summaryrefslogtreecommitdiff
path: root/libgcc/config/libbid/bid64_to_uint64.c
diff options
context:
space:
mode:
Diffstat (limited to 'libgcc/config/libbid/bid64_to_uint64.c')
-rw-r--r--libgcc/config/libbid/bid64_to_uint64.c2278
1 files changed, 2278 insertions, 0 deletions
diff --git a/libgcc/config/libbid/bid64_to_uint64.c b/libgcc/config/libbid/bid64_to_uint64.c
new file mode 100644
index 00000000000..df18f71e13d
--- /dev/null
+++ b/libgcc/config/libbid/bid64_to_uint64.c
@@ -0,0 +1,2278 @@
+/* Copyright (C) 2007 Free Software Foundation, Inc.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 2, or (at your option) any later
+version.
+
+In addition to the permissions in the GNU General Public License, the
+Free Software Foundation gives you unlimited permission to link the
+compiled version of this file into combinations with other programs,
+and to distribute those combinations without any restriction coming
+from the use of this file. (The General Public License restrictions
+do apply in other respects; for example, they cover modification of
+the file, and distribution when not linked into a combine
+executable.)
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING. If not, write to the Free
+Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
+02110-1301, USA. */
+
+#include "bid_internal.h"
+
+/*****************************************************************************
+ * BID64_to_uint64_rnint
+ ****************************************************************************/
+
+#if DECIMAL_CALL_BY_REFERENCE
+void
+__bid64_to_uint64_rnint (UINT64 * pres, UINT64 * px
+ _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+ _EXC_INFO_PARAM) {
+ UINT64 x = *px;
+#else
+UINT64
+__bid64_to_uint64_rnint (UINT64 x
+ _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+ _EXC_INFO_PARAM) {
+#endif
+ UINT64 res;
+ UINT64 x_sign;
+ UINT64 x_exp;
+ int exp; // unbiased exponent
+ // Note: C1 represents x_significand (UINT64)
+ BID_UI64DOUBLE tmp1;
+ unsigned int x_nr_bits;
+ int q, ind, shift;
+ UINT64 C1;
+ UINT128 C;
+ UINT64 Cstar; // C* represents up to 16 decimal digits ~ 54 bits
+ UINT128 fstar;
+ UINT128 P128;
+
+ // check for NaN or Infinity
+ if ((x & MASK_NAN) == MASK_NAN || (x & MASK_INF) == MASK_INF) {
+ // set invalid flag
+ *pfpsf |= INVALID_EXCEPTION;
+ // return Integer Indefinite
+ res = 0x8000000000000000ull;
+ BID_RETURN (res);
+ }
+ // unpack x
+ x_sign = x & MASK_SIGN; // 0 for positive, MASK_SIGN for negative
+ // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+ if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+ x_exp = (x & MASK_BINARY_EXPONENT2) >> 51; // biased
+ C1 = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+ if (C1 > 9999999999999999ull) { // non-canonical
+ x_exp = 0;
+ C1 = 0;
+ }
+ } else {
+ x_exp = (x & MASK_BINARY_EXPONENT1) >> 53; // biased
+ C1 = x & MASK_BINARY_SIG1;
+ }
+
+ // check for zeros (possibly from non-canonical values)
+ if (C1 == 0x0ull) {
+ // x is 0
+ res = 0x0000000000000000ull;
+ BID_RETURN (res);
+ }
+ // x is not special and is not zero
+
+ // q = nr. of decimal digits in x (1 <= q <= 54)
+ // determine first the nr. of bits in x
+ if (C1 >= 0x0020000000000000ull) { // x >= 2^53
+ // split the 64-bit value in two 32-bit halves to avoid rounding errors
+ if (C1 >= 0x0000000100000000ull) { // x >= 2^32
+ tmp1.d = (double) (C1 >> 32); // exact conversion
+ x_nr_bits =
+ 33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
+ } else { // x < 2^32
+ tmp1.d = (double) C1; // exact conversion
+ x_nr_bits =
+ 1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
+ }
+ } else { // if x < 2^53
+ tmp1.d = (double) C1; // exact conversion
+ x_nr_bits =
+ 1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
+ }
+ q = __bid_nr_digits[x_nr_bits - 1].digits;
+ if (q == 0) {
+ q = __bid_nr_digits[x_nr_bits - 1].digits1;
+ if (C1 >= __bid_nr_digits[x_nr_bits - 1].threshold_lo)
+ q++;
+ }
+ exp = x_exp - 398; // unbiased exponent
+
+ if ((q + exp) > 20) { // x >= 10^20 ~= 2^66.45... (cannot fit in 64 bits)
+ // set invalid flag
+ *pfpsf |= INVALID_EXCEPTION;
+ // return Integer Indefinite
+ res = 0x8000000000000000ull;
+ BID_RETURN (res);
+ } else if ((q + exp) == 20) { // x = c(0)c(1)...c(19).c(20)...c(q-1)
+ // in this case 2^63.11... ~= 10^19 <= x < 10^20 ~= 2^66.43...
+ // so x rounded to an integer may or may not fit in an unsigned 64-bit int
+ // the cases that do not fit are identified here; the ones that fit
+ // fall through and will be handled with other cases further,
+ // under '1 <= q + exp <= 20'
+ if (x_sign) { // if n < 0 and q + exp = 20 then x is much less than -1/2
+ // => set invalid flag
+ *pfpsf |= INVALID_EXCEPTION;
+ // return Integer Indefinite
+ res = 0x8000000000000000ull;
+ BID_RETURN (res);
+ } else { // if n > 0 and q + exp = 20
+ // if n >= 2^64 - 1/2 then n is too large
+ // <=> c(0)c(1)...c(19).c(20)...c(q-1) >= 2^64-1/2
+ // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^20 >= 2^64-1/2
+ // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^21 >= 5*(2^65-1)
+ // <=> C * 10^(21-q) >= 0x9fffffffffffffffb, 1<=q<=16
+ if (q == 1) {
+ // C * 10^20 >= 0x9fffffffffffffffb
+ __mul_128x64_to_128 (C, C1, __bid_ten2k128[0]); // 10^20 * C
+ if (C.w[1] > 0x09 ||
+ (C.w[1] == 0x09 && C.w[0] >= 0xfffffffffffffffbull)) {
+ // set invalid flag
+ *pfpsf |= INVALID_EXCEPTION;
+ // return Integer Indefinite
+ res = 0x8000000000000000ull;
+ BID_RETURN (res);
+ }
+ // else cases that can be rounded to a 64-bit int fall through
+ // to '1 <= q + exp <= 20'
+ } else { // if (2 <= q <= 16) => 5 <= 21 - q <= 19
+ // Note: C * 10^(21-q) has 20 or 21 digits; 0x9fffffffffffffffb
+ // has 21 digits
+ __mul_64x64_to_128MACH (C, C1, __bid_ten2k64[21 - q]);
+ if (C.w[1] > 0x09 ||
+ (C.w[1] == 0x09 && C.w[0] >= 0xfffffffffffffffbull)) {
+ // set invalid flag
+ *pfpsf |= INVALID_EXCEPTION;
+ // return Integer Indefinite
+ res = 0x8000000000000000ull;
+ BID_RETURN (res);
+ }
+ // else cases that can be rounded to a 64-bit int fall through
+ // to '1 <= q + exp <= 20'
+ }
+ }
+ }
+ // n is not too large to be converted to int64 if -1/2 <= n < 2^64 - 1/2
+ // Note: some of the cases tested for above fall through to this point
+ if ((q + exp) < 0) { // n = +/-0.0...c(0)c(1)...c(q-1)
+ // return 0
+ res = 0x0000000000000000ull;
+ BID_RETURN (res);
+ } else if ((q + exp) == 0) { // n = +/-0.c(0)c(1)...c(q-1)
+ // if 0.c(0)c(1)...c(q-1) <= 0.5 <=> c(0)c(1)...c(q-1) <= 5 * 10^(q-1)
+ // res = 0
+ // else if x > 0
+ // res = +1
+ // else // if x < 0
+ // invalid exc
+ ind = q - 1; // 0 <= ind <= 15
+ if (C1 <= __bid_midpoint64[ind]) {
+ res = 0x0000000000000000ull; // return 0
+ } else if (!x_sign) { // n > 0
+ res = 0x0000000000000001ull; // return +1
+ } else { // if n < 0
+ res = 0x8000000000000000ull;
+ *pfpsf |= INVALID_EXCEPTION;
+ BID_RETURN (res);
+ }
+ } else { // if (1 <= q + exp <= 20, 1 <= q <= 16, -15 <= exp <= 19)
+ // x <= -1 or 1 <= x < 2^64-1/2 so if positive x can be rounded
+ // to nearest to a 64-bit unsigned signed integer
+ if (x_sign) { // x <= -1
+ // set invalid flag
+ *pfpsf |= INVALID_EXCEPTION;
+ // return Integer Indefinite
+ res = 0x8000000000000000ull;
+ BID_RETURN (res);
+ }
+ // 1 <= x < 2^64-1/2 so x can be rounded
+ // to nearest to a 64-bit unsigned integer
+ if (exp < 0) { // 2 <= q <= 16, -15 <= exp <= -1, 1 <= q + exp <= 20
+ ind = -exp; // 1 <= ind <= 15; ind is a synonym for 'x'
+ // chop off ind digits from the lower part of C1
+ // C1 = C1 + 1/2 * 10^ind where the result C1 fits in 64 bits
+ C1 = C1 + __bid_midpoint64[ind - 1];
+ // calculate C* and f*
+ // C* is actually floor(C*) in this case
+ // C* and f* need shifting and masking, as shown by
+ // __bid_shiftright128[] and __bid_maskhigh128[]
+ // 1 <= x <= 15
+ // kx = 10^(-x) = __bid_ten2mk64[ind - 1]
+ // C* = (C1 + 1/2 * 10^x) * 10^(-x)
+ // the approximation of 10^(-x) was rounded up to 54 bits
+ __mul_64x64_to_128MACH (P128, C1, __bid_ten2mk64[ind - 1]);
+ Cstar = P128.w[1];
+ fstar.w[1] = P128.w[1] & __bid_maskhigh128[ind - 1];
+ fstar.w[0] = P128.w[0];
+ // the top Ex bits of 10^(-x) are T* = __bid_ten2mk128trunc[ind].w[0], e.g.
+ // if x=1, T*=__bid_ten2mk128trunc[0].w[0]=0x1999999999999999
+ // if (0 < f* < 10^(-x)) then the result is a midpoint
+ // if floor(C*) is even then C* = floor(C*) - logical right
+ // shift; C* has p decimal digits, correct by Prop. 1)
+ // else if floor(C*) is odd C* = floor(C*)-1 (logical right
+ // shift; C* has p decimal digits, correct by Pr. 1)
+ // else
+ // C* = floor(C*) (logical right shift; C has p decimal digits,
+ // correct by Property 1)
+ // n = C* * 10^(e+x)
+
+ // shift right C* by Ex-64 = __bid_shiftright128[ind]
+ shift = __bid_shiftright128[ind - 1]; // 0 <= shift <= 39
+ Cstar = Cstar >> shift;
+
+ // if the result was a midpoint it was rounded away from zero, so
+ // it will need a correction
+ // check for midpoints
+ if ((fstar.w[1] == 0) && fstar.w[0] &&
+ (fstar.w[0] <= __bid_ten2mk128trunc[ind - 1].w[1])) {
+ // __bid_ten2mk128trunc[ind -1].w[1] is identical to
+ // __bid_ten2mk128[ind -1].w[1]
+ // the result is a midpoint; round to nearest
+ if (Cstar & 0x01) { // Cstar is odd; MP in [EVEN, ODD]
+ // if floor(C*) is odd C = floor(C*) - 1; the result >= 1
+ Cstar--; // Cstar is now even
+ } // else MP in [ODD, EVEN]
+ }
+ res = Cstar; // the result is positive
+ } else if (exp == 0) {
+ // 1 <= q <= 10
+ // res = +C (exact)
+ res = C1; // the result is positive
+ } else { // if (exp > 0) => 1 <= exp <= 9, 1 <= q < 9, 2 <= q + exp <= 10
+ // res = +C * 10^exp (exact)
+ res = C1 * __bid_ten2k64[exp]; // the result is positive
+ }
+ }
+ BID_RETURN (res);
+}
+
+/*****************************************************************************
+ * BID64_to_uint64_xrnint
+ ****************************************************************************/
+
+#if DECIMAL_CALL_BY_REFERENCE
+void
+__bid64_to_uint64_xrnint (UINT64 * pres, UINT64 * px
+ _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+ _EXC_INFO_PARAM) {
+ UINT64 x = *px;
+#else
+UINT64
+__bid64_to_uint64_xrnint (UINT64 x
+ _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+ _EXC_INFO_PARAM) {
+#endif
+ UINT64 res;
+ UINT64 x_sign;
+ UINT64 x_exp;
+ int exp; // unbiased exponent
+ // Note: C1 represents x_significand (UINT64)
+ UINT64 tmp64;
+ BID_UI64DOUBLE tmp1;
+ unsigned int x_nr_bits;
+ int q, ind, shift;
+ UINT64 C1;
+ UINT128 C;
+ UINT64 Cstar; // C* represents up to 16 decimal digits ~ 54 bits
+ UINT128 fstar;
+ UINT128 P128;
+
+ // check for NaN or Infinity
+ if ((x & MASK_NAN) == MASK_NAN || (x & MASK_INF) == MASK_INF) {
+ // set invalid flag
+ *pfpsf |= INVALID_EXCEPTION;
+ // return Integer Indefinite
+ res = 0x8000000000000000ull;
+ BID_RETURN (res);
+ }
+ // unpack x
+ x_sign = x & MASK_SIGN; // 0 for positive, MASK_SIGN for negative
+ // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+ if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+ x_exp = (x & MASK_BINARY_EXPONENT2) >> 51; // biased
+ C1 = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+ if (C1 > 9999999999999999ull) { // non-canonical
+ x_exp = 0;
+ C1 = 0;
+ }
+ } else {
+ x_exp = (x & MASK_BINARY_EXPONENT1) >> 53; // biased
+ C1 = x & MASK_BINARY_SIG1;
+ }
+
+ // check for zeros (possibly from non-canonical values)
+ if (C1 == 0x0ull) {
+ // x is 0
+ res = 0x0000000000000000ull;
+ BID_RETURN (res);
+ }
+ // x is not special and is not zero
+
+ // q = nr. of decimal digits in x (1 <= q <= 54)
+ // determine first the nr. of bits in x
+ if (C1 >= 0x0020000000000000ull) { // x >= 2^53
+ // split the 64-bit value in two 32-bit halves to avoid rounding errors
+ if (C1 >= 0x0000000100000000ull) { // x >= 2^32
+ tmp1.d = (double) (C1 >> 32); // exact conversion
+ x_nr_bits =
+ 33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
+ } else { // x < 2^32
+ tmp1.d = (double) C1; // exact conversion
+ x_nr_bits =
+ 1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
+ }
+ } else { // if x < 2^53
+ tmp1.d = (double) C1; // exact conversion
+ x_nr_bits =
+ 1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
+ }
+ q = __bid_nr_digits[x_nr_bits - 1].digits;
+ if (q == 0) {
+ q = __bid_nr_digits[x_nr_bits - 1].digits1;
+ if (C1 >= __bid_nr_digits[x_nr_bits - 1].threshold_lo)
+ q++;
+ }
+ exp = x_exp - 398; // unbiased exponent
+
+ if ((q + exp) > 20) { // x >= 10^20 ~= 2^66.45... (cannot fit in 64 bits)
+ // set invalid flag
+ *pfpsf |= INVALID_EXCEPTION;
+ // return Integer Indefinite
+ res = 0x8000000000000000ull;
+ BID_RETURN (res);
+ } else if ((q + exp) == 20) { // x = c(0)c(1)...c(19).c(20)...c(q-1)
+ // in this case 2^63.11... ~= 10^19 <= x < 10^20 ~= 2^66.43...
+ // so x rounded to an integer may or may not fit in an unsigned 64-bit int
+ // the cases that do not fit are identified here; the ones that fit
+ // fall through and will be handled with other cases further,
+ // under '1 <= q + exp <= 20'
+ if (x_sign) { // if n < 0 and q + exp = 20 then x is much less than -1/2
+ // => set invalid flag
+ *pfpsf |= INVALID_EXCEPTION;
+ // return Integer Indefinite
+ res = 0x8000000000000000ull;
+ BID_RETURN (res);
+ } else { // if n > 0 and q + exp = 20
+ // if n >= 2^64 - 1/2 then n is too large
+ // <=> c(0)c(1)...c(19).c(20)...c(q-1) >= 2^64-1/2
+ // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^20 >= 2^64-1/2
+ // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^21 >= 5*(2^65-1)
+ // <=> C * 10^(21-q) >= 0x9fffffffffffffffb, 1<=q<=16
+ if (q == 1) {
+ // C * 10^20 >= 0x9fffffffffffffffb
+ __mul_128x64_to_128 (C, C1, __bid_ten2k128[0]); // 10^20 * C
+ if (C.w[1] > 0x09 ||
+ (C.w[1] == 0x09 && C.w[0] >= 0xfffffffffffffffbull)) {
+ // set invalid flag
+ *pfpsf |= INVALID_EXCEPTION;
+ // return Integer Indefinite
+ res = 0x8000000000000000ull;
+ BID_RETURN (res);
+ }
+ // else cases that can be rounded to a 64-bit int fall through
+ // to '1 <= q + exp <= 20'
+ } else { // if (2 <= q <= 16) => 5 <= 21 - q <= 19
+ // Note: C * 10^(21-q) has 20 or 21 digits; 0x9fffffffffffffffb
+ // has 21 digits
+ __mul_64x64_to_128MACH (C, C1, __bid_ten2k64[21 - q]);
+ if (C.w[1] > 0x09 ||
+ (C.w[1] == 0x09 && C.w[0] >= 0xfffffffffffffffbull)) {
+ // set invalid flag
+ *pfpsf |= INVALID_EXCEPTION;
+ // return Integer Indefinite
+ res = 0x8000000000000000ull;
+ BID_RETURN (res);
+ }
+ // else cases that can be rounded to a 64-bit int fall through
+ // to '1 <= q + exp <= 20'
+ }
+ }
+ }
+ // n is not too large to be converted to int64 if -1/2 <= n < 2^64 - 1/2
+ // Note: some of the cases tested for above fall through to this point
+ if ((q + exp) < 0) { // n = +/-0.0...c(0)c(1)...c(q-1)
+ // set inexact flag
+ *pfpsf |= INEXACT_EXCEPTION;
+ // return 0
+ res = 0x0000000000000000ull;
+ BID_RETURN (res);
+ } else if ((q + exp) == 0) { // n = +/-0.c(0)c(1)...c(q-1)
+ // if 0.c(0)c(1)...c(q-1) <= 0.5 <=> c(0)c(1)...c(q-1) <= 5 * 10^(q-1)
+ // res = 0
+ // else if x > 0
+ // res = +1
+ // else // if x < 0
+ // invalid exc
+ ind = q - 1; // 0 <= ind <= 15
+ if (C1 <= __bid_midpoint64[ind]) {
+ res = 0x0000000000000000ull; // return 0
+ } else if (!x_sign) { // n > 0
+ res = 0x0000000000000001ull; // return +1
+ } else { // if n < 0
+ res = 0x8000000000000000ull;
+ *pfpsf |= INVALID_EXCEPTION;
+ BID_RETURN (res);
+ }
+ // set inexact flag
+ *pfpsf |= INEXACT_EXCEPTION;
+ } else { // if (1 <= q + exp <= 20, 1 <= q <= 16, -15 <= exp <= 19)
+ // x <= -1 or 1 <= x < 2^64-1/2 so if positive x can be rounded
+ // to nearest to a 64-bit unsigned signed integer
+ if (x_sign) { // x <= -1
+ // set invalid flag
+ *pfpsf |= INVALID_EXCEPTION;
+ // return Integer Indefinite
+ res = 0x8000000000000000ull;
+ BID_RETURN (res);
+ }
+ // 1 <= x < 2^64-1/2 so x can be rounded
+ // to nearest to a 64-bit unsigned integer
+ if (exp < 0) { // 2 <= q <= 16, -15 <= exp <= -1, 1 <= q + exp <= 20
+ ind = -exp; // 1 <= ind <= 15; ind is a synonym for 'x'
+ // chop off ind digits from the lower part of C1
+ // C1 = C1 + 1/2 * 10^ind where the result C1 fits in 64 bits
+ C1 = C1 + __bid_midpoint64[ind - 1];
+ // calculate C* and f*
+ // C* is actually floor(C*) in this case
+ // C* and f* need shifting and masking, as shown by
+ // __bid_shiftright128[] and __bid_maskhigh128[]
+ // 1 <= x <= 15
+ // kx = 10^(-x) = __bid_ten2mk64[ind - 1]
+ // C* = (C1 + 1/2 * 10^x) * 10^(-x)
+ // the approximation of 10^(-x) was rounded up to 54 bits
+ __mul_64x64_to_128MACH (P128, C1, __bid_ten2mk64[ind - 1]);
+ Cstar = P128.w[1];
+ fstar.w[1] = P128.w[1] & __bid_maskhigh128[ind - 1];
+ fstar.w[0] = P128.w[0];
+ // the top Ex bits of 10^(-x) are T* = __bid_ten2mk128trunc[ind].w[0], e.g.
+ // if x=1, T*=__bid_ten2mk128trunc[0].w[0]=0x1999999999999999
+ // if (0 < f* < 10^(-x)) then the result is a midpoint
+ // if floor(C*) is even then C* = floor(C*) - logical right
+ // shift; C* has p decimal digits, correct by Prop. 1)
+ // else if floor(C*) is odd C* = floor(C*)-1 (logical right
+ // shift; C* has p decimal digits, correct by Pr. 1)
+ // else
+ // C* = floor(C*) (logical right shift; C has p decimal digits,
+ // correct by Property 1)
+ // n = C* * 10^(e+x)
+
+ // shift right C* by Ex-64 = __bid_shiftright128[ind]
+ shift = __bid_shiftright128[ind - 1]; // 0 <= shift <= 39
+ Cstar = Cstar >> shift;
+ // determine inexactness of the rounding of C*
+ // if (0 < f* - 1/2 < 10^(-x)) then
+ // the result is exact
+ // else // if (f* - 1/2 > T*) then
+ // the result is inexact
+ if (ind - 1 <= 2) { // fstar.w[1] is 0
+ if (fstar.w[0] > 0x8000000000000000ull) {
+ // f* > 1/2 and the result may be exact
+ tmp64 = fstar.w[0] - 0x8000000000000000ull; // f* - 1/2
+ if ((tmp64 > __bid_ten2mk128trunc[ind - 1].w[1])) {
+ // __bid_ten2mk128trunc[ind -1].w[1] is identical to
+ // __bid_ten2mk128[ind -1].w[1]
+ // set the inexact flag
+ *pfpsf |= INEXACT_EXCEPTION;
+ } // else the result is exact
+ } else { // the result is inexact; f2* <= 1/2
+ // set the inexact flag
+ *pfpsf |= INEXACT_EXCEPTION;
+ }
+ } else { // if 3 <= ind - 1 <= 14
+ if (fstar.w[1] > __bid_one_half128[ind - 1] ||
+ (fstar.w[1] == __bid_one_half128[ind - 1] && fstar.w[0])) {
+ // f2* > 1/2 and the result may be exact
+ // Calculate f2* - 1/2
+ tmp64 = fstar.w[1] - __bid_one_half128[ind - 1];
+ if (tmp64 || fstar.w[0] > __bid_ten2mk128trunc[ind - 1].w[1]) {
+ // __bid_ten2mk128trunc[ind -1].w[1] is identical to
+ // __bid_ten2mk128[ind -1].w[1]
+ // set the inexact flag
+ *pfpsf |= INEXACT_EXCEPTION;
+ } // else the result is exact
+ } else { // the result is inexact; f2* <= 1/2
+ // set the inexact flag
+ *pfpsf |= INEXACT_EXCEPTION;
+ }
+ }
+
+ // if the result was a midpoint it was rounded away from zero, so
+ // it will need a correction
+ // check for midpoints
+ if ((fstar.w[1] == 0) && fstar.w[0] &&
+ (fstar.w[0] <= __bid_ten2mk128trunc[ind - 1].w[1])) {
+ // __bid_ten2mk128trunc[ind -1].w[1] is identical to
+ // __bid_ten2mk128[ind -1].w[1]
+ // the result is a midpoint; round to nearest
+ if (Cstar & 0x01) { // Cstar is odd; MP in [EVEN, ODD]
+ // if floor(C*) is odd C = floor(C*) - 1; the result >= 1
+ Cstar--; // Cstar is now even
+ } // else MP in [ODD, EVEN]
+ }
+ res = Cstar; // the result is positive
+ } else if (exp == 0) {
+ // 1 <= q <= 10
+ // res = +C (exact)
+ res = C1; // the result is positive
+ } else { // if (exp > 0) => 1 <= exp <= 9, 1 <= q < 9, 2 <= q + exp <= 10
+ // res = +C * 10^exp (exact)
+ res = C1 * __bid_ten2k64[exp]; // the result is positive
+ }
+ }
+ BID_RETURN (res);
+}
+
+/*****************************************************************************
+ * BID64_to_uint64_floor
+ ****************************************************************************/
+
+#if DECIMAL_CALL_BY_REFERENCE
+void
+__bid64_to_uint64_floor (UINT64 * pres, UINT64 * px
+ _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+ _EXC_INFO_PARAM) {
+ UINT64 x = *px;
+#else
+UINT64
+__bid64_to_uint64_floor (UINT64 x
+ _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+ _EXC_INFO_PARAM) {
+#endif
+ UINT64 res;
+ UINT64 x_sign;
+ UINT64 x_exp;
+ int exp; // unbiased exponent
+ // Note: C1 represents x_significand (UINT64)
+ BID_UI64DOUBLE tmp1;
+ unsigned int x_nr_bits;
+ int q, ind, shift;
+ UINT64 C1;
+ UINT128 C;
+ UINT64 Cstar; // C* represents up to 16 decimal digits ~ 54 bits
+ UINT128 P128;
+
+ // check for NaN or Infinity
+ if ((x & MASK_NAN) == MASK_NAN || (x & MASK_INF) == MASK_INF) {
+ // set invalid flag
+ *pfpsf |= INVALID_EXCEPTION;
+ // return Integer Indefinite
+ res = 0x8000000000000000ull;
+ BID_RETURN (res);
+ }
+ // unpack x
+ x_sign = x & MASK_SIGN; // 0 for positive, MASK_SIGN for negative
+ // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+ if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+ x_exp = (x & MASK_BINARY_EXPONENT2) >> 51; // biased
+ C1 = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+ if (C1 > 9999999999999999ull) { // non-canonical
+ x_exp = 0;
+ C1 = 0;
+ }
+ } else {
+ x_exp = (x & MASK_BINARY_EXPONENT1) >> 53; // biased
+ C1 = x & MASK_BINARY_SIG1;
+ }
+
+ // check for zeros (possibly from non-canonical values)
+ if (C1 == 0x0ull) {
+ // x is 0
+ res = 0x0000000000000000ull;
+ BID_RETURN (res);
+ }
+ // x is not special and is not zero
+
+ if (x_sign) { // if n < 0 the conversion is invalid
+ // set invalid flag
+ *pfpsf |= INVALID_EXCEPTION;
+ // return Integer Indefinite
+ res = 0x8000000000000000ull;
+ BID_RETURN (res);
+ }
+ // q = nr. of decimal digits in x (1 <= q <= 54)
+ // determine first the nr. of bits in x
+ if (C1 >= 0x0020000000000000ull) { // x >= 2^53
+ // split the 64-bit value in two 32-bit halves to avoid rounding errors
+ if (C1 >= 0x0000000100000000ull) { // x >= 2^32
+ tmp1.d = (double) (C1 >> 32); // exact conversion
+ x_nr_bits =
+ 33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
+ } else { // x < 2^32
+ tmp1.d = (double) C1; // exact conversion
+ x_nr_bits =
+ 1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
+ }
+ } else { // if x < 2^53
+ tmp1.d = (double) C1; // exact conversion
+ x_nr_bits =
+ 1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
+ }
+ q = __bid_nr_digits[x_nr_bits - 1].digits;
+ if (q == 0) {
+ q = __bid_nr_digits[x_nr_bits - 1].digits1;
+ if (C1 >= __bid_nr_digits[x_nr_bits - 1].threshold_lo)
+ q++;
+ }
+ exp = x_exp - 398; // unbiased exponent
+
+ if ((q + exp) > 20) { // x >= 10^20 ~= 2^66.45... (cannot fit in 64 bits)
+ // set invalid flag
+ *pfpsf |= INVALID_EXCEPTION;
+ // return Integer Indefinite
+ res = 0x8000000000000000ull;
+ BID_RETURN (res);
+ } else if ((q + exp) == 20) { // x = c(0)c(1)...c(19).c(20)...c(q-1)
+ // in this case 2^63.11... ~= 10^19 <= x < 10^20 ~= 2^66.43...
+ // so x rounded to an integer may or may not fit in an unsigned 64-bit int
+ // the cases that do not fit are identified here; the ones that fit
+ // fall through and will be handled with other cases further,
+ // under '1 <= q + exp <= 20'
+ // n > 0 and q + exp = 20
+ // if n >= 2^64 then n is too large
+ // <=> c(0)c(1)...c(19).c(20)...c(q-1) >= 2^64
+ // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^20 >= 2^64
+ // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^21 >= 5*(2^65)
+ // <=> C * 10^(21-q) >= 0xa0000000000000000, 1<=q<=16
+ if (q == 1) {
+ // C * 10^20 >= 0xa0000000000000000
+ __mul_128x64_to_128 (C, C1, __bid_ten2k128[0]); // 10^20 * C
+ if (C.w[1] >= 0x0a) {
+ // actually C.w[1] == 0x0a && C.w[0] >= 0x0000000000000000ull) {
+ // set invalid flag
+ *pfpsf |= INVALID_EXCEPTION;
+ // return Integer Indefinite
+ res = 0x8000000000000000ull;
+ BID_RETURN (res);
+ }
+ // else cases that can be rounded to a 64-bit int fall through
+ // to '1 <= q + exp <= 20'
+ } else { // if (2 <= q <= 16) => 5 <= 21 - q <= 19
+ // Note: C * 10^(21-q) has 20 or 21 digits; 0xa0000000000000000
+ // has 21 digits
+ __mul_64x64_to_128MACH (C, C1, __bid_ten2k64[21 - q]);
+ if (C.w[1] >= 0x0a) {
+ // actually C.w[1] == 0x0a && C.w[0] >= 0x0000000000000000ull) {
+ // set invalid flag
+ *pfpsf |= INVALID_EXCEPTION;
+ // return Integer Indefinite
+ res = 0x8000000000000000ull;
+ BID_RETURN (res);
+ }
+ // else cases that can be rounded to a 64-bit int fall through
+ // to '1 <= q + exp <= 20'
+ }
+ }
+ // n is not too large to be converted to int64 if -1 < n < 2^64
+ // Note: some of the cases tested for above fall through to this point
+ if ((q + exp) <= 0) { // n = +0.[0...0]c(0)c(1)...c(q-1)
+ // return 0
+ res = 0x0000000000000000ull;
+ BID_RETURN (res);
+ } else { // if (1 <= q + exp <= 20, 1 <= q <= 16, -15 <= exp <= 19)
+ // 1 <= x < 2^64 so x can be rounded
+ // to nearest to a 64-bit unsigned signed integer
+ if (exp < 0) { // 2 <= q <= 16, -15 <= exp <= -1, 1 <= q + exp <= 20
+ ind = -exp; // 1 <= ind <= 15; ind is a synonym for 'x'
+ // chop off ind digits from the lower part of C1
+ // C1 fits in 64 bits
+ // calculate C* and f*
+ // C* is actually floor(C*) in this case
+ // C* and f* need shifting and masking, as shown by
+ // __bid_shiftright128[] and __bid_maskhigh128[]
+ // 1 <= x <= 15
+ // kx = 10^(-x) = __bid_ten2mk64[ind - 1]
+ // C* = C1 * 10^(-x)
+ // the approximation of 10^(-x) was rounded up to 54 bits
+ __mul_64x64_to_128MACH (P128, C1, __bid_ten2mk64[ind - 1]);
+ Cstar = P128.w[1];
+ // the top Ex bits of 10^(-x) are T* = __bid_ten2mk128trunc[ind].w[0], e.g.
+ // if x=1, T*=__bid_ten2mk128trunc[0].w[0]=0x1999999999999999
+ // C* = floor(C*) (logical right shift; C has p decimal digits,
+ // correct by Property 1)
+ // n = C* * 10^(e+x)
+
+ // shift right C* by Ex-64 = __bid_shiftright128[ind]
+ shift = __bid_shiftright128[ind - 1]; // 0 <= shift <= 39
+ Cstar = Cstar >> shift;
+ res = Cstar; // the result is positive
+ } else if (exp == 0) {
+ // 1 <= q <= 10
+ // res = +C (exact)
+ res = C1; // the result is positive
+ } else { // if (exp > 0) => 1 <= exp <= 9, 1 <= q < 9, 2 <= q + exp <= 10
+ // res = +C * 10^exp (exact)
+ res = C1 * __bid_ten2k64[exp]; // the result is positive
+ }
+ }
+ BID_RETURN (res);
+}
+
+/*****************************************************************************
+ * BID64_to_uint64_xfloor
+ ****************************************************************************/
+
+#if DECIMAL_CALL_BY_REFERENCE
+void
+__bid64_to_uint64_xfloor (UINT64 * pres, UINT64 * px
+ _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+ _EXC_INFO_PARAM) {
+ UINT64 x = *px;
+#else
+UINT64
+__bid64_to_uint64_xfloor (UINT64 x
+ _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+ _EXC_INFO_PARAM) {
+#endif
+ UINT64 res;
+ UINT64 x_sign;
+ UINT64 x_exp;
+ int exp; // unbiased exponent
+ // Note: C1 represents x_significand (UINT64)
+ BID_UI64DOUBLE tmp1;
+ unsigned int x_nr_bits;
+ int q, ind, shift;
+ UINT64 C1;
+ UINT128 C;
+ UINT64 Cstar; // C* represents up to 16 decimal digits ~ 54 bits
+ UINT128 fstar;
+ UINT128 P128;
+
+ // check for NaN or Infinity
+ if ((x & MASK_NAN) == MASK_NAN || (x & MASK_INF) == MASK_INF) {
+ // set invalid flag
+ *pfpsf |= INVALID_EXCEPTION;
+ // return Integer Indefinite
+ res = 0x8000000000000000ull;
+ BID_RETURN (res);
+ }
+ // unpack x
+ x_sign = x & MASK_SIGN; // 0 for positive, MASK_SIGN for negative
+ // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+ if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+ x_exp = (x & MASK_BINARY_EXPONENT2) >> 51; // biased
+ C1 = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+ if (C1 > 9999999999999999ull) { // non-canonical
+ x_exp = 0;
+ C1 = 0;
+ }
+ } else {
+ x_exp = (x & MASK_BINARY_EXPONENT1) >> 53; // biased
+ C1 = x & MASK_BINARY_SIG1;
+ }
+
+ // check for zeros (possibly from non-canonical values)
+ if (C1 == 0x0ull) {
+ // x is 0
+ res = 0x0000000000000000ull;
+ BID_RETURN (res);
+ }
+ // x is not special and is not zero
+
+ if (x_sign) { // if n < 0 the conversion is invalid
+ // set invalid flag
+ *pfpsf |= INVALID_EXCEPTION;
+ // return Integer Indefinite
+ res = 0x8000000000000000ull;
+ BID_RETURN (res);
+ }
+ // q = nr. of decimal digits in x (1 <= q <= 54)
+ // determine first the nr. of bits in x
+ if (C1 >= 0x0020000000000000ull) { // x >= 2^53
+ // split the 64-bit value in two 32-bit halves to avoid rounding errors
+ if (C1 >= 0x0000000100000000ull) { // x >= 2^32
+ tmp1.d = (double) (C1 >> 32); // exact conversion
+ x_nr_bits =
+ 33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
+ } else { // x < 2^32
+ tmp1.d = (double) C1; // exact conversion
+ x_nr_bits =
+ 1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
+ }
+ } else { // if x < 2^53
+ tmp1.d = (double) C1; // exact conversion
+ x_nr_bits =
+ 1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
+ }
+ q = __bid_nr_digits[x_nr_bits - 1].digits;
+ if (q == 0) {
+ q = __bid_nr_digits[x_nr_bits - 1].digits1;
+ if (C1 >= __bid_nr_digits[x_nr_bits - 1].threshold_lo)
+ q++;
+ }
+ exp = x_exp - 398; // unbiased exponent
+
+ if ((q + exp) > 20) { // x >= 10^20 ~= 2^66.45... (cannot fit in 64 bits)
+ // set invalid flag
+ *pfpsf |= INVALID_EXCEPTION;
+ // return Integer Indefinite
+ res = 0x8000000000000000ull;
+ BID_RETURN (res);
+ } else if ((q + exp) == 20) { // x = c(0)c(1)...c(19).c(20)...c(q-1)
+ // in this case 2^63.11... ~= 10^19 <= x < 10^20 ~= 2^66.43...
+ // so x rounded to an integer may or may not fit in an unsigned 64-bit int
+ // the cases that do not fit are identified here; the ones that fit
+ // fall through and will be handled with other cases further,
+ // under '1 <= q + exp <= 20'
+ // n > 0 and q + exp = 20
+ // if n >= 2^64 then n is too large
+ // <=> c(0)c(1)...c(19).c(20)...c(q-1) >= 2^64
+ // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^20 >= 2^64
+ // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^21 >= 5*(2^65)
+ // <=> C * 10^(21-q) >= 0xa0000000000000000, 1<=q<=16
+ if (q == 1) {
+ // C * 10^20 >= 0xa0000000000000000
+ __mul_128x64_to_128 (C, C1, __bid_ten2k128[0]); // 10^20 * C
+ if (C.w[1] >= 0x0a) {
+ // actually C.w[1] == 0x0a && C.w[0] >= 0x0000000000000000ull) {
+ // set invalid flag
+ *pfpsf |= INVALID_EXCEPTION;
+ // return Integer Indefinite
+ res = 0x8000000000000000ull;
+ BID_RETURN (res);
+ }
+ // else cases that can be rounded to a 64-bit int fall through
+ // to '1 <= q + exp <= 20'
+ } else { // if (2 <= q <= 16) => 5 <= 21 - q <= 19
+ // Note: C * 10^(21-q) has 20 or 21 digits; 0xa0000000000000000
+ // has 21 digits
+ __mul_64x64_to_128MACH (C, C1, __bid_ten2k64[21 - q]);
+ if (C.w[1] >= 0x0a) {
+ // actually C.w[1] == 0x0a && C.w[0] >= 0x0000000000000000ull) {
+ // set invalid flag
+ *pfpsf |= INVALID_EXCEPTION;
+ // return Integer Indefinite
+ res = 0x8000000000000000ull;
+ BID_RETURN (res);
+ }
+ // else cases that can be rounded to a 64-bit int fall through
+ // to '1 <= q + exp <= 20'
+ }
+ }
+ // n is not too large to be converted to int64 if -1 < n < 2^64
+ // Note: some of the cases tested for above fall through to this point
+ if ((q + exp) <= 0) { // n = +0.[0...0]c(0)c(1)...c(q-1)
+ // set inexact flag
+ *pfpsf |= INEXACT_EXCEPTION;
+ // return 0
+ res = 0x0000000000000000ull;
+ BID_RETURN (res);
+ } else { // if (1 <= q + exp <= 20, 1 <= q <= 16, -15 <= exp <= 19)
+ // 1 <= x < 2^64 so x can be rounded
+ // to nearest to a 64-bit unsigned signed integer
+ if (exp < 0) { // 2 <= q <= 16, -15 <= exp <= -1, 1 <= q + exp <= 20
+ ind = -exp; // 1 <= ind <= 15; ind is a synonym for 'x'
+ // chop off ind digits from the lower part of C1
+ // C1 fits in 64 bits
+ // calculate C* and f*
+ // C* is actually floor(C*) in this case
+ // C* and f* need shifting and masking, as shown by
+ // __bid_shiftright128[] and __bid_maskhigh128[]
+ // 1 <= x <= 15
+ // kx = 10^(-x) = __bid_ten2mk64[ind - 1]
+ // C* = C1 * 10^(-x)
+ // the approximation of 10^(-x) was rounded up to 54 bits
+ __mul_64x64_to_128MACH (P128, C1, __bid_ten2mk64[ind - 1]);
+ Cstar = P128.w[1];
+ fstar.w[1] = P128.w[1] & __bid_maskhigh128[ind - 1];
+ fstar.w[0] = P128.w[0];
+ // the top Ex bits of 10^(-x) are T* = __bid_ten2mk128trunc[ind].w[0], e.g.
+ // if x=1, T*=__bid_ten2mk128trunc[0].w[0]=0x1999999999999999
+ // C* = floor(C*) (logical right shift; C has p decimal digits,
+ // correct by Property 1)
+ // n = C* * 10^(e+x)
+
+ // shift right C* by Ex-64 = __bid_shiftright128[ind]
+ shift = __bid_shiftright128[ind - 1]; // 0 <= shift <= 39
+ Cstar = Cstar >> shift;
+ // determine inexactness of the rounding of C*
+ // if (0 < f* < 10^(-x)) then
+ // the result is exact
+ // else // if (f* > T*) then
+ // the result is inexact
+ if (ind - 1 <= 2) { // fstar.w[1] is 0
+ if (fstar.w[0] > __bid_ten2mk128trunc[ind - 1].w[1]) {
+ // __bid_ten2mk128trunc[ind -1].w[1] is identical to
+ // __bid_ten2mk128[ind -1].w[1]
+ // set the inexact flag
+ *pfpsf |= INEXACT_EXCEPTION;
+ } // else the result is exact
+ } else { // if 3 <= ind - 1 <= 14
+ if (fstar.w[1] || fstar.w[0] > __bid_ten2mk128trunc[ind - 1].w[1]) {
+ // __bid_ten2mk128trunc[ind -1].w[1] is identical to
+ // __bid_ten2mk128[ind -1].w[1]
+ // set the inexact flag
+ *pfpsf |= INEXACT_EXCEPTION;
+ } // else the result is exact
+ }
+
+ res = Cstar; // the result is positive
+ } else if (exp == 0) {
+ // 1 <= q <= 10
+ // res = +C (exact)
+ res = C1; // the result is positive
+ } else { // if (exp > 0) => 1 <= exp <= 9, 1 <= q < 9, 2 <= q + exp <= 10
+ // res = +C * 10^exp (exact)
+ res = C1 * __bid_ten2k64[exp]; // the result is positive
+ }
+ }
+ BID_RETURN (res);
+}
+
+/*****************************************************************************
+ * BID64_to_uint64_ceil
+ ****************************************************************************/
+
+#if DECIMAL_CALL_BY_REFERENCE
+void
+__bid64_to_uint64_ceil (UINT64 * pres, UINT64 * px
+ _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+ _EXC_INFO_PARAM) {
+ UINT64 x = *px;
+#else
+UINT64
+__bid64_to_uint64_ceil (UINT64 x
+ _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+ _EXC_INFO_PARAM) {
+#endif
+ UINT64 res;
+ UINT64 x_sign;
+ UINT64 x_exp;
+ int exp; // unbiased exponent
+ // Note: C1 represents x_significand (UINT64)
+ BID_UI64DOUBLE tmp1;
+ unsigned int x_nr_bits;
+ int q, ind, shift;
+ UINT64 C1;
+ UINT128 C;
+ UINT64 Cstar; // C* represents up to 16 decimal digits ~ 54 bits
+ UINT128 fstar;
+ UINT128 P128;
+
+ // check for NaN or Infinity
+ if ((x & MASK_NAN) == MASK_NAN || (x & MASK_INF) == MASK_INF) {
+ // set invalid flag
+ *pfpsf |= INVALID_EXCEPTION;
+ // return Integer Indefinite
+ res = 0x8000000000000000ull;
+ BID_RETURN (res);
+ }
+ // unpack x
+ x_sign = x & MASK_SIGN; // 0 for positive, MASK_SIGN for negative
+ // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+ if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+ x_exp = (x & MASK_BINARY_EXPONENT2) >> 51; // biased
+ C1 = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+ if (C1 > 9999999999999999ull) { // non-canonical
+ x_exp = 0;
+ C1 = 0;
+ }
+ } else {
+ x_exp = (x & MASK_BINARY_EXPONENT1) >> 53; // biased
+ C1 = x & MASK_BINARY_SIG1;
+ }
+
+ // check for zeros (possibly from non-canonical values)
+ if (C1 == 0x0ull) {
+ // x is 0
+ res = 0x0000000000000000ull;
+ BID_RETURN (res);
+ }
+ // x is not special and is not zero
+
+ // q = nr. of decimal digits in x (1 <= q <= 54)
+ // determine first the nr. of bits in x
+ if (C1 >= 0x0020000000000000ull) { // x >= 2^53
+ // split the 64-bit value in two 32-bit halves to avoid rounding errors
+ if (C1 >= 0x0000000100000000ull) { // x >= 2^32
+ tmp1.d = (double) (C1 >> 32); // exact conversion
+ x_nr_bits =
+ 33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
+ } else { // x < 2^32
+ tmp1.d = (double) C1; // exact conversion
+ x_nr_bits =
+ 1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
+ }
+ } else { // if x < 2^53
+ tmp1.d = (double) C1; // exact conversion
+ x_nr_bits =
+ 1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
+ }
+ q = __bid_nr_digits[x_nr_bits - 1].digits;
+ if (q == 0) {
+ q = __bid_nr_digits[x_nr_bits - 1].digits1;
+ if (C1 >= __bid_nr_digits[x_nr_bits - 1].threshold_lo)
+ q++;
+ }
+ exp = x_exp - 398; // unbiased exponent
+
+ if ((q + exp) > 20) { // x >= 10^20 ~= 2^66.45... (cannot fit in 64 bits)
+ // set invalid flag
+ *pfpsf |= INVALID_EXCEPTION;
+ // return Integer Indefinite
+ res = 0x8000000000000000ull;
+ BID_RETURN (res);
+ } else if ((q + exp) == 20) { // x = c(0)c(1)...c(19).c(20)...c(q-1)
+ // in this case 2^63.11... ~= 10^19 <= x < 10^20 ~= 2^66.43...
+ // so x rounded to an integer may or may not fit in an unsigned 64-bit int
+ // the cases that do not fit are identified here; the ones that fit
+ // fall through and will be handled with other cases further,
+ // under '1 <= q + exp <= 20'
+ if (x_sign) { // if n < 0 and q + exp = 20 then x is much less than -1
+ // => set invalid flag
+ *pfpsf |= INVALID_EXCEPTION;
+ // return Integer Indefinite
+ res = 0x8000000000000000ull;
+ BID_RETURN (res);
+ } else { // if n > 0 and q + exp = 20
+ // if n > 2^64 - 1 then n is too large
+ // <=> c(0)c(1)...c(19).c(20)...c(q-1) > 2^64 - 1
+ // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^20 > 2^64 - 1
+ // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^21 >= 5*(2^65 - 2)
+ // <=> C * 10^(21-q) > 0x9fffffffffffffff6, 1<=q<=16
+ if (q == 1) {
+ // C * 10^20 > 0x9fffffffffffffff6
+ __mul_128x64_to_128 (C, C1, __bid_ten2k128[0]); // 10^20 * C
+ if (C.w[1] > 0x09 ||
+ (C.w[1] == 0x09 && C.w[0] > 0xfffffffffffffff6ull)) {
+ // set invalid flag
+ *pfpsf |= INVALID_EXCEPTION;
+ // return Integer Indefinite
+ res = 0x8000000000000000ull;
+ BID_RETURN (res);
+ }
+ // else cases that can be rounded to a 64-bit int fall through
+ // to '1 <= q + exp <= 20'
+ } else { // if (2 <= q <= 16) => 5 <= 21 - q <= 19
+ // Note: C * 10^(21-q) has 20 or 21 digits; 0x9fffffffffffffff6
+ // has 21 digits
+ __mul_64x64_to_128MACH (C, C1, __bid_ten2k64[21 - q]);
+ if (C.w[1] > 0x09 ||
+ (C.w[1] == 0x09 && C.w[0] > 0xfffffffffffffff6ull)) {
+ // set invalid flag
+ *pfpsf |= INVALID_EXCEPTION;
+ // return Integer Indefinite
+ res = 0x8000000000000000ull;
+ BID_RETURN (res);
+ }
+ // else cases that can be rounded to a 64-bit int fall through
+ // to '1 <= q + exp <= 20'
+ }
+ }
+ }
+ // n is not too large to be converted to int64 if -1 < n < 2^64
+ // Note: some of the cases tested for above fall through to this point
+ if ((q + exp) <= 0) { // n = +/-0.[0...0]c(0)c(1)...c(q-1)
+ // return 0 or 1
+ if (x_sign)
+ res = 0x0000000000000000ull;
+ else
+ res = 0x0000000000000001ull;
+ BID_RETURN (res);
+ } else { // if (1 <= q + exp <= 20, 1 <= q <= 16, -15 <= exp <= 19)
+ // x <= -1 or 1 <= x <= 2^64 - 1 so if positive x can be rounded
+ // to nearest to a 64-bit unsigned signed integer
+ if (x_sign) { // x <= -1
+ // set invalid flag
+ *pfpsf |= INVALID_EXCEPTION;
+ // return Integer Indefinite
+ res = 0x8000000000000000ull;
+ BID_RETURN (res);
+ }
+ // 1 <= x <= 2^64 - 1 so x can be rounded
+ // to nearest to a 64-bit unsigned integer
+ if (exp < 0) { // 2 <= q <= 16, -15 <= exp <= -1, 1 <= q + exp <= 20
+ ind = -exp; // 1 <= ind <= 15; ind is a synonym for 'x'
+ // chop off ind digits from the lower part of C1
+ // C1 fits in 64 bits
+ // calculate C* and f*
+ // C* is actually floor(C*) in this case
+ // C* and f* need shifting and masking, as shown by
+ // __bid_shiftright128[] and __bid_maskhigh128[]
+ // 1 <= x <= 15
+ // kx = 10^(-x) = __bid_ten2mk64[ind - 1]
+ // C* = C1 * 10^(-x)
+ // the approximation of 10^(-x) was rounded up to 54 bits
+ __mul_64x64_to_128MACH (P128, C1, __bid_ten2mk64[ind - 1]);
+ Cstar = P128.w[1];
+ fstar.w[1] = P128.w[1] & __bid_maskhigh128[ind - 1];
+ fstar.w[0] = P128.w[0];
+ // the top Ex bits of 10^(-x) are T* = __bid_ten2mk128trunc[ind].w[0], e.g.
+ // if x=1, T*=__bid_ten2mk128trunc[0].w[0]=0x1999999999999999
+ // C* = floor(C*) (logical right shift; C has p decimal digits,
+ // correct by Property 1)
+ // n = C* * 10^(e+x)
+
+ // shift right C* by Ex-64 = __bid_shiftright128[ind]
+ shift = __bid_shiftright128[ind - 1]; // 0 <= shift <= 39
+ Cstar = Cstar >> shift;
+ // determine inexactness of the rounding of C*
+ // if (0 < f* < 10^(-x)) then
+ // the result is exact
+ // else // if (f* > T*) then
+ // the result is inexact
+ if (ind - 1 <= 2) { // fstar.w[1] is 0
+ if (fstar.w[0] > __bid_ten2mk128trunc[ind - 1].w[1]) {
+ // __bid_ten2mk128trunc[ind -1].w[1] is identical to
+ // __bid_ten2mk128[ind -1].w[1]
+ Cstar++;
+ } // else the result is exact
+ } else { // if 3 <= ind - 1 <= 14
+ if (fstar.w[1] || fstar.w[0] > __bid_ten2mk128trunc[ind - 1].w[1]) {
+ // __bid_ten2mk128trunc[ind -1].w[1] is identical to
+ // __bid_ten2mk128[ind -1].w[1]
+ Cstar++;
+ } // else the result is exact
+ }
+
+ res = Cstar; // the result is positive
+ } else if (exp == 0) {
+ // 1 <= q <= 10
+ // res = +C (exact)
+ res = C1; // the result is positive
+ } else { // if (exp > 0) => 1 <= exp <= 9, 1 <= q < 9, 2 <= q + exp <= 10
+ // res = +C * 10^exp (exact)
+ res = C1 * __bid_ten2k64[exp]; // the result is positive
+ }
+ }
+ BID_RETURN (res);
+}
+
+/*****************************************************************************
+ * BID64_to_uint64_xceil
+ ****************************************************************************/
+
+#if DECIMAL_CALL_BY_REFERENCE
+void
+__bid64_to_uint64_xceil (UINT64 * pres, UINT64 * px
+ _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+ _EXC_INFO_PARAM) {
+ UINT64 x = *px;
+#else
+UINT64
+__bid64_to_uint64_xceil (UINT64 x
+ _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+ _EXC_INFO_PARAM) {
+#endif
+ UINT64 res;
+ UINT64 x_sign;
+ UINT64 x_exp;
+ int exp; // unbiased exponent
+ // Note: C1 represents x_significand (UINT64)
+ BID_UI64DOUBLE tmp1;
+ unsigned int x_nr_bits;
+ int q, ind, shift;
+ UINT64 C1;
+ UINT128 C;
+ UINT64 Cstar; // C* represents up to 16 decimal digits ~ 54 bits
+ UINT128 fstar;
+ UINT128 P128;
+
+ // check for NaN or Infinity
+ if ((x & MASK_NAN) == MASK_NAN || (x & MASK_INF) == MASK_INF) {
+ // set invalid flag
+ *pfpsf |= INVALID_EXCEPTION;
+ // return Integer Indefinite
+ res = 0x8000000000000000ull;
+ BID_RETURN (res);
+ }
+ // unpack x
+ x_sign = x & MASK_SIGN; // 0 for positive, MASK_SIGN for negative
+ // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+ if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+ x_exp = (x & MASK_BINARY_EXPONENT2) >> 51; // biased
+ C1 = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+ if (C1 > 9999999999999999ull) { // non-canonical
+ x_exp = 0;
+ C1 = 0;
+ }
+ } else {
+ x_exp = (x & MASK_BINARY_EXPONENT1) >> 53; // biased
+ C1 = x & MASK_BINARY_SIG1;
+ }
+
+ // check for zeros (possibly from non-canonical values)
+ if (C1 == 0x0ull) {
+ // x is 0
+ res = 0x0000000000000000ull;
+ BID_RETURN (res);
+ }
+ // x is not special and is not zero
+
+ // q = nr. of decimal digits in x (1 <= q <= 54)
+ // determine first the nr. of bits in x
+ if (C1 >= 0x0020000000000000ull) { // x >= 2^53
+ // split the 64-bit value in two 32-bit halves to avoid rounding errors
+ if (C1 >= 0x0000000100000000ull) { // x >= 2^32
+ tmp1.d = (double) (C1 >> 32); // exact conversion
+ x_nr_bits =
+ 33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
+ } else { // x < 2^32
+ tmp1.d = (double) C1; // exact conversion
+ x_nr_bits =
+ 1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
+ }
+ } else { // if x < 2^53
+ tmp1.d = (double) C1; // exact conversion
+ x_nr_bits =
+ 1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
+ }
+ q = __bid_nr_digits[x_nr_bits - 1].digits;
+ if (q == 0) {
+ q = __bid_nr_digits[x_nr_bits - 1].digits1;
+ if (C1 >= __bid_nr_digits[x_nr_bits - 1].threshold_lo)
+ q++;
+ }
+ exp = x_exp - 398; // unbiased exponent
+
+ if ((q + exp) > 20) { // x >= 10^20 ~= 2^66.45... (cannot fit in 64 bits)
+ // set invalid flag
+ *pfpsf |= INVALID_EXCEPTION;
+ // return Integer Indefinite
+ res = 0x8000000000000000ull;
+ BID_RETURN (res);
+ } else if ((q + exp) == 20) { // x = c(0)c(1)...c(19).c(20)...c(q-1)
+ // in this case 2^63.11... ~= 10^19 <= x < 10^20 ~= 2^66.43...
+ // so x rounded to an integer may or may not fit in an unsigned 64-bit int
+ // the cases that do not fit are identified here; the ones that fit
+ // fall through and will be handled with other cases further,
+ // under '1 <= q + exp <= 20'
+ if (x_sign) { // if n < 0 and q + exp = 20 then x is much less than -1
+ // => set invalid flag
+ *pfpsf |= INVALID_EXCEPTION;
+ // return Integer Indefinite
+ res = 0x8000000000000000ull;
+ BID_RETURN (res);
+ } else { // if n > 0 and q + exp = 20
+ // if n > 2^64 - 1 then n is too large
+ // <=> c(0)c(1)...c(19).c(20)...c(q-1) > 2^64 - 1
+ // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^20 > 2^64 - 1
+ // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^21 >= 5*(2^65 - 2)
+ // <=> C * 10^(21-q) > 0x9fffffffffffffff6, 1<=q<=16
+ if (q == 1) {
+ // C * 10^20 > 0x9fffffffffffffff6
+ __mul_128x64_to_128 (C, C1, __bid_ten2k128[0]); // 10^20 * C
+ if (C.w[1] > 0x09 ||
+ (C.w[1] == 0x09 && C.w[0] > 0xfffffffffffffff6ull)) {
+ // set invalid flag
+ *pfpsf |= INVALID_EXCEPTION;
+ // return Integer Indefinite
+ res = 0x8000000000000000ull;
+ BID_RETURN (res);
+ }
+ // else cases that can be rounded to a 64-bit int fall through
+ // to '1 <= q + exp <= 20'
+ } else { // if (2 <= q <= 16) => 5 <= 21 - q <= 19
+ // Note: C * 10^(21-q) has 20 or 21 digits; 0x9fffffffffffffff6
+ // has 21 digits
+ __mul_64x64_to_128MACH (C, C1, __bid_ten2k64[21 - q]);
+ if (C.w[1] > 0x09 ||
+ (C.w[1] == 0x09 && C.w[0] > 0xfffffffffffffff6ull)) {
+ // set invalid flag
+ *pfpsf |= INVALID_EXCEPTION;
+ // return Integer Indefinite
+ res = 0x8000000000000000ull;
+ BID_RETURN (res);
+ }
+ // else cases that can be rounded to a 64-bit int fall through
+ // to '1 <= q + exp <= 20'
+ }
+ }
+ }
+ // n is not too large to be converted to int64 if -1 < n < 2^64
+ // Note: some of the cases tested for above fall through to this point
+ if ((q + exp) <= 0) { // n = +/-0.[0...0]c(0)c(1)...c(q-1)
+ // set inexact flag
+ *pfpsf |= INEXACT_EXCEPTION;
+ // return 0 or 1
+ if (x_sign)
+ res = 0x0000000000000000ull;
+ else
+ res = 0x0000000000000001ull;
+ BID_RETURN (res);
+ } else { // if (1 <= q + exp <= 20, 1 <= q <= 16, -15 <= exp <= 19)
+ // x <= -1 or 1 <= x <= 2^64 - 1 so if positive x can be rounded
+ // to nearest to a 64-bit unsigned signed integer
+ if (x_sign) { // x <= -1
+ // set invalid flag
+ *pfpsf |= INVALID_EXCEPTION;
+ // return Integer Indefinite
+ res = 0x8000000000000000ull;
+ BID_RETURN (res);
+ }
+ // 1 <= x <= 2^64 - 1 so x can be rounded
+ // to nearest to a 64-bit unsigned integer
+ if (exp < 0) { // 2 <= q <= 16, -15 <= exp <= -1, 1 <= q + exp <= 20
+ ind = -exp; // 1 <= ind <= 15; ind is a synonym for 'x'
+ // chop off ind digits from the lower part of C1
+ // C1 fits in 64 bits
+ // calculate C* and f*
+ // C* is actually floor(C*) in this case
+ // C* and f* need shifting and masking, as shown by
+ // __bid_shiftright128[] and __bid_maskhigh128[]
+ // 1 <= x <= 15
+ // kx = 10^(-x) = __bid_ten2mk64[ind - 1]
+ // C* = C1 * 10^(-x)
+ // the approximation of 10^(-x) was rounded up to 54 bits
+ __mul_64x64_to_128MACH (P128, C1, __bid_ten2mk64[ind - 1]);
+ Cstar = P128.w[1];
+ fstar.w[1] = P128.w[1] & __bid_maskhigh128[ind - 1];
+ fstar.w[0] = P128.w[0];
+ // the top Ex bits of 10^(-x) are T* = __bid_ten2mk128trunc[ind].w[0], e.g.
+ // if x=1, T*=__bid_ten2mk128trunc[0].w[0]=0x1999999999999999
+ // C* = floor(C*) (logical right shift; C has p decimal digits,
+ // correct by Property 1)
+ // n = C* * 10^(e+x)
+
+ // shift right C* by Ex-64 = __bid_shiftright128[ind]
+ shift = __bid_shiftright128[ind - 1]; // 0 <= shift <= 39
+ Cstar = Cstar >> shift;
+ // determine inexactness of the rounding of C*
+ // if (0 < f* < 10^(-x)) then
+ // the result is exact
+ // else // if (f* > T*) then
+ // the result is inexact
+ if (ind - 1 <= 2) { // fstar.w[1] is 0
+ if (fstar.w[0] > __bid_ten2mk128trunc[ind - 1].w[1]) {
+ // __bid_ten2mk128trunc[ind -1].w[1] is identical to
+ // __bid_ten2mk128[ind -1].w[1]
+ Cstar++;
+ // set the inexact flag
+ *pfpsf |= INEXACT_EXCEPTION;
+ } // else the result is exact
+ } else { // if 3 <= ind - 1 <= 14
+ if (fstar.w[1] || fstar.w[0] > __bid_ten2mk128trunc[ind - 1].w[1]) {
+ // __bid_ten2mk128trunc[ind -1].w[1] is identical to
+ // __bid_ten2mk128[ind -1].w[1]
+ Cstar++;
+ // set the inexact flag
+ *pfpsf |= INEXACT_EXCEPTION;
+ } // else the result is exact
+ }
+
+ res = Cstar; // the result is positive
+ } else if (exp == 0) {
+ // 1 <= q <= 10
+ // res = +C (exact)
+ res = C1; // the result is positive
+ } else { // if (exp > 0) => 1 <= exp <= 9, 1 <= q < 9, 2 <= q + exp <= 10
+ // res = +C * 10^exp (exact)
+ res = C1 * __bid_ten2k64[exp]; // the result is positive
+ }
+ }
+ BID_RETURN (res);
+}
+
+/*****************************************************************************
+ * BID64_to_uint64_int
+ ****************************************************************************/
+
+#if DECIMAL_CALL_BY_REFERENCE
+void
+__bid64_to_uint64_int (UINT64 * pres, UINT64 * px
+ _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM)
+{
+ UINT64 x = *px;
+#else
+UINT64
+__bid64_to_uint64_int (UINT64 x
+ _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM)
+{
+#endif
+ UINT64 res;
+ UINT64 x_sign;
+ UINT64 x_exp;
+ int exp; // unbiased exponent
+ // Note: C1 represents x_significand (UINT64)
+ BID_UI64DOUBLE tmp1;
+ unsigned int x_nr_bits;
+ int q, ind, shift;
+ UINT64 C1;
+ UINT128 C;
+ UINT64 Cstar; // C* represents up to 16 decimal digits ~ 54 bits
+ UINT128 P128;
+
+ // check for NaN or Infinity
+ if ((x & MASK_NAN) == MASK_NAN || (x & MASK_INF) == MASK_INF) {
+ // set invalid flag
+ *pfpsf |= INVALID_EXCEPTION;
+ // return Integer Indefinite
+ res = 0x8000000000000000ull;
+ BID_RETURN (res);
+ }
+ // unpack x
+ x_sign = x & MASK_SIGN; // 0 for positive, MASK_SIGN for negative
+ // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+ if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+ x_exp = (x & MASK_BINARY_EXPONENT2) >> 51; // biased
+ C1 = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+ if (C1 > 9999999999999999ull) { // non-canonical
+ x_exp = 0;
+ C1 = 0;
+ }
+ } else {
+ x_exp = (x & MASK_BINARY_EXPONENT1) >> 53; // biased
+ C1 = x & MASK_BINARY_SIG1;
+ }
+
+ // check for zeros (possibly from non-canonical values)
+ if (C1 == 0x0ull) {
+ // x is 0
+ res = 0x0000000000000000ull;
+ BID_RETURN (res);
+ }
+ // x is not special and is not zero
+
+ // q = nr. of decimal digits in x (1 <= q <= 54)
+ // determine first the nr. of bits in x
+ if (C1 >= 0x0020000000000000ull) { // x >= 2^53
+ // split the 64-bit value in two 32-bit halves to avoid rounding errors
+ if (C1 >= 0x0000000100000000ull) { // x >= 2^32
+ tmp1.d = (double) (C1 >> 32); // exact conversion
+ x_nr_bits =
+ 33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
+ } else { // x < 2^32
+ tmp1.d = (double) C1; // exact conversion
+ x_nr_bits =
+ 1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
+ }
+ } else { // if x < 2^53
+ tmp1.d = (double) C1; // exact conversion
+ x_nr_bits =
+ 1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
+ }
+ q = __bid_nr_digits[x_nr_bits - 1].digits;
+ if (q == 0) {
+ q = __bid_nr_digits[x_nr_bits - 1].digits1;
+ if (C1 >= __bid_nr_digits[x_nr_bits - 1].threshold_lo)
+ q++;
+ }
+ exp = x_exp - 398; // unbiased exponent
+
+ if ((q + exp) > 20) { // x >= 10^20 ~= 2^66.45... (cannot fit in 64 bits)
+ // set invalid flag
+ *pfpsf |= INVALID_EXCEPTION;
+ // return Integer Indefinite
+ res = 0x8000000000000000ull;
+ BID_RETURN (res);
+ } else if ((q + exp) == 20) { // x = c(0)c(1)...c(19).c(20)...c(q-1)
+ // in this case 2^63.11... ~= 10^19 <= x < 10^20 ~= 2^66.43...
+ // so x rounded to an integer may or may not fit in an unsigned 64-bit int
+ // the cases that do not fit are identified here; the ones that fit
+ // fall through and will be handled with other cases further,
+ // under '1 <= q + exp <= 20'
+ if (x_sign) { // if n < 0 and q + exp = 20 then x is much less than -1
+ // => set invalid flag
+ *pfpsf |= INVALID_EXCEPTION;
+ // return Integer Indefinite
+ res = 0x8000000000000000ull;
+ BID_RETURN (res);
+ } else { // if n > 0 and q + exp = 20
+ // if n >= 2^64 then n is too large
+ // <=> c(0)c(1)...c(19).c(20)...c(q-1) >= 2^64
+ // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^20 >= 2^64
+ // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^21 >= 5*(2^65)
+ // <=> C * 10^(21-q) >= 0xa0000000000000000, 1<=q<=16
+ if (q == 1) {
+ // C * 10^20 >= 0xa0000000000000000
+ __mul_128x64_to_128 (C, C1, __bid_ten2k128[0]); // 10^20 * C
+ if (C.w[1] >= 0x0a) {
+ // actually C.w[1] == 0x0a && C.w[0] >= 0x0000000000000000ull) {
+ // set invalid flag
+ *pfpsf |= INVALID_EXCEPTION;
+ // return Integer Indefinite
+ res = 0x8000000000000000ull;
+ BID_RETURN (res);
+ }
+ // else cases that can be rounded to a 64-bit int fall through
+ // to '1 <= q + exp <= 20'
+ } else { // if (2 <= q <= 16) => 5 <= 21 - q <= 19
+ // Note: C * 10^(21-q) has 20 or 21 digits; 0xa0000000000000000
+ // has 21 digits
+ __mul_64x64_to_128MACH (C, C1, __bid_ten2k64[21 - q]);
+ if (C.w[1] >= 0x0a) {
+ // actually C.w[1] == 0x0a && C.w[0] >= 0x0000000000000000ull) {
+ // set invalid flag
+ *pfpsf |= INVALID_EXCEPTION;
+ // return Integer Indefinite
+ res = 0x8000000000000000ull;
+ BID_RETURN (res);
+ }
+ // else cases that can be rounded to a 64-bit int fall through
+ // to '1 <= q + exp <= 20'
+ }
+ }
+ }
+ // n is not too large to be converted to int64 if -1 < n < 2^64
+ // Note: some of the cases tested for above fall through to this point
+ if ((q + exp) <= 0) { // n = +/-0.[0...0]c(0)c(1)...c(q-1)
+ // return 0
+ res = 0x0000000000000000ull;
+ BID_RETURN (res);
+ } else { // if (1 <= q + exp <= 20, 1 <= q <= 16, -15 <= exp <= 19)
+ // x <= -1 or 1 <= x < 2^64 so if positive x can be rounded
+ // to nearest to a 64-bit unsigned signed integer
+ if (x_sign) { // x <= -1
+ // set invalid flag
+ *pfpsf |= INVALID_EXCEPTION;
+ // return Integer Indefinite
+ res = 0x8000000000000000ull;
+ BID_RETURN (res);
+ }
+ // 1 <= x < 2^64 so x can be rounded
+ // to nearest to a 64-bit unsigned integer
+ if (exp < 0) { // 2 <= q <= 16, -15 <= exp <= -1, 1 <= q + exp <= 20
+ ind = -exp; // 1 <= ind <= 15; ind is a synonym for 'x'
+ // chop off ind digits from the lower part of C1
+ // C1 fits in 64 bits
+ // calculate C* and f*
+ // C* is actually floor(C*) in this case
+ // C* and f* need shifting and masking, as shown by
+ // __bid_shiftright128[] and __bid_maskhigh128[]
+ // 1 <= x <= 15
+ // kx = 10^(-x) = __bid_ten2mk64[ind - 1]
+ // C* = C1 * 10^(-x)
+ // the approximation of 10^(-x) was rounded up to 54 bits
+ __mul_64x64_to_128MACH (P128, C1, __bid_ten2mk64[ind - 1]);
+ Cstar = P128.w[1];
+ // the top Ex bits of 10^(-x) are T* = __bid_ten2mk128trunc[ind].w[0], e.g.
+ // if x=1, T*=__bid_ten2mk128trunc[0].w[0]=0x1999999999999999
+ // C* = floor(C*) (logical right shift; C has p decimal digits,
+ // correct by Property 1)
+ // n = C* * 10^(e+x)
+
+ // shift right C* by Ex-64 = __bid_shiftright128[ind]
+ shift = __bid_shiftright128[ind - 1]; // 0 <= shift <= 39
+ Cstar = Cstar >> shift;
+ res = Cstar; // the result is positive
+ } else if (exp == 0) {
+ // 1 <= q <= 10
+ // res = +C (exact)
+ res = C1; // the result is positive
+ } else { // if (exp > 0) => 1 <= exp <= 9, 1 <= q < 9, 2 <= q + exp <= 10
+ // res = +C * 10^exp (exact)
+ res = C1 * __bid_ten2k64[exp]; // the result is positive
+ }
+ }
+ BID_RETURN (res);
+}
+
+/*****************************************************************************
+ * BID64_to_uint64_xint
+ ****************************************************************************/
+
+#if DECIMAL_CALL_BY_REFERENCE
+void
+__bid64_to_uint64_xint (UINT64 * pres, UINT64 * px
+ _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+ _EXC_INFO_PARAM) {
+ UINT64 x = *px;
+#else
+UINT64
+__bid64_to_uint64_xint (UINT64 x
+ _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+ _EXC_INFO_PARAM) {
+#endif
+ UINT64 res;
+ UINT64 x_sign;
+ UINT64 x_exp;
+ int exp; // unbiased exponent
+ // Note: C1 represents x_significand (UINT64)
+ BID_UI64DOUBLE tmp1;
+ unsigned int x_nr_bits;
+ int q, ind, shift;
+ UINT64 C1;
+ UINT128 C;
+ UINT64 Cstar; // C* represents up to 16 decimal digits ~ 54 bits
+ UINT128 fstar;
+ UINT128 P128;
+
+ // check for NaN or Infinity
+ if ((x & MASK_NAN) == MASK_NAN || (x & MASK_INF) == MASK_INF) {
+ // set invalid flag
+ *pfpsf |= INVALID_EXCEPTION;
+ // return Integer Indefinite
+ res = 0x8000000000000000ull;
+ BID_RETURN (res);
+ }
+ // unpack x
+ x_sign = x & MASK_SIGN; // 0 for positive, MASK_SIGN for negative
+ // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+ if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+ x_exp = (x & MASK_BINARY_EXPONENT2) >> 51; // biased
+ C1 = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+ if (C1 > 9999999999999999ull) { // non-canonical
+ x_exp = 0;
+ C1 = 0;
+ }
+ } else {
+ x_exp = (x & MASK_BINARY_EXPONENT1) >> 53; // biased
+ C1 = x & MASK_BINARY_SIG1;
+ }
+
+ // check for zeros (possibly from non-canonical values)
+ if (C1 == 0x0ull) {
+ // x is 0
+ res = 0x0000000000000000ull;
+ BID_RETURN (res);
+ }
+ // x is not special and is not zero
+
+ // q = nr. of decimal digits in x (1 <= q <= 54)
+ // determine first the nr. of bits in x
+ if (C1 >= 0x0020000000000000ull) { // x >= 2^53
+ // split the 64-bit value in two 32-bit halves to avoid rounding errors
+ if (C1 >= 0x0000000100000000ull) { // x >= 2^32
+ tmp1.d = (double) (C1 >> 32); // exact conversion
+ x_nr_bits =
+ 33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
+ } else { // x < 2^32
+ tmp1.d = (double) C1; // exact conversion
+ x_nr_bits =
+ 1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
+ }
+ } else { // if x < 2^53
+ tmp1.d = (double) C1; // exact conversion
+ x_nr_bits =
+ 1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
+ }
+ q = __bid_nr_digits[x_nr_bits - 1].digits;
+ if (q == 0) {
+ q = __bid_nr_digits[x_nr_bits - 1].digits1;
+ if (C1 >= __bid_nr_digits[x_nr_bits - 1].threshold_lo)
+ q++;
+ }
+ exp = x_exp - 398; // unbiased exponent
+
+ if ((q + exp) > 20) { // x >= 10^20 ~= 2^66.45... (cannot fit in 64 bits)
+ // set invalid flag
+ *pfpsf |= INVALID_EXCEPTION;
+ // return Integer Indefinite
+ res = 0x8000000000000000ull;
+ BID_RETURN (res);
+ } else if ((q + exp) == 20) { // x = c(0)c(1)...c(19).c(20)...c(q-1)
+ // in this case 2^63.11... ~= 10^19 <= x < 10^20 ~= 2^66.43...
+ // so x rounded to an integer may or may not fit in an unsigned 64-bit int
+ // the cases that do not fit are identified here; the ones that fit
+ // fall through and will be handled with other cases further,
+ // under '1 <= q + exp <= 20'
+ if (x_sign) { // if n < 0 and q + exp = 20 then x is much less than -1
+ // => set invalid flag
+ *pfpsf |= INVALID_EXCEPTION;
+ // return Integer Indefinite
+ res = 0x8000000000000000ull;
+ BID_RETURN (res);
+ } else { // if n > 0 and q + exp = 20
+ // if n >= 2^64 then n is too large
+ // <=> c(0)c(1)...c(19).c(20)...c(q-1) >= 2^64
+ // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^20 >= 2^64
+ // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^21 >= 5*(2^65)
+ // <=> C * 10^(21-q) >= 0xa0000000000000000, 1<=q<=16
+ if (q == 1) {
+ // C * 10^20 >= 0xa0000000000000000
+ __mul_128x64_to_128 (C, C1, __bid_ten2k128[0]); // 10^20 * C
+ if (C.w[1] >= 0x0a) {
+ // actually C.w[1] == 0x0a && C.w[0] >= 0x0000000000000000ull) {
+ // set invalid flag
+ *pfpsf |= INVALID_EXCEPTION;
+ // return Integer Indefinite
+ res = 0x8000000000000000ull;
+ BID_RETURN (res);
+ }
+ // else cases that can be rounded to a 64-bit int fall through
+ // to '1 <= q + exp <= 20'
+ } else { // if (2 <= q <= 16) => 5 <= 21 - q <= 19
+ // Note: C * 10^(21-q) has 20 or 21 digits; 0xa0000000000000000
+ // has 21 digits
+ __mul_64x64_to_128MACH (C, C1, __bid_ten2k64[21 - q]);
+ if (C.w[1] >= 0x0a) {
+ // actually C.w[1] == 0x0a && C.w[0] >= 0x0000000000000000ull) {
+ // set invalid flag
+ *pfpsf |= INVALID_EXCEPTION;
+ // return Integer Indefinite
+ res = 0x8000000000000000ull;
+ BID_RETURN (res);
+ }
+ // else cases that can be rounded to a 64-bit int fall through
+ // to '1 <= q + exp <= 20'
+ }
+ }
+ }
+ // n is not too large to be converted to int64 if -1 < n < 2^64
+ // Note: some of the cases tested for above fall through to this point
+ if ((q + exp) <= 0) { // n = +/-0.[0...0]c(0)c(1)...c(q-1)
+ // set inexact flag
+ *pfpsf |= INEXACT_EXCEPTION;
+ // return 0
+ res = 0x0000000000000000ull;
+ BID_RETURN (res);
+ } else { // if (1 <= q + exp <= 20, 1 <= q <= 16, -15 <= exp <= 19)
+ // x <= -1 or 1 <= x < 2^64 so if positive x can be rounded
+ // to nearest to a 64-bit unsigned signed integer
+ if (x_sign) { // x <= -1
+ // set invalid flag
+ *pfpsf |= INVALID_EXCEPTION;
+ // return Integer Indefinite
+ res = 0x8000000000000000ull;
+ BID_RETURN (res);
+ }
+ // 1 <= x < 2^64 so x can be rounded
+ // to nearest to a 64-bit unsigned integer
+ if (exp < 0) { // 2 <= q <= 16, -15 <= exp <= -1, 1 <= q + exp <= 20
+ ind = -exp; // 1 <= ind <= 15; ind is a synonym for 'x'
+ // chop off ind digits from the lower part of C1
+ // C1 fits in 64 bits
+ // calculate C* and f*
+ // C* is actually floor(C*) in this case
+ // C* and f* need shifting and masking, as shown by
+ // __bid_shiftright128[] and __bid_maskhigh128[]
+ // 1 <= x <= 15
+ // kx = 10^(-x) = __bid_ten2mk64[ind - 1]
+ // C* = C1 * 10^(-x)
+ // the approximation of 10^(-x) was rounded up to 54 bits
+ __mul_64x64_to_128MACH (P128, C1, __bid_ten2mk64[ind - 1]);
+ Cstar = P128.w[1];
+ fstar.w[1] = P128.w[1] & __bid_maskhigh128[ind - 1];
+ fstar.w[0] = P128.w[0];
+ // the top Ex bits of 10^(-x) are T* = __bid_ten2mk128trunc[ind].w[0], e.g.
+ // if x=1, T*=__bid_ten2mk128trunc[0].w[0]=0x1999999999999999
+ // C* = floor(C*) (logical right shift; C has p decimal digits,
+ // correct by Property 1)
+ // n = C* * 10^(e+x)
+
+ // shift right C* by Ex-64 = __bid_shiftright128[ind]
+ shift = __bid_shiftright128[ind - 1]; // 0 <= shift <= 39
+ Cstar = Cstar >> shift;
+ // determine inexactness of the rounding of C*
+ // if (0 < f* < 10^(-x)) then
+ // the result is exact
+ // else // if (f* > T*) then
+ // the result is inexact
+ if (ind - 1 <= 2) { // fstar.w[1] is 0
+ if (fstar.w[0] > __bid_ten2mk128trunc[ind - 1].w[1]) {
+ // __bid_ten2mk128trunc[ind -1].w[1] is identical to
+ // __bid_ten2mk128[ind -1].w[1]
+ // set the inexact flag
+ *pfpsf |= INEXACT_EXCEPTION;
+ } // else the result is exact
+ } else { // if 3 <= ind - 1 <= 14
+ if (fstar.w[1] || fstar.w[0] > __bid_ten2mk128trunc[ind - 1].w[1]) {
+ // __bid_ten2mk128trunc[ind -1].w[1] is identical to
+ // __bid_ten2mk128[ind -1].w[1]
+ // set the inexact flag
+ *pfpsf |= INEXACT_EXCEPTION;
+ } // else the result is exact
+ }
+
+ res = Cstar; // the result is positive
+ } else if (exp == 0) {
+ // 1 <= q <= 10
+ // res = +C (exact)
+ res = C1; // the result is positive
+ } else { // if (exp > 0) => 1 <= exp <= 9, 1 <= q < 9, 2 <= q + exp <= 10
+ // res = +C * 10^exp (exact)
+ res = C1 * __bid_ten2k64[exp]; // the result is positive
+ }
+ }
+ BID_RETURN (res);
+}
+
+/*****************************************************************************
+ * BID64_to_uint64_rninta
+ ****************************************************************************/
+
+#if DECIMAL_CALL_BY_REFERENCE
+void
+__bid64_to_uint64_rninta (UINT64 * pres, UINT64 * px
+ _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+ _EXC_INFO_PARAM) {
+ UINT64 x = *px;
+#else
+UINT64
+__bid64_to_uint64_rninta (UINT64 x
+ _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+ _EXC_INFO_PARAM) {
+#endif
+ UINT64 res;
+ UINT64 x_sign;
+ UINT64 x_exp;
+ int exp; // unbiased exponent
+ // Note: C1 represents x_significand (UINT64)
+ BID_UI64DOUBLE tmp1;
+ unsigned int x_nr_bits;
+ int q, ind, shift;
+ UINT64 C1;
+ UINT128 C;
+ UINT64 Cstar; // C* represents up to 16 decimal digits ~ 54 bits
+ UINT128 P128;
+
+ // check for NaN or Infinity
+ if ((x & MASK_NAN) == MASK_NAN || (x & MASK_INF) == MASK_INF) {
+ // set invalid flag
+ *pfpsf |= INVALID_EXCEPTION;
+ // return Integer Indefinite
+ res = 0x8000000000000000ull;
+ BID_RETURN (res);
+ }
+ // unpack x
+ x_sign = x & MASK_SIGN; // 0 for positive, MASK_SIGN for negative
+ // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+ if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+ x_exp = (x & MASK_BINARY_EXPONENT2) >> 51; // biased
+ C1 = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+ if (C1 > 9999999999999999ull) { // non-canonical
+ x_exp = 0;
+ C1 = 0;
+ }
+ } else {
+ x_exp = (x & MASK_BINARY_EXPONENT1) >> 53; // biased
+ C1 = x & MASK_BINARY_SIG1;
+ }
+
+ // check for zeros (possibly from non-canonical values)
+ if (C1 == 0x0ull) {
+ // x is 0
+ res = 0x0000000000000000ull;
+ BID_RETURN (res);
+ }
+ // x is not special and is not zero
+
+ // q = nr. of decimal digits in x (1 <= q <= 54)
+ // determine first the nr. of bits in x
+ if (C1 >= 0x0020000000000000ull) { // x >= 2^53
+ // split the 64-bit value in two 32-bit halves to avoid rounding errors
+ if (C1 >= 0x0000000100000000ull) { // x >= 2^32
+ tmp1.d = (double) (C1 >> 32); // exact conversion
+ x_nr_bits =
+ 33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
+ } else { // x < 2^32
+ tmp1.d = (double) C1; // exact conversion
+ x_nr_bits =
+ 1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
+ }
+ } else { // if x < 2^53
+ tmp1.d = (double) C1; // exact conversion
+ x_nr_bits =
+ 1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
+ }
+ q = __bid_nr_digits[x_nr_bits - 1].digits;
+ if (q == 0) {
+ q = __bid_nr_digits[x_nr_bits - 1].digits1;
+ if (C1 >= __bid_nr_digits[x_nr_bits - 1].threshold_lo)
+ q++;
+ }
+ exp = x_exp - 398; // unbiased exponent
+
+ if ((q + exp) > 20) { // x >= 10^20 ~= 2^66.45... (cannot fit in 64 bits)
+ // set invalid flag
+ *pfpsf |= INVALID_EXCEPTION;
+ // return Integer Indefinite
+ res = 0x8000000000000000ull;
+ BID_RETURN (res);
+ } else if ((q + exp) == 20) { // x = c(0)c(1)...c(19).c(20)...c(q-1)
+ // in this case 2^63.11... ~= 10^19 <= x < 10^20 ~= 2^66.43...
+ // so x rounded to an integer may or may not fit in an unsigned 64-bit int
+ // the cases that do not fit are identified here; the ones that fit
+ // fall through and will be handled with other cases further,
+ // under '1 <= q + exp <= 20'
+ if (x_sign) { // if n < 0 and q + exp = 20 then x is much less than -1/2
+ // => set invalid flag
+ *pfpsf |= INVALID_EXCEPTION;
+ // return Integer Indefinite
+ res = 0x8000000000000000ull;
+ BID_RETURN (res);
+ } else { // if n > 0 and q + exp = 20
+ // if n >= 2^64 - 1/2 then n is too large
+ // <=> c(0)c(1)...c(19).c(20)...c(q-1) >= 2^64-1/2
+ // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^20 >= 2^64-1/2
+ // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^21 >= 5*(2^65-1)
+ // <=> C * 10^(21-q) >= 0x9fffffffffffffffb, 1<=q<=16
+ if (q == 1) {
+ // C * 10^20 >= 0x9fffffffffffffffb
+ __mul_128x64_to_128 (C, C1, __bid_ten2k128[0]); // 10^20 * C
+ if (C.w[1] > 0x09 ||
+ (C.w[1] == 0x09 && C.w[0] >= 0xfffffffffffffffbull)) {
+ // set invalid flag
+ *pfpsf |= INVALID_EXCEPTION;
+ // return Integer Indefinite
+ res = 0x8000000000000000ull;
+ BID_RETURN (res);
+ }
+ // else cases that can be rounded to a 64-bit int fall through
+ // to '1 <= q + exp <= 20'
+ } else { // if (2 <= q <= 16) => 5 <= 21 - q <= 19
+ // Note: C * 10^(21-q) has 20 or 21 digits; 0x9fffffffffffffffb
+ // has 21 digits
+ __mul_64x64_to_128MACH (C, C1, __bid_ten2k64[21 - q]);
+ if (C.w[1] > 0x09 ||
+ (C.w[1] == 0x09 && C.w[0] >= 0xfffffffffffffffbull)) {
+ // set invalid flag
+ *pfpsf |= INVALID_EXCEPTION;
+ // return Integer Indefinite
+ res = 0x8000000000000000ull;
+ BID_RETURN (res);
+ }
+ // else cases that can be rounded to a 64-bit int fall through
+ // to '1 <= q + exp <= 20'
+ }
+ }
+ }
+ // n is not too large to be converted to int64 if -1/2 <= n < 2^64 - 1/2
+ // Note: some of the cases tested for above fall through to this point
+ if ((q + exp) < 0) { // n = +/-0.0...c(0)c(1)...c(q-1)
+ // return 0
+ res = 0x0000000000000000ull;
+ BID_RETURN (res);
+ } else if ((q + exp) == 0) { // n = +/-0.c(0)c(1)...c(q-1)
+ // if 0.c(0)c(1)...c(q-1) < 0.5 <=> c(0)c(1)...c(q-1) < 5 * 10^(q-1)
+ // res = 0
+ // else if x > 0
+ // res = +1
+ // else // if x < 0
+ // invalid exc
+ ind = q - 1; // 0 <= ind <= 15
+ if (C1 < __bid_midpoint64[ind]) {
+ res = 0x0000000000000000ull; // return 0
+ } else if (!x_sign) { // n > 0
+ res = 0x0000000000000001ull; // return +1
+ } else { // if n < 0
+ res = 0x8000000000000000ull;
+ *pfpsf |= INVALID_EXCEPTION;
+ BID_RETURN (res);
+ }
+ } else { // if (1 <= q + exp <= 20, 1 <= q <= 16, -15 <= exp <= 19)
+ // x <= -1 or 1 <= x < 2^64-1/2 so if positive x can be rounded
+ // to nearest to a 64-bit unsigned signed integer
+ if (x_sign) { // x <= -1
+ // set invalid flag
+ *pfpsf |= INVALID_EXCEPTION;
+ // return Integer Indefinite
+ res = 0x8000000000000000ull;
+ BID_RETURN (res);
+ }
+ // 1 <= x < 2^64-1/2 so x can be rounded
+ // to nearest to a 64-bit unsigned integer
+ if (exp < 0) { // 2 <= q <= 16, -15 <= exp <= -1, 1 <= q + exp <= 20
+ ind = -exp; // 1 <= ind <= 15; ind is a synonym for 'x'
+ // chop off ind digits from the lower part of C1
+ // C1 = C1 + 1/2 * 10^ind where the result C1 fits in 64 bits
+ C1 = C1 + __bid_midpoint64[ind - 1];
+ // calculate C* and f*
+ // C* is actually floor(C*) in this case
+ // C* and f* need shifting and masking, as shown by
+ // __bid_shiftright128[] and __bid_maskhigh128[]
+ // 1 <= x <= 15
+ // kx = 10^(-x) = __bid_ten2mk64[ind - 1]
+ // C* = (C1 + 1/2 * 10^x) * 10^(-x)
+ // the approximation of 10^(-x) was rounded up to 54 bits
+ __mul_64x64_to_128MACH (P128, C1, __bid_ten2mk64[ind - 1]);
+ Cstar = P128.w[1];
+ // the top Ex bits of 10^(-x) are T* = __bid_ten2mk128trunc[ind].w[0], e.g.
+ // if x=1, T*=__bid_ten2mk128trunc[0].w[0]=0x1999999999999999
+ // if (0 < f* < 10^(-x)) then the result is a midpoint
+ // if floor(C*) is even then C* = floor(C*) - logical right
+ // shift; C* has p decimal digits, correct by Prop. 1)
+ // else if floor(C*) is odd C* = floor(C*)-1 (logical right
+ // shift; C* has p decimal digits, correct by Pr. 1)
+ // else
+ // C* = floor(C*) (logical right shift; C has p decimal digits,
+ // correct by Property 1)
+ // n = C* * 10^(e+x)
+
+ // shift right C* by Ex-64 = __bid_shiftright128[ind]
+ shift = __bid_shiftright128[ind - 1]; // 0 <= shift <= 39
+ Cstar = Cstar >> shift;
+
+ // if the result was a midpoint it was rounded away from zero
+ res = Cstar; // the result is positive
+ } else if (exp == 0) {
+ // 1 <= q <= 10
+ // res = +C (exact)
+ res = C1; // the result is positive
+ } else { // if (exp > 0) => 1 <= exp <= 9, 1 <= q < 9, 2 <= q + exp <= 10
+ // res = +C * 10^exp (exact)
+ res = C1 * __bid_ten2k64[exp]; // the result is positive
+ }
+ }
+ BID_RETURN (res);
+}
+
+/*****************************************************************************
+ * BID64_to_uint64_xrninta
+ ****************************************************************************/
+
+#if DECIMAL_CALL_BY_REFERENCE
+void
+__bid64_to_uint64_xrninta (UINT64 * pres, UINT64 * px
+ _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+ _EXC_INFO_PARAM) {
+ UINT64 x = *px;
+#else
+UINT64
+__bid64_to_uint64_xrninta (UINT64 x
+ _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+ _EXC_INFO_PARAM) {
+#endif
+ UINT64 res;
+ UINT64 x_sign;
+ UINT64 x_exp;
+ int exp; // unbiased exponent
+ // Note: C1 represents x_significand (UINT64)
+ UINT64 tmp64;
+ BID_UI64DOUBLE tmp1;
+ unsigned int x_nr_bits;
+ int q, ind, shift;
+ UINT64 C1;
+ UINT128 C;
+ UINT64 Cstar; // C* represents up to 16 decimal digits ~ 54 bits
+ UINT128 fstar;
+ UINT128 P128;
+
+ // check for NaN or Infinity
+ if ((x & MASK_NAN) == MASK_NAN || (x & MASK_INF) == MASK_INF) {
+ // set invalid flag
+ *pfpsf |= INVALID_EXCEPTION;
+ // return Integer Indefinite
+ res = 0x8000000000000000ull;
+ BID_RETURN (res);
+ }
+ // unpack x
+ x_sign = x & MASK_SIGN; // 0 for positive, MASK_SIGN for negative
+ // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+ if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+ x_exp = (x & MASK_BINARY_EXPONENT2) >> 51; // biased
+ C1 = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+ if (C1 > 9999999999999999ull) { // non-canonical
+ x_exp = 0;
+ C1 = 0;
+ }
+ } else {
+ x_exp = (x & MASK_BINARY_EXPONENT1) >> 53; // biased
+ C1 = x & MASK_BINARY_SIG1;
+ }
+
+ // check for zeros (possibly from non-canonical values)
+ if (C1 == 0x0ull) {
+ // x is 0
+ res = 0x0000000000000000ull;
+ BID_RETURN (res);
+ }
+ // x is not special and is not zero
+
+ // q = nr. of decimal digits in x (1 <= q <= 54)
+ // determine first the nr. of bits in x
+ if (C1 >= 0x0020000000000000ull) { // x >= 2^53
+ // split the 64-bit value in two 32-bit halves to avoid rounding errors
+ if (C1 >= 0x0000000100000000ull) { // x >= 2^32
+ tmp1.d = (double) (C1 >> 32); // exact conversion
+ x_nr_bits =
+ 33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
+ } else { // x < 2^32
+ tmp1.d = (double) C1; // exact conversion
+ x_nr_bits =
+ 1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
+ }
+ } else { // if x < 2^53
+ tmp1.d = (double) C1; // exact conversion
+ x_nr_bits =
+ 1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
+ }
+ q = __bid_nr_digits[x_nr_bits - 1].digits;
+ if (q == 0) {
+ q = __bid_nr_digits[x_nr_bits - 1].digits1;
+ if (C1 >= __bid_nr_digits[x_nr_bits - 1].threshold_lo)
+ q++;
+ }
+ exp = x_exp - 398; // unbiased exponent
+
+ if ((q + exp) > 20) { // x >= 10^20 ~= 2^66.45... (cannot fit in 64 bits)
+ // set invalid flag
+ *pfpsf |= INVALID_EXCEPTION;
+ // return Integer Indefinite
+ res = 0x8000000000000000ull;
+ BID_RETURN (res);
+ } else if ((q + exp) == 20) { // x = c(0)c(1)...c(19).c(20)...c(q-1)
+ // in this case 2^63.11... ~= 10^19 <= x < 10^20 ~= 2^66.43...
+ // so x rounded to an integer may or may not fit in an unsigned 64-bit int
+ // the cases that do not fit are identified here; the ones that fit
+ // fall through and will be handled with other cases further,
+ // under '1 <= q + exp <= 20'
+ if (x_sign) { // if n < 0 and q + exp = 20 then x is much less than -1/2
+ // => set invalid flag
+ *pfpsf |= INVALID_EXCEPTION;
+ // return Integer Indefinite
+ res = 0x8000000000000000ull;
+ BID_RETURN (res);
+ } else { // if n > 0 and q + exp = 20
+ // if n >= 2^64 - 1/2 then n is too large
+ // <=> c(0)c(1)...c(19).c(20)...c(q-1) >= 2^64-1/2
+ // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^20 >= 2^64-1/2
+ // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^21 >= 5*(2^65-1)
+ // <=> C * 10^(21-q) >= 0x9fffffffffffffffb, 1<=q<=16
+ if (q == 1) {
+ // C * 10^20 >= 0x9fffffffffffffffb
+ __mul_128x64_to_128 (C, C1, __bid_ten2k128[0]); // 10^20 * C
+ if (C.w[1] > 0x09 ||
+ (C.w[1] == 0x09 && C.w[0] >= 0xfffffffffffffffbull)) {
+ // set invalid flag
+ *pfpsf |= INVALID_EXCEPTION;
+ // return Integer Indefinite
+ res = 0x8000000000000000ull;
+ BID_RETURN (res);
+ }
+ // else cases that can be rounded to a 64-bit int fall through
+ // to '1 <= q + exp <= 20'
+ } else { // if (2 <= q <= 16) => 5 <= 21 - q <= 19
+ // Note: C * 10^(21-q) has 20 or 21 digits; 0x9fffffffffffffffb
+ // has 21 digits
+ __mul_64x64_to_128MACH (C, C1, __bid_ten2k64[21 - q]);
+ if (C.w[1] > 0x09 ||
+ (C.w[1] == 0x09 && C.w[0] >= 0xfffffffffffffffbull)) {
+ // set invalid flag
+ *pfpsf |= INVALID_EXCEPTION;
+ // return Integer Indefinite
+ res = 0x8000000000000000ull;
+ BID_RETURN (res);
+ }
+ // else cases that can be rounded to a 64-bit int fall through
+ // to '1 <= q + exp <= 20'
+ }
+ }
+ }
+ // n is not too large to be converted to int64 if -1/2 <= n < 2^64 - 1/2
+ // Note: some of the cases tested for above fall through to this point
+ if ((q + exp) < 0) { // n = +/-0.0...c(0)c(1)...c(q-1)
+ // set inexact flag
+ *pfpsf |= INEXACT_EXCEPTION;
+ // return 0
+ res = 0x0000000000000000ull;
+ BID_RETURN (res);
+ } else if ((q + exp) == 0) { // n = +/-0.c(0)c(1)...c(q-1)
+ // if 0.c(0)c(1)...c(q-1) < 0.5 <=> c(0)c(1)...c(q-1) < 5 * 10^(q-1)
+ // res = 0
+ // else if x > 0
+ // res = +1
+ // else // if x < 0
+ // invalid exc
+ ind = q - 1; // 0 <= ind <= 15
+ if (C1 < __bid_midpoint64[ind]) {
+ res = 0x0000000000000000ull; // return 0
+ } else if (!x_sign) { // n > 0
+ res = 0x0000000000000001ull; // return +1
+ } else { // if n < 0
+ res = 0x8000000000000000ull;
+ *pfpsf |= INVALID_EXCEPTION;
+ BID_RETURN (res);
+ }
+ // set inexact flag
+ *pfpsf |= INEXACT_EXCEPTION;
+ } else { // if (1 <= q + exp <= 20, 1 <= q <= 16, -15 <= exp <= 19)
+ // x <= -1 or 1 <= x < 2^64-1/2 so if positive x can be rounded
+ // to nearest to a 64-bit unsigned signed integer
+ if (x_sign) { // x <= -1
+ // set invalid flag
+ *pfpsf |= INVALID_EXCEPTION;
+ // return Integer Indefinite
+ res = 0x8000000000000000ull;
+ BID_RETURN (res);
+ }
+ // 1 <= x < 2^64-1/2 so x can be rounded
+ // to nearest to a 64-bit unsigned integer
+ if (exp < 0) { // 2 <= q <= 16, -15 <= exp <= -1, 1 <= q + exp <= 20
+ ind = -exp; // 1 <= ind <= 15; ind is a synonym for 'x'
+ // chop off ind digits from the lower part of C1
+ // C1 = C1 + 1/2 * 10^ind where the result C1 fits in 64 bits
+ C1 = C1 + __bid_midpoint64[ind - 1];
+ // calculate C* and f*
+ // C* is actually floor(C*) in this case
+ // C* and f* need shifting and masking, as shown by
+ // __bid_shiftright128[] and __bid_maskhigh128[]
+ // 1 <= x <= 15
+ // kx = 10^(-x) = __bid_ten2mk64[ind - 1]
+ // C* = (C1 + 1/2 * 10^x) * 10^(-x)
+ // the approximation of 10^(-x) was rounded up to 54 bits
+ __mul_64x64_to_128MACH (P128, C1, __bid_ten2mk64[ind - 1]);
+ Cstar = P128.w[1];
+ fstar.w[1] = P128.w[1] & __bid_maskhigh128[ind - 1];
+ fstar.w[0] = P128.w[0];
+ // the top Ex bits of 10^(-x) are T* = __bid_ten2mk128trunc[ind].w[0], e.g.
+ // if x=1, T*=__bid_ten2mk128trunc[0].w[0]=0x1999999999999999
+ // if (0 < f* < 10^(-x)) then the result is a midpoint
+ // if floor(C*) is even then C* = floor(C*) - logical right
+ // shift; C* has p decimal digits, correct by Prop. 1)
+ // else if floor(C*) is odd C* = floor(C*)-1 (logical right
+ // shift; C* has p decimal digits, correct by Pr. 1)
+ // else
+ // C* = floor(C*) (logical right shift; C has p decimal digits,
+ // correct by Property 1)
+ // n = C* * 10^(e+x)
+
+ // shift right C* by Ex-64 = __bid_shiftright128[ind]
+ shift = __bid_shiftright128[ind - 1]; // 0 <= shift <= 39
+ Cstar = Cstar >> shift;
+ // determine inexactness of the rounding of C*
+ // if (0 < f* - 1/2 < 10^(-x)) then
+ // the result is exact
+ // else // if (f* - 1/2 > T*) then
+ // the result is inexact
+ if (ind - 1 <= 2) { // fstar.w[1] is 0
+ if (fstar.w[0] > 0x8000000000000000ull) {
+ // f* > 1/2 and the result may be exact
+ tmp64 = fstar.w[0] - 0x8000000000000000ull; // f* - 1/2
+ if ((tmp64 > __bid_ten2mk128trunc[ind - 1].w[1])) {
+ // __bid_ten2mk128trunc[ind -1].w[1] is identical to
+ // __bid_ten2mk128[ind -1].w[1]
+ // set the inexact flag
+ *pfpsf |= INEXACT_EXCEPTION;
+ } // else the result is exact
+ } else { // the result is inexact; f2* <= 1/2
+ // set the inexact flag
+ *pfpsf |= INEXACT_EXCEPTION;
+ }
+ } else { // if 3 <= ind - 1 <= 14
+ if (fstar.w[1] > __bid_one_half128[ind - 1] ||
+ (fstar.w[1] == __bid_one_half128[ind - 1] && fstar.w[0])) {
+ // f2* > 1/2 and the result may be exact
+ // Calculate f2* - 1/2
+ tmp64 = fstar.w[1] - __bid_one_half128[ind - 1];
+ if (tmp64 || fstar.w[0] > __bid_ten2mk128trunc[ind - 1].w[1]) {
+ // __bid_ten2mk128trunc[ind -1].w[1] is identical to
+ // __bid_ten2mk128[ind -1].w[1]
+ // set the inexact flag
+ *pfpsf |= INEXACT_EXCEPTION;
+ } // else the result is exact
+ } else { // the result is inexact; f2* <= 1/2
+ // set the inexact flag
+ *pfpsf |= INEXACT_EXCEPTION;
+ }
+ }
+
+ // if the result was a midpoint it was rounded away from zero
+ res = Cstar; // the result is positive
+ } else if (exp == 0) {
+ // 1 <= q <= 10
+ // res = +C (exact)
+ res = C1; // the result is positive
+ } else { // if (exp > 0) => 1 <= exp <= 9, 1 <= q < 9, 2 <= q + exp <= 10
+ // res = +C * 10^exp (exact)
+ res = C1 * __bid_ten2k64[exp]; // the result is positive
+ }
+ }
+ BID_RETURN (res);
+}