summaryrefslogtreecommitdiff
path: root/gcc/ada/sem_ch13.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc/ada/sem_ch13.adb')
-rw-r--r--gcc/ada/sem_ch13.adb649
1 files changed, 322 insertions, 327 deletions
diff --git a/gcc/ada/sem_ch13.adb b/gcc/ada/sem_ch13.adb
index 67a913919e3..5f067ccc261 100644
--- a/gcc/ada/sem_ch13.adb
+++ b/gcc/ada/sem_ch13.adb
@@ -184,415 +184,410 @@ package body Sem_Ch13 is
begin
-- Processing depends on version of Ada
- case Ada_Version is
+ -- For Ada 95, we just renumber bits within a storage unit. We do the
+ -- same for Ada 83 mode, since we recognize pragma Bit_Order in Ada 83,
+ -- and are free to add this extension.
- -- For Ada 95, we just renumber bits within a storage unit. We do
- -- the same for Ada 83 mode, since we recognize pragma Bit_Order
- -- in Ada 83, and are free to add this extension.
+ if Ada_Version < Ada_2005 then
+ Comp := First_Component_Or_Discriminant (R);
+ while Present (Comp) loop
+ CC := Component_Clause (Comp);
- when Ada_83 | Ada_95 =>
- Comp := First_Component_Or_Discriminant (R);
- while Present (Comp) loop
- CC := Component_Clause (Comp);
+ -- If component clause is present, then deal with the non-default
+ -- bit order case for Ada 95 mode.
- -- If component clause is present, then deal with the non-
- -- default bit order case for Ada 95 mode.
+ -- We only do this processing for the base type, and in fact that
+ -- is important, since otherwise if there are record subtypes, we
+ -- could reverse the bits once for each subtype, which is wrong.
- -- We only do this processing for the base type, and in
- -- fact that's important, since otherwise if there are
- -- record subtypes, we could reverse the bits once for
- -- each subtype, which would be incorrect.
+ if Present (CC)
+ and then Ekind (R) = E_Record_Type
+ then
+ declare
+ CFB : constant Uint := Component_Bit_Offset (Comp);
+ CSZ : constant Uint := Esize (Comp);
+ CLC : constant Node_Id := Component_Clause (Comp);
+ Pos : constant Node_Id := Position (CLC);
+ FB : constant Node_Id := First_Bit (CLC);
- if Present (CC)
- and then Ekind (R) = E_Record_Type
- then
- declare
- CFB : constant Uint := Component_Bit_Offset (Comp);
- CSZ : constant Uint := Esize (Comp);
- CLC : constant Node_Id := Component_Clause (Comp);
- Pos : constant Node_Id := Position (CLC);
- FB : constant Node_Id := First_Bit (CLC);
+ Storage_Unit_Offset : constant Uint :=
+ CFB / System_Storage_Unit;
- Storage_Unit_Offset : constant Uint :=
- CFB / System_Storage_Unit;
+ Start_Bit : constant Uint :=
+ CFB mod System_Storage_Unit;
- Start_Bit : constant Uint :=
- CFB mod System_Storage_Unit;
+ begin
+ -- Cases where field goes over storage unit boundary
- begin
- -- Cases where field goes over storage unit boundary
+ if Start_Bit + CSZ > System_Storage_Unit then
- if Start_Bit + CSZ > System_Storage_Unit then
+ -- Allow multi-byte field but generate warning
- -- Allow multi-byte field but generate warning
+ if Start_Bit mod System_Storage_Unit = 0
+ and then CSZ mod System_Storage_Unit = 0
+ then
+ Error_Msg_N
+ ("multi-byte field specified with non-standard"
+ & " Bit_Order?", CLC);
- if Start_Bit mod System_Storage_Unit = 0
- and then CSZ mod System_Storage_Unit = 0
- then
+ if Bytes_Big_Endian then
Error_Msg_N
- ("multi-byte field specified with non-standard"
- & " Bit_Order?", CLC);
-
- if Bytes_Big_Endian then
- Error_Msg_N
- ("bytes are not reversed "
- & "(component is big-endian)?", CLC);
- else
- Error_Msg_N
- ("bytes are not reversed "
- & "(component is little-endian)?", CLC);
- end if;
-
- -- Do not allow non-contiguous field
-
+ ("bytes are not reversed "
+ & "(component is big-endian)?", CLC);
else
Error_Msg_N
- ("attempt to specify non-contiguous field "
- & "not permitted", CLC);
- Error_Msg_N
- ("\caused by non-standard Bit_Order "
- & "specified", CLC);
- Error_Msg_N
- ("\consider possibility of using "
- & "Ada 2005 mode here", CLC);
+ ("bytes are not reversed "
+ & "(component is little-endian)?", CLC);
end if;
- -- Case where field fits in one storage unit
+ -- Do not allow non-contiguous field
else
- -- Give warning if suspicious component clause
+ Error_Msg_N
+ ("attempt to specify non-contiguous field "
+ & "not permitted", CLC);
+ Error_Msg_N
+ ("\caused by non-standard Bit_Order "
+ & "specified", CLC);
+ Error_Msg_N
+ ("\consider possibility of using "
+ & "Ada 2005 mode here", CLC);
+ end if;
- if Intval (FB) >= System_Storage_Unit
- and then Warn_On_Reverse_Bit_Order
- then
- Error_Msg_N
- ("?Bit_Order clause does not affect " &
- "byte ordering", Pos);
- Error_Msg_Uint_1 :=
- Intval (Pos) + Intval (FB) /
- System_Storage_Unit;
- Error_Msg_N
- ("?position normalized to ^ before bit " &
- "order interpreted", Pos);
- end if;
+ -- Case where field fits in one storage unit
+
+ else
+ -- Give warning if suspicious component clause
+
+ if Intval (FB) >= System_Storage_Unit
+ and then Warn_On_Reverse_Bit_Order
+ then
+ Error_Msg_N
+ ("?Bit_Order clause does not affect " &
+ "byte ordering", Pos);
+ Error_Msg_Uint_1 :=
+ Intval (Pos) + Intval (FB) /
+ System_Storage_Unit;
+ Error_Msg_N
+ ("?position normalized to ^ before bit " &
+ "order interpreted", Pos);
+ end if;
- -- Here is where we fix up the Component_Bit_Offset
- -- value to account for the reverse bit order.
- -- Some examples of what needs to be done are:
+ -- Here is where we fix up the Component_Bit_Offset value
+ -- to account for the reverse bit order. Some examples of
+ -- what needs to be done are:
- -- First_Bit .. Last_Bit Component_Bit_Offset
- -- old new old new
+ -- First_Bit .. Last_Bit Component_Bit_Offset
+ -- old new old new
- -- 0 .. 0 7 .. 7 0 7
- -- 0 .. 1 6 .. 7 0 6
- -- 0 .. 2 5 .. 7 0 5
- -- 0 .. 7 0 .. 7 0 4
+ -- 0 .. 0 7 .. 7 0 7
+ -- 0 .. 1 6 .. 7 0 6
+ -- 0 .. 2 5 .. 7 0 5
+ -- 0 .. 7 0 .. 7 0 4
- -- 1 .. 1 6 .. 6 1 6
- -- 1 .. 4 3 .. 6 1 3
- -- 4 .. 7 0 .. 3 4 0
+ -- 1 .. 1 6 .. 6 1 6
+ -- 1 .. 4 3 .. 6 1 3
+ -- 4 .. 7 0 .. 3 4 0
- -- The general rule is that the first bit is
- -- is obtained by subtracting the old ending bit
- -- from storage_unit - 1.
+ -- The rule is that the first bit is is obtained by
+ -- subtracting the old ending bit from storage_unit - 1.
- Set_Component_Bit_Offset
- (Comp,
- (Storage_Unit_Offset * System_Storage_Unit) +
- (System_Storage_Unit - 1) -
- (Start_Bit + CSZ - 1));
+ Set_Component_Bit_Offset
+ (Comp,
+ (Storage_Unit_Offset * System_Storage_Unit) +
+ (System_Storage_Unit - 1) -
+ (Start_Bit + CSZ - 1));
- Set_Normalized_First_Bit
- (Comp,
- Component_Bit_Offset (Comp) mod
- System_Storage_Unit);
- end if;
- end;
- end if;
+ Set_Normalized_First_Bit
+ (Comp,
+ Component_Bit_Offset (Comp) mod
+ System_Storage_Unit);
+ end if;
+ end;
+ end if;
- Next_Component_Or_Discriminant (Comp);
- end loop;
+ Next_Component_Or_Discriminant (Comp);
+ end loop;
- -- For Ada 2005, we do machine scalar processing, as fully described
- -- In AI-133. This involves gathering all components which start at
- -- the same byte offset and processing them together
+ -- For Ada 2005, we do machine scalar processing, as fully described In
+ -- AI-133. This involves gathering all components which start at the
+ -- same byte offset and processing them together. Same approach is still
+ -- valid in later versions including Ada 2012.
- when Ada_05 .. Ada_Version_Type'Last =>
- declare
- Max_Machine_Scalar_Size : constant Uint :=
- UI_From_Int
- (Standard_Long_Long_Integer_Size);
+ else
+ declare
+ Max_Machine_Scalar_Size : constant Uint :=
+ UI_From_Int
+ (Standard_Long_Long_Integer_Size);
-- We use this as the maximum machine scalar size
- Num_CC : Natural;
- SSU : constant Uint := UI_From_Int (System_Storage_Unit);
+ Num_CC : Natural;
+ SSU : constant Uint := UI_From_Int (System_Storage_Unit);
- begin
- -- This first loop through components does two things. First it
- -- deals with the case of components with component clauses
- -- whose length is greater than the maximum machine scalar size
- -- (either accepting them or rejecting as needed). Second, it
- -- counts the number of components with component clauses whose
- -- length does not exceed this maximum for later processing.
+ begin
+ -- This first loop through components does two things. First it
+ -- deals with the case of components with component clauses whose
+ -- length is greater than the maximum machine scalar size (either
+ -- accepting them or rejecting as needed). Second, it counts the
+ -- number of components with component clauses whose length does
+ -- not exceed this maximum for later processing.
+
+ Num_CC := 0;
+ Comp := First_Component_Or_Discriminant (R);
+ while Present (Comp) loop
+ CC := Component_Clause (Comp);
- Num_CC := 0;
- Comp := First_Component_Or_Discriminant (R);
- while Present (Comp) loop
- CC := Component_Clause (Comp);
+ if Present (CC) then
+ declare
+ Fbit : constant Uint :=
+ Static_Integer (First_Bit (CC));
- if Present (CC) then
- declare
- Fbit : constant Uint :=
- Static_Integer (First_Bit (CC));
+ begin
+ -- Case of component with size > max machine scalar
- begin
- -- Case of component with size > max machine scalar
+ if Esize (Comp) > Max_Machine_Scalar_Size then
- if Esize (Comp) > Max_Machine_Scalar_Size then
+ -- Must begin on byte boundary
- -- Must begin on byte boundary
+ if Fbit mod SSU /= 0 then
+ Error_Msg_N
+ ("illegal first bit value for "
+ & "reverse bit order",
+ First_Bit (CC));
+ Error_Msg_Uint_1 := SSU;
+ Error_Msg_Uint_2 := Max_Machine_Scalar_Size;
- if Fbit mod SSU /= 0 then
- Error_Msg_N
- ("illegal first bit value for "
- & "reverse bit order",
- First_Bit (CC));
- Error_Msg_Uint_1 := SSU;
- Error_Msg_Uint_2 := Max_Machine_Scalar_Size;
+ Error_Msg_N
+ ("\must be a multiple of ^ "
+ & "if size greater than ^",
+ First_Bit (CC));
- Error_Msg_N
- ("\must be a multiple of ^ "
- & "if size greater than ^",
- First_Bit (CC));
+ -- Must end on byte boundary
- -- Must end on byte boundary
+ elsif Esize (Comp) mod SSU /= 0 then
+ Error_Msg_N
+ ("illegal last bit value for "
+ & "reverse bit order",
+ Last_Bit (CC));
+ Error_Msg_Uint_1 := SSU;
+ Error_Msg_Uint_2 := Max_Machine_Scalar_Size;
- elsif Esize (Comp) mod SSU /= 0 then
- Error_Msg_N
- ("illegal last bit value for "
- & "reverse bit order",
- Last_Bit (CC));
- Error_Msg_Uint_1 := SSU;
- Error_Msg_Uint_2 := Max_Machine_Scalar_Size;
+ Error_Msg_N
+ ("\must be a multiple of ^ if size "
+ & "greater than ^",
+ Last_Bit (CC));
- Error_Msg_N
- ("\must be a multiple of ^ if size "
- & "greater than ^",
- Last_Bit (CC));
+ -- OK, give warning if enabled
- -- OK, give warning if enabled
+ elsif Warn_On_Reverse_Bit_Order then
+ Error_Msg_N
+ ("multi-byte field specified with "
+ & " non-standard Bit_Order?", CC);
- elsif Warn_On_Reverse_Bit_Order then
+ if Bytes_Big_Endian then
+ Error_Msg_N
+ ("\bytes are not reversed "
+ & "(component is big-endian)?", CC);
+ else
Error_Msg_N
- ("multi-byte field specified with "
- & " non-standard Bit_Order?", CC);
-
- if Bytes_Big_Endian then
- Error_Msg_N
- ("\bytes are not reversed "
- & "(component is big-endian)?", CC);
- else
- Error_Msg_N
- ("\bytes are not reversed "
- & "(component is little-endian)?", CC);
- end if;
+ ("\bytes are not reversed "
+ & "(component is little-endian)?", CC);
end if;
+ end if;
- -- Case where size is not greater than max machine
- -- scalar. For now, we just count these.
+ -- Case where size is not greater than max machine
+ -- scalar. For now, we just count these.
- else
- Num_CC := Num_CC + 1;
- end if;
- end;
- end if;
+ else
+ Num_CC := Num_CC + 1;
+ end if;
+ end;
+ end if;
- Next_Component_Or_Discriminant (Comp);
- end loop;
+ Next_Component_Or_Discriminant (Comp);
+ end loop;
- -- We need to sort the component clauses on the basis of the
- -- Position values in the clause, so we can group clauses with
- -- the same Position. together to determine the relevant
- -- machine scalar size.
+ -- We need to sort the component clauses on the basis of the
+ -- Position values in the clause, so we can group clauses with
+ -- the same Position. together to determine the relevant machine
+ -- scalar size.
- Sort_CC : declare
- Comps : array (0 .. Num_CC) of Entity_Id;
- -- Array to collect component and discriminant entities. The
- -- data starts at index 1, the 0'th entry is for the sort
- -- routine.
+ Sort_CC : declare
+ Comps : array (0 .. Num_CC) of Entity_Id;
+ -- Array to collect component and discriminant entities. The
+ -- data starts at index 1, the 0'th entry is for the sort
+ -- routine.
- function CP_Lt (Op1, Op2 : Natural) return Boolean;
- -- Compare routine for Sort
+ function CP_Lt (Op1, Op2 : Natural) return Boolean;
+ -- Compare routine for Sort
- procedure CP_Move (From : Natural; To : Natural);
- -- Move routine for Sort
+ procedure CP_Move (From : Natural; To : Natural);
+ -- Move routine for Sort
- package Sorting is new GNAT.Heap_Sort_G (CP_Move, CP_Lt);
+ package Sorting is new GNAT.Heap_Sort_G (CP_Move, CP_Lt);
- Start : Natural;
- Stop : Natural;
- -- Start and stop positions in component list of set of
- -- components with the same starting position (that
- -- constitute components in a single machine scalar).
+ Start : Natural;
+ Stop : Natural;
+ -- Start and stop positions in the component list of the set of
+ -- components with the same starting position (that constitute
+ -- components in a single machine scalar).
- MaxL : Uint;
- -- Maximum last bit value of any component in this set
+ MaxL : Uint;
+ -- Maximum last bit value of any component in this set
- MSS : Uint;
- -- Corresponding machine scalar size
+ MSS : Uint;
+ -- Corresponding machine scalar size
- -----------
- -- CP_Lt --
- -----------
+ -----------
+ -- CP_Lt --
+ -----------
- function CP_Lt (Op1, Op2 : Natural) return Boolean is
- begin
- return Position (Component_Clause (Comps (Op1))) <
- Position (Component_Clause (Comps (Op2)));
- end CP_Lt;
+ function CP_Lt (Op1, Op2 : Natural) return Boolean is
+ begin
+ return Position (Component_Clause (Comps (Op1))) <
+ Position (Component_Clause (Comps (Op2)));
+ end CP_Lt;
- -------------
- -- CP_Move --
- -------------
+ -------------
+ -- CP_Move --
+ -------------
- procedure CP_Move (From : Natural; To : Natural) is
- begin
- Comps (To) := Comps (From);
- end CP_Move;
+ procedure CP_Move (From : Natural; To : Natural) is
+ begin
+ Comps (To) := Comps (From);
+ end CP_Move;
-- Start of processing for Sort_CC
- begin
- -- Collect the component clauses
+ begin
+ -- Collect the component clauses
- Num_CC := 0;
- Comp := First_Component_Or_Discriminant (R);
- while Present (Comp) loop
- if Present (Component_Clause (Comp))
- and then Esize (Comp) <= Max_Machine_Scalar_Size
- then
- Num_CC := Num_CC + 1;
- Comps (Num_CC) := Comp;
- end if;
+ Num_CC := 0;
+ Comp := First_Component_Or_Discriminant (R);
+ while Present (Comp) loop
+ if Present (Component_Clause (Comp))
+ and then Esize (Comp) <= Max_Machine_Scalar_Size
+ then
+ Num_CC := Num_CC + 1;
+ Comps (Num_CC) := Comp;
+ end if;
- Next_Component_Or_Discriminant (Comp);
- end loop;
+ Next_Component_Or_Discriminant (Comp);
+ end loop;
- -- Sort by ascending position number
+ -- Sort by ascending position number
- Sorting.Sort (Num_CC);
+ Sorting.Sort (Num_CC);
- -- We now have all the components whose size does not exceed
- -- the max machine scalar value, sorted by starting
- -- position. In this loop we gather groups of clauses
- -- starting at the same position, to process them in
- -- accordance with Ada 2005 AI-133.
+ -- We now have all the components whose size does not exceed
+ -- the max machine scalar value, sorted by starting position.
+ -- In this loop we gather groups of clauses starting at the
+ -- same position, to process them in accordance with AI-133.
- Stop := 0;
+ Stop := 0;
+ while Stop < Num_CC loop
+ Start := Stop + 1;
+ Stop := Start;
+ MaxL :=
+ Static_Integer
+ (Last_Bit (Component_Clause (Comps (Start))));
while Stop < Num_CC loop
- Start := Stop + 1;
- Stop := Start;
- MaxL :=
- Static_Integer
- (Last_Bit (Component_Clause (Comps (Start))));
- while Stop < Num_CC loop
- if Static_Integer
- (Position (Component_Clause (Comps (Stop + 1)))) =
- Static_Integer
- (Position (Component_Clause (Comps (Stop))))
- then
- Stop := Stop + 1;
- MaxL :=
- UI_Max
- (MaxL,
- Static_Integer
- (Last_Bit
- (Component_Clause (Comps (Stop)))));
- else
- exit;
- end if;
- end loop;
+ if Static_Integer
+ (Position (Component_Clause (Comps (Stop + 1)))) =
+ Static_Integer
+ (Position (Component_Clause (Comps (Stop))))
+ then
+ Stop := Stop + 1;
+ MaxL :=
+ UI_Max
+ (MaxL,
+ Static_Integer
+ (Last_Bit
+ (Component_Clause (Comps (Stop)))));
+ else
+ exit;
+ end if;
+ end loop;
- -- Now we have a group of component clauses from Start to
- -- Stop whose positions are identical, and MaxL is the
- -- maximum last bit value of any of these components.
-
- -- We need to determine the corresponding machine scalar
- -- size. This loop assumes that machine scalar sizes are
- -- even, and that each possible machine scalar has twice
- -- as many bits as the next smaller one.
-
- MSS := Max_Machine_Scalar_Size;
- while MSS mod 2 = 0
- and then (MSS / 2) >= SSU
- and then (MSS / 2) > MaxL
- loop
- MSS := MSS / 2;
- end loop;
+ -- Now we have a group of component clauses from Start to
+ -- Stop whose positions are identical, and MaxL is the
+ -- maximum last bit value of any of these components.
- -- Here is where we fix up the Component_Bit_Offset value
- -- to account for the reverse bit order. Some examples of
- -- what needs to be done for the case of a machine scalar
- -- size of 8 are:
+ -- We need to determine the corresponding machine scalar
+ -- size. This loop assumes that machine scalar sizes are
+ -- even, and that each possible machine scalar has twice
+ -- as many bits as the next smaller one.
- -- First_Bit .. Last_Bit Component_Bit_Offset
- -- old new old new
+ MSS := Max_Machine_Scalar_Size;
+ while MSS mod 2 = 0
+ and then (MSS / 2) >= SSU
+ and then (MSS / 2) > MaxL
+ loop
+ MSS := MSS / 2;
+ end loop;
- -- 0 .. 0 7 .. 7 0 7
- -- 0 .. 1 6 .. 7 0 6
- -- 0 .. 2 5 .. 7 0 5
- -- 0 .. 7 0 .. 7 0 4
+ -- Here is where we fix up the Component_Bit_Offset value
+ -- to account for the reverse bit order. Some examples of
+ -- what needs to be done for the case of a machine scalar
+ -- size of 8 are:
- -- 1 .. 1 6 .. 6 1 6
- -- 1 .. 4 3 .. 6 1 3
- -- 4 .. 7 0 .. 3 4 0
+ -- First_Bit .. Last_Bit Component_Bit_Offset
+ -- old new old new
- -- The general rule is that the first bit is obtained by
- -- subtracting the old ending bit from machine scalar
- -- size - 1.
+ -- 0 .. 0 7 .. 7 0 7
+ -- 0 .. 1 6 .. 7 0 6
+ -- 0 .. 2 5 .. 7 0 5
+ -- 0 .. 7 0 .. 7 0 4
- for C in Start .. Stop loop
- declare
- Comp : constant Entity_Id := Comps (C);
- CC : constant Node_Id :=
- Component_Clause (Comp);
- LB : constant Uint :=
- Static_Integer (Last_Bit (CC));
- NFB : constant Uint := MSS - Uint_1 - LB;
- NLB : constant Uint := NFB + Esize (Comp) - 1;
- Pos : constant Uint :=
- Static_Integer (Position (CC));
+ -- 1 .. 1 6 .. 6 1 6
+ -- 1 .. 4 3 .. 6 1 3
+ -- 4 .. 7 0 .. 3 4 0
- begin
- if Warn_On_Reverse_Bit_Order then
- Error_Msg_Uint_1 := MSS;
- Error_Msg_N
- ("info: reverse bit order in machine " &
- "scalar of length^?", First_Bit (CC));
- Error_Msg_Uint_1 := NFB;
- Error_Msg_Uint_2 := NLB;
-
- if Bytes_Big_Endian then
- Error_Msg_NE
- ("?\info: big-endian range for "
- & "component & is ^ .. ^",
- First_Bit (CC), Comp);
- else
- Error_Msg_NE
- ("?\info: little-endian range "
- & "for component & is ^ .. ^",
- First_Bit (CC), Comp);
- end if;
+ -- The rule is that the first bit is obtained by subtracting
+ -- the old ending bit from machine scalar size - 1.
+
+ for C in Start .. Stop loop
+ declare
+ Comp : constant Entity_Id := Comps (C);
+ CC : constant Node_Id :=
+ Component_Clause (Comp);
+ LB : constant Uint :=
+ Static_Integer (Last_Bit (CC));
+ NFB : constant Uint := MSS - Uint_1 - LB;
+ NLB : constant Uint := NFB + Esize (Comp) - 1;
+ Pos : constant Uint :=
+ Static_Integer (Position (CC));
+
+ begin
+ if Warn_On_Reverse_Bit_Order then
+ Error_Msg_Uint_1 := MSS;
+ Error_Msg_N
+ ("info: reverse bit order in machine " &
+ "scalar of length^?", First_Bit (CC));
+ Error_Msg_Uint_1 := NFB;
+ Error_Msg_Uint_2 := NLB;
+
+ if Bytes_Big_Endian then
+ Error_Msg_NE
+ ("?\info: big-endian range for "
+ & "component & is ^ .. ^",
+ First_Bit (CC), Comp);
+ else
+ Error_Msg_NE
+ ("?\info: little-endian range "
+ & "for component & is ^ .. ^",
+ First_Bit (CC), Comp);
end if;
+ end if;
- Set_Component_Bit_Offset (Comp, Pos * SSU + NFB);
- Set_Normalized_First_Bit (Comp, NFB mod SSU);
- end;
- end loop;
+ Set_Component_Bit_Offset (Comp, Pos * SSU + NFB);
+ Set_Normalized_First_Bit (Comp, NFB mod SSU);
+ end;
end loop;
- end Sort_CC;
- end;
- end case;
+ end loop;
+ end Sort_CC;
+ end;
+ end if;
end Adjust_Record_For_Reverse_Bit_Order;
--------------------------------------