summaryrefslogtreecommitdiff
path: root/gcc/tree-into-ssa.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc/tree-into-ssa.c')
-rw-r--r--gcc/tree-into-ssa.c1179
1 files changed, 1179 insertions, 0 deletions
diff --git a/gcc/tree-into-ssa.c b/gcc/tree-into-ssa.c
new file mode 100644
index 00000000000..90f4aa58d8d
--- /dev/null
+++ b/gcc/tree-into-ssa.c
@@ -0,0 +1,1179 @@
+/* Rewrite a program in Normal form into SSA.
+ Copyright (C) 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
+ Contributed by Diego Novillo <dnovillo@redhat.com>
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GCC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING. If not, write to
+the Free Software Foundation, 59 Temple Place - Suite 330,
+Boston, MA 02111-1307, USA. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "tree.h"
+#include "flags.h"
+#include "rtl.h"
+#include "tm_p.h"
+#include "langhooks.h"
+#include "hard-reg-set.h"
+#include "basic-block.h"
+#include "output.h"
+#include "errors.h"
+#include "expr.h"
+#include "function.h"
+#include "diagnostic.h"
+#include "bitmap.h"
+#include "tree-flow.h"
+#include "tree-simple.h"
+#include "tree-inline.h"
+#include "varray.h"
+#include "timevar.h"
+#include "tree-alias-common.h"
+#include "hashtab.h"
+#include "tree-dump.h"
+#include "tree-pass.h"
+#include "cfgloop.h"
+#include "domwalk.h"
+
+/* This file builds the SSA form for a function as described in:
+ R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck. Efficiently
+ Computing Static Single Assignment Form and the Control Dependence
+ Graph. ACM Transactions on Programming Languages and Systems,
+ 13(4):451-490, October 1991. */
+
+
+/* Structure to map a variable VAR to the set of blocks that contain
+ definitions for VAR. */
+struct def_blocks_d
+{
+ /* The variable. */
+ tree var;
+
+ /* Blocks that contain definitions of VAR. Bit I will be set if the
+ Ith block contains a definition of VAR. */
+ bitmap def_blocks;
+
+ /* Blocks where VAR is live-on-entry. Similar semantics as
+ DEF_BLOCKS. */
+ bitmap livein_blocks;
+};
+
+/* Each entry in DEF_BLOCKS contains an element of type STRUCT
+ DEF_BLOCKS_D, mapping a variable VAR to a bitmap describing all the
+ basic blocks where VAR is defined (assigned a new value). It also
+ contains a bitmap of all the blocks where VAR is live-on-entry
+ (i.e., there is a use of VAR in block B without a preceding
+ definition in B). The live-on-entry information is used when
+ computing PHI pruning heuristics. */
+static htab_t def_blocks;
+
+/* Global data to attach to the main dominator walk structure. */
+struct mark_def_sites_global_data
+{
+ /* This sbitmap contains the variables which are set before they
+ are used in a basic block. We keep it as a global variable
+ solely to avoid the overhead of allocating and deallocating
+ the bitmap. */
+ sbitmap kills;
+};
+
+struct rewrite_block_data
+{
+ varray_type block_defs;
+};
+
+
+/* Local functions. */
+static void rewrite_finalize_block (struct dom_walk_data *, basic_block);
+static void rewrite_initialize_block_local_data (struct dom_walk_data *,
+ basic_block, bool);
+static void rewrite_initialize_block (struct dom_walk_data *, basic_block);
+static void rewrite_add_phi_arguments (struct dom_walk_data *, basic_block);
+static void mark_def_sites (struct dom_walk_data *walk_data,
+ basic_block bb, block_stmt_iterator);
+static void mark_def_sites_initialize_block (struct dom_walk_data *walk_data,
+ basic_block bb);
+static void compute_global_livein (bitmap, bitmap);
+static void set_def_block (tree, basic_block);
+static void set_livein_block (tree, basic_block);
+static bool prepare_operand_for_rename (tree *op_p, size_t *uid_p);
+static void insert_phi_nodes (bitmap *);
+static void rewrite_stmt (struct dom_walk_data *, basic_block,
+ block_stmt_iterator);
+static inline void rewrite_operand (tree *);
+static void insert_phi_nodes_for (tree, bitmap *, varray_type *);
+static tree get_reaching_def (tree);
+static hashval_t def_blocks_hash (const void *);
+static int def_blocks_eq (const void *, const void *);
+static void def_blocks_free (void *);
+static int debug_def_blocks_r (void **, void *);
+static inline struct def_blocks_d *get_def_blocks_for (tree);
+static inline struct def_blocks_d *find_def_blocks_for (tree);
+static void htab_statistics (FILE *, htab_t);
+
+/* Compute global livein information given the set of blockx where
+ an object is locally live at the start of the block (LIVEIN)
+ and the set of blocks where the object is defined (DEF_BLOCKS).
+
+ Note: This routine augments the existing local livein information
+ to include global livein (i.e., it modifies the underlying bitmap
+ for LIVEIN). */
+
+static void
+compute_global_livein (bitmap livein, bitmap def_blocks)
+{
+ basic_block bb, *worklist, *tos;
+
+ tos = worklist
+ = (basic_block *) xmalloc (sizeof (basic_block) * (last_basic_block + 1));
+
+ /* Initialize the worklist. */
+ FOR_EACH_BB (bb)
+ {
+ if (bitmap_bit_p (livein, bb->index))
+ *tos++ = bb;
+ }
+
+ /* Iterate until the worklist is empty. */
+ while (tos != worklist)
+ {
+ edge e;
+
+ /* Pull a block off the worklist. */
+ bb = *--tos;
+
+ /* For each predecessor block. */
+ for (e = bb->pred; e; e = e->pred_next)
+ {
+ basic_block pred = e->src;
+ int pred_index = pred->index;
+
+ /* None of this is necessary for the entry block. */
+ if (pred != ENTRY_BLOCK_PTR
+ && ! bitmap_bit_p (livein, pred_index)
+ && ! bitmap_bit_p (def_blocks, pred_index))
+ {
+ *tos++ = pred;
+ bitmap_set_bit (livein, pred_index);
+ }
+ }
+ }
+
+ free (worklist);
+}
+
+
+/* Block initialization routine for mark_def_sites. Clear the
+ KILLS bitmap at the start of each block. */
+
+static void
+mark_def_sites_initialize_block (struct dom_walk_data *walk_data,
+ basic_block bb ATTRIBUTE_UNUSED)
+{
+ struct mark_def_sites_global_data *gd = walk_data->global_data;
+ sbitmap kills = gd->kills;
+
+ sbitmap_zero (kills);
+}
+
+
+/* Call back for walk_dominator_tree used to collect definition sites
+ for every variable in the function. For every statement S in block
+ BB:
+
+ 1- Variables defined by S in DEF_OPS(S) are marked in the bitmap
+ WALK_DATA->GLOBAL_DATA->KILLS.
+
+ 2- If S uses a variable VAR and there is no preceding kill of VAR,
+ then it is marked in marked in the LIVEIN_BLOCKS bitmap
+ associated with VAR.
+
+ This information is used to determine which variables are live
+ across block boundaries to reduce the number of PHI nodes
+ we create. */
+
+static void
+mark_def_sites (struct dom_walk_data *walk_data,
+ basic_block bb,
+ block_stmt_iterator bsi)
+{
+ struct mark_def_sites_global_data *gd = walk_data->global_data;
+ sbitmap kills = gd->kills;
+ vdef_optype vdefs;
+ vuse_optype vuses;
+ def_optype defs;
+ use_optype uses;
+ size_t i, uid;
+ tree stmt;
+ stmt_ann_t ann;
+
+ /* Mark all the blocks that have definitions for each variable in the
+ VARS_TO_RENAME bitmap. */
+ stmt = bsi_stmt (bsi);
+ get_stmt_operands (stmt);
+ ann = stmt_ann (stmt);
+
+ /* If a variable is used before being set, then the variable is live
+ across a block boundary, so mark it live-on-entry to BB. */
+ uses = USE_OPS (ann);
+ for (i = 0; i < NUM_USES (uses); i++)
+ {
+ tree *use_p = USE_OP_PTR (uses, i);
+
+ if (prepare_operand_for_rename (use_p, &uid)
+ && !TEST_BIT (kills, uid))
+ set_livein_block (*use_p, bb);
+ }
+
+ /* Similarly for virtual uses. */
+ vuses = VUSE_OPS (ann);
+ for (i = 0; i < NUM_VUSES (vuses); i++)
+ {
+ tree *use_p = VUSE_OP_PTR (vuses, i);
+
+ if (prepare_operand_for_rename (use_p, &uid)
+ && !TEST_BIT (kills, uid))
+ set_livein_block (*use_p, bb);
+ }
+
+ /* Note that virtual definitions are irrelevant for computing KILLS
+ because a VDEF does not constitute a killing definition of the
+ variable. However, the operand of a virtual definitions is a use
+ of the variable, so it may cause the variable to be considered
+ live-on-entry. */
+ vdefs = VDEF_OPS (ann);
+ for (i = 0; i < NUM_VDEFS (vdefs); i++)
+ {
+ size_t dummy;
+
+ if (prepare_operand_for_rename (VDEF_OP_PTR (vdefs, i), &uid)
+ && prepare_operand_for_rename (VDEF_RESULT_PTR (vdefs, i), &dummy))
+ {
+ VDEF_RESULT (vdefs, i) = VDEF_OP (vdefs, i);
+
+ if (!TEST_BIT (kills, uid))
+ set_livein_block (VDEF_OP (vdefs, i), bb);
+ set_def_block (VDEF_RESULT (vdefs, i), bb);
+ }
+ }
+
+ /* Now process the definition made by this statement. Mark the
+ variables in KILLS. */
+ defs = DEF_OPS (ann);
+ for (i = 0; i < NUM_DEFS (defs); i++)
+ {
+ tree *def_p = DEF_OP_PTR (defs, i);
+
+ if (prepare_operand_for_rename (def_p, &uid))
+ {
+ set_def_block (*def_p, bb);
+ SET_BIT (kills, uid);
+ }
+ }
+}
+
+
+/* Mark block BB as the definition site for variable VAR. */
+
+static void
+set_def_block (tree var, basic_block bb)
+{
+ struct def_blocks_d *db_p;
+ enum need_phi_state state = var_ann (var)->need_phi_state;
+
+ db_p = get_def_blocks_for (var);
+
+ /* Set the bit corresponding to the block where VAR is defined. */
+ bitmap_set_bit (db_p->def_blocks, bb->index);
+
+ /* Keep track of whether or not we may need to insert phi nodes.
+
+ If we are in the UNKNOWN state, then this is the first definition
+ of VAR. Additionally, we have not seen any uses of VAR yet, so
+ we do not need a phi node for this variable at this time (i.e.,
+ transition to NEED_PHI_STATE_NO).
+
+ If we are in any other state, then we either have multiple definitions
+ of this variable occurring in different blocks or we saw a use of the
+ variable which was not dominated by the block containing the
+ definition(s). In this case we may need a PHI node, so enter
+ state NEED_PHI_STATE_MAYBE. */
+ if (state == NEED_PHI_STATE_UNKNOWN)
+ var_ann (var)->need_phi_state = NEED_PHI_STATE_NO;
+ else
+ var_ann (var)->need_phi_state = NEED_PHI_STATE_MAYBE;
+}
+
+
+/* Mark block BB as having VAR live at the entry to BB. */
+
+static void
+set_livein_block (tree var, basic_block bb)
+{
+ struct def_blocks_d *db_p;
+ enum need_phi_state state = var_ann (var)->need_phi_state;
+
+ db_p = get_def_blocks_for (var);
+
+ /* Set the bit corresponding to the block where VAR is live in. */
+ bitmap_set_bit (db_p->livein_blocks, bb->index);
+
+ /* Keep track of whether or not we may need to insert phi nodes.
+
+ If we reach here in NEED_PHI_STATE_NO, see if this use is dominated
+ by the single block containing the definition(s) of this variable. If
+ it is, then we remain in NEED_PHI_STATE_NO, otherwise we transition to
+ NEED_PHI_STATE_MAYBE. */
+ if (state == NEED_PHI_STATE_NO)
+ {
+ int def_block_index = bitmap_first_set_bit (db_p->def_blocks);
+
+ if (def_block_index == -1
+ || ! dominated_by_p (CDI_DOMINATORS, bb,
+ BASIC_BLOCK (def_block_index)))
+ var_ann (var)->need_phi_state = NEED_PHI_STATE_MAYBE;
+ }
+ else
+ var_ann (var)->need_phi_state = NEED_PHI_STATE_MAYBE;
+}
+
+
+/* If the operand pointed by OP_P needs to be renamed, strip away SSA_NAME
+ wrappers (if needed) and return true. The unique ID for the operand's
+ variable will be stored in *UID_P. */
+
+static bool
+prepare_operand_for_rename (tree *op_p, size_t *uid_p)
+{
+ tree var = (TREE_CODE (*op_p) != SSA_NAME) ? *op_p : SSA_NAME_VAR (*op_p);
+ *uid_p = var_ann (var)->uid;
+
+ /* Ignore variables that don't need to be renamed. */
+ if (vars_to_rename && !bitmap_bit_p (vars_to_rename, *uid_p))
+ return false;
+
+ /* The variable needs to be renamed. If it already had an
+ SSA_NAME, strip it off. This way, the SSA rename pass
+ doesn't need to deal with existing SSA names. */
+ if (TREE_CODE (*op_p) == SSA_NAME)
+ {
+ if (default_def (SSA_NAME_VAR (*op_p)) != *op_p)
+ release_ssa_name (*op_p);
+ *op_p = var;
+ }
+
+ return true;
+}
+
+
+/* Helper for insert_phi_nodes. If VAR needs PHI nodes, insert them
+ at the dominance frontier (DFS) of blocks defining VAR. */
+
+static inline
+void insert_phi_nodes_1 (tree var, bitmap *dfs, varray_type *work_stack)
+{
+ var_ann_t ann = var_ann (var);
+ if (ann->need_phi_state != NEED_PHI_STATE_NO)
+ insert_phi_nodes_for (var, dfs, work_stack);
+}
+
+
+/* Insert PHI nodes at the dominance frontier of blocks with variable
+ definitions. DFS contains the dominance frontier information for
+ the flowgraph. PHI nodes will only be inserted at the dominance
+ frontier of definition blocks for variables whose NEED_PHI_STATE
+ annotation is marked as ``maybe'' or ``unknown'' (computed by
+ mark_def_sites). */
+
+static void
+insert_phi_nodes (bitmap *dfs)
+{
+ size_t i;
+ varray_type work_stack;
+
+ timevar_push (TV_TREE_INSERT_PHI_NODES);
+
+ /* Array WORK_STACK is a stack of CFG blocks. Each block that contains
+ an assignment or PHI node will be pushed to this stack. */
+ VARRAY_BB_INIT (work_stack, last_basic_block, "work_stack");
+
+ /* Iterate over all variables in VARS_TO_RENAME. For each variable, add
+ to the work list all the blocks that have a definition for the
+ variable. PHI nodes will be added to the dominance frontier blocks of
+ each definition block. */
+ if (vars_to_rename)
+ EXECUTE_IF_SET_IN_BITMAP (vars_to_rename, 0, i,
+ insert_phi_nodes_1 (referenced_var (i), dfs, &work_stack));
+ else
+ for (i = 0; i < num_referenced_vars; i++)
+ insert_phi_nodes_1 (referenced_var (i), dfs, &work_stack);
+
+ timevar_pop (TV_TREE_INSERT_PHI_NODES);
+}
+
+
+/* Perform a depth-first traversal of the dominator tree looking for
+ variables to rename. BB is the block where to start searching.
+ Renaming is a five step process:
+
+ 1- Every definition made by PHI nodes at the start of the blocks is
+ registered as the current definition for the corresponding variable.
+
+ 2- Every statement in BB is rewritten. USE and VUSE operands are
+ rewritten with their corresponding reaching definition. DEF and
+ VDEF targets are registered as new definitions.
+
+ 3- All the PHI nodes in successor blocks of BB are visited. The
+ argument corresponding to BB is replaced with its current reaching
+ definition.
+
+ 4- Recursively rewrite every dominator child block of BB.
+
+ 5- Restore (in reverse order) the current reaching definition for every
+ new definition introduced in this block. This is done so that when
+ we return from the recursive call, all the current reaching
+ definitions are restored to the names that were valid in the
+ dominator parent of BB. */
+
+/* Initialize the local stacks.
+
+ BLOCK_DEFS is used to save all the existing reaching definitions for
+ the new SSA names introduced in this block. Before registering a
+ new definition for a variable, the existing reaching definition is
+ pushed into this stack so that we can restore it in Step 5. */
+
+static void
+rewrite_initialize_block_local_data (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
+ basic_block bb ATTRIBUTE_UNUSED,
+ bool recycled ATTRIBUTE_UNUSED)
+{
+#ifdef ENABLE_CHECKING
+ struct rewrite_block_data *bd
+ = (struct rewrite_block_data *)VARRAY_TOP_GENERIC_PTR (walk_data->block_data_stack);
+
+ /* We get cleared memory from the allocator, so if the memory is
+ not cleared, then we are re-using a previously allocated entry. In
+ that case, we can also re-use the underlying virtal arrays. Just
+ make sure we clear them before using them! */
+ if (recycled && bd->block_defs && VARRAY_ACTIVE_SIZE (bd->block_defs) > 0)
+ abort ();
+#endif
+}
+
+
+/* SSA Rewriting Step 1. Initialization, create a block local stack
+ of reaching definitions for new SSA names produced in this block
+ (BLOCK_DEFS). Register new definitions for every PHI node in the
+ block. */
+
+static void
+rewrite_initialize_block (struct dom_walk_data *walk_data, basic_block bb)
+{
+ tree phi;
+ struct rewrite_block_data *bd
+ = (struct rewrite_block_data *)VARRAY_TOP_GENERIC_PTR (walk_data->block_data_stack);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "\n\nRenaming block #%d\n\n", bb->index);
+
+ /* Step 1. Register new definitions for every PHI node in the block.
+ Conceptually, all the PHI nodes are executed in parallel and each PHI
+ node introduces a new version for the associated variable. */
+ for (phi = phi_nodes (bb); phi; phi = TREE_CHAIN (phi))
+ {
+ tree result = PHI_RESULT (phi);
+
+ register_new_def (result, &bd->block_defs);
+ }
+}
+
+
+/* SSA Rewriting Step 3. Visit all the successor blocks of BB looking for
+ PHI nodes. For every PHI node found, add a new argument containing the
+ current reaching definition for the variable and the edge through which
+ that definition is reaching the PHI node. */
+
+static void
+rewrite_add_phi_arguments (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
+ basic_block bb)
+{
+ edge e;
+
+ for (e = bb->succ; e; e = e->succ_next)
+ {
+ tree phi;
+
+ for (phi = phi_nodes (e->dest); phi; phi = TREE_CHAIN (phi))
+ {
+ tree currdef;
+
+ /* If this PHI node has already been rewritten, then there is
+ nothing to do for this PHI or any following PHIs since we
+ always add new PHI nodes at the start of the PHI chain. */
+ if (PHI_REWRITTEN (phi))
+ break;
+
+ currdef = get_reaching_def (SSA_NAME_VAR (PHI_RESULT (phi)));
+ add_phi_arg (&phi, currdef, e);
+ }
+ }
+}
+
+/* SSA Rewriting Step 5. Restore the current reaching definition for each
+ variable referenced in the block (in reverse order). */
+
+static void
+rewrite_finalize_block (struct dom_walk_data *walk_data,
+ basic_block bb ATTRIBUTE_UNUSED)
+{
+ struct rewrite_block_data *bd
+ = (struct rewrite_block_data *)VARRAY_TOP_GENERIC_PTR (walk_data->block_data_stack);
+
+ /* Step 5. Restore the current reaching definition for each variable
+ referenced in the block (in reverse order). */
+ while (bd->block_defs && VARRAY_ACTIVE_SIZE (bd->block_defs) > 0)
+ {
+ tree tmp = VARRAY_TOP_TREE (bd->block_defs);
+ tree saved_def, var;
+
+ VARRAY_POP (bd->block_defs);
+ if (TREE_CODE (tmp) == SSA_NAME)
+ {
+ saved_def = tmp;
+ var = SSA_NAME_VAR (saved_def);
+ }
+ else
+ {
+ saved_def = NULL;
+ var = tmp;
+ }
+
+ var_ann (var)->current_def = saved_def;
+ }
+}
+
+
+/* Dump SSA information to FILE. */
+
+void
+dump_tree_ssa (FILE *file)
+{
+ basic_block bb;
+ const char *funcname
+ = (*lang_hooks.decl_printable_name) (current_function_decl, 2);
+
+ fprintf (file, "SSA information for %s\n\n", funcname);
+
+ FOR_EACH_BB (bb)
+ {
+ dump_bb (bb, file, 0);
+ fputs (" ", file);
+ print_generic_stmt (file, phi_nodes (bb), dump_flags);
+ fputs ("\n\n", file);
+ }
+}
+
+
+/* Dump SSA information to stderr. */
+
+void
+debug_tree_ssa (void)
+{
+ dump_tree_ssa (stderr);
+}
+
+
+/* Dump SSA statistics on FILE. */
+
+void
+dump_tree_ssa_stats (FILE *file)
+{
+ fprintf (file, "\nHash table statistics:\n");
+
+ fprintf (file, " def_blocks: ");
+ htab_statistics (file, def_blocks);
+
+ fprintf (file, "\n");
+}
+
+
+/* Dump SSA statistics on stderr. */
+
+void
+debug_tree_ssa_stats (void)
+{
+ dump_tree_ssa_stats (stderr);
+}
+
+
+/* Dump statistics for the hash table HTAB. */
+
+static void
+htab_statistics (FILE *file, htab_t htab)
+{
+ fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
+ (long) htab_size (htab),
+ (long) htab_elements (htab),
+ htab_collisions (htab));
+}
+
+
+/* Insert PHI nodes for variable VAR using the dominance frontier
+ information given in DFS. */
+
+static void
+insert_phi_nodes_for (tree var, bitmap *dfs, varray_type *work_stack)
+{
+ struct def_blocks_d *def_map;
+ bitmap phi_insertion_points;
+ int bb_index;
+
+ def_map = find_def_blocks_for (var);
+ if (def_map == NULL)
+ return;
+
+ phi_insertion_points = BITMAP_XMALLOC ();
+
+ EXECUTE_IF_SET_IN_BITMAP (def_map->def_blocks, 0, bb_index,
+ {
+ VARRAY_PUSH_BB (*work_stack, BASIC_BLOCK (bb_index));
+ });
+
+ /* Pop a block off the worklist, add every block that appears in
+ the original block's dfs that we have not already processed to
+ the worklist. Iterate until the worklist is empty. Blocks
+ which are added to the worklist are potential sites for
+ PHI nodes.
+
+ The iteration step could be done during PHI insertion just as
+ easily. We do it here for historical reasons -- we used to have
+ a heuristic which used the potential PHI insertion points to
+ determine if fully pruned or semi pruned SSA form was appropriate.
+
+ We now always use fully pruned SSA form. */
+ while (VARRAY_ACTIVE_SIZE (*work_stack) > 0)
+ {
+ basic_block bb = VARRAY_TOP_BB (*work_stack);
+ int bb_index = bb->index;
+ int dfs_index;
+
+ VARRAY_POP (*work_stack);
+
+ EXECUTE_IF_AND_COMPL_IN_BITMAP (dfs[bb_index],
+ phi_insertion_points,
+ 0, dfs_index,
+ {
+ basic_block bb = BASIC_BLOCK (dfs_index);
+
+ VARRAY_PUSH_BB (*work_stack, bb);
+ bitmap_set_bit (phi_insertion_points, dfs_index);
+ });
+ }
+
+ /* Now compute global livein for this variable. Note this modifies
+ def_map->livein_blocks. */
+ compute_global_livein (def_map->livein_blocks, def_map->def_blocks);
+
+ /* And insert the PHI nodes. */
+ EXECUTE_IF_AND_IN_BITMAP (phi_insertion_points, def_map->livein_blocks,
+ 0, bb_index,
+ {
+ create_phi_node (var, BASIC_BLOCK (bb_index));
+ });
+
+ BITMAP_FREE (phi_insertion_points);
+}
+
+/* SSA Rewriting Step 2. Rewrite every variable used in each statement in
+ the block with its immediate reaching definitions. Update the current
+ definition of a variable when a new real or virtual definition is found. */
+
+static void
+rewrite_stmt (struct dom_walk_data *walk_data,
+ basic_block bb ATTRIBUTE_UNUSED,
+ block_stmt_iterator si)
+{
+ size_t i;
+ stmt_ann_t ann;
+ tree stmt;
+ vuse_optype vuses;
+ vdef_optype vdefs;
+ def_optype defs;
+ use_optype uses;
+ struct rewrite_block_data *bd;
+
+ bd = VARRAY_TOP_GENERIC_PTR (walk_data->block_data_stack);
+
+ stmt = bsi_stmt (si);
+ ann = stmt_ann (stmt);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Renaming statement ");
+ print_generic_stmt (dump_file, stmt, TDF_SLIM);
+ fprintf (dump_file, "\n");
+ }
+
+#if defined ENABLE_CHECKING
+ /* We have just scanned the code for operands. No statement should
+ be modified. */
+ if (ann->modified)
+ abort ();
+#endif
+
+ defs = DEF_OPS (ann);
+ uses = USE_OPS (ann);
+ vuses = VUSE_OPS (ann);
+ vdefs = VDEF_OPS (ann);
+
+ /* Step 1. Rewrite USES and VUSES in the statement. */
+ for (i = 0; i < NUM_USES (uses); i++)
+ rewrite_operand (USE_OP_PTR (uses, i));
+
+ /* Rewrite virtual uses in the statement. */
+ for (i = 0; i < NUM_VUSES (vuses); i++)
+ rewrite_operand (VUSE_OP_PTR (vuses, i));
+
+ /* Step 2. Register the statement's DEF and VDEF operands. */
+ for (i = 0; i < NUM_DEFS (defs); i++)
+ {
+ tree *def_p = DEF_OP_PTR (defs, i);
+
+ if (TREE_CODE (*def_p) != SSA_NAME)
+ *def_p = make_ssa_name (*def_p, stmt);
+
+ /* FIXME: We shouldn't be registering new defs if the variable
+ doesn't need to be renamed. */
+ register_new_def (*def_p, &bd->block_defs);
+ }
+
+ /* Register new virtual definitions made by the statement. */
+ for (i = 0; i < NUM_VDEFS (vdefs); i++)
+ {
+ rewrite_operand (VDEF_OP_PTR (vdefs, i));
+
+ if (TREE_CODE (VDEF_RESULT (vdefs, i)) != SSA_NAME)
+ *VDEF_RESULT_PTR (vdefs, i)
+ = make_ssa_name (VDEF_RESULT (vdefs, i), stmt);
+
+ /* FIXME: We shouldn't be registering new defs if the variable
+ doesn't need to be renamed. */
+ register_new_def (VDEF_RESULT (vdefs, i), &bd->block_defs);
+ }
+}
+
+
+/* Replace the operand pointed by OP_P with its immediate reaching
+ definition. */
+
+static inline void
+rewrite_operand (tree *op_p)
+{
+ if (TREE_CODE (*op_p) != SSA_NAME)
+ *op_p = get_reaching_def (*op_p);
+}
+
+
+/* Register DEF (an SSA_NAME) to be a new definition for its underlying
+ variable (SSA_NAME_VAR (DEF)) and push VAR's current reaching definition
+ into the stack pointed by BLOCK_DEFS_P. */
+
+void
+register_new_def (tree def, varray_type *block_defs_p)
+{
+ tree var = SSA_NAME_VAR (def);
+ tree currdef;
+
+ /* If this variable is set in a single basic block and all uses are
+ dominated by the set(s) in that single basic block, then there is
+ no reason to record anything for this variable in the block local
+ definition stacks. Doing so just wastes time and memory.
+
+ This is the same test to prune the set of variables which may
+ need PHI nodes. So we just use that information since it's already
+ computed and available for us to use. */
+ if (var_ann (var)->need_phi_state == NEED_PHI_STATE_NO)
+ {
+ var_ann (var)->current_def = def;
+ return;
+ }
+
+ currdef = var_ann (var)->current_def;
+ if (! *block_defs_p)
+ VARRAY_TREE_INIT (*block_defs_p, 20, "block_defs");
+
+ /* Push the current reaching definition into *BLOCK_DEFS_P. This stack is
+ later used by the dominator tree callbacks to restore the reaching
+ definitions for all the variables defined in the block after a recursive
+ visit to all its immediately dominated blocks. If there is no current
+ reaching definition, then just record the underlying _DECL node. */
+ VARRAY_PUSH_TREE (*block_defs_p, currdef ? currdef : var);
+
+ /* Set the current reaching definition for VAR to be DEF. */
+ var_ann (var)->current_def = def;
+}
+
+
+/* Return the current definition for variable VAR. If none is found,
+ create a new SSA name to act as the zeroth definition for VAR. If VAR
+ is call clobbered and there exists a more recent definition of
+ GLOBAL_VAR, return the definition for GLOBAL_VAR. This means that VAR
+ has been clobbered by a function call since its last assignment. */
+
+static tree
+get_reaching_def (tree var)
+{
+ tree default_d, currdef_var;
+
+ /* Lookup the current reaching definition for VAR. */
+ default_d = NULL_TREE;
+ currdef_var = var_ann (var)->current_def;
+
+ /* If there is no reaching definition for VAR, create and register a
+ default definition for it (if needed). */
+ if (currdef_var == NULL_TREE)
+ {
+ default_d = default_def (var);
+ if (default_d == NULL_TREE)
+ {
+ default_d = make_ssa_name (var, build_empty_stmt ());
+ set_default_def (var, default_d);
+ }
+ var_ann (var)->current_def = default_d;
+ }
+
+ /* Return the current reaching definition for VAR, or the default
+ definition, if we had to create one. */
+ return (currdef_var) ? currdef_var : default_d;
+}
+
+
+/* Hashing and equality functions for DEF_BLOCKS. */
+
+static hashval_t
+def_blocks_hash (const void *p)
+{
+ return htab_hash_pointer
+ ((const void *)((const struct def_blocks_d *)p)->var);
+}
+
+static int
+def_blocks_eq (const void *p1, const void *p2)
+{
+ return ((const struct def_blocks_d *)p1)->var
+ == ((const struct def_blocks_d *)p2)->var;
+}
+
+/* Free memory allocated by one entry in DEF_BLOCKS. */
+
+static void
+def_blocks_free (void *p)
+{
+ struct def_blocks_d *entry = p;
+ BITMAP_FREE (entry->def_blocks);
+ BITMAP_FREE (entry->livein_blocks);
+ free (entry);
+}
+
+
+/* Dump the DEF_BLOCKS hash table on stderr. */
+
+void
+debug_def_blocks (void)
+{
+ htab_traverse (def_blocks, debug_def_blocks_r, NULL);
+}
+
+/* Callback for htab_traverse to dump the DEF_BLOCKS hash table. */
+
+static int
+debug_def_blocks_r (void **slot, void *data ATTRIBUTE_UNUSED)
+{
+ unsigned long i;
+ struct def_blocks_d *db_p = (struct def_blocks_d *) *slot;
+
+ fprintf (stderr, "VAR: ");
+ print_generic_expr (stderr, db_p->var, dump_flags);
+ fprintf (stderr, ", DEF_BLOCKS: { ");
+ EXECUTE_IF_SET_IN_BITMAP (db_p->def_blocks, 0, i,
+ fprintf (stderr, "%ld ", i));
+ fprintf (stderr, "}");
+ fprintf (stderr, ", LIVEIN_BLOCKS: { ");
+ EXECUTE_IF_SET_IN_BITMAP (db_p->livein_blocks, 0, i,
+ fprintf (stderr, "%ld ", i));
+ fprintf (stderr, "}\n");
+
+ return 1;
+}
+
+
+/* Return the set of blocks where variable VAR is defined and the blocks
+ where VAR is live on entry (livein). Return NULL, if no entry is
+ found in DEF_BLOCKS. */
+
+static inline struct def_blocks_d *
+find_def_blocks_for (tree var)
+{
+ struct def_blocks_d dm;
+ dm.var = var;
+ return (struct def_blocks_d *) htab_find (def_blocks, &dm);
+}
+
+
+/* Return the set of blocks where variable VAR is defined and the blocks
+ where VAR is live on entry (livein). If no entry is found in
+ DEF_BLOCKS, a new one is created and returned. */
+
+static inline struct def_blocks_d *
+get_def_blocks_for (tree var)
+{
+ struct def_blocks_d db, *db_p;
+ void **slot;
+
+ db.var = var;
+ slot = htab_find_slot (def_blocks, (void *) &db, INSERT);
+ if (*slot == NULL)
+ {
+ db_p = xmalloc (sizeof (*db_p));
+ db_p->var = var;
+ db_p->def_blocks = BITMAP_XMALLOC ();
+ db_p->livein_blocks = BITMAP_XMALLOC ();
+ *slot = (void *) db_p;
+ }
+ else
+ db_p = (struct def_blocks_d *) *slot;
+
+ return db_p;
+}
+
+/* If a variable V in VARS_TO_RENAME is a pointer, the renaming
+ process will cause us to lose the name memory tags that may have
+ been associated with the various SSA_NAMEs of V. This means that
+ the variables aliased to those name tags also need to be renamed
+ again.
+
+ FIXME 1- We should either have a better scheme for renaming
+ pointers that doesn't lose name tags or re-run alias
+ analysis to recover points-to information.
+
+ 2- Currently we just invalidate *all* the name tags. This
+ should be more selective. */
+
+static void
+invalidate_name_tags (bitmap vars_to_rename)
+{
+ size_t i;
+ bool rename_name_tags_p;
+
+ rename_name_tags_p = false;
+ EXECUTE_IF_SET_IN_BITMAP (vars_to_rename, 0, i,
+ if (POINTER_TYPE_P (TREE_TYPE (referenced_var (i))))
+ {
+ rename_name_tags_p = true;
+ break;
+ });
+
+ if (rename_name_tags_p)
+ for (i = 0; i < num_referenced_vars; i++)
+ {
+ var_ann_t ann = var_ann (referenced_var (i));
+
+ if (ann->mem_tag_kind == NAME_TAG)
+ {
+ size_t j;
+ varray_type may_aliases = ann->may_aliases;
+
+ bitmap_set_bit (vars_to_rename, ann->uid);
+ if (ann->may_aliases)
+ for (j = 0; j < VARRAY_ACTIVE_SIZE (may_aliases); j++)
+ {
+ tree var = VARRAY_TREE (may_aliases, j);
+ bitmap_set_bit (vars_to_rename, var_ann (var)->uid);
+ }
+ }
+ }
+}
+
+
+/* Main entry point into the SSA builder. The renaming process
+ proceeds in five main phases:
+
+ 1- If VARS_TO_RENAME has any entries, any existing PHI nodes for
+ those variables are removed from the flow graph so that they can
+ be computed again.
+
+ 2- Compute dominance frontier and immediate dominators, needed to
+ insert PHI nodes and rename the function in dominator tree
+ order.
+
+ 3- Find and mark all the blocks that define variables
+ (mark_def_sites).
+
+ 4- Insert PHI nodes at dominance frontiers (insert_phi_nodes).
+
+ 5- Rename all the blocks (rewrite_initialize_block,
+ rewrite_add_phi_arguments) and statements in the program
+ (rewrite_stmt).
+
+ Steps 3 and 5 are done using the dominator tree walker
+ (walk_dominator_tree). */
+
+void
+rewrite_into_ssa (void)
+{
+ bitmap *dfs;
+ basic_block bb;
+ struct dom_walk_data walk_data;
+ struct mark_def_sites_global_data mark_def_sites_global_data;
+ unsigned int i;
+
+ timevar_push (TV_TREE_SSA_OTHER);
+
+ /* Initialize the array of variables to rename. */
+ if (vars_to_rename != NULL)
+ {
+ invalidate_name_tags (vars_to_rename);
+
+ /* Now remove all the existing PHI nodes (if any) for the variables
+ that we are about to rename into SSA. */
+ remove_all_phi_nodes_for (vars_to_rename);
+ }
+
+ /* Allocate memory for the DEF_BLOCKS hash table. */
+ def_blocks = htab_create (VARRAY_ACTIVE_SIZE (referenced_vars),
+ def_blocks_hash, def_blocks_eq, def_blocks_free);
+
+ /* Initialize dominance frontier and immediate dominator bitmaps.
+ Also count the number of predecessors for each block. Doing so
+ can save significant time during PHI insertion for large graphs. */
+ dfs = (bitmap *) xmalloc (last_basic_block * sizeof (bitmap *));
+ FOR_EACH_BB (bb)
+ {
+ edge e;
+ int count = 0;
+
+ for (e = bb->pred; e; e = e->pred_next)
+ count++;
+
+ bb_ann (bb)->num_preds = count;
+ dfs[bb->index] = BITMAP_XMALLOC ();
+ }
+
+ for (i = 0; i < num_referenced_vars; i++)
+ var_ann (referenced_var (i))->current_def = NULL;
+
+ /* Ensure that the dominance information is OK. */
+ calculate_dominance_info (CDI_DOMINATORS);
+
+ /* Compute dominance frontiers. */
+ compute_dominance_frontiers (dfs);
+
+ /* Setup callbacks for the generic dominator tree walker to find and
+ mark definition sites. */
+ walk_data.walk_stmts_backward = false;
+ walk_data.dom_direction = CDI_DOMINATORS;
+ walk_data.initialize_block_local_data = NULL;
+ walk_data.before_dom_children_before_stmts = mark_def_sites_initialize_block;
+ walk_data.before_dom_children_walk_stmts = mark_def_sites;
+ walk_data.before_dom_children_after_stmts = NULL;
+ walk_data.after_dom_children_before_stmts = NULL;
+ walk_data.after_dom_children_walk_stmts = NULL;
+ walk_data.after_dom_children_after_stmts = NULL;
+
+ /* Notice that this bitmap is indexed using variable UIDs, so it must be
+ large enough to accommodate all the variables referenced in the
+ function, not just the ones we are renaming. */
+ mark_def_sites_global_data.kills = sbitmap_alloc (num_referenced_vars);
+ walk_data.global_data = &mark_def_sites_global_data;
+
+ /* We do not have any local data. */
+ walk_data.block_local_data_size = 0;
+
+ /* Initialize the dominator walker. */
+ init_walk_dominator_tree (&walk_data);
+
+ /* Recursively walk the dominator tree. */
+ walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
+
+ /* Finalize the dominator walker. */
+ fini_walk_dominator_tree (&walk_data);
+
+ /* We no longer need this bitmap, clear and free it. */
+ sbitmap_free (mark_def_sites_global_data.kills);
+
+ /* Insert PHI nodes at dominance frontiers of definition blocks. */
+ insert_phi_nodes (dfs);
+
+ /* Rewrite all the basic blocks in the program. */
+ timevar_push (TV_TREE_SSA_REWRITE_BLOCKS);
+
+ /* Setup callbacks for the generic dominator tree walker. */
+ walk_data.walk_stmts_backward = false;
+ walk_data.dom_direction = CDI_DOMINATORS;
+ walk_data.initialize_block_local_data = rewrite_initialize_block_local_data;
+ walk_data.before_dom_children_before_stmts = rewrite_initialize_block;
+ walk_data.before_dom_children_walk_stmts = rewrite_stmt;
+ walk_data.before_dom_children_after_stmts = rewrite_add_phi_arguments;
+ walk_data.after_dom_children_before_stmts = NULL;
+ walk_data.after_dom_children_walk_stmts = NULL;
+ walk_data.after_dom_children_after_stmts = rewrite_finalize_block;
+ walk_data.global_data = NULL;
+ walk_data.block_local_data_size = sizeof (struct rewrite_block_data);
+
+ /* Initialize the dominator walker. */
+ init_walk_dominator_tree (&walk_data);
+
+ /* Recursively walk the dominator tree rewriting each statement in
+ each basic block. */
+ walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
+
+ /* Finalize the dominator walker. */
+ fini_walk_dominator_tree (&walk_data);
+
+ timevar_pop (TV_TREE_SSA_REWRITE_BLOCKS);
+
+ /* Debugging dumps. */
+ if (dump_file && (dump_flags & TDF_STATS))
+ {
+ dump_dfa_stats (dump_file);
+ dump_tree_ssa_stats (dump_file);
+ }
+
+ /* Free allocated memory. */
+ FOR_EACH_BB (bb)
+ BITMAP_XFREE (dfs[bb->index]);
+ free (dfs);
+
+ htab_delete (def_blocks);
+
+ timevar_pop (TV_TREE_SSA_OTHER);
+}
+
+struct tree_opt_pass pass_build_ssa =
+{
+ "ssa", /* name */
+ NULL, /* gate */
+ rewrite_into_ssa, /* execute */
+ NULL, /* sub */
+ NULL, /* next */
+ 0, /* static_pass_number */
+ 0, /* tv_id */
+ PROP_cfg | PROP_referenced_vars, /* properties_required */
+ PROP_ssa, /* properties_provided */
+ 0, /* properties_destroyed */
+ 0, /* todo_flags_start */
+ TODO_dump_func | TODO_verify_ssa /* todo_flags_finish */
+};