------------------------------------------------------------------------------ -- -- -- GNAT LIBRARY COMPONENTS -- -- -- -- A D A . C O N T A I N E R S . M U L T I W A Y _ T R E E S -- -- -- -- S p e c -- -- -- -- Copyright (C) 2004-2014, Free Software Foundation, Inc. -- -- -- -- This specification is derived from the Ada Reference Manual for use with -- -- GNAT. The copyright notice above, and the license provisions that follow -- -- apply solely to the contents of the part following the private keyword. -- -- -- -- GNAT is free software; you can redistribute it and/or modify it under -- -- terms of the GNU General Public License as published by the Free Soft- -- -- ware Foundation; either version 3, or (at your option) any later ver- -- -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- -- or FITNESS FOR A PARTICULAR PURPOSE. -- -- -- -- As a special exception under Section 7 of GPL version 3, you are granted -- -- additional permissions described in the GCC Runtime Library Exception, -- -- version 3.1, as published by the Free Software Foundation. -- -- -- -- You should have received a copy of the GNU General Public License and -- -- a copy of the GCC Runtime Library Exception along with this program; -- -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -- -- . -- -- -- -- This unit was originally developed by Matthew J Heaney. -- ------------------------------------------------------------------------------ with Ada.Iterator_Interfaces; private with Ada.Finalization; private with Ada.Streams; generic type Element_Type is private; with function "=" (Left, Right : Element_Type) return Boolean is <>; package Ada.Containers.Multiway_Trees is pragma Preelaborate; pragma Remote_Types; type Tree is tagged private with Constant_Indexing => Constant_Reference, Variable_Indexing => Reference, Default_Iterator => Iterate, Iterator_Element => Element_Type; pragma Preelaborable_Initialization (Tree); type Cursor is private; pragma Preelaborable_Initialization (Cursor); Empty_Tree : constant Tree; No_Element : constant Cursor; function Has_Element (Position : Cursor) return Boolean; package Tree_Iterator_Interfaces is new Ada.Iterator_Interfaces (Cursor, Has_Element); function Equal_Subtree (Left_Position : Cursor; Right_Position : Cursor) return Boolean; function "=" (Left, Right : Tree) return Boolean; function Is_Empty (Container : Tree) return Boolean; function Node_Count (Container : Tree) return Count_Type; function Subtree_Node_Count (Position : Cursor) return Count_Type; function Depth (Position : Cursor) return Count_Type; function Is_Root (Position : Cursor) return Boolean; function Is_Leaf (Position : Cursor) return Boolean; function Root (Container : Tree) return Cursor; procedure Clear (Container : in out Tree); function Element (Position : Cursor) return Element_Type; procedure Replace_Element (Container : in out Tree; Position : Cursor; New_Item : Element_Type); procedure Query_Element (Position : Cursor; Process : not null access procedure (Element : Element_Type)); procedure Update_Element (Container : in out Tree; Position : Cursor; Process : not null access procedure (Element : in out Element_Type)); type Constant_Reference_Type (Element : not null access constant Element_Type) is private with Implicit_Dereference => Element; type Reference_Type (Element : not null access Element_Type) is private with Implicit_Dereference => Element; function Constant_Reference (Container : aliased Tree; Position : Cursor) return Constant_Reference_Type; pragma Inline (Constant_Reference); function Reference (Container : aliased in out Tree; Position : Cursor) return Reference_Type; pragma Inline (Reference); procedure Assign (Target : in out Tree; Source : Tree); function Copy (Source : Tree) return Tree; procedure Move (Target : in out Tree; Source : in out Tree); procedure Delete_Leaf (Container : in out Tree; Position : in out Cursor); procedure Delete_Subtree (Container : in out Tree; Position : in out Cursor); procedure Swap (Container : in out Tree; I, J : Cursor); function Find (Container : Tree; Item : Element_Type) return Cursor; -- This version of the AI: -- 10-06-02 AI05-0136-1/07 -- declares Find_In_Subtree this way: -- -- function Find_In_Subtree -- (Container : Tree; -- Item : Element_Type; -- Position : Cursor) return Cursor; -- -- It seems that the Container parameter is there by mistake, but we need -- an official ruling from the ARG. ??? function Find_In_Subtree (Position : Cursor; Item : Element_Type) return Cursor; -- This version of the AI: -- 10-06-02 AI05-0136-1/07 -- declares Ancestor_Find this way: -- -- function Ancestor_Find -- (Container : Tree; -- Item : Element_Type; -- Position : Cursor) return Cursor; -- -- It seems that the Container parameter is there by mistake, but we need -- an official ruling from the ARG. ??? function Ancestor_Find (Position : Cursor; Item : Element_Type) return Cursor; function Contains (Container : Tree; Item : Element_Type) return Boolean; procedure Iterate (Container : Tree; Process : not null access procedure (Position : Cursor)); procedure Iterate_Subtree (Position : Cursor; Process : not null access procedure (Position : Cursor)); function Iterate (Container : Tree) return Tree_Iterator_Interfaces.Forward_Iterator'Class; function Iterate_Subtree (Position : Cursor) return Tree_Iterator_Interfaces.Forward_Iterator'Class; function Iterate_Children (Container : Tree; Parent : Cursor) return Tree_Iterator_Interfaces.Reversible_Iterator'Class; function Child_Count (Parent : Cursor) return Count_Type; function Child_Depth (Parent, Child : Cursor) return Count_Type; procedure Insert_Child (Container : in out Tree; Parent : Cursor; Before : Cursor; New_Item : Element_Type; Count : Count_Type := 1); procedure Insert_Child (Container : in out Tree; Parent : Cursor; Before : Cursor; New_Item : Element_Type; Position : out Cursor; Count : Count_Type := 1); procedure Insert_Child (Container : in out Tree; Parent : Cursor; Before : Cursor; Position : out Cursor; Count : Count_Type := 1); procedure Prepend_Child (Container : in out Tree; Parent : Cursor; New_Item : Element_Type; Count : Count_Type := 1); procedure Append_Child (Container : in out Tree; Parent : Cursor; New_Item : Element_Type; Count : Count_Type := 1); procedure Delete_Children (Container : in out Tree; Parent : Cursor); procedure Copy_Subtree (Target : in out Tree; Parent : Cursor; Before : Cursor; Source : Cursor); procedure Splice_Subtree (Target : in out Tree; Parent : Cursor; Before : Cursor; Source : in out Tree; Position : in out Cursor); procedure Splice_Subtree (Container : in out Tree; Parent : Cursor; Before : Cursor; Position : Cursor); procedure Splice_Children (Target : in out Tree; Target_Parent : Cursor; Before : Cursor; Source : in out Tree; Source_Parent : Cursor); procedure Splice_Children (Container : in out Tree; Target_Parent : Cursor; Before : Cursor; Source_Parent : Cursor); function Parent (Position : Cursor) return Cursor; function First_Child (Parent : Cursor) return Cursor; function First_Child_Element (Parent : Cursor) return Element_Type; function Last_Child (Parent : Cursor) return Cursor; function Last_Child_Element (Parent : Cursor) return Element_Type; function Next_Sibling (Position : Cursor) return Cursor; function Previous_Sibling (Position : Cursor) return Cursor; procedure Next_Sibling (Position : in out Cursor); procedure Previous_Sibling (Position : in out Cursor); -- This version of the AI: -- 10-06-02 AI05-0136-1/07 -- declares Iterate_Children this way: -- -- procedure Iterate_Children -- (Container : Tree; -- Parent : Cursor; -- Process : not null access procedure (Position : Cursor)); -- -- It seems that the Container parameter is there by mistake, but we need -- an official ruling from the ARG. ??? procedure Iterate_Children (Parent : Cursor; Process : not null access procedure (Position : Cursor)); procedure Reverse_Iterate_Children (Parent : Cursor; Process : not null access procedure (Position : Cursor)); private -- A node of this multiway tree comprises an element and a list of children -- (that are themselves trees). The root node is distinguished because it -- contains only children: it does not have an element itself. -- This design feature puts two design goals in tension with one another: -- (1) treat the root node the same as any other node -- (2) not declare any objects of type Element_Type unnecessarily -- To satisfy (1), we could simply declare the Root node of the tree -- using the normal Tree_Node_Type, but that would mean that (2) is not -- satisfied. To resolve the tension (in favor of (2)), we declare the -- component Root as having a different node type, without an Element -- component (thus satisfying goal (2)) but otherwise identical to a normal -- node, and then use Unchecked_Conversion to convert an access object -- designating the Root node component to the access type designating a -- normal, non-root node (thus satisfying goal (1)). We make an explicit -- check for Root when there is any attempt to manipulate the Element -- component of the node (a check required by the RM anyway). -- In order to be explicit about node (and pointer) representation, we -- specify that the respective node types have convention C, to ensure -- that the layout of the components of the node records is the same, -- thus guaranteeing that (unchecked) conversions between access types -- designating each kind of node type is a meaningful conversion. type Tree_Node_Type; type Tree_Node_Access is access all Tree_Node_Type; pragma Convention (C, Tree_Node_Access); type Children_Type is record First : Tree_Node_Access; Last : Tree_Node_Access; end record; -- See the comment above. This declaration must exactly match the -- declaration of Root_Node_Type (except for the Element component). type Tree_Node_Type is record Parent : Tree_Node_Access; Prev : Tree_Node_Access; Next : Tree_Node_Access; Children : Children_Type; Element : aliased Element_Type; end record; pragma Convention (C, Tree_Node_Type); -- See the comment above. This declaration must match the declaration of -- Tree_Node_Type (except for the Element component). type Root_Node_Type is record Parent : Tree_Node_Access; Prev : Tree_Node_Access; Next : Tree_Node_Access; Children : Children_Type; end record; pragma Convention (C, Root_Node_Type); for Root_Node_Type'Alignment use Standard'Maximum_Alignment; -- The alignment has to be large enough to allow Root_Node to Tree_Node -- access value conversions, and Tree_Node_Type's alignment may be bumped -- up by the Element component. use Ada.Finalization; -- The Count component of type Tree represents the number of nodes that -- have been (dynamically) allocated. It does not include the root node -- itself. As implementors, we decide to cache this value, so that the -- selector function Node_Count can execute in O(1) time, in order to be -- consistent with the behavior of the Length selector function for other -- standard container library units. This does mean, however, that the -- two-container forms for Splice_XXX (that move subtrees across tree -- containers) will execute in O(n) time, because we must count the number -- of nodes in the subtree(s) that get moved. (We resolve the tension -- between Node_Count and Splice_XXX in favor of Node_Count, under the -- assumption that Node_Count is the more common operation). type Tree is new Controlled with record Root : aliased Root_Node_Type; Busy : Natural := 0; Lock : Natural := 0; Count : Count_Type := 0; end record; overriding procedure Adjust (Container : in out Tree); overriding procedure Finalize (Container : in out Tree) renames Clear; use Ada.Streams; procedure Write (Stream : not null access Root_Stream_Type'Class; Container : Tree); for Tree'Write use Write; procedure Read (Stream : not null access Root_Stream_Type'Class; Container : out Tree); for Tree'Read use Read; type Tree_Access is access all Tree; for Tree_Access'Storage_Size use 0; type Cursor is record Container : Tree_Access; Node : Tree_Node_Access; end record; procedure Write (Stream : not null access Root_Stream_Type'Class; Position : Cursor); for Cursor'Write use Write; procedure Read (Stream : not null access Root_Stream_Type'Class; Position : out Cursor); for Cursor'Read use Read; type Reference_Control_Type is new Controlled with record Container : Tree_Access; end record; overriding procedure Adjust (Control : in out Reference_Control_Type); pragma Inline (Adjust); overriding procedure Finalize (Control : in out Reference_Control_Type); pragma Inline (Finalize); type Constant_Reference_Type (Element : not null access constant Element_Type) is record Control : Reference_Control_Type; end record; procedure Read (Stream : not null access Root_Stream_Type'Class; Item : out Constant_Reference_Type); for Constant_Reference_Type'Read use Read; procedure Write (Stream : not null access Root_Stream_Type'Class; Item : Constant_Reference_Type); for Constant_Reference_Type'Write use Write; type Reference_Type (Element : not null access Element_Type) is record Control : Reference_Control_Type; end record; procedure Read (Stream : not null access Root_Stream_Type'Class; Item : out Reference_Type); for Reference_Type'Read use Read; procedure Write (Stream : not null access Root_Stream_Type'Class; Item : Reference_Type); for Reference_Type'Write use Write; Empty_Tree : constant Tree := (Controlled with others => <>); No_Element : constant Cursor := (others => <>); end Ada.Containers.Multiway_Trees;