diff options
Diffstat (limited to 'gcc/wide-int.h')
-rw-r--r-- | gcc/wide-int.h | 3147 |
1 files changed, 3147 insertions, 0 deletions
diff --git a/gcc/wide-int.h b/gcc/wide-int.h new file mode 100644 index 00000000000..a0241f29ce2 --- /dev/null +++ b/gcc/wide-int.h @@ -0,0 +1,3147 @@ +/* Operations with very long integers. -*- C++ -*- + Copyright (C) 2012-2013 Free Software Foundation, Inc. + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify it +under the terms of the GNU General Public License as published by the +Free Software Foundation; either version 3, or (at your option) any +later version. + +GCC is distributed in the hope that it will be useful, but WITHOUT +ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or +FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License +for more details. + +You should have received a copy of the GNU General Public License +along with GCC; see the file COPYING3. If not see +<http://www.gnu.org/licenses/>. */ + +#ifndef WIDE_INT_H +#define WIDE_INT_H + +/* wide-int.[cc|h] implements a class that efficiently performs + mathematical operations on finite precision integers. wide_ints + are designed to be transient - they are not for long term storage + of values. There is tight integration between wide_ints and the + other longer storage GCC representations (rtl and tree). + + The actual precision of a wide_int depends on the flavor. There + are three predefined flavors: + + 1) wide_int (the default). This flavor does the math in the + precision of its input arguments. It is assumed (and checked) + that the precisions of the operands and results are consistent. + This is the most efficient flavor. It is not possible to examine + bits above the precision that has been specified. Because of + this, the default flavor has semantics that are simple to + understand and in general model the underlying hardware that the + compiler is targetted for. + + This flavor must be used at the RTL level of gcc because there + is, in general, not enough information in the RTL representation + to extend a value beyond the precision specified in the mode. + + This flavor should also be used at the TREE and GIMPLE levels of + the compiler except for the circumstances described in the + descriptions of the other two flavors. + + The default wide_int representation does not contain any + information inherent about signedness of the represented value, + so it can be used to represent both signed and unsigned numbers. + For operations where the results depend on signedness (full width + multiply, division, shifts, comparisons, and operations that need + overflow detected), the signedness must be specified separately. + + 2) offset_int. This is a fixed size representation that is + guaranteed to be large enough to compute any bit or byte sized + address calculation on the target. Currently the value is 64 + 4 + bits rounded up to the next number even multiple of + HOST_BITS_PER_WIDE_INT (but this can be changed when the first + port needs more than 64 bits for the size of a pointer). + + This flavor can be used for all address math on the target. In + this representation, the values are sign or zero extended based + on their input types to the internal precision. All math is done + in this precision and then the values are truncated to fit in the + result type. Unlike most gimple or rtl intermediate code, it is + not useful to perform the address arithmetic at the same + precision in which the operands are represented because there has + been no effort by the front ends to convert most addressing + arithmetic to canonical types. + + 3) widest_int. This representation is an approximation of + infinite precision math. However, it is not really infinite + precision math as in the GMP library. It is really finite + precision math where the precision is 4 times the size of the + largest integer that the target port can represent. + + widest_int is supposed to be wider than any number that it needs to + store, meaning that there is always at least one leading sign bit. + All widest_int values are therefore signed. + + There are several places in the GCC where this should/must be used: + + * Code that does induction variable optimizations. This code + works with induction variables of many different types at the + same time. Because of this, it ends up doing many different + calculations where the operands are not compatible types. The + widest_int makes this easy, because it provides a field where + nothing is lost when converting from any variable, + + * There are a small number of passes that currently use the + widest_int that should use the default. These should be + changed. + + There are surprising features of offset_int and widest_int + that the users should be careful about: + + 1) Shifts and rotations are just weird. You have to specify a + precision in which the shift or rotate is to happen in. The bits + above this precision remain unchanged. While this is what you + want, it is clearly is non obvious. + + 2) Larger precision math sometimes does not produce the same + answer as would be expected for doing the math at the proper + precision. In particular, a multiply followed by a divide will + produce a different answer if the first product is larger than + what can be represented in the input precision. + + The offset_int and the widest_int flavors are more expensive + than the default wide int, so in addition to the caveats with these + two, the default is the prefered representation. + + All three flavors of wide_int are represented as a vector of + HOST_WIDE_INTs. The default and widest_int vectors contain enough elements + to hold a value of MAX_BITSIZE_MODE_ANY_INT bits. offset_int contains only + enough elements to hold ADDR_MAX_PRECISION bits. The values are stored + in the vector with the least significant HOST_BITS_PER_WIDE_INT bits + in element 0. + + The default wide_int contains three fields: the vector (VAL), + the precision and a length (LEN). The length is the number of HWIs + needed to represent the value. widest_int and offset_int have a + constant precision that cannot be changed, so they only store the + VAL and LEN fields. + + Since most integers used in a compiler are small values, it is + generally profitable to use a representation of the value that is + as small as possible. LEN is used to indicate the number of + elements of the vector that are in use. The numbers are stored as + sign extended numbers as a means of compression. Leading + HOST_WIDE_INTs that contain strings of either -1 or 0 are removed + as long as they can be reconstructed from the top bit that is being + represented. + + The precision and length of a wide_int are always greater than 0. + Any bits in a wide_int above the precision are sign-extended from the + most significant bit. For example, a 4-bit value 0x8 is represented as + VAL = { 0xf...fff8 }. However, as an optimization, we allow other integer + constants to be represented with undefined bits above the precision. + This allows INTEGER_CSTs to be pre-extended according to TYPE_SIGN, + so that the INTEGER_CST representation can be used both in TYPE_PRECISION + and in wider precisions. + + There are constructors to create the various forms of wide_int from + trees, rtl and constants. For trees you can simply say: + + tree t = ...; + wide_int x = t; + + However, a little more syntax is required for rtl constants since + they do have an explicit precision. To make an rtl into a + wide_int, you have to pair it with a mode. The canonical way to do + this is with std::make_pair as in: + + rtx r = ... + wide_int x = std::make_pair (r, mode); + + Similarly, a wide_int can only be constructed from a host value if + the target precision is given explicitly, such as in: + + wide_int x = wi::shwi (c, prec); // sign-extend X if necessary + wide_int y = wi::uhwi (c, prec); // zero-extend X if necessary + + However, offset_int and widest_int have an inherent precision and so + can be initialized directly from a host value: + + offset_int x = (int) c; // sign-extend C + widest_int x = (unsigned int) c; // zero-extend C + + It is also possible to do arithmetic directly on trees, rtxes and + constants. For example: + + wi::add (t1, t2); // add equal-sized INTEGER_CSTs t1 and t2 + wi::add (t1, 1); // add 1 to INTEGER_CST t1 + wi::add (r1, r2); // add equal-sized rtx constants r1 and r2 + wi::lshift (1, 100); // 1 << 100 as a widest_int + + Many binary operations place restrictions on the combinations of inputs, + using the following rules: + + - {tree, rtx, wide_int} op {tree, rtx, wide_int} -> wide_int + The inputs must be the same precision. The result is a wide_int + of the same precision + + - {tree, rtx, wide_int} op (un)signed HOST_WIDE_INT -> wide_int + (un)signed HOST_WIDE_INT op {tree, rtx, wide_int} -> wide_int + The HOST_WIDE_INT is extended or truncated to the precision of + the other input. The result is a wide_int of the same precision + as that input. + + - (un)signed HOST_WIDE_INT op (un)signed HOST_WIDE_INT -> widest_int + The inputs are extended to widest_int precision and produce a + widest_int result. + + - offset_int op offset_int -> offset_int + offset_int op (un)signed HOST_WIDE_INT -> offset_int + (un)signed HOST_WIDE_INT op offset_int -> offset_int + + - widest_int op widest_int -> widest_int + widest_int op (un)signed HOST_WIDE_INT -> widest_int + (un)signed HOST_WIDE_INT op widest_int -> widest_int + + Other combinations like: + + - widest_int op offset_int and + - wide_int op offset_int + + are not allowed. The inputs should instead be extended or truncated + so that they match. + + The inputs to comparison functions like wi::eq_p and wi::lts_p + follow the same compatibility rules, although their return types + are different. Unary functions on X produce the same result as + a binary operation X + X. Shift functions X op Y also produce + the same result as X + X; the precision of the shift amount Y + can be arbitrarily different from X. */ + + +#include <utility> +#include "system.h" +#include "hwint.h" +#include "signop.h" +#include "insn-modes.h" + +#if 0 +#define DEBUG_WIDE_INT +#endif + +/* The MAX_BITSIZE_MODE_ANY_INT is automatically generated by a very + early examination of the target's mode file. The WIDE_INT_MAX_ELTS + can accomodate at least 1 more bit so that unsigned numbers of that + mode can be represented. Note that it is still possible to create + fixed_wide_ints that have precisions greater than + MAX_BITSIZE_MODE_ANY_INT. This can be useful when representing a + double-width multiplication result, for example. */ +#define WIDE_INT_MAX_ELTS \ + ((MAX_BITSIZE_MODE_ANY_INT + HOST_BITS_PER_WIDE_INT) / HOST_BITS_PER_WIDE_INT) + +#define WIDE_INT_MAX_PRECISION (WIDE_INT_MAX_ELTS * HOST_BITS_PER_WIDE_INT) + +/* This is the max size of any pointer on any machine. It does not + seem to be as easy to sniff this out of the machine description as + it is for MAX_BITSIZE_MODE_ANY_INT since targets may support + multiple address sizes and may have different address sizes for + different address spaces. However, currently the largest pointer + on any platform is 64 bits. When that changes, then it is likely + that a target hook should be defined so that targets can make this + value larger for those targets. */ +#define ADDR_MAX_BITSIZE 64 + +/* This is the internal precision used when doing any address + arithmetic. The '4' is really 3 + 1. Three of the bits are for + the number of extra bits needed to do bit addresses and single bit is + allow everything to be signed without loosing any precision. Then + everything is rounded up to the next HWI for efficiency. */ +#define ADDR_MAX_PRECISION \ + ((ADDR_MAX_BITSIZE + 4 + HOST_BITS_PER_WIDE_INT - 1) & ~(HOST_BITS_PER_WIDE_INT - 1)) + +/* The number of HWIs needed to store an offset_int. */ +#define OFFSET_INT_ELTS (ADDR_MAX_PRECISION / HOST_BITS_PER_WIDE_INT) + +/* The type of result produced by a binary operation on types T1 and T2. + Defined purely for brevity. */ +#define WI_BINARY_RESULT(T1, T2) \ + typename wi::binary_traits <T1, T2>::result_type + +/* The type of result produced by a unary operation on type T. */ +#define WI_UNARY_RESULT(T) \ + typename wi::unary_traits <T>::result_type + +/* Define a variable RESULT to hold the result of a binary operation on + X and Y, which have types T1 and T2 respectively. Define VAR to + point to the blocks of RESULT. Once the user of the macro has + filled in VAR, it should call RESULT.set_len to set the number + of initialized blocks. */ +#define WI_BINARY_RESULT_VAR(RESULT, VAL, T1, X, T2, Y) \ + WI_BINARY_RESULT (T1, T2) RESULT = \ + wi::int_traits <WI_BINARY_RESULT (T1, T2)>::get_binary_result (X, Y); \ + HOST_WIDE_INT *VAL = RESULT.write_val () + +/* Similar for the result of a unary operation on X, which has type T. */ +#define WI_UNARY_RESULT_VAR(RESULT, VAL, T, X) \ + WI_UNARY_RESULT (T) RESULT = \ + wi::int_traits <WI_UNARY_RESULT (T)>::get_binary_result (X, X); \ + HOST_WIDE_INT *VAL = RESULT.write_val () + +template <typename T> struct generic_wide_int; +template <int N> struct fixed_wide_int_storage; +struct wide_int_storage; + +/* An N-bit integer. Until we can use typedef templates, use this instead. */ +#define FIXED_WIDE_INT(N) \ + generic_wide_int < fixed_wide_int_storage <N> > + +typedef generic_wide_int <wide_int_storage> wide_int; +typedef FIXED_WIDE_INT (ADDR_MAX_PRECISION) offset_int; +typedef FIXED_WIDE_INT (WIDE_INT_MAX_PRECISION) widest_int; + +template <bool SE> +struct wide_int_ref_storage; + +typedef generic_wide_int <wide_int_ref_storage <false> > wide_int_ref; + +/* This can be used instead of wide_int_ref if the referenced value is + known to have type T. It carries across properties of T's representation, + such as whether excess upper bits in a HWI are defined, and can therefore + help avoid redundant work. + + The macro could be replaced with a template typedef, once we're able + to use those. */ +#define WIDE_INT_REF_FOR(T) \ + generic_wide_int \ + <wide_int_ref_storage <wi::int_traits <T>::is_sign_extended> > + +namespace wi +{ + /* Classifies an integer based on its precision. */ + enum precision_type { + /* The integer has both a precision and defined signedness. This allows + the integer to be converted to any width, since we know whether to fill + any extra bits with zeros or signs. */ + FLEXIBLE_PRECISION, + + /* The integer has a variable precision but no defined signedness. */ + VAR_PRECISION, + + /* The integer has a constant precision (known at GCC compile time) + but no defined signedness. */ + CONST_PRECISION + }; + + /* This class, which has no default implementation, is expected to + provide the following members: + + static const enum precision_type precision_type; + Classifies the type of T. + + static const unsigned int precision; + Only defined if precision_type == CONST_PRECISION. Specifies the + precision of all integers of type T. + + static const bool host_dependent_precision; + True if the precision of T depends (or can depend) on the host. + + static unsigned int get_precision (const T &x) + Return the number of bits in X. + + static wi::storage_ref *decompose (HOST_WIDE_INT *scratch, + unsigned int precision, const T &x) + Decompose X as a PRECISION-bit integer, returning the associated + wi::storage_ref. SCRATCH is available as scratch space if needed. + The routine should assert that PRECISION is acceptable. */ + template <typename T> struct int_traits; + + /* This class provides a single type, result_type, which specifies the + type of integer produced by a binary operation whose inputs have + types T1 and T2. The definition should be symmetric. */ + template <typename T1, typename T2, + enum precision_type P1 = int_traits <T1>::precision_type, + enum precision_type P2 = int_traits <T2>::precision_type> + struct binary_traits; + + /* The result of a unary operation on T is the same as the result of + a binary operation on two values of type T. */ + template <typename T> + struct unary_traits : public binary_traits <T, T> {}; + + /* Specify the result type for each supported combination of binary + inputs. Note that CONST_PRECISION and VAR_PRECISION cannot be + mixed, in order to give stronger type checking. When both inputs + are CONST_PRECISION, they must have the same precision. */ + template <> + template <typename T1, typename T2> + struct binary_traits <T1, T2, FLEXIBLE_PRECISION, FLEXIBLE_PRECISION> + { + typedef widest_int result_type; + }; + + template <> + template <typename T1, typename T2> + struct binary_traits <T1, T2, FLEXIBLE_PRECISION, VAR_PRECISION> + { + typedef wide_int result_type; + }; + + template <> + template <typename T1, typename T2> + struct binary_traits <T1, T2, FLEXIBLE_PRECISION, CONST_PRECISION> + { + /* Spelled out explicitly (rather than through FIXED_WIDE_INT) + so as not to confuse gengtype. */ + typedef generic_wide_int < fixed_wide_int_storage + <int_traits <T2>::precision> > result_type; + }; + + template <> + template <typename T1, typename T2> + struct binary_traits <T1, T2, VAR_PRECISION, FLEXIBLE_PRECISION> + { + typedef wide_int result_type; + }; + + template <> + template <typename T1, typename T2> + struct binary_traits <T1, T2, CONST_PRECISION, FLEXIBLE_PRECISION> + { + /* Spelled out explicitly (rather than through FIXED_WIDE_INT) + so as not to confuse gengtype. */ + typedef generic_wide_int < fixed_wide_int_storage + <int_traits <T1>::precision> > result_type; + }; + + template <> + template <typename T1, typename T2> + struct binary_traits <T1, T2, CONST_PRECISION, CONST_PRECISION> + { + /* Spelled out explicitly (rather than through FIXED_WIDE_INT) + so as not to confuse gengtype. */ + STATIC_ASSERT (int_traits <T1>::precision == int_traits <T2>::precision); + typedef generic_wide_int < fixed_wide_int_storage + <int_traits <T1>::precision> > result_type; + }; + + template <> + template <typename T1, typename T2> + struct binary_traits <T1, T2, VAR_PRECISION, VAR_PRECISION> + { + typedef wide_int result_type; + }; +} + +/* Public functions for querying and operating on integers. */ +namespace wi +{ + template <typename T> + unsigned int get_precision (const T &); + + template <typename T1, typename T2> + unsigned int get_binary_precision (const T1 &, const T2 &); + + template <typename T1, typename T2> + void copy (T1 &, const T2 &); + +#define UNARY_PREDICATE \ + template <typename T> bool +#define UNARY_FUNCTION \ + template <typename T> WI_UNARY_RESULT (T) +#define BINARY_PREDICATE \ + template <typename T1, typename T2> bool +#define BINARY_FUNCTION \ + template <typename T1, typename T2> WI_BINARY_RESULT (T1, T2) +#define SHIFT_FUNCTION \ + template <typename T1, typename T2> WI_UNARY_RESULT (T1) + + UNARY_PREDICATE fits_shwi_p (const T &); + UNARY_PREDICATE fits_uhwi_p (const T &); + UNARY_PREDICATE neg_p (const T &, signop = SIGNED); + + template <typename T> + HOST_WIDE_INT sign_mask (const T &); + + BINARY_PREDICATE eq_p (const T1 &, const T2 &); + BINARY_PREDICATE ne_p (const T1 &, const T2 &); + BINARY_PREDICATE lt_p (const T1 &, const T2 &, signop); + BINARY_PREDICATE lts_p (const T1 &, const T2 &); + BINARY_PREDICATE ltu_p (const T1 &, const T2 &); + BINARY_PREDICATE le_p (const T1 &, const T2 &, signop); + BINARY_PREDICATE les_p (const T1 &, const T2 &); + BINARY_PREDICATE leu_p (const T1 &, const T2 &); + BINARY_PREDICATE gt_p (const T1 &, const T2 &, signop); + BINARY_PREDICATE gts_p (const T1 &, const T2 &); + BINARY_PREDICATE gtu_p (const T1 &, const T2 &); + BINARY_PREDICATE ge_p (const T1 &, const T2 &, signop); + BINARY_PREDICATE ges_p (const T1 &, const T2 &); + BINARY_PREDICATE geu_p (const T1 &, const T2 &); + + template <typename T1, typename T2> + int cmp (const T1 &, const T2 &, signop); + + template <typename T1, typename T2> + int cmps (const T1 &, const T2 &); + + template <typename T1, typename T2> + int cmpu (const T1 &, const T2 &); + + UNARY_FUNCTION bit_not (const T &); + UNARY_FUNCTION neg (const T &); + UNARY_FUNCTION neg (const T &, bool *); + UNARY_FUNCTION abs (const T &); + UNARY_FUNCTION ext (const T &, unsigned int, signop); + UNARY_FUNCTION sext (const T &, unsigned int); + UNARY_FUNCTION zext (const T &, unsigned int); + UNARY_FUNCTION set_bit (const T &, unsigned int); + + BINARY_FUNCTION min (const T1 &, const T2 &, signop); + BINARY_FUNCTION smin (const T1 &, const T2 &); + BINARY_FUNCTION umin (const T1 &, const T2 &); + BINARY_FUNCTION max (const T1 &, const T2 &, signop); + BINARY_FUNCTION smax (const T1 &, const T2 &); + BINARY_FUNCTION umax (const T1 &, const T2 &); + + BINARY_FUNCTION bit_and (const T1 &, const T2 &); + BINARY_FUNCTION bit_and_not (const T1 &, const T2 &); + BINARY_FUNCTION bit_or (const T1 &, const T2 &); + BINARY_FUNCTION bit_or_not (const T1 &, const T2 &); + BINARY_FUNCTION bit_xor (const T1 &, const T2 &); + BINARY_FUNCTION add (const T1 &, const T2 &); + BINARY_FUNCTION add (const T1 &, const T2 &, signop, bool *); + BINARY_FUNCTION sub (const T1 &, const T2 &); + BINARY_FUNCTION sub (const T1 &, const T2 &, signop, bool *); + BINARY_FUNCTION mul (const T1 &, const T2 &); + BINARY_FUNCTION mul (const T1 &, const T2 &, signop, bool *); + BINARY_FUNCTION smul (const T1 &, const T2 &, bool *); + BINARY_FUNCTION umul (const T1 &, const T2 &, bool *); + BINARY_FUNCTION mul_high (const T1 &, const T2 &, signop); + BINARY_FUNCTION div_trunc (const T1 &, const T2 &, signop, bool * = 0); + BINARY_FUNCTION sdiv_trunc (const T1 &, const T2 &); + BINARY_FUNCTION udiv_trunc (const T1 &, const T2 &); + BINARY_FUNCTION div_floor (const T1 &, const T2 &, signop, bool * = 0); + BINARY_FUNCTION udiv_floor (const T1 &, const T2 &); + BINARY_FUNCTION sdiv_floor (const T1 &, const T2 &); + BINARY_FUNCTION div_ceil (const T1 &, const T2 &, signop, bool * = 0); + BINARY_FUNCTION div_round (const T1 &, const T2 &, signop, bool * = 0); + BINARY_FUNCTION divmod_trunc (const T1 &, const T2 &, signop, + WI_BINARY_RESULT (T1, T2) *); + BINARY_FUNCTION mod_trunc (const T1 &, const T2 &, signop, bool * = 0); + BINARY_FUNCTION smod_trunc (const T1 &, const T2 &); + BINARY_FUNCTION umod_trunc (const T1 &, const T2 &); + BINARY_FUNCTION mod_floor (const T1 &, const T2 &, signop, bool * = 0); + BINARY_FUNCTION umod_floor (const T1 &, const T2 &); + BINARY_FUNCTION mod_ceil (const T1 &, const T2 &, signop, bool * = 0); + BINARY_FUNCTION mod_round (const T1 &, const T2 &, signop, bool * = 0); + + template <typename T1, typename T2> + bool multiple_of_p (const T1 &, const T2 &, signop, + WI_BINARY_RESULT (T1, T2) *); + + SHIFT_FUNCTION lshift (const T1 &, const T2 &); + SHIFT_FUNCTION lrshift (const T1 &, const T2 &); + SHIFT_FUNCTION arshift (const T1 &, const T2 &); + SHIFT_FUNCTION rshift (const T1 &, const T2 &, signop sgn); + SHIFT_FUNCTION lrotate (const T1 &, const T2 &, unsigned int = 0); + SHIFT_FUNCTION rrotate (const T1 &, const T2 &, unsigned int = 0); + +#undef SHIFT_FUNCTION +#undef BINARY_PREDICATE +#undef BINARY_FUNCTION +#undef UNARY_PREDICATE +#undef UNARY_FUNCTION + + bool only_sign_bit_p (const wide_int_ref &, unsigned int); + bool only_sign_bit_p (const wide_int_ref &); + int clz (const wide_int_ref &); + int clrsb (const wide_int_ref &); + int ctz (const wide_int_ref &); + int exact_log2 (const wide_int_ref &); + int floor_log2 (const wide_int_ref &); + int ffs (const wide_int_ref &); + int popcount (const wide_int_ref &); + int parity (const wide_int_ref &); + + template <typename T> + unsigned HOST_WIDE_INT extract_uhwi (const T &, unsigned int, unsigned int); +} + +namespace wi +{ + /* Contains the components of a decomposed integer for easy, direct + access. */ + struct storage_ref + { + storage_ref (const HOST_WIDE_INT *, unsigned int, unsigned int); + + const HOST_WIDE_INT *val; + unsigned int len; + unsigned int precision; + + /* Provide enough trappings for this class to act as storage for + generic_wide_int. */ + unsigned int get_len () const; + unsigned int get_precision () const; + const HOST_WIDE_INT *get_val () const; + }; +} + +inline::wi::storage_ref::storage_ref (const HOST_WIDE_INT *val_in, + unsigned int len_in, + unsigned int precision_in) + : val (val_in), len (len_in), precision (precision_in) +{ +} + +inline unsigned int +wi::storage_ref::get_len () const +{ + return len; +} + +inline unsigned int +wi::storage_ref::get_precision () const +{ + return precision; +} + +inline const HOST_WIDE_INT * +wi::storage_ref::get_val () const +{ + return val; +} + +/* This class defines an integer type using the storage provided by the + template argument. The storage class must provide the following + functions: + + unsigned int get_precision () const + Return the number of bits in the integer. + + HOST_WIDE_INT *get_val () const + Return a pointer to the array of blocks that encodes the integer. + + unsigned int get_len () const + Return the number of blocks in get_val (). If this is smaller + than the number of blocks implied by get_precision (), the + remaining blocks are sign extensions of block get_len () - 1. + + Although not required by generic_wide_int itself, writable storage + classes can also provide the following functions: + + HOST_WIDE_INT *write_val () + Get a modifiable version of get_val () + + unsigned int set_len (unsigned int len) + Set the value returned by get_len () to LEN. */ +template <typename storage> +class GTY(()) generic_wide_int : public storage +{ +public: + generic_wide_int (); + + template <typename T> + generic_wide_int (const T &); + + template <typename T> + generic_wide_int (const T &, unsigned int); + + /* Conversions. */ + HOST_WIDE_INT to_shwi (unsigned int) const; + HOST_WIDE_INT to_shwi () const; + unsigned HOST_WIDE_INT to_uhwi (unsigned int) const; + unsigned HOST_WIDE_INT to_uhwi () const; + HOST_WIDE_INT to_short_addr () const; + + /* Public accessors for the interior of a wide int. */ + HOST_WIDE_INT sign_mask () const; + HOST_WIDE_INT elt (unsigned int) const; + unsigned HOST_WIDE_INT ulow () const; + unsigned HOST_WIDE_INT uhigh () const; + HOST_WIDE_INT slow () const; + HOST_WIDE_INT shigh () const; + + template <typename T> + generic_wide_int &operator = (const T &); + +#define BINARY_PREDICATE(OP, F) \ + template <typename T> \ + bool OP (const T &c) const { return wi::F (*this, c); } + +#define UNARY_OPERATOR(OP, F) \ + WI_UNARY_RESULT (generic_wide_int) OP () const { return wi::F (*this); } + +#define BINARY_OPERATOR(OP, F) \ + template <typename T> \ + WI_BINARY_RESULT (generic_wide_int, T) \ + OP (const T &c) const { return wi::F (*this, c); } + +#define ASSIGNMENT_OPERATOR(OP, F) \ + template <typename T> \ + generic_wide_int &OP (const T &c) { return (*this = wi::F (*this, c)); } + +#define INCDEC_OPERATOR(OP, DELTA) \ + generic_wide_int &OP () { *this += DELTA; return *this; } + + UNARY_OPERATOR (operator ~, bit_not) + UNARY_OPERATOR (operator -, neg) + BINARY_PREDICATE (operator ==, eq_p) + BINARY_PREDICATE (operator !=, ne_p) + BINARY_OPERATOR (operator &, bit_and) + BINARY_OPERATOR (and_not, bit_and_not) + BINARY_OPERATOR (operator |, bit_or) + BINARY_OPERATOR (or_not, bit_or_not) + BINARY_OPERATOR (operator ^, bit_xor) + BINARY_OPERATOR (operator +, add) + BINARY_OPERATOR (operator -, sub) + BINARY_OPERATOR (operator *, mul) + ASSIGNMENT_OPERATOR (operator &=, bit_and) + ASSIGNMENT_OPERATOR (operator |=, bit_or) + ASSIGNMENT_OPERATOR (operator ^=, bit_xor) + ASSIGNMENT_OPERATOR (operator +=, add) + ASSIGNMENT_OPERATOR (operator -=, sub) + ASSIGNMENT_OPERATOR (operator *=, mul) + INCDEC_OPERATOR (operator ++, 1) + INCDEC_OPERATOR (operator --, -1) + +#undef BINARY_PREDICATE +#undef UNARY_OPERATOR +#undef BINARY_OPERATOR +#undef ASSIGNMENT_OPERATOR +#undef INCDEC_OPERATOR + + char *dump (char *) const; + + static const bool is_sign_extended + = wi::int_traits <generic_wide_int <storage> >::is_sign_extended; +}; + +template <typename storage> +inline generic_wide_int <storage>::generic_wide_int () {} + +template <typename storage> +template <typename T> +inline generic_wide_int <storage>::generic_wide_int (const T &x) + : storage (x) +{ +} + +template <typename storage> +template <typename T> +inline generic_wide_int <storage>::generic_wide_int (const T &x, + unsigned int precision) + : storage (x, precision) +{ +} + +/* Return THIS as a signed HOST_WIDE_INT, sign-extending from PRECISION. + If THIS does not fit in PRECISION, the information is lost. */ +template <typename storage> +inline HOST_WIDE_INT +generic_wide_int <storage>::to_shwi (unsigned int precision) const +{ + if (precision < HOST_BITS_PER_WIDE_INT) + return sext_hwi (this->get_val ()[0], precision); + else + return this->get_val ()[0]; +} + +/* Return THIS as a signed HOST_WIDE_INT, in its natural precision. */ +template <typename storage> +inline HOST_WIDE_INT +generic_wide_int <storage>::to_shwi () const +{ + if (is_sign_extended) + return this->get_val ()[0]; + else + return to_shwi (this->get_precision ()); +} + +/* Return THIS as an unsigned HOST_WIDE_INT, zero-extending from + PRECISION. If THIS does not fit in PRECISION, the information + is lost. */ +template <typename storage> +inline unsigned HOST_WIDE_INT +generic_wide_int <storage>::to_uhwi (unsigned int precision) const +{ + if (precision < HOST_BITS_PER_WIDE_INT) + return zext_hwi (this->get_val ()[0], precision); + else + return this->get_val ()[0]; +} + +/* Return THIS as an signed HOST_WIDE_INT, in its natural precision. */ +template <typename storage> +inline unsigned HOST_WIDE_INT +generic_wide_int <storage>::to_uhwi () const +{ + return to_uhwi (this->get_precision ()); +} + +/* TODO: The compiler is half converted from using HOST_WIDE_INT to + represent addresses to using offset_int to represent addresses. + We use to_short_addr at the interface from new code to old, + unconverted code. */ +template <typename storage> +inline HOST_WIDE_INT +generic_wide_int <storage>::to_short_addr () const +{ + return this->get_val ()[0]; +} + +/* Return the implicit value of blocks above get_len (). */ +template <typename storage> +inline HOST_WIDE_INT +generic_wide_int <storage>::sign_mask () const +{ + unsigned int len = this->get_len (); + unsigned HOST_WIDE_INT high = this->get_val ()[len - 1]; + if (!is_sign_extended) + { + unsigned int precision = this->get_precision (); + int excess = len * HOST_BITS_PER_WIDE_INT - precision; + if (excess > 0) + high <<= excess; + } + return HOST_WIDE_INT (high) < 0 ? -1 : 0; +} + +/* Return the signed value of the least-significant explicitly-encoded + block. */ +template <typename storage> +inline HOST_WIDE_INT +generic_wide_int <storage>::slow () const +{ + return this->get_val ()[0]; +} + +/* Return the signed value of the most-significant explicitly-encoded + block. */ +template <typename storage> +inline HOST_WIDE_INT +generic_wide_int <storage>::shigh () const +{ + return this->get_val ()[this->get_len () - 1]; +} + +/* Return the unsigned value of the least-significant + explicitly-encoded block. */ +template <typename storage> +inline unsigned HOST_WIDE_INT +generic_wide_int <storage>::ulow () const +{ + return this->get_val ()[0]; +} + +/* Return the unsigned value of the most-significant + explicitly-encoded block. */ +template <typename storage> +inline unsigned HOST_WIDE_INT +generic_wide_int <storage>::uhigh () const +{ + return this->get_val ()[this->get_len () - 1]; +} + +/* Return block I, which might be implicitly or explicit encoded. */ +template <typename storage> +inline HOST_WIDE_INT +generic_wide_int <storage>::elt (unsigned int i) const +{ + if (i >= this->get_len ()) + return sign_mask (); + else + return this->get_val ()[i]; +} + +template <typename storage> +template <typename T> +generic_wide_int <storage> & +generic_wide_int <storage>::operator = (const T &x) +{ + storage::operator = (x); + return *this; +} + +namespace wi +{ + template <> + template <typename storage> + struct int_traits < generic_wide_int <storage> > + : public wi::int_traits <storage> + { + static unsigned int get_precision (const generic_wide_int <storage> &); + static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int, + const generic_wide_int <storage> &); + }; +} + +template <typename storage> +inline unsigned int +wi::int_traits < generic_wide_int <storage> >:: +get_precision (const generic_wide_int <storage> &x) +{ + return x.get_precision (); +} + +template <typename storage> +inline wi::storage_ref +wi::int_traits < generic_wide_int <storage> >:: +decompose (HOST_WIDE_INT *, unsigned int precision, + const generic_wide_int <storage> &x) +{ + gcc_checking_assert (precision == x.get_precision ()); + return wi::storage_ref (x.get_val (), x.get_len (), precision); +} + +/* Provide the storage for a wide_int_ref. This acts like a read-only + wide_int, with the optimization that VAL is normally a pointer to + another integer's storage, so that no array copy is needed. */ +template <bool SE> +struct wide_int_ref_storage : public wi::storage_ref +{ +private: + /* Scratch space that can be used when decomposing the original integer. + It must live as long as this object. */ + HOST_WIDE_INT scratch[2]; + +public: + wide_int_ref_storage (const wi::storage_ref &); + + template <typename T> + wide_int_ref_storage (const T &); + + template <typename T> + wide_int_ref_storage (const T &, unsigned int); +}; + +/* Create a reference from an existing reference. */ +template <bool SE> +inline wide_int_ref_storage <SE>:: +wide_int_ref_storage (const wi::storage_ref &x) + : storage_ref (x) +{} + +/* Create a reference to integer X in its natural precision. Note + that the natural precision is host-dependent for primitive + types. */ +template <bool SE> +template <typename T> +inline wide_int_ref_storage <SE>::wide_int_ref_storage (const T &x) + : storage_ref (wi::int_traits <T>::decompose (scratch, + wi::get_precision (x), x)) +{ +} + +/* Create a reference to integer X in precision PRECISION. */ +template <bool SE> +template <typename T> +inline wide_int_ref_storage <SE>::wide_int_ref_storage (const T &x, + unsigned int precision) + : storage_ref (wi::int_traits <T>::decompose (scratch, precision, x)) +{ +} + +namespace wi +{ + template <> + template <bool SE> + struct int_traits <wide_int_ref_storage <SE> > + { + static const enum precision_type precision_type = VAR_PRECISION; + /* wi::storage_ref can be a reference to a primitive type, + so this is the conservatively-correct setting. */ + static const bool host_dependent_precision = true; + static const bool is_sign_extended = SE; + }; +} + +namespace wi +{ + unsigned int force_to_size (HOST_WIDE_INT *, const HOST_WIDE_INT *, + unsigned int, unsigned int, unsigned int, + signop sgn); + unsigned int from_array (HOST_WIDE_INT *, const HOST_WIDE_INT *, + unsigned int, unsigned int, bool = true); +} + +/* The storage used by wide_int. */ +class GTY(()) wide_int_storage +{ +private: + HOST_WIDE_INT val[WIDE_INT_MAX_ELTS]; + unsigned int len; + unsigned int precision; + +public: + wide_int_storage (); + template <typename T> + wide_int_storage (const T &); + + /* The standard generic_wide_int storage methods. */ + unsigned int get_precision () const; + const HOST_WIDE_INT *get_val () const; + unsigned int get_len () const; + HOST_WIDE_INT *write_val (); + void set_len (unsigned int, bool = false); + + static wide_int from (const wide_int_ref &, unsigned int, signop); + static wide_int from_array (const HOST_WIDE_INT *, unsigned int, + unsigned int, bool = true); + static wide_int create (unsigned int); + + /* FIXME: target-dependent, so should disappear. */ + wide_int bswap () const; +}; + +namespace wi +{ + template <> + struct int_traits <wide_int_storage> + { + static const enum precision_type precision_type = VAR_PRECISION; + /* Guaranteed by a static assert in the wide_int_storage constructor. */ + static const bool host_dependent_precision = false; + static const bool is_sign_extended = true; + template <typename T1, typename T2> + static wide_int get_binary_result (const T1 &, const T2 &); + }; +} + +inline wide_int_storage::wide_int_storage () {} + +/* Initialize the storage from integer X, in its natural precision. + Note that we do not allow integers with host-dependent precision + to become wide_ints; wide_ints must always be logically independent + of the host. */ +template <typename T> +inline wide_int_storage::wide_int_storage (const T &x) +{ + STATIC_ASSERT (!wi::int_traits<T>::host_dependent_precision); + WIDE_INT_REF_FOR (T) xi (x); + precision = xi.precision; + wi::copy (*this, xi); +} + +inline unsigned int +wide_int_storage::get_precision () const +{ + return precision; +} + +inline const HOST_WIDE_INT * +wide_int_storage::get_val () const +{ + return val; +} + +inline unsigned int +wide_int_storage::get_len () const +{ + return len; +} + +inline HOST_WIDE_INT * +wide_int_storage::write_val () +{ + return val; +} + +inline void +wide_int_storage::set_len (unsigned int l, bool is_sign_extended) +{ + len = l; + if (!is_sign_extended && len * HOST_BITS_PER_WIDE_INT > precision) + val[len - 1] = sext_hwi (val[len - 1], + precision % HOST_BITS_PER_WIDE_INT); +} + +/* Treat X as having signedness SGN and convert it to a PRECISION-bit + number. */ +inline wide_int +wide_int_storage::from (const wide_int_ref &x, unsigned int precision, + signop sgn) +{ + wide_int result = wide_int::create (precision); + result.set_len (wi::force_to_size (result.write_val (), x.val, x.len, + x.precision, precision, sgn)); + return result; +} + +/* Create a wide_int from the explicit block encoding given by VAL and + LEN. PRECISION is the precision of the integer. NEED_CANON_P is + true if the encoding may have redundant trailing blocks. */ +inline wide_int +wide_int_storage::from_array (const HOST_WIDE_INT *val, unsigned int len, + unsigned int precision, bool need_canon_p) +{ + wide_int result = wide_int::create (precision); + result.set_len (wi::from_array (result.write_val (), val, len, precision, + need_canon_p)); + return result; +} + +/* Return an uninitialized wide_int with precision PRECISION. */ +inline wide_int +wide_int_storage::create (unsigned int precision) +{ + wide_int x; + x.precision = precision; + return x; +} + +template <typename T1, typename T2> +inline wide_int +wi::int_traits <wide_int_storage>::get_binary_result (const T1 &x, const T2 &y) +{ + /* This shouldn't be used for two flexible-precision inputs. */ + STATIC_ASSERT (wi::int_traits <T1>::precision_type != FLEXIBLE_PRECISION + || wi::int_traits <T2>::precision_type != FLEXIBLE_PRECISION); + if (wi::int_traits <T1>::precision_type == FLEXIBLE_PRECISION) + return wide_int::create (wi::get_precision (y)); + else + return wide_int::create (wi::get_precision (x)); +} + +/* The storage used by FIXED_WIDE_INT (N). */ +template <int N> +class GTY(()) fixed_wide_int_storage +{ +private: + HOST_WIDE_INT val[(N + HOST_BITS_PER_WIDE_INT + 1) / HOST_BITS_PER_WIDE_INT]; + unsigned int len; + +public: + fixed_wide_int_storage (); + template <typename T> + fixed_wide_int_storage (const T &); + + /* The standard generic_wide_int storage methods. */ + unsigned int get_precision () const; + const HOST_WIDE_INT *get_val () const; + unsigned int get_len () const; + HOST_WIDE_INT *write_val (); + void set_len (unsigned int, bool = false); + + static FIXED_WIDE_INT (N) from (const wide_int_ref &, signop); + static FIXED_WIDE_INT (N) from_array (const HOST_WIDE_INT *, unsigned int, + bool = true); +}; + +namespace wi +{ + template <> + template <int N> + struct int_traits < fixed_wide_int_storage <N> > + { + static const enum precision_type precision_type = CONST_PRECISION; + static const bool host_dependent_precision = false; + static const bool is_sign_extended = true; + static const unsigned int precision = N; + template <typename T1, typename T2> + static FIXED_WIDE_INT (N) get_binary_result (const T1 &, const T2 &); + }; +} + +template <int N> +inline fixed_wide_int_storage <N>::fixed_wide_int_storage () {} + +/* Initialize the storage from integer X, in precision N. */ +template <int N> +template <typename T> +inline fixed_wide_int_storage <N>::fixed_wide_int_storage (const T &x) +{ + /* Check for type compatibility. We don't want to initialize a + fixed-width integer from something like a wide_int. */ + WI_BINARY_RESULT (T, FIXED_WIDE_INT (N)) *assertion ATTRIBUTE_UNUSED; + wi::copy (*this, WIDE_INT_REF_FOR (T) (x, N)); +} + +template <int N> +inline unsigned int +fixed_wide_int_storage <N>::get_precision () const +{ + return N; +} + +template <int N> +inline const HOST_WIDE_INT * +fixed_wide_int_storage <N>::get_val () const +{ + return val; +} + +template <int N> +inline unsigned int +fixed_wide_int_storage <N>::get_len () const +{ + return len; +} + +template <int N> +inline HOST_WIDE_INT * +fixed_wide_int_storage <N>::write_val () +{ + return val; +} + +template <int N> +inline void +fixed_wide_int_storage <N>::set_len (unsigned int l, bool) +{ + len = l; + /* There are no excess bits in val[len - 1]. */ + STATIC_ASSERT (N % HOST_BITS_PER_WIDE_INT == 0); +} + +/* Treat X as having signedness SGN and convert it to an N-bit number. */ +template <int N> +inline FIXED_WIDE_INT (N) +fixed_wide_int_storage <N>::from (const wide_int_ref &x, signop sgn) +{ + FIXED_WIDE_INT (N) result; + result.set_len (wi::force_to_size (result.write_val (), x.val, x.len, + x.precision, N, sgn)); + return result; +} + +/* Create a FIXED_WIDE_INT (N) from the explicit block encoding given by + VAL and LEN. NEED_CANON_P is true if the encoding may have redundant + trailing blocks. */ +template <int N> +inline FIXED_WIDE_INT (N) +fixed_wide_int_storage <N>::from_array (const HOST_WIDE_INT *val, + unsigned int len, + bool need_canon_p) +{ + FIXED_WIDE_INT (N) result; + result.set_len (wi::from_array (result.write_val (), val, len, + N, need_canon_p)); + return result; +} + +template <int N> +template <typename T1, typename T2> +inline FIXED_WIDE_INT (N) +wi::int_traits < fixed_wide_int_storage <N> >:: +get_binary_result (const T1 &, const T2 &) +{ + return FIXED_WIDE_INT (N) (); +} + +/* A reference to one element of a trailing_wide_ints structure. */ +class trailing_wide_int_storage +{ +private: + /* The precision of the integer, which is a fixed property of the + parent trailing_wide_ints. */ + unsigned int m_precision; + + /* A pointer to the length field. */ + unsigned char *m_len; + + /* A pointer to the HWI array. There are enough elements to hold all + values of precision M_PRECISION. */ + HOST_WIDE_INT *m_val; + +public: + trailing_wide_int_storage (unsigned int, unsigned char *, HOST_WIDE_INT *); + + /* The standard generic_wide_int storage methods. */ + unsigned int get_len () const; + unsigned int get_precision () const; + const HOST_WIDE_INT *get_val () const; + HOST_WIDE_INT *write_val (); + void set_len (unsigned int, bool = false); + + template <typename T> + trailing_wide_int_storage &operator = (const T &); +}; + +typedef generic_wide_int <trailing_wide_int_storage> trailing_wide_int; + +/* trailing_wide_int behaves like a wide_int. */ +namespace wi +{ + template <> + struct int_traits <trailing_wide_int_storage> + : public int_traits <wide_int_storage> {}; +} + +/* An array of N wide_int-like objects that can be put at the end of + a variable-sized structure. Use extra_size to calculate how many + bytes beyond the sizeof need to be allocated. Use set_precision + to initialize the structure. */ +template <int N> +class GTY(()) trailing_wide_ints +{ +private: + /* The shared precision of each number. */ + unsigned short m_precision; + + /* The shared maximum length of each number. */ + unsigned char m_max_len; + + /* The current length of each number. */ + unsigned char m_len[N]; + + /* The variable-length part of the structure, which always contains + at least one HWI. Element I starts at index I * M_MAX_LEN. */ + HOST_WIDE_INT m_val[1]; + +public: + void set_precision (unsigned int); + trailing_wide_int operator [] (unsigned int); + static size_t extra_size (unsigned int); +}; + +inline trailing_wide_int_storage:: +trailing_wide_int_storage (unsigned int precision, unsigned char *len, + HOST_WIDE_INT *val) + : m_precision (precision), m_len (len), m_val (val) +{ +} + +inline unsigned int +trailing_wide_int_storage::get_len () const +{ + return *m_len; +} + +inline unsigned int +trailing_wide_int_storage::get_precision () const +{ + return m_precision; +} + +inline const HOST_WIDE_INT * +trailing_wide_int_storage::get_val () const +{ + return m_val; +} + +inline HOST_WIDE_INT * +trailing_wide_int_storage::write_val () +{ + return m_val; +} + +inline void +trailing_wide_int_storage::set_len (unsigned int len, bool is_sign_extended) +{ + *m_len = len; + if (!is_sign_extended && len * HOST_BITS_PER_WIDE_INT > m_precision) + m_val[len - 1] = sext_hwi (m_val[len - 1], + m_precision % HOST_BITS_PER_WIDE_INT); +} + +template <typename T> +inline trailing_wide_int_storage & +trailing_wide_int_storage::operator = (const T &x) +{ + WIDE_INT_REF_FOR (T) xi (x, m_precision); + wi::copy (*this, xi); + return *this; +} + +/* Initialize the structure and record that all elements have precision + PRECISION. */ +template <int N> +inline void +trailing_wide_ints <N>::set_precision (unsigned int precision) +{ + m_precision = precision; + m_max_len = ((precision + HOST_BITS_PER_WIDE_INT - 1) + / HOST_BITS_PER_WIDE_INT); +} + +/* Return a reference to element INDEX. */ +template <int N> +inline trailing_wide_int +trailing_wide_ints <N>::operator [] (unsigned int index) +{ + return trailing_wide_int_storage (m_precision, &m_len[index], + &m_val[index * m_max_len]); +} + +/* Return how many extra bytes need to be added to the end of the structure + in order to handle N wide_ints of precision PRECISION. */ +template <int N> +inline size_t +trailing_wide_ints <N>::extra_size (unsigned int precision) +{ + unsigned int max_len = ((precision + HOST_BITS_PER_WIDE_INT - 1) + / HOST_BITS_PER_WIDE_INT); + return (N * max_len - 1) * sizeof (HOST_WIDE_INT); +} + +/* This macro is used in structures that end with a trailing_wide_ints field + called FIELD. It declares get_NAME() and set_NAME() methods to access + element I of FIELD. */ +#define TRAILING_WIDE_INT_ACCESSOR(NAME, FIELD, I) \ + trailing_wide_int get_##NAME () { return FIELD[I]; } \ + template <typename T> void set_##NAME (const T &x) { FIELD[I] = x; } + +namespace wi +{ + /* Implementation of int_traits for primitive integer types like "int". */ + template <typename T, bool signed_p> + struct primitive_int_traits + { + static const enum precision_type precision_type = FLEXIBLE_PRECISION; + static const bool host_dependent_precision = true; + static const bool is_sign_extended = true; + static unsigned int get_precision (T); + static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int, T); + }; +} + +template <typename T, bool signed_p> +inline unsigned int +wi::primitive_int_traits <T, signed_p>::get_precision (T) +{ + return sizeof (T) * CHAR_BIT; +} + +template <typename T, bool signed_p> +inline wi::storage_ref +wi::primitive_int_traits <T, signed_p>::decompose (HOST_WIDE_INT *scratch, + unsigned int precision, T x) +{ + scratch[0] = x; + if (signed_p || scratch[0] >= 0 || precision <= HOST_BITS_PER_WIDE_INT) + return wi::storage_ref (scratch, 1, precision); + scratch[1] = 0; + return wi::storage_ref (scratch, 2, precision); +} + +/* Allow primitive C types to be used in wi:: routines. */ +namespace wi +{ + template <> + struct int_traits <int> + : public primitive_int_traits <int, true> {}; + + template <> + struct int_traits <unsigned int> + : public primitive_int_traits <unsigned int, false> {}; + +#if HOST_BITS_PER_INT != HOST_BITS_PER_WIDE_INT + template <> + struct int_traits <HOST_WIDE_INT> + : public primitive_int_traits <HOST_WIDE_INT, true> {}; + + template <> + struct int_traits <unsigned HOST_WIDE_INT> + : public primitive_int_traits <unsigned HOST_WIDE_INT, false> {}; +#endif +} + +namespace wi +{ + /* Stores HWI-sized integer VAL, treating it as having signedness SGN + and precision PRECISION. */ + struct hwi_with_prec + { + hwi_with_prec (HOST_WIDE_INT, unsigned int, signop); + HOST_WIDE_INT val; + unsigned int precision; + signop sgn; + }; + + hwi_with_prec shwi (HOST_WIDE_INT, unsigned int); + hwi_with_prec uhwi (unsigned HOST_WIDE_INT, unsigned int); + + hwi_with_prec minus_one (unsigned int); + hwi_with_prec zero (unsigned int); + hwi_with_prec one (unsigned int); + hwi_with_prec two (unsigned int); +} + +inline wi::hwi_with_prec::hwi_with_prec (HOST_WIDE_INT v, unsigned int p, + signop s) + : val (v), precision (p), sgn (s) +{ +} + +/* Return a signed integer that has value VAL and precision PRECISION. */ +inline wi::hwi_with_prec +wi::shwi (HOST_WIDE_INT val, unsigned int precision) +{ + return hwi_with_prec (val, precision, SIGNED); +} + +/* Return an unsigned integer that has value VAL and precision PRECISION. */ +inline wi::hwi_with_prec +wi::uhwi (unsigned HOST_WIDE_INT val, unsigned int precision) +{ + return hwi_with_prec (val, precision, UNSIGNED); +} + +/* Return a wide int of -1 with precision PRECISION. */ +inline wi::hwi_with_prec +wi::minus_one (unsigned int precision) +{ + return wi::shwi (-1, precision); +} + +/* Return a wide int of 0 with precision PRECISION. */ +inline wi::hwi_with_prec +wi::zero (unsigned int precision) +{ + return wi::shwi (0, precision); +} + +/* Return a wide int of 1 with precision PRECISION. */ +inline wi::hwi_with_prec +wi::one (unsigned int precision) +{ + return wi::shwi (1, precision); +} + +/* Return a wide int of 2 with precision PRECISION. */ +inline wi::hwi_with_prec +wi::two (unsigned int precision) +{ + return wi::shwi (2, precision); +} + +namespace wi +{ + template <> + struct int_traits <wi::hwi_with_prec> + { + static const enum precision_type precision_type = VAR_PRECISION; + /* hwi_with_prec has an explicitly-given precision, rather than the + precision of HOST_WIDE_INT. */ + static const bool host_dependent_precision = false; + static const bool is_sign_extended = true; + static unsigned int get_precision (const wi::hwi_with_prec &); + static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int, + const wi::hwi_with_prec &); + }; +} + +inline unsigned int +wi::int_traits <wi::hwi_with_prec>::get_precision (const wi::hwi_with_prec &x) +{ + return x.precision; +} + +inline wi::storage_ref +wi::int_traits <wi::hwi_with_prec>:: +decompose (HOST_WIDE_INT *scratch, unsigned int precision, + const wi::hwi_with_prec &x) +{ + gcc_checking_assert (precision == x.precision); + scratch[0] = x.val; + if (x.sgn == SIGNED || x.val >= 0 || precision <= HOST_BITS_PER_WIDE_INT) + return wi::storage_ref (scratch, 1, precision); + scratch[1] = 0; + return wi::storage_ref (scratch, 2, precision); +} + +/* Private functions for handling large cases out of line. They take + individual length and array parameters because that is cheaper for + the inline caller than constructing an object on the stack and + passing a reference to it. (Although many callers use wide_int_refs, + we generally want those to be removed by SRA.) */ +namespace wi +{ + bool eq_p_large (const HOST_WIDE_INT *, unsigned int, + const HOST_WIDE_INT *, unsigned int, unsigned int); + bool lts_p_large (const HOST_WIDE_INT *, unsigned int, unsigned int, + const HOST_WIDE_INT *, unsigned int); + bool ltu_p_large (const HOST_WIDE_INT *, unsigned int, unsigned int, + const HOST_WIDE_INT *, unsigned int); + int cmps_large (const HOST_WIDE_INT *, unsigned int, unsigned int, + const HOST_WIDE_INT *, unsigned int); + int cmpu_large (const HOST_WIDE_INT *, unsigned int, unsigned int, + const HOST_WIDE_INT *, unsigned int); + unsigned int sext_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, + unsigned int, + unsigned int, unsigned int); + unsigned int zext_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, + unsigned int, + unsigned int, unsigned int); + unsigned int set_bit_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, + unsigned int, unsigned int, unsigned int); + unsigned int lshift_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, + unsigned int, unsigned int, unsigned int); + unsigned int lrshift_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, + unsigned int, unsigned int, unsigned int, + unsigned int); + unsigned int arshift_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, + unsigned int, unsigned int, unsigned int, + unsigned int); + unsigned int and_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int, + const HOST_WIDE_INT *, unsigned int, unsigned int); + unsigned int and_not_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, + unsigned int, const HOST_WIDE_INT *, + unsigned int, unsigned int); + unsigned int or_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int, + const HOST_WIDE_INT *, unsigned int, unsigned int); + unsigned int or_not_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, + unsigned int, const HOST_WIDE_INT *, + unsigned int, unsigned int); + unsigned int xor_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int, + const HOST_WIDE_INT *, unsigned int, unsigned int); + unsigned int add_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int, + const HOST_WIDE_INT *, unsigned int, unsigned int, + signop, bool *); + unsigned int sub_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int, + const HOST_WIDE_INT *, unsigned int, unsigned int, + signop, bool *); + unsigned int mul_internal (HOST_WIDE_INT *, const HOST_WIDE_INT *, + unsigned int, const HOST_WIDE_INT *, + unsigned int, unsigned int, signop, bool *, + bool); + unsigned int divmod_internal (HOST_WIDE_INT *, unsigned int *, + HOST_WIDE_INT *, const HOST_WIDE_INT *, + unsigned int, unsigned int, + const HOST_WIDE_INT *, + unsigned int, unsigned int, + signop, bool *); +} + +/* Return the number of bits that integer X can hold. */ +template <typename T> +inline unsigned int +wi::get_precision (const T &x) +{ + return wi::int_traits <T>::get_precision (x); +} + +/* Return the number of bits that the result of a binary operation can + hold when the input operands are X and Y. */ +template <typename T1, typename T2> +inline unsigned int +wi::get_binary_precision (const T1 &x, const T2 &y) +{ + return get_precision (wi::int_traits <WI_BINARY_RESULT (T1, T2)>:: + get_binary_result (x, y)); +} + +/* Copy the contents of Y to X, but keeping X's current precision. */ +template <typename T1, typename T2> +inline void +wi::copy (T1 &x, const T2 &y) +{ + HOST_WIDE_INT *xval = x.write_val (); + const HOST_WIDE_INT *yval = y.get_val (); + unsigned int len = y.get_len (); + unsigned int i = 0; + do + xval[i] = yval[i]; + while (++i < len); + x.set_len (len, y.is_sign_extended); +} + +/* Return true if X fits in a HOST_WIDE_INT with no loss of precision. */ +template <typename T> +inline bool +wi::fits_shwi_p (const T &x) +{ + WIDE_INT_REF_FOR (T) xi (x); + return xi.len == 1; +} + +/* Return true if X fits in an unsigned HOST_WIDE_INT with no loss of + precision. */ +template <typename T> +inline bool +wi::fits_uhwi_p (const T &x) +{ + WIDE_INT_REF_FOR (T) xi (x); + if (xi.precision <= HOST_BITS_PER_WIDE_INT) + return true; + if (xi.len == 1) + return xi.slow () >= 0; + return xi.len == 2 && xi.uhigh () == 0; +} + +/* Return true if X is negative based on the interpretation of SGN. + For UNSIGNED, this is always false. */ +template <typename T> +inline bool +wi::neg_p (const T &x, signop sgn) +{ + WIDE_INT_REF_FOR (T) xi (x); + if (sgn == UNSIGNED) + return false; + return xi.sign_mask () < 0; +} + +/* Return -1 if the top bit of X is set and 0 if the top bit is clear. */ +template <typename T> +inline HOST_WIDE_INT +wi::sign_mask (const T &x) +{ + WIDE_INT_REF_FOR (T) xi (x); + return xi.sign_mask (); +} + +/* Return true if X == Y. X and Y must be binary-compatible. */ +template <typename T1, typename T2> +inline bool +wi::eq_p (const T1 &x, const T2 &y) +{ + unsigned int precision = get_binary_precision (x, y); + WIDE_INT_REF_FOR (T1) xi (x, precision); + WIDE_INT_REF_FOR (T2) yi (y, precision); + if (xi.is_sign_extended && yi.is_sign_extended) + { + /* This case reduces to array equality. */ + if (xi.len != yi.len) + return false; + unsigned int i = 0; + do + if (xi.val[i] != yi.val[i]) + return false; + while (++i != xi.len); + return true; + } + if (__builtin_expect (yi.len == 1, true)) + { + /* XI is only equal to YI if it too has a single HWI. */ + if (xi.len != 1) + return false; + /* Excess bits in xi.val[0] will be signs or zeros, so comparisons + with 0 are simple. */ + if (STATIC_CONSTANT_P (yi.val[0] == 0)) + return xi.val[0] == 0; + /* Otherwise flush out any excess bits first. */ + unsigned HOST_WIDE_INT diff = xi.val[0] ^ yi.val[0]; + int excess = HOST_BITS_PER_WIDE_INT - precision; + if (excess > 0) + diff <<= excess; + return diff == 0; + } + return eq_p_large (xi.val, xi.len, yi.val, yi.len, precision); +} + +/* Return true if X != Y. X and Y must be binary-compatible. */ +template <typename T1, typename T2> +inline bool +wi::ne_p (const T1 &x, const T2 &y) +{ + return !eq_p (x, y); +} + +/* Return true if X < Y when both are treated as signed values. */ +template <typename T1, typename T2> +inline bool +wi::lts_p (const T1 &x, const T2 &y) +{ + unsigned int precision = get_binary_precision (x, y); + WIDE_INT_REF_FOR (T1) xi (x, precision); + WIDE_INT_REF_FOR (T2) yi (y, precision); + /* We optimize x < y, where y is 64 or fewer bits. */ + if (wi::fits_shwi_p (yi)) + { + /* Make lts_p (x, 0) as efficient as wi::neg_p (x). */ + if (STATIC_CONSTANT_P (yi.val[0] == 0)) + return neg_p (xi); + /* If x fits directly into a shwi, we can compare directly. */ + if (wi::fits_shwi_p (xi)) + return xi.to_shwi () < yi.to_shwi (); + /* If x doesn't fit and is negative, then it must be more + negative than any value in y, and hence smaller than y. */ + if (neg_p (xi)) + return true; + /* If x is positive, then it must be larger than any value in y, + and hence greater than y. */ + return false; + } + /* Optimize the opposite case, if it can be detected at compile time. */ + if (STATIC_CONSTANT_P (xi.len == 1)) + /* If YI is negative it is lower than the least HWI. + If YI is positive it is greater than the greatest HWI. */ + return !neg_p (yi); + return lts_p_large (xi.val, xi.len, precision, yi.val, yi.len); +} + +/* Return true if X < Y when both are treated as unsigned values. */ +template <typename T1, typename T2> +inline bool +wi::ltu_p (const T1 &x, const T2 &y) +{ + unsigned int precision = get_binary_precision (x, y); + WIDE_INT_REF_FOR (T1) xi (x, precision); + WIDE_INT_REF_FOR (T2) yi (y, precision); + /* Optimize comparisons with constants. */ + if (STATIC_CONSTANT_P (yi.len == 1 && yi.val[0] >= 0)) + return xi.len == 1 && xi.to_uhwi () < (unsigned HOST_WIDE_INT) yi.val[0]; + if (STATIC_CONSTANT_P (xi.len == 1 && xi.val[0] >= 0)) + return yi.len != 1 || yi.to_uhwi () > (unsigned HOST_WIDE_INT) xi.val[0]; + /* Optimize the case of two HWIs. The HWIs are implicitly sign-extended + for precisions greater than HOST_BITS_WIDE_INT, but sign-extending both + values does not change the result. */ + if (__builtin_expect (xi.len + yi.len == 2, true)) + { + unsigned HOST_WIDE_INT xl = xi.to_uhwi (); + unsigned HOST_WIDE_INT yl = yi.to_uhwi (); + return xl < yl; + } + return ltu_p_large (xi.val, xi.len, precision, yi.val, yi.len); +} + +/* Return true if X < Y. Signedness of X and Y is indicated by SGN. */ +template <typename T1, typename T2> +inline bool +wi::lt_p (const T1 &x, const T2 &y, signop sgn) +{ + if (sgn == SIGNED) + return lts_p (x, y); + else + return ltu_p (x, y); +} + +/* Return true if X <= Y when both are treated as signed values. */ +template <typename T1, typename T2> +inline bool +wi::les_p (const T1 &x, const T2 &y) +{ + return !lts_p (y, x); +} + +/* Return true if X <= Y when both are treated as unsigned values. */ +template <typename T1, typename T2> +inline bool +wi::leu_p (const T1 &x, const T2 &y) +{ + return !ltu_p (y, x); +} + +/* Return true if X <= Y. Signedness of X and Y is indicated by SGN. */ +template <typename T1, typename T2> +inline bool +wi::le_p (const T1 &x, const T2 &y, signop sgn) +{ + if (sgn == SIGNED) + return les_p (x, y); + else + return leu_p (x, y); +} + +/* Return true if X > Y when both are treated as signed values. */ +template <typename T1, typename T2> +inline bool +wi::gts_p (const T1 &x, const T2 &y) +{ + return lts_p (y, x); +} + +/* Return true if X > Y when both are treated as unsigned values. */ +template <typename T1, typename T2> +inline bool +wi::gtu_p (const T1 &x, const T2 &y) +{ + return ltu_p (y, x); +} + +/* Return true if X > Y. Signedness of X and Y is indicated by SGN. */ +template <typename T1, typename T2> +inline bool +wi::gt_p (const T1 &x, const T2 &y, signop sgn) +{ + if (sgn == SIGNED) + return gts_p (x, y); + else + return gtu_p (x, y); +} + +/* Return true if X >= Y when both are treated as signed values. */ +template <typename T1, typename T2> +inline bool +wi::ges_p (const T1 &x, const T2 &y) +{ + return !lts_p (x, y); +} + +/* Return true if X >= Y when both are treated as unsigned values. */ +template <typename T1, typename T2> +inline bool +wi::geu_p (const T1 &x, const T2 &y) +{ + return !ltu_p (x, y); +} + +/* Return true if X >= Y. Signedness of X and Y is indicated by SGN. */ +template <typename T1, typename T2> +inline bool +wi::ge_p (const T1 &x, const T2 &y, signop sgn) +{ + if (sgn == SIGNED) + return ges_p (x, y); + else + return geu_p (x, y); +} + +/* Return -1 if X < Y, 0 if X == Y and 1 if X > Y. Treat both X and Y + as signed values. */ +template <typename T1, typename T2> +inline int +wi::cmps (const T1 &x, const T2 &y) +{ + unsigned int precision = get_binary_precision (x, y); + WIDE_INT_REF_FOR (T1) xi (x, precision); + WIDE_INT_REF_FOR (T2) yi (y, precision); + if (wi::fits_shwi_p (yi)) + { + /* Special case for comparisons with 0. */ + if (STATIC_CONSTANT_P (yi.val[0] == 0)) + return neg_p (xi) ? -1 : !(xi.len == 1 && xi.val[0] == 0); + /* If x fits into a signed HWI, we can compare directly. */ + if (wi::fits_shwi_p (xi)) + { + HOST_WIDE_INT xl = xi.to_shwi (); + HOST_WIDE_INT yl = yi.to_shwi (); + return xl < yl ? -1 : xl > yl; + } + /* If x doesn't fit and is negative, then it must be more + negative than any signed HWI, and hence smaller than y. */ + if (neg_p (xi)) + return -1; + /* If x is positive, then it must be larger than any signed HWI, + and hence greater than y. */ + return 1; + } + /* Optimize the opposite case, if it can be detected at compile time. */ + if (STATIC_CONSTANT_P (xi.len == 1)) + /* If YI is negative it is lower than the least HWI. + If YI is positive it is greater than the greatest HWI. */ + return neg_p (yi) ? 1 : -1; + return cmps_large (xi.val, xi.len, precision, yi.val, yi.len); +} + +/* Return -1 if X < Y, 0 if X == Y and 1 if X > Y. Treat both X and Y + as unsigned values. */ +template <typename T1, typename T2> +inline int +wi::cmpu (const T1 &x, const T2 &y) +{ + unsigned int precision = get_binary_precision (x, y); + WIDE_INT_REF_FOR (T1) xi (x, precision); + WIDE_INT_REF_FOR (T2) yi (y, precision); + /* Optimize comparisons with constants. */ + if (STATIC_CONSTANT_P (yi.len == 1 && yi.val[0] >= 0)) + { + /* If XI doesn't fit in a HWI then it must be larger than YI. */ + if (xi.len != 1) + return 1; + /* Otherwise compare directly. */ + unsigned HOST_WIDE_INT xl = xi.to_uhwi (); + unsigned HOST_WIDE_INT yl = yi.val[0]; + return xl < yl ? -1 : xl > yl; + } + if (STATIC_CONSTANT_P (xi.len == 1 && xi.val[0] >= 0)) + { + /* If YI doesn't fit in a HWI then it must be larger than XI. */ + if (yi.len != 1) + return -1; + /* Otherwise compare directly. */ + unsigned HOST_WIDE_INT xl = xi.val[0]; + unsigned HOST_WIDE_INT yl = yi.to_uhwi (); + return xl < yl ? -1 : xl > yl; + } + /* Optimize the case of two HWIs. The HWIs are implicitly sign-extended + for precisions greater than HOST_BITS_WIDE_INT, but sign-extending both + values does not change the result. */ + if (__builtin_expect (xi.len + yi.len == 2, true)) + { + unsigned HOST_WIDE_INT xl = xi.to_uhwi (); + unsigned HOST_WIDE_INT yl = yi.to_uhwi (); + return xl < yl ? -1 : xl > yl; + } + return cmpu_large (xi.val, xi.len, precision, yi.val, yi.len); +} + +/* Return -1 if X < Y, 0 if X == Y and 1 if X > Y. Signedness of + X and Y indicated by SGN. */ +template <typename T1, typename T2> +inline int +wi::cmp (const T1 &x, const T2 &y, signop sgn) +{ + if (sgn == SIGNED) + return cmps (x, y); + else + return cmpu (x, y); +} + +/* Return ~x. */ +template <typename T> +inline WI_UNARY_RESULT (T) +wi::bit_not (const T &x) +{ + WI_UNARY_RESULT_VAR (result, val, T, x); + WIDE_INT_REF_FOR (T) xi (x, get_precision (result)); + for (unsigned int i = 0; i < xi.len; ++i) + val[i] = ~xi.val[i]; + result.set_len (xi.len); + return result; +} + +/* Return -x. */ +template <typename T> +inline WI_UNARY_RESULT (T) +wi::neg (const T &x) +{ + return sub (0, x); +} + +/* Return -x. Indicate in *OVERFLOW if X is the minimum signed value. */ +template <typename T> +inline WI_UNARY_RESULT (T) +wi::neg (const T &x, bool *overflow) +{ + *overflow = only_sign_bit_p (x); + return sub (0, x); +} + +/* Return the absolute value of x. */ +template <typename T> +inline WI_UNARY_RESULT (T) +wi::abs (const T &x) +{ + return neg_p (x) ? neg (x) : WI_UNARY_RESULT (T) (x); +} + +/* Return the result of sign-extending the low OFFSET bits of X. */ +template <typename T> +inline WI_UNARY_RESULT (T) +wi::sext (const T &x, unsigned int offset) +{ + WI_UNARY_RESULT_VAR (result, val, T, x); + unsigned int precision = get_precision (result); + WIDE_INT_REF_FOR (T) xi (x, precision); + + if (offset <= HOST_BITS_PER_WIDE_INT) + { + val[0] = sext_hwi (xi.ulow (), offset); + result.set_len (1, true); + } + else + result.set_len (sext_large (val, xi.val, xi.len, precision, offset)); + return result; +} + +/* Return the result of zero-extending the low OFFSET bits of X. */ +template <typename T> +inline WI_UNARY_RESULT (T) +wi::zext (const T &x, unsigned int offset) +{ + WI_UNARY_RESULT_VAR (result, val, T, x); + unsigned int precision = get_precision (result); + WIDE_INT_REF_FOR (T) xi (x, precision); + + /* This is not just an optimization, it is actually required to + maintain canonization. */ + if (offset >= precision) + { + wi::copy (result, xi); + return result; + } + + /* In these cases we know that at least the top bit will be clear, + so no sign extension is necessary. */ + if (offset < HOST_BITS_PER_WIDE_INT) + { + val[0] = zext_hwi (xi.ulow (), offset); + result.set_len (1, true); + } + else + result.set_len (zext_large (val, xi.val, xi.len, precision, offset), true); + return result; +} + +/* Return the result of extending the low OFFSET bits of X according to + signedness SGN. */ +template <typename T> +inline WI_UNARY_RESULT (T) +wi::ext (const T &x, unsigned int offset, signop sgn) +{ + return sgn == SIGNED ? sext (x, offset) : zext (x, offset); +} + +/* Return an integer that represents X | (1 << bit). */ +template <typename T> +inline WI_UNARY_RESULT (T) +wi::set_bit (const T &x, unsigned int bit) +{ + WI_UNARY_RESULT_VAR (result, val, T, x); + unsigned int precision = get_precision (result); + WIDE_INT_REF_FOR (T) xi (x, precision); + if (precision <= HOST_BITS_PER_WIDE_INT) + { + val[0] = xi.ulow () | ((unsigned HOST_WIDE_INT) 1 << bit); + result.set_len (1); + } + else + result.set_len (set_bit_large (val, xi.val, xi.len, precision, bit)); + return result; +} + +/* Return the mininum of X and Y, treating them both as having + signedness SGN. */ +template <typename T1, typename T2> +inline WI_BINARY_RESULT (T1, T2) +wi::min (const T1 &x, const T2 &y, signop sgn) +{ + WI_BINARY_RESULT_VAR (result, val ATTRIBUTE_UNUSED, T1, x, T2, y); + unsigned int precision = get_precision (result); + if (wi::le_p (x, y, sgn)) + wi::copy (result, WIDE_INT_REF_FOR (T1) (x, precision)); + else + wi::copy (result, WIDE_INT_REF_FOR (T2) (y, precision)); + return result; +} + +/* Return the minimum of X and Y, treating both as signed values. */ +template <typename T1, typename T2> +inline WI_BINARY_RESULT (T1, T2) +wi::smin (const T1 &x, const T2 &y) +{ + return min (x, y, SIGNED); +} + +/* Return the minimum of X and Y, treating both as unsigned values. */ +template <typename T1, typename T2> +inline WI_BINARY_RESULT (T1, T2) +wi::umin (const T1 &x, const T2 &y) +{ + return min (x, y, UNSIGNED); +} + +/* Return the maxinum of X and Y, treating them both as having + signedness SGN. */ +template <typename T1, typename T2> +inline WI_BINARY_RESULT (T1, T2) +wi::max (const T1 &x, const T2 &y, signop sgn) +{ + WI_BINARY_RESULT_VAR (result, val ATTRIBUTE_UNUSED, T1, x, T2, y); + unsigned int precision = get_precision (result); + if (wi::ge_p (x, y, sgn)) + wi::copy (result, WIDE_INT_REF_FOR (T1) (x, precision)); + else + wi::copy (result, WIDE_INT_REF_FOR (T2) (y, precision)); + return result; +} + +/* Return the maximum of X and Y, treating both as signed values. */ +template <typename T1, typename T2> +inline WI_BINARY_RESULT (T1, T2) +wi::smax (const T1 &x, const T2 &y) +{ + return max (x, y, SIGNED); +} + +/* Return the maximum of X and Y, treating both as unsigned values. */ +template <typename T1, typename T2> +inline WI_BINARY_RESULT (T1, T2) +wi::umax (const T1 &x, const T2 &y) +{ + return max (x, y, UNSIGNED); +} + +/* Return X & Y. */ +template <typename T1, typename T2> +inline WI_BINARY_RESULT (T1, T2) +wi::bit_and (const T1 &x, const T2 &y) +{ + WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y); + unsigned int precision = get_precision (result); + WIDE_INT_REF_FOR (T1) xi (x, precision); + WIDE_INT_REF_FOR (T2) yi (y, precision); + bool is_sign_extended = xi.is_sign_extended && yi.is_sign_extended; + if (__builtin_expect (xi.len + yi.len == 2, true)) + { + val[0] = xi.ulow () & yi.ulow (); + result.set_len (1, is_sign_extended); + } + else + result.set_len (and_large (val, xi.val, xi.len, yi.val, yi.len, + precision), is_sign_extended); + return result; +} + +/* Return X & ~Y. */ +template <typename T1, typename T2> +inline WI_BINARY_RESULT (T1, T2) +wi::bit_and_not (const T1 &x, const T2 &y) +{ + WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y); + unsigned int precision = get_precision (result); + WIDE_INT_REF_FOR (T1) xi (x, precision); + WIDE_INT_REF_FOR (T2) yi (y, precision); + bool is_sign_extended = xi.is_sign_extended && yi.is_sign_extended; + if (__builtin_expect (xi.len + yi.len == 2, true)) + { + val[0] = xi.ulow () & ~yi.ulow (); + result.set_len (1, is_sign_extended); + } + else + result.set_len (and_not_large (val, xi.val, xi.len, yi.val, yi.len, + precision), is_sign_extended); + return result; +} + +/* Return X | Y. */ +template <typename T1, typename T2> +inline WI_BINARY_RESULT (T1, T2) +wi::bit_or (const T1 &x, const T2 &y) +{ + WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y); + unsigned int precision = get_precision (result); + WIDE_INT_REF_FOR (T1) xi (x, precision); + WIDE_INT_REF_FOR (T2) yi (y, precision); + bool is_sign_extended = xi.is_sign_extended && yi.is_sign_extended; + if (__builtin_expect (xi.len + yi.len == 2, true)) + { + val[0] = xi.ulow () | yi.ulow (); + result.set_len (1, is_sign_extended); + } + else + result.set_len (or_large (val, xi.val, xi.len, + yi.val, yi.len, precision), is_sign_extended); + return result; +} + +/* Return X | ~Y. */ +template <typename T1, typename T2> +inline WI_BINARY_RESULT (T1, T2) +wi::bit_or_not (const T1 &x, const T2 &y) +{ + WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y); + unsigned int precision = get_precision (result); + WIDE_INT_REF_FOR (T1) xi (x, precision); + WIDE_INT_REF_FOR (T2) yi (y, precision); + bool is_sign_extended = xi.is_sign_extended && yi.is_sign_extended; + if (__builtin_expect (xi.len + yi.len == 2, true)) + { + val[0] = xi.ulow () | ~yi.ulow (); + result.set_len (1, is_sign_extended); + } + else + result.set_len (or_not_large (val, xi.val, xi.len, yi.val, yi.len, + precision), is_sign_extended); + return result; +} + +/* Return X ^ Y. */ +template <typename T1, typename T2> +inline WI_BINARY_RESULT (T1, T2) +wi::bit_xor (const T1 &x, const T2 &y) +{ + WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y); + unsigned int precision = get_precision (result); + WIDE_INT_REF_FOR (T1) xi (x, precision); + WIDE_INT_REF_FOR (T2) yi (y, precision); + bool is_sign_extended = xi.is_sign_extended && yi.is_sign_extended; + if (__builtin_expect (xi.len + yi.len == 2, true)) + { + val[0] = xi.ulow () ^ yi.ulow (); + result.set_len (1, is_sign_extended); + } + else + result.set_len (xor_large (val, xi.val, xi.len, + yi.val, yi.len, precision), is_sign_extended); + return result; +} + +/* Return X + Y. */ +template <typename T1, typename T2> +inline WI_BINARY_RESULT (T1, T2) +wi::add (const T1 &x, const T2 &y) +{ + WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y); + unsigned int precision = get_precision (result); + WIDE_INT_REF_FOR (T1) xi (x, precision); + WIDE_INT_REF_FOR (T2) yi (y, precision); + if (precision <= HOST_BITS_PER_WIDE_INT) + { + val[0] = xi.ulow () + yi.ulow (); + result.set_len (1); + } + /* If the precision is known at compile time to be greater than + HOST_BITS_PER_WIDE_INT, we can optimize the single-HWI case + knowing that (a) all bits in those HWIs are significant and + (b) the result has room for at least two HWIs. This provides + a fast path for things like offset_int and widest_int. + + The STATIC_CONSTANT_P test prevents this path from being + used for wide_ints. wide_ints with precisions greater than + HOST_BITS_PER_WIDE_INT are relatively rare and there's not much + point handling them inline. */ + else if (STATIC_CONSTANT_P (precision > HOST_BITS_PER_WIDE_INT) + && __builtin_expect (xi.len + yi.len == 2, true)) + { + unsigned HOST_WIDE_INT xl = xi.ulow (); + unsigned HOST_WIDE_INT yl = yi.ulow (); + unsigned HOST_WIDE_INT resultl = xl + yl; + val[0] = resultl; + val[1] = (HOST_WIDE_INT) resultl < 0 ? 0 : -1; + result.set_len (1 + (((resultl ^ xl) & (resultl ^ yl)) + >> (HOST_BITS_PER_WIDE_INT - 1))); + } + else + result.set_len (add_large (val, xi.val, xi.len, + yi.val, yi.len, precision, + UNSIGNED, 0)); + return result; +} + +/* Return X + Y. Treat X and Y as having the signednes given by SGN + and indicate in *OVERFLOW whether the operation overflowed. */ +template <typename T1, typename T2> +inline WI_BINARY_RESULT (T1, T2) +wi::add (const T1 &x, const T2 &y, signop sgn, bool *overflow) +{ + WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y); + unsigned int precision = get_precision (result); + WIDE_INT_REF_FOR (T1) xi (x, precision); + WIDE_INT_REF_FOR (T2) yi (y, precision); + if (precision <= HOST_BITS_PER_WIDE_INT) + { + unsigned HOST_WIDE_INT xl = xi.ulow (); + unsigned HOST_WIDE_INT yl = yi.ulow (); + unsigned HOST_WIDE_INT resultl = xl + yl; + if (sgn == SIGNED) + *overflow = (((resultl ^ xl) & (resultl ^ yl)) + >> (precision - 1)) & 1; + else + *overflow = ((resultl << (HOST_BITS_PER_WIDE_INT - precision)) + < (xl << (HOST_BITS_PER_WIDE_INT - precision))); + val[0] = resultl; + result.set_len (1); + } + else + result.set_len (add_large (val, xi.val, xi.len, + yi.val, yi.len, precision, + sgn, overflow)); + return result; +} + +/* Return X - Y. */ +template <typename T1, typename T2> +inline WI_BINARY_RESULT (T1, T2) +wi::sub (const T1 &x, const T2 &y) +{ + WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y); + unsigned int precision = get_precision (result); + WIDE_INT_REF_FOR (T1) xi (x, precision); + WIDE_INT_REF_FOR (T2) yi (y, precision); + if (precision <= HOST_BITS_PER_WIDE_INT) + { + val[0] = xi.ulow () - yi.ulow (); + result.set_len (1); + } + /* If the precision is known at compile time to be greater than + HOST_BITS_PER_WIDE_INT, we can optimize the single-HWI case + knowing that (a) all bits in those HWIs are significant and + (b) the result has room for at least two HWIs. This provides + a fast path for things like offset_int and widest_int. + + The STATIC_CONSTANT_P test prevents this path from being + used for wide_ints. wide_ints with precisions greater than + HOST_BITS_PER_WIDE_INT are relatively rare and there's not much + point handling them inline. */ + else if (STATIC_CONSTANT_P (precision > HOST_BITS_PER_WIDE_INT) + && __builtin_expect (xi.len + yi.len == 2, true)) + { + unsigned HOST_WIDE_INT xl = xi.ulow (); + unsigned HOST_WIDE_INT yl = yi.ulow (); + unsigned HOST_WIDE_INT resultl = xl - yl; + val[0] = resultl; + val[1] = (HOST_WIDE_INT) resultl < 0 ? 0 : -1; + result.set_len (1 + (((resultl ^ xl) & (xl ^ yl)) + >> (HOST_BITS_PER_WIDE_INT - 1))); + } + else + result.set_len (sub_large (val, xi.val, xi.len, + yi.val, yi.len, precision, + UNSIGNED, 0)); + return result; +} + +/* Return X - Y. Treat X and Y as having the signednes given by SGN + and indicate in *OVERFLOW whether the operation overflowed. */ +template <typename T1, typename T2> +inline WI_BINARY_RESULT (T1, T2) +wi::sub (const T1 &x, const T2 &y, signop sgn, bool *overflow) +{ + WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y); + unsigned int precision = get_precision (result); + WIDE_INT_REF_FOR (T1) xi (x, precision); + WIDE_INT_REF_FOR (T2) yi (y, precision); + if (precision <= HOST_BITS_PER_WIDE_INT) + { + unsigned HOST_WIDE_INT xl = xi.ulow (); + unsigned HOST_WIDE_INT yl = yi.ulow (); + unsigned HOST_WIDE_INT resultl = xl - yl; + if (sgn == SIGNED) + *overflow = (((xl ^ yl) & (resultl ^ xl)) >> (precision - 1)) & 1; + else + *overflow = ((resultl << (HOST_BITS_PER_WIDE_INT - precision)) + > (xl << (HOST_BITS_PER_WIDE_INT - precision))); + val[0] = resultl; + result.set_len (1); + } + else + result.set_len (sub_large (val, xi.val, xi.len, + yi.val, yi.len, precision, + sgn, overflow)); + return result; +} + +/* Return X * Y. */ +template <typename T1, typename T2> +inline WI_BINARY_RESULT (T1, T2) +wi::mul (const T1 &x, const T2 &y) +{ + WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y); + unsigned int precision = get_precision (result); + WIDE_INT_REF_FOR (T1) xi (x, precision); + WIDE_INT_REF_FOR (T2) yi (y, precision); + if (precision <= HOST_BITS_PER_WIDE_INT) + { + val[0] = xi.ulow () * yi.ulow (); + result.set_len (1); + } + else + result.set_len (mul_internal (val, xi.val, xi.len, yi.val, yi.len, + precision, UNSIGNED, 0, false)); + return result; +} + +/* Return X * Y. Treat X and Y as having the signednes given by SGN + and indicate in *OVERFLOW whether the operation overflowed. */ +template <typename T1, typename T2> +inline WI_BINARY_RESULT (T1, T2) +wi::mul (const T1 &x, const T2 &y, signop sgn, bool *overflow) +{ + WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y); + unsigned int precision = get_precision (result); + WIDE_INT_REF_FOR (T1) xi (x, precision); + WIDE_INT_REF_FOR (T2) yi (y, precision); + result.set_len (mul_internal (val, xi.val, xi.len, + yi.val, yi.len, precision, + sgn, overflow, false)); + return result; +} + +/* Return X * Y, treating both X and Y as signed values. Indicate in + *OVERFLOW whether the operation overflowed. */ +template <typename T1, typename T2> +inline WI_BINARY_RESULT (T1, T2) +wi::smul (const T1 &x, const T2 &y, bool *overflow) +{ + return mul (x, y, SIGNED, overflow); +} + +/* Return X * Y, treating both X and Y as unsigned values. Indicate in + *OVERFLOW whether the operation overflowed. */ +template <typename T1, typename T2> +inline WI_BINARY_RESULT (T1, T2) +wi::umul (const T1 &x, const T2 &y, bool *overflow) +{ + return mul (x, y, UNSIGNED, overflow); +} + +/* Perform a widening multiplication of X and Y, extending the values + according to SGN, and return the high part of the result. */ +template <typename T1, typename T2> +inline WI_BINARY_RESULT (T1, T2) +wi::mul_high (const T1 &x, const T2 &y, signop sgn) +{ + WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y); + unsigned int precision = get_precision (result); + WIDE_INT_REF_FOR (T1) xi (x, precision); + WIDE_INT_REF_FOR (T2) yi (y, precision); + result.set_len (mul_internal (val, xi.val, xi.len, + yi.val, yi.len, precision, + sgn, 0, true)); + return result; +} + +/* Return X / Y, rouding towards 0. Treat X and Y as having the + signedness given by SGN. Indicate in *OVERFLOW if the result + overflows. */ +template <typename T1, typename T2> +inline WI_BINARY_RESULT (T1, T2) +wi::div_trunc (const T1 &x, const T2 &y, signop sgn, bool *overflow) +{ + WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y); + unsigned int precision = get_precision (quotient); + WIDE_INT_REF_FOR (T1) xi (x, precision); + WIDE_INT_REF_FOR (T2) yi (y); + + quotient.set_len (divmod_internal (quotient_val, 0, 0, xi.val, xi.len, + precision, + yi.val, yi.len, yi.precision, + sgn, overflow)); + return quotient; +} + +/* Return X / Y, rouding towards 0. Treat X and Y as signed values. */ +template <typename T1, typename T2> +inline WI_BINARY_RESULT (T1, T2) +wi::sdiv_trunc (const T1 &x, const T2 &y) +{ + return div_trunc (x, y, SIGNED); +} + +/* Return X / Y, rouding towards 0. Treat X and Y as unsigned values. */ +template <typename T1, typename T2> +inline WI_BINARY_RESULT (T1, T2) +wi::udiv_trunc (const T1 &x, const T2 &y) +{ + return div_trunc (x, y, UNSIGNED); +} + +/* Return X / Y, rouding towards -inf. Treat X and Y as having the + signedness given by SGN. Indicate in *OVERFLOW if the result + overflows. */ +template <typename T1, typename T2> +inline WI_BINARY_RESULT (T1, T2) +wi::div_floor (const T1 &x, const T2 &y, signop sgn, bool *overflow) +{ + WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y); + WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y); + unsigned int precision = get_precision (quotient); + WIDE_INT_REF_FOR (T1) xi (x, precision); + WIDE_INT_REF_FOR (T2) yi (y); + + unsigned int remainder_len; + quotient.set_len (divmod_internal (quotient_val, + &remainder_len, remainder_val, + xi.val, xi.len, precision, + yi.val, yi.len, yi.precision, sgn, + overflow)); + remainder.set_len (remainder_len); + if (wi::neg_p (x, sgn) != wi::neg_p (y, sgn) && remainder != 0) + return quotient - 1; + return quotient; +} + +/* Return X / Y, rouding towards -inf. Treat X and Y as signed values. */ +template <typename T1, typename T2> +inline WI_BINARY_RESULT (T1, T2) +wi::sdiv_floor (const T1 &x, const T2 &y) +{ + return div_floor (x, y, SIGNED); +} + +/* Return X / Y, rouding towards -inf. Treat X and Y as unsigned values. */ +/* ??? Why do we have both this and udiv_trunc. Aren't they the same? */ +template <typename T1, typename T2> +inline WI_BINARY_RESULT (T1, T2) +wi::udiv_floor (const T1 &x, const T2 &y) +{ + return div_floor (x, y, UNSIGNED); +} + +/* Return X / Y, rouding towards +inf. Treat X and Y as having the + signedness given by SGN. Indicate in *OVERFLOW if the result + overflows. */ +template <typename T1, typename T2> +inline WI_BINARY_RESULT (T1, T2) +wi::div_ceil (const T1 &x, const T2 &y, signop sgn, bool *overflow) +{ + WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y); + WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y); + unsigned int precision = get_precision (quotient); + WIDE_INT_REF_FOR (T1) xi (x, precision); + WIDE_INT_REF_FOR (T2) yi (y); + + unsigned int remainder_len; + quotient.set_len (divmod_internal (quotient_val, + &remainder_len, remainder_val, + xi.val, xi.len, precision, + yi.val, yi.len, yi.precision, sgn, + overflow)); + remainder.set_len (remainder_len); + if (wi::neg_p (x, sgn) == wi::neg_p (y, sgn) && remainder != 0) + return quotient + 1; + return quotient; +} + +/* Return X / Y, rouding towards nearest with ties away from zero. + Treat X and Y as having the signedness given by SGN. Indicate + in *OVERFLOW if the result overflows. */ +template <typename T1, typename T2> +inline WI_BINARY_RESULT (T1, T2) +wi::div_round (const T1 &x, const T2 &y, signop sgn, bool *overflow) +{ + WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y); + WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y); + unsigned int precision = get_precision (quotient); + WIDE_INT_REF_FOR (T1) xi (x, precision); + WIDE_INT_REF_FOR (T2) yi (y); + + unsigned int remainder_len; + quotient.set_len (divmod_internal (quotient_val, + &remainder_len, remainder_val, + xi.val, xi.len, precision, + yi.val, yi.len, yi.precision, sgn, + overflow)); + remainder.set_len (remainder_len); + + if (remainder != 0) + { + if (sgn == SIGNED) + { + if (wi::ges_p (wi::abs (remainder), + wi::lrshift (wi::abs (y), 1))) + { + if (wi::neg_p (x, sgn) != wi::neg_p (y, sgn)) + return quotient - 1; + else + return quotient + 1; + } + } + else + { + if (wi::geu_p (remainder, wi::lrshift (y, 1))) + return quotient + 1; + } + } + return quotient; +} + +/* Return X / Y, rouding towards 0. Treat X and Y as having the + signedness given by SGN. Store the remainder in *REMAINDER_PTR. */ +template <typename T1, typename T2> +inline WI_BINARY_RESULT (T1, T2) +wi::divmod_trunc (const T1 &x, const T2 &y, signop sgn, + WI_BINARY_RESULT (T1, T2) *remainder_ptr) +{ + WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y); + WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y); + unsigned int precision = get_precision (quotient); + WIDE_INT_REF_FOR (T1) xi (x, precision); + WIDE_INT_REF_FOR (T2) yi (y); + + unsigned int remainder_len; + quotient.set_len (divmod_internal (quotient_val, + &remainder_len, remainder_val, + xi.val, xi.len, precision, + yi.val, yi.len, yi.precision, sgn, 0)); + remainder.set_len (remainder_len); + + *remainder_ptr = remainder; + return quotient; +} + +/* Compute X / Y, rouding towards 0, and return the remainder. + Treat X and Y as having the signedness given by SGN. Indicate + in *OVERFLOW if the division overflows. */ +template <typename T1, typename T2> +inline WI_BINARY_RESULT (T1, T2) +wi::mod_trunc (const T1 &x, const T2 &y, signop sgn, bool *overflow) +{ + WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y); + unsigned int precision = get_precision (remainder); + WIDE_INT_REF_FOR (T1) xi (x, precision); + WIDE_INT_REF_FOR (T2) yi (y); + + unsigned int remainder_len; + divmod_internal (0, &remainder_len, remainder_val, + xi.val, xi.len, precision, + yi.val, yi.len, yi.precision, sgn, overflow); + remainder.set_len (remainder_len); + + return remainder; +} + +/* Compute X / Y, rouding towards 0, and return the remainder. + Treat X and Y as signed values. */ +template <typename T1, typename T2> +inline WI_BINARY_RESULT (T1, T2) +wi::smod_trunc (const T1 &x, const T2 &y) +{ + return mod_trunc (x, y, SIGNED); +} + +/* Compute X / Y, rouding towards 0, and return the remainder. + Treat X and Y as unsigned values. */ +template <typename T1, typename T2> +inline WI_BINARY_RESULT (T1, T2) +wi::umod_trunc (const T1 &x, const T2 &y) +{ + return mod_trunc (x, y, UNSIGNED); +} + +/* Compute X / Y, rouding towards -inf, and return the remainder. + Treat X and Y as having the signedness given by SGN. Indicate + in *OVERFLOW if the division overflows. */ +template <typename T1, typename T2> +inline WI_BINARY_RESULT (T1, T2) +wi::mod_floor (const T1 &x, const T2 &y, signop sgn, bool *overflow) +{ + WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y); + WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y); + unsigned int precision = get_precision (quotient); + WIDE_INT_REF_FOR (T1) xi (x, precision); + WIDE_INT_REF_FOR (T2) yi (y); + + unsigned int remainder_len; + quotient.set_len (divmod_internal (quotient_val, + &remainder_len, remainder_val, + xi.val, xi.len, precision, + yi.val, yi.len, yi.precision, sgn, + overflow)); + remainder.set_len (remainder_len); + + if (wi::neg_p (x, sgn) != wi::neg_p (y, sgn) && remainder != 0) + return remainder + y; + return remainder; +} + +/* Compute X / Y, rouding towards -inf, and return the remainder. + Treat X and Y as unsigned values. */ +/* ??? Why do we have both this and umod_trunc. Aren't they the same? */ +template <typename T1, typename T2> +inline WI_BINARY_RESULT (T1, T2) +wi::umod_floor (const T1 &x, const T2 &y) +{ + return mod_floor (x, y, UNSIGNED); +} + +/* Compute X / Y, rouding towards +inf, and return the remainder. + Treat X and Y as having the signedness given by SGN. Indicate + in *OVERFLOW if the division overflows. */ +template <typename T1, typename T2> +inline WI_BINARY_RESULT (T1, T2) +wi::mod_ceil (const T1 &x, const T2 &y, signop sgn, bool *overflow) +{ + WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y); + WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y); + unsigned int precision = get_precision (quotient); + WIDE_INT_REF_FOR (T1) xi (x, precision); + WIDE_INT_REF_FOR (T2) yi (y); + + unsigned int remainder_len; + quotient.set_len (divmod_internal (quotient_val, + &remainder_len, remainder_val, + xi.val, xi.len, precision, + yi.val, yi.len, yi.precision, sgn, + overflow)); + remainder.set_len (remainder_len); + + if (wi::neg_p (x, sgn) == wi::neg_p (y, sgn) && remainder != 0) + return remainder - y; + return remainder; +} + +/* Compute X / Y, rouding towards nearest with ties away from zero, + and return the remainder. Treat X and Y as having the signedness + given by SGN. Indicate in *OVERFLOW if the division overflows. */ +template <typename T1, typename T2> +inline WI_BINARY_RESULT (T1, T2) +wi::mod_round (const T1 &x, const T2 &y, signop sgn, bool *overflow) +{ + WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y); + WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y); + unsigned int precision = get_precision (quotient); + WIDE_INT_REF_FOR (T1) xi (x, precision); + WIDE_INT_REF_FOR (T2) yi (y); + + unsigned int remainder_len; + quotient.set_len (divmod_internal (quotient_val, + &remainder_len, remainder_val, + xi.val, xi.len, precision, + yi.val, yi.len, yi.precision, sgn, + overflow)); + remainder.set_len (remainder_len); + + if (remainder != 0) + { + if (sgn == SIGNED) + { + if (wi::ges_p (wi::abs (remainder), + wi::lrshift (wi::abs (y), 1))) + { + if (wi::neg_p (x, sgn) != wi::neg_p (y, sgn)) + return remainder + y; + else + return remainder - y; + } + } + else + { + if (wi::geu_p (remainder, wi::lrshift (y, 1))) + return remainder - y; + } + } + return remainder; +} + +/* Return true if X is a multiple of Y, storing X / Y in *RES if so. + Treat X and Y as having the signedness given by SGN. */ +template <typename T1, typename T2> +inline bool +wi::multiple_of_p (const T1 &x, const T2 &y, signop sgn, + WI_BINARY_RESULT (T1, T2) *res) +{ + WI_BINARY_RESULT (T1, T2) remainder; + WI_BINARY_RESULT (T1, T2) quotient + = divmod_trunc (x, y, sgn, &remainder); + if (remainder == 0) + { + *res = quotient; + return true; + } + return false; +} + +/* Return X << Y. Return 0 if Y is greater than or equal to + the precision of X. */ +template <typename T1, typename T2> +inline WI_UNARY_RESULT (T1) +wi::lshift (const T1 &x, const T2 &y) +{ + WI_UNARY_RESULT_VAR (result, val, T1, x); + unsigned int precision = get_precision (result); + WIDE_INT_REF_FOR (T1) xi (x, precision); + WIDE_INT_REF_FOR (T2) yi (y); + /* Handle the simple cases quickly. */ + if (geu_p (yi, precision)) + { + val[0] = 0; + result.set_len (1); + } + else + { + unsigned int shift = yi.to_uhwi (); + /* For fixed-precision integers like offset_int and widest_int, + handle the case where the shift value is constant and the + result is a single nonnegative HWI (meaning that we don't + need to worry about val[1]). This is particularly common + for converting a byte count to a bit count. + + For variable-precision integers like wide_int, handle HWI + and sub-HWI integers inline. */ + if (STATIC_CONSTANT_P (xi.precision > HOST_BITS_PER_WIDE_INT) + ? (STATIC_CONSTANT_P (shift < HOST_BITS_PER_WIDE_INT - 1) + && xi.len == 1 + && xi.val[0] <= (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) + HOST_WIDE_INT_MAX >> shift)) + : precision <= HOST_BITS_PER_WIDE_INT) + { + val[0] = xi.ulow () << shift; + result.set_len (1); + } + else + result.set_len (lshift_large (val, xi.val, xi.len, + precision, shift)); + } + return result; +} + +/* Return X >> Y, using a logical shift. Return 0 if Y is greater than + or equal to the precision of X. */ +template <typename T1, typename T2> +inline WI_UNARY_RESULT (T1) +wi::lrshift (const T1 &x, const T2 &y) +{ + WI_UNARY_RESULT_VAR (result, val, T1, x); + /* Do things in the precision of the input rather than the output, + since the result can be no larger than that. */ + WIDE_INT_REF_FOR (T1) xi (x); + WIDE_INT_REF_FOR (T2) yi (y); + /* Handle the simple cases quickly. */ + if (geu_p (yi, xi.precision)) + { + val[0] = 0; + result.set_len (1); + } + else + { + unsigned int shift = yi.to_uhwi (); + /* For fixed-precision integers like offset_int and widest_int, + handle the case where the shift value is constant and the + shifted value is a single nonnegative HWI (meaning that all + bits above the HWI are zero). This is particularly common + for converting a bit count to a byte count. + + For variable-precision integers like wide_int, handle HWI + and sub-HWI integers inline. */ + if (STATIC_CONSTANT_P (xi.precision > HOST_BITS_PER_WIDE_INT) + ? xi.len == 1 && xi.val[0] >= 0 + : xi.precision <= HOST_BITS_PER_WIDE_INT) + { + val[0] = xi.to_uhwi () >> shift; + result.set_len (1); + } + else + result.set_len (lrshift_large (val, xi.val, xi.len, xi.precision, + get_precision (result), shift)); + } + return result; +} + +/* Return X >> Y, using an arithmetic shift. Return a sign mask if + Y is greater than or equal to the precision of X. */ +template <typename T1, typename T2> +inline WI_UNARY_RESULT (T1) +wi::arshift (const T1 &x, const T2 &y) +{ + WI_UNARY_RESULT_VAR (result, val, T1, x); + /* Do things in the precision of the input rather than the output, + since the result can be no larger than that. */ + WIDE_INT_REF_FOR (T1) xi (x); + WIDE_INT_REF_FOR (T2) yi (y); + /* Handle the simple cases quickly. */ + if (geu_p (yi, xi.precision)) + { + val[0] = sign_mask (x); + result.set_len (1); + } + else + { + unsigned int shift = yi.to_uhwi (); + if (xi.precision <= HOST_BITS_PER_WIDE_INT) + { + val[0] = sext_hwi (xi.ulow () >> shift, xi.precision - shift); + result.set_len (1, true); + } + else + result.set_len (arshift_large (val, xi.val, xi.len, xi.precision, + get_precision (result), shift)); + } + return result; +} + +/* Return X >> Y, using an arithmetic shift if SGN is SIGNED and a + logical shift otherwise. If BITSIZE is nonzero, only use the low + BITSIZE bits of Y. */ +template <typename T1, typename T2> +inline WI_UNARY_RESULT (T1) +wi::rshift (const T1 &x, const T2 &y, signop sgn) +{ + if (sgn == UNSIGNED) + return lrshift (x, y); + else + return arshift (x, y); +} + +/* Return the result of rotating the low WIDTH bits of X left by Y + bits and zero-extending the result. Use a full-width rotate if + WIDTH is zero. */ +template <typename T1, typename T2> +WI_UNARY_RESULT (T1) +wi::lrotate (const T1 &x, const T2 &y, unsigned int width) +{ + unsigned int precision = get_binary_precision (x, x); + if (width == 0) + width = precision; + WI_UNARY_RESULT (T2) ymod = umod_trunc (y, width); + WI_UNARY_RESULT (T1) left = wi::lshift (x, ymod); + WI_UNARY_RESULT (T1) right = wi::lrshift (x, wi::sub (width, ymod)); + if (width != precision) + return wi::zext (left, width) | wi::zext (right, width); + return left | right; +} + +/* Return the result of rotating the low WIDTH bits of X right by Y + bits and zero-extending the result. Use a full-width rotate if + WIDTH is zero. */ +template <typename T1, typename T2> +WI_UNARY_RESULT (T1) +wi::rrotate (const T1 &x, const T2 &y, unsigned int width) +{ + unsigned int precision = get_binary_precision (x, x); + if (width == 0) + width = precision; + WI_UNARY_RESULT (T2) ymod = umod_trunc (y, width); + WI_UNARY_RESULT (T1) right = wi::lrshift (x, ymod); + WI_UNARY_RESULT (T1) left = wi::lshift (x, wi::sub (width, ymod)); + if (width != precision) + return wi::zext (left, width) | wi::zext (right, width); + return left | right; +} + +/* Return 0 if the number of 1s in X is even and 1 if the number of 1s + is odd. */ +inline int +wi::parity (const wide_int_ref &x) +{ + return popcount (x) & 1; +} + +/* Extract WIDTH bits from X, starting at BITPOS. */ +template <typename T> +inline unsigned HOST_WIDE_INT +wi::extract_uhwi (const T &x, unsigned int bitpos, + unsigned int width) +{ + unsigned precision = get_precision (x); + if (precision < bitpos + width) + precision = bitpos + width; + WIDE_INT_REF_FOR (T) xi (x, precision); + + /* Handle this rare case after the above, so that we assert about + bogus BITPOS values. */ + if (width == 0) + return 0; + + unsigned int start = bitpos / HOST_BITS_PER_WIDE_INT; + unsigned int shift = bitpos % HOST_BITS_PER_WIDE_INT; + unsigned HOST_WIDE_INT res = xi.elt (start); + res >>= shift; + if (shift + width > HOST_BITS_PER_WIDE_INT) + { + unsigned HOST_WIDE_INT upper = xi.elt (start + 1); + res |= upper << (-shift % HOST_BITS_PER_WIDE_INT); + } + return zext_hwi (res, width); +} + +template<typename T> +void +gt_ggc_mx (generic_wide_int <T> *) +{ +} + +template<typename T> +void +gt_pch_nx (generic_wide_int <T> *) +{ +} + +template<typename T> +void +gt_pch_nx (generic_wide_int <T> *, void (*) (void *, void *), void *) +{ +} + +template<int N> +void +gt_ggc_mx (trailing_wide_ints <N> *) +{ +} + +template<int N> +void +gt_pch_nx (trailing_wide_ints <N> *) +{ +} + +template<int N> +void +gt_pch_nx (trailing_wide_ints <N> *, void (*) (void *, void *), void *) +{ +} + +namespace wi +{ + /* Used for overloaded functions in which the only other acceptable + scalar type is a pointer. It stops a plain 0 from being treated + as a null pointer. */ + struct never_used1 {}; + struct never_used2 {}; + + wide_int min_value (unsigned int, signop); + wide_int min_value (never_used1 *); + wide_int min_value (never_used2 *); + wide_int max_value (unsigned int, signop); + wide_int max_value (never_used1 *); + wide_int max_value (never_used2 *); + + /* FIXME: this is target dependent, so should be elsewhere. + It also seems to assume that CHAR_BIT == BITS_PER_UNIT. */ + wide_int from_buffer (const unsigned char *, unsigned int); + +#ifndef GENERATOR_FILE + void to_mpz (wide_int, mpz_t, signop); +#endif + + wide_int mask (unsigned int, bool, unsigned int); + wide_int shifted_mask (unsigned int, unsigned int, bool, unsigned int); + wide_int set_bit_in_zero (unsigned int, unsigned int); + wide_int insert (const wide_int &x, const wide_int &y, unsigned int, + unsigned int); + + template <typename T> + T mask (unsigned int, bool); + + template <typename T> + T shifted_mask (unsigned int, unsigned int, bool); + + template <typename T> + T set_bit_in_zero (unsigned int); + + unsigned int mask (HOST_WIDE_INT *, unsigned int, bool, unsigned int); + unsigned int shifted_mask (HOST_WIDE_INT *, unsigned int, unsigned int, + bool, unsigned int); + unsigned int from_array (HOST_WIDE_INT *, const HOST_WIDE_INT *, + unsigned int, unsigned int, bool); +} + +/* Return a PRECISION-bit integer in which the low WIDTH bits are set + and the other bits are clear, or the inverse if NEGATE_P. */ +inline wide_int +wi::mask (unsigned int width, bool negate_p, unsigned int precision) +{ + wide_int result = wide_int::create (precision); + result.set_len (mask (result.write_val (), width, negate_p, precision)); + return result; +} + +/* Return a PRECISION-bit integer in which the low START bits are clear, + the next WIDTH bits are set, and the other bits are clear, + or the inverse if NEGATE_P. */ +inline wide_int +wi::shifted_mask (unsigned int start, unsigned int width, bool negate_p, + unsigned int precision) +{ + wide_int result = wide_int::create (precision); + result.set_len (shifted_mask (result.write_val (), start, width, negate_p, + precision)); + return result; +} + +/* Return a PRECISION-bit integer in which bit BIT is set and all the + others are clear. */ +inline wide_int +wi::set_bit_in_zero (unsigned int bit, unsigned int precision) +{ + return shifted_mask (bit, 1, false, precision); +} + +/* Return an integer of type T in which the low WIDTH bits are set + and the other bits are clear, or the inverse if NEGATE_P. */ +template <typename T> +inline T +wi::mask (unsigned int width, bool negate_p) +{ + STATIC_ASSERT (wi::int_traits<T>::precision); + T result; + result.set_len (mask (result.write_val (), width, negate_p, + wi::int_traits <T>::precision)); + return result; +} + +/* Return an integer of type T in which the low START bits are clear, + the next WIDTH bits are set, and the other bits are clear, or the + inverse if NEGATE_P. */ +template <typename T> +inline T +wi::shifted_mask (unsigned int start, unsigned int width, bool negate_p) +{ + STATIC_ASSERT (wi::int_traits<T>::precision); + T result; + result.set_len (shifted_mask (result.write_val (), start, width, + negate_p, + wi::int_traits <T>::precision)); + return result; +} + +/* Return an integer of type T in which bit BIT is set and all the + others are clear. */ +template <typename T> +inline T +wi::set_bit_in_zero (unsigned int bit) +{ + return shifted_mask <T> (bit, 1, false); +} + +#endif /* WIDE_INT_H */ |