------------------------------------------------------------------------------ -- -- -- GNAT LIBRARY COMPONENTS -- -- -- -- A D A . C O N T A I N E R S . B O U N D E D _ O R D E R E D _ M A P S -- -- -- -- B o d y -- -- -- -- Copyright (C) 2004-2015, Free Software Foundation, Inc. -- -- -- -- GNAT is free software; you can redistribute it and/or modify it under -- -- terms of the GNU General Public License as published by the Free Soft- -- -- ware Foundation; either version 3, or (at your option) any later ver- -- -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- -- or FITNESS FOR A PARTICULAR PURPOSE. -- -- -- -- As a special exception under Section 7 of GPL version 3, you are granted -- -- additional permissions described in the GCC Runtime Library Exception, -- -- version 3.1, as published by the Free Software Foundation. -- -- -- -- You should have received a copy of the GNU General Public License and -- -- a copy of the GCC Runtime Library Exception along with this program; -- -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -- -- . -- -- -- -- This unit was originally developed by Matthew J Heaney. -- ------------------------------------------------------------------------------ with Ada.Containers.Helpers; use Ada.Containers.Helpers; with Ada.Containers.Red_Black_Trees.Generic_Bounded_Operations; pragma Elaborate_All (Ada.Containers.Red_Black_Trees.Generic_Bounded_Operations); with Ada.Containers.Red_Black_Trees.Generic_Bounded_Keys; pragma Elaborate_All (Ada.Containers.Red_Black_Trees.Generic_Bounded_Keys); with System; use type System.Address; package body Ada.Containers.Bounded_Ordered_Maps is pragma Warnings (Off, "variable ""Busy*"" is not referenced"); pragma Warnings (Off, "variable ""Lock*"" is not referenced"); -- See comment in Ada.Containers.Helpers ----------------------------- -- Node Access Subprograms -- ----------------------------- -- These subprograms provide a functional interface to access fields -- of a node, and a procedural interface for modifying these values. function Color (Node : Node_Type) return Color_Type; pragma Inline (Color); function Left (Node : Node_Type) return Count_Type; pragma Inline (Left); function Parent (Node : Node_Type) return Count_Type; pragma Inline (Parent); function Right (Node : Node_Type) return Count_Type; pragma Inline (Right); procedure Set_Parent (Node : in out Node_Type; Parent : Count_Type); pragma Inline (Set_Parent); procedure Set_Left (Node : in out Node_Type; Left : Count_Type); pragma Inline (Set_Left); procedure Set_Right (Node : in out Node_Type; Right : Count_Type); pragma Inline (Set_Right); procedure Set_Color (Node : in out Node_Type; Color : Color_Type); pragma Inline (Set_Color); ----------------------- -- Local Subprograms -- ----------------------- function Is_Greater_Key_Node (Left : Key_Type; Right : Node_Type) return Boolean; pragma Inline (Is_Greater_Key_Node); function Is_Less_Key_Node (Left : Key_Type; Right : Node_Type) return Boolean; pragma Inline (Is_Less_Key_Node); -------------------------- -- Local Instantiations -- -------------------------- package Tree_Operations is new Red_Black_Trees.Generic_Bounded_Operations (Tree_Types); use Tree_Operations; package Key_Ops is new Red_Black_Trees.Generic_Bounded_Keys (Tree_Operations => Tree_Operations, Key_Type => Key_Type, Is_Less_Key_Node => Is_Less_Key_Node, Is_Greater_Key_Node => Is_Greater_Key_Node); --------- -- "<" -- --------- function "<" (Left, Right : Cursor) return Boolean is begin if Checks and then Left.Node = 0 then raise Constraint_Error with "Left cursor of ""<"" equals No_Element"; end if; if Checks and then Right.Node = 0 then raise Constraint_Error with "Right cursor of ""<"" equals No_Element"; end if; pragma Assert (Vet (Left.Container.all, Left.Node), "Left cursor of ""<"" is bad"); pragma Assert (Vet (Right.Container.all, Right.Node), "Right cursor of ""<"" is bad"); declare LN : Node_Type renames Left.Container.Nodes (Left.Node); RN : Node_Type renames Right.Container.Nodes (Right.Node); begin return LN.Key < RN.Key; end; end "<"; function "<" (Left : Cursor; Right : Key_Type) return Boolean is begin if Checks and then Left.Node = 0 then raise Constraint_Error with "Left cursor of ""<"" equals No_Element"; end if; pragma Assert (Vet (Left.Container.all, Left.Node), "Left cursor of ""<"" is bad"); declare LN : Node_Type renames Left.Container.Nodes (Left.Node); begin return LN.Key < Right; end; end "<"; function "<" (Left : Key_Type; Right : Cursor) return Boolean is begin if Checks and then Right.Node = 0 then raise Constraint_Error with "Right cursor of ""<"" equals No_Element"; end if; pragma Assert (Vet (Right.Container.all, Right.Node), "Right cursor of ""<"" is bad"); declare RN : Node_Type renames Right.Container.Nodes (Right.Node); begin return Left < RN.Key; end; end "<"; --------- -- "=" -- --------- function "=" (Left, Right : Map) return Boolean is function Is_Equal_Node_Node (L, R : Node_Type) return Boolean; pragma Inline (Is_Equal_Node_Node); function Is_Equal is new Tree_Operations.Generic_Equal (Is_Equal_Node_Node); ------------------------ -- Is_Equal_Node_Node -- ------------------------ function Is_Equal_Node_Node (L, R : Node_Type) return Boolean is begin if L.Key < R.Key then return False; elsif R.Key < L.Key then return False; else return L.Element = R.Element; end if; end Is_Equal_Node_Node; -- Start of processing for "=" begin return Is_Equal (Left, Right); end "="; --------- -- ">" -- --------- function ">" (Left, Right : Cursor) return Boolean is begin if Checks and then Left.Node = 0 then raise Constraint_Error with "Left cursor of "">"" equals No_Element"; end if; if Checks and then Right.Node = 0 then raise Constraint_Error with "Right cursor of "">"" equals No_Element"; end if; pragma Assert (Vet (Left.Container.all, Left.Node), "Left cursor of "">"" is bad"); pragma Assert (Vet (Right.Container.all, Right.Node), "Right cursor of "">"" is bad"); declare LN : Node_Type renames Left.Container.Nodes (Left.Node); RN : Node_Type renames Right.Container.Nodes (Right.Node); begin return RN.Key < LN.Key; end; end ">"; function ">" (Left : Cursor; Right : Key_Type) return Boolean is begin if Checks and then Left.Node = 0 then raise Constraint_Error with "Left cursor of "">"" equals No_Element"; end if; pragma Assert (Vet (Left.Container.all, Left.Node), "Left cursor of "">"" is bad"); declare LN : Node_Type renames Left.Container.Nodes (Left.Node); begin return Right < LN.Key; end; end ">"; function ">" (Left : Key_Type; Right : Cursor) return Boolean is begin if Checks and then Right.Node = 0 then raise Constraint_Error with "Right cursor of "">"" equals No_Element"; end if; pragma Assert (Vet (Right.Container.all, Right.Node), "Right cursor of "">"" is bad"); declare RN : Node_Type renames Right.Container.Nodes (Right.Node); begin return RN.Key < Left; end; end ">"; ------------ -- Assign -- ------------ procedure Assign (Target : in out Map; Source : Map) is procedure Append_Element (Source_Node : Count_Type); procedure Append_Elements is new Tree_Operations.Generic_Iteration (Append_Element); -------------------- -- Append_Element -- -------------------- procedure Append_Element (Source_Node : Count_Type) is SN : Node_Type renames Source.Nodes (Source_Node); procedure Set_Element (Node : in out Node_Type); pragma Inline (Set_Element); function New_Node return Count_Type; pragma Inline (New_Node); procedure Insert_Post is new Key_Ops.Generic_Insert_Post (New_Node); procedure Unconditional_Insert_Sans_Hint is new Key_Ops.Generic_Unconditional_Insert (Insert_Post); procedure Unconditional_Insert_Avec_Hint is new Key_Ops.Generic_Unconditional_Insert_With_Hint (Insert_Post, Unconditional_Insert_Sans_Hint); procedure Allocate is new Tree_Operations.Generic_Allocate (Set_Element); -------------- -- New_Node -- -------------- function New_Node return Count_Type is Result : Count_Type; begin Allocate (Target, Result); return Result; end New_Node; ----------------- -- Set_Element -- ----------------- procedure Set_Element (Node : in out Node_Type) is begin Node.Key := SN.Key; Node.Element := SN.Element; end Set_Element; Target_Node : Count_Type; -- Start of processing for Append_Element begin Unconditional_Insert_Avec_Hint (Tree => Target, Hint => 0, Key => SN.Key, Node => Target_Node); end Append_Element; -- Start of processing for Assign begin if Target'Address = Source'Address then return; end if; if Checks and then Target.Capacity < Source.Length then raise Capacity_Error with "Target capacity is less than Source length"; end if; Tree_Operations.Clear_Tree (Target); Append_Elements (Source); end Assign; ------------- -- Ceiling -- ------------- function Ceiling (Container : Map; Key : Key_Type) return Cursor is Node : constant Count_Type := Key_Ops.Ceiling (Container, Key); begin if Node = 0 then return No_Element; end if; return Cursor'(Container'Unrestricted_Access, Node); end Ceiling; ----------- -- Clear -- ----------- procedure Clear (Container : in out Map) is begin Tree_Operations.Clear_Tree (Container); end Clear; ----------- -- Color -- ----------- function Color (Node : Node_Type) return Color_Type is begin return Node.Color; end Color; ------------------------ -- Constant_Reference -- ------------------------ function Constant_Reference (Container : aliased Map; Position : Cursor) return Constant_Reference_Type is begin if Checks and then Position.Container = null then raise Constraint_Error with "Position cursor has no element"; end if; if Checks and then Position.Container /= Container'Unrestricted_Access then raise Program_Error with "Position cursor designates wrong map"; end if; pragma Assert (Vet (Container, Position.Node), "Position cursor in Constant_Reference is bad"); declare N : Node_Type renames Container.Nodes (Position.Node); TC : constant Tamper_Counts_Access := Container.TC'Unrestricted_Access; begin return R : constant Constant_Reference_Type := (Element => N.Element'Access, Control => (Controlled with TC)) do Lock (TC.all); end return; end; end Constant_Reference; function Constant_Reference (Container : aliased Map; Key : Key_Type) return Constant_Reference_Type is Node : constant Count_Type := Key_Ops.Find (Container, Key); begin if Checks and then Node = 0 then raise Constraint_Error with "key not in map"; end if; declare N : Node_Type renames Container.Nodes (Node); TC : constant Tamper_Counts_Access := Container.TC'Unrestricted_Access; begin return R : constant Constant_Reference_Type := (Element => N.Element'Access, Control => (Controlled with TC)) do Lock (TC.all); end return; end; end Constant_Reference; -------------- -- Contains -- -------------- function Contains (Container : Map; Key : Key_Type) return Boolean is begin return Find (Container, Key) /= No_Element; end Contains; ---------- -- Copy -- ---------- function Copy (Source : Map; Capacity : Count_Type := 0) return Map is C : Count_Type; begin if Capacity = 0 then C := Source.Length; elsif Capacity >= Source.Length then C := Capacity; elsif Checks then raise Capacity_Error with "Capacity value too small"; end if; return Target : Map (Capacity => C) do Assign (Target => Target, Source => Source); end return; end Copy; ------------ -- Delete -- ------------ procedure Delete (Container : in out Map; Position : in out Cursor) is begin if Checks and then Position.Node = 0 then raise Constraint_Error with "Position cursor of Delete equals No_Element"; end if; if Checks and then Position.Container /= Container'Unrestricted_Access then raise Program_Error with "Position cursor of Delete designates wrong map"; end if; pragma Assert (Vet (Container, Position.Node), "Position cursor of Delete is bad"); Tree_Operations.Delete_Node_Sans_Free (Container, Position.Node); Tree_Operations.Free (Container, Position.Node); Position := No_Element; end Delete; procedure Delete (Container : in out Map; Key : Key_Type) is X : constant Count_Type := Key_Ops.Find (Container, Key); begin if Checks and then X = 0 then raise Constraint_Error with "key not in map"; end if; Tree_Operations.Delete_Node_Sans_Free (Container, X); Tree_Operations.Free (Container, X); end Delete; ------------------ -- Delete_First -- ------------------ procedure Delete_First (Container : in out Map) is X : constant Count_Type := Container.First; begin if X /= 0 then Tree_Operations.Delete_Node_Sans_Free (Container, X); Tree_Operations.Free (Container, X); end if; end Delete_First; ----------------- -- Delete_Last -- ----------------- procedure Delete_Last (Container : in out Map) is X : constant Count_Type := Container.Last; begin if X /= 0 then Tree_Operations.Delete_Node_Sans_Free (Container, X); Tree_Operations.Free (Container, X); end if; end Delete_Last; ------------- -- Element -- ------------- function Element (Position : Cursor) return Element_Type is begin if Checks and then Position.Node = 0 then raise Constraint_Error with "Position cursor of function Element equals No_Element"; end if; pragma Assert (Vet (Position.Container.all, Position.Node), "Position cursor of function Element is bad"); return Position.Container.Nodes (Position.Node).Element; end Element; function Element (Container : Map; Key : Key_Type) return Element_Type is Node : constant Count_Type := Key_Ops.Find (Container, Key); begin if Checks and then Node = 0 then raise Constraint_Error with "key not in map"; end if; return Container.Nodes (Node).Element; end Element; --------------------- -- Equivalent_Keys -- --------------------- function Equivalent_Keys (Left, Right : Key_Type) return Boolean is begin if Left < Right or else Right < Left then return False; else return True; end if; end Equivalent_Keys; ------------- -- Exclude -- ------------- procedure Exclude (Container : in out Map; Key : Key_Type) is X : constant Count_Type := Key_Ops.Find (Container, Key); begin if X /= 0 then Tree_Operations.Delete_Node_Sans_Free (Container, X); Tree_Operations.Free (Container, X); end if; end Exclude; -------------- -- Finalize -- -------------- procedure Finalize (Object : in out Iterator) is begin if Object.Container /= null then Unbusy (Object.Container.TC); end if; end Finalize; ---------- -- Find -- ---------- function Find (Container : Map; Key : Key_Type) return Cursor is Node : constant Count_Type := Key_Ops.Find (Container, Key); begin if Node = 0 then return No_Element; else return Cursor'(Container'Unrestricted_Access, Node); end if; end Find; ----------- -- First -- ----------- function First (Container : Map) return Cursor is begin if Container.First = 0 then return No_Element; else return Cursor'(Container'Unrestricted_Access, Container.First); end if; end First; function First (Object : Iterator) return Cursor is begin -- The value of the iterator object's Node component influences the -- behavior of the First (and Last) selector function. -- When the Node component is 0, this means the iterator object was -- constructed without a start expression, in which case the (forward) -- iteration starts from the (logical) beginning of the entire sequence -- of items (corresponding to Container.First, for a forward iterator). -- Otherwise, this is iteration over a partial sequence of items. When -- the Node component is positive, the iterator object was constructed -- with a start expression, that specifies the position from which the -- (forward) partial iteration begins. if Object.Node = 0 then return Bounded_Ordered_Maps.First (Object.Container.all); else return Cursor'(Object.Container, Object.Node); end if; end First; ------------------- -- First_Element -- ------------------- function First_Element (Container : Map) return Element_Type is begin if Checks and then Container.First = 0 then raise Constraint_Error with "map is empty"; end if; return Container.Nodes (Container.First).Element; end First_Element; --------------- -- First_Key -- --------------- function First_Key (Container : Map) return Key_Type is begin if Checks and then Container.First = 0 then raise Constraint_Error with "map is empty"; end if; return Container.Nodes (Container.First).Key; end First_Key; ----------- -- Floor -- ----------- function Floor (Container : Map; Key : Key_Type) return Cursor is Node : constant Count_Type := Key_Ops.Floor (Container, Key); begin if Node = 0 then return No_Element; else return Cursor'(Container'Unrestricted_Access, Node); end if; end Floor; ------------------------ -- Get_Element_Access -- ------------------------ function Get_Element_Access (Position : Cursor) return not null Element_Access is begin return Position.Container.Nodes (Position.Node).Element'Access; end Get_Element_Access; ----------------- -- Has_Element -- ----------------- function Has_Element (Position : Cursor) return Boolean is begin return Position /= No_Element; end Has_Element; ------------- -- Include -- ------------- procedure Include (Container : in out Map; Key : Key_Type; New_Item : Element_Type) is Position : Cursor; Inserted : Boolean; begin Insert (Container, Key, New_Item, Position, Inserted); if not Inserted then TE_Check (Container.TC); declare N : Node_Type renames Container.Nodes (Position.Node); begin N.Key := Key; N.Element := New_Item; end; end if; end Include; ------------ -- Insert -- ------------ procedure Insert (Container : in out Map; Key : Key_Type; New_Item : Element_Type; Position : out Cursor; Inserted : out Boolean) is procedure Assign (Node : in out Node_Type); pragma Inline (Assign); function New_Node return Count_Type; pragma Inline (New_Node); procedure Insert_Post is new Key_Ops.Generic_Insert_Post (New_Node); procedure Insert_Sans_Hint is new Key_Ops.Generic_Conditional_Insert (Insert_Post); procedure Allocate is new Tree_Operations.Generic_Allocate (Assign); ------------ -- Assign -- ------------ procedure Assign (Node : in out Node_Type) is begin Node.Key := Key; Node.Element := New_Item; end Assign; -------------- -- New_Node -- -------------- function New_Node return Count_Type is Result : Count_Type; begin Allocate (Container, Result); return Result; end New_Node; -- Start of processing for Insert begin Insert_Sans_Hint (Container, Key, Position.Node, Inserted); Position.Container := Container'Unrestricted_Access; end Insert; procedure Insert (Container : in out Map; Key : Key_Type; New_Item : Element_Type) is Position : Cursor; pragma Unreferenced (Position); Inserted : Boolean; begin Insert (Container, Key, New_Item, Position, Inserted); if Checks and then not Inserted then raise Constraint_Error with "key already in map"; end if; end Insert; procedure Insert (Container : in out Map; Key : Key_Type; Position : out Cursor; Inserted : out Boolean) is procedure Assign (Node : in out Node_Type); pragma Inline (Assign); function New_Node return Count_Type; pragma Inline (New_Node); procedure Insert_Post is new Key_Ops.Generic_Insert_Post (New_Node); procedure Insert_Sans_Hint is new Key_Ops.Generic_Conditional_Insert (Insert_Post); procedure Allocate is new Tree_Operations.Generic_Allocate (Assign); ------------ -- Assign -- ------------ procedure Assign (Node : in out Node_Type) is New_Item : Element_Type; pragma Unmodified (New_Item); -- Default-initialized element (ok to reference, see below) begin Node.Key := Key; -- There is no explicit element provided, but in an instance the element -- type may be a scalar with a Default_Value aspect, or a composite type -- with such a scalar component or with defaulted components, so insert -- possibly initialized elements at the given position. Node.Element := New_Item; end Assign; -------------- -- New_Node -- -------------- function New_Node return Count_Type is Result : Count_Type; begin Allocate (Container, Result); return Result; end New_Node; -- Start of processing for Insert begin Insert_Sans_Hint (Container, Key, Position.Node, Inserted); Position.Container := Container'Unrestricted_Access; end Insert; -------------- -- Is_Empty -- -------------- function Is_Empty (Container : Map) return Boolean is begin return Container.Length = 0; end Is_Empty; ------------------------- -- Is_Greater_Key_Node -- ------------------------- function Is_Greater_Key_Node (Left : Key_Type; Right : Node_Type) return Boolean is begin -- Left > Right same as Right < Left return Right.Key < Left; end Is_Greater_Key_Node; ---------------------- -- Is_Less_Key_Node -- ---------------------- function Is_Less_Key_Node (Left : Key_Type; Right : Node_Type) return Boolean is begin return Left < Right.Key; end Is_Less_Key_Node; ------------- -- Iterate -- ------------- procedure Iterate (Container : Map; Process : not null access procedure (Position : Cursor)) is procedure Process_Node (Node : Count_Type); pragma Inline (Process_Node); procedure Local_Iterate is new Tree_Operations.Generic_Iteration (Process_Node); ------------------ -- Process_Node -- ------------------ procedure Process_Node (Node : Count_Type) is begin Process (Cursor'(Container'Unrestricted_Access, Node)); end Process_Node; Busy : With_Busy (Container.TC'Unrestricted_Access); -- Start of processing for Iterate begin Local_Iterate (Container); end Iterate; function Iterate (Container : Map) return Map_Iterator_Interfaces.Reversible_Iterator'Class is begin -- The value of the Node component influences the behavior of the First -- and Last selector functions of the iterator object. When the Node -- component is 0 (as is the case here), this means the iterator object -- was constructed without a start expression. This is a complete -- iterator, meaning that the iteration starts from the (logical) -- beginning of the sequence of items. -- Note: For a forward iterator, Container.First is the beginning, and -- for a reverse iterator, Container.Last is the beginning. return It : constant Iterator := (Limited_Controlled with Container => Container'Unrestricted_Access, Node => 0) do Busy (Container.TC'Unrestricted_Access.all); end return; end Iterate; function Iterate (Container : Map; Start : Cursor) return Map_Iterator_Interfaces.Reversible_Iterator'Class is begin -- Iterator was defined to behave the same as for a complete iterator, -- and iterate over the entire sequence of items. However, those -- semantics were unintuitive and arguably error-prone (it is too easy -- to accidentally create an endless loop), and so they were changed, -- per the ARG meeting in Denver on 2011/11. However, there was no -- consensus about what positive meaning this corner case should have, -- and so it was decided to simply raise an exception. This does imply, -- however, that it is not possible to use a partial iterator to specify -- an empty sequence of items. if Checks and then Start = No_Element then raise Constraint_Error with "Start position for iterator equals No_Element"; end if; if Checks and then Start.Container /= Container'Unrestricted_Access then raise Program_Error with "Start cursor of Iterate designates wrong map"; end if; pragma Assert (Vet (Container, Start.Node), "Start cursor of Iterate is bad"); -- The value of the Node component influences the behavior of the First -- and Last selector functions of the iterator object. When the Node -- component is positive (as is the case here), it means that this -- is a partial iteration, over a subset of the complete sequence of -- items. The iterator object was constructed with a start expression, -- indicating the position from which the iteration begins. (Note that -- the start position has the same value irrespective of whether this -- is a forward or reverse iteration.) return It : constant Iterator := (Limited_Controlled with Container => Container'Unrestricted_Access, Node => Start.Node) do Busy (Container.TC'Unrestricted_Access.all); end return; end Iterate; --------- -- Key -- --------- function Key (Position : Cursor) return Key_Type is begin if Checks and then Position.Node = 0 then raise Constraint_Error with "Position cursor of function Key equals No_Element"; end if; pragma Assert (Vet (Position.Container.all, Position.Node), "Position cursor of function Key is bad"); return Position.Container.Nodes (Position.Node).Key; end Key; ---------- -- Last -- ---------- function Last (Container : Map) return Cursor is begin if Container.Last = 0 then return No_Element; else return Cursor'(Container'Unrestricted_Access, Container.Last); end if; end Last; function Last (Object : Iterator) return Cursor is begin -- The value of the iterator object's Node component influences the -- behavior of the Last (and First) selector function. -- When the Node component is 0, this means the iterator object was -- constructed without a start expression, in which case the (reverse) -- iteration starts from the (logical) beginning of the entire sequence -- (corresponding to Container.Last, for a reverse iterator). -- Otherwise, this is iteration over a partial sequence of items. When -- the Node component is positive, the iterator object was constructed -- with a start expression, that specifies the position from which the -- (reverse) partial iteration begins. if Object.Node = 0 then return Bounded_Ordered_Maps.Last (Object.Container.all); else return Cursor'(Object.Container, Object.Node); end if; end Last; ------------------ -- Last_Element -- ------------------ function Last_Element (Container : Map) return Element_Type is begin if Checks and then Container.Last = 0 then raise Constraint_Error with "map is empty"; end if; return Container.Nodes (Container.Last).Element; end Last_Element; -------------- -- Last_Key -- -------------- function Last_Key (Container : Map) return Key_Type is begin if Checks and then Container.Last = 0 then raise Constraint_Error with "map is empty"; end if; return Container.Nodes (Container.Last).Key; end Last_Key; ---------- -- Left -- ---------- function Left (Node : Node_Type) return Count_Type is begin return Node.Left; end Left; ------------ -- Length -- ------------ function Length (Container : Map) return Count_Type is begin return Container.Length; end Length; ---------- -- Move -- ---------- procedure Move (Target : in out Map; Source : in out Map) is begin if Target'Address = Source'Address then return; end if; TC_Check (Source.TC); Target.Assign (Source); Source.Clear; end Move; ---------- -- Next -- ---------- procedure Next (Position : in out Cursor) is begin Position := Next (Position); end Next; function Next (Position : Cursor) return Cursor is begin if Position = No_Element then return No_Element; end if; pragma Assert (Vet (Position.Container.all, Position.Node), "Position cursor of Next is bad"); declare M : Map renames Position.Container.all; Node : constant Count_Type := Tree_Operations.Next (M, Position.Node); begin if Node = 0 then return No_Element; end if; return Cursor'(Position.Container, Node); end; end Next; function Next (Object : Iterator; Position : Cursor) return Cursor is begin if Position.Container = null then return No_Element; end if; if Checks and then Position.Container /= Object.Container then raise Program_Error with "Position cursor of Next designates wrong map"; end if; return Next (Position); end Next; ------------ -- Parent -- ------------ function Parent (Node : Node_Type) return Count_Type is begin return Node.Parent; end Parent; -------------- -- Previous -- -------------- procedure Previous (Position : in out Cursor) is begin Position := Previous (Position); end Previous; function Previous (Position : Cursor) return Cursor is begin if Position = No_Element then return No_Element; end if; pragma Assert (Vet (Position.Container.all, Position.Node), "Position cursor of Previous is bad"); declare M : Map renames Position.Container.all; Node : constant Count_Type := Tree_Operations.Previous (M, Position.Node); begin if Node = 0 then return No_Element; end if; return Cursor'(Position.Container, Node); end; end Previous; function Previous (Object : Iterator; Position : Cursor) return Cursor is begin if Position.Container = null then return No_Element; end if; if Checks and then Position.Container /= Object.Container then raise Program_Error with "Position cursor of Previous designates wrong map"; end if; return Previous (Position); end Previous; ---------------------- -- Pseudo_Reference -- ---------------------- function Pseudo_Reference (Container : aliased Map'Class) return Reference_Control_Type is TC : constant Tamper_Counts_Access := Container.TC'Unrestricted_Access; begin return R : constant Reference_Control_Type := (Controlled with TC) do Lock (TC.all); end return; end Pseudo_Reference; ------------------- -- Query_Element -- ------------------- procedure Query_Element (Position : Cursor; Process : not null access procedure (Key : Key_Type; Element : Element_Type)) is begin if Checks and then Position.Node = 0 then raise Constraint_Error with "Position cursor of Query_Element equals No_Element"; end if; pragma Assert (Vet (Position.Container.all, Position.Node), "Position cursor of Query_Element is bad"); declare M : Map renames Position.Container.all; N : Node_Type renames M.Nodes (Position.Node); Lock : With_Lock (M.TC'Unrestricted_Access); begin Process (N.Key, N.Element); end; end Query_Element; ---------- -- Read -- ---------- procedure Read (Stream : not null access Root_Stream_Type'Class; Container : out Map) is procedure Read_Element (Node : in out Node_Type); pragma Inline (Read_Element); procedure Allocate is new Tree_Operations.Generic_Allocate (Read_Element); procedure Read_Elements is new Tree_Operations.Generic_Read (Allocate); ------------------ -- Read_Element -- ------------------ procedure Read_Element (Node : in out Node_Type) is begin Key_Type'Read (Stream, Node.Key); Element_Type'Read (Stream, Node.Element); end Read_Element; -- Start of processing for Read begin Read_Elements (Stream, Container); end Read; procedure Read (Stream : not null access Root_Stream_Type'Class; Item : out Cursor) is begin raise Program_Error with "attempt to stream map cursor"; end Read; procedure Read (Stream : not null access Root_Stream_Type'Class; Item : out Reference_Type) is begin raise Program_Error with "attempt to stream reference"; end Read; procedure Read (Stream : not null access Root_Stream_Type'Class; Item : out Constant_Reference_Type) is begin raise Program_Error with "attempt to stream reference"; end Read; --------------- -- Reference -- --------------- function Reference (Container : aliased in out Map; Position : Cursor) return Reference_Type is begin if Checks and then Position.Container = null then raise Constraint_Error with "Position cursor has no element"; end if; if Checks and then Position.Container /= Container'Unrestricted_Access then raise Program_Error with "Position cursor designates wrong map"; end if; pragma Assert (Vet (Container, Position.Node), "Position cursor in function Reference is bad"); declare N : Node_Type renames Container.Nodes (Position.Node); TC : constant Tamper_Counts_Access := Container.TC'Unrestricted_Access; begin return R : constant Reference_Type := (Element => N.Element'Access, Control => (Controlled with TC)) do Lock (TC.all); end return; end; end Reference; function Reference (Container : aliased in out Map; Key : Key_Type) return Reference_Type is Node : constant Count_Type := Key_Ops.Find (Container, Key); begin if Checks and then Node = 0 then raise Constraint_Error with "key not in map"; end if; declare N : Node_Type renames Container.Nodes (Node); TC : constant Tamper_Counts_Access := Container.TC'Unrestricted_Access; begin return R : constant Reference_Type := (Element => N.Element'Access, Control => (Controlled with TC)) do Lock (TC.all); end return; end; end Reference; ------------- -- Replace -- ------------- procedure Replace (Container : in out Map; Key : Key_Type; New_Item : Element_Type) is Node : constant Count_Type := Key_Ops.Find (Container, Key); begin if Checks and then Node = 0 then raise Constraint_Error with "key not in map"; end if; TE_Check (Container.TC); declare N : Node_Type renames Container.Nodes (Node); begin N.Key := Key; N.Element := New_Item; end; end Replace; --------------------- -- Replace_Element -- --------------------- procedure Replace_Element (Container : in out Map; Position : Cursor; New_Item : Element_Type) is begin if Checks and then Position.Node = 0 then raise Constraint_Error with "Position cursor of Replace_Element equals No_Element"; end if; if Checks and then Position.Container /= Container'Unrestricted_Access then raise Program_Error with "Position cursor of Replace_Element designates wrong map"; end if; TE_Check (Container.TC); pragma Assert (Vet (Container, Position.Node), "Position cursor of Replace_Element is bad"); Container.Nodes (Position.Node).Element := New_Item; end Replace_Element; --------------------- -- Reverse_Iterate -- --------------------- procedure Reverse_Iterate (Container : Map; Process : not null access procedure (Position : Cursor)) is procedure Process_Node (Node : Count_Type); pragma Inline (Process_Node); procedure Local_Reverse_Iterate is new Tree_Operations.Generic_Reverse_Iteration (Process_Node); ------------------ -- Process_Node -- ------------------ procedure Process_Node (Node : Count_Type) is begin Process (Cursor'(Container'Unrestricted_Access, Node)); end Process_Node; Busy : With_Busy (Container.TC'Unrestricted_Access); -- Start of processing for Reverse_Iterate begin Local_Reverse_Iterate (Container); end Reverse_Iterate; ----------- -- Right -- ----------- function Right (Node : Node_Type) return Count_Type is begin return Node.Right; end Right; --------------- -- Set_Color -- --------------- procedure Set_Color (Node : in out Node_Type; Color : Color_Type) is begin Node.Color := Color; end Set_Color; -------------- -- Set_Left -- -------------- procedure Set_Left (Node : in out Node_Type; Left : Count_Type) is begin Node.Left := Left; end Set_Left; ---------------- -- Set_Parent -- ---------------- procedure Set_Parent (Node : in out Node_Type; Parent : Count_Type) is begin Node.Parent := Parent; end Set_Parent; --------------- -- Set_Right -- --------------- procedure Set_Right (Node : in out Node_Type; Right : Count_Type) is begin Node.Right := Right; end Set_Right; -------------------- -- Update_Element -- -------------------- procedure Update_Element (Container : in out Map; Position : Cursor; Process : not null access procedure (Key : Key_Type; Element : in out Element_Type)) is begin if Checks and then Position.Node = 0 then raise Constraint_Error with "Position cursor of Update_Element equals No_Element"; end if; if Checks and then Position.Container /= Container'Unrestricted_Access then raise Program_Error with "Position cursor of Update_Element designates wrong map"; end if; pragma Assert (Vet (Container, Position.Node), "Position cursor of Update_Element is bad"); declare N : Node_Type renames Container.Nodes (Position.Node); Lock : With_Lock (Container.TC'Unrestricted_Access); begin Process (N.Key, N.Element); end; end Update_Element; ----------- -- Write -- ----------- procedure Write (Stream : not null access Root_Stream_Type'Class; Container : Map) is procedure Write_Node (Stream : not null access Root_Stream_Type'Class; Node : Node_Type); pragma Inline (Write_Node); procedure Write_Nodes is new Tree_Operations.Generic_Write (Write_Node); ---------------- -- Write_Node -- ---------------- procedure Write_Node (Stream : not null access Root_Stream_Type'Class; Node : Node_Type) is begin Key_Type'Write (Stream, Node.Key); Element_Type'Write (Stream, Node.Element); end Write_Node; -- Start of processing for Write begin Write_Nodes (Stream, Container); end Write; procedure Write (Stream : not null access Root_Stream_Type'Class; Item : Cursor) is begin raise Program_Error with "attempt to stream map cursor"; end Write; procedure Write (Stream : not null access Root_Stream_Type'Class; Item : Reference_Type) is begin raise Program_Error with "attempt to stream reference"; end Write; procedure Write (Stream : not null access Root_Stream_Type'Class; Item : Constant_Reference_Type) is begin raise Program_Error with "attempt to stream reference"; end Write; end Ada.Containers.Bounded_Ordered_Maps;