summaryrefslogtreecommitdiff
path: root/gcc/gcc.info-6
diff options
context:
space:
mode:
Diffstat (limited to 'gcc/gcc.info-6')
-rw-r--r--gcc/gcc.info-6537
1 files changed, 0 insertions, 537 deletions
diff --git a/gcc/gcc.info-6 b/gcc/gcc.info-6
deleted file mode 100644
index e8e391957c8..00000000000
--- a/gcc/gcc.info-6
+++ /dev/null
@@ -1,537 +0,0 @@
-This is Info file gcc.info, produced by Makeinfo version 1.68 from the
-input file gcc.texi.
-
- This file documents the use and the internals of the GNU compiler.
-
- Published by the Free Software Foundation 59 Temple Place - Suite 330
-Boston, MA 02111-1307 USA
-
- Copyright (C) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997 Free
-Software Foundation, Inc.
-
- Permission is granted to make and distribute verbatim copies of this
-manual provided the copyright notice and this permission notice are
-preserved on all copies.
-
- Permission is granted to copy and distribute modified versions of
-this manual under the conditions for verbatim copying, provided also
-that the sections entitled "GNU General Public License," "Funding for
-Free Software," and "Protect Your Freedom--Fight `Look And Feel'" are
-included exactly as in the original, and provided that the entire
-resulting derived work is distributed under the terms of a permission
-notice identical to this one.
-
- Permission is granted to copy and distribute translations of this
-manual into another language, under the above conditions for modified
-versions, except that the sections entitled "GNU General Public
-License," "Funding for Free Software," and "Protect Your Freedom--Fight
-`Look And Feel'", and this permission notice, may be included in
-translations approved by the Free Software Foundation instead of in the
-original English.
-
-
-File: gcc.info, Node: Installation, Next: C Extensions, Prev: Invoking GCC, Up: Top
-
-Installing GNU CC
-*****************
-
-* Menu:
-
-* Configurations:: Configurations Supported by GNU CC.
-* Other Dir:: Compiling in a separate directory (not where the source is).
-* Cross-Compiler:: Building and installing a cross-compiler.
-* Sun Install:: See below for installation on the Sun.
-* VMS Install:: See below for installation on VMS.
-* Collect2:: How `collect2' works; how it finds `ld'.
-* Header Dirs:: Understanding the standard header file directories.
-
- Here is the procedure for installing GNU CC on a Unix system. See
-*Note VMS Install::, for VMS systems. In this section we assume you
-compile in the same directory that contains the source files; see *Note
-Other Dir::, to find out how to compile in a separate directory on Unix
-systems.
-
- You cannot install GNU C by itself on MSDOS; it will not compile
-under any MSDOS compiler except itself. You need to get the complete
-compilation package DJGPP, which includes binaries as well as sources,
-and includes all the necessary compilation tools and libraries.
-
- 1. If you have built GNU CC previously in the same directory for a
- different target machine, do `make distclean' to delete all files
- that might be invalid. One of the files this deletes is
- `Makefile'; if `make distclean' complains that `Makefile' does not
- exist, it probably means that the directory is already suitably
- clean.
-
- 2. On a System V release 4 system, make sure `/usr/bin' precedes
- `/usr/ucb' in `PATH'. The `cc' command in `/usr/ucb' uses
- libraries which have bugs.
-
- 3. Specify the host, build and target machine configurations. You do
- this by running the file `configure'.
-
- The "build" machine is the system which you are using, the "host"
- machine is the system where you want to run the resulting compiler
- (normally the build machine), and the "target" machine is the
- system for which you want the compiler to generate code.
-
- If you are building a compiler to produce code for the machine it
- runs on (a native compiler), you normally do not need to specify
- any operands to `configure'; it will try to guess the type of
- machine you are on and use that as the build, host and target
- machines. So you don't need to specify a configuration when
- building a native compiler unless `configure' cannot figure out
- what your configuration is or guesses wrong.
-
- In those cases, specify the build machine's "configuration name"
- with the `--build' option; the host and target will default to be
- the same as the build machine. (If you are building a
- cross-compiler, see *Note Cross-Compiler::.)
-
- Here is an example:
-
- ./configure --build=sparc-sun-sunos4.1
-
- A configuration name may be canonical or it may be more or less
- abbreviated.
-
- A canonical configuration name has three parts, separated by
- dashes. It looks like this: `CPU-COMPANY-SYSTEM'. (The three
- parts may themselves contain dashes; `configure' can figure out
- which dashes serve which purpose.) For example,
- `m68k-sun-sunos4.1' specifies a Sun 3.
-
- You can also replace parts of the configuration by nicknames or
- aliases. For example, `sun3' stands for `m68k-sun', so
- `sun3-sunos4.1' is another way to specify a Sun 3. You can also
- use simply `sun3-sunos', since the version of SunOS is assumed by
- default to be version 4.
-
- You can specify a version number after any of the system types,
- and some of the CPU types. In most cases, the version is
- irrelevant, and will be ignored. So you might as well specify the
- version if you know it.
-
- See *Note Configurations::, for a list of supported configuration
- names and notes on many of the configurations. You should check
- the notes in that section before proceeding any further with the
- installation of GNU CC.
-
- There are four additional options you can specify independently to
- describe variant hardware and software configurations. These are
- `--with-gnu-as', `--with-gnu-ld', `--with-stabs' and `--nfp'.
-
- `--with-gnu-as'
- If you will use GNU CC with the GNU assembler (GAS), you
- should declare this by using the `--with-gnu-as' option when
- you run `configure'.
-
- Using this option does not install GAS. It only modifies the
- output of GNU CC to work with GAS. Building and installing
- GAS is up to you.
-
- Conversely, if you *do not* wish to use GAS and do not specify
- `--with-gnu-as' when building GNU CC, it is up to you to make
- sure that GAS is not installed. GNU CC searches for a
- program named `as' in various directories; if the program it
- finds is GAS, then it runs GAS. If you are not sure where
- GNU CC finds the assembler it is using, try specifying `-v'
- when you run it.
-
- The systems where it makes a difference whether you use GAS
- are
- `hppa1.0-ANY-ANY', `hppa1.1-ANY-ANY', `i386-ANY-sysv',
- `i386-ANY-isc',
- `i860-ANY-bsd', `m68k-bull-sysv',
- `m68k-hp-hpux', `m68k-sony-bsd',
- `m68k-altos-sysv', `m68000-hp-hpux',
- `m68000-att-sysv', `ANY-lynx-lynxos', and `mips-ANY'). On
- any other system, `--with-gnu-as' has no effect.
-
- On the systems listed above (except for the HP-PA, for ISC on
- the 386, and for `mips-sgi-irix5.*'), if you use GAS, you
- should also use the GNU linker (and specify `--with-gnu-ld').
-
- `--with-gnu-ld'
- Specify the option `--with-gnu-ld' if you plan to use the GNU
- linker with GNU CC.
-
- This option does not cause the GNU linker to be installed; it
- just modifies the behavior of GNU CC to work with the GNU
- linker. Specifically, it inhibits the installation of
- `collect2', a program which otherwise serves as a front-end
- for the system's linker on most configurations.
-
- `--with-stabs'
- On MIPS based systems and on Alphas, you must specify whether
- you want GNU CC to create the normal ECOFF debugging format,
- or to use BSD-style stabs passed through the ECOFF symbol
- table. The normal ECOFF debug format cannot fully handle
- languages other than C. BSD stabs format can handle other
- languages, but it only works with the GNU debugger GDB.
-
- Normally, GNU CC uses the ECOFF debugging format by default;
- if you prefer BSD stabs, specify `--with-stabs' when you
- configure GNU CC.
-
- No matter which default you choose when you configure GNU CC,
- the user can use the `-gcoff' and `-gstabs+' options to
- specify explicitly the debug format for a particular
- compilation.
-
- `--with-stabs' is meaningful on the ISC system on the 386,
- also, if `--with-gas' is used. It selects use of stabs
- debugging information embedded in COFF output. This kind of
- debugging information supports C++ well; ordinary COFF
- debugging information does not.
-
- `--with-stabs' is also meaningful on 386 systems running
- SVR4. It selects use of stabs debugging information embedded
- in ELF output. The C++ compiler currently (2.6.0) does not
- support the DWARF debugging information normally used on 386
- SVR4 platforms; stabs provide a workable alternative. This
- requires gas and gdb, as the normal SVR4 tools can not
- generate or interpret stabs.
-
- `--nfp'
- On certain systems, you must specify whether the machine has
- a floating point unit. These systems include
- `m68k-sun-sunosN' and `m68k-isi-bsd'. On any other system,
- `--nfp' currently has no effect, though perhaps there are
- other systems where it could usefully make a difference.
-
- `--enable-objcthreads=TYPE'
- Certain systems, notably Linux-based GNU systems, can't be
- relied on to supply a threads facility for the Objective C
- runtime and so will default to single-threaded runtime. They
- may, however, have a library threads implementation
- available, in which case threads can be enabled with this
- option by supplying a suitable TYPE, probably `posix'. The
- possibilities for TYPE are `single', `posix', `win32',
- `solaris', `irix' and `mach'.
-
- The `configure' script searches subdirectories of the source
- directory for other compilers that are to be integrated into GNU
- CC. The GNU compiler for C++, called G++ is in a subdirectory
- named `cp'. `configure' inserts rules into `Makefile' to build
- all of those compilers.
-
- Here we spell out what files will be set up by `configure'.
- Normally you need not be concerned with these files.
-
- * A file named `config.h' is created that contains a `#include'
- of the top-level config file for the machine you will run the
- compiler on (*note Config::.). This file is responsible for
- defining information about the host machine. It includes
- `tm.h'.
-
- The top-level config file is located in the subdirectory
- `config'. Its name is always `xm-SOMETHING.h'; usually
- `xm-MACHINE.h', but there are some exceptions.
-
- If your system does not support symbolic links, you might
- want to set up `config.h' to contain a `#include' command
- which refers to the appropriate file.
-
- * A file named `tconfig.h' is created which includes the
- top-level config file for your target machine. This is used
- for compiling certain programs to run on that machine.
-
- * A file named `tm.h' is created which includes the
- machine-description macro file for your target machine. It
- should be in the subdirectory `config' and its name is often
- `MACHINE.h'.
-
- * The command file `configure' also constructs the file
- `Makefile' by adding some text to the template file
- `Makefile.in'. The additional text comes from files in the
- `config' directory, named `t-TARGET' and `x-HOST'. If these
- files do not exist, it means nothing needs to be added for a
- given target or host.
-
- 4. The standard directory for installing GNU CC is `/usr/local/lib'.
- If you want to install its files somewhere else, specify
- `--prefix=DIR' when you run `configure'. Here DIR is a directory
- name to use instead of `/usr/local' for all purposes with one
- exception: the directory `/usr/local/include' is searched for
- header files no matter where you install the compiler. To override
- this name, use the `--local-prefix' option below.
-
- 5. Specify `--local-prefix=DIR' if you want the compiler to search
- directory `DIR/include' for locally installed header files
- *instead* of `/usr/local/include'.
-
- You should specify `--local-prefix' *only* if your site has a
- different convention (not `/usr/local') for where to put
- site-specific files.
-
- The default value for `--local-prefix' is `/usr/local' regardless
- of the value of `--prefix'. Specifying `--prefix' has no effect
- on which directory GNU CC searches for local header files. This
- may seem counterintuitive, but actually it is logical.
-
- The purpose of `--prefix' is to specify where to *install GNU CC*.
- The local header files in `/usr/local/include'--if you put any in
- that directory--are not part of GNU CC. They are part of other
- programs--perhaps many others. (GNU CC installs its own header
- files in another directory which is based on the `--prefix' value.)
-
- *Do not* specify `/usr' as the `--local-prefix'! The directory
- you use for `--local-prefix' *must not* contain any of the
- system's standard header files. If it did contain them, certain
- programs would be miscompiled (including GNU Emacs, on certain
- targets), because this would override and nullify the header file
- corrections made by the `fixincludes' script.
-
- Indications are that people who use this option use it based on
- mistaken ideas of what it is for. People use it as if it specified
- where to install part of GNU CC. Perhaps they make this assumption
- because installing GNU CC creates the directory.
-
- 6. Make sure the Bison parser generator is installed. (This is
- unnecessary if the Bison output files `c-parse.c' and `cexp.c' are
- more recent than `c-parse.y' and `cexp.y' and you do not plan to
- change the `.y' files.)
-
- Bison versions older than Sept 8, 1988 will produce incorrect
- output for `c-parse.c'.
-
- 7. If you have chosen a configuration for GNU CC which requires other
- GNU tools (such as GAS or the GNU linker) instead of the standard
- system tools, install the required tools in the build directory
- under the names `as', `ld' or whatever is appropriate. This will
- enable the compiler to find the proper tools for compilation of
- the program `enquire'.
-
- Alternatively, you can do subsequent compilation using a value of
- the `PATH' environment variable such that the necessary GNU tools
- come before the standard system tools.
-
- 8. Build the compiler. Just type `make LANGUAGES=c' in the compiler
- directory.
-
- `LANGUAGES=c' specifies that only the C compiler should be
- compiled. The makefile normally builds compilers for all the
- supported languages; currently, C, C++ and Objective C. However,
- C is the only language that is sure to work when you build with
- other non-GNU C compilers. In addition, building anything but C
- at this stage is a waste of time.
-
- In general, you can specify the languages to build by typing the
- argument `LANGUAGES="LIST"', where LIST is one or more words from
- the list `c', `c++', and `objective-c'. If you have any
- additional GNU compilers as subdirectories of the GNU CC source
- directory, you may also specify their names in this list.
-
- Ignore any warnings you may see about "statement not reached" in
- `insn-emit.c'; they are normal. Also, warnings about "unknown
- escape sequence" are normal in `genopinit.c' and perhaps some
- other files. Likewise, you should ignore warnings about "constant
- is so large that it is unsigned" in `insn-emit.c' and
- `insn-recog.c' and a warning about a comparison always being zero
- in `enquire.o'. Any other compilation errors may represent bugs in
- the port to your machine or operating system, and should be
- investigated and reported (*note Bugs::.).
-
- Some commercial compilers fail to compile GNU CC because they have
- bugs or limitations. For example, the Microsoft compiler is said
- to run out of macro space. Some Ultrix compilers run out of
- expression space; then you need to break up the statement where
- the problem happens.
-
- 9. If you are building a cross-compiler, stop here. *Note
- Cross-Compiler::.
-
- 10. Move the first-stage object files and executables into a
- subdirectory with this command:
-
- make stage1
-
- The files are moved into a subdirectory named `stage1'. Once
- installation is complete, you may wish to delete these files with
- `rm -r stage1'.
-
- 11. If you have chosen a configuration for GNU CC which requires other
- GNU tools (such as GAS or the GNU linker) instead of the standard
- system tools, install the required tools in the `stage1'
- subdirectory under the names `as', `ld' or whatever is
- appropriate. This will enable the stage 1 compiler to find the
- proper tools in the following stage.
-
- Alternatively, you can do subsequent compilation using a value of
- the `PATH' environment variable such that the necessary GNU tools
- come before the standard system tools.
-
- 12. Recompile the compiler with itself, with this command:
-
- make CC="stage1/xgcc -Bstage1/" CFLAGS="-g -O2"
-
- This is called making the stage 2 compiler.
-
- The command shown above builds compilers for all the supported
- languages. If you don't want them all, you can specify the
- languages to build by typing the argument `LANGUAGES="LIST"'. LIST
- should contain one or more words from the list `c', `c++',
- `objective-c', and `proto'. Separate the words with spaces.
- `proto' stands for the programs `protoize' and `unprotoize'; they
- are not a separate language, but you use `LANGUAGES' to enable or
- disable their installation.
-
- If you are going to build the stage 3 compiler, then you might
- want to build only the C language in stage 2.
-
- Once you have built the stage 2 compiler, if you are short of disk
- space, you can delete the subdirectory `stage1'.
-
- On a 68000 or 68020 system lacking floating point hardware, unless
- you have selected a `tm.h' file that expects by default that there
- is no such hardware, do this instead:
-
- make CC="stage1/xgcc -Bstage1/" CFLAGS="-g -O2 -msoft-float"
-
- 13. If you wish to test the compiler by compiling it with itself one
- more time, install any other necessary GNU tools (such as GAS or
- the GNU linker) in the `stage2' subdirectory as you did in the
- `stage1' subdirectory, then do this:
-
- make stage2
- make CC="stage2/xgcc -Bstage2/" CFLAGS="-g -O2"
-
- This is called making the stage 3 compiler. Aside from the `-B'
- option, the compiler options should be the same as when you made
- the stage 2 compiler. But the `LANGUAGES' option need not be the
- same. The command shown above builds compilers for all the
- supported languages; if you don't want them all, you can specify
- the languages to build by typing the argument `LANGUAGES="LIST"',
- as described above.
-
- If you do not have to install any additional GNU tools, you may
- use the command
-
- make bootstrap LANGUAGES=LANGUAGE-LIST BOOT_CFLAGS=OPTION-LIST
-
- instead of making `stage1', `stage2', and performing the two
- compiler builds.
-
- 14. Then compare the latest object files with the stage 2 object
- files--they ought to be identical, aside from time stamps (if any).
-
- On some systems, meaningful comparison of object files is
- impossible; they always appear "different." This is currently
- true on Solaris and some systems that use ELF object file format.
- On some versions of Irix on SGI machines and DEC Unix (OSF/1) on
- Alpha systems, you will not be able to compare the files without
- specifying `-save-temps'; see the description of individual
- systems above to see if you get comparison failures. You may have
- similar problems on other systems.
-
- Use this command to compare the files:
-
- make compare
-
- This will mention any object files that differ between stage 2 and
- stage 3. Any difference, no matter how innocuous, indicates that
- the stage 2 compiler has compiled GNU CC incorrectly, and is
- therefore a potentially serious bug which you should investigate
- and report (*note Bugs::.).
-
- If your system does not put time stamps in the object files, then
- this is a faster way to compare them (using the Bourne shell):
-
- for file in *.o; do
- cmp $file stage2/$file
- done
-
- If you have built the compiler with the `-mno-mips-tfile' option on
- MIPS machines, you will not be able to compare the files.
-
- 15. Install the compiler driver, the compiler's passes and run-time
- support with `make install'. Use the same value for `CC',
- `CFLAGS' and `LANGUAGES' that you used when compiling the files
- that are being installed. One reason this is necessary is that
- some versions of Make have bugs and recompile files gratuitously
- when you do this step. If you use the same variable values, those
- files will be recompiled properly.
-
- For example, if you have built the stage 2 compiler, you can use
- the following command:
-
- make install CC="stage2/xgcc -Bstage2/" CFLAGS="-g -O" LANGUAGES="LIST"
-
- This copies the files `cc1', `cpp' and `libgcc.a' to files `cc1',
- `cpp' and `libgcc.a' in the directory
- `/usr/local/lib/gcc-lib/TARGET/VERSION', which is where the
- compiler driver program looks for them. Here TARGET is the target
- machine type specified when you ran `configure', and VERSION is
- the version number of GNU CC. This naming scheme permits various
- versions and/or cross-compilers to coexist. It also copies the
- executables for compilers for other languages (e.g., `cc1plus' for
- C++) to the same directory.
-
- This also copies the driver program `xgcc' into
- `/usr/local/bin/gcc', so that it appears in typical execution
- search paths. It also copies `gcc.1' into `/usr/local/man/man1'
- and info pages into `/usr/local/info'.
-
- On some systems, this command causes recompilation of some files.
- This is usually due to bugs in `make'. You should either ignore
- this problem, or use GNU Make.
-
- *Warning: there is a bug in `alloca' in the Sun library. To avoid
- this bug, be sure to install the executables of GNU CC that were
- compiled by GNU CC. (That is, the executables from stage 2 or 3,
- not stage 1.) They use `alloca' as a built-in function and never
- the one in the library.*
-
- (It is usually better to install GNU CC executables from stage 2
- or 3, since they usually run faster than the ones compiled with
- some other compiler.)
-
- 16. If you're going to use C++, it's likely that you need to also
- install the libg++ distribution. It should be available from the
- same place where you got the GNU C distribution. Just as GNU C
- does not distribute a C runtime library, it also does not include
- a C++ run-time library. All I/O functionality, special class
- libraries, etc., are available in the libg++ distribution.
-
- 17. GNU CC includes a runtime library for Objective-C because it is an
- integral part of the language. You can find the files associated
- with the library in the subdirectory `objc'. The GNU Objective-C
- Runtime Library requires header files for the target's C library in
- order to be compiled,and also requires the header files for the
- target's thread library if you want thread support. *Note
- Cross-Compilers and Header Files: Cross Headers, for discussion
- about header files issues for cross-compilation.
-
- When you run `configure', it picks the appropriate Objective-C
- thread implementation file for the target platform. In some
- situations, you may wish to choose a different back-end as some
- platforms support multiple thread implementations or you may wish
- to disable thread support completely. You do this by specifying a
- value for the OBJC_THREAD_FILE makefile variable on the command
- line when you run make, for example:
-
- make CC="stage2/xgcc -Bstage2/" CFLAGS="-g -O2" OBJC_THREAD_FILE=thr-single
-
- Below is a list of the currently available back-ends.
-
- * thr-single Disable thread support, should work for all
- platforms.
-
- * thr-decosf1 DEC OSF/1 thread support.
-
- * thr-irix SGI IRIX thread support.
-
- * thr-mach Generic MACH thread support, known to work on
- NEXTSTEP.
-
- * thr-os2 IBM OS/2 thread support.
-
- * thr-posix Generix POSIX thread support.
-
- * thr-pthreads PCThreads on Linux-based GNU systems.
-
- * thr-solaris SUN Solaris thread support.
-
- * thr-win32 Microsoft Win32 API thread support.
-