summaryrefslogtreecommitdiff
path: root/libgcc-math/dbl-64/ulog.h
diff options
context:
space:
mode:
Diffstat (limited to 'libgcc-math/dbl-64/ulog.h')
-rw-r--r--libgcc-math/dbl-64/ulog.h200
1 files changed, 0 insertions, 200 deletions
diff --git a/libgcc-math/dbl-64/ulog.h b/libgcc-math/dbl-64/ulog.h
deleted file mode 100644
index 0ba6b7bb531..00000000000
--- a/libgcc-math/dbl-64/ulog.h
+++ /dev/null
@@ -1,200 +0,0 @@
-/*
- * IBM Accurate Mathematical Library
- * Written by International Business Machines Corp.
- * Copyright (C) 2001 Free Software Foundation, Inc.
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU Lesser General Public License as published by
- * the Free Software Foundation; either version 2.1 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
- */
-
-/******************************************************************/
-/* */
-/* MODULE_NAME:ulog.h */
-/* */
-/* common data and variables prototype and definition */
-/******************************************************************/
-
-#ifndef ULOG_H
-#define ULOG_H
-
-#ifdef BIG_ENDI
- static const number
- /* polynomial I */
-/**/ a2 = {{0xbfe00000, 0x0001aa8f} }, /* -0.500... */
-/**/ a3 = {{0x3fd55555, 0x55588d2e} }, /* 0.333... */
- /* polynomial II */
-/**/ b0 = {{0x3fd55555, 0x55555555} }, /* 0.333... */
-/**/ b1 = {{0xbfcfffff, 0xffffffbb} }, /* -0.249... */
-/**/ b2 = {{0x3fc99999, 0x9999992f} }, /* 0.199... */
-/**/ b3 = {{0xbfc55555, 0x556503fd} }, /* -0.166... */
-/**/ b4 = {{0x3fc24924, 0x925b3d62} }, /* 0.142... */
-/**/ b5 = {{0xbfbffffe, 0x160472fc} }, /* -0.124... */
-/**/ b6 = {{0x3fbc71c5, 0x25db58ac} }, /* 0.111... */
-/**/ b7 = {{0xbfb9a4ac, 0x11a2a61c} }, /* -0.100... */
-/**/ b8 = {{0x3fb75077, 0x0df2b591} }, /* 0.091... */
- /* polynomial III */
-#if 0
-/**/ c1 = {{0x3ff00000, 0x00000000} }, /* 1 */
-#endif
-/**/ c2 = {{0xbfe00000, 0x00000000} }, /* -1/2 */
-/**/ c3 = {{0x3fd55555, 0x55555555} }, /* 1/3 */
-/**/ c4 = {{0xbfd00000, 0x00000000} }, /* -1/4 */
-/**/ c5 = {{0x3fc99999, 0x9999999a} }, /* 1/5 */
- /* polynomial IV */
-/**/ d2 = {{0xbfe00000, 0x00000000} }, /* -1/2 */
-/**/ dd2 = {{0x00000000, 0x00000000} }, /* -1/2-d2 */
-/**/ d3 = {{0x3fd55555, 0x55555555} }, /* 1/3 */
-/**/ dd3 = {{0x3c755555, 0x55555555} }, /* 1/3-d3 */
-/**/ d4 = {{0xbfd00000, 0x00000000} }, /* -1/4 */
-/**/ dd4 = {{0x00000000, 0x00000000} }, /* -1/4-d4 */
-/**/ d5 = {{0x3fc99999, 0x9999999a} }, /* 1/5 */
-/**/ dd5 = {{0xbc699999, 0x9999999a} }, /* 1/5-d5 */
-/**/ d6 = {{0xbfc55555, 0x55555555} }, /* -1/6 */
-/**/ dd6 = {{0xbc655555, 0x55555555} }, /* -1/6-d6 */
-/**/ d7 = {{0x3fc24924, 0x92492492} }, /* 1/7 */
-/**/ dd7 = {{0x3c624924, 0x92492492} }, /* 1/7-d7 */
-/**/ d8 = {{0xbfc00000, 0x00000000} }, /* -1/8 */
-/**/ dd8 = {{0x00000000, 0x00000000} }, /* -1/8-d8 */
-/**/ d9 = {{0x3fbc71c7, 0x1c71c71c} }, /* 1/9 */
-/**/ dd9 = {{0x3c5c71c7, 0x1c71c71c} }, /* 1/9-d9 */
-/**/ d10 = {{0xbfb99999, 0x9999999a} }, /* -1/10 */
-/**/ dd10 = {{0x3c599999, 0x9999999a} }, /* -1/10-d10 */
-/**/ d11 = {{0x3fb745d1, 0x745d1746} }, /* 1/11 */
-/**/ d12 = {{0xbfb55555, 0x55555555} }, /* -1/12 */
-/**/ d13 = {{0x3fb3b13b, 0x13b13b14} }, /* 1/13 */
-/**/ d14 = {{0xbfb24924, 0x92492492} }, /* -1/14 */
-/**/ d15 = {{0x3fb11111, 0x11111111} }, /* 1/15 */
-/**/ d16 = {{0xbfb00000, 0x00000000} }, /* -1/16 */
-/**/ d17 = {{0x3fae1e1e, 0x1e1e1e1e} }, /* 1/17 */
-/**/ d18 = {{0xbfac71c7, 0x1c71c71c} }, /* -1/18 */
-/**/ d19 = {{0x3faaf286, 0xbca1af28} }, /* 1/19 */
-/**/ d20 = {{0xbfa99999, 0x9999999a} }, /* -1/20 */
- /* constants */
-/**/ zero = {{0x00000000, 0x00000000} }, /* 0 */
-/**/ one = {{0x3ff00000, 0x00000000} }, /* 1 */
-/**/ half = {{0x3fe00000, 0x00000000} }, /* 1/2 */
-/**/ mhalf = {{0xbfe00000, 0x00000000} }, /* -1/2 */
-/**/ sqrt_2 = {{0x3ff6a09e, 0x667f3bcc} }, /* sqrt(2) */
-/**/ h1 = {{0x3fd2e000, 0x00000000} }, /* 151/2**9 */
-/**/ h2 = {{0x3f669000, 0x00000000} }, /* 361/2**17 */
-/**/ delu = {{0x3f700000, 0x00000000} }, /* 1/2**8 */
-/**/ delv = {{0x3ef00000, 0x00000000} }, /* 1/2**16 */
-/**/ ln2a = {{0x3fe62e42, 0xfefa3800} }, /* ln(2) 43 bits */
-/**/ ln2b = {{0x3d2ef357, 0x93c76730} }, /* ln(2)-ln2a */
-/**/ e1 = {{0x3bbcc868, 0x00000000} }, /* 6.095e-21 */
-/**/ e2 = {{0x3c1138ce, 0x00000000} }, /* 2.334e-19 */
-/**/ e3 = {{0x3aa1565d, 0x00000000} }, /* 2.801e-26 */
-/**/ e4 = {{0x39809d88, 0x00000000} }, /* 1.024e-31 */
-/**/ e[M] ={{{0x37da223a, 0x00000000} }, /* 1.2e-39 */
-/**/ {{0x35c851c4, 0x00000000} }, /* 1.3e-49 */
-/**/ {{0x2ab85e51, 0x00000000} }, /* 6.8e-103 */
-/**/ {{0x17383827, 0x00000000} }},/* 8.1e-197 */
-/**/ two54 = {{0x43500000, 0x00000000} }, /* 2**54 */
-/**/ u03 = {{0x3f9eb851, 0xeb851eb8} }; /* 0.03 */
-
-#else
-#ifdef LITTLE_ENDI
- static const number
- /* polynomial I */
-/**/ a2 = {{0x0001aa8f, 0xbfe00000} }, /* -0.500... */
-/**/ a3 = {{0x55588d2e, 0x3fd55555} }, /* 0.333... */
- /* polynomial II */
-/**/ b0 = {{0x55555555, 0x3fd55555} }, /* 0.333... */
-/**/ b1 = {{0xffffffbb, 0xbfcfffff} }, /* -0.249... */
-/**/ b2 = {{0x9999992f, 0x3fc99999} }, /* 0.199... */
-/**/ b3 = {{0x556503fd, 0xbfc55555} }, /* -0.166... */
-/**/ b4 = {{0x925b3d62, 0x3fc24924} }, /* 0.142... */
-/**/ b5 = {{0x160472fc, 0xbfbffffe} }, /* -0.124... */
-/**/ b6 = {{0x25db58ac, 0x3fbc71c5} }, /* 0.111... */
-/**/ b7 = {{0x11a2a61c, 0xbfb9a4ac} }, /* -0.100... */
-/**/ b8 = {{0x0df2b591, 0x3fb75077} }, /* 0.091... */
- /* polynomial III */
-#if 0
-/**/ c1 = {{0x00000000, 0x3ff00000} }, /* 1 */
-#endif
-/**/ c2 = {{0x00000000, 0xbfe00000} }, /* -1/2 */
-/**/ c3 = {{0x55555555, 0x3fd55555} }, /* 1/3 */
-/**/ c4 = {{0x00000000, 0xbfd00000} }, /* -1/4 */
-/**/ c5 = {{0x9999999a, 0x3fc99999} }, /* 1/5 */
- /* polynomial IV */
-/**/ d2 = {{0x00000000, 0xbfe00000} }, /* -1/2 */
-/**/ dd2 = {{0x00000000, 0x00000000} }, /* -1/2-d2 */
-/**/ d3 = {{0x55555555, 0x3fd55555} }, /* 1/3 */
-/**/ dd3 = {{0x55555555, 0x3c755555} }, /* 1/3-d3 */
-/**/ d4 = {{0x00000000, 0xbfd00000} }, /* -1/4 */
-/**/ dd4 = {{0x00000000, 0x00000000} }, /* -1/4-d4 */
-/**/ d5 = {{0x9999999a, 0x3fc99999} }, /* 1/5 */
-/**/ dd5 = {{0x9999999a, 0xbc699999} }, /* 1/5-d5 */
-/**/ d6 = {{0x55555555, 0xbfc55555} }, /* -1/6 */
-/**/ dd6 = {{0x55555555, 0xbc655555} }, /* -1/6-d6 */
-/**/ d7 = {{0x92492492, 0x3fc24924} }, /* 1/7 */
-/**/ dd7 = {{0x92492492, 0x3c624924} }, /* 1/7-d7 */
-/**/ d8 = {{0x00000000, 0xbfc00000} }, /* -1/8 */
-/**/ dd8 = {{0x00000000, 0x00000000} }, /* -1/8-d8 */
-/**/ d9 = {{0x1c71c71c, 0x3fbc71c7} }, /* 1/9 */
-/**/ dd9 = {{0x1c71c71c, 0x3c5c71c7} }, /* 1/9-d9 */
-/**/ d10 = {{0x9999999a, 0xbfb99999} }, /* -1/10 */
-/**/ dd10 = {{0x9999999a, 0x3c599999} }, /* -1/10-d10 */
-/**/ d11 = {{0x745d1746, 0x3fb745d1} }, /* 1/11 */
-/**/ d12 = {{0x55555555, 0xbfb55555} }, /* -1/12 */
-/**/ d13 = {{0x13b13b14, 0x3fb3b13b} }, /* 1/13 */
-/**/ d14 = {{0x92492492, 0xbfb24924} }, /* -1/14 */
-/**/ d15 = {{0x11111111, 0x3fb11111} }, /* 1/15 */
-/**/ d16 = {{0x00000000, 0xbfb00000} }, /* -1/16 */
-/**/ d17 = {{0x1e1e1e1e, 0x3fae1e1e} }, /* 1/17 */
-/**/ d18 = {{0x1c71c71c, 0xbfac71c7} }, /* -1/18 */
-/**/ d19 = {{0xbca1af28, 0x3faaf286} }, /* 1/19 */
-/**/ d20 = {{0x9999999a, 0xbfa99999} }, /* -1/20 */
- /* constants */
-/**/ zero = {{0x00000000, 0x00000000} }, /* 0 */
-/**/ one = {{0x00000000, 0x3ff00000} }, /* 1 */
-/**/ half = {{0x00000000, 0x3fe00000} }, /* 1/2 */
-/**/ mhalf = {{0x00000000, 0xbfe00000} }, /* -1/2 */
-/**/ sqrt_2 = {{0x667f3bcc, 0x3ff6a09e} }, /* sqrt(2) */
-/**/ h1 = {{0x00000000, 0x3fd2e000} }, /* 151/2**9 */
-/**/ h2 = {{0x00000000, 0x3f669000} }, /* 361/2**17 */
-/**/ delu = {{0x00000000, 0x3f700000} }, /* 1/2**8 */
-/**/ delv = {{0x00000000, 0x3ef00000} }, /* 1/2**16 */
-/**/ ln2a = {{0xfefa3800, 0x3fe62e42} }, /* ln(2) 43 bits */
-/**/ ln2b = {{0x93c76730, 0x3d2ef357} }, /* ln(2)-ln2a */
-/**/ e1 = {{0x00000000, 0x3bbcc868} }, /* 6.095e-21 */
-/**/ e2 = {{0x00000000, 0x3c1138ce} }, /* 2.334e-19 */
-/**/ e3 = {{0x00000000, 0x3aa1565d} }, /* 2.801e-26 */
-/**/ e4 = {{0x00000000, 0x39809d88} }, /* 1.024e-31 */
-/**/ e[M] ={{{0x00000000, 0x37da223a} }, /* 1.2e-39 */
-/**/ {{0x00000000, 0x35c851c4} }, /* 1.3e-49 */
-/**/ {{0x00000000, 0x2ab85e51} }, /* 6.8e-103 */
-/**/ {{0x00000000, 0x17383827} }},/* 8.1e-197 */
-/**/ two54 = {{0x00000000, 0x43500000} }, /* 2**54 */
-/**/ u03 = {{0xeb851eb8, 0x3f9eb851} }; /* 0.03 */
-
-#endif
-#endif
-
-#define ZERO zero.d
-#define ONE one.d
-#define HALF half.d
-#define MHALF mhalf.d
-#define SQRT_2 sqrt_2.d
-#define DEL_U delu.d
-#define DEL_V delv.d
-#define LN2A ln2a.d
-#define LN2B ln2b.d
-#define E1 e1.d
-#define E2 e2.d
-#define E3 e3.d
-#define E4 e4.d
-#define U03 u03.d
-
-#endif