------------------------------------------------------------------------------ -- -- -- GNAT LIBRARY COMPONENTS -- -- -- -- A D A . C O N T A I N E R S . F O R M A L _ O R D E R E D _ M A P S -- -- -- -- B o d y -- -- -- -- Copyright (C) 2010-2014, Free Software Foundation, Inc. -- -- -- -- GNAT is free software; you can redistribute it and/or modify it under -- -- terms of the GNU General Public License as published by the Free Soft- -- -- ware Foundation; either version 3, or (at your option) any later ver- -- -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- -- or FITNESS FOR A PARTICULAR PURPOSE. -- -- -- -- As a special exception under Section 7 of GPL version 3, you are granted -- -- additional permissions described in the GCC Runtime Library Exception, -- -- version 3.1, as published by the Free Software Foundation. -- -- -- -- You should have received a copy of the GNU General Public License and -- -- a copy of the GCC Runtime Library Exception along with this program; -- -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -- -- . -- ------------------------------------------------------------------------------ with Ada.Containers.Red_Black_Trees.Generic_Bounded_Operations; pragma Elaborate_All (Ada.Containers.Red_Black_Trees.Generic_Bounded_Operations); with Ada.Containers.Red_Black_Trees.Generic_Bounded_Keys; pragma Elaborate_All (Ada.Containers.Red_Black_Trees.Generic_Bounded_Keys); with System; use type System.Address; package body Ada.Containers.Formal_Ordered_Maps with SPARK_Mode => Off is pragma Annotate (CodePeer, Skip_Analysis); ----------------------------- -- Node Access Subprograms -- ----------------------------- -- These subprograms provide a functional interface to access fields -- of a node, and a procedural interface for modifying these values. function Color (Node : Node_Type) return Ada.Containers.Red_Black_Trees.Color_Type; pragma Inline (Color); function Left_Son (Node : Node_Type) return Count_Type; pragma Inline (Left_Son); function Parent (Node : Node_Type) return Count_Type; pragma Inline (Parent); function Right_Son (Node : Node_Type) return Count_Type; pragma Inline (Right_Son); procedure Set_Color (Node : in out Node_Type; Color : Ada.Containers.Red_Black_Trees.Color_Type); pragma Inline (Set_Color); procedure Set_Left (Node : in out Node_Type; Left : Count_Type); pragma Inline (Set_Left); procedure Set_Right (Node : in out Node_Type; Right : Count_Type); pragma Inline (Set_Right); procedure Set_Parent (Node : in out Node_Type; Parent : Count_Type); pragma Inline (Set_Parent); ----------------------- -- Local Subprograms -- ----------------------- -- All need comments ??? generic with procedure Set_Element (Node : in out Node_Type); procedure Generic_Allocate (Tree : in out Tree_Types.Tree_Type'Class; Node : out Count_Type); procedure Free (Tree : in out Map; X : Count_Type); function Is_Greater_Key_Node (Left : Key_Type; Right : Node_Type) return Boolean; pragma Inline (Is_Greater_Key_Node); function Is_Less_Key_Node (Left : Key_Type; Right : Node_Type) return Boolean; pragma Inline (Is_Less_Key_Node); -------------------------- -- Local Instantiations -- -------------------------- package Tree_Operations is new Red_Black_Trees.Generic_Bounded_Operations (Tree_Types => Tree_Types, Left => Left_Son, Right => Right_Son); use Tree_Operations; package Key_Ops is new Red_Black_Trees.Generic_Bounded_Keys (Tree_Operations => Tree_Operations, Key_Type => Key_Type, Is_Less_Key_Node => Is_Less_Key_Node, Is_Greater_Key_Node => Is_Greater_Key_Node); --------- -- "=" -- --------- function "=" (Left, Right : Map) return Boolean is Lst : Count_Type; Node : Count_Type; ENode : Count_Type; begin if Length (Left) /= Length (Right) then return False; end if; if Is_Empty (Left) then return True; end if; Lst := Next (Left, Last (Left).Node); Node := First (Left).Node; while Node /= Lst loop ENode := Find (Right, Left.Nodes (Node).Key).Node; if ENode = 0 or else Left.Nodes (Node).Element /= Right.Nodes (ENode).Element then return False; end if; Node := Next (Left, Node); end loop; return True; end "="; ------------ -- Assign -- ------------ procedure Assign (Target : in out Map; Source : Map) is procedure Append_Element (Source_Node : Count_Type); procedure Append_Elements is new Tree_Operations.Generic_Iteration (Append_Element); -------------------- -- Append_Element -- -------------------- procedure Append_Element (Source_Node : Count_Type) is SN : Node_Type renames Source.Nodes (Source_Node); procedure Set_Element (Node : in out Node_Type); pragma Inline (Set_Element); function New_Node return Count_Type; pragma Inline (New_Node); procedure Insert_Post is new Key_Ops.Generic_Insert_Post (New_Node); procedure Unconditional_Insert_Sans_Hint is new Key_Ops.Generic_Unconditional_Insert (Insert_Post); procedure Unconditional_Insert_Avec_Hint is new Key_Ops.Generic_Unconditional_Insert_With_Hint (Insert_Post, Unconditional_Insert_Sans_Hint); procedure Allocate is new Generic_Allocate (Set_Element); -------------- -- New_Node -- -------------- function New_Node return Count_Type is Result : Count_Type; begin Allocate (Target, Result); return Result; end New_Node; ----------------- -- Set_Element -- ----------------- procedure Set_Element (Node : in out Node_Type) is begin Node.Key := SN.Key; Node.Element := SN.Element; end Set_Element; Target_Node : Count_Type; -- Start of processing for Append_Element begin Unconditional_Insert_Avec_Hint (Tree => Target, Hint => 0, Key => SN.Key, Node => Target_Node); end Append_Element; -- Start of processing for Assign begin if Target'Address = Source'Address then return; end if; if Target.Capacity < Length (Source) then raise Storage_Error with "not enough capacity"; -- SE or CE? ??? end if; Tree_Operations.Clear_Tree (Target); Append_Elements (Source); end Assign; ------------- -- Ceiling -- ------------- function Ceiling (Container : Map; Key : Key_Type) return Cursor is Node : constant Count_Type := Key_Ops.Ceiling (Container, Key); begin if Node = 0 then return No_Element; end if; return (Node => Node); end Ceiling; ----------- -- Clear -- ----------- procedure Clear (Container : in out Map) is begin Tree_Operations.Clear_Tree (Container); end Clear; ----------- -- Color -- ----------- function Color (Node : Node_Type) return Color_Type is begin return Node.Color; end Color; -------------- -- Contains -- -------------- function Contains (Container : Map; Key : Key_Type) return Boolean is begin return Find (Container, Key) /= No_Element; end Contains; ---------- -- Copy -- ---------- function Copy (Source : Map; Capacity : Count_Type := 0) return Map is Node : Count_Type := 1; N : Count_Type; begin if 0 < Capacity and then Capacity < Source.Capacity then raise Capacity_Error; end if; return Target : Map (Count_Type'Max (Source.Capacity, Capacity)) do if Length (Source) > 0 then Target.Length := Source.Length; Target.Root := Source.Root; Target.First := Source.First; Target.Last := Source.Last; Target.Free := Source.Free; while Node <= Source.Capacity loop Target.Nodes (Node).Element := Source.Nodes (Node).Element; Target.Nodes (Node).Key := Source.Nodes (Node).Key; Target.Nodes (Node).Parent := Source.Nodes (Node).Parent; Target.Nodes (Node).Left := Source.Nodes (Node).Left; Target.Nodes (Node).Right := Source.Nodes (Node).Right; Target.Nodes (Node).Color := Source.Nodes (Node).Color; Target.Nodes (Node).Has_Element := Source.Nodes (Node).Has_Element; Node := Node + 1; end loop; while Node <= Target.Capacity loop N := Node; Formal_Ordered_Maps.Free (Tree => Target, X => N); Node := Node + 1; end loop; end if; end return; end Copy; --------------------- -- Current_To_Last -- --------------------- function Current_To_Last (Container : Map; Current : Cursor) return Map is Curs : Cursor := First (Container); C : Map (Container.Capacity) := Copy (Container, Container.Capacity); Node : Count_Type; begin if Curs = No_Element then Clear (C); return C; elsif Current /= No_Element and not Has_Element (Container, Current) then raise Constraint_Error; else while Curs.Node /= Current.Node loop Node := Curs.Node; Delete (C, Curs); Curs := Next (Container, (Node => Node)); end loop; return C; end if; end Current_To_Last; ------------ -- Delete -- ------------ procedure Delete (Container : in out Map; Position : in out Cursor) is begin if not Has_Element (Container, Position) then raise Constraint_Error with "Position cursor of Delete has no element"; end if; pragma Assert (Vet (Container, Position.Node), "Position cursor of Delete is bad"); Tree_Operations.Delete_Node_Sans_Free (Container, Position.Node); Formal_Ordered_Maps.Free (Container, Position.Node); end Delete; procedure Delete (Container : in out Map; Key : Key_Type) is X : constant Node_Access := Key_Ops.Find (Container, Key); begin if X = 0 then raise Constraint_Error with "key not in map"; end if; Tree_Operations.Delete_Node_Sans_Free (Container, X); Formal_Ordered_Maps.Free (Container, X); end Delete; ------------------ -- Delete_First -- ------------------ procedure Delete_First (Container : in out Map) is X : constant Node_Access := First (Container).Node; begin if X /= 0 then Tree_Operations.Delete_Node_Sans_Free (Container, X); Formal_Ordered_Maps.Free (Container, X); end if; end Delete_First; ----------------- -- Delete_Last -- ----------------- procedure Delete_Last (Container : in out Map) is X : constant Node_Access := Last (Container).Node; begin if X /= 0 then Tree_Operations.Delete_Node_Sans_Free (Container, X); Formal_Ordered_Maps.Free (Container, X); end if; end Delete_Last; ------------- -- Element -- ------------- function Element (Container : Map; Position : Cursor) return Element_Type is begin if not Has_Element (Container, Position) then raise Constraint_Error with "Position cursor of function Element has no element"; end if; pragma Assert (Vet (Container, Position.Node), "Position cursor of function Element is bad"); return Container.Nodes (Position.Node).Element; end Element; function Element (Container : Map; Key : Key_Type) return Element_Type is Node : constant Node_Access := Find (Container, Key).Node; begin if Node = 0 then raise Constraint_Error with "key not in map"; end if; return Container.Nodes (Node).Element; end Element; --------------------- -- Equivalent_Keys -- --------------------- function Equivalent_Keys (Left, Right : Key_Type) return Boolean is begin if Left < Right or else Right < Left then return False; else return True; end if; end Equivalent_Keys; ------------- -- Exclude -- ------------- procedure Exclude (Container : in out Map; Key : Key_Type) is X : constant Node_Access := Key_Ops.Find (Container, Key); begin if X /= 0 then Tree_Operations.Delete_Node_Sans_Free (Container, X); Formal_Ordered_Maps.Free (Container, X); end if; end Exclude; ---------- -- Find -- ---------- function Find (Container : Map; Key : Key_Type) return Cursor is Node : constant Count_Type := Key_Ops.Find (Container, Key); begin if Node = 0 then return No_Element; end if; return (Node => Node); end Find; ----------- -- First -- ----------- function First (Container : Map) return Cursor is begin if Length (Container) = 0 then return No_Element; end if; return (Node => Container.First); end First; ------------------- -- First_Element -- ------------------- function First_Element (Container : Map) return Element_Type is begin if Is_Empty (Container) then raise Constraint_Error with "map is empty"; end if; return Container.Nodes (First (Container).Node).Element; end First_Element; --------------- -- First_Key -- --------------- function First_Key (Container : Map) return Key_Type is begin if Is_Empty (Container) then raise Constraint_Error with "map is empty"; end if; return Container.Nodes (First (Container).Node).Key; end First_Key; ----------------------- -- First_To_Previous -- ----------------------- function First_To_Previous (Container : Map; Current : Cursor) return Map is Curs : Cursor := Current; C : Map (Container.Capacity) := Copy (Container, Container.Capacity); Node : Count_Type; begin if Curs = No_Element then return C; elsif not Has_Element (Container, Curs) then raise Constraint_Error; else while Curs.Node /= 0 loop Node := Curs.Node; Delete (C, Curs); Curs := Next (Container, (Node => Node)); end loop; return C; end if; end First_To_Previous; ----------- -- Floor -- ----------- function Floor (Container : Map; Key : Key_Type) return Cursor is Node : constant Count_Type := Key_Ops.Floor (Container, Key); begin if Node = 0 then return No_Element; end if; return (Node => Node); end Floor; ---------- -- Free -- ---------- procedure Free (Tree : in out Map; X : Count_Type) is begin Tree.Nodes (X).Has_Element := False; Tree_Operations.Free (Tree, X); end Free; ---------------------- -- Generic_Allocate -- ---------------------- procedure Generic_Allocate (Tree : in out Tree_Types.Tree_Type'Class; Node : out Count_Type) is procedure Allocate is new Tree_Operations.Generic_Allocate (Set_Element); begin Allocate (Tree, Node); Tree.Nodes (Node).Has_Element := True; end Generic_Allocate; ----------------- -- Has_Element -- ----------------- function Has_Element (Container : Map; Position : Cursor) return Boolean is begin if Position.Node = 0 then return False; end if; return Container.Nodes (Position.Node).Has_Element; end Has_Element; ------------- -- Include -- ------------- procedure Include (Container : in out Map; Key : Key_Type; New_Item : Element_Type) is Position : Cursor; Inserted : Boolean; begin Insert (Container, Key, New_Item, Position, Inserted); if not Inserted then declare N : Node_Type renames Container.Nodes (Position.Node); begin N.Key := Key; N.Element := New_Item; end; end if; end Include; procedure Insert (Container : in out Map; Key : Key_Type; New_Item : Element_Type; Position : out Cursor; Inserted : out Boolean) is function New_Node return Node_Access; -- Comment ??? procedure Insert_Post is new Key_Ops.Generic_Insert_Post (New_Node); procedure Insert_Sans_Hint is new Key_Ops.Generic_Conditional_Insert (Insert_Post); -------------- -- New_Node -- -------------- function New_Node return Node_Access is procedure Initialize (Node : in out Node_Type); procedure Allocate_Node is new Generic_Allocate (Initialize); procedure Initialize (Node : in out Node_Type) is begin Node.Key := Key; Node.Element := New_Item; end Initialize; X : Node_Access; begin Allocate_Node (Container, X); return X; end New_Node; -- Start of processing for Insert begin Insert_Sans_Hint (Container, Key, Position.Node, Inserted); end Insert; procedure Insert (Container : in out Map; Key : Key_Type; New_Item : Element_Type) is Position : Cursor; Inserted : Boolean; begin Insert (Container, Key, New_Item, Position, Inserted); if not Inserted then raise Constraint_Error with "key already in map"; end if; end Insert; -------------- -- Is_Empty -- -------------- function Is_Empty (Container : Map) return Boolean is begin return Length (Container) = 0; end Is_Empty; ------------------------- -- Is_Greater_Key_Node -- ------------------------- function Is_Greater_Key_Node (Left : Key_Type; Right : Node_Type) return Boolean is begin -- k > node same as node < k return Right.Key < Left; end Is_Greater_Key_Node; ---------------------- -- Is_Less_Key_Node -- ---------------------- function Is_Less_Key_Node (Left : Key_Type; Right : Node_Type) return Boolean is begin return Left < Right.Key; end Is_Less_Key_Node; --------- -- Key -- --------- function Key (Container : Map; Position : Cursor) return Key_Type is begin if not Has_Element (Container, Position) then raise Constraint_Error with "Position cursor of function Key has no element"; end if; pragma Assert (Vet (Container, Position.Node), "Position cursor of function Key is bad"); return Container.Nodes (Position.Node).Key; end Key; ---------- -- Last -- ---------- function Last (Container : Map) return Cursor is begin if Length (Container) = 0 then return No_Element; end if; return (Node => Container.Last); end Last; ------------------ -- Last_Element -- ------------------ function Last_Element (Container : Map) return Element_Type is begin if Is_Empty (Container) then raise Constraint_Error with "map is empty"; end if; return Container.Nodes (Last (Container).Node).Element; end Last_Element; -------------- -- Last_Key -- -------------- function Last_Key (Container : Map) return Key_Type is begin if Is_Empty (Container) then raise Constraint_Error with "map is empty"; end if; return Container.Nodes (Last (Container).Node).Key; end Last_Key; -------------- -- Left_Son -- -------------- function Left_Son (Node : Node_Type) return Count_Type is begin return Node.Left; end Left_Son; ------------ -- Length -- ------------ function Length (Container : Map) return Count_Type is begin return Container.Length; end Length; ---------- -- Move -- ---------- procedure Move (Target : in out Map; Source : in out Map) is NN : Tree_Types.Nodes_Type renames Source.Nodes; X : Node_Access; begin if Target'Address = Source'Address then return; end if; if Target.Capacity < Length (Source) then raise Constraint_Error with -- ??? "Source length exceeds Target capacity"; end if; Clear (Target); loop X := First (Source).Node; exit when X = 0; -- Here we insert a copy of the source element into the target, and -- then delete the element from the source. Another possibility is -- that delete it first (and hang onto its index), then insert it. -- ??? Insert (Target, NN (X).Key, NN (X).Element); -- optimize??? Tree_Operations.Delete_Node_Sans_Free (Source, X); Formal_Ordered_Maps.Free (Source, X); end loop; end Move; ---------- -- Next -- ---------- procedure Next (Container : Map; Position : in out Cursor) is begin Position := Next (Container, Position); end Next; function Next (Container : Map; Position : Cursor) return Cursor is begin if Position = No_Element then return No_Element; end if; if not Has_Element (Container, Position) then raise Constraint_Error; end if; pragma Assert (Vet (Container, Position.Node), "bad cursor in Next"); return (Node => Tree_Operations.Next (Container, Position.Node)); end Next; ------------- -- Overlap -- ------------- function Overlap (Left, Right : Map) return Boolean is begin if Length (Left) = 0 or Length (Right) = 0 then return False; end if; declare L_Node : Count_Type := First (Left).Node; R_Node : Count_Type := First (Right).Node; L_Last : constant Count_Type := Next (Left, Last (Left).Node); R_Last : constant Count_Type := Next (Right, Last (Right).Node); begin if Left'Address = Right'Address then return True; end if; loop if L_Node = L_Last or else R_Node = R_Last then return False; end if; if Left.Nodes (L_Node).Key < Right.Nodes (R_Node).Key then L_Node := Next (Left, L_Node); elsif Right.Nodes (R_Node).Key < Left.Nodes (L_Node).Key then R_Node := Next (Right, R_Node); else return True; end if; end loop; end; end Overlap; ------------ -- Parent -- ------------ function Parent (Node : Node_Type) return Count_Type is begin return Node.Parent; end Parent; -------------- -- Previous -- -------------- procedure Previous (Container : Map; Position : in out Cursor) is begin Position := Previous (Container, Position); end Previous; function Previous (Container : Map; Position : Cursor) return Cursor is begin if Position = No_Element then return No_Element; end if; if not Has_Element (Container, Position) then raise Constraint_Error; end if; pragma Assert (Vet (Container, Position.Node), "bad cursor in Previous"); declare Node : constant Count_Type := Tree_Operations.Previous (Container, Position.Node); begin if Node = 0 then return No_Element; end if; return (Node => Node); end; end Previous; ------------- -- Replace -- ------------- procedure Replace (Container : in out Map; Key : Key_Type; New_Item : Element_Type) is begin declare Node : constant Node_Access := Key_Ops.Find (Container, Key); begin if Node = 0 then raise Constraint_Error with "key not in map"; end if; declare N : Node_Type renames Container.Nodes (Node); begin N.Key := Key; N.Element := New_Item; end; end; end Replace; --------------------- -- Replace_Element -- --------------------- procedure Replace_Element (Container : in out Map; Position : Cursor; New_Item : Element_Type) is begin if not Has_Element (Container, Position) then raise Constraint_Error with "Position cursor of Replace_Element has no element"; end if; pragma Assert (Vet (Container, Position.Node), "Position cursor of Replace_Element is bad"); Container.Nodes (Position.Node).Element := New_Item; end Replace_Element; --------------- -- Right_Son -- --------------- function Right_Son (Node : Node_Type) return Count_Type is begin return Node.Right; end Right_Son; --------------- -- Set_Color -- --------------- procedure Set_Color (Node : in out Node_Type; Color : Color_Type) is begin Node.Color := Color; end Set_Color; -------------- -- Set_Left -- -------------- procedure Set_Left (Node : in out Node_Type; Left : Count_Type) is begin Node.Left := Left; end Set_Left; ---------------- -- Set_Parent -- ---------------- procedure Set_Parent (Node : in out Node_Type; Parent : Count_Type) is begin Node.Parent := Parent; end Set_Parent; --------------- -- Set_Right -- --------------- procedure Set_Right (Node : in out Node_Type; Right : Count_Type) is begin Node.Right := Right; end Set_Right; ------------------ -- Strict_Equal -- ------------------ function Strict_Equal (Left, Right : Map) return Boolean is LNode : Count_Type := First (Left).Node; RNode : Count_Type := First (Right).Node; begin if Length (Left) /= Length (Right) then return False; end if; while LNode = RNode loop if LNode = 0 then return True; end if; if Left.Nodes (LNode).Element /= Right.Nodes (RNode).Element or else Left.Nodes (LNode).Key /= Right.Nodes (RNode).Key then exit; end if; LNode := Next (Left, LNode); RNode := Next (Right, RNode); end loop; return False; end Strict_Equal; end Ada.Containers.Formal_Ordered_Maps;