/**************************************************************************** * * * GNAT COMPILER COMPONENTS * * * * D E C L * * * * C Implementation File * * * * Copyright (C) 1992-2004, Free Software Foundation, Inc. * * * * GNAT is free software; you can redistribute it and/or modify it under * * terms of the GNU General Public License as published by the Free Soft- * * ware Foundation; either version 2, or (at your option) any later ver- * * sion. GNAT is distributed in the hope that it will be useful, but WITH- * * OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * * for more details. You should have received a copy of the GNU General * * Public License distributed with GNAT; see file COPYING. If not, write * * to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, * * MA 02111-1307, USA. * * * * GNAT was originally developed by the GNAT team at New York University. * * Extensive contributions were provided by Ada Core Technologies Inc. * * * ****************************************************************************/ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "tree.h" #include "flags.h" #include "toplev.h" #include "convert.h" #include "ggc.h" #include "obstack.h" #include "target.h" #include "ada.h" #include "types.h" #include "atree.h" #include "elists.h" #include "namet.h" #include "nlists.h" #include "repinfo.h" #include "snames.h" #include "stringt.h" #include "uintp.h" #include "fe.h" #include "sinfo.h" #include "einfo.h" #include "ada-tree.h" #include "gigi.h" /* Provide default values for the macros controlling stack checking. This is copied from GCC's expr.h. */ #ifndef STACK_CHECK_BUILTIN #define STACK_CHECK_BUILTIN 0 #endif #ifndef STACK_CHECK_PROBE_INTERVAL #define STACK_CHECK_PROBE_INTERVAL 4096 #endif #ifndef STACK_CHECK_MAX_FRAME_SIZE #define STACK_CHECK_MAX_FRAME_SIZE \ (STACK_CHECK_PROBE_INTERVAL - UNITS_PER_WORD) #endif #ifndef STACK_CHECK_MAX_VAR_SIZE #define STACK_CHECK_MAX_VAR_SIZE (STACK_CHECK_MAX_FRAME_SIZE / 100) #endif /* These two variables are used to defer recursively expanding incomplete types while we are processing a record or subprogram type. */ static int defer_incomplete_level = 0; static struct incomplete { struct incomplete *next; tree old_type; Entity_Id full_type; } *defer_incomplete_list = 0; static void copy_alias_set (tree, tree); static tree substitution_list (Entity_Id, Entity_Id, tree, int); static int allocatable_size_p (tree, int); static struct attrib *build_attr_list (Entity_Id); static tree elaborate_expression (Node_Id, Entity_Id, tree, int, int, int); static int is_variable_size (tree); static tree elaborate_expression_1 (Node_Id, Entity_Id, tree, tree, int, int); static tree make_packable_type (tree); static tree maybe_pad_type (tree, tree, unsigned int, Entity_Id, const char *, int, int, int); static tree gnat_to_gnu_field (Entity_Id, tree, int, int); static void components_to_record (tree, Node_Id, tree, int, int, tree *, int, int); static int compare_field_bitpos (const PTR, const PTR); static Uint annotate_value (tree); static void annotate_rep (Entity_Id, tree); static tree compute_field_positions (tree, tree, tree, tree, unsigned int); static tree validate_size (Uint, tree, Entity_Id, enum tree_code, int, int); static void set_rm_size (Uint, tree, Entity_Id); static tree make_type_from_size (tree, tree, int); static unsigned int validate_alignment (Uint, Entity_Id, unsigned int); static void check_ok_for_atomic (tree, Entity_Id, int); /* Given GNAT_ENTITY, an entity in the incoming GNAT tree, return a GCC type corresponding to that entity. GNAT_ENTITY is assumed to refer to an Ada type. */ tree gnat_to_gnu_type (Entity_Id gnat_entity) { tree gnu_decl; /* The back end never attempts to annotate generic types */ if (Is_Generic_Type (gnat_entity) && type_annotate_only) return void_type_node; /* Convert the ada entity type into a GCC TYPE_DECL node. */ gnu_decl = gnat_to_gnu_entity (gnat_entity, NULL_TREE, 0); if (TREE_CODE (gnu_decl) != TYPE_DECL) gigi_abort (101); return TREE_TYPE (gnu_decl); } /* Given GNAT_ENTITY, a GNAT defining identifier node, which denotes some Ada entity, this routine returns the equivalent GCC tree for that entity (an ..._DECL node) and associates the ..._DECL node with the input GNAT defining identifier. If GNAT_ENTITY is a variable or a constant declaration, GNU_EXPR gives its initial value (in GCC tree form). This is optional for variables. For renamed entities, GNU_EXPR gives the object being renamed. DEFINITION is nonzero if this call is intended for a definition. This is used for separate compilation where it necessary to know whether an external declaration or a definition should be created if the GCC equivalent was not created previously. The value of 1 is normally used for a non-zero DEFINITION, but a value of 2 is used in special circumstances, defined in the code. */ tree gnat_to_gnu_entity (Entity_Id gnat_entity, tree gnu_expr, int definition) { tree gnu_entity_id; tree gnu_type = 0; /* Contains the gnu XXXX_DECL tree node which is equivalent to the input GNAT tree. This node will be associated with the GNAT node by calling the save_gnu_tree routine at the end of the `switch' statement. */ tree gnu_decl = 0; /* Nonzero if we have already saved gnu_decl as a gnat association. */ int saved = 0; /* Nonzero if we incremented defer_incomplete_level. */ int this_deferred = 0; /* Nonzero if we incremented force_global. */ int this_global = 0; /* Nonzero if we should check to see if elaborated during processing. */ int maybe_present = 0; /* Nonzero if we made GNU_DECL and its type here. */ int this_made_decl = 0; struct attrib *attr_list = 0; int debug_info_p = (Needs_Debug_Info (gnat_entity) || debug_info_level == DINFO_LEVEL_VERBOSE); Entity_Kind kind = Ekind (gnat_entity); Entity_Id gnat_temp; unsigned int esize = ((Known_Esize (gnat_entity) && UI_Is_In_Int_Range (Esize (gnat_entity))) ? MIN (UI_To_Int (Esize (gnat_entity)), IN (kind, Float_Kind) ? fp_prec_to_size (LONG_DOUBLE_TYPE_SIZE) : IN (kind, Access_Kind) ? POINTER_SIZE * 2 : LONG_LONG_TYPE_SIZE) : LONG_LONG_TYPE_SIZE); tree gnu_size = 0; int imported_p = ((Is_Imported (gnat_entity) && No (Address_Clause (gnat_entity))) || From_With_Type (gnat_entity)); unsigned int align = 0; /* Since a use of an Itype is a definition, process it as such if it is not in a with'ed unit. */ if (! definition && Is_Itype (gnat_entity) && ! present_gnu_tree (gnat_entity) && In_Extended_Main_Code_Unit (gnat_entity)) { /* Ensure that we are in a subprogram mentioned in the Scope chain of this entity, our current scope is global, or that we encountered a task or entry (where we can't currently accurately check scoping). */ if (current_function_decl == 0 || DECL_ELABORATION_PROC_P (current_function_decl)) { process_type (gnat_entity); return get_gnu_tree (gnat_entity); } for (gnat_temp = Scope (gnat_entity); Present (gnat_temp); gnat_temp = Scope (gnat_temp)) { if (Is_Type (gnat_temp)) gnat_temp = Underlying_Type (gnat_temp); if (Ekind (gnat_temp) == E_Subprogram_Body) gnat_temp = Corresponding_Spec (Parent (Declaration_Node (gnat_temp))); if (IN (Ekind (gnat_temp), Subprogram_Kind) && Present (Protected_Body_Subprogram (gnat_temp))) gnat_temp = Protected_Body_Subprogram (gnat_temp); if (Ekind (gnat_temp) == E_Entry || Ekind (gnat_temp) == E_Entry_Family || Ekind (gnat_temp) == E_Task_Type || (IN (Ekind (gnat_temp), Subprogram_Kind) && present_gnu_tree (gnat_temp) && (current_function_decl == gnat_to_gnu_entity (gnat_temp, NULL_TREE, 0)))) { process_type (gnat_entity); return get_gnu_tree (gnat_entity); } } /* gigi abort 122 means that the entity "gnat_entity" has an incorrect scope, i.e. that its scope does not correspond to the subprogram in which it is declared */ gigi_abort (122); } /* If this is entity 0, something went badly wrong. */ if (gnat_entity == 0) gigi_abort (102); /* If we've already processed this entity, return what we got last time. If we are defining the node, we should not have already processed it. In that case, we will abort below when we try to save a new GCC tree for this object. We also need to handle the case of getting a dummy type when a Full_View exists. */ if (present_gnu_tree (gnat_entity) && (! definition || (Is_Type (gnat_entity) && imported_p))) { gnu_decl = get_gnu_tree (gnat_entity); if (TREE_CODE (gnu_decl) == TYPE_DECL && TYPE_IS_DUMMY_P (TREE_TYPE (gnu_decl)) && IN (kind, Incomplete_Or_Private_Kind) && Present (Full_View (gnat_entity))) { gnu_decl = gnat_to_gnu_entity (Full_View (gnat_entity), NULL_TREE, 0); save_gnu_tree (gnat_entity, NULL_TREE, 0); save_gnu_tree (gnat_entity, gnu_decl, 0); } return gnu_decl; } /* If this is a numeric or enumeral type, or an access type, a nonzero Esize must be specified unless it was specified by the programmer. */ if ((IN (kind, Numeric_Kind) || IN (kind, Enumeration_Kind) || (IN (kind, Access_Kind) && kind != E_Access_Protected_Subprogram_Type && kind != E_Access_Subtype)) && Unknown_Esize (gnat_entity) && ! Has_Size_Clause (gnat_entity)) gigi_abort (109); /* Likewise, RM_Size must be specified for all discrete and fixed-point types. */ if (IN (kind, Discrete_Or_Fixed_Point_Kind) && Unknown_RM_Size (gnat_entity)) gigi_abort (123); /* Get the name of the entity and set up the line number and filename of the original definition for use in any decl we make. */ gnu_entity_id = get_entity_name (gnat_entity); set_lineno (gnat_entity, 0); /* If we get here, it means we have not yet done anything with this entity. If we are not defining it here, it must be external, otherwise we should have defined it already. */ if (! definition && ! Is_Public (gnat_entity) && ! type_annotate_only && kind != E_Discriminant && kind != E_Component && kind != E_Label && ! (kind == E_Constant && Present (Full_View (gnat_entity))) #if 1 && !IN (kind, Type_Kind) #endif ) gigi_abort (116); /* For cases when we are not defining (i.e., we are referencing from another compilation unit) Public entities, show we are at global level for the purpose of computing sizes. Don't do this for components or discriminants since the relevant test is whether or not the record is being defined. */ if (! definition && Is_Public (gnat_entity) && ! Is_Statically_Allocated (gnat_entity) && kind != E_Discriminant && kind != E_Component) force_global++, this_global = 1; /* Handle any attributes. */ if (Has_Gigi_Rep_Item (gnat_entity)) attr_list = build_attr_list (gnat_entity); switch (kind) { case E_Constant: /* If this is a use of a deferred constant, get its full declaration. */ if (! definition && Present (Full_View (gnat_entity))) { gnu_decl = gnat_to_gnu_entity (Full_View (gnat_entity), gnu_expr, definition); saved = 1; break; } /* If we have an external constant that we are not defining, get the expression that is was defined to represent. We may throw that expression away later if it is not a constant. Do not retrieve the expression if it is an aggregate, because in complex instantiation contexts it may not be expanded */ if (! definition && Present (Expression (Declaration_Node (gnat_entity))) && ! No_Initialization (Declaration_Node (gnat_entity)) && Nkind (Expression (Declaration_Node (gnat_entity))) != N_Aggregate) gnu_expr = gnat_to_gnu (Expression (Declaration_Node (gnat_entity))); /* Ignore deferred constant definitions; they are processed fully in the front-end. For deferred constant references, get the full definition. On the other hand, constants that are renamings are handled like variable renamings. If No_Initialization is set, this is not a deferred constant but a constant whose value is built manually. */ if (definition && gnu_expr == 0 && ! No_Initialization (Declaration_Node (gnat_entity)) && No (Renamed_Object (gnat_entity))) { gnu_decl = error_mark_node; saved = 1; break; } else if (! definition && IN (kind, Incomplete_Or_Private_Kind) && Present (Full_View (gnat_entity))) { gnu_decl = gnat_to_gnu_entity (Full_View (gnat_entity), NULL_TREE, 0); saved = 1; break; } goto object; case E_Exception: /* We used to special case VMS exceptions here to directly map them to their associated condition code. Since this code had to be masked dynamically to strip off the severity bits, this caused trouble in the GCC/ZCX case because the "type" pointers we store in the tables have to be static. We now don't special case here anymore, and let the regular processing take place, which leaves us with a regular exception data object for VMS exceptions too. The condition code mapping is taken care of by the front end and the bitmasking by the runtime library. */ goto object; case E_Discriminant: case E_Component: { /* The GNAT record where the component was defined. */ Entity_Id gnat_record = Underlying_Type (Scope (gnat_entity)); /* If the variable is an inherited record component (in the case of extended record types), just return the inherited entity, which must be a FIELD_DECL. Likewise for discriminants. For discriminants of untagged records which have explicit stored discriminants, return the entity for the corresponding stored discriminant. Also use Original_Record_Component if the record has a private extension. */ if ((Base_Type (gnat_record) == gnat_record || Ekind (Scope (gnat_entity)) == E_Private_Subtype || Ekind (Scope (gnat_entity)) == E_Record_Subtype_With_Private || Ekind (Scope (gnat_entity)) == E_Record_Type_With_Private) && Present (Original_Record_Component (gnat_entity)) && Original_Record_Component (gnat_entity) != gnat_entity) { gnu_decl = gnat_to_gnu_entity (Original_Record_Component (gnat_entity), gnu_expr, definition); saved = 1; break; } /* If the enclosing record has explicit stored discriminants, then it is an untagged record. If the Corresponding_Discriminant is not empty then this must be a renamed discriminant and its Original_Record_Component must point to the corresponding explicit stored discriminant (i.e., we should have taken the previous branch). */ else if (Present (Corresponding_Discriminant (gnat_entity)) && Is_Tagged_Type (gnat_record)) { /* A tagged record has no explicit stored discriminants. */ if (First_Discriminant (gnat_record) != First_Stored_Discriminant (gnat_record)) gigi_abort (119); gnu_decl = gnat_to_gnu_entity (Corresponding_Discriminant (gnat_entity), gnu_expr, definition); saved = 1; break; } /* If the enclosing record has explicit stored discriminants, then it is an untagged record. If the Corresponding_Discriminant is not empty then this must be a renamed discriminant and its Original_Record_Component must point to the corresponding explicit stored discriminant (i.e., we should have taken the first branch). */ else if (Present (Corresponding_Discriminant (gnat_entity)) && (First_Discriminant (gnat_record) != First_Stored_Discriminant (gnat_record))) gigi_abort (120); /* Otherwise, if we are not defining this and we have no GCC type for the containing record, make one for it. Then we should have made our own equivalent. */ else if (! definition && ! present_gnu_tree (gnat_record)) { /* ??? If this is in a record whose scope is a protected type and we have an Original_Record_Component, use it. This is a workaround for major problems in protected type handling. */ Entity_Id Scop = Scope (Scope (gnat_entity)); if ((Is_Protected_Type (Scop) || (Is_Private_Type (Scop) && Present (Full_View (Scop)) && Is_Protected_Type (Full_View (Scop)))) && Present (Original_Record_Component (gnat_entity))) { gnu_decl = gnat_to_gnu_entity (Original_Record_Component (gnat_entity), gnu_expr, definition); saved = 1; break; } gnat_to_gnu_entity (Scope (gnat_entity), NULL_TREE, 0); gnu_decl = get_gnu_tree (gnat_entity); saved = 1; break; } /* Here we have no GCC type and this is a reference rather than a definition. This should never happen. Most likely the cause is a reference before declaration in the gnat tree for gnat_entity. */ else gigi_abort (103); } case E_Loop_Parameter: case E_Out_Parameter: case E_Variable: /* Simple variables, loop variables, OUT parameters, and exceptions. */ object: { int used_by_ref = 0; int const_flag = ((kind == E_Constant || kind == E_Variable) && ! Is_Statically_Allocated (gnat_entity) && Is_True_Constant (gnat_entity) && (((Nkind (Declaration_Node (gnat_entity)) == N_Object_Declaration) && Present (Expression (Declaration_Node (gnat_entity)))) || Present (Renamed_Object (gnat_entity)))); int inner_const_flag = const_flag; int static_p = Is_Statically_Allocated (gnat_entity); tree gnu_ext_name = NULL_TREE; if (Present (Renamed_Object (gnat_entity)) && ! definition) { if (kind == E_Exception) gnu_expr = gnat_to_gnu_entity (Renamed_Entity (gnat_entity), NULL_TREE, 0); else gnu_expr = gnat_to_gnu (Renamed_Object (gnat_entity)); } /* Get the type after elaborating the renamed object. */ gnu_type = gnat_to_gnu_type (Etype (gnat_entity)); /* If this is a loop variable, its type should be the base type. This is because the code for processing a loop determines whether a normal loop end test can be done by comparing the bounds of the loop against those of the base type, which is presumed to be the size used for computation. But this is not correct when the size of the subtype is smaller than the type. */ if (kind == E_Loop_Parameter) gnu_type = get_base_type (gnu_type); /* Reject non-renamed objects whose types are unconstrained arrays or any object whose type is a dummy type or VOID_TYPE. */ if ((TREE_CODE (gnu_type) == UNCONSTRAINED_ARRAY_TYPE && No (Renamed_Object (gnat_entity))) || TYPE_IS_DUMMY_P (gnu_type) || TREE_CODE (gnu_type) == VOID_TYPE) { if (type_annotate_only) return error_mark_node; else gigi_abort (104); } /* If we are defining the object, see if it has a Size value and validate it if so. If we are not defining the object and a Size clause applies, simply retrieve the value. We don't want to ignore the clause and it is expected to have been validated already. Then get the new type, if any. */ if (definition) gnu_size = validate_size (Esize (gnat_entity), gnu_type, gnat_entity, VAR_DECL, 0, Has_Size_Clause (gnat_entity)); else if (Has_Size_Clause (gnat_entity)) gnu_size = UI_To_gnu (Esize (gnat_entity), bitsizetype); if (gnu_size != 0) { gnu_type = make_type_from_size (gnu_type, gnu_size, Has_Biased_Representation (gnat_entity)); if (operand_equal_p (TYPE_SIZE (gnu_type), gnu_size, 0)) gnu_size = 0; } /* If this object has self-referential size, it must be a record with a default value. We are supposed to allocate an object of the maximum size in this case unless it is a constant with an initializing expression, in which case we can get the size from that. Note that the resulting size may still be a variable, so this may end up with an indirect allocation. */ if (No (Renamed_Object (gnat_entity)) && CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_type))) { if (gnu_expr != 0 && kind == E_Constant) gnu_size = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE (TREE_TYPE (gnu_expr)), gnu_expr); /* We may have no GNU_EXPR because No_Initialization is set even though there's an Expression. */ else if (kind == E_Constant && (Nkind (Declaration_Node (gnat_entity)) == N_Object_Declaration) && Present (Expression (Declaration_Node (gnat_entity)))) gnu_size = TYPE_SIZE (gnat_to_gnu_type (Etype (Expression (Declaration_Node (gnat_entity))))); else gnu_size = max_size (TYPE_SIZE (gnu_type), 1); } /* If the size is zero bytes, make it one byte since some linkers have trouble with zero-sized objects. If the object will have a template, that will make it nonzero so don't bother. Also avoid doing that for an object renaming or an object with an address clause, as we would lose useful information on the view size (e.g. for null array slices) and we are not allocating the object here anyway. */ if (((gnu_size != 0 && integer_zerop (gnu_size)) || (TYPE_SIZE (gnu_type) != 0 && integer_zerop (TYPE_SIZE (gnu_type)))) && (! Is_Constr_Subt_For_UN_Aliased (Etype (gnat_entity)) || ! Is_Array_Type (Etype (gnat_entity))) && ! Present (Renamed_Object (gnat_entity)) && ! Present (Address_Clause (gnat_entity))) gnu_size = bitsize_unit_node; /* If an alignment is specified, use it if valid. Note that exceptions are objects but don't have alignments. */ if (kind != E_Exception && Known_Alignment (gnat_entity)) { if (No (Alignment (gnat_entity))) gigi_abort (125); align = validate_alignment (Alignment (gnat_entity), gnat_entity, TYPE_ALIGN (gnu_type)); } /* If this is an atomic object with no specified size and alignment, but where the size of the type is a constant, set the alignment to the lowest power of two greater than the size, or to the biggest meaningful alignment, whichever is smaller. */ if (Is_Atomic (gnat_entity) && gnu_size == 0 && align == 0 && TREE_CODE (TYPE_SIZE (gnu_type)) == INTEGER_CST) { if (! host_integerp (TYPE_SIZE (gnu_type), 1) || 0 <= compare_tree_int (TYPE_SIZE (gnu_type), BIGGEST_ALIGNMENT)) align = BIGGEST_ALIGNMENT; else align = ((unsigned int) 1 << (floor_log2 (tree_low_cst (TYPE_SIZE (gnu_type), 1) - 1) + 1)); } /* If the object is set to have atomic components, find the component type and validate it. ??? Note that we ignore Has_Volatile_Components on objects; it's not at all clear what to do in that case. */ if (Has_Atomic_Components (gnat_entity)) { tree gnu_inner = (TREE_CODE (gnu_type) == ARRAY_TYPE ? TREE_TYPE (gnu_type) : gnu_type); while (TREE_CODE (gnu_inner) == ARRAY_TYPE && TYPE_MULTI_ARRAY_P (gnu_inner)) gnu_inner = TREE_TYPE (gnu_inner); check_ok_for_atomic (gnu_inner, gnat_entity, 1); } /* Now check if the type of the object allows atomic access. Note that we must test the type, even if this object has size and alignment to allow such access, because we will be going inside the padded record to assign to the object. We could fix this by always copying via an intermediate value, but it's not clear it's worth the effort. */ if (Is_Atomic (gnat_entity)) check_ok_for_atomic (gnu_type, gnat_entity, 0); /* If this is an aliased object with an unconstrained nominal subtype, make a type that includes the template. */ if (Is_Constr_Subt_For_UN_Aliased (Etype (gnat_entity)) && Is_Array_Type (Etype (gnat_entity)) && ! type_annotate_only) { tree gnu_fat = TREE_TYPE (gnat_to_gnu_type (Base_Type (Etype (gnat_entity)))); tree gnu_temp_type = TREE_TYPE (TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (gnu_fat)))); gnu_type = build_unc_object_type (gnu_temp_type, gnu_type, concat_id_with_name (gnu_entity_id, "UNC")); } #ifdef MINIMUM_ATOMIC_ALIGNMENT /* If the size is a constant and no alignment is specified, force the alignment to be the minimum valid atomic alignment. The restriction on constant size avoids problems with variable-size temporaries; if the size is variable, there's no issue with atomic access. Also don't do this for a constant, since it isn't necessary and can interfere with constant replacement. Finally, do not do it for Out parameters since that creates an size inconsistency with In parameters. */ if (align == 0 && MINIMUM_ATOMIC_ALIGNMENT > TYPE_ALIGN (gnu_type) && ! FLOAT_TYPE_P (gnu_type) && ! const_flag && No (Renamed_Object (gnat_entity)) && ! imported_p && No (Address_Clause (gnat_entity)) && kind != E_Out_Parameter && (gnu_size != 0 ? TREE_CODE (gnu_size) == INTEGER_CST : TREE_CODE (TYPE_SIZE (gnu_type)) == INTEGER_CST)) align = MINIMUM_ATOMIC_ALIGNMENT; #endif /* Make a new type with the desired size and alignment, if needed. */ gnu_type = maybe_pad_type (gnu_type, gnu_size, align, gnat_entity, "PAD", 0, definition, 1); /* Make a volatile version of this object's type if we are to make the object volatile. Note that 13.3(19) says that we should treat other types of objects as volatile as well. */ if ((Treat_As_Volatile (gnat_entity) || Is_Exported (gnat_entity) || Is_Imported (gnat_entity) || Present (Address_Clause (gnat_entity))) && ! TYPE_VOLATILE (gnu_type)) gnu_type = build_qualified_type (gnu_type, (TYPE_QUALS (gnu_type) | TYPE_QUAL_VOLATILE)); /* Convert the expression to the type of the object except in the case where the object's type is unconstrained or the object's type is a padded record whose field is of self-referential size. In the former case, converting will generate unnecessary evaluations of the CONSTRUCTOR to compute the size and in the latter case, we want to only copy the actual data. */ if (gnu_expr != 0 && TREE_CODE (gnu_type) != UNCONSTRAINED_ARRAY_TYPE && ! CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_type)) && ! (TREE_CODE (gnu_type) == RECORD_TYPE && TYPE_IS_PADDING_P (gnu_type) && (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (TREE_TYPE (TYPE_FIELDS (gnu_type))))))) gnu_expr = convert (gnu_type, gnu_expr); /* See if this is a renaming. If this is a constant renaming, treat it as a normal variable whose initial value is what is being renamed. We cannot do this if the type is unconstrained or class-wide. Otherwise, if what we are renaming is a reference, we can simply return a stabilized version of that reference, after forcing any SAVE_EXPRs to be evaluated. But, if this is at global level, we can only do this if we know no SAVE_EXPRs will be made. Otherwise, make this into a constant pointer to the object we are to rename. */ if (Present (Renamed_Object (gnat_entity))) { /* If the renamed object had padding, strip off the reference to the inner object and reset our type. */ if (TREE_CODE (gnu_expr) == COMPONENT_REF && (TREE_CODE (TREE_TYPE (TREE_OPERAND (gnu_expr, 0))) == RECORD_TYPE) && (TYPE_IS_PADDING_P (TREE_TYPE (TREE_OPERAND (gnu_expr, 0))))) { gnu_expr = TREE_OPERAND (gnu_expr, 0); gnu_type = TREE_TYPE (gnu_expr); } if (const_flag && TREE_CODE (gnu_type) != UNCONSTRAINED_ARRAY_TYPE && TYPE_MODE (gnu_type) != BLKmode && Ekind (Etype (gnat_entity)) != E_Class_Wide_Type && !Is_Array_Type (Etype (gnat_entity))) ; /* If this is a declaration or reference, we can just use that declaration or reference as this entity. */ else if ((DECL_P (gnu_expr) || TREE_CODE_CLASS (TREE_CODE (gnu_expr)) == 'r') && ! Materialize_Entity (gnat_entity) && (! global_bindings_p () || (staticp (gnu_expr) && ! TREE_SIDE_EFFECTS (gnu_expr)))) { set_lineno (gnat_entity, ! global_bindings_p ()); gnu_decl = gnat_stabilize_reference (gnu_expr, 1); save_gnu_tree (gnat_entity, gnu_decl, 1); saved = 1; if (! global_bindings_p ()) expand_expr_stmt (build1 (CONVERT_EXPR, void_type_node, gnu_decl)); break; } else { inner_const_flag = TREE_READONLY (gnu_expr); const_flag = 1; gnu_type = build_reference_type (gnu_type); gnu_expr = build_unary_op (ADDR_EXPR, gnu_type, gnu_expr); gnu_size = 0; used_by_ref = 1; } } /* If this is an aliased object whose nominal subtype is unconstrained, the object is a record that contains both the template and the object. If there is an initializer, it will have already been converted to the right type, but we need to create the template if there is no initializer. */ else if (definition && TREE_CODE (gnu_type) == RECORD_TYPE && (TYPE_CONTAINS_TEMPLATE_P (gnu_type) /* Beware that padding might have been introduced via maybe_pad_type above. */ || (TYPE_IS_PADDING_P (gnu_type) && TREE_CODE (TREE_TYPE (TYPE_FIELDS (gnu_type))) == RECORD_TYPE && TYPE_CONTAINS_TEMPLATE_P (TREE_TYPE (TYPE_FIELDS (gnu_type))))) && gnu_expr == 0) { tree template_field = TYPE_IS_PADDING_P (gnu_type) ? TYPE_FIELDS (TREE_TYPE (TYPE_FIELDS (gnu_type))) : TYPE_FIELDS (gnu_type); gnu_expr = gnat_build_constructor (gnu_type, tree_cons (template_field, build_template (TREE_TYPE (template_field), TREE_TYPE (TREE_CHAIN (template_field)), NULL_TREE), NULL_TREE)); } /* If this is a pointer and it does not have an initializing expression, initialize it to NULL, unless the obect is imported. */ if (definition && (POINTER_TYPE_P (gnu_type) || TYPE_FAT_POINTER_P (gnu_type)) && !Is_Imported (gnat_entity) && gnu_expr == 0) gnu_expr = integer_zero_node; /* If we are defining the object and it has an Address clause we must get the address expression from the saved GCC tree for the object if the object has a Freeze_Node. Otherwise, we elaborate the address expression here since the front-end has guaranteed in that case that the elaboration has no effects. Note that only the latter mechanism is currently in use. */ if (definition && Present (Address_Clause (gnat_entity))) { tree gnu_address = (present_gnu_tree (gnat_entity) ? get_gnu_tree (gnat_entity) : gnat_to_gnu (Expression (Address_Clause (gnat_entity)))); save_gnu_tree (gnat_entity, NULL_TREE, 0); /* Ignore the size. It's either meaningless or was handled above. */ gnu_size = 0; gnu_type = build_reference_type (gnu_type); gnu_address = convert (gnu_type, gnu_address); used_by_ref = 1; const_flag = ! Is_Public (gnat_entity); /* If we don't have an initializing expression for the underlying variable, the initializing expression for the pointer is the specified address. Otherwise, we have to make a COMPOUND_EXPR to assign both the address and the initial value. */ if (gnu_expr == 0) gnu_expr = gnu_address; else gnu_expr = build (COMPOUND_EXPR, gnu_type, build_binary_op (MODIFY_EXPR, NULL_TREE, build_unary_op (INDIRECT_REF, NULL_TREE, gnu_address), gnu_expr), gnu_address); } /* If it has an address clause and we are not defining it, mark it as an indirect object. Likewise for Stdcall objects that are imported. */ if ((! definition && Present (Address_Clause (gnat_entity))) || (Is_Imported (gnat_entity) && Convention (gnat_entity) == Convention_Stdcall)) { gnu_type = build_reference_type (gnu_type); gnu_size = 0; used_by_ref = 1; } /* If we are at top level and this object is of variable size, make the actual type a hidden pointer to the real type and make the initializer be a memory allocation and initialization. Likewise for objects we aren't defining (presumed to be external references from other packages), but there we do not set up an initialization. If the object's size overflows, make an allocator too, so that Storage_Error gets raised. Note that we will never free such memory, so we presume it never will get allocated. */ if (! allocatable_size_p (TYPE_SIZE_UNIT (gnu_type), global_bindings_p () || ! definition || static_p) || (gnu_size != 0 && ! allocatable_size_p (gnu_size, global_bindings_p () || ! definition || static_p))) { gnu_type = build_reference_type (gnu_type); gnu_size = 0; used_by_ref = 1; const_flag = 1; /* Get the data part of GNU_EXPR in case this was a aliased object whose nominal subtype is unconstrained. In that case the pointer above will be a thin pointer and build_allocator will automatically make the template and constructor already made above. */ if (definition) { tree gnu_alloc_type = TREE_TYPE (gnu_type); if (TREE_CODE (gnu_alloc_type) == RECORD_TYPE && TYPE_CONTAINS_TEMPLATE_P (gnu_alloc_type)) { gnu_alloc_type = TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (gnu_alloc_type))); gnu_expr = build_component_ref (gnu_expr, NULL_TREE, TREE_CHAIN (TYPE_FIELDS (TREE_TYPE (gnu_expr))), 0); } if (TREE_CODE (TYPE_SIZE_UNIT (gnu_alloc_type)) == INTEGER_CST && TREE_CONSTANT_OVERFLOW (TYPE_SIZE_UNIT (gnu_alloc_type)) && ! Is_Imported (gnat_entity)) post_error ("Storage_Error will be raised at run-time?", gnat_entity); gnu_expr = build_allocator (gnu_alloc_type, gnu_expr, gnu_type, 0, 0, gnat_entity); } else { gnu_expr = 0; const_flag = 0; } } /* If this object would go into the stack and has an alignment larger than the default largest alignment, make a variable to hold the "aligning type" with a modified initial value, if any, then point to it and make that the value of this variable, which is now indirect. */ if (! global_bindings_p () && ! static_p && definition && ! imported_p && TYPE_ALIGN (gnu_type) > BIGGEST_ALIGNMENT) { tree gnu_new_type = make_aligning_type (gnu_type, TYPE_ALIGN (gnu_type), TYPE_SIZE_UNIT (gnu_type)); tree gnu_new_var; set_lineno (gnat_entity, 1); gnu_new_var = create_var_decl (create_concat_name (gnat_entity, "ALIGN"), NULL_TREE, gnu_new_type, gnu_expr, 0, 0, 0, 0, 0); if (gnu_expr != 0) expand_expr_stmt (build_binary_op (MODIFY_EXPR, NULL_TREE, build_component_ref (gnu_new_var, NULL_TREE, TYPE_FIELDS (gnu_new_type), 0), gnu_expr)); gnu_type = build_reference_type (gnu_type); gnu_expr = build_unary_op (ADDR_EXPR, gnu_type, build_component_ref (gnu_new_var, NULL_TREE, TYPE_FIELDS (gnu_new_type), 0)); gnu_size = 0; used_by_ref = 1; const_flag = 1; } /* Convert the expression to the type of the object except in the case where the object's type is unconstrained or the object's type is a padded record whose field is of self-referential size. In the former case, converting will generate unnecessary evaluations of the CONSTRUCTOR to compute the size and in the latter case, we want to only copy the actual data. */ if (gnu_expr != 0 && TREE_CODE (gnu_type) != UNCONSTRAINED_ARRAY_TYPE && ! CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_type)) && ! (TREE_CODE (gnu_type) == RECORD_TYPE && TYPE_IS_PADDING_P (gnu_type) && (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (TREE_TYPE (TYPE_FIELDS (gnu_type))))))) gnu_expr = convert (gnu_type, gnu_expr); /* If this name is external or there was a name specified, use it, unless this is a VMS exception object since this would conflict with the symbol we need to export in addition. Don't use the Interface_Name if there is an address clause (see CD30005). */ if (! Is_VMS_Exception (gnat_entity) && ((Present (Interface_Name (gnat_entity)) && No (Address_Clause (gnat_entity))) || (Is_Public (gnat_entity) && (! Is_Imported (gnat_entity) || Is_Exported (gnat_entity))))) gnu_ext_name = create_concat_name (gnat_entity, 0); if (const_flag) gnu_type = build_qualified_type (gnu_type, (TYPE_QUALS (gnu_type) | TYPE_QUAL_CONST)); /* If this is constant initialized to a static constant and the object has an aggregrate type, force it to be statically allocated. */ if (const_flag && gnu_expr && TREE_CONSTANT (gnu_expr) && host_integerp (TYPE_SIZE_UNIT (gnu_type), 1) && (AGGREGATE_TYPE_P (gnu_type) && ! (TREE_CODE (gnu_type) == RECORD_TYPE && TYPE_IS_PADDING_P (gnu_type)))) static_p = 1; set_lineno (gnat_entity, ! global_bindings_p ()); gnu_decl = create_var_decl (gnu_entity_id, gnu_ext_name, gnu_type, gnu_expr, const_flag, Is_Public (gnat_entity), imported_p || !definition, static_p, attr_list); DECL_BY_REF_P (gnu_decl) = used_by_ref; DECL_POINTS_TO_READONLY_P (gnu_decl) = used_by_ref && inner_const_flag; /* If we have an address clause and we've made this indirect, it's not enough to merely mark the type as volatile since volatile references only conflict with other volatile references while this reference must conflict with all other references. So ensure that the dereferenced value has alias set 0. */ if (Present (Address_Clause (gnat_entity)) && used_by_ref) DECL_POINTER_ALIAS_SET (gnu_decl) = 0; if (definition && DECL_SIZE (gnu_decl) != 0 && gnu_block_stack != 0 && TREE_VALUE (gnu_block_stack) != 0 && (TREE_CODE (DECL_SIZE (gnu_decl)) != INTEGER_CST || (flag_stack_check && ! STACK_CHECK_BUILTIN && 0 < compare_tree_int (DECL_SIZE_UNIT (gnu_decl), STACK_CHECK_MAX_VAR_SIZE)))) update_setjmp_buf (TREE_VALUE (gnu_block_stack)); /* If this is a public constant or we're not optimizing and we're not making a VAR_DECL for it, make one just for export or debugger use. Likewise if the address is taken or if the object or type is aliased. */ if (definition && TREE_CODE (gnu_decl) == CONST_DECL && (Is_Public (gnat_entity) || optimize == 0 || Address_Taken (gnat_entity) || Is_Aliased (gnat_entity) || Is_Aliased (Etype (gnat_entity)))) SET_DECL_CONST_CORRESPONDING_VAR (gnu_decl, create_var_decl (gnu_entity_id, gnu_ext_name, gnu_type, gnu_expr, 0, Is_Public (gnat_entity), 0, static_p, 0)); /* If this is declared in a block that contains an block with an exception handler, we must force this variable in memory to suppress an invalid optimization. */ if (Has_Nested_Block_With_Handler (Scope (gnat_entity)) && Exception_Mechanism != GCC_ZCX) { gnat_mark_addressable (gnu_decl); flush_addressof (gnu_decl); } /* Back-annotate the Alignment of the object if not already in the tree. Likewise for Esize if the object is of a constant size. But if the "object" is actually a pointer to an object, the alignment and size are the same as teh type, so don't back-annotate the values for the pointer. */ if (! used_by_ref && Unknown_Alignment (gnat_entity)) Set_Alignment (gnat_entity, UI_From_Int (DECL_ALIGN (gnu_decl) / BITS_PER_UNIT)); if (! used_by_ref && Unknown_Esize (gnat_entity) && DECL_SIZE (gnu_decl) != 0) { tree gnu_back_size = DECL_SIZE (gnu_decl); if (TREE_CODE (TREE_TYPE (gnu_decl)) == RECORD_TYPE && TYPE_CONTAINS_TEMPLATE_P (TREE_TYPE (gnu_decl))) gnu_back_size = TYPE_SIZE (TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (TREE_TYPE (gnu_decl))))); Set_Esize (gnat_entity, annotate_value (gnu_back_size)); } } break; case E_Void: /* Return a TYPE_DECL for "void" that we previously made. */ gnu_decl = void_type_decl_node; break; case E_Enumeration_Type: /* A special case, for the types Character and Wide_Character in Standard, we do not list all the literals. So if the literals are not specified, make this an unsigned type. */ if (No (First_Literal (gnat_entity))) { gnu_type = make_unsigned_type (esize); break; } /* Normal case of non-character type, or non-Standard character type */ { /* Here we have a list of enumeral constants in First_Literal. We make a CONST_DECL for each and build into GNU_LITERAL_LIST the list to be places into TYPE_FIELDS. Each node in the list is a TREE_LIST node whose TREE_VALUE is the literal name and whose TREE_PURPOSE is the value of the literal. Esize contains the number of bits needed to represent the enumeral type, Type_Low_Bound also points to the first literal and Type_High_Bound points to the last literal. */ Entity_Id gnat_literal; tree gnu_literal_list = NULL_TREE; if (Is_Unsigned_Type (gnat_entity)) gnu_type = make_unsigned_type (esize); else gnu_type = make_signed_type (esize); TREE_SET_CODE (gnu_type, ENUMERAL_TYPE); for (gnat_literal = First_Literal (gnat_entity); Present (gnat_literal); gnat_literal = Next_Literal (gnat_literal)) { tree gnu_value = UI_To_gnu (Enumeration_Rep (gnat_literal), gnu_type); tree gnu_literal = create_var_decl (get_entity_name (gnat_literal), 0, gnu_type, gnu_value, 1, 0, 0, 0, 0); save_gnu_tree (gnat_literal, gnu_literal, 0); gnu_literal_list = tree_cons (DECL_NAME (gnu_literal), gnu_value, gnu_literal_list); } TYPE_VALUES (gnu_type) = nreverse (gnu_literal_list); /* Note that the bounds are updated at the end of this function because to avoid an infinite recursion when we get the bounds of this type, since those bounds are objects of this type. */ } break; case E_Signed_Integer_Type: case E_Ordinary_Fixed_Point_Type: case E_Decimal_Fixed_Point_Type: /* For integer types, just make a signed type the appropriate number of bits. */ gnu_type = make_signed_type (esize); break; case E_Modular_Integer_Type: /* For modular types, make the unsigned type of the proper number of bits and then set up the modulus, if required. */ { enum machine_mode mode; tree gnu_modulus; tree gnu_high = 0; if (Is_Packed_Array_Type (gnat_entity)) esize = UI_To_Int (RM_Size (gnat_entity)); /* Find the smallest mode at least ESIZE bits wide and make a class using that mode. */ for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); GET_MODE_BITSIZE (mode) < esize; mode = GET_MODE_WIDER_MODE (mode)) ; gnu_type = make_unsigned_type (GET_MODE_BITSIZE (mode)); TYPE_PACKED_ARRAY_TYPE_P (gnu_type) = Is_Packed_Array_Type (gnat_entity); /* Get the modulus in this type. If it overflows, assume it is because it is equal to 2**Esize. Note that there is no overflow checking done on unsigned type, so we detect the overflow by looking for a modulus of zero, which is otherwise invalid. */ gnu_modulus = UI_To_gnu (Modulus (gnat_entity), gnu_type); if (! integer_zerop (gnu_modulus)) { TYPE_MODULAR_P (gnu_type) = 1; SET_TYPE_MODULUS (gnu_type, gnu_modulus); gnu_high = fold (build (MINUS_EXPR, gnu_type, gnu_modulus, convert (gnu_type, integer_one_node))); } /* If we have to set TYPE_PRECISION different from its natural value, make a subtype to do do. Likewise if there is a modulus and it is not one greater than TYPE_MAX_VALUE. */ if (TYPE_PRECISION (gnu_type) != esize || (TYPE_MODULAR_P (gnu_type) && ! tree_int_cst_equal (TYPE_MAX_VALUE (gnu_type), gnu_high))) { tree gnu_subtype = make_node (INTEGER_TYPE); TYPE_NAME (gnu_type) = create_concat_name (gnat_entity, "UMT"); TREE_TYPE (gnu_subtype) = gnu_type; TYPE_MIN_VALUE (gnu_subtype) = TYPE_MIN_VALUE (gnu_type); TYPE_MAX_VALUE (gnu_subtype) = TYPE_MODULAR_P (gnu_type) ? gnu_high : TYPE_MAX_VALUE (gnu_type); TYPE_PRECISION (gnu_subtype) = esize; TYPE_UNSIGNED (gnu_subtype) = 1; TYPE_EXTRA_SUBTYPE_P (gnu_subtype) = 1; TYPE_PACKED_ARRAY_TYPE_P (gnu_subtype) = Is_Packed_Array_Type (gnat_entity); layout_type (gnu_subtype); gnu_type = gnu_subtype; } } break; case E_Signed_Integer_Subtype: case E_Enumeration_Subtype: case E_Modular_Integer_Subtype: case E_Ordinary_Fixed_Point_Subtype: case E_Decimal_Fixed_Point_Subtype: /* For integral subtypes, we make a new INTEGER_TYPE. Note that we do not want to call build_range_type since we would like each subtype node to be distinct. This will be important when memory aliasing is implemented. The TREE_TYPE field of the INTEGER_TYPE we make points to the parent type; this fact is used by the arithmetic conversion functions. We elaborate the Ancestor_Subtype if it is not in the current unit and one of our bounds is non-static. We do this to ensure consistent naming in the case where several subtypes share the same bounds by always elaborating the first such subtype first, thus using its name. */ if (definition == 0 && Present (Ancestor_Subtype (gnat_entity)) && ! In_Extended_Main_Code_Unit (Ancestor_Subtype (gnat_entity)) && (! Compile_Time_Known_Value (Type_Low_Bound (gnat_entity)) || ! Compile_Time_Known_Value (Type_High_Bound (gnat_entity)))) gnat_to_gnu_entity (Ancestor_Subtype (gnat_entity), gnu_expr, definition); gnu_type = make_node (INTEGER_TYPE); if (Is_Packed_Array_Type (gnat_entity)) { esize = UI_To_Int (RM_Size (gnat_entity)); TYPE_PACKED_ARRAY_TYPE_P (gnu_type) = 1; } TYPE_PRECISION (gnu_type) = esize; TREE_TYPE (gnu_type) = get_unpadded_type (Etype (gnat_entity)); TYPE_MIN_VALUE (gnu_type) = convert (TREE_TYPE (gnu_type), elaborate_expression (Type_Low_Bound (gnat_entity), gnat_entity, get_identifier ("L"), definition, 1, Needs_Debug_Info (gnat_entity))); TYPE_MAX_VALUE (gnu_type) = convert (TREE_TYPE (gnu_type), elaborate_expression (Type_High_Bound (gnat_entity), gnat_entity, get_identifier ("U"), definition, 1, Needs_Debug_Info (gnat_entity))); /* One of the above calls might have caused us to be elaborated, so don't blow up if so. */ if (present_gnu_tree (gnat_entity)) { maybe_present = 1; break; } TYPE_BIASED_REPRESENTATION_P (gnu_type) = Has_Biased_Representation (gnat_entity); /* This should be an unsigned type if the lower bound is constant and non-negative or if the base type is unsigned; a signed type otherwise. */ TYPE_UNSIGNED (gnu_type) = (TYPE_UNSIGNED (TREE_TYPE (gnu_type)) || (TREE_CODE (TYPE_MIN_VALUE (gnu_type)) == INTEGER_CST && TREE_INT_CST_HIGH (TYPE_MIN_VALUE (gnu_type)) >= 0) || TYPE_BIASED_REPRESENTATION_P (gnu_type) || Is_Unsigned_Type (gnat_entity)); layout_type (gnu_type); /* If the type we are dealing with is to represent a packed array, we need to have the bits left justified on big-endian targets (see exp_packd.ads). We build a record with a bitfield of the appropriate size to achieve this. */ if (Is_Packed_Array_Type (gnat_entity) && BYTES_BIG_ENDIAN) { tree gnu_field_type = gnu_type; tree gnu_field; TYPE_RM_SIZE_INT (gnu_field_type) = UI_To_gnu (RM_Size (gnat_entity), bitsizetype); gnu_type = make_node (RECORD_TYPE); TYPE_NAME (gnu_type) = create_concat_name (gnat_entity, "LJM"); TYPE_ALIGN (gnu_type) = TYPE_ALIGN (gnu_field_type); TYPE_PACKED (gnu_type) = 1; /* Don't notify the field as "addressable", since we won't be taking it's address and it would prevent create_field_decl from making a bitfield. */ gnu_field = create_field_decl (get_identifier ("OBJECT"), gnu_field_type, gnu_type, 1, 0, 0, 0); finish_record_type (gnu_type, gnu_field, 0, 0); TYPE_LEFT_JUSTIFIED_MODULAR_P (gnu_type) = 1; SET_TYPE_ADA_SIZE (gnu_type, bitsize_int (esize)); } break; case E_Floating_Point_Type: /* If this is a VAX floating-point type, use an integer of the proper size. All the operations will be handled with ASM statements. */ if (Vax_Float (gnat_entity)) { gnu_type = make_signed_type (esize); TYPE_VAX_FLOATING_POINT_P (gnu_type) = 1; SET_TYPE_DIGITS_VALUE (gnu_type, UI_To_gnu (Digits_Value (gnat_entity), sizetype)); break; } /* The type of the Low and High bounds can be our type if this is a type from Standard, so set them at the end of the function. */ gnu_type = make_node (REAL_TYPE); TYPE_PRECISION (gnu_type) = fp_size_to_prec (esize); layout_type (gnu_type); break; case E_Floating_Point_Subtype: if (Vax_Float (gnat_entity)) { gnu_type = gnat_to_gnu_type (Etype (gnat_entity)); break; } { if (definition == 0 && Present (Ancestor_Subtype (gnat_entity)) && ! In_Extended_Main_Code_Unit (Ancestor_Subtype (gnat_entity)) && (! Compile_Time_Known_Value (Type_Low_Bound (gnat_entity)) || ! Compile_Time_Known_Value (Type_High_Bound (gnat_entity)))) gnat_to_gnu_entity (Ancestor_Subtype (gnat_entity), gnu_expr, definition); gnu_type = make_node (REAL_TYPE); TREE_TYPE (gnu_type) = get_unpadded_type (Etype (gnat_entity)); TYPE_PRECISION (gnu_type) = fp_size_to_prec (esize); TYPE_MIN_VALUE (gnu_type) = convert (TREE_TYPE (gnu_type), elaborate_expression (Type_Low_Bound (gnat_entity), gnat_entity, get_identifier ("L"), definition, 1, Needs_Debug_Info (gnat_entity))); TYPE_MAX_VALUE (gnu_type) = convert (TREE_TYPE (gnu_type), elaborate_expression (Type_High_Bound (gnat_entity), gnat_entity, get_identifier ("U"), definition, 1, Needs_Debug_Info (gnat_entity))); /* One of the above calls might have caused us to be elaborated, so don't blow up if so. */ if (present_gnu_tree (gnat_entity)) { maybe_present = 1; break; } layout_type (gnu_type); } break; /* Array and String Types and Subtypes Unconstrained array types are represented by E_Array_Type and constrained array types are represented by E_Array_Subtype. There are no actual objects of an unconstrained array type; all we have are pointers to that type. The following fields are defined on array types and subtypes: Component_Type Component type of the array. Number_Dimensions Number of dimensions (an int). First_Index Type of first index. */ case E_String_Type: case E_Array_Type: { tree gnu_template_fields = NULL_TREE; tree gnu_template_type = make_node (RECORD_TYPE); tree gnu_ptr_template = build_pointer_type (gnu_template_type); tree gnu_fat_type = make_node (RECORD_TYPE); int ndim = Number_Dimensions (gnat_entity); int firstdim = (Convention (gnat_entity) == Convention_Fortran) ? ndim - 1 : 0; int nextdim = (Convention (gnat_entity) == Convention_Fortran) ? - 1 : 1; tree *gnu_index_types = (tree *) alloca (ndim * sizeof (tree *)); tree *gnu_temp_fields = (tree *) alloca (ndim * sizeof (tree *)); tree gnu_comp_size = 0; tree gnu_max_size = size_one_node; tree gnu_max_size_unit; int index; Entity_Id gnat_ind_subtype; Entity_Id gnat_ind_base_subtype; tree gnu_template_reference; tree tem; TYPE_NAME (gnu_template_type) = create_concat_name (gnat_entity, "XUB"); TYPE_NAME (gnu_fat_type) = create_concat_name (gnat_entity, "XUP"); TYPE_IS_FAT_POINTER_P (gnu_fat_type) = 1; TREE_READONLY (gnu_template_type) = 1; /* Make a node for the array. If we are not defining the array suppress expanding incomplete types and save the node as the type for GNAT_ENTITY. */ gnu_type = make_node (UNCONSTRAINED_ARRAY_TYPE); if (! definition) { defer_incomplete_level++; this_deferred = this_made_decl = 1; gnu_decl = create_type_decl (gnu_entity_id, gnu_type, attr_list, ! Comes_From_Source (gnat_entity), debug_info_p); save_gnu_tree (gnat_entity, gnu_decl, 0); saved = 1; } /* Build the fat pointer type. Use a "void *" object instead of a pointer to the array type since we don't have the array type yet (it will reference the fat pointer via the bounds). */ tem = chainon (chainon (NULL_TREE, create_field_decl (get_identifier ("P_ARRAY"), ptr_void_type_node, gnu_fat_type, 0, 0, 0, 0)), create_field_decl (get_identifier ("P_BOUNDS"), gnu_ptr_template, gnu_fat_type, 0, 0, 0, 0)); /* Make sure we can put this into a register. */ TYPE_ALIGN (gnu_fat_type) = MIN (BIGGEST_ALIGNMENT, 2 * POINTER_SIZE); finish_record_type (gnu_fat_type, tem, 0, 1); /* Build a reference to the template from a PLACEHOLDER_EXPR that is the fat pointer. This will be used to access the individual fields once we build them. */ tem = build (COMPONENT_REF, gnu_ptr_template, build (PLACEHOLDER_EXPR, gnu_fat_type), TREE_CHAIN (TYPE_FIELDS (gnu_fat_type))); gnu_template_reference = build_unary_op (INDIRECT_REF, gnu_template_type, tem); TREE_READONLY (gnu_template_reference) = 1; /* Now create the GCC type for each index and add the fields for that index to the template. */ for (index = firstdim, gnat_ind_subtype = First_Index (gnat_entity), gnat_ind_base_subtype = First_Index (Implementation_Base_Type (gnat_entity)); index < ndim && index >= 0; index += nextdim, gnat_ind_subtype = Next_Index (gnat_ind_subtype), gnat_ind_base_subtype = Next_Index (gnat_ind_base_subtype)) { char field_name[10]; tree gnu_ind_subtype = get_unpadded_type (Base_Type (Etype (gnat_ind_subtype))); tree gnu_base_subtype = get_unpadded_type (Etype (gnat_ind_base_subtype)); tree gnu_base_min = convert (sizetype, TYPE_MIN_VALUE (gnu_base_subtype)); tree gnu_base_max = convert (sizetype, TYPE_MAX_VALUE (gnu_base_subtype)); tree gnu_min_field, gnu_max_field, gnu_min, gnu_max; /* Make the FIELD_DECLs for the minimum and maximum of this type and then make extractions of that field from the template. */ set_lineno (gnat_entity, 0); sprintf (field_name, "LB%d", index); gnu_min_field = create_field_decl (get_identifier (field_name), gnu_ind_subtype, gnu_template_type, 0, 0, 0, 0); field_name[0] = 'U'; gnu_max_field = create_field_decl (get_identifier (field_name), gnu_ind_subtype, gnu_template_type, 0, 0, 0, 0); gnu_temp_fields[index] = chainon (gnu_min_field, gnu_max_field); /* We can't use build_component_ref here since the template type isn't complete yet. */ gnu_min = build (COMPONENT_REF, gnu_ind_subtype, gnu_template_reference, gnu_min_field); gnu_max = build (COMPONENT_REF, gnu_ind_subtype, gnu_template_reference, gnu_max_field); TREE_READONLY (gnu_min) = TREE_READONLY (gnu_max) = 1; /* Make a range type with the new ranges, but using the Ada subtype. Then we convert to sizetype. */ gnu_index_types[index] = create_index_type (convert (sizetype, gnu_min), convert (sizetype, gnu_max), build_range_type (gnu_ind_subtype, gnu_min, gnu_max)); /* Update the maximum size of the array, in elements. */ gnu_max_size = size_binop (MULT_EXPR, gnu_max_size, size_binop (PLUS_EXPR, size_one_node, size_binop (MINUS_EXPR, gnu_base_max, gnu_base_min))); TYPE_NAME (gnu_index_types[index]) = create_concat_name (gnat_entity, field_name); } for (index = 0; index < ndim; index++) gnu_template_fields = chainon (gnu_template_fields, gnu_temp_fields[index]); /* Install all the fields into the template. */ finish_record_type (gnu_template_type, gnu_template_fields, 0, 0); TREE_READONLY (gnu_template_type) = 1; /* Now make the array of arrays and update the pointer to the array in the fat pointer. Note that it is the first field. */ tem = gnat_to_gnu_type (Component_Type (gnat_entity)); /* Get and validate any specified Component_Size, but if Packed, ignore it since the front end will have taken care of it. */ gnu_comp_size = validate_size (Component_Size (gnat_entity), tem, gnat_entity, (Is_Bit_Packed_Array (gnat_entity) ? TYPE_DECL : VAR_DECL), 1, Has_Component_Size_Clause (gnat_entity)); if (Has_Atomic_Components (gnat_entity)) check_ok_for_atomic (tem, gnat_entity, 1); /* If the component type is a RECORD_TYPE that has a self-referential size, use the maxium size. */ if (gnu_comp_size == 0 && TREE_CODE (tem) == RECORD_TYPE && CONTAINS_PLACEHOLDER_P (TYPE_SIZE (tem))) gnu_comp_size = max_size (TYPE_SIZE (tem), 1); if (! Is_Bit_Packed_Array (gnat_entity) && gnu_comp_size != 0) { tem = make_type_from_size (tem, gnu_comp_size, 0); tem = maybe_pad_type (tem, gnu_comp_size, 0, gnat_entity, "C_PAD", 0, definition, 1); } if (Has_Volatile_Components (gnat_entity)) tem = build_qualified_type (tem, TYPE_QUALS (tem) | TYPE_QUAL_VOLATILE); /* If Component_Size is not already specified, annotate it with the size of the component. */ if (Unknown_Component_Size (gnat_entity)) Set_Component_Size (gnat_entity, annotate_value (TYPE_SIZE (tem))); gnu_max_size_unit = size_binop (MAX_EXPR, size_zero_node, size_binop (MULT_EXPR, gnu_max_size, TYPE_SIZE_UNIT (tem))); gnu_max_size = size_binop (MAX_EXPR, bitsize_zero_node, size_binop (MULT_EXPR, convert (bitsizetype, gnu_max_size), TYPE_SIZE (tem))); for (index = ndim - 1; index >= 0; index--) { tem = build_array_type (tem, gnu_index_types[index]); TYPE_MULTI_ARRAY_P (tem) = (index > 0); /* If the type below this an multi-array type, then this does not not have aliased components. ??? Otherwise, for now, we say that any component of aggregate type is addressable because the front end may take 'Reference of it. But we have to make it addressable if it must be passed by reference or it that is the default. */ TYPE_NONALIASED_COMPONENT (tem) = ((TREE_CODE (TREE_TYPE (tem)) == ARRAY_TYPE && TYPE_MULTI_ARRAY_P (TREE_TYPE (tem))) ? 1 : (! Has_Aliased_Components (gnat_entity) && ! AGGREGATE_TYPE_P (TREE_TYPE (tem)))); } /* If an alignment is specified, use it if valid. But ignore it for types that represent the unpacked base type for packed arrays. */ if (No (Packed_Array_Type (gnat_entity)) && Known_Alignment (gnat_entity)) { if (No (Alignment (gnat_entity))) gigi_abort (124); TYPE_ALIGN (tem) = validate_alignment (Alignment (gnat_entity), gnat_entity, TYPE_ALIGN (tem)); } TYPE_CONVENTION_FORTRAN_P (tem) = (Convention (gnat_entity) == Convention_Fortran); TREE_TYPE (TYPE_FIELDS (gnu_fat_type)) = build_pointer_type (tem); /* The result type is an UNCONSTRAINED_ARRAY_TYPE that indicates the corresponding fat pointer. */ TREE_TYPE (gnu_type) = TYPE_POINTER_TO (gnu_type) = TYPE_REFERENCE_TO (gnu_type) = gnu_fat_type; TYPE_MODE (gnu_type) = BLKmode; TYPE_ALIGN (gnu_type) = TYPE_ALIGN (tem); SET_TYPE_UNCONSTRAINED_ARRAY (gnu_fat_type, gnu_type); /* If the maximum size doesn't overflow, use it. */ if (TREE_CODE (gnu_max_size) == INTEGER_CST && ! TREE_OVERFLOW (gnu_max_size)) TYPE_SIZE (tem) = size_binop (MIN_EXPR, gnu_max_size, TYPE_SIZE (tem)); if (TREE_CODE (gnu_max_size_unit) == INTEGER_CST && ! TREE_OVERFLOW (gnu_max_size_unit)) TYPE_SIZE_UNIT (tem) = size_binop (MIN_EXPR, gnu_max_size_unit, TYPE_SIZE_UNIT (tem)); create_type_decl (create_concat_name (gnat_entity, "XUA"), tem, 0, ! Comes_From_Source (gnat_entity), debug_info_p); rest_of_type_compilation (gnu_fat_type, global_bindings_p ()); /* Create a record type for the object and its template and set the template at a negative offset. */ tem = build_unc_object_type (gnu_template_type, tem, create_concat_name (gnat_entity, "XUT")); DECL_FIELD_OFFSET (TYPE_FIELDS (tem)) = size_binop (MINUS_EXPR, size_zero_node, byte_position (TREE_CHAIN (TYPE_FIELDS (tem)))); DECL_FIELD_OFFSET (TREE_CHAIN (TYPE_FIELDS (tem))) = size_zero_node; DECL_FIELD_BIT_OFFSET (TREE_CHAIN (TYPE_FIELDS (tem))) = bitsize_zero_node; SET_TYPE_UNCONSTRAINED_ARRAY (tem, gnu_type); TYPE_OBJECT_RECORD_TYPE (gnu_type) = tem; /* Give the thin pointer type a name. */ create_type_decl (create_concat_name (gnat_entity, "XUX"), build_pointer_type (tem), 0, ! Comes_From_Source (gnat_entity), debug_info_p); } break; case E_String_Subtype: case E_Array_Subtype: /* This is the actual data type for array variables. Multidimensional arrays are implemented in the gnu tree as arrays of arrays. Note that for the moment arrays which have sparse enumeration subtypes as index components create sparse arrays, which is obviously space inefficient but so much easier to code for now. Also note that the subtype never refers to the unconstrained array type, which is somewhat at variance with Ada semantics. First check to see if this is simply a renaming of the array type. If so, the result is the array type. */ gnu_type = gnat_to_gnu_type (Etype (gnat_entity)); if (! Is_Constrained (gnat_entity)) break; else { int index; int array_dim = Number_Dimensions (gnat_entity); int first_dim = ((Convention (gnat_entity) == Convention_Fortran) ? array_dim - 1 : 0); int next_dim = (Convention (gnat_entity) == Convention_Fortran) ? -1 : 1; Entity_Id gnat_ind_subtype; Entity_Id gnat_ind_base_subtype; tree gnu_base_type = gnu_type; tree *gnu_index_type = (tree *) alloca (array_dim * sizeof (tree *)); tree gnu_comp_size = 0; tree gnu_max_size = size_one_node; tree gnu_max_size_unit; int need_index_type_struct = 0; int max_overflow = 0; /* First create the gnu types for each index. Create types for debugging information to point to the index types if the are not integer types, have variable bounds, or are wider than sizetype. */ for (index = first_dim, gnat_ind_subtype = First_Index (gnat_entity), gnat_ind_base_subtype = First_Index (Implementation_Base_Type (gnat_entity)); index < array_dim && index >= 0; index += next_dim, gnat_ind_subtype = Next_Index (gnat_ind_subtype), gnat_ind_base_subtype = Next_Index (gnat_ind_base_subtype)) { tree gnu_index_subtype = get_unpadded_type (Etype (gnat_ind_subtype)); tree gnu_min = convert (sizetype, TYPE_MIN_VALUE (gnu_index_subtype)); tree gnu_max = convert (sizetype, TYPE_MAX_VALUE (gnu_index_subtype)); tree gnu_base_subtype = get_unpadded_type (Etype (gnat_ind_base_subtype)); tree gnu_base_min = convert (sizetype, TYPE_MIN_VALUE (gnu_base_subtype)); tree gnu_base_max = convert (sizetype, TYPE_MAX_VALUE (gnu_base_subtype)); tree gnu_base_type = get_base_type (gnu_base_subtype); tree gnu_base_base_min = convert (sizetype, TYPE_MIN_VALUE (gnu_base_type)); tree gnu_base_base_max = convert (sizetype, TYPE_MAX_VALUE (gnu_base_type)); tree gnu_high; tree gnu_this_max; /* If the minimum and maximum values both overflow in SIZETYPE, but the difference in the original type does not overflow in SIZETYPE, ignore the overflow indications. */ if ((TYPE_PRECISION (gnu_index_subtype) > TYPE_PRECISION (sizetype)) && TREE_CODE (gnu_min) == INTEGER_CST && TREE_CODE (gnu_max) == INTEGER_CST && TREE_OVERFLOW (gnu_min) && TREE_OVERFLOW (gnu_max) && (! TREE_OVERFLOW (fold (build (MINUS_EXPR, gnu_index_subtype, TYPE_MAX_VALUE (gnu_index_subtype), TYPE_MIN_VALUE (gnu_index_subtype)))))) TREE_OVERFLOW (gnu_min) = TREE_OVERFLOW (gnu_max) = TREE_CONSTANT_OVERFLOW (gnu_min) = TREE_CONSTANT_OVERFLOW (gnu_max) = 0; /* Similarly, if the range is null, use bounds of 1..0 for the sizetype bounds. */ else if ((TYPE_PRECISION (gnu_index_subtype) > TYPE_PRECISION (sizetype)) && TREE_CODE (gnu_min) == INTEGER_CST && TREE_CODE (gnu_max) == INTEGER_CST && (TREE_OVERFLOW (gnu_min) || TREE_OVERFLOW (gnu_max)) && tree_int_cst_lt (TYPE_MAX_VALUE (gnu_index_subtype), TYPE_MIN_VALUE (gnu_index_subtype))) gnu_min = size_one_node, gnu_max = size_zero_node; /* Now compute the size of this bound. We need to provide GCC with an upper bound to use but have to deal with the "superflat" case. There are three ways to do this. If we can prove that the array can never be superflat, we can just use the high bound of the index subtype. If we can prove that the low bound minus one can't overflow, we can do this as MAX (hb, lb - 1). Otherwise, we have to use the expression hb >= lb ? hb : lb - 1. */ gnu_high = size_binop (MINUS_EXPR, gnu_min, size_one_node); /* See if the base array type is already flat. If it is, we are probably compiling an ACVC test, but it will cause the code below to malfunction if we don't handle it specially. */ if (TREE_CODE (gnu_base_min) == INTEGER_CST && TREE_CODE (gnu_base_max) == INTEGER_CST && ! TREE_CONSTANT_OVERFLOW (gnu_base_min) && ! TREE_CONSTANT_OVERFLOW (gnu_base_max) && tree_int_cst_lt (gnu_base_max, gnu_base_min)) gnu_high = size_zero_node, gnu_min = size_one_node; /* If gnu_high is now an integer which overflowed, the array cannot be superflat. */ else if (TREE_CODE (gnu_high) == INTEGER_CST && TREE_OVERFLOW (gnu_high)) gnu_high = gnu_max; else if (TYPE_UNSIGNED (gnu_base_subtype) || TREE_CODE (gnu_high) == INTEGER_CST) gnu_high = size_binop (MAX_EXPR, gnu_max, gnu_high); else gnu_high = build_cond_expr (sizetype, build_binary_op (GE_EXPR, integer_type_node, gnu_max, gnu_min), gnu_max, gnu_high); gnu_index_type[index] = create_index_type (gnu_min, gnu_high, gnu_index_subtype); /* Also compute the maximum size of the array. Here we see if any constraint on the index type of the base type can be used in the case of self-referential bound on the index type of the subtype. We look for a non-"infinite" and non-self-referential bound from any type involved and handle each bound separately. */ if ((TREE_CODE (gnu_min) == INTEGER_CST && ! TREE_OVERFLOW (gnu_min) && ! operand_equal_p (gnu_min, gnu_base_base_min, 0)) || ! CONTAINS_PLACEHOLDER_P (gnu_min)) gnu_base_min = gnu_min; if ((TREE_CODE (gnu_max) == INTEGER_CST && ! TREE_OVERFLOW (gnu_max) && ! operand_equal_p (gnu_max, gnu_base_base_max, 0)) || ! CONTAINS_PLACEHOLDER_P (gnu_max)) gnu_base_max = gnu_max; if ((TREE_CODE (gnu_base_min) == INTEGER_CST && TREE_CONSTANT_OVERFLOW (gnu_base_min)) || operand_equal_p (gnu_base_min, gnu_base_base_min, 0) || (TREE_CODE (gnu_base_max) == INTEGER_CST && TREE_CONSTANT_OVERFLOW (gnu_base_max)) || operand_equal_p (gnu_base_max, gnu_base_base_max, 0)) max_overflow = 1; gnu_base_min = size_binop (MAX_EXPR, gnu_base_min, gnu_min); gnu_base_max = size_binop (MIN_EXPR, gnu_base_max, gnu_max); gnu_this_max = size_binop (MAX_EXPR, size_binop (PLUS_EXPR, size_one_node, size_binop (MINUS_EXPR, gnu_base_max, gnu_base_min)), size_zero_node); if (TREE_CODE (gnu_this_max) == INTEGER_CST && TREE_CONSTANT_OVERFLOW (gnu_this_max)) max_overflow = 1; gnu_max_size = size_binop (MULT_EXPR, gnu_max_size, gnu_this_max); if (! integer_onep (TYPE_MIN_VALUE (gnu_index_subtype)) || (TREE_CODE (TYPE_MAX_VALUE (gnu_index_subtype)) != INTEGER_CST) || TREE_CODE (gnu_index_subtype) != INTEGER_TYPE || (TREE_TYPE (gnu_index_subtype) != 0 && (TREE_CODE (TREE_TYPE (gnu_index_subtype)) != INTEGER_TYPE)) || TYPE_BIASED_REPRESENTATION_P (gnu_index_subtype) || (TYPE_PRECISION (gnu_index_subtype) > TYPE_PRECISION (sizetype))) need_index_type_struct = 1; } /* Then flatten: create the array of arrays. */ gnu_type = gnat_to_gnu_type (Component_Type (gnat_entity)); /* One of the above calls might have caused us to be elaborated, so don't blow up if so. */ if (present_gnu_tree (gnat_entity)) { maybe_present = 1; break; } /* Get and validate any specified Component_Size, but if Packed, ignore it since the front end will have taken care of it. */ gnu_comp_size = validate_size (Component_Size (gnat_entity), gnu_type, gnat_entity, (Is_Bit_Packed_Array (gnat_entity) ? TYPE_DECL : VAR_DECL), 1, Has_Component_Size_Clause (gnat_entity)); /* If the component type is a RECORD_TYPE that has a self-referential size, use the maxium size. */ if (gnu_comp_size == 0 && TREE_CODE (gnu_type) == RECORD_TYPE && CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_type))) gnu_comp_size = max_size (TYPE_SIZE (gnu_type), 1); if (! Is_Bit_Packed_Array (gnat_entity) && gnu_comp_size != 0) { gnu_type = make_type_from_size (gnu_type, gnu_comp_size, 0); gnu_type = maybe_pad_type (gnu_type, gnu_comp_size, 0, gnat_entity, "C_PAD", 0, definition, 1); } if (Has_Volatile_Components (Base_Type (gnat_entity))) gnu_type = build_qualified_type (gnu_type, (TYPE_QUALS (gnu_type) | TYPE_QUAL_VOLATILE)); gnu_max_size_unit = size_binop (MULT_EXPR, gnu_max_size, TYPE_SIZE_UNIT (gnu_type)); gnu_max_size = size_binop (MULT_EXPR, convert (bitsizetype, gnu_max_size), TYPE_SIZE (gnu_type)); for (index = array_dim - 1; index >= 0; index --) { gnu_type = build_array_type (gnu_type, gnu_index_type[index]); TYPE_MULTI_ARRAY_P (gnu_type) = (index > 0); /* If the type below this an multi-array type, then this does not not have aliased components. ??? Otherwise, for now, we say that any component of aggregate type is addressable because the front end may take 'Reference of it. But we have to make it addressable if it must be passed by reference or it that is the default. */ TYPE_NONALIASED_COMPONENT (gnu_type) = ((TREE_CODE (TREE_TYPE (gnu_type)) == ARRAY_TYPE && TYPE_MULTI_ARRAY_P (TREE_TYPE (gnu_type))) ? 1 : (! Has_Aliased_Components (gnat_entity) && ! AGGREGATE_TYPE_P (TREE_TYPE (gnu_type)))); } /* If we are at file level and this is a multi-dimensional array, we need to make a variable corresponding to the stride of the inner dimensions. */ if (global_bindings_p () && array_dim > 1) { tree gnu_str_name = get_identifier ("ST"); tree gnu_arr_type; for (gnu_arr_type = TREE_TYPE (gnu_type); TREE_CODE (gnu_arr_type) == ARRAY_TYPE; gnu_arr_type = TREE_TYPE (gnu_arr_type), gnu_str_name = concat_id_with_name (gnu_str_name, "ST")) { TYPE_SIZE (gnu_arr_type) = elaborate_expression_1 (gnat_entity, gnat_entity, TYPE_SIZE (gnu_arr_type), gnu_str_name, definition, 0); TYPE_SIZE_UNIT (gnu_arr_type) = elaborate_expression_1 (gnat_entity, gnat_entity, TYPE_SIZE_UNIT (gnu_arr_type), concat_id_with_name (gnu_str_name, "U"), definition, 0); } } /* If we need to write out a record type giving the names of the bounds, do it now. */ if (need_index_type_struct && debug_info_p) { tree gnu_bound_rec_type = make_node (RECORD_TYPE); tree gnu_field_list = 0; tree gnu_field; TYPE_NAME (gnu_bound_rec_type) = create_concat_name (gnat_entity, "XA"); for (index = array_dim - 1; index >= 0; index--) { tree gnu_type_name = TYPE_NAME (TYPE_INDEX_TYPE (gnu_index_type[index])); if (TREE_CODE (gnu_type_name) == TYPE_DECL) gnu_type_name = DECL_NAME (gnu_type_name); gnu_field = create_field_decl (gnu_type_name, integer_type_node, gnu_bound_rec_type, 0, NULL_TREE, NULL_TREE, 0); TREE_CHAIN (gnu_field) = gnu_field_list; gnu_field_list = gnu_field; } finish_record_type (gnu_bound_rec_type, gnu_field_list, 0, 0); } TYPE_CONVENTION_FORTRAN_P (gnu_type) = (Convention (gnat_entity) == Convention_Fortran); TYPE_PACKED_ARRAY_TYPE_P (gnu_type) = Is_Packed_Array_Type (gnat_entity); /* If our size depends on a placeholder and the maximum size doesn't overflow, use it. */ if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_type)) && ! (TREE_CODE (gnu_max_size) == INTEGER_CST && TREE_OVERFLOW (gnu_max_size)) && ! (TREE_CODE (gnu_max_size_unit) == INTEGER_CST && TREE_OVERFLOW (gnu_max_size_unit)) && ! max_overflow) { TYPE_SIZE (gnu_type) = size_binop (MIN_EXPR, gnu_max_size, TYPE_SIZE (gnu_type)); TYPE_SIZE_UNIT (gnu_type) = size_binop (MIN_EXPR, gnu_max_size_unit, TYPE_SIZE_UNIT (gnu_type)); } /* Set our alias set to that of our base type. This gives all array subtypes the same alias set. */ copy_alias_set (gnu_type, gnu_base_type); } /* If this is a packed type, make this type the same as the packed array type, but do some adjusting in the type first. */ if (Present (Packed_Array_Type (gnat_entity))) { Entity_Id gnat_index; tree gnu_inner_type; /* First finish the type we had been making so that we output debugging information for it */ gnu_type = build_qualified_type (gnu_type, (TYPE_QUALS (gnu_type) | (TYPE_QUAL_VOLATILE * Treat_As_Volatile (gnat_entity)))); set_lineno (gnat_entity, 0); gnu_decl = create_type_decl (gnu_entity_id, gnu_type, attr_list, ! Comes_From_Source (gnat_entity), debug_info_p); if (! Comes_From_Source (gnat_entity)) DECL_ARTIFICIAL (gnu_decl) = 1; /* Save it as our equivalent in case the call below elaborates this type again. */ save_gnu_tree (gnat_entity, gnu_decl, 0); gnu_decl = gnat_to_gnu_entity (Packed_Array_Type (gnat_entity), NULL_TREE, 0); this_made_decl = 1; gnu_inner_type = gnu_type = TREE_TYPE (gnu_decl); save_gnu_tree (gnat_entity, NULL_TREE, 0); while (TREE_CODE (gnu_inner_type) == RECORD_TYPE && (TYPE_LEFT_JUSTIFIED_MODULAR_P (gnu_inner_type) || TYPE_IS_PADDING_P (gnu_inner_type))) gnu_inner_type = TREE_TYPE (TYPE_FIELDS (gnu_inner_type)); /* We need to point the type we just made to our index type so the actual bounds can be put into a template. */ if ((TREE_CODE (gnu_inner_type) == ARRAY_TYPE && TYPE_ACTUAL_BOUNDS (gnu_inner_type) == 0) || (TREE_CODE (gnu_inner_type) == INTEGER_TYPE && ! TYPE_HAS_ACTUAL_BOUNDS_P (gnu_inner_type))) { if (TREE_CODE (gnu_inner_type) == INTEGER_TYPE) { /* The TYPE_ACTUAL_BOUNDS field is also used for the modulus. If it is, we need to make another type. */ if (TYPE_MODULAR_P (gnu_inner_type)) { tree gnu_subtype; gnu_subtype = make_node (INTEGER_TYPE); TREE_TYPE (gnu_subtype) = gnu_inner_type; TYPE_MIN_VALUE (gnu_subtype) = TYPE_MIN_VALUE (gnu_inner_type); TYPE_MAX_VALUE (gnu_subtype) = TYPE_MAX_VALUE (gnu_inner_type); TYPE_PRECISION (gnu_subtype) = TYPE_PRECISION (gnu_inner_type); TYPE_UNSIGNED (gnu_subtype) = TYPE_UNSIGNED (gnu_inner_type); TYPE_EXTRA_SUBTYPE_P (gnu_subtype) = 1; layout_type (gnu_subtype); gnu_inner_type = gnu_subtype; } TYPE_HAS_ACTUAL_BOUNDS_P (gnu_inner_type) = 1; } SET_TYPE_ACTUAL_BOUNDS (gnu_inner_type, NULL_TREE); for (gnat_index = First_Index (gnat_entity); Present (gnat_index); gnat_index = Next_Index (gnat_index)) SET_TYPE_ACTUAL_BOUNDS (gnu_inner_type, tree_cons (NULL_TREE, get_unpadded_type (Etype (gnat_index)), TYPE_ACTUAL_BOUNDS (gnu_inner_type))); if (Convention (gnat_entity) != Convention_Fortran) SET_TYPE_ACTUAL_BOUNDS (gnu_inner_type, nreverse (TYPE_ACTUAL_BOUNDS (gnu_inner_type))); if (TREE_CODE (gnu_type) == RECORD_TYPE && TYPE_LEFT_JUSTIFIED_MODULAR_P (gnu_type)) TREE_TYPE (TYPE_FIELDS (gnu_type)) = gnu_inner_type; } } /* Abort if packed array with no packed array type field set. */ else if (Is_Packed (gnat_entity)) gigi_abort (107); break; case E_String_Literal_Subtype: /* Create the type for a string literal. */ { Entity_Id gnat_full_type = (IN (Ekind (Etype (gnat_entity)), Private_Kind) && Present (Full_View (Etype (gnat_entity))) ? Full_View (Etype (gnat_entity)) : Etype (gnat_entity)); tree gnu_string_type = get_unpadded_type (gnat_full_type); tree gnu_string_array_type = TREE_TYPE (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (gnu_string_type)))); tree gnu_string_index_type = get_base_type (TREE_TYPE (TYPE_INDEX_TYPE (TYPE_DOMAIN (gnu_string_array_type)))); tree gnu_lower_bound = convert (gnu_string_index_type, gnat_to_gnu (String_Literal_Low_Bound (gnat_entity))); int length = UI_To_Int (String_Literal_Length (gnat_entity)); tree gnu_length = ssize_int (length - 1); tree gnu_upper_bound = build_binary_op (PLUS_EXPR, gnu_string_index_type, gnu_lower_bound, convert (gnu_string_index_type, gnu_length)); tree gnu_range_type = build_range_type (gnu_string_index_type, gnu_lower_bound, gnu_upper_bound); tree gnu_index_type = create_index_type (convert (sizetype, TYPE_MIN_VALUE (gnu_range_type)), convert (sizetype, TYPE_MAX_VALUE (gnu_range_type)), gnu_range_type); gnu_type = build_array_type (gnat_to_gnu_type (Component_Type (gnat_entity)), gnu_index_type); } break; /* Record Types and Subtypes The following fields are defined on record types: Has_Discriminants True if the record has discriminants First_Discriminant Points to head of list of discriminants First_Entity Points to head of list of fields Is_Tagged_Type True if the record is tagged Implementation of Ada records and discriminated records: A record type definition is transformed into the equivalent of a C struct definition. The fields that are the discriminants which are found in the Full_Type_Declaration node and the elements of the Component_List found in the Record_Type_Definition node. The Component_List can be a recursive structure since each Variant of the Variant_Part of the Component_List has a Component_List. Processing of a record type definition comprises starting the list of field declarations here from the discriminants and the calling the function components_to_record to add the rest of the fields from the component list and return the gnu type node. The function components_to_record will call itself recursively as it traverses the tree. */ case E_Record_Type: if (Has_Complex_Representation (gnat_entity)) { gnu_type = build_complex_type (get_unpadded_type (Etype (Defining_Entity (First (Component_Items (Component_List (Type_Definition (Declaration_Node (gnat_entity))))))))); break; } { Node_Id full_definition = Declaration_Node (gnat_entity); Node_Id record_definition = Type_Definition (full_definition); Entity_Id gnat_field; tree gnu_field; tree gnu_field_list = NULL_TREE; tree gnu_get_parent; int packed = (Is_Packed (gnat_entity) ? 1 : (Component_Alignment (gnat_entity) == Calign_Storage_Unit) ? -1 : 0); int has_rep = Has_Specified_Layout (gnat_entity); int all_rep = has_rep; int is_extension = (Is_Tagged_Type (gnat_entity) && Nkind (record_definition) == N_Derived_Type_Definition); /* See if all fields have a rep clause. Stop when we find one that doesn't. */ for (gnat_field = First_Entity (gnat_entity); Present (gnat_field) && all_rep; gnat_field = Next_Entity (gnat_field)) if ((Ekind (gnat_field) == E_Component || Ekind (gnat_field) == E_Discriminant) && No (Component_Clause (gnat_field))) all_rep = 0; /* If this is a record extension, go a level further to find the record definition. Also, verify we have a Parent_Subtype. */ if (is_extension) { if (! type_annotate_only || Present (Record_Extension_Part (record_definition))) record_definition = Record_Extension_Part (record_definition); if (! type_annotate_only && No (Parent_Subtype (gnat_entity))) gigi_abort (121); } /* Make a node for the record. If we are not defining the record, suppress expanding incomplete types and save the node as the type for GNAT_ENTITY. We use the same RECORD_TYPE as for a dummy type and reset TYPE_DUMMY_P to show it's no longer a dummy. It is very tempting to delay resetting this bit until we are done with completing the type, e.g. to let possible intermediate elaboration of access types designating the record know it is not complete and arrange for update_pointer_to to fix things up later. It would be wrong, however, because dummy types are expected only to be created for Ada incomplete or private types, which is not what we have here. Doing so would make other parts of gigi think we are dealing with a really incomplete or private type, and have nasty side effects, typically on the generation of the associated debugging information. */ gnu_type = make_dummy_type (gnat_entity); TYPE_DUMMY_P (gnu_type) = 0; if (TREE_CODE (TYPE_NAME (gnu_type)) == TYPE_DECL && debug_info_p) DECL_IGNORED_P (TYPE_NAME (gnu_type)) = 0; TYPE_ALIGN (gnu_type) = 0; TYPE_PACKED (gnu_type) = packed != 0 || has_rep; if (! definition) { defer_incomplete_level++; this_deferred = 1; set_lineno (gnat_entity, 0); gnu_decl = create_type_decl (gnu_entity_id, gnu_type, attr_list, ! Comes_From_Source (gnat_entity), debug_info_p); save_gnu_tree (gnat_entity, gnu_decl, 0); this_made_decl = saved = 1; } /* If both a size and rep clause was specified, put the size in the record type now so that it can get the proper mode. */ if (has_rep && Known_Esize (gnat_entity)) TYPE_SIZE (gnu_type) = UI_To_gnu (Esize (gnat_entity), sizetype); /* Always set the alignment here so that it can be used to set the mode, if it is making the alignment stricter. If it is invalid, it will be checked again below. If this is to be Atomic, choose a default alignment of a word unless we know the size and it's smaller. */ if (Known_Alignment (gnat_entity)) TYPE_ALIGN (gnu_type) = validate_alignment (Alignment (gnat_entity), gnat_entity, 0); else if (Is_Atomic (gnat_entity)) TYPE_ALIGN (gnu_type) = (esize >= BITS_PER_WORD ? BITS_PER_WORD : 1 << ((floor_log2 (esize) - 1) + 1)); /* If we have a Parent_Subtype, make a field for the parent. If this record has rep clauses, force the position to zero. */ if (Present (Parent_Subtype (gnat_entity))) { tree gnu_parent; /* A major complexity here is that the parent subtype will reference our discriminants. But those must reference the parent component of this record. So here we will initialize each of those components to a COMPONENT_REF. The first operand of that COMPONENT_REF is another COMPONENT_REF which will be filled in below, once the parent type can be safely built. */ gnu_get_parent = build (COMPONENT_REF, void_type_node, build (PLACEHOLDER_EXPR, gnu_type), build_decl (FIELD_DECL, NULL_TREE, NULL_TREE)); if (Has_Discriminants (gnat_entity)) for (gnat_field = First_Stored_Discriminant (gnat_entity); Present (gnat_field); gnat_field = Next_Stored_Discriminant (gnat_field)) if (Present (Corresponding_Discriminant (gnat_field))) save_gnu_tree (gnat_field, build (COMPONENT_REF, get_unpadded_type (Etype (gnat_field)), gnu_get_parent, gnat_to_gnu_entity (Corresponding_Discriminant (gnat_field), NULL_TREE, 0)), 1); gnu_parent = gnat_to_gnu_type (Parent_Subtype (gnat_entity)); gnu_field_list = create_field_decl (get_identifier (Get_Name_String (Name_uParent)), gnu_parent, gnu_type, 0, has_rep ? TYPE_SIZE (gnu_parent) : 0, has_rep ? bitsize_zero_node : 0, 1); DECL_INTERNAL_P (gnu_field_list) = 1; TREE_TYPE (gnu_get_parent) = gnu_parent; TREE_OPERAND (gnu_get_parent, 1) = gnu_field_list; } /* Add the fields for the discriminants into the record. */ if (! Is_Unchecked_Union (gnat_entity) && Has_Discriminants (gnat_entity)) for (gnat_field = First_Stored_Discriminant (gnat_entity); Present (gnat_field); gnat_field = Next_Stored_Discriminant (gnat_field)) { /* If this is a record extension and this discriminant is the renaming of another discriminant, we've already handled the discriminant above. */ if (Present (Parent_Subtype (gnat_entity)) && Present (Corresponding_Discriminant (gnat_field))) continue; gnu_field = gnat_to_gnu_field (gnat_field, gnu_type, packed, definition); /* Make an expression using a PLACEHOLDER_EXPR from the FIELD_DECL node just created and link that with the corresponding GNAT defining identifier. Then add to the list of fields. */ save_gnu_tree (gnat_field, build (COMPONENT_REF, TREE_TYPE (gnu_field), build (PLACEHOLDER_EXPR, DECL_CONTEXT (gnu_field)), gnu_field), 1); TREE_CHAIN (gnu_field) = gnu_field_list; gnu_field_list = gnu_field; } /* Put the discriminants into the record (backwards), so we can know the appropriate discriminant to use for the names of the variants. */ TYPE_FIELDS (gnu_type) = gnu_field_list; /* Add the listed fields into the record and finish up. */ components_to_record (gnu_type, Component_List (record_definition), gnu_field_list, packed, definition, 0, 0, all_rep); TYPE_VOLATILE (gnu_type) = Treat_As_Volatile (gnat_entity); TYPE_BY_REFERENCE_P (gnu_type) = Is_By_Reference_Type (gnat_entity); /* If this is an extension type, reset the tree for any inherited discriminants. Also remove the PLACEHOLDER_EXPR for non-inherited discriminants. */ if (! Is_Unchecked_Union (gnat_entity) && Has_Discriminants (gnat_entity)) for (gnat_field = First_Stored_Discriminant (gnat_entity); Present (gnat_field); gnat_field = Next_Stored_Discriminant (gnat_field)) { if (Present (Parent_Subtype (gnat_entity)) && Present (Corresponding_Discriminant (gnat_field))) save_gnu_tree (gnat_field, NULL_TREE, 0); else { gnu_field = get_gnu_tree (gnat_field); save_gnu_tree (gnat_field, NULL_TREE, 0); save_gnu_tree (gnat_field, TREE_OPERAND (gnu_field, 1), 0); } } /* If it is a tagged record force the type to BLKmode to insure that these objects will always be placed in memory. Do the same thing for limited record types. */ if (Is_Tagged_Type (gnat_entity) || Is_Limited_Record (gnat_entity)) TYPE_MODE (gnu_type) = BLKmode; /* If this is a derived type, we must make the alias set of this type the same as that of the type we are derived from. We assume here that the other type is already frozen. */ if (Etype (gnat_entity) != gnat_entity && ! (Is_Private_Type (Etype (gnat_entity)) && Full_View (Etype (gnat_entity)) == gnat_entity)) copy_alias_set (gnu_type, gnat_to_gnu_type (Etype (gnat_entity))); /* Fill in locations of fields. */ annotate_rep (gnat_entity, gnu_type); /* If there are any entities in the chain corresponding to components that we did not elaborate, ensure we elaborate their types if they are Itypes. */ for (gnat_temp = First_Entity (gnat_entity); Present (gnat_temp); gnat_temp = Next_Entity (gnat_temp)) if ((Ekind (gnat_temp) == E_Component || Ekind (gnat_temp) == E_Discriminant) && Is_Itype (Etype (gnat_temp)) && ! present_gnu_tree (gnat_temp)) gnat_to_gnu_entity (Etype (gnat_temp), NULL_TREE, 0); } break; case E_Class_Wide_Subtype: /* If an equivalent type is present, that is what we should use. Otherwise, fall through to handle this like a record subtype since it may have constraints. */ if (Present (Equivalent_Type (gnat_entity))) { gnu_decl = gnat_to_gnu_entity (Equivalent_Type (gnat_entity), NULL_TREE, 0); maybe_present = 1; break; } /* ... fall through ... */ case E_Record_Subtype: /* If Cloned_Subtype is Present it means this record subtype has identical layout to that type or subtype and we should use that GCC type for this one. The front end guarantees that the component list is shared. */ if (Present (Cloned_Subtype (gnat_entity))) { gnu_decl = gnat_to_gnu_entity (Cloned_Subtype (gnat_entity), NULL_TREE, 0); maybe_present = 1; } /* Otherwise, first ensure the base type is elaborated. Then, if we are changing the type, make a new type with each field having the type of the field in the new subtype but having the position computed by transforming every discriminant reference according to the constraints. We don't see any difference between private and nonprivate type here since derivations from types should have been deferred until the completion of the private type. */ else { Entity_Id gnat_base_type = Implementation_Base_Type (gnat_entity); tree gnu_base_type; tree gnu_orig_type; if (! definition) defer_incomplete_level++, this_deferred = 1; /* Get the base type initially for its alignment and sizes. But if it is a padded type, we do all the other work with the unpadded type. */ gnu_type = gnu_orig_type = gnu_base_type = gnat_to_gnu_type (gnat_base_type); if (TREE_CODE (gnu_type) == RECORD_TYPE && TYPE_IS_PADDING_P (gnu_type)) gnu_type = gnu_orig_type = TREE_TYPE (TYPE_FIELDS (gnu_type)); if (present_gnu_tree (gnat_entity)) { maybe_present = 1; break; } /* When the type has discriminants, and these discriminants affect the shape of what it built, factor them in. If we are making a subtype of an Unchecked_Union (must be an Itype), just return the type. We can't just use Is_Constrained because private subtypes without discriminants of full types with discriminants with default expressions are Is_Constrained but aren't constrained! */ if (IN (Ekind (gnat_base_type), Record_Kind) && ! Is_For_Access_Subtype (gnat_entity) && ! Is_Unchecked_Union (gnat_base_type) && Is_Constrained (gnat_entity) && Stored_Constraint (gnat_entity) != No_Elist && Present (Discriminant_Constraint (gnat_entity))) { Entity_Id gnat_field; Entity_Id gnat_root_type; tree gnu_field_list = 0; tree gnu_pos_list = compute_field_positions (gnu_orig_type, NULL_TREE, size_zero_node, bitsize_zero_node, BIGGEST_ALIGNMENT); tree gnu_subst_list = substitution_list (gnat_entity, gnat_base_type, NULL_TREE, definition); tree gnu_temp; /* If this is a derived type, we may be seeing fields from any original records, so add those positions and discriminant substitutions to our lists. */ for (gnat_root_type = gnat_base_type; Underlying_Type (Etype (gnat_root_type)) != gnat_root_type; gnat_root_type = Underlying_Type (Etype (gnat_root_type))) { gnu_pos_list = compute_field_positions (gnat_to_gnu_type (Etype (gnat_root_type)), gnu_pos_list, size_zero_node, bitsize_zero_node, BIGGEST_ALIGNMENT); if (Present (Parent_Subtype (gnat_root_type))) gnu_subst_list = substitution_list (Parent_Subtype (gnat_root_type), Empty, gnu_subst_list, definition); } gnu_type = make_node (RECORD_TYPE); TYPE_NAME (gnu_type) = gnu_entity_id; TYPE_STUB_DECL (gnu_type) = pushdecl (build_decl (TYPE_DECL, NULL_TREE, gnu_type)); TYPE_ALIGN (gnu_type) = TYPE_ALIGN (gnu_base_type); for (gnat_field = First_Entity (gnat_entity); Present (gnat_field); gnat_field = Next_Entity (gnat_field)) if (Ekind (gnat_field) == E_Component || Ekind (gnat_field) == E_Discriminant) { tree gnu_old_field = gnat_to_gnu_entity (Original_Record_Component (gnat_field), NULL_TREE, 0); tree gnu_offset = TREE_VALUE (purpose_member (gnu_old_field, gnu_pos_list)); tree gnu_pos = TREE_PURPOSE (gnu_offset); tree gnu_bitpos = TREE_VALUE (TREE_VALUE (gnu_offset)); tree gnu_field_type = gnat_to_gnu_type (Etype (gnat_field)); tree gnu_size = TYPE_SIZE (gnu_field_type); tree gnu_new_pos = 0; unsigned int offset_align = tree_low_cst (TREE_PURPOSE (TREE_VALUE (gnu_offset)), 1); tree gnu_field; /* If there was a component clause, the field types must be the same for the type and subtype, so copy the data from the old field to avoid recomputation here. */ if (Present (Component_Clause (Original_Record_Component (gnat_field)))) { gnu_size = DECL_SIZE (gnu_old_field); gnu_field_type = TREE_TYPE (gnu_old_field); } /* If this was a bitfield, get the size from the old field. Also ensure the type can be placed into a bitfield. */ else if (DECL_BIT_FIELD (gnu_old_field)) { gnu_size = DECL_SIZE (gnu_old_field); if (TYPE_MODE (gnu_field_type) == BLKmode && TREE_CODE (gnu_field_type) == RECORD_TYPE && host_integerp (TYPE_SIZE (gnu_field_type), 1)) gnu_field_type = make_packable_type (gnu_field_type); } if (CONTAINS_PLACEHOLDER_P (gnu_pos)) for (gnu_temp = gnu_subst_list; gnu_temp; gnu_temp = TREE_CHAIN (gnu_temp)) gnu_pos = substitute_in_expr (gnu_pos, TREE_PURPOSE (gnu_temp), TREE_VALUE (gnu_temp)); /* If the size is now a constant, we can set it as the size of the field when we make it. Otherwise, we need to deal with it specially. */ if (TREE_CONSTANT (gnu_pos)) gnu_new_pos = bit_from_pos (gnu_pos, gnu_bitpos); gnu_field = create_field_decl (DECL_NAME (gnu_old_field), gnu_field_type, gnu_type, 0, gnu_size, gnu_new_pos, ! DECL_NONADDRESSABLE_P (gnu_old_field)); if (! TREE_CONSTANT (gnu_pos)) { normalize_offset (&gnu_pos, &gnu_bitpos, offset_align); DECL_FIELD_OFFSET (gnu_field) = gnu_pos; DECL_FIELD_BIT_OFFSET (gnu_field) = gnu_bitpos; SET_DECL_OFFSET_ALIGN (gnu_field, offset_align); DECL_SIZE (gnu_field) = gnu_size; DECL_SIZE_UNIT (gnu_field) = convert (sizetype, size_binop (CEIL_DIV_EXPR, gnu_size, bitsize_unit_node)); layout_decl (gnu_field, DECL_OFFSET_ALIGN (gnu_field)); } DECL_INTERNAL_P (gnu_field) = DECL_INTERNAL_P (gnu_old_field); SET_DECL_ORIGINAL_FIELD (gnu_field, (DECL_ORIGINAL_FIELD (gnu_old_field) != 0 ? DECL_ORIGINAL_FIELD (gnu_old_field) : gnu_old_field)); DECL_DISCRIMINANT_NUMBER (gnu_field) = DECL_DISCRIMINANT_NUMBER (gnu_old_field); TREE_THIS_VOLATILE (gnu_field) = TREE_THIS_VOLATILE (gnu_old_field); TREE_CHAIN (gnu_field) = gnu_field_list; gnu_field_list = gnu_field; save_gnu_tree (gnat_field, gnu_field, 0); } finish_record_type (gnu_type, nreverse (gnu_field_list), 1, 0); /* Now set the size, alignment and alias set of the new type to match that of the old one, doing any substitutions, as above. */ TYPE_ALIGN (gnu_type) = TYPE_ALIGN (gnu_base_type); TYPE_SIZE (gnu_type) = TYPE_SIZE (gnu_base_type); TYPE_SIZE_UNIT (gnu_type) = TYPE_SIZE_UNIT (gnu_base_type); SET_TYPE_ADA_SIZE (gnu_type, TYPE_ADA_SIZE (gnu_base_type)); copy_alias_set (gnu_type, gnu_base_type); if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_type))) for (gnu_temp = gnu_subst_list; gnu_temp; gnu_temp = TREE_CHAIN (gnu_temp)) TYPE_SIZE (gnu_type) = substitute_in_expr (TYPE_SIZE (gnu_type), TREE_PURPOSE (gnu_temp), TREE_VALUE (gnu_temp)); if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (gnu_type))) for (gnu_temp = gnu_subst_list; gnu_temp; gnu_temp = TREE_CHAIN (gnu_temp)) TYPE_SIZE_UNIT (gnu_type) = substitute_in_expr (TYPE_SIZE_UNIT (gnu_type), TREE_PURPOSE (gnu_temp), TREE_VALUE (gnu_temp)); if (TYPE_ADA_SIZE (gnu_type) != 0 && CONTAINS_PLACEHOLDER_P (TYPE_ADA_SIZE (gnu_type))) for (gnu_temp = gnu_subst_list; gnu_temp; gnu_temp = TREE_CHAIN (gnu_temp)) SET_TYPE_ADA_SIZE (gnu_type, substitute_in_expr (TYPE_ADA_SIZE (gnu_type), TREE_PURPOSE (gnu_temp), TREE_VALUE (gnu_temp))); /* Recompute the mode of this record type now that we know its actual size. */ compute_record_mode (gnu_type); /* Fill in locations of fields. */ annotate_rep (gnat_entity, gnu_type); } /* If we've made a new type, record it and make an XVS type to show what this is a subtype of. Some debuggers require the XVS type to be output first, so do it in that order. */ if (gnu_type != gnu_orig_type) { if (debug_info_p) { tree gnu_subtype_marker = make_node (RECORD_TYPE); tree gnu_orig_name = TYPE_NAME (gnu_orig_type); if (TREE_CODE (gnu_orig_name) == TYPE_DECL) gnu_orig_name = DECL_NAME (gnu_orig_name); TYPE_NAME (gnu_subtype_marker) = create_concat_name (gnat_entity, "XVS"); finish_record_type (gnu_subtype_marker, create_field_decl (gnu_orig_name, integer_type_node, gnu_subtype_marker, 0, NULL_TREE, NULL_TREE, 0), 0, 0); } TYPE_VOLATILE (gnu_type) = Treat_As_Volatile (gnat_entity); TYPE_NAME (gnu_type) = gnu_entity_id; TYPE_STUB_DECL (gnu_type) = pushdecl (build_decl (TYPE_DECL, TYPE_NAME (gnu_type), gnu_type)); DECL_ARTIFICIAL (TYPE_STUB_DECL (gnu_type)) = 1; DECL_IGNORED_P (TYPE_STUB_DECL (gnu_type)) = ! debug_info_p; rest_of_type_compilation (gnu_type, global_bindings_p ()); } /* Otherwise, go down all the components in the new type and make them equivalent to those in the base type. */ else for (gnat_temp = First_Entity (gnat_entity); Present (gnat_temp); gnat_temp = Next_Entity (gnat_temp)) if ((Ekind (gnat_temp) == E_Discriminant && ! Is_Unchecked_Union (gnat_base_type)) || Ekind (gnat_temp) == E_Component) save_gnu_tree (gnat_temp, get_gnu_tree (Original_Record_Component (gnat_temp)), 0); } break; case E_Access_Subprogram_Type: /* If we are not defining this entity, and we have incomplete entities being processed above us, make a dummy type and fill it in later. */ if (! definition && defer_incomplete_level != 0) { struct incomplete *p = (struct incomplete *) xmalloc (sizeof (struct incomplete)); gnu_type = build_pointer_type (make_dummy_type (Directly_Designated_Type (gnat_entity))); gnu_decl = create_type_decl (gnu_entity_id, gnu_type, attr_list, ! Comes_From_Source (gnat_entity), debug_info_p); save_gnu_tree (gnat_entity, gnu_decl, 0); this_made_decl = saved = 1; p->old_type = TREE_TYPE (gnu_type); p->full_type = Directly_Designated_Type (gnat_entity); p->next = defer_incomplete_list; defer_incomplete_list = p; break; } /* ... fall through ... */ case E_Allocator_Type: case E_Access_Type: case E_Access_Attribute_Type: case E_Anonymous_Access_Type: case E_General_Access_Type: { Entity_Id gnat_desig_type = Directly_Designated_Type (gnat_entity); Entity_Id gnat_desig_full = ((IN (Ekind (Etype (gnat_desig_type)), Incomplete_Or_Private_Kind)) ? Full_View (gnat_desig_type) : 0); /* We want to know if we'll be seeing the freeze node for any incomplete type we may be pointing to. */ int in_main_unit = (Present (gnat_desig_full) ? In_Extended_Main_Code_Unit (gnat_desig_full) : In_Extended_Main_Code_Unit (gnat_desig_type)); int got_fat_p = 0; int made_dummy = 0; tree gnu_desig_type = 0; enum machine_mode p_mode = mode_for_size (esize, MODE_INT, 0); if (!targetm.valid_pointer_mode (p_mode)) p_mode = ptr_mode; if (No (gnat_desig_full) && (Ekind (gnat_desig_type) == E_Class_Wide_Type || (Ekind (gnat_desig_type) == E_Class_Wide_Subtype && Present (Equivalent_Type (gnat_desig_type))))) { if (Present (Equivalent_Type (gnat_desig_type))) { gnat_desig_full = Equivalent_Type (gnat_desig_type); if (IN (Ekind (gnat_desig_full), Incomplete_Or_Private_Kind)) gnat_desig_full = Full_View (gnat_desig_full); } else if (IN (Ekind (Root_Type (gnat_desig_type)), Incomplete_Or_Private_Kind)) gnat_desig_full = Full_View (Root_Type (gnat_desig_type)); } if (Present (gnat_desig_full) && Is_Concurrent_Type (gnat_desig_full)) gnat_desig_full = Corresponding_Record_Type (gnat_desig_full); /* If either the designated type or its full view is an unconstrained array subtype, replace it with the type it's a subtype of. This avoids problems with multiple copies of unconstrained array types. */ if (Ekind (gnat_desig_type) == E_Array_Subtype && ! Is_Constrained (gnat_desig_type)) gnat_desig_type = Etype (gnat_desig_type); if (Present (gnat_desig_full) && Ekind (gnat_desig_full) == E_Array_Subtype && ! Is_Constrained (gnat_desig_full)) gnat_desig_full = Etype (gnat_desig_full); /* If the designated type is a subtype of an incomplete record type, use the parent type to avoid order of elaboration issues. This can lose some code efficiency, but there is no alternative. */ if (Present (gnat_desig_full) && Ekind (gnat_desig_full) == E_Record_Subtype && Ekind (Etype (gnat_desig_full)) == E_Record_Type) gnat_desig_full = Etype (gnat_desig_full); /* If we are pointing to an incomplete type whose completion is an unconstrained array, make a fat pointer type instead of a pointer to VOID. The two types in our fields will be pointers to VOID and will be replaced in update_pointer_to. Similiarly, if the type itself is a dummy type or an unconstrained array. Also make a dummy TYPE_OBJECT_RECORD_TYPE in case we have any thin pointers to it. */ if ((Present (gnat_desig_full) && Is_Array_Type (gnat_desig_full) && ! Is_Constrained (gnat_desig_full)) || (present_gnu_tree (gnat_desig_type) && TYPE_IS_DUMMY_P (TREE_TYPE (get_gnu_tree (gnat_desig_type))) && Is_Array_Type (gnat_desig_type) && ! Is_Constrained (gnat_desig_type)) || (present_gnu_tree (gnat_desig_type) && (TREE_CODE (TREE_TYPE (get_gnu_tree (gnat_desig_type))) == UNCONSTRAINED_ARRAY_TYPE) && (TYPE_POINTER_TO (TREE_TYPE (get_gnu_tree (gnat_desig_type))) == 0)) || (No (gnat_desig_full) && ! in_main_unit && defer_incomplete_level != 0 && ! present_gnu_tree (gnat_desig_type) && Is_Array_Type (gnat_desig_type) && ! Is_Constrained (gnat_desig_type))) { tree gnu_old = (present_gnu_tree (gnat_desig_type) ? gnat_to_gnu_type (gnat_desig_type) : make_dummy_type (gnat_desig_type)); tree fields; /* Show the dummy we get will be a fat pointer. */ got_fat_p = made_dummy = 1; /* If the call above got something that has a pointer, that pointer is our type. This could have happened either because the type was elaborated or because somebody else executed the code below. */ gnu_type = TYPE_POINTER_TO (gnu_old); if (gnu_type == 0) { gnu_type = make_node (RECORD_TYPE); SET_TYPE_UNCONSTRAINED_ARRAY (gnu_type, gnu_old); TYPE_POINTER_TO (gnu_old) = gnu_type; set_lineno (gnat_entity, 0); fields = chainon (chainon (NULL_TREE, create_field_decl (get_identifier ("P_ARRAY"), ptr_void_type_node, gnu_type, 0, 0, 0, 0)), create_field_decl (get_identifier ("P_BOUNDS"), ptr_void_type_node, gnu_type, 0, 0, 0, 0)); /* Make sure we can place this into a register. */ TYPE_ALIGN (gnu_type) = MIN (BIGGEST_ALIGNMENT, 2 * POINTER_SIZE); TYPE_IS_FAT_POINTER_P (gnu_type) = 1; finish_record_type (gnu_type, fields, 0, 1); TYPE_OBJECT_RECORD_TYPE (gnu_old) = make_node (RECORD_TYPE); TYPE_NAME (TYPE_OBJECT_RECORD_TYPE (gnu_old)) = concat_id_with_name (get_entity_name (gnat_desig_type), "XUT"); TYPE_DUMMY_P (TYPE_OBJECT_RECORD_TYPE (gnu_old)) = 1; } } /* If we already know what the full type is, use it. */ else if (Present (gnat_desig_full) && present_gnu_tree (gnat_desig_full)) gnu_desig_type = TREE_TYPE (get_gnu_tree (gnat_desig_full)); /* Get the type of the thing we are to point to and build a pointer to it. If it is a reference to an incomplete or private type with a full view that is a record, make a dummy type node and get the actual type later when we have verified it is safe. */ else if (! in_main_unit && ! present_gnu_tree (gnat_desig_type) && Present (gnat_desig_full) && ! present_gnu_tree (gnat_desig_full) && Is_Record_Type (gnat_desig_full)) { gnu_desig_type = make_dummy_type (gnat_desig_type); made_dummy = 1; } /* Likewise if we are pointing to a record or array and we are to defer elaborating incomplete types. We do this since this access type may be the full view of some private type. Note that the unconstrained array case is handled above. */ else if ((! in_main_unit || imported_p) && defer_incomplete_level != 0 && ! present_gnu_tree (gnat_desig_type) && ((Is_Record_Type (gnat_desig_type) || Is_Array_Type (gnat_desig_type)) || (Present (gnat_desig_full) && (Is_Record_Type (gnat_desig_full) || Is_Array_Type (gnat_desig_full))))) { gnu_desig_type = make_dummy_type (gnat_desig_type); made_dummy = 1; } else if (gnat_desig_type == gnat_entity) { gnu_type = build_pointer_type_for_mode (make_node (VOID_TYPE), p_mode, No_Strict_Aliasing (gnat_entity)); TREE_TYPE (gnu_type) = TYPE_POINTER_TO (gnu_type) = gnu_type; } else gnu_desig_type = gnat_to_gnu_type (gnat_desig_type); /* It is possible that the above call to gnat_to_gnu_type resolved our type. If so, just return it. */ if (present_gnu_tree (gnat_entity)) { maybe_present = 1; break; } /* If we have a GCC type for the designated type, possibly modify it if we are pointing only to constant objects and then make a pointer to it. Don't do this for unconstrained arrays. */ if (gnu_type == 0 && gnu_desig_type != 0) { if (Is_Access_Constant (gnat_entity) && TREE_CODE (gnu_desig_type) != UNCONSTRAINED_ARRAY_TYPE) { gnu_desig_type = build_qualified_type (gnu_desig_type, TYPE_QUALS (gnu_desig_type) | TYPE_QUAL_CONST); /* Some extra processing is required if we are building a pointer to an incomplete type (in the GCC sense). We might have such a type if we just made a dummy, or directly out of the call to gnat_to_gnu_type above if we are processing an access type for a record component designating the record type itself. */ if (! COMPLETE_TYPE_P (gnu_desig_type)) { /* We must ensure that the pointer to variant we make will be processed by update_pointer_to when the initial type is completed. Pretend we made a dummy and let further processing act as usual. */ made_dummy = 1; /* We must ensure that update_pointer_to will not retrieve the dummy variant when building a properly qualified version of the complete type. We take advantage of the fact that get_qualified_type is requiring TYPE_NAMEs to match to influence build_qualified_type and then also update_pointer_to here. */ TYPE_NAME (gnu_desig_type) = create_concat_name (gnat_desig_type, "INCOMPLETE_CST"); } } gnu_type = build_pointer_type_for_mode (gnu_desig_type, p_mode, No_Strict_Aliasing (gnat_entity)); } /* If we are not defining this object and we made a dummy pointer, save our current definition, evaluate the actual type, and replace the tentative type we made with the actual one. If we are to defer actually looking up the actual type, make an entry in the deferred list. */ if (! in_main_unit && made_dummy) { tree gnu_old_type = TYPE_FAT_POINTER_P (gnu_type) ? TYPE_UNCONSTRAINED_ARRAY (gnu_type) : TREE_TYPE (gnu_type); if (esize == POINTER_SIZE && (got_fat_p || TYPE_FAT_POINTER_P (gnu_type))) gnu_type = build_pointer_type (TYPE_OBJECT_RECORD_TYPE (TYPE_UNCONSTRAINED_ARRAY (gnu_type))); gnu_decl = create_type_decl (gnu_entity_id, gnu_type, attr_list, ! Comes_From_Source (gnat_entity), debug_info_p); save_gnu_tree (gnat_entity, gnu_decl, 0); this_made_decl = saved = 1; if (defer_incomplete_level == 0) { update_pointer_to (TYPE_MAIN_VARIANT (gnu_old_type), gnat_to_gnu_type (gnat_desig_type)); /* Note that the call to gnat_to_gnu_type here might have updated gnu_old_type directly, in which case it is not a dummy type any more when we get into update_pointer_to. This may happen for instance when the designated type is a record type, because their elaboration starts with an initial node from make_dummy_type, which may yield the same node as the one we got. Besides, variants of this non-dummy type might have been created along the way. update_pointer_to is expected to properly take care of those situations. */ } else { struct incomplete *p = (struct incomplete *) xmalloc (sizeof (struct incomplete)); p->old_type = gnu_old_type; p->full_type = gnat_desig_type; p->next = defer_incomplete_list; defer_incomplete_list = p; } } } break; case E_Access_Protected_Subprogram_Type: if (type_annotate_only && No (Equivalent_Type (gnat_entity))) gnu_type = build_pointer_type (void_type_node); else /* The runtime representation is the equivalent type. */ gnu_type = gnat_to_gnu_type (Equivalent_Type (gnat_entity)); if (Is_Itype (Directly_Designated_Type (gnat_entity)) && ! present_gnu_tree (Directly_Designated_Type (gnat_entity)) && No (Freeze_Node (Directly_Designated_Type (gnat_entity))) && ! Is_Record_Type (Scope (Directly_Designated_Type (gnat_entity)))) gnat_to_gnu_entity (Directly_Designated_Type (gnat_entity), NULL_TREE, 0); break; case E_Access_Subtype: /* We treat this as identical to its base type; any constraint is meaningful only to the front end. The designated type must be elaborated as well, if it does not have its own freeze node. Designated (sub)types created for constrained components of records with discriminants are not frozen by the front end and thus not elaborated by gigi, because their use may appear before the base type is frozen, and because it is not clear that they are needed anywhere in Gigi. With the current model, there is no correct place where they could be elaborated. */ gnu_type = gnat_to_gnu_type (Etype (gnat_entity)); if (Is_Itype (Directly_Designated_Type (gnat_entity)) && ! present_gnu_tree (Directly_Designated_Type (gnat_entity)) && Is_Frozen (Directly_Designated_Type (gnat_entity)) && No (Freeze_Node (Directly_Designated_Type (gnat_entity)))) { /* If we are not defining this entity, and we have incomplete entities being processed above us, make a dummy type and elaborate it later. */ if (! definition && defer_incomplete_level != 0) { struct incomplete *p = (struct incomplete *) xmalloc (sizeof (struct incomplete)); tree gnu_ptr_type = build_pointer_type (make_dummy_type (Directly_Designated_Type (gnat_entity))); p->old_type = TREE_TYPE (gnu_ptr_type); p->full_type = Directly_Designated_Type (gnat_entity); p->next = defer_incomplete_list; defer_incomplete_list = p; } else if (IN (Ekind (Base_Type (Directly_Designated_Type (gnat_entity))), Incomplete_Or_Private_Kind)) { ;} else gnat_to_gnu_entity (Directly_Designated_Type (gnat_entity), NULL_TREE, 0); } maybe_present = 1; break; /* Subprogram Entities The following access functions are defined for subprograms (functions or procedures): First_Formal The first formal parameter. Is_Imported Indicates that the subprogram has appeared in an INTERFACE or IMPORT pragma. For now we assume that the external language is C. Is_Inlined True if the subprogram is to be inlined. In addition for function subprograms we have: Etype Return type of the function. Each parameter is first checked by calling must_pass_by_ref on its type to determine if it is passed by reference. For parameters which are copied in, if they are Ada IN OUT or OUT parameters, their return value becomes part of a record which becomes the return type of the function (C function - note that this applies only to Ada procedures so there is no Ada return type). Additional code to store back the parameters will be generated on the caller side. This transformation is done here, not in the front-end. The intended result of the transformation can be seen from the equivalent source rewritings that follow: struct temp {int a,b}; procedure P (A,B: IN OUT ...) is temp P (int A,B) { .. .. end P; return {A,B}; } procedure call { temp t; P(X,Y); t = P(X,Y); X = t.a , Y = t.b; } For subprogram types we need to perform mainly the same conversions to GCC form that are needed for procedures and function declarations. The only difference is that at the end, we make a type declaration instead of a function declaration. */ case E_Subprogram_Type: case E_Function: case E_Procedure: { /* The first GCC parameter declaration (a PARM_DECL node). The PARM_DECL nodes are chained through the TREE_CHAIN field, so this actually is the head of this parameter list. */ tree gnu_param_list = NULL_TREE; /* The type returned by a function. If the subprogram is a procedure this type should be void_type_node. */ tree gnu_return_type = void_type_node; /* List of fields in return type of procedure with copy in copy out parameters. */ tree gnu_field_list = NULL_TREE; /* Non-null for subprograms containing parameters passed by copy in copy out (Ada IN OUT or OUT parameters not passed by reference), in which case it is the list of nodes used to specify the values of the in out/out parameters that are returned as a record upon procedure return. The TREE_PURPOSE of an element of this list is a field of the record and the TREE_VALUE is the PARM_DECL corresponding to that field. This list will be saved in the TYPE_CI_CO_LIST field of the FUNCTION_TYPE node we create. */ tree gnu_return_list = NULL_TREE; Entity_Id gnat_param; int inline_flag = Is_Inlined (gnat_entity); int public_flag = Is_Public (gnat_entity); int extern_flag = (Is_Public (gnat_entity) && !definition) || imported_p; int pure_flag = Is_Pure (gnat_entity); int volatile_flag = No_Return (gnat_entity); int returns_by_ref = 0; int returns_unconstrained = 0; tree gnu_ext_name = create_concat_name (gnat_entity, 0); int has_copy_in_out = 0; int parmnum; if (kind == E_Subprogram_Type && ! definition) /* A parameter may refer to this type, so defer completion of any incomplete types. */ defer_incomplete_level++, this_deferred = 1; /* If the subprogram has an alias, it is probably inherited, so we can use the original one. If the original "subprogram" is actually an enumeration literal, it may be the first use of its type, so we must elaborate that type now. */ if (Present (Alias (gnat_entity))) { if (Ekind (Alias (gnat_entity)) == E_Enumeration_Literal) gnat_to_gnu_entity (Etype (Alias (gnat_entity)), NULL_TREE, 0); gnu_decl = gnat_to_gnu_entity (Alias (gnat_entity), gnu_expr, 0); /* Elaborate any Itypes in the parameters of this entity. */ for (gnat_temp = First_Formal (gnat_entity); Present (gnat_temp); gnat_temp = Next_Formal_With_Extras (gnat_temp)) if (Is_Itype (Etype (gnat_temp))) gnat_to_gnu_entity (Etype (gnat_temp), NULL_TREE, 0); break; } if (kind == E_Function || kind == E_Subprogram_Type) gnu_return_type = gnat_to_gnu_type (Etype (gnat_entity)); /* If this function returns by reference, make the actual return type of this function the pointer and mark the decl. */ if (Returns_By_Ref (gnat_entity)) { returns_by_ref = 1; gnu_return_type = build_pointer_type (gnu_return_type); } /* If the Mechanism is By_Reference, ensure the return type uses the machine's by-reference mechanism, which may not the same as above (e.g., it might be by passing a fake parameter). */ else if (kind == E_Function && Mechanism (gnat_entity) == By_Reference) { gnu_return_type = copy_type (gnu_return_type); TREE_ADDRESSABLE (gnu_return_type) = 1; } /* If we are supposed to return an unconstrained array, actually return a fat pointer and make a note of that. Return a pointer to an unconstrained record of variable size. */ else if (TREE_CODE (gnu_return_type) == UNCONSTRAINED_ARRAY_TYPE) { gnu_return_type = TREE_TYPE (gnu_return_type); returns_unconstrained = 1; } /* If the type requires a transient scope, the result is allocated on the secondary stack, so the result type of the function is just a pointer. */ else if (Requires_Transient_Scope (Etype (gnat_entity))) { gnu_return_type = build_pointer_type (gnu_return_type); returns_unconstrained = 1; } /* If the type is a padded type and the underlying type would not be passed by reference or this function has a foreign convention, return the underlying type. */ else if (TREE_CODE (gnu_return_type) == RECORD_TYPE && TYPE_IS_PADDING_P (gnu_return_type) && (! default_pass_by_ref (TREE_TYPE (TYPE_FIELDS (gnu_return_type))) || Has_Foreign_Convention (gnat_entity))) gnu_return_type = TREE_TYPE (TYPE_FIELDS (gnu_return_type)); /* Look at all our parameters and get the type of each. While doing this, build a copy-out structure if we need one. */ /* If the return type has a size that overflows, we cannot have a function that returns that type. This usage doesn't make sense anyway, so give an error here. */ if (TYPE_SIZE_UNIT (gnu_return_type) && TREE_OVERFLOW (TYPE_SIZE_UNIT (gnu_return_type))) { post_error ("cannot return type whose size overflows", gnat_entity); gnu_return_type = copy_node (gnu_return_type); TYPE_SIZE (gnu_return_type) = bitsize_zero_node; TYPE_SIZE_UNIT (gnu_return_type) = size_zero_node; TYPE_MAIN_VARIANT (gnu_return_type) = gnu_return_type; TYPE_NEXT_VARIANT (gnu_return_type) = 0; } for (gnat_param = First_Formal (gnat_entity), parmnum = 0; Present (gnat_param); gnat_param = Next_Formal_With_Extras (gnat_param), parmnum++) { tree gnu_param_name = get_entity_name (gnat_param); tree gnu_param_type = gnat_to_gnu_type (Etype (gnat_param)); tree gnu_param, gnu_field; int by_ref_p = 0; int by_descr_p = 0; int by_component_ptr_p = 0; int copy_in_copy_out_flag = 0; int req_by_copy = 0, req_by_ref = 0; /* See if a Mechanism was supplied that forced this parameter to be passed one way or another. */ if (Is_Valued_Procedure (gnat_entity) && parmnum == 0) req_by_copy = 1; else if (Mechanism (gnat_param) == Default) ; else if (Mechanism (gnat_param) == By_Copy) req_by_copy = 1; else if (Mechanism (gnat_param) == By_Reference) req_by_ref = 1; else if (Mechanism (gnat_param) <= By_Descriptor) by_descr_p = 1; else if (Mechanism (gnat_param) > 0) { if (TREE_CODE (gnu_param_type) == UNCONSTRAINED_ARRAY_TYPE || TREE_CODE (TYPE_SIZE (gnu_param_type)) != INTEGER_CST || 0 < compare_tree_int (TYPE_SIZE (gnu_param_type), Mechanism (gnat_param))) req_by_ref = 1; else req_by_copy = 1; } else post_error ("unsupported mechanism for&", gnat_param); /* If this is either a foreign function or if the underlying type won't be passed by refererence, strip off possible padding type. */ if (TREE_CODE (gnu_param_type) == RECORD_TYPE && TYPE_IS_PADDING_P (gnu_param_type) && (req_by_ref || Has_Foreign_Convention (gnat_entity) || ! must_pass_by_ref (TREE_TYPE (TYPE_FIELDS (gnu_param_type))))) gnu_param_type = TREE_TYPE (TYPE_FIELDS (gnu_param_type)); /* If this is an IN parameter it is read-only, so make a variant of the type that is read-only. ??? However, if this is an unconstrained array, that type can be very complex. So skip it for now. Likewise for any other self-referential type. */ if (Ekind (gnat_param) == E_In_Parameter && TREE_CODE (gnu_param_type) != UNCONSTRAINED_ARRAY_TYPE && ! (TYPE_SIZE (gnu_param_type) != 0 && CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_param_type)))) gnu_param_type = build_qualified_type (gnu_param_type, (TYPE_QUALS (gnu_param_type) | TYPE_QUAL_CONST)); /* For foreign conventions, pass arrays as a pointer to the underlying type. First check for unconstrained array and get the underlying array. Then get the component type and build a pointer to it. */ if (Has_Foreign_Convention (gnat_entity) && TREE_CODE (gnu_param_type) == UNCONSTRAINED_ARRAY_TYPE) gnu_param_type = TREE_TYPE (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (gnu_param_type)))); if (by_descr_p) gnu_param_type = build_pointer_type (build_vms_descriptor (gnu_param_type, Mechanism (gnat_param), gnat_entity)); else if (Has_Foreign_Convention (gnat_entity) && ! req_by_copy && TREE_CODE (gnu_param_type) == ARRAY_TYPE) { /* Strip off any multi-dimensional entries, then strip off the last array to get the component type. */ while (TREE_CODE (TREE_TYPE (gnu_param_type)) == ARRAY_TYPE && TYPE_MULTI_ARRAY_P (TREE_TYPE (gnu_param_type))) gnu_param_type = TREE_TYPE (gnu_param_type); by_component_ptr_p = 1; gnu_param_type = TREE_TYPE (gnu_param_type); if (Ekind (gnat_param) == E_In_Parameter) gnu_param_type = build_qualified_type (gnu_param_type, (TYPE_QUALS (gnu_param_type) | TYPE_QUAL_CONST)); gnu_param_type = build_pointer_type (gnu_param_type); } /* Fat pointers are passed as thin pointers for foreign conventions. */ else if (Has_Foreign_Convention (gnat_entity) && TYPE_FAT_POINTER_P (gnu_param_type)) gnu_param_type = make_type_from_size (gnu_param_type, size_int (POINTER_SIZE), 0); /* If we must pass or were requested to pass by reference, do so. If we were requested to pass by copy, do so. Otherwise, for foreign conventions, pass all in out parameters or aggregates by reference. For COBOL and Fortran, pass all integer and FP types that way too. For Convention Ada, use the standard Ada default. */ else if (must_pass_by_ref (gnu_param_type) || req_by_ref || (! req_by_copy && ((Has_Foreign_Convention (gnat_entity) && (Ekind (gnat_param) != E_In_Parameter || AGGREGATE_TYPE_P (gnu_param_type))) || (((Convention (gnat_entity) == Convention_Fortran) || (Convention (gnat_entity) == Convention_COBOL)) && (INTEGRAL_TYPE_P (gnu_param_type) || FLOAT_TYPE_P (gnu_param_type))) /* For convention Ada, see if we pass by reference by default. */ || (! Has_Foreign_Convention (gnat_entity) && default_pass_by_ref (gnu_param_type))))) { gnu_param_type = build_reference_type (gnu_param_type); by_ref_p = 1; } else if (Ekind (gnat_param) != E_In_Parameter) copy_in_copy_out_flag = 1; if (req_by_copy && (by_ref_p || by_component_ptr_p)) post_error ("?cannot pass & by copy", gnat_param); /* If this is an OUT parameter that isn't passed by reference and isn't a pointer or aggregate, we don't make a PARM_DECL for it. Instead, it will be a VAR_DECL created when we process the procedure. For the special parameter of Valued_Procedure, never pass it in. An exception is made to cover the RM-6.4.1 rule requiring "by copy" out parameters with discriminants or implicit initial values to be handled like in out parameters. These type are normally built as aggregates, and hence passed by reference, except for some packed arrays which end up encoded in special integer types. The exception we need to make is then for packed arrays of records with discriminants or implicit initial values. We have no light/easy way to check for the latter case, so we merely check for packed arrays of records. This may lead to useless copy-in operations, but in very rare cases only, as these would be exceptions in a set of already exceptional situations. */ if (Ekind (gnat_param) == E_Out_Parameter && ! by_ref_p && ((Is_Valued_Procedure (gnat_entity) && parmnum == 0) || (! by_descr_p && ! POINTER_TYPE_P (gnu_param_type) && ! AGGREGATE_TYPE_P (gnu_param_type))) && ! (Is_Array_Type (Etype (gnat_param)) && Is_Packed (Etype (gnat_param)) && Is_Composite_Type (Component_Type (Etype (gnat_param))))) gnu_param = 0; else { set_lineno (gnat_param, 0); gnu_param = create_param_decl (gnu_param_name, gnu_param_type, by_ref_p || by_component_ptr_p || Ekind (gnat_param) == E_In_Parameter); DECL_BY_REF_P (gnu_param) = by_ref_p; DECL_BY_COMPONENT_PTR_P (gnu_param) = by_component_ptr_p; DECL_BY_DESCRIPTOR_P (gnu_param) = by_descr_p; DECL_POINTS_TO_READONLY_P (gnu_param) = (Ekind (gnat_param) == E_In_Parameter && (by_ref_p || by_component_ptr_p)); save_gnu_tree (gnat_param, gnu_param, 0); gnu_param_list = chainon (gnu_param, gnu_param_list); /* If a parameter is a pointer, this function may modify memory through it and thus shouldn't be considered a pure function. Also, the memory may be modified between two calls, so they can't be CSE'ed. The latter case also handles by-ref parameters. */ if (POINTER_TYPE_P (gnu_param_type) || TYPE_FAT_POINTER_P (gnu_param_type)) pure_flag = 0; } if (copy_in_copy_out_flag) { if (! has_copy_in_out) { if (TREE_CODE (gnu_return_type) != VOID_TYPE) gigi_abort (111); gnu_return_type = make_node (RECORD_TYPE); TYPE_NAME (gnu_return_type) = get_identifier ("RETURN"); has_copy_in_out = 1; } set_lineno (gnat_param, 0); gnu_field = create_field_decl (gnu_param_name, gnu_param_type, gnu_return_type, 0, 0, 0, 0); TREE_CHAIN (gnu_field) = gnu_field_list; gnu_field_list = gnu_field; gnu_return_list = tree_cons (gnu_field, gnu_param, gnu_return_list); } } /* Do not compute record for out parameters if subprogram is stubbed since structures are incomplete for the back-end. */ if (gnu_field_list != 0 && Convention (gnat_entity) != Convention_Stubbed) finish_record_type (gnu_return_type, nreverse (gnu_field_list), 0, 0); /* If we have a CICO list but it has only one entry, we convert this function into a function that simply returns that one object. */ if (list_length (gnu_return_list) == 1) gnu_return_type = TREE_TYPE (TREE_PURPOSE (gnu_return_list)); #ifdef _WIN32 if (Convention (gnat_entity) == Convention_Stdcall) { struct attrib *attr = (struct attrib *) xmalloc (sizeof (struct attrib)); attr->next = attr_list; attr->type = ATTR_MACHINE_ATTRIBUTE; attr->name = get_identifier ("stdcall"); attr->arg = NULL_TREE; attr->error_point = gnat_entity; attr_list = attr; } #endif /* Both lists ware built in reverse. */ gnu_param_list = nreverse (gnu_param_list); gnu_return_list = nreverse (gnu_return_list); gnu_type = create_subprog_type (gnu_return_type, gnu_param_list, gnu_return_list, returns_unconstrained, returns_by_ref, Function_Returns_With_DSP (gnat_entity)); /* ??? For now, don't consider nested functions pure. */ if (! global_bindings_p ()) pure_flag = 0; /* A subprogram (something that doesn't return anything) shouldn't be considered Pure since there would be no reason for such a subprogram. Note that procedures with Out (or In Out) parameters have already been converted into a function with a return type. */ if (TREE_CODE (gnu_return_type) == VOID_TYPE) pure_flag = 0; gnu_type = build_qualified_type (gnu_type, (TYPE_QUALS (gnu_type) | (TYPE_QUAL_CONST * pure_flag) | (TYPE_QUAL_VOLATILE * volatile_flag))); set_lineno (gnat_entity, 0); /* If there was no specified Interface_Name and the external and internal names of the subprogram are the same, only use the internal name to allow disambiguation of nested subprograms. */ if (No (Interface_Name (gnat_entity)) && gnu_ext_name == gnu_entity_id) gnu_ext_name = 0; /* If we are defining the subprogram and it has an Address clause we must get the address expression from the saved GCC tree for the subprogram if it has a Freeze_Node. Otherwise, we elaborate the address expression here since the front-end has guaranteed in that case that the elaboration has no effects. If there is an Address clause and we are not defining the object, just make it a constant. */ if (Present (Address_Clause (gnat_entity))) { tree gnu_address = 0; if (definition) gnu_address = (present_gnu_tree (gnat_entity) ? get_gnu_tree (gnat_entity) : gnat_to_gnu (Expression (Address_Clause (gnat_entity)))); save_gnu_tree (gnat_entity, NULL_TREE, 0); gnu_type = build_reference_type (gnu_type); if (gnu_address != 0) gnu_address = convert (gnu_type, gnu_address); gnu_decl = create_var_decl (gnu_entity_id, gnu_ext_name, gnu_type, gnu_address, 0, Is_Public (gnat_entity), extern_flag, 0, 0); DECL_BY_REF_P (gnu_decl) = 1; } else if (kind == E_Subprogram_Type) gnu_decl = create_type_decl (gnu_entity_id, gnu_type, attr_list, ! Comes_From_Source (gnat_entity), debug_info_p); else { gnu_decl = create_subprog_decl (gnu_entity_id, gnu_ext_name, gnu_type, gnu_param_list, inline_flag, public_flag, extern_flag, attr_list); DECL_STUBBED_P (gnu_decl) = Convention (gnat_entity) == Convention_Stubbed; } } break; case E_Incomplete_Type: case E_Private_Type: case E_Limited_Private_Type: case E_Record_Type_With_Private: case E_Private_Subtype: case E_Limited_Private_Subtype: case E_Record_Subtype_With_Private: /* If this type does not have a full view in the unit we are compiling, then just get the type from its Etype. */ if (No (Full_View (gnat_entity))) { /* If this is an incomplete type with no full view, it must be a Taft Amendement type, so just return a dummy type. */ if (kind == E_Incomplete_Type) gnu_type = make_dummy_type (gnat_entity); else if (Present (Underlying_Full_View (gnat_entity))) gnu_decl = gnat_to_gnu_entity (Underlying_Full_View (gnat_entity), NULL_TREE, 0); else { gnu_decl = gnat_to_gnu_entity (Etype (gnat_entity), NULL_TREE, 0); maybe_present = 1; } break; } /* Otherwise, if we are not defining the type now, get the type from the full view. But always get the type from the full view for define on use types, since otherwise we won't see them! */ else if (! definition || (Is_Itype (Full_View (gnat_entity)) && No (Freeze_Node (gnat_entity))) || (Is_Itype (gnat_entity) && No (Freeze_Node (Full_View (gnat_entity))))) { gnu_decl = gnat_to_gnu_entity (Full_View (gnat_entity), NULL_TREE, 0); maybe_present = 1; break; } /* For incomplete types, make a dummy type entry which will be replaced later. */ gnu_type = make_dummy_type (gnat_entity); /* Save this type as the full declaration's type so we can do any needed updates when we see it. */ set_lineno (gnat_entity, 0); gnu_decl = create_type_decl (gnu_entity_id, gnu_type, attr_list, ! Comes_From_Source (gnat_entity), debug_info_p); save_gnu_tree (Full_View (gnat_entity), gnu_decl, 0); break; /* Simple class_wide types are always viewed as their root_type by Gigi unless an Equivalent_Type is specified. */ case E_Class_Wide_Type: if (Present (Equivalent_Type (gnat_entity))) gnu_type = gnat_to_gnu_type (Equivalent_Type (gnat_entity)); else gnu_type = gnat_to_gnu_type (Root_Type (gnat_entity)); maybe_present = 1; break; case E_Task_Type: case E_Task_Subtype: case E_Protected_Type: case E_Protected_Subtype: if (type_annotate_only && No (Corresponding_Record_Type (gnat_entity))) gnu_type = void_type_node; else gnu_type = gnat_to_gnu_type (Corresponding_Record_Type (gnat_entity)); maybe_present = 1; break; case E_Label: gnu_decl = create_label_decl (gnu_entity_id); break; case E_Block: case E_Loop: /* Nothing at all to do here, so just return an ERROR_MARK and claim we've already saved it, so we don't try to. */ gnu_decl = error_mark_node; saved = 1; break; default: gigi_abort (113); } /* If we had a case where we evaluated another type and it might have defined this one, handle it here. */ if (maybe_present && present_gnu_tree (gnat_entity)) { gnu_decl = get_gnu_tree (gnat_entity); saved = 1; } /* If we are processing a type and there is either no decl for it or we just made one, do some common processing for the type, such as handling alignment and possible padding. */ if ((gnu_decl == 0 || this_made_decl) && IN (kind, Type_Kind)) { if (Is_Tagged_Type (gnat_entity) || Is_Class_Wide_Equivalent_Type (gnat_entity)) TYPE_ALIGN_OK (gnu_type) = 1; if (AGGREGATE_TYPE_P (gnu_type) && Is_By_Reference_Type (gnat_entity)) TYPE_BY_REFERENCE_P (gnu_type) = 1; /* ??? Don't set the size for a String_Literal since it is either confirming or we don't handle it properly (if the low bound is non-constant). */ if (gnu_size == 0 && kind != E_String_Literal_Subtype) gnu_size = validate_size (Esize (gnat_entity), gnu_type, gnat_entity, TYPE_DECL, 0, Has_Size_Clause (gnat_entity)); /* If a size was specified, see if we can make a new type of that size by rearranging the type, for example from a fat to a thin pointer. */ if (gnu_size != 0) { gnu_type = make_type_from_size (gnu_type, gnu_size, Has_Biased_Representation (gnat_entity)); if (operand_equal_p (TYPE_SIZE (gnu_type), gnu_size, 0) && operand_equal_p (rm_size (gnu_type), gnu_size, 0)) gnu_size = 0; } /* If the alignment hasn't already been processed and this is not an unconstrained array, see if an alignment is specified. If not, we pick a default alignment for atomic objects. */ if (align != 0 || TREE_CODE (gnu_type) == UNCONSTRAINED_ARRAY_TYPE) ; else if (Known_Alignment (gnat_entity)) align = validate_alignment (Alignment (gnat_entity), gnat_entity, TYPE_ALIGN (gnu_type)); else if (Is_Atomic (gnat_entity) && gnu_size == 0 && host_integerp (TYPE_SIZE (gnu_type), 1) && integer_pow2p (TYPE_SIZE (gnu_type))) align = MIN (BIGGEST_ALIGNMENT, tree_low_cst (TYPE_SIZE (gnu_type), 1)); else if (Is_Atomic (gnat_entity) && gnu_size != 0 && host_integerp (gnu_size, 1) && integer_pow2p (gnu_size)) align = MIN (BIGGEST_ALIGNMENT, tree_low_cst (gnu_size, 1)); /* See if we need to pad the type. If we did, and made a record, the name of the new type may be changed. So get it back for us when we make the new TYPE_DECL below. */ gnu_type = maybe_pad_type (gnu_type, gnu_size, align, gnat_entity, "PAD", 1, definition, 0); if (TREE_CODE (gnu_type) == RECORD_TYPE && TYPE_IS_PADDING_P (gnu_type)) { gnu_entity_id = TYPE_NAME (gnu_type); if (TREE_CODE (gnu_entity_id) == TYPE_DECL) gnu_entity_id = DECL_NAME (gnu_entity_id); } set_rm_size (RM_Size (gnat_entity), gnu_type, gnat_entity); /* If we are at global level, GCC will have applied variable_size to the type, but that won't have done anything. So, if it's not a constant or self-referential, call elaborate_expression_1 to make a variable for the size rather than calculating it each time. Handle both the RM size and the actual size. */ if (global_bindings_p () && TYPE_SIZE (gnu_type) != 0 && ! TREE_CONSTANT (TYPE_SIZE (gnu_type)) && ! CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_type))) { if (TREE_CODE (gnu_type) == RECORD_TYPE && operand_equal_p (TYPE_ADA_SIZE (gnu_type), TYPE_SIZE (gnu_type), 0)) { TYPE_SIZE (gnu_type) = elaborate_expression_1 (gnat_entity, gnat_entity, TYPE_SIZE (gnu_type), get_identifier ("SIZE"), definition, 0); SET_TYPE_ADA_SIZE (gnu_type, TYPE_SIZE (gnu_type)); } else { TYPE_SIZE (gnu_type) = elaborate_expression_1 (gnat_entity, gnat_entity, TYPE_SIZE (gnu_type), get_identifier ("SIZE"), definition, 0); /* ??? For now, store the size as a multiple of the alignment in bytes so that we can see the alignment from the tree. */ TYPE_SIZE_UNIT (gnu_type) = build_binary_op (MULT_EXPR, sizetype, elaborate_expression_1 (gnat_entity, gnat_entity, build_binary_op (EXACT_DIV_EXPR, sizetype, TYPE_SIZE_UNIT (gnu_type), size_int (TYPE_ALIGN (gnu_type) / BITS_PER_UNIT)), get_identifier ("SIZE_A_UNIT"), definition, 0), size_int (TYPE_ALIGN (gnu_type) / BITS_PER_UNIT)); if (TREE_CODE (gnu_type) == RECORD_TYPE) SET_TYPE_ADA_SIZE (gnu_type, elaborate_expression_1 (gnat_entity, gnat_entity, TYPE_ADA_SIZE (gnu_type), get_identifier ("RM_SIZE"), definition, 0)); } } /* If this is a record type or subtype, call elaborate_expression_1 on any field position. Do this for both global and local types. Skip any fields that we haven't made trees for to avoid problems with class wide types. */ if (IN (kind, Record_Kind)) for (gnat_temp = First_Entity (gnat_entity); Present (gnat_temp); gnat_temp = Next_Entity (gnat_temp)) if (Ekind (gnat_temp) == E_Component && present_gnu_tree (gnat_temp)) { tree gnu_field = get_gnu_tree (gnat_temp); /* ??? Unfortunately, GCC needs to be able to prove the alignment of this offset and if it's a variable, it can't. In GCC 3.4, we'll use DECL_OFFSET_ALIGN in some way, but right now, we have to put in an explicit multiply and divide by that value. */ if (! CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (gnu_field))) DECL_FIELD_OFFSET (gnu_field) = build_binary_op (MULT_EXPR, sizetype, elaborate_expression_1 (gnat_temp, gnat_temp, build_binary_op (EXACT_DIV_EXPR, sizetype, DECL_FIELD_OFFSET (gnu_field), size_int (DECL_OFFSET_ALIGN (gnu_field) / BITS_PER_UNIT)), get_identifier ("OFFSET"), definition, 0), size_int (DECL_OFFSET_ALIGN (gnu_field) / BITS_PER_UNIT)); } gnu_type = build_qualified_type (gnu_type, (TYPE_QUALS (gnu_type) | (TYPE_QUAL_VOLATILE * Treat_As_Volatile (gnat_entity)))); if (Is_Atomic (gnat_entity)) check_ok_for_atomic (gnu_type, gnat_entity, 0); if (Known_Alignment (gnat_entity)) TYPE_USER_ALIGN (gnu_type) = 1; if (gnu_decl == 0) { set_lineno (gnat_entity, 0); gnu_decl = create_type_decl (gnu_entity_id, gnu_type, attr_list, ! Comes_From_Source (gnat_entity), debug_info_p); } else TREE_TYPE (gnu_decl) = gnu_type; } if (IN (kind, Type_Kind) && ! TYPE_IS_DUMMY_P (TREE_TYPE (gnu_decl))) { gnu_type = TREE_TYPE (gnu_decl); /* Back-annotate the Alignment of the type if not already in the tree. Likewise for sizes. */ if (Unknown_Alignment (gnat_entity)) Set_Alignment (gnat_entity, UI_From_Int (TYPE_ALIGN (gnu_type) / BITS_PER_UNIT)); if (Unknown_Esize (gnat_entity) && TYPE_SIZE (gnu_type) != 0) { /* If the size is self-referential, we annotate the maximum value of that size. */ tree gnu_size = TYPE_SIZE (gnu_type); if (CONTAINS_PLACEHOLDER_P (gnu_size)) gnu_size = max_size (gnu_size, 1); Set_Esize (gnat_entity, annotate_value (gnu_size)); if (type_annotate_only && Is_Tagged_Type (gnat_entity)) { /* In this mode the tag and the parent components are not generated by the front-end, so the sizes must be adjusted explicitly now. */ int size_offset; int new_size; if (Is_Derived_Type (gnat_entity)) { size_offset = UI_To_Int (Esize (Etype (Base_Type (gnat_entity)))); Set_Alignment (gnat_entity, Alignment (Etype (Base_Type (gnat_entity)))); } else size_offset = POINTER_SIZE; new_size = UI_To_Int (Esize (gnat_entity)) + size_offset; Set_Esize (gnat_entity, UI_From_Int (((new_size + (POINTER_SIZE - 1)) / POINTER_SIZE) * POINTER_SIZE)); Set_RM_Size (gnat_entity, Esize (gnat_entity)); } } if (Unknown_RM_Size (gnat_entity) && rm_size (gnu_type) != 0) Set_RM_Size (gnat_entity, annotate_value (rm_size (gnu_type))); } if (! Comes_From_Source (gnat_entity) && DECL_P (gnu_decl)) DECL_ARTIFICIAL (gnu_decl) = 1; if (! debug_info_p && DECL_P (gnu_decl) && TREE_CODE (gnu_decl) != FUNCTION_DECL) DECL_IGNORED_P (gnu_decl) = 1; /* If this decl is really indirect, adjust it. */ if (TREE_CODE (gnu_decl) == VAR_DECL) adjust_decl_rtl (gnu_decl); /* If we haven't already, associate the ..._DECL node that we just made with the input GNAT entity node. */ if (! saved) save_gnu_tree (gnat_entity, gnu_decl, 0); /* If this is an enumeral or floating-point type, we were not able to set the bounds since they refer to the type. These bounds are always static. For enumeration types, also write debugging information and declare the enumeration literal table, if needed. */ if ((kind == E_Enumeration_Type && Present (First_Literal (gnat_entity))) || (kind == E_Floating_Point_Type && ! Vax_Float (gnat_entity))) { tree gnu_scalar_type = gnu_type; /* If this is a padded type, we need to use the underlying type. */ if (TREE_CODE (gnu_scalar_type) == RECORD_TYPE && TYPE_IS_PADDING_P (gnu_scalar_type)) gnu_scalar_type = TREE_TYPE (TYPE_FIELDS (gnu_scalar_type)); /* If this is a floating point type and we haven't set a floating point type yet, use this in the evaluation of the bounds. */ if (longest_float_type_node == 0 && kind == E_Floating_Point_Type) longest_float_type_node = gnu_type; TYPE_MIN_VALUE (gnu_scalar_type) = gnat_to_gnu (Type_Low_Bound (gnat_entity)); TYPE_MAX_VALUE (gnu_scalar_type) = gnat_to_gnu (Type_High_Bound (gnat_entity)); if (kind == E_Enumeration_Type) { TYPE_STUB_DECL (gnu_scalar_type) = gnu_decl; /* Since this has both a typedef and a tag, avoid outputting the name twice. */ DECL_ARTIFICIAL (gnu_decl) = 1; rest_of_type_compilation (gnu_scalar_type, global_bindings_p ()); } } /* If we deferred processing of incomplete types, re-enable it. If there were no other disables and we have some to process, do so. */ if (this_deferred && --defer_incomplete_level == 0 && defer_incomplete_list != 0) { struct incomplete *incp = defer_incomplete_list; struct incomplete *next; defer_incomplete_list = 0; for (; incp; incp = next) { next = incp->next; if (incp->old_type != 0) update_pointer_to (TYPE_MAIN_VARIANT (incp->old_type), gnat_to_gnu_type (incp->full_type)); free (incp); } } /* If we are not defining this type, see if it's in the incomplete list. If so, handle that list entry now. */ else if (! definition) { struct incomplete *incp; for (incp = defer_incomplete_list; incp; incp = incp->next) if (incp->old_type != 0 && incp->full_type == gnat_entity) { update_pointer_to (TYPE_MAIN_VARIANT (incp->old_type), TREE_TYPE (gnu_decl)); incp->old_type = 0; } } if (this_global) force_global--; if (Is_Packed_Array_Type (gnat_entity) && Is_Itype (Associated_Node_For_Itype (gnat_entity)) && No (Freeze_Node (Associated_Node_For_Itype (gnat_entity))) && ! present_gnu_tree (Associated_Node_For_Itype (gnat_entity))) gnat_to_gnu_entity (Associated_Node_For_Itype (gnat_entity), NULL_TREE, 0); return gnu_decl; } /* Given GNAT_ENTITY, elaborate all expressions that are required to be elaborated at the point of its definition, but do nothing else. */ void elaborate_entity (Entity_Id gnat_entity) { switch (Ekind (gnat_entity)) { case E_Signed_Integer_Subtype: case E_Modular_Integer_Subtype: case E_Enumeration_Subtype: case E_Ordinary_Fixed_Point_Subtype: case E_Decimal_Fixed_Point_Subtype: case E_Floating_Point_Subtype: { Node_Id gnat_lb = Type_Low_Bound (gnat_entity); Node_Id gnat_hb = Type_High_Bound (gnat_entity); /* ??? Tests for avoiding static constaint error expression is needed until the front stops generating bogus conversions on bounds of real types. */ if (! Raises_Constraint_Error (gnat_lb)) elaborate_expression (gnat_lb, gnat_entity, get_identifier ("L"), 1, 0, Needs_Debug_Info (gnat_entity)); if (! Raises_Constraint_Error (gnat_hb)) elaborate_expression (gnat_hb, gnat_entity, get_identifier ("U"), 1, 0, Needs_Debug_Info (gnat_entity)); break; } case E_Record_Type: { Node_Id full_definition = Declaration_Node (gnat_entity); Node_Id record_definition = Type_Definition (full_definition); /* If this is a record extension, go a level further to find the record definition. */ if (Nkind (record_definition) == N_Derived_Type_Definition) record_definition = Record_Extension_Part (record_definition); } break; case E_Record_Subtype: case E_Private_Subtype: case E_Limited_Private_Subtype: case E_Record_Subtype_With_Private: if (Is_Constrained (gnat_entity) && Has_Discriminants (Base_Type (gnat_entity)) && Present (Discriminant_Constraint (gnat_entity))) { Node_Id gnat_discriminant_expr; Entity_Id gnat_field; for (gnat_field = First_Discriminant (Base_Type (gnat_entity)), gnat_discriminant_expr = First_Elmt (Discriminant_Constraint (gnat_entity)); Present (gnat_field); gnat_field = Next_Discriminant (gnat_field), gnat_discriminant_expr = Next_Elmt (gnat_discriminant_expr)) /* ??? For now, ignore access discriminants. */ if (! Is_Access_Type (Etype (Node (gnat_discriminant_expr)))) elaborate_expression (Node (gnat_discriminant_expr), gnat_entity, get_entity_name (gnat_field), 1, 0, 0); } break; } } /* Mark GNAT_ENTITY as going out of scope at this point. Recursively mark any entities on its entity chain similarly. */ void mark_out_of_scope (Entity_Id gnat_entity) { Entity_Id gnat_sub_entity; unsigned int kind = Ekind (gnat_entity); /* If this has an entity list, process all in the list. */ if (IN (kind, Class_Wide_Kind) || IN (kind, Concurrent_Kind) || IN (kind, Private_Kind) || kind == E_Block || kind == E_Entry || kind == E_Entry_Family || kind == E_Function || kind == E_Generic_Function || kind == E_Generic_Package || kind == E_Generic_Procedure || kind == E_Loop || kind == E_Operator || kind == E_Package || kind == E_Package_Body || kind == E_Procedure || kind == E_Record_Type || kind == E_Record_Subtype || kind == E_Subprogram_Body || kind == E_Subprogram_Type) for (gnat_sub_entity = First_Entity (gnat_entity); Present (gnat_sub_entity); gnat_sub_entity = Next_Entity (gnat_sub_entity)) if (Scope (gnat_sub_entity) == gnat_entity && gnat_sub_entity != gnat_entity) mark_out_of_scope (gnat_sub_entity); /* Now clear this if it has been defined, but only do so if it isn't a subprogram or parameter. We could refine this, but it isn't worth it. If this is statically allocated, it is supposed to hang around out of cope. */ if (present_gnu_tree (gnat_entity) && ! Is_Statically_Allocated (gnat_entity) && kind != E_Procedure && kind != E_Function && ! IN (kind, Formal_Kind)) { save_gnu_tree (gnat_entity, NULL_TREE, 1); save_gnu_tree (gnat_entity, error_mark_node, 1); } } /* Set the alias set of GNU_NEW_TYPE to be that of GNU_OLD_TYPE. If this is a multi-dimensional array type, do this recursively. */ static void copy_alias_set (tree gnu_new_type, tree gnu_old_type) { if (TREE_CODE (gnu_new_type) == ARRAY_TYPE && TREE_CODE (TREE_TYPE (gnu_new_type)) == ARRAY_TYPE && TYPE_MULTI_ARRAY_P (TREE_TYPE (gnu_new_type))) { /* We need to be careful here in case GNU_OLD_TYPE is an unconstrained array. In that case, it doesn't have the same shape as GNU_NEW_TYPE, so we need to go down to what does. */ if (TREE_CODE (gnu_old_type) == UNCONSTRAINED_ARRAY_TYPE) gnu_old_type = TREE_TYPE (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (gnu_old_type)))); copy_alias_set (TREE_TYPE (gnu_new_type), TREE_TYPE (gnu_old_type)); } TYPE_ALIAS_SET (gnu_new_type) = get_alias_set (gnu_old_type); record_component_aliases (gnu_new_type); } /* Return a TREE_LIST describing the substitutions needed to reflect discriminant substitutions from GNAT_SUBTYPE to GNAT_TYPE and add them to GNU_LIST. If GNAT_TYPE is not specified, use the base type of GNAT_SUBTYPE. The substitions can be in any order. TREE_PURPOSE gives the tree for the discriminant and TREE_VALUES is the replacement value. They are in the form of operands to substitute_in_expr. DEFINITION is as in gnat_to_gnu_entity. */ static tree substitution_list (Entity_Id gnat_subtype, Entity_Id gnat_type, tree gnu_list, int definition) { Entity_Id gnat_discrim; Node_Id gnat_value; if (No (gnat_type)) gnat_type = Implementation_Base_Type (gnat_subtype); if (Has_Discriminants (gnat_type)) for (gnat_discrim = First_Stored_Discriminant (gnat_type), gnat_value = First_Elmt (Stored_Constraint (gnat_subtype)); Present (gnat_discrim); gnat_discrim = Next_Stored_Discriminant (gnat_discrim), gnat_value = Next_Elmt (gnat_value)) /* Ignore access discriminants. */ if (! Is_Access_Type (Etype (Node (gnat_value)))) gnu_list = tree_cons (gnat_to_gnu_entity (gnat_discrim, NULL_TREE, 0), elaborate_expression (Node (gnat_value), gnat_subtype, get_entity_name (gnat_discrim), definition, 1, 0), gnu_list); return gnu_list; } /* For the following two functions: for each GNAT entity, the GCC tree node used as a dummy for that entity, if any. */ static GTY((length ("max_gnat_nodes"))) tree * dummy_node_table; /* Initialize the above table. */ void init_dummy_type (void) { Node_Id gnat_node; dummy_node_table = (tree *) ggc_alloc (max_gnat_nodes * sizeof (tree)); for (gnat_node = 0; gnat_node < max_gnat_nodes; gnat_node++) dummy_node_table[gnat_node] = NULL_TREE; dummy_node_table -= First_Node_Id; } /* Make a dummy type corresponding to GNAT_TYPE. */ tree make_dummy_type (Entity_Id gnat_type) { Entity_Id gnat_underlying; tree gnu_type; /* Find a full type for GNAT_TYPE, taking into account any class wide types. */ if (Is_Class_Wide_Type (gnat_type) && Present (Equivalent_Type (gnat_type))) gnat_type = Equivalent_Type (gnat_type); else if (Ekind (gnat_type) == E_Class_Wide_Type) gnat_type = Root_Type (gnat_type); for (gnat_underlying = gnat_type; (IN (Ekind (gnat_underlying), Incomplete_Or_Private_Kind) && Present (Full_View (gnat_underlying))); gnat_underlying = Full_View (gnat_underlying)) ; /* If it there already a dummy type, use that one. Else make one. */ if (dummy_node_table[gnat_underlying]) return dummy_node_table[gnat_underlying]; /* If this is a record, make this a RECORD_TYPE or UNION_TYPE; else make it a VOID_TYPE. */ if (Is_Record_Type (gnat_underlying)) gnu_type = make_node (Is_Unchecked_Union (gnat_underlying) ? UNION_TYPE : RECORD_TYPE); else gnu_type = make_node (ENUMERAL_TYPE); TYPE_NAME (gnu_type) = get_entity_name (gnat_type); if (AGGREGATE_TYPE_P (gnu_type)) TYPE_STUB_DECL (gnu_type) = pushdecl (build_decl (TYPE_DECL, NULL_TREE, gnu_type)); TYPE_DUMMY_P (gnu_type) = 1; dummy_node_table[gnat_underlying] = gnu_type; return gnu_type; } /* Return 1 if the size represented by GNU_SIZE can be handled by an allocation. If STATIC_P is non-zero, consider only what can be done with a static allocation. */ static int allocatable_size_p (tree gnu_size, int static_p) { HOST_WIDE_INT our_size; /* If this is not a static allocation, the only case we want to forbid is an overflowing size. That will be converted into a raise a Storage_Error. */ if (! static_p) return ! (TREE_CODE (gnu_size) == INTEGER_CST && TREE_CONSTANT_OVERFLOW (gnu_size)); /* Otherwise, we need to deal with both variable sizes and constant sizes that won't fit in a host int. We use int instead of HOST_WIDE_INT since assemblers may not like very large sizes. */ if (!host_integerp (gnu_size, 1)) return 0; our_size = tree_low_cst (gnu_size, 1); return (int) our_size == our_size; } /* Return a list of attributes for GNAT_ENTITY, if any. */ static struct attrib * build_attr_list (Entity_Id gnat_entity) { struct attrib *attr_list = 0; Node_Id gnat_temp; for (gnat_temp = First_Rep_Item (gnat_entity); Present (gnat_temp); gnat_temp = Next_Rep_Item (gnat_temp)) if (Nkind (gnat_temp) == N_Pragma) { struct attrib *attr; tree gnu_arg0 = 0, gnu_arg1 = 0; Node_Id gnat_assoc = Pragma_Argument_Associations (gnat_temp); enum attr_type etype; if (Present (gnat_assoc) && Present (First (gnat_assoc)) && Present (Next (First (gnat_assoc))) && (Nkind (Expression (Next (First (gnat_assoc)))) == N_String_Literal)) { gnu_arg0 = get_identifier (TREE_STRING_POINTER (gnat_to_gnu (Expression (Next (First (gnat_assoc)))))); if (Present (Next (Next (First (gnat_assoc)))) && (Nkind (Expression (Next (Next (First (gnat_assoc))))) == N_String_Literal)) gnu_arg1 = get_identifier (TREE_STRING_POINTER (gnat_to_gnu (Expression (Next (Next (First (gnat_assoc))))))); } switch (Get_Pragma_Id (Chars (gnat_temp))) { case Pragma_Machine_Attribute: etype = ATTR_MACHINE_ATTRIBUTE; break; case Pragma_Linker_Alias: etype = ATTR_LINK_ALIAS; break; case Pragma_Linker_Section: etype = ATTR_LINK_SECTION; break; case Pragma_Weak_External: etype = ATTR_WEAK_EXTERNAL; break; default: continue; } attr = (struct attrib *) xmalloc (sizeof (struct attrib)); attr->next = attr_list; attr->type = etype; attr->name = gnu_arg0; attr->arg = gnu_arg1; attr->error_point = Present (Next (First (gnat_assoc))) ? Expression (Next (First (gnat_assoc))) : gnat_temp; attr_list = attr; } return attr_list; } /* Get the unpadded version of a GNAT type. */ tree get_unpadded_type (Entity_Id gnat_entity) { tree type = gnat_to_gnu_type (gnat_entity); if (TREE_CODE (type) == RECORD_TYPE && TYPE_IS_PADDING_P (type)) type = TREE_TYPE (TYPE_FIELDS (type)); return type; } /* Called when we need to protect a variable object using a save_expr. */ tree maybe_variable (tree gnu_operand, Node_Id gnat_node) { if (TREE_CONSTANT (gnu_operand) || TREE_READONLY (gnu_operand) || TREE_CODE (gnu_operand) == SAVE_EXPR || TREE_CODE (gnu_operand) == NULL_EXPR) return gnu_operand; /* If we will be generating code, make sure we are at the proper line number. */ if (! global_bindings_p () && ! CONTAINS_PLACEHOLDER_P (gnu_operand)) set_lineno (gnat_node, 1); if (TREE_CODE (gnu_operand) == UNCONSTRAINED_ARRAY_REF) return build1 (UNCONSTRAINED_ARRAY_REF, TREE_TYPE (gnu_operand), variable_size (TREE_OPERAND (gnu_operand, 0))); else return variable_size (gnu_operand); } /* Given a GNAT tree GNAT_EXPR, for an expression which is a value within a type definition (either a bound or a discriminant value) for GNAT_ENTITY, return the GCC tree to use for that expression. GNU_NAME is the qualification to use if an external name is appropriate and DEFINITION is nonzero if this is a definition of GNAT_ENTITY. If NEED_VALUE is nonzero, we need a result. Otherwise, we are just elaborating this for side-effects. If NEED_DEBUG is nonzero we need the symbol for debugging purposes even if it isn't needed for code generation. */ static tree elaborate_expression (Node_Id gnat_expr, Entity_Id gnat_entity, tree gnu_name, int definition, int need_value, int need_debug) { tree gnu_expr; /* If we already elaborated this expression (e.g., it was involved in the definition of a private type), use the old value. */ if (present_gnu_tree (gnat_expr)) return get_gnu_tree (gnat_expr); /* If we don't need a value and this is static or a discriment, we don't need to do anything. */ else if (! need_value && (Is_OK_Static_Expression (gnat_expr) || (Nkind (gnat_expr) == N_Identifier && Ekind (Entity (gnat_expr)) == E_Discriminant))) return 0; /* Otherwise, convert this tree to its GCC equivalant. */ gnu_expr = elaborate_expression_1 (gnat_expr, gnat_entity, gnat_to_gnu (gnat_expr), gnu_name, definition, need_debug); /* Save the expression in case we try to elaborate this entity again. Since this is not a DECL, don't check it. If this is a constant, don't save it since GNAT_EXPR might be used more than once. Also, don't save if it's a discriminant. */ if (! CONTAINS_PLACEHOLDER_P (gnu_expr)) save_gnu_tree (gnat_expr, gnu_expr, 1); return need_value ? gnu_expr : error_mark_node; } /* Similar, but take a GNU expression. */ static tree elaborate_expression_1 (Node_Id gnat_expr, Entity_Id gnat_entity, tree gnu_expr, tree gnu_name, int definition, int need_debug) { tree gnu_decl = 0; /* Strip any conversions to see if the expression is a readonly variable. ??? This really should remain readonly, but we have to think about the typing of the tree here. */ tree gnu_inner_expr = remove_conversions (gnu_expr, 1); int expr_global = Is_Public (gnat_entity) || global_bindings_p (); int expr_variable; /* In most cases, we won't see a naked FIELD_DECL here because a discriminant reference will have been replaced with a COMPONENT_REF when the type is being elaborated. However, there are some cases involving child types where we will. So convert it to a COMPONENT_REF here. We have to hope it will be at the highest level of the expression in these cases. */ if (TREE_CODE (gnu_expr) == FIELD_DECL) gnu_expr = build (COMPONENT_REF, TREE_TYPE (gnu_expr), build (PLACEHOLDER_EXPR, DECL_CONTEXT (gnu_expr)), gnu_expr); /* If GNU_EXPR is neither a placeholder nor a constant, nor a variable that is a constant, make a variable that is initialized to contain the bound when the package containing the definition is elaborated. If this entity is defined at top level and a bound or discriminant value isn't a constant or a reference to a discriminant, replace the bound by the variable; otherwise use a SAVE_EXPR if needed. Note that we rely here on the fact that an expression cannot contain both the discriminant and some other variable. */ expr_variable = (TREE_CODE_CLASS (TREE_CODE (gnu_expr)) != 'c' && ! (TREE_CODE (gnu_inner_expr) == VAR_DECL && TREE_READONLY (gnu_inner_expr)) && ! CONTAINS_PLACEHOLDER_P (gnu_expr)); /* If this is a static expression or contains a discriminant, we don't need the variable for debugging (and can't elaborate anyway if a discriminant). */ if (need_debug && (Is_OK_Static_Expression (gnat_expr) || CONTAINS_PLACEHOLDER_P (gnu_expr))) need_debug = 0; /* Now create the variable if we need it. */ if (need_debug || (expr_variable && expr_global)) { set_lineno (gnat_entity, ! global_bindings_p ()); gnu_decl = create_var_decl (create_concat_name (gnat_entity, IDENTIFIER_POINTER (gnu_name)), NULL_TREE, TREE_TYPE (gnu_expr), gnu_expr, 1, Is_Public (gnat_entity), ! definition, 0, 0); } /* We only need to use this variable if we are in global context since GCC can do the right thing in the local case. */ if (expr_global && expr_variable) return gnu_decl; else if (! expr_variable) return gnu_expr; else return maybe_variable (gnu_expr, gnat_expr); } /* Create a record type that contains a field of TYPE with a starting bit position so that it is aligned to ALIGN bits and is SIZE bytes long. */ tree make_aligning_type (tree type, int align, tree size) { tree record_type = make_node (RECORD_TYPE); tree place = build (PLACEHOLDER_EXPR, record_type); tree size_addr_place = convert (sizetype, build_unary_op (ADDR_EXPR, NULL_TREE, place)); tree name = TYPE_NAME (type); tree pos, field; if (TREE_CODE (name) == TYPE_DECL) name = DECL_NAME (name); TYPE_NAME (record_type) = concat_id_with_name (name, "_ALIGN"); /* The bit position is obtained by "and"ing the alignment minus 1 with the two's complement of the address and multiplying by the number of bits per unit. Do all this in sizetype. */ pos = size_binop (MULT_EXPR, convert (bitsizetype, size_binop (BIT_AND_EXPR, size_diffop (size_zero_node, size_addr_place), ssize_int ((align / BITS_PER_UNIT) - 1))), bitsize_unit_node); field = create_field_decl (get_identifier ("F"), type, record_type, 1, size, pos, 1); DECL_BIT_FIELD (field) = 0; finish_record_type (record_type, field, 1, 0); TYPE_ALIGN (record_type) = BIGGEST_ALIGNMENT; TYPE_SIZE (record_type) = size_binop (PLUS_EXPR, size_binop (MULT_EXPR, convert (bitsizetype, size), bitsize_unit_node), bitsize_int (align)); TYPE_SIZE_UNIT (record_type) = size_binop (PLUS_EXPR, size, size_int (align / BITS_PER_UNIT)); copy_alias_set (record_type, type); return record_type; } /* TYPE is a RECORD_TYPE, UNION_TYPE, or QUAL_UNION_TYPE, with BLKmode that's being used as the field type of a packed record. See if we can rewrite it as a record that has a non-BLKmode type, which we can pack tighter. If so, return the new type. If not, return the original type. */ static tree make_packable_type (tree type) { tree new_type = make_node (TREE_CODE (type)); tree field_list = NULL_TREE; tree old_field; /* Copy the name and flags from the old type to that of the new and set the alignment to try for an integral type. For QUAL_UNION_TYPE, also copy the size. */ TYPE_NAME (new_type) = TYPE_NAME (type); TYPE_LEFT_JUSTIFIED_MODULAR_P (new_type) = TYPE_LEFT_JUSTIFIED_MODULAR_P (type); TYPE_CONTAINS_TEMPLATE_P (new_type) = TYPE_CONTAINS_TEMPLATE_P (type); TYPE_IS_PADDING_P (new_type) = TYPE_IS_PADDING_P (type); if (TREE_CODE (type) == QUAL_UNION_TYPE) { TYPE_SIZE (new_type) = TYPE_SIZE (type); TYPE_SIZE_UNIT (new_type) = TYPE_SIZE_UNIT (type); } TYPE_ALIGN (new_type) = ((HOST_WIDE_INT) 1 << (floor_log2 (tree_low_cst (TYPE_SIZE (type), 1) - 1) + 1)); /* Now copy the fields, keeping the position and size. */ for (old_field = TYPE_FIELDS (type); old_field != 0; old_field = TREE_CHAIN (old_field)) { tree new_field_type = TREE_TYPE (old_field); tree new_field; if (TYPE_MODE (new_field_type) == BLKmode && (TREE_CODE (new_field_type) == RECORD_TYPE || TREE_CODE (new_field_type) == UNION_TYPE || TREE_CODE (new_field_type) == QUAL_UNION_TYPE) && host_integerp (TYPE_SIZE (new_field_type), 1)) new_field_type = make_packable_type (new_field_type); new_field = create_field_decl (DECL_NAME (old_field), new_field_type, new_type, TYPE_PACKED (type), DECL_SIZE (old_field), bit_position (old_field), ! DECL_NONADDRESSABLE_P (old_field)); DECL_INTERNAL_P (new_field) = DECL_INTERNAL_P (old_field); SET_DECL_ORIGINAL_FIELD (new_field, (DECL_ORIGINAL_FIELD (old_field) != 0 ? DECL_ORIGINAL_FIELD (old_field) : old_field)); if (TREE_CODE (new_type) == QUAL_UNION_TYPE) DECL_QUALIFIER (new_field) = DECL_QUALIFIER (old_field); TREE_CHAIN (new_field) = field_list; field_list = new_field; } finish_record_type (new_type, nreverse (field_list), 1, 1); copy_alias_set (new_type, type); return TYPE_MODE (new_type) == BLKmode ? type : new_type; } /* Ensure that TYPE has SIZE and ALIGN. Make and return a new padded type if needed. We have already verified that SIZE and TYPE are large enough. GNAT_ENTITY and NAME_TRAILER are used to name the resulting record and to issue a warning. IS_USER_TYPE is nonzero if we must be sure we complete the original type. DEFINITION is nonzero if this type is being defined. SAME_RM_SIZE is nonzero if the RM_Size of the resulting type is to be set to its TYPE_SIZE; otherwise, it's set to the RM_Size of the original type. */ static tree maybe_pad_type (tree type, tree size, unsigned int align, Entity_Id gnat_entity, const char *name_trailer, int is_user_type, int definition, int same_rm_size) { tree orig_size = TYPE_SIZE (type); tree record; tree field; /* If TYPE is a padded type, see if it agrees with any size and alignment we were given. If so, return the original type. Otherwise, strip off the padding, since we will either be returning the inner type or repadding it. If no size or alignment is specified, use that of the original padded type. */ if (TREE_CODE (type) == RECORD_TYPE && TYPE_IS_PADDING_P (type)) { if ((size == 0 || operand_equal_p (round_up (size, MAX (align, TYPE_ALIGN (type))), round_up (TYPE_SIZE (type), MAX (align, TYPE_ALIGN (type))), 0)) && (align == 0 || align == TYPE_ALIGN (type))) return type; if (size == 0) size = TYPE_SIZE (type); if (align == 0) align = TYPE_ALIGN (type); type = TREE_TYPE (TYPE_FIELDS (type)); orig_size = TYPE_SIZE (type); } /* If the size is either not being changed or is being made smaller (which is not done here (and is only valid for bitfields anyway), show the size isn't changing. Likewise, clear the alignment if it isn't being changed. Then return if we aren't doing anything. */ if (size != 0 && (operand_equal_p (size, orig_size, 0) || (TREE_CODE (orig_size) == INTEGER_CST && tree_int_cst_lt (size, orig_size)))) size = 0; if (align == TYPE_ALIGN (type)) align = 0; if (align == 0 && size == 0) return type; /* We used to modify the record in place in some cases, but that could generate incorrect debugging information. So make a new record type and name. */ record = make_node (RECORD_TYPE); if (Present (gnat_entity)) TYPE_NAME (record) = create_concat_name (gnat_entity, name_trailer); /* If we were making a type, complete the original type and give it a name. */ if (is_user_type) create_type_decl (get_entity_name (gnat_entity), type, 0, ! Comes_From_Source (gnat_entity), ! (TYPE_NAME (type) != 0 && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL && DECL_IGNORED_P (TYPE_NAME (type)))); /* If we are changing the alignment and the input type is a record with BLKmode and a small constant size, try to make a form that has an integral mode. That might allow this record to have an integral mode, which will be much more efficient. There is no point in doing this if a size is specified unless it is also smaller than the biggest alignment and it is incorrect to do this if the size of the original type is not a multiple of the alignment. */ if (align != 0 && TREE_CODE (type) == RECORD_TYPE && TYPE_MODE (type) == BLKmode && host_integerp (orig_size, 1) && compare_tree_int (orig_size, BIGGEST_ALIGNMENT) <= 0 && (size == 0 || (TREE_CODE (size) == INTEGER_CST && compare_tree_int (size, BIGGEST_ALIGNMENT) <= 0)) && tree_low_cst (orig_size, 1) % align == 0) type = make_packable_type (type); field = create_field_decl (get_identifier ("F"), type, record, 0, NULL_TREE, bitsize_zero_node, 1); DECL_INTERNAL_P (field) = 1; TYPE_SIZE (record) = size != 0 ? size : orig_size; TYPE_SIZE_UNIT (record) = convert (sizetype, size_binop (CEIL_DIV_EXPR, TYPE_SIZE (record), bitsize_unit_node)); TYPE_ALIGN (record) = align; TYPE_IS_PADDING_P (record) = 1; TYPE_VOLATILE (record) = Present (gnat_entity) && Treat_As_Volatile (gnat_entity); finish_record_type (record, field, 1, 0); /* Keep the RM_Size of the padded record as that of the old record if requested. */ SET_TYPE_ADA_SIZE (record, same_rm_size ? size : rm_size (type)); /* Unless debugging information isn't being written for the input type, write a record that shows what we are a subtype of and also make a variable that indicates our size, if variable. */ if (TYPE_NAME (record) != 0 && AGGREGATE_TYPE_P (type) && (TREE_CODE (TYPE_NAME (type)) != TYPE_DECL || ! DECL_IGNORED_P (TYPE_NAME (type)))) { tree marker = make_node (RECORD_TYPE); tree name = DECL_NAME (TYPE_NAME (record)); tree orig_name = TYPE_NAME (type); if (TREE_CODE (orig_name) == TYPE_DECL) orig_name = DECL_NAME (orig_name); TYPE_NAME (marker) = concat_id_with_name (name, "XVS"); finish_record_type (marker, create_field_decl (orig_name, integer_type_node, marker, 0, NULL_TREE, NULL_TREE, 0), 0, 0); if (size != 0 && TREE_CODE (size) != INTEGER_CST && definition) create_var_decl (concat_id_with_name (name, "XVZ"), NULL_TREE, sizetype, TYPE_SIZE (record), 0, 0, 0, 0, 0); } type = record; if (CONTAINS_PLACEHOLDER_P (orig_size)) orig_size = max_size (orig_size, 1); /* If the size was widened explicitly, maybe give a warning. */ if (size != 0 && Present (gnat_entity) && ! operand_equal_p (size, orig_size, 0) && ! (TREE_CODE (size) == INTEGER_CST && TREE_CODE (orig_size) == INTEGER_CST && tree_int_cst_lt (size, orig_size))) { Node_Id gnat_error_node = Empty; if (Is_Packed_Array_Type (gnat_entity)) gnat_entity = Associated_Node_For_Itype (gnat_entity); if ((Ekind (gnat_entity) == E_Component || Ekind (gnat_entity) == E_Discriminant) && Present (Component_Clause (gnat_entity))) gnat_error_node = Last_Bit (Component_Clause (gnat_entity)); else if (Present (Size_Clause (gnat_entity))) gnat_error_node = Expression (Size_Clause (gnat_entity)); /* Generate message only for entities that come from source, since if we have an entity created by expansion, the message will be generated for some other corresponding source entity. */ if (Comes_From_Source (gnat_entity) && Present (gnat_error_node)) post_error_ne_tree ("{^ }bits of & unused?", gnat_error_node, gnat_entity, size_diffop (size, orig_size)); else if (*name_trailer == 'C' && ! Is_Internal (gnat_entity)) post_error_ne_tree ("component of& padded{ by ^ bits}?", gnat_entity, gnat_entity, size_diffop (size, orig_size)); } return type; } /* Given a GNU tree and a GNAT list of choices, generate an expression to test the value passed against the list of choices. */ tree choices_to_gnu (tree operand, Node_Id choices) { Node_Id choice; Node_Id gnat_temp; tree result = integer_zero_node; tree this_test, low = 0, high = 0, single = 0; for (choice = First (choices); Present (choice); choice = Next (choice)) { switch (Nkind (choice)) { case N_Range: low = gnat_to_gnu (Low_Bound (choice)); high = gnat_to_gnu (High_Bound (choice)); /* There's no good type to use here, so we might as well use integer_type_node. */ this_test = build_binary_op (TRUTH_ANDIF_EXPR, integer_type_node, build_binary_op (GE_EXPR, integer_type_node, operand, low), build_binary_op (LE_EXPR, integer_type_node, operand, high)); break; case N_Subtype_Indication: gnat_temp = Range_Expression (Constraint (choice)); low = gnat_to_gnu (Low_Bound (gnat_temp)); high = gnat_to_gnu (High_Bound (gnat_temp)); this_test = build_binary_op (TRUTH_ANDIF_EXPR, integer_type_node, build_binary_op (GE_EXPR, integer_type_node, operand, low), build_binary_op (LE_EXPR, integer_type_node, operand, high)); break; case N_Identifier: case N_Expanded_Name: /* This represents either a subtype range, an enumeration literal, or a constant Ekind says which. If an enumeration literal or constant, fall through to the next case. */ if (Ekind (Entity (choice)) != E_Enumeration_Literal && Ekind (Entity (choice)) != E_Constant) { tree type = gnat_to_gnu_type (Entity (choice)); low = TYPE_MIN_VALUE (type); high = TYPE_MAX_VALUE (type); this_test = build_binary_op (TRUTH_ANDIF_EXPR, integer_type_node, build_binary_op (GE_EXPR, integer_type_node, operand, low), build_binary_op (LE_EXPR, integer_type_node, operand, high)); break; } /* ... fall through ... */ case N_Character_Literal: case N_Integer_Literal: single = gnat_to_gnu (choice); this_test = build_binary_op (EQ_EXPR, integer_type_node, operand, single); break; case N_Others_Choice: this_test = integer_one_node; break; default: gigi_abort (114); } result = build_binary_op (TRUTH_ORIF_EXPR, integer_type_node, result, this_test); } return result; } /* Return a GCC tree for a field corresponding to GNAT_FIELD to be placed in GNU_RECORD_TYPE. PACKED is 1 if the enclosing record is packed and -1 if the enclosing record has a Component_Alignment of Storage_Unit. DEFINITION is nonzero if this field is for a record being defined. */ static tree gnat_to_gnu_field (Entity_Id gnat_field, tree gnu_record_type, int packed, int definition) { tree gnu_field_id = get_entity_name (gnat_field); tree gnu_field_type = gnat_to_gnu_type (Etype (gnat_field)); tree gnu_orig_field_type = gnu_field_type; tree gnu_pos = 0; tree gnu_size = 0; tree gnu_field; int needs_strict_alignment = (Is_Aliased (gnat_field) || Strict_Alignment (Etype (gnat_field)) || Treat_As_Volatile (gnat_field)); /* If this field requires strict alignment or contains an item of variable sized, pretend it isn't packed. */ if (needs_strict_alignment || is_variable_size (gnu_field_type)) packed = 0; /* For packed records, this is one of the few occasions on which we use the official RM size for discrete or fixed-point components, instead of the normal GNAT size stored in Esize. See description in Einfo: "Handling of Type'Size Values" for further details. */ if (packed == 1) gnu_size = validate_size (RM_Size (Etype (gnat_field)), gnu_field_type, gnat_field, FIELD_DECL, 0, 1); if (Known_Static_Esize (gnat_field)) gnu_size = validate_size (Esize (gnat_field), gnu_field_type, gnat_field, FIELD_DECL, 0, 1); /* If the field's type is left-justified modular, the wrapper can prevent packing so we make the field the type of the inner object unless the situation forbids it. We may not do that when the field is addressable_p, typically because in that case this field may later be passed by-ref for a formal argument expecting the left justification. The condition below is then matching the addressable_p code for COMPONENT_REF. */ if (! Is_Aliased (gnat_field) && flag_strict_aliasing && TREE_CODE (gnu_field_type) == RECORD_TYPE && TYPE_LEFT_JUSTIFIED_MODULAR_P (gnu_field_type)) gnu_field_type = TREE_TYPE (TYPE_FIELDS (gnu_field_type)); /* If we are packing this record or we have a specified size that's smaller than that of the field type and the field type is also a record that's BLKmode and with a small constant size, see if we can get a better form of the type that allows more packing. If we can, show a size was specified for it if there wasn't one so we know to make this a bitfield and avoid making things wider. */ if (TREE_CODE (gnu_field_type) == RECORD_TYPE && TYPE_MODE (gnu_field_type) == BLKmode && host_integerp (TYPE_SIZE (gnu_field_type), 1) && compare_tree_int (TYPE_SIZE (gnu_field_type), BIGGEST_ALIGNMENT) <= 0 && (packed || (gnu_size != 0 && tree_int_cst_lt (gnu_size, TYPE_SIZE (gnu_field_type))))) { gnu_field_type = make_packable_type (gnu_field_type); if (gnu_field_type != gnu_orig_field_type && gnu_size == 0) gnu_size = rm_size (gnu_field_type); } /* If we are packing the record and the field is BLKmode, round the size up to a byte boundary. */ if (packed && TYPE_MODE (gnu_field_type) == BLKmode && gnu_size != 0) gnu_size = round_up (gnu_size, BITS_PER_UNIT); if (Present (Component_Clause (gnat_field))) { gnu_pos = UI_To_gnu (Component_Bit_Offset (gnat_field), bitsizetype); gnu_size = validate_size (Esize (gnat_field), gnu_field_type, gnat_field, FIELD_DECL, 0, 1); /* Ensure the position does not overlap with the parent subtype, if there is one. */ if (Present (Parent_Subtype (Underlying_Type (Scope (gnat_field))))) { tree gnu_parent = gnat_to_gnu_type (Parent_Subtype (Underlying_Type (Scope (gnat_field)))); if (TREE_CODE (TYPE_SIZE (gnu_parent)) == INTEGER_CST && tree_int_cst_lt (gnu_pos, TYPE_SIZE (gnu_parent))) { post_error_ne_tree ("offset of& must be beyond parent{, minimum allowed is ^}", First_Bit (Component_Clause (gnat_field)), gnat_field, TYPE_SIZE_UNIT (gnu_parent)); } } /* If this field needs strict alignment, ensure the record is sufficiently aligned and that that position and size are consistent with the alignment. */ if (needs_strict_alignment) { tree gnu_min_size = round_up (rm_size (gnu_field_type), TYPE_ALIGN (gnu_field_type)); TYPE_ALIGN (gnu_record_type) = MAX (TYPE_ALIGN (gnu_record_type), TYPE_ALIGN (gnu_field_type)); /* If Atomic, the size must match exactly and if aliased, the size must not be less than the rounded size. */ if ((Is_Atomic (gnat_field) || Is_Atomic (Etype (gnat_field))) && ! operand_equal_p (gnu_size, TYPE_SIZE (gnu_field_type), 0)) { post_error_ne_tree ("atomic field& must be natural size of type{ (^)}", Last_Bit (Component_Clause (gnat_field)), gnat_field, TYPE_SIZE (gnu_field_type)); gnu_size = 0; } else if (Is_Aliased (gnat_field) && gnu_size != 0 && tree_int_cst_lt (gnu_size, gnu_min_size)) { post_error_ne_tree ("size of aliased field& too small{, minimum required is ^}", Last_Bit (Component_Clause (gnat_field)), gnat_field, gnu_min_size); gnu_size = 0; } if (! integer_zerop (size_binop (TRUNC_MOD_EXPR, gnu_pos, bitsize_int (TYPE_ALIGN (gnu_field_type))))) { if (Is_Aliased (gnat_field)) post_error_ne_num ("position of aliased field& must be multiple of ^ bits", First_Bit (Component_Clause (gnat_field)), gnat_field, TYPE_ALIGN (gnu_field_type)); else if (Treat_As_Volatile (gnat_field)) post_error_ne_num ("position of volatile field& must be multiple of ^ bits", First_Bit (Component_Clause (gnat_field)), gnat_field, TYPE_ALIGN (gnu_field_type)); else if (Strict_Alignment (Etype (gnat_field))) post_error_ne_num ("position of & with aliased or tagged components not multiple of ^ bits", First_Bit (Component_Clause (gnat_field)), gnat_field, TYPE_ALIGN (gnu_field_type)); else gigi_abort (124); gnu_pos = 0; } /* If an error set the size to zero, show we have no position either. */ if (gnu_size == 0) gnu_pos = 0; } if (Is_Atomic (gnat_field)) check_ok_for_atomic (gnu_field_type, gnat_field, 0); } /* If the record has rep clauses and this is the tag field, make a rep clause for it as well. */ else if (Has_Specified_Layout (Scope (gnat_field)) && Chars (gnat_field) == Name_uTag) { gnu_pos = bitsize_zero_node; gnu_size = TYPE_SIZE (gnu_field_type); } /* We need to make the size the maximum for the type if it is self-referential and an unconstrained type. In that case, we can't pack the field since we can't make a copy to align it. */ if (TREE_CODE (gnu_field_type) == RECORD_TYPE && gnu_size == 0 && CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_field_type)) && ! Is_Constrained (Underlying_Type (Etype (gnat_field)))) { gnu_size = max_size (TYPE_SIZE (gnu_field_type), 1); packed = 0; } /* If no size is specified (or if there was an error), don't specify a position. */ if (gnu_size == 0) gnu_pos = 0; else { /* Unless this field is aliased, we can remove any left-justified modular type since it's only needed in the unchecked conversion case, which doesn't apply here. */ if (! needs_strict_alignment && TREE_CODE (gnu_field_type) == RECORD_TYPE && TYPE_LEFT_JUSTIFIED_MODULAR_P (gnu_field_type)) gnu_field_type = TREE_TYPE (TYPE_FIELDS (gnu_field_type)); gnu_field_type = make_type_from_size (gnu_field_type, gnu_size, Has_Biased_Representation (gnat_field)); gnu_field_type = maybe_pad_type (gnu_field_type, gnu_size, 0, gnat_field, "PAD", 0, definition, 1); } if (TREE_CODE (gnu_field_type) == RECORD_TYPE && TYPE_CONTAINS_TEMPLATE_P (gnu_field_type)) gigi_abort (118); /* Now create the decl for the field. */ set_lineno (gnat_field, 0); gnu_field = create_field_decl (gnu_field_id, gnu_field_type, gnu_record_type, packed, gnu_size, gnu_pos, Is_Aliased (gnat_field)); TREE_THIS_VOLATILE (gnu_field) = Treat_As_Volatile (gnat_field); if (Ekind (gnat_field) == E_Discriminant) DECL_DISCRIMINANT_NUMBER (gnu_field) = UI_To_gnu (Discriminant_Number (gnat_field), sizetype); return gnu_field; } /* Return 1 if TYPE is a type with variable size, a padding type with a field of variable size or is a record that has a field such a field. */ static int is_variable_size (tree type) { tree field; /* We need not be concerned about this at all if we don't have strict alignment. */ if (! STRICT_ALIGNMENT) return 0; else if (! TREE_CONSTANT (TYPE_SIZE (type))) return 1; else if (TREE_CODE (type) == RECORD_TYPE && TYPE_IS_PADDING_P (type) && ! TREE_CONSTANT (DECL_SIZE (TYPE_FIELDS (type)))) return 1; else if (TREE_CODE (type) != RECORD_TYPE && TREE_CODE (type) != UNION_TYPE && TREE_CODE (type) != QUAL_UNION_TYPE) return 0; for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field)) if (is_variable_size (TREE_TYPE (field))) return 1; return 0; } /* Return a GCC tree for a record type given a GNAT Component_List and a chain of GCC trees for fields that are in the record and have already been processed. When called from gnat_to_gnu_entity during the processing of a record type definition, the GCC nodes for the discriminants will be on the chain. The other calls to this function are recursive calls from itself for the Component_List of a variant and the chain is empty. PACKED is 1 if this is for a record with "pragma pack" and -1 is this is for a record type with "pragma component_alignment (storage_unit)". FINISH_RECORD is nonzero if this call will supply all of the remaining fields of the record. P_GNU_REP_LIST, if nonzero, is a pointer to a list to which each field with a rep clause is to be added. If it is nonzero, that is all that should be done with such fields. CANCEL_ALIGNMENT, if nonzero, means the alignment should be zeroed before laying out the record. This means the alignment only serves to force fields to be bitfields, but not require the record to be that aligned. This is used for variants. ALL_REP, if nonzero, means that a rep clause was found for all the fields. This simplifies the logic since we know we're not in the mixed case. The processing of the component list fills in the chain with all of the fields of the record and then the record type is finished. */ static void components_to_record (tree gnu_record_type, Node_Id component_list, tree gnu_field_list, int packed, int definition, tree *p_gnu_rep_list, int cancel_alignment, int all_rep) { Node_Id component_decl; Entity_Id gnat_field; Node_Id variant_part; Node_Id variant; tree gnu_our_rep_list = NULL_TREE; tree gnu_field, gnu_last; int layout_with_rep = 0; int all_rep_and_size = all_rep && TYPE_SIZE (gnu_record_type) != 0; /* For each variable within each component declaration create a GCC field and add it to the list, skipping any pragmas in the list. */ if (Present (Component_Items (component_list))) for (component_decl = First_Non_Pragma (Component_Items (component_list)); Present (component_decl); component_decl = Next_Non_Pragma (component_decl)) { gnat_field = Defining_Entity (component_decl); if (Chars (gnat_field) == Name_uParent) gnu_field = tree_last (TYPE_FIELDS (gnu_record_type)); else { gnu_field = gnat_to_gnu_field (gnat_field, gnu_record_type, packed, definition); /* If this is the _Tag field, put it before any discriminants, instead of after them as is the case for all other fields. Ignore field of void type if only annotating. */ if (Chars (gnat_field) == Name_uTag) gnu_field_list = chainon (gnu_field_list, gnu_field); else { TREE_CHAIN (gnu_field) = gnu_field_list; gnu_field_list = gnu_field; } } save_gnu_tree (gnat_field, gnu_field, 0); } /* At the end of the component list there may be a variant part. */ variant_part = Variant_Part (component_list); /* If this is an unchecked union, each variant must have exactly one component, each of which becomes one component of this union. */ if (TREE_CODE (gnu_record_type) == UNION_TYPE && Present (variant_part)) for (variant = First_Non_Pragma (Variants (variant_part)); Present (variant); variant = Next_Non_Pragma (variant)) { component_decl = First_Non_Pragma (Component_Items (Component_List (variant))); gnat_field = Defining_Entity (component_decl); gnu_field = gnat_to_gnu_field (gnat_field, gnu_record_type, packed, definition); TREE_CHAIN (gnu_field) = gnu_field_list; gnu_field_list = gnu_field; save_gnu_tree (gnat_field, gnu_field, 0); } /* We create a QUAL_UNION_TYPE for the variant part since the variants are mutually exclusive and should go in the same memory. To do this we need to treat each variant as a record whose elements are created from the component list for the variant. So here we create the records from the lists for the variants and put them all into the QUAL_UNION_TYPE. */ else if (Present (variant_part)) { tree gnu_discriminant = gnat_to_gnu (Name (variant_part)); Node_Id variant; tree gnu_union_type = make_node (QUAL_UNION_TYPE); tree gnu_union_field; tree gnu_variant_list = NULL_TREE; tree gnu_name = TYPE_NAME (gnu_record_type); tree gnu_var_name = concat_id_with_name (get_identifier (Get_Name_String (Chars (Name (variant_part)))), "XVN"); if (TREE_CODE (gnu_name) == TYPE_DECL) gnu_name = DECL_NAME (gnu_name); TYPE_NAME (gnu_union_type) = concat_id_with_name (gnu_name, IDENTIFIER_POINTER (gnu_var_name)); TYPE_PACKED (gnu_union_type) = TYPE_PACKED (gnu_record_type); for (variant = First_Non_Pragma (Variants (variant_part)); Present (variant); variant = Next_Non_Pragma (variant)) { tree gnu_variant_type = make_node (RECORD_TYPE); tree gnu_inner_name; tree gnu_qual; Get_Variant_Encoding (variant); gnu_inner_name = get_identifier (Name_Buffer); TYPE_NAME (gnu_variant_type) = concat_id_with_name (TYPE_NAME (gnu_union_type), IDENTIFIER_POINTER (gnu_inner_name)); /* Set the alignment of the inner type in case we need to make inner objects into bitfields, but then clear it out so the record actually gets only the alignment required. */ TYPE_ALIGN (gnu_variant_type) = TYPE_ALIGN (gnu_record_type); TYPE_PACKED (gnu_variant_type) = TYPE_PACKED (gnu_record_type); /* Similarly, if the outer record has a size specified and all fields have record rep clauses, we can propagate the size into the variant part. */ if (all_rep_and_size) { TYPE_SIZE (gnu_variant_type) = TYPE_SIZE (gnu_record_type); TYPE_SIZE_UNIT (gnu_variant_type) = TYPE_SIZE_UNIT (gnu_record_type); } components_to_record (gnu_variant_type, Component_List (variant), NULL_TREE, packed, definition, &gnu_our_rep_list, !all_rep_and_size, all_rep); gnu_qual = choices_to_gnu (gnu_discriminant, Discrete_Choices (variant)); Set_Present_Expr (variant, annotate_value (gnu_qual)); gnu_field = create_field_decl (gnu_inner_name, gnu_variant_type, gnu_union_type, 0, (all_rep_and_size ? TYPE_SIZE (gnu_record_type) : 0), (all_rep_and_size ? bitsize_zero_node : 0), 0); DECL_INTERNAL_P (gnu_field) = 1; DECL_QUALIFIER (gnu_field) = gnu_qual; TREE_CHAIN (gnu_field) = gnu_variant_list; gnu_variant_list = gnu_field; } /* We use to delete the empty variants from the end. However, we no longer do that because we need them to generate complete debugging information for the variant record. Otherwise, the union type definition will be missing the fields associated to these empty variants. */ /* Only make the QUAL_UNION_TYPE if there are any non-empty variants. */ if (gnu_variant_list != 0) { if (all_rep_and_size) { TYPE_SIZE (gnu_union_type) = TYPE_SIZE (gnu_record_type); TYPE_SIZE_UNIT (gnu_union_type) = TYPE_SIZE_UNIT (gnu_record_type); } finish_record_type (gnu_union_type, nreverse (gnu_variant_list), all_rep_and_size, 0); gnu_union_field = create_field_decl (gnu_var_name, gnu_union_type, gnu_record_type, packed, all_rep ? TYPE_SIZE (gnu_union_type) : 0, all_rep ? bitsize_zero_node : 0, 0); DECL_INTERNAL_P (gnu_union_field) = 1; TREE_CHAIN (gnu_union_field) = gnu_field_list; gnu_field_list = gnu_union_field; } } /* Scan GNU_FIELD_LIST and see if any fields have rep clauses. If they do, pull them out and put them into GNU_OUR_REP_LIST. We have to do this in a separate pass since we want to handle the discriminants but can't play with them until we've used them in debugging data above. ??? Note: if we then reorder them, debugging information will be wrong, but there's nothing that can be done about this at the moment. */ for (gnu_field = gnu_field_list, gnu_last = 0; gnu_field; ) { if (DECL_FIELD_OFFSET (gnu_field) != 0) { tree gnu_next = TREE_CHAIN (gnu_field); if (gnu_last == 0) gnu_field_list = gnu_next; else TREE_CHAIN (gnu_last) = gnu_next; TREE_CHAIN (gnu_field) = gnu_our_rep_list; gnu_our_rep_list = gnu_field; gnu_field = gnu_next; } else { gnu_last = gnu_field; gnu_field = TREE_CHAIN (gnu_field); } } /* If we have any items in our rep'ed field list, it is not the case that all the fields in the record have rep clauses, and P_REP_LIST is nonzero, set it and ignore the items. Otherwise, sort the fields by bit position and put them into their own record if we have any fields without rep clauses. */ if (gnu_our_rep_list != 0 && p_gnu_rep_list != 0 && ! all_rep) *p_gnu_rep_list = chainon (*p_gnu_rep_list, gnu_our_rep_list); else if (gnu_our_rep_list != 0) { tree gnu_rep_type = gnu_field_list == 0 ? gnu_record_type : make_node (RECORD_TYPE); int len = list_length (gnu_our_rep_list); tree *gnu_arr = (tree *) alloca (sizeof (tree) * len); int i; /* Set DECL_SECTION_NAME to increasing integers so we have a stable sort. */ for (i = 0, gnu_field = gnu_our_rep_list; gnu_field; gnu_field = TREE_CHAIN (gnu_field), i++) { gnu_arr[i] = gnu_field; DECL_SECTION_NAME (gnu_field) = size_int (i); } qsort (gnu_arr, len, sizeof (tree), compare_field_bitpos); /* Put the fields in the list in order of increasing position, which means we start from the end. */ gnu_our_rep_list = NULL_TREE; for (i = len - 1; i >= 0; i--) { TREE_CHAIN (gnu_arr[i]) = gnu_our_rep_list; gnu_our_rep_list = gnu_arr[i]; DECL_CONTEXT (gnu_arr[i]) = gnu_rep_type; DECL_SECTION_NAME (gnu_arr[i]) = 0; } if (gnu_field_list != 0) { finish_record_type (gnu_rep_type, gnu_our_rep_list, 1, 0); gnu_field = create_field_decl (get_identifier ("REP"), gnu_rep_type, gnu_record_type, 0, 0, 0, 1); DECL_INTERNAL_P (gnu_field) = 1; gnu_field_list = chainon (gnu_field_list, gnu_field); } else { layout_with_rep = 1; gnu_field_list = nreverse (gnu_our_rep_list); } } if (cancel_alignment) TYPE_ALIGN (gnu_record_type) = 0; finish_record_type (gnu_record_type, nreverse (gnu_field_list), layout_with_rep, 0); } /* Called via qsort from the above. Returns -1, 1, depending on the bit positions and ordinals of the two fields. */ static int compare_field_bitpos (const PTR rt1, const PTR rt2) { tree *t1 = (tree *) rt1; tree *t2 = (tree *) rt2; if (tree_int_cst_equal (bit_position (*t1), bit_position (*t2))) return (tree_int_cst_lt (DECL_SECTION_NAME (*t1), DECL_SECTION_NAME (*t2)) ? -1 : 1); else if (tree_int_cst_lt (bit_position (*t1), bit_position (*t2))) return -1; else return 1; } /* Given GNU_SIZE, a GCC tree representing a size, return a Uint to be placed into an Esize, Component_Bit_Offset, or Component_Size value in the GNAT tree. */ static Uint annotate_value (tree gnu_size) { int len = TREE_CODE_LENGTH (TREE_CODE (gnu_size)); TCode tcode; Node_Ref_Or_Val ops[3], ret; int i; int size; /* If back annotation is suppressed by the front end, return No_Uint */ if (!Back_Annotate_Rep_Info) return No_Uint; /* See if we've already saved the value for this node. */ if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (TREE_CODE (gnu_size))) && TREE_COMPLEXITY (gnu_size) != 0) return (Node_Ref_Or_Val) TREE_COMPLEXITY (gnu_size); /* If we do not return inside this switch, TCODE will be set to the code to use for a Create_Node operand and LEN (set above) will be the number of recursive calls for us to make. */ switch (TREE_CODE (gnu_size)) { case INTEGER_CST: if (TREE_OVERFLOW (gnu_size)) return No_Uint; /* This may have come from a conversion from some smaller type, so ensure this is in bitsizetype. */ gnu_size = convert (bitsizetype, gnu_size); /* For negative values, use NEGATE_EXPR of the supplied value. */ if (tree_int_cst_sgn (gnu_size) < 0) { /* The rediculous code below is to handle the case of the largest negative integer. */ tree negative_size = size_diffop (bitsize_zero_node, gnu_size); int adjust = 0; tree temp; if (TREE_CONSTANT_OVERFLOW (negative_size)) { negative_size = size_binop (MINUS_EXPR, bitsize_zero_node, size_binop (PLUS_EXPR, gnu_size, bitsize_one_node)); adjust = 1; } temp = build1 (NEGATE_EXPR, bitsizetype, negative_size); if (adjust) temp = build (MINUS_EXPR, bitsizetype, temp, bitsize_one_node); return annotate_value (temp); } if (! host_integerp (gnu_size, 1)) return No_Uint; size = tree_low_cst (gnu_size, 1); /* This peculiar test is to make sure that the size fits in an int on machines where HOST_WIDE_INT is not "int". */ if (tree_low_cst (gnu_size, 1) == size) return UI_From_Int (size); else return No_Uint; case COMPONENT_REF: /* The only case we handle here is a simple discriminant reference. */ if (TREE_CODE (TREE_OPERAND (gnu_size, 0)) == PLACEHOLDER_EXPR && TREE_CODE (TREE_OPERAND (gnu_size, 1)) == FIELD_DECL && DECL_DISCRIMINANT_NUMBER (TREE_OPERAND (gnu_size, 1)) != 0) return Create_Node (Discrim_Val, annotate_value (DECL_DISCRIMINANT_NUMBER (TREE_OPERAND (gnu_size, 1))), No_Uint, No_Uint); else return No_Uint; case NOP_EXPR: case CONVERT_EXPR: case NON_LVALUE_EXPR: return annotate_value (TREE_OPERAND (gnu_size, 0)); /* Now just list the operations we handle. */ case COND_EXPR: tcode = Cond_Expr; break; case PLUS_EXPR: tcode = Plus_Expr; break; case MINUS_EXPR: tcode = Minus_Expr; break; case MULT_EXPR: tcode = Mult_Expr; break; case TRUNC_DIV_EXPR: tcode = Trunc_Div_Expr; break; case CEIL_DIV_EXPR: tcode = Ceil_Div_Expr; break; case FLOOR_DIV_EXPR: tcode = Floor_Div_Expr; break; case TRUNC_MOD_EXPR: tcode = Trunc_Mod_Expr; break; case CEIL_MOD_EXPR: tcode = Ceil_Mod_Expr; break; case FLOOR_MOD_EXPR: tcode = Floor_Mod_Expr; break; case EXACT_DIV_EXPR: tcode = Exact_Div_Expr; break; case NEGATE_EXPR: tcode = Negate_Expr; break; case MIN_EXPR: tcode = Min_Expr; break; case MAX_EXPR: tcode = Max_Expr; break; case ABS_EXPR: tcode = Abs_Expr; break; case TRUTH_ANDIF_EXPR: tcode = Truth_Andif_Expr; break; case TRUTH_ORIF_EXPR: tcode = Truth_Orif_Expr; break; case TRUTH_AND_EXPR: tcode = Truth_And_Expr; break; case TRUTH_OR_EXPR: tcode = Truth_Or_Expr; break; case TRUTH_XOR_EXPR: tcode = Truth_Xor_Expr; break; case TRUTH_NOT_EXPR: tcode = Truth_Not_Expr; break; case LT_EXPR: tcode = Lt_Expr; break; case LE_EXPR: tcode = Le_Expr; break; case GT_EXPR: tcode = Gt_Expr; break; case GE_EXPR: tcode = Ge_Expr; break; case EQ_EXPR: tcode = Eq_Expr; break; case NE_EXPR: tcode = Ne_Expr; break; default: return No_Uint; } /* Now get each of the operands that's relevant for this code. If any cannot be expressed as a repinfo node, say we can't. */ for (i = 0; i < 3; i++) ops[i] = No_Uint; for (i = 0; i < len; i++) { ops[i] = annotate_value (TREE_OPERAND (gnu_size, i)); if (ops[i] == No_Uint) return No_Uint; } ret = Create_Node (tcode, ops[0], ops[1], ops[2]); TREE_COMPLEXITY (gnu_size) = ret; return ret; } /* Given GNAT_ENTITY, a record type, and GNU_TYPE, its corresponding GCC type, set Component_Bit_Offset and Esize to the position and size used by Gigi. */ static void annotate_rep (Entity_Id gnat_entity, tree gnu_type) { tree gnu_list; tree gnu_entry; Entity_Id gnat_field; /* We operate by first making a list of all field and their positions (we can get the sizes easily at any time) by a recursive call and then update all the sizes into the tree. */ gnu_list = compute_field_positions (gnu_type, NULL_TREE, size_zero_node, bitsize_zero_node, BIGGEST_ALIGNMENT); for (gnat_field = First_Entity (gnat_entity); Present (gnat_field); gnat_field = Next_Entity (gnat_field)) if ((Ekind (gnat_field) == E_Component || (Ekind (gnat_field) == E_Discriminant && ! Is_Unchecked_Union (Scope (gnat_field))))) { tree parent_offset = bitsize_zero_node; gnu_entry = purpose_member (gnat_to_gnu_entity (gnat_field, NULL_TREE, 0), gnu_list); if (gnu_entry) { if (type_annotate_only && Is_Tagged_Type (gnat_entity)) { /* In this mode the tag and parent components have not been generated, so we add the appropriate offset to each component. For a component appearing in the current extension, the offset is the size of the parent. */ if (Is_Derived_Type (gnat_entity) && Original_Record_Component (gnat_field) == gnat_field) parent_offset = UI_To_gnu (Esize (Etype (Base_Type (gnat_entity))), bitsizetype); else parent_offset = bitsize_int (POINTER_SIZE); } Set_Component_Bit_Offset (gnat_field, annotate_value (size_binop (PLUS_EXPR, bit_from_pos (TREE_PURPOSE (TREE_VALUE (gnu_entry)), TREE_VALUE (TREE_VALUE (TREE_VALUE (gnu_entry)))), parent_offset))); Set_Esize (gnat_field, annotate_value (DECL_SIZE (TREE_PURPOSE (gnu_entry)))); } else if (type_annotate_only && Is_Tagged_Type (gnat_entity) && Is_Derived_Type (gnat_entity)) { /* If there is no gnu_entry, this is an inherited component whose position is the same as in the parent type. */ Set_Component_Bit_Offset (gnat_field, Component_Bit_Offset (Original_Record_Component (gnat_field))); Set_Esize (gnat_field, Esize (Original_Record_Component (gnat_field))); } } } /* Scan all fields in GNU_TYPE and build entries where TREE_PURPOSE is the FIELD_DECL and TREE_VALUE a TREE_LIST with TREE_PURPOSE being the byte position and TREE_VALUE being a TREE_LIST with TREE_PURPOSE the value to be placed into DECL_OFFSET_ALIGN and TREE_VALUE the bit position. GNU_POS is to be added to the position, GNU_BITPOS to the bit position, OFFSET_ALIGN is the present value of DECL_OFFSET_ALIGN and GNU_LIST is a list of the entries so far. */ static tree compute_field_positions (tree gnu_type, tree gnu_list, tree gnu_pos, tree gnu_bitpos, unsigned int offset_align) { tree gnu_field; tree gnu_result = gnu_list; for (gnu_field = TYPE_FIELDS (gnu_type); gnu_field; gnu_field = TREE_CHAIN (gnu_field)) { tree gnu_our_bitpos = size_binop (PLUS_EXPR, gnu_bitpos, DECL_FIELD_BIT_OFFSET (gnu_field)); tree gnu_our_offset = size_binop (PLUS_EXPR, gnu_pos, DECL_FIELD_OFFSET (gnu_field)); unsigned int our_offset_align = MIN (offset_align, DECL_OFFSET_ALIGN (gnu_field)); gnu_result = tree_cons (gnu_field, tree_cons (gnu_our_offset, tree_cons (size_int (our_offset_align), gnu_our_bitpos, NULL_TREE), NULL_TREE), gnu_result); if (DECL_INTERNAL_P (gnu_field)) gnu_result = compute_field_positions (TREE_TYPE (gnu_field), gnu_result, gnu_our_offset, gnu_our_bitpos, our_offset_align); } return gnu_result; } /* UINT_SIZE is a Uint giving the specified size for an object of GNU_TYPE corresponding to GNAT_OBJECT. If size is valid, return a tree corresponding to its value. Otherwise return 0. KIND is VAR_DECL is we are specifying the size for an object, TYPE_DECL for the size of a type, and FIELD_DECL for the size of a field. COMPONENT_P is true if we are being called to process the Component_Size of GNAT_OBJECT. This is used for error message handling and to indicate to use the object size of GNU_TYPE. ZERO_OK is nonzero if a size of zero is permitted; if ZERO_OK is zero, it means that a size of zero should be treated as an unspecified size. */ static tree validate_size (Uint uint_size, tree gnu_type, Entity_Id gnat_object, enum tree_code kind, int component_p, int zero_ok) { Node_Id gnat_error_node; tree type_size = kind == VAR_DECL ? TYPE_SIZE (gnu_type) : rm_size (gnu_type); tree size; /* Find the node to use for errors. */ if ((Ekind (gnat_object) == E_Component || Ekind (gnat_object) == E_Discriminant) && Present (Component_Clause (gnat_object))) gnat_error_node = Last_Bit (Component_Clause (gnat_object)); else if (Present (Size_Clause (gnat_object))) gnat_error_node = Expression (Size_Clause (gnat_object)); else gnat_error_node = gnat_object; /* Return 0 if no size was specified, either because Esize was not Present or the specified size was zero. */ if (No (uint_size) || uint_size == No_Uint) return 0; /* Get the size as a tree. Give an error if a size was specified, but cannot be represented as in sizetype. */ size = UI_To_gnu (uint_size, bitsizetype); if (TREE_OVERFLOW (size)) { post_error_ne (component_p ? "component size of & is too large" : "size of & is too large", gnat_error_node, gnat_object); return 0; } /* Ignore a negative size since that corresponds to our back-annotation. Also ignore a zero size unless a size clause exists. */ else if (tree_int_cst_sgn (size) < 0 || (integer_zerop (size) && ! zero_ok)) return 0; /* The size of objects is always a multiple of a byte. */ if (kind == VAR_DECL && ! integer_zerop (size_binop (TRUNC_MOD_EXPR, size, bitsize_unit_node))) { if (component_p) post_error_ne ("component size for& is not a multiple of Storage_Unit", gnat_error_node, gnat_object); else post_error_ne ("size for& is not a multiple of Storage_Unit", gnat_error_node, gnat_object); return 0; } /* If this is an integral type or a packed array type, the front-end has verified the size, so we need not do it here (which would entail checking against the bounds). However, if this is an aliased object, it may not be smaller than the type of the object. */ if ((INTEGRAL_TYPE_P (gnu_type) || TYPE_IS_PACKED_ARRAY_TYPE_P (gnu_type)) && ! (kind == VAR_DECL && Is_Aliased (gnat_object))) return size; /* If the object is a record that contains a template, add the size of the template to the specified size. */ if (TREE_CODE (gnu_type) == RECORD_TYPE && TYPE_CONTAINS_TEMPLATE_P (gnu_type)) size = size_binop (PLUS_EXPR, DECL_SIZE (TYPE_FIELDS (gnu_type)), size); /* Modify the size of the type to be that of the maximum size if it has a discriminant or the size of a thin pointer if this is a fat pointer. */ if (type_size != 0 && CONTAINS_PLACEHOLDER_P (type_size)) type_size = max_size (type_size, 1); else if (TYPE_FAT_POINTER_P (gnu_type)) type_size = bitsize_int (POINTER_SIZE); /* If this is an access type, the minimum size is that given by the smallest integral mode that's valid for pointers. */ if (TREE_CODE (gnu_type) == POINTER_TYPE) { enum machine_mode p_mode; for (p_mode = GET_CLASS_NARROWEST_MODE (MODE_INT); !targetm.valid_pointer_mode (p_mode); p_mode = GET_MODE_WIDER_MODE (p_mode)) ; type_size = bitsize_int (GET_MODE_BITSIZE (p_mode)); } /* If the size of the object is a constant, the new size must not be smaller. */ if (TREE_CODE (type_size) != INTEGER_CST || TREE_OVERFLOW (type_size) || tree_int_cst_lt (size, type_size)) { if (component_p) post_error_ne_tree ("component size for& too small{, minimum allowed is ^}", gnat_error_node, gnat_object, type_size); else post_error_ne_tree ("size for& too small{, minimum allowed is ^}", gnat_error_node, gnat_object, type_size); if (kind == VAR_DECL && ! component_p && TREE_CODE (rm_size (gnu_type)) == INTEGER_CST && ! tree_int_cst_lt (size, rm_size (gnu_type))) post_error_ne_tree_2 ("\\size of ^ is not a multiple of alignment (^ bits)", gnat_error_node, gnat_object, rm_size (gnu_type), TYPE_ALIGN (gnu_type)); else if (INTEGRAL_TYPE_P (gnu_type)) post_error_ne ("\\size would be legal if & were not aliased!", gnat_error_node, gnat_object); return 0; } return size; } /* Similarly, but both validate and process a value of RM_Size. This routine is only called for types. */ static void set_rm_size (Uint uint_size, tree gnu_type, Entity_Id gnat_entity) { /* Only give an error if a Value_Size clause was explicitly given. Otherwise, we'd be duplicating an error on the Size clause. */ Node_Id gnat_attr_node = Get_Attribute_Definition_Clause (gnat_entity, Attr_Value_Size); tree old_size = rm_size (gnu_type); tree size; /* Get the size as a tree. Do nothing if none was specified, either because RM_Size was not Present or if the specified size was zero. Give an error if a size was specified, but cannot be represented as in sizetype. */ if (No (uint_size) || uint_size == No_Uint) return; size = UI_To_gnu (uint_size, bitsizetype); if (TREE_OVERFLOW (size)) { if (Present (gnat_attr_node)) post_error_ne ("Value_Size of & is too large", gnat_attr_node, gnat_entity); return; } /* Ignore a negative size since that corresponds to our back-annotation. Also ignore a zero size unless a size clause exists, a Value_Size clause exists, or this is an integer type, in which case the front end will have always set it. */ else if (tree_int_cst_sgn (size) < 0 || (integer_zerop (size) && No (gnat_attr_node) && ! Has_Size_Clause (gnat_entity) && ! Is_Discrete_Or_Fixed_Point_Type (gnat_entity))) return; /* If the old size is self-referential, get the maximum size. */ if (CONTAINS_PLACEHOLDER_P (old_size)) old_size = max_size (old_size, 1); /* If the size of the object is a constant, the new size must not be smaller (the front end checks this for scalar types). */ if (TREE_CODE (old_size) != INTEGER_CST || TREE_OVERFLOW (old_size) || (AGGREGATE_TYPE_P (gnu_type) && tree_int_cst_lt (size, old_size))) { if (Present (gnat_attr_node)) post_error_ne_tree ("Value_Size for& too small{, minimum allowed is ^}", gnat_attr_node, gnat_entity, old_size); return; } /* Otherwise, set the RM_Size. */ if (TREE_CODE (gnu_type) == INTEGER_TYPE && Is_Discrete_Or_Fixed_Point_Type (gnat_entity)) TYPE_RM_SIZE_INT (gnu_type) = size; else if (TREE_CODE (gnu_type) == ENUMERAL_TYPE) SET_TYPE_RM_SIZE_ENUM (gnu_type, size); else if ((TREE_CODE (gnu_type) == RECORD_TYPE || TREE_CODE (gnu_type) == UNION_TYPE || TREE_CODE (gnu_type) == QUAL_UNION_TYPE) && ! TYPE_IS_FAT_POINTER_P (gnu_type)) SET_TYPE_ADA_SIZE (gnu_type, size); } /* Given a type TYPE, return a new type whose size is appropriate for SIZE. If TYPE is the best type, return it. Otherwise, make a new type. We only support new integral and pointer types. BIASED_P is nonzero if we are making a biased type. */ static tree make_type_from_size (tree type, tree size_tree, int biased_p) { tree new_type; unsigned HOST_WIDE_INT size; /* If size indicates an error, just return TYPE to avoid propagating the error. Likewise if it's too large to represent. */ if (size_tree == 0 || ! host_integerp (size_tree, 1)) return type; size = tree_low_cst (size_tree, 1); switch (TREE_CODE (type)) { case INTEGER_TYPE: case ENUMERAL_TYPE: /* Only do something if the type is not already the proper size and is not a packed array type. */ if (TYPE_PACKED_ARRAY_TYPE_P (type) || (TYPE_PRECISION (type) == size && biased_p == (TREE_CODE (type) == INTEGER_CST && TYPE_BIASED_REPRESENTATION_P (type)))) break; size = MIN (size, LONG_LONG_TYPE_SIZE); new_type = make_signed_type (size); TREE_TYPE (new_type) = TREE_TYPE (type) != 0 ? TREE_TYPE (type) : type; TYPE_MIN_VALUE (new_type) = convert (TREE_TYPE (new_type), TYPE_MIN_VALUE (type)); TYPE_MAX_VALUE (new_type) = convert (TREE_TYPE (new_type), TYPE_MAX_VALUE (type)); TYPE_BIASED_REPRESENTATION_P (new_type) = ((TREE_CODE (type) == INTEGER_TYPE && TYPE_BIASED_REPRESENTATION_P (type)) || biased_p); TYPE_UNSIGNED (new_type) = TYPE_UNSIGNED (type) | TYPE_BIASED_REPRESENTATION_P (new_type); TYPE_RM_SIZE_INT (new_type) = bitsize_int (size); return new_type; case RECORD_TYPE: /* Do something if this is a fat pointer, in which case we may need to return the thin pointer. */ if (TYPE_IS_FAT_POINTER_P (type) && size < POINTER_SIZE * 2) return build_pointer_type (TYPE_OBJECT_RECORD_TYPE (TYPE_UNCONSTRAINED_ARRAY (type))); break; case POINTER_TYPE: /* Only do something if this is a thin pointer, in which case we may need to return the fat pointer. */ if (TYPE_THIN_POINTER_P (type) && size >= POINTER_SIZE * 2) return build_pointer_type (TYPE_UNCONSTRAINED_ARRAY (TREE_TYPE (type))); break; default: break; } return type; } /* ALIGNMENT is a Uint giving the alignment specified for GNAT_ENTITY, a type or object whose present alignment is ALIGN. If this alignment is valid, return it. Otherwise, give an error and return ALIGN. */ static unsigned int validate_alignment (Uint alignment, Entity_Id gnat_entity, unsigned int align) { Node_Id gnat_error_node = gnat_entity; unsigned int new_align; #ifndef MAX_OFILE_ALIGNMENT #define MAX_OFILE_ALIGNMENT BIGGEST_ALIGNMENT #endif if (Present (Alignment_Clause (gnat_entity))) gnat_error_node = Expression (Alignment_Clause (gnat_entity)); /* Don't worry about checking alignment if alignment was not specified by the source program and we already posted an error for this entity. */ if (Error_Posted (gnat_entity) && !Has_Alignment_Clause (gnat_entity)) return align; /* Within GCC, an alignment is an integer, so we must make sure a value is specified that fits in that range. Also, alignments of more than MAX_OFILE_ALIGNMENT can't be supported. */ if (! UI_Is_In_Int_Range (alignment) || ((new_align = UI_To_Int (alignment)) > MAX_OFILE_ALIGNMENT / BITS_PER_UNIT)) post_error_ne_num ("largest supported alignment for& is ^", gnat_error_node, gnat_entity, MAX_OFILE_ALIGNMENT / BITS_PER_UNIT); else if (! (Present (Alignment_Clause (gnat_entity)) && From_At_Mod (Alignment_Clause (gnat_entity))) && new_align * BITS_PER_UNIT < align) post_error_ne_num ("alignment for& must be at least ^", gnat_error_node, gnat_entity, align / BITS_PER_UNIT); else align = MAX (align, new_align == 0 ? 1 : new_align * BITS_PER_UNIT); return align; } /* Verify that OBJECT, a type or decl, is something we can implement atomically. If not, give an error for GNAT_ENTITY. COMP_P is nonzero if we require atomic components. */ static void check_ok_for_atomic (tree object, Entity_Id gnat_entity, int comp_p) { Node_Id gnat_error_point = gnat_entity; Node_Id gnat_node; enum machine_mode mode; unsigned int align; tree size; /* There are three case of what OBJECT can be. It can be a type, in which case we take the size, alignment and mode from the type. It can be a declaration that was indirect, in which case the relevant values are that of the type being pointed to, or it can be a normal declaration, in which case the values are of the decl. The code below assumes that OBJECT is either a type or a decl. */ if (TYPE_P (object)) { mode = TYPE_MODE (object); align = TYPE_ALIGN (object); size = TYPE_SIZE (object); } else if (DECL_BY_REF_P (object)) { mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (object))); align = TYPE_ALIGN (TREE_TYPE (TREE_TYPE (object))); size = TYPE_SIZE (TREE_TYPE (TREE_TYPE (object))); } else { mode = DECL_MODE (object); align = DECL_ALIGN (object); size = DECL_SIZE (object); } /* Consider all floating-point types atomic and any types that that are represented by integers no wider than a machine word. */ if (GET_MODE_CLASS (mode) == MODE_FLOAT || ((GET_MODE_CLASS (mode) == MODE_INT || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT) && GET_MODE_BITSIZE (mode) <= BITS_PER_WORD)) return; /* For the moment, also allow anything that has an alignment equal to its size and which is smaller than a word. */ if (size != 0 && TREE_CODE (size) == INTEGER_CST && compare_tree_int (size, align) == 0 && align <= BITS_PER_WORD) return; for (gnat_node = First_Rep_Item (gnat_entity); Present (gnat_node); gnat_node = Next_Rep_Item (gnat_node)) { if (! comp_p && Nkind (gnat_node) == N_Pragma && Get_Pragma_Id (Chars (gnat_node)) == Pragma_Atomic) gnat_error_point = First (Pragma_Argument_Associations (gnat_node)); else if (comp_p && Nkind (gnat_node) == N_Pragma && (Get_Pragma_Id (Chars (gnat_node)) == Pragma_Atomic_Components)) gnat_error_point = First (Pragma_Argument_Associations (gnat_node)); } if (comp_p) post_error_ne ("atomic access to component of & cannot be guaranteed", gnat_error_point, gnat_entity); else post_error_ne ("atomic access to & cannot be guaranteed", gnat_error_point, gnat_entity); } /* Given a type T, a FIELD_DECL F, and a replacement value R, return a new type with all size expressions that contain F updated by replacing F with R. This is identical to GCC's substitute_in_type except that it knows about TYPE_INDEX_TYPE. If F is NULL_TREE, always make a new RECORD_TYPE, even if nothing has changed. */ tree gnat_substitute_in_type (tree t, tree f, tree r) { tree new = t; tree tem; switch (TREE_CODE (t)) { case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE: case CHAR_TYPE: if (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (t)) || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (t))) { tree low = substitute_in_expr (TYPE_MIN_VALUE (t), f, r); tree high = substitute_in_expr (TYPE_MAX_VALUE (t), f, r); if (low == TYPE_MIN_VALUE (t) && high == TYPE_MAX_VALUE (t)) return t; new = build_range_type (TREE_TYPE (t), low, high); if (TYPE_INDEX_TYPE (t)) SET_TYPE_INDEX_TYPE (new, gnat_substitute_in_type (TYPE_INDEX_TYPE (t), f, r)); return new; } return t; case REAL_TYPE: if ((TYPE_MIN_VALUE (t) != 0 && CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (t))) || (TYPE_MAX_VALUE (t) != 0 && CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (t)))) { tree low = 0, high = 0; if (TYPE_MIN_VALUE (t)) low = substitute_in_expr (TYPE_MIN_VALUE (t), f, r); if (TYPE_MAX_VALUE (t)) high = substitute_in_expr (TYPE_MAX_VALUE (t), f, r); if (low == TYPE_MIN_VALUE (t) && high == TYPE_MAX_VALUE (t)) return t; t = copy_type (t); TYPE_MIN_VALUE (t) = low; TYPE_MAX_VALUE (t) = high; } return t; case COMPLEX_TYPE: tem = gnat_substitute_in_type (TREE_TYPE (t), f, r); if (tem == TREE_TYPE (t)) return t; return build_complex_type (tem); case OFFSET_TYPE: case METHOD_TYPE: case FILE_TYPE: case SET_TYPE: case FUNCTION_TYPE: case LANG_TYPE: /* Don't know how to do these yet. */ abort (); case ARRAY_TYPE: { tree component = gnat_substitute_in_type (TREE_TYPE (t), f, r); tree domain = gnat_substitute_in_type (TYPE_DOMAIN (t), f, r); if (component == TREE_TYPE (t) && domain == TYPE_DOMAIN (t)) return t; new = build_array_type (component, domain); TYPE_SIZE (new) = 0; TYPE_MULTI_ARRAY_P (new) = TYPE_MULTI_ARRAY_P (t); TYPE_CONVENTION_FORTRAN_P (new) = TYPE_CONVENTION_FORTRAN_P (t); layout_type (new); TYPE_ALIGN (new) = TYPE_ALIGN (t); return new; } case RECORD_TYPE: case UNION_TYPE: case QUAL_UNION_TYPE: { tree field; int changed_field = (f == NULL_TREE && ! TREE_CONSTANT (TYPE_SIZE (t))); int field_has_rep = 0; tree last_field = 0; tree new = copy_type (t); /* Start out with no fields, make new fields, and chain them in. If we haven't actually changed the type of any field, discard everything we've done and return the old type. */ TYPE_FIELDS (new) = 0; TYPE_SIZE (new) = 0; for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field)) { tree new_field = copy_node (field); TREE_TYPE (new_field) = gnat_substitute_in_type (TREE_TYPE (new_field), f, r); if (DECL_HAS_REP_P (field) && ! DECL_INTERNAL_P (field)) field_has_rep = 1; else if (TREE_TYPE (new_field) != TREE_TYPE (field)) changed_field = 1; /* If this is an internal field and the type of this field is a UNION_TYPE or RECORD_TYPE with no elements, ignore it. If the type just has one element, treat that as the field. But don't do this if we are processing a QUAL_UNION_TYPE. */ if (TREE_CODE (t) != QUAL_UNION_TYPE && DECL_INTERNAL_P (new_field) && (TREE_CODE (TREE_TYPE (new_field)) == UNION_TYPE || TREE_CODE (TREE_TYPE (new_field)) == RECORD_TYPE)) { if (TYPE_FIELDS (TREE_TYPE (new_field)) == 0) continue; if (TREE_CHAIN (TYPE_FIELDS (TREE_TYPE (new_field))) == 0) { tree next_new_field = copy_node (TYPE_FIELDS (TREE_TYPE (new_field))); /* Make sure omitting the union doesn't change the layout. */ DECL_ALIGN (next_new_field) = DECL_ALIGN (new_field); new_field = next_new_field; } } DECL_CONTEXT (new_field) = new; SET_DECL_ORIGINAL_FIELD (new_field, (DECL_ORIGINAL_FIELD (field) != 0 ? DECL_ORIGINAL_FIELD (field) : field)); /* If the size of the old field was set at a constant, propagate the size in case the type's size was variable. (This occurs in the case of a variant or discriminated record with a default size used as a field of another record.) */ DECL_SIZE (new_field) = TREE_CODE (DECL_SIZE (field)) == INTEGER_CST ? DECL_SIZE (field) : 0; DECL_SIZE_UNIT (new_field) = TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST ? DECL_SIZE_UNIT (field) : 0; if (TREE_CODE (t) == QUAL_UNION_TYPE) { tree new_q = substitute_in_expr (DECL_QUALIFIER (field), f, r); if (new_q != DECL_QUALIFIER (new_field)) changed_field = 1; /* Do the substitution inside the qualifier and if we find that this field will not be present, omit it. */ DECL_QUALIFIER (new_field) = new_q; if (integer_zerop (DECL_QUALIFIER (new_field))) continue; } if (last_field == 0) TYPE_FIELDS (new) = new_field; else TREE_CHAIN (last_field) = new_field; last_field = new_field; /* If this is a qualified type and this field will always be present, we are done. */ if (TREE_CODE (t) == QUAL_UNION_TYPE && integer_onep (DECL_QUALIFIER (new_field))) break; } /* If this used to be a qualified union type, but we now know what field will be present, make this a normal union. */ if (changed_field && TREE_CODE (new) == QUAL_UNION_TYPE && (TYPE_FIELDS (new) == 0 || integer_onep (DECL_QUALIFIER (TYPE_FIELDS (new))))) TREE_SET_CODE (new, UNION_TYPE); else if (! changed_field) return t; if (field_has_rep) gigi_abort (117); layout_type (new); /* If the size was originally a constant use it. */ if (TYPE_SIZE (t) != 0 && TREE_CODE (TYPE_SIZE (t)) == INTEGER_CST && TREE_CODE (TYPE_SIZE (new)) != INTEGER_CST) { TYPE_SIZE (new) = TYPE_SIZE (t); TYPE_SIZE_UNIT (new) = TYPE_SIZE_UNIT (t); SET_TYPE_ADA_SIZE (new, TYPE_ADA_SIZE (t)); } return new; } default: return t; } } /* Return the "RM size" of GNU_TYPE. This is the actual number of bits needed to represent the object. */ tree rm_size (tree gnu_type) { /* For integer types, this is the precision. For record types, we store the size explicitly. For other types, this is just the size. */ if (INTEGRAL_TYPE_P (gnu_type) && TYPE_RM_SIZE (gnu_type) != 0) return TYPE_RM_SIZE (gnu_type); else if (TREE_CODE (gnu_type) == RECORD_TYPE && TYPE_CONTAINS_TEMPLATE_P (gnu_type)) /* Return the rm_size of the actual data plus the size of the template. */ return size_binop (PLUS_EXPR, rm_size (TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (gnu_type)))), DECL_SIZE (TYPE_FIELDS (gnu_type))); else if ((TREE_CODE (gnu_type) == RECORD_TYPE || TREE_CODE (gnu_type) == UNION_TYPE || TREE_CODE (gnu_type) == QUAL_UNION_TYPE) && ! TYPE_IS_FAT_POINTER_P (gnu_type) && TYPE_ADA_SIZE (gnu_type) != 0) return TYPE_ADA_SIZE (gnu_type); else return TYPE_SIZE (gnu_type); } /* Return an identifier representing the external name to be used for GNAT_ENTITY. If SUFFIX is specified, the name is followed by "___" and the specified suffix. */ tree create_concat_name (Entity_Id gnat_entity, const char *suffix) { const char *str = (suffix == 0 ? "" : suffix); String_Template temp = {1, strlen (str)}; Fat_Pointer fp = {str, &temp}; Get_External_Name_With_Suffix (gnat_entity, fp); #ifdef _WIN32 /* A variable using the Stdcall convention (meaning we are running on a Windows box) live in a DLL. Here we adjust its name to use the jump-table, the _imp__NAME contains the address for the NAME variable. */ { Entity_Kind kind = Ekind (gnat_entity); const char *prefix = "_imp__"; int plen = strlen (prefix); if ((kind == E_Variable || kind == E_Constant) && Convention (gnat_entity) == Convention_Stdcall) { int k; for (k = 0; k <= Name_Len; k++) Name_Buffer [Name_Len - k + plen] = Name_Buffer [Name_Len - k]; strncpy (Name_Buffer, prefix, plen); } } #endif return get_identifier (Name_Buffer); } /* Return the name to be used for GNAT_ENTITY. If a type, create a fully-qualified name, possibly with type information encoding. Otherwise, return the name. */ tree get_entity_name (Entity_Id gnat_entity) { Get_Encoded_Name (gnat_entity); return get_identifier (Name_Buffer); } /* Given GNU_ID, an IDENTIFIER_NODE containing a name and SUFFIX, a string, return a new IDENTIFIER_NODE that is the concatenation of the name in GNU_ID and SUFFIX. */ tree concat_id_with_name (tree gnu_id, const char *suffix) { int len = IDENTIFIER_LENGTH (gnu_id); strncpy (Name_Buffer, IDENTIFIER_POINTER (gnu_id), IDENTIFIER_LENGTH (gnu_id)); strncpy (Name_Buffer + len, "___", 3); len += 3; strcpy (Name_Buffer + len, suffix); return get_identifier (Name_Buffer); } #include "gt-ada-decl.h"