diff options
Diffstat (limited to 'gcc/tree-into-ssa.c')
-rw-r--r-- | gcc/tree-into-ssa.c | 1179 |
1 files changed, 1179 insertions, 0 deletions
diff --git a/gcc/tree-into-ssa.c b/gcc/tree-into-ssa.c new file mode 100644 index 00000000000..90f4aa58d8d --- /dev/null +++ b/gcc/tree-into-ssa.c @@ -0,0 +1,1179 @@ +/* Rewrite a program in Normal form into SSA. + Copyright (C) 2001, 2002, 2003, 2004 Free Software Foundation, Inc. + Contributed by Diego Novillo <dnovillo@redhat.com> + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 2, or (at your option) +any later version. + +GCC is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with GCC; see the file COPYING. If not, write to +the Free Software Foundation, 59 Temple Place - Suite 330, +Boston, MA 02111-1307, USA. */ + +#include "config.h" +#include "system.h" +#include "coretypes.h" +#include "tm.h" +#include "tree.h" +#include "flags.h" +#include "rtl.h" +#include "tm_p.h" +#include "langhooks.h" +#include "hard-reg-set.h" +#include "basic-block.h" +#include "output.h" +#include "errors.h" +#include "expr.h" +#include "function.h" +#include "diagnostic.h" +#include "bitmap.h" +#include "tree-flow.h" +#include "tree-simple.h" +#include "tree-inline.h" +#include "varray.h" +#include "timevar.h" +#include "tree-alias-common.h" +#include "hashtab.h" +#include "tree-dump.h" +#include "tree-pass.h" +#include "cfgloop.h" +#include "domwalk.h" + +/* This file builds the SSA form for a function as described in: + R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck. Efficiently + Computing Static Single Assignment Form and the Control Dependence + Graph. ACM Transactions on Programming Languages and Systems, + 13(4):451-490, October 1991. */ + + +/* Structure to map a variable VAR to the set of blocks that contain + definitions for VAR. */ +struct def_blocks_d +{ + /* The variable. */ + tree var; + + /* Blocks that contain definitions of VAR. Bit I will be set if the + Ith block contains a definition of VAR. */ + bitmap def_blocks; + + /* Blocks where VAR is live-on-entry. Similar semantics as + DEF_BLOCKS. */ + bitmap livein_blocks; +}; + +/* Each entry in DEF_BLOCKS contains an element of type STRUCT + DEF_BLOCKS_D, mapping a variable VAR to a bitmap describing all the + basic blocks where VAR is defined (assigned a new value). It also + contains a bitmap of all the blocks where VAR is live-on-entry + (i.e., there is a use of VAR in block B without a preceding + definition in B). The live-on-entry information is used when + computing PHI pruning heuristics. */ +static htab_t def_blocks; + +/* Global data to attach to the main dominator walk structure. */ +struct mark_def_sites_global_data +{ + /* This sbitmap contains the variables which are set before they + are used in a basic block. We keep it as a global variable + solely to avoid the overhead of allocating and deallocating + the bitmap. */ + sbitmap kills; +}; + +struct rewrite_block_data +{ + varray_type block_defs; +}; + + +/* Local functions. */ +static void rewrite_finalize_block (struct dom_walk_data *, basic_block); +static void rewrite_initialize_block_local_data (struct dom_walk_data *, + basic_block, bool); +static void rewrite_initialize_block (struct dom_walk_data *, basic_block); +static void rewrite_add_phi_arguments (struct dom_walk_data *, basic_block); +static void mark_def_sites (struct dom_walk_data *walk_data, + basic_block bb, block_stmt_iterator); +static void mark_def_sites_initialize_block (struct dom_walk_data *walk_data, + basic_block bb); +static void compute_global_livein (bitmap, bitmap); +static void set_def_block (tree, basic_block); +static void set_livein_block (tree, basic_block); +static bool prepare_operand_for_rename (tree *op_p, size_t *uid_p); +static void insert_phi_nodes (bitmap *); +static void rewrite_stmt (struct dom_walk_data *, basic_block, + block_stmt_iterator); +static inline void rewrite_operand (tree *); +static void insert_phi_nodes_for (tree, bitmap *, varray_type *); +static tree get_reaching_def (tree); +static hashval_t def_blocks_hash (const void *); +static int def_blocks_eq (const void *, const void *); +static void def_blocks_free (void *); +static int debug_def_blocks_r (void **, void *); +static inline struct def_blocks_d *get_def_blocks_for (tree); +static inline struct def_blocks_d *find_def_blocks_for (tree); +static void htab_statistics (FILE *, htab_t); + +/* Compute global livein information given the set of blockx where + an object is locally live at the start of the block (LIVEIN) + and the set of blocks where the object is defined (DEF_BLOCKS). + + Note: This routine augments the existing local livein information + to include global livein (i.e., it modifies the underlying bitmap + for LIVEIN). */ + +static void +compute_global_livein (bitmap livein, bitmap def_blocks) +{ + basic_block bb, *worklist, *tos; + + tos = worklist + = (basic_block *) xmalloc (sizeof (basic_block) * (last_basic_block + 1)); + + /* Initialize the worklist. */ + FOR_EACH_BB (bb) + { + if (bitmap_bit_p (livein, bb->index)) + *tos++ = bb; + } + + /* Iterate until the worklist is empty. */ + while (tos != worklist) + { + edge e; + + /* Pull a block off the worklist. */ + bb = *--tos; + + /* For each predecessor block. */ + for (e = bb->pred; e; e = e->pred_next) + { + basic_block pred = e->src; + int pred_index = pred->index; + + /* None of this is necessary for the entry block. */ + if (pred != ENTRY_BLOCK_PTR + && ! bitmap_bit_p (livein, pred_index) + && ! bitmap_bit_p (def_blocks, pred_index)) + { + *tos++ = pred; + bitmap_set_bit (livein, pred_index); + } + } + } + + free (worklist); +} + + +/* Block initialization routine for mark_def_sites. Clear the + KILLS bitmap at the start of each block. */ + +static void +mark_def_sites_initialize_block (struct dom_walk_data *walk_data, + basic_block bb ATTRIBUTE_UNUSED) +{ + struct mark_def_sites_global_data *gd = walk_data->global_data; + sbitmap kills = gd->kills; + + sbitmap_zero (kills); +} + + +/* Call back for walk_dominator_tree used to collect definition sites + for every variable in the function. For every statement S in block + BB: + + 1- Variables defined by S in DEF_OPS(S) are marked in the bitmap + WALK_DATA->GLOBAL_DATA->KILLS. + + 2- If S uses a variable VAR and there is no preceding kill of VAR, + then it is marked in marked in the LIVEIN_BLOCKS bitmap + associated with VAR. + + This information is used to determine which variables are live + across block boundaries to reduce the number of PHI nodes + we create. */ + +static void +mark_def_sites (struct dom_walk_data *walk_data, + basic_block bb, + block_stmt_iterator bsi) +{ + struct mark_def_sites_global_data *gd = walk_data->global_data; + sbitmap kills = gd->kills; + vdef_optype vdefs; + vuse_optype vuses; + def_optype defs; + use_optype uses; + size_t i, uid; + tree stmt; + stmt_ann_t ann; + + /* Mark all the blocks that have definitions for each variable in the + VARS_TO_RENAME bitmap. */ + stmt = bsi_stmt (bsi); + get_stmt_operands (stmt); + ann = stmt_ann (stmt); + + /* If a variable is used before being set, then the variable is live + across a block boundary, so mark it live-on-entry to BB. */ + uses = USE_OPS (ann); + for (i = 0; i < NUM_USES (uses); i++) + { + tree *use_p = USE_OP_PTR (uses, i); + + if (prepare_operand_for_rename (use_p, &uid) + && !TEST_BIT (kills, uid)) + set_livein_block (*use_p, bb); + } + + /* Similarly for virtual uses. */ + vuses = VUSE_OPS (ann); + for (i = 0; i < NUM_VUSES (vuses); i++) + { + tree *use_p = VUSE_OP_PTR (vuses, i); + + if (prepare_operand_for_rename (use_p, &uid) + && !TEST_BIT (kills, uid)) + set_livein_block (*use_p, bb); + } + + /* Note that virtual definitions are irrelevant for computing KILLS + because a VDEF does not constitute a killing definition of the + variable. However, the operand of a virtual definitions is a use + of the variable, so it may cause the variable to be considered + live-on-entry. */ + vdefs = VDEF_OPS (ann); + for (i = 0; i < NUM_VDEFS (vdefs); i++) + { + size_t dummy; + + if (prepare_operand_for_rename (VDEF_OP_PTR (vdefs, i), &uid) + && prepare_operand_for_rename (VDEF_RESULT_PTR (vdefs, i), &dummy)) + { + VDEF_RESULT (vdefs, i) = VDEF_OP (vdefs, i); + + if (!TEST_BIT (kills, uid)) + set_livein_block (VDEF_OP (vdefs, i), bb); + set_def_block (VDEF_RESULT (vdefs, i), bb); + } + } + + /* Now process the definition made by this statement. Mark the + variables in KILLS. */ + defs = DEF_OPS (ann); + for (i = 0; i < NUM_DEFS (defs); i++) + { + tree *def_p = DEF_OP_PTR (defs, i); + + if (prepare_operand_for_rename (def_p, &uid)) + { + set_def_block (*def_p, bb); + SET_BIT (kills, uid); + } + } +} + + +/* Mark block BB as the definition site for variable VAR. */ + +static void +set_def_block (tree var, basic_block bb) +{ + struct def_blocks_d *db_p; + enum need_phi_state state = var_ann (var)->need_phi_state; + + db_p = get_def_blocks_for (var); + + /* Set the bit corresponding to the block where VAR is defined. */ + bitmap_set_bit (db_p->def_blocks, bb->index); + + /* Keep track of whether or not we may need to insert phi nodes. + + If we are in the UNKNOWN state, then this is the first definition + of VAR. Additionally, we have not seen any uses of VAR yet, so + we do not need a phi node for this variable at this time (i.e., + transition to NEED_PHI_STATE_NO). + + If we are in any other state, then we either have multiple definitions + of this variable occurring in different blocks or we saw a use of the + variable which was not dominated by the block containing the + definition(s). In this case we may need a PHI node, so enter + state NEED_PHI_STATE_MAYBE. */ + if (state == NEED_PHI_STATE_UNKNOWN) + var_ann (var)->need_phi_state = NEED_PHI_STATE_NO; + else + var_ann (var)->need_phi_state = NEED_PHI_STATE_MAYBE; +} + + +/* Mark block BB as having VAR live at the entry to BB. */ + +static void +set_livein_block (tree var, basic_block bb) +{ + struct def_blocks_d *db_p; + enum need_phi_state state = var_ann (var)->need_phi_state; + + db_p = get_def_blocks_for (var); + + /* Set the bit corresponding to the block where VAR is live in. */ + bitmap_set_bit (db_p->livein_blocks, bb->index); + + /* Keep track of whether or not we may need to insert phi nodes. + + If we reach here in NEED_PHI_STATE_NO, see if this use is dominated + by the single block containing the definition(s) of this variable. If + it is, then we remain in NEED_PHI_STATE_NO, otherwise we transition to + NEED_PHI_STATE_MAYBE. */ + if (state == NEED_PHI_STATE_NO) + { + int def_block_index = bitmap_first_set_bit (db_p->def_blocks); + + if (def_block_index == -1 + || ! dominated_by_p (CDI_DOMINATORS, bb, + BASIC_BLOCK (def_block_index))) + var_ann (var)->need_phi_state = NEED_PHI_STATE_MAYBE; + } + else + var_ann (var)->need_phi_state = NEED_PHI_STATE_MAYBE; +} + + +/* If the operand pointed by OP_P needs to be renamed, strip away SSA_NAME + wrappers (if needed) and return true. The unique ID for the operand's + variable will be stored in *UID_P. */ + +static bool +prepare_operand_for_rename (tree *op_p, size_t *uid_p) +{ + tree var = (TREE_CODE (*op_p) != SSA_NAME) ? *op_p : SSA_NAME_VAR (*op_p); + *uid_p = var_ann (var)->uid; + + /* Ignore variables that don't need to be renamed. */ + if (vars_to_rename && !bitmap_bit_p (vars_to_rename, *uid_p)) + return false; + + /* The variable needs to be renamed. If it already had an + SSA_NAME, strip it off. This way, the SSA rename pass + doesn't need to deal with existing SSA names. */ + if (TREE_CODE (*op_p) == SSA_NAME) + { + if (default_def (SSA_NAME_VAR (*op_p)) != *op_p) + release_ssa_name (*op_p); + *op_p = var; + } + + return true; +} + + +/* Helper for insert_phi_nodes. If VAR needs PHI nodes, insert them + at the dominance frontier (DFS) of blocks defining VAR. */ + +static inline +void insert_phi_nodes_1 (tree var, bitmap *dfs, varray_type *work_stack) +{ + var_ann_t ann = var_ann (var); + if (ann->need_phi_state != NEED_PHI_STATE_NO) + insert_phi_nodes_for (var, dfs, work_stack); +} + + +/* Insert PHI nodes at the dominance frontier of blocks with variable + definitions. DFS contains the dominance frontier information for + the flowgraph. PHI nodes will only be inserted at the dominance + frontier of definition blocks for variables whose NEED_PHI_STATE + annotation is marked as ``maybe'' or ``unknown'' (computed by + mark_def_sites). */ + +static void +insert_phi_nodes (bitmap *dfs) +{ + size_t i; + varray_type work_stack; + + timevar_push (TV_TREE_INSERT_PHI_NODES); + + /* Array WORK_STACK is a stack of CFG blocks. Each block that contains + an assignment or PHI node will be pushed to this stack. */ + VARRAY_BB_INIT (work_stack, last_basic_block, "work_stack"); + + /* Iterate over all variables in VARS_TO_RENAME. For each variable, add + to the work list all the blocks that have a definition for the + variable. PHI nodes will be added to the dominance frontier blocks of + each definition block. */ + if (vars_to_rename) + EXECUTE_IF_SET_IN_BITMAP (vars_to_rename, 0, i, + insert_phi_nodes_1 (referenced_var (i), dfs, &work_stack)); + else + for (i = 0; i < num_referenced_vars; i++) + insert_phi_nodes_1 (referenced_var (i), dfs, &work_stack); + + timevar_pop (TV_TREE_INSERT_PHI_NODES); +} + + +/* Perform a depth-first traversal of the dominator tree looking for + variables to rename. BB is the block where to start searching. + Renaming is a five step process: + + 1- Every definition made by PHI nodes at the start of the blocks is + registered as the current definition for the corresponding variable. + + 2- Every statement in BB is rewritten. USE and VUSE operands are + rewritten with their corresponding reaching definition. DEF and + VDEF targets are registered as new definitions. + + 3- All the PHI nodes in successor blocks of BB are visited. The + argument corresponding to BB is replaced with its current reaching + definition. + + 4- Recursively rewrite every dominator child block of BB. + + 5- Restore (in reverse order) the current reaching definition for every + new definition introduced in this block. This is done so that when + we return from the recursive call, all the current reaching + definitions are restored to the names that were valid in the + dominator parent of BB. */ + +/* Initialize the local stacks. + + BLOCK_DEFS is used to save all the existing reaching definitions for + the new SSA names introduced in this block. Before registering a + new definition for a variable, the existing reaching definition is + pushed into this stack so that we can restore it in Step 5. */ + +static void +rewrite_initialize_block_local_data (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED, + basic_block bb ATTRIBUTE_UNUSED, + bool recycled ATTRIBUTE_UNUSED) +{ +#ifdef ENABLE_CHECKING + struct rewrite_block_data *bd + = (struct rewrite_block_data *)VARRAY_TOP_GENERIC_PTR (walk_data->block_data_stack); + + /* We get cleared memory from the allocator, so if the memory is + not cleared, then we are re-using a previously allocated entry. In + that case, we can also re-use the underlying virtal arrays. Just + make sure we clear them before using them! */ + if (recycled && bd->block_defs && VARRAY_ACTIVE_SIZE (bd->block_defs) > 0) + abort (); +#endif +} + + +/* SSA Rewriting Step 1. Initialization, create a block local stack + of reaching definitions for new SSA names produced in this block + (BLOCK_DEFS). Register new definitions for every PHI node in the + block. */ + +static void +rewrite_initialize_block (struct dom_walk_data *walk_data, basic_block bb) +{ + tree phi; + struct rewrite_block_data *bd + = (struct rewrite_block_data *)VARRAY_TOP_GENERIC_PTR (walk_data->block_data_stack); + + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, "\n\nRenaming block #%d\n\n", bb->index); + + /* Step 1. Register new definitions for every PHI node in the block. + Conceptually, all the PHI nodes are executed in parallel and each PHI + node introduces a new version for the associated variable. */ + for (phi = phi_nodes (bb); phi; phi = TREE_CHAIN (phi)) + { + tree result = PHI_RESULT (phi); + + register_new_def (result, &bd->block_defs); + } +} + + +/* SSA Rewriting Step 3. Visit all the successor blocks of BB looking for + PHI nodes. For every PHI node found, add a new argument containing the + current reaching definition for the variable and the edge through which + that definition is reaching the PHI node. */ + +static void +rewrite_add_phi_arguments (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED, + basic_block bb) +{ + edge e; + + for (e = bb->succ; e; e = e->succ_next) + { + tree phi; + + for (phi = phi_nodes (e->dest); phi; phi = TREE_CHAIN (phi)) + { + tree currdef; + + /* If this PHI node has already been rewritten, then there is + nothing to do for this PHI or any following PHIs since we + always add new PHI nodes at the start of the PHI chain. */ + if (PHI_REWRITTEN (phi)) + break; + + currdef = get_reaching_def (SSA_NAME_VAR (PHI_RESULT (phi))); + add_phi_arg (&phi, currdef, e); + } + } +} + +/* SSA Rewriting Step 5. Restore the current reaching definition for each + variable referenced in the block (in reverse order). */ + +static void +rewrite_finalize_block (struct dom_walk_data *walk_data, + basic_block bb ATTRIBUTE_UNUSED) +{ + struct rewrite_block_data *bd + = (struct rewrite_block_data *)VARRAY_TOP_GENERIC_PTR (walk_data->block_data_stack); + + /* Step 5. Restore the current reaching definition for each variable + referenced in the block (in reverse order). */ + while (bd->block_defs && VARRAY_ACTIVE_SIZE (bd->block_defs) > 0) + { + tree tmp = VARRAY_TOP_TREE (bd->block_defs); + tree saved_def, var; + + VARRAY_POP (bd->block_defs); + if (TREE_CODE (tmp) == SSA_NAME) + { + saved_def = tmp; + var = SSA_NAME_VAR (saved_def); + } + else + { + saved_def = NULL; + var = tmp; + } + + var_ann (var)->current_def = saved_def; + } +} + + +/* Dump SSA information to FILE. */ + +void +dump_tree_ssa (FILE *file) +{ + basic_block bb; + const char *funcname + = (*lang_hooks.decl_printable_name) (current_function_decl, 2); + + fprintf (file, "SSA information for %s\n\n", funcname); + + FOR_EACH_BB (bb) + { + dump_bb (bb, file, 0); + fputs (" ", file); + print_generic_stmt (file, phi_nodes (bb), dump_flags); + fputs ("\n\n", file); + } +} + + +/* Dump SSA information to stderr. */ + +void +debug_tree_ssa (void) +{ + dump_tree_ssa (stderr); +} + + +/* Dump SSA statistics on FILE. */ + +void +dump_tree_ssa_stats (FILE *file) +{ + fprintf (file, "\nHash table statistics:\n"); + + fprintf (file, " def_blocks: "); + htab_statistics (file, def_blocks); + + fprintf (file, "\n"); +} + + +/* Dump SSA statistics on stderr. */ + +void +debug_tree_ssa_stats (void) +{ + dump_tree_ssa_stats (stderr); +} + + +/* Dump statistics for the hash table HTAB. */ + +static void +htab_statistics (FILE *file, htab_t htab) +{ + fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n", + (long) htab_size (htab), + (long) htab_elements (htab), + htab_collisions (htab)); +} + + +/* Insert PHI nodes for variable VAR using the dominance frontier + information given in DFS. */ + +static void +insert_phi_nodes_for (tree var, bitmap *dfs, varray_type *work_stack) +{ + struct def_blocks_d *def_map; + bitmap phi_insertion_points; + int bb_index; + + def_map = find_def_blocks_for (var); + if (def_map == NULL) + return; + + phi_insertion_points = BITMAP_XMALLOC (); + + EXECUTE_IF_SET_IN_BITMAP (def_map->def_blocks, 0, bb_index, + { + VARRAY_PUSH_BB (*work_stack, BASIC_BLOCK (bb_index)); + }); + + /* Pop a block off the worklist, add every block that appears in + the original block's dfs that we have not already processed to + the worklist. Iterate until the worklist is empty. Blocks + which are added to the worklist are potential sites for + PHI nodes. + + The iteration step could be done during PHI insertion just as + easily. We do it here for historical reasons -- we used to have + a heuristic which used the potential PHI insertion points to + determine if fully pruned or semi pruned SSA form was appropriate. + + We now always use fully pruned SSA form. */ + while (VARRAY_ACTIVE_SIZE (*work_stack) > 0) + { + basic_block bb = VARRAY_TOP_BB (*work_stack); + int bb_index = bb->index; + int dfs_index; + + VARRAY_POP (*work_stack); + + EXECUTE_IF_AND_COMPL_IN_BITMAP (dfs[bb_index], + phi_insertion_points, + 0, dfs_index, + { + basic_block bb = BASIC_BLOCK (dfs_index); + + VARRAY_PUSH_BB (*work_stack, bb); + bitmap_set_bit (phi_insertion_points, dfs_index); + }); + } + + /* Now compute global livein for this variable. Note this modifies + def_map->livein_blocks. */ + compute_global_livein (def_map->livein_blocks, def_map->def_blocks); + + /* And insert the PHI nodes. */ + EXECUTE_IF_AND_IN_BITMAP (phi_insertion_points, def_map->livein_blocks, + 0, bb_index, + { + create_phi_node (var, BASIC_BLOCK (bb_index)); + }); + + BITMAP_FREE (phi_insertion_points); +} + +/* SSA Rewriting Step 2. Rewrite every variable used in each statement in + the block with its immediate reaching definitions. Update the current + definition of a variable when a new real or virtual definition is found. */ + +static void +rewrite_stmt (struct dom_walk_data *walk_data, + basic_block bb ATTRIBUTE_UNUSED, + block_stmt_iterator si) +{ + size_t i; + stmt_ann_t ann; + tree stmt; + vuse_optype vuses; + vdef_optype vdefs; + def_optype defs; + use_optype uses; + struct rewrite_block_data *bd; + + bd = VARRAY_TOP_GENERIC_PTR (walk_data->block_data_stack); + + stmt = bsi_stmt (si); + ann = stmt_ann (stmt); + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "Renaming statement "); + print_generic_stmt (dump_file, stmt, TDF_SLIM); + fprintf (dump_file, "\n"); + } + +#if defined ENABLE_CHECKING + /* We have just scanned the code for operands. No statement should + be modified. */ + if (ann->modified) + abort (); +#endif + + defs = DEF_OPS (ann); + uses = USE_OPS (ann); + vuses = VUSE_OPS (ann); + vdefs = VDEF_OPS (ann); + + /* Step 1. Rewrite USES and VUSES in the statement. */ + for (i = 0; i < NUM_USES (uses); i++) + rewrite_operand (USE_OP_PTR (uses, i)); + + /* Rewrite virtual uses in the statement. */ + for (i = 0; i < NUM_VUSES (vuses); i++) + rewrite_operand (VUSE_OP_PTR (vuses, i)); + + /* Step 2. Register the statement's DEF and VDEF operands. */ + for (i = 0; i < NUM_DEFS (defs); i++) + { + tree *def_p = DEF_OP_PTR (defs, i); + + if (TREE_CODE (*def_p) != SSA_NAME) + *def_p = make_ssa_name (*def_p, stmt); + + /* FIXME: We shouldn't be registering new defs if the variable + doesn't need to be renamed. */ + register_new_def (*def_p, &bd->block_defs); + } + + /* Register new virtual definitions made by the statement. */ + for (i = 0; i < NUM_VDEFS (vdefs); i++) + { + rewrite_operand (VDEF_OP_PTR (vdefs, i)); + + if (TREE_CODE (VDEF_RESULT (vdefs, i)) != SSA_NAME) + *VDEF_RESULT_PTR (vdefs, i) + = make_ssa_name (VDEF_RESULT (vdefs, i), stmt); + + /* FIXME: We shouldn't be registering new defs if the variable + doesn't need to be renamed. */ + register_new_def (VDEF_RESULT (vdefs, i), &bd->block_defs); + } +} + + +/* Replace the operand pointed by OP_P with its immediate reaching + definition. */ + +static inline void +rewrite_operand (tree *op_p) +{ + if (TREE_CODE (*op_p) != SSA_NAME) + *op_p = get_reaching_def (*op_p); +} + + +/* Register DEF (an SSA_NAME) to be a new definition for its underlying + variable (SSA_NAME_VAR (DEF)) and push VAR's current reaching definition + into the stack pointed by BLOCK_DEFS_P. */ + +void +register_new_def (tree def, varray_type *block_defs_p) +{ + tree var = SSA_NAME_VAR (def); + tree currdef; + + /* If this variable is set in a single basic block and all uses are + dominated by the set(s) in that single basic block, then there is + no reason to record anything for this variable in the block local + definition stacks. Doing so just wastes time and memory. + + This is the same test to prune the set of variables which may + need PHI nodes. So we just use that information since it's already + computed and available for us to use. */ + if (var_ann (var)->need_phi_state == NEED_PHI_STATE_NO) + { + var_ann (var)->current_def = def; + return; + } + + currdef = var_ann (var)->current_def; + if (! *block_defs_p) + VARRAY_TREE_INIT (*block_defs_p, 20, "block_defs"); + + /* Push the current reaching definition into *BLOCK_DEFS_P. This stack is + later used by the dominator tree callbacks to restore the reaching + definitions for all the variables defined in the block after a recursive + visit to all its immediately dominated blocks. If there is no current + reaching definition, then just record the underlying _DECL node. */ + VARRAY_PUSH_TREE (*block_defs_p, currdef ? currdef : var); + + /* Set the current reaching definition for VAR to be DEF. */ + var_ann (var)->current_def = def; +} + + +/* Return the current definition for variable VAR. If none is found, + create a new SSA name to act as the zeroth definition for VAR. If VAR + is call clobbered and there exists a more recent definition of + GLOBAL_VAR, return the definition for GLOBAL_VAR. This means that VAR + has been clobbered by a function call since its last assignment. */ + +static tree +get_reaching_def (tree var) +{ + tree default_d, currdef_var; + + /* Lookup the current reaching definition for VAR. */ + default_d = NULL_TREE; + currdef_var = var_ann (var)->current_def; + + /* If there is no reaching definition for VAR, create and register a + default definition for it (if needed). */ + if (currdef_var == NULL_TREE) + { + default_d = default_def (var); + if (default_d == NULL_TREE) + { + default_d = make_ssa_name (var, build_empty_stmt ()); + set_default_def (var, default_d); + } + var_ann (var)->current_def = default_d; + } + + /* Return the current reaching definition for VAR, or the default + definition, if we had to create one. */ + return (currdef_var) ? currdef_var : default_d; +} + + +/* Hashing and equality functions for DEF_BLOCKS. */ + +static hashval_t +def_blocks_hash (const void *p) +{ + return htab_hash_pointer + ((const void *)((const struct def_blocks_d *)p)->var); +} + +static int +def_blocks_eq (const void *p1, const void *p2) +{ + return ((const struct def_blocks_d *)p1)->var + == ((const struct def_blocks_d *)p2)->var; +} + +/* Free memory allocated by one entry in DEF_BLOCKS. */ + +static void +def_blocks_free (void *p) +{ + struct def_blocks_d *entry = p; + BITMAP_FREE (entry->def_blocks); + BITMAP_FREE (entry->livein_blocks); + free (entry); +} + + +/* Dump the DEF_BLOCKS hash table on stderr. */ + +void +debug_def_blocks (void) +{ + htab_traverse (def_blocks, debug_def_blocks_r, NULL); +} + +/* Callback for htab_traverse to dump the DEF_BLOCKS hash table. */ + +static int +debug_def_blocks_r (void **slot, void *data ATTRIBUTE_UNUSED) +{ + unsigned long i; + struct def_blocks_d *db_p = (struct def_blocks_d *) *slot; + + fprintf (stderr, "VAR: "); + print_generic_expr (stderr, db_p->var, dump_flags); + fprintf (stderr, ", DEF_BLOCKS: { "); + EXECUTE_IF_SET_IN_BITMAP (db_p->def_blocks, 0, i, + fprintf (stderr, "%ld ", i)); + fprintf (stderr, "}"); + fprintf (stderr, ", LIVEIN_BLOCKS: { "); + EXECUTE_IF_SET_IN_BITMAP (db_p->livein_blocks, 0, i, + fprintf (stderr, "%ld ", i)); + fprintf (stderr, "}\n"); + + return 1; +} + + +/* Return the set of blocks where variable VAR is defined and the blocks + where VAR is live on entry (livein). Return NULL, if no entry is + found in DEF_BLOCKS. */ + +static inline struct def_blocks_d * +find_def_blocks_for (tree var) +{ + struct def_blocks_d dm; + dm.var = var; + return (struct def_blocks_d *) htab_find (def_blocks, &dm); +} + + +/* Return the set of blocks where variable VAR is defined and the blocks + where VAR is live on entry (livein). If no entry is found in + DEF_BLOCKS, a new one is created and returned. */ + +static inline struct def_blocks_d * +get_def_blocks_for (tree var) +{ + struct def_blocks_d db, *db_p; + void **slot; + + db.var = var; + slot = htab_find_slot (def_blocks, (void *) &db, INSERT); + if (*slot == NULL) + { + db_p = xmalloc (sizeof (*db_p)); + db_p->var = var; + db_p->def_blocks = BITMAP_XMALLOC (); + db_p->livein_blocks = BITMAP_XMALLOC (); + *slot = (void *) db_p; + } + else + db_p = (struct def_blocks_d *) *slot; + + return db_p; +} + +/* If a variable V in VARS_TO_RENAME is a pointer, the renaming + process will cause us to lose the name memory tags that may have + been associated with the various SSA_NAMEs of V. This means that + the variables aliased to those name tags also need to be renamed + again. + + FIXME 1- We should either have a better scheme for renaming + pointers that doesn't lose name tags or re-run alias + analysis to recover points-to information. + + 2- Currently we just invalidate *all* the name tags. This + should be more selective. */ + +static void +invalidate_name_tags (bitmap vars_to_rename) +{ + size_t i; + bool rename_name_tags_p; + + rename_name_tags_p = false; + EXECUTE_IF_SET_IN_BITMAP (vars_to_rename, 0, i, + if (POINTER_TYPE_P (TREE_TYPE (referenced_var (i)))) + { + rename_name_tags_p = true; + break; + }); + + if (rename_name_tags_p) + for (i = 0; i < num_referenced_vars; i++) + { + var_ann_t ann = var_ann (referenced_var (i)); + + if (ann->mem_tag_kind == NAME_TAG) + { + size_t j; + varray_type may_aliases = ann->may_aliases; + + bitmap_set_bit (vars_to_rename, ann->uid); + if (ann->may_aliases) + for (j = 0; j < VARRAY_ACTIVE_SIZE (may_aliases); j++) + { + tree var = VARRAY_TREE (may_aliases, j); + bitmap_set_bit (vars_to_rename, var_ann (var)->uid); + } + } + } +} + + +/* Main entry point into the SSA builder. The renaming process + proceeds in five main phases: + + 1- If VARS_TO_RENAME has any entries, any existing PHI nodes for + those variables are removed from the flow graph so that they can + be computed again. + + 2- Compute dominance frontier and immediate dominators, needed to + insert PHI nodes and rename the function in dominator tree + order. + + 3- Find and mark all the blocks that define variables + (mark_def_sites). + + 4- Insert PHI nodes at dominance frontiers (insert_phi_nodes). + + 5- Rename all the blocks (rewrite_initialize_block, + rewrite_add_phi_arguments) and statements in the program + (rewrite_stmt). + + Steps 3 and 5 are done using the dominator tree walker + (walk_dominator_tree). */ + +void +rewrite_into_ssa (void) +{ + bitmap *dfs; + basic_block bb; + struct dom_walk_data walk_data; + struct mark_def_sites_global_data mark_def_sites_global_data; + unsigned int i; + + timevar_push (TV_TREE_SSA_OTHER); + + /* Initialize the array of variables to rename. */ + if (vars_to_rename != NULL) + { + invalidate_name_tags (vars_to_rename); + + /* Now remove all the existing PHI nodes (if any) for the variables + that we are about to rename into SSA. */ + remove_all_phi_nodes_for (vars_to_rename); + } + + /* Allocate memory for the DEF_BLOCKS hash table. */ + def_blocks = htab_create (VARRAY_ACTIVE_SIZE (referenced_vars), + def_blocks_hash, def_blocks_eq, def_blocks_free); + + /* Initialize dominance frontier and immediate dominator bitmaps. + Also count the number of predecessors for each block. Doing so + can save significant time during PHI insertion for large graphs. */ + dfs = (bitmap *) xmalloc (last_basic_block * sizeof (bitmap *)); + FOR_EACH_BB (bb) + { + edge e; + int count = 0; + + for (e = bb->pred; e; e = e->pred_next) + count++; + + bb_ann (bb)->num_preds = count; + dfs[bb->index] = BITMAP_XMALLOC (); + } + + for (i = 0; i < num_referenced_vars; i++) + var_ann (referenced_var (i))->current_def = NULL; + + /* Ensure that the dominance information is OK. */ + calculate_dominance_info (CDI_DOMINATORS); + + /* Compute dominance frontiers. */ + compute_dominance_frontiers (dfs); + + /* Setup callbacks for the generic dominator tree walker to find and + mark definition sites. */ + walk_data.walk_stmts_backward = false; + walk_data.dom_direction = CDI_DOMINATORS; + walk_data.initialize_block_local_data = NULL; + walk_data.before_dom_children_before_stmts = mark_def_sites_initialize_block; + walk_data.before_dom_children_walk_stmts = mark_def_sites; + walk_data.before_dom_children_after_stmts = NULL; + walk_data.after_dom_children_before_stmts = NULL; + walk_data.after_dom_children_walk_stmts = NULL; + walk_data.after_dom_children_after_stmts = NULL; + + /* Notice that this bitmap is indexed using variable UIDs, so it must be + large enough to accommodate all the variables referenced in the + function, not just the ones we are renaming. */ + mark_def_sites_global_data.kills = sbitmap_alloc (num_referenced_vars); + walk_data.global_data = &mark_def_sites_global_data; + + /* We do not have any local data. */ + walk_data.block_local_data_size = 0; + + /* Initialize the dominator walker. */ + init_walk_dominator_tree (&walk_data); + + /* Recursively walk the dominator tree. */ + walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR); + + /* Finalize the dominator walker. */ + fini_walk_dominator_tree (&walk_data); + + /* We no longer need this bitmap, clear and free it. */ + sbitmap_free (mark_def_sites_global_data.kills); + + /* Insert PHI nodes at dominance frontiers of definition blocks. */ + insert_phi_nodes (dfs); + + /* Rewrite all the basic blocks in the program. */ + timevar_push (TV_TREE_SSA_REWRITE_BLOCKS); + + /* Setup callbacks for the generic dominator tree walker. */ + walk_data.walk_stmts_backward = false; + walk_data.dom_direction = CDI_DOMINATORS; + walk_data.initialize_block_local_data = rewrite_initialize_block_local_data; + walk_data.before_dom_children_before_stmts = rewrite_initialize_block; + walk_data.before_dom_children_walk_stmts = rewrite_stmt; + walk_data.before_dom_children_after_stmts = rewrite_add_phi_arguments; + walk_data.after_dom_children_before_stmts = NULL; + walk_data.after_dom_children_walk_stmts = NULL; + walk_data.after_dom_children_after_stmts = rewrite_finalize_block; + walk_data.global_data = NULL; + walk_data.block_local_data_size = sizeof (struct rewrite_block_data); + + /* Initialize the dominator walker. */ + init_walk_dominator_tree (&walk_data); + + /* Recursively walk the dominator tree rewriting each statement in + each basic block. */ + walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR); + + /* Finalize the dominator walker. */ + fini_walk_dominator_tree (&walk_data); + + timevar_pop (TV_TREE_SSA_REWRITE_BLOCKS); + + /* Debugging dumps. */ + if (dump_file && (dump_flags & TDF_STATS)) + { + dump_dfa_stats (dump_file); + dump_tree_ssa_stats (dump_file); + } + + /* Free allocated memory. */ + FOR_EACH_BB (bb) + BITMAP_XFREE (dfs[bb->index]); + free (dfs); + + htab_delete (def_blocks); + + timevar_pop (TV_TREE_SSA_OTHER); +} + +struct tree_opt_pass pass_build_ssa = +{ + "ssa", /* name */ + NULL, /* gate */ + rewrite_into_ssa, /* execute */ + NULL, /* sub */ + NULL, /* next */ + 0, /* static_pass_number */ + 0, /* tv_id */ + PROP_cfg | PROP_referenced_vars, /* properties_required */ + PROP_ssa, /* properties_provided */ + 0, /* properties_destroyed */ + 0, /* todo_flags_start */ + TODO_dump_func | TODO_verify_ssa /* todo_flags_finish */ +}; |