+ Suffix => "GP",
+ Suffix_Index => Source_Offset (Sloc (Def_Ent))));
+ end if;
+
+ Pack_Decl := Make_Package_Declaration (Loc,
+ Specification => Make_Package_Specification (Loc,
+ Defining_Unit_Name => Pack_Id,
+ Visible_Declarations => Renaming_List,
+ End_Label => Empty));
+
+ Set_Instance_Spec (N, Pack_Decl);
+ Set_Is_Generic_Instance (Pack_Id);
+
+ -- Case of not a compilation unit
+
+ if Nkind (Parent (N)) /= N_Compilation_Unit then
+ Mark_Rewrite_Insertion (Pack_Decl);
+ Insert_Before (N, Pack_Decl);
+ Set_Has_Completion (Pack_Id);
+
+ -- Case of an instantiation that is a compilation unit
+
+ -- Place declaration on current node so context is complete
+ -- for analysis (including nested instantiations), and for
+ -- use in a context_clause (see Analyze_With_Clause).
+
+ else
+ Set_Unit (Parent (N), Pack_Decl);
+ Set_Parent_Spec (Pack_Decl, Parent_Spec (N));
+ end if;
+
+ Analyze (Pack_Decl);
+ Check_Formal_Packages (Pack_Id);
+ Set_Is_Generic_Instance (Pack_Id, False);
+
+ -- Body of the enclosing package is supplied when instantiating
+ -- the subprogram body, after semantic analysis is completed.
+
+ if Nkind (Parent (N)) = N_Compilation_Unit then
+
+ -- Remove package itself from visibility, so it does not
+ -- conflict with subprogram.
+
+ Set_Name_Entity_Id (Chars (Pack_Id), Homonym (Pack_Id));
+
+ -- Set name and scope of internal subprogram so that the
+ -- proper external name will be generated. The proper scope
+ -- is the scope of the wrapper package.
+
+ Set_Chars (Anon_Id, Chars (Defining_Entity (N)));
+ Set_Scope (Anon_Id, Scope (Pack_Id));
+ end if;
+
+ Set_Is_Generic_Instance (Anon_Id);
+ Act_Decl_Id := New_Copy (Anon_Id);
+
+ Set_Parent (Act_Decl_Id, Parent (Anon_Id));
+ Set_Chars (Act_Decl_Id, Chars (Defining_Entity (N)));
+ Set_Sloc (Act_Decl_Id, Sloc (Defining_Entity (N)));
+ Set_Comes_From_Source (Act_Decl_Id, True);
+
+ -- The signature may involve types that are not frozen yet, but
+ -- the subprogram will be frozen at the point the wrapper package
+ -- is frozen, so it does not need its own freeze node. In fact, if
+ -- one is created, it might conflict with the freezing actions from
+ -- the wrapper package (see 7206-013).
+
+ Set_Has_Delayed_Freeze (Anon_Id, False);
+
+ -- If the instance is a child unit, mark the Id accordingly. Mark
+ -- the anonymous entity as well, which is the real subprogram and
+ -- which is used when the instance appears in a context clause.
+
+ Set_Is_Child_Unit (Act_Decl_Id, Is_Child_Unit (Defining_Entity (N)));
+ Set_Is_Child_Unit (Anon_Id, Is_Child_Unit (Defining_Entity (N)));
+ New_Overloaded_Entity (Act_Decl_Id);
+ Check_Eliminated (Act_Decl_Id);
+
+ -- In compilation unit case, kill elaboration checks on the
+ -- instantiation, since they are never needed -- the body is
+ -- instantiated at the same point as the spec.
+
+ if Nkind (Parent (N)) = N_Compilation_Unit then
+ Set_Suppress_Elaboration_Warnings (Act_Decl_Id);
+ Set_Suppress_Elaboration_Checks (Act_Decl_Id);
+ Set_Is_Compilation_Unit (Anon_Id);
+
+ Set_Cunit_Entity (Current_Sem_Unit, Pack_Id);
+ end if;
+
+ -- The instance is not a freezing point for the new subprogram.
+
+ Set_Is_Frozen (Act_Decl_Id, False);
+
+ if Nkind (Defining_Entity (N)) = N_Defining_Operator_Symbol then
+ Valid_Operator_Definition (Act_Decl_Id);
+ end if;
+
+ Set_Alias (Act_Decl_Id, Anon_Id);
+ Set_Parent (Act_Decl_Id, Parent (Anon_Id));
+ Set_Has_Completion (Act_Decl_Id);
+ Set_Related_Instance (Pack_Id, Act_Decl_Id);
+
+ if Nkind (Parent (N)) = N_Compilation_Unit then
+ Set_Body_Required (Parent (N), False);
+ end if;
+
+ end Analyze_Instance_And_Renamings;
+
+ -- Start of processing for Analyze_Subprogram_Instantiation
+
+ begin
+ -- Very first thing: apply the special kludge for Text_IO processing
+ -- in case we are instantiating one of the children of [Wide_]Text_IO.
+ -- Of course such an instantiation is bogus (these are packages, not
+ -- subprograms), but we get a better error message if we do this.
+
+ Text_IO_Kludge (Gen_Id);
+
+ -- Make node global for error reporting.
+
+ Instantiation_Node := N;
+ Pre_Analyze_Actuals (N);
+
+ Check_Generic_Child_Unit (Gen_Id, Parent_Installed);
+ Gen_Unit := Entity (Gen_Id);
+
+ Generate_Reference (Gen_Unit, Gen_Id);
+
+ if Nkind (Gen_Id) = N_Identifier
+ and then Chars (Gen_Unit) = Chars (Defining_Entity (N))
+ then
+ Error_Msg_NE
+ ("& is hidden within declaration of instance", Gen_Id, Gen_Unit);
+ end if;
+
+ if Etype (Gen_Unit) = Any_Type then return; end if;
+
+ -- Verify that it is a generic subprogram of the right kind, and that
+ -- it does not lead to a circular instantiation.
+
+ if Ekind (Gen_Unit) /= E_Generic_Procedure
+ and then Ekind (Gen_Unit) /= E_Generic_Function
+ then
+ Error_Msg_N ("expect generic subprogram in instantiation", Gen_Id);
+
+ elsif In_Open_Scopes (Gen_Unit) then
+ Error_Msg_NE ("instantiation of & within itself", N, Gen_Unit);
+
+ elsif Contains_Instance_Of (Gen_Unit, Current_Scope, Gen_Id) then
+ Error_Msg_Node_2 := Current_Scope;
+ Error_Msg_NE
+ ("circular Instantiation: & instantiated in &!", N, Gen_Unit);
+ Circularity_Detected := True;
+
+ elsif K = E_Procedure
+ and then Ekind (Gen_Unit) /= E_Generic_Procedure
+ then
+ if Ekind (Gen_Unit) = E_Generic_Function then
+ Error_Msg_N
+ ("cannot instantiate generic function as procedure", Gen_Id);
+ else
+ Error_Msg_N
+ ("expect name of generic procedure in instantiation", Gen_Id);
+ end if;
+
+ elsif K = E_Function
+ and then Ekind (Gen_Unit) /= E_Generic_Function
+ then
+ if Ekind (Gen_Unit) = E_Generic_Procedure then
+ Error_Msg_N
+ ("cannot instantiate generic procedure as function", Gen_Id);
+ else
+ Error_Msg_N
+ ("expect name of generic function in instantiation", Gen_Id);
+ end if;
+
+ else
+ -- If renaming, indicate that this is instantiation of renamed unit
+
+ if Present (Renamed_Object (Gen_Unit))
+ and then (Ekind (Renamed_Object (Gen_Unit)) = E_Generic_Procedure
+ or else
+ Ekind (Renamed_Object (Gen_Unit)) = E_Generic_Function)
+ then
+ Gen_Unit := Renamed_Object (Gen_Unit);
+ Set_Entity (Gen_Id, Gen_Unit);
+ end if;
+
+ if In_Extended_Main_Source_Unit (N) then
+ Set_Is_Instantiated (Gen_Unit);
+ Generate_Reference (Gen_Unit, N);
+ end if;
+
+ Gen_Decl := Unit_Declaration_Node (Gen_Unit);
+ Spec := Specification (Gen_Decl);
+
+ -- The subprogram itself cannot contain a nested instance, so
+ -- the current parent is left empty.
+
+ Save_Env (Gen_Unit, Empty);
+
+ -- Initialize renamings map, for error checking.
+
+ Generic_Renamings.Set_Last (0);
+ Generic_Renamings_HTable.Reset;
+
+ Create_Instantiation_Source (N, Gen_Unit, S_Adjustment);
+
+ -- Copy original generic tree, to produce text for instantiation.
+
+ Act_Tree :=
+ Copy_Generic_Node
+ (Original_Node (Gen_Decl), Empty, Instantiating => True);
+
+ Act_Spec := Specification (Act_Tree);
+ Renaming_List :=
+ Analyze_Associations
+ (N,
+ Generic_Formal_Declarations (Act_Tree),
+ Generic_Formal_Declarations (Gen_Decl));
+
+ -- Build the subprogram declaration, which does not appear
+ -- in the generic template, and give it a sloc consistent
+ -- with that of the template.
+
+ Set_Defining_Unit_Name (Act_Spec, Anon_Id);
+ Set_Generic_Parent (Act_Spec, Gen_Unit);
+ Act_Decl :=
+ Make_Subprogram_Declaration (Sloc (Act_Spec),
+ Specification => Act_Spec);
+
+ Set_Categorization_From_Pragmas (Act_Decl);
+
+ if Parent_Installed then
+ Hide_Current_Scope;
+ end if;
+
+ Append (Act_Decl, Renaming_List);
+ Analyze_Instance_And_Renamings;
+
+ -- If the generic is marked Import (Intrinsic), then so is the
+ -- instance. This indicates that there is no body to instantiate.
+ -- If generic is marked inline, so it the instance, and the
+ -- anonymous subprogram it renames. If inlined, or else if inlining
+ -- is enabled for the compilation, we generate the instance body
+ -- even if it is not within the main unit.
+
+ -- Any other pragmas might also be inherited ???
+
+ if Is_Intrinsic_Subprogram (Gen_Unit) then
+ Set_Is_Intrinsic_Subprogram (Anon_Id);
+ Set_Is_Intrinsic_Subprogram (Act_Decl_Id);
+
+ if Chars (Gen_Unit) = Name_Unchecked_Conversion then
+ Validate_Unchecked_Conversion (N, Act_Decl_Id);
+ end if;
+ end if;
+
+ Generate_Definition (Act_Decl_Id);
+
+ Set_Is_Inlined (Act_Decl_Id, Is_Inlined (Gen_Unit));
+ Set_Is_Inlined (Anon_Id, Is_Inlined (Gen_Unit));
+
+ Check_Elab_Instantiation (N);
+ Check_Hidden_Child_Unit (N, Gen_Unit, Act_Decl_Id);
+
+ -- Subject to change, pending on if other pragmas are inherited ???
+
+ Validate_Categorization_Dependency (N, Act_Decl_Id);
+
+ if not Is_Intrinsic_Subprogram (Act_Decl_Id) then
+
+ if not Generic_Separately_Compiled (Gen_Unit) then
+ Inherit_Context (Gen_Decl, N);
+ end if;
+
+ Restore_Private_Views (Pack_Id, False);
+
+ -- If the context requires a full instantiation, mark node for
+ -- subsequent construction of the body.
+
+ if (Is_In_Main_Unit (N)
+ or else Is_Inlined (Act_Decl_Id))
+ and then (Operating_Mode = Generate_Code
+ or else (Operating_Mode = Check_Semantics
+ and then Tree_Output))
+ and then (Expander_Active or else Tree_Output)
+ and then not ABE_Is_Certain (N)
+ and then not Is_Eliminated (Act_Decl_Id)
+ then
+ Pending_Instantiations.Increment_Last;
+ Pending_Instantiations.Table (Pending_Instantiations.Last) :=
+ (N, Act_Decl, Expander_Active, Current_Sem_Unit);
+ Check_Forward_Instantiation (N, Gen_Decl);
+
+ -- The wrapper package is always delayed, because it does
+ -- not constitute a freeze point, but to insure that the
+ -- freeze node is placed properly, it is created directly
+ -- when instantiating the body (otherwise the freeze node
+ -- might appear to early for nested instantiations).
+
+ elsif Nkind (Parent (N)) = N_Compilation_Unit then
+
+ -- For ASIS purposes, indicate that the wrapper package has
+ -- replaced the instantiation node.
+
+ Rewrite (N, Unit (Parent (N)));
+ Set_Unit (Parent (N), N);
+ end if;
+
+ elsif Nkind (Parent (N)) = N_Compilation_Unit then
+
+ -- Replace instance node for library-level instantiations
+ -- of intrinsic subprograms, for ASIS use.
+
+ Rewrite (N, Unit (Parent (N)));
+ Set_Unit (Parent (N), N);
+ end if;
+
+ if Parent_Installed then
+ Remove_Parent;
+ end if;
+
+ Restore_Env;
+ Generic_Renamings.Set_Last (0);
+ Generic_Renamings_HTable.Reset;
+ end if;
+
+ exception
+ when Instantiation_Error =>
+ if Parent_Installed then
+ Remove_Parent;
+ end if;
+
+ end Analyze_Subprogram_Instantiation;
+
+ ---------------------
+ -- Associated_Node --
+ ---------------------
+
+ function Associated_Node (N : Node_Id) return Node_Id is
+ Assoc : Node_Id := Node4 (N);
+ -- ??? what is Node4 being used for here?
+
+ begin
+ if Nkind (Assoc) /= Nkind (N) then
+ return Assoc;
+
+ elsif Nkind (Assoc) = N_Aggregate
+ or else Nkind (Assoc) = N_Extension_Aggregate
+ then
+ return Assoc;
+ else
+ -- If the node is part of an inner generic, it may itself have been
+ -- remapped into a further generic copy. Node4 is otherwise used for
+ -- the entity of the node, and will be of a different node kind, or
+ -- else N has been rewritten as a literal or function call.
+
+ while Present (Node4 (Assoc))
+ and then Nkind (Node4 (Assoc)) = Nkind (Assoc)
+ loop
+ Assoc := Node4 (Assoc);
+ end loop;
+
+ -- Follow and additional link in case the final node was rewritten.
+ -- This can only happen with nested generic units.
+
+ if (Nkind (Assoc) = N_Identifier or else Nkind (Assoc) in N_Op)
+ and then Present (Node4 (Assoc))
+ and then (Nkind (Node4 (Assoc)) = N_Function_Call
+ or else Nkind (Node4 (Assoc)) = N_Explicit_Dereference
+ or else Nkind (Node4 (Assoc)) = N_Integer_Literal
+ or else Nkind (Node4 (Assoc)) = N_Real_Literal
+ or else Nkind (Node4 (Assoc)) = N_String_Literal)
+ then
+ Assoc := Node4 (Assoc);
+ end if;
+
+ return Assoc;
+ end if;
+ end Associated_Node;
+
+ -------------------------------------------
+ -- Build_Instance_Compilation_Unit_Nodes --
+ -------------------------------------------
+
+ procedure Build_Instance_Compilation_Unit_Nodes
+ (N : Node_Id;
+ Act_Body : Node_Id;
+ Act_Decl : Node_Id)
+ is
+ Decl_Cunit : Node_Id;
+ Body_Cunit : Node_Id;
+ Citem : Node_Id;
+ New_Main : constant Entity_Id := Defining_Entity (Act_Decl);
+ Old_Main : constant Entity_Id := Cunit_Entity (Main_Unit);
+
+ begin
+ -- A new compilation unit node is built for the instance declaration
+
+ Decl_Cunit :=
+ Make_Compilation_Unit (Sloc (N),
+ Context_Items => Empty_List,
+ Unit => Act_Decl,
+ Aux_Decls_Node =>
+ Make_Compilation_Unit_Aux (Sloc (N)));
+
+ Set_Parent_Spec (Act_Decl, Parent_Spec (N));
+ Set_Body_Required (Decl_Cunit, True);
+
+ -- We use the original instantiation compilation unit as the resulting
+ -- compilation unit of the instance, since this is the main unit.
+
+ Rewrite (N, Act_Body);
+ Body_Cunit := Parent (N);
+
+ -- The two compilation unit nodes are linked by the Library_Unit field
+
+ Set_Library_Unit (Decl_Cunit, Body_Cunit);
+ Set_Library_Unit (Body_Cunit, Decl_Cunit);
+
+ -- The context clause items on the instantiation, which are now
+ -- attached to the body compilation unit (since the body overwrote
+ -- the original instantiation node), semantically belong on the spec,
+ -- so copy them there. It's harmless to leave them on the body as well.
+ -- In fact one could argue that they belong in both places.
+
+ Citem := First (Context_Items (Body_Cunit));
+ while Present (Citem) loop
+ Append (New_Copy (Citem), Context_Items (Decl_Cunit));
+ Next (Citem);
+ end loop;
+
+ -- Propagate categorization flags on packages, so that they appear
+ -- in ali file for the spec of the unit.
+
+ if Ekind (New_Main) = E_Package then
+ Set_Is_Pure (Old_Main, Is_Pure (New_Main));
+ Set_Is_Preelaborated (Old_Main, Is_Preelaborated (New_Main));
+ Set_Is_Remote_Types (Old_Main, Is_Remote_Types (New_Main));
+ Set_Is_Shared_Passive (Old_Main, Is_Shared_Passive (New_Main));
+ Set_Is_Remote_Call_Interface
+ (Old_Main, Is_Remote_Call_Interface (New_Main));
+ end if;
+
+ -- Make entry in Units table, so that binder can generate call to
+ -- elaboration procedure for body, if any.
+
+ Make_Instance_Unit (Body_Cunit);
+ Main_Unit_Entity := New_Main;
+ Set_Cunit_Entity (Main_Unit, Main_Unit_Entity);
+
+ -- Build elaboration entity, since the instance may certainly
+ -- generate elaboration code requiring a flag for protection.
+
+ Build_Elaboration_Entity (Decl_Cunit, New_Main);
+ end Build_Instance_Compilation_Unit_Nodes;
+
+ -----------------------------------
+ -- Check_Formal_Package_Instance --
+ -----------------------------------
+
+ -- If the formal has specific parameters, they must match those of the
+ -- actual. Both of them are instances, and the renaming declarations
+ -- for their formal parameters appear in the same order in both. The
+ -- analyzed formal has been analyzed in the context of the current
+ -- instance.
+
+ procedure Check_Formal_Package_Instance
+ (Formal_Pack : Entity_Id;
+ Actual_Pack : Entity_Id)
+ is
+ E1 : Entity_Id := First_Entity (Actual_Pack);
+ E2 : Entity_Id := First_Entity (Formal_Pack);
+
+ Expr1 : Node_Id;
+ Expr2 : Node_Id;
+
+ procedure Check_Mismatch (B : Boolean);
+ -- Common error routine for mismatch between the parameters of
+ -- the actual instance and those of the formal package.
+
+ procedure Check_Mismatch (B : Boolean) is
+ begin
+ if B then
+ Error_Msg_NE
+ ("actual for & in actual instance does not match formal",
+ Parent (Actual_Pack), E1);
+ end if;
+ end Check_Mismatch;
+
+ -- Start of processing for Check_Formal_Package_Instance
+
+ begin
+ while Present (E1)
+ and then Present (E2)
+ loop
+ exit when Ekind (E1) = E_Package
+ and then Renamed_Entity (E1) = Renamed_Entity (Actual_Pack);
+
+ if Is_Type (E1) then
+
+ -- Subtypes must statically match. E1 and E2 are the
+ -- local entities that are subtypes of the actuals.
+ -- Itypes generated for other parameters need not be checked,
+ -- the check will be performed on the parameters themselves.
+
+ if not Is_Itype (E1)
+ and then not Is_Itype (E2)
+ then
+ Check_Mismatch
+ (not Is_Type (E2)
+ or else Etype (E1) /= Etype (E2)
+ or else not Subtypes_Statically_Match (E1, E2));
+ end if;
+
+ elsif Ekind (E1) = E_Constant then
+
+ -- IN parameters must denote the same static value, or
+ -- the same constant, or the literal null.
+
+ Expr1 := Expression (Parent (E1));
+
+ if Ekind (E2) /= E_Constant then
+ Check_Mismatch (True);
+ goto Next_E;
+ else
+ Expr2 := Expression (Parent (E2));
+ end if;
+
+ if Is_Static_Expression (Expr1) then
+
+ if not Is_Static_Expression (Expr2) then
+ Check_Mismatch (True);
+
+ elsif Is_Integer_Type (Etype (E1)) then
+
+ declare
+ V1 : Uint := Expr_Value (Expr1);
+ V2 : Uint := Expr_Value (Expr2);
+ begin
+ Check_Mismatch (V1 /= V2);
+ end;
+
+ elsif Is_Real_Type (Etype (E1)) then
+
+ declare
+ V1 : Ureal := Expr_Value_R (Expr1);
+ V2 : Ureal := Expr_Value_R (Expr2);
+ begin
+ Check_Mismatch (V1 /= V2);
+ end;
+
+ elsif Is_String_Type (Etype (E1))
+ and then Nkind (Expr1) = N_String_Literal
+ then
+
+ if Nkind (Expr2) /= N_String_Literal then
+ Check_Mismatch (True);
+ else
+ Check_Mismatch
+ (not String_Equal (Strval (Expr1), Strval (Expr2)));
+ end if;
+ end if;
+
+ elsif Is_Entity_Name (Expr1) then
+ if Is_Entity_Name (Expr2) then
+ if Entity (Expr1) = Entity (Expr2) then
+ null;
+
+ elsif Ekind (Entity (Expr2)) = E_Constant
+ and then Is_Entity_Name (Constant_Value (Entity (Expr2)))
+ and then
+ Entity (Constant_Value (Entity (Expr2))) = Entity (Expr1)
+ then
+ null;
+ else
+ Check_Mismatch (True);
+ end if;
+ else
+ Check_Mismatch (True);
+ end if;
+
+ elsif Nkind (Expr1) = N_Null then
+ Check_Mismatch (Nkind (Expr1) /= N_Null);
+
+ else
+ Check_Mismatch (True);
+ end if;
+
+ elsif Ekind (E1) = E_Variable
+ or else Ekind (E1) = E_Package
+ then
+ Check_Mismatch
+ (Ekind (E1) /= Ekind (E2)
+ or else Renamed_Object (E1) /= Renamed_Object (E2));
+
+ elsif Is_Overloadable (E1) then
+
+ -- Verify that the names of the entities match.
+ -- What if actual is an attribute ???
+
+ Check_Mismatch
+ (Ekind (E2) /= Ekind (E1) or else (Alias (E1)) /= Alias (E2));
+
+ else
+ raise Program_Error;
+ end if;
+
+ <<Next_E>>
+ Next_Entity (E1);
+ Next_Entity (E2);
+ end loop;
+ end Check_Formal_Package_Instance;
+
+ ---------------------------
+ -- Check_Formal_Packages --
+ ---------------------------
+
+ procedure Check_Formal_Packages (P_Id : Entity_Id) is
+ E : Entity_Id;
+ Formal_P : Entity_Id;
+
+ begin
+ -- Iterate through the declarations in the instance, looking for
+ -- package renaming declarations that denote instances of formal
+ -- packages. Stop when we find the renaming of the current package
+ -- itself. The declaration for a formal package without a box is
+ -- followed by an internal entity that repeats the instantiation.
+
+ E := First_Entity (P_Id);
+ while Present (E) loop
+ if Ekind (E) = E_Package then
+ if Renamed_Object (E) = P_Id then
+ exit;
+
+ elsif Nkind (Parent (E)) /= N_Package_Renaming_Declaration then
+ null;
+
+ elsif not Box_Present (Parent (Associated_Formal_Package (E))) then
+ Formal_P := Next_Entity (E);
+ Check_Formal_Package_Instance (Formal_P, E);
+ end if;
+ end if;
+
+ Next_Entity (E);
+ end loop;
+ end Check_Formal_Packages;
+
+ ---------------------------------
+ -- Check_Forward_Instantiation --
+ ---------------------------------
+
+ procedure Check_Forward_Instantiation (N : Node_Id; Decl : Node_Id) is
+ S : Entity_Id;
+ Gen_Comp : Entity_Id := Cunit_Entity (Get_Source_Unit (Decl));
+
+ begin
+ -- The instantiation appears before the generic body if we are in the
+ -- scope of the unit containing the generic, either in its spec or in
+ -- the package body. and before the generic body.
+
+ if Ekind (Gen_Comp) = E_Package_Body then
+ Gen_Comp := Spec_Entity (Gen_Comp);
+ end if;
+
+ if In_Open_Scopes (Gen_Comp)
+ and then No (Corresponding_Body (Decl))
+ then
+ S := Current_Scope;
+
+ while Present (S)
+ and then not Is_Compilation_Unit (S)
+ and then not Is_Child_Unit (S)
+ loop
+ if Ekind (S) = E_Package then
+ Set_Has_Forward_Instantiation (S);
+ end if;
+
+ S := Scope (S);
+ end loop;
+ end if;
+ end Check_Forward_Instantiation;
+
+ ---------------------------
+ -- Check_Generic_Actuals --
+ ---------------------------
+
+ -- The visibility of the actuals may be different between the
+ -- point of generic instantiation and the instantiation of the body.
+
+ procedure Check_Generic_Actuals
+ (Instance : Entity_Id;
+ Is_Formal_Box : Boolean)
+ is
+ E : Entity_Id;
+ Astype : Entity_Id;
+
+ begin
+ E := First_Entity (Instance);
+ while Present (E) loop
+ if Is_Type (E)
+ and then Nkind (Parent (E)) = N_Subtype_Declaration
+ and then Scope (Etype (E)) /= Instance
+ and then Is_Entity_Name (Subtype_Indication (Parent (E)))
+ then
+ Check_Private_View (Subtype_Indication (Parent (E)));
+ Set_Is_Generic_Actual_Type (E, True);
+ Set_Is_Hidden (E, False);
+
+ -- We constructed the generic actual type as a subtype of
+ -- the supplied type. This means that it normally would not
+ -- inherit subtype specific attributes of the actual, which
+ -- is wrong for the generic case.
+
+ Astype := Ancestor_Subtype (E);
+
+ if No (Astype) then
+
+ -- can happen when E is an itype that is the full view of
+ -- a private type completed, e.g. with a constrained array.
+
+ Astype := Base_Type (E);
+ end if;
+
+ Set_Size_Info (E, (Astype));
+ Set_RM_Size (E, RM_Size (Astype));
+ Set_First_Rep_Item (E, First_Rep_Item (Astype));
+
+ if Is_Discrete_Or_Fixed_Point_Type (E) then
+ Set_RM_Size (E, RM_Size (Astype));
+
+ -- In nested instances, the base type of an access actual
+ -- may itself be private, and need to be exchanged.
+
+ elsif Is_Access_Type (E)
+ and then Is_Private_Type (Etype (E))
+ then
+ Check_Private_View
+ (New_Occurrence_Of (Etype (E), Sloc (Instance)));
+ end if;
+
+ elsif Ekind (E) = E_Package then
+
+ -- If this is the renaming for the current instance, we're done.
+ -- Otherwise it is a formal package. If the corresponding formal
+ -- was declared with a box, the (instantiations of the) generic
+ -- formal part are also visible. Otherwise, ignore the entity
+ -- created to validate the actuals.
+
+ if Renamed_Object (E) = Instance then
+ exit;
+
+ elsif Nkind (Parent (E)) /= N_Package_Renaming_Declaration then
+ null;
+
+ -- The visibility of a formal of an enclosing generic is already
+ -- correct.
+
+ elsif Denotes_Formal_Package (E) then
+ null;
+
+ elsif Present (Associated_Formal_Package (E))
+ and then Box_Present (Parent (Associated_Formal_Package (E)))
+ then
+ Check_Generic_Actuals (Renamed_Object (E), True);
+ Set_Is_Hidden (E, False);
+ end if;
+
+ else
+ Set_Is_Hidden (E, not Is_Formal_Box);
+ end if;
+
+ Next_Entity (E);
+ end loop;
+
+ end Check_Generic_Actuals;
+
+ ------------------------------
+ -- Check_Generic_Child_Unit --
+ ------------------------------
+
+ procedure Check_Generic_Child_Unit
+ (Gen_Id : Node_Id;
+ Parent_Installed : in out Boolean)
+ is
+ Loc : constant Source_Ptr := Sloc (Gen_Id);
+ Gen_Par : Entity_Id := Empty;
+ Inst_Par : Entity_Id;
+ E : Entity_Id;
+ S : Node_Id;
+
+ function Find_Generic_Child
+ (Scop : Entity_Id;
+ Id : Node_Id)
+ return Entity_Id;
+ -- Search generic parent for possible child unit.
+
+ function In_Enclosing_Instance return Boolean;
+ -- Within an instance of the parent, the child unit may be denoted
+ -- by a simple name. Examine enclosing scopes to locate a possible
+ -- parent instantiation.
+
+ function Find_Generic_Child
+ (Scop : Entity_Id;
+ Id : Node_Id)
+ return Entity_Id
+ is
+ E : Entity_Id;
+
+ begin
+ -- If entity of name is already set, instance has already been
+ -- resolved, e.g. in an enclosing instantiation.
+
+ if Present (Entity (Id)) then
+ if Scope (Entity (Id)) = Scop then
+ return Entity (Id);
+ else
+ return Empty;
+ end if;
+
+ else
+ E := First_Entity (Scop);
+ while Present (E) loop
+ if Chars (E) = Chars (Id)
+ and then Is_Child_Unit (E)
+ then
+ if Is_Child_Unit (E)
+ and then not Is_Visible_Child_Unit (E)
+ then
+ Error_Msg_NE
+ ("generic child unit& is not visible", Gen_Id, E);
+ end if;
+
+ Set_Entity (Id, E);
+ return E;
+ end if;
+
+ Next_Entity (E);
+ end loop;
+
+ return Empty;
+ end if;
+ end Find_Generic_Child;
+
+ function In_Enclosing_Instance return Boolean is
+ Enclosing_Instance : Node_Id;
+
+ begin
+ Enclosing_Instance := Current_Scope;
+
+ while Present (Enclosing_Instance) loop
+ exit when Ekind (Enclosing_Instance) = E_Package
+ and then Nkind (Parent (Enclosing_Instance)) =
+ N_Package_Specification
+ and then Present
+ (Generic_Parent (Parent (Enclosing_Instance)));
+
+ Enclosing_Instance := Scope (Enclosing_Instance);
+ end loop;
+
+ if Present (Enclosing_Instance) then
+ E := Find_Generic_Child
+ (Generic_Parent (Parent (Enclosing_Instance)), Gen_Id);
+ else
+ return False;
+ end if;
+
+ if Present (E) then
+ Rewrite (Gen_Id,
+ Make_Expanded_Name (Loc,
+ Chars => Chars (E),
+ Prefix => New_Occurrence_Of (Enclosing_Instance, Loc),
+ Selector_Name => New_Occurrence_Of (E, Loc)));
+
+ Set_Entity (Gen_Id, E);
+ Set_Etype (Gen_Id, Etype (E));
+ Parent_Installed := False; -- Already in scope.
+ return True;
+ else
+ Analyze (Gen_Id);
+ return False;
+ end if;
+ end In_Enclosing_Instance;
+
+ -- Start of processing for Check_Generic_Child_Unit
+
+ begin
+ -- If the name of the generic is given by a selected component, it
+ -- may be the name of a generic child unit, and the prefix is the name
+ -- of an instance of the parent, in which case the child unit must be
+ -- visible. If this instance is not in scope, it must be placed there
+ -- and removed after instantiation, because what is being instantiated
+ -- is not the original child, but the corresponding child present in
+ -- the instance of the parent.
+
+ -- If the child is instantiated within the parent, it can be given by
+ -- a simple name. In this case the instance is already in scope, but
+ -- the child generic must be recovered from the generic parent as well.
+
+ if Nkind (Gen_Id) = N_Selected_Component then
+ S := Selector_Name (Gen_Id);
+ Analyze (Prefix (Gen_Id));
+ Inst_Par := Entity (Prefix (Gen_Id));
+
+ if Ekind (Inst_Par) = E_Package
+ and then Present (Renamed_Object (Inst_Par))
+ then
+ Inst_Par := Renamed_Object (Inst_Par);
+ end if;
+
+ if Ekind (Inst_Par) = E_Package then
+ if Nkind (Parent (Inst_Par)) = N_Package_Specification then
+ Gen_Par := Generic_Parent (Parent (Inst_Par));
+
+ elsif Nkind (Parent (Inst_Par)) = N_Defining_Program_Unit_Name
+ and then
+ Nkind (Parent (Parent (Inst_Par))) = N_Package_Specification
+ then
+ Gen_Par := Generic_Parent (Parent (Parent (Inst_Par)));
+ end if;
+
+ elsif Ekind (Inst_Par) = E_Generic_Package
+ and then Nkind (Parent (Gen_Id)) = N_Formal_Package_Declaration
+ then
+
+ -- A formal package may be a real child package, and not the
+ -- implicit instance within a parent. In this case the child is
+ -- not visible and has to be retrieved explicitly as well.
+
+ Gen_Par := Inst_Par;
+ end if;
+
+ if Present (Gen_Par) then
+
+ -- The prefix denotes an instantiation. The entity itself
+ -- may be a nested generic, or a child unit.
+
+ E := Find_Generic_Child (Gen_Par, S);
+
+ if Present (E) then
+ Change_Selected_Component_To_Expanded_Name (Gen_Id);
+ Set_Entity (Gen_Id, E);
+ Set_Etype (Gen_Id, Etype (E));
+ Set_Entity (S, E);
+ Set_Etype (S, Etype (E));
+
+ -- Indicate that this is a reference to the parent.
+
+ if In_Extended_Main_Source_Unit (Gen_Id) then
+ Set_Is_Instantiated (Inst_Par);
+ end if;
+
+ -- A common mistake is to replicate the naming scheme of
+ -- a hierarchy by instantiating a generic child directly,
+ -- rather than the implicit child in a parent instance:
+ --
+ -- generic .. package Gpar is ..
+ -- generic .. package Gpar.Child is ..
+ -- package Par is new Gpar ();
+
+ -- with Gpar.Child;
+ -- package Par.Child is new Gpar.Child ();
+ -- rather than Par.Child
+ --
+ -- In this case the instantiation is within Par, which is
+ -- an instance, but Gpar does not denote Par because we are
+ -- not IN the instance of Gpar, so this is illegal. The test
+ -- below recognizes this particular case.
+
+ if Is_Child_Unit (E)
+ and then not Comes_From_Source (Entity (Prefix (Gen_Id)))
+ and then (not In_Instance
+ or else Nkind (Parent (Parent (Gen_Id))) =
+ N_Compilation_Unit)
+ then
+ Error_Msg_N
+ ("prefix of generic child unit must be instance of parent",
+ Gen_Id);
+ end if;
+
+ if not In_Open_Scopes (Inst_Par)
+ and then Nkind (Parent (Gen_Id))
+ not in N_Generic_Renaming_Declaration
+ then
+ Install_Parent (Inst_Par);
+ Parent_Installed := True;
+ end if;
+
+ else
+ -- If the generic parent does not contain an entity that
+ -- corresponds to the selector, the instance doesn't either.
+ -- Analyzing the node will yield the appropriate error message.
+ -- If the entity is not a child unit, then it is an inner
+ -- generic in the parent.
+
+ Analyze (Gen_Id);
+ end if;
+
+ else
+ Analyze (Gen_Id);
+
+ if Is_Child_Unit (Entity (Gen_Id))
+ and then Nkind (Parent (Gen_Id))
+ not in N_Generic_Renaming_Declaration
+ and then not In_Open_Scopes (Inst_Par)
+ then
+ Install_Parent (Inst_Par);
+ Parent_Installed := True;
+ end if;
+ end if;
+
+ elsif Nkind (Gen_Id) = N_Expanded_Name then
+
+ -- Entity already present, analyze prefix, whose meaning may be
+ -- an instance in the current context. If it is an instance of
+ -- a relative within another, the proper parent may still have
+ -- to be installed, if they are not of the same generation.
+
+ Analyze (Prefix (Gen_Id));
+ Inst_Par := Entity (Prefix (Gen_Id));
+
+ if In_Enclosing_Instance then
+ null;
+
+ elsif Present (Entity (Gen_Id))
+ and then Is_Child_Unit (Entity (Gen_Id))
+ and then not In_Open_Scopes (Inst_Par)
+ then
+ Install_Parent (Inst_Par);
+ Parent_Installed := True;
+ end if;
+
+ elsif In_Enclosing_Instance then
+ -- The child unit is found in some enclosing scope.
+ null;
+
+ else
+ Analyze (Gen_Id);
+
+ -- If this is the renaming of the implicit child in a parent
+ -- instance, recover the parent name and install it.
+
+ if Is_Entity_Name (Gen_Id) then
+ E := Entity (Gen_Id);
+
+ if Is_Generic_Unit (E)
+ and then Nkind (Parent (E)) in N_Generic_Renaming_Declaration
+ and then Is_Child_Unit (Renamed_Object (E))
+ and then Is_Generic_Unit (Scope (Renamed_Object (E)))
+ and then Nkind (Name (Parent (E))) = N_Expanded_Name
+ then
+ Rewrite (Gen_Id,
+ New_Copy_Tree (Name (Parent (E))));
+ Inst_Par := Entity (Prefix (Gen_Id));
+
+ if not In_Open_Scopes (Inst_Par) then
+ Install_Parent (Inst_Par);
+ Parent_Installed := True;
+ end if;
+
+ -- If it is a child unit of a non-generic parent, it may be
+ -- use-visible and given by a direct name. Install parent as
+ -- for other cases.
+
+ elsif Is_Generic_Unit (E)
+ and then Is_Child_Unit (E)
+ and then
+ Nkind (Parent (Gen_Id)) not in N_Generic_Renaming_Declaration
+ and then not Is_Generic_Unit (Scope (E))
+ then
+ if not In_Open_Scopes (Scope (E)) then
+ Install_Parent (Scope (E));
+ Parent_Installed := True;
+ end if;
+ end if;
+ end if;
+ end if;
+ end Check_Generic_Child_Unit;
+
+ -----------------------------
+ -- Check_Hidden_Child_Unit --
+ -----------------------------
+
+ procedure Check_Hidden_Child_Unit
+ (N : Node_Id;
+ Gen_Unit : Entity_Id;
+ Act_Decl_Id : Entity_Id)
+ is
+ Gen_Id : Node_Id := Name (N);
+
+ begin
+ if Is_Child_Unit (Gen_Unit)
+ and then Is_Child_Unit (Act_Decl_Id)
+ and then Nkind (Gen_Id) = N_Expanded_Name
+ and then Entity (Prefix (Gen_Id)) = Scope (Act_Decl_Id)
+ and then Chars (Gen_Unit) = Chars (Act_Decl_Id)
+ then
+ Error_Msg_Node_2 := Scope (Act_Decl_Id);
+ Error_Msg_NE
+ ("generic unit & is implicitly declared in &",
+ Defining_Unit_Name (N), Gen_Unit);
+ Error_Msg_N ("\instance must have different name",
+ Defining_Unit_Name (N));
+ end if;
+ end Check_Hidden_Child_Unit;
+
+ ------------------------
+ -- Check_Private_View --
+ ------------------------
+
+ procedure Check_Private_View (N : Node_Id) is
+ T : constant Entity_Id := Etype (N);
+ BT : Entity_Id;
+
+ begin
+ -- Exchange views if the type was not private in the generic but is
+ -- private at the point of instantiation. Do not exchange views if
+ -- the scope of the type is in scope. This can happen if both generic
+ -- and instance are sibling units, or if type is defined in a parent.
+ -- In this case the visibility of the type will be correct for all
+ -- semantic checks.
+
+ if Present (T) then
+ BT := Base_Type (T);
+
+ if Is_Private_Type (T)
+ and then not Has_Private_View (N)
+ and then Present (Full_View (T))
+ and then not In_Open_Scopes (Scope (T))
+ then
+ -- In the generic, the full type was visible. Save the
+ -- private entity, for subsequent exchange.
+
+ Switch_View (T);
+
+ elsif Has_Private_View (N)
+ and then not Is_Private_Type (T)
+ and then not Has_Been_Exchanged (T)
+ and then Etype (Associated_Node (N)) /= T
+ then
+ -- Only the private declaration was visible in the generic. If
+ -- the type appears in a subtype declaration, the subtype in the
+ -- instance must have a view compatible with that of its parent,
+ -- which must be exchanged (see corresponding code in Restore_
+ -- Private_Views). Otherwise, if the type is defined in a parent
+ -- unit, leave full visibility within instance, which is safe.
+
+ if In_Open_Scopes (Scope (Base_Type (T)))
+ and then not Is_Private_Type (Base_Type (T))
+ and then Comes_From_Source (Base_Type (T))
+ then
+ null;
+
+ elsif Nkind (Parent (N)) = N_Subtype_Declaration
+ or else not In_Private_Part (Scope (Base_Type (T)))
+ then
+ Append_Elmt (T, Exchanged_Views);
+ Exchange_Declarations (Etype (Associated_Node (N)));
+ end if;
+
+ -- For composite types with inconsistent representation
+ -- exchange component types accordingly.
+
+ elsif Is_Access_Type (T)
+ and then Is_Private_Type (Designated_Type (T))
+ and then Present (Full_View (Designated_Type (T)))
+ then
+ Switch_View (Designated_Type (T));
+
+ elsif Is_Array_Type (T)
+ and then Is_Private_Type (Component_Type (T))
+ and then not Has_Private_View (N)
+ and then Present (Full_View (Component_Type (T)))
+ then
+ Switch_View (Component_Type (T));
+
+ elsif Is_Private_Type (T)
+ and then Present (Full_View (T))
+ and then Is_Array_Type (Full_View (T))
+ and then Is_Private_Type (Component_Type (Full_View (T)))
+ then
+ Switch_View (T);
+
+ -- Finally, a non-private subtype may have a private base type,
+ -- which must be exchanged for consistency. This can happen when
+ -- instantiating a package body, when the scope stack is empty but
+ -- in fact the subtype and the base type are declared in an enclosing
+ -- scope.
+
+ elsif not Is_Private_Type (T)
+ and then not Has_Private_View (N)
+ and then Is_Private_Type (Base_Type (T))
+ and then Present (Full_View (BT))
+ and then not Is_Generic_Type (BT)
+ and then not In_Open_Scopes (BT)
+ then
+ Append_Elmt (Full_View (BT), Exchanged_Views);
+ Exchange_Declarations (BT);
+ end if;
+ end if;
+ end Check_Private_View;
+
+ --------------------------
+ -- Contains_Instance_Of --
+ --------------------------
+
+ function Contains_Instance_Of
+ (Inner : Entity_Id;
+ Outer : Entity_Id;
+ N : Node_Id)
+ return Boolean
+ is
+ Elmt : Elmt_Id;
+ Scop : Entity_Id;
+
+ begin
+ Scop := Outer;
+
+ -- Verify that there are no circular instantiations. We check whether
+ -- the unit contains an instance of the current scope or some enclosing
+ -- scope (in case one of the instances appears in a subunit). Longer
+ -- circularities involving subunits might seem too pathological to
+ -- consider, but they were not too pathological for the authors of
+ -- DEC bc30vsq, so we loop over all enclosing scopes, and mark all
+ -- enclosing generic scopes as containing an instance.
+
+ loop
+ -- Within a generic subprogram body, the scope is not generic, to
+ -- allow for recursive subprograms. Use the declaration to determine
+ -- whether this is a generic unit.
+
+ if Ekind (Scop) = E_Generic_Package
+ or else (Is_Subprogram (Scop)
+ and then Nkind (Unit_Declaration_Node (Scop)) =
+ N_Generic_Subprogram_Declaration)
+ then
+ Elmt := First_Elmt (Inner_Instances (Inner));
+
+ while Present (Elmt) loop
+ if Node (Elmt) = Scop then
+ Error_Msg_Node_2 := Inner;
+ Error_Msg_NE
+ ("circular Instantiation: & instantiated within &!",
+ N, Scop);
+ return True;
+
+ elsif Node (Elmt) = Inner then
+ return True;
+
+ elsif Contains_Instance_Of (Node (Elmt), Scop, N) then
+ Error_Msg_Node_2 := Inner;
+ Error_Msg_NE
+ ("circular Instantiation: & instantiated within &!",
+ N, Node (Elmt));
+ return True;
+ end if;
+
+ Next_Elmt (Elmt);
+ end loop;
+
+ -- Indicate that Inner is being instantiated within Scop.
+
+ Append_Elmt (Inner, Inner_Instances (Scop));
+ end if;
+
+ if Scop = Standard_Standard then
+ exit;
+ else
+ Scop := Scope (Scop);
+ end if;
+ end loop;
+
+ return False;
+ end Contains_Instance_Of;
+
+ -----------------------
+ -- Copy_Generic_Node --
+ -----------------------
+
+ function Copy_Generic_Node
+ (N : Node_Id;
+ Parent_Id : Node_Id;
+ Instantiating : Boolean)
+ return Node_Id
+ is
+ Ent : Entity_Id;
+ New_N : Node_Id;
+
+ function Copy_Generic_Descendant (D : Union_Id) return Union_Id;
+ -- Check the given value of one of the Fields referenced by the
+ -- current node to determine whether to copy it recursively. The
+ -- field may hold a Node_Id, a List_Id, or an Elist_Id, or a plain
+ -- value (Sloc, Uint, Char) in which case it need not be copied.
+
+ function Copy_Generic_Elist (E : Elist_Id) return Elist_Id;
+ -- Make copy of element list.
+
+ function Copy_Generic_List
+ (L : List_Id;
+ Parent_Id : Node_Id)
+ return List_Id;
+ -- Apply Copy_Node recursively to the members of a node list.
+
+ -----------------------------
+ -- Copy_Generic_Descendant --
+ -----------------------------
+
+ function Copy_Generic_Descendant (D : Union_Id) return Union_Id is
+ begin
+ if D = Union_Id (Empty) then
+ return D;
+
+ elsif D in Node_Range then
+ return Union_Id
+ (Copy_Generic_Node (Node_Id (D), New_N, Instantiating));
+
+ elsif D in List_Range then
+ return Union_Id (Copy_Generic_List (List_Id (D), New_N));
+
+ elsif D in Elist_Range then
+ return Union_Id (Copy_Generic_Elist (Elist_Id (D)));
+
+ -- Nothing else is copyable (e.g. Uint values), return as is
+
+ else
+ return D;
+ end if;
+ end Copy_Generic_Descendant;
+
+ ------------------------
+ -- Copy_Generic_Elist --
+ ------------------------
+
+ function Copy_Generic_Elist (E : Elist_Id) return Elist_Id is
+ M : Elmt_Id;
+ L : Elist_Id;
+
+ begin
+ if Present (E) then
+ L := New_Elmt_List;
+ M := First_Elmt (E);
+ while Present (M) loop
+ Append_Elmt
+ (Copy_Generic_Node (Node (M), Empty, Instantiating), L);
+ Next_Elmt (M);
+ end loop;
+
+ return L;
+
+ else
+ return No_Elist;
+ end if;
+ end Copy_Generic_Elist;
+
+ -----------------------
+ -- Copy_Generic_List --
+ -----------------------
+
+ function Copy_Generic_List
+ (L : List_Id;
+ Parent_Id : Node_Id)
+ return List_Id
+ is
+ N : Node_Id;
+ New_L : List_Id;
+
+ begin
+ if Present (L) then
+ New_L := New_List;
+ Set_Parent (New_L, Parent_Id);
+
+ N := First (L);
+ while Present (N) loop
+ Append (Copy_Generic_Node (N, Empty, Instantiating), New_L);
+ Next (N);
+ end loop;
+
+ return New_L;
+
+ else
+ return No_List;
+ end if;
+ end Copy_Generic_List;
+
+ -- Start of processing for Copy_Generic_Node
+
+ begin
+ if N = Empty then
+ return N;
+ end if;
+
+ New_N := New_Copy (N);
+
+ if Instantiating then
+ Adjust_Instantiation_Sloc (New_N, S_Adjustment);
+ end if;
+
+ if not Is_List_Member (N) then
+ Set_Parent (New_N, Parent_Id);
+ end if;
+
+ -- If defining identifier, then all fields have been copied already
+
+ if Nkind (New_N) in N_Entity then
+ null;
+
+ -- Special casing for identifiers and other entity names and operators
+
+ elsif (Nkind (New_N) = N_Identifier
+ or else Nkind (New_N) = N_Character_Literal
+ or else Nkind (New_N) = N_Expanded_Name
+ or else Nkind (New_N) = N_Operator_Symbol
+ or else Nkind (New_N) in N_Op)
+ then
+ if not Instantiating then
+
+ -- Link both nodes in order to assign subsequently the
+ -- entity of the copy to the original node, in case this
+ -- is a global reference.
+
+ Set_Associated_Node (N, New_N);
+
+ -- If we are within an instantiation, this is a nested generic
+ -- that has already been analyzed at the point of definition. We
+ -- must preserve references that were global to the enclosing
+ -- parent at that point. Other occurrences, whether global or
+ -- local to the current generic, must be resolved anew, so we
+ -- reset the entity in the generic copy. A global reference has
+ -- a smaller depth than the parent, or else the same depth in
+ -- case both are distinct compilation units.
+
+ -- It is also possible for Current_Instantiated_Parent to be
+ -- defined, and for this not to be a nested generic, namely
+ -- if the unit is loaded through Rtsfind. In that case, the
+ -- entity of New_N is only a link to the associated node, and
+ -- not a defining occurrence.
+
+ -- The entities for parent units in the defining_program_unit
+ -- of a generic child unit are established when the context of
+ -- the unit is first analyzed, before the generic copy is made.
+ -- They are preserved in the copy for use in ASIS queries.
+
+ Ent := Entity (New_N);
+
+ if No (Current_Instantiated_Parent.Gen_Id) then
+ if No (Ent)
+ or else Nkind (Ent) /= N_Defining_Identifier
+ or else Nkind (Parent (N)) /= N_Defining_Program_Unit_Name
+ then
+ Set_Associated_Node (New_N, Empty);
+ end if;
+
+ elsif No (Ent)
+ or else
+ not (Nkind (Ent) = N_Defining_Identifier
+ or else
+ Nkind (Ent) = N_Defining_Character_Literal
+ or else
+ Nkind (Ent) = N_Defining_Operator_Symbol)
+ or else No (Scope (Ent))
+ or else Scope (Ent) = Current_Instantiated_Parent.Gen_Id
+ or else (Scope_Depth (Scope (Ent)) >
+ Scope_Depth (Current_Instantiated_Parent.Gen_Id)
+ and then
+ Get_Source_Unit (Ent) =
+ Get_Source_Unit (Current_Instantiated_Parent.Gen_Id))
+ then
+ Set_Associated_Node (New_N, Empty);
+ end if;
+
+ -- Case of instantiating identifier or some other name or operator
+
+ else
+ -- If the associated node is still defined, the entity in
+ -- it is global, and must be copied to the instance.
+
+ if Present (Associated_Node (N)) then
+ if Nkind (Associated_Node (N)) = Nkind (N) then
+ Set_Entity (New_N, Entity (Associated_Node (N)));
+ Check_Private_View (N);
+
+ elsif Nkind (Associated_Node (N)) = N_Function_Call then
+ Set_Entity (New_N, Entity (Name (Associated_Node (N))));
+
+ else
+ Set_Entity (New_N, Empty);
+ end if;
+ end if;
+ end if;
+
+ -- For expanded name, we must copy the Prefix and Selector_Name
+
+ if Nkind (N) = N_Expanded_Name then
+
+ Set_Prefix
+ (New_N, Copy_Generic_Node (Prefix (N), New_N, Instantiating));
+
+ Set_Selector_Name (New_N,
+ Copy_Generic_Node (Selector_Name (N), New_N, Instantiating));
+
+ -- For operators, we must copy the right operand
+
+ elsif Nkind (N) in N_Op then
+
+ Set_Right_Opnd (New_N,
+ Copy_Generic_Node (Right_Opnd (N), New_N, Instantiating));
+
+ -- And for binary operators, the left operand as well
+
+ if Nkind (N) in N_Binary_Op then
+ Set_Left_Opnd (New_N,
+ Copy_Generic_Node (Left_Opnd (N), New_N, Instantiating));
+ end if;
+ end if;
+
+ -- Special casing for stubs
+
+ elsif Nkind (N) in N_Body_Stub then
+
+ -- In any case, we must copy the specification or defining
+ -- identifier as appropriate.
+
+ if Nkind (N) = N_Subprogram_Body_Stub then
+ Set_Specification (New_N,
+ Copy_Generic_Node (Specification (N), New_N, Instantiating));
+
+ else
+ Set_Defining_Identifier (New_N,
+ Copy_Generic_Node
+ (Defining_Identifier (N), New_N, Instantiating));
+ end if;
+
+ -- If we are not instantiating, then this is where we load and
+ -- analyze subunits, i.e. at the point where the stub occurs. A
+ -- more permissivle system might defer this analysis to the point
+ -- of instantiation, but this seems to complicated for now.
+
+ if not Instantiating then
+ declare
+ Subunit_Name : constant Unit_Name_Type := Get_Unit_Name (N);
+ Subunit : Node_Id;
+ Unum : Unit_Number_Type;
+ New_Body : Node_Id;
+
+ begin
+ Unum :=
+ Load_Unit
+ (Load_Name => Subunit_Name,
+ Required => False,
+ Subunit => True,
+ Error_Node => N);
+
+ -- If the proper body is not found, a warning message will
+ -- be emitted when analyzing the stub, or later at the the
+ -- point of instantiation. Here we just leave the stub as is.
+
+ if Unum = No_Unit then
+ Subunits_Missing := True;
+ goto Subunit_Not_Found;
+ end if;
+
+ Subunit := Cunit (Unum);
+
+ -- We must create a generic copy of the subunit, in order
+ -- to perform semantic analysis on it, and we must replace
+ -- the stub in the original generic unit with the subunit,
+ -- in order to preserve non-local references within.
+
+ -- Only the proper body needs to be copied. Library_Unit and
+ -- context clause are simply inherited by the generic copy.
+ -- Note that the copy (which may be recursive if there are
+ -- nested subunits) must be done first, before attaching it
+ -- to the enclosing generic.
+
+ New_Body :=
+ Copy_Generic_Node
+ (Proper_Body (Unit (Subunit)),
+ Empty, Instantiating => False);
+
+ -- Now place the original proper body in the original
+ -- generic unit.
+
+ Rewrite (N, Proper_Body (Unit (Subunit)));
+ Set_Was_Originally_Stub (N);
+
+ -- Finally replace the body of the subunit with its copy,
+ -- and make this new subunit into the library unit of the
+ -- generic copy, which does not have stubs any longer.
+
+ Set_Proper_Body (Unit (Subunit), New_Body);
+ Set_Library_Unit (New_N, Subunit);
+ Inherit_Context (Unit (Subunit), N);
+
+ end;
+
+ -- If we are instantiating, this must be an error case, since
+ -- otherwise we would have replaced the stub node by the proper
+ -- body that corresponds. So just ignore it in the copy (i.e.
+ -- we have copied it, and that is good enough).
+
+ else
+ null;
+ end if;
+
+ <<Subunit_Not_Found>> null;
+
+ -- If the node is a compilation unit, it is the subunit of a stub,
+ -- which has been loaded already (see code below). In this case,
+ -- the library unit field of N points to the parent unit (which
+ -- is a compilation unit) and need not (and cannot!) be copied.
+
+ -- When the proper body of the stub is analyzed, thie library_unit
+ -- link is used to establish the proper context (see sem_ch10).
+
+ -- The other fields of a compilation unit are copied as usual
+
+ elsif Nkind (N) = N_Compilation_Unit then
+
+ -- This code can only be executed when not instantiating, because
+ -- in the copy made for an instantiation, the compilation unit
+ -- node has disappeared at the point that a stub is replaced by
+ -- its proper body.
+
+ pragma Assert (not Instantiating);
+
+ Set_Context_Items (New_N,
+ Copy_Generic_List (Context_Items (N), New_N));
+
+ Set_Unit (New_N,
+ Copy_Generic_Node (Unit (N), New_N, False));
+
+ Set_First_Inlined_Subprogram (New_N,
+ Copy_Generic_Node
+ (First_Inlined_Subprogram (N), New_N, False));
+
+ Set_Aux_Decls_Node (New_N,
+ Copy_Generic_Node (Aux_Decls_Node (N), New_N, False));
+
+ -- For an assignment node, the assignment is known to be semantically
+ -- legal if we are instantiating the template. This avoids incorrect
+ -- diagnostics in generated code.
+
+ elsif Nkind (N) = N_Assignment_Statement then
+
+ -- Copy name and expression fields in usual manner
+
+ Set_Name (New_N,
+ Copy_Generic_Node (Name (N), New_N, Instantiating));
+
+ Set_Expression (New_N,
+ Copy_Generic_Node (Expression (N), New_N, Instantiating));
+
+ if Instantiating then
+ Set_Assignment_OK (Name (New_N), True);
+ end if;
+
+ elsif Nkind (N) = N_Aggregate
+ or else Nkind (N) = N_Extension_Aggregate
+ then
+
+ if not Instantiating then
+ Set_Associated_Node (N, New_N);
+
+ else
+ if Present (Associated_Node (N))
+ and then Nkind (Associated_Node (N)) = Nkind (N)
+ then
+ -- In the generic the aggregate has some composite type.
+ -- If at the point of instantiation the type has a private
+ -- view, install the full view (and that of its ancestors,
+ -- if any).
+
+ declare
+ T : Entity_Id := (Etype (Associated_Node (New_N)));
+ Rt : Entity_Id;
+
+ begin
+ if Present (T)
+ and then Is_Private_Type (T)
+ then
+ Switch_View (T);
+ end if;
+
+ if Present (T)
+ and then Is_Tagged_Type (T)
+ and then Is_Derived_Type (T)
+ then
+ Rt := Root_Type (T);
+
+ loop
+ T := Etype (T);
+
+ if Is_Private_Type (T) then
+ Switch_View (T);
+ end if;
+
+ exit when T = Rt;
+ end loop;
+ end if;
+ end;
+ end if;
+ end if;
+
+ Set_Field1 (New_N, Copy_Generic_Descendant (Field1 (N)));
+ Set_Field2 (New_N, Copy_Generic_Descendant (Field2 (N)));
+ Set_Field3 (New_N, Copy_Generic_Descendant (Field3 (N)));
+ Set_Field5 (New_N, Copy_Generic_Descendant (Field5 (N)));
+
+ -- For a proper body, we must catch the case of a proper body that
+ -- replaces a stub. This represents the point at which a separate
+ -- compilation unit, and hence template file, may be referenced, so
+ -- we must make a new source instantiation entry for the template
+ -- of the subunit, and ensure that all nodes in the subunit are
+ -- adjusted using this new source instantiation entry.
+
+ elsif Nkind (N) in N_Proper_Body then
+
+ declare
+ Save_Adjustment : constant Sloc_Adjustment := S_Adjustment;
+
+ begin
+ if Instantiating and then Was_Originally_Stub (N) then
+ Create_Instantiation_Source
+ (Instantiation_Node, Defining_Entity (N), S_Adjustment);
+ end if;
+
+ -- Now copy the fields of the proper body, using the new
+ -- adjustment factor if one was needed as per test above.
+
+ Set_Field1 (New_N, Copy_Generic_Descendant (Field1 (N)));
+ Set_Field2 (New_N, Copy_Generic_Descendant (Field2 (N)));
+ Set_Field3 (New_N, Copy_Generic_Descendant (Field3 (N)));
+ Set_Field4 (New_N, Copy_Generic_Descendant (Field4 (N)));
+ Set_Field5 (New_N, Copy_Generic_Descendant (Field5 (N)));
+
+ -- Restore the original adjustment factor in case changed
+
+ S_Adjustment := Save_Adjustment;
+ end;
+
+ -- Don't copy Ident or Comment pragmas, since the comment belongs
+ -- to the generic unit, not to the instantiating unit.
+
+ elsif Nkind (N) = N_Pragma
+ and then Instantiating
+ then
+ declare
+ Prag_Id : constant Pragma_Id := Get_Pragma_Id (Chars (N));
+
+ begin
+ if Prag_Id = Pragma_Ident
+ or else Prag_Id = Pragma_Comment
+ then
+ New_N := Make_Null_Statement (Sloc (N));
+
+ else
+ Set_Field1 (New_N, Copy_Generic_Descendant (Field1 (N)));
+ Set_Field2 (New_N, Copy_Generic_Descendant (Field2 (N)));
+ Set_Field3 (New_N, Copy_Generic_Descendant (Field3 (N)));
+ Set_Field4 (New_N, Copy_Generic_Descendant (Field4 (N)));
+ Set_Field5 (New_N, Copy_Generic_Descendant (Field5 (N)));
+ end if;
+ end;
+
+ -- For the remaining nodes, copy recursively their descendants.
+
+ else
+ Set_Field1 (New_N, Copy_Generic_Descendant (Field1 (N)));
+ Set_Field2 (New_N, Copy_Generic_Descendant (Field2 (N)));
+ Set_Field3 (New_N, Copy_Generic_Descendant (Field3 (N)));
+ Set_Field4 (New_N, Copy_Generic_Descendant (Field4 (N)));
+ Set_Field5 (New_N, Copy_Generic_Descendant (Field5 (N)));
+
+ if Instantiating
+ and then Nkind (N) = N_Subprogram_Body
+ then
+ Set_Generic_Parent (Specification (New_N), N);
+ end if;
+ end if;
+
+ return New_N;
+ end Copy_Generic_Node;
+
+ ----------------------------
+ -- Denotes_Formal_Package --
+ ----------------------------
+
+ function Denotes_Formal_Package (Pack : Entity_Id) return Boolean is
+ Par : constant Entity_Id := Current_Instantiated_Parent.Act_Id;
+ Scop : Entity_Id := Scope (Pack);
+ E : Entity_Id;
+
+ begin
+ if Ekind (Scop) = E_Generic_Package
+ or else Nkind (Unit_Declaration_Node (Scop))
+ = N_Generic_Subprogram_Declaration
+ then
+ return True;
+
+ elsif Nkind (Parent (Pack)) = N_Formal_Package_Declaration then
+ return True;
+
+ elsif No (Par) then
+ return False;
+
+ else
+ -- Check whether this package is associated with a formal
+ -- package of the enclosing instantiation. Iterate over the
+ -- list of renamings.
+
+ E := First_Entity (Par);
+ while Present (E) loop
+
+ if Ekind (E) /= E_Package
+ or else Nkind (Parent (E)) /= N_Package_Renaming_Declaration
+ then
+ null;
+ elsif Renamed_Object (E) = Par then
+ return False;
+
+ elsif Renamed_Object (E) = Pack then
+ return True;
+ end if;
+
+ Next_Entity (E);
+ end loop;
+
+ return False;
+ end if;
+ end Denotes_Formal_Package;
+
+ -----------------
+ -- End_Generic --
+ -----------------
+
+ procedure End_Generic is
+ begin
+ -- ??? More things could be factored out in this
+ -- routine. Should probably be done at a later stage.
+
+ Inside_A_Generic := Generic_Flags.Table (Generic_Flags.Last);
+ Generic_Flags.Decrement_Last;
+
+ Expander_Mode_Restore;
+ end End_Generic;
+
+ ----------------------
+ -- Find_Actual_Type --
+ ----------------------
+
+ function Find_Actual_Type
+ (Typ : Entity_Id;
+ Gen_Scope : Entity_Id)
+ return Entity_Id
+ is
+ T : Entity_Id;
+
+ begin
+ if not Is_Child_Unit (Gen_Scope) then
+ return Get_Instance_Of (Typ);
+
+ elsif not Is_Generic_Type (Typ)
+ or else Scope (Typ) = Gen_Scope
+ then
+ return Get_Instance_Of (Typ);
+
+ else
+ T := Current_Entity (Typ);
+ while Present (T) loop
+ if In_Open_Scopes (Scope (T)) then
+ return T;
+ end if;
+
+ T := Homonym (T);
+ end loop;
+
+ return Typ;
+ end if;
+ end Find_Actual_Type;
+
+ ----------------------------
+ -- Freeze_Subprogram_Body --
+ ----------------------------
+
+ procedure Freeze_Subprogram_Body
+ (Inst_Node : Node_Id;
+ Gen_Body : Node_Id;
+ Pack_Id : Entity_Id)
+ is
+ F_Node : Node_Id;
+ Gen_Unit : constant Entity_Id := Entity (Name (Inst_Node));
+ Par : constant Entity_Id := Scope (Gen_Unit);
+ Enc_G : Entity_Id;
+ Enc_I : Node_Id;
+ E_G_Id : Entity_Id;
+
+ function Earlier (N1, N2 : Node_Id) return Boolean;
+ -- Yields True if N1 and N2 appear in the same compilation unit,
+ -- ignoring subunits, and if N1 is to the left of N2 in a left-to-right
+ -- traversal of the tree for the unit.
+
+ function Enclosing_Body (N : Node_Id) return Node_Id;
+ -- Find innermost package body that encloses the given node, and which
+ -- is not a compilation unit. Freeze nodes for the instance, or for its
+ -- enclosing body, may be inserted after the enclosing_body of the
+ -- generic unit.
+
+ function Package_Freeze_Node (B : Node_Id) return Node_Id;
+ -- Find entity for given package body, and locate or create a freeze
+ -- node for it.
+
+ function True_Parent (N : Node_Id) return Node_Id;
+ -- For a subunit, return parent of corresponding stub.
+
+ -------------
+ -- Earlier --
+ -------------
+
+ function Earlier (N1, N2 : Node_Id) return Boolean is
+ D1 : Integer := 0;
+ D2 : Integer := 0;
+ P1 : Node_Id := N1;
+ P2 : Node_Id := N2;
+
+ procedure Find_Depth (P : in out Node_Id; D : in out Integer);
+ -- Find distance from given node to enclosing compilation unit.
+
+ procedure Find_Depth (P : in out Node_Id; D : in out Integer) is
+ begin
+ while Present (P)
+ and then Nkind (P) /= N_Compilation_Unit
+ loop
+ P := True_Parent (P);
+ D := D + 1;
+ end loop;
+ end Find_Depth;
+
+ begin
+ Find_Depth (P1, D1);
+ Find_Depth (P2, D2);
+
+ if P1 /= P2 then
+ return False;
+ else
+ P1 := N1;
+ P2 := N2;
+ end if;
+
+ while D1 > D2 loop
+ P1 := True_Parent (P1);
+ D1 := D1 - 1;
+ end loop;
+
+ while D2 > D1 loop
+ P2 := True_Parent (P2);
+ D2 := D2 - 1;
+ end loop;
+
+ -- At this point P1 and P2 are at the same distance from the root.
+ -- We examine their parents until we find a common declarative
+ -- list, at which point we can establish their relative placement
+ -- by comparing their ultimate slocs. If we reach the root,
+ -- N1 and N2 do not descend from the same declarative list (e.g.
+ -- one is nested in the declarative part and the other is in a block
+ -- in the statement part) and the earlier one is already frozen.
+
+ while not Is_List_Member (P1)
+ or else not Is_List_Member (P2)
+ or else List_Containing (P1) /= List_Containing (P2)
+ loop
+ P1 := True_Parent (P1);
+ P2 := True_Parent (P2);
+
+ if Nkind (Parent (P1)) = N_Subunit then
+ P1 := Corresponding_Stub (Parent (P1));
+ end if;
+
+ if Nkind (Parent (P2)) = N_Subunit then
+ P2 := Corresponding_Stub (Parent (P2));
+ end if;
+
+ if P1 = P2 then
+ return False;
+ end if;
+ end loop;
+
+ return
+ Top_Level_Location (Sloc (P1)) < Top_Level_Location (Sloc (P2));
+ end Earlier;
+
+ --------------------
+ -- Enclosing_Body --
+ --------------------
+
+ function Enclosing_Body (N : Node_Id) return Node_Id is
+ P : Node_Id := Parent (N);
+
+ begin
+ while Present (P)
+ and then Nkind (Parent (P)) /= N_Compilation_Unit
+ loop
+ if Nkind (P) = N_Package_Body then
+
+ if Nkind (Parent (P)) = N_Subunit then
+ return Corresponding_Stub (Parent (P));
+ else
+ return P;
+ end if;
+ end if;
+
+ P := True_Parent (P);
+ end loop;
+
+ return Empty;
+ end Enclosing_Body;
+
+ -------------------------
+ -- Package_Freeze_Node --
+ -------------------------
+
+ function Package_Freeze_Node (B : Node_Id) return Node_Id is
+ Id : Entity_Id;
+
+ begin
+ if Nkind (B) = N_Package_Body then
+ Id := Corresponding_Spec (B);
+
+ else pragma Assert (Nkind (B) = N_Package_Body_Stub);
+ Id := Corresponding_Spec (Proper_Body (Unit (Library_Unit (B))));
+ end if;
+
+ Ensure_Freeze_Node (Id);
+ return Freeze_Node (Id);
+ end Package_Freeze_Node;
+
+ -----------------
+ -- True_Parent --
+ -----------------
+
+ function True_Parent (N : Node_Id) return Node_Id is
+ begin
+ if Nkind (Parent (N)) = N_Subunit then
+ return Parent (Corresponding_Stub (Parent (N)));
+ else
+ return Parent (N);
+ end if;
+ end True_Parent;
+
+ -- Start of processing of Freeze_Subprogram_Body
+
+ begin
+ -- If the instance and the generic body appear within the same
+ -- unit, and the instance preceeds the generic, the freeze node for
+ -- the instance must appear after that of the generic. If the generic
+ -- is nested within another instance I2, then current instance must
+ -- be frozen after I2. In both cases, the freeze nodes are those of
+ -- enclosing packages. Otherwise, the freeze node is placed at the end
+ -- of the current declarative part.
+
+ Enc_G := Enclosing_Body (Gen_Body);
+ Enc_I := Enclosing_Body (Inst_Node);
+ Ensure_Freeze_Node (Pack_Id);
+ F_Node := Freeze_Node (Pack_Id);
+
+ if Is_Generic_Instance (Par)
+ and then Present (Freeze_Node (Par))
+ and then
+ In_Same_Declarative_Part (Freeze_Node (Par), Inst_Node)
+ then
+ Insert_After (Freeze_Node (Par), F_Node);
+
+ -- The body enclosing the instance should be frozen after the body
+ -- that includes the generic, because the body of the instance may
+ -- make references to entities therein. If the two are not in the
+ -- same declarative part, or if the one enclosing the instance is
+ -- frozen already, freeze the instance at the end of the current
+ -- declarative part.
+
+ elsif Is_Generic_Instance (Par)
+ and then Present (Freeze_Node (Par))
+ and then Present (Enc_I)
+ then
+ if In_Same_Declarative_Part (Freeze_Node (Par), Enc_I)
+ or else
+ (Nkind (Enc_I) = N_Package_Body
+ and then
+ In_Same_Declarative_Part (Freeze_Node (Par), Parent (Enc_I)))
+ then
+
+ -- The enclosing package may contain several instances. Rather
+ -- than computing the earliest point at which to insert its
+ -- freeze node, we place it at the end of the declarative part
+ -- of the parent of the generic.
+
+ Insert_After_Last_Decl
+ (Freeze_Node (Par), Package_Freeze_Node (Enc_I));
+ end if;
+
+ Insert_After_Last_Decl (Inst_Node, F_Node);
+
+ elsif Present (Enc_G)
+ and then Present (Enc_I)
+ and then Enc_G /= Enc_I
+ and then Earlier (Inst_Node, Gen_Body)
+ then
+ if Nkind (Enc_G) = N_Package_Body then
+ E_G_Id := Corresponding_Spec (Enc_G);
+ else pragma Assert (Nkind (Enc_G) = N_Package_Body_Stub);
+ E_G_Id :=
+ Corresponding_Spec (Proper_Body (Unit (Library_Unit (Enc_G))));
+ end if;
+
+ -- Freeze package that encloses instance, and place node after
+ -- package that encloses generic. If enclosing package is already
+ -- frozen we have to assume it is at the proper place. This may
+ -- be a potential ABE that requires dynamic checking.
+
+ Insert_After_Last_Decl (Enc_G, Package_Freeze_Node (Enc_I));
+
+ -- Freeze enclosing subunit before instance
+
+ Ensure_Freeze_Node (E_G_Id);
+
+ if not Is_List_Member (Freeze_Node (E_G_Id)) then
+ Insert_After (Enc_G, Freeze_Node (E_G_Id));
+ end if;
+
+ Insert_After_Last_Decl (Inst_Node, F_Node);
+
+ else
+
+ -- If none of the above, insert freeze node at the end of the
+ -- current declarative part.
+
+ Insert_After_Last_Decl (Inst_Node, F_Node);
+ end if;
+ end Freeze_Subprogram_Body;
+
+ ----------------
+ -- Get_Gen_Id --
+ ----------------
+
+ function Get_Gen_Id (E : Assoc_Ptr) return Entity_Id is
+ begin
+ return Generic_Renamings.Table (E).Gen_Id;
+ end Get_Gen_Id;
+
+ ---------------------
+ -- Get_Instance_Of --
+ ---------------------
+
+ function Get_Instance_Of (A : Entity_Id) return Entity_Id is
+ Res : Assoc_Ptr := Generic_Renamings_HTable.Get (A);
+ begin
+ if Res /= Assoc_Null then
+ return Generic_Renamings.Table (Res).Act_Id;
+ else
+ -- On exit, entity is not instantiated: not a generic parameter,
+ -- or else parameter of an inner generic unit.
+
+ return A;
+ end if;
+ end Get_Instance_Of;
+
+ ------------------------------------
+ -- Get_Package_Instantiation_Node --
+ ------------------------------------
+
+ function Get_Package_Instantiation_Node (A : Entity_Id) return Node_Id is
+ Decl : Node_Id := Unit_Declaration_Node (A);
+ Inst : Node_Id;
+
+ begin
+ -- If the instantiation is a compilation unit that does not need a
+ -- body then the instantiation node has been rewritten as a package
+ -- declaration for the instance, and we return the original node.
+ -- If it is a compilation unit and the instance node has not been
+ -- rewritten, then it is still the unit of the compilation.
+ -- Otherwise the instantiation node appears after the declaration.
+ -- If the entity is a formal package, the declaration may have been
+ -- rewritten as a generic declaration (in the case of a formal with a
+ -- box) or left as a formal package declaration if it has actuals, and
+ -- is found with a forward search.
+
+ if Nkind (Parent (Decl)) = N_Compilation_Unit then
+ if Nkind (Original_Node (Decl)) = N_Package_Instantiation then
+ return Original_Node (Decl);
+ else
+ return Unit (Parent (Decl));
+ end if;
+
+ elsif Nkind (Decl) = N_Generic_Package_Declaration
+ and then Nkind (Original_Node (Decl)) = N_Formal_Package_Declaration
+ then
+ return Original_Node (Decl);
+
+ else
+ Inst := Next (Decl);
+ while Nkind (Inst) /= N_Package_Instantiation
+ and then Nkind (Inst) /= N_Formal_Package_Declaration
+ loop
+ Next (Inst);
+ end loop;
+
+ return Inst;
+ end if;
+ end Get_Package_Instantiation_Node;
+
+ ------------------------
+ -- Has_Been_Exchanged --
+ ------------------------
+
+ function Has_Been_Exchanged (E : Entity_Id) return Boolean is
+ Next : Elmt_Id := First_Elmt (Exchanged_Views);
+
+ begin
+ while Present (Next) loop
+ if Full_View (Node (Next)) = E then
+ return True;
+ end if;
+
+ Next_Elmt (Next);
+ end loop;
+
+ return False;
+ end Has_Been_Exchanged;
+
+ ----------
+ -- Hash --
+ ----------
+
+ function Hash (F : Entity_Id) return HTable_Range is
+ begin
+ return HTable_Range (F mod HTable_Size);
+ end Hash;
+
+ ------------------------
+ -- Hide_Current_Scope --
+ ------------------------
+
+ procedure Hide_Current_Scope is
+ C : constant Entity_Id := Current_Scope;
+ E : Entity_Id;
+
+ begin
+ Set_Is_Hidden_Open_Scope (C);
+ E := First_Entity (C);
+
+ while Present (E) loop
+ if Is_Immediately_Visible (E) then
+ Set_Is_Immediately_Visible (E, False);
+ Append_Elmt (E, Hidden_Entities);
+ end if;
+
+ Next_Entity (E);
+ end loop;
+
+ -- Make the scope name invisible as well. This is necessary, but
+ -- might conflict with calls to Rtsfind later on, in case the scope
+ -- is a predefined one. There is no clean solution to this problem, so
+ -- for now we depend on the user not redefining Standard itself in one
+ -- of the parent units.
+
+ if Is_Immediately_Visible (C)
+ and then C /= Standard_Standard
+ then
+ Set_Is_Immediately_Visible (C, False);
+ Append_Elmt (C, Hidden_Entities);
+ end if;
+
+ end Hide_Current_Scope;
+
+ ------------------------------
+ -- In_Same_Declarative_Part --
+ ------------------------------
+
+ function In_Same_Declarative_Part
+ (F_Node : Node_Id;
+ Inst : Node_Id)
+ return Boolean
+ is
+ Decls : Node_Id := Parent (F_Node);
+ Nod : Node_Id := Parent (Inst);
+
+ begin
+ while Present (Nod) loop
+ if Nod = Decls then
+ return True;
+
+ elsif Nkind (Nod) = N_Subprogram_Body
+ or else Nkind (Nod) = N_Package_Body
+ or else Nkind (Nod) = N_Task_Body
+ or else Nkind (Nod) = N_Protected_Body
+ or else Nkind (Nod) = N_Block_Statement
+ then
+ return False;
+
+ elsif Nkind (Nod) = N_Subunit then
+ Nod := Corresponding_Stub (Nod);
+
+ elsif Nkind (Nod) = N_Compilation_Unit then
+ return False;
+ else
+ Nod := Parent (Nod);
+ end if;
+ end loop;
+
+ return False;
+ end In_Same_Declarative_Part;
+
+ ---------------------
+ -- Inherit_Context --
+ ---------------------
+
+ procedure Inherit_Context (Gen_Decl : Node_Id; Inst : Node_Id) is
+ Current_Context : List_Id;
+ Current_Unit : Node_Id;
+ Item : Node_Id;
+ New_I : Node_Id;
+
+ begin
+ if Nkind (Parent (Gen_Decl)) = N_Compilation_Unit then
+
+ -- The inherited context is attached to the enclosing compilation
+ -- unit. This is either the main unit, or the declaration for the
+ -- main unit (in case the instantation appears within the package
+ -- declaration and the main unit is its body).
+
+ Current_Unit := Parent (Inst);
+ while Present (Current_Unit)
+ and then Nkind (Current_Unit) /= N_Compilation_Unit
+ loop
+ Current_Unit := Parent (Current_Unit);
+ end loop;
+
+ Current_Context := Context_Items (Current_Unit);
+
+ Item := First (Context_Items (Parent (Gen_Decl)));
+ while Present (Item) loop
+ if Nkind (Item) = N_With_Clause then
+ New_I := New_Copy (Item);
+ Set_Implicit_With (New_I, True);
+ Append (New_I, Current_Context);
+ end if;
+
+ Next (Item);
+ end loop;
+ end if;
+ end Inherit_Context;
+
+ ----------------------------
+ -- Insert_After_Last_Decl --
+ ----------------------------
+
+ procedure Insert_After_Last_Decl (N : Node_Id; F_Node : Node_Id) is
+ L : List_Id := List_Containing (N);
+ P : Node_Id := Parent (L);
+
+ begin
+ if not Is_List_Member (F_Node) then
+ if Nkind (P) = N_Package_Specification
+ and then L = Visible_Declarations (P)
+ and then Present (Private_Declarations (P))
+ and then not Is_Empty_List (Private_Declarations (P))
+ then
+ L := Private_Declarations (P);
+ end if;
+
+ Insert_After (Last (L), F_Node);
+ end if;
+ end Insert_After_Last_Decl;
+
+ ------------------
+ -- Install_Body --
+ ------------------
+
+ procedure Install_Body
+ (Act_Body : Node_Id;
+ N : Node_Id;
+ Gen_Body : Node_Id;
+ Gen_Decl : Node_Id)
+ is
+ Act_Id : Entity_Id := Corresponding_Spec (Act_Body);
+ Act_Unit : constant Node_Id :=
+ Unit (Cunit (Get_Source_Unit (N)));
+ F_Node : Node_Id;
+ Gen_Id : Entity_Id := Corresponding_Spec (Gen_Body);
+ Gen_Unit : constant Node_Id :=
+ Unit (Cunit (Get_Source_Unit (Gen_Decl)));
+ Orig_Body : Node_Id := Gen_Body;
+ Par : constant Entity_Id := Scope (Gen_Id);
+ Body_Unit : Node_Id;
+
+ Must_Delay : Boolean;
+
+ function Enclosing_Subp (Id : Entity_Id) return Entity_Id;
+ -- Find subprogram (if any) that encloses instance and/or generic body.
+
+ function True_Sloc (N : Node_Id) return Source_Ptr;
+ -- If the instance is nested inside a generic unit, the Sloc of the
+ -- instance indicates the place of the original definition, not the
+ -- point of the current enclosing instance. Pending a better usage of
+ -- Slocs to indicate instantiation places, we determine the place of
+ -- origin of a node by finding the maximum sloc of any ancestor node.
+ -- Why is this not equivalent fo Top_Level_Location ???
+
+ function Enclosing_Subp (Id : Entity_Id) return Entity_Id is
+ Scop : Entity_Id := Scope (Id);
+
+ begin
+ while Scop /= Standard_Standard
+ and then not Is_Overloadable (Scop)
+ loop
+ Scop := Scope (Scop);
+ end loop;
+
+ return Scop;
+ end Enclosing_Subp;
+
+ function True_Sloc (N : Node_Id) return Source_Ptr is
+ Res : Source_Ptr;
+ N1 : Node_Id;
+
+ begin
+ Res := Sloc (N);
+ N1 := N;
+ while Present (N1) and then N1 /= Act_Unit loop
+ if Sloc (N1) > Res then
+ Res := Sloc (N1);
+ end if;
+
+ N1 := Parent (N1);
+ end loop;
+
+ return Res;
+ end True_Sloc;
+
+ -- Start of processing for Install_Body
+
+ begin
+ -- If the body is a subunit, the freeze point is the corresponding
+ -- stub in the current compilation, not the subunit itself.
+
+ if Nkind (Parent (Gen_Body)) = N_Subunit then
+ Orig_Body := Corresponding_Stub (Parent (Gen_Body));
+ else
+ Orig_Body := Gen_Body;
+ end if;
+
+ Body_Unit := Unit (Cunit (Get_Source_Unit (Orig_Body)));
+
+ -- If the instantiation and the generic definition appear in the
+ -- same package declaration, this is an early instantiation.
+ -- If they appear in the same declarative part, it is an early
+ -- instantiation only if the generic body appears textually later,
+ -- and the generic body is also in the main unit.
+
+ -- If instance is nested within a subprogram, and the generic body is
+ -- not, the instance is delayed because the enclosing body is. If
+ -- instance and body are within the same scope, or the same sub-
+ -- program body, indicate explicitly that the instance is delayed.
+
+ Must_Delay :=
+ (Gen_Unit = Act_Unit
+ and then ((Nkind (Gen_Unit) = N_Package_Declaration)
+ or else Nkind (Gen_Unit) = N_Generic_Package_Declaration
+ or else (Gen_Unit = Body_Unit
+ and then True_Sloc (N) < Sloc (Orig_Body)))
+ and then Is_In_Main_Unit (Gen_Unit)
+ and then (Scope (Act_Id) = Scope (Gen_Id)
+ or else
+ Enclosing_Subp (Act_Id) = Enclosing_Subp (Gen_Id)));
+
+ -- If this is an early instantiation, the freeze node is placed after
+ -- the generic body. Otherwise, if the generic appears in an instance,
+ -- we cannot freeze the current instance until the outer one is frozen.
+ -- This is only relevant if the current instance is nested within some
+ -- inner scope not itself within the outer instance. If this scope is
+ -- a package body in the same declarative part as the outer instance,
+ -- then that body needs to be frozen after the outer instance. Finally,
+ -- if no delay is needed, we place the freeze node at the end of the
+ -- current declarative part.
+
+ if Expander_Active then
+ Ensure_Freeze_Node (Act_Id);
+ F_Node := Freeze_Node (Act_Id);
+
+ if Must_Delay then
+ Insert_After (Orig_Body, F_Node);
+
+ elsif Is_Generic_Instance (Par)
+ and then Present (Freeze_Node (Par))
+ and then Scope (Act_Id) /= Par
+ then
+ -- Freeze instance of inner generic after instance of enclosing
+ -- generic.
+
+ if In_Same_Declarative_Part (Freeze_Node (Par), N) then
+ Insert_After (Freeze_Node (Par), F_Node);
+
+ -- Freeze package enclosing instance of inner generic after
+ -- instance of enclosing generic.
+
+ elsif Nkind (Parent (N)) = N_Package_Body
+ and then In_Same_Declarative_Part (Freeze_Node (Par), Parent (N))
+ then
+
+ declare
+ Enclosing : Entity_Id := Corresponding_Spec (Parent (N));
+
+ begin
+ Insert_After_Last_Decl (N, F_Node);
+ Ensure_Freeze_Node (Enclosing);
+
+ if not Is_List_Member (Freeze_Node (Enclosing)) then
+ Insert_After (Freeze_Node (Par), Freeze_Node (Enclosing));
+ end if;
+ end;
+
+ else
+ Insert_After_Last_Decl (N, F_Node);
+ end if;
+
+ else
+ Insert_After_Last_Decl (N, F_Node);
+ end if;
+ end if;
+
+ Set_Is_Frozen (Act_Id);
+ Insert_Before (N, Act_Body);
+ Mark_Rewrite_Insertion (Act_Body);
+ end Install_Body;
+
+ --------------------
+ -- Install_Parent --
+ --------------------
+
+ procedure Install_Parent (P : Entity_Id; In_Body : Boolean := False) is
+ S : Entity_Id := Current_Scope;
+ Inst_Par : Entity_Id;
+ First_Par : Entity_Id;
+ Inst_Node : Node_Id;
+ Gen_Par : Entity_Id;
+ First_Gen : Entity_Id;
+ Ancestors : Elist_Id := New_Elmt_List;
+ Elmt : Elmt_Id;
+
+ procedure Install_Formal_Packages (Par : Entity_Id);
+ -- If any of the formals of the parent are formal packages with box,
+ -- their formal parts are visible in the parent and thus in the child
+ -- unit as well. Analogous to what is done in Check_Generic_Actuals
+ -- for the unit itself.
+
+ procedure Install_Noninstance_Specs (Par : Entity_Id);
+ -- Install the scopes of noninstance parent units ending with Par.
+
+ procedure Install_Spec (Par : Entity_Id);
+ -- The child unit is within the declarative part of the parent, so
+ -- the declarations within the parent are immediately visible.
+
+ -----------------------------
+ -- Install_Formal_Packages --
+ -----------------------------
+
+ procedure Install_Formal_Packages (Par : Entity_Id) is
+ E : Entity_Id;
+
+ begin
+ E := First_Entity (Par);
+
+ while Present (E) loop
+
+ if Ekind (E) = E_Package
+ and then Nkind (Parent (E)) = N_Package_Renaming_Declaration
+ then
+ -- If this is the renaming for the parent instance, done.
+
+ if Renamed_Object (E) = Par then
+ exit;
+
+ -- The visibility of a formal of an enclosing generic is
+ -- already correct.
+
+ elsif Denotes_Formal_Package (E) then
+ null;
+
+ elsif Present (Associated_Formal_Package (E))
+ and then Box_Present (Parent (Associated_Formal_Package (E)))
+ then
+ Check_Generic_Actuals (Renamed_Object (E), True);
+ Set_Is_Hidden (E, False);
+ end if;
+ end if;
+
+ Next_Entity (E);
+ end loop;
+ end Install_Formal_Packages;
+
+ -------------------------------
+ -- Install_Noninstance_Specs --
+ -------------------------------
+
+ procedure Install_Noninstance_Specs (Par : Entity_Id) is
+ begin
+ if Present (Par)
+ and then Par /= Standard_Standard
+ and then not In_Open_Scopes (Par)
+ then
+ Install_Noninstance_Specs (Scope (Par));
+ Install_Spec (Par);
+ end if;
+ end Install_Noninstance_Specs;
+
+ ------------------
+ -- Install_Spec --
+ ------------------
+
+ procedure Install_Spec (Par : Entity_Id) is
+ Spec : constant Node_Id :=
+ Specification (Unit_Declaration_Node (Par));
+
+ begin
+ New_Scope (Par);
+ Set_Is_Immediately_Visible (Par);
+ Install_Visible_Declarations (Par);
+ Install_Private_Declarations (Par);
+ Set_Use (Visible_Declarations (Spec));
+ Set_Use (Private_Declarations (Spec));
+ end Install_Spec;
+
+ -- Start of processing for Install_Parent
+
+ begin
+ -- We need to install the parent instance to compile the instantiation
+ -- of the child, but the child instance must appear in the current
+ -- scope. Given that we cannot place the parent above the current
+ -- scope in the scope stack, we duplicate the current scope and unstack
+ -- both after the instantiation is complete.
+
+ -- If the parent is itself the instantiation of a child unit, we must
+ -- also stack the instantiation of its parent, and so on. Each such
+ -- ancestor is the prefix of the name in a prior instantiation.
+
+ -- If this is a nested instance, the parent unit itself resolves to
+ -- a renaming of the parent instance, whose declaration we need.
+
+ -- Finally, the parent may be a generic (not an instance) when the
+ -- child unit appears as a formal package.
+
+ Inst_Par := P;
+
+ if Present (Renamed_Entity (Inst_Par)) then
+ Inst_Par := Renamed_Entity (Inst_Par);
+ end if;
+
+ First_Par := Inst_Par;
+
+ Gen_Par :=
+ Generic_Parent (Specification (Unit_Declaration_Node (Inst_Par)));
+
+ First_Gen := Gen_Par;
+
+ while Present (Gen_Par)
+ and then Is_Child_Unit (Gen_Par)
+ loop
+ -- Load grandparent instance as well.
+
+ Inst_Node := Get_Package_Instantiation_Node (Inst_Par);
+
+ if Nkind (Name (Inst_Node)) = N_Expanded_Name then
+ Inst_Par := Entity (Prefix (Name (Inst_Node)));
+
+ if Present (Renamed_Entity (Inst_Par)) then
+ Inst_Par := Renamed_Entity (Inst_Par);
+ end if;
+
+ Gen_Par :=
+ Generic_Parent
+ (Specification (Unit_Declaration_Node (Inst_Par)));
+
+ if Present (Gen_Par) then
+ Prepend_Elmt (Inst_Par, Ancestors);
+
+ else
+ -- Parent is not the name of an instantiation.
+
+ Install_Noninstance_Specs (Inst_Par);
+
+ exit;
+ end if;
+
+ else
+ -- Previous error.
+
+ exit;
+ end if;
+ end loop;
+
+ if Present (First_Gen) then
+ Append_Elmt (First_Par, Ancestors);
+
+ else
+ Install_Noninstance_Specs (First_Par);
+ end if;
+
+ if not Is_Empty_Elmt_List (Ancestors) then
+ Elmt := First_Elmt (Ancestors);
+
+ while Present (Elmt) loop
+ Install_Spec (Node (Elmt));
+ Install_Formal_Packages (Node (Elmt));
+
+ Next_Elmt (Elmt);
+ end loop;
+ end if;
+
+ if not In_Body then
+ New_Scope (S);
+ end if;
+ end Install_Parent;
+
+ --------------------------------
+ -- Instantiate_Formal_Package --
+ --------------------------------
+
+ function Instantiate_Formal_Package
+ (Formal : Node_Id;
+ Actual : Node_Id;
+ Analyzed_Formal : Node_Id)
+ return List_Id
+ is
+ Loc : constant Source_Ptr := Sloc (Actual);
+ Actual_Pack : Entity_Id;
+ Formal_Pack : Entity_Id;
+ Gen_Parent : Entity_Id;
+ Decls : List_Id;
+ Nod : Node_Id;
+ Parent_Spec : Node_Id;
+
+ function Formal_Entity
+ (F : Node_Id;
+ Act_Ent : Entity_Id)
+ return Entity_Id;
+ -- Returns the entity associated with the given formal F. In the
+ -- case where F is a formal package, this function will iterate
+ -- through all of F's formals and enter map associations from the
+ -- actuals occurring in the formal package's corresponding actual
+ -- package (obtained via Act_Ent) to the formal package's formal
+ -- parameters. This function is called recursively for arbitrary
+ -- levels of formal packages.
+
+ procedure Map_Entities (Form : Entity_Id; Act : Entity_Id);
+ -- Within the generic part, entities in the formal package are
+ -- visible. To validate subsequent type declarations, indicate
+ -- the correspondence betwen the entities in the analyzed formal,
+ -- and the entities in the actual package. There are three packages
+ -- involved in the instantiation of a formal package: the parent
+ -- generic P1 which appears in the generic declaration, the fake
+ -- instantiation P2 which appears in the analyzed generic, and whose
+ -- visible entities may be used in subsequent formals, and the actual
+ -- P3 in the instance. To validate subsequent formals, me indicate
+ -- that the entities in P2 are mapped into those of P3. The mapping of
+ -- entities has to be done recursively for nested packages.
+
+ -------------------
+ -- Formal_Entity --
+ -------------------
+
+ function Formal_Entity
+ (F : Node_Id;
+ Act_Ent : Entity_Id)
+ return Entity_Id
+ is
+ Orig_Node : Node_Id := F;
+
+ begin
+ case Nkind (F) is
+ when N_Formal_Object_Declaration =>
+ return Defining_Identifier (F);
+
+ when N_Formal_Type_Declaration =>
+ return Defining_Identifier (F);
+
+ when N_Formal_Subprogram_Declaration =>
+ return Defining_Unit_Name (Specification (F));
+
+ when N_Formal_Package_Declaration |
+ N_Generic_Package_Declaration =>
+
+ if Nkind (F) = N_Generic_Package_Declaration then
+ Orig_Node := Original_Node (F);
+ end if;
+
+ declare
+ Actual_Ent : Entity_Id := First_Entity (Act_Ent);
+ Formal_Node : Node_Id;
+ Formal_Ent : Entity_Id;
+
+ Gen_Decl : Node_Id :=
+ Unit_Declaration_Node
+ (Entity (Name (Orig_Node)));
+ Formals : List_Id :=
+ Generic_Formal_Declarations (Gen_Decl);
+
+ begin
+ if Present (Formals) then
+ Formal_Node := First_Non_Pragma (Formals);
+ else
+ Formal_Node := Empty;
+ end if;
+
+ -- As for the loop further below, this loop is making
+ -- a probably invalid assumption about the correspondence
+ -- between formals and actuals and eventually needs to
+ -- corrected to account for cases where the formals are
+ -- not synchronized and in one-to-one correspondence
+ -- with actuals. ???
+
+ -- What is certain is that for a legal program the
+ -- presence of actual entities guarantees the existing
+ -- of formal ones.
+
+ while Present (Actual_Ent)
+ and then Present (Formal_Node)
+ and then Actual_Ent /= First_Private_Entity (Act_Ent)
+ loop
+ -- ??? Are the following calls also needed here:
+ --
+ -- Set_Is_Hidden (Actual_Ent, False);
+ -- Set_Is_Potentially_Use_Visible
+ -- (Actual_Ent, In_Use (Act_Ent));
+
+ Formal_Ent := Formal_Entity (Formal_Node, Actual_Ent);
+ if Present (Formal_Ent) then
+ Set_Instance_Of (Formal_Ent, Actual_Ent);
+ end if;
+ Next_Non_Pragma (Formal_Node);
+
+ Next_Entity (Actual_Ent);
+ end loop;
+ end;
+
+ return Defining_Identifier (Orig_Node);
+
+ when N_Use_Package_Clause =>
+ return Empty;
+
+ when N_Use_Type_Clause =>
+ return Empty;
+
+ -- We return Empty for all other encountered forms of
+ -- declarations because there are some cases of nonformal
+ -- sorts of declaration that can show up (e.g., when array
+ -- formals are present). Since it's not clear what kinds
+ -- can appear among the formals, we won't raise failure here.
+
+ when others =>
+ return Empty;
+
+ end case;
+ end Formal_Entity;
+
+ ------------------
+ -- Map_Entities --
+ ------------------
+
+ procedure Map_Entities (Form : Entity_Id; Act : Entity_Id) is
+ E1 : Entity_Id;
+ E2 : Entity_Id;
+
+ begin
+ Set_Instance_Of (Form, Act);
+
+ E1 := First_Entity (Form);
+ E2 := First_Entity (Act);
+ while Present (E1)
+ and then E1 /= First_Private_Entity (Form)
+ loop
+ if not Is_Internal (E1)
+ and then not Is_Class_Wide_Type (E1)
+ then
+
+ while Present (E2)
+ and then Chars (E2) /= Chars (E1)
+ loop
+ Next_Entity (E2);
+ end loop;
+
+ if No (E2) then
+ exit;
+ else
+ Set_Instance_Of (E1, E2);
+
+ if Is_Type (E1)
+ and then Is_Tagged_Type (E2)
+ then
+ Set_Instance_Of
+ (Class_Wide_Type (E1), Class_Wide_Type (E2));
+ end if;
+
+ if Ekind (E1) = E_Package
+ and then No (Renamed_Object (E1))
+ then
+ Map_Entities (E1, E2);
+ end if;
+ end if;
+ end if;
+
+ Next_Entity (E1);
+ end loop;
+ end Map_Entities;
+
+ -- Start of processing for Instantiate_Formal_Package
+
+ begin
+ Analyze (Actual);
+
+ if not Is_Entity_Name (Actual)
+ or else Ekind (Entity (Actual)) /= E_Package
+ then
+ Error_Msg_N
+ ("expect package instance to instantiate formal", Actual);
+ Abandon_Instantiation (Actual);
+ raise Program_Error;
+
+ else
+ Actual_Pack := Entity (Actual);
+ Set_Is_Instantiated (Actual_Pack);
+
+ -- The actual may be a renamed package, or an outer generic
+ -- formal package whose instantiation is converted into a renaming.
+
+ if Present (Renamed_Object (Actual_Pack)) then
+ Actual_Pack := Renamed_Object (Actual_Pack);
+ end if;
+
+ if Nkind (Analyzed_Formal) = N_Formal_Package_Declaration then
+ Gen_Parent := Get_Instance_Of (Entity (Name (Analyzed_Formal)));
+ Formal_Pack := Defining_Identifier (Analyzed_Formal);
+ else
+ Gen_Parent :=
+ Generic_Parent (Specification (Analyzed_Formal));
+ Formal_Pack :=
+ Defining_Unit_Name (Specification (Analyzed_Formal));
+ end if;
+
+ if Nkind (Parent (Actual_Pack)) = N_Defining_Program_Unit_Name then
+ Parent_Spec := Specification (Unit_Declaration_Node (Actual_Pack));
+ else
+ Parent_Spec := Parent (Actual_Pack);
+ end if;
+
+ if Gen_Parent = Any_Id then
+ Error_Msg_N
+ ("previous error in declaration of formal package", Actual);
+ Abandon_Instantiation (Actual);
+
+ elsif
+ Generic_Parent (Parent_Spec) /= Get_Instance_Of (Gen_Parent)
+ then
+ Error_Msg_NE
+ ("actual parameter must be instance of&", Actual, Gen_Parent);
+ Abandon_Instantiation (Actual);
+ end if;
+
+ Set_Instance_Of (Defining_Identifier (Formal), Actual_Pack);
+ Map_Entities (Formal_Pack, Actual_Pack);
+
+ Nod :=
+ Make_Package_Renaming_Declaration (Loc,
+ Defining_Unit_Name => New_Copy (Defining_Identifier (Formal)),
+ Name => New_Reference_To (Actual_Pack, Loc));
+
+ Set_Associated_Formal_Package (Defining_Unit_Name (Nod),
+ Defining_Identifier (Formal));
+ Decls := New_List (Nod);
+
+ -- If the formal F has a box, then the generic declarations are
+ -- visible in the generic G. In an instance of G, the corresponding
+ -- entities in the actual for F (which are the actuals for the
+ -- instantiation of the generic that F denotes) must also be made
+ -- visible for analysis of the current instance. On exit from the
+ -- current instance, those entities are made private again. If the
+ -- actual is currently in use, these entities are also use-visible.
+
+ -- The loop through the actual entities also steps through the
+ -- formal entities and enters associations from formals to
+ -- actuals into the renaming map. This is necessary to properly
+ -- handle checking of actual parameter associations for later
+ -- formals that depend on actuals declared in the formal package.
+ --
+ -- This processing needs to be reviewed at some point because
+ -- it is probably not entirely correct as written. For example
+ -- there may not be a strict one-to-one correspondence between
+ -- actuals and formals and this loop is currently assuming that
+ -- there is. ???
+
+ if Box_Present (Formal) then
+ declare
+ Actual_Ent : Entity_Id := First_Entity (Actual_Pack);
+ Formal_Node : Node_Id := Empty;
+ Formal_Ent : Entity_Id;
+ Gen_Decl : Node_Id := Unit_Declaration_Node (Gen_Parent);
+ Formals : List_Id := Generic_Formal_Declarations (Gen_Decl);
+
+ begin
+ if Present (Formals) then
+ Formal_Node := First_Non_Pragma (Formals);
+ end if;
+
+ while Present (Actual_Ent)
+ and then Actual_Ent /= First_Private_Entity (Actual_Pack)
+ loop
+ Set_Is_Hidden (Actual_Ent, False);
+ Set_Is_Potentially_Use_Visible
+ (Actual_Ent, In_Use (Actual_Pack));
+
+ if Present (Formal_Node) then
+ Formal_Ent := Formal_Entity (Formal_Node, Actual_Ent);
+
+ if Present (Formal_Ent) then
+ Set_Instance_Of (Formal_Ent, Actual_Ent);
+ end if;
+
+ Next_Non_Pragma (Formal_Node);
+ end if;
+
+ Next_Entity (Actual_Ent);
+ end loop;
+ end;
+
+ -- If the formal is not declared with a box, reanalyze it as
+ -- an instantiation, to verify the matching rules of 12.7. The
+ -- actual checks are performed after the generic associations
+ -- been analyzed.
+
+ else
+ declare
+ I_Pack : constant Entity_Id :=
+ Make_Defining_Identifier (Sloc (Actual),
+ Chars => New_Internal_Name ('P'));
+
+ begin
+ Set_Is_Internal (I_Pack);
+
+ Append_To (Decls,
+ Make_Package_Instantiation (Sloc (Actual),
+ Defining_Unit_Name => I_Pack,
+ Name => New_Occurrence_Of (Gen_Parent, Sloc (Actual)),
+ Generic_Associations =>
+ Generic_Associations (Formal)));
+ end;
+ end if;
+
+ return Decls;
+ end if;
+
+ end Instantiate_Formal_Package;
+
+ -----------------------------------
+ -- Instantiate_Formal_Subprogram --
+ -----------------------------------
+
+ function Instantiate_Formal_Subprogram
+ (Formal : Node_Id;
+ Actual : Node_Id;
+ Analyzed_Formal : Node_Id)
+ return Node_Id
+ is
+ Loc : Source_Ptr := Sloc (Instantiation_Node);
+ Formal_Sub : constant Entity_Id :=
+ Defining_Unit_Name (Specification (Formal));
+ Analyzed_S : constant Entity_Id :=
+ Defining_Unit_Name (Specification (Analyzed_Formal));
+ Decl_Node : Node_Id;
+ Nam : Node_Id;
+ New_Spec : Node_Id;
+
+ function From_Parent_Scope (Subp : Entity_Id) return Boolean;
+ -- If the generic is a child unit, the parent has been installed
+ -- on the scope stack, but a default subprogram cannot resolve to
+ -- something on the parent because that parent is not really part
+ -- of the visible context (it is there to resolve explicit local
+ -- entities). If the default has resolved in this way, we remove
+ -- the entity from immediate visibility and analyze the node again
+ -- to emit an error message or find another visible candidate.
+
+ procedure Valid_Actual_Subprogram (Act : Node_Id);
+ -- Perform legality check and raise exception on failure.
+
+ -----------------------
+ -- From_Parent_Scope --
+ -----------------------
+
+ function From_Parent_Scope (Subp : Entity_Id) return Boolean is
+ Gen_Scope : Node_Id := Scope (Analyzed_S);
+
+ begin
+ while Present (Gen_Scope)
+ and then Is_Child_Unit (Gen_Scope)
+ loop
+ if Scope (Subp) = Scope (Gen_Scope) then
+ return True;
+ end if;
+
+ Gen_Scope := Scope (Gen_Scope);
+ end loop;
+
+ return False;
+ end From_Parent_Scope;
+
+ -----------------------------
+ -- Valid_Actual_Subprogram --
+ -----------------------------
+
+ procedure Valid_Actual_Subprogram (Act : Node_Id) is
+ begin
+ if not Is_Entity_Name (Act)
+ and then Nkind (Act) /= N_Operator_Symbol
+ and then Nkind (Act) /= N_Attribute_Reference
+ and then Nkind (Act) /= N_Selected_Component
+ and then Nkind (Act) /= N_Indexed_Component
+ and then Nkind (Act) /= N_Character_Literal
+ and then Nkind (Act) /= N_Explicit_Dereference
+ then
+ if Etype (Act) /= Any_Type then
+ Error_Msg_NE
+ ("Expect subprogram name to instantiate &",
+ Instantiation_Node, Formal_Sub);
+ end if;
+
+ -- In any case, instantiation cannot continue.
+
+ Abandon_Instantiation (Instantiation_Node);
+ end if;
+ end Valid_Actual_Subprogram;
+
+ -- Start of processing for Instantiate_Formal_Subprogram
+
+ begin
+ New_Spec := New_Copy_Tree (Specification (Formal));
+
+ -- Create new entity for the actual (New_Copy_Tree does not).
+
+ Set_Defining_Unit_Name
+ (New_Spec, Make_Defining_Identifier (Loc, Chars (Formal_Sub)));
+
+ -- Find entity of actual. If the actual is an attribute reference, it
+ -- cannot be resolved here (its formal is missing) but is handled
+ -- instead in Attribute_Renaming. If the actual is overloaded, it is
+ -- fully resolved subsequently, when the renaming declaration for the
+ -- formal is analyzed. If it is an explicit dereference, resolve the
+ -- prefix but not the actual itself, to prevent interpretation as a
+ -- call.
+
+ if Present (Actual) then
+ Loc := Sloc (Actual);
+ Set_Sloc (New_Spec, Loc);
+
+ if Nkind (Actual) = N_Operator_Symbol then
+ Find_Direct_Name (Actual);
+
+ elsif Nkind (Actual) = N_Explicit_Dereference then
+ Analyze (Prefix (Actual));
+
+ elsif Nkind (Actual) /= N_Attribute_Reference then
+ Analyze (Actual);
+ end if;
+
+ Valid_Actual_Subprogram (Actual);
+ Nam := Actual;
+
+ elsif Present (Default_Name (Formal)) then
+
+ if Nkind (Default_Name (Formal)) /= N_Attribute_Reference
+ and then Nkind (Default_Name (Formal)) /= N_Selected_Component
+ and then Nkind (Default_Name (Formal)) /= N_Indexed_Component
+ and then Nkind (Default_Name (Formal)) /= N_Character_Literal
+ and then Present (Entity (Default_Name (Formal)))
+ then
+ Nam := New_Occurrence_Of (Entity (Default_Name (Formal)), Loc);
+ else
+ Nam := New_Copy (Default_Name (Formal));
+ Set_Sloc (Nam, Loc);
+ end if;
+
+ elsif Box_Present (Formal) then
+
+ -- Actual is resolved at the point of instantiation. Create
+ -- an identifier or operator with the same name as the formal.
+
+ if Nkind (Formal_Sub) = N_Defining_Operator_Symbol then
+ Nam := Make_Operator_Symbol (Loc,
+ Chars => Chars (Formal_Sub),
+ Strval => No_String);
+ else
+ Nam := Make_Identifier (Loc, Chars (Formal_Sub));
+ end if;
+
+ else
+ Error_Msg_NE
+ ("missing actual for instantiation of &",
+ Instantiation_Node, Formal_Sub);
+ Abandon_Instantiation (Instantiation_Node);
+ end if;
+
+ Decl_Node :=
+ Make_Subprogram_Renaming_Declaration (Loc,
+ Specification => New_Spec,
+ Name => Nam);
+
+ -- Gather possible interpretations for the actual before analyzing the
+ -- instance. If overloaded, it will be resolved when analyzing the
+ -- renaming declaration.
+
+ if Box_Present (Formal)
+ and then No (Actual)
+ then
+ Analyze (Nam);
+
+ if Is_Child_Unit (Scope (Analyzed_S))
+ and then Present (Entity (Nam))
+ then
+ if not Is_Overloaded (Nam) then
+
+ if From_Parent_Scope (Entity (Nam)) then
+ Set_Is_Immediately_Visible (Entity (Nam), False);
+ Set_Entity (Nam, Empty);
+ Set_Etype (Nam, Empty);
+
+ Analyze (Nam);
+
+ Set_Is_Immediately_Visible (Entity (Nam));
+ end if;
+
+ else
+ declare
+ I : Interp_Index;
+ It : Interp;
+
+ begin
+ Get_First_Interp (Nam, I, It);
+
+ while Present (It.Nam) loop
+ if From_Parent_Scope (It.Nam) then
+ Remove_Interp (I);
+ end if;
+
+ Get_Next_Interp (I, It);
+ end loop;
+ end;
+ end if;
+ end if;
+ end if;
+
+ -- The generic instantiation freezes the actual. This can only be
+ -- done once the actual is resolved, in the analysis of the renaming
+ -- declaration. To indicate that must be done, we set the corresponding
+ -- spec of the node to point to the formal subprogram declaration.
+
+ Set_Corresponding_Spec (Decl_Node, Analyzed_Formal);
+
+ -- We cannot analyze the renaming declaration, and thus find the
+ -- actual, until the all the actuals are assembled in the instance.
+ -- For subsequent checks of other actuals, indicate the node that
+ -- will hold the instance of this formal.
+
+ Set_Instance_Of (Analyzed_S, Nam);
+
+ if Nkind (Actual) = N_Selected_Component
+ and then Is_Task_Type (Etype (Prefix (Actual)))
+ and then not Is_Frozen (Etype (Prefix (Actual)))
+ then
+ -- The renaming declaration will create a body, which must appear
+ -- outside of the instantiation, We move the renaming declaration
+ -- out of the instance, and create an additional renaming inside,
+ -- to prevent freezing anomalies.
+
+ declare
+ Anon_Id : constant Entity_Id :=
+ Make_Defining_Identifier
+ (Loc, New_Internal_Name ('E'));
+ begin
+ Set_Defining_Unit_Name (New_Spec, Anon_Id);
+ Insert_Before (Instantiation_Node, Decl_Node);
+ Analyze (Decl_Node);
+
+ -- Now create renaming within the instance.
+
+ Decl_Node :=
+ Make_Subprogram_Renaming_Declaration (Loc,
+ Specification => New_Copy_Tree (New_Spec),
+ Name => New_Occurrence_Of (Anon_Id, Loc));
+
+ Set_Defining_Unit_Name (Specification (Decl_Node),
+ Make_Defining_Identifier (Loc, Chars (Formal_Sub)));
+ end;
+ end if;
+
+ return Decl_Node;
+ end Instantiate_Formal_Subprogram;
+
+ ------------------------
+ -- Instantiate_Object --
+ ------------------------
+
+ function Instantiate_Object
+ (Formal : Node_Id;
+ Actual : Node_Id;
+ Analyzed_Formal : Node_Id)
+ return List_Id
+ is
+ Formal_Id : constant Entity_Id := Defining_Identifier (Formal);
+ Type_Id : constant Node_Id := Subtype_Mark (Formal);
+ Loc : constant Source_Ptr := Sloc (Actual);
+ Act_Assoc : constant Node_Id := Parent (Actual);
+ Orig_Ftyp : constant Entity_Id :=
+ Etype (Defining_Identifier (Analyzed_Formal));
+ Ftyp : Entity_Id;
+ Decl_Node : Node_Id;
+ Subt_Decl : Node_Id := Empty;
+ List : List_Id := New_List;
+
+ begin
+ if Get_Instance_Of (Formal_Id) /= Formal_Id then
+ Error_Msg_N ("duplicate instantiation of generic parameter", Actual);
+ end if;
+
+ Set_Parent (List, Parent (Actual));
+
+ -- OUT present
+
+ if Out_Present (Formal) then
+
+ -- An IN OUT generic actual must be a name. The instantiation is
+ -- a renaming declaration. The actual is the name being renamed.
+ -- We use the actual directly, rather than a copy, because it is not
+ -- used further in the list of actuals, and because a copy or a use
+ -- of relocate_node is incorrect if the instance is nested within
+ -- a generic. In order to simplify ASIS searches, the Generic_Parent
+ -- field links the declaration to the generic association.
+
+ if No (Actual) then
+ Error_Msg_NE
+ ("missing actual for instantiation of &",
+ Instantiation_Node, Formal_Id);
+ Abandon_Instantiation (Instantiation_Node);
+ end if;
+
+ Decl_Node :=
+ Make_Object_Renaming_Declaration (Loc,
+ Defining_Identifier => New_Copy (Formal_Id),
+ Subtype_Mark => New_Copy_Tree (Type_Id),
+ Name => Actual);
+
+ Set_Corresponding_Generic_Association (Decl_Node, Act_Assoc);
+
+ -- The analysis of the actual may produce insert_action nodes, so
+ -- the declaration must have a context in which to attach them.
+
+ Append (Decl_Node, List);
+ Analyze (Actual);
+
+ -- This check is performed here because Analyze_Object_Renaming
+ -- will not check it when Comes_From_Source is False. Note
+ -- though that the check for the actual being the name of an
+ -- object will be performed in Analyze_Object_Renaming.
+
+ if Is_Object_Reference (Actual)
+ and then Is_Dependent_Component_Of_Mutable_Object (Actual)
+ then
+ Error_Msg_N
+ ("illegal discriminant-dependent component for in out parameter",
+ Actual);
+ end if;
+
+ -- The actual has to be resolved in order to check that it is
+ -- a variable (due to cases such as F(1), where F returns
+ -- access to an array, and for overloaded prefixes).
+
+ Ftyp :=
+ Get_Instance_Of (Etype (Defining_Identifier (Analyzed_Formal)));
+
+ if Is_Private_Type (Ftyp)
+ and then not Is_Private_Type (Etype (Actual))
+ and then (Base_Type (Full_View (Ftyp)) = Base_Type (Etype (Actual))
+ or else Base_Type (Etype (Actual)) = Ftyp)
+ then
+ -- If the actual has the type of the full view of the formal,
+ -- or else a non-private subtype of the formal, then
+ -- the visibility of the formal type has changed. Add to the
+ -- actuals a subtype declaration that will force the exchange
+ -- of views in the body of the instance as well.
+
+ Subt_Decl :=
+ Make_Subtype_Declaration (Loc,
+ Defining_Identifier =>
+ Make_Defining_Identifier (Loc, New_Internal_Name ('P')),
+ Subtype_Indication => New_Occurrence_Of (Ftyp, Loc));
+
+ Prepend (Subt_Decl, List);
+
+ Append_Elmt (Full_View (Ftyp), Exchanged_Views);
+ Exchange_Declarations (Ftyp);
+ end if;
+
+ Resolve (Actual, Ftyp);
+
+ if not Is_Variable (Actual) or else Paren_Count (Actual) > 0 then
+ Error_Msg_NE
+ ("actual for& must be a variable", Actual, Formal_Id);
+
+ elsif Base_Type (Ftyp) /= Base_Type (Etype (Actual)) then
+ Error_Msg_NE (
+ "type of actual does not match type of&", Actual, Formal_Id);
+
+ end if;
+
+ Note_Possible_Modification (Actual);
+
+ -- Check for instantiation of atomic/volatile actual for
+ -- non-atomic/volatile formal (RM C.6 (12)).
+
+ if Is_Atomic_Object (Actual)
+ and then not Is_Atomic (Orig_Ftyp)
+ then
+ Error_Msg_N
+ ("cannot instantiate non-atomic formal object " &
+ "with atomic actual", Actual);
+
+ elsif Is_Volatile_Object (Actual)
+ and then not Is_Volatile (Orig_Ftyp)
+ then
+ Error_Msg_N
+ ("cannot instantiate non-volatile formal object " &
+ "with volatile actual", Actual);
+ end if;
+
+ -- OUT not present
+
+ else
+ -- The instantiation of a generic formal in-parameter
+ -- is a constant declaration. The actual is the expression for
+ -- that declaration.
+
+ if Present (Actual) then
+
+ Decl_Node := Make_Object_Declaration (Loc,
+ Defining_Identifier => New_Copy (Formal_Id),
+ Constant_Present => True,
+ Object_Definition => New_Copy_Tree (Type_Id),
+ Expression => Actual);
+
+ Set_Corresponding_Generic_Association (Decl_Node, Act_Assoc);
+
+ -- A generic formal object of a tagged type is defined
+ -- to be aliased so the new constant must also be treated
+ -- as aliased.
+
+ if Is_Tagged_Type
+ (Etype (Defining_Identifier (Analyzed_Formal)))
+ then
+ Set_Aliased_Present (Decl_Node);
+ end if;
+
+ Append (Decl_Node, List);
+ Analyze (Actual);
+
+ declare
+ Typ : Entity_Id
+ := Get_Instance_Of
+ (Etype (Defining_Identifier (Analyzed_Formal)));
+ begin
+ Freeze_Before (Instantiation_Node, Typ);
+
+ -- If the actual is an aggregate, perform name resolution
+ -- on its components (the analysis of an aggregate does not
+ -- do it) to capture local names that may be hidden if the
+ -- generic is a child unit.
+
+ if Nkind (Actual) = N_Aggregate then
+ Pre_Analyze_And_Resolve (Actual, Typ);
+ end if;
+ end;
+
+ elsif Present (Expression (Formal)) then
+
+ -- Use default to construct declaration.
+
+ Decl_Node :=
+ Make_Object_Declaration (Sloc (Formal),
+ Defining_Identifier => New_Copy (Formal_Id),
+ Constant_Present => True,
+ Object_Definition => New_Copy (Type_Id),
+ Expression => New_Copy_Tree (Expression (Formal)));
+
+ Append (Decl_Node, List);
+ Set_Analyzed (Expression (Decl_Node), False);
+
+ else
+ Error_Msg_NE
+ ("missing actual for instantiation of &",
+ Instantiation_Node, Formal_Id);
+ Abandon_Instantiation (Instantiation_Node);
+ end if;
+
+ end if;
+
+ return List;
+ end Instantiate_Object;
+
+ ------------------------------
+ -- Instantiate_Package_Body --
+ ------------------------------
+
+ procedure Instantiate_Package_Body
+ (Body_Info : Pending_Body_Info)
+ is
+ Act_Decl : constant Node_Id := Body_Info.Act_Decl;
+ Inst_Node : constant Node_Id := Body_Info.Inst_Node;
+ Loc : constant Source_Ptr := Sloc (Inst_Node);
+
+ Gen_Id : constant Node_Id := Name (Inst_Node);
+ Gen_Unit : constant Entity_Id := Entity (Name (Inst_Node));
+ Gen_Decl : constant Node_Id := Unit_Declaration_Node (Gen_Unit);
+ Act_Spec : constant Node_Id := Specification (Act_Decl);
+ Act_Decl_Id : constant Entity_Id := Defining_Entity (Act_Spec);
+
+ Act_Body_Name : Node_Id;
+ Gen_Body : Node_Id;
+ Gen_Body_Id : Node_Id;
+ Act_Body : Node_Id;
+ Act_Body_Id : Entity_Id;
+
+ Parent_Installed : Boolean := False;
+ Save_Style_Check : Boolean := Style_Check;
+
+ begin
+ Gen_Body_Id := Corresponding_Body (Gen_Decl);
+ Expander_Mode_Save_And_Set (Body_Info.Expander_Status);
+
+ if No (Gen_Body_Id) then
+ Load_Parent_Of_Generic (Inst_Node, Specification (Gen_Decl));
+ Gen_Body_Id := Corresponding_Body (Gen_Decl);
+ end if;
+
+ -- Establish global variable for sloc adjustment and for error
+ -- recovery.
+
+ Instantiation_Node := Inst_Node;
+
+ if Present (Gen_Body_Id) then
+ Save_Env (Gen_Unit, Act_Decl_Id);
+ Style_Check := False;
+ Current_Sem_Unit := Body_Info.Current_Sem_Unit;
+
+ Gen_Body := Unit_Declaration_Node (Gen_Body_Id);
+
+ Create_Instantiation_Source
+ (Inst_Node, Gen_Body_Id, S_Adjustment);
+
+ Act_Body :=
+ Copy_Generic_Node
+ (Original_Node (Gen_Body), Empty, Instantiating => True);
+
+ -- Build new name (possibly qualified) for body declaration.
+
+ Act_Body_Id := New_Copy (Act_Decl_Id);
+
+ -- Some attributes of the spec entity are not inherited by the
+ -- body entity.
+
+ Set_Handler_Records (Act_Body_Id, No_List);
+
+ if Nkind (Defining_Unit_Name (Act_Spec)) =
+ N_Defining_Program_Unit_Name
+ then
+ Act_Body_Name :=
+ Make_Defining_Program_Unit_Name (Loc,
+ Name => New_Copy_Tree (Name (Defining_Unit_Name (Act_Spec))),
+ Defining_Identifier => Act_Body_Id);
+ else
+ Act_Body_Name := Act_Body_Id;
+ end if;
+
+ Set_Defining_Unit_Name (Act_Body, Act_Body_Name);
+
+ Set_Corresponding_Spec (Act_Body, Act_Decl_Id);
+ Check_Generic_Actuals (Act_Decl_Id, False);
+
+ -- If it is a child unit, make the parent instance (which is an
+ -- instance of the parent of the generic) visible. The parent
+ -- instance is the prefix of the name of the generic unit.
+
+ if Ekind (Scope (Gen_Unit)) = E_Generic_Package
+ and then Nkind (Gen_Id) = N_Expanded_Name
+ then
+ Install_Parent (Entity (Prefix (Gen_Id)), In_Body => True);
+ Parent_Installed := True;
+
+ elsif Is_Child_Unit (Gen_Unit) then
+ Install_Parent (Scope (Gen_Unit), In_Body => True);
+ Parent_Installed := True;
+ end if;
+
+ -- If the instantiation is a library unit, and this is the main
+ -- unit, then build the resulting compilation unit nodes for the
+ -- instance. If this is a compilation unit but it is not the main
+ -- unit, then it is the body of a unit in the context, that is being
+ -- compiled because it is encloses some inlined unit or another
+ -- generic unit being instantiated. In that case, this body is not
+ -- part of the current compilation, and is not attached to the tree,
+ -- but its parent must be set for analysis.
+
+ if Nkind (Parent (Inst_Node)) = N_Compilation_Unit then
+
+ if Parent (Inst_Node) = Cunit (Main_Unit) then
+ Build_Instance_Compilation_Unit_Nodes
+ (Inst_Node, Act_Body, Act_Decl);
+ Analyze (Inst_Node);
+
+ -- If the instance is a child unit itself, then set the
+ -- scope of the expanded body to be the parent of the
+ -- instantiation (ensuring that the fully qualified name
+ -- will be generated for the elaboration subprogram).
+
+ if Nkind (Defining_Unit_Name (Act_Spec)) =
+ N_Defining_Program_Unit_Name
+ then
+ Set_Scope
+ (Defining_Entity (Inst_Node), Scope (Act_Decl_Id));
+ end if;
+
+ else
+ Set_Parent (Act_Body, Parent (Inst_Node));
+ Analyze (Act_Body);
+ end if;
+
+ -- Case where instantiation is not a library unit
+
+ else
+ -- If this is an early instantiation, i.e. appears textually
+ -- before the corresponding body and must be elaborated first,
+ -- indicate that the body instance is to be delayed.
+
+ Install_Body (Act_Body, Inst_Node, Gen_Body, Gen_Decl);
+
+ -- Now analyze the body. We turn off all checks if this is
+ -- an internal unit, since there is no reason to have checks
+ -- on for any predefined run-time library code. All such
+ -- code is designed to be compiled with checks off.
+
+ -- Note that we do NOT apply this criterion to children of
+ -- GNAT (or on VMS, children of DEC). The latter units must
+ -- suppress checks explicitly if this is needed.
+
+ if Is_Predefined_File_Name
+ (Unit_File_Name (Get_Source_Unit (Gen_Decl)))
+ then
+ Analyze (Act_Body, Suppress => All_Checks);
+ else
+ Analyze (Act_Body);
+ end if;
+ end if;
+
+ if not Generic_Separately_Compiled (Gen_Unit) then
+ Inherit_Context (Gen_Body, Inst_Node);
+ end if;
+
+ Restore_Private_Views (Act_Decl_Id);
+ Restore_Env;
+ Style_Check := Save_Style_Check;
+
+ -- If we have no body, and the unit requires a body, then complain.
+ -- This complaint is suppressed if we have detected other errors
+ -- (since a common reason for missing the body is that it had errors).
+
+ elsif Unit_Requires_Body (Gen_Unit) then
+ if Errors_Detected = 0 then
+ Error_Msg_NE
+ ("cannot find body of generic package &", Inst_Node, Gen_Unit);
+
+ -- Don't attempt to perform any cleanup actions if some other
+ -- error was aready detected, since this can cause blowups.
+
+ else
+ return;
+ end if;
+
+ -- Case of package that does not need a body
+
+ else
+ -- If the instantiation of the declaration is a library unit,
+ -- rewrite the original package instantiation as a package
+ -- declaration in the compilation unit node.
+
+ if Nkind (Parent (Inst_Node)) = N_Compilation_Unit then
+ Set_Parent_Spec (Act_Decl, Parent_Spec (Inst_Node));
+ Rewrite (Inst_Node, Act_Decl);
+
+ -- If the instantiation is not a library unit, then append the
+ -- declaration to the list of implicitly generated entities.
+ -- unless it is already a list member which means that it was
+ -- already processed
+
+ elsif not Is_List_Member (Act_Decl) then
+ Mark_Rewrite_Insertion (Act_Decl);
+ Insert_Before (Inst_Node, Act_Decl);
+ end if;
+ end if;
+
+ Expander_Mode_Restore;
+
+ -- Remove the parent instances if they have been placed on the
+ -- scope stack to compile the body.
+
+ if Parent_Installed then
+ Remove_Parent (In_Body => True);
+ end if;
+ end Instantiate_Package_Body;
+
+ ---------------------------------
+ -- Instantiate_Subprogram_Body --
+ ---------------------------------
+
+ procedure Instantiate_Subprogram_Body
+ (Body_Info : Pending_Body_Info)
+ is
+ Act_Decl : constant Node_Id := Body_Info.Act_Decl;
+ Inst_Node : constant Node_Id := Body_Info.Inst_Node;
+ Loc : constant Source_Ptr := Sloc (Inst_Node);
+
+ Decls : List_Id;
+ Gen_Id : constant Node_Id := Name (Inst_Node);
+ Gen_Unit : constant Entity_Id := Entity (Name (Inst_Node));
+ Gen_Decl : constant Node_Id := Unit_Declaration_Node (Gen_Unit);
+ Anon_Id : constant Entity_Id :=
+ Defining_Unit_Name (Specification (Act_Decl));
+ Gen_Body : Node_Id;
+ Gen_Body_Id : Node_Id;
+ Act_Body : Node_Id;
+ Act_Body_Id : Entity_Id;
+ Pack_Id : Entity_Id := Defining_Unit_Name (Parent (Act_Decl));
+ Pack_Body : Node_Id;
+ Prev_Formal : Entity_Id;
+ Unit_Renaming : Node_Id;
+
+ Parent_Installed : Boolean := False;
+ Save_Style_Check : Boolean := Style_Check;
+
+ begin
+ Gen_Body_Id := Corresponding_Body (Gen_Decl);
+
+ Expander_Mode_Save_And_Set (Body_Info.Expander_Status);
+
+ if No (Gen_Body_Id) then
+ Load_Parent_Of_Generic (Inst_Node, Specification (Gen_Decl));
+ Gen_Body_Id := Corresponding_Body (Gen_Decl);
+ end if;
+
+ Instantiation_Node := Inst_Node;
+
+ if Present (Gen_Body_Id) then
+ Gen_Body := Unit_Declaration_Node (Gen_Body_Id);
+
+ if Nkind (Gen_Body) = N_Subprogram_Body_Stub then
+
+ -- Either body is not present, or context is non-expanding, as
+ -- when compiling a subunit. Mark the instance as completed.
+
+ Set_Has_Completion (Anon_Id);
+ return;
+ end if;
+
+ Save_Env (Gen_Unit, Anon_Id);
+ Style_Check := False;
+ Current_Sem_Unit := Body_Info.Current_Sem_Unit;
+ Create_Instantiation_Source (Inst_Node, Gen_Body_Id, S_Adjustment);
+
+ Act_Body :=
+ Copy_Generic_Node
+ (Original_Node (Gen_Body), Empty, Instantiating => True);
+ Act_Body_Id := Defining_Entity (Act_Body);
+ Set_Chars (Act_Body_Id, Chars (Anon_Id));
+ Set_Sloc (Act_Body_Id, Sloc (Defining_Entity (Inst_Node)));
+ Set_Corresponding_Spec (Act_Body, Anon_Id);
+ Set_Has_Completion (Anon_Id);
+ Check_Generic_Actuals (Pack_Id, False);
+
+ -- If it is a child unit, make the parent instance (which is an
+ -- instance of the parent of the generic) visible. The parent
+ -- instance is the prefix of the name of the generic unit.
+
+ if Ekind (Scope (Gen_Unit)) = E_Generic_Package
+ and then Nkind (Gen_Id) = N_Expanded_Name
+ then
+ Install_Parent (Entity (Prefix (Gen_Id)), In_Body => True);
+ Parent_Installed := True;
+
+ elsif Is_Child_Unit (Gen_Unit) then
+ Install_Parent (Scope (Gen_Unit), In_Body => True);
+ Parent_Installed := True;
+ end if;
+
+ -- Inside its body, a reference to the generic unit is a reference
+ -- to the instance. The corresponding renaming is the first
+ -- declaration in the body.
+
+ Unit_Renaming :=
+ Make_Subprogram_Renaming_Declaration (Loc,
+ Specification =>
+ Copy_Generic_Node (
+ Specification (Original_Node (Gen_Body)),
+ Empty,
+ Instantiating => True),
+ Name => New_Occurrence_Of (Anon_Id, Loc));
+
+ -- If there is a formal subprogram with the same name as the
+ -- unit itself, do not add this renaming declaration. This is
+ -- a temporary fix for one ACVC test. ???
+
+ Prev_Formal := First_Entity (Pack_Id);
+ while Present (Prev_Formal) loop
+ if Chars (Prev_Formal) = Chars (Gen_Unit)
+ and then Is_Overloadable (Prev_Formal)
+ then
+ exit;
+ end if;
+
+ Next_Entity (Prev_Formal);
+ end loop;
+
+ if Present (Prev_Formal) then
+ Decls := New_List (Act_Body);
+ else
+ Decls := New_List (Unit_Renaming, Act_Body);
+ end if;
+
+ -- The subprogram body is placed in the body of a dummy package
+ -- body, whose spec contains the subprogram declaration as well
+ -- as the renaming declarations for the generic parameters.
+
+ Pack_Body := Make_Package_Body (Loc,
+ Defining_Unit_Name => New_Copy (Pack_Id),
+ Declarations => Decls);
+
+ Set_Corresponding_Spec (Pack_Body, Pack_Id);
+
+ -- If the instantiation is a library unit, then build resulting
+ -- compilation unit nodes for the instance. The declaration of
+ -- the enclosing package is the grandparent of the subprogram
+ -- declaration. First replace the instantiation node as the unit
+ -- of the corresponding compilation.
+
+ if Nkind (Parent (Inst_Node)) = N_Compilation_Unit then
+
+ if Parent (Inst_Node) = Cunit (Main_Unit) then
+ Set_Unit (Parent (Inst_Node), Inst_Node);
+ Build_Instance_Compilation_Unit_Nodes
+ (Inst_Node, Pack_Body, Parent (Parent (Act_Decl)));
+ Analyze (Inst_Node);
+ else
+ Set_Parent (Pack_Body, Parent (Inst_Node));
+ Analyze (Pack_Body);
+ end if;
+
+ else
+ Insert_Before (Inst_Node, Pack_Body);
+ Mark_Rewrite_Insertion (Pack_Body);
+ Analyze (Pack_Body);
+
+ if Expander_Active then
+ Freeze_Subprogram_Body (Inst_Node, Gen_Body, Pack_Id);
+ end if;
+ end if;
+
+ if not Generic_Separately_Compiled (Gen_Unit) then
+ Inherit_Context (Gen_Body, Inst_Node);
+ end if;
+
+ Restore_Private_Views (Pack_Id, False);
+
+ if Parent_Installed then
+ Remove_Parent (In_Body => True);
+ end if;
+
+ Restore_Env;
+ Style_Check := Save_Style_Check;
+
+ -- Body not found. Error was emitted already. If there were no
+ -- previous errors, this may be an instance whose scope is a premature
+ -- instance. In that case we must insure that the (legal) program does
+ -- raise program error if executed. We generate a subprogram body for
+ -- this purpose. See DEC ac30vso.
+
+ elsif Errors_Detected = 0
+ and then Nkind (Parent (Inst_Node)) /= N_Compilation_Unit
+ then
+ if Ekind (Anon_Id) = E_Procedure then
+ Act_Body :=
+ Make_Subprogram_Body (Loc,
+ Specification =>
+ Make_Procedure_Specification (Loc,
+ Defining_Unit_Name => New_Copy (Anon_Id),
+ Parameter_Specifications =>
+ New_Copy_List
+ (Parameter_Specifications (Parent (Anon_Id)))),
+
+ Declarations => Empty_List,
+ Handled_Statement_Sequence =>
+ Make_Handled_Sequence_Of_Statements (Loc,
+ Statements =>
+ New_List (Make_Raise_Program_Error (Loc))));
+ else
+ Act_Body :=
+ Make_Subprogram_Body (Loc,
+ Specification =>
+ Make_Function_Specification (Loc,
+ Defining_Unit_Name => New_Copy (Anon_Id),
+ Parameter_Specifications =>
+ New_Copy_List
+ (Parameter_Specifications (Parent (Anon_Id))),
+ Subtype_Mark =>
+ New_Occurrence_Of (Etype (Anon_Id), Loc)),
+
+ Declarations => Empty_List,
+ Handled_Statement_Sequence =>
+ Make_Handled_Sequence_Of_Statements (Loc,
+ Statements => New_List (
+ Make_Return_Statement (Loc,
+ Expression => Make_Raise_Program_Error (Loc)))));
+ end if;
+
+ Pack_Body := Make_Package_Body (Loc,
+ Defining_Unit_Name => New_Copy (Pack_Id),
+ Declarations => New_List (Act_Body));
+
+ Insert_After (Inst_Node, Pack_Body);
+ Set_Corresponding_Spec (Pack_Body, Pack_Id);
+ Analyze (Pack_Body);
+ end if;
+
+ Expander_Mode_Restore;
+ end Instantiate_Subprogram_Body;
+
+ ----------------------
+ -- Instantiate_Type --
+ ----------------------
+
+ function Instantiate_Type
+ (Formal : Node_Id;
+ Actual : Node_Id;
+ Analyzed_Formal : Node_Id)
+ return Node_Id
+ is
+ Loc : constant Source_Ptr := Sloc (Actual);
+ Gen_T : constant Entity_Id := Defining_Identifier (Formal);
+ A_Gen_T : constant Entity_Id := Defining_Identifier (Analyzed_Formal);
+ Ancestor : Entity_Id;
+ Def : constant Node_Id := Formal_Type_Definition (Formal);
+ Act_T : Entity_Id;
+ Decl_Node : Node_Id;
+
+ procedure Validate_Array_Type_Instance;
+ procedure Validate_Access_Subprogram_Instance;
+ procedure Validate_Access_Type_Instance;
+ procedure Validate_Derived_Type_Instance;
+ procedure Validate_Private_Type_Instance;
+ -- These procedures perform validation tests for the named case
+
+ function Subtypes_Match (Gen_T, Act_T : Entity_Id) return Boolean;
+ -- Check that base types are the same and that the subtypes match
+ -- statically. Used in several of the above.
+
+ --------------------
+ -- Subtypes_Match --
+ --------------------
+
+ function Subtypes_Match (Gen_T, Act_T : Entity_Id) return Boolean is
+ T : constant Entity_Id := Get_Instance_Of (Gen_T);
+
+ begin
+ return (Base_Type (T) = Base_Type (Act_T)
+-- why is the and then commented out here???
+-- and then Is_Constrained (T) = Is_Constrained (Act_T)
+ and then Subtypes_Statically_Match (T, Act_T))
+
+ or else (Is_Class_Wide_Type (Gen_T)
+ and then Is_Class_Wide_Type (Act_T)
+ and then
+ Subtypes_Match (
+ Get_Instance_Of (Root_Type (Gen_T)),
+ Root_Type (Act_T)));
+ end Subtypes_Match;
+
+ -----------------------------------------
+ -- Validate_Access_Subprogram_Instance --
+ -----------------------------------------
+
+ procedure Validate_Access_Subprogram_Instance is
+ begin
+ if not Is_Access_Type (Act_T)
+ or else Ekind (Designated_Type (Act_T)) /= E_Subprogram_Type
+ then
+ Error_Msg_NE
+ ("expect access type in instantiation of &", Actual, Gen_T);
+ Abandon_Instantiation (Actual);
+ end if;
+
+ Check_Mode_Conformant
+ (Designated_Type (Act_T),
+ Designated_Type (A_Gen_T),
+ Actual,
+ Get_Inst => True);
+
+ if Ekind (Base_Type (Act_T)) = E_Access_Protected_Subprogram_Type then
+ if Ekind (A_Gen_T) = E_Access_Subprogram_Type then
+ Error_Msg_NE
+ ("protected access type not allowed for formal &",
+ Actual, Gen_T);
+ end if;
+
+ elsif Ekind (A_Gen_T) = E_Access_Protected_Subprogram_Type then
+ Error_Msg_NE
+ ("expect protected access type for formal &",
+ Actual, Gen_T);
+ end if;
+ end Validate_Access_Subprogram_Instance;
+
+ -----------------------------------
+ -- Validate_Access_Type_Instance --
+ -----------------------------------
+
+ procedure Validate_Access_Type_Instance is
+ Desig_Type : Entity_Id :=
+ Find_Actual_Type (Designated_Type (A_Gen_T), Scope (A_Gen_T));
+
+ begin
+ if not Is_Access_Type (Act_T) then
+ Error_Msg_NE
+ ("expect access type in instantiation of &", Actual, Gen_T);
+ Abandon_Instantiation (Actual);
+ end if;
+
+ if Is_Access_Constant (A_Gen_T) then
+ if not Is_Access_Constant (Act_T) then
+ Error_Msg_N
+ ("actual type must be access-to-constant type", Actual);
+ Abandon_Instantiation (Actual);
+ end if;
+ else
+ if Is_Access_Constant (Act_T) then
+ Error_Msg_N
+ ("actual type must be access-to-variable type", Actual);
+ Abandon_Instantiation (Actual);
+
+ elsif Ekind (A_Gen_T) = E_General_Access_Type
+ and then Ekind (Base_Type (Act_T)) /= E_General_Access_Type
+ then
+ Error_Msg_N ("actual must be general access type!", Actual);
+ Error_Msg_NE ("add ALL to }!", Actual, Act_T);
+ Abandon_Instantiation (Actual);
+ end if;
+ end if;
+
+ -- The designated subtypes, that is to say the subtypes introduced
+ -- by an access type declaration (and not by a subtype declaration)
+ -- must match.
+
+ if not Subtypes_Match
+ (Desig_Type, Designated_Type (Base_Type (Act_T)))
+ then
+ Error_Msg_NE
+ ("designated type of actual does not match that of formal &",
+ Actual, Gen_T);
+ Abandon_Instantiation (Actual);
+
+ elsif Is_Access_Type (Designated_Type (Act_T))
+ and then Is_Constrained (Designated_Type (Designated_Type (Act_T)))
+ /=
+ Is_Constrained (Designated_Type (Desig_Type))
+ then
+ Error_Msg_NE
+ ("designated type of actual does not match that of formal &",
+ Actual, Gen_T);
+ Abandon_Instantiation (Actual);
+ end if;
+ end Validate_Access_Type_Instance;
+
+ ----------------------------------
+ -- Validate_Array_Type_Instance --
+ ----------------------------------
+
+ procedure Validate_Array_Type_Instance is
+ I1 : Node_Id;
+ I2 : Node_Id;
+ T2 : Entity_Id;
+
+ function Formal_Dimensions return Int;
+ -- Count number of dimensions in array type formal
+
+ function Formal_Dimensions return Int is
+ Num : Int := 0;
+ Index : Node_Id;
+
+ begin
+ if Nkind (Def) = N_Constrained_Array_Definition then
+ Index := First (Discrete_Subtype_Definitions (Def));
+ else
+ Index := First (Subtype_Marks (Def));
+ end if;
+
+ while Present (Index) loop
+ Num := Num + 1;
+ Next_Index (Index);
+ end loop;
+
+ return Num;
+ end Formal_Dimensions;
+
+ -- Start of processing for Validate_Array_Type_Instance
+
+ begin
+ if not Is_Array_Type (Act_T) then
+ Error_Msg_NE
+ ("expect array type in instantiation of &", Actual, Gen_T);
+ Abandon_Instantiation (Actual);
+
+ elsif Nkind (Def) = N_Constrained_Array_Definition then
+ if not (Is_Constrained (Act_T)) then
+ Error_Msg_NE
+ ("expect constrained array in instantiation of &",
+ Actual, Gen_T);
+ Abandon_Instantiation (Actual);
+ end if;
+
+ else
+ if Is_Constrained (Act_T) then
+ Error_Msg_NE
+ ("expect unconstrained array in instantiation of &",
+ Actual, Gen_T);
+ Abandon_Instantiation (Actual);
+ end if;
+ end if;
+
+ if Formal_Dimensions /= Number_Dimensions (Act_T) then
+ Error_Msg_NE
+ ("dimensions of actual do not match formal &", Actual, Gen_T);
+ Abandon_Instantiation (Actual);
+ end if;
+
+ I1 := First_Index (A_Gen_T);
+ I2 := First_Index (Act_T);
+ for J in 1 .. Formal_Dimensions loop
+
+ -- If the indices of the actual were given by a subtype_mark,
+ -- the index was transformed into a range attribute. Retrieve
+ -- the original type mark for checking.
+
+ if Is_Entity_Name (Original_Node (I2)) then
+ T2 := Entity (Original_Node (I2));
+ else
+ T2 := Etype (I2);
+ end if;
+
+ if not Subtypes_Match
+ (Find_Actual_Type (Etype (I1), Scope (A_Gen_T)), T2)
+ then
+ Error_Msg_NE
+ ("index types of actual do not match those of formal &",
+ Actual, Gen_T);
+ Abandon_Instantiation (Actual);
+ end if;
+
+ Next_Index (I1);
+ Next_Index (I2);
+ end loop;
+
+ if not Subtypes_Match (
+ Find_Actual_Type (Component_Type (A_Gen_T), Scope (A_Gen_T)),
+ Component_Type (Act_T))
+ then
+ Error_Msg_NE
+ ("component subtype of actual does not match that of formal &",
+ Actual, Gen_T);
+ Abandon_Instantiation (Actual);
+ end if;
+
+ if Has_Aliased_Components (A_Gen_T)
+ and then not Has_Aliased_Components (Act_T)
+ then
+ Error_Msg_NE
+ ("actual must have aliased components to match formal type &",
+ Actual, Gen_T);
+ end if;
+
+ end Validate_Array_Type_Instance;
+
+ ------------------------------------
+ -- Validate_Derived_Type_Instance --
+ ------------------------------------
+
+ procedure Validate_Derived_Type_Instance is
+ Actual_Discr : Entity_Id;
+ Ancestor_Discr : Entity_Id;
+
+ begin
+ -- If the parent type in the generic declaration is itself
+ -- a previous formal type, then it is local to the generic
+ -- and absent from the analyzed generic definition. In that
+ -- case the ancestor is the instance of the formal (which must
+ -- have been instantiated previously). Otherwise, the analyzed
+ -- generic carries the parent type. If the parent type is defined
+ -- in a previous formal package, then the scope of that formal
+ -- package is that of the generic type itself, and it has already
+ -- been mapped into the corresponding type in the actual package.
+
+ -- Common case: parent type defined outside of the generic.
+
+ if Is_Entity_Name (Subtype_Mark (Def))
+ and then Present (Entity (Subtype_Mark (Def)))
+ then
+ Ancestor := Get_Instance_Of (Entity (Subtype_Mark (Def)));
+
+ -- Check whether parent is defined in a previous formal package.
+
+ elsif
+ Scope (Scope (Base_Type (Etype (A_Gen_T)))) = Scope (A_Gen_T)
+ then
+ Ancestor :=
+ Get_Instance_Of (Base_Type (Etype (A_Gen_T)));
+
+ elsif Is_Derived_Type (Get_Instance_Of (A_Gen_T)) then
+ Ancestor :=
+ Get_Instance_Of (Base_Type (Get_Instance_Of (A_Gen_T)));
+
+ else
+ Ancestor := Get_Instance_Of (Etype (Base_Type (A_Gen_T)));
+ end if;
+
+ if not Is_Ancestor (Base_Type (Ancestor), Act_T) then
+ Error_Msg_NE
+ ("expect type derived from & in instantiation",
+ Actual, First_Subtype (Ancestor));
+ Abandon_Instantiation (Actual);
+ end if;
+
+ -- Perform atomic/volatile checks (RM C.6(12))
+
+ if Is_Atomic (Act_T) and then not Is_Atomic (Ancestor) then
+ Error_Msg_N
+ ("cannot have atomic actual type for non-atomic formal type",
+ Actual);
+
+ elsif Is_Volatile (Act_T)
+ and then not Is_Volatile (Ancestor)
+ and then Is_By_Reference_Type (Ancestor)
+ then
+ Error_Msg_N
+ ("cannot have volatile actual type for non-volatile formal type",
+ Actual);
+ end if;
+
+ -- It should not be necessary to check for unknown discriminants
+ -- on Formal, but for some reason Has_Unknown_Discriminants is
+ -- false for A_Gen_T, so Is_Indefinite_Subtype incorrectly
+ -- returns False. This needs fixing. ???
+
+ if not Is_Indefinite_Subtype (A_Gen_T)
+ and then not Unknown_Discriminants_Present (Formal)
+ and then Is_Indefinite_Subtype (Act_T)
+ then
+ Error_Msg_N
+ ("actual subtype must be constrained", Actual);
+ Abandon_Instantiation (Actual);
+ end if;
+
+ if not Unknown_Discriminants_Present (Formal) then
+ if Is_Constrained (Ancestor) then
+ if not Is_Constrained (Act_T) then
+ Error_Msg_N
+ ("actual subtype must be constrained", Actual);
+ Abandon_Instantiation (Actual);
+ end if;
+
+ -- Ancestor is unconstrained
+
+ elsif Is_Constrained (Act_T) then
+ if Ekind (Ancestor) = E_Access_Type
+ or else Is_Composite_Type (Ancestor)
+ then
+ Error_Msg_N
+ ("actual subtype must be unconstrained", Actual);
+ Abandon_Instantiation (Actual);
+ end if;
+
+ -- A class-wide type is only allowed if the formal has
+ -- unknown discriminants.
+
+ elsif Is_Class_Wide_Type (Act_T)
+ and then not Has_Unknown_Discriminants (Ancestor)
+ then
+ Error_Msg_NE
+ ("actual for & cannot be a class-wide type", Actual, Gen_T);
+ Abandon_Instantiation (Actual);
+
+ -- Otherwise, the formal and actual shall have the same
+ -- number of discriminants and each discriminant of the
+ -- actual must correspond to a discriminant of the formal.
+
+ elsif Has_Discriminants (Act_T)
+ and then Has_Discriminants (Ancestor)
+ then
+ Actual_Discr := First_Discriminant (Act_T);
+ Ancestor_Discr := First_Discriminant (Ancestor);
+ while Present (Actual_Discr)
+ and then Present (Ancestor_Discr)
+ loop
+ if Base_Type (Act_T) /= Base_Type (Ancestor) and then
+ not Present (Corresponding_Discriminant (Actual_Discr))
+ then
+ Error_Msg_NE
+ ("discriminant & does not correspond " &
+ "to ancestor discriminant", Actual, Actual_Discr);
+ Abandon_Instantiation (Actual);
+ end if;
+
+ Next_Discriminant (Actual_Discr);
+ Next_Discriminant (Ancestor_Discr);
+ end loop;
+
+ if Present (Actual_Discr) or else Present (Ancestor_Discr) then
+ Error_Msg_NE
+ ("actual for & must have same number of discriminants",
+ Actual, Gen_T);
+ Abandon_Instantiation (Actual);
+ end if;
+
+ -- This case should be caught by the earlier check for
+ -- for constrainedness, but the check here is added for
+ -- completeness.
+
+ elsif Has_Discriminants (Act_T) then
+ Error_Msg_NE
+ ("actual for & must not have discriminants", Actual, Gen_T);
+ Abandon_Instantiation (Actual);
+
+ elsif Has_Discriminants (Ancestor) then
+ Error_Msg_NE
+ ("actual for & must have known discriminants", Actual, Gen_T);
+ Abandon_Instantiation (Actual);
+ end if;
+
+ if not Subtypes_Statically_Compatible (Act_T, Ancestor) then
+ Error_Msg_N
+ ("constraint on actual is incompatible with formal", Actual);
+ Abandon_Instantiation (Actual);
+ end if;
+ end if;
+
+ end Validate_Derived_Type_Instance;
+
+ ------------------------------------
+ -- Validate_Private_Type_Instance --
+ ------------------------------------
+
+ procedure Validate_Private_Type_Instance is
+ Formal_Discr : Entity_Id;
+ Actual_Discr : Entity_Id;
+ Formal_Subt : Entity_Id;
+
+ begin
+ if (Is_Limited_Type (Act_T)
+ or else Is_Limited_Composite (Act_T))
+ and then not Is_Limited_Type (A_Gen_T)
+ then
+ Error_Msg_NE
+ ("actual for non-limited & cannot be a limited type", Actual,
+ Gen_T);
+ Abandon_Instantiation (Actual);
+
+ elsif Is_Indefinite_Subtype (Act_T)
+ and then not Is_Indefinite_Subtype (A_Gen_T)
+ and then Ada_95
+ then
+ Error_Msg_NE
+ ("actual for & must be a definite subtype", Actual, Gen_T);
+
+ elsif not Is_Tagged_Type (Act_T)
+ and then Is_Tagged_Type (A_Gen_T)
+ then
+ Error_Msg_NE
+ ("actual for & must be a tagged type", Actual, Gen_T);
+
+ elsif Has_Discriminants (A_Gen_T) then
+ if not Has_Discriminants (Act_T) then
+ Error_Msg_NE
+ ("actual for & must have discriminants", Actual, Gen_T);
+ Abandon_Instantiation (Actual);
+
+ elsif Is_Constrained (Act_T) then
+ Error_Msg_NE
+ ("actual for & must be unconstrained", Actual, Gen_T);
+ Abandon_Instantiation (Actual);
+
+ else
+ Formal_Discr := First_Discriminant (A_Gen_T);
+ Actual_Discr := First_Discriminant (Act_T);
+ while Formal_Discr /= Empty loop
+ if Actual_Discr = Empty then
+ Error_Msg_NE
+ ("discriminants on actual do not match formal",
+ Actual, Gen_T);
+ Abandon_Instantiation (Actual);
+ end if;
+
+ Formal_Subt := Get_Instance_Of (Etype (Formal_Discr));
+
+ -- access discriminants match if designated types do.
+
+ if Ekind (Base_Type (Formal_Subt)) = E_Anonymous_Access_Type
+ and then (Ekind (Base_Type (Etype (Actual_Discr))))
+ = E_Anonymous_Access_Type
+ and then Get_Instance_Of (
+ Designated_Type (Base_Type (Formal_Subt)))
+ = Designated_Type (Base_Type (Etype (Actual_Discr)))
+ then
+ null;
+
+ elsif Base_Type (Formal_Subt) /=
+ Base_Type (Etype (Actual_Discr))
+ then
+ Error_Msg_NE
+ ("types of actual discriminants must match formal",
+ Actual, Gen_T);
+ Abandon_Instantiation (Actual);
+
+ elsif not Subtypes_Statically_Match
+ (Formal_Subt, Etype (Actual_Discr))
+ and then Ada_95
+ then
+ Error_Msg_NE
+ ("subtypes of actual discriminants must match formal",
+ Actual, Gen_T);
+ Abandon_Instantiation (Actual);
+ end if;
+
+ Next_Discriminant (Formal_Discr);
+ Next_Discriminant (Actual_Discr);
+ end loop;
+
+ if Actual_Discr /= Empty then
+ Error_Msg_NE
+ ("discriminants on actual do not match formal",
+ Actual, Gen_T);
+ Abandon_Instantiation (Actual);
+ end if;
+ end if;
+
+ end if;
+
+ Ancestor := Gen_T;
+ end Validate_Private_Type_Instance;
+
+ -- Start of processing for Instantiate_Type
+
+ begin
+ if Get_Instance_Of (A_Gen_T) /= A_Gen_T then
+ Error_Msg_N ("duplicate instantiation of generic type", Actual);
+ return Error;
+
+ elsif not Is_Entity_Name (Actual)
+ or else not Is_Type (Entity (Actual))
+ then
+ Error_Msg_NE
+ ("expect valid subtype mark to instantiate &", Actual, Gen_T);
+ Abandon_Instantiation (Actual);
+
+ else
+ Act_T := Entity (Actual);
+
+ if Ekind (Act_T) = E_Incomplete_Type then
+ if No (Underlying_Type (Act_T)) then
+ Error_Msg_N ("premature use of incomplete type", Actual);
+ Abandon_Instantiation (Actual);
+ else
+ Act_T := Full_View (Act_T);
+ Set_Entity (Actual, Act_T);
+
+ if Has_Private_Component (Act_T) then
+ Error_Msg_N
+ ("premature use of type with private component", Actual);
+ end if;
+ end if;
+
+ elsif Is_Private_Type (Act_T)
+ and then Is_Private_Type (Base_Type (Act_T))
+ and then not Is_Generic_Type (Act_T)
+ and then not Is_Derived_Type (Act_T)
+ and then No (Full_View (Root_Type (Act_T)))
+ then
+ Error_Msg_N ("premature use of private type", Actual);
+
+ elsif Has_Private_Component (Act_T) then
+ Error_Msg_N
+ ("premature use of type with private component", Actual);
+ end if;
+
+ Set_Instance_Of (A_Gen_T, Act_T);
+
+ -- If the type is generic, the class-wide type may also be used
+
+ if Is_Tagged_Type (A_Gen_T)
+ and then Is_Tagged_Type (Act_T)
+ and then not Is_Class_Wide_Type (A_Gen_T)
+ then
+ Set_Instance_Of (Class_Wide_Type (A_Gen_T),
+ Class_Wide_Type (Act_T));
+ end if;
+
+ if not Is_Abstract (A_Gen_T)
+ and then Is_Abstract (Act_T)
+ then
+ Error_Msg_N
+ ("actual of non-abstract formal cannot be abstract", Actual);
+ end if;
+
+ if Is_Scalar_Type (Gen_T) then
+ Set_Instance_Of (Etype (A_Gen_T), Etype (Act_T));
+ end if;
+ end if;
+
+ case Nkind (Def) is
+ when N_Formal_Private_Type_Definition =>
+ Validate_Private_Type_Instance;
+
+ when N_Formal_Derived_Type_Definition =>
+ Validate_Derived_Type_Instance;
+
+ when N_Formal_Discrete_Type_Definition =>
+ if not Is_Discrete_Type (Act_T) then
+ Error_Msg_NE
+ ("expect discrete type in instantiation of&", Actual, Gen_T);
+ Abandon_Instantiation (Actual);
+ end if;
+
+ when N_Formal_Signed_Integer_Type_Definition =>
+ if not Is_Signed_Integer_Type (Act_T) then
+ Error_Msg_NE
+ ("expect signed integer type in instantiation of&",
+ Actual, Gen_T);
+ Abandon_Instantiation (Actual);
+ end if;
+
+ when N_Formal_Modular_Type_Definition =>
+ if not Is_Modular_Integer_Type (Act_T) then
+ Error_Msg_NE
+ ("expect modular type in instantiation of &", Actual, Gen_T);
+ Abandon_Instantiation (Actual);
+ end if;
+
+ when N_Formal_Floating_Point_Definition =>
+ if not Is_Floating_Point_Type (Act_T) then
+ Error_Msg_NE
+ ("expect float type in instantiation of &", Actual, Gen_T);
+ Abandon_Instantiation (Actual);
+ end if;
+
+ when N_Formal_Ordinary_Fixed_Point_Definition =>
+ if not Is_Ordinary_Fixed_Point_Type (Act_T) then
+ Error_Msg_NE
+ ("expect ordinary fixed point type in instantiation of &",
+ Actual, Gen_T);
+ Abandon_Instantiation (Actual);
+ end if;
+
+ when N_Formal_Decimal_Fixed_Point_Definition =>
+ if not Is_Decimal_Fixed_Point_Type (Act_T) then
+ Error_Msg_NE
+ ("expect decimal type in instantiation of &",
+ Actual, Gen_T);
+ Abandon_Instantiation (Actual);
+ end if;
+
+ when N_Array_Type_Definition =>
+ Validate_Array_Type_Instance;
+
+ when N_Access_To_Object_Definition =>
+ Validate_Access_Type_Instance;
+
+ when N_Access_Function_Definition |
+ N_Access_Procedure_Definition =>
+ Validate_Access_Subprogram_Instance;
+
+ when others =>
+ raise Program_Error;
+
+ end case;
+
+ Decl_Node :=
+ Make_Subtype_Declaration (Loc,
+ Defining_Identifier => New_Copy (Gen_T),
+ Subtype_Indication => New_Reference_To (Act_T, Loc));
+
+ if Is_Private_Type (Act_T) then
+ Set_Has_Private_View (Subtype_Indication (Decl_Node));
+ end if;
+
+ -- Flag actual derived types so their elaboration produces the
+ -- appropriate renamings for the primitive operations of the ancestor.
+ -- Flag actual for formal private types as well, to determine whether
+ -- operations in the private part may override inherited operations.
+
+ if Nkind (Def) = N_Formal_Derived_Type_Definition
+ or else Nkind (Def) = N_Formal_Private_Type_Definition
+ then
+ Set_Generic_Parent_Type (Decl_Node, Ancestor);
+ end if;
+
+ return Decl_Node;
+ end Instantiate_Type;
+
+ ---------------------
+ -- Is_In_Main_Unit --
+ ---------------------
+
+ function Is_In_Main_Unit (N : Node_Id) return Boolean is
+ Unum : constant Unit_Number_Type := Get_Source_Unit (N);
+
+ Current_Unit : Node_Id;
+
+ begin
+ if Unum = Main_Unit then
+ return True;
+
+ -- If the current unit is a subunit then it is either the main unit
+ -- or is being compiled as part of the main unit.
+
+ elsif Nkind (N) = N_Compilation_Unit then
+ return Nkind (Unit (N)) = N_Subunit;
+ end if;
+
+ Current_Unit := Parent (N);
+ while Present (Current_Unit)
+ and then Nkind (Current_Unit) /= N_Compilation_Unit
+ loop
+ Current_Unit := Parent (Current_Unit);
+ end loop;
+
+ -- The instantiation node is in the main unit, or else the current
+ -- node (perhaps as the result of nested instantiations) is in the
+ -- main unit, or in the declaration of the main unit, which in this
+ -- last case must be a body.
+
+ return Unum = Main_Unit
+ or else Current_Unit = Cunit (Main_Unit)
+ or else Current_Unit = Library_Unit (Cunit (Main_Unit))
+ or else (Present (Library_Unit (Current_Unit))
+ and then Is_In_Main_Unit (Library_Unit (Current_Unit)));
+ end Is_In_Main_Unit;
+
+ ----------------------------
+ -- Load_Parent_Of_Generic --
+ ----------------------------
+
+ procedure Load_Parent_Of_Generic (N : Node_Id; Spec : Node_Id) is
+ Comp_Unit : constant Node_Id := Cunit (Get_Source_Unit (Spec));
+ True_Parent : Node_Id;
+ Inst_Node : Node_Id;
+ OK : Boolean;
+ Save_Style_Check : Boolean := Style_Check;
+
+ begin
+ if not In_Same_Source_Unit (N, Spec)
+ or else Nkind (Unit (Comp_Unit)) = N_Package_Declaration
+ or else (Nkind (Unit (Comp_Unit)) = N_Package_Body
+ and then not Is_In_Main_Unit (Spec))
+ then
+ -- Find body of parent of spec, and analyze it. A special case
+ -- arises when the parent is an instantiation, that is to say when
+ -- we are currently instantiating a nested generic. In that case,
+ -- there is no separate file for the body of the enclosing instance.
+ -- Instead, the enclosing body must be instantiated as if it were
+ -- a pending instantiation, in order to produce the body for the
+ -- nested generic we require now. Note that in that case the
+ -- generic may be defined in a package body, the instance defined
+ -- in the same package body, and the original enclosing body may not
+ -- be in the main unit.
+
+ True_Parent := Parent (Spec);
+ Inst_Node := Empty;
+
+ while Present (True_Parent)
+ and then Nkind (True_Parent) /= N_Compilation_Unit
+ loop
+ if Nkind (True_Parent) = N_Package_Declaration
+ and then
+ Nkind (Original_Node (True_Parent)) = N_Package_Instantiation
+ then
+ -- Parent is a compilation unit that is an instantiation.
+ -- Instantiation node has been replaced with package decl.
+
+ Inst_Node := Original_Node (True_Parent);
+ exit;
+
+ elsif Nkind (True_Parent) = N_Package_Declaration
+ and then Present (Generic_Parent (Specification (True_Parent)))
+ then
+ -- Parent is an instantiation within another specification.
+ -- Declaration for instance has been inserted before original
+ -- instantiation node. A direct link would be preferable?
+
+ Inst_Node := Next (True_Parent);
+
+ while Present (Inst_Node)
+ and then Nkind (Inst_Node) /= N_Package_Instantiation
+ loop
+ Next (Inst_Node);
+ end loop;
+
+ -- If the instance appears within a generic, and the generic
+ -- unit is defined within a formal package of the enclosing
+ -- generic, there is no generic body available, and none
+ -- needed. A more precise test should be used ???
+
+ if No (Inst_Node) then
+ return;
+ end if;
+
+ exit;
+ else
+ True_Parent := Parent (True_Parent);
+ end if;
+ end loop;
+
+ if Present (Inst_Node) then
+
+ if Nkind (Parent (True_Parent)) = N_Compilation_Unit then
+
+ -- Instantiation node and declaration of instantiated package
+ -- were exchanged when only the declaration was needed.
+ -- Restore instantiation node before proceeding with body.
+
+ Set_Unit (Parent (True_Parent), Inst_Node);
+ end if;
+
+ -- Now complete instantiation of enclosing body, if it appears
+ -- in some other unit. If it appears in the current unit, the
+ -- body will have been instantiated already.
+
+ if No (Corresponding_Body (Instance_Spec (Inst_Node))) then
+ Instantiate_Package_Body
+ (Pending_Body_Info'(
+ Inst_Node, True_Parent, Expander_Active,
+ Get_Code_Unit (Sloc (Inst_Node))));
+ end if;
+
+ else
+ Opt.Style_Check := False;
+ Load_Needed_Body (Comp_Unit, OK);
+ Opt.Style_Check := Save_Style_Check;
+
+ if not OK
+ and then Unit_Requires_Body (Defining_Entity (Spec))
+ then
+ declare
+ Bname : constant Unit_Name_Type :=
+ Get_Body_Name (Get_Unit_Name (Unit (Comp_Unit)));
+
+ begin
+ Error_Msg_Unit_1 := Bname;
+ Error_Msg_N ("this instantiation requires$!", N);
+ Error_Msg_Name_1 :=
+ Get_File_Name (Bname, Subunit => False);
+ Error_Msg_N ("\but file{ was not found!", N);
+ raise Unrecoverable_Error;
+ end;
+ end if;
+ end if;
+ end if;
+
+ -- If loading the parent of the generic caused an instantiation
+ -- circularity, we abandon compilation at this point, because
+ -- otherwise in some cases we get into trouble with infinite
+ -- recursions after this point.
+
+ if Circularity_Detected then
+ raise Unrecoverable_Error;
+ end if;
+
+ end Load_Parent_Of_Generic;
+
+ -----------------------
+ -- Move_Freeze_Nodes --
+ -----------------------
+
+ procedure Move_Freeze_Nodes
+ (Out_Of : Entity_Id;
+ After : Node_Id;
+ L : List_Id)
+ is
+ Decl : Node_Id;
+ Next_Decl : Node_Id;
+ Next_Node : Node_Id := After;
+ Spec : Node_Id;
+
+ function Is_Outer_Type (T : Entity_Id) return Boolean;
+ -- Check whether entity is declared in a scope external to that
+ -- of the generic unit.
+
+ -------------------
+ -- Is_Outer_Type --
+ -------------------
+
+ function Is_Outer_Type (T : Entity_Id) return Boolean is
+ Scop : Entity_Id := Scope (T);
+
+ begin
+ if Scope_Depth (Scop) < Scope_Depth (Out_Of) then
+ return True;
+
+ else
+ while Scop /= Standard_Standard loop
+
+ if Scop = Out_Of then
+ return False;
+ else
+ Scop := Scope (Scop);
+ end if;
+ end loop;
+
+ return True;
+ end if;
+ end Is_Outer_Type;
+
+ -- Start of processing for Move_Freeze_Nodes
+
+ begin
+ if No (L) then
+ return;
+ end if;
+
+ -- First remove the freeze nodes that may appear before all other
+ -- declarations.
+
+ Decl := First (L);
+ while Present (Decl)
+ and then Nkind (Decl) = N_Freeze_Entity
+ and then Is_Outer_Type (Entity (Decl))
+ loop
+ Decl := Remove_Head (L);
+ Insert_After (Next_Node, Decl);
+ Set_Analyzed (Decl, False);
+ Next_Node := Decl;
+ Decl := First (L);
+ end loop;
+
+ -- Next scan the list of declarations and remove each freeze node that
+ -- appears ahead of the current node.
+
+ while Present (Decl) loop
+ while Present (Next (Decl))
+ and then Nkind (Next (Decl)) = N_Freeze_Entity
+ and then Is_Outer_Type (Entity (Next (Decl)))
+ loop
+ Next_Decl := Remove_Next (Decl);
+ Insert_After (Next_Node, Next_Decl);
+ Set_Analyzed (Next_Decl, False);
+ Next_Node := Next_Decl;
+ end loop;
+
+ -- If the declaration is a nested package or concurrent type, then
+ -- recurse. Nested generic packages will have been processed from the
+ -- inside out.
+
+ if Nkind (Decl) = N_Package_Declaration then
+ Spec := Specification (Decl);
+
+ elsif Nkind (Decl) = N_Task_Type_Declaration then
+ Spec := Task_Definition (Decl);
+
+ elsif Nkind (Decl) = N_Protected_Type_Declaration then
+ Spec := Protected_Definition (Decl);
+
+ else
+ Spec := Empty;
+ end if;
+
+ if Present (Spec) then
+ Move_Freeze_Nodes (Out_Of, Next_Node,
+ Visible_Declarations (Spec));
+ Move_Freeze_Nodes (Out_Of, Next_Node,
+ Private_Declarations (Spec));
+ end if;
+
+ Next (Decl);
+ end loop;
+ end Move_Freeze_Nodes;
+
+ ----------------
+ -- Next_Assoc --
+ ----------------
+
+ function Next_Assoc (E : Assoc_Ptr) return Assoc_Ptr is
+ begin
+ return Generic_Renamings.Table (E).Next_In_HTable;
+ end Next_Assoc;
+
+ ------------------------
+ -- Preanalyze_Actuals --
+ ------------------------
+
+ procedure Pre_Analyze_Actuals (N : Node_Id) is
+ Assoc : Node_Id;
+ Act : Node_Id;
+ Errs : Int := Errors_Detected;
+
+ begin
+ Assoc := First (Generic_Associations (N));
+
+ while Present (Assoc) loop
+ Act := Explicit_Generic_Actual_Parameter (Assoc);
+
+ -- Within a nested instantiation, a defaulted actual is an
+ -- empty association, so nothing to analyze. If the actual for
+ -- a subprogram is an attribute, analyze prefix only, because
+ -- actual is not a complete attribute reference.
+ -- String literals may be operators, but at this point we do not
+ -- know whether the actual is a formal subprogram or a string.
+
+ if No (Act) then
+ null;
+
+ elsif Nkind (Act) = N_Attribute_Reference then
+ Analyze (Prefix (Act));
+
+ elsif Nkind (Act) = N_Explicit_Dereference then
+ Analyze (Prefix (Act));
+
+ elsif Nkind (Act) /= N_Operator_Symbol then
+ Analyze (Act);
+ end if;
+
+ if Errs /= Errors_Detected then
+ Abandon_Instantiation (Act);
+ end if;
+
+ Next (Assoc);
+ end loop;
+ end Pre_Analyze_Actuals;
+
+ -------------------
+ -- Remove_Parent --
+ -------------------
+
+ procedure Remove_Parent (In_Body : Boolean := False) is
+ S : Entity_Id := Current_Scope;
+ E : Entity_Id;
+ P : Entity_Id;
+ Hidden : Elmt_Id;
+
+ begin
+ -- After child instantiation is complete, remove from scope stack
+ -- the extra copy of the current scope, and then remove parent
+ -- instances.
+
+ if not In_Body then
+ Pop_Scope;
+
+ while Current_Scope /= S loop
+ P := Current_Scope;
+ End_Package_Scope (Current_Scope);
+
+ if In_Open_Scopes (P) then
+ E := First_Entity (P);
+
+ while Present (E) loop
+ Set_Is_Immediately_Visible (E, True);
+ Next_Entity (E);
+ end loop;
+
+ elsif not In_Open_Scopes (Scope (P)) then
+ Set_Is_Immediately_Visible (P, False);
+ end if;
+ end loop;
+
+ -- Reset visibility of entities in the enclosing scope.
+
+ Set_Is_Hidden_Open_Scope (Current_Scope, False);
+ Hidden := First_Elmt (Hidden_Entities);
+
+ while Present (Hidden) loop
+ Set_Is_Immediately_Visible (Node (Hidden), True);
+ Next_Elmt (Hidden);
+ end loop;
+
+ else
+ -- Each body is analyzed separately, and there is no context
+ -- that needs preserving from one body instance to the next,
+ -- so remove all parent scopes that have been installed.
+
+ while Present (S) loop
+ End_Package_Scope (S);
+ S := Current_Scope;
+ exit when S = Standard_Standard;
+ end loop;
+ end if;
+
+ end Remove_Parent;
+
+ -----------------
+ -- Restore_Env --
+ -----------------
+
+ procedure Restore_Env is
+ Saved : Instance_Env renames Instance_Envs.Table (Instance_Envs.Last);
+
+ begin
+ Ada_83 := Saved.Ada_83;
+
+ if No (Current_Instantiated_Parent.Act_Id) then
+
+ -- Restore environment after subprogram inlining
+
+ Restore_Private_Views (Empty);
+ end if;
+
+ Current_Instantiated_Parent := Saved.Instantiated_Parent;
+ Exchanged_Views := Saved.Exchanged_Views;
+ Hidden_Entities := Saved.Hidden_Entities;
+ Current_Sem_Unit := Saved.Current_Sem_Unit;
+
+ Instance_Envs.Decrement_Last;
+ end Restore_Env;
+
+ ---------------------------
+ -- Restore_Private_Views --
+ ---------------------------
+
+ procedure Restore_Private_Views
+ (Pack_Id : Entity_Id;
+ Is_Package : Boolean := True)
+ is
+ M : Elmt_Id;
+ E : Entity_Id;
+ Typ : Entity_Id;
+ Dep_Elmt : Elmt_Id;
+ Dep_Typ : Node_Id;
+
+ begin
+ M := First_Elmt (Exchanged_Views);
+ while Present (M) loop
+ Typ := Node (M);
+
+ -- Subtypes of types whose views have been exchanged, and that
+ -- are defined within the instance, were not on the list of
+ -- Private_Dependents on entry to the instance, so they have to
+ -- be exchanged explicitly now, in order to remain consistent with
+ -- the view of the parent type.
+
+ if Ekind (Typ) = E_Private_Type
+ or else Ekind (Typ) = E_Limited_Private_Type
+ or else Ekind (Typ) = E_Record_Type_With_Private
+ then
+ Dep_Elmt := First_Elmt (Private_Dependents (Typ));
+
+ while Present (Dep_Elmt) loop
+ Dep_Typ := Node (Dep_Elmt);
+
+ if Scope (Dep_Typ) = Pack_Id
+ and then Present (Full_View (Dep_Typ))
+ then
+ Replace_Elmt (Dep_Elmt, Full_View (Dep_Typ));
+ Exchange_Declarations (Dep_Typ);
+ end if;
+
+ Next_Elmt (Dep_Elmt);
+ end loop;
+ end if;
+
+ Exchange_Declarations (Node (M));
+ Next_Elmt (M);
+ end loop;
+
+ if No (Pack_Id) then
+ return;
+ end if;
+
+ -- Make the generic formal parameters private, and make the formal
+ -- types into subtypes of the actuals again.
+
+ E := First_Entity (Pack_Id);
+
+ while Present (E) loop
+ Set_Is_Hidden (E, True);
+
+ if Is_Type (E)
+ and then Nkind (Parent (E)) = N_Subtype_Declaration
+ then
+ Set_Is_Generic_Actual_Type (E, False);
+
+ -- An unusual case of aliasing: the actual may also be directly
+ -- visible in the generic, and be private there, while it is
+ -- fully visible in the context of the instance. The internal
+ -- subtype is private in the instance, but has full visibility
+ -- like its parent in the enclosing scope. This enforces the
+ -- invariant that the privacy status of all private dependents of
+ -- a type coincide with that of the parent type. This can only
+ -- happen when a generic child unit is instantiated within a
+ -- sibling.
+
+ if Is_Private_Type (E)
+ and then not Is_Private_Type (Etype (E))
+ then
+ Exchange_Declarations (E);
+ end if;
+
+ elsif Ekind (E) = E_Package then
+
+ -- The end of the renaming list is the renaming of the generic
+ -- package itself. If the instance is a subprogram, all entities
+ -- in the corresponding package are renamings. If this entity is
+ -- a formal package, make its own formals private as well. The
+ -- actual in this case is itself the renaming of an instantation.
+ -- If the entity is not a package renaming, it is the entity
+ -- created to validate formal package actuals: ignore.
+
+ -- If the actual is itself a formal package for the enclosing
+ -- generic, or the actual for such a formal package, it remains
+ -- visible after the current instance, and therefore nothing
+ -- needs to be done either, except to keep it accessible.
+
+ if Is_Package
+ and then Renamed_Object (E) = Pack_Id
+ then
+ exit;
+
+ elsif Nkind (Parent (E)) /= N_Package_Renaming_Declaration then
+ null;
+
+ elsif Denotes_Formal_Package (Renamed_Object (E)) then
+ Set_Is_Hidden (E, False);
+
+ else
+ declare
+ Act_P : Entity_Id := Renamed_Object (E);
+ Id : Entity_Id := First_Entity (Act_P);
+
+ begin
+ while Present (Id)
+ and then Id /= First_Private_Entity (Act_P)
+ loop
+ Set_Is_Hidden (Id, True);
+ Set_Is_Potentially_Use_Visible (Id, In_Use (Act_P));
+ exit when Ekind (Id) = E_Package
+ and then Renamed_Object (Id) = Act_P;
+
+ Next_Entity (Id);
+ end loop;
+ end;
+ null;
+ end if;
+ end if;
+
+ Next_Entity (E);
+ end loop;
+ end Restore_Private_Views;
+
+ --------------
+ -- Save_Env --
+ --------------
+
+ procedure Save_Env
+ (Gen_Unit : Entity_Id;
+ Act_Unit : Entity_Id)
+ is
+ Saved : Instance_Env;
+
+ begin
+ Saved.Ada_83 := Ada_83;
+ Saved.Instantiated_Parent := Current_Instantiated_Parent;
+ Saved.Exchanged_Views := Exchanged_Views;
+ Saved.Hidden_Entities := Hidden_Entities;
+ Saved.Current_Sem_Unit := Current_Sem_Unit;
+ Instance_Envs.Increment_Last;
+ Instance_Envs.Table (Instance_Envs.Last) := Saved;
+
+ -- Regardless of the current mode, predefined units are analyzed in
+ -- Ada95 mode, and Ada83 checks don't apply.
+
+ if Is_Internal_File_Name
+ (Fname => Unit_File_Name (Get_Source_Unit (Gen_Unit)),
+ Renamings_Included => True) then
+ Ada_83 := False;
+ end if;
+
+ Current_Instantiated_Parent := (Gen_Unit, Act_Unit, Assoc_Null);
+ Exchanged_Views := New_Elmt_List;
+ Hidden_Entities := New_Elmt_List;
+ end Save_Env;
+
+ ----------------------------
+ -- Save_Global_References --
+ ----------------------------
+
+ procedure Save_Global_References (N : Node_Id) is
+ Gen_Scope : Entity_Id;
+ E : Entity_Id;
+ N2 : Node_Id;
+
+ function Is_Global (E : Entity_Id) return Boolean;
+ -- Check whether entity is defined outside of generic unit.
+ -- Examine the scope of an entity, and the scope of the scope,
+ -- etc, until we find either Standard, in which case the entity
+ -- is global, or the generic unit itself, which indicates that
+ -- the entity is local. If the entity is the generic unit itself,
+ -- as in the case of a recursive call, or the enclosing generic unit,
+ -- if different from the current scope, then it is local as well,
+ -- because it will be replaced at the point of instantiation. On
+ -- the other hand, if it is a reference to a child unit of a common
+ -- ancestor, which appears in an instantiation, it is global because
+ -- it is used to denote a specific compilation unit at the time the
+ -- instantiations will be analyzed.
+
+ procedure Reset_Entity (N : Node_Id);
+ -- Save semantic information on global entity, so that it is not
+ -- resolved again at instantiation time.
+
+ procedure Save_Global_Defaults (N1, N2 : Node_Id);
+ -- Default actuals in nested instances must be handled specially
+ -- because there is no link to them from the original tree. When an
+ -- actual subprogram is given by a default, we add an explicit generic
+ -- association for it in the instantiation node. When we save the
+ -- global references on the name of the instance, we recover the list
+ -- of generic associations, and add an explicit one to the original
+ -- generic tree, through which a global actual can be preserved.
+ -- Similarly, if a child unit is instantiated within a sibling, in the
+ -- context of the parent, we must preserve the identifier of the parent
+ -- so that it can be properly resolved in a subsequent instantiation.
+
+ procedure Save_Global_Descendant (D : Union_Id);
+ -- Apply Save_Global_References recursively to the descendents of
+ -- current node.
+
+ procedure Save_References (N : Node_Id);
+ -- This is the recursive procedure that does the work, once the
+ -- enclosing generic scope has been established.
+
+ ---------------
+ -- Is_Global --
+ ---------------
+
+ function Is_Global (E : Entity_Id) return Boolean is
+ Se : Entity_Id := Scope (E);
+
+ function Is_Instance_Node (Decl : Node_Id) return Boolean;
+ -- Determine whether the parent node of a reference to a child unit
+ -- denotes an instantiation or a formal package, in which case the
+ -- reference to the child unit is global, even if it appears within
+ -- the current scope (e.g. when the instance appears within the body
+ -- of an ancestor).
+
+ function Is_Instance_Node (Decl : Node_Id) return Boolean is
+ begin
+ return (Nkind (Decl) in N_Generic_Instantiation
+ or else
+ Nkind (Original_Node (Decl)) = N_Formal_Package_Declaration);
+ end Is_Instance_Node;
+
+ -- Start of processing for Is_Global
+
+ begin
+ if E = Gen_Scope then
+ return False;
+
+ elsif E = Standard_Standard then
+ return True;
+
+ elsif Is_Child_Unit (E)
+ and then (Is_Instance_Node (Parent (N2))
+ or else (Nkind (Parent (N2)) = N_Expanded_Name
+ and then N2 = Selector_Name (Parent (N2))
+ and then Is_Instance_Node (Parent (Parent (N2)))))
+ then
+ return True;
+
+ else
+ while Se /= Gen_Scope loop
+ if Se = Standard_Standard then
+ return True;
+ else
+ Se := Scope (Se);
+ end if;
+ end loop;
+
+ return False;
+ end if;
+ end Is_Global;
+
+ ------------------
+ -- Reset_Entity --
+ ------------------
+
+ procedure Reset_Entity (N : Node_Id) is
+
+ procedure Set_Global_Type (N : Node_Id; N2 : Node_Id);
+ -- The type of N2 is global to the generic unit. Save the
+ -- type in the generic node.
+
+ procedure Set_Global_Type (N : Node_Id; N2 : Node_Id) is
+ Typ : constant Entity_Id := Etype (N2);
+
+ begin
+ Set_Etype (N, Typ);
+
+ if Entity (N) /= N2
+ and then Has_Private_View (Entity (N))
+ then
+ -- If the entity of N is not the associated node, this is
+ -- a nested generic and it has an associated node as well,
+ -- whose type is already the full view (see below). Indicate
+ -- that the original node has a private view.
+
+ Set_Has_Private_View (N);
+ end if;
+
+ -- If not a private type, nothing else to do
+
+ if not Is_Private_Type (Typ) then
+ if Is_Array_Type (Typ)
+ and then Is_Private_Type (Component_Type (Typ))
+ then
+ Set_Has_Private_View (N);
+ end if;
+
+ -- If it is a derivation of a private type in a context where
+ -- no full view is needed, nothing to do either.
+
+ elsif No (Full_View (Typ)) and then Typ /= Etype (Typ) then
+ null;
+
+ -- Otherwise mark the type for flipping and use the full_view
+ -- when available.
+
+ else
+ Set_Has_Private_View (N);
+
+ if Present (Full_View (Typ)) then
+ Set_Etype (N2, Full_View (Typ));
+ end if;
+ end if;
+ end Set_Global_Type;
+
+ -- Start of processing for Reset_Entity
+
+ begin
+ N2 := Associated_Node (N);
+ E := Entity (N2);
+
+ if Present (E) then
+ if Is_Global (E) then
+ Set_Global_Type (N, N2);
+
+ elsif Nkind (N) = N_Op_Concat
+ and then Is_Generic_Type (Etype (N2))
+ and then
+ (Base_Type (Etype (Right_Opnd (N2))) = Etype (N2)
+ or else Base_Type (Etype (Left_Opnd (N2))) = Etype (N2))
+ and then Is_Intrinsic_Subprogram (E)
+ then
+ null;
+
+ else
+ -- Entity is local. Mark generic node as unresolved.
+ -- Note that now it does not have an entity.
+
+ Set_Associated_Node (N, Empty);
+ Set_Etype (N, Empty);
+ end if;
+
+ if (Nkind (Parent (N)) = N_Package_Instantiation
+ or else Nkind (Parent (N)) = N_Function_Instantiation
+ or else Nkind (Parent (N)) = N_Procedure_Instantiation)
+ and then N = Name (Parent (N))
+ then
+ Save_Global_Defaults (Parent (N), Parent (N2));
+ end if;
+
+ elsif Nkind (Parent (N)) = N_Selected_Component
+ and then Nkind (Parent (N2)) = N_Expanded_Name
+ then
+
+ if Is_Global (Entity (Parent (N2))) then
+ Change_Selected_Component_To_Expanded_Name (Parent (N));
+ Set_Associated_Node (Parent (N), Parent (N2));
+ Set_Global_Type (Parent (N), Parent (N2));
+
+ Save_Global_Descendant (Field2 (N));
+ Save_Global_Descendant (Field3 (N));
+
+ -- If this is a reference to the current generic entity,
+ -- replace it with a simple name. This is to avoid anomalies
+ -- when the enclosing scope is also a generic unit, in which
+ -- case the selected component will not resolve to the current
+ -- unit within an instance of the outer one. Ditto if the
+ -- entity is an enclosing scope, e.g. a parent unit.
+
+ elsif In_Open_Scopes (Entity (Parent (N2)))
+ and then not Is_Generic_Unit (Entity (Prefix (Parent (N2))))
+ then
+ Rewrite (Parent (N),
+ Make_Identifier (Sloc (N),
+ Chars => Chars (Selector_Name (Parent (N2)))));
+ end if;
+
+ if (Nkind (Parent (Parent (N))) = N_Package_Instantiation
+ or else Nkind (Parent (Parent (N)))
+ = N_Function_Instantiation
+ or else Nkind (Parent (Parent (N)))
+ = N_Procedure_Instantiation)
+ and then Parent (N) = Name (Parent (Parent (N)))
+ then
+ Save_Global_Defaults
+ (Parent (Parent (N)), Parent (Parent ((N2))));
+ end if;
+
+ -- A selected component may denote a static constant that has
+ -- been folded. Make the same replacement in original tree.
+
+ elsif Nkind (Parent (N)) = N_Selected_Component
+ and then (Nkind (Parent (N2)) = N_Integer_Literal
+ or else Nkind (Parent (N2)) = N_Real_Literal)
+ then
+ Rewrite (Parent (N),
+ New_Copy (Parent (N2)));
+ Set_Analyzed (Parent (N), False);
+
+ -- a selected component may be transformed into a parameterless
+ -- function call. If the called entity is global, rewrite the
+ -- node appropriately, i.e. as an extended name for the global
+ -- entity.
+
+ elsif Nkind (Parent (N)) = N_Selected_Component
+ and then Nkind (Parent (N2)) = N_Function_Call
+ and then Is_Global (Entity (Name (Parent (N2))))
+ then
+ Change_Selected_Component_To_Expanded_Name (Parent (N));
+ Set_Associated_Node (Parent (N), Name (Parent (N2)));
+ Set_Global_Type (Parent (N), Name (Parent (N2)));
+
+ Save_Global_Descendant (Field2 (N));
+ Save_Global_Descendant (Field3 (N));
+
+ else
+ -- Entity is local. Reset in generic unit, so that node
+ -- is resolved anew at the point of instantiation.
+
+ Set_Associated_Node (N, Empty);
+ Set_Etype (N, Empty);
+ end if;
+ end Reset_Entity;
+
+ --------------------------
+ -- Save_Global_Defaults --
+ --------------------------
+
+ procedure Save_Global_Defaults (N1, N2 : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N1);
+ Assoc1 : List_Id := Generic_Associations (N1);
+ Assoc2 : List_Id := Generic_Associations (N2);
+ Act1 : Node_Id;
+ Act2 : Node_Id;
+ Def : Node_Id;
+ Gen_Id : Entity_Id := Entity (Name (N2));
+ Ndec : Node_Id;
+ Subp : Entity_Id;
+ Actual : Entity_Id;
+
+ begin
+ if Present (Assoc1) then
+ Act1 := First (Assoc1);
+ else
+ Act1 := Empty;
+ Set_Generic_Associations (N1, New_List);
+ Assoc1 := Generic_Associations (N1);
+ end if;
+
+ if Present (Assoc2) then
+ Act2 := First (Assoc2);
+ else
+ return;
+ end if;
+
+ while Present (Act1) and then Present (Act2) loop
+ Next (Act1);
+ Next (Act2);
+ end loop;
+
+ -- Find the associations added for default suprograms.
+
+ if Present (Act2) then
+ while Nkind (Act2) /= N_Generic_Association
+ or else No (Entity (Selector_Name (Act2)))
+ or else not Is_Overloadable (Entity (Selector_Name (Act2)))
+ loop
+ Next (Act2);
+ end loop;
+
+ -- Add a similar association if the default is global. The
+ -- renaming declaration for the actual has been analyzed, and
+ -- its alias is the program it renames. Link the actual in the
+ -- original generic tree with the node in the analyzed tree.
+
+ while Present (Act2) loop
+ Subp := Entity (Selector_Name (Act2));
+ Def := Explicit_Generic_Actual_Parameter (Act2);
+
+ -- Following test is defence against rubbish errors
+
+ if No (Alias (Subp)) then
+ return;
+ end if;
+
+ -- Retrieve the resolved actual from the renaming declaration
+ -- created for the instantiated formal.
+
+ Actual := Entity (Name (Parent (Parent (Subp))));
+ Set_Entity (Def, Actual);
+ Set_Etype (Def, Etype (Actual));
+
+ if Is_Global (Actual) then
+ Ndec :=
+ Make_Generic_Association (Loc,
+ Selector_Name => New_Occurrence_Of (Subp, Loc),
+ Explicit_Generic_Actual_Parameter =>
+ New_Occurrence_Of (Actual, Loc));
+
+ Set_Associated_Node
+ (Explicit_Generic_Actual_Parameter (Ndec), Def);
+
+ Append (Ndec, Assoc1);
+
+ -- If there are other defaults, add a dummy association
+ -- in case there are other defaulted formals with the same
+ -- name.
+
+ elsif Present (Next (Act2)) then
+ Ndec :=
+ Make_Generic_Association (Loc,
+ Selector_Name => New_Occurrence_Of (Subp, Loc),
+ Explicit_Generic_Actual_Parameter => Empty);
+
+ Append (Ndec, Assoc1);
+ end if;
+
+ Next (Act2);
+ end loop;
+ end if;
+
+ if Nkind (Name (N1)) = N_Identifier
+ and then Is_Child_Unit (Gen_Id)
+ and then Is_Global (Gen_Id)
+ and then Is_Generic_Unit (Scope (Gen_Id))
+ and then In_Open_Scopes (Scope (Gen_Id))
+ then
+ -- This is an instantiation of a child unit within a sibling,
+ -- so that the generic parent is in scope. An eventual instance
+ -- must occur within the scope of an instance of the parent.
+ -- Make name in instance into an expanded name, to preserve the
+ -- identifier of the parent, so it can be resolved subsequently.
+
+ Rewrite (Name (N2),
+ Make_Expanded_Name (Loc,
+ Chars => Chars (Gen_Id),
+ Prefix => New_Occurrence_Of (Scope (Gen_Id), Loc),
+ Selector_Name => New_Occurrence_Of (Gen_Id, Loc)));
+ Set_Entity (Name (N2), Gen_Id);
+
+ Rewrite (Name (N1),
+ Make_Expanded_Name (Loc,
+ Chars => Chars (Gen_Id),
+ Prefix => New_Occurrence_Of (Scope (Gen_Id), Loc),
+ Selector_Name => New_Occurrence_Of (Gen_Id, Loc)));
+
+ Set_Associated_Node (Name (N1), Name (N2));
+ Set_Associated_Node (Prefix (Name (N1)), Empty);
+ Set_Associated_Node
+ (Selector_Name (Name (N1)), Selector_Name (Name (N2)));
+ Set_Etype (Name (N1), Etype (Gen_Id));
+ end if;
+
+ end Save_Global_Defaults;
+
+ ----------------------------
+ -- Save_Global_Descendant --
+ ----------------------------
+
+ procedure Save_Global_Descendant (D : Union_Id) is
+ N1 : Node_Id;
+
+ begin
+ if D in Node_Range then
+ if D = Union_Id (Empty) then
+ null;
+
+ elsif Nkind (Node_Id (D)) /= N_Compilation_Unit then
+ Save_References (Node_Id (D));
+ end if;
+
+ elsif D in List_Range then
+ if D = Union_Id (No_List)
+ or else Is_Empty_List (List_Id (D))
+ then
+ null;
+
+ else
+ N1 := First (List_Id (D));
+ while Present (N1) loop
+ Save_References (N1);
+ Next (N1);
+ end loop;
+ end if;
+
+ -- Element list or other non-node field, nothing to do
+
+ else
+ null;
+ end if;
+ end Save_Global_Descendant;
+
+ ---------------------
+ -- Save_References --
+ ---------------------
+
+ -- This is the recursive procedure that does the work, once the
+ -- enclosing generic scope has been established. We have to treat
+ -- specially a number of node rewritings that are required by semantic
+ -- processing and which change the kind of nodes in the generic copy:
+ -- typically constant-folding, replacing an operator node by a string
+ -- literal, or a selected component by an expanded name. In each of
+ -- those cases, the transformation is propagated to the generic unit.
+
+ procedure Save_References (N : Node_Id) is
+ begin
+ if N = Empty then
+ null;
+
+ elsif (Nkind (N) = N_Character_Literal
+ or else Nkind (N) = N_Operator_Symbol)
+ then
+ if Nkind (N) = Nkind (Associated_Node (N)) then
+ Reset_Entity (N);
+
+ elsif Nkind (N) = N_Operator_Symbol
+ and then Nkind (Associated_Node (N)) = N_String_Literal
+ then
+ Change_Operator_Symbol_To_String_Literal (N);
+ end if;
+
+ elsif Nkind (N) in N_Op then
+
+ if Nkind (N) = Nkind (Associated_Node (N)) then
+
+ if Nkind (N) = N_Op_Concat then
+ Set_Is_Component_Left_Opnd (N,
+ Is_Component_Left_Opnd (Associated_Node (N)));
+
+ Set_Is_Component_Right_Opnd (N,
+ Is_Component_Right_Opnd (Associated_Node (N)));
+ end if;
+
+ Reset_Entity (N);
+ else
+ -- Node may be transformed into call to a user-defined operator
+
+ N2 := Associated_Node (N);
+
+ if Nkind (N2) = N_Function_Call then
+ E := Entity (Name (N2));
+
+ if Present (E)
+ and then Is_Global (E)
+ then
+ Set_Etype (N, Etype (N2));
+ else
+ Set_Associated_Node (N, Empty);
+ Set_Etype (N, Empty);
+ end if;
+
+ elsif Nkind (N2) = N_Integer_Literal
+ or else Nkind (N2) = N_Real_Literal
+ or else Nkind (N2) = N_String_Literal
+ or else (Nkind (N2) = N_Identifier
+ and then
+ Ekind (Entity (N2)) = E_Enumeration_Literal)
+ then
+ -- Operation was constant-folded, perform the same
+ -- replacement in generic.
+
+ -- Note: we do a Replace here rather than a Rewrite,
+ -- which is a definite violation of the standard rules
+ -- with regard to retrievability of the original tree,
+ -- and likely ASIS bugs or at least irregularities are
+ -- caused by this choice.
+
+ -- The reason we do this is that the appropriate original
+ -- nodes are never constructed (we don't go applying the
+ -- generic instantiation to rewritten nodes in general).
+ -- We could try to create an appropriate copy but it would
+ -- be hard work and does not seem worth while, because
+ -- the original expression is accessible in the generic,
+ -- and ASIS rules for traversing instances are fuzzy.
+
+ Replace (N, New_Copy (N2));
+ Set_Analyzed (N, False);
+ end if;
+ end if;
+
+ -- Complete the check on operands.
+
+ Save_Global_Descendant (Field2 (N));
+ Save_Global_Descendant (Field3 (N));
+
+ elsif Nkind (N) = N_Identifier then
+ if Nkind (N) = Nkind (Associated_Node (N)) then
+
+ -- If this is a discriminant reference, always save it.
+ -- It is used in the instance to find the corresponding
+ -- discriminant positionally rather than by name.
+
+ Set_Original_Discriminant
+ (N, Original_Discriminant (Associated_Node (N)));
+ Reset_Entity (N);
+
+ else
+ N2 := Associated_Node (N);
+
+ if Nkind (N2) = N_Function_Call then
+ E := Entity (Name (N2));
+
+ -- Name resolves to a call to parameterless function.
+ -- If original entity is global, mark node as resolved.
+
+ if Present (E)
+ and then Is_Global (E)
+ then
+ Set_Etype (N, Etype (N2));
+ else
+ Set_Associated_Node (N, Empty);
+ Set_Etype (N, Empty);
+ end if;
+
+ elsif
+ Nkind (N2) = N_Integer_Literal or else
+ Nkind (N2) = N_Real_Literal or else
+ Nkind (N2) = N_String_Literal
+ then
+ -- Name resolves to named number that is constant-folded,
+ -- or to string literal from concatenation.
+ -- Perform the same replacement in generic.
+
+ Rewrite (N, New_Copy (N2));
+ Set_Analyzed (N, False);
+
+ elsif Nkind (N2) = N_Explicit_Dereference then
+
+ -- An identifier is rewritten as a dereference if it is
+ -- the prefix in a selected component, and it denotes an
+ -- access to a composite type, or a parameterless function
+ -- call that returns an access type.
+
+ -- Check whether corresponding entity in prefix is global.
+
+ if Is_Entity_Name (Prefix (N2))
+ and then Present (Entity (Prefix (N2)))
+ and then Is_Global (Entity (Prefix (N2)))
+ then
+ Rewrite (N,
+ Make_Explicit_Dereference (Sloc (N),
+ Prefix => Make_Identifier (Sloc (N),
+ Chars => Chars (N))));
+ Set_Associated_Node (Prefix (N), Prefix (N2));
+
+ elsif Nkind (Prefix (N2)) = N_Function_Call
+ and then Is_Global (Entity (Name (Prefix (N2))))
+ then
+ Rewrite (N,
+ Make_Explicit_Dereference (Sloc (N),
+ Prefix => Make_Function_Call (Sloc (N),
+ Name =>
+ Make_Identifier (Sloc (N),
+ Chars => Chars (N)))));
+
+ Set_Associated_Node
+ (Name (Prefix (N)), Name (Prefix (N2)));
+
+ else
+ Set_Associated_Node (N, Empty);
+ Set_Etype (N, Empty);
+ end if;
+
+ -- The subtype mark of a nominally unconstrained object
+ -- is rewritten as a subtype indication using the bounds
+ -- of the expression. Recover the original subtype mark.
+
+ elsif Nkind (N2) = N_Subtype_Indication
+ and then Is_Entity_Name (Original_Node (N2))
+ then
+ Set_Associated_Node (N, Original_Node (N2));
+ Reset_Entity (N);
+
+ else
+ null;
+ end if;
+ end if;
+
+ elsif Nkind (N) in N_Entity then
+ null;
+
+ elsif Nkind (N) = N_Aggregate
+ or else Nkind (N) = N_Extension_Aggregate
+ then
+ N2 := Associated_Node (N);
+ if No (N2)
+ or else No (Etype (N2))
+ or else not Is_Global (Etype (N2))
+ then
+ Set_Associated_Node (N, Empty);
+ end if;
+
+ Save_Global_Descendant (Field1 (N));
+ Save_Global_Descendant (Field2 (N));
+ Save_Global_Descendant (Field3 (N));
+ Save_Global_Descendant (Field5 (N));
+
+ else
+ Save_Global_Descendant (Field1 (N));
+ Save_Global_Descendant (Field2 (N));
+ Save_Global_Descendant (Field3 (N));
+ Save_Global_Descendant (Field4 (N));
+ Save_Global_Descendant (Field5 (N));
+
+ end if;
+ end Save_References;
+
+ -- Start of processing for Save_Global_References
+
+ begin
+ Gen_Scope := Current_Scope;
+
+ -- If the generic unit is a child unit, references to entities in
+ -- the parent are treated as local, because they will be resolved
+ -- anew in the context of the instance of the parent.
+
+ while Is_Child_Unit (Gen_Scope)
+ and then Ekind (Scope (Gen_Scope)) = E_Generic_Package
+ loop
+ Gen_Scope := Scope (Gen_Scope);
+ end loop;
+
+ Save_References (N);
+ end Save_Global_References;
+
+ -------------------------
+ -- Set_Associated_Node --
+ -------------------------
+
+ -- Note from RBKD: the uncommented use of Set_Node4 below is ugly ???
+
+ procedure Set_Associated_Node
+ (Gen_Node : Node_Id;
+ Copy_Node : Node_Id)
+ is
+ begin
+ Set_Node4 (Gen_Node, Copy_Node);
+ end Set_Associated_Node;
+
+ ---------------------
+ -- Set_Copied_Sloc --
+ ---------------------
+
+ procedure Set_Copied_Sloc (N : Node_Id; E : Entity_Id) is
+ begin
+ Create_Instantiation_Source (N, E, S_Adjustment);
+ end Set_Copied_Sloc;
+
+ ---------------------
+ -- Set_Instance_Of --
+ ---------------------
+
+ procedure Set_Instance_Of (A : Entity_Id; B : Entity_Id) is
+ begin
+ Generic_Renamings.Table (Generic_Renamings.Last) := (A, B, Assoc_Null);
+ Generic_Renamings_HTable.Set (Generic_Renamings.Last);
+ Generic_Renamings.Increment_Last;
+ end Set_Instance_Of;
+
+ --------------------
+ -- Set_Next_Assoc --
+ --------------------
+
+ procedure Set_Next_Assoc (E : Assoc_Ptr; Next : Assoc_Ptr) is
+ begin
+ Generic_Renamings.Table (E).Next_In_HTable := Next;
+ end Set_Next_Assoc;
+
+ -------------------
+ -- Start_Generic --
+ -------------------
+
+ procedure Start_Generic is
+ begin
+ -- ??? I am sure more things could be factored out in this
+ -- routine. Should probably be done at a later stage.
+
+ Generic_Flags.Increment_Last;
+ Generic_Flags.Table (Generic_Flags.Last) := Inside_A_Generic;
+ Inside_A_Generic := True;
+
+ Expander_Mode_Save_And_Set (False);
+ end Start_Generic;
+
+ -----------------
+ -- Switch_View --
+ -----------------
+
+ procedure Switch_View (T : Entity_Id) is
+ Priv_Elmt : Elmt_Id := No_Elmt;
+ Priv_Sub : Entity_Id;
+ BT : Entity_Id := Base_Type (T);
+
+ begin
+ -- T may be private but its base type may have been exchanged through
+ -- some other occurrence, in which case there is nothing to switch.
+
+ if not Is_Private_Type (BT) then
+ return;
+ end if;
+
+ Priv_Elmt := First_Elmt (Private_Dependents (BT));
+
+ if Present (Full_View (BT)) then
+ Append_Elmt (Full_View (BT), Exchanged_Views);
+ Exchange_Declarations (BT);
+ end if;
+
+ while Present (Priv_Elmt) loop
+ Priv_Sub := (Node (Priv_Elmt));
+
+ -- We avoid flipping the subtype if the Etype of its full
+ -- view is private because this would result in a malformed
+ -- subtype. This occurs when the Etype of the subtype full
+ -- view is the full view of the base type (and since the
+ -- base types were just switched, the subtype is pointing
+ -- to the wrong view). This is currently the case for
+ -- tagged record types, access types (maybe more?) and
+ -- needs to be resolved. ???
+
+ if Present (Full_View (Priv_Sub))
+ and then not Is_Private_Type (Etype (Full_View (Priv_Sub)))
+ then
+ Append_Elmt (Full_View (Priv_Sub), Exchanged_Views);
+ Exchange_Declarations (Priv_Sub);
+ end if;
+
+ Next_Elmt (Priv_Elmt);
+ end loop;
+ end Switch_View;
+
+ -----------------------------
+ -- Valid_Default_Attribute --
+ -----------------------------
+
+ procedure Valid_Default_Attribute (Nam : Entity_Id; Def : Node_Id) is
+ Attr_Id : constant Attribute_Id :=
+ Get_Attribute_Id (Attribute_Name (Def));
+ F : Entity_Id;
+ Num_F : Int;
+ T : Entity_Id := Entity (Prefix (Def));
+ OK : Boolean;
+ Is_Fun : constant Boolean := (Ekind (Nam) = E_Function);
+
+ begin
+ if No (T)
+ or else T = Any_Id
+ then
+ return;
+ end if;
+
+ Num_F := 0;
+ F := First_Formal (Nam);
+ while Present (F) loop
+ Num_F := Num_F + 1;
+ Next_Formal (F);
+ end loop;
+
+ case Attr_Id is
+ when Attribute_Adjacent | Attribute_Ceiling | Attribute_Copy_Sign |
+ Attribute_Floor | Attribute_Fraction | Attribute_Machine |
+ Attribute_Model | Attribute_Remainder | Attribute_Rounding |
+ Attribute_Unbiased_Rounding =>
+ OK := (Is_Fun and then Num_F = 1 and then Is_Floating_Point_Type (T));
+
+ when Attribute_Image | Attribute_Pred | Attribute_Succ |
+ Attribute_Value | Attribute_Wide_Image |
+ Attribute_Wide_Value =>
+ OK := (Is_Fun and then Num_F = 1 and then Is_Scalar_Type (T));
+
+ when Attribute_Max | Attribute_Min =>
+ OK := (Is_Fun and then Num_F = 2 and then Is_Scalar_Type (T));
+
+ when Attribute_Input =>
+ OK := (Is_Fun and then Num_F = 1);
+
+ when Attribute_Output | Attribute_Read | Attribute_Write =>
+ OK := (not Is_Fun and then Num_F = 2);
+
+ when others => OK := False;
+ end case;
+
+ if not OK then
+ Error_Msg_N ("attribute reference has wrong profile for subprogram",
+ Def);
+ end if;
+ end Valid_Default_Attribute;
+
+end Sem_Ch12;