summaryrefslogtreecommitdiff
path: root/libjava/classpath/java/util/Hashtable.java
diff options
context:
space:
mode:
Diffstat (limited to 'libjava/classpath/java/util/Hashtable.java')
-rw-r--r--libjava/classpath/java/util/Hashtable.java1151
1 files changed, 1151 insertions, 0 deletions
diff --git a/libjava/classpath/java/util/Hashtable.java b/libjava/classpath/java/util/Hashtable.java
new file mode 100644
index 00000000000..011cafaa855
--- /dev/null
+++ b/libjava/classpath/java/util/Hashtable.java
@@ -0,0 +1,1151 @@
+/* Hashtable.java -- a class providing a basic hashtable data structure,
+ mapping Object --> Object
+ Copyright (C) 1998, 1999, 2000, 2001, 2002, 2004, 2005 Free Software Foundation, Inc.
+
+This file is part of GNU Classpath.
+
+GNU Classpath is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU Classpath is distributed in the hope that it will be useful, but
+WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU Classpath; see the file COPYING. If not, write to the
+Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
+02110-1301 USA.
+
+Linking this library statically or dynamically with other modules is
+making a combined work based on this library. Thus, the terms and
+conditions of the GNU General Public License cover the whole
+combination.
+
+As a special exception, the copyright holders of this library give you
+permission to link this library with independent modules to produce an
+executable, regardless of the license terms of these independent
+modules, and to copy and distribute the resulting executable under
+terms of your choice, provided that you also meet, for each linked
+independent module, the terms and conditions of the license of that
+module. An independent module is a module which is not derived from
+or based on this library. If you modify this library, you may extend
+this exception to your version of the library, but you are not
+obligated to do so. If you do not wish to do so, delete this
+exception statement from your version. */
+
+package java.util;
+
+import java.io.IOException;
+import java.io.ObjectInputStream;
+import java.io.ObjectOutputStream;
+import java.io.Serializable;
+
+// NOTE: This implementation is very similar to that of HashMap. If you fix
+// a bug in here, chances are you should make a similar change to the HashMap
+// code.
+
+/**
+ * A class which implements a hashtable data structure.
+ * <p>
+ *
+ * This implementation of Hashtable uses a hash-bucket approach. That is:
+ * linear probing and rehashing is avoided; instead, each hashed value maps
+ * to a simple linked-list which, in the best case, only has one node.
+ * Assuming a large enough table, low enough load factor, and / or well
+ * implemented hashCode() methods, Hashtable should provide O(1)
+ * insertion, deletion, and searching of keys. Hashtable is O(n) in
+ * the worst case for all of these (if all keys hash to the same bucket).
+ * <p>
+ *
+ * This is a JDK-1.2 compliant implementation of Hashtable. As such, it
+ * belongs, partially, to the Collections framework (in that it implements
+ * Map). For backwards compatibility, it inherits from the obsolete and
+ * utterly useless Dictionary class.
+ * <p>
+ *
+ * Being a hybrid of old and new, Hashtable has methods which provide redundant
+ * capability, but with subtle and even crucial differences.
+ * For example, one can iterate over various aspects of a Hashtable with
+ * either an Iterator (which is the JDK-1.2 way of doing things) or with an
+ * Enumeration. The latter can end up in an undefined state if the Hashtable
+ * changes while the Enumeration is open.
+ * <p>
+ *
+ * Unlike HashMap, Hashtable does not accept `null' as a key value. Also,
+ * all accesses are synchronized: in a single thread environment, this is
+ * expensive, but in a multi-thread environment, this saves you the effort
+ * of extra synchronization. However, the old-style enumerators are not
+ * synchronized, because they can lead to unspecified behavior even if
+ * they were synchronized. You have been warned.
+ * <p>
+ *
+ * The iterators are <i>fail-fast</i>, meaning that any structural
+ * modification, except for <code>remove()</code> called on the iterator
+ * itself, cause the iterator to throw a
+ * <code>ConcurrentModificationException</code> rather than exhibit
+ * non-deterministic behavior.
+ *
+ * @author Jon Zeppieri
+ * @author Warren Levy
+ * @author Bryce McKinlay
+ * @author Eric Blake (ebb9@email.byu.edu)
+ * @see HashMap
+ * @see TreeMap
+ * @see IdentityHashMap
+ * @see LinkedHashMap
+ * @since 1.0
+ * @status updated to 1.4
+ */
+public class Hashtable extends Dictionary
+ implements Map, Cloneable, Serializable
+{
+ // WARNING: Hashtable is a CORE class in the bootstrap cycle. See the
+ // comments in vm/reference/java/lang/Runtime for implications of this fact.
+
+ /** Default number of buckets. This is the value the JDK 1.3 uses. Some
+ * early documentation specified this value as 101. That is incorrect.
+ */
+ private static final int DEFAULT_CAPACITY = 11;
+
+ /** An "enum" of iterator types. */
+ // Package visible for use by nested classes.
+ static final int KEYS = 0,
+ VALUES = 1,
+ ENTRIES = 2;
+
+ /**
+ * The default load factor; this is explicitly specified by the spec.
+ */
+ private static final float DEFAULT_LOAD_FACTOR = 0.75f;
+
+ /**
+ * Compatible with JDK 1.0+.
+ */
+ private static final long serialVersionUID = 1421746759512286392L;
+
+ /**
+ * The rounded product of the capacity and the load factor; when the number
+ * of elements exceeds the threshold, the Hashtable calls
+ * <code>rehash()</code>.
+ * @serial
+ */
+ private int threshold;
+
+ /**
+ * Load factor of this Hashtable: used in computing the threshold.
+ * @serial
+ */
+ private final float loadFactor;
+
+ /**
+ * Array containing the actual key-value mappings.
+ */
+ // Package visible for use by nested classes.
+ transient HashEntry[] buckets;
+
+ /**
+ * Counts the number of modifications this Hashtable has undergone, used
+ * by Iterators to know when to throw ConcurrentModificationExceptions.
+ */
+ // Package visible for use by nested classes.
+ transient int modCount;
+
+ /**
+ * The size of this Hashtable: denotes the number of key-value pairs.
+ */
+ // Package visible for use by nested classes.
+ transient int size;
+
+ /**
+ * The cache for {@link #keySet()}.
+ */
+ private transient Set keys;
+
+ /**
+ * The cache for {@link #values()}.
+ */
+ private transient Collection values;
+
+ /**
+ * The cache for {@link #entrySet()}.
+ */
+ private transient Set entries;
+
+ /**
+ * Class to represent an entry in the hash table. Holds a single key-value
+ * pair. A Hashtable Entry is identical to a HashMap Entry, except that
+ * `null' is not allowed for keys and values.
+ */
+ private static final class HashEntry extends AbstractMap.BasicMapEntry
+ {
+ /** The next entry in the linked list. */
+ HashEntry next;
+
+ /**
+ * Simple constructor.
+ * @param key the key, already guaranteed non-null
+ * @param value the value, already guaranteed non-null
+ */
+ HashEntry(Object key, Object value)
+ {
+ super(key, value);
+ }
+
+ /**
+ * Resets the value.
+ * @param newVal the new value
+ * @return the prior value
+ * @throws NullPointerException if <code>newVal</code> is null
+ */
+ public Object setValue(Object newVal)
+ {
+ if (newVal == null)
+ throw new NullPointerException();
+ return super.setValue(newVal);
+ }
+ }
+
+ /**
+ * Construct a new Hashtable with the default capacity (11) and the default
+ * load factor (0.75).
+ */
+ public Hashtable()
+ {
+ this(DEFAULT_CAPACITY, DEFAULT_LOAD_FACTOR);
+ }
+
+ /**
+ * Construct a new Hashtable from the given Map, with initial capacity
+ * the greater of the size of <code>m</code> or the default of 11.
+ * <p>
+ *
+ * Every element in Map m will be put into this new Hashtable.
+ *
+ * @param m a Map whose key / value pairs will be put into
+ * the new Hashtable. <b>NOTE: key / value pairs
+ * are not cloned in this constructor.</b>
+ * @throws NullPointerException if m is null, or if m contains a mapping
+ * to or from `null'.
+ * @since 1.2
+ */
+ public Hashtable(Map m)
+ {
+ this(Math.max(m.size() * 2, DEFAULT_CAPACITY), DEFAULT_LOAD_FACTOR);
+ putAll(m);
+ }
+
+ /**
+ * Construct a new Hashtable with a specific inital capacity and
+ * default load factor of 0.75.
+ *
+ * @param initialCapacity the initial capacity of this Hashtable (&gt;= 0)
+ * @throws IllegalArgumentException if (initialCapacity &lt; 0)
+ */
+ public Hashtable(int initialCapacity)
+ {
+ this(initialCapacity, DEFAULT_LOAD_FACTOR);
+ }
+
+ /**
+ * Construct a new Hashtable with a specific initial capacity and
+ * load factor.
+ *
+ * @param initialCapacity the initial capacity (&gt;= 0)
+ * @param loadFactor the load factor (&gt; 0, not NaN)
+ * @throws IllegalArgumentException if (initialCapacity &lt; 0) ||
+ * ! (loadFactor &gt; 0.0)
+ */
+ public Hashtable(int initialCapacity, float loadFactor)
+ {
+ if (initialCapacity < 0)
+ throw new IllegalArgumentException("Illegal Capacity: "
+ + initialCapacity);
+ if (! (loadFactor > 0)) // check for NaN too
+ throw new IllegalArgumentException("Illegal Load: " + loadFactor);
+
+ if (initialCapacity == 0)
+ initialCapacity = 1;
+ buckets = new HashEntry[initialCapacity];
+ this.loadFactor = loadFactor;
+ threshold = (int) (initialCapacity * loadFactor);
+ }
+
+ /**
+ * Returns the number of key-value mappings currently in this hashtable.
+ * @return the size
+ */
+ public synchronized int size()
+ {
+ return size;
+ }
+
+ /**
+ * Returns true if there are no key-value mappings currently in this table.
+ * @return <code>size() == 0</code>
+ */
+ public synchronized boolean isEmpty()
+ {
+ return size == 0;
+ }
+
+ /**
+ * Return an enumeration of the keys of this table. There's no point
+ * in synchronizing this, as you have already been warned that the
+ * enumeration is not specified to be thread-safe.
+ *
+ * @return the keys
+ * @see #elements()
+ * @see #keySet()
+ */
+ public Enumeration keys()
+ {
+ return new Enumerator(KEYS);
+ }
+
+ /**
+ * Return an enumeration of the values of this table. There's no point
+ * in synchronizing this, as you have already been warned that the
+ * enumeration is not specified to be thread-safe.
+ *
+ * @return the values
+ * @see #keys()
+ * @see #values()
+ */
+ public Enumeration elements()
+ {
+ return new Enumerator(VALUES);
+ }
+
+ /**
+ * Returns true if this Hashtable contains a value <code>o</code>,
+ * such that <code>o.equals(value)</code>. This is the same as
+ * <code>containsValue()</code>, and is O(n).
+ * <p>
+ *
+ * @param value the value to search for in this Hashtable
+ * @return true if at least one key maps to the value
+ * @throws NullPointerException if <code>value</code> is null
+ * @see #containsValue(Object)
+ * @see #containsKey(Object)
+ */
+ public synchronized boolean contains(Object value)
+ {
+ for (int i = buckets.length - 1; i >= 0; i--)
+ {
+ HashEntry e = buckets[i];
+ while (e != null)
+ {
+ if (value.equals(e.value))
+ return true;
+ e = e.next;
+ }
+ }
+
+ // Must throw on null argument even if the table is empty
+ if (value == null)
+ throw new NullPointerException();
+
+ return false;
+ }
+
+ /**
+ * Returns true if this Hashtable contains a value <code>o</code>, such that
+ * <code>o.equals(value)</code>. This is the new API for the old
+ * <code>contains()</code>.
+ *
+ * @param value the value to search for in this Hashtable
+ * @return true if at least one key maps to the value
+ * @see #contains(Object)
+ * @see #containsKey(Object)
+ * @throws NullPointerException if <code>value</code> is null
+ * @since 1.2
+ */
+ public boolean containsValue(Object value)
+ {
+ // Delegate to older method to make sure code overriding it continues
+ // to work.
+ return contains(value);
+ }
+
+ /**
+ * Returns true if the supplied object <code>equals()</code> a key
+ * in this Hashtable.
+ *
+ * @param key the key to search for in this Hashtable
+ * @return true if the key is in the table
+ * @throws NullPointerException if key is null
+ * @see #containsValue(Object)
+ */
+ public synchronized boolean containsKey(Object key)
+ {
+ int idx = hash(key);
+ HashEntry e = buckets[idx];
+ while (e != null)
+ {
+ if (key.equals(e.key))
+ return true;
+ e = e.next;
+ }
+ return false;
+ }
+
+ /**
+ * Return the value in this Hashtable associated with the supplied key,
+ * or <code>null</code> if the key maps to nothing.
+ *
+ * @param key the key for which to fetch an associated value
+ * @return what the key maps to, if present
+ * @throws NullPointerException if key is null
+ * @see #put(Object, Object)
+ * @see #containsKey(Object)
+ */
+ public synchronized Object get(Object key)
+ {
+ int idx = hash(key);
+ HashEntry e = buckets[idx];
+ while (e != null)
+ {
+ if (key.equals(e.key))
+ return e.value;
+ e = e.next;
+ }
+ return null;
+ }
+
+ /**
+ * Puts the supplied value into the Map, mapped by the supplied key.
+ * Neither parameter may be null. The value may be retrieved by any
+ * object which <code>equals()</code> this key.
+ *
+ * @param key the key used to locate the value
+ * @param value the value to be stored in the table
+ * @return the prior mapping of the key, or null if there was none
+ * @throws NullPointerException if key or value is null
+ * @see #get(Object)
+ * @see Object#equals(Object)
+ */
+ public synchronized Object put(Object key, Object value)
+ {
+ int idx = hash(key);
+ HashEntry e = buckets[idx];
+
+ // Check if value is null since it is not permitted.
+ if (value == null)
+ throw new NullPointerException();
+
+ while (e != null)
+ {
+ if (key.equals(e.key))
+ {
+ // Bypass e.setValue, since we already know value is non-null.
+ Object r = e.value;
+ e.value = value;
+ return r;
+ }
+ else
+ {
+ e = e.next;
+ }
+ }
+
+ // At this point, we know we need to add a new entry.
+ modCount++;
+ if (++size > threshold)
+ {
+ rehash();
+ // Need a new hash value to suit the bigger table.
+ idx = hash(key);
+ }
+
+ e = new HashEntry(key, value);
+
+ e.next = buckets[idx];
+ buckets[idx] = e;
+
+ return null;
+ }
+
+ /**
+ * Removes from the table and returns the value which is mapped by the
+ * supplied key. If the key maps to nothing, then the table remains
+ * unchanged, and <code>null</code> is returned.
+ *
+ * @param key the key used to locate the value to remove
+ * @return whatever the key mapped to, if present
+ */
+ public synchronized Object remove(Object key)
+ {
+ int idx = hash(key);
+ HashEntry e = buckets[idx];
+ HashEntry last = null;
+
+ while (e != null)
+ {
+ if (key.equals(e.key))
+ {
+ modCount++;
+ if (last == null)
+ buckets[idx] = e.next;
+ else
+ last.next = e.next;
+ size--;
+ return e.value;
+ }
+ last = e;
+ e = e.next;
+ }
+ return null;
+ }
+
+ /**
+ * Copies all elements of the given map into this hashtable. However, no
+ * mapping can contain null as key or value. If this table already has
+ * a mapping for a key, the new mapping replaces the current one.
+ *
+ * @param m the map to be hashed into this
+ * @throws NullPointerException if m is null, or contains null keys or values
+ */
+ public synchronized void putAll(Map m)
+ {
+ Iterator itr = m.entrySet().iterator();
+
+ while (itr.hasNext())
+ {
+ Map.Entry e = (Map.Entry) itr.next();
+ // Optimize in case the Entry is one of our own.
+ if (e instanceof AbstractMap.BasicMapEntry)
+ {
+ AbstractMap.BasicMapEntry entry = (AbstractMap.BasicMapEntry) e;
+ put(entry.key, entry.value);
+ }
+ else
+ {
+ put(e.getKey(), e.getValue());
+ }
+ }
+ }
+
+ /**
+ * Clears the hashtable so it has no keys. This is O(1).
+ */
+ public synchronized void clear()
+ {
+ if (size > 0)
+ {
+ modCount++;
+ Arrays.fill(buckets, null);
+ size = 0;
+ }
+ }
+
+ /**
+ * Returns a shallow clone of this Hashtable. The Map itself is cloned,
+ * but its contents are not. This is O(n).
+ *
+ * @return the clone
+ */
+ public synchronized Object clone()
+ {
+ Hashtable copy = null;
+ try
+ {
+ copy = (Hashtable) super.clone();
+ }
+ catch (CloneNotSupportedException x)
+ {
+ // This is impossible.
+ }
+ copy.buckets = new HashEntry[buckets.length];
+ copy.putAllInternal(this);
+ // Clear the caches.
+ copy.keys = null;
+ copy.values = null;
+ copy.entries = null;
+ return copy;
+ }
+
+ /**
+ * Converts this Hashtable to a String, surrounded by braces, and with
+ * key/value pairs listed with an equals sign between, separated by a
+ * comma and space. For example, <code>"{a=1, b=2}"</code>.<p>
+ *
+ * NOTE: if the <code>toString()</code> method of any key or value
+ * throws an exception, this will fail for the same reason.
+ *
+ * @return the string representation
+ */
+ public synchronized String toString()
+ {
+ // Since we are already synchronized, and entrySet().iterator()
+ // would repeatedly re-lock/release the monitor, we directly use the
+ // unsynchronized HashIterator instead.
+ Iterator entries = new HashIterator(ENTRIES);
+ StringBuffer r = new StringBuffer("{");
+ for (int pos = size; pos > 0; pos--)
+ {
+ r.append(entries.next());
+ if (pos > 1)
+ r.append(", ");
+ }
+ r.append("}");
+ return r.toString();
+ }
+
+ /**
+ * Returns a "set view" of this Hashtable's keys. The set is backed by
+ * the hashtable, so changes in one show up in the other. The set supports
+ * element removal, but not element addition. The set is properly
+ * synchronized on the original hashtable. Sun has not documented the
+ * proper interaction of null with this set, but has inconsistent behavior
+ * in the JDK. Therefore, in this implementation, contains, remove,
+ * containsAll, retainAll, removeAll, and equals just ignore a null key
+ * rather than throwing a {@link NullPointerException}.
+ *
+ * @return a set view of the keys
+ * @see #values()
+ * @see #entrySet()
+ * @since 1.2
+ */
+ public Set keySet()
+ {
+ if (keys == null)
+ {
+ // Create a synchronized AbstractSet with custom implementations of
+ // those methods that can be overridden easily and efficiently.
+ Set r = new AbstractSet()
+ {
+ public int size()
+ {
+ return size;
+ }
+
+ public Iterator iterator()
+ {
+ return new HashIterator(KEYS);
+ }
+
+ public void clear()
+ {
+ Hashtable.this.clear();
+ }
+
+ public boolean contains(Object o)
+ {
+ if (o == null)
+ return false;
+ return containsKey(o);
+ }
+
+ public boolean remove(Object o)
+ {
+ return Hashtable.this.remove(o) != null;
+ }
+ };
+ // We must specify the correct object to synchronize upon, hence the
+ // use of a non-public API
+ keys = new Collections.SynchronizedSet(this, r);
+ }
+ return keys;
+ }
+
+ /**
+ * Returns a "collection view" (or "bag view") of this Hashtable's values.
+ * The collection is backed by the hashtable, so changes in one show up
+ * in the other. The collection supports element removal, but not element
+ * addition. The collection is properly synchronized on the original
+ * hashtable. Sun has not documented the proper interaction of null with
+ * this set, but has inconsistent behavior in the JDK. Therefore, in this
+ * implementation, contains, remove, containsAll, retainAll, removeAll, and
+ * equals just ignore a null value rather than throwing a
+ * {@link NullPointerException}.
+ *
+ * @return a bag view of the values
+ * @see #keySet()
+ * @see #entrySet()
+ * @since 1.2
+ */
+ public Collection values()
+ {
+ if (values == null)
+ {
+ // We don't bother overriding many of the optional methods, as doing so
+ // wouldn't provide any significant performance advantage.
+ Collection r = new AbstractCollection()
+ {
+ public int size()
+ {
+ return size;
+ }
+
+ public Iterator iterator()
+ {
+ return new HashIterator(VALUES);
+ }
+
+ public void clear()
+ {
+ Hashtable.this.clear();
+ }
+ };
+ // We must specify the correct object to synchronize upon, hence the
+ // use of a non-public API
+ values = new Collections.SynchronizedCollection(this, r);
+ }
+ return values;
+ }
+
+ /**
+ * Returns a "set view" of this Hashtable's entries. The set is backed by
+ * the hashtable, so changes in one show up in the other. The set supports
+ * element removal, but not element addition. The set is properly
+ * synchronized on the original hashtable. Sun has not documented the
+ * proper interaction of null with this set, but has inconsistent behavior
+ * in the JDK. Therefore, in this implementation, contains, remove,
+ * containsAll, retainAll, removeAll, and equals just ignore a null entry,
+ * or an entry with a null key or value, rather than throwing a
+ * {@link NullPointerException}. However, calling entry.setValue(null)
+ * will fail.
+ * <p>
+ *
+ * Note that the iterators for all three views, from keySet(), entrySet(),
+ * and values(), traverse the hashtable in the same sequence.
+ *
+ * @return a set view of the entries
+ * @see #keySet()
+ * @see #values()
+ * @see Map.Entry
+ * @since 1.2
+ */
+ public Set entrySet()
+ {
+ if (entries == null)
+ {
+ // Create an AbstractSet with custom implementations of those methods
+ // that can be overridden easily and efficiently.
+ Set r = new AbstractSet()
+ {
+ public int size()
+ {
+ return size;
+ }
+
+ public Iterator iterator()
+ {
+ return new HashIterator(ENTRIES);
+ }
+
+ public void clear()
+ {
+ Hashtable.this.clear();
+ }
+
+ public boolean contains(Object o)
+ {
+ return getEntry(o) != null;
+ }
+
+ public boolean remove(Object o)
+ {
+ HashEntry e = getEntry(o);
+ if (e != null)
+ {
+ Hashtable.this.remove(e.key);
+ return true;
+ }
+ return false;
+ }
+ };
+ // We must specify the correct object to synchronize upon, hence the
+ // use of a non-public API
+ entries = new Collections.SynchronizedSet(this, r);
+ }
+ return entries;
+ }
+
+ /**
+ * Returns true if this Hashtable equals the supplied Object <code>o</code>.
+ * As specified by Map, this is:
+ * <code>
+ * (o instanceof Map) && entrySet().equals(((Map) o).entrySet());
+ * </code>
+ *
+ * @param o the object to compare to
+ * @return true if o is an equal map
+ * @since 1.2
+ */
+ public boolean equals(Object o)
+ {
+ // no need to synchronize, entrySet().equals() does that
+ if (o == this)
+ return true;
+ if (!(o instanceof Map))
+ return false;
+
+ return entrySet().equals(((Map) o).entrySet());
+ }
+
+ /**
+ * Returns the hashCode for this Hashtable. As specified by Map, this is
+ * the sum of the hashCodes of all of its Map.Entry objects
+ *
+ * @return the sum of the hashcodes of the entries
+ * @since 1.2
+ */
+ public synchronized int hashCode()
+ {
+ // Since we are already synchronized, and entrySet().iterator()
+ // would repeatedly re-lock/release the monitor, we directly use the
+ // unsynchronized HashIterator instead.
+ Iterator itr = new HashIterator(ENTRIES);
+ int hashcode = 0;
+ for (int pos = size; pos > 0; pos--)
+ hashcode += itr.next().hashCode();
+
+ return hashcode;
+ }
+
+ /**
+ * Helper method that returns an index in the buckets array for `key'
+ * based on its hashCode().
+ *
+ * @param key the key
+ * @return the bucket number
+ * @throws NullPointerException if key is null
+ */
+ private int hash(Object key)
+ {
+ // Note: Inline Math.abs here, for less method overhead, and to avoid
+ // a bootstrap dependency, since Math relies on native methods.
+ int hash = key.hashCode() % buckets.length;
+ return hash < 0 ? -hash : hash;
+ }
+
+ /**
+ * Helper method for entrySet(), which matches both key and value
+ * simultaneously. Ignores null, as mentioned in entrySet().
+ *
+ * @param o the entry to match
+ * @return the matching entry, if found, or null
+ * @see #entrySet()
+ */
+ // Package visible, for use in nested classes.
+ HashEntry getEntry(Object o)
+ {
+ if (! (o instanceof Map.Entry))
+ return null;
+ Object key = ((Map.Entry) o).getKey();
+ if (key == null)
+ return null;
+
+ int idx = hash(key);
+ HashEntry e = buckets[idx];
+ while (e != null)
+ {
+ if (o.equals(e))
+ return e;
+ e = e.next;
+ }
+ return null;
+ }
+
+ /**
+ * A simplified, more efficient internal implementation of putAll(). clone()
+ * should not call putAll or put, in order to be compatible with the JDK
+ * implementation with respect to subclasses.
+ *
+ * @param m the map to initialize this from
+ */
+ void putAllInternal(Map m)
+ {
+ Iterator itr = m.entrySet().iterator();
+ size = 0;
+
+ while (itr.hasNext())
+ {
+ size++;
+ Map.Entry e = (Map.Entry) itr.next();
+ Object key = e.getKey();
+ int idx = hash(key);
+ HashEntry he = new HashEntry(key, e.getValue());
+ he.next = buckets[idx];
+ buckets[idx] = he;
+ }
+ }
+
+ /**
+ * Increases the size of the Hashtable and rehashes all keys to new array
+ * indices; this is called when the addition of a new value would cause
+ * size() &gt; threshold. Note that the existing Entry objects are reused in
+ * the new hash table.
+ * <p>
+ *
+ * This is not specified, but the new size is twice the current size plus
+ * one; this number is not always prime, unfortunately. This implementation
+ * is not synchronized, as it is only invoked from synchronized methods.
+ */
+ protected void rehash()
+ {
+ HashEntry[] oldBuckets = buckets;
+
+ int newcapacity = (buckets.length * 2) + 1;
+ threshold = (int) (newcapacity * loadFactor);
+ buckets = new HashEntry[newcapacity];
+
+ for (int i = oldBuckets.length - 1; i >= 0; i--)
+ {
+ HashEntry e = oldBuckets[i];
+ while (e != null)
+ {
+ int idx = hash(e.key);
+ HashEntry dest = buckets[idx];
+
+ if (dest != null)
+ {
+ while (dest.next != null)
+ dest = dest.next;
+ dest.next = e;
+ }
+ else
+ {
+ buckets[idx] = e;
+ }
+
+ HashEntry next = e.next;
+ e.next = null;
+ e = next;
+ }
+ }
+ }
+
+ /**
+ * Serializes this object to the given stream.
+ *
+ * @param s the stream to write to
+ * @throws IOException if the underlying stream fails
+ * @serialData the <i>capacity</i> (int) that is the length of the
+ * bucket array, the <i>size</i> (int) of the hash map
+ * are emitted first. They are followed by size entries,
+ * each consisting of a key (Object) and a value (Object).
+ */
+ private synchronized void writeObject(ObjectOutputStream s)
+ throws IOException
+ {
+ // Write the threshold and loadFactor fields.
+ s.defaultWriteObject();
+
+ s.writeInt(buckets.length);
+ s.writeInt(size);
+ // Since we are already synchronized, and entrySet().iterator()
+ // would repeatedly re-lock/release the monitor, we directly use the
+ // unsynchronized HashIterator instead.
+ Iterator it = new HashIterator(ENTRIES);
+ while (it.hasNext())
+ {
+ HashEntry entry = (HashEntry) it.next();
+ s.writeObject(entry.key);
+ s.writeObject(entry.value);
+ }
+ }
+
+ /**
+ * Deserializes this object from the given stream.
+ *
+ * @param s the stream to read from
+ * @throws ClassNotFoundException if the underlying stream fails
+ * @throws IOException if the underlying stream fails
+ * @serialData the <i>capacity</i> (int) that is the length of the
+ * bucket array, the <i>size</i> (int) of the hash map
+ * are emitted first. They are followed by size entries,
+ * each consisting of a key (Object) and a value (Object).
+ */
+ private void readObject(ObjectInputStream s)
+ throws IOException, ClassNotFoundException
+ {
+ // Read the threshold and loadFactor fields.
+ s.defaultReadObject();
+
+ // Read and use capacity.
+ buckets = new HashEntry[s.readInt()];
+ int len = s.readInt();
+
+ // Read and use key/value pairs.
+ // TODO: should we be defensive programmers, and check for illegal nulls?
+ while (--len >= 0)
+ put(s.readObject(), s.readObject());
+ }
+
+ /**
+ * A class which implements the Iterator interface and is used for
+ * iterating over Hashtables.
+ * This implementation is parameterized to give a sequential view of
+ * keys, values, or entries; it also allows the removal of elements,
+ * as per the Javasoft spec. Note that it is not synchronized; this is
+ * a performance enhancer since it is never exposed externally and is
+ * only used within synchronized blocks above.
+ *
+ * @author Jon Zeppieri
+ */
+ private final class HashIterator implements Iterator
+ {
+ /**
+ * The type of this Iterator: {@link #KEYS}, {@link #VALUES},
+ * or {@link #ENTRIES}.
+ */
+ final int type;
+ /**
+ * The number of modifications to the backing Hashtable that we know about.
+ */
+ int knownMod = modCount;
+ /** The number of elements remaining to be returned by next(). */
+ int count = size;
+ /** Current index in the physical hash table. */
+ int idx = buckets.length;
+ /** The last Entry returned by a next() call. */
+ HashEntry last;
+ /**
+ * The next entry that should be returned by next(). It is set to something
+ * if we're iterating through a bucket that contains multiple linked
+ * entries. It is null if next() needs to find a new bucket.
+ */
+ HashEntry next;
+
+ /**
+ * Construct a new HashIterator with the supplied type.
+ * @param type {@link #KEYS}, {@link #VALUES}, or {@link #ENTRIES}
+ */
+ HashIterator(int type)
+ {
+ this.type = type;
+ }
+
+ /**
+ * Returns true if the Iterator has more elements.
+ * @return true if there are more elements
+ * @throws ConcurrentModificationException if the hashtable was modified
+ */
+ public boolean hasNext()
+ {
+ if (knownMod != modCount)
+ throw new ConcurrentModificationException();
+ return count > 0;
+ }
+
+ /**
+ * Returns the next element in the Iterator's sequential view.
+ * @return the next element
+ * @throws ConcurrentModificationException if the hashtable was modified
+ * @throws NoSuchElementException if there is none
+ */
+ public Object next()
+ {
+ if (knownMod != modCount)
+ throw new ConcurrentModificationException();
+ if (count == 0)
+ throw new NoSuchElementException();
+ count--;
+ HashEntry e = next;
+
+ while (e == null)
+ e = buckets[--idx];
+
+ next = e.next;
+ last = e;
+ if (type == VALUES)
+ return e.value;
+ if (type == KEYS)
+ return e.key;
+ return e;
+ }
+
+ /**
+ * Removes from the backing Hashtable the last element which was fetched
+ * with the <code>next()</code> method.
+ * @throws ConcurrentModificationException if the hashtable was modified
+ * @throws IllegalStateException if called when there is no last element
+ */
+ public void remove()
+ {
+ if (knownMod != modCount)
+ throw new ConcurrentModificationException();
+ if (last == null)
+ throw new IllegalStateException();
+
+ Hashtable.this.remove(last.key);
+ last = null;
+ knownMod++;
+ }
+ } // class HashIterator
+
+
+ /**
+ * Enumeration view of this Hashtable, providing sequential access to its
+ * elements; this implementation is parameterized to provide access either
+ * to the keys or to the values in the Hashtable.
+ *
+ * <b>NOTE</b>: Enumeration is not safe if new elements are put in the table
+ * as this could cause a rehash and we'd completely lose our place. Even
+ * without a rehash, it is undetermined if a new element added would
+ * appear in the enumeration. The spec says nothing about this, but
+ * the "Java Class Libraries" book infers that modifications to the
+ * hashtable during enumeration causes indeterminate results. Don't do it!
+ *
+ * @author Jon Zeppieri
+ */
+ private final class Enumerator implements Enumeration
+ {
+ /**
+ * The type of this Iterator: {@link #KEYS} or {@link #VALUES}.
+ */
+ final int type;
+ /** The number of elements remaining to be returned by next(). */
+ int count = size;
+ /** Current index in the physical hash table. */
+ int idx = buckets.length;
+ /**
+ * Entry which will be returned by the next nextElement() call. It is
+ * set if we are iterating through a bucket with multiple entries, or null
+ * if we must look in the next bucket.
+ */
+ HashEntry next;
+
+ /**
+ * Construct the enumeration.
+ * @param type either {@link #KEYS} or {@link #VALUES}.
+ */
+ Enumerator(int type)
+ {
+ this.type = type;
+ }
+
+ /**
+ * Checks whether more elements remain in the enumeration.
+ * @return true if nextElement() will not fail.
+ */
+ public boolean hasMoreElements()
+ {
+ return count > 0;
+ }
+
+ /**
+ * Returns the next element.
+ * @return the next element
+ * @throws NoSuchElementException if there is none.
+ */
+ public Object nextElement()
+ {
+ if (count == 0)
+ throw new NoSuchElementException("Hashtable Enumerator");
+ count--;
+ HashEntry e = next;
+
+ while (e == null)
+ e = buckets[--idx];
+
+ next = e.next;
+ return type == VALUES ? e.value : e.key;
+ }
+ } // class Enumerator
+} // class Hashtable