summaryrefslogtreecommitdiff
path: root/libgfortran/generated
diff options
context:
space:
mode:
Diffstat (limited to 'libgfortran/generated')
-rw-r--r--libgfortran/generated/matmul_c10.c47
-rw-r--r--libgfortran/generated/matmul_c16.c47
-rw-r--r--libgfortran/generated/matmul_c4.c47
-rw-r--r--libgfortran/generated/matmul_c8.c47
-rw-r--r--libgfortran/generated/matmul_i16.c47
-rw-r--r--libgfortran/generated/matmul_i4.c47
-rw-r--r--libgfortran/generated/matmul_i8.c47
-rw-r--r--libgfortran/generated/matmul_r10.c47
-rw-r--r--libgfortran/generated/matmul_r16.c47
-rw-r--r--libgfortran/generated/matmul_r4.c47
-rw-r--r--libgfortran/generated/matmul_r8.c47
11 files changed, 484 insertions, 33 deletions
diff --git a/libgfortran/generated/matmul_c10.c b/libgfortran/generated/matmul_c10.c
index df2cd93c15f..5e3b281245c 100644
--- a/libgfortran/generated/matmul_c10.c
+++ b/libgfortran/generated/matmul_c10.c
@@ -36,6 +36,16 @@ Boston, MA 02110-1301, USA. */
#if defined (HAVE_GFC_COMPLEX_10)
+/* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
+ passed to us by the front-end, in which case we'll call it for large
+ matrices. */
+
+typedef void (*blas_call)(const char *, const char *, const int *, const int *,
+ const int *, const GFC_COMPLEX_10 *, const GFC_COMPLEX_10 *,
+ const int *, const GFC_COMPLEX_10 *, const int *,
+ const GFC_COMPLEX_10 *, GFC_COMPLEX_10 *, const int *,
+ int, int);
+
/* The order of loops is different in the case of plain matrix
multiplication C=MATMUL(A,B), and in the frequent special case where
the argument A is the temporary result of a TRANSPOSE intrinsic:
@@ -56,18 +66,24 @@ Boston, MA 02110-1301, USA. */
DO I=1,M
S = 0
DO K=1,COUNT
- S = S+A(I,K)+B(K,J)
+ S = S+A(I,K)*B(K,J)
C(I,J) = S
ENDIF
*/
+/* If try_blas is set to a nonzero value, then the matmul function will
+ see if there is a way to perform the matrix multiplication by a call
+ to the BLAS gemm function. */
+
extern void matmul_c10 (gfc_array_c10 * const restrict retarray,
- gfc_array_c10 * const restrict a, gfc_array_c10 * const restrict b);
+ gfc_array_c10 * const restrict a, gfc_array_c10 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm);
export_proto(matmul_c10);
void
matmul_c10 (gfc_array_c10 * const restrict retarray,
- gfc_array_c10 * const restrict a, gfc_array_c10 * const restrict b)
+ gfc_array_c10 * const restrict a, gfc_array_c10 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
{
const GFC_COMPLEX_10 * restrict abase;
const GFC_COMPLEX_10 * restrict bbase;
@@ -177,6 +193,31 @@ matmul_c10 (gfc_array_c10 * const restrict retarray,
bbase = b->data;
dest = retarray->data;
+
+ /* Now that everything is set up, we're performing the multiplication
+ itself. */
+
+#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+
+ if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
+ && (bxstride == 1 || bystride == 1)
+ && (((float) xcount) * ((float) ycount) * ((float) count)
+ > POW3(blas_limit)))
+ {
+ const int m = xcount, n = ycount, k = count, ldc = rystride;
+ const GFC_COMPLEX_10 one = 1, zero = 0;
+ const int lda = (axstride == 1) ? aystride : axstride,
+ ldb = (bxstride == 1) ? bystride : bxstride;
+
+ if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
+ {
+ assert (gemm != NULL);
+ gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k,
+ &one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1);
+ return;
+ }
+ }
+
if (rxstride == 1 && axstride == 1 && bxstride == 1)
{
const GFC_COMPLEX_10 * restrict bbase_y;
diff --git a/libgfortran/generated/matmul_c16.c b/libgfortran/generated/matmul_c16.c
index 6425eb8d49d..f7301114b37 100644
--- a/libgfortran/generated/matmul_c16.c
+++ b/libgfortran/generated/matmul_c16.c
@@ -36,6 +36,16 @@ Boston, MA 02110-1301, USA. */
#if defined (HAVE_GFC_COMPLEX_16)
+/* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
+ passed to us by the front-end, in which case we'll call it for large
+ matrices. */
+
+typedef void (*blas_call)(const char *, const char *, const int *, const int *,
+ const int *, const GFC_COMPLEX_16 *, const GFC_COMPLEX_16 *,
+ const int *, const GFC_COMPLEX_16 *, const int *,
+ const GFC_COMPLEX_16 *, GFC_COMPLEX_16 *, const int *,
+ int, int);
+
/* The order of loops is different in the case of plain matrix
multiplication C=MATMUL(A,B), and in the frequent special case where
the argument A is the temporary result of a TRANSPOSE intrinsic:
@@ -56,18 +66,24 @@ Boston, MA 02110-1301, USA. */
DO I=1,M
S = 0
DO K=1,COUNT
- S = S+A(I,K)+B(K,J)
+ S = S+A(I,K)*B(K,J)
C(I,J) = S
ENDIF
*/
+/* If try_blas is set to a nonzero value, then the matmul function will
+ see if there is a way to perform the matrix multiplication by a call
+ to the BLAS gemm function. */
+
extern void matmul_c16 (gfc_array_c16 * const restrict retarray,
- gfc_array_c16 * const restrict a, gfc_array_c16 * const restrict b);
+ gfc_array_c16 * const restrict a, gfc_array_c16 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm);
export_proto(matmul_c16);
void
matmul_c16 (gfc_array_c16 * const restrict retarray,
- gfc_array_c16 * const restrict a, gfc_array_c16 * const restrict b)
+ gfc_array_c16 * const restrict a, gfc_array_c16 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
{
const GFC_COMPLEX_16 * restrict abase;
const GFC_COMPLEX_16 * restrict bbase;
@@ -177,6 +193,31 @@ matmul_c16 (gfc_array_c16 * const restrict retarray,
bbase = b->data;
dest = retarray->data;
+
+ /* Now that everything is set up, we're performing the multiplication
+ itself. */
+
+#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+
+ if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
+ && (bxstride == 1 || bystride == 1)
+ && (((float) xcount) * ((float) ycount) * ((float) count)
+ > POW3(blas_limit)))
+ {
+ const int m = xcount, n = ycount, k = count, ldc = rystride;
+ const GFC_COMPLEX_16 one = 1, zero = 0;
+ const int lda = (axstride == 1) ? aystride : axstride,
+ ldb = (bxstride == 1) ? bystride : bxstride;
+
+ if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
+ {
+ assert (gemm != NULL);
+ gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k,
+ &one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1);
+ return;
+ }
+ }
+
if (rxstride == 1 && axstride == 1 && bxstride == 1)
{
const GFC_COMPLEX_16 * restrict bbase_y;
diff --git a/libgfortran/generated/matmul_c4.c b/libgfortran/generated/matmul_c4.c
index 2d47a134972..f2984ab48ab 100644
--- a/libgfortran/generated/matmul_c4.c
+++ b/libgfortran/generated/matmul_c4.c
@@ -36,6 +36,16 @@ Boston, MA 02110-1301, USA. */
#if defined (HAVE_GFC_COMPLEX_4)
+/* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
+ passed to us by the front-end, in which case we'll call it for large
+ matrices. */
+
+typedef void (*blas_call)(const char *, const char *, const int *, const int *,
+ const int *, const GFC_COMPLEX_4 *, const GFC_COMPLEX_4 *,
+ const int *, const GFC_COMPLEX_4 *, const int *,
+ const GFC_COMPLEX_4 *, GFC_COMPLEX_4 *, const int *,
+ int, int);
+
/* The order of loops is different in the case of plain matrix
multiplication C=MATMUL(A,B), and in the frequent special case where
the argument A is the temporary result of a TRANSPOSE intrinsic:
@@ -56,18 +66,24 @@ Boston, MA 02110-1301, USA. */
DO I=1,M
S = 0
DO K=1,COUNT
- S = S+A(I,K)+B(K,J)
+ S = S+A(I,K)*B(K,J)
C(I,J) = S
ENDIF
*/
+/* If try_blas is set to a nonzero value, then the matmul function will
+ see if there is a way to perform the matrix multiplication by a call
+ to the BLAS gemm function. */
+
extern void matmul_c4 (gfc_array_c4 * const restrict retarray,
- gfc_array_c4 * const restrict a, gfc_array_c4 * const restrict b);
+ gfc_array_c4 * const restrict a, gfc_array_c4 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm);
export_proto(matmul_c4);
void
matmul_c4 (gfc_array_c4 * const restrict retarray,
- gfc_array_c4 * const restrict a, gfc_array_c4 * const restrict b)
+ gfc_array_c4 * const restrict a, gfc_array_c4 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
{
const GFC_COMPLEX_4 * restrict abase;
const GFC_COMPLEX_4 * restrict bbase;
@@ -177,6 +193,31 @@ matmul_c4 (gfc_array_c4 * const restrict retarray,
bbase = b->data;
dest = retarray->data;
+
+ /* Now that everything is set up, we're performing the multiplication
+ itself. */
+
+#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+
+ if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
+ && (bxstride == 1 || bystride == 1)
+ && (((float) xcount) * ((float) ycount) * ((float) count)
+ > POW3(blas_limit)))
+ {
+ const int m = xcount, n = ycount, k = count, ldc = rystride;
+ const GFC_COMPLEX_4 one = 1, zero = 0;
+ const int lda = (axstride == 1) ? aystride : axstride,
+ ldb = (bxstride == 1) ? bystride : bxstride;
+
+ if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
+ {
+ assert (gemm != NULL);
+ gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k,
+ &one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1);
+ return;
+ }
+ }
+
if (rxstride == 1 && axstride == 1 && bxstride == 1)
{
const GFC_COMPLEX_4 * restrict bbase_y;
diff --git a/libgfortran/generated/matmul_c8.c b/libgfortran/generated/matmul_c8.c
index f22719df505..65cc0a52c4b 100644
--- a/libgfortran/generated/matmul_c8.c
+++ b/libgfortran/generated/matmul_c8.c
@@ -36,6 +36,16 @@ Boston, MA 02110-1301, USA. */
#if defined (HAVE_GFC_COMPLEX_8)
+/* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
+ passed to us by the front-end, in which case we'll call it for large
+ matrices. */
+
+typedef void (*blas_call)(const char *, const char *, const int *, const int *,
+ const int *, const GFC_COMPLEX_8 *, const GFC_COMPLEX_8 *,
+ const int *, const GFC_COMPLEX_8 *, const int *,
+ const GFC_COMPLEX_8 *, GFC_COMPLEX_8 *, const int *,
+ int, int);
+
/* The order of loops is different in the case of plain matrix
multiplication C=MATMUL(A,B), and in the frequent special case where
the argument A is the temporary result of a TRANSPOSE intrinsic:
@@ -56,18 +66,24 @@ Boston, MA 02110-1301, USA. */
DO I=1,M
S = 0
DO K=1,COUNT
- S = S+A(I,K)+B(K,J)
+ S = S+A(I,K)*B(K,J)
C(I,J) = S
ENDIF
*/
+/* If try_blas is set to a nonzero value, then the matmul function will
+ see if there is a way to perform the matrix multiplication by a call
+ to the BLAS gemm function. */
+
extern void matmul_c8 (gfc_array_c8 * const restrict retarray,
- gfc_array_c8 * const restrict a, gfc_array_c8 * const restrict b);
+ gfc_array_c8 * const restrict a, gfc_array_c8 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm);
export_proto(matmul_c8);
void
matmul_c8 (gfc_array_c8 * const restrict retarray,
- gfc_array_c8 * const restrict a, gfc_array_c8 * const restrict b)
+ gfc_array_c8 * const restrict a, gfc_array_c8 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
{
const GFC_COMPLEX_8 * restrict abase;
const GFC_COMPLEX_8 * restrict bbase;
@@ -177,6 +193,31 @@ matmul_c8 (gfc_array_c8 * const restrict retarray,
bbase = b->data;
dest = retarray->data;
+
+ /* Now that everything is set up, we're performing the multiplication
+ itself. */
+
+#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+
+ if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
+ && (bxstride == 1 || bystride == 1)
+ && (((float) xcount) * ((float) ycount) * ((float) count)
+ > POW3(blas_limit)))
+ {
+ const int m = xcount, n = ycount, k = count, ldc = rystride;
+ const GFC_COMPLEX_8 one = 1, zero = 0;
+ const int lda = (axstride == 1) ? aystride : axstride,
+ ldb = (bxstride == 1) ? bystride : bxstride;
+
+ if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
+ {
+ assert (gemm != NULL);
+ gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k,
+ &one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1);
+ return;
+ }
+ }
+
if (rxstride == 1 && axstride == 1 && bxstride == 1)
{
const GFC_COMPLEX_8 * restrict bbase_y;
diff --git a/libgfortran/generated/matmul_i16.c b/libgfortran/generated/matmul_i16.c
index 73c3fbc108d..a193669d108 100644
--- a/libgfortran/generated/matmul_i16.c
+++ b/libgfortran/generated/matmul_i16.c
@@ -36,6 +36,16 @@ Boston, MA 02110-1301, USA. */
#if defined (HAVE_GFC_INTEGER_16)
+/* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
+ passed to us by the front-end, in which case we'll call it for large
+ matrices. */
+
+typedef void (*blas_call)(const char *, const char *, const int *, const int *,
+ const int *, const GFC_INTEGER_16 *, const GFC_INTEGER_16 *,
+ const int *, const GFC_INTEGER_16 *, const int *,
+ const GFC_INTEGER_16 *, GFC_INTEGER_16 *, const int *,
+ int, int);
+
/* The order of loops is different in the case of plain matrix
multiplication C=MATMUL(A,B), and in the frequent special case where
the argument A is the temporary result of a TRANSPOSE intrinsic:
@@ -56,18 +66,24 @@ Boston, MA 02110-1301, USA. */
DO I=1,M
S = 0
DO K=1,COUNT
- S = S+A(I,K)+B(K,J)
+ S = S+A(I,K)*B(K,J)
C(I,J) = S
ENDIF
*/
+/* If try_blas is set to a nonzero value, then the matmul function will
+ see if there is a way to perform the matrix multiplication by a call
+ to the BLAS gemm function. */
+
extern void matmul_i16 (gfc_array_i16 * const restrict retarray,
- gfc_array_i16 * const restrict a, gfc_array_i16 * const restrict b);
+ gfc_array_i16 * const restrict a, gfc_array_i16 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm);
export_proto(matmul_i16);
void
matmul_i16 (gfc_array_i16 * const restrict retarray,
- gfc_array_i16 * const restrict a, gfc_array_i16 * const restrict b)
+ gfc_array_i16 * const restrict a, gfc_array_i16 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
{
const GFC_INTEGER_16 * restrict abase;
const GFC_INTEGER_16 * restrict bbase;
@@ -177,6 +193,31 @@ matmul_i16 (gfc_array_i16 * const restrict retarray,
bbase = b->data;
dest = retarray->data;
+
+ /* Now that everything is set up, we're performing the multiplication
+ itself. */
+
+#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+
+ if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
+ && (bxstride == 1 || bystride == 1)
+ && (((float) xcount) * ((float) ycount) * ((float) count)
+ > POW3(blas_limit)))
+ {
+ const int m = xcount, n = ycount, k = count, ldc = rystride;
+ const GFC_INTEGER_16 one = 1, zero = 0;
+ const int lda = (axstride == 1) ? aystride : axstride,
+ ldb = (bxstride == 1) ? bystride : bxstride;
+
+ if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
+ {
+ assert (gemm != NULL);
+ gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k,
+ &one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1);
+ return;
+ }
+ }
+
if (rxstride == 1 && axstride == 1 && bxstride == 1)
{
const GFC_INTEGER_16 * restrict bbase_y;
diff --git a/libgfortran/generated/matmul_i4.c b/libgfortran/generated/matmul_i4.c
index 63bca0152cd..69b9b487a81 100644
--- a/libgfortran/generated/matmul_i4.c
+++ b/libgfortran/generated/matmul_i4.c
@@ -36,6 +36,16 @@ Boston, MA 02110-1301, USA. */
#if defined (HAVE_GFC_INTEGER_4)
+/* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
+ passed to us by the front-end, in which case we'll call it for large
+ matrices. */
+
+typedef void (*blas_call)(const char *, const char *, const int *, const int *,
+ const int *, const GFC_INTEGER_4 *, const GFC_INTEGER_4 *,
+ const int *, const GFC_INTEGER_4 *, const int *,
+ const GFC_INTEGER_4 *, GFC_INTEGER_4 *, const int *,
+ int, int);
+
/* The order of loops is different in the case of plain matrix
multiplication C=MATMUL(A,B), and in the frequent special case where
the argument A is the temporary result of a TRANSPOSE intrinsic:
@@ -56,18 +66,24 @@ Boston, MA 02110-1301, USA. */
DO I=1,M
S = 0
DO K=1,COUNT
- S = S+A(I,K)+B(K,J)
+ S = S+A(I,K)*B(K,J)
C(I,J) = S
ENDIF
*/
+/* If try_blas is set to a nonzero value, then the matmul function will
+ see if there is a way to perform the matrix multiplication by a call
+ to the BLAS gemm function. */
+
extern void matmul_i4 (gfc_array_i4 * const restrict retarray,
- gfc_array_i4 * const restrict a, gfc_array_i4 * const restrict b);
+ gfc_array_i4 * const restrict a, gfc_array_i4 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm);
export_proto(matmul_i4);
void
matmul_i4 (gfc_array_i4 * const restrict retarray,
- gfc_array_i4 * const restrict a, gfc_array_i4 * const restrict b)
+ gfc_array_i4 * const restrict a, gfc_array_i4 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
{
const GFC_INTEGER_4 * restrict abase;
const GFC_INTEGER_4 * restrict bbase;
@@ -177,6 +193,31 @@ matmul_i4 (gfc_array_i4 * const restrict retarray,
bbase = b->data;
dest = retarray->data;
+
+ /* Now that everything is set up, we're performing the multiplication
+ itself. */
+
+#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+
+ if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
+ && (bxstride == 1 || bystride == 1)
+ && (((float) xcount) * ((float) ycount) * ((float) count)
+ > POW3(blas_limit)))
+ {
+ const int m = xcount, n = ycount, k = count, ldc = rystride;
+ const GFC_INTEGER_4 one = 1, zero = 0;
+ const int lda = (axstride == 1) ? aystride : axstride,
+ ldb = (bxstride == 1) ? bystride : bxstride;
+
+ if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
+ {
+ assert (gemm != NULL);
+ gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k,
+ &one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1);
+ return;
+ }
+ }
+
if (rxstride == 1 && axstride == 1 && bxstride == 1)
{
const GFC_INTEGER_4 * restrict bbase_y;
diff --git a/libgfortran/generated/matmul_i8.c b/libgfortran/generated/matmul_i8.c
index caaf9e8f976..23a87a904f7 100644
--- a/libgfortran/generated/matmul_i8.c
+++ b/libgfortran/generated/matmul_i8.c
@@ -36,6 +36,16 @@ Boston, MA 02110-1301, USA. */
#if defined (HAVE_GFC_INTEGER_8)
+/* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
+ passed to us by the front-end, in which case we'll call it for large
+ matrices. */
+
+typedef void (*blas_call)(const char *, const char *, const int *, const int *,
+ const int *, const GFC_INTEGER_8 *, const GFC_INTEGER_8 *,
+ const int *, const GFC_INTEGER_8 *, const int *,
+ const GFC_INTEGER_8 *, GFC_INTEGER_8 *, const int *,
+ int, int);
+
/* The order of loops is different in the case of plain matrix
multiplication C=MATMUL(A,B), and in the frequent special case where
the argument A is the temporary result of a TRANSPOSE intrinsic:
@@ -56,18 +66,24 @@ Boston, MA 02110-1301, USA. */
DO I=1,M
S = 0
DO K=1,COUNT
- S = S+A(I,K)+B(K,J)
+ S = S+A(I,K)*B(K,J)
C(I,J) = S
ENDIF
*/
+/* If try_blas is set to a nonzero value, then the matmul function will
+ see if there is a way to perform the matrix multiplication by a call
+ to the BLAS gemm function. */
+
extern void matmul_i8 (gfc_array_i8 * const restrict retarray,
- gfc_array_i8 * const restrict a, gfc_array_i8 * const restrict b);
+ gfc_array_i8 * const restrict a, gfc_array_i8 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm);
export_proto(matmul_i8);
void
matmul_i8 (gfc_array_i8 * const restrict retarray,
- gfc_array_i8 * const restrict a, gfc_array_i8 * const restrict b)
+ gfc_array_i8 * const restrict a, gfc_array_i8 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
{
const GFC_INTEGER_8 * restrict abase;
const GFC_INTEGER_8 * restrict bbase;
@@ -177,6 +193,31 @@ matmul_i8 (gfc_array_i8 * const restrict retarray,
bbase = b->data;
dest = retarray->data;
+
+ /* Now that everything is set up, we're performing the multiplication
+ itself. */
+
+#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+
+ if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
+ && (bxstride == 1 || bystride == 1)
+ && (((float) xcount) * ((float) ycount) * ((float) count)
+ > POW3(blas_limit)))
+ {
+ const int m = xcount, n = ycount, k = count, ldc = rystride;
+ const GFC_INTEGER_8 one = 1, zero = 0;
+ const int lda = (axstride == 1) ? aystride : axstride,
+ ldb = (bxstride == 1) ? bystride : bxstride;
+
+ if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
+ {
+ assert (gemm != NULL);
+ gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k,
+ &one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1);
+ return;
+ }
+ }
+
if (rxstride == 1 && axstride == 1 && bxstride == 1)
{
const GFC_INTEGER_8 * restrict bbase_y;
diff --git a/libgfortran/generated/matmul_r10.c b/libgfortran/generated/matmul_r10.c
index 8fa1d6d9e49..e4dfd74ef03 100644
--- a/libgfortran/generated/matmul_r10.c
+++ b/libgfortran/generated/matmul_r10.c
@@ -36,6 +36,16 @@ Boston, MA 02110-1301, USA. */
#if defined (HAVE_GFC_REAL_10)
+/* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
+ passed to us by the front-end, in which case we'll call it for large
+ matrices. */
+
+typedef void (*blas_call)(const char *, const char *, const int *, const int *,
+ const int *, const GFC_REAL_10 *, const GFC_REAL_10 *,
+ const int *, const GFC_REAL_10 *, const int *,
+ const GFC_REAL_10 *, GFC_REAL_10 *, const int *,
+ int, int);
+
/* The order of loops is different in the case of plain matrix
multiplication C=MATMUL(A,B), and in the frequent special case where
the argument A is the temporary result of a TRANSPOSE intrinsic:
@@ -56,18 +66,24 @@ Boston, MA 02110-1301, USA. */
DO I=1,M
S = 0
DO K=1,COUNT
- S = S+A(I,K)+B(K,J)
+ S = S+A(I,K)*B(K,J)
C(I,J) = S
ENDIF
*/
+/* If try_blas is set to a nonzero value, then the matmul function will
+ see if there is a way to perform the matrix multiplication by a call
+ to the BLAS gemm function. */
+
extern void matmul_r10 (gfc_array_r10 * const restrict retarray,
- gfc_array_r10 * const restrict a, gfc_array_r10 * const restrict b);
+ gfc_array_r10 * const restrict a, gfc_array_r10 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm);
export_proto(matmul_r10);
void
matmul_r10 (gfc_array_r10 * const restrict retarray,
- gfc_array_r10 * const restrict a, gfc_array_r10 * const restrict b)
+ gfc_array_r10 * const restrict a, gfc_array_r10 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
{
const GFC_REAL_10 * restrict abase;
const GFC_REAL_10 * restrict bbase;
@@ -177,6 +193,31 @@ matmul_r10 (gfc_array_r10 * const restrict retarray,
bbase = b->data;
dest = retarray->data;
+
+ /* Now that everything is set up, we're performing the multiplication
+ itself. */
+
+#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+
+ if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
+ && (bxstride == 1 || bystride == 1)
+ && (((float) xcount) * ((float) ycount) * ((float) count)
+ > POW3(blas_limit)))
+ {
+ const int m = xcount, n = ycount, k = count, ldc = rystride;
+ const GFC_REAL_10 one = 1, zero = 0;
+ const int lda = (axstride == 1) ? aystride : axstride,
+ ldb = (bxstride == 1) ? bystride : bxstride;
+
+ if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
+ {
+ assert (gemm != NULL);
+ gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k,
+ &one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1);
+ return;
+ }
+ }
+
if (rxstride == 1 && axstride == 1 && bxstride == 1)
{
const GFC_REAL_10 * restrict bbase_y;
diff --git a/libgfortran/generated/matmul_r16.c b/libgfortran/generated/matmul_r16.c
index 0f61b038168..ec760f2d3d8 100644
--- a/libgfortran/generated/matmul_r16.c
+++ b/libgfortran/generated/matmul_r16.c
@@ -36,6 +36,16 @@ Boston, MA 02110-1301, USA. */
#if defined (HAVE_GFC_REAL_16)
+/* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
+ passed to us by the front-end, in which case we'll call it for large
+ matrices. */
+
+typedef void (*blas_call)(const char *, const char *, const int *, const int *,
+ const int *, const GFC_REAL_16 *, const GFC_REAL_16 *,
+ const int *, const GFC_REAL_16 *, const int *,
+ const GFC_REAL_16 *, GFC_REAL_16 *, const int *,
+ int, int);
+
/* The order of loops is different in the case of plain matrix
multiplication C=MATMUL(A,B), and in the frequent special case where
the argument A is the temporary result of a TRANSPOSE intrinsic:
@@ -56,18 +66,24 @@ Boston, MA 02110-1301, USA. */
DO I=1,M
S = 0
DO K=1,COUNT
- S = S+A(I,K)+B(K,J)
+ S = S+A(I,K)*B(K,J)
C(I,J) = S
ENDIF
*/
+/* If try_blas is set to a nonzero value, then the matmul function will
+ see if there is a way to perform the matrix multiplication by a call
+ to the BLAS gemm function. */
+
extern void matmul_r16 (gfc_array_r16 * const restrict retarray,
- gfc_array_r16 * const restrict a, gfc_array_r16 * const restrict b);
+ gfc_array_r16 * const restrict a, gfc_array_r16 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm);
export_proto(matmul_r16);
void
matmul_r16 (gfc_array_r16 * const restrict retarray,
- gfc_array_r16 * const restrict a, gfc_array_r16 * const restrict b)
+ gfc_array_r16 * const restrict a, gfc_array_r16 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
{
const GFC_REAL_16 * restrict abase;
const GFC_REAL_16 * restrict bbase;
@@ -177,6 +193,31 @@ matmul_r16 (gfc_array_r16 * const restrict retarray,
bbase = b->data;
dest = retarray->data;
+
+ /* Now that everything is set up, we're performing the multiplication
+ itself. */
+
+#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+
+ if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
+ && (bxstride == 1 || bystride == 1)
+ && (((float) xcount) * ((float) ycount) * ((float) count)
+ > POW3(blas_limit)))
+ {
+ const int m = xcount, n = ycount, k = count, ldc = rystride;
+ const GFC_REAL_16 one = 1, zero = 0;
+ const int lda = (axstride == 1) ? aystride : axstride,
+ ldb = (bxstride == 1) ? bystride : bxstride;
+
+ if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
+ {
+ assert (gemm != NULL);
+ gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k,
+ &one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1);
+ return;
+ }
+ }
+
if (rxstride == 1 && axstride == 1 && bxstride == 1)
{
const GFC_REAL_16 * restrict bbase_y;
diff --git a/libgfortran/generated/matmul_r4.c b/libgfortran/generated/matmul_r4.c
index d684dd2905c..cf2f45fb125 100644
--- a/libgfortran/generated/matmul_r4.c
+++ b/libgfortran/generated/matmul_r4.c
@@ -36,6 +36,16 @@ Boston, MA 02110-1301, USA. */
#if defined (HAVE_GFC_REAL_4)
+/* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
+ passed to us by the front-end, in which case we'll call it for large
+ matrices. */
+
+typedef void (*blas_call)(const char *, const char *, const int *, const int *,
+ const int *, const GFC_REAL_4 *, const GFC_REAL_4 *,
+ const int *, const GFC_REAL_4 *, const int *,
+ const GFC_REAL_4 *, GFC_REAL_4 *, const int *,
+ int, int);
+
/* The order of loops is different in the case of plain matrix
multiplication C=MATMUL(A,B), and in the frequent special case where
the argument A is the temporary result of a TRANSPOSE intrinsic:
@@ -56,18 +66,24 @@ Boston, MA 02110-1301, USA. */
DO I=1,M
S = 0
DO K=1,COUNT
- S = S+A(I,K)+B(K,J)
+ S = S+A(I,K)*B(K,J)
C(I,J) = S
ENDIF
*/
+/* If try_blas is set to a nonzero value, then the matmul function will
+ see if there is a way to perform the matrix multiplication by a call
+ to the BLAS gemm function. */
+
extern void matmul_r4 (gfc_array_r4 * const restrict retarray,
- gfc_array_r4 * const restrict a, gfc_array_r4 * const restrict b);
+ gfc_array_r4 * const restrict a, gfc_array_r4 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm);
export_proto(matmul_r4);
void
matmul_r4 (gfc_array_r4 * const restrict retarray,
- gfc_array_r4 * const restrict a, gfc_array_r4 * const restrict b)
+ gfc_array_r4 * const restrict a, gfc_array_r4 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
{
const GFC_REAL_4 * restrict abase;
const GFC_REAL_4 * restrict bbase;
@@ -177,6 +193,31 @@ matmul_r4 (gfc_array_r4 * const restrict retarray,
bbase = b->data;
dest = retarray->data;
+
+ /* Now that everything is set up, we're performing the multiplication
+ itself. */
+
+#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+
+ if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
+ && (bxstride == 1 || bystride == 1)
+ && (((float) xcount) * ((float) ycount) * ((float) count)
+ > POW3(blas_limit)))
+ {
+ const int m = xcount, n = ycount, k = count, ldc = rystride;
+ const GFC_REAL_4 one = 1, zero = 0;
+ const int lda = (axstride == 1) ? aystride : axstride,
+ ldb = (bxstride == 1) ? bystride : bxstride;
+
+ if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
+ {
+ assert (gemm != NULL);
+ gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k,
+ &one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1);
+ return;
+ }
+ }
+
if (rxstride == 1 && axstride == 1 && bxstride == 1)
{
const GFC_REAL_4 * restrict bbase_y;
diff --git a/libgfortran/generated/matmul_r8.c b/libgfortran/generated/matmul_r8.c
index 41726bce2a5..c746f6c3519 100644
--- a/libgfortran/generated/matmul_r8.c
+++ b/libgfortran/generated/matmul_r8.c
@@ -36,6 +36,16 @@ Boston, MA 02110-1301, USA. */
#if defined (HAVE_GFC_REAL_8)
+/* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
+ passed to us by the front-end, in which case we'll call it for large
+ matrices. */
+
+typedef void (*blas_call)(const char *, const char *, const int *, const int *,
+ const int *, const GFC_REAL_8 *, const GFC_REAL_8 *,
+ const int *, const GFC_REAL_8 *, const int *,
+ const GFC_REAL_8 *, GFC_REAL_8 *, const int *,
+ int, int);
+
/* The order of loops is different in the case of plain matrix
multiplication C=MATMUL(A,B), and in the frequent special case where
the argument A is the temporary result of a TRANSPOSE intrinsic:
@@ -56,18 +66,24 @@ Boston, MA 02110-1301, USA. */
DO I=1,M
S = 0
DO K=1,COUNT
- S = S+A(I,K)+B(K,J)
+ S = S+A(I,K)*B(K,J)
C(I,J) = S
ENDIF
*/
+/* If try_blas is set to a nonzero value, then the matmul function will
+ see if there is a way to perform the matrix multiplication by a call
+ to the BLAS gemm function. */
+
extern void matmul_r8 (gfc_array_r8 * const restrict retarray,
- gfc_array_r8 * const restrict a, gfc_array_r8 * const restrict b);
+ gfc_array_r8 * const restrict a, gfc_array_r8 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm);
export_proto(matmul_r8);
void
matmul_r8 (gfc_array_r8 * const restrict retarray,
- gfc_array_r8 * const restrict a, gfc_array_r8 * const restrict b)
+ gfc_array_r8 * const restrict a, gfc_array_r8 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
{
const GFC_REAL_8 * restrict abase;
const GFC_REAL_8 * restrict bbase;
@@ -177,6 +193,31 @@ matmul_r8 (gfc_array_r8 * const restrict retarray,
bbase = b->data;
dest = retarray->data;
+
+ /* Now that everything is set up, we're performing the multiplication
+ itself. */
+
+#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+
+ if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
+ && (bxstride == 1 || bystride == 1)
+ && (((float) xcount) * ((float) ycount) * ((float) count)
+ > POW3(blas_limit)))
+ {
+ const int m = xcount, n = ycount, k = count, ldc = rystride;
+ const GFC_REAL_8 one = 1, zero = 0;
+ const int lda = (axstride == 1) ? aystride : axstride,
+ ldb = (bxstride == 1) ? bystride : bxstride;
+
+ if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
+ {
+ assert (gemm != NULL);
+ gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k,
+ &one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1);
+ return;
+ }
+ }
+
if (rxstride == 1 && axstride == 1 && bxstride == 1)
{
const GFC_REAL_8 * restrict bbase_y;