------------------------------------------------------------------------------ -- -- -- GNAT LIBRARY COMPONENTS -- -- -- -- ADA.CONTAINERS.INDEFINITE_ORDERED_MAPS -- -- -- -- B o d y -- -- -- -- Copyright (C) 2004-2011, Free Software Foundation, Inc. -- -- -- -- GNAT is free software; you can redistribute it and/or modify it under -- -- terms of the GNU General Public License as published by the Free Soft- -- -- ware Foundation; either version 3, or (at your option) any later ver- -- -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- -- or FITNESS FOR A PARTICULAR PURPOSE. -- -- -- -- As a special exception under Section 7 of GPL version 3, you are granted -- -- additional permissions described in the GCC Runtime Library Exception, -- -- version 3.1, as published by the Free Software Foundation. -- -- -- -- You should have received a copy of the GNU General Public License and -- -- a copy of the GCC Runtime Library Exception along with this program; -- -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -- -- . -- -- -- -- This unit was originally developed by Matthew J Heaney. -- ------------------------------------------------------------------------------ with Ada.Unchecked_Deallocation; with Ada.Containers.Red_Black_Trees.Generic_Operations; pragma Elaborate_All (Ada.Containers.Red_Black_Trees.Generic_Operations); with Ada.Containers.Red_Black_Trees.Generic_Keys; pragma Elaborate_All (Ada.Containers.Red_Black_Trees.Generic_Keys); with System; use type System.Address; package body Ada.Containers.Indefinite_Ordered_Maps is pragma Suppress (All_Checks); type Iterator is new Limited_Controlled and Map_Iterator_Interfaces.Reversible_Iterator with record Container : Map_Access; Node : Node_Access; end record; overriding procedure Finalize (Object : in out Iterator); overriding function First (Object : Iterator) return Cursor; overriding function Last (Object : Iterator) return Cursor; overriding function Next (Object : Iterator; Position : Cursor) return Cursor; overriding function Previous (Object : Iterator; Position : Cursor) return Cursor; ----------------------------- -- Node Access Subprograms -- ----------------------------- -- These subprograms provide a functional interface to access fields -- of a node, and a procedural interface for modifying these values. function Color (Node : Node_Access) return Color_Type; pragma Inline (Color); function Left (Node : Node_Access) return Node_Access; pragma Inline (Left); function Parent (Node : Node_Access) return Node_Access; pragma Inline (Parent); function Right (Node : Node_Access) return Node_Access; pragma Inline (Right); procedure Set_Parent (Node : Node_Access; Parent : Node_Access); pragma Inline (Set_Parent); procedure Set_Left (Node : Node_Access; Left : Node_Access); pragma Inline (Set_Left); procedure Set_Right (Node : Node_Access; Right : Node_Access); pragma Inline (Set_Right); procedure Set_Color (Node : Node_Access; Color : Color_Type); pragma Inline (Set_Color); ----------------------- -- Local Subprograms -- ----------------------- function Copy_Node (Source : Node_Access) return Node_Access; pragma Inline (Copy_Node); procedure Free (X : in out Node_Access); function Is_Equal_Node_Node (L, R : Node_Access) return Boolean; pragma Inline (Is_Equal_Node_Node); function Is_Greater_Key_Node (Left : Key_Type; Right : Node_Access) return Boolean; pragma Inline (Is_Greater_Key_Node); function Is_Less_Key_Node (Left : Key_Type; Right : Node_Access) return Boolean; pragma Inline (Is_Less_Key_Node); -------------------------- -- Local Instantiations -- -------------------------- package Tree_Operations is new Red_Black_Trees.Generic_Operations (Tree_Types); procedure Delete_Tree is new Tree_Operations.Generic_Delete_Tree (Free); function Copy_Tree is new Tree_Operations.Generic_Copy_Tree (Copy_Node, Delete_Tree); use Tree_Operations; package Key_Ops is new Red_Black_Trees.Generic_Keys (Tree_Operations => Tree_Operations, Key_Type => Key_Type, Is_Less_Key_Node => Is_Less_Key_Node, Is_Greater_Key_Node => Is_Greater_Key_Node); procedure Free_Key is new Ada.Unchecked_Deallocation (Key_Type, Key_Access); procedure Free_Element is new Ada.Unchecked_Deallocation (Element_Type, Element_Access); function Is_Equal is new Tree_Operations.Generic_Equal (Is_Equal_Node_Node); --------- -- "<" -- --------- function "<" (Left, Right : Cursor) return Boolean is begin if Left.Node = null then raise Constraint_Error with "Left cursor of ""<"" equals No_Element"; end if; if Right.Node = null then raise Constraint_Error with "Right cursor of ""<"" equals No_Element"; end if; if Left.Node.Key = null then raise Program_Error with "Left cursor in ""<"" is bad"; end if; if Right.Node.Key = null then raise Program_Error with "Right cursor in ""<"" is bad"; end if; pragma Assert (Vet (Left.Container.Tree, Left.Node), "Left cursor in ""<"" is bad"); pragma Assert (Vet (Right.Container.Tree, Right.Node), "Right cursor in ""<"" is bad"); return Left.Node.Key.all < Right.Node.Key.all; end "<"; function "<" (Left : Cursor; Right : Key_Type) return Boolean is begin if Left.Node = null then raise Constraint_Error with "Left cursor of ""<"" equals No_Element"; end if; if Left.Node.Key = null then raise Program_Error with "Left cursor in ""<"" is bad"; end if; pragma Assert (Vet (Left.Container.Tree, Left.Node), "Left cursor in ""<"" is bad"); return Left.Node.Key.all < Right; end "<"; function "<" (Left : Key_Type; Right : Cursor) return Boolean is begin if Right.Node = null then raise Constraint_Error with "Right cursor of ""<"" equals No_Element"; end if; if Right.Node.Key = null then raise Program_Error with "Right cursor in ""<"" is bad"; end if; pragma Assert (Vet (Right.Container.Tree, Right.Node), "Right cursor in ""<"" is bad"); return Left < Right.Node.Key.all; end "<"; --------- -- "=" -- --------- function "=" (Left, Right : Map) return Boolean is begin return Is_Equal (Left.Tree, Right.Tree); end "="; --------- -- ">" -- --------- function ">" (Left, Right : Cursor) return Boolean is begin if Left.Node = null then raise Constraint_Error with "Left cursor of "">"" equals No_Element"; end if; if Right.Node = null then raise Constraint_Error with "Right cursor of "">"" equals No_Element"; end if; if Left.Node.Key = null then raise Program_Error with "Left cursor in ""<"" is bad"; end if; if Right.Node.Key = null then raise Program_Error with "Right cursor in ""<"" is bad"; end if; pragma Assert (Vet (Left.Container.Tree, Left.Node), "Left cursor in "">"" is bad"); pragma Assert (Vet (Right.Container.Tree, Right.Node), "Right cursor in "">"" is bad"); return Right.Node.Key.all < Left.Node.Key.all; end ">"; function ">" (Left : Cursor; Right : Key_Type) return Boolean is begin if Left.Node = null then raise Constraint_Error with "Left cursor of "">"" equals No_Element"; end if; if Left.Node.Key = null then raise Program_Error with "Left cursor in ""<"" is bad"; end if; pragma Assert (Vet (Left.Container.Tree, Left.Node), "Left cursor in "">"" is bad"); return Right < Left.Node.Key.all; end ">"; function ">" (Left : Key_Type; Right : Cursor) return Boolean is begin if Right.Node = null then raise Constraint_Error with "Right cursor of "">"" equals No_Element"; end if; if Right.Node.Key = null then raise Program_Error with "Right cursor in ""<"" is bad"; end if; pragma Assert (Vet (Right.Container.Tree, Right.Node), "Right cursor in "">"" is bad"); return Right.Node.Key.all < Left; end ">"; ------------ -- Adjust -- ------------ procedure Adjust is new Tree_Operations.Generic_Adjust (Copy_Tree); procedure Adjust (Container : in out Map) is begin Adjust (Container.Tree); end Adjust; ------------ -- Assign -- ------------ procedure Assign (Target : in out Map; Source : Map) is procedure Insert_Item (Node : Node_Access); pragma Inline (Insert_Item); procedure Insert_Items is new Tree_Operations.Generic_Iteration (Insert_Item); ----------------- -- Insert_Item -- ----------------- procedure Insert_Item (Node : Node_Access) is begin Target.Insert (Key => Node.Key.all, New_Item => Node.Element.all); end Insert_Item; -- Start of processing for Assign begin if Target'Address = Source'Address then return; end if; Target.Clear; Insert_Items (Target.Tree); end Assign; ------------- -- Ceiling -- ------------- function Ceiling (Container : Map; Key : Key_Type) return Cursor is Node : constant Node_Access := Key_Ops.Ceiling (Container.Tree, Key); begin return (if Node = null then No_Element else Cursor'(Container'Unrestricted_Access, Node)); end Ceiling; ----------- -- Clear -- ----------- procedure Clear is new Tree_Operations.Generic_Clear (Delete_Tree); procedure Clear (Container : in out Map) is begin Clear (Container.Tree); end Clear; ----------- -- Color -- ----------- function Color (Node : Node_Access) return Color_Type is begin return Node.Color; end Color; ------------------------ -- Constant_Reference -- ------------------------ function Constant_Reference (Container : aliased Map; Position : Cursor) return Constant_Reference_Type is begin if Position.Container = null then raise Constraint_Error with "Position cursor has no element"; end if; if Position.Container /= Container'Unrestricted_Access then raise Program_Error with "Position cursor designates wrong map"; end if; if Position.Node.Element = null then raise Program_Error with "Node has no element"; end if; pragma Assert (Vet (Container.Tree, Position.Node), "Position cursor in Constant_Reference is bad"); return (Element => Position.Node.Element.all'Access); end Constant_Reference; function Constant_Reference (Container : Map; Key : Key_Type) return Constant_Reference_Type is Node : constant Node_Access := Key_Ops.Find (Container.Tree, Key); begin if Node = null then raise Constraint_Error with "key not in map"; end if; if Node.Element = null then raise Program_Error with "Node has no element"; end if; return (Element => Node.Element.all'Access); end Constant_Reference; -------------- -- Contains -- -------------- function Contains (Container : Map; Key : Key_Type) return Boolean is begin return Find (Container, Key) /= No_Element; end Contains; ---------- -- Copy -- ---------- function Copy (Source : Map) return Map is begin return Target : Map do Target.Assign (Source); end return; end Copy; --------------- -- Copy_Node -- --------------- function Copy_Node (Source : Node_Access) return Node_Access is K : Key_Access := new Key_Type'(Source.Key.all); E : Element_Access; begin E := new Element_Type'(Source.Element.all); return new Node_Type'(Parent => null, Left => null, Right => null, Color => Source.Color, Key => K, Element => E); exception when others => Free_Key (K); Free_Element (E); raise; end Copy_Node; ------------ -- Delete -- ------------ procedure Delete (Container : in out Map; Position : in out Cursor) is begin if Position.Node = null then raise Constraint_Error with "Position cursor of Delete equals No_Element"; end if; if Position.Node.Key = null or else Position.Node.Element = null then raise Program_Error with "Position cursor of Delete is bad"; end if; if Position.Container /= Container'Unrestricted_Access then raise Program_Error with "Position cursor of Delete designates wrong map"; end if; pragma Assert (Vet (Container.Tree, Position.Node), "Position cursor of Delete is bad"); Tree_Operations.Delete_Node_Sans_Free (Container.Tree, Position.Node); Free (Position.Node); Position.Container := null; end Delete; procedure Delete (Container : in out Map; Key : Key_Type) is X : Node_Access := Key_Ops.Find (Container.Tree, Key); begin if X = null then raise Constraint_Error with "key not in map"; end if; Delete_Node_Sans_Free (Container.Tree, X); Free (X); end Delete; ------------------ -- Delete_First -- ------------------ procedure Delete_First (Container : in out Map) is X : Node_Access := Container.Tree.First; begin if X /= null then Tree_Operations.Delete_Node_Sans_Free (Container.Tree, X); Free (X); end if; end Delete_First; ----------------- -- Delete_Last -- ----------------- procedure Delete_Last (Container : in out Map) is X : Node_Access := Container.Tree.Last; begin if X /= null then Tree_Operations.Delete_Node_Sans_Free (Container.Tree, X); Free (X); end if; end Delete_Last; ------------- -- Element -- ------------- function Element (Position : Cursor) return Element_Type is begin if Position.Node = null then raise Constraint_Error with "Position cursor of function Element equals No_Element"; end if; if Position.Node.Element = null then raise Program_Error with "Position cursor of function Element is bad"; end if; pragma Assert (Vet (Position.Container.Tree, Position.Node), "Position cursor of function Element is bad"); return Position.Node.Element.all; end Element; function Element (Container : Map; Key : Key_Type) return Element_Type is Node : constant Node_Access := Key_Ops.Find (Container.Tree, Key); begin if Node = null then raise Constraint_Error with "key not in map"; end if; return Node.Element.all; end Element; --------------------- -- Equivalent_Keys -- --------------------- function Equivalent_Keys (Left, Right : Key_Type) return Boolean is begin return (if Left < Right or else Right < Left then False else True); end Equivalent_Keys; ------------- -- Exclude -- ------------- procedure Exclude (Container : in out Map; Key : Key_Type) is X : Node_Access := Key_Ops.Find (Container.Tree, Key); begin if X /= null then Tree_Operations.Delete_Node_Sans_Free (Container.Tree, X); Free (X); end if; end Exclude; -------------- -- Finalize -- -------------- procedure Finalize (Object : in out Iterator) is begin if Object.Container /= null then declare B : Natural renames Object.Container.all.Tree.Busy; begin B := B - 1; end; end if; end Finalize; ---------- -- Find -- ---------- function Find (Container : Map; Key : Key_Type) return Cursor is Node : constant Node_Access := Key_Ops.Find (Container.Tree, Key); begin return (if Node = null then No_Element else Cursor'(Container'Unrestricted_Access, Node)); end Find; ----------- -- First -- ----------- function First (Container : Map) return Cursor is T : Tree_Type renames Container.Tree; begin return (if T.First = null then No_Element else Cursor'(Container'Unrestricted_Access, T.First)); end First; function First (Object : Iterator) return Cursor is begin -- The value of the iterator object's Node component influences the -- behavior of the First (and Last) selector function. -- When the Node component is null, this means the iterator object was -- constructed without a start expression, in which case the (forward) -- iteration starts from the (logical) beginning of the entire sequence -- of items (corresponding to Container.First for a forward iterator). -- Otherwise, this is iteration over a partial sequence of items. When -- the Node component is non-null, the iterator object was constructed -- with a start expression, that specifies the position from which the -- (forward) partial iteration begins. if Object.Node = null then return Object.Container.First; else return Cursor'(Object.Container, Object.Node); end if; end First; ------------------- -- First_Element -- ------------------- function First_Element (Container : Map) return Element_Type is T : Tree_Type renames Container.Tree; begin if T.First = null then raise Constraint_Error with "map is empty"; else return T.First.Element.all; end if; end First_Element; --------------- -- First_Key -- --------------- function First_Key (Container : Map) return Key_Type is T : Tree_Type renames Container.Tree; begin if T.First = null then raise Constraint_Error with "map is empty"; else return T.First.Key.all; end if; end First_Key; ----------- -- Floor -- ----------- function Floor (Container : Map; Key : Key_Type) return Cursor is Node : constant Node_Access := Key_Ops.Floor (Container.Tree, Key); begin return (if Node = null then No_Element else Cursor'(Container'Unrestricted_Access, Node)); end Floor; ---------- -- Free -- ---------- procedure Free (X : in out Node_Access) is procedure Deallocate is new Ada.Unchecked_Deallocation (Node_Type, Node_Access); begin if X = null then return; end if; X.Parent := X; X.Left := X; X.Right := X; begin Free_Key (X.Key); exception when others => X.Key := null; begin Free_Element (X.Element); exception when others => X.Element := null; end; Deallocate (X); raise; end; begin Free_Element (X.Element); exception when others => X.Element := null; Deallocate (X); raise; end; Deallocate (X); end Free; ----------------- -- Has_Element -- ----------------- function Has_Element (Position : Cursor) return Boolean is begin return Position /= No_Element; end Has_Element; ------------- -- Include -- ------------- procedure Include (Container : in out Map; Key : Key_Type; New_Item : Element_Type) is Position : Cursor; Inserted : Boolean; K : Key_Access; E : Element_Access; begin Insert (Container, Key, New_Item, Position, Inserted); if not Inserted then if Container.Tree.Lock > 0 then raise Program_Error with "attempt to tamper with elements (map is locked)"; end if; K := Position.Node.Key; E := Position.Node.Element; Position.Node.Key := new Key_Type'(Key); begin Position.Node.Element := new Element_Type'(New_Item); exception when others => Free_Key (K); raise; end; Free_Key (K); Free_Element (E); end if; end Include; ------------ -- Insert -- ------------ procedure Insert (Container : in out Map; Key : Key_Type; New_Item : Element_Type; Position : out Cursor; Inserted : out Boolean) is function New_Node return Node_Access; pragma Inline (New_Node); procedure Insert_Post is new Key_Ops.Generic_Insert_Post (New_Node); procedure Insert_Sans_Hint is new Key_Ops.Generic_Conditional_Insert (Insert_Post); -------------- -- New_Node -- -------------- function New_Node return Node_Access is Node : Node_Access := new Node_Type; begin Node.Key := new Key_Type'(Key); Node.Element := new Element_Type'(New_Item); return Node; exception when others => -- On exception, deallocate key and elem Free (Node); -- Note that Free deallocates key and elem too raise; end New_Node; -- Start of processing for Insert begin Insert_Sans_Hint (Container.Tree, Key, Position.Node, Inserted); Position.Container := Container'Unrestricted_Access; end Insert; procedure Insert (Container : in out Map; Key : Key_Type; New_Item : Element_Type) is Position : Cursor; pragma Unreferenced (Position); Inserted : Boolean; begin Insert (Container, Key, New_Item, Position, Inserted); if not Inserted then raise Constraint_Error with "key already in map"; end if; end Insert; -------------- -- Is_Empty -- -------------- function Is_Empty (Container : Map) return Boolean is begin return Container.Tree.Length = 0; end Is_Empty; ------------------------ -- Is_Equal_Node_Node -- ------------------------ function Is_Equal_Node_Node (L, R : Node_Access) return Boolean is begin return (if L.Key.all < R.Key.all then False elsif R.Key.all < L.Key.all then False else L.Element.all = R.Element.all); end Is_Equal_Node_Node; ------------------------- -- Is_Greater_Key_Node -- ------------------------- function Is_Greater_Key_Node (Left : Key_Type; Right : Node_Access) return Boolean is begin -- k > node same as node < k return Right.Key.all < Left; end Is_Greater_Key_Node; ---------------------- -- Is_Less_Key_Node -- ---------------------- function Is_Less_Key_Node (Left : Key_Type; Right : Node_Access) return Boolean is begin return Left < Right.Key.all; end Is_Less_Key_Node; ------------- -- Iterate -- ------------- procedure Iterate (Container : Map; Process : not null access procedure (Position : Cursor)) is procedure Process_Node (Node : Node_Access); pragma Inline (Process_Node); procedure Local_Iterate is new Tree_Operations.Generic_Iteration (Process_Node); ------------------ -- Process_Node -- ------------------ procedure Process_Node (Node : Node_Access) is begin Process (Cursor'(Container'Unrestricted_Access, Node)); end Process_Node; B : Natural renames Container'Unrestricted_Access.all.Tree.Busy; -- Start of processing for Iterate begin B := B + 1; begin Local_Iterate (Container.Tree); exception when others => B := B - 1; raise; end; B := B - 1; end Iterate; function Iterate (Container : Map) return Map_Iterator_Interfaces.Reversible_Iterator'Class is B : Natural renames Container'Unrestricted_Access.all.Tree.Busy; begin -- The value of the Node component influences the behavior of the First -- and Last selector functions of the iterator object. When the Node -- component is null (as is the case here), this means the iterator -- object was constructed without a start expression. This is a complete -- iterator, meaning that the iteration starts from the (logical) -- beginning of the sequence of items. -- Note: For a forward iterator, Container.First is the beginning, and -- for a reverse iterator, Container.Last is the beginning. return It : constant Iterator := (Limited_Controlled with Container => Container'Unrestricted_Access, Node => null) do B := B + 1; end return; end Iterate; function Iterate (Container : Map; Start : Cursor) return Map_Iterator_Interfaces.Reversible_Iterator'Class is B : Natural renames Container'Unrestricted_Access.all.Tree.Busy; begin -- It was formerly the case that when Start = No_Element, the partial -- iterator was defined to behave the same as for a complete iterator, -- and iterate over the entire sequence of items. However, those -- semantics were unintuitive and arguably error-prone (it is too easy -- to accidentally create an endless loop), and so they were changed, -- per the ARG meeting in Denver on 2011/11. However, there was no -- consensus about what positive meaning this corner case should have, -- and so it was decided to simply raise an exception. This does imply, -- however, that it is not possible to use a partial iterator to specify -- an empty sequence of items. if Start = No_Element then raise Constraint_Error with "Start position for iterator equals No_Element"; end if; if Start.Container /= Container'Unrestricted_Access then raise Program_Error with "Start cursor of Iterate designates wrong map"; end if; pragma Assert (Vet (Container.Tree, Start.Node), "Start cursor of Iterate is bad"); -- The value of the Node component influences the behavior of the First -- and Last selector functions of the iterator object. When the Node -- component is non-null (as is the case here), it means that this -- is a partial iteration, over a subset of the complete sequence of -- items. The iterator object was constructed with a start expression, -- indicating the position from which the iteration begins. Note that -- the start position has the same value irrespective of whether this -- is a forward or reverse iteration. return It : constant Iterator := (Limited_Controlled with Container => Container'Unrestricted_Access, Node => Start.Node) do B := B + 1; end return; end Iterate; --------- -- Key -- --------- function Key (Position : Cursor) return Key_Type is begin if Position.Node = null then raise Constraint_Error with "Position cursor of function Key equals No_Element"; end if; if Position.Node.Key = null then raise Program_Error with "Position cursor of function Key is bad"; end if; pragma Assert (Vet (Position.Container.Tree, Position.Node), "Position cursor of function Key is bad"); return Position.Node.Key.all; end Key; ---------- -- Last -- ---------- function Last (Container : Map) return Cursor is T : Tree_Type renames Container.Tree; begin return (if T.Last = null then No_Element else Cursor'(Container'Unrestricted_Access, T.Last)); end Last; function Last (Object : Iterator) return Cursor is begin -- The value of the iterator object's Node component influences the -- behavior of the Last (and First) selector function. -- When the Node component is null, this means the iterator object was -- constructed without a start expression, in which case the (reverse) -- iteration starts from the (logical) beginning of the entire sequence -- (corresponding to Container.Last, for a reverse iterator). -- Otherwise, this is iteration over a partial sequence of items. When -- the Node component is non-null, the iterator object was constructed -- with a start expression, that specifies the position from which the -- (reverse) partial iteration begins. if Object.Node = null then return Object.Container.Last; else return Cursor'(Object.Container, Object.Node); end if; end Last; ------------------ -- Last_Element -- ------------------ function Last_Element (Container : Map) return Element_Type is T : Tree_Type renames Container.Tree; begin if T.Last = null then raise Constraint_Error with "map is empty"; end if; return T.Last.Element.all; end Last_Element; -------------- -- Last_Key -- -------------- function Last_Key (Container : Map) return Key_Type is T : Tree_Type renames Container.Tree; begin if T.Last = null then raise Constraint_Error with "map is empty"; end if; return T.Last.Key.all; end Last_Key; ---------- -- Left -- ---------- function Left (Node : Node_Access) return Node_Access is begin return Node.Left; end Left; ------------ -- Length -- ------------ function Length (Container : Map) return Count_Type is begin return Container.Tree.Length; end Length; ---------- -- Move -- ---------- procedure Move is new Tree_Operations.Generic_Move (Clear); procedure Move (Target : in out Map; Source : in out Map) is begin Move (Target => Target.Tree, Source => Source.Tree); end Move; ---------- -- Next -- ---------- function Next (Position : Cursor) return Cursor is begin if Position = No_Element then return No_Element; end if; pragma Assert (Position.Node /= null); pragma Assert (Position.Node.Key /= null); pragma Assert (Position.Node.Element /= null); pragma Assert (Vet (Position.Container.Tree, Position.Node), "Position cursor of Next is bad"); declare Node : constant Node_Access := Tree_Operations.Next (Position.Node); begin return (if Node = null then No_Element else Cursor'(Position.Container, Node)); end; end Next; procedure Next (Position : in out Cursor) is begin Position := Next (Position); end Next; function Next (Object : Iterator; Position : Cursor) return Cursor is begin if Position.Container = null then return No_Element; end if; if Position.Container /= Object.Container then raise Program_Error with "Position cursor of Next designates wrong map"; end if; return Next (Position); end Next; ------------ -- Parent -- ------------ function Parent (Node : Node_Access) return Node_Access is begin return Node.Parent; end Parent; -------------- -- Previous -- -------------- function Previous (Position : Cursor) return Cursor is begin if Position = No_Element then return No_Element; end if; pragma Assert (Position.Node /= null); pragma Assert (Position.Node.Key /= null); pragma Assert (Position.Node.Element /= null); pragma Assert (Vet (Position.Container.Tree, Position.Node), "Position cursor of Previous is bad"); declare Node : constant Node_Access := Tree_Operations.Previous (Position.Node); begin return (if Node = null then No_Element else Cursor'(Position.Container, Node)); end; end Previous; procedure Previous (Position : in out Cursor) is begin Position := Previous (Position); end Previous; function Previous (Object : Iterator; Position : Cursor) return Cursor is begin if Position.Container = null then return No_Element; end if; if Position.Container /= Object.Container then raise Program_Error with "Position cursor of Previous designates wrong map"; end if; return Previous (Position); end Previous; ------------------- -- Query_Element -- ------------------- procedure Query_Element (Position : Cursor; Process : not null access procedure (Key : Key_Type; Element : Element_Type)) is begin if Position.Node = null then raise Constraint_Error with "Position cursor of Query_Element equals No_Element"; end if; if Position.Node.Key = null or else Position.Node.Element = null then raise Program_Error with "Position cursor of Query_Element is bad"; end if; pragma Assert (Vet (Position.Container.Tree, Position.Node), "Position cursor of Query_Element is bad"); declare T : Tree_Type renames Position.Container.Tree; B : Natural renames T.Busy; L : Natural renames T.Lock; begin B := B + 1; L := L + 1; declare K : Key_Type renames Position.Node.Key.all; E : Element_Type renames Position.Node.Element.all; begin Process (K, E); exception when others => L := L - 1; B := B - 1; raise; end; L := L - 1; B := B - 1; end; end Query_Element; ---------- -- Read -- ---------- procedure Read (Stream : not null access Root_Stream_Type'Class; Container : out Map) is function Read_Node (Stream : not null access Root_Stream_Type'Class) return Node_Access; pragma Inline (Read_Node); procedure Read is new Tree_Operations.Generic_Read (Clear, Read_Node); --------------- -- Read_Node -- --------------- function Read_Node (Stream : not null access Root_Stream_Type'Class) return Node_Access is Node : Node_Access := new Node_Type; begin Node.Key := new Key_Type'(Key_Type'Input (Stream)); Node.Element := new Element_Type'(Element_Type'Input (Stream)); return Node; exception when others => Free (Node); -- Note that Free deallocates key and elem too raise; end Read_Node; -- Start of processing for Read begin Read (Stream, Container.Tree); end Read; procedure Read (Stream : not null access Root_Stream_Type'Class; Item : out Cursor) is begin raise Program_Error with "attempt to stream map cursor"; end Read; procedure Read (Stream : not null access Root_Stream_Type'Class; Item : out Reference_Type) is begin raise Program_Error with "attempt to stream reference"; end Read; procedure Read (Stream : not null access Root_Stream_Type'Class; Item : out Constant_Reference_Type) is begin raise Program_Error with "attempt to stream reference"; end Read; --------------- -- Reference -- --------------- function Reference (Container : aliased in out Map; Position : Cursor) return Reference_Type is begin if Position.Container = null then raise Constraint_Error with "Position cursor has no element"; end if; if Position.Container /= Container'Unrestricted_Access then raise Program_Error with "Position cursor designates wrong map"; end if; if Position.Node.Element = null then raise Program_Error with "Node has no element"; end if; pragma Assert (Vet (Container.Tree, Position.Node), "Position cursor in function Reference is bad"); return (Element => Position.Node.Element.all'Access); end Reference; function Reference (Container : aliased in out Map; Key : Key_Type) return Reference_Type is Node : constant Node_Access := Key_Ops.Find (Container.Tree, Key); begin if Node = null then raise Constraint_Error with "key not in map"; end if; if Node.Element = null then raise Program_Error with "Node has no element"; end if; return (Element => Node.Element.all'Access); end Reference; ------------- -- Replace -- ------------- procedure Replace (Container : in out Map; Key : Key_Type; New_Item : Element_Type) is Node : constant Node_Access := Key_Ops.Find (Container.Tree, Key); K : Key_Access; E : Element_Access; begin if Node = null then raise Constraint_Error with "key not in map"; end if; if Container.Tree.Lock > 0 then raise Program_Error with "attempt to tamper with elements (map is locked)"; end if; K := Node.Key; E := Node.Element; Node.Key := new Key_Type'(Key); begin Node.Element := new Element_Type'(New_Item); exception when others => Free_Key (K); raise; end; Free_Key (K); Free_Element (E); end Replace; --------------------- -- Replace_Element -- --------------------- procedure Replace_Element (Container : in out Map; Position : Cursor; New_Item : Element_Type) is begin if Position.Node = null then raise Constraint_Error with "Position cursor of Replace_Element equals No_Element"; end if; if Position.Node.Key = null or else Position.Node.Element = null then raise Program_Error with "Position cursor of Replace_Element is bad"; end if; if Position.Container /= Container'Unrestricted_Access then raise Program_Error with "Position cursor of Replace_Element designates wrong map"; end if; if Container.Tree.Lock > 0 then raise Program_Error with "attempt to tamper with elements (map is locked)"; end if; pragma Assert (Vet (Container.Tree, Position.Node), "Position cursor of Replace_Element is bad"); declare X : Element_Access := Position.Node.Element; begin Position.Node.Element := new Element_Type'(New_Item); Free_Element (X); end; end Replace_Element; --------------------- -- Reverse_Iterate -- --------------------- procedure Reverse_Iterate (Container : Map; Process : not null access procedure (Position : Cursor)) is procedure Process_Node (Node : Node_Access); pragma Inline (Process_Node); procedure Local_Reverse_Iterate is new Tree_Operations.Generic_Reverse_Iteration (Process_Node); ------------------ -- Process_Node -- ------------------ procedure Process_Node (Node : Node_Access) is begin Process (Cursor'(Container'Unrestricted_Access, Node)); end Process_Node; B : Natural renames Container.Tree'Unrestricted_Access.all.Busy; -- Start of processing for Reverse_Iterate begin B := B + 1; begin Local_Reverse_Iterate (Container.Tree); exception when others => B := B - 1; raise; end; B := B - 1; end Reverse_Iterate; ----------- -- Right -- ----------- function Right (Node : Node_Access) return Node_Access is begin return Node.Right; end Right; --------------- -- Set_Color -- --------------- procedure Set_Color (Node : Node_Access; Color : Color_Type) is begin Node.Color := Color; end Set_Color; -------------- -- Set_Left -- -------------- procedure Set_Left (Node : Node_Access; Left : Node_Access) is begin Node.Left := Left; end Set_Left; ---------------- -- Set_Parent -- ---------------- procedure Set_Parent (Node : Node_Access; Parent : Node_Access) is begin Node.Parent := Parent; end Set_Parent; --------------- -- Set_Right -- --------------- procedure Set_Right (Node : Node_Access; Right : Node_Access) is begin Node.Right := Right; end Set_Right; -------------------- -- Update_Element -- -------------------- procedure Update_Element (Container : in out Map; Position : Cursor; Process : not null access procedure (Key : Key_Type; Element : in out Element_Type)) is begin if Position.Node = null then raise Constraint_Error with "Position cursor of Update_Element equals No_Element"; end if; if Position.Node.Key = null or else Position.Node.Element = null then raise Program_Error with "Position cursor of Update_Element is bad"; end if; if Position.Container /= Container'Unrestricted_Access then raise Program_Error with "Position cursor of Update_Element designates wrong map"; end if; pragma Assert (Vet (Container.Tree, Position.Node), "Position cursor of Update_Element is bad"); declare T : Tree_Type renames Position.Container.Tree; B : Natural renames T.Busy; L : Natural renames T.Lock; begin B := B + 1; L := L + 1; declare K : Key_Type renames Position.Node.Key.all; E : Element_Type renames Position.Node.Element.all; begin Process (K, E); exception when others => L := L - 1; B := B - 1; raise; end; L := L - 1; B := B - 1; end; end Update_Element; ----------- -- Write -- ----------- procedure Write (Stream : not null access Root_Stream_Type'Class; Container : Map) is procedure Write_Node (Stream : not null access Root_Stream_Type'Class; Node : Node_Access); pragma Inline (Write_Node); procedure Write is new Tree_Operations.Generic_Write (Write_Node); ---------------- -- Write_Node -- ---------------- procedure Write_Node (Stream : not null access Root_Stream_Type'Class; Node : Node_Access) is begin Key_Type'Output (Stream, Node.Key.all); Element_Type'Output (Stream, Node.Element.all); end Write_Node; -- Start of processing for Write begin Write (Stream, Container.Tree); end Write; procedure Write (Stream : not null access Root_Stream_Type'Class; Item : Cursor) is begin raise Program_Error with "attempt to stream map cursor"; end Write; procedure Write (Stream : not null access Root_Stream_Type'Class; Item : Reference_Type) is begin raise Program_Error with "attempt to stream reference"; end Write; procedure Write (Stream : not null access Root_Stream_Type'Class; Item : Constant_Reference_Type) is begin raise Program_Error with "attempt to stream reference"; end Write; end Ada.Containers.Indefinite_Ordered_Maps;