summaryrefslogtreecommitdiff
path: root/libgcc-math/dbl-64/slowpow.c
diff options
context:
space:
mode:
Diffstat (limited to 'libgcc-math/dbl-64/slowpow.c')
-rw-r--r--libgcc-math/dbl-64/slowpow.c74
1 files changed, 0 insertions, 74 deletions
diff --git a/libgcc-math/dbl-64/slowpow.c b/libgcc-math/dbl-64/slowpow.c
deleted file mode 100644
index e11a532bf86..00000000000
--- a/libgcc-math/dbl-64/slowpow.c
+++ /dev/null
@@ -1,74 +0,0 @@
-/*
- * IBM Accurate Mathematical Library
- * written by International Business Machines Corp.
- * Copyright (C) 2001 Free Software Foundation
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU Lesser General Public License as published by
- * the Free Software Foundation; either version 2.1 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
- */
-/*************************************************************************/
-/* MODULE_NAME:slowpow.c */
-/* */
-/* FUNCTION:slowpow */
-/* */
-/*FILES NEEDED:mpa.h */
-/* mpa.c mpexp.c mplog.c halfulp.c */
-/* */
-/* Given two IEEE double machine numbers y,x , routine computes the */
-/* correctly rounded (to nearest) value of x^y. Result calculated by */
-/* multiplication (in halfulp.c) or if result isn't accurate enough */
-/* then routine converts x and y into multi-precision doubles and */
-/* calls to mpexp routine */
-/*************************************************************************/
-
-#include "mpa.h"
-#include "math_private.h"
-
-void __mpexp(mp_no *x, mp_no *y, int p);
-void __mplog(mp_no *x, mp_no *y, int p);
-double ulog(double);
-double __halfulp(double x,double y);
-
-double __slowpow(double x, double y, double z) {
- double res,res1;
- mp_no mpx, mpy, mpz,mpw,mpp,mpr,mpr1;
- static const mp_no eps = {-3,{1.0,4.0}};
- int p;
-
- res = __halfulp(x,y); /* halfulp() returns -10 or x^y */
- if (res >= 0) return res; /* if result was really computed by halfulp */
- /* else, if result was not really computed by halfulp */
- p = 10; /* p=precision */
- __dbl_mp(x,&mpx,p);
- __dbl_mp(y,&mpy,p);
- __dbl_mp(z,&mpz,p);
- __mplog(&mpx, &mpz, p); /* log(x) = z */
- __mul(&mpy,&mpz,&mpw,p); /* y * z =w */
- __mpexp(&mpw, &mpp, p); /* e^w =pp */
- __add(&mpp,&eps,&mpr,p); /* pp+eps =r */
- __mp_dbl(&mpr, &res, p);
- __sub(&mpp,&eps,&mpr1,p); /* pp -eps =r1 */
- __mp_dbl(&mpr1, &res1, p); /* converting into double precision */
- if (res == res1) return res;
-
- p = 32; /* if we get here result wasn't calculated exactly, continue */
- __dbl_mp(x,&mpx,p); /* for more exact calculation */
- __dbl_mp(y,&mpy,p);
- __dbl_mp(z,&mpz,p);
- __mplog(&mpx, &mpz, p); /* log(c)=z */
- __mul(&mpy,&mpz,&mpw,p); /* y*z =w */
- __mpexp(&mpw, &mpp, p); /* e^w=pp */
- __mp_dbl(&mpp, &res, p); /* converting into double precision */
- return res;
-}