------------------------------------------------------------------------------ -- -- -- GNAT LIBRARY COMPONENTS -- -- -- -- A D A . C O N T A I N E R S . F O R M A L _ O R D E R E D _ S E T S -- -- -- -- B o d y -- -- -- -- Copyright (C) 2010-2014, Free Software Foundation, Inc. -- -- -- -- GNAT is free software; you can redistribute it and/or modify it under -- -- terms of the GNU General Public License as published by the Free Soft- -- -- ware Foundation; either version 3, or (at your option) any later ver- -- -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- -- or FITNESS FOR A PARTICULAR PURPOSE. -- -- -- -- As a special exception under Section 7 of GPL version 3, you are granted -- -- additional permissions described in the GCC Runtime Library Exception, -- -- version 3.1, as published by the Free Software Foundation. -- -- -- -- You should have received a copy of the GNU General Public License and -- -- a copy of the GCC Runtime Library Exception along with this program; -- -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -- -- . -- ------------------------------------------------------------------------------ with Ada.Containers.Red_Black_Trees.Generic_Bounded_Operations; pragma Elaborate_All (Ada.Containers.Red_Black_Trees.Generic_Bounded_Operations); with Ada.Containers.Red_Black_Trees.Generic_Bounded_Keys; pragma Elaborate_All (Ada.Containers.Red_Black_Trees.Generic_Bounded_Keys); with Ada.Containers.Red_Black_Trees.Generic_Bounded_Set_Operations; pragma Elaborate_All (Ada.Containers.Red_Black_Trees.Generic_Bounded_Set_Operations); with System; use type System.Address; package body Ada.Containers.Formal_Ordered_Sets is pragma SPARK_Mode (Off); ------------------------------ -- Access to Fields of Node -- ------------------------------ -- These subprograms provide functional notation for access to fields -- of a node, and procedural notation for modifiying these fields. function Color (Node : Node_Type) return Red_Black_Trees.Color_Type; pragma Inline (Color); function Left_Son (Node : Node_Type) return Count_Type; pragma Inline (Left_Son); function Parent (Node : Node_Type) return Count_Type; pragma Inline (Parent); function Right_Son (Node : Node_Type) return Count_Type; pragma Inline (Right_Son); procedure Set_Color (Node : in out Node_Type; Color : Red_Black_Trees.Color_Type); pragma Inline (Set_Color); procedure Set_Left (Node : in out Node_Type; Left : Count_Type); pragma Inline (Set_Left); procedure Set_Right (Node : in out Node_Type; Right : Count_Type); pragma Inline (Set_Right); procedure Set_Parent (Node : in out Node_Type; Parent : Count_Type); pragma Inline (Set_Parent); ----------------------- -- Local Subprograms -- ----------------------- -- Comments needed??? generic with procedure Set_Element (Node : in out Node_Type); procedure Generic_Allocate (Tree : in out Tree_Types.Tree_Type'Class; Node : out Count_Type); procedure Free (Tree : in out Set; X : Count_Type); procedure Insert_Sans_Hint (Container : in out Set; New_Item : Element_Type; Node : out Count_Type; Inserted : out Boolean); procedure Insert_With_Hint (Dst_Set : in out Set; Dst_Hint : Count_Type; Src_Node : Node_Type; Dst_Node : out Count_Type); function Is_Greater_Element_Node (Left : Element_Type; Right : Node_Type) return Boolean; pragma Inline (Is_Greater_Element_Node); function Is_Less_Element_Node (Left : Element_Type; Right : Node_Type) return Boolean; pragma Inline (Is_Less_Element_Node); function Is_Less_Node_Node (L, R : Node_Type) return Boolean; pragma Inline (Is_Less_Node_Node); procedure Replace_Element (Tree : in out Set; Node : Count_Type; Item : Element_Type); -------------------------- -- Local Instantiations -- -------------------------- package Tree_Operations is new Red_Black_Trees.Generic_Bounded_Operations (Tree_Types, Left => Left_Son, Right => Right_Son); use Tree_Operations; package Element_Keys is new Red_Black_Trees.Generic_Bounded_Keys (Tree_Operations => Tree_Operations, Key_Type => Element_Type, Is_Less_Key_Node => Is_Less_Element_Node, Is_Greater_Key_Node => Is_Greater_Element_Node); package Set_Ops is new Red_Black_Trees.Generic_Bounded_Set_Operations (Tree_Operations => Tree_Operations, Set_Type => Set, Assign => Assign, Insert_With_Hint => Insert_With_Hint, Is_Less => Is_Less_Node_Node); --------- -- "=" -- --------- function "=" (Left, Right : Set) return Boolean is Lst : Count_Type; Node : Count_Type; ENode : Count_Type; begin if Length (Left) /= Length (Right) then return False; end if; if Is_Empty (Left) then return True; end if; Lst := Next (Left, Last (Left).Node); Node := First (Left).Node; while Node /= Lst loop ENode := Find (Right, Left.Nodes (Node).Element).Node; if ENode = 0 or else Left.Nodes (Node).Element /= Right.Nodes (ENode).Element then return False; end if; Node := Next (Left, Node); end loop; return True; end "="; ------------ -- Assign -- ------------ procedure Assign (Target : in out Set; Source : Set) is procedure Append_Element (Source_Node : Count_Type); procedure Append_Elements is new Tree_Operations.Generic_Iteration (Append_Element); -------------------- -- Append_Element -- -------------------- procedure Append_Element (Source_Node : Count_Type) is SN : Node_Type renames Source.Nodes (Source_Node); procedure Set_Element (Node : in out Node_Type); pragma Inline (Set_Element); function New_Node return Count_Type; pragma Inline (New_Node); procedure Insert_Post is new Element_Keys.Generic_Insert_Post (New_Node); procedure Unconditional_Insert_Sans_Hint is new Element_Keys.Generic_Unconditional_Insert (Insert_Post); procedure Unconditional_Insert_Avec_Hint is new Element_Keys.Generic_Unconditional_Insert_With_Hint (Insert_Post, Unconditional_Insert_Sans_Hint); procedure Allocate is new Generic_Allocate (Set_Element); -------------- -- New_Node -- -------------- function New_Node return Count_Type is Result : Count_Type; begin Allocate (Target, Result); return Result; end New_Node; ----------------- -- Set_Element -- ----------------- procedure Set_Element (Node : in out Node_Type) is begin Node.Element := SN.Element; end Set_Element; -- Local variables Target_Node : Count_Type; -- Start of processing for Append_Element begin Unconditional_Insert_Avec_Hint (Tree => Target, Hint => 0, Key => SN.Element, Node => Target_Node); end Append_Element; -- Start of processing for Assign begin if Target'Address = Source'Address then return; end if; if Target.Capacity < Source.Length then raise Constraint_Error with "Target capacity is less than Source length"; end if; Tree_Operations.Clear_Tree (Target); Append_Elements (Source); end Assign; ------------- -- Ceiling -- ------------- function Ceiling (Container : Set; Item : Element_Type) return Cursor is Node : constant Count_Type := Element_Keys.Ceiling (Container, Item); begin if Node = 0 then return No_Element; end if; return (Node => Node); end Ceiling; ----------- -- Clear -- ----------- procedure Clear (Container : in out Set) is begin Tree_Operations.Clear_Tree (Container); end Clear; ----------- -- Color -- ----------- function Color (Node : Node_Type) return Red_Black_Trees.Color_Type is begin return Node.Color; end Color; -------------- -- Contains -- -------------- function Contains (Container : Set; Item : Element_Type) return Boolean is begin return Find (Container, Item) /= No_Element; end Contains; ---------- -- Copy -- ---------- function Copy (Source : Set; Capacity : Count_Type := 0) return Set is Node : Count_Type; N : Count_Type; Target : Set (Count_Type'Max (Source.Capacity, Capacity)); begin if 0 < Capacity and then Capacity < Source.Capacity then raise Capacity_Error; end if; if Length (Source) > 0 then Target.Length := Source.Length; Target.Root := Source.Root; Target.First := Source.First; Target.Last := Source.Last; Target.Free := Source.Free; Node := 1; while Node <= Source.Capacity loop Target.Nodes (Node).Element := Source.Nodes (Node).Element; Target.Nodes (Node).Parent := Source.Nodes (Node).Parent; Target.Nodes (Node).Left := Source.Nodes (Node).Left; Target.Nodes (Node).Right := Source.Nodes (Node).Right; Target.Nodes (Node).Color := Source.Nodes (Node).Color; Target.Nodes (Node).Has_Element := Source.Nodes (Node).Has_Element; Node := Node + 1; end loop; while Node <= Target.Capacity loop N := Node; Formal_Ordered_Sets.Free (Tree => Target, X => N); Node := Node + 1; end loop; end if; return Target; end Copy; --------------------- -- Current_To_Last -- --------------------- function Current_To_Last (Container : Set; Current : Cursor) return Set is Curs : Cursor := First (Container); C : Set (Container.Capacity) := Copy (Container, Container.Capacity); Node : Count_Type; begin if Curs = No_Element then Clear (C); return C; end if; if Current /= No_Element and not Has_Element (Container, Current) then raise Constraint_Error; end if; while Curs.Node /= Current.Node loop Node := Curs.Node; Delete (C, Curs); Curs := Next (Container, (Node => Node)); end loop; return C; end Current_To_Last; ------------ -- Delete -- ------------ procedure Delete (Container : in out Set; Position : in out Cursor) is begin if not Has_Element (Container, Position) then raise Constraint_Error with "Position cursor has no element"; end if; pragma Assert (Vet (Container, Position.Node), "bad cursor in Delete"); Tree_Operations.Delete_Node_Sans_Free (Container, Position.Node); Formal_Ordered_Sets.Free (Container, Position.Node); Position := No_Element; end Delete; procedure Delete (Container : in out Set; Item : Element_Type) is X : constant Count_Type := Element_Keys.Find (Container, Item); begin if X = 0 then raise Constraint_Error with "attempt to delete element not in set"; end if; Tree_Operations.Delete_Node_Sans_Free (Container, X); Formal_Ordered_Sets.Free (Container, X); end Delete; ------------------ -- Delete_First -- ------------------ procedure Delete_First (Container : in out Set) is X : constant Count_Type := Container.First; begin if X /= 0 then Tree_Operations.Delete_Node_Sans_Free (Container, X); Formal_Ordered_Sets.Free (Container, X); end if; end Delete_First; ----------------- -- Delete_Last -- ----------------- procedure Delete_Last (Container : in out Set) is X : constant Count_Type := Container.Last; begin if X /= 0 then Tree_Operations.Delete_Node_Sans_Free (Container, X); Formal_Ordered_Sets.Free (Container, X); end if; end Delete_Last; ---------------- -- Difference -- ---------------- procedure Difference (Target : in out Set; Source : Set) is begin Set_Ops.Set_Difference (Target, Source); end Difference; function Difference (Left, Right : Set) return Set is begin if Left'Address = Right'Address then return Empty_Set; end if; if Length (Left) = 0 then return Empty_Set; end if; if Length (Right) = 0 then return Left.Copy; end if; return S : Set (Length (Left)) do Assign (S, Set_Ops.Set_Difference (Left, Right)); end return; end Difference; ------------- -- Element -- ------------- function Element (Container : Set; Position : Cursor) return Element_Type is begin if not Has_Element (Container, Position) then raise Constraint_Error with "Position cursor has no element"; end if; pragma Assert (Vet (Container, Position.Node), "bad cursor in Element"); return Container.Nodes (Position.Node).Element; end Element; ------------------------- -- Equivalent_Elements -- ------------------------- function Equivalent_Elements (Left, Right : Element_Type) return Boolean is begin if Left < Right or else Right < Left then return False; else return True; end if; end Equivalent_Elements; --------------------- -- Equivalent_Sets -- --------------------- function Equivalent_Sets (Left, Right : Set) return Boolean is function Is_Equivalent_Node_Node (L, R : Node_Type) return Boolean; pragma Inline (Is_Equivalent_Node_Node); function Is_Equivalent is new Tree_Operations.Generic_Equal (Is_Equivalent_Node_Node); ----------------------------- -- Is_Equivalent_Node_Node -- ----------------------------- function Is_Equivalent_Node_Node (L, R : Node_Type) return Boolean is begin if L.Element < R.Element then return False; elsif R.Element < L.Element then return False; else return True; end if; end Is_Equivalent_Node_Node; -- Start of processing for Equivalent_Sets begin return Is_Equivalent (Left, Right); end Equivalent_Sets; ------------- -- Exclude -- ------------- procedure Exclude (Container : in out Set; Item : Element_Type) is X : constant Count_Type := Element_Keys.Find (Container, Item); begin if X /= 0 then Tree_Operations.Delete_Node_Sans_Free (Container, X); Formal_Ordered_Sets.Free (Container, X); end if; end Exclude; ---------- -- Find -- ---------- function Find (Container : Set; Item : Element_Type) return Cursor is Node : constant Count_Type := Element_Keys.Find (Container, Item); begin if Node = 0 then return No_Element; end if; return (Node => Node); end Find; ----------- -- First -- ----------- function First (Container : Set) return Cursor is begin if Length (Container) = 0 then return No_Element; end if; return (Node => Container.First); end First; ------------------- -- First_Element -- ------------------- function First_Element (Container : Set) return Element_Type is Fst : constant Count_Type := First (Container).Node; begin if Fst = 0 then raise Constraint_Error with "set is empty"; end if; declare N : Tree_Types.Nodes_Type renames Container.Nodes; begin return N (Fst).Element; end; end First_Element; ----------------------- -- First_To_Previous -- ----------------------- function First_To_Previous (Container : Set; Current : Cursor) return Set is Curs : Cursor := Current; C : Set (Container.Capacity) := Copy (Container, Container.Capacity); Node : Count_Type; begin if Curs = No_Element then return C; elsif not Has_Element (Container, Curs) then raise Constraint_Error; else while Curs.Node /= 0 loop Node := Curs.Node; Delete (C, Curs); Curs := Next (Container, (Node => Node)); end loop; return C; end if; end First_To_Previous; ----------- -- Floor -- ----------- function Floor (Container : Set; Item : Element_Type) return Cursor is begin declare Node : constant Count_Type := Element_Keys.Floor (Container, Item); begin if Node = 0 then return No_Element; end if; return (Node => Node); end; end Floor; ---------- -- Free -- ---------- procedure Free (Tree : in out Set; X : Count_Type) is begin Tree.Nodes (X).Has_Element := False; Tree_Operations.Free (Tree, X); end Free; ---------------------- -- Generic_Allocate -- ---------------------- procedure Generic_Allocate (Tree : in out Tree_Types.Tree_Type'Class; Node : out Count_Type) is procedure Allocate is new Tree_Operations.Generic_Allocate (Set_Element); begin Allocate (Tree, Node); Tree.Nodes (Node).Has_Element := True; end Generic_Allocate; ------------------ -- Generic_Keys -- ------------------ package body Generic_Keys is ----------------------- -- Local Subprograms -- ----------------------- function Is_Greater_Key_Node (Left : Key_Type; Right : Node_Type) return Boolean; pragma Inline (Is_Greater_Key_Node); function Is_Less_Key_Node (Left : Key_Type; Right : Node_Type) return Boolean; pragma Inline (Is_Less_Key_Node); -------------------------- -- Local Instantiations -- -------------------------- package Key_Keys is new Red_Black_Trees.Generic_Bounded_Keys (Tree_Operations => Tree_Operations, Key_Type => Key_Type, Is_Less_Key_Node => Is_Less_Key_Node, Is_Greater_Key_Node => Is_Greater_Key_Node); ------------- -- Ceiling -- ------------- function Ceiling (Container : Set; Key : Key_Type) return Cursor is Node : constant Count_Type := Key_Keys.Ceiling (Container, Key); begin if Node = 0 then return No_Element; end if; return (Node => Node); end Ceiling; -------------- -- Contains -- -------------- function Contains (Container : Set; Key : Key_Type) return Boolean is begin return Find (Container, Key) /= No_Element; end Contains; ------------ -- Delete -- ------------ procedure Delete (Container : in out Set; Key : Key_Type) is X : constant Count_Type := Key_Keys.Find (Container, Key); begin if X = 0 then raise Constraint_Error with "attempt to delete key not in set"; end if; Delete_Node_Sans_Free (Container, X); Formal_Ordered_Sets.Free (Container, X); end Delete; ------------- -- Element -- ------------- function Element (Container : Set; Key : Key_Type) return Element_Type is Node : constant Count_Type := Key_Keys.Find (Container, Key); begin if Node = 0 then raise Constraint_Error with "key not in set"; end if; declare N : Tree_Types.Nodes_Type renames Container.Nodes; begin return N (Node).Element; end; end Element; --------------------- -- Equivalent_Keys -- --------------------- function Equivalent_Keys (Left, Right : Key_Type) return Boolean is begin if Left < Right or else Right < Left then return False; else return True; end if; end Equivalent_Keys; ------------- -- Exclude -- ------------- procedure Exclude (Container : in out Set; Key : Key_Type) is X : constant Count_Type := Key_Keys.Find (Container, Key); begin if X /= 0 then Delete_Node_Sans_Free (Container, X); Formal_Ordered_Sets.Free (Container, X); end if; end Exclude; ---------- -- Find -- ---------- function Find (Container : Set; Key : Key_Type) return Cursor is Node : constant Count_Type := Key_Keys.Find (Container, Key); begin return (if Node = 0 then No_Element else (Node => Node)); end Find; ----------- -- Floor -- ----------- function Floor (Container : Set; Key : Key_Type) return Cursor is Node : constant Count_Type := Key_Keys.Floor (Container, Key); begin return (if Node = 0 then No_Element else (Node => Node)); end Floor; ------------------------- -- Is_Greater_Key_Node -- ------------------------- function Is_Greater_Key_Node (Left : Key_Type; Right : Node_Type) return Boolean is begin return Key (Right.Element) < Left; end Is_Greater_Key_Node; ---------------------- -- Is_Less_Key_Node -- ---------------------- function Is_Less_Key_Node (Left : Key_Type; Right : Node_Type) return Boolean is begin return Left < Key (Right.Element); end Is_Less_Key_Node; --------- -- Key -- --------- function Key (Container : Set; Position : Cursor) return Key_Type is begin if not Has_Element (Container, Position) then raise Constraint_Error with "Position cursor has no element"; end if; pragma Assert (Vet (Container, Position.Node), "bad cursor in Key"); declare N : Tree_Types.Nodes_Type renames Container.Nodes; begin return Key (N (Position.Node).Element); end; end Key; ------------- -- Replace -- ------------- procedure Replace (Container : in out Set; Key : Key_Type; New_Item : Element_Type) is Node : constant Count_Type := Key_Keys.Find (Container, Key); begin if not Has_Element (Container, (Node => Node)) then raise Constraint_Error with "attempt to replace key not in set"; else Replace_Element (Container, Node, New_Item); end if; end Replace; end Generic_Keys; ----------------- -- Has_Element -- ----------------- function Has_Element (Container : Set; Position : Cursor) return Boolean is begin if Position.Node = 0 then return False; else return Container.Nodes (Position.Node).Has_Element; end if; end Has_Element; ------------- -- Include -- ------------- procedure Include (Container : in out Set; New_Item : Element_Type) is Position : Cursor; Inserted : Boolean; begin Insert (Container, New_Item, Position, Inserted); if not Inserted then declare N : Tree_Types.Nodes_Type renames Container.Nodes; begin N (Position.Node).Element := New_Item; end; end if; end Include; ------------ -- Insert -- ------------ procedure Insert (Container : in out Set; New_Item : Element_Type; Position : out Cursor; Inserted : out Boolean) is begin Insert_Sans_Hint (Container, New_Item, Position.Node, Inserted); end Insert; procedure Insert (Container : in out Set; New_Item : Element_Type) is Position : Cursor; Inserted : Boolean; begin Insert (Container, New_Item, Position, Inserted); if not Inserted then raise Constraint_Error with "attempt to insert element already in set"; end if; end Insert; ---------------------- -- Insert_Sans_Hint -- ---------------------- procedure Insert_Sans_Hint (Container : in out Set; New_Item : Element_Type; Node : out Count_Type; Inserted : out Boolean) is procedure Set_Element (Node : in out Node_Type); function New_Node return Count_Type; pragma Inline (New_Node); procedure Insert_Post is new Element_Keys.Generic_Insert_Post (New_Node); procedure Conditional_Insert_Sans_Hint is new Element_Keys.Generic_Conditional_Insert (Insert_Post); procedure Allocate is new Generic_Allocate (Set_Element); -------------- -- New_Node -- -------------- function New_Node return Count_Type is Result : Count_Type; begin Allocate (Container, Result); return Result; end New_Node; ----------------- -- Set_Element -- ----------------- procedure Set_Element (Node : in out Node_Type) is begin Node.Element := New_Item; end Set_Element; -- Start of processing for Insert_Sans_Hint begin Conditional_Insert_Sans_Hint (Container, New_Item, Node, Inserted); end Insert_Sans_Hint; ---------------------- -- Insert_With_Hint -- ---------------------- procedure Insert_With_Hint (Dst_Set : in out Set; Dst_Hint : Count_Type; Src_Node : Node_Type; Dst_Node : out Count_Type) is Success : Boolean; pragma Unreferenced (Success); procedure Set_Element (Node : in out Node_Type); function New_Node return Count_Type; pragma Inline (New_Node); procedure Insert_Post is new Element_Keys.Generic_Insert_Post (New_Node); procedure Insert_Sans_Hint is new Element_Keys.Generic_Conditional_Insert (Insert_Post); procedure Local_Insert_With_Hint is new Element_Keys.Generic_Conditional_Insert_With_Hint (Insert_Post, Insert_Sans_Hint); procedure Allocate is new Generic_Allocate (Set_Element); -------------- -- New_Node -- -------------- function New_Node return Count_Type is Result : Count_Type; begin Allocate (Dst_Set, Result); return Result; end New_Node; ----------------- -- Set_Element -- ----------------- procedure Set_Element (Node : in out Node_Type) is begin Node.Element := Src_Node.Element; end Set_Element; -- Start of processing for Insert_With_Hint begin Local_Insert_With_Hint (Dst_Set, Dst_Hint, Src_Node.Element, Dst_Node, Success); end Insert_With_Hint; ------------------ -- Intersection -- ------------------ procedure Intersection (Target : in out Set; Source : Set) is begin Set_Ops.Set_Intersection (Target, Source); end Intersection; function Intersection (Left, Right : Set) return Set is begin if Left'Address = Right'Address then return Left.Copy; end if; return S : Set (Count_Type'Min (Length (Left), Length (Right))) do Assign (S, Set_Ops.Set_Intersection (Left, Right)); end return; end Intersection; -------------- -- Is_Empty -- -------------- function Is_Empty (Container : Set) return Boolean is begin return Length (Container) = 0; end Is_Empty; ----------------------------- -- Is_Greater_Element_Node -- ----------------------------- function Is_Greater_Element_Node (Left : Element_Type; Right : Node_Type) return Boolean is begin -- Compute e > node same as node < e return Right.Element < Left; end Is_Greater_Element_Node; -------------------------- -- Is_Less_Element_Node -- -------------------------- function Is_Less_Element_Node (Left : Element_Type; Right : Node_Type) return Boolean is begin return Left < Right.Element; end Is_Less_Element_Node; ----------------------- -- Is_Less_Node_Node -- ----------------------- function Is_Less_Node_Node (L, R : Node_Type) return Boolean is begin return L.Element < R.Element; end Is_Less_Node_Node; --------------- -- Is_Subset -- --------------- function Is_Subset (Subset : Set; Of_Set : Set) return Boolean is begin return Set_Ops.Set_Subset (Subset, Of_Set => Of_Set); end Is_Subset; ---------- -- Last -- ---------- function Last (Container : Set) return Cursor is begin return (if Length (Container) = 0 then No_Element else (Node => Container.Last)); end Last; ------------------ -- Last_Element -- ------------------ function Last_Element (Container : Set) return Element_Type is begin if Last (Container).Node = 0 then raise Constraint_Error with "set is empty"; end if; declare N : Tree_Types.Nodes_Type renames Container.Nodes; begin return N (Last (Container).Node).Element; end; end Last_Element; -------------- -- Left_Son -- -------------- function Left_Son (Node : Node_Type) return Count_Type is begin return Node.Left; end Left_Son; ------------ -- Length -- ------------ function Length (Container : Set) return Count_Type is begin return Container.Length; end Length; ---------- -- Move -- ---------- procedure Move (Target : in out Set; Source : in out Set) is N : Tree_Types.Nodes_Type renames Source.Nodes; X : Count_Type; begin if Target'Address = Source'Address then return; end if; if Target.Capacity < Length (Source) then raise Constraint_Error with -- ??? "Source length exceeds Target capacity"; end if; Clear (Target); loop X := Source.First; exit when X = 0; Insert (Target, N (X).Element); -- optimize??? Tree_Operations.Delete_Node_Sans_Free (Source, X); Formal_Ordered_Sets.Free (Source, X); end loop; end Move; ---------- -- Next -- ---------- function Next (Container : Set; Position : Cursor) return Cursor is begin if Position = No_Element then return No_Element; end if; if not Has_Element (Container, Position) then raise Constraint_Error; end if; pragma Assert (Vet (Container, Position.Node), "bad cursor in Next"); return (Node => Tree_Operations.Next (Container, Position.Node)); end Next; procedure Next (Container : Set; Position : in out Cursor) is begin Position := Next (Container, Position); end Next; ------------- -- Overlap -- ------------- function Overlap (Left, Right : Set) return Boolean is begin return Set_Ops.Set_Overlap (Left, Right); end Overlap; ------------ -- Parent -- ------------ function Parent (Node : Node_Type) return Count_Type is begin return Node.Parent; end Parent; -------------- -- Previous -- -------------- function Previous (Container : Set; Position : Cursor) return Cursor is begin if Position = No_Element then return No_Element; end if; if not Has_Element (Container, Position) then raise Constraint_Error; end if; pragma Assert (Vet (Container, Position.Node), "bad cursor in Previous"); declare Node : constant Count_Type := Tree_Operations.Previous (Container, Position.Node); begin return (if Node = 0 then No_Element else (Node => Node)); end; end Previous; procedure Previous (Container : Set; Position : in out Cursor) is begin Position := Previous (Container, Position); end Previous; ------------- -- Replace -- ------------- procedure Replace (Container : in out Set; New_Item : Element_Type) is Node : constant Count_Type := Element_Keys.Find (Container, New_Item); begin if Node = 0 then raise Constraint_Error with "attempt to replace element not in set"; end if; Container.Nodes (Node).Element := New_Item; end Replace; --------------------- -- Replace_Element -- --------------------- procedure Replace_Element (Tree : in out Set; Node : Count_Type; Item : Element_Type) is pragma Assert (Node /= 0); function New_Node return Count_Type; pragma Inline (New_Node); procedure Local_Insert_Post is new Element_Keys.Generic_Insert_Post (New_Node); procedure Local_Insert_Sans_Hint is new Element_Keys.Generic_Conditional_Insert (Local_Insert_Post); procedure Local_Insert_With_Hint is new Element_Keys.Generic_Conditional_Insert_With_Hint (Local_Insert_Post, Local_Insert_Sans_Hint); NN : Tree_Types.Nodes_Type renames Tree.Nodes; -------------- -- New_Node -- -------------- function New_Node return Count_Type is N : Node_Type renames NN (Node); begin N.Element := Item; N.Color := Red; N.Parent := 0; N.Right := 0; N.Left := 0; return Node; end New_Node; Hint : Count_Type; Result : Count_Type; Inserted : Boolean; -- Start of processing for Insert begin if Item < NN (Node).Element or else NN (Node).Element < Item then null; else NN (Node).Element := Item; return; end if; Hint := Element_Keys.Ceiling (Tree, Item); if Hint = 0 then null; elsif Item < NN (Hint).Element then if Hint = Node then NN (Node).Element := Item; return; end if; else pragma Assert (not (NN (Hint).Element < Item)); raise Program_Error with "attempt to replace existing element"; end if; Tree_Operations.Delete_Node_Sans_Free (Tree, Node); Local_Insert_With_Hint (Tree => Tree, Position => Hint, Key => Item, Node => Result, Inserted => Inserted); pragma Assert (Inserted); pragma Assert (Result = Node); end Replace_Element; procedure Replace_Element (Container : in out Set; Position : Cursor; New_Item : Element_Type) is begin if not Has_Element (Container, Position) then raise Constraint_Error with "Position cursor has no element"; end if; pragma Assert (Vet (Container, Position.Node), "bad cursor in Replace_Element"); Replace_Element (Container, Position.Node, New_Item); end Replace_Element; --------------- -- Right_Son -- --------------- function Right_Son (Node : Node_Type) return Count_Type is begin return Node.Right; end Right_Son; --------------- -- Set_Color -- --------------- procedure Set_Color (Node : in out Node_Type; Color : Red_Black_Trees.Color_Type) is begin Node.Color := Color; end Set_Color; -------------- -- Set_Left -- -------------- procedure Set_Left (Node : in out Node_Type; Left : Count_Type) is begin Node.Left := Left; end Set_Left; ---------------- -- Set_Parent -- ---------------- procedure Set_Parent (Node : in out Node_Type; Parent : Count_Type) is begin Node.Parent := Parent; end Set_Parent; --------------- -- Set_Right -- --------------- procedure Set_Right (Node : in out Node_Type; Right : Count_Type) is begin Node.Right := Right; end Set_Right; ------------------ -- Strict_Equal -- ------------------ function Strict_Equal (Left, Right : Set) return Boolean is LNode : Count_Type := First (Left).Node; RNode : Count_Type := First (Right).Node; begin if Length (Left) /= Length (Right) then return False; end if; while LNode = RNode loop if LNode = 0 then return True; end if; if Left.Nodes (LNode).Element /= Right.Nodes (RNode).Element then exit; end if; LNode := Next (Left, LNode); RNode := Next (Right, RNode); end loop; return False; end Strict_Equal; -------------------------- -- Symmetric_Difference -- -------------------------- procedure Symmetric_Difference (Target : in out Set; Source : Set) is begin Set_Ops.Set_Symmetric_Difference (Target, Source); end Symmetric_Difference; function Symmetric_Difference (Left, Right : Set) return Set is begin if Left'Address = Right'Address then return Empty_Set; end if; if Length (Right) = 0 then return Left.Copy; end if; if Length (Left) = 0 then return Right.Copy; end if; return S : Set (Length (Left) + Length (Right)) do Assign (S, Set_Ops.Set_Symmetric_Difference (Left, Right)); end return; end Symmetric_Difference; ------------ -- To_Set -- ------------ function To_Set (New_Item : Element_Type) return Set is Node : Count_Type; Inserted : Boolean; begin return S : Set (Capacity => 1) do Insert_Sans_Hint (S, New_Item, Node, Inserted); pragma Assert (Inserted); end return; end To_Set; ----------- -- Union -- ----------- procedure Union (Target : in out Set; Source : Set) is begin Set_Ops.Set_Union (Target, Source); end Union; function Union (Left, Right : Set) return Set is begin if Left'Address = Right'Address then return Left.Copy; end if; if Length (Left) = 0 then return Right.Copy; end if; if Length (Right) = 0 then return Left.Copy; end if; return S : Set (Length (Left) + Length (Right)) do Assign (S, Source => Left); Union (S, Right); end return; end Union; end Ada.Containers.Formal_Ordered_Sets;