summaryrefslogtreecommitdiff
path: root/libstdc++-v3/include/parallel/tree.h
diff options
context:
space:
mode:
Diffstat (limited to 'libstdc++-v3/include/parallel/tree.h')
-rw-r--r--libstdc++-v3/include/parallel/tree.h3574
1 files changed, 3574 insertions, 0 deletions
diff --git a/libstdc++-v3/include/parallel/tree.h b/libstdc++-v3/include/parallel/tree.h
new file mode 100644
index 00000000000..8aa9269394d
--- /dev/null
+++ b/libstdc++-v3/include/parallel/tree.h
@@ -0,0 +1,3574 @@
+// -*- C++ -*-
+
+// Copyright (C) 2007 Free Software Foundation, Inc.
+//
+// This file is part of the GNU ISO C++ Library. This library is free
+// software; you can redistribute it and/or modify it under the terms
+// of the GNU General Public License as published by the Free Software
+// Foundation; either version 2, or (at your option) any later
+// version.
+
+// This library is distributed in the hope that it will be useful, but
+// WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+// General Public License for more details.
+
+// You should have received a copy of the GNU General Public License
+// along with this library; see the file COPYING. If not, write to
+// the Free Software Foundation, 59 Temple Place - Suite 330, Boston,
+// MA 02111-1307, USA.
+
+// As a special exception, you may use this file as part of a free
+// software library without restriction. Specifically, if other files
+// instantiate templates or use macros or inline functions from this
+// file, or you compile this file and link it with other files to
+// produce an executable, this file does not by itself cause the
+// resulting executable to be covered by the GNU General Public
+// License. This exception does not however invalidate any other
+// reasons why the executable file might be covered by the GNU General
+// Public License.
+
+/** @file parallel/tree.h
+ * @brief Parallel red-black tree operations.
+ * This file is a GNU parallel extension to the Standard C++ Library.
+ */
+
+// Written by Leonor Frias Moya, Johannes Singler.
+
+#ifndef _GLIBCXX_PARALLEL_TREE_H
+#define _GLIBCXX_PARALLEL_TREE_H 1
+
+#include <parallel/parallel.h>
+#include <functional>
+#include <cmath>
+#include <algorithm>
+#include <iterator>
+#include <functional>
+#include <iostream>
+//#include <ext/malloc_allocator.h>
+#include <bits/stl_tree.h>
+
+#include <parallel/list_partition.h>
+
+//#define _GLIBCXX_TIMING
+#ifdef _GLIBCXX_TIMING
+#define _timing_tag parallel_tag
+#else
+#define _timing_tag sequential_tag
+#endif
+
+namespace std
+{
+ // XXX Declaration should go to stl_tree.h.
+ void
+ _Rb_tree_rotate_left(_Rb_tree_node_base* const __x,
+ _Rb_tree_node_base*& __root);
+
+ void
+ _Rb_tree_rotate_right(_Rb_tree_node_base* const __x,
+ _Rb_tree_node_base*& __root);
+}
+
+
+namespace __gnu_parallel
+{
+ // XXX move into parallel/type_traits.h if <type_traits> doesn't work.
+ /** @brief Helper class: remove the const modifier from the first
+ component, if present. Set kind component.
+ * @param T Simple type, nothing to unconst */
+ template<typename T>
+ struct unconst_first_component
+ {
+ /** @brief New type after removing the const */
+ typedef T type;
+ };
+
+ /** @brief Helper class: remove the const modifier from the first
+ component, if present. Map kind component
+ * @param Key First component, from which to remove the const modifier
+ * @param Load Second component
+ * @sa unconst_first_component */
+ template<typename Key, typename Load>
+ struct unconst_first_component<std::pair<const Key, Load> >
+ {
+ /** @brief New type after removing the const */
+ typedef std::pair<Key, Load> type;
+ };
+
+ /** @brief Helper class: set the appropriate comparator to deal with
+ * repetitions. Comparator for unique dictionaries.
+ *
+ * StrictlyLess and LessEqual are part of a mechanism to deal with
+ * repetitions transparently whatever the actual policy is.
+ * @param _Key Keys to compare
+ * @param _Compare Comparator equal to conceptual < */
+ template<typename _Key, typename _Compare>
+ struct StrictlyLess : public std::binary_function<_Key, _Key, bool>
+ {
+ /** @brief Comparator equal to conceptual < */
+ _Compare c;
+
+ /** @brief Constructor given a Comparator */
+ StrictlyLess(const _Compare& _c) : c(_c) { }
+
+ /** @brief Copy constructor */
+ StrictlyLess(const StrictlyLess<_Key, _Compare>& strictly_less)
+ : c(strictly_less.c) { }
+
+ /** @brief Operator() */
+ bool operator()(const _Key& k1, const _Key& k2) const
+ {
+ return c(k1, k2);
+ }
+ };
+
+ /** @brief Helper class: set the appropriate comparator to deal with
+ * repetitions. Comparator for non-unique dictionaries.
+ *
+ * StrictlyLess and LessEqual are part of a mechanism to deal with
+ * repetitions transparently whatever the actual policy is.
+ * @param _Key Keys to compare
+ * @param _Compare Comparator equal to conceptual <= */
+ template<typename _Key, typename _Compare>
+ struct LessEqual : public std::binary_function<_Key, _Key, bool>
+ {
+ /** @brief Comparator equal to conceptual < */
+ _Compare c;
+
+ /** @brief Constructor given a Comparator */
+ LessEqual(const _Compare& _c) : c(_c) { }
+
+ /** @brief Copy constructor */
+ LessEqual(const LessEqual<_Key, _Compare>& less_equal)
+ : c(less_equal.c) { }
+
+ /** @brief Operator() */
+ bool operator()(const _Key& k1, const _Key& k2) const
+ { return !c(k2, k1); }
+ };
+
+
+ /** @brief Parallel red-black tree.
+ *
+ * Extension of the sequential red-black tree. Specifically,
+ * parallel bulk insertion operations are provided.
+ * @param _Key Keys to compare
+ * @param _Val Elements to store in the tree
+ * @param _KeyOfValue Obtains the key from an element <
+ * @param _Compare Comparator equal to conceptual <
+ * @param _Alloc Allocator for the elements */
+ template<typename _Key, typename _Val, typename _KeyOfValue,
+ typename _Compare, typename _Alloc = std::allocator<_Val> >
+ class _Rb_tree : public std::_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>
+ {
+ private:
+ /** @brief Sequential tree */
+ typedef std::_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc> base_type;
+
+ /** @brief Renaming of base node type */
+ typedef typename std::_Rb_tree_node<_Val> _Rb_tree_node;
+
+ /** @brief Renaming of libstdc++ node type */
+ typedef typename std::_Rb_tree_node_base _Rb_tree_node_base;
+
+ /** @brief Renaming of base key_type */
+ typedef typename base_type::key_type key_type;
+
+ /** @brief Renaming of base value_type */
+ typedef typename base_type::value_type value_type;
+
+ /** @brief Helper class to unconst the first component of
+ * value_type if exists.
+ *
+ * This helper class is needed for map, but may discard qualifiers
+ * for set; however, a set with a const element type is not useful
+ * and should fail in some other place anyway.
+ */
+ typedef typename unconst_first_component<value_type>::type nc_value_type;
+
+ /** @brief Pointer to a node */
+ typedef _Rb_tree_node* _Rb_tree_node_ptr;
+
+ /** @brief Wrapper comparator class to deal with repetitions
+ transparently according to dictionary type with key _Key and
+ comparator _Compare. Unique dictionaries object
+ */
+ StrictlyLess<_Key, _Compare> strictly_less;
+
+ /** @brief Wrapper comparator class to deal with repetitions
+ transparently according to dictionary type with key _Key and
+ comparator _Compare. Non-unique dictionaries object
+ */
+ LessEqual<_Key, _Compare> less_equal;
+
+ public:
+ /** @brief Renaming of base size_type */
+ typedef typename base_type::size_type size_type;
+
+ /** @brief Constructor with a given comparator and allocator.
+ *
+ * Delegates the basic initialization to the sequential class and
+ * initializes the helper comparators of the parallel class
+ * @param c Comparator object with which to initialize the class
+ * comparator and the helper comparators
+ * @param a Allocator object with which to initialize the class comparator
+ */
+ _Rb_tree(const _Compare& c, const _Alloc& a)
+ : base_type(c, a), strictly_less(base_type::_M_impl._M_key_compare), less_equal(base_type::_M_impl._M_key_compare)
+ { }
+
+ /** @brief Copy constructor.
+ *
+ * Delegates the basic initialization to the sequential class and
+ * initializes the helper comparators of the parallel class
+ * @param __x Parallel red-black instance to copy
+ */
+ _Rb_tree(const _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>& __x)
+ : base_type(__x), strictly_less(base_type::_M_impl._M_key_compare), less_equal(base_type::_M_impl._M_key_compare)
+ { }
+
+ /** @brief Parallel replacement of the sequential
+ * std::_Rb_tree::_M_insert_unique()
+ *
+ * Parallel bulk insertion and construction. If the container is
+ * empty, bulk construction is performed. Otherwise, bulk
+ * insertion is performed
+ * @param __first First element of the input
+ * @param __last Last element of the input
+ */
+ template<typename _InputIterator>
+ void
+ _M_insert_unique(_InputIterator __first, _InputIterator __last)
+ {
+ if (__first==__last) return;
+ if (_GLIBCXX_PARALLEL_CONDITION(true))
+ if (base_type::_M_impl._M_node_count == 0)
+ {
+ _M_bulk_insertion_construction(__first, __last, true, strictly_less);
+ _GLIBCXX_PARALLEL_ASSERT(rb_verify());
+ }
+ else
+ {
+ _M_bulk_insertion_construction(__first, __last, false, strictly_less);
+ _GLIBCXX_PARALLEL_ASSERT(rb_verify());
+ }
+ else
+ {
+ base_type::_M_insert_unique(__first, __last);
+ }
+ }
+
+ /** @brief Parallel replacement of the sequential
+ * std::_Rb_tree::_M_insert_equal()
+ *
+ * Parallel bulk insertion and construction. If the container is
+ * empty, bulk construction is performed. Otherwise, bulk
+ * insertion is performed
+ * @param __first First element of the input
+ * @param __last Last element of the input */
+ template<typename _InputIterator>
+ void
+ _M_insert_equal(_InputIterator __first, _InputIterator __last)
+ {
+ if (__first==__last) return;
+ if (_GLIBCXX_PARALLEL_CONDITION(true))
+ if (base_type::_M_impl._M_node_count == 0)
+ _M_bulk_insertion_construction(__first, __last, true, less_equal);
+ else
+ _M_bulk_insertion_construction(__first, __last, false, less_equal);
+ else
+ base_type::_M_insert_equal(__first, __last);
+ _GLIBCXX_PARALLEL_ASSERT(rb_verify());
+ }
+
+ private:
+
+ /** @brief Helper class of _Rb_tree: node linking.
+ *
+ * Nodes linking forming an almost complete tree. The last level
+ * is coloured red, the rest are black
+ * @param ranker Calculates the position of a node in an array of nodes
+ */
+ template<typename ranker>
+ class nodes_initializer
+ {
+ /** @brief Renaming of tree size_type */
+
+ typedef typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::size_type size_type;
+ public:
+
+ /** @brief mask[%i]= 0..01..1, where the number of 1s is %i+1 */
+ size_type mask[sizeof(size_type)*8];
+
+ /** @brief Array of nodes (initial address) */
+ const _Rb_tree_node_ptr* r_init;
+
+ /** @brief Total number of (used) nodes */
+ size_type n;
+
+ /** @brief Rank of the last tree node that can be calculated
+ taking into account a complete tree
+ */
+ size_type splitting_point;
+
+ /** @brief Rank of the tree root */
+ size_type rank_root;
+
+ /** @brief Height of the tree */
+ int height;
+
+ /** @brief Number of threads into which divide the work */
+ const thread_index_t num_threads;
+
+ /** @brief Helper object to mind potential gaps in r_init */
+ const ranker& rank;
+
+ /** @brief Constructor
+ * @param r Array of nodes
+ * @param _n Total number of (used) nodes
+ * @param _num_threads Number of threads into which divide the work
+ * @param _rank Helper object to mind potential gaps in @c r_init */
+ nodes_initializer(const _Rb_tree_node_ptr* r, const size_type _n, const thread_index_t _num_threads, const ranker& _rank):
+ r_init(r),
+ n(_n),
+ num_threads(_num_threads),
+ rank(_rank)
+ {
+ height = log2(n);
+ splitting_point = 2 * (n - ((1 << height) - 1)) -1;
+
+ // Rank root.
+ size_type max = 1 << (height + 1);
+ rank_root= (max-2) >> 1;
+ if (rank_root > splitting_point)
+ rank_root = complete_to_original(rank_root);
+
+ mask[0] = 0x1;
+ for (unsigned int i = 1; i < sizeof(size_type)*8; ++i)
+ {
+ mask[i] = (mask[i-1] << 1) + 1;
+ }
+ }
+
+ /** @brief Query for tree height
+ * @return Tree height */
+ int get_height() const
+ {
+ return height;
+ }
+
+ /** @brief Query for the splitting point
+ * @return Splitting point */
+ size_type get_shifted_splitting_point() const
+ {
+ return rank.get_shifted_rank(splitting_point, 0);
+ }
+
+ /** @brief Query for the tree root node
+ * @return Tree root node */
+ _Rb_tree_node_ptr get_root() const
+ {
+ return r_init[rank.get_shifted_rank(rank_root,num_threads/2)];
+ }
+
+ /** @brief Calculation of the parent position in the array of nodes
+ * @hideinitializer */
+#define CALCULATE_PARENT \
+ if (p_s> splitting_point) \
+ p_s = complete_to_original(p_s); \
+ int s_r = rank.get_shifted_rank(p_s,iam); \
+ r->_M_parent = r_init[s_r]; \
+ \
+ /** @brief Link a node with its parent and children taking into
+ account that its rank (without gaps) is different to that in
+ a complete tree
+ * @param r Pointer to the node
+ * @param iam Partition of the array in which the node is, where
+ * iam is in [0..num_threads)
+ * @sa link_complete */
+ void link_incomplete(const _Rb_tree_node_ptr& r, const int iam) const
+ {
+ size_type real_pos = rank.get_real_rank(&r-r_init, iam);
+ size_type l_s, r_s, p_s;
+ int mod_pos= original_to_complete(real_pos);
+ int zero= first_0_right(mod_pos);
+
+ // 1. Convert n to n', where n' will be its rank if the tree
+ // was complete
+ // 2. Calculate neighbours for n'
+ // 3. Convert the neighbours n1', n2' and n3' to their
+ // appropiate values n1, n2, n3. Note that it must be
+ // checked that this neighbours reallly exist.
+ calculate_shifts_pos_level(mod_pos, zero, l_s, r_s, p_s);
+ if (l_s > splitting_point)
+ {
+ _GLIBCXX_PARALLEL_ASSERT(r_s > splitting_point);
+ if (zero == 1)
+ {
+ r->_M_left = 0;
+ r->_M_right = 0;
+ }
+ else
+ {
+ r->_M_left= r_init[rank.get_shifted_rank(complete_to_original(l_s),iam)];
+ r->_M_right= r_init[rank.get_shifted_rank(complete_to_original(r_s),iam)];
+ }
+
+ }
+ else{
+ r->_M_left= r_init[rank.get_shifted_rank(l_s,iam)];
+ if (zero != 1)
+ {
+ r->_M_right= r_init[rank.get_shifted_rank(complete_to_original(r_s),iam)];
+ }
+ else
+ {
+ r->_M_right = 0;
+ }
+ }
+ r->_M_color = std::_S_black;
+ CALCULATE_PARENT;
+ }
+
+ /** @brief Link a node with its parent and children taking into
+ account that its rank (without gaps) is the same as that in
+ a complete tree
+ * @param r Pointer to the node
+ * @param iam Partition of the array in which the node is, where
+ * iam is in [0..@c num_threads)
+ * @sa link_incomplete
+ */
+ void link_complete(const _Rb_tree_node_ptr& r, const int iam) const
+ {
+ size_type real_pos = rank.get_real_rank(&r-r_init, iam);
+ size_type p_s;
+
+ // Test if it is a leaf on the last not necessarily full level
+ if ((real_pos & mask[0]) == 0)
+ {
+ if ((real_pos & 0x2) == 0)
+ p_s = real_pos + 1;
+ else
+ p_s = real_pos - 1;
+ r->_M_color = std::_S_red;
+ r->_M_left = 0;
+ r->_M_right = 0;
+ }
+ else
+ {
+ size_type l_s, r_s;
+ int zero = first_0_right(real_pos);
+ calculate_shifts_pos_level(real_pos, zero, l_s, r_s, p_s);
+ r->_M_color = std::_S_black;
+
+ r->_M_left = r_init[rank.get_shifted_rank(l_s,iam)];
+ if (r_s > splitting_point)
+ r_s = complete_to_original(r_s);
+ r->_M_right = r_init[rank.get_shifted_rank(r_s,iam)];
+ }
+ CALCULATE_PARENT;
+ }
+
+#undef CALCULATE_PARENT
+
+ private:
+ /** @brief Change of "base": Convert the rank in the actual tree
+ into the corresponding rank if the tree was complete
+ * @param pos Rank in the actual incomplete tree
+ * @return Rank in the corresponding complete tree
+ * @sa complete_to_original */
+ int original_to_complete(const int pos) const
+ {
+ return (pos << 1) - splitting_point;
+ }
+
+ /** @brief Change of "base": Convert the rank if the tree was
+ complete into the corresponding rank in the actual tree
+ * @param pos Rank in the complete tree
+ * @return Rank in the actual incomplete tree
+ * @sa original_to_complete */
+ int complete_to_original(const int pos) const
+ {
+ return (pos + splitting_point) >> 1;
+ }
+
+
+ /** @brief Calculate the rank in the complete tree of the parent
+ and children of a node
+ * @param pos Rank in the complete tree of the node whose parent
+ * and children rank must be calculated
+ * @param level Tree level in which the node at pos is in
+ * (starting to count at leaves). @pre @c level > 1
+ * @param left_shift Rank in the complete tree of the left child
+ * of pos (out parameter)
+ * @param right_shift Rank in the complete tree of the right
+ * child of pos (out parameter)
+ * @param parent_shift Rank in the complete tree of the parent
+ * of pos (out parameter)
+ */
+ void calculate_shifts_pos_level(const size_type pos, const int level, size_type& left_shift, size_type& right_shift, size_type& parent_shift) const
+ {
+ int stride = 1 << (level -1);
+ left_shift = pos - stride;
+ right_shift = pos + stride;
+ if (((pos >> (level + 1)) & 0x1) == 0)
+ parent_shift = pos + 2*stride;
+ else
+ parent_shift = pos - 2*stride;
+ }
+
+ /** @brief Search for the first 0 bit (growing the weight)
+ * @param x Binary number (corresponding to a rank in the tree)
+ * whose first 0 bit must be calculated
+ * @return Position of the first 0 bit in @c x (starting to
+ * count with 1)
+ */
+ int first_0_right(const size_type x) const
+ {
+ if ((x & 0x2) == 0)
+ return 1;
+ else
+ return first_0_right_bs(x);
+ }
+
+ /** @brief Search for the first 0 bit (growing the weight) using
+ * binary search
+ *
+ * Binary search can be used instead of a naïve loop using the
+ * masks in mask array
+ * @param x Binary number (corresponding to a rank in the tree)
+ * whose first 0 bit must be calculated
+ * @param k_beg Position in which to start searching. By default is 2.
+ * @return Position of the first 0 bit in x (starting to count with 1) */
+ int first_0_right_bs(const size_type x, int k_beg=2) const
+ {
+ int k_end = sizeof(size_type)*8;
+ size_type not_x = x ^ mask[k_end-1];
+ while ((k_end-k_beg) > 1)
+ {
+ int k = k_beg + (k_end-k_beg)/2;
+ if ((not_x & mask[k-1]) != 0)
+ k_end = k;
+ else
+ k_beg = k;
+ }
+ return k_beg;
+ }
+ };
+
+ /***** Dealing with repetitions (EFFICIENCY ISSUE) *****/
+ /** @brief Helper class of nodes_initializer: mind the gaps of an
+ array of nodes.
+ *
+ * Get absolute positions in an array of nodes taking into account
+ * the gaps in it @sa ranker_no_gaps
+ */
+ class ranker_gaps
+ {
+ /** @brief Renaming of tree's size_type */
+ typedef typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::size_type size_type;
+
+ /** @brief Array containing the beginning ranks of all the
+ num_threads partitions just considering the valid nodes, not
+ the gaps */
+ size_type* beg_partition;
+
+ /** @brief Array containing the beginning ranks of all the
+ num_threads partitions considering the valid nodes and the
+ gaps */
+ const size_type* beg_shift_partition;
+
+ /** @brief Array containing the number of accumulated gaps at
+ the beginning of each partition */
+ const size_type* rank_shift;
+
+ /** @brief Number of partitions (and threads that work on it) */
+ const thread_index_t num_threads;
+
+ public:
+ /** @brief Constructor
+ * @param size_p Pointer to the array containing the beginning
+ * ranks of all the @c _num_threads partitions considering the
+ * valid nodes and the gaps
+ * @param shift_r Array containing the number of accumulated
+ * gaps at the beginning of each partition
+ * @param _num_threads Number of partitions (and threads that
+ * work on it) */
+ ranker_gaps(const size_type* size_p, const size_type* shift_r, const thread_index_t _num_threads) :
+ beg_shift_partition(size_p),
+ rank_shift(shift_r),
+ num_threads(_num_threads)
+ {
+ beg_partition = new size_type[num_threads+1];
+ beg_partition[0] = 0;
+ for (int i = 1; i <= num_threads; ++i)
+ {
+ beg_partition[i] = beg_partition[i-1] + (beg_shift_partition[i] - beg_shift_partition[i-1]) - (rank_shift[i] - rank_shift[i-1]);
+
+ }
+
+ // Ghost element, strictly larger than any index requested.
+ ++beg_partition[num_threads];
+ }
+
+ /** @brief Destructor
+ * Needs to be defined to deallocate the dynamic memory that has
+ * been allocated for beg_partition array
+ */
+ ~ranker_gaps()
+ {
+ delete[] beg_partition;
+ }
+
+ /** @brief Convert a rank in the array of nodes considering
+ valid nodes and gaps, to the corresponding considering only
+ the valid nodes
+ * @param pos Rank in the array of nodes considering valid nodes and gaps
+ * @param index Partition which the rank belongs to
+ * @return Rank in the array of nodes considering only the valid nodes
+ * @sa get_shifted_rank
+ */
+ size_type get_real_rank(const size_type pos, const int index) const
+ {
+ return pos - rank_shift[index];
+ }
+
+ /** @brief Inverse of get_real_rank: Convert a rank in the array
+ of nodes considering only valid nodes, to the corresponding
+ considering valid nodes and gaps
+ * @param pos Rank in the array of nodes considering only valid nodes
+ * @param index Partition which the rank is most likely to
+ * belong to (ie. the corresponding if there were no gaps)
+ * @pre 0 <= @c pos <= number_of_distinct_elements
+ * @return Rank in the array of nodes considering valid nodes and gaps
+ * @post 0 <= @c return <= number_of_elements
+ * @sa get_real_rank()
+ */
+ size_type get_shifted_rank(const size_type pos, const int index) const
+ {
+ // Heuristic.
+ if (beg_partition[index] <= pos and pos < beg_partition[index+1])
+ return pos + rank_shift[index];
+ else
+ // Called rarely, do not hinder inlining.
+ return get_shifted_rank_loop(pos,index);
+ }
+
+ /** @brief Helper method of get_shifted_rank: in case the given
+ index in get_shifted_rank is not correct, look for it and
+ then calculate the rank
+ * @param pos Rank in the array of nodes considering only valid nodes
+ * @param index Partition which the rank should have belong to
+ * if there were no gaps
+ * @return Rank in the array of nodes considering valid nodes and gaps
+ */
+ size_type get_shifted_rank_loop(const size_type pos, int index) const
+ {
+ while (pos >= beg_partition[index+1])
+ ++index;
+ while (pos < beg_partition[index])
+ --index;
+ _GLIBCXX_PARALLEL_ASSERT(0 <= index && index < num_threads);
+ return pos + rank_shift[index];
+ }
+ };
+
+ /** @brief Helper class of nodes_initializer: access an array of
+ * nodes with no gaps
+ *
+ * Get absolute positions in an array of nodes taking into account
+ * that there are no gaps in it. @sa ranker_gaps */
+ class ranker_no_gaps
+ {
+ /** @brief Renaming of tree's size_type */
+ typedef typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::size_type size_type;
+
+ public:
+ /** @brief Convert a rank in the array of nodes considering
+ * valid nodes and gaps, to the corresponding considering only
+ * the valid nodes
+ *
+ * As there are no gaps in this case, get_shifted_rank() and
+ * get_real_rank() are synonyms and make no change on pos
+ * @param pos Rank in the array of nodes considering valid nodes and gaps
+ * @param index Partition which the rank belongs to, unused here
+ * @return Rank in the array of nodes considering only the valid nodes */
+ size_type get_real_rank(const size_type pos, const int index) const
+ {
+ return pos;
+ }
+
+ /** @brief Inverse of get_real_rank: Convert a rank in the array
+ * of nodes considering only valid nodes, to the corresponding
+ * considering valid nodes and gaps
+ *
+ * As there are no gaps in this case, get_shifted_rank() and
+ * get_real_rank() are synonyms and make no change on pos
+ * @param pos Rank in the array of nodes considering only valid nodes
+ * @param index Partition which the rank belongs to, unused here
+ * @return Rank in the array of nodes considering valid nodes and gaps
+ */
+ size_type get_shifted_rank(const size_type pos, const int index) const
+ {
+ return pos;
+ }
+ };
+
+
+ /** @brief Helper comparator class: Invert a binary comparator
+ * @param _Comp Comparator to invert
+ * @param _Iterator Iterator to the elements to compare */
+ template<typename _Comp, typename _Iterator>
+ class gr_or_eq
+ {
+ /** @brief Renaming value_type of _Iterator */
+ typedef typename std::iterator_traits<_Iterator>::value_type value_type;
+
+ /** @brief Comparator to be inverted */
+ const _Comp comp;
+
+ public:
+ /** @brief Constructor
+ * @param c Comparator */
+ gr_or_eq(const _Comp& c) : comp(c) { }
+
+ /** @brief Operator()
+ * @param a First value to compare
+ * @param b Second value to compare */
+ bool operator()(const value_type& a, const value_type& b) const
+ {
+ if (not (comp(_KeyOfValue()(a), _KeyOfValue()(b))))
+ return true;
+ return false;
+ }
+ };
+
+ /** @brief Helper comparator class: Passed as a parameter of
+ list_partition to check that a sequence is sorted
+ * @param _InputIterator Iterator to the elements to compare
+ * @param _CompIsSorted Comparator to check for sortedness */
+ template<typename _InputIterator, typename _CompIsSorted>
+ class is_sorted_functor
+ {
+ /** @brief Element to compare with (first parameter of comp) */
+ _InputIterator prev;
+
+ /** @brief Comparator to check for sortedness */
+ const _CompIsSorted comp;
+
+ /** @brief Sum up the history of the operator() of this
+ * comparator class Its value is true if all calls to comp from
+ * this class have returned true. It is false otherwise */
+ bool sorted;
+
+ public:
+ /** @brief Constructor
+ *
+ * Sorted is set to true
+ * @param first Element to compare with the first time the
+ * operator() is called
+ * @param c Comparator to check for sortednes */
+ is_sorted_functor(const _InputIterator first, const _CompIsSorted c)
+ : prev(first), comp(c), sorted(true) { }
+
+ /** @brief Operator() with only one explicit parameter. Updates
+ the class member @c prev and sorted.
+ * @param it Iterator to the element which must be compared to
+ * the element pointed by the the class member @c prev */
+ void operator()(const _InputIterator it)
+ {
+ if (sorted and it != prev and comp(_KeyOfValue()(*it),_KeyOfValue()(*prev)))
+ sorted = false;
+ prev = it;
+ }
+
+ /** @brief Query method for sorted
+ * @return Current value of sorted */
+ bool is_sorted() const
+ {
+ return sorted;
+ }
+ };
+
+ /** @brief Helper functor: sort the input based upon elements
+ instead of keys
+ * @param KeyComparator Comparator for the key of values */
+ template<typename KeyComparator>
+ class ValueCompare
+ : public std::binary_function<value_type, value_type, bool>
+ {
+ /** @brief Comparator for the key of values */
+ const KeyComparator comp;
+
+ public:
+ /** @brief Constructor
+ * @param c Comparator for the key of values */
+ ValueCompare(const KeyComparator& c): comp(c) { }
+
+ /** @brief Operator(): Analogous to comp but for values and not keys
+ * @param v1 First value to compare
+ * @param v2 Second value to compare
+ * @return Result of the comparison */
+ bool operator()(const value_type& v1, const value_type& v2) const
+ { return comp(_KeyOfValue()(v1),_KeyOfValue()(v2)); }
+ };
+
+ /** @brief Helper comparator: compare a key with the key in a node
+ * @param _Comparator Comparator for keys */
+ template<typename _Comparator>
+ struct compare_node_key
+ {
+ /** @brief Comparator for keys */
+ const _Comparator& c;
+
+ /** @brief Constructor
+ * @param _c Comparator for keys */
+ compare_node_key(const _Comparator& _c) : c(_c) { }
+
+ /** @brief Operator() with the first parameter being a node
+ * @param r Node whose key is to be compared
+ * @param k Key to be compared
+ * @return Result of the comparison */
+ bool operator()(const _Rb_tree_node_ptr r, const key_type& k) const
+ { return c(base_type::_S_key(r),k); }
+
+ /** @brief Operator() with the second parameter being a node
+ * @param k Key to be compared
+ * @param r Node whose key is to be compared
+ * @return Result of the comparison */
+ bool operator()(const key_type& k, const _Rb_tree_node_ptr r) const
+ { return c(k, base_type::_S_key(r)); }
+ };
+
+ /** @brief Helper comparator: compare a key with the key of a value pointed by an iterator
+ * @param _Comparator Comparator for keys */
+ template<typename _Iterator, typename _Comparator>
+ struct compare_value_key
+ {
+ /** @brief Comparator for keys */
+ const _Comparator& c;
+
+ /** @brief Constructor
+ * @param _c Comparator for keys */
+ compare_value_key(const _Comparator& _c) : c(_c){ }
+
+ /** @brief Operator() with the first parameter being an iterator
+ * @param v Iterator to the value whose key is to be compared
+ * @param k Key to be compared
+ * @return Result of the comparison */
+ bool operator()(const _Iterator& v, const key_type& k) const
+ { return c(_KeyOfValue()(*v),k); }
+
+ /** @brief Operator() with the second parameter being an iterator
+ * @param k Key to be compared
+ * @param v Iterator to the value whose key is to be compared
+ * @return Result of the comparison */
+ bool operator()(const key_type& k, const _Iterator& v) const
+ { return c(k, _KeyOfValue()(*v)); }
+ };
+
+ /** @brief Helper class of _Rb_tree to avoid some symmetric code
+ in tree operations */
+ struct LeftRight
+ {
+ /** @brief Obtain the conceptual left child of a node
+ * @param parent Node whose child must be obtained
+ * @return Reference to the child node */
+ static _Rb_tree_node_base*& left(_Rb_tree_node_base* parent)
+ { return parent->_M_left; }
+
+ /** @brief Obtain the conceptual right child of a node
+ * @param parent Node whose child must be obtained
+ * @return Reference to the child node */
+ static _Rb_tree_node_base*& right(_Rb_tree_node_base* parent)
+ { return parent->_M_right; }
+ };
+
+ /** @brief Helper class of _Rb_tree to avoid some symmetric code
+ in tree operations: inverse the symmetry
+ * @param S Symmetry to inverse
+ * @sa LeftRight */
+ template<typename S>
+ struct Opposite
+ {
+ /** @brief Obtain the conceptual left child of a node, inversing
+ the symmetry
+ * @param parent Node whose child must be obtained
+ * @return Reference to the child node */
+ static _Rb_tree_node_base*& left(_Rb_tree_node_base* parent)
+ { return S::right(parent);}
+
+ /** @brief Obtain the conceptual right child of a node,
+ inversing the symmetry
+ * @param parent Node whose child must be obtained
+ * @return Reference to the child node */
+ static _Rb_tree_node_base*& right(_Rb_tree_node_base* parent)
+ { return S::left(parent);}
+ };
+
+ /** @brief Inverse symmetry of LeftRight */
+ typedef Opposite<LeftRight> RightLeft;
+
+ /** @brief Helper comparator to compare value pointers, so that
+ the value is taken
+ * @param Comparator Comparator for values
+ * @param _ValuePtr Pointer to values */
+ template<typename Comparator, typename _ValuePtr>
+ class PtrComparator : public std::binary_function<_ValuePtr, _ValuePtr, bool>
+ {
+ /** @brief Comparator for values */
+ Comparator comp;
+
+ public:
+ /** @brief Constructor
+ * @param comp Comparator for values */
+ PtrComparator(Comparator comp) : comp(comp) { }
+
+ /** @brief Operator(): compare the values instead of the pointers
+ * @param v1 Pointer to the first element to compare
+ * @param v2 Pointer to the second element to compare */
+ bool operator()(const _ValuePtr& v1, const _ValuePtr& v2) const
+ { return comp(*v1,*v2); }
+ };
+
+ /** @brief Iterator whose elements are pointers
+ * @param value_type Type pointed by the pointers */
+ template<typename _ValueTp>
+ class PtrIterator
+ {
+ public:
+ /** @brief The iterator category is random access iterator */
+ typedef typename std::random_access_iterator_tag iterator_category;
+ typedef _ValueTp value_type;
+ typedef size_t difference_type;
+ typedef value_type* ValuePtr;
+ typedef ValuePtr& reference;
+ typedef value_type** pointer;
+
+ /** @brief Element accessed by the iterator */
+ value_type** ptr;
+
+ /** @brief Trivial constructor */
+ PtrIterator() { }
+
+ /** @brief Constructor from an element */
+ PtrIterator(const ValuePtr& __i) : ptr(&__i) { }
+
+ /** @brief Constructor from a pointer */
+ PtrIterator(const pointer& __i) : ptr(__i) { }
+
+ /** @brief Copy constructor */
+ PtrIterator(const PtrIterator<value_type>& __i) : ptr(__i.ptr) { }
+
+ reference
+ operator*() const
+ { return **ptr; }
+
+ ValuePtr
+ operator->() const
+ { return *ptr; }
+
+ /** @brief Bidirectional iterator requirement */
+ PtrIterator&
+ operator++()
+ {
+ ++ptr;
+ return *this;
+ }
+
+ /** @brief Bidirectional iterator requirement */
+ PtrIterator
+ operator++(int)
+ { return PtrIterator(ptr++); }
+
+ /** @brief Bidirectional iterator requirement */
+ PtrIterator&
+ operator--()
+ {
+ --ptr;
+ return *this;
+ }
+
+ /** @brief Bidirectional iterator requirement */
+ PtrIterator
+ operator--(int)
+ { return PtrIterator(ptr--); }
+
+ /** @brief Random access iterator requirement */
+ reference
+ operator[](const difference_type& __n) const
+ { return *ptr[__n]; }
+
+ /** @brief Random access iterator requirement */
+ PtrIterator&
+ operator+=(const difference_type& __n)
+ {
+ ptr += __n;
+ return *this;
+ }
+
+ /** @brief Random access iterator requirement */
+ PtrIterator
+ operator+(const difference_type& __n) const
+ { return PtrIterator(ptr + __n); }
+
+ /** @brief Random access iterator requirement */
+ PtrIterator&
+ operator-=(const difference_type& __n)
+ {
+ ptr -= __n;
+ return *this;
+ }
+
+ /** @brief Random access iterator requirement */
+ PtrIterator
+ operator-(const difference_type& __n) const
+ { return PtrIterator(ptr - __n); }
+
+ /** @brief Random access iterator requirement */
+ difference_type
+ operator-(const PtrIterator<value_type>& iter) const
+ { return ptr - iter.ptr; }
+
+ /** @brief Random access iterator requirement */
+ difference_type
+ operator+(const PtrIterator<value_type>& iter) const
+ { return ptr + iter.ptr; }
+
+ /** @brief Allow assignment of an element ValuePtr to the iterator */
+ PtrIterator<value_type>& operator=(const ValuePtr sptr)
+ {
+ ptr = &sptr;
+ return *this;
+ }
+
+ PtrIterator<value_type>& operator=(const PtrIterator<value_type>& piter)
+ {
+ ptr = piter.ptr;
+ return *this;
+ }
+
+ bool operator==(const PtrIterator<value_type>& piter)
+ { return ptr == piter.ptr; }
+
+ bool operator!=(const PtrIterator<value_type>& piter)
+ { return ptr != piter.ptr; }
+
+ };
+
+
+ /** @brief Bulk insertion helper: synchronization and construction
+ of the tree bottom up */
+ struct concat_problem
+ {
+ /** @brief Root of a tree.
+ *
+ * Input: Middle node to concatenate two subtrees. Out: Root of
+ * the resulting concatenated tree. */
+ _Rb_tree_node_ptr t;
+
+ /** @brief Black height of @c t */
+ int black_h;
+
+ /** @brief Synchronization variable.
+ *
+ * \li READY_YES: the root of the tree can be concatenated with
+ * the result of the children concatenation problems (both of
+ * them have finished).
+ * \li READY_NOT: at least one of the children
+ * concatenation_problem have not finished */
+ int is_ready;
+
+ /** @brief Parent concatenation problem to solve when @c
+ is_ready = READY_YES */
+ concat_problem* par_problem;
+
+ /** @brief Left concatenation problem */
+ concat_problem* left_problem;
+
+ /** @brief Right concatenation problem */
+ concat_problem* right_problem;
+
+ /** @brief Value NO for the synchronization variable. */
+ static const int READY_NO = 0;
+
+ /** @brief Value YES for the synchronization variable. */
+ static const int READY_YES = 1;
+
+ /** @brief Trivial constructor.
+ *
+ * Initialize the synchronization variable to not ready. */
+ concat_problem(): is_ready(READY_NO) { }
+
+ /** @brief Constructor.
+ *
+ * Initialize the synchronization variable to not ready.
+ * @param _t Root of a tree.
+ * @param _black_h Black height of @c _t
+ * @param _par_problem Parent concatenation problem to solve
+ * when @c is_ready = READY_YES
+ */
+ concat_problem(const _Rb_tree_node_ptr _t, const int _black_h, concat_problem* _par_problem):
+ t(_t),
+ black_h(_black_h),
+ is_ready(READY_NO),
+ par_problem(_par_problem)
+ {
+ // The root of an insertion problem must be black.
+ if (t != NULL and t->_M_color == std::_S_red)
+ {
+ t->_M_color = std::_S_black;
+ ++black_h;
+ }
+ }
+ };
+
+
+ /** @brief Bulk insertion helper: insertion of a sequence of
+ elements in a subtree
+ @invariant t, pos_beg and pos_end will not change after initialization
+ */
+ struct insertion_problem
+ {
+ /** @brief Renaming of _Rb_tree @c size_type */
+ typedef typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::size_type size_type;
+
+ /** @brief Root of the tree where the elements are to be inserted */
+ _Rb_tree_node_ptr t;
+
+ /** @brief Position of the first node in the array of nodes to
+ be inserted into @c t */
+ size_type pos_beg;
+
+ /** @brief Positition of the first node in the array of nodes
+ that won't be inserted into @c t */
+ size_type pos_end;
+
+ /** @brief Partition in the array of nodes of @c pos_beg and @c
+ pos_end (must be the same for both, and so gaps are
+ avoided) */
+ int array_partition;
+
+ /** @brief Concatenation problem to solve once the insertion
+ problem is finished */
+ concat_problem* conc;
+
+ /** @brief Trivial constructor. */
+ insertion_problem()
+ { }
+
+ /** @brief Constructor.
+ * @param b Position of the first node in the array of nodes to
+ * be inserted into @c _conc->t
+ * @param e Position of the first node in the array of nodes
+ * that won't be inserted into @c _conc->t
+ * @param array_p Partition in the array of nodes of @c b and @c e
+ * @param _conc Concatenation problem to solve once the
+ * insertion problem is finished
+ */
+ insertion_problem(const size_type b, const size_type e, const int array_p, concat_problem* _conc)
+ : t(_conc->t), pos_beg(b), pos_end(e), array_partition(array_p), conc(_conc)
+ {
+ _GLIBCXX_PARALLEL_ASSERT(pos_beg <= pos_end);
+
+ //The root of an insertion problem must be black!!
+ _GLIBCXX_PARALLEL_ASSERT(t == NULL or t->_M_color != std::_S_red);
+ }
+ };
+
+
+ /** @brief Main bulk construction and insertion helper method
+ * @param __first First element in a sequence to be added into the tree
+ * @param __last End of the sequence of elements to be added into the tree
+ * @param is_construction If true, the tree was empty and so, this
+ * is constructed. Otherwise, the elements are added to an
+ * existing tree.
+ * @param strictly_less_or_less_equal Comparator to deal
+ * transparently with repetitions with respect to the uniqueness
+ * of the wrapping container
+ * The input sequence is preprocessed so that the bulk
+ * construction or insertion can be performed
+ * efficiently. Essentially, the sequence is checked for
+ * sortedness and iterators to the middle of the structure are
+ * saved so that afterwards the sequence can be processed
+ * effectively in parallel. */
+ template<typename _InputIterator, typename StrictlyLessOrLessEqual>
+ void
+ _M_bulk_insertion_construction(const _InputIterator __first, const _InputIterator __last, const bool is_construction, StrictlyLessOrLessEqual strictly_less_or_less_equal)
+ {
+ Timing<_timing_tag> t;
+
+ t.tic();
+
+ thread_index_t num_threads = get_max_threads();
+ size_type n;
+ size_type beg_partition[num_threads+1];
+ _InputIterator access[num_threads+1];
+ beg_partition[0] = 0;
+ bool is_sorted= is_sorted_distance_accessors(__first, __last, access, beg_partition,n, num_threads, std::__iterator_category(__first));
+
+ t.tic("is_sorted");
+
+ if (not is_sorted)
+ {
+ _M_not_sorted_bulk_insertion_construction(access, beg_partition, n, num_threads, is_construction, strictly_less_or_less_equal);
+ }
+ else
+ {
+ // The vector must be moved... all ranges must have at least
+ // one element, or make just sequential???
+ if (static_cast<size_type>(num_threads) > n)
+ {
+ int j = 1;
+ for (int i = 1; i <= num_threads; ++i)
+ {
+ if (beg_partition[j-1] != beg_partition[i])
+ {
+ beg_partition[j] = beg_partition[i];
+ access[j] = access[i];
+ ++j;
+ }
+ }
+ num_threads = static_cast<thread_index_t>(n);
+ }
+
+ if (is_construction)
+ _M_sorted_bulk_construction(access, beg_partition, n, num_threads, strictly_less_or_less_equal);
+ else
+ _M_sorted_bulk_insertion(access, beg_partition, n, num_threads, strictly_less_or_less_equal);
+ }
+
+ t.tic("main work");
+
+ t.print();
+ }
+
+ /** @brief Bulk construction and insertion helper method on an
+ * input sequence which is not sorted
+ *
+ * The elements are copied, according to the copy policy, in order
+ * to be sorted. Then the
+ * _M_not_sorted_bulk_insertion_construction() method is called
+ * appropiately
+ * @param access Array of iterators of size @c num_threads +
+ * 1. Each position contains the first element in each subsequence
+ * to be added into the tree.
+ * @param beg_partition Array of positions of size @c num_threads
+ * + 1. Each position contains the rank of the first element in
+ * each subsequence to be added into the tree.
+ * @param n Size of the sequence to be inserted
+ * @param num_threads Number of threads and corresponding
+ * subsequences in which the insertion work is going to be shared
+ * @param is_construction If true, the tree was empty and so, this
+ * is constructed. Otherwise, the elements are added to an
+ * existing tree.
+ * @param strictly_less_or_less_equal Comparator to deal transparently with repetitions with respect to the uniqueness of the wrapping container */
+ template<typename _InputIterator, typename StrictlyLessOrLessEqual>
+ void
+ _M_not_sorted_bulk_insertion_construction(_InputIterator* access,
+ size_type* beg_partition,
+ const size_type n,
+ const thread_index_t num_threads,
+ const bool is_construction,
+ StrictlyLessOrLessEqual strictly_less_or_less_equal)
+ {
+ // Copy entire elements. In the case of a map, we would be
+ // copying the pair. Therefore, the copy should be reconsidered
+ // when objects are big. Essentially two cases:
+ // - The key is small: make that the pair, is a pointer to data
+ // instead of a copy to it
+ // - The key is big: we simply have a pointer to the iterator
+#if _GLIBCXX_TREE_FULL_COPY
+ nc_value_type* v = static_cast<nc_value_type*> (::operator new(sizeof(nc_value_type)*(n+1)));
+
+ uninitialized_copy_from_accessors(access, beg_partition, v, num_threads);
+
+ _M_not_sorted_bulk_insertion_construction<nc_value_type, nc_value_type*, ValueCompare<_Compare> >
+ (beg_partition, v, ValueCompare<_Compare>(base_type::_M_impl._M_key_compare), n, num_threads, is_construction, strictly_less_or_less_equal);
+#else
+ // For sorting, we cannot use the new PtrIterator because we
+ // want the pointers to be exchanged and not the elements.
+ typedef PtrComparator<ValueCompare<_Compare>, nc_value_type*> this_ptr_comparator;
+ nc_value_type** v = static_cast<nc_value_type**> (::operator new(sizeof(nc_value_type*)*(n+1)));
+
+ uninitialized_ptr_copy_from_accessors(access, beg_partition, v, num_threads);
+
+ _M_not_sorted_bulk_insertion_construction<nc_value_type*, PtrIterator<nc_value_type>, this_ptr_comparator>
+ (beg_partition, v, this_ptr_comparator(ValueCompare<_Compare>(base_type::_M_impl._M_key_compare)), n, num_threads, is_construction, strictly_less_or_less_equal);
+#endif
+ }
+
+ /** @brief Bulk construction and insertion helper method on an
+ * input sequence which is not sorted
+ *
+ * The elements are sorted and its accessors calculated. Then,
+ * _M_sorted_bulk_construction() or _M_sorted_bulk_insertion() is
+ * called.
+ * @param beg_partition Array of positions of size @c num_threads
+ * + 1. Each position contains the rank of the first element in
+ * each subsequence to be added into the tree.
+ * @param v Array of elements to be sorted (copy of the original sequence).
+ * @param comp Comparator to be used for sorting the elements
+ * @param n Size of the sequence to be inserted
+ * @param num_threads Number of threads and corresponding
+ * subsequences in which the insertion work is going to be shared
+ * @param is_construction If true, _M_sorted_bulk_construction()
+ * is called. Otherwise, _M_sorted_bulk_insertion() is called.
+ * @param strictly_less_or_less_equal Comparator to deal
+ * transparently with repetitions with respect to the uniqueness
+ * of the wrapping container
+ */
+ template<typename ElementsToSort, typename IteratorSortedElements, typename Comparator, typename StrictlyLessOrLessEqual>
+ void
+ _M_not_sorted_bulk_insertion_construction(size_type* beg_partition, ElementsToSort* v, Comparator comp, const size_type n, thread_index_t num_threads, const bool is_construction, StrictlyLessOrLessEqual strictly_less_or_less_equal)
+ {
+ // The accessors have been calculated for the non sorted.
+ Timing<_timing_tag> t;
+
+ t.tic();
+
+ num_threads = static_cast<thread_index_t>(std::min<size_type>(num_threads, n));
+
+ std::stable_sort(v, v+n, comp);
+
+ t.tic("sort");
+
+ IteratorSortedElements sorted_access[num_threads+1];
+ range_accessors(IteratorSortedElements(v), IteratorSortedElements(v+n), sorted_access, beg_partition, n, num_threads, std::__iterator_category(v));
+
+ t.tic("range_accessors");
+
+ // Partial template specialization not available.
+ if (is_construction)
+ _M_sorted_bulk_construction(sorted_access, beg_partition, n, num_threads, strictly_less_or_less_equal);
+ else
+ _M_sorted_bulk_insertion(sorted_access, beg_partition, n, num_threads, strictly_less_or_less_equal);
+ delete v;
+
+ t.tic("actual construction or insertion");
+
+ t.print();
+ }
+
+ /** @brief Construct a tree sequentially using the parallel routine
+ * @param r_array Array of nodes from which to take the nodes to
+ * build the tree
+ * @param pos_beg Position of the first node in the array of nodes
+ * to be part of the tree
+ * @param pos_end Position of the first node in the array of nodes
+ * that will not be part of the tree
+ * @param black_h Black height of the resulting tree (out)
+ */
+ static _Rb_tree_node_ptr
+ simple_tree_construct(_Rb_tree_node_ptr* r_array, const size_type pos_beg, const size_type pos_end, int& black_h)
+ {
+ if (pos_beg == pos_end)
+ {
+ black_h = 0;
+ return NULL;
+ }
+ if (pos_beg+1 == pos_end)
+ {
+ // It is needed, not only for efficiency but because the
+ // last level in our tree construction is red.
+ make_leaf(r_array[pos_beg], black_h);
+ return r_array[pos_beg];
+ }
+
+ // Dummy b_p
+ size_type b_p[2];
+ b_p[0] = 0;
+ b_p[1] = pos_end - pos_beg;
+ _Rb_tree_node_ptr* r= r_array + pos_beg;
+ size_type length = pos_end - pos_beg;
+
+ ranker_no_gaps rank;
+ nodes_initializer<ranker_no_gaps> nodes_init(r, length, 1, rank);
+
+ black_h = nodes_init.get_height();
+
+ size_type split = nodes_init.get_shifted_splitting_point();
+ for (size_type i = 0; i < split; ++i)
+ nodes_init.link_complete(r[i],0);
+
+ for (size_type i = split; i < length; ++i)
+ nodes_init.link_incomplete(r[i],0);
+
+ _Rb_tree_node_ptr t = nodes_init.get_root();
+ _GLIBCXX_PARALLEL_ASSERT(rb_verify_tree(t));
+ _GLIBCXX_PARALLEL_ASSERT(t->_M_color == std::_S_black);
+ return t;
+ }
+
+
+ /** @brief Allocation of an array of nodes and initilization of
+ their value fields from an input sequence. Done in parallel.
+ * @param access Array of iterators of size @c num_threads +
+ * 1. Each position contains the first value in the subsequence to
+ * be copied into the corresponding tree node.
+ * @param beg_partition Array of positions of size @c num_threads
+ * + 1. Each position contains the rank of the first element in
+ * the subsequence from which to copy the data to initialize the
+ * nodes.
+ * @param n Size of the sequence and the array of nodes to be allocated.
+ * @param num_threads Number of threads and corresponding
+ * subsequences in which the allocation and initialization work is
+ * going to be shared
+ */
+ template<typename _Iterator>
+ _Rb_tree_node_ptr* _M_unsorted_bulk_allocation_and_initialization(const _Iterator* access, const size_type* beg_partition, const size_type n, const thread_index_t num_threads)
+ {
+ _Rb_tree_node_ptr* r = static_cast<_Rb_tree_node_ptr*> (::operator new (sizeof(_Rb_tree_node_ptr)*(n+1)));
+
+ // Allocate and initialize the nodes (don't check for uniqueness
+ // because the sequence is not necessarily sorted.
+#pragma omp parallel num_threads(num_threads)
+ {
+#if USE_PAPI
+ PAPI_register_thread();
+#endif
+
+ int iam = omp_get_thread_num();
+ _Iterator it = access[iam];
+ size_type i = beg_partition[iam];
+ while (it!= access[iam+1])
+ {
+ r[i] = base_type::_M_create_node(*it);
+ ++i;
+ ++it;
+ }
+ }
+ return r;
+ }
+
+
+ /** @brief Allocation of an array of nodes and initilization of
+ * their value fields from an input sequence. Done in
+ * parallel. Besides, the sequence is checked for uniqueness while
+ * copying the elements, and if there are repetitions, gaps within
+ * the partitions are created.
+ *
+ * An extra ghost node pointer is reserved in the array to ease
+ * comparisons later while linking the nodes
+ * @pre The sequence is sorted.
+ * @param access Array of iterators of size @c num_threads +
+ * 1. Each position contains the first value in the subsequence to
+ * be copied into the corresponding tree node.
+ * @param beg_partition Array of positions of size @c num_threads
+ * + 1. Each position contains the rank of the first element in
+ * the subsequence from which to copy the data to initialize the
+ * nodes.
+ * @param rank_shift Array of size @c num_threads + 1 containing
+ * the number of accumulated gaps at the beginning of each
+ * partition
+ * @param n Size of the sequence and the array of nodes (-1) to be
+ * allocated.
+ * @param num_threads Number of threads and corresponding
+ * subsequences in which the allocation and initialization work is
+ * going to be shared
+ * @param strictly_less_or_less_equal Comparator to deal
+ * transparently with repetitions with respect to the uniqueness
+ * of the wrapping container
+ */
+ template<typename _Iterator, typename StrictlyLessOrLessEqual>
+ _Rb_tree_node_ptr* _M_sorted_bulk_allocation_and_initialization(_Iterator* access, size_type* beg_partition, size_type* rank_shift, const size_type n, thread_index_t& num_threads, StrictlyLessOrLessEqual strictly_less_or_less_equal)
+ {
+ // Ghost node at the end to avoid extra comparisons in nodes_initializer.
+ _Rb_tree_node_ptr* r = static_cast<_Rb_tree_node_ptr*> (::operator new (sizeof(_Rb_tree_node_ptr)*(n+1)));
+ r[n] = NULL;
+
+ // Dealing with repetitions (EFFICIENCY ISSUE).
+ _Iterator access_copy[num_threads+1];
+ for (int i = 0; i <= num_threads; ++i)
+ access_copy[i] = access[i];
+ // Allocate and initialize the nodes
+#pragma omp parallel num_threads(num_threads)
+ {
+#if USE_PAPI
+ PAPI_register_thread();
+#endif
+ thread_index_t iam = omp_get_thread_num();
+ _Iterator prev = access[iam];
+ size_type i = beg_partition[iam];
+ _Iterator it = prev;
+ if (iam != 0)
+ {
+ --prev;
+ // Dealing with repetitions (CORRECTNESS ISSUE).
+ while (it!= access_copy[iam+1] and not strictly_less_or_less_equal(_KeyOfValue()(*prev), _KeyOfValue()(*it)))
+ {
+ _GLIBCXX_PARALLEL_ASSERT(not base_type::_M_impl._M_key_compare(_KeyOfValue()(*it),_KeyOfValue()(*prev)));
+ ++it;
+ }
+ access[iam] = it;
+ if (it != access_copy[iam+1]){
+ r[i] = base_type::_M_create_node(*it);
+ ++i;
+ prev=it;
+ ++it;
+ }
+ //}
+ }
+ else
+ {
+ r[i] = base_type::_M_create_node(*prev);
+ ++i;
+ ++it;
+ }
+ while (it!= access_copy[iam+1])
+ {
+ /***** Dealing with repetitions (CORRECTNESS ISSUE) *****/
+ if (strictly_less_or_less_equal(_KeyOfValue()(*prev),_KeyOfValue()(*it)))
+ {
+ r[i] = base_type::_M_create_node(*it);
+ ++i;
+ prev=it;
+ }
+ else{
+ _GLIBCXX_PARALLEL_ASSERT(not base_type::_M_impl._M_key_compare(_KeyOfValue()(*it),_KeyOfValue()(*prev)));
+ }
+ ++it;
+ }
+ /***** Dealing with repetitions (EFFICIENCY ISSUE) *****/
+ rank_shift[iam+1] = beg_partition[iam+1] - i;
+ }
+ /***** Dealing with repetitions (EFFICIENCY ISSUE) *****/
+ rank_shift[0] = 0;
+ /* Guarantee that there are no empty intervals.
+ - If an empty interval is found, is joined with the previous one
+ (the rank_shift of the previous is augmented with all the new
+ repetitions)
+ */
+ thread_index_t i = 1;
+ while (i <= num_threads and rank_shift[i] != (beg_partition[i] - beg_partition[i-1]))
+ {
+ rank_shift[i] += rank_shift[i-1];
+ ++i;
+ }
+ if (i <= num_threads)
+ {
+ thread_index_t j = i - 1;
+ while (true)
+ {
+ do
+ {
+ rank_shift[j] += rank_shift[i];
+ ++i;
+ } while (i <= num_threads and rank_shift[i] == (beg_partition[i] - beg_partition[i-1]));
+
+ beg_partition[j] = beg_partition[i-1];
+ access[j] = access[i-1];
+ if (i > num_threads) break;
+ ++j;
+
+ // Initialize with the previous.
+ rank_shift[j] = rank_shift[j-1];
+ }
+ num_threads = j;
+ }
+ return r;
+
+ }
+
+ /** @brief Allocation of an array of nodes and initilization of
+ * their value fields from an input sequence.
+ *
+ * The allocation and initialization is done in parallel. Besides,
+ * the sequence is checked for uniqueness while copying the
+ * elements. However, in contrast to
+ * _M_sorted_bulk_allocation_and_initialization(), if there are
+ * repetitions, no gaps within the partitions are created. To do
+ * so efficiently, some extra memory is needed to compute a prefix
+ * sum.
+ * @pre The sequence is sorted.
+ * @param access Array of iterators of size @c num_threads +
+ * 1. Each position contains the first value in the subsequence to
+ * be copied into the corresponding tree node.
+ * @param beg_partition Array of positions of size @c num_threads
+ * + 1. Each position contains the rank of the first element in
+ * the subsequence from which to copy the data to initialize the
+ * nodes.
+ * @param n Size of the sequence and the array of nodes (-1) to be
+ * allocated.
+ * @param num_threads Number of threads and corresponding
+ * subsequences in which the allocation and initialization work is
+ * going to be shared
+ * @param strictly_less_or_less_equal Comparator to deal
+ * transparently with repetitions with respect to the uniqueness
+ * of the wrapping container
+ */
+ template<typename _Iterator, typename StrictlyLessOrLessEqual>
+ _Rb_tree_node_ptr* _M_sorted_no_gapped_bulk_allocation_and_initialization(_Iterator* access, size_type* beg_partition, size_type& n, const thread_index_t num_threads, StrictlyLessOrLessEqual strictly_less_or_less_equal)
+ {
+ size_type* sums = static_cast<size_type*> (::operator new (sizeof(size_type)*n));
+ // Allocate and initialize the nodes
+ /* try
+ {*/
+#pragma omp parallel num_threads(num_threads)
+ {
+#if USE_PAPI
+ PAPI_register_thread();
+#endif
+ int iam = omp_get_thread_num();
+ _Iterator prev = access[iam];
+ size_type i = beg_partition[iam];
+ _Iterator it = prev;
+ if (iam !=0)
+ {
+ --prev;
+
+ // First iteration here, to update accessor in case was
+ // equal to the last element of the previous range
+
+ // Dealing with repetitions (CORRECTNESS ISSUE).
+ if (strictly_less_or_less_equal(_KeyOfValue()(*prev),_KeyOfValue()(*it)))
+ {
+ sums[i] = 0;
+ prev=it;
+ }
+ else
+ {
+ sums[i] = 1;
+ }
+ ++i;
+ ++it;
+ }
+ else
+ {
+ sums[i] = 0;
+ ++i;
+ ++it;
+ }
+ while (it!= access[iam+1])
+ {
+ // Dealing with repetitions (CORRECTNESS ISSUE).
+ if (strictly_less_or_less_equal(_KeyOfValue()(*prev),_KeyOfValue()(*it)))
+ {
+ sums[i] = 0;
+ prev=it;
+ }
+ else
+ sums[i] = 1;
+ ++i;
+ ++it;
+ }
+ }
+ // Should be done in parallel.
+ partial_sum(sums,sums + n, sums);
+
+ n -= sums[n-1];
+ _Rb_tree_node_ptr* r = static_cast<_Rb_tree_node_ptr*> (::operator new (sizeof(_Rb_tree_node_ptr)*(n+1)));
+ r[n]=0;
+
+#pragma omp parallel num_threads(num_threads)
+ {
+#if USE_PAPI
+ PAPI_register_thread();
+#endif
+ int iam = omp_get_thread_num();
+ _Iterator it = access[iam];
+ size_type i = beg_partition[iam];
+ size_type j = i;
+ size_type before = 0;
+ if (iam > 0)
+ {
+ before = sums[i-1];
+ j -= sums[i-1];
+ }
+ beg_partition[iam] = j;
+ while (it!= access[iam+1])
+ {
+ while (it!= access[iam+1] and sums[i]!=before)
+ {
+ before = sums[i];
+ ++i;
+ ++it;
+ }
+ if (it!= access[iam+1])
+ {
+ r[j] = base_type::_M_create_node(*it);
+ ++j;
+ ++i;
+ ++it;
+ }
+ }
+
+ }
+ beg_partition[num_threads] = n;
+
+ // Update beginning of partitions.
+ ::operator delete(sums);
+ return r;
+ }
+
+ /** @brief Main bulk construction method: perform the actual
+ initialization, allocation and finally node linking once the
+ input sequence has already been preprocessed.
+ * @param access Array of iterators of size @c num_threads +
+ * 1. Each position contains the first value in the subsequence to
+ * be copied into the corresponding tree node.
+ * @param beg_partition Array of positions of size @c num_threads
+ * + 1. Each position contains the rank of the first element in
+ * the subsequence from which to copy the data to initialize the
+ * nodes.
+ * @param n Size of the sequence and the array of nodes (-1) to be
+ * allocated.
+ * @param num_threads Number of threads and corresponding
+ * subsequences in which the work is going to be shared
+ * @param strictly_less_or_less_equal Comparator to deal
+ * transparently with repetitions with respect to the uniqueness
+ * of the wrapping container
+ */
+ template<typename _Iterator, typename StrictlyLessOrLessEqual>
+ void
+ _M_sorted_bulk_construction(_Iterator* access, size_type* beg_partition, const size_type n, thread_index_t num_threads, StrictlyLessOrLessEqual strictly_less_or_less_equal)
+ {
+ Timing<_timing_tag> t;
+
+ // Dealing with repetitions (EFFICIENCY ISSUE).
+ size_type rank_shift[num_threads+1];
+
+ t.tic();
+
+ _Rb_tree_node_ptr* r = _M_sorted_bulk_allocation_and_initialization(access, beg_partition, rank_shift, n, num_threads, strictly_less_or_less_equal);
+
+ t.tic("bulk allocation and initialization");
+
+ // Link the tree appropiately.
+ // Dealing with repetitions (EFFICIENCY ISSUE).
+ ranker_gaps rank(beg_partition, rank_shift, num_threads);
+ nodes_initializer<ranker_gaps> nodes_init(r, n - rank_shift[num_threads], num_threads, rank);
+ size_type split = nodes_init.get_shifted_splitting_point();
+
+#pragma omp parallel num_threads(num_threads)
+ {
+#if USE_PAPI
+ PAPI_register_thread();
+#endif
+ int iam = omp_get_thread_num();
+ size_type beg = beg_partition[iam];
+ // Dealing with repetitions (EFFICIENCY ISSUE).
+ size_type end = beg_partition[iam+1] - (rank_shift[iam+1] - rank_shift[iam]);
+ if (split >= end)
+ {
+ for (size_type i = beg; i < end; ++i)
+ {
+ nodes_init.link_complete(r[i],iam);
+ }
+ }
+ else
+ {
+ if (split <= beg)
+ {
+ for (size_type i = beg; i < end; ++i)
+ nodes_init.link_incomplete(r[i],iam);
+ }
+ else
+ {
+ for (size_type i = beg; i < split; ++i)
+ nodes_init.link_complete(r[i],iam);
+ for (size_type i = split; i < end; ++i)
+ nodes_init.link_incomplete(r[i],iam);
+ }
+ }
+ }
+ // If the execution reachs this point, there has been no
+ // exception, and so the structure can be initialized.
+
+ // Join the tree laid on the array of ptrs with the header node.
+ // Dealing with repetitions (EFFICIENCY ISSUE).
+ base_type::_M_impl._M_node_count = n - rank_shift[num_threads];
+ base_type::_M_impl._M_header._M_left = r[0];
+ thread_index_t with_element = num_threads;
+ while ((beg_partition[with_element] - beg_partition[with_element-1]) == (rank_shift[with_element] - rank_shift[with_element-1]))
+ {
+ --with_element;
+ }
+ base_type::_M_impl._M_header._M_right = r[beg_partition[with_element] - (rank_shift[with_element] - rank_shift[with_element-1]) - 1];
+ base_type::_M_impl._M_header._M_parent = nodes_init.get_root();
+ nodes_init.get_root()->_M_parent= &base_type::_M_impl._M_header;
+
+ t.tic("linking nodes");
+ ::operator delete(r);
+
+ t.tic("delete array of pointers");
+ t.print();
+ }
+
+
+ /** @brief Main bulk insertion method: perform the actual
+ initialization, allocation and finally insertion once the
+ input sequence has already been preprocessed.
+ * @param access Array of iterators of size @c num_threads +
+ * 1. Each position contains the first value in the subsequence to
+ * be copied into the corresponding tree node.
+ * @param beg_partition Array of positions of size @c num_threads
+ * + 1. Each position contains the rank of the first element in
+ * the subsequence from which to copy the data to initialize the
+ * nodes.
+ * @param k Size of the sequence to be inserted (including the
+ * possible repeated elements among the sequence itself and
+ * against those elements already in the tree)
+ * @param num_threads Number of threads and corresponding
+ * subsequences in which the work is going to be shared
+ * @param strictly_less_or_less_equal Comparator to deal
+ * transparently with repetitions with respect to the uniqueness
+ * of the wrapping container
+ */
+ template<typename _Iterator, typename StrictlyLessOrLessEqual>
+ void
+ _M_sorted_bulk_insertion(_Iterator* access, size_type* beg_partition, size_type k, thread_index_t num_threads, StrictlyLessOrLessEqual strictly_less_or_less_equal)
+ {
+ _GLIBCXX_PARALLEL_ASSERT((size_type)num_threads <= k);
+ Timing<_timing_tag> t;
+
+ t.tic();
+
+ // num_thr-1 problems in the upper part of the tree
+ // num_thr problems to further parallelize
+ std::vector<size_type> existing(num_threads,0);
+#if _GLIBCXX_TREE_INITIAL_SPLITTING
+ /***** Dealing with repetitions (EFFICIENCY ISSUE) *****/
+ size_type rank_shift[num_threads+1];
+
+ // Need to create them dynamically because they are so erased
+ concat_problem* conc[2*num_threads-1];
+#endif
+ _Rb_tree_node_ptr* r;
+ /***** Dealing with repetitions (EFFICIENCY ISSUE) *****/
+ if (not strictly_less_or_less_equal(base_type::_S_key(base_type::_M_root()),base_type::_S_key(base_type::_M_root()) ))
+ {
+ // Unique container
+ // Set 1 and 2 could be done in parallel ...
+ // 1. Construct the nodes with their corresponding data
+#if _GLIBCXX_TREE_INITIAL_SPLITTING
+ r = _M_sorted_bulk_allocation_and_initialization(access, beg_partition, rank_shift, k, num_threads, strictly_less_or_less_equal);
+ t.tic("bulk allocation and initialization");
+#else
+ r = _M_sorted_no_gapped_bulk_allocation_and_initialization(access, beg_partition, k, num_threads, strictly_less_or_less_equal);
+#endif
+ }
+ else
+ {
+ // Not unique container.
+ r = _M_unsorted_bulk_allocation_and_initialization(access, beg_partition, k, num_threads);
+#if _GLIBCXX_TREE_INITIAL_SPLITTING
+ // Trivial initialization of rank_shift.
+ for (int i=0; i <= num_threads; ++i)
+ rank_shift[i] = 0;
+#endif
+ }
+#if _GLIBCXX_TREE_INITIAL_SPLITTING
+ // Calculate position of last element to be inserted: must be
+ // done now, or otherwise becomes messy.
+
+ /***** Dealing with
+ repetitions (EFFICIENCY ISSUE) *****/
+ size_type last = beg_partition[num_threads] - (rank_shift[num_threads] - rank_shift[num_threads - 1]);
+
+ t.tic("last element to be inserted");
+
+ //2. Split the tree according to access in num_threads parts
+ //Initialize upper concat_problems
+ //Allocate them dinamically because they are afterwards so erased
+ for (int i=0; i < (2*num_threads-1); ++i)
+ {
+ conc[i] = new concat_problem ();
+ }
+ concat_problem* root_problem = _M_bulk_insertion_initialize_upper_problems(conc, 0, num_threads, NULL);
+
+ // The first position of access and the last are ignored, so we
+ // have exactly num_threads subtrees.
+ bool before = omp_get_nested();
+ omp_set_nested(true);
+ _M_bulk_insertion_split_tree_by_pivot(static_cast<_Rb_tree_node_ptr>(base_type::_M_root()), r, access, beg_partition, rank_shift, 0, num_threads-1, conc, num_threads, strictly_less_or_less_equal);
+ omp_set_nested(before);
+
+ // Construct upper tree with the first elements of ranges if
+ // they are NULL We cannot do this by default because they could
+ // be repeated and would not be checked.
+ size_type r_s = 0;
+ for (int pos = 1; pos < num_threads; ++pos)
+ {
+ _GLIBCXX_PARALLEL_ASSERT(conc[(pos-1)*2]->t == NULL or conc[pos*2-1]->t == NULL or strictly_less_or_less_equal(base_type::_S_key(base_type::_S_maximum(conc[(pos-1)*2]->t)), base_type::_S_key(conc[pos*2-1]->t)));
+ _GLIBCXX_PARALLEL_ASSERT(conc[pos*2]->t == NULL or conc[pos*2-1]->t == NULL or strictly_less_or_less_equal( base_type::_S_key(conc[pos*2-1]->t), base_type::_S_key(base_type::_S_minimum(conc[pos*2]->t))));
+ /***** Dealing with repetitions (CORRECTNESS ISSUE) *****/
+
+ // The first element of the range is the root.
+ if (conc[pos*2-1]->t == NULL or (not(strictly_less_or_less_equal(base_type::_S_key(static_cast<_Rb_tree_node_ptr>(conc[pos*2-1]->t)), _KeyOfValue()(*access[pos])))))
+ {
+ // There was not a candidate element
+ // or
+ // Exists an initialized position in the array which
+ // corresponds to conc[pos*2-1]->t */
+ if (conc[pos*2-1]->t == NULL)
+ {
+ size_t np = beg_partition[pos];
+ _GLIBCXX_PARALLEL_ASSERT(conc[(pos-1)*2]->t == NULL or strictly_less_or_less_equal(base_type::_S_key(base_type::_S_maximum(conc[(pos-1)*2]->t)), base_type::_S_key(r[np])));
+ _GLIBCXX_PARALLEL_ASSERT(conc[pos*2]->t == NULL or strictly_less_or_less_equal( base_type::_S_key(r[np]), base_type::_S_key(base_type::_S_minimum(conc[pos*2]->t))));
+ conc[pos*2-1]->t = r[np];
+ r[np]->_M_color = std::_S_black;
+ ++base_type::_M_impl._M_node_count;
+ }
+ else
+ {
+ base_type::_M_destroy_node(r[beg_partition[pos]]);
+ }
+ ++(access[pos]);
+ ++(beg_partition[pos]);
+ ++r_s;
+ }
+ _GLIBCXX_PARALLEL_ASSERT(conc[(pos-1)*2]->t == NULL or conc[(pos-1)*2]->t->_M_color == std::_S_black);
+ /***** Dealing with repetitions (EFFICIENCY ISSUE) *****/
+ rank_shift[pos] += r_s;
+ }
+ /***** Dealing with repetitions (EFFICIENCY ISSUE) *****/
+ rank_shift[num_threads] += r_s;
+#else
+ concat_problem root_problem_on_stack(static_cast<_Rb_tree_node_ptr>(base_type::_M_root()), black_height(static_cast<_Rb_tree_node_ptr>(base_type::_M_root())), NULL);
+ concat_problem * root_problem = &root_problem_on_stack;
+ size_type last = k;
+#endif
+
+ t.tic("sorted_no_gapped...");
+
+ // 3. Split the range according to tree and create
+ // 3. insertion/concatenation problems to be solved in parallel
+#if _GLIBCXX_TREE_DYNAMIC_BALANCING
+ size_type min_problem = (k/num_threads) / (log2(k/num_threads + 1)+1);
+#else
+ size_type min_problem = base_type::size() + k;
+#endif
+
+ RestrictedBoundedConcurrentQueue<insertion_problem>* ins_problems[num_threads];
+
+#pragma omp parallel num_threads(num_threads)
+ {
+ int num_thread = omp_get_thread_num();
+ ins_problems[num_thread] = new RestrictedBoundedConcurrentQueue<insertion_problem>(2*(log2(base_type::size())+1));
+#if _GLIBCXX_TREE_INITIAL_SPLITTING
+ /***** Dealing with repetitions (EFFICIENCY ISSUE) *****/
+ size_type end_k_thread = beg_partition[num_thread+1] - (rank_shift[num_thread+1] - rank_shift[num_thread]);
+ ins_problems[num_thread]->push_front(insertion_problem(beg_partition[num_thread], end_k_thread, num_thread, conc[num_thread*2]));
+#else
+ // size_type end_k_thread = beg_partition[num_thread+1];
+#endif
+ insertion_problem ip_to_solve;
+ bool change;
+
+#if _GLIBCXX_TREE_INITIAL_SPLITTING
+#pragma omp barrier
+#else
+#pragma omp single
+ ins_problems[num_thread]->push_front(insertion_problem(0, k, num_thread, root_problem));
+#endif
+
+ do
+ {
+ // First do own work.
+ while (ins_problems[num_thread]->pop_front(ip_to_solve))
+ {
+ _GLIBCXX_PARALLEL_ASSERT(ip_to_solve.pos_beg <= ip_to_solve.pos_end);
+ _M_bulk_insertion_split_sequence(r, ins_problems[num_thread], ip_to_solve, existing[num_thread], min_problem, strictly_less_or_less_equal);
+
+ }
+ yield();
+ change = false;
+
+ //Then, try to steal from others (and become own).
+ for (int i=1; i<num_threads; ++i)
+ {
+ if (ins_problems[(num_thread+i)%num_threads]->pop_back(ip_to_solve))
+ {
+ change = true;
+ _M_bulk_insertion_split_sequence(r, ins_problems[num_thread], ip_to_solve, existing[num_thread], min_problem, strictly_less_or_less_equal);
+ break;
+ }
+ }
+ } while (change);
+ }
+
+ t.tic("merging");
+
+ // Update root and sizes.
+ base_type::_M_root() = root_problem->t;
+ root_problem->t->_M_parent = &(base_type::_M_impl._M_header);
+ /***** Dealing with repetitions (EFFICIENCY ISSUE) *****/
+
+ // Add the k elements that wanted to be inserted, minus the ones
+ // that were repeated.
+#if _GLIBCXX_TREE_INITIAL_SPLITTING
+ base_type::_M_impl._M_node_count += (k - (rank_shift[num_threads]));
+#else
+ base_type::_M_impl._M_node_count += k;
+#endif
+ // Also then, take out the ones that were already existing in the tree.
+ for (int i = 0; i< num_threads; ++i)
+ {
+ base_type::_M_impl._M_node_count -= existing[i];
+ }
+ // Update leftmost and rightmost.
+ /***** Dealing with repetitions (EFFICIENCY ISSUE) *****/
+ if (not strictly_less_or_less_equal(base_type::_S_key(base_type::_M_root()), base_type::_S_key(base_type::_M_root()))){
+ // Unique container.
+ if (base_type::_M_impl._M_key_compare(_KeyOfValue()(*(access[0])), base_type::_S_key(base_type::_M_leftmost())))
+ base_type::_M_leftmost() = r[0];
+ if (base_type::_M_impl._M_key_compare(base_type::_S_key(base_type::_M_rightmost()), _KeyOfValue()(*(--access[num_threads]))))
+ base_type::_M_rightmost() = r[last - 1];
+ }
+ else{
+ if (strictly_less_or_less_equal(_KeyOfValue()(*(access[0])), base_type::_S_key(base_type::_M_leftmost())))
+ base_type::_M_leftmost() = base_type::_S_minimum(base_type::_M_root());
+ if (strictly_less_or_less_equal(base_type::_S_key(base_type::_M_rightmost()), _KeyOfValue()(*(--access[num_threads]))))
+ base_type::_M_rightmost() = base_type::_S_maximum(base_type::_M_root());
+ }
+
+
+
+
+#if _GLIBCXX_TREE_INITIAL_SPLITTING
+ // Delete root problem
+ delete root_problem;
+#endif
+
+ // Delete queues
+ for (int pos = 0; pos < num_threads; ++pos)
+ {
+ delete ins_problems[pos];
+ }
+
+ // Delete array of pointers
+ ::operator delete(r);
+
+ t.tic();
+ t.print();
+ }
+
+
+ /** @brief Divide a tree according to the splitter elements of a
+ * given sequence.
+ *
+ * The tree of the intial recursive call is divided in exactly
+ * num_threads partitions, some of which may be empty. Besides,
+ * some nodes may be extracted from it to afterwards concatenate
+ * the subtrees resulting from inserting the elements into it.
+ * This is done sequentially. It could be done in parallel but the
+ * performance is much worse.
+ * @param t Root of the tree to be splitted
+ * @param r Array of nodes to be inserted into the tree (here only
+ * used to look up its elements)
+ * @param access Array of iterators of size @c num_threads +
+ * 1. Each position contains the first value in the subsequence
+ * that has been copied into the corresponding tree node.
+ * @param beg_partition Array of positions of size @c num_threads
+ * + 1. Each position contains the rank of the first element in
+ * the array of nodes to be inserted.
+ * @param rank_shift Array of size @c num_threads + 1 containing
+ * the number of accumulated gaps at the beginning of each
+ * partition
+ * @param pos_beg First position in the access array to be
+ * considered to split @c t
+ * @param pos_end Last position (included) in the access array to
+ * be considered to split @c t
+ * @param conc Array of concatenation problems to be initialized
+ * @param num_threads Number of threads and corresponding
+ * subsequences in which the original sequence has been
+ * partitioned
+ * @param strictly_less_or_less_equal Comparator to deal
+ * transparently with repetitions with respect to the uniqueness
+ * of the wrapping container
+ */
+ template<typename _Iterator, typename StrictlyLessOrLessEqual>
+ void
+ _M_bulk_insertion_split_tree_by_pivot(_Rb_tree_node_ptr t, _Rb_tree_node_ptr* r, _Iterator* access, size_type* beg_partition, size_type* rank_shift, const size_type pos_beg, const size_type pos_end, concat_problem** conc, const thread_index_t num_threads, StrictlyLessOrLessEqual strictly_less_or_less_equal)
+ {
+ if (pos_beg == pos_end)
+ {
+ //Elements are in [pos_beg, pos_end]
+ conc[pos_beg*2]->t = t;
+ conc[pos_beg*2]->black_h = black_height(t);
+ force_black_root (conc[pos_beg*2]->t, conc[pos_beg*2]->black_h);
+ return;
+ }
+ if (t == 0)
+ {
+ for (size_type i = pos_beg; i < pos_end; ++i)
+ {
+ conc[i*2]->t = NULL;
+ conc[i*2]->black_h = 0;
+ conc[i*2+1]->t = NULL;
+ }
+ conc[pos_end*2]->t = NULL;
+ conc[pos_end*2]->black_h = 0;
+ return;
+ }
+
+ // Return the last pos, in which key >= (pos-1).
+ // Search in the range [pos_beg, pos_end]
+ size_type pos = std::upper_bound(access + pos_beg, access + pos_end + 1, base_type::_S_key(t), compare_value_key<_Iterator, _Compare>(base_type::_M_impl._M_key_compare)) - access;
+ if (pos != pos_beg)
+ {
+ --pos;
+ }
+ _GLIBCXX_PARALLEL_ASSERT(pos == 0 or not base_type::_M_impl._M_key_compare(base_type::_S_key(t), _KeyOfValue()(*access[pos])));
+
+
+ _Rb_tree_node_ptr ll, lr;
+ int black_h_ll, black_h_lr;
+ _Rb_tree_node_ptr rl, rr;
+ int black_h_rl, black_h_rr;
+
+ if (pos != pos_beg)
+ {
+ _Rb_tree_node_ptr prev = r[beg_partition[pos] - 1 - (rank_shift[pos] - rank_shift[pos - 1])];
+
+ _GLIBCXX_PARALLEL_ASSERT(strictly_less_or_less_equal(base_type::_S_key(prev), _KeyOfValue()(*access[pos])));
+
+ split(static_cast<_Rb_tree_node_ptr>(t->_M_left),
+ static_cast<const key_type&>(_KeyOfValue()(*access[pos])),
+ static_cast<const key_type&>(base_type::_S_key(prev)),
+ conc[pos*2-1]->t, ll, lr, black_h_ll, black_h_lr,
+ strictly_less_or_less_equal);
+
+ _M_bulk_insertion_split_tree_by_pivot(ll, r, access, beg_partition, rank_shift, pos_beg, pos-1, conc,num_threads, strictly_less_or_less_equal);
+ }
+ else
+ {
+ lr = static_cast<_Rb_tree_node_ptr>(t->_M_left);
+ black_h_lr = black_height (lr);
+ force_black_root (lr, black_h_lr);
+ }
+
+ if (pos != pos_end)
+ {
+ _Rb_tree_node_ptr prev = r[beg_partition[pos+1] - 1 - (rank_shift[pos+1] - rank_shift[pos])];
+
+ _GLIBCXX_PARALLEL_ASSERT(not base_type::_M_impl._M_key_compare(_KeyOfValue()(*access[pos+1]), base_type::_S_key(prev)));
+ _GLIBCXX_PARALLEL_ASSERT(strictly_less_or_less_equal(base_type::_S_key(prev), _KeyOfValue()(*access[pos+1])));
+
+ split(static_cast<_Rb_tree_node_ptr>(t->_M_right),
+ static_cast<const key_type&>(_KeyOfValue()(*access[pos+1])),
+ static_cast<const key_type&>(base_type::_S_key(prev)),
+ conc[pos*2+1]->t, rl, rr, black_h_rl, black_h_rr,
+ strictly_less_or_less_equal);
+
+ _M_bulk_insertion_split_tree_by_pivot(rr, r, access, beg_partition, rank_shift, pos+1, pos_end, conc,num_threads, strictly_less_or_less_equal);
+ }
+ else
+ {
+ rl = static_cast<_Rb_tree_node_ptr>(t->_M_right);
+ black_h_rl = black_height (rl);
+ force_black_root (rl, black_h_rl);
+ }
+
+ // When key(t) is equal to key(access[pos]) and no other key in
+ // the left tree satisfies the criteria to be conc[pos*2-1]->t,
+ // key(t) must be assigned to it to avoid repetitions.
+ // Therefore, we do not have a root parameter for the
+ // concatenate function and a new concatenate function must be
+ // provided.
+ if (pos != pos_beg and conc[pos*2-1]->t == NULL and not strictly_less_or_less_equal(_KeyOfValue()(*access[pos]), base_type::_S_key(t)))
+ {
+ conc[pos*2-1]->t = t;
+ t = NULL;
+ }
+ concatenate(t, lr, rl, black_h_lr, black_h_rl, conc[pos*2]->t, conc[pos*2]->black_h);
+ }
+
+ /** @brief Divide the insertion problem until a leaf is reached or
+ * the problem is small.
+ *
+ * During the recursion, the right subproblem is queued, so that
+ * it can be handled by any thread. The left subproblem is
+ * divided recursively, and finally, solved right away
+ * sequentially.
+ * @param r Array of nodes containing the nodes to added into the tree
+ * @param ins_problems Pointer to a queue of insertion
+ * problems. The calling thread owns this queue, i.e. it is the
+ * only one to push elements, but other threads could pop elements
+ * from it in other methods.
+ * @param ip Current insertion problem to be solved
+ * @param existing Number of existing elements found when solving
+ * the insertion problem (out)
+ * @param min_problem Threshold size on the size of the insertion
+ * problem in which to stop recursion
+ * @param strictly_less_or_less_equal Comparator to deal
+ * transparently with repetitions with respect to the uniqueness
+ * of the wrapping container
+ */
+ template<typename StrictlyLessOrLessEqual>
+ void
+ _M_bulk_insertion_split_sequence(_Rb_tree_node_ptr* r, RestrictedBoundedConcurrentQueue<insertion_problem>* ins_problems, insertion_problem& ip, size_type& existing, const size_type min_problem, StrictlyLessOrLessEqual strictly_less_or_less_equal)
+ {
+ _GLIBCXX_PARALLEL_ASSERT(ip.t == ip.conc->t);
+ if (ip.t == NULL or (ip.pos_end- ip.pos_beg) <= min_problem)
+ {
+ // SOLVE PROBLEM SEQUENTIALLY
+ // Start solving the problem.
+ _GLIBCXX_PARALLEL_ASSERT(ip.pos_beg <= ip.pos_end);
+ _M_bulk_insertion_merge_concatenate(r, ip, existing, strictly_less_or_less_equal);
+ return;
+ }
+
+ size_type pos_beg_right;
+ size_type pos_end_left = divide(r, ip.pos_beg, ip.pos_end, base_type::_S_key(ip.t), pos_beg_right, existing, strictly_less_or_less_equal);
+
+ int black_h_l, black_h_r;
+ if (ip.t->_M_color == std::_S_black)
+ {
+ black_h_l = black_h_r = ip.conc->black_h - 1;
+ }
+ else
+ {
+ black_h_l = black_h_r = ip.conc->black_h;
+ }
+
+ // Right problem into the queue.
+ ip.conc->right_problem = new concat_problem(static_cast<_Rb_tree_node_ptr>(ip.t->_M_right), black_h_r, ip.conc);
+ ip.conc->left_problem = new concat_problem(static_cast<_Rb_tree_node_ptr>(ip.t->_M_left), black_h_l, ip.conc);
+
+ ins_problems->push_front(insertion_problem(pos_beg_right, ip.pos_end, ip.array_partition, ip.conc->right_problem));
+
+ // Solve left problem.
+ insertion_problem ip_left(ip.pos_beg, pos_end_left, ip.array_partition, ip.conc->left_problem);
+ _M_bulk_insertion_split_sequence(r, ins_problems, ip_left, existing, min_problem, strictly_less_or_less_equal);
+ }
+
+
+ /** @brief Insert a sequence of elements into a tree using a
+ * divide-and-conquer scheme.
+ *
+ * The problem is solved recursively and sequentially dividing the
+ * sequence to be inserted according to the root of the tree. This
+ * is done until a leaf is reached or the proportion of elements
+ * to be inserted is small. Finally, the two resulting trees are
+ * concatenated.
+ * @param r_array Array of nodes containing the nodes to be added
+ * into the tree (among others)
+ * @param t Root of the tree
+ * @param pos_beg Position of the first node in the array of
+ * nodes to be inserted into the tree
+ * @param pos_end Position of the first node in the array of
+ * nodes that will not be inserted into the tree
+ * @param existing Number of existing elements found while
+ * inserting the range [@c pos_beg, @c pos_end) (out)
+ * @param black_h Height of the tree @c t and of the resulting
+ * tree after the recursive calls (in and out)
+ * @param strictly_less_or_less_equal Comparator to deal
+ * transparently with repetitions with respect to the uniqueness
+ * of the wrapping container
+ * @return Resulting tree after the elements have been inserted
+ */
+ template<typename StrictlyLessOrLessEqual>
+ _Rb_tree_node_ptr _M_bulk_insertion_merge(_Rb_tree_node_ptr* r_array, _Rb_tree_node_ptr t, const size_type pos_beg, const size_type pos_end, size_type& existing, int& black_h, StrictlyLessOrLessEqual strictly_less_or_less_equal)
+ {
+#ifndef NDEBUG
+ int count;
+#endif
+ _GLIBCXX_PARALLEL_ASSERT(pos_beg<=pos_end);
+
+ // Leaf: a tree with the range must be constructed. Returns its
+ // height in black nodes and its root (in ip.t) If there is
+ // nothing to insert, we still need the height for balancing.
+ if (t == NULL)
+ {
+ if (pos_end == pos_beg) return NULL;
+ t = simple_tree_construct(r_array,pos_beg, pos_end, black_h);
+ _GLIBCXX_PARALLEL_ASSERT(rb_verify_tree(t,count));
+ return t;
+ }
+ if (pos_end == pos_beg)
+ return t;
+ if ((pos_end - pos_beg) <= (size_type)(black_h))
+ {
+ // Exponential size tree with respect the number of elements
+ // to be inserted.
+ for (size_type p = pos_beg; p < pos_end; ++p)
+ {
+ t = _M_insert_local(t, r_array[p], existing, black_h, strictly_less_or_less_equal);
+ }
+ _GLIBCXX_PARALLEL_ASSERT(rb_verify_tree(t,count));
+ return t;
+ }
+
+ size_type pos_beg_right;
+ size_type pos_end_left = divide(r_array, pos_beg, pos_end, base_type::_S_key(t), pos_beg_right, existing, strictly_less_or_less_equal);
+
+
+ int black_h_l, black_h_r;
+ if (t->_M_color == std::_S_black)
+ {
+ black_h_l = black_h_r = black_h - 1;
+ }
+ else
+ {
+ black_h_l = black_h_r = black_h;
+ }
+ force_black_root(t->_M_left, black_h_l);
+ _Rb_tree_node_ptr l = _M_bulk_insertion_merge(r_array, static_cast<_Rb_tree_node_ptr>(t->_M_left), pos_beg, pos_end_left, existing, black_h_l, strictly_less_or_less_equal);
+ force_black_root(t->_M_right, black_h_r);
+ _Rb_tree_node_ptr r = _M_bulk_insertion_merge(r_array, static_cast<_Rb_tree_node_ptr>(t->_M_right), pos_beg_right, pos_end, existing, black_h_r, strictly_less_or_less_equal);
+
+ concatenate(t, l, r, black_h_l, black_h_r, t, black_h);
+
+ return t;
+ }
+
+ /** @brief Solve a given insertion problem and all the parent
+ * concatenation problem that are ready to be solved.
+ *
+ * First, solve an insertion problem.
+
+ * Then, check if it is possible to solve the parent
+ * concatenation problem. If this is the case, solve it and go
+ * up recursively, as far as possible. Quit otherwise.
+ *
+ * @param r Array of nodes containing the nodes to be added into
+ * the tree (among others)
+ * @param ip Insertion problem to solve initially.
+ * @param existing Number of existing elements found while
+ * inserting the range defined by the insertion problem (out)
+ * @param strictly_less_or_less_equal Comparator to deal
+ * transparently with repetitions with respect to the uniqueness
+ * of the wrapping container
+ */
+ template<typename StrictlyLessOrLessEqual>
+ void _M_bulk_insertion_merge_concatenate(_Rb_tree_node_ptr* r, insertion_problem& ip, size_type& existing, StrictlyLessOrLessEqual strictly_less_or_less_equal)
+ {
+ concat_problem* conc = ip.conc;
+ _GLIBCXX_PARALLEL_ASSERT(ip.pos_beg <= ip.pos_end);
+
+ conc->t = _M_bulk_insertion_merge(r, ip.t, ip.pos_beg, ip.pos_end, existing, conc->black_h, strictly_less_or_less_equal);
+ _GLIBCXX_PARALLEL_ASSERT(conc->t == NULL or conc->t->_M_color == std::_S_black);
+
+ bool is_ready = true;
+ while (conc->par_problem != NULL and is_ready)
+ {
+ // Pre: exists left and right problem, so there is not a deadlock
+ if (compare_and_swap(&conc->par_problem->is_ready, concat_problem::READY_NO, concat_problem::READY_YES))
+ is_ready = false;
+
+ if (is_ready)
+ {
+ conc = conc->par_problem;
+ _GLIBCXX_PARALLEL_ASSERT(conc->left_problem!=NULL and conc->right_problem!=NULL);
+ _GLIBCXX_PARALLEL_ASSERT (conc->left_problem->black_h >=0 and conc->right_problem->black_h>=0);
+ // Finished working with the problems.
+ concatenate(conc->t, conc->left_problem->t, conc->right_problem->t, conc->left_problem->black_h, conc->right_problem->black_h, conc->t, conc->black_h);
+
+ delete conc->left_problem;
+ delete conc->right_problem;
+ }
+ }
+ }
+
+ // Begin of sorting, searching and related comparison-based helper methods.
+
+ /** @brief Check whether a random-access sequence is sorted, and
+ * calculate its size.
+ *
+ * @param __first Begin iterator of sequence.
+ * @param __last End iterator of sequence.
+ * @param dist Size of the sequence (out)
+ * @return sequence is sorted. */
+ template<typename _RandomAccessIterator>
+ bool
+ is_sorted_distance(const _RandomAccessIterator __first, const _RandomAccessIterator __last, size_type& dist, std::random_access_iterator_tag) const
+ {
+ gr_or_eq<_Compare, _RandomAccessIterator> geq(base_type::_M_impl._M_key_compare);
+ dist = __last - __first;
+
+ // In parallel.
+ return equal(__first + 1, __last, __first, geq);
+ }
+
+ /** @brief Check whether an input sequence is sorted, and
+ * calculate its size.
+ *
+ * The list partitioning tool is used so that all the work is
+ * done in only one traversal.
+ * @param __first Begin iterator of sequence.
+ * @param __last End iterator of sequence.
+ * @param dist Size of the sequence (out)
+ * @return sequence is sorted. */
+ template<typename _InputIterator>
+ bool
+ is_sorted_distance(const _InputIterator __first, const _InputIterator __last, size_type& dist, std::input_iterator_tag) const
+ {
+ dist = 1;
+ bool is_sorted = true;
+ _InputIterator it = __first;
+ _InputIterator prev = it++;
+ while (it != __last)
+ {
+ ++dist;
+ if (base_type::_M_impl._M_key_compare(_KeyOfValue()(*it),_KeyOfValue()(*prev)))
+ {
+ is_sorted = false;
+ ++it;
+ break;
+ }
+ prev = it;
+ ++it;
+ }
+ while (it != __last)
+ {
+ ++dist;
+ ++it;
+ }
+ return is_sorted;
+ }
+
+ /** @brief Check whether a random-access sequence is sorted,
+ * calculate its size, and obtain intermediate accessors to the
+ * sequence to ease parallelization.
+ *
+ * @param __first Begin iterator of sequence.
+ * @param __last End iterator of sequence.
+ * @param access Array of size @c num_pieces + 1 that defines @c
+ * num_pieces subsequences of the original sequence (out). Each
+ * position @c i will contain an iterator to the first element in
+ * the subsequence @c i.
+ * @param beg_partition Array of size @c num_pieces + 1 that
+ * defines @c num_pieces subsequences of the original sequence
+ * (out). Each position @c i will contain the rank of the first
+ * element in the subsequence @c i.
+ * @param dist Size of the sequence (out)
+ * @param num_pieces Number of pieces to generate.
+ * @return Sequence is sorted. */
+ template<typename _RandomAccessIterator>
+ bool
+ is_sorted_distance_accessors(const _RandomAccessIterator __first, const _RandomAccessIterator __last, _RandomAccessIterator* access, size_type* beg_partition, size_type& dist, thread_index_t& num_pieces, std::random_access_iterator_tag) const
+ {
+ bool is_sorted = is_sorted_distance(__first, __last, dist,std::__iterator_category(__first));
+ if (dist < (unsigned int) num_pieces)
+ num_pieces = dist;
+
+ // Do it opposite way to use accessors in equal function???
+ range_accessors(__first,__last, access, beg_partition, dist, num_pieces, std::__iterator_category(__first));
+ return is_sorted;
+ }
+
+ /** @brief Check whether an input sequence is sorted, calculate
+ * its size, and obtain intermediate accessors to the sequence to
+ * ease parallelization.
+ *
+ * The list partitioning tool is used so that all the work is
+ * done in only one traversal.
+ * @param __first Begin iterator of sequence.
+ * @param __last End iterator of sequence.
+ * @param access Array of size @c num_pieces + 1 that defines @c
+ * num_pieces subsequences of the original sequence (out). Each
+ * position @c i will contain an iterator to the first element in
+ * the subsequence @c i.
+ * @param beg_partition Array of size @c num_pieces + 1 that
+ * defines @c num_pieces subsequences of the original sequence
+ * (out). Each position @c i will contain the rank of the first
+ * element in the subsequence @c i.
+ * @param dist Size of the sequence (out)
+ * @param num_pieces Number of pieces to generate.
+ * @return Sequence is sorted. */
+ template<typename _InputIterator>
+ bool
+ is_sorted_distance_accessors(const _InputIterator __first, const _InputIterator __last, _InputIterator* access, size_type* beg_partition, size_type& dist, thread_index_t& num_pieces, std::input_iterator_tag) const
+ {
+ is_sorted_functor<_InputIterator, _Compare> sorted(__first, base_type::_M_impl._M_key_compare);
+ dist = list_partition(__first, __last, access, (beg_partition+1), num_pieces, sorted, 0);
+
+ // Calculate the rank of the begining each partition from the
+ // sequence sizes (what is stored at this point in beg_partition
+ // array).
+ beg_partition[0] = 0;
+ for (int i = 0; i < num_pieces; ++i)
+ {
+ beg_partition[i+1] += beg_partition[i];
+ }
+
+ return sorted.is_sorted();
+ }
+
+ /** @brief Make a full copy of the elements of a sequence
+ *
+ * The unitialized_copy method from the stl is called in parallel
+ * using the access array to point to the beginning of each
+ * partition
+ * @param access Array of size @c num_threads + 1 that defines @c
+ * num_threads subsequences. Each position @c i contains an
+ * iterator to the first element in the subsequence @c i.
+ * @param beg_partition Array of size @c num_threads + 1 that
+ * defines @c num_threads subsequences. Each position @c i
+ * contains the rank of the first element in the subsequence @c
+ * i.
+ * @param out Begin iterator of output sequence.
+ * @param num_threads Number of threads to use. */
+ template<typename _InputIterator, typename _OutputIterator>
+ static void
+ uninitialized_copy_from_accessors(_InputIterator* access, size_type* beg_partition, _OutputIterator out, const thread_index_t num_threads)
+ {
+#pragma omp parallel num_threads(num_threads)
+ {
+ int iam = omp_get_thread_num();
+ uninitialized_copy(access[iam], access[iam+1], out+beg_partition[iam]);
+ }
+ }
+
+ /** @brief Make a copy of the pointers of the elements of a sequence
+ * @param access Array of size @c num_threads + 1 that defines @c
+ * num_threads subsequences. Each position @c i contains an
+ * iterator to the first element in the subsequence @c i.
+ * @param beg_partition Array of size @c num_threads + 1 that
+ * defines @c num_threads subsequences. Each position @c i
+ * contains the rank of the first element in the subsequence @c
+ * i.
+ * @param out Begin iterator of output sequence.
+ * @param num_threads Number of threads to use. */
+ template<typename _InputIterator, typename _OutputIterator>
+ static void
+ uninitialized_ptr_copy_from_accessors(_InputIterator* access, size_type* beg_partition, _OutputIterator out, const thread_index_t num_threads)
+ {
+#pragma omp parallel num_threads(num_threads)
+ {
+ int iam = omp_get_thread_num();
+ _OutputIterator itout = out + beg_partition[iam];
+ for (_InputIterator it = access[iam]; it != access[iam+1]; ++it)
+ {
+ *itout = &(*it);
+ ++itout;
+ }
+ }
+ }
+
+ /** @brief Split a sorted node array in two parts according to a key.
+ *
+ * For unique containers, if the splitting key is in the array of
+ * nodes, the corresponding node is erased.
+ * @param r Array of nodes containing the nodes to split (among others)
+ * @param pos_beg Position of the first node in the array of
+ * nodes to be considered
+ * @param pos_end Position of the first node in the array of
+ * nodes to be not considered
+ * @param key Splitting key
+ * @param pos_beg_right Position of the first node in the
+ * resulting right partition (out)
+ * @param existing Number of existing elements before dividing
+ * (in) and after (out). Specificically, the counter is
+ * incremented by one for unique containers if the splitting key
+ * was already in the array of nodes.
+ * @param strictly_less_or_less_equal Comparator to deal
+ * transparently with repetitions with respect to the uniqueness
+ * of the wrapping container
+ * @return Position of the last node (not included) in the
+ * resulting left partition (out)
+ */
+ template<typename StrictlyLessOrLessEqual>
+ size_type
+ divide(_Rb_tree_node_ptr* r, const size_type pos_beg, const size_type pos_end, const key_type& key, size_type& pos_beg_right, size_type& existing, StrictlyLessOrLessEqual strictly_less_or_less_equal)
+ {
+ pos_beg_right = std::lower_bound(r + pos_beg, r + pos_end, key, compare_node_key<_Compare>(base_type::_M_impl._M_key_compare)) - r;
+
+ //Check if the element exists.
+ size_type pos_end_left = pos_beg_right;
+
+ // If r[pos_beg_right] is equal to key, must be erased
+ /***** Dealing with repetitions (CORRECTNESS ISSUE) *****/
+ _GLIBCXX_PARALLEL_ASSERT((pos_beg_right == pos_end) or not base_type::_M_impl._M_key_compare(base_type::_S_key(r[pos_beg_right]),key));
+ _GLIBCXX_PARALLEL_ASSERT((pos_beg_right + 1 >= pos_end) or strictly_less_or_less_equal(key, base_type::_S_key(r[pos_beg_right + 1])));
+ if (pos_beg_right != pos_end and not strictly_less_or_less_equal(key, base_type::_S_key(r[pos_beg_right])))
+ {
+ _M_destroy_node(r[pos_beg_right]);
+ r[pos_beg_right] = NULL;
+ ++pos_beg_right;
+ ++existing;
+ }
+ _GLIBCXX_PARALLEL_ASSERT(pos_end_left <= pos_beg_right and pos_beg_right <= pos_end and pos_end_left >= pos_beg);
+ return pos_end_left;
+ }
+
+
+ /** @brief Parallelization helper method: Given a random-access
+ sequence of known size, divide it into pieces of almost the
+ same size.
+ * @param __first Begin iterator of sequence.
+ * @param __last End iterator of sequence.
+ * @param access Array of size @c num_pieces + 1 that defines @c
+ * num_pieces subsequences. Each position @c i contains an
+ * iterator to the first element in the subsequence @c i.
+ * @param beg_partition Array of size @c num_pieces + 1 that
+ * defines @c num_pieces subsequences. Each position @c i
+ * contains the rank of the first element in the subsequence @c
+ * i.
+ * @param n Sequence size
+ * @param num_pieces Number of pieces. */
+ template<typename _RandomAccessIterator>
+ static void
+ range_accessors(const _RandomAccessIterator __first, const _RandomAccessIterator __last, _RandomAccessIterator* access, size_type* beg_partition, const size_type n, const thread_index_t num_pieces, std::random_access_iterator_tag)
+ {
+ access[0] = __first;
+ for (int i=1; i< num_pieces; ++i)
+ {
+ access[i] = access[i-1] + (__last-__first)/num_pieces;
+ beg_partition[i]= beg_partition[i-1]+ (__last-__first)/num_pieces;
+ }
+ beg_partition[num_pieces] = __last - access[num_pieces-1] + beg_partition[num_pieces-1];
+ access[num_pieces]= __last;
+ }
+
+ /** @brief Parallelization helper method: Given an input-access
+ sequence of known size, divide it into pieces of almost the
+ same size.
+ * @param __first Begin iterator of sequence.
+ * @param __last End iterator of sequence.
+ * @param access Array of size @c num_pieces + 1 that defines @c
+ * num_pieces subsequences. Each position @c i contains an
+ * iterator to the first element in the subsequence @c i.
+ * @param beg_partition Array of size @c num_pieces + 1 that
+ * defines @c num_pieces subsequences. Each position @c i
+ * contains the rank of the first element in the subsequence @c
+ * i.
+ * @param n Sequence size
+ * @param num_pieces Number of pieces. */
+ template<typename _InputIterator>
+ static void
+ range_accessors(const _InputIterator __first, const _InputIterator __last, _InputIterator* access, size_type* beg_partition, const size_type n, const thread_index_t num_pieces, std::input_iterator_tag)
+ {
+ access[0] = __first;
+ _InputIterator it= __first;
+ for (int i=1; i< num_pieces; ++i)
+ {
+ for (int j=0; j< n/num_pieces; ++j)
+ ++it;
+ access[i] = it;
+ beg_partition[i]= n/num_pieces + beg_partition[i-1];
+ }
+ access[num_pieces] = __last;
+ beg_partition[num_pieces] = n - (num_pieces-1)*(n/num_pieces) + beg_partition[num_pieces-1];
+ }
+
+ /** @brief Initialize an array of concatenation problems for bulk
+ insertion. They are linked as a tree with (end - beg) leaves.
+ * @param conc Array of concatenation problems pointers to initialize.
+ * @param beg Rank of the first leave to initialize
+ * @param end Rank of the last (not included) leave to initialize
+ * @param parent Pointer to the parent concatenation problem.
+ */
+ static concat_problem*
+ _M_bulk_insertion_initialize_upper_problems(concat_problem** conc, const int beg, const int end, concat_problem* parent)
+ {
+ if (beg + 1 == end)
+ {
+ conc[2*beg]->par_problem = parent;
+ return conc[2*beg];
+ }
+
+ int size = end - beg;
+ int mid = beg + size/2;
+ conc[2*mid-1]->par_problem = parent;
+ conc[2*mid-1]->left_problem = _M_bulk_insertion_initialize_upper_problems(conc, beg, mid, conc[2*mid-1]);
+ conc[2*mid-1]->right_problem = _M_bulk_insertion_initialize_upper_problems(conc, mid, end, conc[2*mid-1]);
+ return conc[2*mid-1];
+ }
+
+
+ /** @brief Determine black height of a node recursively.
+ * @param t Node.
+ * @return Black height of the node. */
+ static int
+ black_height(const _Rb_tree_node_ptr t)
+ {
+ if (t == NULL) return 0;
+ int bh = black_height (static_cast<const _Rb_tree_node_ptr> (t->_M_left));
+ if (t->_M_color == std::_S_black)
+ ++bh;
+ return bh;
+ }
+
+ /** @brief Color a leaf black
+ * @param t Leaf pointer.
+ * @param black_h Black height of @c t (out) */
+ static void
+ make_black_leaf(const _Rb_tree_node_ptr t, int& black_h)
+ {
+ black_h = 0;
+ if (t != NULL)
+ {
+ _GLIBCXX_PARALLEL_ASSERT(t->_M_left == NULL and t->_M_right == NULL);
+ black_h = 1;
+ t->_M_color = std::_S_black;
+ }
+ }
+
+ /** @brief Color a node black.
+ * @param t Node to color black.
+ * @param black_h Black height of @c t (out) */
+ static void
+ make_leaf(const _Rb_tree_node_ptr t, int& black_h)
+ {
+ _GLIBCXX_PARALLEL_ASSERT(t != NULL);
+ black_h = 1;
+ t->_M_color = std::_S_black;
+ t->_M_left = NULL;
+ t->_M_right = NULL;
+ }
+
+ /** @brief Construct a tree from a root, a left subtree and a
+ right subtree.
+ * @param root Root of constructed tree.
+ * @param l Root of left subtree.
+ * @param r Root of right subtree.
+ * @pre @c l, @c r are black.
+ */
+ template<typename S>
+ static _Rb_tree_node_ptr
+ plant(const _Rb_tree_node_ptr root, const _Rb_tree_node_ptr l, const _Rb_tree_node_ptr r)
+ {
+ S::left(root) = l;
+ S::right(root) = r;
+ if (l != NULL)
+ l->_M_parent = root;
+ if (r != NULL)
+ r->_M_parent = root;
+ root->_M_color = std::_S_red;
+ return root;
+ }
+
+ /** @brief Concatenate two red-black subtrees using and an
+ intermediate node, which might be NULL
+ * @param root Intermediate node.
+ * @param l Left subtree.
+ * @param r Right subtree.
+ * @param black_h_l Black height of left subtree.
+ * @param black_h_r Black height of right subtree.
+ * @param t Tree resulting of the concatenation
+ * @param black_h Black height of the resulting tree
+ * @pre Left tree is higher than left tree
+ * @post @c t is correct red-black tree with height @c black_h.
+ */
+ void
+ concatenate(_Rb_tree_node_ptr root, _Rb_tree_node_ptr l, _Rb_tree_node_ptr r, int black_h_l, int black_h_r, _Rb_tree_node_ptr& t, int& black_h) const
+ {
+#ifndef NDEBUG
+ int count = 0, count1 = 0, count2 = 0;
+#endif
+ _GLIBCXX_PARALLEL_ASSERT(rb_verify_tree(l, count1));
+ _GLIBCXX_PARALLEL_ASSERT(rb_verify_tree(r, count2));
+
+ _GLIBCXX_PARALLEL_ASSERT(l != NULL ? l->_M_color != std::_S_red and black_h_l > 0 : black_h_l == 0);
+ _GLIBCXX_PARALLEL_ASSERT(r != NULL ? r->_M_color != std::_S_red and black_h_r > 0 : black_h_r == 0);
+
+ if (black_h_l > black_h_r)
+ if (root != NULL)
+ concatenate<LeftRight>(root, l, r, black_h_l, black_h_r, t, black_h);
+ else
+ {
+ if (r == NULL)
+ {
+ t = l;
+ black_h = black_h_l;
+ }
+ else
+ {
+ // XXX SHOULD BE the same as extract_min but slower.
+ /*
+ root = static_cast<_Rb_tree_node_ptr>(_Rb_tree_node_base::_S_minimum(r));
+ split(r, _S_key(_Rb_tree_increment(root)), _S_key(root), root, t, r, black_h, black_h_r);
+ */
+ extract_min(r, root, r, black_h_r);
+ _GLIBCXX_PARALLEL_ASSERT(root != NULL);
+ concatenate<LeftRight>(root, l, r, black_h_l, black_h_r, t, black_h);
+ }
+ }
+ else
+ if (root != NULL)
+ concatenate<RightLeft>(root, r, l, black_h_r, black_h_l, t, black_h);
+ else
+ {
+ if (l == NULL)
+ {
+ t = r;
+ black_h = black_h_r;
+ }
+ else
+ {
+ // XXX SHOULD BE the same as extract_max but slower
+ /*
+ root = static_cast<_Rb_tree_node_ptr>(_Rb_tree_node_base::_S_maximum(l));
+ split(l, _S_key(root), _S_key(_Rb_tree_decrement(root)), root, l, t, black_h_l, black_h);
+ */
+ extract_max(l, root, l, black_h_l);
+ _GLIBCXX_PARALLEL_ASSERT(root != NULL);
+ concatenate<RightLeft>(root, r, l, black_h_r, black_h_l, t, black_h);
+ }
+ }
+#ifndef NDEBUG
+ if (root!=NULL) ++count1;
+ _GLIBCXX_PARALLEL_ASSERT(t == NULL or t->_M_color == std::_S_black);
+ bool b = rb_verify_tree(t, count);
+ if (not b){
+ _GLIBCXX_PARALLEL_ASSERT(false);
+ }
+ _GLIBCXX_PARALLEL_ASSERT(count1+count2 == count);
+#endif
+ }
+
+ /** @brief Concatenate two red-black subtrees using and a not NULL
+ * intermediate node.
+ *
+ * @c S is the symmetry parameter.
+ * @param rt Intermediate node.
+ * @param l Left subtree.
+ * @param r Right subtree.
+ * @param black_h_l Black height of left subtree.
+ * @param black_h_r Black height of right subtree.
+ * @param t Tree resulting of the concatenation
+ * @param black_h Black height of the resulting tree
+ * @pre Left tree is higher than right tree. @c rt != NULL
+ * @post @c t is correct red-black tree with height @c black_h.
+ */
+ template<typename S>
+ static void
+ concatenate(const _Rb_tree_node_ptr rt, _Rb_tree_node_ptr l, _Rb_tree_node_ptr r, int black_h_l, int black_h_r, _Rb_tree_node_ptr& t, int& black_h)
+ {
+ _Rb_tree_node_base* root = l;
+ _Rb_tree_node_ptr parent = NULL;
+ black_h = black_h_l;
+ _GLIBCXX_PARALLEL_ASSERT(black_h_l >= black_h_r);
+ while (black_h_l != black_h_r)
+ {
+ if (l->_M_color == std::_S_black)
+ --black_h_l;
+ parent = l;
+ l = static_cast<_Rb_tree_node_ptr>(S::right(l));
+ _GLIBCXX_PARALLEL_ASSERT((black_h_l == 0 and (l == NULL or l->_M_color == std::_S_red)) or (black_h_l != 0 and l != NULL));
+ _GLIBCXX_PARALLEL_ASSERT((black_h_r == 0 and (r == NULL or r->_M_color == std::_S_red)) or (black_h_r != 0 and r != NULL));
+ }
+ if (l != NULL and l->_M_color == std::_S_red)
+ {
+ //the root needs to be black
+ parent = l;
+ l = static_cast<_Rb_tree_node_ptr>(S::right(l));
+ }
+ _GLIBCXX_PARALLEL_ASSERT(l != NULL ? l->_M_color == std::_S_black : true);
+ _GLIBCXX_PARALLEL_ASSERT(r != NULL ? r->_M_color == std::_S_black : true);
+ t = plant<S>(rt, l, r);
+ t->_M_parent = parent;
+ if (parent != NULL)
+ {
+ S::right(parent) = t;
+ black_h += _Rb_tree_rebalance(t, root);
+ t = static_cast<_Rb_tree_node_ptr> (root);
+ }
+ else
+ {
+ ++black_h;
+ t->_M_color = std::_S_black;
+ }
+ _GLIBCXX_PARALLEL_ASSERT(t->_M_color == std::_S_black);
+ }
+
+ /** @brief Split a tree according to key in three parts: a left
+ * child, a right child and an intermediate node.
+ *
+ * Trees are concatenated once the recursive call returns. That
+ * is, from bottom to top (ie. smaller to larger), so the cost
+ * bounds for split hold.
+ * @param t Root of the tree to split.
+ * @param key Key to split according to.
+ * @param prev_k Key to split the intermediate node
+ * @param root Out parameter. If a node exists whose key is
+ * smaller or equal than @c key, but strictly larger than @c
+ * prev_k, this is returned. Otherwise, it is null.
+ * @param l Root of left subtree returned, nodes less than @c key.
+ * @param r Root of right subtree returned, nodes greater or
+ * equal than @c key.
+ * @param black_h_l Black height of the left subtree.
+ * @param black_h_r Black height of the right subtree.
+ * @param strictly_less_or_less_equal Comparator to deal
+ * transparently with repetitions with respect to the uniqueness
+ * of the wrapping container
+ * @return Black height of t */
+ template<typename StrictlyLessOrEqual>
+ int
+ split(_Rb_tree_node_ptr t, const key_type& key, const key_type& prev_k, _Rb_tree_node_ptr& root, _Rb_tree_node_ptr& l, _Rb_tree_node_ptr& r, int& black_h_l, int& black_h_r, StrictlyLessOrEqual strictly_less_or_less_equal) const
+ {
+ if (t != NULL)
+ {
+ // Must be initialized, in case we never go left!!!
+ root = NULL;
+ int h = split_not_null(t, key, prev_k, root, l, r, black_h_l, black_h_r, strictly_less_or_less_equal);
+#ifndef NDEBUG
+ _GLIBCXX_PARALLEL_ASSERT(l == NULL or base_type::_M_impl._M_key_compare(base_type::_S_key(base_type::_S_maximum(l)),key));
+ _GLIBCXX_PARALLEL_ASSERT(r == NULL or not base_type::_M_impl._M_key_compare(base_type::_S_key(base_type::_S_minimum(r)),key));
+ int count1, count2;
+ _GLIBCXX_PARALLEL_ASSERT(rb_verify_tree(l, count1));
+ _GLIBCXX_PARALLEL_ASSERT(rb_verify_tree(r, count2));
+ _GLIBCXX_PARALLEL_ASSERT(root == NULL or base_type::_M_impl._M_key_compare(prev_k, base_type::_S_key(root)) and not base_type::_M_impl._M_key_compare(key, base_type::_S_key(root)));
+ _GLIBCXX_PARALLEL_ASSERT(root != NULL or l==NULL or not base_type::_M_impl._M_key_compare(prev_k, base_type::_S_key(base_type::_S_maximum(l))));
+#endif
+ return h;
+ }
+
+ r = NULL;
+ root = NULL;
+ l = NULL;
+ black_h_r = 0;
+ black_h_l = 0;
+ return 0;
+ }
+
+ /** @brief Split a tree according to key in three parts: a left
+ * child, a right child and an intermediate node.
+ *
+ * @param t Root of the tree to split.
+ * @param key Key to split according to.
+ * @param prev_k Key to split the intermediate node
+ * @param root Out parameter. If a node exists whose key is
+ * smaller or equal than @c key, but strictly larger than @c
+ * prev_k, this is returned. Otherwise, it is null.
+ * @param l Root of left subtree returned, nodes less than @c key.
+ * @param r Root of right subtree returned, nodes greater or
+ * equal than @c key.
+ * @param black_h_l Black height of the left subtree.
+ * @param black_h_r Black height of the right subtree.
+ * @param strictly_less_or_equal Comparator to deal transparently
+ * with repetitions with respect to the uniqueness of the
+ * wrapping container
+ * @pre t != NULL
+ * @return Black height of t */
+ template<typename StrictlyLessOrEqual>
+ int
+ split_not_null(const _Rb_tree_node_ptr t, const key_type& key, const key_type& prev_k, _Rb_tree_node_ptr& root, _Rb_tree_node_ptr& l, _Rb_tree_node_ptr& r, int& black_h_l, int& black_h_r, StrictlyLessOrEqual strictly_less_or_equal) const
+ {
+ _GLIBCXX_PARALLEL_ASSERT (t != NULL);
+ int black_h, b_h;
+ int black_node = 0;
+ if (t->_M_color == std::_S_black)
+ ++black_node;
+ if (strictly_less_or_equal(key, base_type::_S_key(t)))
+ {
+ if (t->_M_left != NULL )
+ {
+ // t->M_right is at most one node
+ // go to the left
+ b_h = black_h = split_not_null( static_cast<_Rb_tree_node_ptr>(t->_M_left), key, prev_k, root, l, r, black_h_l, black_h_r, strictly_less_or_equal);
+ // Moin root and right subtree to already existing right
+ // half, leave left subtree.
+ force_black_root(t->_M_right, b_h);
+ concatenate(t, r, static_cast<_Rb_tree_node_ptr>(t->_M_right), black_h_r, b_h, r, black_h_r);
+ }
+ else
+ {
+ // t->M_right is at most one node
+ r = t;
+ black_h_r = black_node;
+ force_black_root(r, black_h_r);
+
+ black_h = 0;
+ l = NULL;
+ black_h_l = 0;
+ }
+ _GLIBCXX_PARALLEL_ASSERT(l == NULL or base_type::_M_impl._M_key_compare(base_type::_S_key(base_type::_S_maximum(l)),key));
+ _GLIBCXX_PARALLEL_ASSERT(r == NULL or not base_type::_M_impl._M_key_compare(base_type::_S_key(base_type::_S_minimum(r)),key));
+ }
+ else
+ {
+ if (t->_M_right != NULL )
+ {
+ // Go to the right.
+ if (strictly_less_or_equal(prev_k, base_type::_S_key(t)))
+ root = t;
+ b_h = black_h = split_not_null(static_cast<_Rb_tree_node_ptr>(t->_M_right), key, prev_k, root, l, r, black_h_l, black_h_r, strictly_less_or_equal);
+ // Join root and left subtree to already existing left
+ // half, leave right subtree.
+ force_black_root(t->_M_left, b_h);
+ if (root != t)
+ {
+ // There was another point where we went right.
+ concatenate(t, static_cast<_Rb_tree_node_ptr>(t->_M_left), l, b_h, black_h_l, l, black_h_l);
+ }
+ else
+ {
+ l = static_cast<_Rb_tree_node_ptr>(t->_M_left);
+ black_h_l = b_h;
+ }
+ _GLIBCXX_PARALLEL_ASSERT(l == NULL or base_type::_M_impl._M_key_compare(base_type::_S_key(base_type::_S_maximum(l)),key));
+ _GLIBCXX_PARALLEL_ASSERT(r == NULL or not base_type::_M_impl._M_key_compare(base_type::_S_key(base_type::_S_minimum(r)),key));
+ }
+ else
+ {
+ if (strictly_less_or_equal(prev_k, base_type::_S_key(t)))
+ {
+ root = t;
+ l= static_cast<_Rb_tree_node_ptr>(t->_M_left);
+ make_black_leaf(l, black_h_l);
+ _GLIBCXX_PARALLEL_ASSERT(l == NULL or base_type::_M_impl._M_key_compare(base_type::_S_key(base_type::_S_maximum(l)),key));
+ }
+ else
+ {
+ l= t;
+ black_h_l = black_node;
+ force_black_root(l, black_h_l);
+ _GLIBCXX_PARALLEL_ASSERT(l == NULL or base_type::_M_impl._M_key_compare(base_type::_S_key(base_type::_S_maximum(l)),key));
+ }
+
+ r = NULL;
+ black_h = 0;
+ black_h_r = 0;
+ }
+ }
+ return black_h + black_node;
+ }
+
+ /** @brief Color the root black and update the black height accordingly.
+ *
+ * @param t Root of the tree.
+ * @param black_h Black height of the tree @c t (out) */
+ static void force_black_root(_Rb_tree_node_base* t, int& black_h)
+ {
+ if (t != NULL and t->_M_color == std::_S_red)
+ {
+ t->_M_color = std::_S_black;
+ ++ black_h;
+ }
+ }
+
+ /** @brief Split the tree in two parts: the minimum element from a
+ tree (i.e. leftmost) and the rest (right subtree)
+ * @param t Root of the tree
+ * @param root Minimum element (out)
+ * @param r Right subtree: @c t - {@c root}
+ * @param black_h_r Black height of the right subtree.
+ * @return Black height of the original tree */
+ int
+ extract_min(const _Rb_tree_node_ptr t, _Rb_tree_node_ptr& root, _Rb_tree_node_ptr& r, int& black_h_r) const
+ {
+ _GLIBCXX_PARALLEL_ASSERT (t != NULL);
+ int black_h, b_h;
+ int black_node = 0;
+ if (t->_M_color == std::_S_black)
+ ++black_node;
+
+ if (t->_M_left != NULL )
+ {
+ // t->M_right is at most one node
+ // go to the left
+ b_h = black_h = extract_min( static_cast<_Rb_tree_node_ptr>(t->_M_left), root, r, black_h_r);
+
+ // Join root and right subtree to already existing right
+ // half, leave left subtree
+ force_black_root(t->_M_right, b_h);
+ concatenate(t, r, static_cast<_Rb_tree_node_ptr>(t->_M_right), black_h_r, b_h, r, black_h_r);
+ }
+ else
+ {
+ // t->M_right is at most one node
+ root = t;
+ if (t->_M_right == NULL)
+ {
+ r = NULL;
+ black_h_r = 0;
+ }
+ else
+ {
+ r = static_cast<_Rb_tree_node_ptr>(t->_M_right);
+ black_h_r = 1;
+ r->_M_color = std::_S_black;
+ }
+ black_h = 0;
+ }
+ return black_h + black_node;
+ }
+
+
+ /** @brief Split the tree in two parts: the greatest element from
+ a tree (i.e. rightmost) and the rest (left subtree)
+ * @param t Root of the tree
+ * @param root Maximum element (out)
+ * @param l Left subtree: @c t - {@c root}
+ * @param black_h_l Black height of the left subtree.
+ * @return Black height of the original tree */
+ int
+ extract_max(const _Rb_tree_node_ptr t, _Rb_tree_node_ptr& root, _Rb_tree_node_ptr& l, int& black_h_l) const
+ {
+ _GLIBCXX_PARALLEL_ASSERT (t != NULL);
+ int black_h, b_h;
+ int black_node = 0;
+ if (t->_M_color == std::_S_black)
+ ++black_node;
+
+ if (t->_M_right != NULL )
+ {
+ b_h = black_h = extract_max(static_cast<_Rb_tree_node_ptr>(t->_M_right), root, l, black_h_l);
+
+ // Join root and left subtree to already existing left half,
+ // leave right subtree.
+ force_black_root(t->_M_left, b_h);
+
+ concatenate(t, static_cast<_Rb_tree_node_ptr>(t->_M_left), l, b_h, black_h_l, l, black_h_l);
+ }
+ else
+ {
+ root = t;
+ if (t->_M_left == NULL)
+ {
+ l = NULL;
+ black_h_l = 0;
+ }
+ else
+ {
+ l = static_cast<_Rb_tree_node_ptr>(t->_M_left);
+ black_h_l = 1;
+ l->_M_color = std::_S_black;
+ }
+ black_h = 0;
+ }
+ return black_h + black_node;
+ }
+
+ /** @brief Split tree according to key in two parts: a left tree
+ * and a right subtree
+ *
+ * Trees are concatenated once the recursive call returns. That
+ * is, from bottom to top (ie. smaller to larger), so the cost
+ * bounds for split hold.
+ * @param t Root of the tree to split.
+ * @param key Key to split according to.
+ * @param l Root of left subtree returned, nodes less than @c key.
+ * @param r Root of right subtree returned, nodes greater than @c key.
+ * @param black_h_l Black height of the left subtree.
+ * @param black_h_r Black height of the right subtree.
+ * @return Black height of the original tree */
+ int
+ split(const _Rb_tree_node_ptr t, const key_type& key, _Rb_tree_node_ptr& l, _Rb_tree_node_ptr& r, int& black_h_l, int& black_h_r) const
+ {
+ if (t != NULL)
+ {
+ int black_h, b_h;
+ int black_node = 0;
+ if (t->_M_color == std::_S_black)
+ ++black_node;
+ if (not (base_type::_M_impl._M_key_compare(base_type::_S_key(t), key)))
+ {
+ // Go to the left.
+ b_h = black_h = split( static_cast<_Rb_tree_node_ptr>(t->_M_left), key, l, r, black_h_l, black_h_r);
+
+ // Join root and right subtree to already existing right
+ // half, leave left subtree.
+ force_black_root(t->_M_right, b_h);
+ concatenate(t, r, static_cast<_Rb_tree_node_ptr>(t->_M_right), black_h_r, b_h, r, black_h_r);
+ }
+ else
+ {
+ // Go to the right.
+ b_h = black_h = split(static_cast<_Rb_tree_node_ptr>(t->_M_right), key, l, r, black_h_l, black_h_r);
+
+ // Join root and left subtree to already existing left
+ // half, leave right subtree.
+ force_black_root(t->_M_left, b_h);
+ concatenate(t, static_cast<_Rb_tree_node_ptr>(t->_M_left), l, b_h, black_h_l, l, black_h_l);
+ }
+ return black_h + black_node;
+ }
+ else
+ {
+ r = NULL;
+ l = NULL;
+ black_h_r = 0;
+ black_h_l = 0;
+ return 0;
+ }
+ }
+
+ /** @brief Insert an existing node in tree and rebalance it, if
+ * appropriate.
+ *
+ * The keyword "local" is used because no attributes of the
+ * red-black tree are changed, so this insertion is not yet seen
+ * by the global data structure.
+ * @param t Root of tree to insert into.
+ * @param new_t Existing node to insert.
+ * @param existing Number of existing elements before insertion
+ * (in) and after (out). Specifically, the counter is incremented
+ * by one for unique containers if the key of new_t was already
+ * in the tree.
+ * @param black_h Black height of the resulting tree (out)
+ * @param strictly_less_or_less_equal Comparator to deal
+ * transparently with repetitions with respect to the uniqueness
+ * of the wrapping container
+ * @return Resulting tree after insertion */
+ template<typename StrictlyLessOrLessEqual>
+ _Rb_tree_node_ptr
+ _M_insert_local(_Rb_tree_node_base* t, const _Rb_tree_node_ptr new_t, size_type& existing, int& black_h, StrictlyLessOrLessEqual strictly_less_or_less_equal)
+ {
+ _GLIBCXX_PARALLEL_ASSERT(t != NULL);
+ if (_M_insert_local_top_down(t, new_t, NULL, NULL, true, strictly_less_or_less_equal))
+ {
+ t->_M_parent = NULL;
+ black_h += _Rb_tree_rebalance(new_t, t);
+ _GLIBCXX_PARALLEL_ASSERT(t->_M_color == std::_S_black);
+ return static_cast<_Rb_tree_node_ptr>(t);
+ }
+ else
+ {
+ base_type::_M_destroy_node(new_t);
+ ++existing;
+ force_black_root(t, black_h);
+ return static_cast<_Rb_tree_node_ptr>(t);
+ }
+ }
+
+ /***** Dealing with repetitions (CORRECTNESS ISSUE) *****/
+ /** @brief Insert an existing node in tree, do no rebalancing.
+ * @param t Root of tree to insert into.
+ * @param new_t Existing node to insert.
+ * @param eq_t Node candidate to be equal than new_t, only
+ * relevant for unique containers
+ * @param parent Parent node of @c t
+ * @param is_left True if @c t is a left child of @c
+ * parent. False otherwise.
+ * @param strictly_less_or_less_equal Comparator to deal
+ * transparently with repetitions with respect to the uniqueness
+ * of the wrapping container
+
+ * @return Success of the insertion
+ */
+ template<typename StrictlyLessOrLessEqual>
+ bool
+ _M_insert_local_top_down(_Rb_tree_node_base* t, const _Rb_tree_node_ptr new_t, _Rb_tree_node_base* eq_t, _Rb_tree_node_base* parent, const bool is_left, StrictlyLessOrLessEqual strictly_less_or_less_equal) const
+ {
+ if (t != NULL)
+ {
+ if (strictly_less_or_less_equal(_S_key(new_t), _S_key(static_cast<_Rb_tree_node_ptr>(t))))
+ {
+ return _M_insert_local_top_down(t->_M_left, new_t, eq_t, t, true, strictly_less_or_less_equal);
+ }
+ else
+ {
+ return _M_insert_local_top_down(t->_M_right, new_t, t, t, false, strictly_less_or_less_equal);
+ }
+ }
+
+ _GLIBCXX_PARALLEL_ASSERT(parent != NULL);
+
+ // Base case.
+ if (eq_t == NULL or strictly_less_or_less_equal(_S_key(static_cast<_Rb_tree_node_ptr>(eq_t)), _S_key(new_t)))
+ {
+ // The element to be inserted did not existed.
+ if (is_left)
+ {
+ parent->_M_left = new_t;
+ }
+ else
+ {
+ parent->_M_right = new_t;
+ }
+
+ new_t->_M_parent = parent;
+ new_t->_M_left = NULL;
+ new_t->_M_right = NULL;
+ new_t->_M_color = std::_S_red;
+
+ return true;
+ }
+ else
+ return false;
+ }
+
+ /** @brief Rebalance a tree locally.
+ *
+ * Essentially, it is the same function as insert_erase from the
+ * base class, but without the insertion and without using any
+ * tree attributes.
+ * @param __x Root of the current subtree to rebalance.
+ * @param __root Root of tree where @c __x is in (rebalancing
+ * stops when root is reached)
+ * @return Increment in the black height after rebalancing
+ */
+ static int
+ _Rb_tree_rebalance(_Rb_tree_node_base* __x, _Rb_tree_node_base*& __root)
+ {
+ _GLIBCXX_PARALLEL_ASSERT(__root->_M_color == std::_S_black);
+ // Rebalance.
+ while (__x != __root and __x->_M_parent != __root and
+ __x->_M_parent->_M_color == std::_S_red)
+ {
+ _Rb_tree_node_base* const __xpp = __x->_M_parent->_M_parent;
+
+ if (__x->_M_parent == __xpp->_M_left)
+ {
+ _Rb_tree_node_base* const __y = __xpp->_M_right;
+ if (__y && __y->_M_color == std::_S_red)
+ {
+ __x->_M_parent->_M_color = std::_S_black;
+ __y->_M_color = std::_S_black;
+ __xpp->_M_color = std::_S_red;
+ __x = __xpp;
+ }
+ else
+ {
+ if (__x == __x->_M_parent->_M_right)
+ {
+ __x = __x->_M_parent;
+ std::_Rb_tree_rotate_left(__x, __root);
+ }
+ __x->_M_parent->_M_color = std::_S_black;
+ __xpp->_M_color = std::_S_red;
+ std::_Rb_tree_rotate_right(__xpp, __root);
+ }
+ }
+ else
+ {
+ _Rb_tree_node_base* const __y = __xpp->_M_left;
+ if (__y && __y->_M_color == std::_S_red)
+ {
+ __x->_M_parent->_M_color = std::_S_black;
+ __y->_M_color = std::_S_black;
+ __xpp->_M_color = std::_S_red;
+ __x = __xpp;
+ }
+ else
+ {
+ if (__x == __x->_M_parent->_M_left)
+ {
+ __x = __x->_M_parent;
+ std::_Rb_tree_rotate_right(__x, __root);
+ }
+ __x->_M_parent->_M_color = std::_S_black;
+ __xpp->_M_color = std::_S_red;
+ std::_Rb_tree_rotate_left(__xpp, __root);
+ }
+ }
+ }
+ if (__root->_M_color == std::_S_red)
+ {
+ __root->_M_color = std::_S_black;
+ _GLIBCXX_PARALLEL_ASSERT(rb_verify_tree(static_cast<typename base_type::_Const_Link_type>(__root)));
+ return 1;
+ }
+ _GLIBCXX_PARALLEL_ASSERT(rb_verify_tree(static_cast<typename base_type::_Const_Link_type>(__root)));
+ return 0;
+ }
+
+ /** @brief Analogous to class method rb_verify() but only for a subtree.
+ * @param __x Pointer to root of subtree to check.
+ * @param count Returned number of nodes.
+ * @return Tree correct.
+ */
+ bool
+ rb_verify_tree(const typename base_type::_Const_Link_type __x, int& count) const
+ {
+ int bh;
+ return rb_verify_tree_node(__x) and rb_verify_tree(__x, count, bh);
+ }
+
+ /** @brief Verify that a subtree is binary search tree (verifies
+ key relationships)
+ * @param __x Pointer to root of subtree to check.
+ * @return Tree correct.
+ */
+ bool
+ rb_verify_tree_node(const typename base_type::_Const_Link_type __x) const
+ {
+ if (__x == NULL)
+ return true;
+ else
+ {
+ return rb_verify_node(__x) and
+ rb_verify_tree_node(base_type::_S_left(__x)) and
+ rb_verify_tree_node( base_type::_S_right(__x));
+ }
+ }
+
+ /** @brief Verify all the properties of a red-black tree except
+ for the key ordering
+ * @param __x Pointer to (subtree) root node.
+ * @return Tree correct.
+ */
+ static bool
+ rb_verify_tree(const typename base_type::_Const_Link_type __x)
+ {
+ int bh, count;
+ return rb_verify_tree(__x, count, bh);
+ }
+
+ /** @brief Verify all the properties of a red-black tree except
+ for the key ordering
+ * @param __x Pointer to (subtree) root node.
+ * @param count Number of nodes of @c __x (out).
+ * @param black_h Black height of @c __x (out).
+ * @return Tree correct.
+ */
+ static bool
+ rb_verify_tree(const typename base_type::_Const_Link_type __x, int& count, int& black_h)
+ {
+ if (__x == NULL)
+ {
+ count = 0;
+ black_h = 0;
+ return true;
+ }
+ typename base_type::_Const_Link_type __L = base_type::_S_left(__x);
+ typename base_type::_Const_Link_type __R = base_type::_S_right(__x);
+ int countL, countR = 0, bhL, bhR;
+ bool ret = rb_verify_tree(__L, countL, bhL);
+ ret = ret and rb_verify_tree(__R, countR, bhR);
+ count = 1 + countL + countR;
+ ret = ret and bhL == bhR;
+ black_h = bhL + ((__x->_M_color == std::_S_red)? 0 : 1);
+ return ret;
+ }
+
+ /** @brief Verify red-black properties (including key based) for a node
+ * @param __x Pointer to node.
+ * @return Node correct.
+ */
+ bool
+ rb_verify_node(const typename base_type::_Const_Link_type __x) const
+ {
+ typename base_type::_Const_Link_type __L = base_type::_S_left(__x);
+ typename base_type::_Const_Link_type __R = base_type::_S_right(__x);
+ if (__x->_M_color == std::_S_red)
+ if ((__L && __L->_M_color == std::_S_red)
+ || (__R && __R->_M_color == std::_S_red))
+ {
+ return false;
+ }
+ if (__L != NULL)
+ {
+ __L = static_cast<typename base_type::_Const_Link_type>(base_type::_S_maximum(__L));
+ if (base_type::_M_impl._M_key_compare(base_type::_S_key(__x), base_type::_S_key(__L)))
+ {
+ return false;
+ }
+ }
+
+ if (__R != NULL)
+ {
+ __R = static_cast<typename base_type::_Const_Link_type>(base_type::_S_minimum(__R));
+ if (base_type::_M_impl._M_key_compare(base_type::_S_key(__R), base_type::_S_key(__x)))
+ {
+ return false;
+ }
+ }
+
+ return true;
+ }
+
+ /** @brief Print all the information of the root.
+ * @param t Root of the tree.
+ */
+ static void
+ print_root(_Rb_tree_node_base* t)
+ {
+ /*
+ if (t != NULL)
+ std::cout<< base_type::_S_key(t) << std::endl;
+ else
+ std::cout<< "NULL" << std::endl;
+ */
+ }
+
+ /** @brief Print all the information of the tree.
+ * @param t Root of the tree.
+ */
+ static void
+ print_tree(_Rb_tree_node_base* t)
+ {
+ /*
+ if (t != NULL)
+ {
+ print_tree(t->_M_left);
+ std::cout<< base_type::_S_key(t) << std::endl;
+ print_tree(t->_M_right);
+ }
+ */
+ }
+
+ /** @brief Print blanks.
+ * @param b Number of blanks to print.
+ * @return A string with @c b blanks */
+ inline static std::string
+ blanks(int b)
+ {
+ /*
+ std::string s = "";
+ for (int i=0; i < b; ++i)
+ s += " ";
+ return s;
+ */
+ }
+
+ /** @brief Print all the information of the tree.
+ * @param t Root of the tree.
+ * @param c Width of a printed key.
+ */
+ template<typename Pointer>
+ static void
+ draw_tree(Pointer t, const int c)
+ {
+ /*
+ if (t == NULL)
+ {
+ std::cout << blanks(c) << "NULL" << std::endl;
+ return;
+ }
+ draw_tree(static_cast<Pointer>(t->_M_right), c + 8);
+ std::cout << blanks(c) << "" << base_type::_S_key(t) << " ";
+ if (t->_M_color == std::_S_black)
+ std::cout << "B" << std::endl;
+ else
+ std::cout << "R" << std::endl;
+ draw_tree(static_cast<Pointer>(t->_M_left), c + 8);
+ */
+ }
+
+ public:
+ /** @brief Verify that all the red-black tree properties hold for
+ the stored tree, as well as the additional properties that the
+ STL implementation imposes.
+ */
+ bool
+ rb_verify()
+ {
+ if (base_type::_M_impl._M_node_count == 0 || base_type::begin() == base_type::end())
+ {
+ bool res = base_type::_M_impl._M_node_count == 0 && base_type::begin() == base_type::end()
+ && base_type::_M_impl._M_header._M_left ==base_type::_M_end()
+ && base_type::_M_impl._M_header._M_right == base_type::_M_end();
+ _GLIBCXX_PARALLEL_ASSERT(res);
+ return res;
+ }
+ size_type i=0;
+ unsigned int __len = _Rb_tree_black_count(base_type::_M_leftmost(), base_type::_M_root());
+ for (typename base_type::const_iterator __it =base_type::begin(); __it != base_type::end(); ++__it)
+ {
+ typename base_type::_Const_Link_type __x = static_cast<typename base_type::_Const_Link_type>(__it._M_node);
+ if (not rb_verify_node(__x)) return false;
+ if (!base_type::_S_left(__x)&& !base_type::_S_right(__x) && _Rb_tree_black_count(__x,base_type::_M_root()) != __len)
+ {
+ _GLIBCXX_PARALLEL_ASSERT(false);
+ return false;
+ }
+ ++i;
+ }
+
+ if (i != base_type::_M_impl._M_node_count)
+ printf("%ld != %ld\n", i, base_type::_M_impl._M_node_count);
+
+ if (base_type::_M_leftmost() != std::_Rb_tree_node_base::_S_minimum(base_type::_M_root()))
+ {
+ _GLIBCXX_PARALLEL_ASSERT(false);
+ return false;
+ }
+ if (base_type::_M_rightmost() != std::_Rb_tree_node_base::_S_maximum(base_type::_M_root()))
+ {
+ _GLIBCXX_PARALLEL_ASSERT(false);
+ return false;
+ }
+ _GLIBCXX_PARALLEL_ASSERT(i == base_type::_M_impl._M_node_count);
+ return true;
+ }
+ };
+
+}
+
+#endif