summaryrefslogtreecommitdiff
path: root/gcc/ada/sem_ch6.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc/ada/sem_ch6.adb')
-rw-r--r--gcc/ada/sem_ch6.adb4779
1 files changed, 4779 insertions, 0 deletions
diff --git a/gcc/ada/sem_ch6.adb b/gcc/ada/sem_ch6.adb
new file mode 100644
index 00000000000..f8e0b4fce42
--- /dev/null
+++ b/gcc/ada/sem_ch6.adb
@@ -0,0 +1,4779 @@
+------------------------------------------------------------------------------
+-- --
+-- GNAT COMPILER COMPONENTS --
+-- --
+-- S E M _ C H 6 --
+-- --
+-- B o d y --
+-- --
+-- $Revision: 1.508 $
+-- --
+-- Copyright (C) 1992-2001, Free Software Foundation, Inc. --
+-- --
+-- GNAT is free software; you can redistribute it and/or modify it under --
+-- terms of the GNU General Public License as published by the Free Soft- --
+-- ware Foundation; either version 2, or (at your option) any later ver- --
+-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
+-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
+-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
+-- for more details. You should have received a copy of the GNU General --
+-- Public License distributed with GNAT; see file COPYING. If not, write --
+-- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
+-- MA 02111-1307, USA. --
+-- --
+-- GNAT was originally developed by the GNAT team at New York University. --
+-- It is now maintained by Ada Core Technologies Inc (http://www.gnat.com). --
+-- --
+------------------------------------------------------------------------------
+
+with Atree; use Atree;
+with Checks; use Checks;
+with Debug; use Debug;
+with Einfo; use Einfo;
+with Elists; use Elists;
+with Errout; use Errout;
+with Expander; use Expander;
+with Exp_Ch7; use Exp_Ch7;
+with Freeze; use Freeze;
+with Lib.Xref; use Lib.Xref;
+with Namet; use Namet;
+with Lib; use Lib;
+with Nlists; use Nlists;
+with Nmake; use Nmake;
+with Opt; use Opt;
+with Output; use Output;
+with Rtsfind; use Rtsfind;
+with Sem; use Sem;
+with Sem_Cat; use Sem_Cat;
+with Sem_Ch3; use Sem_Ch3;
+with Sem_Ch4; use Sem_Ch4;
+with Sem_Ch5; use Sem_Ch5;
+with Sem_Ch8; use Sem_Ch8;
+with Sem_Ch12; use Sem_Ch12;
+with Sem_Disp; use Sem_Disp;
+with Sem_Dist; use Sem_Dist;
+with Sem_Elim; use Sem_Elim;
+with Sem_Eval; use Sem_Eval;
+with Sem_Mech; use Sem_Mech;
+with Sem_Prag; use Sem_Prag;
+with Sem_Res; use Sem_Res;
+with Sem_Util; use Sem_Util;
+with Sem_Type; use Sem_Type;
+with Sem_Warn; use Sem_Warn;
+with Sinput; use Sinput;
+with Stand; use Stand;
+with Sinfo; use Sinfo;
+with Sinfo.CN; use Sinfo.CN;
+with Snames; use Snames;
+with Stringt; use Stringt;
+with Style;
+with Stylesw; use Stylesw;
+with Tbuild; use Tbuild;
+with Uintp; use Uintp;
+with Urealp; use Urealp;
+with Validsw; use Validsw;
+
+package body Sem_Ch6 is
+
+ -----------------------
+ -- Local Subprograms --
+ -----------------------
+
+ procedure Analyze_Generic_Subprogram_Body (N : Node_Id; Gen_Id : Entity_Id);
+ -- Analyze a generic subprogram body
+
+ function Build_Body_To_Inline
+ (N : Node_Id;
+ Subp : Entity_Id;
+ Orig_Body : Node_Id)
+ return Boolean;
+ -- If a subprogram has pragma Inline and inlining is active, use generic
+ -- machinery to build an unexpanded body for the subprogram. This body is
+ -- subsequenty used for inline expansions at call sites. If subprogram can
+ -- be inlined (depending on size and nature of local declarations) this
+ -- function returns true. Otherwise subprogram body is treated normally.
+
+ type Conformance_Type is
+ (Type_Conformant, Mode_Conformant, Subtype_Conformant, Fully_Conformant);
+
+ procedure Check_Conformance
+ (New_Id : Entity_Id;
+ Old_Id : Entity_Id;
+ Ctype : Conformance_Type;
+ Errmsg : Boolean;
+ Conforms : out Boolean;
+ Err_Loc : Node_Id := Empty;
+ Get_Inst : Boolean := False);
+ -- Given two entities, this procedure checks that the profiles associated
+ -- with these entities meet the conformance criterion given by the third
+ -- parameter. If they conform, Conforms is set True and control returns
+ -- to the caller. If they do not conform, Conforms is set to False, and
+ -- in addition, if Errmsg is True on the call, proper messages are output
+ -- to complain about the conformance failure. If Err_Loc is non_Empty
+ -- the error messages are placed on Err_Loc, if Err_Loc is empty, then
+ -- error messages are placed on the appropriate part of the construct
+ -- denoted by New_Id. If Get_Inst is true, then this is a mode conformance
+ -- against a formal access-to-subprogram type so Get_Instance_Of must
+ -- be called.
+
+ procedure Check_Subprogram_Order (N : Node_Id);
+ -- N is the N_Subprogram_Body node for a subprogram. This routine applies
+ -- the alpha ordering rule for N if this ordering requirement applicable.
+
+ function Is_Non_Overriding_Operation
+ (Prev_E : Entity_Id;
+ New_E : Entity_Id)
+ return Boolean;
+ -- Enforce the rule given in 12.3(18): a private operation in an instance
+ -- overrides an inherited operation only if the corresponding operation
+ -- was overriding in the generic. This can happen for primitive operations
+ -- of types derived (in the generic unit) from formal private or formal
+ -- derived types.
+
+ procedure Check_Returns
+ (HSS : Node_Id;
+ Mode : Character;
+ Err : out Boolean);
+ -- Called to check for missing return statements in a function body,
+ -- or for returns present in a procedure body which has No_Return set.
+ -- L is the handled statement sequence for the subprogram body. This
+ -- procedure checks all flow paths to make sure they either have a
+ -- return (Mode = 'F') or do not have a return (Mode = 'P'). The flag
+ -- Err is set if there are any control paths not explicitly terminated
+ -- by a return in the function case, and is True otherwise.
+
+ function Conforming_Types
+ (T1 : Entity_Id;
+ T2 : Entity_Id;
+ Ctype : Conformance_Type;
+ Get_Inst : Boolean := False)
+ return Boolean;
+ -- Check that two formal parameter types conform, checking both
+ -- for equality of base types, and where required statically
+ -- matching subtypes, depending on the setting of Ctype.
+
+ procedure Enter_Overloaded_Entity (S : Entity_Id);
+ -- This procedure makes S, a new overloaded entity, into the first
+ -- visible entity with that name.
+
+ procedure Install_Entity (E : Entity_Id);
+ -- Make single entity visible. Used for generic formals as well.
+
+ procedure Install_Formals (Id : Entity_Id);
+ -- On entry to a subprogram body, make the formals visible. Note
+ -- that simply placing the subprogram on the scope stack is not
+ -- sufficient: the formals must become the current entities for
+ -- their names.
+
+ procedure Make_Inequality_Operator (S : Entity_Id);
+ -- Create the declaration for an inequality operator that is implicitly
+ -- created by a user-defined equality operator that yields a boolean.
+
+ procedure May_Need_Actuals (Fun : Entity_Id);
+ -- Flag functions that can be called without parameters, i.e. those that
+ -- have no parameters, or those for which defaults exist for all parameters
+
+ procedure Set_Formal_Validity (Formal_Id : Entity_Id);
+ -- Formal_Id is an formal parameter entity. This procedure deals with
+ -- setting the proper validity status for this entity, which depends
+ -- on the kind of parameter and the validity checking mode.
+
+ ---------------------------------------------
+ -- Analyze_Abstract_Subprogram_Declaration --
+ ---------------------------------------------
+
+ procedure Analyze_Abstract_Subprogram_Declaration (N : Node_Id) is
+ Designator : constant Entity_Id := Analyze_Spec (Specification (N));
+ Scop : constant Entity_Id := Current_Scope;
+
+ begin
+ Generate_Definition (Designator);
+ Set_Is_Abstract (Designator);
+ New_Overloaded_Entity (Designator);
+ Check_Delayed_Subprogram (Designator);
+
+ Set_Is_Pure (Designator,
+ Is_Pure (Scop) and then Is_Library_Level_Entity (Designator));
+ Set_Is_Remote_Call_Interface (
+ Designator, Is_Remote_Call_Interface (Scop));
+ Set_Is_Remote_Types (Designator, Is_Remote_Types (Scop));
+
+ if Ekind (Scope (Designator)) = E_Protected_Type then
+ Error_Msg_N
+ ("abstract subprogram not allowed in protected type", N);
+ end if;
+ end Analyze_Abstract_Subprogram_Declaration;
+
+ ----------------------------
+ -- Analyze_Function_Call --
+ ----------------------------
+
+ procedure Analyze_Function_Call (N : Node_Id) is
+ P : constant Node_Id := Name (N);
+ L : constant List_Id := Parameter_Associations (N);
+ Actual : Node_Id;
+
+ begin
+ Analyze (P);
+
+ -- If error analyzing name, then set Any_Type as result type and return
+
+ if Etype (P) = Any_Type then
+ Set_Etype (N, Any_Type);
+ return;
+ end if;
+
+ -- Otherwise analyze the parameters
+
+ if Present (L) then
+ Actual := First (L);
+
+ while Present (Actual) loop
+ Analyze (Actual);
+ Check_Parameterless_Call (Actual);
+ Next (Actual);
+ end loop;
+ end if;
+
+ Analyze_Call (N);
+
+ end Analyze_Function_Call;
+
+ -------------------------------------
+ -- Analyze_Generic_Subprogram_Body --
+ -------------------------------------
+
+ procedure Analyze_Generic_Subprogram_Body
+ (N : Node_Id;
+ Gen_Id : Entity_Id)
+ is
+ Gen_Decl : constant Node_Id := Unit_Declaration_Node (Gen_Id);
+ Spec : Node_Id;
+ Kind : constant Entity_Kind := Ekind (Gen_Id);
+ Nam : Entity_Id;
+ New_N : Node_Id;
+
+ begin
+ -- Copy body and disable expansion while analyzing the generic
+ -- For a stub, do not copy the stub (which would load the proper body),
+ -- this will be done when the proper body is analyzed.
+
+ if Nkind (N) /= N_Subprogram_Body_Stub then
+ New_N := Copy_Generic_Node (N, Empty, Instantiating => False);
+ Rewrite (N, New_N);
+ Start_Generic;
+ end if;
+
+ Spec := Specification (N);
+
+ -- Within the body of the generic, the subprogram is callable, and
+ -- behaves like the corresponding non-generic unit.
+
+ Nam := Defining_Entity (Spec);
+
+ if Kind = E_Generic_Procedure
+ and then Nkind (Spec) /= N_Procedure_Specification
+ then
+ Error_Msg_N ("invalid body for generic procedure ", Nam);
+ return;
+
+ elsif Kind = E_Generic_Function
+ and then Nkind (Spec) /= N_Function_Specification
+ then
+ Error_Msg_N ("invalid body for generic function ", Nam);
+ return;
+ end if;
+
+ Set_Corresponding_Body (Gen_Decl, Nam);
+
+ if Has_Completion (Gen_Id)
+ and then Nkind (Parent (N)) /= N_Subunit
+ then
+ Error_Msg_N ("duplicate generic body", N);
+ return;
+ else
+ Set_Has_Completion (Gen_Id);
+ end if;
+
+ if Nkind (N) = N_Subprogram_Body_Stub then
+ Set_Ekind (Defining_Entity (Specification (N)), Kind);
+ else
+ Set_Corresponding_Spec (N, Gen_Id);
+ end if;
+
+ if Nkind (Parent (N)) = N_Compilation_Unit then
+ Set_Cunit_Entity (Current_Sem_Unit, Defining_Entity (N));
+ end if;
+
+ -- Make generic parameters immediately visible in the body. They are
+ -- needed to process the formals declarations. Then make the formals
+ -- visible in a separate step.
+
+ New_Scope (Gen_Id);
+
+ declare
+ E : Entity_Id;
+ First_Ent : Entity_Id;
+
+ begin
+ First_Ent := First_Entity (Gen_Id);
+
+ E := First_Ent;
+ while Present (E) and then not Is_Formal (E) loop
+ Install_Entity (E);
+ Next_Entity (E);
+ end loop;
+
+ Set_Use (Generic_Formal_Declarations (Gen_Decl));
+
+ -- Now generic formals are visible, and the specification can be
+ -- analyzed, for subsequent conformance check.
+
+ Nam := Analyze_Spec (Spec);
+
+ if Nkind (N) = N_Subprogram_Body_Stub then
+
+ -- Nothing to do if no body to process
+
+ Set_Ekind (Nam, Kind);
+ End_Scope;
+ return;
+ end if;
+
+ if Present (E) then
+
+ -- E is the first formal parameter, which must be the first
+ -- entity in the subprogram body.
+
+ Set_First_Entity (Gen_Id, E);
+
+ -- Now make formal parameters visible
+
+ while Present (E) loop
+ Install_Entity (E);
+ Next_Formal (E);
+ end loop;
+ end if;
+
+ -- Visible generic entity is callable within its own body.
+
+ Set_Ekind (Gen_Id, Ekind (Nam));
+ Set_Convention (Nam, Convention (Gen_Id));
+ Set_Scope (Nam, Scope (Gen_Id));
+ Check_Fully_Conformant (Nam, Gen_Id, Nam);
+
+ -- If this is a compilation unit, it must be made visible
+ -- explicitly, because the compilation of the declaration,
+ -- unlike other library unit declarations, does not. If it
+ -- is not a unit, the following is redundant but harmless.
+
+ Set_Is_Immediately_Visible (Gen_Id);
+
+ Set_Actual_Subtypes (N, Current_Scope);
+ Analyze_Declarations (Declarations (N));
+ Check_Completion;
+ Analyze (Handled_Statement_Sequence (N));
+
+ Save_Global_References (Original_Node (N));
+
+ -- Prior to exiting the scope, include generic formals again
+ -- (if any are present) in the set of local entities.
+
+ if Present (First_Ent) then
+ Set_First_Entity (Gen_Id, First_Ent);
+ end if;
+
+ end;
+
+ End_Scope;
+ Check_Subprogram_Order (N);
+
+ -- Outside of its body, unit is generic again.
+
+ Set_Ekind (Gen_Id, Kind);
+ Set_Ekind (Nam, E_Subprogram_Body);
+ Generate_Reference (Gen_Id, Nam, 'b');
+ Style.Check_Identifier (Nam, Gen_Id);
+ End_Generic;
+
+ end Analyze_Generic_Subprogram_Body;
+
+ -----------------------------
+ -- Analyze_Operator_Symbol --
+ -----------------------------
+
+ -- An operator symbol such as "+" or "and" may appear in context where
+ -- the literal denotes an entity name, such as "+"(x, y) or in a
+ -- context when it is just a string, as in (conjunction = "or"). In
+ -- these cases the parser generates this node, and the semantics does
+ -- the disambiguation. Other such case are actuals in an instantiation,
+ -- the generic unit in an instantiation, and pragma arguments.
+
+ procedure Analyze_Operator_Symbol (N : Node_Id) is
+ Par : constant Node_Id := Parent (N);
+
+ begin
+ if (Nkind (Par) = N_Function_Call and then N = Name (Par))
+ or else Nkind (Par) = N_Function_Instantiation
+ or else (Nkind (Par) = N_Indexed_Component and then N = Prefix (Par))
+ or else (Nkind (Par) = N_Pragma_Argument_Association
+ and then not Is_Pragma_String_Literal (Par))
+ or else Nkind (Par) = N_Subprogram_Renaming_Declaration
+ or else (Nkind (Par) = N_Attribute_Reference
+ and then Attribute_Name (Par) /= Name_Value)
+ then
+ Find_Direct_Name (N);
+
+ else
+ Change_Operator_Symbol_To_String_Literal (N);
+ Analyze (N);
+ end if;
+ end Analyze_Operator_Symbol;
+
+ -----------------------------------
+ -- Analyze_Parameter_Association --
+ -----------------------------------
+
+ procedure Analyze_Parameter_Association (N : Node_Id) is
+ begin
+ Analyze (Explicit_Actual_Parameter (N));
+ end Analyze_Parameter_Association;
+
+ ----------------------------
+ -- Analyze_Procedure_Call --
+ ----------------------------
+
+ procedure Analyze_Procedure_Call (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ P : constant Node_Id := Name (N);
+ Actuals : constant List_Id := Parameter_Associations (N);
+ Actual : Node_Id;
+ New_N : Node_Id;
+
+ procedure Analyze_Call_And_Resolve;
+ -- Do Analyze and Resolve calls for procedure call
+
+ procedure Analyze_Call_And_Resolve is
+ begin
+ if Nkind (N) = N_Procedure_Call_Statement then
+ Analyze_Call (N);
+ Resolve (N, Standard_Void_Type);
+ else
+ Analyze (N);
+ end if;
+ end Analyze_Call_And_Resolve;
+
+ -- Start of processing for Analyze_Procedure_Call
+
+ begin
+ -- The syntactic construct: PREFIX ACTUAL_PARAMETER_PART can denote
+ -- a procedure call or an entry call. The prefix may denote an access
+ -- to subprogram type, in which case an implicit dereference applies.
+ -- If the prefix is an indexed component (without implicit defererence)
+ -- then the construct denotes a call to a member of an entire family.
+ -- If the prefix is a simple name, it may still denote a call to a
+ -- parameterless member of an entry family. Resolution of these various
+ -- interpretations is delicate.
+
+ Analyze (P);
+
+ -- If error analyzing prefix, then set Any_Type as result and return
+
+ if Etype (P) = Any_Type then
+ Set_Etype (N, Any_Type);
+ return;
+ end if;
+
+ -- Otherwise analyze the parameters
+
+ if Present (Actuals) then
+ Actual := First (Actuals);
+
+ while Present (Actual) loop
+ Analyze (Actual);
+ Check_Parameterless_Call (Actual);
+ Next (Actual);
+ end loop;
+ end if;
+
+ -- Special processing for Elab_Spec and Elab_Body calls
+
+ if Nkind (P) = N_Attribute_Reference
+ and then (Attribute_Name (P) = Name_Elab_Spec
+ or else Attribute_Name (P) = Name_Elab_Body)
+ then
+ if Present (Actuals) then
+ Error_Msg_N
+ ("no parameters allowed for this call", First (Actuals));
+ return;
+ end if;
+
+ Set_Etype (N, Standard_Void_Type);
+ Set_Analyzed (N);
+
+ elsif Is_Entity_Name (P)
+ and then Is_Record_Type (Etype (Entity (P)))
+ and then Remote_AST_I_Dereference (P)
+ then
+ return;
+
+ elsif Is_Entity_Name (P)
+ and then Ekind (Entity (P)) /= E_Entry_Family
+ then
+ if Is_Access_Type (Etype (P))
+ and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
+ and then No (Actuals)
+ and then Comes_From_Source (N)
+ then
+ Error_Msg_N ("missing explicit dereference in call", N);
+ end if;
+
+ Analyze_Call_And_Resolve;
+
+ -- If the prefix is the simple name of an entry family, this is
+ -- a parameterless call from within the task body itself.
+
+ elsif Is_Entity_Name (P)
+ and then Nkind (P) = N_Identifier
+ and then Ekind (Entity (P)) = E_Entry_Family
+ and then Present (Actuals)
+ and then No (Next (First (Actuals)))
+ then
+ -- Can be call to parameterless entry family. What appears to be
+ -- the sole argument is in fact the entry index. Rewrite prefix
+ -- of node accordingly. Source representation is unchanged by this
+ -- transformation.
+
+ New_N :=
+ Make_Indexed_Component (Loc,
+ Prefix =>
+ Make_Selected_Component (Loc,
+ Prefix => New_Occurrence_Of (Scope (Entity (P)), Loc),
+ Selector_Name => New_Occurrence_Of (Entity (P), Loc)),
+ Expressions => Actuals);
+ Set_Name (N, New_N);
+ Set_Etype (New_N, Standard_Void_Type);
+ Set_Parameter_Associations (N, No_List);
+ Analyze_Call_And_Resolve;
+
+ elsif Nkind (P) = N_Explicit_Dereference then
+ if Ekind (Etype (P)) = E_Subprogram_Type then
+ Analyze_Call_And_Resolve;
+ else
+ Error_Msg_N ("expect access to procedure in call", P);
+ end if;
+
+ -- The name can be a selected component or an indexed component
+ -- that yields an access to subprogram. Such a prefix is legal if
+ -- the call has parameter associations.
+
+ elsif Is_Access_Type (Etype (P))
+ and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
+ then
+ if Present (Actuals) then
+ Analyze_Call_And_Resolve;
+ else
+ Error_Msg_N ("missing explicit dereference in call ", N);
+ end if;
+
+ -- If not an access to subprogram, then the prefix must resolve to
+ -- the name of an entry, entry family, or protected operation.
+
+ -- For the case of a simple entry call, P is a selected component
+ -- where the prefix is the task and the selector name is the entry.
+ -- A call to a protected procedure will have the same syntax. If
+ -- the protected object contains overloaded operations, the entity
+ -- may appear as a function, the context will select the operation
+ -- whose type is Void.
+
+ elsif Nkind (P) = N_Selected_Component
+ and then (Ekind (Entity (Selector_Name (P))) = E_Entry
+ or else
+ Ekind (Entity (Selector_Name (P))) = E_Procedure
+ or else
+ Ekind (Entity (Selector_Name (P))) = E_Function)
+ then
+ Analyze_Call_And_Resolve;
+
+ elsif Nkind (P) = N_Selected_Component
+ and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family
+ and then Present (Actuals)
+ and then No (Next (First (Actuals)))
+ then
+ -- Can be call to parameterless entry family. What appears to be
+ -- the sole argument is in fact the entry index. Rewrite prefix
+ -- of node accordingly. Source representation is unchanged by this
+ -- transformation.
+
+ New_N :=
+ Make_Indexed_Component (Loc,
+ Prefix => New_Copy (P),
+ Expressions => Actuals);
+ Set_Name (N, New_N);
+ Set_Etype (New_N, Standard_Void_Type);
+ Set_Parameter_Associations (N, No_List);
+ Analyze_Call_And_Resolve;
+
+ -- For the case of a reference to an element of an entry family, P is
+ -- an indexed component whose prefix is a selected component (task and
+ -- entry family), and whose index is the entry family index.
+
+ elsif Nkind (P) = N_Indexed_Component
+ and then Nkind (Prefix (P)) = N_Selected_Component
+ and then Ekind (Entity (Selector_Name (Prefix (P)))) = E_Entry_Family
+ then
+ Analyze_Call_And_Resolve;
+
+ -- If the prefix is the name of an entry family, it is a call from
+ -- within the task body itself.
+
+ elsif Nkind (P) = N_Indexed_Component
+ and then Nkind (Prefix (P)) = N_Identifier
+ and then Ekind (Entity (Prefix (P))) = E_Entry_Family
+ then
+ New_N :=
+ Make_Selected_Component (Loc,
+ Prefix => New_Occurrence_Of (Scope (Entity (Prefix (P))), Loc),
+ Selector_Name => New_Occurrence_Of (Entity (Prefix (P)), Loc));
+ Rewrite (Prefix (P), New_N);
+ Analyze (P);
+ Analyze_Call_And_Resolve;
+
+ -- Anything else is an error.
+
+ else
+ Error_Msg_N ("Invalid procedure or entry call", N);
+ end if;
+ end Analyze_Procedure_Call;
+
+ ------------------------------
+ -- Analyze_Return_Statement --
+ ------------------------------
+
+ procedure Analyze_Return_Statement (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Expr : Node_Id;
+ Scope_Id : Entity_Id;
+ Kind : Entity_Kind;
+ R_Type : Entity_Id;
+
+ begin
+ -- Find subprogram or accept statement enclosing the return statement
+
+ Scope_Id := Empty;
+ for J in reverse 0 .. Scope_Stack.Last loop
+ Scope_Id := Scope_Stack.Table (J).Entity;
+ exit when Ekind (Scope_Id) /= E_Block and then
+ Ekind (Scope_Id) /= E_Loop;
+ end loop;
+
+ pragma Assert (Present (Scope_Id));
+
+ Kind := Ekind (Scope_Id);
+ Expr := Expression (N);
+
+ if Kind /= E_Function
+ and then Kind /= E_Generic_Function
+ and then Kind /= E_Procedure
+ and then Kind /= E_Generic_Procedure
+ and then Kind /= E_Entry
+ and then Kind /= E_Entry_Family
+ then
+ Error_Msg_N ("illegal context for return statement", N);
+
+ elsif Present (Expr) then
+ if Kind = E_Function or else Kind = E_Generic_Function then
+ Set_Return_Present (Scope_Id);
+ R_Type := Etype (Scope_Id);
+ Set_Return_Type (N, R_Type);
+ Analyze_And_Resolve (Expr, R_Type);
+
+ if (Is_Class_Wide_Type (Etype (Expr))
+ or else Is_Dynamically_Tagged (Expr))
+ and then not Is_Class_Wide_Type (R_Type)
+ then
+ Error_Msg_N
+ ("dynamically tagged expression not allowed!", Expr);
+ end if;
+
+ Apply_Constraint_Check (Expr, R_Type);
+
+ -- ??? A real run-time accessibility check is needed
+ -- in cases involving dereferences of access parameters.
+ -- For now we just check the static cases.
+
+ if Is_Return_By_Reference_Type (Etype (Scope_Id))
+ and then Object_Access_Level (Expr)
+ > Subprogram_Access_Level (Scope_Id)
+ then
+ Rewrite (N, Make_Raise_Program_Error (Loc));
+ Analyze (N);
+
+ Error_Msg_N
+ ("cannot return a local value by reference?", N);
+ Error_Msg_NE
+ ("& will be raised at run time?!",
+ N, Standard_Program_Error);
+ end if;
+
+ elsif Kind = E_Procedure or else Kind = E_Generic_Procedure then
+ Error_Msg_N ("procedure cannot return value (use function)", N);
+
+ else
+ Error_Msg_N ("accept statement cannot return value", N);
+ end if;
+
+ -- No expression present
+
+ else
+ if Kind = E_Function or Kind = E_Generic_Function then
+ Error_Msg_N ("missing expression in return from function", N);
+ end if;
+
+ if (Ekind (Scope_Id) = E_Procedure
+ or else Ekind (Scope_Id) = E_Generic_Procedure)
+ and then No_Return (Scope_Id)
+ then
+ Error_Msg_N
+ ("RETURN statement not allowed (No_Return)", N);
+ end if;
+ end if;
+
+ Check_Unreachable_Code (N);
+ end Analyze_Return_Statement;
+
+ ------------------
+ -- Analyze_Spec --
+ ------------------
+
+ function Analyze_Spec (N : Node_Id) return Entity_Id is
+ Designator : constant Entity_Id := Defining_Entity (N);
+ Formals : constant List_Id := Parameter_Specifications (N);
+ Typ : Entity_Id;
+
+ begin
+ Generate_Definition (Designator);
+
+ if Nkind (N) = N_Function_Specification then
+ Set_Ekind (Designator, E_Function);
+ Set_Mechanism (Designator, Default_Mechanism);
+
+ if Subtype_Mark (N) /= Error then
+ Find_Type (Subtype_Mark (N));
+ Typ := Entity (Subtype_Mark (N));
+ Set_Etype (Designator, Typ);
+
+ if (Ekind (Typ) = E_Incomplete_Type
+ or else (Is_Class_Wide_Type (Typ)
+ and then
+ Ekind (Root_Type (Typ)) = E_Incomplete_Type))
+ then
+ Error_Msg_N
+ ("invalid use of incomplete type", Subtype_Mark (N));
+ end if;
+
+ else
+ Set_Etype (Designator, Any_Type);
+ end if;
+
+ else
+ Set_Ekind (Designator, E_Procedure);
+ Set_Etype (Designator, Standard_Void_Type);
+ end if;
+
+ if Present (Formals) then
+ Set_Scope (Designator, Current_Scope);
+ New_Scope (Designator);
+ Process_Formals (Designator, Formals, N);
+ End_Scope;
+ end if;
+
+ if Nkind (N) = N_Function_Specification then
+ if Nkind (Designator) = N_Defining_Operator_Symbol then
+ Valid_Operator_Definition (Designator);
+ end if;
+
+ May_Need_Actuals (Designator);
+
+ if Is_Abstract (Etype (Designator))
+ and then Nkind (Parent (N)) /= N_Abstract_Subprogram_Declaration
+ then
+ Error_Msg_N
+ ("function that returns abstract type must be abstract", N);
+ end if;
+ end if;
+
+ return Designator;
+ end Analyze_Spec;
+
+ -----------------------------
+ -- Analyze_Subprogram_Body --
+ -----------------------------
+
+ -- This procedure is called for regular subprogram bodies, generic bodies,
+ -- and for subprogram stubs of both kinds. In the case of stubs, only the
+ -- specification matters, and is used to create a proper declaration for
+ -- the subprogram, or to perform conformance checks.
+
+ procedure Analyze_Subprogram_Body (N : Node_Id) is
+ Body_Spec : constant Node_Id := Specification (N);
+ Body_Id : Entity_Id := Defining_Entity (Body_Spec);
+ Prev_Id : constant Entity_Id := Current_Entity_In_Scope (Body_Id);
+
+ HSS : Node_Id;
+ Spec_Id : Entity_Id;
+ Spec_Decl : Node_Id := Empty;
+ Last_Formal : Entity_Id := Empty;
+ Conformant : Boolean;
+ Missing_Ret : Boolean;
+
+ begin
+ if Debug_Flag_C then
+ Write_Str ("==== Compiling subprogram body ");
+ Write_Name (Chars (Body_Id));
+ Write_Str (" from ");
+ Write_Location (Sloc (N));
+ Write_Eol;
+ end if;
+
+ Trace_Scope (N, Body_Id, " Analyze subprogram");
+
+ -- Generic subprograms are handled separately. They always have
+ -- a generic specification. Determine whether current scope has
+ -- a previous declaration.
+
+ -- If the subprogram body is defined within an instance of the
+ -- same name, the instance appears as a package renaming, and
+ -- will be hidden within the subprogram.
+
+ if Present (Prev_Id)
+ and then not Is_Overloadable (Prev_Id)
+ and then (Nkind (Parent (Prev_Id)) /= N_Package_Renaming_Declaration
+ or else Comes_From_Source (Prev_Id))
+ then
+ if Ekind (Prev_Id) = E_Generic_Procedure
+ or else Ekind (Prev_Id) = E_Generic_Function
+ then
+ Spec_Id := Prev_Id;
+ Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
+ Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
+
+ Analyze_Generic_Subprogram_Body (N, Spec_Id);
+ return;
+
+ else
+ -- Previous entity conflicts with subprogram name.
+ -- Attempting to enter name will post error.
+
+ Enter_Name (Body_Id);
+ return;
+ end if;
+
+ -- Non-generic case, find the subprogram declaration, if one was
+ -- seen, or enter new overloaded entity in the current scope.
+ -- If the current_entity is the body_id itself, the unit is being
+ -- analyzed as part of the context of one of its subunits. No need
+ -- to redo the analysis.
+
+ elsif Prev_Id = Body_Id
+ and then Has_Completion (Body_Id)
+ then
+ return;
+
+ else
+ Body_Id := Analyze_Spec (Body_Spec);
+
+ if Nkind (N) = N_Subprogram_Body_Stub
+ or else No (Corresponding_Spec (N))
+ then
+ Spec_Id := Find_Corresponding_Spec (N);
+
+ -- If this is a duplicate body, no point in analyzing it
+
+ if Error_Posted (N) then
+ return;
+ end if;
+
+ -- A subprogram body should cause freezing of its own
+ -- declaration, but if there was no previous explicit
+ -- declaration, then the subprogram will get frozen too
+ -- late (there may be code within the body that depends
+ -- on the subprogram having been frozen, such as uses of
+ -- extra formals), so we force it to be frozen here.
+ -- Same holds if the body and the spec are compilation units.
+
+ if No (Spec_Id) then
+ Freeze_Before (N, Body_Id);
+
+ elsif Nkind (Parent (N)) = N_Compilation_Unit then
+ Freeze_Before (N, Spec_Id);
+ end if;
+ else
+ Spec_Id := Corresponding_Spec (N);
+ end if;
+ end if;
+
+ if No (Spec_Id)
+ and then Comes_From_Source (N)
+ and then Is_Protected_Type (Current_Scope)
+ then
+ -- Fully private operation in the body of the protected type. We
+ -- must create a declaration for the subprogram, in order to attach
+ -- the protected subprogram that will be used in internal calls.
+
+ declare
+ Loc : constant Source_Ptr := Sloc (N);
+ Decl : Node_Id;
+ Plist : List_Id;
+ Formal : Entity_Id;
+ New_Spec : Node_Id;
+
+ begin
+ Formal := First_Formal (Body_Id);
+
+ -- The protected operation always has at least one formal,
+ -- namely the object itself, but it is only placed in the
+ -- parameter list if expansion is enabled.
+
+ if Present (Formal)
+ or else Expander_Active
+ then
+ Plist := New_List;
+
+ else
+ Plist := No_List;
+ end if;
+
+ while Present (Formal) loop
+ Append
+ (Make_Parameter_Specification (Loc,
+ Defining_Identifier =>
+ Make_Defining_Identifier (Sloc (Formal),
+ Chars => Chars (Formal)),
+ In_Present => In_Present (Parent (Formal)),
+ Out_Present => Out_Present (Parent (Formal)),
+ Parameter_Type =>
+ New_Reference_To (Etype (Formal), Loc),
+ Expression =>
+ New_Copy_Tree (Expression (Parent (Formal)))),
+ Plist);
+
+ Next_Formal (Formal);
+ end loop;
+
+ if Nkind (Body_Spec) = N_Procedure_Specification then
+ New_Spec :=
+ Make_Procedure_Specification (Loc,
+ Defining_Unit_Name =>
+ Make_Defining_Identifier (Sloc (Body_Id),
+ Chars => Chars (Body_Id)),
+ Parameter_Specifications => Plist);
+ else
+ New_Spec :=
+ Make_Function_Specification (Loc,
+ Defining_Unit_Name =>
+ Make_Defining_Identifier (Sloc (Body_Id),
+ Chars => Chars (Body_Id)),
+ Parameter_Specifications => Plist,
+ Subtype_Mark => New_Occurrence_Of (Etype (Body_Id), Loc));
+ end if;
+
+ Decl :=
+ Make_Subprogram_Declaration (Loc,
+ Specification => New_Spec);
+ Insert_Before (N, Decl);
+ Analyze (Decl);
+ Spec_Id := Defining_Unit_Name (New_Spec);
+ Set_Has_Completion (Spec_Id);
+ Set_Convention (Spec_Id, Convention_Protected);
+ end;
+
+ elsif Present (Spec_Id) then
+ Spec_Decl := Unit_Declaration_Node (Spec_Id);
+ end if;
+
+ -- Place subprogram on scope stack, and make formals visible. If there
+ -- is a spec, the visible entity remains that of the spec.
+
+ if Present (Spec_Id) then
+ Generate_Reference (Spec_Id, Body_Id, 'b');
+ Style.Check_Identifier (Body_Id, Spec_Id);
+
+ Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
+ Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
+
+ if Is_Abstract (Spec_Id) then
+ Error_Msg_N ("an abstract subprogram cannot have a body", N);
+ return;
+ else
+ Set_Convention (Body_Id, Convention (Spec_Id));
+ Set_Has_Completion (Spec_Id);
+
+ if Is_Protected_Type (Scope (Spec_Id)) then
+ Set_Privals_Chain (Spec_Id, New_Elmt_List);
+ end if;
+
+ -- If this is a body generated for a renaming, do not check for
+ -- full conformance. The check is redundant, because the spec of
+ -- the body is a copy of the spec in the renaming declaration,
+ -- and the test can lead to spurious errors on nested defaults.
+
+ if Present (Spec_Decl)
+ and then Nkind (Original_Node (Spec_Decl)) =
+ N_Subprogram_Renaming_Declaration
+ and then not Comes_From_Source (N)
+ then
+ Conformant := True;
+ else
+ Check_Conformance
+ (Body_Id, Spec_Id,
+ Fully_Conformant, True, Conformant, Body_Id);
+ end if;
+
+ -- If the body is not fully conformant, we have to decide if we
+ -- should analyze it or not. If it has a really messed up profile
+ -- then we probably should not analyze it, since we will get too
+ -- many bogus messages.
+
+ -- Our decision is to go ahead in the non-fully conformant case
+ -- only if it is at least mode conformant with the spec. Note
+ -- that the call to Check_Fully_Conformant has issued the proper
+ -- error messages to complain about the lack of conformance.
+
+ if not Conformant
+ and then not Mode_Conformant (Body_Id, Spec_Id)
+ then
+ return;
+ end if;
+ end if;
+
+ -- Generate references from body formals to spec formals
+ -- and also set the Spec_Entity fields for all formals
+
+ if Spec_Id /= Body_Id then
+ declare
+ Fs : Entity_Id;
+ Fb : Entity_Id;
+
+ begin
+ Fs := First_Formal (Spec_Id);
+ Fb := First_Formal (Body_Id);
+ while Present (Fs) loop
+ Generate_Reference (Fs, Fb, 'b');
+ Style.Check_Identifier (Fb, Fs);
+ Set_Spec_Entity (Fb, Fs);
+ Next_Formal (Fs);
+ Next_Formal (Fb);
+ end loop;
+ end;
+ end if;
+
+ if Nkind (N) /= N_Subprogram_Body_Stub then
+ Set_Corresponding_Spec (N, Spec_Id);
+ Install_Formals (Spec_Id);
+ Last_Formal := Last_Entity (Spec_Id);
+ New_Scope (Spec_Id);
+
+ -- Make sure that the subprogram is immediately visible. For
+ -- child units that have no separate spec this is indispensable.
+ -- Otherwise it is safe albeit redundant.
+
+ Set_Is_Immediately_Visible (Spec_Id);
+ end if;
+
+ Set_Corresponding_Body (Unit_Declaration_Node (Spec_Id), Body_Id);
+ Set_Ekind (Body_Id, E_Subprogram_Body);
+ Set_Scope (Body_Id, Scope (Spec_Id));
+
+ -- Case of subprogram body with no previous spec
+
+ else
+ if Style_Check
+ and then Comes_From_Source (Body_Id)
+ and then not Suppress_Style_Checks (Body_Id)
+ and then not In_Instance
+ then
+ Style.Body_With_No_Spec (N);
+ end if;
+
+ New_Overloaded_Entity (Body_Id);
+
+ if Nkind (N) /= N_Subprogram_Body_Stub then
+ Set_Acts_As_Spec (N);
+ Generate_Definition (Body_Id);
+ Install_Formals (Body_Id);
+ New_Scope (Body_Id);
+ end if;
+ end if;
+
+ -- If this is the proper body of a stub, we must verify that the stub
+ -- conforms to the body, and to the previous spec if one was present.
+ -- we know already that the body conforms to that spec. This test is
+ -- only required for subprograms that come from source.
+
+ if Nkind (Parent (N)) = N_Subunit
+ and then Comes_From_Source (N)
+ and then not Error_Posted (Body_Id)
+ then
+ declare
+ Conformant : Boolean := False;
+ Old_Id : Entity_Id :=
+ Defining_Entity
+ (Specification (Corresponding_Stub (Parent (N))));
+
+ begin
+ if No (Spec_Id) then
+ Check_Fully_Conformant (Body_Id, Old_Id);
+
+ else
+ Check_Conformance
+ (Body_Id, Old_Id, Fully_Conformant, False, Conformant);
+
+ if not Conformant then
+
+ -- The stub was taken to be a new declaration. Indicate
+ -- that it lacks a body.
+
+ Set_Has_Completion (Old_Id, False);
+ end if;
+ end if;
+ end;
+ end if;
+
+ Set_Has_Completion (Body_Id);
+ Check_Eliminated (Body_Id);
+
+ if Nkind (N) = N_Subprogram_Body_Stub then
+ return;
+
+ elsif Present (Spec_Id)
+ and then Expander_Active
+ and then Has_Pragma_Inline (Spec_Id)
+ and then (Front_End_Inlining
+ or else
+ (No_Run_Time and then Is_Always_Inlined (Spec_Id)))
+ then
+ if Build_Body_To_Inline (N, Spec_Id, Copy_Separate_Tree (N)) then
+ null;
+ end if;
+ end if;
+
+ -- Here we have a real body, not a stub
+
+ HSS := Handled_Statement_Sequence (N);
+ Set_Actual_Subtypes (N, Current_Scope);
+ Analyze_Declarations (Declarations (N));
+ Check_Completion;
+ Analyze (HSS);
+ Process_End_Label (HSS, 't');
+ End_Scope;
+ Check_Subprogram_Order (N);
+
+ -- If we have a separate spec, then the analysis of the declarations
+ -- caused the entities in the body to be chained to the spec id, but
+ -- we want them chained to the body id. Only the formal parameters
+ -- end up chained to the spec id in this case.
+
+ if Present (Spec_Id) then
+
+ -- If a parent unit is categorized, the context of a subunit
+ -- must conform to the categorization. Conversely, if a child
+ -- unit is categorized, the parents themselves must conform.
+
+ if Nkind (Parent (N)) = N_Subunit then
+ Validate_Categorization_Dependency (N, Spec_Id);
+
+ elsif Is_Child_Unit (Spec_Id) then
+ Validate_Categorization_Dependency
+ (Unit_Declaration_Node (Spec_Id), Spec_Id);
+ end if;
+
+ if Present (Last_Formal) then
+ Set_Next_Entity
+ (Last_Entity (Body_Id), Next_Entity (Last_Formal));
+ Set_Next_Entity (Last_Formal, Empty);
+ Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
+ Set_Last_Entity (Spec_Id, Last_Formal);
+
+ else
+ Set_First_Entity (Body_Id, First_Entity (Spec_Id));
+ Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
+ Set_First_Entity (Spec_Id, Empty);
+ Set_Last_Entity (Spec_Id, Empty);
+ end if;
+ end if;
+
+ -- If function, check return statements
+
+ if Nkind (Body_Spec) = N_Function_Specification then
+ declare
+ Id : Entity_Id;
+
+ begin
+ if Present (Spec_Id) then
+ Id := Spec_Id;
+ else
+ Id := Body_Id;
+ end if;
+
+ if Return_Present (Id) then
+ Check_Returns (HSS, 'F', Missing_Ret);
+
+ if Missing_Ret then
+ Set_Has_Missing_Return (Id);
+ end if;
+
+ elsif not Is_Machine_Code_Subprogram (Id) then
+ Error_Msg_N ("missing RETURN statement in function body", N);
+ end if;
+ end;
+
+ -- If procedure with No_Return, check returns
+
+ elsif Nkind (Body_Spec) = N_Procedure_Specification
+ and then Present (Spec_Id)
+ and then No_Return (Spec_Id)
+ then
+ Check_Returns (HSS, 'P', Missing_Ret);
+ end if;
+
+ -- Don't worry about checking for variables that are never modified
+ -- if the first statement of the body is a raise statement, since
+ -- we assume this is some kind of stub. We ignore a label generated
+ -- by the exception stuff for the purpose of this test.
+
+ declare
+ Stm : Node_Id := First (Statements (HSS));
+
+ begin
+ if Nkind (Stm) = N_Label then
+ Next (Stm);
+ end if;
+
+ if Nkind (Original_Node (Stm)) = N_Raise_Statement then
+ return;
+ end if;
+ end;
+
+ -- Check for variables that are never modified
+
+ declare
+ E1, E2 : Entity_Id;
+
+ begin
+ -- If there is a separate spec, then transfer Not_Source_Assigned
+ -- flags from out parameters to the corresponding entities in the
+ -- body. The reason we do that is we want to post error flags on
+ -- the body entities, not the spec entities.
+
+ if Present (Spec_Id) then
+ E1 := First_Entity (Spec_Id);
+
+ while Present (E1) loop
+ if Ekind (E1) = E_Out_Parameter then
+ E2 := First_Entity (Body_Id);
+
+ loop
+ -- If no matching body entity, then we already had
+ -- a detected error of some kind, so just forget
+ -- about worrying about these warnings.
+
+ if No (E2) then
+ return;
+ end if;
+
+ exit when Chars (E1) = Chars (E2);
+ Next_Entity (E2);
+ end loop;
+
+ Set_Not_Source_Assigned (E2, Not_Source_Assigned (E1));
+ end if;
+
+ Next_Entity (E1);
+ end loop;
+ end if;
+
+ Check_References (Body_Id);
+ end;
+ end Analyze_Subprogram_Body;
+
+ ------------------------------------
+ -- Analyze_Subprogram_Declaration --
+ ------------------------------------
+
+ procedure Analyze_Subprogram_Declaration (N : Node_Id) is
+ Designator : constant Entity_Id := Analyze_Spec (Specification (N));
+ Scop : constant Entity_Id := Current_Scope;
+
+ -- Start of processing for Analyze_Subprogram_Declaration
+
+ begin
+ Generate_Definition (Designator);
+
+ -- Check for RCI unit subprogram declarations against in-lined
+ -- subprograms and subprograms having access parameter or limited
+ -- parameter without Read and Write (RM E.2.3(12-13)).
+
+ Validate_RCI_Subprogram_Declaration (N);
+
+ Trace_Scope
+ (N,
+ Defining_Entity (N),
+ " Analyze subprogram spec. ");
+
+ if Debug_Flag_C then
+ Write_Str ("==== Compiling subprogram spec ");
+ Write_Name (Chars (Designator));
+ Write_Str (" from ");
+ Write_Location (Sloc (N));
+ Write_Eol;
+ end if;
+
+ New_Overloaded_Entity (Designator);
+ Check_Delayed_Subprogram (Designator);
+ Set_Suppress_Elaboration_Checks
+ (Designator, Elaboration_Checks_Suppressed (Designator));
+
+ if Scop /= Standard_Standard
+ and then not Is_Child_Unit (Designator)
+ then
+ Set_Is_Pure (Designator,
+ Is_Pure (Scop) and then Is_Library_Level_Entity (Designator));
+ Set_Is_Remote_Call_Interface (
+ Designator, Is_Remote_Call_Interface (Scop));
+ Set_Is_Remote_Types (Designator, Is_Remote_Types (Scop));
+
+ else
+ -- For a compilation unit, check for library-unit pragmas.
+
+ New_Scope (Designator);
+ Set_Categorization_From_Pragmas (N);
+ Validate_Categorization_Dependency (N, Designator);
+ Pop_Scope;
+ end if;
+
+ -- For a compilation unit, set body required. This flag will only be
+ -- reset if a valid Import or Interface pragma is processed later on.
+
+ if Nkind (Parent (N)) = N_Compilation_Unit then
+ Set_Body_Required (Parent (N), True);
+ end if;
+
+ Check_Eliminated (Designator);
+ end Analyze_Subprogram_Declaration;
+
+ --------------------------
+ -- Build_Body_To_Inline --
+ --------------------------
+
+ function Build_Body_To_Inline
+ (N : Node_Id;
+ Subp : Entity_Id;
+ Orig_Body : Node_Id) return Boolean
+ is
+ Decl : constant Node_Id := Unit_Declaration_Node (Subp);
+ Original_Body : Node_Id;
+ Body_To_Analyze : Node_Id;
+ Max_Size : constant := 10;
+ Stat_Count : Integer := 0;
+
+ function Has_Excluded_Declaration (Decls : List_Id) return Boolean;
+ -- Check for declarations that make inlining not worthwhile.
+
+ function Has_Excluded_Statement (Stats : List_Id) return Boolean;
+ -- Check for statements that make inlining not worthwhile: any
+ -- tasking statement, nested at any level. Keep track of total
+ -- number of elementary statements, as a measure of acceptable size.
+
+ function Has_Pending_Instantiation return Boolean;
+ -- If some enclosing body contains instantiations that appear before
+ -- the corresponding generic body, the enclosing body has a freeze node
+ -- so that it can be elaborated after the generic itself. This might
+ -- conflict with subsequent inlinings, so that it is unsafe to try to
+ -- inline in such a case.
+
+ -------------------
+ -- Cannot_Inline --
+ -------------------
+
+ procedure Cannot_Inline (Msg : String; N : Node_Id);
+ -- If subprogram has pragma Inline_Always, it is an error if
+ -- it cannot be inlined. Otherwise, emit a warning.
+
+ procedure Cannot_Inline (Msg : String; N : Node_Id) is
+ begin
+ if Is_Always_Inlined (Subp) then
+ Error_Msg_NE (Msg (1 .. Msg'Length - 1), N, Subp);
+
+ elsif Ineffective_Inline_Warnings then
+ Error_Msg_NE (Msg, N, Subp);
+ end if;
+ end Cannot_Inline;
+
+ ------------------------------
+ -- Has_Excluded_Declaration --
+ ------------------------------
+
+ function Has_Excluded_Declaration (Decls : List_Id) return Boolean is
+ D : Node_Id;
+
+ begin
+ D := First (Decls);
+
+ while Present (D) loop
+ if Nkind (D) = N_Function_Instantiation
+ or else Nkind (D) = N_Protected_Type_Declaration
+ or else Nkind (D) = N_Package_Declaration
+ or else Nkind (D) = N_Package_Instantiation
+ or else Nkind (D) = N_Subprogram_Body
+ or else Nkind (D) = N_Procedure_Instantiation
+ or else Nkind (D) = N_Task_Type_Declaration
+ then
+ Cannot_Inline
+ ("\declaration prevents front-end inlining of&?", D);
+ return True;
+ end if;
+
+ Next (D);
+ end loop;
+
+ return False;
+
+ end Has_Excluded_Declaration;
+
+ ----------------------------
+ -- Has_Excluded_Statement --
+ ----------------------------
+
+ function Has_Excluded_Statement (Stats : List_Id) return Boolean is
+ S : Node_Id;
+ E : Node_Id;
+
+ begin
+ S := First (Stats);
+
+ while Present (S) loop
+ Stat_Count := Stat_Count + 1;
+
+ if Nkind (S) = N_Abort_Statement
+ or else Nkind (S) = N_Asynchronous_Select
+ or else Nkind (S) = N_Conditional_Entry_Call
+ or else Nkind (S) = N_Delay_Relative_Statement
+ or else Nkind (S) = N_Delay_Until_Statement
+ or else Nkind (S) = N_Selective_Accept
+ or else Nkind (S) = N_Timed_Entry_Call
+ then
+ Cannot_Inline
+ ("\statement prevents front-end inlining of&?", S);
+ return True;
+
+ elsif Nkind (S) = N_Block_Statement then
+ if Present (Declarations (S))
+ and then Has_Excluded_Declaration (Declarations (S))
+ then
+ return True;
+
+ elsif Present (Handled_Statement_Sequence (S))
+ and then
+ (Present
+ (Exception_Handlers (Handled_Statement_Sequence (S)))
+ or else
+ Has_Excluded_Statement
+ (Statements (Handled_Statement_Sequence (S))))
+ then
+ return True;
+ end if;
+
+ elsif Nkind (S) = N_Case_Statement then
+ E := First (Alternatives (S));
+
+ while Present (E) loop
+ if Has_Excluded_Statement (Statements (E)) then
+ return True;
+ end if;
+
+ Next (E);
+ end loop;
+
+ elsif Nkind (S) = N_If_Statement then
+ if Has_Excluded_Statement (Then_Statements (S)) then
+ return True;
+ end if;
+
+ if Present (Elsif_Parts (S)) then
+ E := First (Elsif_Parts (S));
+
+ while Present (E) loop
+ if Has_Excluded_Statement (Then_Statements (E)) then
+ return True;
+ end if;
+ Next (E);
+ end loop;
+ end if;
+
+ if Present (Else_Statements (S))
+ and then Has_Excluded_Statement (Else_Statements (S))
+ then
+ return True;
+ end if;
+
+ elsif Nkind (S) = N_Loop_Statement
+ and then Has_Excluded_Statement (Statements (S))
+ then
+ return True;
+ end if;
+
+ Next (S);
+ end loop;
+
+ return False;
+ end Has_Excluded_Statement;
+
+ -------------------------------
+ -- Has_Pending_Instantiation --
+ -------------------------------
+
+ function Has_Pending_Instantiation return Boolean is
+ S : Entity_Id := Current_Scope;
+
+ begin
+ while Present (S) loop
+ if Is_Compilation_Unit (S)
+ or else Is_Child_Unit (S)
+ then
+ return False;
+ elsif Ekind (S) = E_Package
+ and then Has_Forward_Instantiation (S)
+ then
+ return True;
+ end if;
+
+ S := Scope (S);
+ end loop;
+
+ return False;
+ end Has_Pending_Instantiation;
+
+ -- Start of processing for Build_Body_To_Inline
+
+ begin
+ if Nkind (Decl) = N_Subprogram_Declaration
+ and then Present (Body_To_Inline (Decl))
+ then
+ return True; -- Done already.
+
+ -- Functions that return unconstrained composite types will require
+ -- secondary stack handling, and cannot currently be inlined.
+
+ elsif Ekind (Subp) = E_Function
+ and then not Is_Scalar_Type (Etype (Subp))
+ and then not Is_Access_Type (Etype (Subp))
+ and then not Is_Constrained (Etype (Subp))
+ then
+ Cannot_Inline
+ ("unconstrained return type prevents front-end inlining of&?", N);
+ return False;
+ end if;
+
+ -- We need to capture references to the formals in order to substitute
+ -- the actuals at the point of inlining, i.e. instantiation. To treat
+ -- the formals as globals to the body to inline, we nest it within
+ -- a dummy parameterless subprogram, declared within the real one.
+
+ Original_Body := Orig_Body;
+
+ -- Within an instance, the current tree is already the result of
+ -- a generic copy, and not what we need for subsequent inlining.
+ -- We create the required body by doing an instantiating copy, to
+ -- obtain the proper partially analyzed tree.
+
+ if In_Instance then
+ if No (Generic_Parent (Specification (N))) then
+ return False;
+
+ elsif Is_Child_Unit (Scope (Current_Scope)) then
+ return False;
+
+ elsif Scope (Current_Scope) = Cunit_Entity (Main_Unit) then
+
+ -- compiling an instantiation. There is no point in generating
+ -- bodies to inline, because they will not be used.
+
+ return False;
+
+ else
+ Body_To_Analyze :=
+ Copy_Generic_Node
+ (Generic_Parent (Specification (N)), Empty,
+ Instantiating => True);
+ end if;
+ else
+ Body_To_Analyze :=
+ Copy_Generic_Node (Original_Body, Empty,
+ Instantiating => False);
+ end if;
+
+ Set_Parameter_Specifications (Specification (Original_Body), No_List);
+ Set_Defining_Unit_Name (Specification (Original_Body),
+ Make_Defining_Identifier (Sloc (N), New_Internal_Name ('S')));
+ Set_Corresponding_Spec (Original_Body, Empty);
+
+ if Ekind (Subp) = E_Function then
+ Set_Subtype_Mark (Specification (Original_Body),
+ New_Occurrence_Of (Etype (Subp), Sloc (N)));
+ end if;
+
+ if Present (Declarations (Orig_Body))
+ and then Has_Excluded_Declaration (Declarations (Orig_Body))
+ then
+ return False;
+ end if;
+
+ if Present (Handled_Statement_Sequence (N)) then
+ if
+ (Present (Exception_Handlers (Handled_Statement_Sequence (N))))
+ then
+ Cannot_Inline ("handler prevents front-end inlining of&?",
+ First (Exception_Handlers (Handled_Statement_Sequence (N))));
+ return False;
+ elsif
+ Has_Excluded_Statement
+ (Statements (Handled_Statement_Sequence (N)))
+ then
+ return False;
+ end if;
+ end if;
+
+ -- We do not inline a subprogram that is too large, unless it is
+ -- marked Inline_Always. This pragma does not suppress the other
+ -- checks on inlining (forbidden declarations, handlers, etc).
+
+ if Stat_Count > Max_Size
+ and then not Is_Always_Inlined (Subp)
+ then
+ Cannot_Inline ("body is too large for front-end inlining of&?", N);
+ return False;
+ end if;
+
+ if Has_Pending_Instantiation then
+ Cannot_Inline
+ ("cannot inline& because of forward instance within enclosing body",
+ N);
+ return False;
+ end if;
+
+ Body_To_Analyze := Copy_Generic_Node (Original_Body, Empty, False);
+
+ -- Set return type of function, which is also global and does not need
+ -- to be resolved.
+
+ if Ekind (Subp) = E_Function then
+ Set_Subtype_Mark (Specification (Body_To_Analyze),
+ New_Occurrence_Of (Etype (Subp), Sloc (N)));
+ end if;
+
+ if No (Declarations (N)) then
+ Set_Declarations (N, New_List (Body_To_Analyze));
+ else
+ Append (Body_To_Analyze, Declarations (N));
+ end if;
+
+ Expander_Mode_Save_And_Set (False);
+
+ Analyze (Body_To_Analyze);
+ New_Scope (Defining_Entity (Body_To_Analyze));
+ Save_Global_References (Original_Body);
+ End_Scope;
+ Remove (Body_To_Analyze);
+
+ Expander_Mode_Restore;
+ Set_Body_To_Inline (Decl, Original_Body);
+ Set_Is_Inlined (Subp);
+ return True;
+
+ end Build_Body_To_Inline;
+
+ -----------------------
+ -- Check_Conformance --
+ -----------------------
+
+ procedure Check_Conformance
+ (New_Id : Entity_Id;
+ Old_Id : Entity_Id;
+ Ctype : Conformance_Type;
+ Errmsg : Boolean;
+ Conforms : out Boolean;
+ Err_Loc : Node_Id := Empty;
+ Get_Inst : Boolean := False)
+ is
+ Old_Type : constant Entity_Id := Etype (Old_Id);
+ New_Type : constant Entity_Id := Etype (New_Id);
+ Old_Formal : Entity_Id;
+ New_Formal : Entity_Id;
+
+ procedure Conformance_Error (Msg : String; N : Node_Id := New_Id);
+ -- Post error message for conformance error on given node.
+ -- Two messages are output. The first points to the previous
+ -- declaration with a general "no conformance" message.
+ -- The second is the detailed reason, supplied as Msg. The
+ -- parameter N provide information for a possible & insertion
+ -- in the message, and also provides the location for posting
+ -- the message in the absence of a specified Err_Loc location.
+
+ -----------------------
+ -- Conformance_Error --
+ -----------------------
+
+ procedure Conformance_Error (Msg : String; N : Node_Id := New_Id) is
+ Enode : Node_Id;
+
+ begin
+ Conforms := False;
+
+ if Errmsg then
+ if No (Err_Loc) then
+ Enode := N;
+ else
+ Enode := Err_Loc;
+ end if;
+
+ Error_Msg_Sloc := Sloc (Old_Id);
+
+ case Ctype is
+ when Type_Conformant =>
+ Error_Msg_N
+ ("not type conformant with declaration#!", Enode);
+
+ when Mode_Conformant =>
+ Error_Msg_N
+ ("not mode conformant with declaration#!", Enode);
+
+ when Subtype_Conformant =>
+ Error_Msg_N
+ ("not subtype conformant with declaration#!", Enode);
+
+ when Fully_Conformant =>
+ Error_Msg_N
+ ("not fully conformant with declaration#!", Enode);
+ end case;
+
+ Error_Msg_NE (Msg, Enode, N);
+ end if;
+ end Conformance_Error;
+
+ -- Start of processing for Check_Conformance
+
+ begin
+ Conforms := True;
+
+ -- We need a special case for operators, since they don't
+ -- appear explicitly.
+
+ if Ctype = Type_Conformant then
+ if Ekind (New_Id) = E_Operator
+ and then Operator_Matches_Spec (New_Id, Old_Id)
+ then
+ return;
+ end if;
+ end if;
+
+ -- If both are functions/operators, check return types conform
+
+ if Old_Type /= Standard_Void_Type
+ and then New_Type /= Standard_Void_Type
+ then
+ if not Conforming_Types (Old_Type, New_Type, Ctype, Get_Inst) then
+ Conformance_Error ("return type does not match!", New_Id);
+ return;
+ end if;
+
+ -- If either is a function/operator and the other isn't, error
+
+ elsif Old_Type /= Standard_Void_Type
+ or else New_Type /= Standard_Void_Type
+ then
+ Conformance_Error ("functions can only match functions!", New_Id);
+ return;
+ end if;
+
+ -- In subtype conformant case, conventions must match (RM 6.3.1(16))
+ -- If this is a renaming as body, refine error message to indicate that
+ -- the conflict is with the original declaration. If the entity is not
+ -- frozen, the conventions don't have to match, the one of the renamed
+ -- entity is inherited.
+
+ if Ctype >= Subtype_Conformant then
+
+ if Convention (Old_Id) /= Convention (New_Id) then
+
+ if not Is_Frozen (New_Id) then
+ null;
+
+ elsif Present (Err_Loc)
+ and then Nkind (Err_Loc) = N_Subprogram_Renaming_Declaration
+ and then Present (Corresponding_Spec (Err_Loc))
+ then
+ Error_Msg_Name_1 := Chars (New_Id);
+ Error_Msg_Name_2 :=
+ Name_Ada + Convention_Id'Pos (Convention (New_Id));
+
+ Conformance_Error ("prior declaration for% has convention %!");
+
+ else
+ Conformance_Error ("calling conventions do not match!");
+ end if;
+
+ return;
+
+ elsif Is_Formal_Subprogram (Old_Id)
+ or else Is_Formal_Subprogram (New_Id)
+ then
+ Conformance_Error ("formal subprograms not allowed!");
+ return;
+ end if;
+ end if;
+
+ -- Deal with parameters
+
+ -- Note: we use the entity information, rather than going directly
+ -- to the specification in the tree. This is not only simpler, but
+ -- absolutely necessary for some cases of conformance tests between
+ -- operators, where the declaration tree simply does not exist!
+
+ Old_Formal := First_Formal (Old_Id);
+ New_Formal := First_Formal (New_Id);
+
+ while Present (Old_Formal) and then Present (New_Formal) loop
+
+ -- Types must always match. In the visible part of an instance,
+ -- usual overloading rules for dispatching operations apply, and
+ -- we check base types (not the actual subtypes).
+
+ if In_Instance_Visible_Part
+ and then Is_Dispatching_Operation (New_Id)
+ then
+ if not Conforming_Types
+ (Base_Type (Etype (Old_Formal)),
+ Base_Type (Etype (New_Formal)), Ctype, Get_Inst)
+ then
+ Conformance_Error ("type of & does not match!", New_Formal);
+ return;
+ end if;
+
+ elsif not Conforming_Types
+ (Etype (Old_Formal), Etype (New_Formal), Ctype, Get_Inst)
+ then
+ Conformance_Error ("type of & does not match!", New_Formal);
+ return;
+ end if;
+
+ -- For mode conformance, mode must match
+
+ if Ctype >= Mode_Conformant
+ and then Parameter_Mode (Old_Formal) /= Parameter_Mode (New_Formal)
+ then
+ Conformance_Error ("mode of & does not match!", New_Formal);
+ return;
+ end if;
+
+ -- Full conformance checks
+
+ if Ctype = Fully_Conformant then
+
+ -- Names must match
+
+ if Chars (Old_Formal) /= Chars (New_Formal) then
+ Conformance_Error ("name & does not match!", New_Formal);
+ return;
+
+ -- And default expressions for in parameters
+
+ elsif Parameter_Mode (Old_Formal) = E_In_Parameter then
+ declare
+ NewD : constant Boolean :=
+ Present (Default_Value (New_Formal));
+ OldD : constant Boolean :=
+ Present (Default_Value (Old_Formal));
+ begin
+ if NewD or OldD then
+
+ -- The old default value has been analyzed and expanded,
+ -- because the current full declaration will have frozen
+ -- everything before. The new default values have not
+ -- been expanded, so expand now to check conformance.
+
+ if NewD then
+ New_Scope (New_Id);
+ Analyze_Default_Expression
+ (Default_Value (New_Formal), Etype (New_Formal));
+ End_Scope;
+ end if;
+
+ if not (NewD and OldD)
+ or else not Fully_Conformant_Expressions
+ (Default_Value (Old_Formal),
+ Default_Value (New_Formal))
+ then
+ Conformance_Error
+ ("default expression for & does not match!",
+ New_Formal);
+ return;
+ end if;
+ end if;
+ end;
+ end if;
+ end if;
+
+ -- A couple of special checks for Ada 83 mode. These checks are
+ -- skipped if either entity is an operator in package Standard.
+ -- or if either old or new instance is not from the source program.
+
+ if Ada_83
+ and then Sloc (Old_Id) > Standard_Location
+ and then Sloc (New_Id) > Standard_Location
+ and then Comes_From_Source (Old_Id)
+ and then Comes_From_Source (New_Id)
+ then
+ declare
+ Old_Param : constant Node_Id := Declaration_Node (Old_Formal);
+ New_Param : constant Node_Id := Declaration_Node (New_Formal);
+
+ begin
+ -- Explicit IN must be present or absent in both cases. This
+ -- test is required only in the full conformance case.
+
+ if In_Present (Old_Param) /= In_Present (New_Param)
+ and then Ctype = Fully_Conformant
+ then
+ Conformance_Error
+ ("(Ada 83) IN must appear in both declarations",
+ New_Formal);
+ return;
+ end if;
+
+ -- Grouping (use of comma in param lists) must be the same
+ -- This is where we catch a misconformance like:
+
+ -- A,B : Integer
+ -- A : Integer; B : Integer
+
+ -- which are represented identically in the tree except
+ -- for the setting of the flags More_Ids and Prev_Ids.
+
+ if More_Ids (Old_Param) /= More_Ids (New_Param)
+ or else Prev_Ids (Old_Param) /= Prev_Ids (New_Param)
+ then
+ Conformance_Error
+ ("grouping of & does not match!", New_Formal);
+ return;
+ end if;
+ end;
+ end if;
+
+ Next_Formal (Old_Formal);
+ Next_Formal (New_Formal);
+ end loop;
+
+ if Present (Old_Formal) then
+ Conformance_Error ("too few parameters!");
+ return;
+
+ elsif Present (New_Formal) then
+ Conformance_Error ("too many parameters!", New_Formal);
+ return;
+ end if;
+
+ end Check_Conformance;
+
+ ------------------------------
+ -- Check_Delayed_Subprogram --
+ ------------------------------
+
+ procedure Check_Delayed_Subprogram (Designator : Entity_Id) is
+ F : Entity_Id;
+
+ procedure Possible_Freeze (T : Entity_Id);
+ -- T is the type of either a formal parameter or of the return type.
+ -- If T is not yet frozen and needs a delayed freeze, then the
+ -- subprogram itself must be delayed.
+
+ procedure Possible_Freeze (T : Entity_Id) is
+ begin
+ if Has_Delayed_Freeze (T)
+ and then not Is_Frozen (T)
+ then
+ Set_Has_Delayed_Freeze (Designator);
+
+ elsif Is_Access_Type (T)
+ and then Has_Delayed_Freeze (Designated_Type (T))
+ and then not Is_Frozen (Designated_Type (T))
+ then
+ Set_Has_Delayed_Freeze (Designator);
+ end if;
+ end Possible_Freeze;
+
+ -- Start of processing for Check_Delayed_Subprogram
+
+ begin
+ -- Never need to freeze abstract subprogram
+
+ if Is_Abstract (Designator) then
+ null;
+ else
+ -- Need delayed freeze if return type itself needs a delayed
+ -- freeze and is not yet frozen.
+
+ Possible_Freeze (Etype (Designator));
+ Possible_Freeze (Base_Type (Etype (Designator))); -- needed ???
+
+ -- Need delayed freeze if any of the formal types themselves need
+ -- a delayed freeze and are not yet frozen.
+
+ F := First_Formal (Designator);
+ while Present (F) loop
+ Possible_Freeze (Etype (F));
+ Possible_Freeze (Base_Type (Etype (F))); -- needed ???
+ Next_Formal (F);
+ end loop;
+ end if;
+
+ -- Mark functions that return by reference. Note that it cannot be
+ -- done for delayed_freeze subprograms because the underlying
+ -- returned type may not be known yet (for private types)
+
+ if not Has_Delayed_Freeze (Designator)
+ and then Expander_Active
+ then
+ declare
+ Typ : constant Entity_Id := Etype (Designator);
+ Utyp : constant Entity_Id := Underlying_Type (Typ);
+
+ begin
+ if Is_Return_By_Reference_Type (Typ) then
+ Set_Returns_By_Ref (Designator);
+
+ elsif Present (Utyp) and then Controlled_Type (Utyp) then
+ Set_Returns_By_Ref (Designator);
+ end if;
+ end;
+ end if;
+ end Check_Delayed_Subprogram;
+
+ ------------------------------------
+ -- Check_Discriminant_Conformance --
+ ------------------------------------
+
+ procedure Check_Discriminant_Conformance
+ (N : Node_Id;
+ Prev : Entity_Id;
+ Prev_Loc : Node_Id)
+ is
+ Old_Discr : Entity_Id := First_Discriminant (Prev);
+ New_Discr : Node_Id := First (Discriminant_Specifications (N));
+ New_Discr_Id : Entity_Id;
+ New_Discr_Type : Entity_Id;
+
+ procedure Conformance_Error (Msg : String; N : Node_Id);
+ -- Post error message for conformance error on given node.
+ -- Two messages are output. The first points to the previous
+ -- declaration with a general "no conformance" message.
+ -- The second is the detailed reason, supplied as Msg. The
+ -- parameter N provide information for a possible & insertion
+ -- in the message.
+
+ -----------------------
+ -- Conformance_Error --
+ -----------------------
+
+ procedure Conformance_Error (Msg : String; N : Node_Id) is
+ begin
+ Error_Msg_Sloc := Sloc (Prev_Loc);
+ Error_Msg_N ("not fully conformant with declaration#!", N);
+ Error_Msg_NE (Msg, N, N);
+ end Conformance_Error;
+
+ -- Start of processing for Check_Discriminant_Conformance
+
+ begin
+ while Present (Old_Discr) and then Present (New_Discr) loop
+
+ New_Discr_Id := Defining_Identifier (New_Discr);
+
+ -- The subtype mark of the discriminant on the full type
+ -- has not been analyzed so we do it here. For an access
+ -- discriminant a new type is created.
+
+ if Nkind (Discriminant_Type (New_Discr)) = N_Access_Definition then
+ New_Discr_Type :=
+ Access_Definition (N, Discriminant_Type (New_Discr));
+
+ else
+ Analyze (Discriminant_Type (New_Discr));
+ New_Discr_Type := Etype (Discriminant_Type (New_Discr));
+ end if;
+
+ if not Conforming_Types
+ (Etype (Old_Discr), New_Discr_Type, Fully_Conformant)
+ then
+ Conformance_Error ("type of & does not match!", New_Discr_Id);
+ return;
+ end if;
+
+ -- Names must match
+
+ if Chars (Old_Discr) /= Chars (Defining_Identifier (New_Discr)) then
+ Conformance_Error ("name & does not match!", New_Discr_Id);
+ return;
+ end if;
+
+ -- Default expressions must match
+
+ declare
+ NewD : constant Boolean :=
+ Present (Expression (New_Discr));
+ OldD : constant Boolean :=
+ Present (Expression (Parent (Old_Discr)));
+
+ begin
+ if NewD or OldD then
+
+ -- The old default value has been analyzed and expanded,
+ -- because the current full declaration will have frozen
+ -- everything before. The new default values have not
+ -- been expanded, so expand now to check conformance.
+
+ if NewD then
+ Analyze_Default_Expression
+ (Expression (New_Discr), New_Discr_Type);
+ end if;
+
+ if not (NewD and OldD)
+ or else not Fully_Conformant_Expressions
+ (Expression (Parent (Old_Discr)),
+ Expression (New_Discr))
+
+ then
+ Conformance_Error
+ ("default expression for & does not match!",
+ New_Discr_Id);
+ return;
+ end if;
+ end if;
+ end;
+
+ -- In Ada 83 case, grouping must match: (A,B : X) /= (A : X; B : X)
+
+ if Ada_83 then
+ declare
+ Old_Disc : constant Node_Id := Declaration_Node (Old_Discr);
+
+ begin
+ -- Grouping (use of comma in param lists) must be the same
+ -- This is where we catch a misconformance like:
+
+ -- A,B : Integer
+ -- A : Integer; B : Integer
+
+ -- which are represented identically in the tree except
+ -- for the setting of the flags More_Ids and Prev_Ids.
+
+ if More_Ids (Old_Disc) /= More_Ids (New_Discr)
+ or else Prev_Ids (Old_Disc) /= Prev_Ids (New_Discr)
+ then
+ Conformance_Error
+ ("grouping of & does not match!", New_Discr_Id);
+ return;
+ end if;
+ end;
+ end if;
+
+ Next_Discriminant (Old_Discr);
+ Next (New_Discr);
+ end loop;
+
+ if Present (Old_Discr) then
+ Conformance_Error ("too few discriminants!", Defining_Identifier (N));
+ return;
+
+ elsif Present (New_Discr) then
+ Conformance_Error
+ ("too many discriminants!", Defining_Identifier (New_Discr));
+ return;
+ end if;
+ end Check_Discriminant_Conformance;
+
+ ----------------------------
+ -- Check_Fully_Conformant --
+ ----------------------------
+
+ procedure Check_Fully_Conformant
+ (New_Id : Entity_Id;
+ Old_Id : Entity_Id;
+ Err_Loc : Node_Id := Empty)
+ is
+ Result : Boolean;
+
+ begin
+ Check_Conformance
+ (New_Id, Old_Id, Fully_Conformant, True, Result, Err_Loc);
+ end Check_Fully_Conformant;
+
+ ---------------------------
+ -- Check_Mode_Conformant --
+ ---------------------------
+
+ procedure Check_Mode_Conformant
+ (New_Id : Entity_Id;
+ Old_Id : Entity_Id;
+ Err_Loc : Node_Id := Empty;
+ Get_Inst : Boolean := False)
+ is
+ Result : Boolean;
+
+ begin
+ Check_Conformance
+ (New_Id, Old_Id, Mode_Conformant, True, Result, Err_Loc, Get_Inst);
+ end Check_Mode_Conformant;
+
+ -------------------
+ -- Check_Returns --
+ -------------------
+
+ procedure Check_Returns
+ (HSS : Node_Id;
+ Mode : Character;
+ Err : out Boolean)
+ is
+ Handler : Node_Id;
+
+ procedure Check_Statement_Sequence (L : List_Id);
+ -- Internal recursive procedure to check a list of statements for proper
+ -- termination by a return statement (or a transfer of control or a
+ -- compound statement that is itself internally properly terminated).
+
+ ------------------------------
+ -- Check_Statement_Sequence --
+ ------------------------------
+
+ procedure Check_Statement_Sequence (L : List_Id) is
+ Last_Stm : Node_Id;
+ Kind : Node_Kind;
+
+ Raise_Exception_Call : Boolean;
+ -- Set True if statement sequence terminated by Raise_Exception call
+ -- or a Reraise_Occurrence call.
+
+ begin
+ Raise_Exception_Call := False;
+
+ -- Get last real statement
+
+ Last_Stm := Last (L);
+
+ -- Don't count pragmas
+
+ while Nkind (Last_Stm) = N_Pragma
+
+ -- Don't count call to SS_Release (can happen after Raise_Exception)
+
+ or else
+ (Nkind (Last_Stm) = N_Procedure_Call_Statement
+ and then
+ Nkind (Name (Last_Stm)) = N_Identifier
+ and then
+ Is_RTE (Entity (Name (Last_Stm)), RE_SS_Release))
+
+ -- Don't count exception junk
+
+ or else
+ ((Nkind (Last_Stm) = N_Goto_Statement
+ or else Nkind (Last_Stm) = N_Label
+ or else Nkind (Last_Stm) = N_Object_Declaration)
+ and then Exception_Junk (Last_Stm))
+ loop
+ Prev (Last_Stm);
+ end loop;
+
+ -- Here we have the "real" last statement
+
+ Kind := Nkind (Last_Stm);
+
+ -- Transfer of control, OK. Note that in the No_Return procedure
+ -- case, we already diagnosed any explicit return statements, so
+ -- we can treat them as OK in this context.
+
+ if Is_Transfer (Last_Stm) then
+ return;
+
+ -- Check cases of explicit non-indirect procedure calls
+
+ elsif Kind = N_Procedure_Call_Statement
+ and then Is_Entity_Name (Name (Last_Stm))
+ then
+ -- Check call to Raise_Exception procedure which is treated
+ -- specially, as is a call to Reraise_Occurrence.
+
+ -- We suppress the warning in these cases since it is likely that
+ -- the programmer really does not expect to deal with the case
+ -- of Null_Occurrence, and thus would find a warning about a
+ -- missing return curious, and raising Program_Error does not
+ -- seem such a bad behavior if this does occur.
+
+ if Is_RTE (Entity (Name (Last_Stm)), RE_Raise_Exception)
+ or else
+ Is_RTE (Entity (Name (Last_Stm)), RE_Reraise_Occurrence)
+ then
+ Raise_Exception_Call := True;
+
+ -- For Raise_Exception call, test first argument, if it is
+ -- an attribute reference for a 'Identity call, then we know
+ -- that the call cannot possibly return.
+
+ declare
+ Arg : constant Node_Id :=
+ Original_Node (First_Actual (Last_Stm));
+
+ begin
+ if Nkind (Arg) = N_Attribute_Reference
+ and then Attribute_Name (Arg) = Name_Identity
+ then
+ return;
+ end if;
+ end;
+ end if;
+
+ -- If statement, need to look inside if there is an else and check
+ -- each constituent statement sequence for proper termination.
+
+ elsif Kind = N_If_Statement
+ and then Present (Else_Statements (Last_Stm))
+ then
+ Check_Statement_Sequence (Then_Statements (Last_Stm));
+ Check_Statement_Sequence (Else_Statements (Last_Stm));
+
+ if Present (Elsif_Parts (Last_Stm)) then
+ declare
+ Elsif_Part : Node_Id := First (Elsif_Parts (Last_Stm));
+
+ begin
+ while Present (Elsif_Part) loop
+ Check_Statement_Sequence (Then_Statements (Elsif_Part));
+ Next (Elsif_Part);
+ end loop;
+ end;
+ end if;
+
+ return;
+
+ -- Case statement, check each case for proper termination
+
+ elsif Kind = N_Case_Statement then
+ declare
+ Case_Alt : Node_Id;
+
+ begin
+ Case_Alt := First_Non_Pragma (Alternatives (Last_Stm));
+ while Present (Case_Alt) loop
+ Check_Statement_Sequence (Statements (Case_Alt));
+ Next_Non_Pragma (Case_Alt);
+ end loop;
+ end;
+
+ return;
+
+ -- Block statement, check its handled sequence of statements
+
+ elsif Kind = N_Block_Statement then
+ declare
+ Err1 : Boolean;
+
+ begin
+ Check_Returns
+ (Handled_Statement_Sequence (Last_Stm), Mode, Err1);
+
+ if Err1 then
+ Err := True;
+ end if;
+
+ return;
+ end;
+
+ -- Loop statement. If there is an iteration scheme, we can definitely
+ -- fall out of the loop. Similarly if there is an exit statement, we
+ -- can fall out. In either case we need a following return.
+
+ elsif Kind = N_Loop_Statement then
+ if Present (Iteration_Scheme (Last_Stm))
+ or else Has_Exit (Entity (Identifier (Last_Stm)))
+ then
+ null;
+
+ -- A loop with no exit statement or iteration scheme if either
+ -- an inifite loop, or it has some other exit (raise/return).
+ -- In either case, no warning is required.
+
+ else
+ return;
+ end if;
+
+ -- Timed entry call, check entry call and delay alternatives
+
+ -- Note: in expanded code, the timed entry call has been converted
+ -- to a set of expanded statements on which the check will work
+ -- correctly in any case.
+
+ elsif Kind = N_Timed_Entry_Call then
+ declare
+ ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
+ DCA : constant Node_Id := Delay_Alternative (Last_Stm);
+
+ begin
+ -- If statement sequence of entry call alternative is missing,
+ -- then we can definitely fall through, and we post the error
+ -- message on the entry call alternative itself.
+
+ if No (Statements (ECA)) then
+ Last_Stm := ECA;
+
+ -- If statement sequence of delay alternative is missing, then
+ -- we can definitely fall through, and we post the error
+ -- message on the delay alternative itself.
+
+ -- Note: if both ECA and DCA are missing the return, then we
+ -- post only one message, should be enough to fix the bugs.
+ -- If not we will get a message next time on the DCA when the
+ -- ECA is fixed!
+
+ elsif No (Statements (DCA)) then
+ Last_Stm := DCA;
+
+ -- Else check both statement sequences
+
+ else
+ Check_Statement_Sequence (Statements (ECA));
+ Check_Statement_Sequence (Statements (DCA));
+ return;
+ end if;
+ end;
+
+ -- Conditional entry call, check entry call and else part
+
+ -- Note: in expanded code, the conditional entry call has been
+ -- converted to a set of expanded statements on which the check
+ -- will work correctly in any case.
+
+ elsif Kind = N_Conditional_Entry_Call then
+ declare
+ ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
+
+ begin
+ -- If statement sequence of entry call alternative is missing,
+ -- then we can definitely fall through, and we post the error
+ -- message on the entry call alternative itself.
+
+ if No (Statements (ECA)) then
+ Last_Stm := ECA;
+
+ -- Else check statement sequence and else part
+
+ else
+ Check_Statement_Sequence (Statements (ECA));
+ Check_Statement_Sequence (Else_Statements (Last_Stm));
+ return;
+ end if;
+ end;
+ end if;
+
+ -- If we fall through, issue appropriate message
+
+ if Mode = 'F' then
+
+ if not Raise_Exception_Call then
+ Error_Msg_N
+ ("?RETURN statement missing following this statement!",
+ Last_Stm);
+ Error_Msg_N
+ ("\?Program_Error may be raised at run time",
+ Last_Stm);
+ end if;
+
+ -- Note: we set Err even though we have not issued a warning
+ -- because we still have a case of a missing return. This is
+ -- an extremely marginal case, probably will never be noticed
+ -- but we might as well get it right.
+
+ Err := True;
+
+ else
+ Error_Msg_N
+ ("implied return after this statement not allowed (No_Return)",
+ Last_Stm);
+ end if;
+ end Check_Statement_Sequence;
+
+ -- Start of processing for Check_Returns
+
+ begin
+ Err := False;
+ Check_Statement_Sequence (Statements (HSS));
+
+ if Present (Exception_Handlers (HSS)) then
+ Handler := First_Non_Pragma (Exception_Handlers (HSS));
+ while Present (Handler) loop
+ Check_Statement_Sequence (Statements (Handler));
+ Next_Non_Pragma (Handler);
+ end loop;
+ end if;
+ end Check_Returns;
+
+ ----------------------------
+ -- Check_Subprogram_Order --
+ ----------------------------
+
+ procedure Check_Subprogram_Order (N : Node_Id) is
+
+ function Subprogram_Name_Greater (S1, S2 : String) return Boolean;
+ -- This is used to check if S1 > S2 in the sense required by this
+ -- test, for example nameab < namec, but name2 < name10.
+
+ function Subprogram_Name_Greater (S1, S2 : String) return Boolean is
+ L1, L2 : Positive;
+ N1, N2 : Natural;
+
+ begin
+ -- Remove trailing numeric parts
+
+ L1 := S1'Last;
+ while S1 (L1) in '0' .. '9' loop
+ L1 := L1 - 1;
+ end loop;
+
+ L2 := S2'Last;
+ while S2 (L2) in '0' .. '9' loop
+ L2 := L2 - 1;
+ end loop;
+
+ -- If non-numeric parts non-equal, that's decisive
+
+ if S1 (S1'First .. L1) < S2 (S2'First .. L2) then
+ return False;
+
+ elsif S1 (S1'First .. L1) > S2 (S2'First .. L2) then
+ return True;
+
+ -- If non-numeric parts equal, compare suffixed numeric parts. Note
+ -- that a missing suffix is treated as numeric zero in this test.
+
+ else
+ N1 := 0;
+ while L1 < S1'Last loop
+ L1 := L1 + 1;
+ N1 := N1 * 10 + Character'Pos (S1 (L1)) - Character'Pos ('0');
+ end loop;
+
+ N2 := 0;
+ while L2 < S2'Last loop
+ L2 := L2 + 1;
+ N2 := N2 * 10 + Character'Pos (S2 (L2)) - Character'Pos ('0');
+ end loop;
+
+ return N1 > N2;
+ end if;
+ end Subprogram_Name_Greater;
+
+ -- Start of processing for Check_Subprogram_Order
+
+ begin
+ -- Check body in alpha order if this is option
+
+ if Style_Check_Subprogram_Order
+ and then Nkind (N) = N_Subprogram_Body
+ and then Comes_From_Source (N)
+ and then In_Extended_Main_Source_Unit (N)
+ then
+ declare
+ LSN : String_Ptr
+ renames Scope_Stack.Table
+ (Scope_Stack.Last).Last_Subprogram_Name;
+
+ Body_Id : constant Entity_Id :=
+ Defining_Entity (Specification (N));
+
+ begin
+ Get_Decoded_Name_String (Chars (Body_Id));
+
+ if LSN /= null then
+ if Subprogram_Name_Greater
+ (LSN.all, Name_Buffer (1 .. Name_Len))
+ then
+ Style.Subprogram_Not_In_Alpha_Order (Body_Id);
+ end if;
+
+ Free (LSN);
+ end if;
+
+ LSN := new String'(Name_Buffer (1 .. Name_Len));
+ end;
+ end if;
+ end Check_Subprogram_Order;
+
+ ------------------------------
+ -- Check_Subtype_Conformant --
+ ------------------------------
+
+ procedure Check_Subtype_Conformant
+ (New_Id : Entity_Id;
+ Old_Id : Entity_Id;
+ Err_Loc : Node_Id := Empty)
+ is
+ Result : Boolean;
+
+ begin
+ Check_Conformance
+ (New_Id, Old_Id, Subtype_Conformant, True, Result, Err_Loc);
+ end Check_Subtype_Conformant;
+
+ ---------------------------
+ -- Check_Type_Conformant --
+ ---------------------------
+
+ procedure Check_Type_Conformant
+ (New_Id : Entity_Id;
+ Old_Id : Entity_Id;
+ Err_Loc : Node_Id := Empty)
+ is
+ Result : Boolean;
+
+ begin
+ Check_Conformance
+ (New_Id, Old_Id, Type_Conformant, True, Result, Err_Loc);
+ end Check_Type_Conformant;
+
+ ----------------------
+ -- Conforming_Types --
+ ----------------------
+
+ function Conforming_Types
+ (T1 : Entity_Id;
+ T2 : Entity_Id;
+ Ctype : Conformance_Type;
+ Get_Inst : Boolean := False)
+ return Boolean
+ is
+ Type_1 : Entity_Id := T1;
+ Type_2 : Entity_Id := T2;
+
+ function Base_Types_Match (T1, T2 : Entity_Id) return Boolean;
+ -- If neither T1 nor T2 are generic actual types, then verify
+ -- that the base types are equal. Otherwise T1 and T2 must be
+ -- on the same subtype chain. The whole purpose of this procedure
+ -- is to prevent spurious ambiguities in an instantiation that may
+ -- arise if two distinct generic types are instantiated with the
+ -- same actual.
+
+ ----------------------
+ -- Base_Types_Match --
+ ----------------------
+
+ function Base_Types_Match (T1, T2 : Entity_Id) return Boolean is
+ begin
+ if T1 = T2 then
+ return True;
+
+ elsif Base_Type (T1) = Base_Type (T2) then
+
+ -- The following is too permissive. A more precise test must
+ -- check that the generic actual is an ancestor subtype of the
+ -- other ???.
+
+ return not Is_Generic_Actual_Type (T1)
+ or else not Is_Generic_Actual_Type (T2);
+
+ else
+ return False;
+ end if;
+ end Base_Types_Match;
+
+ begin
+ -- The context is an instance association for a formal
+ -- access-to-subprogram type; the formal parameter types
+ -- require mapping because they may denote other formal
+ -- parameters of the generic unit.
+
+ if Get_Inst then
+ Type_1 := Get_Instance_Of (T1);
+ Type_2 := Get_Instance_Of (T2);
+ end if;
+
+ -- First see if base types match
+
+ if Base_Types_Match (Type_1, Type_2) then
+ return Ctype <= Mode_Conformant
+ or else Subtypes_Statically_Match (Type_1, Type_2);
+
+ elsif Is_Incomplete_Or_Private_Type (Type_1)
+ and then Present (Full_View (Type_1))
+ and then Base_Types_Match (Full_View (Type_1), Type_2)
+ then
+ return Ctype <= Mode_Conformant
+ or else Subtypes_Statically_Match (Full_View (Type_1), Type_2);
+
+ elsif Ekind (Type_2) = E_Incomplete_Type
+ and then Present (Full_View (Type_2))
+ and then Base_Types_Match (Type_1, Full_View (Type_2))
+ then
+ return Ctype <= Mode_Conformant
+ or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
+ end if;
+
+ -- Test anonymous access type case. For this case, static subtype
+ -- matching is required for mode conformance (RM 6.3.1(15))
+
+ if Ekind (Type_1) = E_Anonymous_Access_Type
+ and then Ekind (Type_2) = E_Anonymous_Access_Type
+ then
+ declare
+ Desig_1 : Entity_Id;
+ Desig_2 : Entity_Id;
+
+ begin
+ Desig_1 := Directly_Designated_Type (Type_1);
+
+ -- An access parameter can designate an incomplete type.
+
+ if Ekind (Desig_1) = E_Incomplete_Type
+ and then Present (Full_View (Desig_1))
+ then
+ Desig_1 := Full_View (Desig_1);
+ end if;
+
+ Desig_2 := Directly_Designated_Type (Type_2);
+
+ if Ekind (Desig_2) = E_Incomplete_Type
+ and then Present (Full_View (Desig_2))
+ then
+ Desig_2 := Full_View (Desig_2);
+ end if;
+
+ -- The context is an instance association for a formal
+ -- access-to-subprogram type; formal access parameter
+ -- designated types require mapping because they may
+ -- denote other formal parameters of the generic unit.
+
+ if Get_Inst then
+ Desig_1 := Get_Instance_Of (Desig_1);
+ Desig_2 := Get_Instance_Of (Desig_2);
+ end if;
+
+ -- It is possible for a Class_Wide_Type to be introduced for
+ -- an incomplete type, in which case there is a separate class_
+ -- wide type for the full view. The types conform if their
+ -- Etypes conform, i.e. one may be the full view of the other.
+ -- This can only happen in the context of an access parameter,
+ -- other uses of an incomplete Class_Wide_Type are illegal.
+
+ if Ekind (Desig_1) = E_Class_Wide_Type
+ and then Ekind (Desig_2) = E_Class_Wide_Type
+ then
+ return
+ Conforming_Types (Etype (Desig_1), Etype (Desig_2), Ctype);
+ else
+ return Base_Type (Desig_1) = Base_Type (Desig_2)
+ and then (Ctype = Type_Conformant
+ or else
+ Subtypes_Statically_Match (Desig_1, Desig_2));
+ end if;
+ end;
+
+ -- Otherwise definitely no match
+
+ else
+ return False;
+ end if;
+
+ end Conforming_Types;
+
+ --------------------------
+ -- Create_Extra_Formals --
+ --------------------------
+
+ procedure Create_Extra_Formals (E : Entity_Id) is
+ Formal : Entity_Id;
+ Last_Formal : Entity_Id;
+ Last_Extra : Entity_Id;
+ Formal_Type : Entity_Id;
+ P_Formal : Entity_Id := Empty;
+
+ function Add_Extra_Formal (Typ : Entity_Id) return Entity_Id;
+ -- Add an extra formal, associated with the current Formal. The
+ -- extra formal is added to the list of extra formals, and also
+ -- returned as the result. These formals are always of mode IN.
+
+ function Add_Extra_Formal (Typ : Entity_Id) return Entity_Id is
+ EF : constant Entity_Id :=
+ Make_Defining_Identifier (Sloc (Formal),
+ Chars => New_External_Name (Chars (Formal), 'F'));
+
+ begin
+ -- We never generate extra formals if expansion is not active
+ -- because we don't need them unless we are generating code.
+
+ if not Expander_Active then
+ return Empty;
+ end if;
+
+ -- A little optimization. Never generate an extra formal for
+ -- the _init operand of an initialization procedure, since it
+ -- could never be used.
+
+ if Chars (Formal) = Name_uInit then
+ return Empty;
+ end if;
+
+ Set_Ekind (EF, E_In_Parameter);
+ Set_Actual_Subtype (EF, Typ);
+ Set_Etype (EF, Typ);
+ Set_Scope (EF, Scope (Formal));
+ Set_Mechanism (EF, Default_Mechanism);
+ Set_Formal_Validity (EF);
+
+ Set_Extra_Formal (Last_Extra, EF);
+ Last_Extra := EF;
+ return EF;
+ end Add_Extra_Formal;
+
+ -- Start of processing for Create_Extra_Formals
+
+ begin
+ -- If this is a derived subprogram then the subtypes of the
+ -- parent subprogram's formal parameters will be used to
+ -- to determine the need for extra formals.
+
+ if Is_Overloadable (E) and then Present (Alias (E)) then
+ P_Formal := First_Formal (Alias (E));
+ end if;
+
+ Last_Extra := Empty;
+ Formal := First_Formal (E);
+ while Present (Formal) loop
+ Last_Extra := Formal;
+ Next_Formal (Formal);
+ end loop;
+
+ -- If Extra_formals where already created, don't do it again
+ -- This situation may arise for subprogram types created as part
+ -- of dispatching calls (see Expand_Dispatch_Call)
+
+ if Present (Last_Extra) and then
+ Present (Extra_Formal (Last_Extra))
+ then
+ return;
+ end if;
+
+ Formal := First_Formal (E);
+
+ while Present (Formal) loop
+
+ -- Create extra formal for supporting the attribute 'Constrained.
+ -- The case of a private type view without discriminants also
+ -- requires the extra formal if the underlying type has defaulted
+ -- discriminants.
+
+ if Ekind (Formal) /= E_In_Parameter then
+ if Present (P_Formal) then
+ Formal_Type := Etype (P_Formal);
+ else
+ Formal_Type := Etype (Formal);
+ end if;
+
+ if not Has_Discriminants (Formal_Type)
+ and then Ekind (Formal_Type) in Private_Kind
+ and then Present (Underlying_Type (Formal_Type))
+ then
+ Formal_Type := Underlying_Type (Formal_Type);
+ end if;
+
+ if Has_Discriminants (Formal_Type)
+ and then
+ ((not Is_Constrained (Formal_Type)
+ and then not Is_Indefinite_Subtype (Formal_Type))
+ or else Present (Extra_Formal (Formal)))
+ then
+ Set_Extra_Constrained
+ (Formal, Add_Extra_Formal (Standard_Boolean));
+ end if;
+ end if;
+
+ -- Create extra formal for supporting accessibility checking
+
+ -- This is suppressed if we specifically suppress accessibility
+ -- checks for either the subprogram, or the package in which it
+ -- resides. However, we do not suppress it simply if the scope
+ -- has accessibility checks suppressed, since this could cause
+ -- trouble when clients are compiled with a different suppression
+ -- setting. The explicit checks are safe from this point of view.
+
+ if Ekind (Etype (Formal)) = E_Anonymous_Access_Type
+ and then not
+ (Suppress_Accessibility_Checks (E)
+ or else
+ Suppress_Accessibility_Checks (Scope (E)))
+ and then
+ (not Present (P_Formal)
+ or else Present (Extra_Accessibility (P_Formal)))
+ then
+ -- Temporary kludge: for now we avoid creating the extra
+ -- formal for access parameters of protected operations
+ -- because of problem with the case of internal protected
+ -- calls. ???
+
+ if Nkind (Parent (Parent (Parent (E)))) /= N_Protected_Definition
+ and then Nkind (Parent (Parent (Parent (E)))) /= N_Protected_Body
+ then
+ Set_Extra_Accessibility
+ (Formal, Add_Extra_Formal (Standard_Natural));
+ end if;
+ end if;
+
+ if Present (P_Formal) then
+ Next_Formal (P_Formal);
+ end if;
+
+ Last_Formal := Formal;
+ Next_Formal (Formal);
+ end loop;
+ end Create_Extra_Formals;
+
+ -----------------------------
+ -- Enter_Overloaded_Entity --
+ -----------------------------
+
+ procedure Enter_Overloaded_Entity (S : Entity_Id) is
+ E : Entity_Id := Current_Entity_In_Scope (S);
+ C_E : Entity_Id := Current_Entity (S);
+
+ begin
+ if Present (E) then
+ Set_Has_Homonym (E);
+ Set_Has_Homonym (S);
+ end if;
+
+ Set_Is_Immediately_Visible (S);
+ Set_Scope (S, Current_Scope);
+
+ -- Chain new entity if front of homonym in current scope, so that
+ -- homonyms are contiguous.
+
+ if Present (E)
+ and then E /= C_E
+ then
+ while Homonym (C_E) /= E loop
+ C_E := Homonym (C_E);
+ end loop;
+
+ Set_Homonym (C_E, S);
+
+ else
+ E := C_E;
+ Set_Current_Entity (S);
+ end if;
+
+ Set_Homonym (S, E);
+
+ Append_Entity (S, Current_Scope);
+ Set_Public_Status (S);
+
+ if Debug_Flag_E then
+ Write_Str ("New overloaded entity chain: ");
+ Write_Name (Chars (S));
+ E := S;
+
+ while Present (E) loop
+ Write_Str (" "); Write_Int (Int (E));
+ E := Homonym (E);
+ end loop;
+
+ Write_Eol;
+ end if;
+
+ -- Generate warning for hiding
+
+ if Warn_On_Hiding
+ and then Comes_From_Source (S)
+ and then In_Extended_Main_Source_Unit (S)
+ then
+ E := S;
+ loop
+ E := Homonym (E);
+ exit when No (E);
+
+ -- Warn unless genuine overloading
+
+ if (not Is_Overloadable (E))
+ or else Subtype_Conformant (E, S)
+ then
+ Error_Msg_Sloc := Sloc (E);
+ Error_Msg_N ("declaration of & hides one#?", S);
+ end if;
+ end loop;
+ end if;
+ end Enter_Overloaded_Entity;
+
+ -----------------------------
+ -- Find_Corresponding_Spec --
+ -----------------------------
+
+ function Find_Corresponding_Spec (N : Node_Id) return Entity_Id is
+ Spec : constant Node_Id := Specification (N);
+ Designator : constant Entity_Id := Defining_Entity (Spec);
+
+ E : Entity_Id;
+
+ begin
+ E := Current_Entity (Designator);
+
+ while Present (E) loop
+
+ -- We are looking for a matching spec. It must have the same scope,
+ -- and the same name, and either be type conformant, or be the case
+ -- of a library procedure spec and its body (which belong to one
+ -- another regardless of whether they are type conformant or not).
+
+ if Scope (E) = Current_Scope then
+ if (Current_Scope = Standard_Standard
+ or else (Ekind (E) = Ekind (Designator)
+ and then
+ Type_Conformant (E, Designator)))
+ then
+ -- Within an instantiation, we know that spec and body are
+ -- subtype conformant, because they were subtype conformant
+ -- in the generic. We choose the subtype-conformant entity
+ -- here as well, to resolve spurious ambiguities in the
+ -- instance that were not present in the generic (i.e. when
+ -- two different types are given the same actual). If we are
+ -- looking for a spec to match a body, full conformance is
+ -- expected.
+
+ if In_Instance then
+ Set_Convention (Designator, Convention (E));
+
+ if Nkind (N) = N_Subprogram_Body
+ and then Present (Homonym (E))
+ and then not Fully_Conformant (E, Designator)
+ then
+ goto Next_Entity;
+
+ elsif not Subtype_Conformant (E, Designator) then
+ goto Next_Entity;
+ end if;
+ end if;
+
+ if not Has_Completion (E) then
+
+ if Nkind (N) /= N_Subprogram_Body_Stub then
+ Set_Corresponding_Spec (N, E);
+ end if;
+
+ Set_Has_Completion (E);
+ return E;
+
+ elsif Nkind (Parent (N)) = N_Subunit then
+
+ -- If this is the proper body of a subunit, the completion
+ -- flag is set when analyzing the stub.
+
+ return E;
+
+ -- If body already exists, this is an error unless the
+ -- previous declaration is the implicit declaration of
+ -- a derived subprogram, or this is a spurious overloading
+ -- in an instance.
+
+ elsif No (Alias (E))
+ and then not Is_Intrinsic_Subprogram (E)
+ and then not In_Instance
+ then
+ Error_Msg_Sloc := Sloc (E);
+ Error_Msg_NE ("duplicate body for & declared#", N, E);
+ end if;
+
+ elsif Is_Child_Unit (E)
+ and then
+ Nkind (Unit_Declaration_Node (Designator)) = N_Subprogram_Body
+ and then
+ Nkind (Parent (Unit_Declaration_Node (Designator)))
+ = N_Compilation_Unit
+ then
+
+ -- Child units cannot be overloaded, so a conformance mismatch
+ -- between body and a previous spec is an error.
+
+ Error_Msg_N
+ ("body of child unit does not match previous declaration", N);
+ end if;
+ end if;
+
+ <<Next_Entity>>
+ E := Homonym (E);
+ end loop;
+
+ -- On exit, we know that no previous declaration of subprogram exists
+
+ return Empty;
+ end Find_Corresponding_Spec;
+
+ ----------------------
+ -- Fully_Conformant --
+ ----------------------
+
+ function Fully_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
+ Result : Boolean;
+
+ begin
+ Check_Conformance (New_Id, Old_Id, Fully_Conformant, False, Result);
+ return Result;
+ end Fully_Conformant;
+
+ ----------------------------------
+ -- Fully_Conformant_Expressions --
+ ----------------------------------
+
+ function Fully_Conformant_Expressions
+ (Given_E1 : Node_Id;
+ Given_E2 : Node_Id)
+ return Boolean
+ is
+ E1 : constant Node_Id := Original_Node (Given_E1);
+ E2 : constant Node_Id := Original_Node (Given_E2);
+ -- We always test conformance on original nodes, since it is possible
+ -- for analysis and/or expansion to make things look as though they
+ -- conform when they do not, e.g. by converting 1+2 into 3.
+
+ function FCE (Given_E1, Given_E2 : Node_Id) return Boolean
+ renames Fully_Conformant_Expressions;
+
+ function FCL (L1, L2 : List_Id) return Boolean;
+ -- Compare elements of two lists for conformance. Elements have to
+ -- be conformant, and actuals inserted as default parameters do not
+ -- match explicit actuals with the same value.
+
+ function FCO (Op_Node, Call_Node : Node_Id) return Boolean;
+ -- Compare an operator node with a function call.
+
+ ---------
+ -- FCL --
+ ---------
+
+ function FCL (L1, L2 : List_Id) return Boolean is
+ N1, N2 : Node_Id;
+
+ begin
+ if L1 = No_List then
+ N1 := Empty;
+ else
+ N1 := First (L1);
+ end if;
+
+ if L2 = No_List then
+ N2 := Empty;
+ else
+ N2 := First (L2);
+ end if;
+
+ -- Compare two lists, skipping rewrite insertions (we want to
+ -- compare the original trees, not the expanded versions!)
+
+ loop
+ if Is_Rewrite_Insertion (N1) then
+ Next (N1);
+ elsif Is_Rewrite_Insertion (N2) then
+ Next (N2);
+ elsif No (N1) then
+ return No (N2);
+ elsif No (N2) then
+ return False;
+ elsif not FCE (N1, N2) then
+ return False;
+ else
+ Next (N1);
+ Next (N2);
+ end if;
+ end loop;
+ end FCL;
+
+ ---------
+ -- FCO --
+ ---------
+
+ function FCO (Op_Node, Call_Node : Node_Id) return Boolean is
+ Actuals : constant List_Id := Parameter_Associations (Call_Node);
+ Act : Node_Id;
+
+ begin
+ if No (Actuals)
+ or else Entity (Op_Node) /= Entity (Name (Call_Node))
+ then
+ return False;
+
+ else
+ Act := First (Actuals);
+
+ if Nkind (Op_Node) in N_Binary_Op then
+
+ if not FCE (Left_Opnd (Op_Node), Act) then
+ return False;
+ end if;
+
+ Next (Act);
+ end if;
+
+ return Present (Act)
+ and then FCE (Right_Opnd (Op_Node), Act)
+ and then No (Next (Act));
+ end if;
+ end FCO;
+
+ -- Start of processing for Fully_Conformant_Expressions
+
+ begin
+ -- Non-conformant if paren count does not match. Note: if some idiot
+ -- complains that we don't do this right for more than 3 levels of
+ -- parentheses, they will be treated with the respect they deserve :-)
+
+ if Paren_Count (E1) /= Paren_Count (E2) then
+ return False;
+
+ -- If same entities are referenced, then they are conformant
+ -- even if they have different forms (RM 8.3.1(19-20)).
+
+ elsif Is_Entity_Name (E1) and then Is_Entity_Name (E2) then
+ if Present (Entity (E1)) then
+ return Entity (E1) = Entity (E2)
+ or else (Chars (Entity (E1)) = Chars (Entity (E2))
+ and then Ekind (Entity (E1)) = E_Discriminant
+ and then Ekind (Entity (E2)) = E_In_Parameter);
+
+ elsif Nkind (E1) = N_Expanded_Name
+ and then Nkind (E2) = N_Expanded_Name
+ and then Nkind (Selector_Name (E1)) = N_Character_Literal
+ and then Nkind (Selector_Name (E2)) = N_Character_Literal
+ then
+ return Chars (Selector_Name (E1)) = Chars (Selector_Name (E2));
+
+ else
+ -- Identifiers in component associations don't always have
+ -- entities, but their names must conform.
+
+ return Nkind (E1) = N_Identifier
+ and then Nkind (E2) = N_Identifier
+ and then Chars (E1) = Chars (E2);
+ end if;
+
+ elsif Nkind (E1) = N_Character_Literal
+ and then Nkind (E2) = N_Expanded_Name
+ then
+ return Nkind (Selector_Name (E2)) = N_Character_Literal
+ and then Chars (E1) = Chars (Selector_Name (E2));
+
+ elsif Nkind (E2) = N_Character_Literal
+ and then Nkind (E1) = N_Expanded_Name
+ then
+ return Nkind (Selector_Name (E1)) = N_Character_Literal
+ and then Chars (E2) = Chars (Selector_Name (E1));
+
+ elsif Nkind (E1) in N_Op
+ and then Nkind (E2) = N_Function_Call
+ then
+ return FCO (E1, E2);
+
+ elsif Nkind (E2) in N_Op
+ and then Nkind (E1) = N_Function_Call
+ then
+ return FCO (E2, E1);
+
+ -- Otherwise we must have the same syntactic entity
+
+ elsif Nkind (E1) /= Nkind (E2) then
+ return False;
+
+ -- At this point, we specialize by node type
+
+ else
+ case Nkind (E1) is
+
+ when N_Aggregate =>
+ return
+ FCL (Expressions (E1), Expressions (E2))
+ and then FCL (Component_Associations (E1),
+ Component_Associations (E2));
+
+ when N_Allocator =>
+ if Nkind (Expression (E1)) = N_Qualified_Expression
+ or else
+ Nkind (Expression (E2)) = N_Qualified_Expression
+ then
+ return FCE (Expression (E1), Expression (E2));
+
+ -- Check that the subtype marks and any constraints
+ -- are conformant
+
+ else
+ declare
+ Indic1 : constant Node_Id := Expression (E1);
+ Indic2 : constant Node_Id := Expression (E2);
+ Elt1 : Node_Id;
+ Elt2 : Node_Id;
+
+ begin
+ if Nkind (Indic1) /= N_Subtype_Indication then
+ return
+ Nkind (Indic2) /= N_Subtype_Indication
+ and then Entity (Indic1) = Entity (Indic2);
+
+ elsif Nkind (Indic2) /= N_Subtype_Indication then
+ return
+ Nkind (Indic1) /= N_Subtype_Indication
+ and then Entity (Indic1) = Entity (Indic2);
+
+ else
+ if Entity (Subtype_Mark (Indic1)) /=
+ Entity (Subtype_Mark (Indic2))
+ then
+ return False;
+ end if;
+
+ Elt1 := First (Constraints (Constraint (Indic1)));
+ Elt2 := First (Constraints (Constraint (Indic2)));
+
+ while Present (Elt1) and then Present (Elt2) loop
+ if not FCE (Elt1, Elt2) then
+ return False;
+ end if;
+
+ Next (Elt1);
+ Next (Elt2);
+ end loop;
+
+ return True;
+ end if;
+ end;
+ end if;
+
+ when N_Attribute_Reference =>
+ return
+ Attribute_Name (E1) = Attribute_Name (E2)
+ and then FCL (Expressions (E1), Expressions (E2));
+
+ when N_Binary_Op =>
+ return
+ Entity (E1) = Entity (E2)
+ and then FCE (Left_Opnd (E1), Left_Opnd (E2))
+ and then FCE (Right_Opnd (E1), Right_Opnd (E2));
+
+ when N_And_Then | N_Or_Else | N_In | N_Not_In =>
+ return
+ FCE (Left_Opnd (E1), Left_Opnd (E2))
+ and then
+ FCE (Right_Opnd (E1), Right_Opnd (E2));
+
+ when N_Character_Literal =>
+ return
+ Char_Literal_Value (E1) = Char_Literal_Value (E2);
+
+ when N_Component_Association =>
+ return
+ FCL (Choices (E1), Choices (E2))
+ and then FCE (Expression (E1), Expression (E2));
+
+ when N_Conditional_Expression =>
+ return
+ FCL (Expressions (E1), Expressions (E2));
+
+ when N_Explicit_Dereference =>
+ return
+ FCE (Prefix (E1), Prefix (E2));
+
+ when N_Extension_Aggregate =>
+ return
+ FCL (Expressions (E1), Expressions (E2))
+ and then Null_Record_Present (E1) =
+ Null_Record_Present (E2)
+ and then FCL (Component_Associations (E1),
+ Component_Associations (E2));
+
+ when N_Function_Call =>
+ return
+ FCE (Name (E1), Name (E2))
+ and then FCL (Parameter_Associations (E1),
+ Parameter_Associations (E2));
+
+ when N_Indexed_Component =>
+ return
+ FCE (Prefix (E1), Prefix (E2))
+ and then FCL (Expressions (E1), Expressions (E2));
+
+ when N_Integer_Literal =>
+ return (Intval (E1) = Intval (E2));
+
+ when N_Null =>
+ return True;
+
+ when N_Operator_Symbol =>
+ return
+ Chars (E1) = Chars (E2);
+
+ when N_Others_Choice =>
+ return True;
+
+ when N_Parameter_Association =>
+ return
+
+ Chars (Selector_Name (E1)) = Chars (Selector_Name (E2))
+ and then FCE (Explicit_Actual_Parameter (E1),
+ Explicit_Actual_Parameter (E2));
+
+ when N_Qualified_Expression =>
+ return
+ FCE (Subtype_Mark (E1), Subtype_Mark (E2))
+ and then FCE (Expression (E1), Expression (E2));
+
+ when N_Range =>
+ return
+ FCE (Low_Bound (E1), Low_Bound (E2))
+ and then FCE (High_Bound (E1), High_Bound (E2));
+
+ when N_Real_Literal =>
+ return (Realval (E1) = Realval (E2));
+
+ when N_Selected_Component =>
+ return
+ FCE (Prefix (E1), Prefix (E2))
+ and then FCE (Selector_Name (E1), Selector_Name (E2));
+
+ when N_Slice =>
+ return
+ FCE (Prefix (E1), Prefix (E2))
+ and then FCE (Discrete_Range (E1), Discrete_Range (E2));
+
+ when N_String_Literal =>
+ declare
+ S1 : constant String_Id := Strval (E1);
+ S2 : constant String_Id := Strval (E2);
+ L1 : constant Nat := String_Length (S1);
+ L2 : constant Nat := String_Length (S2);
+
+ begin
+ if L1 /= L2 then
+ return False;
+
+ else
+ for J in 1 .. L1 loop
+ if Get_String_Char (S1, J) /=
+ Get_String_Char (S2, J)
+ then
+ return False;
+ end if;
+ end loop;
+
+ return True;
+ end if;
+ end;
+
+ when N_Type_Conversion =>
+ return
+ FCE (Subtype_Mark (E1), Subtype_Mark (E2))
+ and then FCE (Expression (E1), Expression (E2));
+
+ when N_Unary_Op =>
+ return
+ Entity (E1) = Entity (E2)
+ and then FCE (Right_Opnd (E1), Right_Opnd (E2));
+
+ when N_Unchecked_Type_Conversion =>
+ return
+ FCE (Subtype_Mark (E1), Subtype_Mark (E2))
+ and then FCE (Expression (E1), Expression (E2));
+
+ -- All other node types cannot appear in this context. Strictly
+ -- we should raise a fatal internal error. Instead we just ignore
+ -- the nodes. This means that if anyone makes a mistake in the
+ -- expander and mucks an expression tree irretrievably, the
+ -- result will be a failure to detect a (probably very obscure)
+ -- case of non-conformance, which is better than bombing on some
+ -- case where two expressions do in fact conform.
+
+ when others =>
+ return True;
+
+ end case;
+ end if;
+ end Fully_Conformant_Expressions;
+
+ --------------------
+ -- Install_Entity --
+ --------------------
+
+ procedure Install_Entity (E : Entity_Id) is
+ Prev : constant Entity_Id := Current_Entity (E);
+
+ begin
+ Set_Is_Immediately_Visible (E);
+ Set_Current_Entity (E);
+ Set_Homonym (E, Prev);
+ end Install_Entity;
+
+ ---------------------
+ -- Install_Formals --
+ ---------------------
+
+ procedure Install_Formals (Id : Entity_Id) is
+ F : Entity_Id;
+
+ begin
+ F := First_Formal (Id);
+
+ while Present (F) loop
+ Install_Entity (F);
+ Next_Formal (F);
+ end loop;
+ end Install_Formals;
+
+ ---------------------------------
+ -- Is_Non_Overriding_Operation --
+ ---------------------------------
+
+ function Is_Non_Overriding_Operation
+ (Prev_E : Entity_Id;
+ New_E : Entity_Id)
+ return Boolean
+ is
+ Formal : Entity_Id;
+ F_Typ : Entity_Id;
+ G_Typ : Entity_Id := Empty;
+
+ function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id;
+ -- If F_Type is a derived type associated with a generic actual
+ -- subtype, then return its Generic_Parent_Type attribute, else
+ -- return Empty.
+
+ function Types_Correspond
+ (P_Type : Entity_Id;
+ N_Type : Entity_Id)
+ return Boolean;
+ -- Returns true if and only if the types (or designated types
+ -- in the case of anonymous access types) are the same or N_Type
+ -- is derived directly or indirectly from P_Type.
+
+ -----------------------------
+ -- Get_Generic_Parent_Type --
+ -----------------------------
+
+ function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id is
+ G_Typ : Entity_Id;
+ Indic : Node_Id;
+
+ begin
+ if Is_Derived_Type (F_Typ)
+ and then Nkind (Parent (F_Typ)) = N_Full_Type_Declaration
+ then
+ -- The tree must be traversed to determine the parent
+ -- subtype in the generic unit, which unfortunately isn't
+ -- always available via semantic attributes. ???
+ -- (Note: The use of Original_Node is needed for cases
+ -- where a full derived type has been rewritten.)
+
+ Indic := Subtype_Indication
+ (Type_Definition (Original_Node (Parent (F_Typ))));
+
+ if Nkind (Indic) = N_Subtype_Indication then
+ G_Typ := Entity (Subtype_Mark (Indic));
+ else
+ G_Typ := Entity (Indic);
+ end if;
+
+ if Nkind (Parent (G_Typ)) = N_Subtype_Declaration
+ and then Present (Generic_Parent_Type (Parent (G_Typ)))
+ then
+ return Generic_Parent_Type (Parent (G_Typ));
+ end if;
+ end if;
+
+ return Empty;
+ end Get_Generic_Parent_Type;
+
+ ----------------------
+ -- Types_Correspond --
+ ----------------------
+
+ function Types_Correspond
+ (P_Type : Entity_Id;
+ N_Type : Entity_Id)
+ return Boolean
+ is
+ Prev_Type : Entity_Id := Base_Type (P_Type);
+ New_Type : Entity_Id := Base_Type (N_Type);
+
+ begin
+ if Ekind (Prev_Type) = E_Anonymous_Access_Type then
+ Prev_Type := Designated_Type (Prev_Type);
+ end if;
+
+ if Ekind (New_Type) = E_Anonymous_Access_Type then
+ New_Type := Designated_Type (New_Type);
+ end if;
+
+ if Prev_Type = New_Type then
+ return True;
+
+ elsif not Is_Class_Wide_Type (New_Type) then
+ while Etype (New_Type) /= New_Type loop
+ New_Type := Etype (New_Type);
+ if New_Type = Prev_Type then
+ return True;
+ end if;
+ end loop;
+ end if;
+ return False;
+ end Types_Correspond;
+
+ -- Start of processing for Is_Non_Overriding_Operation
+
+ begin
+ -- In the case where both operations are implicit derived
+ -- subprograms then neither overrides the other. This can
+ -- only occur in certain obscure cases (e.g., derivation
+ -- from homographs created in a generic instantiation).
+
+ if Present (Alias (Prev_E)) and then Present (Alias (New_E)) then
+ return True;
+
+ elsif Ekind (Current_Scope) = E_Package
+ and then Is_Generic_Instance (Current_Scope)
+ and then In_Private_Part (Current_Scope)
+ and then Comes_From_Source (New_E)
+ then
+ -- We examine the formals and result subtype of the inherited
+ -- operation, to determine whether their type is derived from
+ -- (the instance of) a generic type.
+
+ Formal := First_Formal (Prev_E);
+
+ while Present (Formal) loop
+ F_Typ := Base_Type (Etype (Formal));
+
+ if Ekind (F_Typ) = E_Anonymous_Access_Type then
+ F_Typ := Designated_Type (F_Typ);
+ end if;
+
+ G_Typ := Get_Generic_Parent_Type (F_Typ);
+
+ Next_Formal (Formal);
+ end loop;
+
+ if not Present (G_Typ) and then Ekind (Prev_E) = E_Function then
+ G_Typ := Get_Generic_Parent_Type (Base_Type (Etype (Prev_E)));
+ end if;
+
+ if No (G_Typ) then
+ return False;
+ end if;
+
+ -- If the generic type is a private type, then the original
+ -- operation was not overriding in the generic, because there was
+ -- no primitive operation to override.
+
+ if Nkind (Parent (G_Typ)) = N_Formal_Type_Declaration
+ and then Nkind (Formal_Type_Definition (Parent (G_Typ))) =
+ N_Formal_Private_Type_Definition
+ then
+ return True;
+
+ -- The generic parent type is the ancestor of a formal derived
+ -- type declaration. We need to check whether it has a primitive
+ -- operation that should be overridden by New_E in the generic.
+
+ else
+ declare
+ P_Formal : Entity_Id;
+ N_Formal : Entity_Id;
+ P_Typ : Entity_Id;
+ N_Typ : Entity_Id;
+ P_Prim : Entity_Id;
+ Prim_Elt : Elmt_Id := First_Elmt (Primitive_Operations (G_Typ));
+
+ begin
+ while Present (Prim_Elt) loop
+ P_Prim := Node (Prim_Elt);
+ if Chars (P_Prim) = Chars (New_E)
+ and then Ekind (P_Prim) = Ekind (New_E)
+ then
+ P_Formal := First_Formal (P_Prim);
+ N_Formal := First_Formal (New_E);
+ while Present (P_Formal) and then Present (N_Formal) loop
+ P_Typ := Etype (P_Formal);
+ N_Typ := Etype (N_Formal);
+
+ if not Types_Correspond (P_Typ, N_Typ) then
+ exit;
+ end if;
+
+ Next_Entity (P_Formal);
+ Next_Entity (N_Formal);
+ end loop;
+
+ -- Found a matching primitive operation belonging to
+ -- the formal ancestor type, so the new subprogram
+ -- is overriding.
+
+ if not Present (P_Formal)
+ and then not Present (N_Formal)
+ and then (Ekind (New_E) /= E_Function
+ or else
+ Types_Correspond
+ (Etype (P_Prim), Etype (New_E)))
+ then
+ return False;
+ end if;
+ end if;
+
+ Next_Elmt (Prim_Elt);
+ end loop;
+
+ -- If no match found, then the new subprogram does
+ -- not override in the generic (nor in the instance).
+
+ return True;
+ end;
+ end if;
+ else
+ return False;
+ end if;
+ end Is_Non_Overriding_Operation;
+
+ ------------------------------
+ -- Make_Inequality_Operator --
+ ------------------------------
+
+ -- S is the defining identifier of an equality operator. We build a
+ -- subprogram declaration with the right signature. This operation is
+ -- intrinsic, because it is always expanded as the negation of the
+ -- call to the equality function.
+
+ procedure Make_Inequality_Operator (S : Entity_Id) is
+ Loc : constant Source_Ptr := Sloc (S);
+ Decl : Node_Id;
+ Formals : List_Id;
+ Op_Name : Entity_Id;
+
+ A : Entity_Id;
+ B : Entity_Id;
+
+ begin
+ -- Check that equality was properly defined.
+
+ if No (Next_Formal (First_Formal (S))) then
+ return;
+ end if;
+
+ A := Make_Defining_Identifier (Loc, Chars (First_Formal (S)));
+ B := Make_Defining_Identifier (Loc,
+ Chars (Next_Formal (First_Formal (S))));
+
+ Op_Name := Make_Defining_Operator_Symbol (Loc, Name_Op_Ne);
+
+ Formals := New_List (
+ Make_Parameter_Specification (Loc,
+ Defining_Identifier => A,
+ Parameter_Type =>
+ New_Reference_To (Etype (First_Formal (S)), Loc)),
+
+ Make_Parameter_Specification (Loc,
+ Defining_Identifier => B,
+ Parameter_Type =>
+ New_Reference_To (Etype (Next_Formal (First_Formal (S))), Loc)));
+
+ Decl :=
+ Make_Subprogram_Declaration (Loc,
+ Specification =>
+ Make_Function_Specification (Loc,
+ Defining_Unit_Name => Op_Name,
+ Parameter_Specifications => Formals,
+ Subtype_Mark => New_Reference_To (Standard_Boolean, Loc)));
+
+ -- Insert inequality right after equality if it is explicit or after
+ -- the derived type when implicit. These entities are created only
+ -- for visibility purposes, and eventually replaced in the course of
+ -- expansion, so they do not need to be attached to the tree and seen
+ -- by the back-end. Keeping them internal also avoids spurious freezing
+ -- problems. The parent field is set simply to make analysis safe.
+
+ if No (Alias (S)) then
+ Set_Parent (Decl, Parent (Unit_Declaration_Node (S)));
+ else
+ Set_Parent (Decl, Parent (Parent (Etype (First_Formal (S)))));
+ end if;
+
+ Mark_Rewrite_Insertion (Decl);
+ Set_Is_Intrinsic_Subprogram (Op_Name);
+ Analyze (Decl);
+ Set_Has_Completion (Op_Name);
+ Set_Corresponding_Equality (Op_Name, S);
+ Set_Is_Abstract (Op_Name, Is_Abstract (S));
+
+ end Make_Inequality_Operator;
+
+ ----------------------
+ -- May_Need_Actuals --
+ ----------------------
+
+ procedure May_Need_Actuals (Fun : Entity_Id) is
+ F : Entity_Id;
+ B : Boolean;
+
+ begin
+ F := First_Formal (Fun);
+ B := True;
+
+ while Present (F) loop
+ if No (Default_Value (F)) then
+ B := False;
+ exit;
+ end if;
+
+ Next_Formal (F);
+ end loop;
+
+ Set_Needs_No_Actuals (Fun, B);
+ end May_Need_Actuals;
+
+ ---------------------
+ -- Mode_Conformant --
+ ---------------------
+
+ function Mode_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
+ Result : Boolean;
+
+ begin
+ Check_Conformance (New_Id, Old_Id, Mode_Conformant, False, Result);
+ return Result;
+ end Mode_Conformant;
+
+ ---------------------------
+ -- New_Overloaded_Entity --
+ ---------------------------
+
+ procedure New_Overloaded_Entity
+ (S : Entity_Id;
+ Derived_Type : Entity_Id := Empty)
+ is
+ E : Entity_Id := Current_Entity_In_Scope (S);
+ Prev_Vis : Entity_Id := Empty;
+
+ function Is_Private_Declaration (E : Entity_Id) return Boolean;
+ -- Check that E is declared in the private part of the current package,
+ -- or in the package body, where it may hide a previous declaration.
+ -- We can' use In_Private_Part by itself because this flag is also
+ -- set when freezing entities, so we must examine the place of the
+ -- declaration in the tree, and recognize wrapper packages as well.
+
+ procedure Maybe_Primitive_Operation (Overriding : Boolean := False);
+ -- If the subprogram being analyzed is a primitive operation of
+ -- the type of one of its formals, set the corresponding flag.
+
+ ----------------------------
+ -- Is_Private_Declaration --
+ ----------------------------
+
+ function Is_Private_Declaration (E : Entity_Id) return Boolean is
+ Priv_Decls : List_Id;
+ Decl : constant Node_Id := Unit_Declaration_Node (E);
+
+ begin
+ if Is_Package (Current_Scope)
+ and then In_Private_Part (Current_Scope)
+ then
+ Priv_Decls :=
+ Private_Declarations (
+ Specification (Unit_Declaration_Node (Current_Scope)));
+
+ return In_Package_Body (Current_Scope)
+ or else List_Containing (Decl) = Priv_Decls
+ or else (Nkind (Parent (Decl)) = N_Package_Specification
+ and then not Is_Compilation_Unit (
+ Defining_Entity (Parent (Decl)))
+ and then List_Containing (Parent (Parent (Decl)))
+ = Priv_Decls);
+ else
+ return False;
+ end if;
+ end Is_Private_Declaration;
+
+ -------------------------------
+ -- Maybe_Primitive_Operation --
+ -------------------------------
+
+ procedure Maybe_Primitive_Operation (Overriding : Boolean := False) is
+ Formal : Entity_Id;
+ F_Typ : Entity_Id;
+
+ function Visible_Part_Type (T : Entity_Id) return Boolean;
+ -- Returns true if T is declared in the visible part of
+ -- the current package scope; otherwise returns false.
+ -- Assumes that T is declared in a package.
+
+ procedure Check_Private_Overriding (T : Entity_Id);
+ -- Checks that if a primitive abstract subprogram of a visible
+ -- abstract type is declared in a private part, then it must
+ -- override an abstract subprogram declared in the visible part.
+ -- Also checks that if a primitive function with a controlling
+ -- result is declared in a private part, then it must override
+ -- a function declared in the visible part.
+
+ ------------------------------
+ -- Check_Private_Overriding --
+ ------------------------------
+
+ procedure Check_Private_Overriding (T : Entity_Id) is
+ begin
+ if Ekind (Current_Scope) = E_Package
+ and then In_Private_Part (Current_Scope)
+ and then Visible_Part_Type (T)
+ and then not In_Instance
+ then
+ if Is_Abstract (T)
+ and then Is_Abstract (S)
+ and then (not Overriding or else not Is_Abstract (E))
+ then
+ Error_Msg_N ("abstract subprograms must be visible "
+ & "('R'M 3.9.3(10))!", S);
+
+ elsif Ekind (S) = E_Function
+ and then Is_Tagged_Type (T)
+ and then T = Base_Type (Etype (S))
+ and then not Overriding
+ then
+ Error_Msg_N
+ ("private function with tagged result must"
+ & " override visible-part function", S);
+ Error_Msg_N
+ ("\move subprogram to the visible part"
+ & " ('R'M 3.9.3(10))", S);
+ end if;
+ end if;
+ end Check_Private_Overriding;
+
+ -----------------------
+ -- Visible_Part_Type --
+ -----------------------
+
+ function Visible_Part_Type (T : Entity_Id) return Boolean is
+ P : Node_Id := Unit_Declaration_Node (Scope (T));
+ N : Node_Id := First (Visible_Declarations (Specification (P)));
+
+ begin
+ -- If the entity is a private type, then it must be
+ -- declared in a visible part.
+
+ if Ekind (T) in Private_Kind then
+ return True;
+ end if;
+
+ -- Otherwise, we traverse the visible part looking for its
+ -- corresponding declaration. We cannot use the declaration
+ -- node directly because in the private part the entity of a
+ -- private type is the one in the full view, which does not
+ -- indicate that it is the completion of something visible.
+
+ while Present (N) loop
+ if Nkind (N) = N_Full_Type_Declaration
+ and then Present (Defining_Identifier (N))
+ and then T = Defining_Identifier (N)
+ then
+ return True;
+
+ elsif (Nkind (N) = N_Private_Type_Declaration
+ or else
+ Nkind (N) = N_Private_Extension_Declaration)
+ and then Present (Defining_Identifier (N))
+ and then T = Full_View (Defining_Identifier (N))
+ then
+ return True;
+ end if;
+
+ Next (N);
+ end loop;
+
+ return False;
+ end Visible_Part_Type;
+
+ -- Start of processing for Maybe_Primitive_Operation
+
+ begin
+ if not Comes_From_Source (S) then
+ null;
+
+ elsif (Ekind (Current_Scope) = E_Package
+ and then not In_Package_Body (Current_Scope))
+ or else Overriding
+ then
+
+ if Ekind (S) = E_Function
+ and then Scope (Base_Type (Etype (S))) = Current_Scope
+ then
+ Set_Has_Primitive_Operations (Base_Type (Etype (S)));
+ Check_Private_Overriding (Base_Type (Etype (S)));
+ end if;
+
+ Formal := First_Formal (S);
+
+ while Present (Formal) loop
+ if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
+ F_Typ := Designated_Type (Etype (Formal));
+ else
+ F_Typ := Etype (Formal);
+ end if;
+
+ if Scope (Base_Type (F_Typ)) = Current_Scope then
+ Set_Has_Primitive_Operations (Base_Type (F_Typ));
+ Check_Private_Overriding (Base_Type (F_Typ));
+ end if;
+
+ Next_Formal (Formal);
+ end loop;
+
+ end if;
+ end Maybe_Primitive_Operation;
+
+ -- Start of processing for New_Overloaded_Entity
+
+ begin
+ if No (E) then
+ Enter_Overloaded_Entity (S);
+ Check_Dispatching_Operation (S, Empty);
+ Maybe_Primitive_Operation;
+
+ elsif not Is_Overloadable (E) then
+
+ -- Check for spurious conflict produced by a subprogram that has the
+ -- same name as that of the enclosing generic package. The conflict
+ -- occurs within an instance, between the subprogram and the renaming
+ -- declaration for the package. After the subprogram, the package
+ -- renaming declaration becomes hidden.
+
+ if Ekind (E) = E_Package
+ and then Present (Renamed_Object (E))
+ and then Renamed_Object (E) = Current_Scope
+ and then Nkind (Parent (Renamed_Object (E))) =
+ N_Package_Specification
+ and then Present (Generic_Parent (Parent (Renamed_Object (E))))
+ then
+ Set_Is_Hidden (E);
+ Set_Is_Immediately_Visible (E, False);
+ Enter_Overloaded_Entity (S);
+ Set_Homonym (S, Homonym (E));
+ Check_Dispatching_Operation (S, Empty);
+
+ -- If the subprogram is implicit it is hidden by the previous
+ -- declaration. However if it is dispatching, it must appear in
+ -- the dispatch table anyway, because it can be dispatched to
+ -- even if it cannot be called directly.
+
+ elsif Present (Alias (S))
+ and then not Comes_From_Source (S)
+ then
+ Set_Scope (S, Current_Scope);
+
+ if Is_Dispatching_Operation (Alias (S)) then
+ Check_Dispatching_Operation (S, Empty);
+ end if;
+
+ return;
+
+ else
+ Error_Msg_Sloc := Sloc (E);
+ Error_Msg_N ("& conflicts with declaration#", S);
+
+ -- Useful additional warning.
+
+ if Is_Generic_Unit (E) then
+ Error_Msg_N ("\previous generic unit cannot be overloaded", S);
+ end if;
+
+ return;
+ end if;
+
+ else
+ -- E exists and is overloadable. Determine whether S is the body
+ -- of E, a new overloaded entity with a different signature, or
+ -- an error altogether.
+
+ while Present (E) loop
+ if Scope (E) /= Current_Scope then
+ null;
+
+ elsif Type_Conformant (E, S) then
+
+ -- If the old and new entities have the same profile and
+ -- one is not the body of the other, then this is an error,
+ -- unless one of them is implicitly declared.
+
+ -- There are some cases when both can be implicit, for example
+ -- when both a literal and a function that overrides it are
+ -- inherited in a derivation, or when an inhertited operation
+ -- of a tagged full type overrides the ineherited operation of
+ -- a private extension. Ada 83 had a special rule for the
+ -- the literal case. In Ada95, the later implicit operation
+ -- hides the former, and the literal is always the former.
+ -- In the odd case where both are derived operations declared
+ -- at the same point, both operations should be declared,
+ -- and in that case we bypass the following test and proceed
+ -- to the next part (this can only occur for certain obscure
+ -- cases involving homographs in instances and can't occur for
+ -- dispatching operations ???). Note that the following
+ -- condition is less than clear. For example, it's not at
+ -- all clear why there's a test for E_Entry here. ???
+
+ if Present (Alias (S))
+ and then (No (Alias (E))
+ or else Comes_From_Source (E)
+ or else Is_Dispatching_Operation (E))
+ and then
+ (Ekind (E) = E_Entry
+ or else Ekind (E) /= E_Enumeration_Literal)
+ then
+ -- When an derived operation is overloaded it may be due
+ -- to the fact that the full view of a private extension
+ -- re-inherits. It has to be dealt with.
+
+ if Is_Package (Current_Scope)
+ and then In_Private_Part (Current_Scope)
+ then
+ Check_Operation_From_Private_View (S, E);
+ end if;
+
+ -- In any case the implicit operation remains hidden by
+ -- the existing declaration.
+
+ return;
+
+ -- Within an instance, the renaming declarations for
+ -- actual subprograms may become ambiguous, but they do
+ -- not hide each other.
+
+ elsif Ekind (E) /= E_Entry
+ and then not Comes_From_Source (E)
+ and then not Is_Generic_Instance (E)
+ and then (Present (Alias (E))
+ or else Is_Intrinsic_Subprogram (E))
+ and then (not In_Instance
+ or else No (Parent (E))
+ or else Nkind (Unit_Declaration_Node (E)) /=
+ N_Subprogram_Renaming_Declaration)
+ then
+ -- A subprogram child unit is not allowed to override
+ -- an inherited subprogram (10.1.1(20)).
+
+ if Is_Child_Unit (S) then
+ Error_Msg_N
+ ("child unit overrides inherited subprogram in parent",
+ S);
+ return;
+ end if;
+
+ if Is_Non_Overriding_Operation (E, S) then
+ Enter_Overloaded_Entity (S);
+ if not Present (Derived_Type)
+ or else Is_Tagged_Type (Derived_Type)
+ then
+ Check_Dispatching_Operation (S, Empty);
+ end if;
+
+ return;
+ end if;
+
+ -- E is a derived operation or an internal operator which
+ -- is being overridden. Remove E from further visibility.
+ -- Furthermore, if E is a dispatching operation, it must be
+ -- replaced in the list of primitive operations of its type
+ -- (see Override_Dispatching_Operation).
+
+ declare
+ Prev : Entity_Id;
+
+ begin
+ Prev := First_Entity (Current_Scope);
+
+ while Present (Prev)
+ and then Next_Entity (Prev) /= E
+ loop
+ Next_Entity (Prev);
+ end loop;
+
+ -- It is possible for E to be in the current scope and
+ -- yet not in the entity chain. This can only occur in a
+ -- generic context where E is an implicit concatenation
+ -- in the formal part, because in a generic body the
+ -- entity chain starts with the formals.
+
+ pragma Assert
+ (Present (Prev) or else Chars (E) = Name_Op_Concat);
+
+ -- E must be removed both from the entity_list of the
+ -- current scope, and from the visibility chain
+
+ if Debug_Flag_E then
+ Write_Str ("Override implicit operation ");
+ Write_Int (Int (E));
+ Write_Eol;
+ end if;
+
+ -- If E is a predefined concatenation, it stands for four
+ -- different operations. As a result, a single explicit
+ -- declaration does not hide it. In a possible ambiguous
+ -- situation, Disambiguate chooses the user-defined op,
+ -- so it is correct to retain the previous internal one.
+
+ if Chars (E) /= Name_Op_Concat
+ or else Ekind (E) /= E_Operator
+ then
+ -- For nondispatching derived operations that are
+ -- overridden by a subprogram declared in the private
+ -- part of a package, we retain the derived subprogram
+ -- but mark it as not immediately visible. If the
+ -- derived operation was declared in the visible part
+ -- then this ensures that it will still be visible
+ -- outside the package with the proper signature
+ -- (calls from outside must also be directed to this
+ -- version rather than the overriding one, unlike the
+ -- dispatching case). Calls from inside the package
+ -- will still resolve to the overriding subprogram
+ -- since the derived one is marked as not visible
+ -- within the package.
+
+ -- If the private operation is dispatching, we achieve
+ -- the overriding by keeping the implicit operation
+ -- but setting its alias to be the overring one. In
+ -- this fashion the proper body is executed in all
+ -- cases, but the original signature is used outside
+ -- of the package.
+
+ -- If the overriding is not in the private part, we
+ -- remove the implicit operation altogether.
+
+ if Is_Private_Declaration (S) then
+
+ if not Is_Dispatching_Operation (E) then
+ Set_Is_Immediately_Visible (E, False);
+ else
+
+ -- work done in Override_Dispatching_Operation.
+
+ null;
+ end if;
+ else
+
+ -- Find predecessor of E in Homonym chain.
+
+ if E = Current_Entity (E) then
+ Prev_Vis := Empty;
+ else
+ Prev_Vis := Current_Entity (E);
+ while Homonym (Prev_Vis) /= E loop
+ Prev_Vis := Homonym (Prev_Vis);
+ end loop;
+ end if;
+
+ if Prev_Vis /= Empty then
+
+ -- Skip E in the visibility chain
+
+ Set_Homonym (Prev_Vis, Homonym (E));
+
+ else
+ Set_Name_Entity_Id (Chars (E), Homonym (E));
+ end if;
+
+ Set_Next_Entity (Prev, Next_Entity (E));
+
+ if No (Next_Entity (Prev)) then
+ Set_Last_Entity (Current_Scope, Prev);
+ end if;
+
+ end if;
+ end if;
+
+ Enter_Overloaded_Entity (S);
+
+ if Is_Dispatching_Operation (E) then
+ -- An overriding dispatching subprogram inherits
+ -- the convention of the overridden subprogram
+ -- (by AI-117).
+
+ Set_Convention (S, Convention (E));
+
+ Check_Dispatching_Operation (S, E);
+ else
+ Check_Dispatching_Operation (S, Empty);
+ end if;
+
+ Maybe_Primitive_Operation (Overriding => True);
+ goto Check_Inequality;
+ end;
+
+ -- Apparent redeclarations in instances can occur when two
+ -- formal types get the same actual type. The subprograms in
+ -- in the instance are legal, even if not callable from the
+ -- outside. Calls from within are disambiguated elsewhere.
+ -- For dispatching operations in the visible part, the usual
+ -- rules apply, and operations with the same profile are not
+ -- legal (B830001).
+
+ elsif (In_Instance_Visible_Part
+ and then not Is_Dispatching_Operation (E))
+ or else In_Instance_Not_Visible
+ then
+ null;
+
+ -- Here we have a real error (identical profile)
+
+ else
+ Error_Msg_Sloc := Sloc (E);
+
+ -- Avoid cascaded errors if the entity appears in
+ -- subsequent calls.
+
+ Set_Scope (S, Current_Scope);
+
+ Error_Msg_N ("& conflicts with declaration#", S);
+
+ if Is_Generic_Instance (S)
+ and then not Has_Completion (E)
+ then
+ Error_Msg_N
+ ("\instantiation cannot provide body for it", S);
+ end if;
+
+ return;
+ end if;
+
+ else
+ null;
+ end if;
+
+ Prev_Vis := E;
+ E := Homonym (E);
+ end loop;
+
+ -- On exit, we know that S is a new entity
+
+ Enter_Overloaded_Entity (S);
+ Maybe_Primitive_Operation;
+
+ -- If S is a derived operation for an untagged type then
+ -- by definition it's not a dispatching operation (even
+ -- if the parent operation was dispatching), so we don't
+ -- call Check_Dispatching_Operation in that case.
+
+ if not Present (Derived_Type)
+ or else Is_Tagged_Type (Derived_Type)
+ then
+ Check_Dispatching_Operation (S, Empty);
+ end if;
+ end if;
+
+ -- If this is a user-defined equality operator that is not
+ -- a derived subprogram, create the corresponding inequality.
+ -- If the operation is dispatching, the expansion is done
+ -- elsewhere, and we do not create an explicit inequality
+ -- operation.
+
+ <<Check_Inequality>>
+ if Chars (S) = Name_Op_Eq
+ and then Etype (S) = Standard_Boolean
+ and then Present (Parent (S))
+ and then not Is_Dispatching_Operation (S)
+ then
+ Make_Inequality_Operator (S);
+ end if;
+
+ end New_Overloaded_Entity;
+
+ ---------------------
+ -- Process_Formals --
+ ---------------------
+
+ procedure Process_Formals
+ (S : Entity_Id;
+ T : List_Id;
+ Related_Nod : Node_Id)
+ is
+ Param_Spec : Node_Id;
+ Formal : Entity_Id;
+ Formal_Type : Entity_Id;
+ Default : Node_Id;
+ Ptype : Entity_Id;
+
+ begin
+ -- In order to prevent premature use of the formals in the same formal
+ -- part, the Ekind is left undefined until all default expressions are
+ -- analyzed. The Ekind is established in a separate loop at the end.
+
+ Param_Spec := First (T);
+
+ while Present (Param_Spec) loop
+
+ Formal := Defining_Identifier (Param_Spec);
+ Enter_Name (Formal);
+
+ -- Case of ordinary parameters
+
+ if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
+ Find_Type (Parameter_Type (Param_Spec));
+ Ptype := Parameter_Type (Param_Spec);
+
+ if Ptype = Error then
+ goto Continue;
+ end if;
+
+ Formal_Type := Entity (Ptype);
+
+ if Ekind (Formal_Type) = E_Incomplete_Type
+ or else (Is_Class_Wide_Type (Formal_Type)
+ and then Ekind (Root_Type (Formal_Type)) =
+ E_Incomplete_Type)
+ then
+ if Nkind (Parent (T)) /= N_Access_Function_Definition
+ and then Nkind (Parent (T)) /= N_Access_Procedure_Definition
+ then
+ Error_Msg_N ("invalid use of incomplete type", Param_Spec);
+ end if;
+
+ elsif Ekind (Formal_Type) = E_Void then
+ Error_Msg_NE ("premature use of&",
+ Parameter_Type (Param_Spec), Formal_Type);
+ end if;
+
+ -- An access formal type
+
+ else
+ Formal_Type :=
+ Access_Definition (Related_Nod, Parameter_Type (Param_Spec));
+ end if;
+
+ Set_Etype (Formal, Formal_Type);
+
+ Default := Expression (Param_Spec);
+
+ if Present (Default) then
+ if Out_Present (Param_Spec) then
+ Error_Msg_N
+ ("default initialization only allowed for IN parameters",
+ Param_Spec);
+ end if;
+
+ -- Do the special preanalysis of the expression (see section on
+ -- "Handling of Default Expressions" in the spec of package Sem).
+
+ Analyze_Default_Expression (Default, Formal_Type);
+
+ -- Check that the designated type of an access parameter's
+ -- default is not a class-wide type unless the parameter's
+ -- designated type is also class-wide.
+
+ if Ekind (Formal_Type) = E_Anonymous_Access_Type
+ and then Is_Class_Wide_Type (Designated_Type (Etype (Default)))
+ and then not Is_Class_Wide_Type (Designated_Type (Formal_Type))
+ then
+ Wrong_Type (Default, Formal_Type);
+ end if;
+ end if;
+
+ <<Continue>>
+ Next (Param_Spec);
+ end loop;
+
+ -- Now set the kind (mode) of each formal
+
+ Param_Spec := First (T);
+
+ while Present (Param_Spec) loop
+ Formal := Defining_Identifier (Param_Spec);
+ Set_Formal_Mode (Formal);
+
+ if Ekind (Formal) = E_In_Parameter then
+ Set_Default_Value (Formal, Expression (Param_Spec));
+
+ if Present (Expression (Param_Spec)) then
+ Default := Expression (Param_Spec);
+
+ if Is_Scalar_Type (Etype (Default)) then
+ if Nkind
+ (Parameter_Type (Param_Spec)) /= N_Access_Definition
+ then
+ Formal_Type := Entity (Parameter_Type (Param_Spec));
+
+ else
+ Formal_Type := Access_Definition
+ (Related_Nod, Parameter_Type (Param_Spec));
+ end if;
+
+ Apply_Scalar_Range_Check (Default, Formal_Type);
+ end if;
+
+ end if;
+ end if;
+
+ Next (Param_Spec);
+ end loop;
+
+ end Process_Formals;
+
+ -------------------------
+ -- Set_Actual_Subtypes --
+ -------------------------
+
+ procedure Set_Actual_Subtypes (N : Node_Id; Subp : Entity_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Decl : Node_Id;
+ Formal : Entity_Id;
+ T : Entity_Id;
+ First_Stmt : Node_Id := Empty;
+ AS_Needed : Boolean;
+
+ begin
+ Formal := First_Formal (Subp);
+ while Present (Formal) loop
+ T := Etype (Formal);
+
+ -- We never need an actual subtype for a constrained formal.
+
+ if Is_Constrained (T) then
+ AS_Needed := False;
+
+ -- If we have unknown discriminants, then we do not need an
+ -- actual subtype, or more accurately we cannot figure it out!
+ -- Note that all class-wide types have unknown discriminants.
+
+ elsif Has_Unknown_Discriminants (T) then
+ AS_Needed := False;
+
+ -- At this stage we have an unconstrained type that may need
+ -- an actual subtype. For sure the actual subtype is needed
+ -- if we have an unconstrained array type.
+
+ elsif Is_Array_Type (T) then
+ AS_Needed := True;
+
+ -- The only other case which needs an actual subtype is an
+ -- unconstrained record type which is an IN parameter (we
+ -- cannot generate actual subtypes for the OUT or IN OUT case,
+ -- since an assignment can change the discriminant values.
+ -- However we exclude the case of initialization procedures,
+ -- since discriminants are handled very specially in this context,
+ -- see the section entitled "Handling of Discriminants" in Einfo.
+ -- We also exclude the case of Discrim_SO_Functions (functions
+ -- used in front end layout mode for size/offset values), since
+ -- in such functions only discriminants are referenced, and not
+ -- only are such subtypes not needed, but they cannot always
+ -- be generated, because of order of elaboration issues.
+
+ elsif Is_Record_Type (T)
+ and then Ekind (Formal) = E_In_Parameter
+ and then Chars (Formal) /= Name_uInit
+ and then not Is_Discrim_SO_Function (Subp)
+ then
+ AS_Needed := True;
+
+ -- All other cases do not need an actual subtype
+
+ else
+ AS_Needed := False;
+ end if;
+
+ -- Generate actual subtypes for unconstrained arrays and
+ -- unconstrained discriminated records.
+
+ if AS_Needed then
+ Decl := Build_Actual_Subtype (T, Formal);
+
+ if Nkind (N) = N_Accept_Statement then
+ if Present (Handled_Statement_Sequence (N)) then
+ First_Stmt :=
+ First (Statements (Handled_Statement_Sequence (N)));
+ Prepend (Decl, Statements (Handled_Statement_Sequence (N)));
+ Mark_Rewrite_Insertion (Decl);
+ else
+ -- If the accept statement has no body, there will be
+ -- no reference to the actuals, so no need to compute
+ -- actual subtypes.
+
+ return;
+ end if;
+
+ else
+ Prepend (Decl, Declarations (N));
+ Mark_Rewrite_Insertion (Decl);
+ end if;
+
+ Analyze (Decl);
+
+ -- We need to freeze manually the generated type when it is
+ -- inserted anywhere else than in a declarative part.
+
+ if Present (First_Stmt) then
+ Insert_List_Before_And_Analyze (First_Stmt,
+ Freeze_Entity (Defining_Identifier (Decl), Loc));
+ end if;
+
+ Set_Actual_Subtype (Formal, Defining_Identifier (Decl));
+ end if;
+
+ Next_Formal (Formal);
+ end loop;
+ end Set_Actual_Subtypes;
+
+ ---------------------
+ -- Set_Formal_Mode --
+ ---------------------
+
+ procedure Set_Formal_Mode (Formal_Id : Entity_Id) is
+ Spec : constant Node_Id := Parent (Formal_Id);
+
+ begin
+ -- Note: we set Is_Known_Valid for IN parameters and IN OUT parameters
+ -- since we ensure that corresponding actuals are always valid at the
+ -- point of the call.
+
+ if Out_Present (Spec) then
+
+ if Ekind (Scope (Formal_Id)) = E_Function
+ or else Ekind (Scope (Formal_Id)) = E_Generic_Function
+ then
+ Error_Msg_N ("functions can only have IN parameters", Spec);
+ Set_Ekind (Formal_Id, E_In_Parameter);
+
+ elsif In_Present (Spec) then
+ Set_Ekind (Formal_Id, E_In_Out_Parameter);
+
+ else
+ Set_Ekind (Formal_Id, E_Out_Parameter);
+ Set_Not_Source_Assigned (Formal_Id);
+ end if;
+
+ else
+ Set_Ekind (Formal_Id, E_In_Parameter);
+ end if;
+
+ Set_Mechanism (Formal_Id, Default_Mechanism);
+ Set_Formal_Validity (Formal_Id);
+ end Set_Formal_Mode;
+
+ -------------------------
+ -- Set_Formal_Validity --
+ -------------------------
+
+ procedure Set_Formal_Validity (Formal_Id : Entity_Id) is
+ begin
+ -- If in full validity checking mode, then we can assume that
+ -- an IN or IN OUT parameter is valid (see Exp_Ch5.Expand_Call)
+
+ if not Validity_Checks_On then
+ return;
+
+ elsif Ekind (Formal_Id) = E_In_Parameter
+ and then Validity_Check_In_Params
+ then
+ Set_Is_Known_Valid (Formal_Id, True);
+
+ elsif Ekind (Formal_Id) = E_In_Out_Parameter
+ and then Validity_Check_In_Out_Params
+ then
+ Set_Is_Known_Valid (Formal_Id, True);
+ end if;
+ end Set_Formal_Validity;
+
+ ------------------------
+ -- Subtype_Conformant --
+ ------------------------
+
+ function Subtype_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
+ Result : Boolean;
+
+ begin
+ Check_Conformance (New_Id, Old_Id, Subtype_Conformant, False, Result);
+ return Result;
+ end Subtype_Conformant;
+
+ ---------------------
+ -- Type_Conformant --
+ ---------------------
+
+ function Type_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
+ Result : Boolean;
+
+ begin
+ Check_Conformance (New_Id, Old_Id, Type_Conformant, False, Result);
+ return Result;
+ end Type_Conformant;
+
+ -------------------------------
+ -- Valid_Operator_Definition --
+ -------------------------------
+
+ procedure Valid_Operator_Definition (Designator : Entity_Id) is
+ N : Integer := 0;
+ F : Entity_Id;
+ Id : constant Name_Id := Chars (Designator);
+ N_OK : Boolean;
+
+ begin
+ F := First_Formal (Designator);
+
+ while Present (F) loop
+ N := N + 1;
+
+ if Present (Default_Value (F)) then
+ Error_Msg_N
+ ("default values not allowed for operator parameters",
+ Parent (F));
+ end if;
+
+ Next_Formal (F);
+ end loop;
+
+ -- Verify that user-defined operators have proper number of arguments
+ -- First case of operators which can only be unary
+
+ if Id = Name_Op_Not
+ or else Id = Name_Op_Abs
+ then
+ N_OK := (N = 1);
+
+ -- Case of operators which can be unary or binary
+
+ elsif Id = Name_Op_Add
+ or Id = Name_Op_Subtract
+ then
+ N_OK := (N in 1 .. 2);
+
+ -- All other operators can only be binary
+
+ else
+ N_OK := (N = 2);
+ end if;
+
+ if not N_OK then
+ Error_Msg_N
+ ("incorrect number of arguments for operator", Designator);
+ end if;
+
+ if Id = Name_Op_Ne
+ and then Base_Type (Etype (Designator)) = Standard_Boolean
+ and then not Is_Intrinsic_Subprogram (Designator)
+ then
+ Error_Msg_N
+ ("explicit definition of inequality not allowed", Designator);
+ end if;
+ end Valid_Operator_Definition;
+
+end Sem_Ch6;