diff options
Diffstat (limited to 'libgo/go/math/big/rat.go')
-rw-r--r-- | libgo/go/math/big/rat.go | 432 |
1 files changed, 432 insertions, 0 deletions
diff --git a/libgo/go/math/big/rat.go b/libgo/go/math/big/rat.go new file mode 100644 index 00000000000..3a0add32363 --- /dev/null +++ b/libgo/go/math/big/rat.go @@ -0,0 +1,432 @@ +// Copyright 2010 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// This file implements multi-precision rational numbers. + +package big + +import ( + "encoding/binary" + "errors" + "fmt" + "strings" +) + +// A Rat represents a quotient a/b of arbitrary precision. +// The zero value for a Rat represents the value 0. +type Rat struct { + a Int + b nat // len(b) == 0 acts like b == 1 +} + +// NewRat creates a new Rat with numerator a and denominator b. +func NewRat(a, b int64) *Rat { + return new(Rat).SetFrac64(a, b) +} + +// SetFrac sets z to a/b and returns z. +func (z *Rat) SetFrac(a, b *Int) *Rat { + z.a.neg = a.neg != b.neg + babs := b.abs + if len(babs) == 0 { + panic("division by zero") + } + if &z.a == b || alias(z.a.abs, babs) { + babs = nat{}.set(babs) // make a copy + } + z.a.abs = z.a.abs.set(a.abs) + z.b = z.b.set(babs) + return z.norm() +} + +// SetFrac64 sets z to a/b and returns z. +func (z *Rat) SetFrac64(a, b int64) *Rat { + z.a.SetInt64(a) + if b == 0 { + panic("division by zero") + } + if b < 0 { + b = -b + z.a.neg = !z.a.neg + } + z.b = z.b.setUint64(uint64(b)) + return z.norm() +} + +// SetInt sets z to x (by making a copy of x) and returns z. +func (z *Rat) SetInt(x *Int) *Rat { + z.a.Set(x) + z.b = z.b.make(0) + return z +} + +// SetInt64 sets z to x and returns z. +func (z *Rat) SetInt64(x int64) *Rat { + z.a.SetInt64(x) + z.b = z.b.make(0) + return z +} + +// Set sets z to x (by making a copy of x) and returns z. +func (z *Rat) Set(x *Rat) *Rat { + if z != x { + z.a.Set(&x.a) + z.b = z.b.set(x.b) + } + return z +} + +// Abs sets z to |x| (the absolute value of x) and returns z. +func (z *Rat) Abs(x *Rat) *Rat { + z.Set(x) + z.a.neg = false + return z +} + +// Neg sets z to -x and returns z. +func (z *Rat) Neg(x *Rat) *Rat { + z.Set(x) + z.a.neg = len(z.a.abs) > 0 && !z.a.neg // 0 has no sign + return z +} + +// Inv sets z to 1/x and returns z. +func (z *Rat) Inv(x *Rat) *Rat { + if len(x.a.abs) == 0 { + panic("division by zero") + } + z.Set(x) + a := z.b + if len(a) == 0 { + a = a.setWord(1) // materialize numerator + } + b := z.a.abs + if b.cmp(natOne) == 0 { + b = b.make(0) // normalize denominator + } + z.a.abs, z.b = a, b // sign doesn't change + return z +} + +// Sign returns: +// +// -1 if x < 0 +// 0 if x == 0 +// +1 if x > 0 +// +func (x *Rat) Sign() int { + return x.a.Sign() +} + +// IsInt returns true if the denominator of x is 1. +func (x *Rat) IsInt() bool { + return len(x.b) == 0 || x.b.cmp(natOne) == 0 +} + +// Num returns the numerator of x; it may be <= 0. +// The result is a reference to x's numerator; it +// may change if a new value is assigned to x. +func (x *Rat) Num() *Int { + return &x.a +} + +// Denom returns the denominator of x; it is always > 0. +// The result is a reference to x's denominator; it +// may change if a new value is assigned to x. +func (x *Rat) Denom() *Int { + if len(x.b) == 0 { + return &Int{abs: nat{1}} + } + return &Int{abs: x.b} +} + +func gcd(x, y nat) nat { + // Euclidean algorithm. + var a, b nat + a = a.set(x) + b = b.set(y) + for len(b) != 0 { + var q, r nat + _, r = q.div(r, a, b) + a = b + b = r + } + return a +} + +func (z *Rat) norm() *Rat { + switch { + case len(z.a.abs) == 0: + // z == 0 - normalize sign and denominator + z.a.neg = false + z.b = z.b.make(0) + case len(z.b) == 0: + // z is normalized int - nothing to do + case z.b.cmp(natOne) == 0: + // z is int - normalize denominator + z.b = z.b.make(0) + default: + if f := gcd(z.a.abs, z.b); f.cmp(natOne) != 0 { + z.a.abs, _ = z.a.abs.div(nil, z.a.abs, f) + z.b, _ = z.b.div(nil, z.b, f) + } + } + return z +} + +// mulDenom sets z to the denominator product x*y (by taking into +// account that 0 values for x or y must be interpreted as 1) and +// returns z. +func mulDenom(z, x, y nat) nat { + switch { + case len(x) == 0: + return z.set(y) + case len(y) == 0: + return z.set(x) + } + return z.mul(x, y) +} + +// scaleDenom computes x*f. +// If f == 0 (zero value of denominator), the result is (a copy of) x. +func scaleDenom(x *Int, f nat) *Int { + var z Int + if len(f) == 0 { + return z.Set(x) + } + z.abs = z.abs.mul(x.abs, f) + z.neg = x.neg + return &z +} + +// Cmp compares x and y and returns: +// +// -1 if x < y +// 0 if x == y +// +1 if x > y +// +func (x *Rat) Cmp(y *Rat) int { + return scaleDenom(&x.a, y.b).Cmp(scaleDenom(&y.a, x.b)) +} + +// Add sets z to the sum x+y and returns z. +func (z *Rat) Add(x, y *Rat) *Rat { + a1 := scaleDenom(&x.a, y.b) + a2 := scaleDenom(&y.a, x.b) + z.a.Add(a1, a2) + z.b = mulDenom(z.b, x.b, y.b) + return z.norm() +} + +// Sub sets z to the difference x-y and returns z. +func (z *Rat) Sub(x, y *Rat) *Rat { + a1 := scaleDenom(&x.a, y.b) + a2 := scaleDenom(&y.a, x.b) + z.a.Sub(a1, a2) + z.b = mulDenom(z.b, x.b, y.b) + return z.norm() +} + +// Mul sets z to the product x*y and returns z. +func (z *Rat) Mul(x, y *Rat) *Rat { + z.a.Mul(&x.a, &y.a) + z.b = mulDenom(z.b, x.b, y.b) + return z.norm() +} + +// Quo sets z to the quotient x/y and returns z. +// If y == 0, a division-by-zero run-time panic occurs. +func (z *Rat) Quo(x, y *Rat) *Rat { + if len(y.a.abs) == 0 { + panic("division by zero") + } + a := scaleDenom(&x.a, y.b) + b := scaleDenom(&y.a, x.b) + z.a.abs = a.abs + z.b = b.abs + z.a.neg = a.neg != b.neg + return z.norm() +} + +func ratTok(ch rune) bool { + return strings.IndexRune("+-/0123456789.eE", ch) >= 0 +} + +// Scan is a support routine for fmt.Scanner. It accepts the formats +// 'e', 'E', 'f', 'F', 'g', 'G', and 'v'. All formats are equivalent. +func (z *Rat) Scan(s fmt.ScanState, ch rune) error { + tok, err := s.Token(true, ratTok) + if err != nil { + return err + } + if strings.IndexRune("efgEFGv", ch) < 0 { + return errors.New("Rat.Scan: invalid verb") + } + if _, ok := z.SetString(string(tok)); !ok { + return errors.New("Rat.Scan: invalid syntax") + } + return nil +} + +// SetString sets z to the value of s and returns z and a boolean indicating +// success. s can be given as a fraction "a/b" or as a floating-point number +// optionally followed by an exponent. If the operation failed, the value of +// z is undefined but the returned value is nil. +func (z *Rat) SetString(s string) (*Rat, bool) { + if len(s) == 0 { + return nil, false + } + + // check for a quotient + sep := strings.Index(s, "/") + if sep >= 0 { + if _, ok := z.a.SetString(s[0:sep], 10); !ok { + return nil, false + } + s = s[sep+1:] + var err error + if z.b, _, err = z.b.scan(strings.NewReader(s), 10); err != nil { + return nil, false + } + return z.norm(), true + } + + // check for a decimal point + sep = strings.Index(s, ".") + // check for an exponent + e := strings.IndexAny(s, "eE") + var exp Int + if e >= 0 { + if e < sep { + // The E must come after the decimal point. + return nil, false + } + if _, ok := exp.SetString(s[e+1:], 10); !ok { + return nil, false + } + s = s[0:e] + } + if sep >= 0 { + s = s[0:sep] + s[sep+1:] + exp.Sub(&exp, NewInt(int64(len(s)-sep))) + } + + if _, ok := z.a.SetString(s, 10); !ok { + return nil, false + } + powTen := nat{}.expNN(natTen, exp.abs, nil) + if exp.neg { + z.b = powTen + z.norm() + } else { + z.a.abs = z.a.abs.mul(z.a.abs, powTen) + z.b = z.b.make(0) + } + + return z, true +} + +// String returns a string representation of z in the form "a/b" (even if b == 1). +func (z *Rat) String() string { + s := "/1" + if len(z.b) != 0 { + s = "/" + z.b.decimalString() + } + return z.a.String() + s +} + +// RatString returns a string representation of z in the form "a/b" if b != 1, +// and in the form "a" if b == 1. +func (z *Rat) RatString() string { + if z.IsInt() { + return z.a.String() + } + return z.String() +} + +// FloatString returns a string representation of z in decimal form with prec +// digits of precision after the decimal point and the last digit rounded. +func (z *Rat) FloatString(prec int) string { + if z.IsInt() { + s := z.a.String() + if prec > 0 { + s += "." + strings.Repeat("0", prec) + } + return s + } + // z.b != 0 + + q, r := nat{}.div(nat{}, z.a.abs, z.b) + + p := natOne + if prec > 0 { + p = nat{}.expNN(natTen, nat{}.setUint64(uint64(prec)), nil) + } + + r = r.mul(r, p) + r, r2 := r.div(nat{}, r, z.b) + + // see if we need to round up + r2 = r2.add(r2, r2) + if z.b.cmp(r2) <= 0 { + r = r.add(r, natOne) + if r.cmp(p) >= 0 { + q = nat{}.add(q, natOne) + r = nat{}.sub(r, p) + } + } + + s := q.decimalString() + if z.a.neg { + s = "-" + s + } + + if prec > 0 { + rs := r.decimalString() + leadingZeros := prec - len(rs) + s += "." + strings.Repeat("0", leadingZeros) + rs + } + + return s +} + +// Gob codec version. Permits backward-compatible changes to the encoding. +const ratGobVersion byte = 1 + +// GobEncode implements the gob.GobEncoder interface. +func (z *Rat) GobEncode() ([]byte, error) { + buf := make([]byte, 1+4+(len(z.a.abs)+len(z.b))*_S) // extra bytes for version and sign bit (1), and numerator length (4) + i := z.b.bytes(buf) + j := z.a.abs.bytes(buf[0:i]) + n := i - j + if int(uint32(n)) != n { + // this should never happen + return nil, errors.New("Rat.GobEncode: numerator too large") + } + binary.BigEndian.PutUint32(buf[j-4:j], uint32(n)) + j -= 1 + 4 + b := ratGobVersion << 1 // make space for sign bit + if z.a.neg { + b |= 1 + } + buf[j] = b + return buf[j:], nil +} + +// GobDecode implements the gob.GobDecoder interface. +func (z *Rat) GobDecode(buf []byte) error { + if len(buf) == 0 { + return errors.New("Rat.GobDecode: no data") + } + b := buf[0] + if b>>1 != ratGobVersion { + return errors.New(fmt.Sprintf("Rat.GobDecode: encoding version %d not supported", b>>1)) + } + const j = 1 + 4 + i := j + binary.BigEndian.Uint32(buf[j-4:j]) + z.a.neg = b&1 != 0 + z.a.abs = z.a.abs.setBytes(buf[j:i]) + z.b = z.b.setBytes(buf[i:]) + return nil +} |