summaryrefslogtreecommitdiff
path: root/libgcc/config/arc/ieee-754/divtab-arc-sf.c
diff options
context:
space:
mode:
Diffstat (limited to 'libgcc/config/arc/ieee-754/divtab-arc-sf.c')
-rw-r--r--libgcc/config/arc/ieee-754/divtab-arc-sf.c127
1 files changed, 127 insertions, 0 deletions
diff --git a/libgcc/config/arc/ieee-754/divtab-arc-sf.c b/libgcc/config/arc/ieee-754/divtab-arc-sf.c
new file mode 100644
index 00000000000..d76e4996d21
--- /dev/null
+++ b/libgcc/config/arc/ieee-754/divtab-arc-sf.c
@@ -0,0 +1,127 @@
+/* Copyright (C) 2008-2013 Free Software Foundation, Inc.
+ Contributor: Joern Rennecke <joern.rennecke@embecosm.com>
+ on behalf of Synopsys Inc.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+Under Section 7 of GPL version 3, you are granted additional
+permissions described in the GCC Runtime Library Exception, version
+3.1, as published by the Free Software Foundation.
+
+You should have received a copy of the GNU General Public License and
+a copy of the GCC Runtime Library Exception along with this program;
+see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
+<http://www.gnu.org/licenses/>. */
+
+/* We use a polynom similar to a Tchebycheff polynom to get an initial
+ seed, and then use a newton-raphson iteration step to get an
+ approximate result
+ If this result can't be rounded to the exact result with confidence, we
+ round to the value between the two closest representable values, and
+ test if the correctly rounded value is above or below this value.
+
+ Because of the Newton-raphson iteration step, an error in the seed at X
+ is amplified by X. Therefore, we don't want a Tchebycheff polynom
+ or a polynom that is close to optimal according to the maximum norm
+ on the errro of the seed value; we want one that is close to optimal
+ according to the maximum norm on the error of the result, i.e. we
+ want the maxima of the polynom to increase linearily.
+ Given an interval [X0,X2) over which to approximate,
+ with X1 := (X0+X2)/2, D := X1-X0, F := 1/D, and S := D/X1 we have,
+ like for Tchebycheff polynoms:
+ P(0) := 1
+ but then we have:
+ P(1) := X + S*D
+ P(2) := 2 * X^2 + S*D * X - D^2
+ Then again:
+ P(n+1) := 2 * X * P(n) - D^2 * P (n-1)
+ */
+
+int
+main (void)
+{
+ long double T[5]; /* Taylor polynom */
+ long double P[5][5];
+ int i, j;
+ long double X0, X1, X2, S;
+ long double inc = 1./64;
+ long double D = inc*0.5;
+ long i0, i1, i2;
+
+ memset (P, 0, sizeof (P));
+ P[0][0] = 1.;
+ for (i = 1; i < 5; i++)
+ P[i][i] = 1 << i-1;
+ P[2][0] = -D*D;
+ for (X0 = 1.; X0 < 2.; X0 += inc)
+ {
+ X1 = X0 + inc * 0.5;
+ X2 = X1 + inc;
+ S = D / X1;
+ T[0] = 1./X1;
+ for (i = 1; i < 5; i++)
+ T[i] = T[i-1] * -T[0];
+#if 0
+ printf ("T %1.8f %f %f %f %f\n", (double)T[0], (double)T[1], (double)T[2],
+(double)T[3], (double)T[4]);
+#endif
+ P[1][0] = S*D;
+ P[2][1] = S*D;
+ for (i = 3; i < 5; i++)
+ {
+ P[i][0] = -D*D*P[i-2][0];
+ for (j = 1; j < i; j++)
+ P[i][j] = 2*P[i-1][j-1]-D*D*P[i-2][j];
+ }
+#if 0
+ printf ("P3 %1.8f %f %f %f %f\n", (double)P[3][0], (double)P[3][1], (double)P[3][2],
+(double)P[3][3], (double)P[3][4]);
+ printf ("P4 %1.8f %f %f %f %f\n", (double)P[4][0], (double)P[4][1], (double)P[4][2],
+(double)P[4][3], (double)P[4][4]);
+#endif
+ for (i = 4; i > 1; i--)
+ {
+ long double a = T[i]/P[i][i];
+
+ for (j = 0; j < i; j++)
+ T[j] -= a * P[i][j];
+ }
+#if 0
+ printf ("A %1.8f %f %f\n", (double)T[0], (double)T[1], (double)T[2]);
+#endif
+#if 0
+ i2 = T[2]*512;
+ long double a = (T[2]-i/512.)/P[2][2];
+ for (j = 0; j < 2; j++)
+ T[j] -= a * P[2][j];
+#else
+ i2 = 0;
+#endif
+ for (i = 0, i0 = 0; i < 4; i++)
+ {
+ long double T0, Ti1;
+
+ i1 = T[1]*8192. + i0 / (long double)(1 << 19) - 0.5;
+ i1 = - (-i1 & 0x1fff);
+ Ti1 = ((unsigned)(-i1 << 19) | i0) /-(long double)(1LL<<32LL);
+ T0 = T[0] - (T[1]-Ti1)/P[1][1] * P[1][0] - (X1 - 1) * Ti1;
+ i0 = T0 * 512 * 1024 + 0.5;
+ i0 &= 0x7ffff;
+ }
+#if 0
+ printf ("A %1.8f %f %f\n", (double)T[0], (double)T[1], (double)T[2]);
+#endif
+ printf ("\t.long 0x%x\n", (-i1 << 19) | i0);
+ }
+ return 0;
+}