summaryrefslogtreecommitdiff
path: root/libgo/go/runtime/mgcsweep.go
diff options
context:
space:
mode:
Diffstat (limited to 'libgo/go/runtime/mgcsweep.go')
-rw-r--r--libgo/go/runtime/mgcsweep.go433
1 files changed, 430 insertions, 3 deletions
diff --git a/libgo/go/runtime/mgcsweep.go b/libgo/go/runtime/mgcsweep.go
index 1e959a4ad2d..6877649edbb 100644
--- a/libgo/go/runtime/mgcsweep.go
+++ b/libgo/go/runtime/mgcsweep.go
@@ -10,7 +10,7 @@
// can free a whole span if none of the objects are marked, but that
// isn't its goal. This can be driven either synchronously by
// mcentral.cacheSpan for mcentral spans, or asynchronously by
-// sweepone from the list of all in-use spans in mheap_.sweepSpans.
+// sweepone, which looks at all the mcentral lists.
//
// * The span reclaimer looks for spans that contain no marked objects
// and frees whole spans. This is a separate algorithm because
@@ -40,6 +40,80 @@ type sweepdata struct {
nbgsweep uint32
npausesweep uint32
+
+ // centralIndex is the current unswept span class.
+ // It represents an index into the mcentral span
+ // sets. Accessed and updated via its load and
+ // update methods. Not protected by a lock.
+ //
+ // Reset at mark termination.
+ // Used by mheap.nextSpanForSweep.
+ centralIndex sweepClass
+}
+
+// sweepClass is a spanClass and one bit to represent whether we're currently
+// sweeping partial or full spans.
+type sweepClass uint32
+
+const (
+ numSweepClasses = numSpanClasses * 2
+ sweepClassDone sweepClass = sweepClass(^uint32(0))
+)
+
+func (s *sweepClass) load() sweepClass {
+ return sweepClass(atomic.Load((*uint32)(s)))
+}
+
+func (s *sweepClass) update(sNew sweepClass) {
+ // Only update *s if its current value is less than sNew,
+ // since *s increases monotonically.
+ sOld := s.load()
+ for sOld < sNew && !atomic.Cas((*uint32)(s), uint32(sOld), uint32(sNew)) {
+ sOld = s.load()
+ }
+ // TODO(mknyszek): This isn't the only place we have
+ // an atomic monotonically increasing counter. It would
+ // be nice to have an "atomic max" which is just implemented
+ // as the above on most architectures. Some architectures
+ // like RISC-V however have native support for an atomic max.
+}
+
+func (s *sweepClass) clear() {
+ atomic.Store((*uint32)(s), 0)
+}
+
+// split returns the underlying span class as well as
+// whether we're interested in the full or partial
+// unswept lists for that class, indicated as a boolean
+// (true means "full").
+func (s sweepClass) split() (spc spanClass, full bool) {
+ return spanClass(s >> 1), s&1 == 0
+}
+
+// nextSpanForSweep finds and pops the next span for sweeping from the
+// central sweep buffers. It returns ownership of the span to the caller.
+// Returns nil if no such span exists.
+func (h *mheap) nextSpanForSweep() *mspan {
+ sg := h.sweepgen
+ for sc := sweep.centralIndex.load(); sc < numSweepClasses; sc++ {
+ spc, full := sc.split()
+ c := &h.central[spc].mcentral
+ var s *mspan
+ if full {
+ s = c.fullUnswept(sg).pop()
+ } else {
+ s = c.partialUnswept(sg).pop()
+ }
+ if s != nil {
+ // Write down that we found something so future sweepers
+ // can start from here.
+ sweep.centralIndex.update(sc)
+ return s
+ }
+ }
+ // Write down that we found nothing.
+ sweep.centralIndex.update(sweepClassDone)
+ return nil
}
// finishsweep_m ensures that all spans are swept.
@@ -58,6 +132,24 @@ func finishsweep_m() {
sweep.npausesweep++
}
+ if go115NewMCentralImpl {
+ // Reset all the unswept buffers, which should be empty.
+ // Do this in sweep termination as opposed to mark termination
+ // so that we can catch unswept spans and reclaim blocks as
+ // soon as possible.
+ sg := mheap_.sweepgen
+ for i := range mheap_.central {
+ c := &mheap_.central[i].mcentral
+ c.partialUnswept(sg).reset()
+ c.fullUnswept(sg).reset()
+ }
+ }
+
+ // Sweeping is done, so if the scavenger isn't already awake,
+ // wake it up. There's definitely work for it to do at this
+ // point.
+ wakeScavenger()
+
nextMarkBitArenaEpoch()
}
@@ -66,6 +158,7 @@ func bgsweep(c chan int) {
sweep.g = getg()
+ lockInit(&sweep.lock, lockRankSweep)
lock(&sweep.lock)
sweep.parked = true
c <- 1
@@ -111,7 +204,11 @@ func sweepone() uintptr {
var s *mspan
sg := mheap_.sweepgen
for {
- s = mheap_.sweepSpans[1-sg/2%2].pop()
+ if go115NewMCentralImpl {
+ s = mheap_.nextSpanForSweep()
+ } else {
+ s = mheap_.sweepSpans[1-sg/2%2].pop()
+ }
if s == nil {
atomic.Store(&mheap_.sweepdone, 1)
break
@@ -151,6 +248,27 @@ func sweepone() uintptr {
// Decrement the number of active sweepers and if this is the
// last one print trace information.
if atomic.Xadd(&mheap_.sweepers, -1) == 0 && atomic.Load(&mheap_.sweepdone) != 0 {
+ // Since the sweeper is done, move the scavenge gen forward (signalling
+ // that there's new work to do) and wake the scavenger.
+ //
+ // The scavenger is signaled by the last sweeper because once
+ // sweeping is done, we will definitely have useful work for
+ // the scavenger to do, since the scavenger only runs over the
+ // heap once per GC cyle. This update is not done during sweep
+ // termination because in some cases there may be a long delay
+ // between sweep done and sweep termination (e.g. not enough
+ // allocations to trigger a GC) which would be nice to fill in
+ // with scavenging work.
+ systemstack(func() {
+ lock(&mheap_.lock)
+ mheap_.pages.scavengeStartGen()
+ unlock(&mheap_.lock)
+ })
+ // Since we might sweep in an allocation path, it's not possible
+ // for us to wake the scavenger directly via wakeScavenger, since
+ // it could allocate. Ask sysmon to do it for us instead.
+ readyForScavenger()
+
if debug.gcpacertrace > 0 {
print("pacer: sweep done at heap size ", memstats.heap_live>>20, "MB; allocated ", (memstats.heap_live-mheap_.sweepHeapLiveBasis)>>20, "MB during sweep; swept ", mheap_.pagesSwept, " pages at ", sweepRatio, " pages/byte\n")
}
@@ -206,6 +324,260 @@ func (s *mspan) ensureSwept() {
// If preserve=true, don't return it to heap nor relink in mcentral lists;
// caller takes care of it.
func (s *mspan) sweep(preserve bool) bool {
+ if !go115NewMCentralImpl {
+ return s.oldSweep(preserve)
+ }
+ // It's critical that we enter this function with preemption disabled,
+ // GC must not start while we are in the middle of this function.
+ _g_ := getg()
+ if _g_.m.locks == 0 && _g_.m.mallocing == 0 && _g_ != _g_.m.g0 {
+ throw("mspan.sweep: m is not locked")
+ }
+ sweepgen := mheap_.sweepgen
+ if state := s.state.get(); state != mSpanInUse || s.sweepgen != sweepgen-1 {
+ print("mspan.sweep: state=", state, " sweepgen=", s.sweepgen, " mheap.sweepgen=", sweepgen, "\n")
+ throw("mspan.sweep: bad span state")
+ }
+
+ if trace.enabled {
+ traceGCSweepSpan(s.npages * _PageSize)
+ }
+
+ atomic.Xadd64(&mheap_.pagesSwept, int64(s.npages))
+
+ spc := s.spanclass
+ size := s.elemsize
+
+ c := _g_.m.p.ptr().mcache
+
+ // The allocBits indicate which unmarked objects don't need to be
+ // processed since they were free at the end of the last GC cycle
+ // and were not allocated since then.
+ // If the allocBits index is >= s.freeindex and the bit
+ // is not marked then the object remains unallocated
+ // since the last GC.
+ // This situation is analogous to being on a freelist.
+
+ // Unlink & free special records for any objects we're about to free.
+ // Two complications here:
+ // 1. An object can have both finalizer and profile special records.
+ // In such case we need to queue finalizer for execution,
+ // mark the object as live and preserve the profile special.
+ // 2. A tiny object can have several finalizers setup for different offsets.
+ // If such object is not marked, we need to queue all finalizers at once.
+ // Both 1 and 2 are possible at the same time.
+ hadSpecials := s.specials != nil
+ specialp := &s.specials
+ special := *specialp
+ for special != nil {
+ // A finalizer can be set for an inner byte of an object, find object beginning.
+ objIndex := uintptr(special.offset) / size
+ p := s.base() + objIndex*size
+ mbits := s.markBitsForIndex(objIndex)
+ if !mbits.isMarked() {
+ // This object is not marked and has at least one special record.
+ // Pass 1: see if it has at least one finalizer.
+ hasFin := false
+ endOffset := p - s.base() + size
+ for tmp := special; tmp != nil && uintptr(tmp.offset) < endOffset; tmp = tmp.next {
+ if tmp.kind == _KindSpecialFinalizer {
+ // Stop freeing of object if it has a finalizer.
+ mbits.setMarkedNonAtomic()
+ hasFin = true
+ break
+ }
+ }
+ // Pass 2: queue all finalizers _or_ handle profile record.
+ for special != nil && uintptr(special.offset) < endOffset {
+ // Find the exact byte for which the special was setup
+ // (as opposed to object beginning).
+ p := s.base() + uintptr(special.offset)
+ if special.kind == _KindSpecialFinalizer || !hasFin {
+ // Splice out special record.
+ y := special
+ special = special.next
+ *specialp = special
+ freespecial(y, unsafe.Pointer(p), size)
+ } else {
+ // This is profile record, but the object has finalizers (so kept alive).
+ // Keep special record.
+ specialp = &special.next
+ special = *specialp
+ }
+ }
+ } else {
+ // object is still live: keep special record
+ specialp = &special.next
+ special = *specialp
+ }
+ }
+ if hadSpecials && s.specials == nil {
+ spanHasNoSpecials(s)
+ }
+
+ if debug.allocfreetrace != 0 || debug.clobberfree != 0 || raceenabled || msanenabled {
+ // Find all newly freed objects. This doesn't have to
+ // efficient; allocfreetrace has massive overhead.
+ mbits := s.markBitsForBase()
+ abits := s.allocBitsForIndex(0)
+ for i := uintptr(0); i < s.nelems; i++ {
+ if !mbits.isMarked() && (abits.index < s.freeindex || abits.isMarked()) {
+ x := s.base() + i*s.elemsize
+ if debug.allocfreetrace != 0 {
+ tracefree(unsafe.Pointer(x), size)
+ }
+ if debug.clobberfree != 0 {
+ clobberfree(unsafe.Pointer(x), size)
+ }
+ if raceenabled {
+ racefree(unsafe.Pointer(x), size)
+ }
+ if msanenabled {
+ msanfree(unsafe.Pointer(x), size)
+ }
+ }
+ mbits.advance()
+ abits.advance()
+ }
+ }
+
+ // Check for zombie objects.
+ if s.freeindex < s.nelems {
+ // Everything < freeindex is allocated and hence
+ // cannot be zombies.
+ //
+ // Check the first bitmap byte, where we have to be
+ // careful with freeindex.
+ obj := s.freeindex
+ if (*s.gcmarkBits.bytep(obj / 8)&^*s.allocBits.bytep(obj / 8))>>(obj%8) != 0 {
+ s.reportZombies()
+ }
+ // Check remaining bytes.
+ for i := obj/8 + 1; i < divRoundUp(s.nelems, 8); i++ {
+ if *s.gcmarkBits.bytep(i)&^*s.allocBits.bytep(i) != 0 {
+ s.reportZombies()
+ }
+ }
+ }
+
+ // Count the number of free objects in this span.
+ nalloc := uint16(s.countAlloc())
+ nfreed := s.allocCount - nalloc
+ if nalloc > s.allocCount {
+ // The zombie check above should have caught this in
+ // more detail.
+ print("runtime: nelems=", s.nelems, " nalloc=", nalloc, " previous allocCount=", s.allocCount, " nfreed=", nfreed, "\n")
+ throw("sweep increased allocation count")
+ }
+
+ s.allocCount = nalloc
+ s.freeindex = 0 // reset allocation index to start of span.
+ if trace.enabled {
+ getg().m.p.ptr().traceReclaimed += uintptr(nfreed) * s.elemsize
+ }
+
+ // gcmarkBits becomes the allocBits.
+ // get a fresh cleared gcmarkBits in preparation for next GC
+ s.allocBits = s.gcmarkBits
+ s.gcmarkBits = newMarkBits(s.nelems)
+
+ // Initialize alloc bits cache.
+ s.refillAllocCache(0)
+
+ // The span must be in our exclusive ownership until we update sweepgen,
+ // check for potential races.
+ if state := s.state.get(); state != mSpanInUse || s.sweepgen != sweepgen-1 {
+ print("mspan.sweep: state=", state, " sweepgen=", s.sweepgen, " mheap.sweepgen=", sweepgen, "\n")
+ throw("mspan.sweep: bad span state after sweep")
+ }
+ if s.sweepgen == sweepgen+1 || s.sweepgen == sweepgen+3 {
+ throw("swept cached span")
+ }
+
+ // We need to set s.sweepgen = h.sweepgen only when all blocks are swept,
+ // because of the potential for a concurrent free/SetFinalizer.
+ //
+ // But we need to set it before we make the span available for allocation
+ // (return it to heap or mcentral), because allocation code assumes that a
+ // span is already swept if available for allocation.
+ //
+ // Serialization point.
+ // At this point the mark bits are cleared and allocation ready
+ // to go so release the span.
+ atomic.Store(&s.sweepgen, sweepgen)
+
+ if spc.sizeclass() != 0 {
+ // Handle spans for small objects.
+ if nfreed > 0 {
+ // Only mark the span as needing zeroing if we've freed any
+ // objects, because a fresh span that had been allocated into,
+ // wasn't totally filled, but then swept, still has all of its
+ // free slots zeroed.
+ s.needzero = 1
+ c.local_nsmallfree[spc.sizeclass()] += uintptr(nfreed)
+ }
+ if !preserve {
+ // The caller may not have removed this span from whatever
+ // unswept set its on but taken ownership of the span for
+ // sweeping by updating sweepgen. If this span still is in
+ // an unswept set, then the mcentral will pop it off the
+ // set, check its sweepgen, and ignore it.
+ if nalloc == 0 {
+ // Free totally free span directly back to the heap.
+ mheap_.freeSpan(s)
+ return true
+ }
+ // Return span back to the right mcentral list.
+ if uintptr(nalloc) == s.nelems {
+ mheap_.central[spc].mcentral.fullSwept(sweepgen).push(s)
+ } else {
+ mheap_.central[spc].mcentral.partialSwept(sweepgen).push(s)
+ }
+ }
+ } else if !preserve {
+ // Handle spans for large objects.
+ if nfreed != 0 {
+ // Free large object span to heap.
+
+ // NOTE(rsc,dvyukov): The original implementation of efence
+ // in CL 22060046 used sysFree instead of sysFault, so that
+ // the operating system would eventually give the memory
+ // back to us again, so that an efence program could run
+ // longer without running out of memory. Unfortunately,
+ // calling sysFree here without any kind of adjustment of the
+ // heap data structures means that when the memory does
+ // come back to us, we have the wrong metadata for it, either in
+ // the mspan structures or in the garbage collection bitmap.
+ // Using sysFault here means that the program will run out of
+ // memory fairly quickly in efence mode, but at least it won't
+ // have mysterious crashes due to confused memory reuse.
+ // It should be possible to switch back to sysFree if we also
+ // implement and then call some kind of mheap.deleteSpan.
+ if debug.efence > 0 {
+ s.limit = 0 // prevent mlookup from finding this span
+ sysFault(unsafe.Pointer(s.base()), size)
+ } else {
+ mheap_.freeSpan(s)
+ }
+ c.local_nlargefree++
+ c.local_largefree += size
+ return true
+ }
+
+ // Add a large span directly onto the full+swept list.
+ mheap_.central[spc].mcentral.fullSwept(sweepgen).push(s)
+ }
+ return false
+}
+
+// Sweep frees or collects finalizers for blocks not marked in the mark phase.
+// It clears the mark bits in preparation for the next GC round.
+// Returns true if the span was returned to heap.
+// If preserve=true, don't return it to heap nor relink in mcentral lists;
+// caller takes care of it.
+//
+// For !go115NewMCentralImpl.
+func (s *mspan) oldSweep(preserve bool) bool {
// It's critical that we enter this function with preemption disabled,
// GC must not start while we are in the middle of this function.
_g_ := getg()
@@ -228,7 +600,7 @@ func (s *mspan) sweep(preserve bool) bool {
size := s.elemsize
res := false
- c := _g_.m.mcache
+ c := _g_.m.p.ptr().mcache
freeToHeap := false
// The allocBits indicate which unmarked objects don't need to be
@@ -247,6 +619,7 @@ func (s *mspan) sweep(preserve bool) bool {
// 2. A tiny object can have several finalizers setup for different offsets.
// If such object is not marked, we need to queue all finalizers at once.
// Both 1 and 2 are possible at the same time.
+ hadSpecials := s.specials != nil
specialp := &s.specials
special := *specialp
for special != nil {
@@ -291,6 +664,9 @@ func (s *mspan) sweep(preserve bool) bool {
special = *specialp
}
}
+ if go115NewMarkrootSpans && hadSpecials && s.specials == nil {
+ spanHasNoSpecials(s)
+ }
if debug.allocfreetrace != 0 || debug.clobberfree != 0 || raceenabled || msanenabled {
// Find all newly freed objects. This doesn't have to
@@ -402,6 +778,57 @@ func (s *mspan) sweep(preserve bool) bool {
return res
}
+// reportZombies reports any marked but free objects in s and throws.
+//
+// This generally means one of the following:
+//
+// 1. User code converted a pointer to a uintptr and then back
+// unsafely, and a GC ran while the uintptr was the only reference to
+// an object.
+//
+// 2. User code (or a compiler bug) constructed a bad pointer that
+// points to a free slot, often a past-the-end pointer.
+//
+// 3. The GC two cycles ago missed a pointer and freed a live object,
+// but it was still live in the last cycle, so this GC cycle found a
+// pointer to that object and marked it.
+func (s *mspan) reportZombies() {
+ printlock()
+ print("runtime: marked free object in span ", s, ", elemsize=", s.elemsize, " freeindex=", s.freeindex, " (bad use of unsafe.Pointer? try -d=checkptr)\n")
+ mbits := s.markBitsForBase()
+ abits := s.allocBitsForIndex(0)
+ for i := uintptr(0); i < s.nelems; i++ {
+ addr := s.base() + i*s.elemsize
+ print(hex(addr))
+ alloc := i < s.freeindex || abits.isMarked()
+ if alloc {
+ print(" alloc")
+ } else {
+ print(" free ")
+ }
+ if mbits.isMarked() {
+ print(" marked ")
+ } else {
+ print(" unmarked")
+ }
+ zombie := mbits.isMarked() && !alloc
+ if zombie {
+ print(" zombie")
+ }
+ print("\n")
+ if zombie {
+ length := s.elemsize
+ if length > 1024 {
+ length = 1024
+ }
+ hexdumpWords(addr, addr+length, nil)
+ }
+ mbits.advance()
+ abits.advance()
+ }
+ throw("found pointer to free object")
+}
+
// deductSweepCredit deducts sweep credit for allocating a span of
// size spanBytes. This must be performed *before* the span is
// allocated to ensure the system has enough credit. If necessary, it