summaryrefslogtreecommitdiff
path: root/libgo/go/crypto/tls/cipher_suites.go
diff options
context:
space:
mode:
Diffstat (limited to 'libgo/go/crypto/tls/cipher_suites.go')
-rw-r--r--libgo/go/crypto/tls/cipher_suites.go146
1 files changed, 112 insertions, 34 deletions
diff --git a/libgo/go/crypto/tls/cipher_suites.go b/libgo/go/crypto/tls/cipher_suites.go
index a647e19aa19..39a51459d28 100644
--- a/libgo/go/crypto/tls/cipher_suites.go
+++ b/libgo/go/crypto/tls/cipher_suites.go
@@ -34,6 +34,22 @@ type keyAgreement interface {
generateClientKeyExchange(*Config, *clientHelloMsg, *x509.Certificate) ([]byte, *clientKeyExchangeMsg, error)
}
+const (
+ // suiteECDH indicates that the cipher suite involves elliptic curve
+ // Diffie-Hellman. This means that it should only be selected when the
+ // client indicates that it supports ECC with a curve and point format
+ // that we're happy with.
+ suiteECDHE = 1 << iota
+ // suiteECDSA indicates that the cipher suite involves an ECDSA
+ // signature and therefore may only be selected when the server's
+ // certificate is ECDSA. If this is not set then the cipher suite is
+ // RSA based.
+ suiteECDSA
+ // suiteTLS12 indicates that the cipher suite should only be advertised
+ // and accepted when using TLS 1.2.
+ suiteTLS12
+)
+
// A cipherSuite is a specific combination of key agreement, cipher and MAC
// function. All cipher suites currently assume RSA key agreement.
type cipherSuite struct {
@@ -42,24 +58,30 @@ type cipherSuite struct {
keyLen int
macLen int
ivLen int
- ka func() keyAgreement
- // If elliptic is set, a server will only consider this ciphersuite if
- // the ClientHello indicated that the client supports an elliptic curve
- // and point format that we can handle.
- elliptic bool
- cipher func(key, iv []byte, isRead bool) interface{}
- mac func(version uint16, macKey []byte) macFunction
+ ka func(version uint16) keyAgreement
+ // flags is a bitmask of the suite* values, above.
+ flags int
+ cipher func(key, iv []byte, isRead bool) interface{}
+ mac func(version uint16, macKey []byte) macFunction
+ aead func(key, fixedNonce []byte) cipher.AEAD
}
var cipherSuites = []*cipherSuite{
- {TLS_RSA_WITH_RC4_128_SHA, 16, 20, 0, rsaKA, false, cipherRC4, macSHA1},
- {TLS_RSA_WITH_3DES_EDE_CBC_SHA, 24, 20, 8, rsaKA, false, cipher3DES, macSHA1},
- {TLS_RSA_WITH_AES_128_CBC_SHA, 16, 20, 16, rsaKA, false, cipherAES, macSHA1},
- {TLS_RSA_WITH_AES_256_CBC_SHA, 32, 20, 16, rsaKA, false, cipherAES, macSHA1},
- {TLS_ECDHE_RSA_WITH_RC4_128_SHA, 16, 20, 0, ecdheRSAKA, true, cipherRC4, macSHA1},
- {TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA, 24, 20, 8, ecdheRSAKA, true, cipher3DES, macSHA1},
- {TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA, 16, 20, 16, ecdheRSAKA, true, cipherAES, macSHA1},
- {TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA, 32, 20, 16, ecdheRSAKA, true, cipherAES, macSHA1},
+ // Ciphersuite order is chosen so that ECDHE comes before plain RSA
+ // and RC4 comes before AES (because of the Lucky13 attack).
+ {TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 16, 0, 4, ecdheRSAKA, suiteECDHE | suiteTLS12, nil, nil, aeadAESGCM},
+ {TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 16, 0, 4, ecdheECDSAKA, suiteECDHE | suiteECDSA | suiteTLS12, nil, nil, aeadAESGCM},
+ {TLS_ECDHE_RSA_WITH_RC4_128_SHA, 16, 20, 0, ecdheRSAKA, suiteECDHE, cipherRC4, macSHA1, nil},
+ {TLS_ECDHE_ECDSA_WITH_RC4_128_SHA, 16, 20, 0, ecdheECDSAKA, suiteECDHE | suiteECDSA, cipherRC4, macSHA1, nil},
+ {TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA, 16, 20, 16, ecdheRSAKA, suiteECDHE, cipherAES, macSHA1, nil},
+ {TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA, 16, 20, 16, ecdheECDSAKA, suiteECDHE | suiteECDSA, cipherAES, macSHA1, nil},
+ {TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA, 32, 20, 16, ecdheRSAKA, suiteECDHE, cipherAES, macSHA1, nil},
+ {TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA, 32, 20, 16, ecdheECDSAKA, suiteECDHE | suiteECDSA, cipherAES, macSHA1, nil},
+ {TLS_RSA_WITH_RC4_128_SHA, 16, 20, 0, rsaKA, 0, cipherRC4, macSHA1, nil},
+ {TLS_RSA_WITH_AES_128_CBC_SHA, 16, 20, 16, rsaKA, 0, cipherAES, macSHA1, nil},
+ {TLS_RSA_WITH_AES_256_CBC_SHA, 32, 20, 16, rsaKA, 0, cipherAES, macSHA1, nil},
+ {TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA, 24, 20, 8, ecdheRSAKA, suiteECDHE, cipher3DES, macSHA1, nil},
+ {TLS_RSA_WITH_3DES_EDE_CBC_SHA, 24, 20, 8, rsaKA, 0, cipher3DES, macSHA1, nil},
}
func cipherRC4(key, iv []byte, isRead bool) interface{} {
@@ -85,7 +107,7 @@ func cipherAES(key, iv []byte, isRead bool) interface{} {
// macSHA1 returns a macFunction for the given protocol version.
func macSHA1(version uint16, key []byte) macFunction {
- if version == versionSSL30 {
+ if version == VersionSSL30 {
mac := ssl30MAC{
h: sha1.New(),
key: make([]byte, len(key)),
@@ -98,7 +120,47 @@ func macSHA1(version uint16, key []byte) macFunction {
type macFunction interface {
Size() int
- MAC(digestBuf, seq, data []byte) []byte
+ MAC(digestBuf, seq, header, data []byte) []byte
+}
+
+// fixedNonceAEAD wraps an AEAD and prefixes a fixed portion of the nonce to
+// each call.
+type fixedNonceAEAD struct {
+ // sealNonce and openNonce are buffers where the larger nonce will be
+ // constructed. Since a seal and open operation may be running
+ // concurrently, there is a separate buffer for each.
+ sealNonce, openNonce []byte
+ aead cipher.AEAD
+}
+
+func (f *fixedNonceAEAD) NonceSize() int { return 8 }
+func (f *fixedNonceAEAD) Overhead() int { return f.aead.Overhead() }
+
+func (f *fixedNonceAEAD) Seal(out, nonce, plaintext, additionalData []byte) []byte {
+ copy(f.sealNonce[len(f.sealNonce)-8:], nonce)
+ return f.aead.Seal(out, f.sealNonce, plaintext, additionalData)
+}
+
+func (f *fixedNonceAEAD) Open(out, nonce, plaintext, additionalData []byte) ([]byte, error) {
+ copy(f.openNonce[len(f.openNonce)-8:], nonce)
+ return f.aead.Open(out, f.openNonce, plaintext, additionalData)
+}
+
+func aeadAESGCM(key, fixedNonce []byte) cipher.AEAD {
+ aes, err := aes.NewCipher(key)
+ if err != nil {
+ panic(err)
+ }
+ aead, err := cipher.NewGCM(aes)
+ if err != nil {
+ panic(err)
+ }
+
+ nonce1, nonce2 := make([]byte, 12), make([]byte, 12)
+ copy(nonce1, fixedNonce)
+ copy(nonce2, fixedNonce)
+
+ return &fixedNonceAEAD{nonce1, nonce2, aead}
}
// ssl30MAC implements the SSLv3 MAC function, as defined in
@@ -116,7 +178,7 @@ var ssl30Pad1 = [48]byte{0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0
var ssl30Pad2 = [48]byte{0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c}
-func (s ssl30MAC) MAC(digestBuf, seq, record []byte) []byte {
+func (s ssl30MAC) MAC(digestBuf, seq, header, data []byte) []byte {
padLength := 48
if s.h.Size() == 20 {
padLength = 40
@@ -126,9 +188,9 @@ func (s ssl30MAC) MAC(digestBuf, seq, record []byte) []byte {
s.h.Write(s.key)
s.h.Write(ssl30Pad1[:padLength])
s.h.Write(seq)
- s.h.Write(record[:1])
- s.h.Write(record[3:5])
- s.h.Write(record[recordHeaderLen:])
+ s.h.Write(header[:1])
+ s.h.Write(header[3:5])
+ s.h.Write(data)
digestBuf = s.h.Sum(digestBuf[:0])
s.h.Reset()
@@ -147,19 +209,30 @@ func (s tls10MAC) Size() int {
return s.h.Size()
}
-func (s tls10MAC) MAC(digestBuf, seq, record []byte) []byte {
+func (s tls10MAC) MAC(digestBuf, seq, header, data []byte) []byte {
s.h.Reset()
s.h.Write(seq)
- s.h.Write(record)
+ s.h.Write(header)
+ s.h.Write(data)
return s.h.Sum(digestBuf[:0])
}
-func rsaKA() keyAgreement {
+func rsaKA(version uint16) keyAgreement {
return rsaKeyAgreement{}
}
-func ecdheRSAKA() keyAgreement {
- return new(ecdheRSAKeyAgreement)
+func ecdheECDSAKA(version uint16) keyAgreement {
+ return &ecdheKeyAgreement{
+ sigType: signatureECDSA,
+ version: version,
+ }
+}
+
+func ecdheRSAKA(version uint16) keyAgreement {
+ return &ecdheKeyAgreement{
+ sigType: signatureRSA,
+ version: version,
+ }
}
// mutualCipherSuite returns a cipherSuite given a list of supported
@@ -181,12 +254,17 @@ func mutualCipherSuite(have []uint16, want uint16) *cipherSuite {
// A list of the possible cipher suite ids. Taken from
// http://www.iana.org/assignments/tls-parameters/tls-parameters.xml
const (
- TLS_RSA_WITH_RC4_128_SHA uint16 = 0x0005
- TLS_RSA_WITH_3DES_EDE_CBC_SHA uint16 = 0x000a
- TLS_RSA_WITH_AES_128_CBC_SHA uint16 = 0x002f
- TLS_RSA_WITH_AES_256_CBC_SHA uint16 = 0x0035
- TLS_ECDHE_RSA_WITH_RC4_128_SHA uint16 = 0xc011
- TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA uint16 = 0xc012
- TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA uint16 = 0xc013
- TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA uint16 = 0xc014
+ TLS_RSA_WITH_RC4_128_SHA uint16 = 0x0005
+ TLS_RSA_WITH_3DES_EDE_CBC_SHA uint16 = 0x000a
+ TLS_RSA_WITH_AES_128_CBC_SHA uint16 = 0x002f
+ TLS_RSA_WITH_AES_256_CBC_SHA uint16 = 0x0035
+ TLS_ECDHE_ECDSA_WITH_RC4_128_SHA uint16 = 0xc007
+ TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA uint16 = 0xc009
+ TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA uint16 = 0xc00a
+ TLS_ECDHE_RSA_WITH_RC4_128_SHA uint16 = 0xc011
+ TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA uint16 = 0xc012
+ TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA uint16 = 0xc013
+ TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA uint16 = 0xc014
+ TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 uint16 = 0xc02f
+ TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 uint16 = 0xc02b
)