------------------------------------------------------------------------------ -- -- -- GNAT COMPILER COMPONENTS -- -- -- -- E X P _ C H 3 -- -- -- -- B o d y -- -- -- -- Copyright (C) 1992-2013, Free Software Foundation, Inc. -- -- -- -- GNAT is free software; you can redistribute it and/or modify it under -- -- terms of the GNU General Public License as published by the Free Soft- -- -- ware Foundation; either version 3, or (at your option) any later ver- -- -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- -- for more details. You should have received a copy of the GNU General -- -- Public License distributed with GNAT; see file COPYING3. If not, go to -- -- http://www.gnu.org/licenses for a complete copy of the license. -- -- -- -- GNAT was originally developed by the GNAT team at New York University. -- -- Extensive contributions were provided by Ada Core Technologies Inc. -- -- -- ------------------------------------------------------------------------------ with Atree; use Atree; with Checks; use Checks; with Einfo; use Einfo; with Errout; use Errout; with Exp_Aggr; use Exp_Aggr; with Exp_Atag; use Exp_Atag; with Exp_Ch4; use Exp_Ch4; with Exp_Ch6; use Exp_Ch6; with Exp_Ch7; use Exp_Ch7; with Exp_Ch9; use Exp_Ch9; with Exp_Ch11; use Exp_Ch11; with Exp_Dbug; use Exp_Dbug; with Exp_Disp; use Exp_Disp; with Exp_Dist; use Exp_Dist; with Exp_Smem; use Exp_Smem; with Exp_Strm; use Exp_Strm; with Exp_Tss; use Exp_Tss; with Exp_Util; use Exp_Util; with Freeze; use Freeze; with Namet; use Namet; with Nlists; use Nlists; with Nmake; use Nmake; with Opt; use Opt; with Restrict; use Restrict; with Rident; use Rident; with Rtsfind; use Rtsfind; with Sem; use Sem; with Sem_Aux; use Sem_Aux; with Sem_Attr; use Sem_Attr; with Sem_Cat; use Sem_Cat; with Sem_Ch3; use Sem_Ch3; with Sem_Ch6; use Sem_Ch6; with Sem_Ch8; use Sem_Ch8; with Sem_Disp; use Sem_Disp; with Sem_Eval; use Sem_Eval; with Sem_Mech; use Sem_Mech; with Sem_Res; use Sem_Res; with Sem_SCIL; use Sem_SCIL; with Sem_Type; use Sem_Type; with Sem_Util; use Sem_Util; with Sinfo; use Sinfo; with Stand; use Stand; with Snames; use Snames; with Targparm; use Targparm; with Tbuild; use Tbuild; with Ttypes; use Ttypes; with Validsw; use Validsw; package body Exp_Ch3 is ----------------------- -- Local Subprograms -- ----------------------- procedure Adjust_Discriminants (Rtype : Entity_Id); -- This is used when freezing a record type. It attempts to construct -- more restrictive subtypes for discriminants so that the max size of -- the record can be calculated more accurately. See the body of this -- procedure for details. procedure Build_Array_Init_Proc (A_Type : Entity_Id; Nod : Node_Id); -- Build initialization procedure for given array type. Nod is a node -- used for attachment of any actions required in its construction. -- It also supplies the source location used for the procedure. function Build_Array_Invariant_Proc (A_Type : Entity_Id; Nod : Node_Id) return Node_Id; -- If the component of type of array type has invariants, build procedure -- that checks invariant on all components of the array. Ada 2012 specifies -- that an invariant on some type T must be applied to in-out parameters -- and return values that include a part of type T. If the array type has -- an otherwise specified invariant, the component check procedure is -- called from within the user-specified invariant. Otherwise this becomes -- the invariant procedure for the array type. function Build_Record_Invariant_Proc (R_Type : Entity_Id; Nod : Node_Id) return Node_Id; -- Ditto for record types. function Build_Discriminant_Formals (Rec_Id : Entity_Id; Use_Dl : Boolean) return List_Id; -- This function uses the discriminants of a type to build a list of -- formal parameters, used in Build_Init_Procedure among other places. -- If the flag Use_Dl is set, the list is built using the already -- defined discriminals of the type, as is the case for concurrent -- types with discriminants. Otherwise new identifiers are created, -- with the source names of the discriminants. function Build_Equivalent_Array_Aggregate (T : Entity_Id) return Node_Id; -- This function builds a static aggregate that can serve as the initial -- value for an array type whose bounds are static, and whose component -- type is a composite type that has a static equivalent aggregate. -- The equivalent array aggregate is used both for object initialization -- and for component initialization, when used in the following function. function Build_Equivalent_Record_Aggregate (T : Entity_Id) return Node_Id; -- This function builds a static aggregate that can serve as the initial -- value for a record type whose components are scalar and initialized -- with compile-time values, or arrays with similar initialization or -- defaults. When possible, initialization of an object of the type can -- be achieved by using a copy of the aggregate as an initial value, thus -- removing the implicit call that would otherwise constitute elaboration -- code. procedure Build_Record_Init_Proc (N : Node_Id; Rec_Ent : Entity_Id); -- Build record initialization procedure. N is the type declaration -- node, and Rec_Ent is the corresponding entity for the record type. procedure Build_Slice_Assignment (Typ : Entity_Id); -- Build assignment procedure for one-dimensional arrays of controlled -- types. Other array and slice assignments are expanded in-line, but -- the code expansion for controlled components (when control actions -- are active) can lead to very large blocks that GCC3 handles poorly. procedure Build_Untagged_Equality (Typ : Entity_Id); -- AI05-0123: Equality on untagged records composes. This procedure -- builds the equality routine for an untagged record that has components -- of a record type that has user-defined primitive equality operations. -- The resulting operation is a TSS subprogram. procedure Build_Variant_Record_Equality (Typ : Entity_Id); -- Create An Equality function for the non-tagged variant record 'Typ' -- and attach it to the TSS list procedure Check_Stream_Attributes (Typ : Entity_Id); -- Check that if a limited extension has a parent with user-defined stream -- attributes, and does not itself have user-defined stream-attributes, -- then any limited component of the extension also has the corresponding -- user-defined stream attributes. procedure Clean_Task_Names (Typ : Entity_Id; Proc_Id : Entity_Id); -- If an initialization procedure includes calls to generate names -- for task subcomponents, indicate that secondary stack cleanup is -- needed after an initialization. Typ is the component type, and Proc_Id -- the initialization procedure for the enclosing composite type. procedure Expand_Tagged_Root (T : Entity_Id); -- Add a field _Tag at the beginning of the record. This field carries -- the value of the access to the Dispatch table. This procedure is only -- called on root type, the _Tag field being inherited by the descendants. procedure Expand_Freeze_Array_Type (N : Node_Id); -- Freeze an array type. Deals with building the initialization procedure, -- creating the packed array type for a packed array and also with the -- creation of the controlling procedures for the controlled case. The -- argument N is the N_Freeze_Entity node for the type. procedure Expand_Freeze_Class_Wide_Type (N : Node_Id); -- Freeze a class-wide type. Build routine Finalize_Address for the purpose -- of finalizing controlled derivations from the class-wide's root type. procedure Expand_Freeze_Enumeration_Type (N : Node_Id); -- Freeze enumeration type with non-standard representation. Builds the -- array and function needed to convert between enumeration pos and -- enumeration representation values. N is the N_Freeze_Entity node -- for the type. procedure Expand_Freeze_Record_Type (N : Node_Id); -- Freeze record type. Builds all necessary discriminant checking -- and other ancillary functions, and builds dispatch tables where -- needed. The argument N is the N_Freeze_Entity node. This processing -- applies only to E_Record_Type entities, not to class wide types, -- record subtypes, or private types. procedure Freeze_Stream_Operations (N : Node_Id; Typ : Entity_Id); -- Treat user-defined stream operations as renaming_as_body if the -- subprogram they rename is not frozen when the type is frozen. procedure Insert_Component_Invariant_Checks (N : Node_Id; Typ : Entity_Id; Proc : Node_Id); -- If a composite type has invariants and also has components with defined -- invariants. the component invariant procedure is inserted into the user- -- defined invariant procedure and added to the checks to be performed. procedure Initialization_Warning (E : Entity_Id); -- If static elaboration of the package is requested, indicate -- when a type does meet the conditions for static initialization. If -- E is a type, it has components that have no static initialization. -- if E is an entity, its initial expression is not compile-time known. function Init_Formals (Typ : Entity_Id) return List_Id; -- This function builds the list of formals for an initialization routine. -- The first formal is always _Init with the given type. For task value -- record types and types containing tasks, three additional formals are -- added: -- -- _Master : Master_Id -- _Chain : in out Activation_Chain -- _Task_Name : String -- -- The caller must append additional entries for discriminants if required. function In_Runtime (E : Entity_Id) return Boolean; -- Check if E is defined in the RTL (in a child of Ada or System). Used -- to avoid to bring in the overhead of _Input, _Output for tagged types. function Is_User_Defined_Equality (Prim : Node_Id) return Boolean; -- Returns true if Prim is a user defined equality function function Make_Eq_Body (Typ : Entity_Id; Eq_Name : Name_Id) return Node_Id; -- Build the body of a primitive equality operation for a tagged record -- type, or in Ada 2012 for any record type that has components with a -- user-defined equality. Factored out of Predefined_Primitive_Bodies. function Make_Eq_Case (E : Entity_Id; CL : Node_Id; Discrs : Elist_Id := New_Elmt_List) return List_Id; -- Building block for variant record equality. Defined to share the code -- between the tagged and non-tagged case. Given a Component_List node CL, -- it generates an 'if' followed by a 'case' statement that compares all -- components of local temporaries named X and Y (that are declared as -- formals at some upper level). E provides the Sloc to be used for the -- generated code. -- -- IF E is an unchecked_union, Discrs is the list of formals created for -- the inferred discriminants of one operand. These formals are used in -- the generated case statements for each variant of the unchecked union. function Make_Eq_If (E : Entity_Id; L : List_Id) return Node_Id; -- Building block for variant record equality. Defined to share the code -- between the tagged and non-tagged case. Given the list of components -- (or discriminants) L, it generates a return statement that compares all -- components of local temporaries named X and Y (that are declared as -- formals at some upper level). E provides the Sloc to be used for the -- generated code. function Make_Neq_Body (Tag_Typ : Entity_Id) return Node_Id; -- Search for a renaming of the inequality dispatching primitive of -- this tagged type. If found then build and return the corresponding -- rename-as-body inequality subprogram; otherwise return Empty. procedure Make_Predefined_Primitive_Specs (Tag_Typ : Entity_Id; Predef_List : out List_Id; Renamed_Eq : out Entity_Id); -- Create a list with the specs of the predefined primitive operations. -- For tagged types that are interfaces all these primitives are defined -- abstract. -- -- The following entries are present for all tagged types, and provide -- the results of the corresponding attribute applied to the object. -- Dispatching is required in general, since the result of the attribute -- will vary with the actual object subtype. -- -- _size provides result of 'Size attribute -- typSR provides result of 'Read attribute -- typSW provides result of 'Write attribute -- typSI provides result of 'Input attribute -- typSO provides result of 'Output attribute -- -- The following entries are additionally present for non-limited tagged -- types, and implement additional dispatching operations for predefined -- operations: -- -- _equality implements "=" operator -- _assign implements assignment operation -- typDF implements deep finalization -- typDA implements deep adjust -- -- The latter two are empty procedures unless the type contains some -- controlled components that require finalization actions (the deep -- in the name refers to the fact that the action applies to components). -- -- The list is returned in Predef_List. The Parameter Renamed_Eq either -- returns the value Empty, or else the defining unit name for the -- predefined equality function in the case where the type has a primitive -- operation that is a renaming of predefined equality (but only if there -- is also an overriding user-defined equality function). The returned -- Renamed_Eq will be passed to the corresponding parameter of -- Predefined_Primitive_Bodies. function Has_New_Non_Standard_Rep (T : Entity_Id) return Boolean; -- returns True if there are representation clauses for type T that are not -- inherited. If the result is false, the init_proc and the discriminant -- checking functions of the parent can be reused by a derived type. procedure Make_Controlling_Function_Wrappers (Tag_Typ : Entity_Id; Decl_List : out List_Id; Body_List : out List_Id); -- Ada 2005 (AI-391): Makes specs and bodies for the wrapper functions -- associated with inherited functions with controlling results which -- are not overridden. The body of each wrapper function consists solely -- of a return statement whose expression is an extension aggregate -- invoking the inherited subprogram's parent subprogram and extended -- with a null association list. function Make_Null_Procedure_Specs (Tag_Typ : Entity_Id) return List_Id; -- Ada 2005 (AI-251): Makes specs for null procedures associated with any -- null procedures inherited from an interface type that have not been -- overridden. Only one null procedure will be created for a given set of -- inherited null procedures with homographic profiles. function Predef_Spec_Or_Body (Loc : Source_Ptr; Tag_Typ : Entity_Id; Name : Name_Id; Profile : List_Id; Ret_Type : Entity_Id := Empty; For_Body : Boolean := False) return Node_Id; -- This function generates the appropriate expansion for a predefined -- primitive operation specified by its name, parameter profile and -- return type (Empty means this is a procedure). If For_Body is false, -- then the returned node is a subprogram declaration. If For_Body is -- true, then the returned node is a empty subprogram body containing -- no declarations and no statements. function Predef_Stream_Attr_Spec (Loc : Source_Ptr; Tag_Typ : Entity_Id; Name : TSS_Name_Type; For_Body : Boolean := False) return Node_Id; -- Specialized version of Predef_Spec_Or_Body that apply to read, write, -- input and output attribute whose specs are constructed in Exp_Strm. function Predef_Deep_Spec (Loc : Source_Ptr; Tag_Typ : Entity_Id; Name : TSS_Name_Type; For_Body : Boolean := False) return Node_Id; -- Specialized version of Predef_Spec_Or_Body that apply to _deep_adjust -- and _deep_finalize function Predefined_Primitive_Bodies (Tag_Typ : Entity_Id; Renamed_Eq : Entity_Id) return List_Id; -- Create the bodies of the predefined primitives that are described in -- Predefined_Primitive_Specs. When not empty, Renamed_Eq must denote -- the defining unit name of the type's predefined equality as returned -- by Make_Predefined_Primitive_Specs. function Predefined_Primitive_Freeze (Tag_Typ : Entity_Id) return List_Id; -- Freeze entities of all predefined primitive operations. This is needed -- because the bodies of these operations do not normally do any freezing. function Stream_Operation_OK (Typ : Entity_Id; Operation : TSS_Name_Type) return Boolean; -- Check whether the named stream operation must be emitted for a given -- type. The rules for inheritance of stream attributes by type extensions -- are enforced by this function. Furthermore, various restrictions prevent -- the generation of these operations, as a useful optimization or for -- certification purposes. -------------------------- -- Adjust_Discriminants -- -------------------------- -- This procedure attempts to define subtypes for discriminants that are -- more restrictive than those declared. Such a replacement is possible if -- we can demonstrate that values outside the restricted range would cause -- constraint errors in any case. The advantage of restricting the -- discriminant types in this way is that the maximum size of the variant -- record can be calculated more conservatively. -- An example of a situation in which we can perform this type of -- restriction is the following: -- subtype B is range 1 .. 10; -- type Q is array (B range <>) of Integer; -- type V (N : Natural) is record -- C : Q (1 .. N); -- end record; -- In this situation, we can restrict the upper bound of N to 10, since -- any larger value would cause a constraint error in any case. -- There are many situations in which such restriction is possible, but -- for now, we just look for cases like the above, where the component -- in question is a one dimensional array whose upper bound is one of -- the record discriminants. Also the component must not be part of -- any variant part, since then the component does not always exist. procedure Adjust_Discriminants (Rtype : Entity_Id) is Loc : constant Source_Ptr := Sloc (Rtype); Comp : Entity_Id; Ctyp : Entity_Id; Ityp : Entity_Id; Lo : Node_Id; Hi : Node_Id; P : Node_Id; Loval : Uint; Discr : Entity_Id; Dtyp : Entity_Id; Dhi : Node_Id; Dhiv : Uint; Ahi : Node_Id; Ahiv : Uint; Tnn : Entity_Id; begin Comp := First_Component (Rtype); while Present (Comp) loop -- If our parent is a variant, quit, we do not look at components -- that are in variant parts, because they may not always exist. P := Parent (Comp); -- component declaration P := Parent (P); -- component list exit when Nkind (Parent (P)) = N_Variant; -- We are looking for a one dimensional array type Ctyp := Etype (Comp); if not Is_Array_Type (Ctyp) or else Number_Dimensions (Ctyp) > 1 then goto Continue; end if; -- The lower bound must be constant, and the upper bound is a -- discriminant (which is a discriminant of the current record). Ityp := Etype (First_Index (Ctyp)); Lo := Type_Low_Bound (Ityp); Hi := Type_High_Bound (Ityp); if not Compile_Time_Known_Value (Lo) or else Nkind (Hi) /= N_Identifier or else No (Entity (Hi)) or else Ekind (Entity (Hi)) /= E_Discriminant then goto Continue; end if; -- We have an array with appropriate bounds Loval := Expr_Value (Lo); Discr := Entity (Hi); Dtyp := Etype (Discr); -- See if the discriminant has a known upper bound Dhi := Type_High_Bound (Dtyp); if not Compile_Time_Known_Value (Dhi) then goto Continue; end if; Dhiv := Expr_Value (Dhi); -- See if base type of component array has known upper bound Ahi := Type_High_Bound (Etype (First_Index (Base_Type (Ctyp)))); if not Compile_Time_Known_Value (Ahi) then goto Continue; end if; Ahiv := Expr_Value (Ahi); -- The condition for doing the restriction is that the high bound -- of the discriminant is greater than the low bound of the array, -- and is also greater than the high bound of the base type index. if Dhiv > Loval and then Dhiv > Ahiv then -- We can reset the upper bound of the discriminant type to -- whichever is larger, the low bound of the component, or -- the high bound of the base type array index. -- We build a subtype that is declared as -- subtype Tnn is discr_type range discr_type'First .. max; -- And insert this declaration into the tree. The type of the -- discriminant is then reset to this more restricted subtype. Tnn := Make_Temporary (Loc, 'T'); Insert_Action (Declaration_Node (Rtype), Make_Subtype_Declaration (Loc, Defining_Identifier => Tnn, Subtype_Indication => Make_Subtype_Indication (Loc, Subtype_Mark => New_Occurrence_Of (Dtyp, Loc), Constraint => Make_Range_Constraint (Loc, Range_Expression => Make_Range (Loc, Low_Bound => Make_Attribute_Reference (Loc, Attribute_Name => Name_First, Prefix => New_Occurrence_Of (Dtyp, Loc)), High_Bound => Make_Integer_Literal (Loc, Intval => UI_Max (Loval, Ahiv))))))); Set_Etype (Discr, Tnn); end if; <> Next_Component (Comp); end loop; end Adjust_Discriminants; --------------------------- -- Build_Array_Init_Proc -- --------------------------- procedure Build_Array_Init_Proc (A_Type : Entity_Id; Nod : Node_Id) is Comp_Type : constant Entity_Id := Component_Type (A_Type); Body_Stmts : List_Id; Has_Default_Init : Boolean; Index_List : List_Id; Loc : Source_Ptr; Proc_Id : Entity_Id; function Init_Component return List_Id; -- Create one statement to initialize one array component, designated -- by a full set of indexes. function Init_One_Dimension (N : Int) return List_Id; -- Create loop to initialize one dimension of the array. The single -- statement in the loop body initializes the inner dimensions if any, -- or else the single component. Note that this procedure is called -- recursively, with N being the dimension to be initialized. A call -- with N greater than the number of dimensions simply generates the -- component initialization, terminating the recursion. -------------------- -- Init_Component -- -------------------- function Init_Component return List_Id is Comp : Node_Id; begin Comp := Make_Indexed_Component (Loc, Prefix => Make_Identifier (Loc, Name_uInit), Expressions => Index_List); if Has_Default_Aspect (A_Type) then Set_Assignment_OK (Comp); return New_List ( Make_Assignment_Statement (Loc, Name => Comp, Expression => Convert_To (Comp_Type, Default_Aspect_Component_Value (First_Subtype (A_Type))))); elsif Needs_Simple_Initialization (Comp_Type) then Set_Assignment_OK (Comp); return New_List ( Make_Assignment_Statement (Loc, Name => Comp, Expression => Get_Simple_Init_Val (Comp_Type, Nod, Component_Size (A_Type)))); else Clean_Task_Names (Comp_Type, Proc_Id); return Build_Initialization_Call (Loc, Comp, Comp_Type, In_Init_Proc => True, Enclos_Type => A_Type); end if; end Init_Component; ------------------------ -- Init_One_Dimension -- ------------------------ function Init_One_Dimension (N : Int) return List_Id is Index : Entity_Id; begin -- If the component does not need initializing, then there is nothing -- to do here, so we return a null body. This occurs when generating -- the dummy Init_Proc needed for Initialize_Scalars processing. if not Has_Non_Null_Base_Init_Proc (Comp_Type) and then not Needs_Simple_Initialization (Comp_Type) and then not Has_Task (Comp_Type) and then not Has_Default_Aspect (A_Type) then return New_List (Make_Null_Statement (Loc)); -- If all dimensions dealt with, we simply initialize the component elsif N > Number_Dimensions (A_Type) then return Init_Component; -- Here we generate the required loop else Index := Make_Defining_Identifier (Loc, New_External_Name ('J', N)); Append (New_Reference_To (Index, Loc), Index_List); return New_List ( Make_Implicit_Loop_Statement (Nod, Identifier => Empty, Iteration_Scheme => Make_Iteration_Scheme (Loc, Loop_Parameter_Specification => Make_Loop_Parameter_Specification (Loc, Defining_Identifier => Index, Discrete_Subtype_Definition => Make_Attribute_Reference (Loc, Prefix => Make_Identifier (Loc, Name_uInit), Attribute_Name => Name_Range, Expressions => New_List ( Make_Integer_Literal (Loc, N))))), Statements => Init_One_Dimension (N + 1))); end if; end Init_One_Dimension; -- Start of processing for Build_Array_Init_Proc begin -- The init proc is created when analyzing the freeze node for the type, -- but it properly belongs with the array type declaration. However, if -- the freeze node is for a subtype of a type declared in another unit -- it seems preferable to use the freeze node as the source location of -- the init proc. In any case this is preferable for gcov usage, and -- the Sloc is not otherwise used by the compiler. if In_Open_Scopes (Scope (A_Type)) then Loc := Sloc (A_Type); else Loc := Sloc (Nod); end if; -- Nothing to generate in the following cases: -- 1. Initialization is suppressed for the type -- 2. The type is a value type, in the CIL sense. -- 3. The type has CIL/JVM convention. -- 4. An initialization already exists for the base type if Initialization_Suppressed (A_Type) or else Is_Value_Type (Comp_Type) or else Convention (A_Type) = Convention_CIL or else Convention (A_Type) = Convention_Java or else Present (Base_Init_Proc (A_Type)) then return; end if; Index_List := New_List; -- We need an initialization procedure if any of the following is true: -- 1. The component type has an initialization procedure -- 2. The component type needs simple initialization -- 3. Tasks are present -- 4. The type is marked as a public entity -- 5. The array type has a Default_Component_Value aspect -- The reason for the public entity test is to deal properly with the -- Initialize_Scalars pragma. This pragma can be set in the client and -- not in the declaring package, this means the client will make a call -- to the initialization procedure (because one of conditions 1-3 must -- apply in this case), and we must generate a procedure (even if it is -- null) to satisfy the call in this case. -- Exception: do not build an array init_proc for a type whose root -- type is Standard.String or Standard.Wide_[Wide_]String, since there -- is no place to put the code, and in any case we handle initialization -- of such types (in the Initialize_Scalars case, that's the only time -- the issue arises) in a special manner anyway which does not need an -- init_proc. Has_Default_Init := Has_Non_Null_Base_Init_Proc (Comp_Type) or else Needs_Simple_Initialization (Comp_Type) or else Has_Task (Comp_Type) or else Has_Default_Aspect (A_Type); if Has_Default_Init or else (not Restriction_Active (No_Initialize_Scalars) and then Is_Public (A_Type) and then Root_Type (A_Type) /= Standard_String and then Root_Type (A_Type) /= Standard_Wide_String and then Root_Type (A_Type) /= Standard_Wide_Wide_String) then Proc_Id := Make_Defining_Identifier (Loc, Chars => Make_Init_Proc_Name (A_Type)); -- If No_Default_Initialization restriction is active, then we don't -- want to build an init_proc, but we need to mark that an init_proc -- would be needed if this restriction was not active (so that we can -- detect attempts to call it), so set a dummy init_proc in place. -- This is only done though when actual default initialization is -- needed (and not done when only Is_Public is True), since otherwise -- objects such as arrays of scalars could be wrongly flagged as -- violating the restriction. if Restriction_Active (No_Default_Initialization) then if Has_Default_Init then Set_Init_Proc (A_Type, Proc_Id); end if; return; end if; Body_Stmts := Init_One_Dimension (1); Discard_Node ( Make_Subprogram_Body (Loc, Specification => Make_Procedure_Specification (Loc, Defining_Unit_Name => Proc_Id, Parameter_Specifications => Init_Formals (A_Type)), Declarations => New_List, Handled_Statement_Sequence => Make_Handled_Sequence_Of_Statements (Loc, Statements => Body_Stmts))); Set_Ekind (Proc_Id, E_Procedure); Set_Is_Public (Proc_Id, Is_Public (A_Type)); Set_Is_Internal (Proc_Id); Set_Has_Completion (Proc_Id); if not Debug_Generated_Code then Set_Debug_Info_Off (Proc_Id); end if; -- Set inlined unless controlled stuff or tasks around, in which -- case we do not want to inline, because nested stuff may cause -- difficulties in inter-unit inlining, and furthermore there is -- in any case no point in inlining such complex init procs. if not Has_Task (Proc_Id) and then not Needs_Finalization (Proc_Id) then Set_Is_Inlined (Proc_Id); end if; -- Associate Init_Proc with type, and determine if the procedure -- is null (happens because of the Initialize_Scalars pragma case, -- where we have to generate a null procedure in case it is called -- by a client with Initialize_Scalars set). Such procedures have -- to be generated, but do not have to be called, so we mark them -- as null to suppress the call. Set_Init_Proc (A_Type, Proc_Id); if List_Length (Body_Stmts) = 1 -- We must skip SCIL nodes because they may have been added to this -- list by Insert_Actions. and then Nkind (First_Non_SCIL_Node (Body_Stmts)) = N_Null_Statement then Set_Is_Null_Init_Proc (Proc_Id); else -- Try to build a static aggregate to statically initialize -- objects of the type. This can only be done for constrained -- one-dimensional arrays with static bounds. Set_Static_Initialization (Proc_Id, Build_Equivalent_Array_Aggregate (First_Subtype (A_Type))); end if; end if; end Build_Array_Init_Proc; -------------------------------- -- Build_Array_Invariant_Proc -- -------------------------------- function Build_Array_Invariant_Proc (A_Type : Entity_Id; Nod : Node_Id) return Node_Id is Loc : constant Source_Ptr := Sloc (Nod); Object_Name : constant Name_Id := New_Internal_Name ('I'); -- Name for argument of invariant procedure Object_Entity : constant Node_Id := Make_Defining_Identifier (Loc, Object_Name); -- The procedure declaration entity for the argument Body_Stmts : List_Id; Index_List : List_Id; Proc_Id : Entity_Id; Proc_Body : Node_Id; function Build_Component_Invariant_Call return Node_Id; -- Create one statement to verify invariant on one array component, -- designated by a full set of indexes. function Check_One_Dimension (N : Int) return List_Id; -- Create loop to check on one dimension of the array. The single -- statement in the loop body checks the inner dimensions if any, or -- else a single component. This procedure is called recursively, with -- N being the dimension to be initialized. A call with N greater than -- the number of dimensions generates the component initialization -- and terminates the recursion. ------------------------------------ -- Build_Component_Invariant_Call -- ------------------------------------ function Build_Component_Invariant_Call return Node_Id is Comp : Node_Id; begin Comp := Make_Indexed_Component (Loc, Prefix => New_Occurrence_Of (Object_Entity, Loc), Expressions => Index_List); return Make_Procedure_Call_Statement (Loc, Name => New_Occurrence_Of (Invariant_Procedure (Component_Type (A_Type)), Loc), Parameter_Associations => New_List (Comp)); end Build_Component_Invariant_Call; ------------------------- -- Check_One_Dimension -- ------------------------- function Check_One_Dimension (N : Int) return List_Id is Index : Entity_Id; begin -- If all dimensions dealt with, we simply check invariant of the -- component. if N > Number_Dimensions (A_Type) then return New_List (Build_Component_Invariant_Call); -- Else generate one loop and recurse else Index := Make_Defining_Identifier (Loc, New_External_Name ('J', N)); Append (New_Reference_To (Index, Loc), Index_List); return New_List ( Make_Implicit_Loop_Statement (Nod, Identifier => Empty, Iteration_Scheme => Make_Iteration_Scheme (Loc, Loop_Parameter_Specification => Make_Loop_Parameter_Specification (Loc, Defining_Identifier => Index, Discrete_Subtype_Definition => Make_Attribute_Reference (Loc, Prefix => New_Occurrence_Of (Object_Entity, Loc), Attribute_Name => Name_Range, Expressions => New_List ( Make_Integer_Literal (Loc, N))))), Statements => Check_One_Dimension (N + 1))); end if; end Check_One_Dimension; -- Start of processing for Build_Array_Invariant_Proc begin Index_List := New_List; Proc_Id := Make_Defining_Identifier (Loc, Chars => New_External_Name (Chars (A_Type), "CInvariant")); Body_Stmts := Check_One_Dimension (1); Proc_Body := Make_Subprogram_Body (Loc, Specification => Make_Procedure_Specification (Loc, Defining_Unit_Name => Proc_Id, Parameter_Specifications => New_List ( Make_Parameter_Specification (Loc, Defining_Identifier => Object_Entity, Parameter_Type => New_Occurrence_Of (A_Type, Loc)))), Declarations => Empty_List, Handled_Statement_Sequence => Make_Handled_Sequence_Of_Statements (Loc, Statements => Body_Stmts)); Set_Ekind (Proc_Id, E_Procedure); Set_Is_Public (Proc_Id, Is_Public (A_Type)); Set_Is_Internal (Proc_Id); Set_Has_Completion (Proc_Id); if not Debug_Generated_Code then Set_Debug_Info_Off (Proc_Id); end if; return Proc_Body; end Build_Array_Invariant_Proc; -------------------------------- -- Build_Discr_Checking_Funcs -- -------------------------------- procedure Build_Discr_Checking_Funcs (N : Node_Id) is Rec_Id : Entity_Id; Loc : Source_Ptr; Enclosing_Func_Id : Entity_Id; Sequence : Nat := 1; Type_Def : Node_Id; V : Node_Id; function Build_Case_Statement (Case_Id : Entity_Id; Variant : Node_Id) return Node_Id; -- Build a case statement containing only two alternatives. The first -- alternative corresponds exactly to the discrete choices given on the -- variant with contains the components that we are generating the -- checks for. If the discriminant is one of these return False. The -- second alternative is an OTHERS choice that will return True -- indicating the discriminant did not match. function Build_Dcheck_Function (Case_Id : Entity_Id; Variant : Node_Id) return Entity_Id; -- Build the discriminant checking function for a given variant procedure Build_Dcheck_Functions (Variant_Part_Node : Node_Id); -- Builds the discriminant checking function for each variant of the -- given variant part of the record type. -------------------------- -- Build_Case_Statement -- -------------------------- function Build_Case_Statement (Case_Id : Entity_Id; Variant : Node_Id) return Node_Id is Alt_List : constant List_Id := New_List; Actuals_List : List_Id; Case_Node : Node_Id; Case_Alt_Node : Node_Id; Choice : Node_Id; Choice_List : List_Id; D : Entity_Id; Return_Node : Node_Id; begin Case_Node := New_Node (N_Case_Statement, Loc); -- Replace the discriminant which controls the variant with the name -- of the formal of the checking function. Set_Expression (Case_Node, Make_Identifier (Loc, Chars (Case_Id))); Choice := First (Discrete_Choices (Variant)); if Nkind (Choice) = N_Others_Choice then Choice_List := New_Copy_List (Others_Discrete_Choices (Choice)); else Choice_List := New_Copy_List (Discrete_Choices (Variant)); end if; if not Is_Empty_List (Choice_List) then Case_Alt_Node := New_Node (N_Case_Statement_Alternative, Loc); Set_Discrete_Choices (Case_Alt_Node, Choice_List); -- In case this is a nested variant, we need to return the result -- of the discriminant checking function for the immediately -- enclosing variant. if Present (Enclosing_Func_Id) then Actuals_List := New_List; D := First_Discriminant (Rec_Id); while Present (D) loop Append (Make_Identifier (Loc, Chars (D)), Actuals_List); Next_Discriminant (D); end loop; Return_Node := Make_Simple_Return_Statement (Loc, Expression => Make_Function_Call (Loc, Name => New_Reference_To (Enclosing_Func_Id, Loc), Parameter_Associations => Actuals_List)); else Return_Node := Make_Simple_Return_Statement (Loc, Expression => New_Reference_To (Standard_False, Loc)); end if; Set_Statements (Case_Alt_Node, New_List (Return_Node)); Append (Case_Alt_Node, Alt_List); end if; Case_Alt_Node := New_Node (N_Case_Statement_Alternative, Loc); Choice_List := New_List (New_Node (N_Others_Choice, Loc)); Set_Discrete_Choices (Case_Alt_Node, Choice_List); Return_Node := Make_Simple_Return_Statement (Loc, Expression => New_Reference_To (Standard_True, Loc)); Set_Statements (Case_Alt_Node, New_List (Return_Node)); Append (Case_Alt_Node, Alt_List); Set_Alternatives (Case_Node, Alt_List); return Case_Node; end Build_Case_Statement; --------------------------- -- Build_Dcheck_Function -- --------------------------- function Build_Dcheck_Function (Case_Id : Entity_Id; Variant : Node_Id) return Entity_Id is Body_Node : Node_Id; Func_Id : Entity_Id; Parameter_List : List_Id; Spec_Node : Node_Id; begin Body_Node := New_Node (N_Subprogram_Body, Loc); Sequence := Sequence + 1; Func_Id := Make_Defining_Identifier (Loc, Chars => New_External_Name (Chars (Rec_Id), 'D', Sequence)); Spec_Node := New_Node (N_Function_Specification, Loc); Set_Defining_Unit_Name (Spec_Node, Func_Id); Parameter_List := Build_Discriminant_Formals (Rec_Id, False); Set_Parameter_Specifications (Spec_Node, Parameter_List); Set_Result_Definition (Spec_Node, New_Reference_To (Standard_Boolean, Loc)); Set_Specification (Body_Node, Spec_Node); Set_Declarations (Body_Node, New_List); Set_Handled_Statement_Sequence (Body_Node, Make_Handled_Sequence_Of_Statements (Loc, Statements => New_List ( Build_Case_Statement (Case_Id, Variant)))); Set_Ekind (Func_Id, E_Function); Set_Mechanism (Func_Id, Default_Mechanism); Set_Is_Inlined (Func_Id, True); Set_Is_Pure (Func_Id, True); Set_Is_Public (Func_Id, Is_Public (Rec_Id)); Set_Is_Internal (Func_Id, True); if not Debug_Generated_Code then Set_Debug_Info_Off (Func_Id); end if; Analyze (Body_Node); Append_Freeze_Action (Rec_Id, Body_Node); Set_Dcheck_Function (Variant, Func_Id); return Func_Id; end Build_Dcheck_Function; ---------------------------- -- Build_Dcheck_Functions -- ---------------------------- procedure Build_Dcheck_Functions (Variant_Part_Node : Node_Id) is Component_List_Node : Node_Id; Decl : Entity_Id; Discr_Name : Entity_Id; Func_Id : Entity_Id; Variant : Node_Id; Saved_Enclosing_Func_Id : Entity_Id; begin -- Build the discriminant-checking function for each variant, and -- label all components of that variant with the function's name. -- We only Generate a discriminant-checking function when the -- variant is not empty, to prevent the creation of dead code. -- The exception to that is when Frontend_Layout_On_Target is set, -- because the variant record size function generated in package -- Layout needs to generate calls to all discriminant-checking -- functions, including those for empty variants. Discr_Name := Entity (Name (Variant_Part_Node)); Variant := First_Non_Pragma (Variants (Variant_Part_Node)); while Present (Variant) loop Component_List_Node := Component_List (Variant); if not Null_Present (Component_List_Node) or else Frontend_Layout_On_Target then Func_Id := Build_Dcheck_Function (Discr_Name, Variant); Decl := First_Non_Pragma (Component_Items (Component_List_Node)); while Present (Decl) loop Set_Discriminant_Checking_Func (Defining_Identifier (Decl), Func_Id); Next_Non_Pragma (Decl); end loop; if Present (Variant_Part (Component_List_Node)) then Saved_Enclosing_Func_Id := Enclosing_Func_Id; Enclosing_Func_Id := Func_Id; Build_Dcheck_Functions (Variant_Part (Component_List_Node)); Enclosing_Func_Id := Saved_Enclosing_Func_Id; end if; end if; Next_Non_Pragma (Variant); end loop; end Build_Dcheck_Functions; -- Start of processing for Build_Discr_Checking_Funcs begin -- Only build if not done already if not Discr_Check_Funcs_Built (N) then Type_Def := Type_Definition (N); if Nkind (Type_Def) = N_Record_Definition then if No (Component_List (Type_Def)) then -- null record. return; else V := Variant_Part (Component_List (Type_Def)); end if; else pragma Assert (Nkind (Type_Def) = N_Derived_Type_Definition); if No (Component_List (Record_Extension_Part (Type_Def))) then return; else V := Variant_Part (Component_List (Record_Extension_Part (Type_Def))); end if; end if; Rec_Id := Defining_Identifier (N); if Present (V) and then not Is_Unchecked_Union (Rec_Id) then Loc := Sloc (N); Enclosing_Func_Id := Empty; Build_Dcheck_Functions (V); end if; Set_Discr_Check_Funcs_Built (N); end if; end Build_Discr_Checking_Funcs; -------------------------------- -- Build_Discriminant_Formals -- -------------------------------- function Build_Discriminant_Formals (Rec_Id : Entity_Id; Use_Dl : Boolean) return List_Id is Loc : Source_Ptr := Sloc (Rec_Id); Parameter_List : constant List_Id := New_List; D : Entity_Id; Formal : Entity_Id; Formal_Type : Entity_Id; Param_Spec_Node : Node_Id; begin if Has_Discriminants (Rec_Id) then D := First_Discriminant (Rec_Id); while Present (D) loop Loc := Sloc (D); if Use_Dl then Formal := Discriminal (D); Formal_Type := Etype (Formal); else Formal := Make_Defining_Identifier (Loc, Chars (D)); Formal_Type := Etype (D); end if; Param_Spec_Node := Make_Parameter_Specification (Loc, Defining_Identifier => Formal, Parameter_Type => New_Reference_To (Formal_Type, Loc)); Append (Param_Spec_Node, Parameter_List); Next_Discriminant (D); end loop; end if; return Parameter_List; end Build_Discriminant_Formals; -------------------------------------- -- Build_Equivalent_Array_Aggregate -- -------------------------------------- function Build_Equivalent_Array_Aggregate (T : Entity_Id) return Node_Id is Loc : constant Source_Ptr := Sloc (T); Comp_Type : constant Entity_Id := Component_Type (T); Index_Type : constant Entity_Id := Etype (First_Index (T)); Proc : constant Entity_Id := Base_Init_Proc (T); Lo, Hi : Node_Id; Aggr : Node_Id; Expr : Node_Id; begin if not Is_Constrained (T) or else Number_Dimensions (T) > 1 or else No (Proc) then Initialization_Warning (T); return Empty; end if; Lo := Type_Low_Bound (Index_Type); Hi := Type_High_Bound (Index_Type); if not Compile_Time_Known_Value (Lo) or else not Compile_Time_Known_Value (Hi) then Initialization_Warning (T); return Empty; end if; if Is_Record_Type (Comp_Type) and then Present (Base_Init_Proc (Comp_Type)) then Expr := Static_Initialization (Base_Init_Proc (Comp_Type)); if No (Expr) then Initialization_Warning (T); return Empty; end if; else Initialization_Warning (T); return Empty; end if; Aggr := Make_Aggregate (Loc, No_List, New_List); Set_Etype (Aggr, T); Set_Aggregate_Bounds (Aggr, Make_Range (Loc, Low_Bound => New_Copy (Lo), High_Bound => New_Copy (Hi))); Set_Parent (Aggr, Parent (Proc)); Append_To (Component_Associations (Aggr), Make_Component_Association (Loc, Choices => New_List ( Make_Range (Loc, Low_Bound => New_Copy (Lo), High_Bound => New_Copy (Hi))), Expression => Expr)); if Static_Array_Aggregate (Aggr) then return Aggr; else Initialization_Warning (T); return Empty; end if; end Build_Equivalent_Array_Aggregate; --------------------------------------- -- Build_Equivalent_Record_Aggregate -- --------------------------------------- function Build_Equivalent_Record_Aggregate (T : Entity_Id) return Node_Id is Agg : Node_Id; Comp : Entity_Id; Comp_Type : Entity_Id; -- Start of processing for Build_Equivalent_Record_Aggregate begin if not Is_Record_Type (T) or else Has_Discriminants (T) or else Is_Limited_Type (T) or else Has_Non_Standard_Rep (T) then Initialization_Warning (T); return Empty; end if; Comp := First_Component (T); -- A null record needs no warning if No (Comp) then return Empty; end if; while Present (Comp) loop -- Array components are acceptable if initialized by a positional -- aggregate with static components. if Is_Array_Type (Etype (Comp)) then Comp_Type := Component_Type (Etype (Comp)); if Nkind (Parent (Comp)) /= N_Component_Declaration or else No (Expression (Parent (Comp))) or else Nkind (Expression (Parent (Comp))) /= N_Aggregate then Initialization_Warning (T); return Empty; elsif Is_Scalar_Type (Component_Type (Etype (Comp))) and then (not Compile_Time_Known_Value (Type_Low_Bound (Comp_Type)) or else not Compile_Time_Known_Value (Type_High_Bound (Comp_Type))) then Initialization_Warning (T); return Empty; elsif not Static_Array_Aggregate (Expression (Parent (Comp))) then Initialization_Warning (T); return Empty; end if; elsif Is_Scalar_Type (Etype (Comp)) then Comp_Type := Etype (Comp); if Nkind (Parent (Comp)) /= N_Component_Declaration or else No (Expression (Parent (Comp))) or else not Compile_Time_Known_Value (Expression (Parent (Comp))) or else not Compile_Time_Known_Value (Type_Low_Bound (Comp_Type)) or else not Compile_Time_Known_Value (Type_High_Bound (Comp_Type)) then Initialization_Warning (T); return Empty; end if; -- For now, other types are excluded else Initialization_Warning (T); return Empty; end if; Next_Component (Comp); end loop; -- All components have static initialization. Build positional aggregate -- from the given expressions or defaults. Agg := Make_Aggregate (Sloc (T), New_List, New_List); Set_Parent (Agg, Parent (T)); Comp := First_Component (T); while Present (Comp) loop Append (New_Copy_Tree (Expression (Parent (Comp))), Expressions (Agg)); Next_Component (Comp); end loop; Analyze_And_Resolve (Agg, T); return Agg; end Build_Equivalent_Record_Aggregate; ------------------------------- -- Build_Initialization_Call -- ------------------------------- -- References to a discriminant inside the record type declaration can -- appear either in the subtype_indication to constrain a record or an -- array, or as part of a larger expression given for the initial value -- of a component. In both of these cases N appears in the record -- initialization procedure and needs to be replaced by the formal -- parameter of the initialization procedure which corresponds to that -- discriminant. -- In the example below, references to discriminants D1 and D2 in proc_1 -- are replaced by references to formals with the same name -- (discriminals) -- A similar replacement is done for calls to any record initialization -- procedure for any components that are themselves of a record type. -- type R (D1, D2 : Integer) is record -- X : Integer := F * D1; -- Y : Integer := F * D2; -- end record; -- procedure proc_1 (Out_2 : out R; D1 : Integer; D2 : Integer) is -- begin -- Out_2.D1 := D1; -- Out_2.D2 := D2; -- Out_2.X := F * D1; -- Out_2.Y := F * D2; -- end; function Build_Initialization_Call (Loc : Source_Ptr; Id_Ref : Node_Id; Typ : Entity_Id; In_Init_Proc : Boolean := False; Enclos_Type : Entity_Id := Empty; Discr_Map : Elist_Id := New_Elmt_List; With_Default_Init : Boolean := False; Constructor_Ref : Node_Id := Empty) return List_Id is Res : constant List_Id := New_List; Arg : Node_Id; Args : List_Id; Decls : List_Id; Decl : Node_Id; Discr : Entity_Id; First_Arg : Node_Id; Full_Init_Type : Entity_Id; Full_Type : Entity_Id := Typ; Init_Type : Entity_Id; Proc : Entity_Id; begin pragma Assert (Constructor_Ref = Empty or else Is_CPP_Constructor_Call (Constructor_Ref)); if No (Constructor_Ref) then Proc := Base_Init_Proc (Typ); else Proc := Base_Init_Proc (Typ, Entity (Name (Constructor_Ref))); end if; pragma Assert (Present (Proc)); Init_Type := Etype (First_Formal (Proc)); Full_Init_Type := Underlying_Type (Init_Type); -- Nothing to do if the Init_Proc is null, unless Initialize_Scalars -- is active (in which case we make the call anyway, since in the -- actual compiled client it may be non null). -- Also nothing to do for value types. if (Is_Null_Init_Proc (Proc) and then not Init_Or_Norm_Scalars) or else Is_Value_Type (Typ) or else (Is_Array_Type (Typ) and then Is_Value_Type (Component_Type (Typ))) then return Empty_List; end if; -- Go to full view if private type. In the case of successive -- private derivations, this can require more than one step. while Is_Private_Type (Full_Type) and then Present (Full_View (Full_Type)) loop Full_Type := Full_View (Full_Type); end loop; -- If Typ is derived, the procedure is the initialization procedure for -- the root type. Wrap the argument in an conversion to make it type -- honest. Actually it isn't quite type honest, because there can be -- conflicts of views in the private type case. That is why we set -- Conversion_OK in the conversion node. if (Is_Record_Type (Typ) or else Is_Array_Type (Typ) or else Is_Private_Type (Typ)) and then Init_Type /= Base_Type (Typ) then First_Arg := OK_Convert_To (Etype (Init_Type), Id_Ref); Set_Etype (First_Arg, Init_Type); else First_Arg := Id_Ref; end if; Args := New_List (Convert_Concurrent (First_Arg, Typ)); -- In the tasks case, add _Master as the value of the _Master parameter -- and _Chain as the value of the _Chain parameter. At the outer level, -- these will be variables holding the corresponding values obtained -- from GNARL. At inner levels, they will be the parameters passed down -- through the outer routines. if Has_Task (Full_Type) then if Restriction_Active (No_Task_Hierarchy) then Append_To (Args, New_Occurrence_Of (RTE (RE_Library_Task_Level), Loc)); else Append_To (Args, Make_Identifier (Loc, Name_uMaster)); end if; -- Add _Chain (not done for sequential elaboration policy, see -- comment for Create_Restricted_Task_Sequential in s-tarest.ads). if Partition_Elaboration_Policy /= 'S' then Append_To (Args, Make_Identifier (Loc, Name_uChain)); end if; -- Ada 2005 (AI-287): In case of default initialized components -- with tasks, we generate a null string actual parameter. -- This is just a workaround that must be improved later??? if With_Default_Init then Append_To (Args, Make_String_Literal (Loc, Strval => "")); else Decls := Build_Task_Image_Decls (Loc, Id_Ref, Enclos_Type, In_Init_Proc); Decl := Last (Decls); Append_To (Args, New_Occurrence_Of (Defining_Identifier (Decl), Loc)); Append_List (Decls, Res); end if; else Decls := No_List; Decl := Empty; end if; -- Add discriminant values if discriminants are present if Has_Discriminants (Full_Init_Type) then Discr := First_Discriminant (Full_Init_Type); while Present (Discr) loop -- If this is a discriminated concurrent type, the init_proc -- for the corresponding record is being called. Use that type -- directly to find the discriminant value, to handle properly -- intervening renamed discriminants. declare T : Entity_Id := Full_Type; begin if Is_Protected_Type (T) then T := Corresponding_Record_Type (T); elsif Is_Private_Type (T) and then Present (Underlying_Full_View (T)) and then Is_Protected_Type (Underlying_Full_View (T)) then T := Corresponding_Record_Type (Underlying_Full_View (T)); end if; Arg := Get_Discriminant_Value ( Discr, T, Discriminant_Constraint (Full_Type)); end; -- If the target has access discriminants, and is constrained by -- an access to the enclosing construct, i.e. a current instance, -- replace the reference to the type by a reference to the object. if Nkind (Arg) = N_Attribute_Reference and then Is_Access_Type (Etype (Arg)) and then Is_Entity_Name (Prefix (Arg)) and then Is_Type (Entity (Prefix (Arg))) then Arg := Make_Attribute_Reference (Loc, Prefix => New_Copy (Prefix (Id_Ref)), Attribute_Name => Name_Unrestricted_Access); elsif In_Init_Proc then -- Replace any possible references to the discriminant in the -- call to the record initialization procedure with references -- to the appropriate formal parameter. if Nkind (Arg) = N_Identifier and then Ekind (Entity (Arg)) = E_Discriminant then Arg := New_Reference_To (Discriminal (Entity (Arg)), Loc); -- Otherwise make a copy of the default expression. Note that -- we use the current Sloc for this, because we do not want the -- call to appear to be at the declaration point. Within the -- expression, replace discriminants with their discriminals. else Arg := New_Copy_Tree (Arg, Map => Discr_Map, New_Sloc => Loc); end if; else if Is_Constrained (Full_Type) then Arg := Duplicate_Subexpr_No_Checks (Arg); else -- The constraints come from the discriminant default exps, -- they must be reevaluated, so we use New_Copy_Tree but we -- ensure the proper Sloc (for any embedded calls). Arg := New_Copy_Tree (Arg, New_Sloc => Loc); end if; end if; -- Ada 2005 (AI-287): In case of default initialized components, -- if the component is constrained with a discriminant of the -- enclosing type, we need to generate the corresponding selected -- component node to access the discriminant value. In other cases -- this is not required, either because we are inside the init -- proc and we use the corresponding formal, or else because the -- component is constrained by an expression. if With_Default_Init and then Nkind (Id_Ref) = N_Selected_Component and then Nkind (Arg) = N_Identifier and then Ekind (Entity (Arg)) = E_Discriminant then Append_To (Args, Make_Selected_Component (Loc, Prefix => New_Copy_Tree (Prefix (Id_Ref)), Selector_Name => Arg)); else Append_To (Args, Arg); end if; Next_Discriminant (Discr); end loop; end if; -- If this is a call to initialize the parent component of a derived -- tagged type, indicate that the tag should not be set in the parent. if Is_Tagged_Type (Full_Init_Type) and then not Is_CPP_Class (Full_Init_Type) and then Nkind (Id_Ref) = N_Selected_Component and then Chars (Selector_Name (Id_Ref)) = Name_uParent then Append_To (Args, New_Occurrence_Of (Standard_False, Loc)); elsif Present (Constructor_Ref) then Append_List_To (Args, New_Copy_List (Parameter_Associations (Constructor_Ref))); end if; Append_To (Res, Make_Procedure_Call_Statement (Loc, Name => New_Occurrence_Of (Proc, Loc), Parameter_Associations => Args)); if Needs_Finalization (Typ) and then Nkind (Id_Ref) = N_Selected_Component then if Chars (Selector_Name (Id_Ref)) /= Name_uParent then Append_To (Res, Make_Init_Call (Obj_Ref => New_Copy_Tree (First_Arg), Typ => Typ)); end if; end if; -- When the object is either protected or a task, create static strings -- which denote the names of entries and families. Associate the strings -- with the concurrent object's Protection_Entries or ATCB. This is a -- VMS Debug feature. if OpenVMS_On_Target and then Is_Concurrent_Type (Typ) and then Entry_Names_OK then Build_Entry_Names (Id_Ref, Typ, Res); end if; return Res; exception when RE_Not_Available => return Empty_List; end Build_Initialization_Call; ---------------------------- -- Build_Record_Init_Proc -- ---------------------------- procedure Build_Record_Init_Proc (N : Node_Id; Rec_Ent : Entity_Id) is Decls : constant List_Id := New_List; Discr_Map : constant Elist_Id := New_Elmt_List; Loc : constant Source_Ptr := Sloc (Rec_Ent); Counter : Int := 0; Proc_Id : Entity_Id; Rec_Type : Entity_Id; Set_Tag : Entity_Id := Empty; function Build_Assignment (Id : Entity_Id; N : Node_Id) return List_Id; -- Build an assignment statement which assigns the default expression -- to its corresponding record component if defined. The left hand side -- of the assignment is marked Assignment_OK so that initialization of -- limited private records works correctly. This routine may also build -- an adjustment call if the component is controlled. procedure Build_Discriminant_Assignments (Statement_List : List_Id); -- If the record has discriminants, add assignment statements to -- Statement_List to initialize the discriminant values from the -- arguments of the initialization procedure. function Build_Init_Statements (Comp_List : Node_Id) return List_Id; -- Build a list representing a sequence of statements which initialize -- components of the given component list. This may involve building -- case statements for the variant parts. Append any locally declared -- objects on list Decls. function Build_Init_Call_Thru (Parameters : List_Id) return List_Id; -- Given a non-tagged type-derivation that declares discriminants, -- such as -- -- type R (R1, R2 : Integer) is record ... end record; -- -- type D (D1 : Integer) is new R (1, D1); -- -- we make the _init_proc of D be -- -- procedure _init_proc (X : D; D1 : Integer) is -- begin -- _init_proc (R (X), 1, D1); -- end _init_proc; -- -- This function builds the call statement in this _init_proc. procedure Build_CPP_Init_Procedure; -- Build the tree corresponding to the procedure specification and body -- of the IC procedure that initializes the C++ part of the dispatch -- table of an Ada tagged type that is a derivation of a CPP type. -- Install it as the CPP_Init TSS. procedure Build_Init_Procedure; -- Build the tree corresponding to the procedure specification and body -- of the initialization procedure and install it as the _init TSS. procedure Build_Offset_To_Top_Functions; -- Ada 2005 (AI-251): Build the tree corresponding to the procedure spec -- and body of Offset_To_Top, a function used in conjuction with types -- having secondary dispatch tables. procedure Build_Record_Checks (S : Node_Id; Check_List : List_Id); -- Add range checks to components of discriminated records. S is a -- subtype indication of a record component. Check_List is a list -- to which the check actions are appended. function Component_Needs_Simple_Initialization (T : Entity_Id) return Boolean; -- Determine if a component needs simple initialization, given its type -- T. This routine is the same as Needs_Simple_Initialization except for -- components of type Tag and Interface_Tag. These two access types do -- not require initialization since they are explicitly initialized by -- other means. function Parent_Subtype_Renaming_Discrims return Boolean; -- Returns True for base types N that rename discriminants, else False function Requires_Init_Proc (Rec_Id : Entity_Id) return Boolean; -- Determine whether a record initialization procedure needs to be -- generated for the given record type. ---------------------- -- Build_Assignment -- ---------------------- function Build_Assignment (Id : Entity_Id; N : Node_Id) return List_Id is N_Loc : constant Source_Ptr := Sloc (N); Typ : constant Entity_Id := Underlying_Type (Etype (Id)); Exp : Node_Id := N; Kind : Node_Kind := Nkind (N); Lhs : Node_Id; Res : List_Id; begin Lhs := Make_Selected_Component (N_Loc, Prefix => Make_Identifier (Loc, Name_uInit), Selector_Name => New_Occurrence_Of (Id, N_Loc)); Set_Assignment_OK (Lhs); -- Case of an access attribute applied to the current instance. -- Replace the reference to the type by a reference to the actual -- object. (Note that this handles the case of the top level of -- the expression being given by such an attribute, but does not -- cover uses nested within an initial value expression. Nested -- uses are unlikely to occur in practice, but are theoretically -- possible.) It is not clear how to handle them without fully -- traversing the expression. ??? if Kind = N_Attribute_Reference and then Nam_In (Attribute_Name (N), Name_Unchecked_Access, Name_Unrestricted_Access) and then Is_Entity_Name (Prefix (N)) and then Is_Type (Entity (Prefix (N))) and then Entity (Prefix (N)) = Rec_Type then Exp := Make_Attribute_Reference (N_Loc, Prefix => Make_Identifier (N_Loc, Name_uInit), Attribute_Name => Name_Unrestricted_Access); end if; -- Take a copy of Exp to ensure that later copies of this component -- declaration in derived types see the original tree, not a node -- rewritten during expansion of the init_proc. If the copy contains -- itypes, the scope of the new itypes is the init_proc being built. Exp := New_Copy_Tree (Exp, New_Scope => Proc_Id); Res := New_List ( Make_Assignment_Statement (Loc, Name => Lhs, Expression => Exp)); Set_No_Ctrl_Actions (First (Res)); -- Adjust the tag if tagged (because of possible view conversions). -- Suppress the tag adjustment when VM_Target because VM tags are -- represented implicitly in objects. if Is_Tagged_Type (Typ) and then Tagged_Type_Expansion then Append_To (Res, Make_Assignment_Statement (N_Loc, Name => Make_Selected_Component (N_Loc, Prefix => New_Copy_Tree (Lhs, New_Scope => Proc_Id), Selector_Name => New_Reference_To (First_Tag_Component (Typ), N_Loc)), Expression => Unchecked_Convert_To (RTE (RE_Tag), New_Reference_To (Node (First_Elmt (Access_Disp_Table (Underlying_Type (Typ)))), N_Loc)))); end if; -- Adjust the component if controlled except if it is an aggregate -- that will be expanded inline. if Kind = N_Qualified_Expression then Kind := Nkind (Expression (N)); end if; if Needs_Finalization (Typ) and then not (Nkind_In (Kind, N_Aggregate, N_Extension_Aggregate)) and then not Is_Limited_View (Typ) then Append_To (Res, Make_Adjust_Call (Obj_Ref => New_Copy_Tree (Lhs), Typ => Etype (Id))); end if; return Res; exception when RE_Not_Available => return Empty_List; end Build_Assignment; ------------------------------------ -- Build_Discriminant_Assignments -- ------------------------------------ procedure Build_Discriminant_Assignments (Statement_List : List_Id) is Is_Tagged : constant Boolean := Is_Tagged_Type (Rec_Type); D : Entity_Id; D_Loc : Source_Ptr; begin if Has_Discriminants (Rec_Type) and then not Is_Unchecked_Union (Rec_Type) then D := First_Discriminant (Rec_Type); while Present (D) loop -- Don't generate the assignment for discriminants in derived -- tagged types if the discriminant is a renaming of some -- ancestor discriminant. This initialization will be done -- when initializing the _parent field of the derived record. if Is_Tagged and then Present (Corresponding_Discriminant (D)) then null; else D_Loc := Sloc (D); Append_List_To (Statement_List, Build_Assignment (D, New_Reference_To (Discriminal (D), D_Loc))); end if; Next_Discriminant (D); end loop; end if; end Build_Discriminant_Assignments; -------------------------- -- Build_Init_Call_Thru -- -------------------------- function Build_Init_Call_Thru (Parameters : List_Id) return List_Id is Parent_Proc : constant Entity_Id := Base_Init_Proc (Etype (Rec_Type)); Parent_Type : constant Entity_Id := Etype (First_Formal (Parent_Proc)); Uparent_Type : constant Entity_Id := Underlying_Type (Parent_Type); First_Discr_Param : Node_Id; Arg : Node_Id; Args : List_Id; First_Arg : Node_Id; Parent_Discr : Entity_Id; Res : List_Id; begin -- First argument (_Init) is the object to be initialized. -- ??? not sure where to get a reasonable Loc for First_Arg First_Arg := OK_Convert_To (Parent_Type, New_Reference_To (Defining_Identifier (First (Parameters)), Loc)); Set_Etype (First_Arg, Parent_Type); Args := New_List (Convert_Concurrent (First_Arg, Rec_Type)); -- In the tasks case, -- add _Master as the value of the _Master parameter -- add _Chain as the value of the _Chain parameter. -- add _Task_Name as the value of the _Task_Name parameter. -- At the outer level, these will be variables holding the -- corresponding values obtained from GNARL or the expander. -- -- At inner levels, they will be the parameters passed down through -- the outer routines. First_Discr_Param := Next (First (Parameters)); if Has_Task (Rec_Type) then if Restriction_Active (No_Task_Hierarchy) then Append_To (Args, New_Occurrence_Of (RTE (RE_Library_Task_Level), Loc)); else Append_To (Args, Make_Identifier (Loc, Name_uMaster)); end if; -- Add _Chain (not done for sequential elaboration policy, see -- comment for Create_Restricted_Task_Sequential in s-tarest.ads). if Partition_Elaboration_Policy /= 'S' then Append_To (Args, Make_Identifier (Loc, Name_uChain)); end if; Append_To (Args, Make_Identifier (Loc, Name_uTask_Name)); First_Discr_Param := Next (Next (Next (First_Discr_Param))); end if; -- Append discriminant values if Has_Discriminants (Uparent_Type) then pragma Assert (not Is_Tagged_Type (Uparent_Type)); Parent_Discr := First_Discriminant (Uparent_Type); while Present (Parent_Discr) loop -- Get the initial value for this discriminant -- ??? needs to be cleaned up to use parent_Discr_Constr -- directly. declare Discr : Entity_Id := First_Stored_Discriminant (Uparent_Type); Discr_Value : Elmt_Id := First_Elmt (Stored_Constraint (Rec_Type)); begin while Original_Record_Component (Parent_Discr) /= Discr loop Next_Stored_Discriminant (Discr); Next_Elmt (Discr_Value); end loop; Arg := Node (Discr_Value); end; -- Append it to the list if Nkind (Arg) = N_Identifier and then Ekind (Entity (Arg)) = E_Discriminant then Append_To (Args, New_Reference_To (Discriminal (Entity (Arg)), Loc)); -- Case of access discriminants. We replace the reference -- to the type by a reference to the actual object. -- Is above comment right??? Use of New_Copy below seems mighty -- suspicious ??? else Append_To (Args, New_Copy (Arg)); end if; Next_Discriminant (Parent_Discr); end loop; end if; Res := New_List ( Make_Procedure_Call_Statement (Loc, Name => New_Occurrence_Of (Parent_Proc, Loc), Parameter_Associations => Args)); return Res; end Build_Init_Call_Thru; ----------------------------------- -- Build_Offset_To_Top_Functions -- ----------------------------------- procedure Build_Offset_To_Top_Functions is procedure Build_Offset_To_Top_Function (Iface_Comp : Entity_Id); -- Generate: -- function Fxx (O : Address) return Storage_Offset is -- type Acc is access all ; -- begin -- return Acc!(O).Iface_Comp'Position; -- end Fxx; ---------------------------------- -- Build_Offset_To_Top_Function -- ---------------------------------- procedure Build_Offset_To_Top_Function (Iface_Comp : Entity_Id) is Body_Node : Node_Id; Func_Id : Entity_Id; Spec_Node : Node_Id; Acc_Type : Entity_Id; begin Func_Id := Make_Temporary (Loc, 'F'); Set_DT_Offset_To_Top_Func (Iface_Comp, Func_Id); -- Generate -- function Fxx (O : in Rec_Typ) return Storage_Offset; Spec_Node := New_Node (N_Function_Specification, Loc); Set_Defining_Unit_Name (Spec_Node, Func_Id); Set_Parameter_Specifications (Spec_Node, New_List ( Make_Parameter_Specification (Loc, Defining_Identifier => Make_Defining_Identifier (Loc, Name_uO), In_Present => True, Parameter_Type => New_Reference_To (RTE (RE_Address), Loc)))); Set_Result_Definition (Spec_Node, New_Reference_To (RTE (RE_Storage_Offset), Loc)); -- Generate -- function Fxx (O : in Rec_Typ) return Storage_Offset is -- begin -- return O.Iface_Comp'Position; -- end Fxx; Body_Node := New_Node (N_Subprogram_Body, Loc); Set_Specification (Body_Node, Spec_Node); Acc_Type := Make_Temporary (Loc, 'T'); Set_Declarations (Body_Node, New_List ( Make_Full_Type_Declaration (Loc, Defining_Identifier => Acc_Type, Type_Definition => Make_Access_To_Object_Definition (Loc, All_Present => True, Null_Exclusion_Present => False, Constant_Present => False, Subtype_Indication => New_Reference_To (Rec_Type, Loc))))); Set_Handled_Statement_Sequence (Body_Node, Make_Handled_Sequence_Of_Statements (Loc, Statements => New_List ( Make_Simple_Return_Statement (Loc, Expression => Make_Attribute_Reference (Loc, Prefix => Make_Selected_Component (Loc, Prefix => Unchecked_Convert_To (Acc_Type, Make_Identifier (Loc, Name_uO)), Selector_Name => New_Reference_To (Iface_Comp, Loc)), Attribute_Name => Name_Position))))); Set_Ekind (Func_Id, E_Function); Set_Mechanism (Func_Id, Default_Mechanism); Set_Is_Internal (Func_Id, True); if not Debug_Generated_Code then Set_Debug_Info_Off (Func_Id); end if; Analyze (Body_Node); Append_Freeze_Action (Rec_Type, Body_Node); end Build_Offset_To_Top_Function; -- Local variables Iface_Comp : Node_Id; Iface_Comp_Elmt : Elmt_Id; Ifaces_Comp_List : Elist_Id; -- Start of processing for Build_Offset_To_Top_Functions begin -- Offset_To_Top_Functions are built only for derivations of types -- with discriminants that cover interface types. -- Nothing is needed either in case of virtual machines, since -- interfaces are handled directly by the VM. if not Is_Tagged_Type (Rec_Type) or else Etype (Rec_Type) = Rec_Type or else not Has_Discriminants (Etype (Rec_Type)) or else not Tagged_Type_Expansion then return; end if; Collect_Interface_Components (Rec_Type, Ifaces_Comp_List); -- For each interface type with secondary dispatch table we generate -- the Offset_To_Top_Functions (required to displace the pointer in -- interface conversions) Iface_Comp_Elmt := First_Elmt (Ifaces_Comp_List); while Present (Iface_Comp_Elmt) loop Iface_Comp := Node (Iface_Comp_Elmt); pragma Assert (Is_Interface (Related_Type (Iface_Comp))); -- If the interface is a parent of Rec_Type it shares the primary -- dispatch table and hence there is no need to build the function if not Is_Ancestor (Related_Type (Iface_Comp), Rec_Type, Use_Full_View => True) then Build_Offset_To_Top_Function (Iface_Comp); end if; Next_Elmt (Iface_Comp_Elmt); end loop; end Build_Offset_To_Top_Functions; ------------------------------ -- Build_CPP_Init_Procedure -- ------------------------------ procedure Build_CPP_Init_Procedure is Body_Node : Node_Id; Body_Stmts : List_Id; Flag_Id : Entity_Id; Flag_Decl : Node_Id; Handled_Stmt_Node : Node_Id; Init_Tags_List : List_Id; Proc_Id : Entity_Id; Proc_Spec_Node : Node_Id; begin -- Check cases requiring no IC routine if not Is_CPP_Class (Root_Type (Rec_Type)) or else Is_CPP_Class (Rec_Type) or else CPP_Num_Prims (Rec_Type) = 0 or else not Tagged_Type_Expansion or else No_Run_Time_Mode then return; end if; -- Generate: -- Flag : Boolean := False; -- -- procedure Typ_IC is -- begin -- if not Flag then -- Copy C++ dispatch table slots from parent -- Update C++ slots of overridden primitives -- end if; -- end; Flag_Id := Make_Temporary (Loc, 'F'); Flag_Decl := Make_Object_Declaration (Loc, Defining_Identifier => Flag_Id, Object_Definition => New_Reference_To (Standard_Boolean, Loc), Expression => New_Reference_To (Standard_True, Loc)); Analyze (Flag_Decl); Append_Freeze_Action (Rec_Type, Flag_Decl); Body_Stmts := New_List; Body_Node := New_Node (N_Subprogram_Body, Loc); Proc_Spec_Node := New_Node (N_Procedure_Specification, Loc); Proc_Id := Make_Defining_Identifier (Loc, Chars => Make_TSS_Name (Rec_Type, TSS_CPP_Init_Proc)); Set_Ekind (Proc_Id, E_Procedure); Set_Is_Internal (Proc_Id); Set_Defining_Unit_Name (Proc_Spec_Node, Proc_Id); Set_Parameter_Specifications (Proc_Spec_Node, New_List); Set_Specification (Body_Node, Proc_Spec_Node); Set_Declarations (Body_Node, New_List); Init_Tags_List := Build_Inherit_CPP_Prims (Rec_Type); Append_To (Init_Tags_List, Make_Assignment_Statement (Loc, Name => New_Reference_To (Flag_Id, Loc), Expression => New_Reference_To (Standard_False, Loc))); Append_To (Body_Stmts, Make_If_Statement (Loc, Condition => New_Occurrence_Of (Flag_Id, Loc), Then_Statements => Init_Tags_List)); Handled_Stmt_Node := New_Node (N_Handled_Sequence_Of_Statements, Loc); Set_Statements (Handled_Stmt_Node, Body_Stmts); Set_Exception_Handlers (Handled_Stmt_Node, No_List); Set_Handled_Statement_Sequence (Body_Node, Handled_Stmt_Node); if not Debug_Generated_Code then Set_Debug_Info_Off (Proc_Id); end if; -- Associate CPP_Init_Proc with type Set_Init_Proc (Rec_Type, Proc_Id); end Build_CPP_Init_Procedure; -------------------------- -- Build_Init_Procedure -- -------------------------- procedure Build_Init_Procedure is Body_Stmts : List_Id; Body_Node : Node_Id; Handled_Stmt_Node : Node_Id; Init_Tags_List : List_Id; Parameters : List_Id; Proc_Spec_Node : Node_Id; Record_Extension_Node : Node_Id; begin Body_Stmts := New_List; Body_Node := New_Node (N_Subprogram_Body, Loc); Set_Ekind (Proc_Id, E_Procedure); Proc_Spec_Node := New_Node (N_Procedure_Specification, Loc); Set_Defining_Unit_Name (Proc_Spec_Node, Proc_Id); Parameters := Init_Formals (Rec_Type); Append_List_To (Parameters, Build_Discriminant_Formals (Rec_Type, True)); -- For tagged types, we add a flag to indicate whether the routine -- is called to initialize a parent component in the init_proc of -- a type extension. If the flag is false, we do not set the tag -- because it has been set already in the extension. if Is_Tagged_Type (Rec_Type) then Set_Tag := Make_Temporary (Loc, 'P'); Append_To (Parameters, Make_Parameter_Specification (Loc, Defining_Identifier => Set_Tag, Parameter_Type => New_Occurrence_Of (Standard_Boolean, Loc), Expression => New_Occurrence_Of (Standard_True, Loc))); end if; Set_Parameter_Specifications (Proc_Spec_Node, Parameters); Set_Specification (Body_Node, Proc_Spec_Node); Set_Declarations (Body_Node, Decls); -- N is a Derived_Type_Definition that renames the parameters of the -- ancestor type. We initialize it by expanding our discriminants and -- call the ancestor _init_proc with a type-converted object. if Parent_Subtype_Renaming_Discrims then Append_List_To (Body_Stmts, Build_Init_Call_Thru (Parameters)); elsif Nkind (Type_Definition (N)) = N_Record_Definition then Build_Discriminant_Assignments (Body_Stmts); if not Null_Present (Type_Definition (N)) then Append_List_To (Body_Stmts, Build_Init_Statements ( Component_List (Type_Definition (N)))); end if; -- N is a Derived_Type_Definition with a possible non-empty -- extension. The initialization of a type extension consists in the -- initialization of the components in the extension. else Build_Discriminant_Assignments (Body_Stmts); Record_Extension_Node := Record_Extension_Part (Type_Definition (N)); if not Null_Present (Record_Extension_Node) then declare Stmts : constant List_Id := Build_Init_Statements ( Component_List (Record_Extension_Node)); begin -- The parent field must be initialized first because the -- offset of the new discriminants may depend on it. This is -- not needed if the parent is an interface type because in -- such case the initialization of the _parent field was not -- generated. if not Is_Interface (Etype (Rec_Ent)) then Prepend_To (Body_Stmts, Remove_Head (Stmts)); end if; Append_List_To (Body_Stmts, Stmts); end; end if; end if; -- Add here the assignment to instantiate the Tag -- The assignment corresponds to the code: -- _Init._Tag := Typ'Tag; -- Suppress the tag assignment when VM_Target because VM tags are -- represented implicitly in objects. It is also suppressed in case -- of CPP_Class types because in this case the tag is initialized in -- the C++ side. if Is_Tagged_Type (Rec_Type) and then Tagged_Type_Expansion and then not No_Run_Time_Mode then -- Case 1: Ada tagged types with no CPP ancestor. Set the tags of -- the actual object and invoke the IP of the parent (in this -- order). The tag must be initialized before the call to the IP -- of the parent and the assignments to other components because -- the initial value of the components may depend on the tag (eg. -- through a dispatching operation on an access to the current -- type). The tag assignment is not done when initializing the -- parent component of a type extension, because in that case the -- tag is set in the extension. if not Is_CPP_Class (Root_Type (Rec_Type)) then -- Initialize the primary tag component Init_Tags_List := New_List ( Make_Assignment_Statement (Loc, Name => Make_Selected_Component (Loc, Prefix => Make_Identifier (Loc, Name_uInit), Selector_Name => New_Reference_To (First_Tag_Component (Rec_Type), Loc)), Expression => New_Reference_To (Node (First_Elmt (Access_Disp_Table (Rec_Type))), Loc))); -- Ada 2005 (AI-251): Initialize the secondary tags components -- located at fixed positions (tags whose position depends on -- variable size components are initialized later ---see below) if Ada_Version >= Ada_2005 and then not Is_Interface (Rec_Type) and then Has_Interfaces (Rec_Type) then Init_Secondary_Tags (Typ => Rec_Type, Target => Make_Identifier (Loc, Name_uInit), Stmts_List => Init_Tags_List, Fixed_Comps => True, Variable_Comps => False); end if; Prepend_To (Body_Stmts, Make_If_Statement (Loc, Condition => New_Occurrence_Of (Set_Tag, Loc), Then_Statements => Init_Tags_List)); -- Case 2: CPP type. The imported C++ constructor takes care of -- tags initialization. No action needed here because the IP -- is built by Set_CPP_Constructors; in this case the IP is a -- wrapper that invokes the C++ constructor and copies the C++ -- tags locally. Done to inherit the C++ slots in Ada derivations -- (see case 3). elsif Is_CPP_Class (Rec_Type) then pragma Assert (False); null; -- Case 3: Combined hierarchy containing C++ types and Ada tagged -- type derivations. Derivations of imported C++ classes add a -- complication, because we cannot inhibit tag setting in the -- constructor for the parent. Hence we initialize the tag after -- the call to the parent IP (that is, in reverse order compared -- with pure Ada hierarchies ---see comment on case 1). else -- Initialize the primary tag Init_Tags_List := New_List ( Make_Assignment_Statement (Loc, Name => Make_Selected_Component (Loc, Prefix => Make_Identifier (Loc, Name_uInit), Selector_Name => New_Reference_To (First_Tag_Component (Rec_Type), Loc)), Expression => New_Reference_To (Node (First_Elmt (Access_Disp_Table (Rec_Type))), Loc))); -- Ada 2005 (AI-251): Initialize the secondary tags components -- located at fixed positions (tags whose position depends on -- variable size components are initialized later ---see below) if Ada_Version >= Ada_2005 and then not Is_Interface (Rec_Type) and then Has_Interfaces (Rec_Type) then Init_Secondary_Tags (Typ => Rec_Type, Target => Make_Identifier (Loc, Name_uInit), Stmts_List => Init_Tags_List, Fixed_Comps => True, Variable_Comps => False); end if; -- Initialize the tag component after invocation of parent IP. -- Generate: -- parent_IP(_init.parent); // Invokes the C++ constructor -- [ typIC; ] // Inherit C++ slots from parent -- init_tags declare Ins_Nod : Node_Id; begin -- Search for the call to the IP of the parent. We assume -- that the first init_proc call is for the parent. Ins_Nod := First (Body_Stmts); while Present (Next (Ins_Nod)) and then (Nkind (Ins_Nod) /= N_Procedure_Call_Statement or else not Is_Init_Proc (Name (Ins_Nod))) loop Next (Ins_Nod); end loop; -- The IC routine copies the inherited slots of the C+ part -- of the dispatch table from the parent and updates the -- overridden C++ slots. if CPP_Num_Prims (Rec_Type) > 0 then declare Init_DT : Entity_Id; New_Nod : Node_Id; begin Init_DT := CPP_Init_Proc (Rec_Type); pragma Assert (Present (Init_DT)); New_Nod := Make_Procedure_Call_Statement (Loc, New_Reference_To (Init_DT, Loc)); Insert_After (Ins_Nod, New_Nod); -- Update location of init tag statements Ins_Nod := New_Nod; end; end if; Insert_List_After (Ins_Nod, Init_Tags_List); end; end if; -- Ada 2005 (AI-251): Initialize the secondary tag components -- located at variable positions. We delay the generation of this -- code until here because the value of the attribute 'Position -- applied to variable size components of the parent type that -- depend on discriminants is only safely read at runtime after -- the parent components have been initialized. if Ada_Version >= Ada_2005 and then not Is_Interface (Rec_Type) and then Has_Interfaces (Rec_Type) and then Has_Discriminants (Etype (Rec_Type)) and then Is_Variable_Size_Record (Etype (Rec_Type)) then Init_Tags_List := New_List; Init_Secondary_Tags (Typ => Rec_Type, Target => Make_Identifier (Loc, Name_uInit), Stmts_List => Init_Tags_List, Fixed_Comps => False, Variable_Comps => True); if Is_Non_Empty_List (Init_Tags_List) then Append_List_To (Body_Stmts, Init_Tags_List); end if; end if; end if; Handled_Stmt_Node := New_Node (N_Handled_Sequence_Of_Statements, Loc); Set_Statements (Handled_Stmt_Node, Body_Stmts); -- Generate: -- Local_DF_Id (_init, C1, ..., CN); -- raise; if Counter > 0 and then Needs_Finalization (Rec_Type) and then not Is_Abstract_Type (Rec_Type) and then not Restriction_Active (No_Exception_Propagation) then declare Local_DF_Id : Entity_Id; begin -- Create a local version of Deep_Finalize which has indication -- of partial initialization state. Local_DF_Id := Make_Temporary (Loc, 'F'); Append_To (Decls, Make_Local_Deep_Finalize (Rec_Type, Local_DF_Id)); Set_Exception_Handlers (Handled_Stmt_Node, New_List ( Make_Exception_Handler (Loc, Exception_Choices => New_List ( Make_Others_Choice (Loc)), Statements => New_List ( Make_Procedure_Call_Statement (Loc, Name => New_Reference_To (Local_DF_Id, Loc), Parameter_Associations => New_List ( Make_Identifier (Loc, Name_uInit), New_Reference_To (Standard_False, Loc))), Make_Raise_Statement (Loc))))); end; else Set_Exception_Handlers (Handled_Stmt_Node, No_List); end if; Set_Handled_Statement_Sequence (Body_Node, Handled_Stmt_Node); if not Debug_Generated_Code then Set_Debug_Info_Off (Proc_Id); end if; -- Associate Init_Proc with type, and determine if the procedure -- is null (happens because of the Initialize_Scalars pragma case, -- where we have to generate a null procedure in case it is called -- by a client with Initialize_Scalars set). Such procedures have -- to be generated, but do not have to be called, so we mark them -- as null to suppress the call. Set_Init_Proc (Rec_Type, Proc_Id); if List_Length (Body_Stmts) = 1 -- We must skip SCIL nodes because they may have been added to this -- list by Insert_Actions. and then Nkind (First_Non_SCIL_Node (Body_Stmts)) = N_Null_Statement and then VM_Target = No_VM then -- Even though the init proc may be null at this time it might get -- some stuff added to it later by the VM backend. Set_Is_Null_Init_Proc (Proc_Id); end if; end Build_Init_Procedure; --------------------------- -- Build_Init_Statements -- --------------------------- function Build_Init_Statements (Comp_List : Node_Id) return List_Id is Checks : constant List_Id := New_List; Actions : List_Id := No_List; Comp_Loc : Source_Ptr; Counter_Id : Entity_Id := Empty; Decl : Node_Id; Has_POC : Boolean; Id : Entity_Id; Stmts : List_Id; Typ : Entity_Id; procedure Increment_Counter (Loc : Source_Ptr); -- Generate an "increment by one" statement for the current counter -- and append it to the list Stmts. procedure Make_Counter (Loc : Source_Ptr); -- Create a new counter for the current component list. The routine -- creates a new defining Id, adds an object declaration and sets -- the Id generator for the next variant. ----------------------- -- Increment_Counter -- ----------------------- procedure Increment_Counter (Loc : Source_Ptr) is begin -- Generate: -- Counter := Counter + 1; Append_To (Stmts, Make_Assignment_Statement (Loc, Name => New_Reference_To (Counter_Id, Loc), Expression => Make_Op_Add (Loc, Left_Opnd => New_Reference_To (Counter_Id, Loc), Right_Opnd => Make_Integer_Literal (Loc, 1)))); end Increment_Counter; ------------------ -- Make_Counter -- ------------------ procedure Make_Counter (Loc : Source_Ptr) is begin -- Increment the Id generator Counter := Counter + 1; -- Create the entity and declaration Counter_Id := Make_Defining_Identifier (Loc, Chars => New_External_Name ('C', Counter)); -- Generate: -- Cnn : Integer := 0; Append_To (Decls, Make_Object_Declaration (Loc, Defining_Identifier => Counter_Id, Object_Definition => New_Reference_To (Standard_Integer, Loc), Expression => Make_Integer_Literal (Loc, 0))); end Make_Counter; -- Start of processing for Build_Init_Statements begin if Null_Present (Comp_List) then return New_List (Make_Null_Statement (Loc)); end if; Stmts := New_List; -- Loop through visible declarations of task types and protected -- types moving any expanded code from the spec to the body of the -- init procedure. if Is_Task_Record_Type (Rec_Type) or else Is_Protected_Record_Type (Rec_Type) then declare Decl : constant Node_Id := Parent (Corresponding_Concurrent_Type (Rec_Type)); Def : Node_Id; N1 : Node_Id; N2 : Node_Id; begin if Is_Task_Record_Type (Rec_Type) then Def := Task_Definition (Decl); else Def := Protected_Definition (Decl); end if; if Present (Def) then N1 := First (Visible_Declarations (Def)); while Present (N1) loop N2 := N1; N1 := Next (N1); if Nkind (N2) in N_Statement_Other_Than_Procedure_Call or else Nkind (N2) in N_Raise_xxx_Error or else Nkind (N2) = N_Procedure_Call_Statement then Append_To (Stmts, New_Copy_Tree (N2, New_Scope => Proc_Id)); Rewrite (N2, Make_Null_Statement (Sloc (N2))); Analyze (N2); end if; end loop; end if; end; end if; -- Loop through components, skipping pragmas, in 2 steps. The first -- step deals with regular components. The second step deals with -- components that have per object constraints and no explicit -- initialization. Has_POC := False; -- First pass : regular components Decl := First_Non_Pragma (Component_Items (Comp_List)); while Present (Decl) loop Comp_Loc := Sloc (Decl); Build_Record_Checks (Subtype_Indication (Component_Definition (Decl)), Checks); Id := Defining_Identifier (Decl); Typ := Etype (Id); -- Leave any processing of per-object constrained component for -- the second pass. if Has_Access_Constraint (Id) and then No (Expression (Decl)) then Has_POC := True; -- Regular component cases else -- Explicit initialization if Present (Expression (Decl)) then if Is_CPP_Constructor_Call (Expression (Decl)) then Actions := Build_Initialization_Call (Comp_Loc, Id_Ref => Make_Selected_Component (Comp_Loc, Prefix => Make_Identifier (Comp_Loc, Name_uInit), Selector_Name => New_Occurrence_Of (Id, Comp_Loc)), Typ => Typ, In_Init_Proc => True, Enclos_Type => Rec_Type, Discr_Map => Discr_Map, Constructor_Ref => Expression (Decl)); else Actions := Build_Assignment (Id, Expression (Decl)); end if; -- CPU, Dispatching_Domain, Priority and Size components are -- filled with the corresponding rep item expression of the -- concurrent type (if any). elsif Ekind (Scope (Id)) = E_Record_Type and then Present (Corresponding_Concurrent_Type (Scope (Id))) and then Nam_In (Chars (Id), Name_uCPU, Name_uDispatching_Domain, Name_uPriority) then declare Exp : Node_Id; Nam : Name_Id; Ritem : Node_Id; begin if Chars (Id) = Name_uCPU then Nam := Name_CPU; elsif Chars (Id) = Name_uDispatching_Domain then Nam := Name_Dispatching_Domain; elsif Chars (Id) = Name_uPriority then Nam := Name_Priority; end if; -- Get the Rep Item (aspect specification, attribute -- definition clause or pragma) of the corresponding -- concurrent type. Ritem := Get_Rep_Item (Corresponding_Concurrent_Type (Scope (Id)), Nam, Check_Parents => False); if Present (Ritem) then -- Pragma case if Nkind (Ritem) = N_Pragma then Exp := First (Pragma_Argument_Associations (Ritem)); if Nkind (Exp) = N_Pragma_Argument_Association then Exp := Expression (Exp); end if; -- Conversion for Priority expression if Nam = Name_Priority then if Pragma_Name (Ritem) = Name_Priority and then not GNAT_Mode then Exp := Convert_To (RTE (RE_Priority), Exp); else Exp := Convert_To (RTE (RE_Any_Priority), Exp); end if; end if; -- Aspect/Attribute definition clause case else Exp := Expression (Ritem); -- Conversion for Priority expression if Nam = Name_Priority then if Chars (Ritem) = Name_Priority and then not GNAT_Mode then Exp := Convert_To (RTE (RE_Priority), Exp); else Exp := Convert_To (RTE (RE_Any_Priority), Exp); end if; end if; end if; -- Conversion for Dispatching_Domain value if Nam = Name_Dispatching_Domain then Exp := Unchecked_Convert_To (RTE (RE_Dispatching_Domain_Access), Exp); end if; Actions := Build_Assignment (Id, Exp); -- Nothing needed if no Rep Item else Actions := No_List; end if; end; -- Composite component with its own Init_Proc elsif not Is_Interface (Typ) and then Has_Non_Null_Base_Init_Proc (Typ) then Actions := Build_Initialization_Call (Comp_Loc, Make_Selected_Component (Comp_Loc, Prefix => Make_Identifier (Comp_Loc, Name_uInit), Selector_Name => New_Occurrence_Of (Id, Comp_Loc)), Typ, In_Init_Proc => True, Enclos_Type => Rec_Type, Discr_Map => Discr_Map); Clean_Task_Names (Typ, Proc_Id); -- Simple initialization elsif Component_Needs_Simple_Initialization (Typ) then Actions := Build_Assignment (Id, Get_Simple_Init_Val (Typ, N, Esize (Id))); -- Nothing needed for this case else Actions := No_List; end if; if Present (Checks) then Append_List_To (Stmts, Checks); end if; if Present (Actions) then Append_List_To (Stmts, Actions); -- Preserve the initialization state in the current counter if Chars (Id) /= Name_uParent and then Needs_Finalization (Typ) then if No (Counter_Id) then Make_Counter (Comp_Loc); end if; Increment_Counter (Comp_Loc); end if; end if; end if; Next_Non_Pragma (Decl); end loop; -- Set up tasks and protected object support. This needs to be done -- before any component with a per-object access discriminant -- constraint, or any variant part (which may contain such -- components) is initialized, because the initialization of these -- components may reference the enclosing concurrent object. -- For a task record type, add the task create call and calls to bind -- any interrupt (signal) entries. if Is_Task_Record_Type (Rec_Type) then -- In the case of the restricted run time the ATCB has already -- been preallocated. if Restricted_Profile then Append_To (Stmts, Make_Assignment_Statement (Loc, Name => Make_Selected_Component (Loc, Prefix => Make_Identifier (Loc, Name_uInit), Selector_Name => Make_Identifier (Loc, Name_uTask_Id)), Expression => Make_Attribute_Reference (Loc, Prefix => Make_Selected_Component (Loc, Prefix => Make_Identifier (Loc, Name_uInit), Selector_Name => Make_Identifier (Loc, Name_uATCB)), Attribute_Name => Name_Unchecked_Access))); end if; Append_To (Stmts, Make_Task_Create_Call (Rec_Type)); declare Task_Type : constant Entity_Id := Corresponding_Concurrent_Type (Rec_Type); Task_Decl : constant Node_Id := Parent (Task_Type); Task_Def : constant Node_Id := Task_Definition (Task_Decl); Decl_Loc : Source_Ptr; Ent : Entity_Id; Vis_Decl : Node_Id; begin if Present (Task_Def) then Vis_Decl := First (Visible_Declarations (Task_Def)); while Present (Vis_Decl) loop Decl_Loc := Sloc (Vis_Decl); if Nkind (Vis_Decl) = N_Attribute_Definition_Clause then if Get_Attribute_Id (Chars (Vis_Decl)) = Attribute_Address then Ent := Entity (Name (Vis_Decl)); if Ekind (Ent) = E_Entry then Append_To (Stmts, Make_Procedure_Call_Statement (Decl_Loc, Name => New_Reference_To (RTE ( RE_Bind_Interrupt_To_Entry), Decl_Loc), Parameter_Associations => New_List ( Make_Selected_Component (Decl_Loc, Prefix => Make_Identifier (Decl_Loc, Name_uInit), Selector_Name => Make_Identifier (Decl_Loc, Name_uTask_Id)), Entry_Index_Expression (Decl_Loc, Ent, Empty, Task_Type), Expression (Vis_Decl)))); end if; end if; end if; Next (Vis_Decl); end loop; end if; end; end if; -- For a protected type, add statements generated by -- Make_Initialize_Protection. if Is_Protected_Record_Type (Rec_Type) then Append_List_To (Stmts, Make_Initialize_Protection (Rec_Type)); end if; -- Second pass: components with per-object constraints if Has_POC then Decl := First_Non_Pragma (Component_Items (Comp_List)); while Present (Decl) loop Comp_Loc := Sloc (Decl); Id := Defining_Identifier (Decl); Typ := Etype (Id); if Has_Access_Constraint (Id) and then No (Expression (Decl)) then if Has_Non_Null_Base_Init_Proc (Typ) then Append_List_To (Stmts, Build_Initialization_Call (Comp_Loc, Make_Selected_Component (Comp_Loc, Prefix => Make_Identifier (Comp_Loc, Name_uInit), Selector_Name => New_Occurrence_Of (Id, Comp_Loc)), Typ, In_Init_Proc => True, Enclos_Type => Rec_Type, Discr_Map => Discr_Map)); Clean_Task_Names (Typ, Proc_Id); -- Preserve initialization state in the current counter if Needs_Finalization (Typ) then if No (Counter_Id) then Make_Counter (Comp_Loc); end if; Increment_Counter (Comp_Loc); end if; elsif Component_Needs_Simple_Initialization (Typ) then Append_List_To (Stmts, Build_Assignment (Id, Get_Simple_Init_Val (Typ, N, Esize (Id)))); end if; end if; Next_Non_Pragma (Decl); end loop; end if; -- Process the variant part if Present (Variant_Part (Comp_List)) then declare Variant_Alts : constant List_Id := New_List; Var_Loc : Source_Ptr; Variant : Node_Id; begin Variant := First_Non_Pragma (Variants (Variant_Part (Comp_List))); while Present (Variant) loop Var_Loc := Sloc (Variant); Append_To (Variant_Alts, Make_Case_Statement_Alternative (Var_Loc, Discrete_Choices => New_Copy_List (Discrete_Choices (Variant)), Statements => Build_Init_Statements (Component_List (Variant)))); Next_Non_Pragma (Variant); end loop; -- The expression of the case statement which is a reference -- to one of the discriminants is replaced by the appropriate -- formal parameter of the initialization procedure. Append_To (Stmts, Make_Case_Statement (Var_Loc, Expression => New_Reference_To (Discriminal ( Entity (Name (Variant_Part (Comp_List)))), Var_Loc), Alternatives => Variant_Alts)); end; end if; -- If no initializations when generated for component declarations -- corresponding to this Stmts, append a null statement to Stmts to -- to make it a valid Ada tree. if Is_Empty_List (Stmts) then Append (Make_Null_Statement (Loc), Stmts); end if; return Stmts; exception when RE_Not_Available => return Empty_List; end Build_Init_Statements; ------------------------- -- Build_Record_Checks -- ------------------------- procedure Build_Record_Checks (S : Node_Id; Check_List : List_Id) is Subtype_Mark_Id : Entity_Id; procedure Constrain_Array (SI : Node_Id; Check_List : List_Id); -- Apply a list of index constraints to an unconstrained array type. -- The first parameter is the entity for the resulting subtype. -- Check_List is a list to which the check actions are appended. --------------------- -- Constrain_Array -- --------------------- procedure Constrain_Array (SI : Node_Id; Check_List : List_Id) is C : constant Node_Id := Constraint (SI); Number_Of_Constraints : Nat := 0; Index : Node_Id; S, T : Entity_Id; procedure Constrain_Index (Index : Node_Id; S : Node_Id; Check_List : List_Id); -- Process an index constraint in a constrained array declaration. -- The constraint can be either a subtype name or a range with or -- without an explicit subtype mark. Index is the corresponding -- index of the unconstrained array. S is the range expression. -- Check_List is a list to which the check actions are appended. --------------------- -- Constrain_Index -- --------------------- procedure Constrain_Index (Index : Node_Id; S : Node_Id; Check_List : List_Id) is T : constant Entity_Id := Etype (Index); begin if Nkind (S) = N_Range then Process_Range_Expr_In_Decl (S, T, Check_List); end if; end Constrain_Index; -- Start of processing for Constrain_Array begin T := Entity (Subtype_Mark (SI)); if Ekind (T) in Access_Kind then T := Designated_Type (T); end if; S := First (Constraints (C)); while Present (S) loop Number_Of_Constraints := Number_Of_Constraints + 1; Next (S); end loop; -- In either case, the index constraint must provide a discrete -- range for each index of the array type and the type of each -- discrete range must be the same as that of the corresponding -- index. (RM 3.6.1) S := First (Constraints (C)); Index := First_Index (T); Analyze (Index); -- Apply constraints to each index type for J in 1 .. Number_Of_Constraints loop Constrain_Index (Index, S, Check_List); Next (Index); Next (S); end loop; end Constrain_Array; -- Start of processing for Build_Record_Checks begin if Nkind (S) = N_Subtype_Indication then Find_Type (Subtype_Mark (S)); Subtype_Mark_Id := Entity (Subtype_Mark (S)); -- Remaining processing depends on type case Ekind (Subtype_Mark_Id) is when Array_Kind => Constrain_Array (S, Check_List); when others => null; end case; end if; end Build_Record_Checks; ------------------------------------------- -- Component_Needs_Simple_Initialization -- ------------------------------------------- function Component_Needs_Simple_Initialization (T : Entity_Id) return Boolean is begin return Needs_Simple_Initialization (T) and then not Is_RTE (T, RE_Tag) -- Ada 2005 (AI-251): Check also the tag of abstract interfaces and then not Is_RTE (T, RE_Interface_Tag); end Component_Needs_Simple_Initialization; -------------------------------------- -- Parent_Subtype_Renaming_Discrims -- -------------------------------------- function Parent_Subtype_Renaming_Discrims return Boolean is De : Entity_Id; Dp : Entity_Id; begin if Base_Type (Rec_Ent) /= Rec_Ent then return False; end if; if Etype (Rec_Ent) = Rec_Ent or else not Has_Discriminants (Rec_Ent) or else Is_Constrained (Rec_Ent) or else Is_Tagged_Type (Rec_Ent) then return False; end if; -- If there are no explicit stored discriminants we have inherited -- the root type discriminants so far, so no renamings occurred. if First_Discriminant (Rec_Ent) = First_Stored_Discriminant (Rec_Ent) then return False; end if; -- Check if we have done some trivial renaming of the parent -- discriminants, i.e. something like -- -- type DT (X1, X2: int) is new PT (X1, X2); De := First_Discriminant (Rec_Ent); Dp := First_Discriminant (Etype (Rec_Ent)); while Present (De) loop pragma Assert (Present (Dp)); if Corresponding_Discriminant (De) /= Dp then return True; end if; Next_Discriminant (De); Next_Discriminant (Dp); end loop; return Present (Dp); end Parent_Subtype_Renaming_Discrims; ------------------------ -- Requires_Init_Proc -- ------------------------ function Requires_Init_Proc (Rec_Id : Entity_Id) return Boolean is Comp_Decl : Node_Id; Id : Entity_Id; Typ : Entity_Id; begin -- Definitely do not need one if specifically suppressed if Initialization_Suppressed (Rec_Id) then return False; end if; -- If it is a type derived from a type with unknown discriminants, -- we cannot build an initialization procedure for it. if Has_Unknown_Discriminants (Rec_Id) or else Has_Unknown_Discriminants (Etype (Rec_Id)) then return False; end if; -- Otherwise we need to generate an initialization procedure if -- Is_CPP_Class is False and at least one of the following applies: -- 1. Discriminants are present, since they need to be initialized -- with the appropriate discriminant constraint expressions. -- However, the discriminant of an unchecked union does not -- count, since the discriminant is not present. -- 2. The type is a tagged type, since the implicit Tag component -- needs to be initialized with a pointer to the dispatch table. -- 3. The type contains tasks -- 4. One or more components has an initial value -- 5. One or more components is for a type which itself requires -- an initialization procedure. -- 6. One or more components is a type that requires simple -- initialization (see Needs_Simple_Initialization), except -- that types Tag and Interface_Tag are excluded, since fields -- of these types are initialized by other means. -- 7. The type is the record type built for a task type (since at -- the very least, Create_Task must be called) -- 8. The type is the record type built for a protected type (since -- at least Initialize_Protection must be called) -- 9. The type is marked as a public entity. The reason we add this -- case (even if none of the above apply) is to properly handle -- Initialize_Scalars. If a package is compiled without an IS -- pragma, and the client is compiled with an IS pragma, then -- the client will think an initialization procedure is present -- and call it, when in fact no such procedure is required, but -- since the call is generated, there had better be a routine -- at the other end of the call, even if it does nothing!) -- Note: the reason we exclude the CPP_Class case is because in this -- case the initialization is performed by the C++ constructors, and -- the IP is built by Set_CPP_Constructors. if Is_CPP_Class (Rec_Id) then return False; elsif Is_Interface (Rec_Id) then return False; elsif (Has_Discriminants (Rec_Id) and then not Is_Unchecked_Union (Rec_Id)) or else Is_Tagged_Type (Rec_Id) or else Is_Concurrent_Record_Type (Rec_Id) or else Has_Task (Rec_Id) then return True; end if; Id := First_Component (Rec_Id); while Present (Id) loop Comp_Decl := Parent (Id); Typ := Etype (Id); if Present (Expression (Comp_Decl)) or else Has_Non_Null_Base_Init_Proc (Typ) or else Component_Needs_Simple_Initialization (Typ) then return True; end if; Next_Component (Id); end loop; -- As explained above, a record initialization procedure is needed -- for public types in case Initialize_Scalars applies to a client. -- However, such a procedure is not needed in the case where either -- of restrictions No_Initialize_Scalars or No_Default_Initialization -- applies. No_Initialize_Scalars excludes the possibility of using -- Initialize_Scalars in any partition, and No_Default_Initialization -- implies that no initialization should ever be done for objects of -- the type, so is incompatible with Initialize_Scalars. if not Restriction_Active (No_Initialize_Scalars) and then not Restriction_Active (No_Default_Initialization) and then Is_Public (Rec_Id) then return True; end if; return False; end Requires_Init_Proc; -- Start of processing for Build_Record_Init_Proc begin -- Check for value type, which means no initialization required Rec_Type := Defining_Identifier (N); if Is_Value_Type (Rec_Type) then return; end if; -- This may be full declaration of a private type, in which case -- the visible entity is a record, and the private entity has been -- exchanged with it in the private part of the current package. -- The initialization procedure is built for the record type, which -- is retrievable from the private entity. if Is_Incomplete_Or_Private_Type (Rec_Type) then Rec_Type := Underlying_Type (Rec_Type); end if; -- If there are discriminants, build the discriminant map to replace -- discriminants by their discriminals in complex bound expressions. -- These only arise for the corresponding records of synchronized types. if Is_Concurrent_Record_Type (Rec_Type) and then Has_Discriminants (Rec_Type) then declare Disc : Entity_Id; begin Disc := First_Discriminant (Rec_Type); while Present (Disc) loop Append_Elmt (Disc, Discr_Map); Append_Elmt (Discriminal (Disc), Discr_Map); Next_Discriminant (Disc); end loop; end; end if; -- Derived types that have no type extension can use the initialization -- procedure of their parent and do not need a procedure of their own. -- This is only correct if there are no representation clauses for the -- type or its parent, and if the parent has in fact been frozen so -- that its initialization procedure exists. if Is_Derived_Type (Rec_Type) and then not Is_Tagged_Type (Rec_Type) and then not Is_Unchecked_Union (Rec_Type) and then not Has_New_Non_Standard_Rep (Rec_Type) and then not Parent_Subtype_Renaming_Discrims and then Has_Non_Null_Base_Init_Proc (Etype (Rec_Type)) then Copy_TSS (Base_Init_Proc (Etype (Rec_Type)), Rec_Type); -- Otherwise if we need an initialization procedure, then build one, -- mark it as public and inlinable and as having a completion. elsif Requires_Init_Proc (Rec_Type) or else Is_Unchecked_Union (Rec_Type) then Proc_Id := Make_Defining_Identifier (Loc, Chars => Make_Init_Proc_Name (Rec_Type)); -- If No_Default_Initialization restriction is active, then we don't -- want to build an init_proc, but we need to mark that an init_proc -- would be needed if this restriction was not active (so that we can -- detect attempts to call it), so set a dummy init_proc in place. if Restriction_Active (No_Default_Initialization) then Set_Init_Proc (Rec_Type, Proc_Id); return; end if; Build_Offset_To_Top_Functions; Build_CPP_Init_Procedure; Build_Init_Procedure; Set_Is_Public (Proc_Id, Is_Public (Rec_Ent)); -- The initialization of protected records is not worth inlining. -- In addition, when compiled for another unit for inlining purposes, -- it may make reference to entities that have not been elaborated -- yet. The initialization of controlled records contains a nested -- clean-up procedure that makes it impractical to inline as well, -- and leads to undefined symbols if inlined in a different unit. -- Similar considerations apply to task types. if not Is_Concurrent_Type (Rec_Type) and then not Has_Task (Rec_Type) and then not Needs_Finalization (Rec_Type) then Set_Is_Inlined (Proc_Id); end if; Set_Is_Internal (Proc_Id); Set_Has_Completion (Proc_Id); if not Debug_Generated_Code then Set_Debug_Info_Off (Proc_Id); end if; declare Agg : constant Node_Id := Build_Equivalent_Record_Aggregate (Rec_Type); procedure Collect_Itypes (Comp : Node_Id); -- Generate references to itypes in the aggregate, because -- the first use of the aggregate may be in a nested scope. -------------------- -- Collect_Itypes -- -------------------- procedure Collect_Itypes (Comp : Node_Id) is Ref : Node_Id; Sub_Aggr : Node_Id; Typ : constant Entity_Id := Etype (Comp); begin if Is_Array_Type (Typ) and then Is_Itype (Typ) then Ref := Make_Itype_Reference (Loc); Set_Itype (Ref, Typ); Append_Freeze_Action (Rec_Type, Ref); Ref := Make_Itype_Reference (Loc); Set_Itype (Ref, Etype (First_Index (Typ))); Append_Freeze_Action (Rec_Type, Ref); Sub_Aggr := First (Expressions (Comp)); -- Recurse on nested arrays while Present (Sub_Aggr) loop Collect_Itypes (Sub_Aggr); Next (Sub_Aggr); end loop; end if; end Collect_Itypes; begin -- If there is a static initialization aggregate for the type, -- generate itype references for the types of its (sub)components, -- to prevent out-of-scope errors in the resulting tree. -- The aggregate may have been rewritten as a Raise node, in which -- case there are no relevant itypes. if Present (Agg) and then Nkind (Agg) = N_Aggregate then Set_Static_Initialization (Proc_Id, Agg); declare Comp : Node_Id; begin Comp := First (Component_Associations (Agg)); while Present (Comp) loop Collect_Itypes (Expression (Comp)); Next (Comp); end loop; end; end if; end; end if; end Build_Record_Init_Proc; -------------------------------- -- Build_Record_Invariant_Proc -- -------------------------------- function Build_Record_Invariant_Proc (R_Type : Entity_Id; Nod : Node_Id) return Node_Id is Loc : constant Source_Ptr := Sloc (Nod); Object_Name : constant Name_Id := New_Internal_Name ('I'); -- Name for argument of invariant procedure Object_Entity : constant Node_Id := Make_Defining_Identifier (Loc, Object_Name); -- The procedure declaration entity for the argument Invariant_Found : Boolean; -- Set if any component needs an invariant check. Proc_Id : Entity_Id; Proc_Body : Node_Id; Stmts : List_Id; Type_Def : Node_Id; function Build_Invariant_Checks (Comp_List : Node_Id) return List_Id; -- Recursive procedure that generates a list of checks for components -- that need it, and recurses through variant parts when present. function Build_Component_Invariant_Call (Comp : Entity_Id) return Node_Id; -- Build call to invariant procedure for a record component. ------------------------------------ -- Build_Component_Invariant_Call -- ------------------------------------ function Build_Component_Invariant_Call (Comp : Entity_Id) return Node_Id is Sel_Comp : Node_Id; Typ : Entity_Id; Call : Node_Id; begin Invariant_Found := True; Typ := Etype (Comp); Sel_Comp := Make_Selected_Component (Loc, Prefix => New_Occurrence_Of (Object_Entity, Loc), Selector_Name => New_Occurrence_Of (Comp, Loc)); if Is_Access_Type (Typ) then Sel_Comp := Make_Explicit_Dereference (Loc, Sel_Comp); Typ := Designated_Type (Typ); end if; Call := Make_Procedure_Call_Statement (Loc, Name => New_Occurrence_Of (Invariant_Procedure (Typ), Loc), Parameter_Associations => New_List (Sel_Comp)); if Is_Access_Type (Etype (Comp)) then Call := Make_If_Statement (Loc, Condition => Make_Op_Ne (Loc, Left_Opnd => Make_Null (Loc), Right_Opnd => Make_Selected_Component (Loc, Prefix => New_Occurrence_Of (Object_Entity, Loc), Selector_Name => New_Occurrence_Of (Comp, Loc))), Then_Statements => New_List (Call)); end if; return Call; end Build_Component_Invariant_Call; ---------------------------- -- Build_Invariant_Checks -- ---------------------------- function Build_Invariant_Checks (Comp_List : Node_Id) return List_Id is Decl : Node_Id; Id : Entity_Id; Stmts : List_Id; begin Stmts := New_List; Decl := First_Non_Pragma (Component_Items (Comp_List)); while Present (Decl) loop if Nkind (Decl) = N_Component_Declaration then Id := Defining_Identifier (Decl); if Has_Invariants (Etype (Id)) and then In_Open_Scopes (Scope (R_Type)) then Append_To (Stmts, Build_Component_Invariant_Call (Id)); elsif Is_Access_Type (Etype (Id)) and then not Is_Access_Constant (Etype (Id)) and then Has_Invariants (Designated_Type (Etype (Id))) and then In_Open_Scopes (Scope (Designated_Type (Etype (Id)))) then Append_To (Stmts, Build_Component_Invariant_Call (Id)); end if; end if; Next (Decl); end loop; if Present (Variant_Part (Comp_List)) then declare Variant_Alts : constant List_Id := New_List; Var_Loc : Source_Ptr; Variant : Node_Id; Variant_Stmts : List_Id; begin Variant := First_Non_Pragma (Variants (Variant_Part (Comp_List))); while Present (Variant) loop Variant_Stmts := Build_Invariant_Checks (Component_List (Variant)); Var_Loc := Sloc (Variant); Append_To (Variant_Alts, Make_Case_Statement_Alternative (Var_Loc, Discrete_Choices => New_Copy_List (Discrete_Choices (Variant)), Statements => Variant_Stmts)); Next_Non_Pragma (Variant); end loop; -- The expression in the case statement is the reference to -- the discriminant of the target object. Append_To (Stmts, Make_Case_Statement (Var_Loc, Expression => Make_Selected_Component (Var_Loc, Prefix => New_Occurrence_Of (Object_Entity, Var_Loc), Selector_Name => New_Occurrence_Of (Entity (Name (Variant_Part (Comp_List))), Var_Loc)), Alternatives => Variant_Alts)); end; end if; return Stmts; end Build_Invariant_Checks; -- Start of processing for Build_Record_Invariant_Proc begin Invariant_Found := False; Type_Def := Type_Definition (Parent (R_Type)); if Nkind (Type_Def) = N_Record_Definition and then not Null_Present (Type_Def) then Stmts := Build_Invariant_Checks (Component_List (Type_Def)); else return Empty; end if; if not Invariant_Found then return Empty; end if; Proc_Id := Make_Defining_Identifier (Loc, Chars => New_External_Name (Chars (R_Type), "Invariant")); Proc_Body := Make_Subprogram_Body (Loc, Specification => Make_Procedure_Specification (Loc, Defining_Unit_Name => Proc_Id, Parameter_Specifications => New_List ( Make_Parameter_Specification (Loc, Defining_Identifier => Object_Entity, Parameter_Type => New_Occurrence_Of (R_Type, Loc)))), Declarations => Empty_List, Handled_Statement_Sequence => Make_Handled_Sequence_Of_Statements (Loc, Statements => Stmts)); Set_Ekind (Proc_Id, E_Procedure); Set_Is_Public (Proc_Id, Is_Public (R_Type)); Set_Is_Internal (Proc_Id); Set_Has_Completion (Proc_Id); return Proc_Body; -- Insert_After (Nod, Proc_Body); -- Analyze (Proc_Body); end Build_Record_Invariant_Proc; ---------------------------- -- Build_Slice_Assignment -- ---------------------------- -- Generates the following subprogram: -- procedure Assign -- (Source, Target : Array_Type, -- Left_Lo, Left_Hi : Index; -- Right_Lo, Right_Hi : Index; -- Rev : Boolean) -- is -- Li1 : Index; -- Ri1 : Index; -- begin -- if Left_Hi < Left_Lo then -- return; -- end if; -- if Rev then -- Li1 := Left_Hi; -- Ri1 := Right_Hi; -- else -- Li1 := Left_Lo; -- Ri1 := Right_Lo; -- end if; -- loop -- Target (Li1) := Source (Ri1); -- if Rev then -- exit when Li1 = Left_Lo; -- Li1 := Index'pred (Li1); -- Ri1 := Index'pred (Ri1); -- else -- exit when Li1 = Left_Hi; -- Li1 := Index'succ (Li1); -- Ri1 := Index'succ (Ri1); -- end if; -- end loop; -- end Assign; procedure Build_Slice_Assignment (Typ : Entity_Id) is Loc : constant Source_Ptr := Sloc (Typ); Index : constant Entity_Id := Base_Type (Etype (First_Index (Typ))); Larray : constant Entity_Id := Make_Temporary (Loc, 'A'); Rarray : constant Entity_Id := Make_Temporary (Loc, 'R'); Left_Lo : constant Entity_Id := Make_Temporary (Loc, 'L'); Left_Hi : constant Entity_Id := Make_Temporary (Loc, 'L'); Right_Lo : constant Entity_Id := Make_Temporary (Loc, 'R'); Right_Hi : constant Entity_Id := Make_Temporary (Loc, 'R'); Rev : constant Entity_Id := Make_Temporary (Loc, 'D'); -- Formal parameters of procedure Proc_Name : constant Entity_Id := Make_Defining_Identifier (Loc, Chars => Make_TSS_Name (Typ, TSS_Slice_Assign)); Lnn : constant Entity_Id := Make_Temporary (Loc, 'L'); Rnn : constant Entity_Id := Make_Temporary (Loc, 'R'); -- Subscripts for left and right sides Decls : List_Id; Loops : Node_Id; Stats : List_Id; begin -- Build declarations for indexes Decls := New_List; Append_To (Decls, Make_Object_Declaration (Loc, Defining_Identifier => Lnn, Object_Definition => New_Occurrence_Of (Index, Loc))); Append_To (Decls, Make_Object_Declaration (Loc, Defining_Identifier => Rnn, Object_Definition => New_Occurrence_Of (Index, Loc))); Stats := New_List; -- Build test for empty slice case Append_To (Stats, Make_If_Statement (Loc, Condition => Make_Op_Lt (Loc, Left_Opnd => New_Occurrence_Of (Left_Hi, Loc), Right_Opnd => New_Occurrence_Of (Left_Lo, Loc)), Then_Statements => New_List (Make_Simple_Return_Statement (Loc)))); -- Build initializations for indexes declare F_Init : constant List_Id := New_List; B_Init : constant List_Id := New_List; begin Append_To (F_Init, Make_Assignment_Statement (Loc, Name => New_Occurrence_Of (Lnn, Loc), Expression => New_Occurrence_Of (Left_Lo, Loc))); Append_To (F_Init, Make_Assignment_Statement (Loc, Name => New_Occurrence_Of (Rnn, Loc), Expression => New_Occurrence_Of (Right_Lo, Loc))); Append_To (B_Init, Make_Assignment_Statement (Loc, Name => New_Occurrence_Of (Lnn, Loc), Expression => New_Occurrence_Of (Left_Hi, Loc))); Append_To (B_Init, Make_Assignment_Statement (Loc, Name => New_Occurrence_Of (Rnn, Loc), Expression => New_Occurrence_Of (Right_Hi, Loc))); Append_To (Stats, Make_If_Statement (Loc, Condition => New_Occurrence_Of (Rev, Loc), Then_Statements => B_Init, Else_Statements => F_Init)); end; -- Now construct the assignment statement Loops := Make_Loop_Statement (Loc, Statements => New_List ( Make_Assignment_Statement (Loc, Name => Make_Indexed_Component (Loc, Prefix => New_Occurrence_Of (Larray, Loc), Expressions => New_List (New_Occurrence_Of (Lnn, Loc))), Expression => Make_Indexed_Component (Loc, Prefix => New_Occurrence_Of (Rarray, Loc), Expressions => New_List (New_Occurrence_Of (Rnn, Loc))))), End_Label => Empty); -- Build the exit condition and increment/decrement statements declare F_Ass : constant List_Id := New_List; B_Ass : constant List_Id := New_List; begin Append_To (F_Ass, Make_Exit_Statement (Loc, Condition => Make_Op_Eq (Loc, Left_Opnd => New_Occurrence_Of (Lnn, Loc), Right_Opnd => New_Occurrence_Of (Left_Hi, Loc)))); Append_To (F_Ass, Make_Assignment_Statement (Loc, Name => New_Occurrence_Of (Lnn, Loc), Expression => Make_Attribute_Reference (Loc, Prefix => New_Occurrence_Of (Index, Loc), Attribute_Name => Name_Succ, Expressions => New_List ( New_Occurrence_Of (Lnn, Loc))))); Append_To (F_Ass, Make_Assignment_Statement (Loc, Name => New_Occurrence_Of (Rnn, Loc), Expression => Make_Attribute_Reference (Loc, Prefix => New_Occurrence_Of (Index, Loc), Attribute_Name => Name_Succ, Expressions => New_List ( New_Occurrence_Of (Rnn, Loc))))); Append_To (B_Ass, Make_Exit_Statement (Loc, Condition => Make_Op_Eq (Loc, Left_Opnd => New_Occurrence_Of (Lnn, Loc), Right_Opnd => New_Occurrence_Of (Left_Lo, Loc)))); Append_To (B_Ass, Make_Assignment_Statement (Loc, Name => New_Occurrence_Of (Lnn, Loc), Expression => Make_Attribute_Reference (Loc, Prefix => New_Occurrence_Of (Index, Loc), Attribute_Name => Name_Pred, Expressions => New_List ( New_Occurrence_Of (Lnn, Loc))))); Append_To (B_Ass, Make_Assignment_Statement (Loc, Name => New_Occurrence_Of (Rnn, Loc), Expression => Make_Attribute_Reference (Loc, Prefix => New_Occurrence_Of (Index, Loc), Attribute_Name => Name_Pred, Expressions => New_List ( New_Occurrence_Of (Rnn, Loc))))); Append_To (Statements (Loops), Make_If_Statement (Loc, Condition => New_Occurrence_Of (Rev, Loc), Then_Statements => B_Ass, Else_Statements => F_Ass)); end; Append_To (Stats, Loops); declare Spec : Node_Id; Formals : List_Id := New_List; begin Formals := New_List ( Make_Parameter_Specification (Loc, Defining_Identifier => Larray, Out_Present => True, Parameter_Type => New_Reference_To (Base_Type (Typ), Loc)), Make_Parameter_Specification (Loc, Defining_Identifier => Rarray, Parameter_Type => New_Reference_To (Base_Type (Typ), Loc)), Make_Parameter_Specification (Loc, Defining_Identifier => Left_Lo, Parameter_Type => New_Reference_To (Index, Loc)), Make_Parameter_Specification (Loc, Defining_Identifier => Left_Hi, Parameter_Type => New_Reference_To (Index, Loc)), Make_Parameter_Specification (Loc, Defining_Identifier => Right_Lo, Parameter_Type => New_Reference_To (Index, Loc)), Make_Parameter_Specification (Loc, Defining_Identifier => Right_Hi, Parameter_Type => New_Reference_To (Index, Loc))); Append_To (Formals, Make_Parameter_Specification (Loc, Defining_Identifier => Rev, Parameter_Type => New_Reference_To (Standard_Boolean, Loc))); Spec := Make_Procedure_Specification (Loc, Defining_Unit_Name => Proc_Name, Parameter_Specifications => Formals); Discard_Node ( Make_Subprogram_Body (Loc, Specification => Spec, Declarations => Decls, Handled_Statement_Sequence => Make_Handled_Sequence_Of_Statements (Loc, Statements => Stats))); end; Set_TSS (Typ, Proc_Name); Set_Is_Pure (Proc_Name); end Build_Slice_Assignment; ----------------------------- -- Build_Untagged_Equality -- ----------------------------- procedure Build_Untagged_Equality (Typ : Entity_Id) is Build_Eq : Boolean; Comp : Entity_Id; Decl : Node_Id; Op : Entity_Id; Prim : Elmt_Id; Eq_Op : Entity_Id; function User_Defined_Eq (T : Entity_Id) return Entity_Id; -- Check whether the type T has a user-defined primitive equality. If so -- return it, else return Empty. If true for a component of Typ, we have -- to build the primitive equality for it. --------------------- -- User_Defined_Eq -- --------------------- function User_Defined_Eq (T : Entity_Id) return Entity_Id is Prim : Elmt_Id; Op : Entity_Id; begin Op := TSS (T, TSS_Composite_Equality); if Present (Op) then return Op; end if; Prim := First_Elmt (Collect_Primitive_Operations (T)); while Present (Prim) loop Op := Node (Prim); if Chars (Op) = Name_Op_Eq and then Etype (Op) = Standard_Boolean and then Etype (First_Formal (Op)) = T and then Etype (Next_Formal (First_Formal (Op))) = T then return Op; end if; Next_Elmt (Prim); end loop; return Empty; end User_Defined_Eq; -- Start of processing for Build_Untagged_Equality begin -- If a record component has a primitive equality operation, we must -- build the corresponding one for the current type. Build_Eq := False; Comp := First_Component (Typ); while Present (Comp) loop if Is_Record_Type (Etype (Comp)) and then Present (User_Defined_Eq (Etype (Comp))) then Build_Eq := True; end if; Next_Component (Comp); end loop; -- If there is a user-defined equality for the type, we do not create -- the implicit one. Prim := First_Elmt (Collect_Primitive_Operations (Typ)); Eq_Op := Empty; while Present (Prim) loop if Chars (Node (Prim)) = Name_Op_Eq and then Comes_From_Source (Node (Prim)) -- Don't we also need to check formal types and return type as in -- User_Defined_Eq above??? then Eq_Op := Node (Prim); Build_Eq := False; exit; end if; Next_Elmt (Prim); end loop; -- If the type is derived, inherit the operation, if present, from the -- parent type. It may have been declared after the type derivation. If -- the parent type itself is derived, it may have inherited an operation -- that has itself been overridden, so update its alias and related -- flags. Ditto for inequality. if No (Eq_Op) and then Is_Derived_Type (Typ) then Prim := First_Elmt (Collect_Primitive_Operations (Etype (Typ))); while Present (Prim) loop if Chars (Node (Prim)) = Name_Op_Eq then Copy_TSS (Node (Prim), Typ); Build_Eq := False; declare Op : constant Entity_Id := User_Defined_Eq (Typ); Eq_Op : constant Entity_Id := Node (Prim); NE_Op : constant Entity_Id := Next_Entity (Eq_Op); begin if Present (Op) then Set_Alias (Op, Eq_Op); Set_Is_Abstract_Subprogram (Op, Is_Abstract_Subprogram (Eq_Op)); if Chars (Next_Entity (Op)) = Name_Op_Ne then Set_Is_Abstract_Subprogram (Next_Entity (Op), Is_Abstract_Subprogram (NE_Op)); end if; end if; end; exit; end if; Next_Elmt (Prim); end loop; end if; -- If not inherited and not user-defined, build body as for a type with -- tagged components. if Build_Eq then Decl := Make_Eq_Body (Typ, Make_TSS_Name (Typ, TSS_Composite_Equality)); Op := Defining_Entity (Decl); Set_TSS (Typ, Op); Set_Is_Pure (Op); if Is_Library_Level_Entity (Typ) then Set_Is_Public (Op); end if; end if; end Build_Untagged_Equality; ------------------------------------ -- Build_Variant_Record_Equality -- ------------------------------------ -- Generates: -- function _Equality (X, Y : T) return Boolean is -- begin -- -- Compare discriminants -- if False or else X.D1 /= Y.D1 or else X.D2 /= Y.D2 then -- return False; -- end if; -- -- Compare components -- if False or else X.C1 /= Y.C1 or else X.C2 /= Y.C2 then -- return False; -- end if; -- -- Compare variant part -- case X.D1 is -- when V1 => -- if False or else X.C2 /= Y.C2 or else X.C3 /= Y.C3 then -- return False; -- end if; -- ... -- when Vn => -- if False or else X.Cn /= Y.Cn then -- return False; -- end if; -- end case; -- return True; -- end _Equality; procedure Build_Variant_Record_Equality (Typ : Entity_Id) is Loc : constant Source_Ptr := Sloc (Typ); F : constant Entity_Id := Make_Defining_Identifier (Loc, Chars => Make_TSS_Name (Typ, TSS_Composite_Equality)); X : constant Entity_Id := Make_Defining_Identifier (Loc, Chars => Name_X); Y : constant Entity_Id := Make_Defining_Identifier (Loc, Chars => Name_Y); Def : constant Node_Id := Parent (Typ); Comps : constant Node_Id := Component_List (Type_Definition (Def)); Stmts : constant List_Id := New_List; Pspecs : constant List_Id := New_List; begin -- Derived Unchecked_Union types no longer inherit the equality function -- of their parent. if Is_Derived_Type (Typ) and then not Is_Unchecked_Union (Typ) and then not Has_New_Non_Standard_Rep (Typ) then declare Parent_Eq : constant Entity_Id := TSS (Root_Type (Typ), TSS_Composite_Equality); begin if Present (Parent_Eq) then Copy_TSS (Parent_Eq, Typ); return; end if; end; end if; Discard_Node ( Make_Subprogram_Body (Loc, Specification => Make_Function_Specification (Loc, Defining_Unit_Name => F, Parameter_Specifications => Pspecs, Result_Definition => New_Reference_To (Standard_Boolean, Loc)), Declarations => New_List, Handled_Statement_Sequence => Make_Handled_Sequence_Of_Statements (Loc, Statements => Stmts))); Append_To (Pspecs, Make_Parameter_Specification (Loc, Defining_Identifier => X, Parameter_Type => New_Reference_To (Typ, Loc))); Append_To (Pspecs, Make_Parameter_Specification (Loc, Defining_Identifier => Y, Parameter_Type => New_Reference_To (Typ, Loc))); -- Unchecked_Unions require additional machinery to support equality. -- Two extra parameters (A and B) are added to the equality function -- parameter list for each discriminant of the type, in order to -- capture the inferred values of the discriminants in equality calls. -- The names of the parameters match the names of the corresponding -- discriminant, with an added suffix. if Is_Unchecked_Union (Typ) then declare Discr : Entity_Id; Discr_Type : Entity_Id; A, B : Entity_Id; New_Discrs : Elist_Id; begin New_Discrs := New_Elmt_List; Discr := First_Discriminant (Typ); while Present (Discr) loop Discr_Type := Etype (Discr); A := Make_Defining_Identifier (Loc, Chars => New_External_Name (Chars (Discr), 'A')); B := Make_Defining_Identifier (Loc, Chars => New_External_Name (Chars (Discr), 'B')); -- Add new parameters to the parameter list Append_To (Pspecs, Make_Parameter_Specification (Loc, Defining_Identifier => A, Parameter_Type => New_Reference_To (Discr_Type, Loc))); Append_To (Pspecs, Make_Parameter_Specification (Loc, Defining_Identifier => B, Parameter_Type => New_Reference_To (Discr_Type, Loc))); Append_Elmt (A, New_Discrs); -- Generate the following code to compare each of the inferred -- discriminants: -- if a /= b then -- return False; -- end if; Append_To (Stmts, Make_If_Statement (Loc, Condition => Make_Op_Ne (Loc, Left_Opnd => New_Reference_To (A, Loc), Right_Opnd => New_Reference_To (B, Loc)), Then_Statements => New_List ( Make_Simple_Return_Statement (Loc, Expression => New_Occurrence_Of (Standard_False, Loc))))); Next_Discriminant (Discr); end loop; -- Generate component-by-component comparison. Note that we must -- propagate the inferred discriminants formals to act as -- the case statement switch. Their value is added when an -- equality call on unchecked unions is expanded. Append_List_To (Stmts, Make_Eq_Case (Typ, Comps, New_Discrs)); end; -- Normal case (not unchecked union) else Append_To (Stmts, Make_Eq_If (Typ, Discriminant_Specifications (Def))); Append_List_To (Stmts, Make_Eq_Case (Typ, Comps)); end if; Append_To (Stmts, Make_Simple_Return_Statement (Loc, Expression => New_Reference_To (Standard_True, Loc))); Set_TSS (Typ, F); Set_Is_Pure (F); if not Debug_Generated_Code then Set_Debug_Info_Off (F); end if; end Build_Variant_Record_Equality; ----------------------------- -- Check_Stream_Attributes -- ----------------------------- procedure Check_Stream_Attributes (Typ : Entity_Id) is Comp : Entity_Id; Par_Read : constant Boolean := Stream_Attribute_Available (Typ, TSS_Stream_Read) and then not Has_Specified_Stream_Read (Typ); Par_Write : constant Boolean := Stream_Attribute_Available (Typ, TSS_Stream_Write) and then not Has_Specified_Stream_Write (Typ); procedure Check_Attr (Nam : Name_Id; TSS_Nam : TSS_Name_Type); -- Check that Comp has a user-specified Nam stream attribute ---------------- -- Check_Attr -- ---------------- procedure Check_Attr (Nam : Name_Id; TSS_Nam : TSS_Name_Type) is begin if not Stream_Attribute_Available (Etype (Comp), TSS_Nam) then Error_Msg_Name_1 := Nam; Error_Msg_N ("|component& in limited extension must have% attribute", Comp); end if; end Check_Attr; -- Start of processing for Check_Stream_Attributes begin if Par_Read or else Par_Write then Comp := First_Component (Typ); while Present (Comp) loop if Comes_From_Source (Comp) and then Original_Record_Component (Comp) = Comp and then Is_Limited_Type (Etype (Comp)) then if Par_Read then Check_Attr (Name_Read, TSS_Stream_Read); end if; if Par_Write then Check_Attr (Name_Write, TSS_Stream_Write); end if; end if; Next_Component (Comp); end loop; end if; end Check_Stream_Attributes; ----------------------------- -- Expand_Record_Extension -- ----------------------------- -- Add a field _parent at the beginning of the record extension. This is -- used to implement inheritance. Here are some examples of expansion: -- 1. no discriminants -- type T2 is new T1 with null record; -- gives -- type T2 is new T1 with record -- _Parent : T1; -- end record; -- 2. renamed discriminants -- type T2 (B, C : Int) is new T1 (A => B) with record -- _Parent : T1 (A => B); -- D : Int; -- end; -- 3. inherited discriminants -- type T2 is new T1 with record -- discriminant A inherited -- _Parent : T1 (A); -- D : Int; -- end; procedure Expand_Record_Extension (T : Entity_Id; Def : Node_Id) is Indic : constant Node_Id := Subtype_Indication (Def); Loc : constant Source_Ptr := Sloc (Def); Rec_Ext_Part : Node_Id := Record_Extension_Part (Def); Par_Subtype : Entity_Id; Comp_List : Node_Id; Comp_Decl : Node_Id; Parent_N : Node_Id; D : Entity_Id; List_Constr : constant List_Id := New_List; begin -- Expand_Record_Extension is called directly from the semantics, so -- we must check to see whether expansion is active before proceeding if not Expander_Active then return; end if; -- This may be a derivation of an untagged private type whose full -- view is tagged, in which case the Derived_Type_Definition has no -- extension part. Build an empty one now. if No (Rec_Ext_Part) then Rec_Ext_Part := Make_Record_Definition (Loc, End_Label => Empty, Component_List => Empty, Null_Present => True); Set_Record_Extension_Part (Def, Rec_Ext_Part); Mark_Rewrite_Insertion (Rec_Ext_Part); end if; Comp_List := Component_List (Rec_Ext_Part); Parent_N := Make_Defining_Identifier (Loc, Name_uParent); -- If the derived type inherits its discriminants the type of the -- _parent field must be constrained by the inherited discriminants if Has_Discriminants (T) and then Nkind (Indic) /= N_Subtype_Indication and then not Is_Constrained (Entity (Indic)) then D := First_Discriminant (T); while Present (D) loop Append_To (List_Constr, New_Occurrence_Of (D, Loc)); Next_Discriminant (D); end loop; Par_Subtype := Process_Subtype ( Make_Subtype_Indication (Loc, Subtype_Mark => New_Reference_To (Entity (Indic), Loc), Constraint => Make_Index_Or_Discriminant_Constraint (Loc, Constraints => List_Constr)), Def); -- Otherwise the original subtype_indication is just what is needed else Par_Subtype := Process_Subtype (New_Copy_Tree (Indic), Def); end if; Set_Parent_Subtype (T, Par_Subtype); Comp_Decl := Make_Component_Declaration (Loc, Defining_Identifier => Parent_N, Component_Definition => Make_Component_Definition (Loc, Aliased_Present => False, Subtype_Indication => New_Reference_To (Par_Subtype, Loc))); if Null_Present (Rec_Ext_Part) then Set_Component_List (Rec_Ext_Part, Make_Component_List (Loc, Component_Items => New_List (Comp_Decl), Variant_Part => Empty, Null_Present => False)); Set_Null_Present (Rec_Ext_Part, False); elsif Null_Present (Comp_List) or else Is_Empty_List (Component_Items (Comp_List)) then Set_Component_Items (Comp_List, New_List (Comp_Decl)); Set_Null_Present (Comp_List, False); else Insert_Before (First (Component_Items (Comp_List)), Comp_Decl); end if; Analyze (Comp_Decl); end Expand_Record_Extension; ------------------------------------ -- Expand_N_Full_Type_Declaration -- ------------------------------------ procedure Expand_N_Full_Type_Declaration (N : Node_Id) is procedure Build_Master (Ptr_Typ : Entity_Id); -- Create the master associated with Ptr_Typ ------------------ -- Build_Master -- ------------------ procedure Build_Master (Ptr_Typ : Entity_Id) is Desig_Typ : Entity_Id := Designated_Type (Ptr_Typ); begin -- If the designated type is an incomplete view coming from a -- limited-with'ed package, we need to use the nonlimited view in -- case it has tasks. if Ekind (Desig_Typ) in Incomplete_Kind and then Present (Non_Limited_View (Desig_Typ)) then Desig_Typ := Non_Limited_View (Desig_Typ); end if; -- Anonymous access types are created for the components of the -- record parameter for an entry declaration. No master is created -- for such a type. if Comes_From_Source (N) and then Has_Task (Desig_Typ) then Build_Master_Entity (Ptr_Typ); Build_Master_Renaming (Ptr_Typ); -- Create a class-wide master because a Master_Id must be generated -- for access-to-limited-class-wide types whose root may be extended -- with task components. -- Note: This code covers access-to-limited-interfaces because they -- can be used to reference tasks implementing them. elsif Is_Limited_Class_Wide_Type (Desig_Typ) and then Tasking_Allowed -- Do not create a class-wide master for types whose convention is -- Java since these types cannot embed Ada tasks anyway. Note that -- the following test cannot catch the following case: -- package java.lang.Object is -- type Typ is tagged limited private; -- type Ref is access all Typ'Class; -- private -- type Typ is tagged limited ...; -- pragma Convention (Typ, Java) -- end; -- Because the convention appears after we have done the -- processing for type Ref. and then Convention (Desig_Typ) /= Convention_Java and then Convention (Desig_Typ) /= Convention_CIL then Build_Class_Wide_Master (Ptr_Typ); end if; end Build_Master; -- Local declarations Def_Id : constant Entity_Id := Defining_Identifier (N); B_Id : constant Entity_Id := Base_Type (Def_Id); FN : Node_Id; Par_Id : Entity_Id; -- Start of processing for Expand_N_Full_Type_Declaration begin if Is_Access_Type (Def_Id) then Build_Master (Def_Id); if Ekind (Def_Id) = E_Access_Protected_Subprogram_Type then Expand_Access_Protected_Subprogram_Type (N); end if; -- Array of anonymous access-to-task pointers elsif Ada_Version >= Ada_2005 and then Is_Array_Type (Def_Id) and then Is_Access_Type (Component_Type (Def_Id)) and then Ekind (Component_Type (Def_Id)) = E_Anonymous_Access_Type then Build_Master (Component_Type (Def_Id)); elsif Has_Task (Def_Id) then Expand_Previous_Access_Type (Def_Id); -- Check the components of a record type or array of records for -- anonymous access-to-task pointers. elsif Ada_Version >= Ada_2005 and then (Is_Record_Type (Def_Id) or else (Is_Array_Type (Def_Id) and then Is_Record_Type (Component_Type (Def_Id)))) then declare Comp : Entity_Id; First : Boolean; M_Id : Entity_Id; Typ : Entity_Id; begin if Is_Array_Type (Def_Id) then Comp := First_Entity (Component_Type (Def_Id)); else Comp := First_Entity (Def_Id); end if; -- Examine all components looking for anonymous access-to-task -- types. First := True; while Present (Comp) loop Typ := Etype (Comp); if Ekind (Typ) = E_Anonymous_Access_Type and then Has_Task (Available_View (Designated_Type (Typ))) and then No (Master_Id (Typ)) then -- Ensure that the record or array type have a _master if First then Build_Master_Entity (Def_Id); Build_Master_Renaming (Typ); M_Id := Master_Id (Typ); First := False; -- Reuse the same master to service any additional types else Set_Master_Id (Typ, M_Id); end if; end if; Next_Entity (Comp); end loop; end; end if; Par_Id := Etype (B_Id); -- The parent type is private then we need to inherit any TSS operations -- from the full view. if Ekind (Par_Id) in Private_Kind and then Present (Full_View (Par_Id)) then Par_Id := Base_Type (Full_View (Par_Id)); end if; if Nkind (Type_Definition (Original_Node (N))) = N_Derived_Type_Definition and then not Is_Tagged_Type (Def_Id) and then Present (Freeze_Node (Par_Id)) and then Present (TSS_Elist (Freeze_Node (Par_Id))) then Ensure_Freeze_Node (B_Id); FN := Freeze_Node (B_Id); if No (TSS_Elist (FN)) then Set_TSS_Elist (FN, New_Elmt_List); end if; declare T_E : constant Elist_Id := TSS_Elist (FN); Elmt : Elmt_Id; begin Elmt := First_Elmt (TSS_Elist (Freeze_Node (Par_Id))); while Present (Elmt) loop if Chars (Node (Elmt)) /= Name_uInit then Append_Elmt (Node (Elmt), T_E); end if; Next_Elmt (Elmt); end loop; -- If the derived type itself is private with a full view, then -- associate the full view with the inherited TSS_Elist as well. if Ekind (B_Id) in Private_Kind and then Present (Full_View (B_Id)) then Ensure_Freeze_Node (Base_Type (Full_View (B_Id))); Set_TSS_Elist (Freeze_Node (Base_Type (Full_View (B_Id))), TSS_Elist (FN)); end if; end; end if; end Expand_N_Full_Type_Declaration; --------------------------------- -- Expand_N_Object_Declaration -- --------------------------------- procedure Expand_N_Object_Declaration (N : Node_Id) is Def_Id : constant Entity_Id := Defining_Identifier (N); Expr : constant Node_Id := Expression (N); Loc : constant Source_Ptr := Sloc (N); Typ : constant Entity_Id := Etype (Def_Id); Base_Typ : constant Entity_Id := Base_Type (Typ); Expr_Q : Node_Id; Id_Ref : Node_Id; New_Ref : Node_Id; Init_After : Node_Id := N; -- Node after which the init proc call is to be inserted. This is -- normally N, except for the case of a shared passive variable, in -- which case the init proc call must be inserted only after the bodies -- of the shared variable procedures have been seen. function Build_Equivalent_Aggregate return Boolean; -- If the object has a constrained discriminated type and no initial -- value, it may be possible to build an equivalent aggregate instead, -- and prevent an actual call to the initialization procedure. function Rewrite_As_Renaming return Boolean; -- Indicate whether to rewrite a declaration with initialization into an -- object renaming declaration (see below). -------------------------------- -- Build_Equivalent_Aggregate -- -------------------------------- function Build_Equivalent_Aggregate return Boolean is Aggr : Node_Id; Comp : Entity_Id; Discr : Elmt_Id; Full_Type : Entity_Id; begin Full_Type := Typ; if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then Full_Type := Full_View (Typ); end if; -- Only perform this transformation if Elaboration_Code is forbidden -- or undesirable, and if this is a global entity of a constrained -- record type. -- If Initialize_Scalars might be active this transformation cannot -- be performed either, because it will lead to different semantics -- or because elaboration code will in fact be created. if Ekind (Full_Type) /= E_Record_Subtype or else not Has_Discriminants (Full_Type) or else not Is_Constrained (Full_Type) or else Is_Controlled (Full_Type) or else Is_Limited_Type (Full_Type) or else not Restriction_Active (No_Initialize_Scalars) then return False; end if; if Ekind (Current_Scope) = E_Package and then (Restriction_Active (No_Elaboration_Code) or else Is_Preelaborated (Current_Scope)) then -- Building a static aggregate is possible if the discriminants -- have static values and the other components have static -- defaults or none. Discr := First_Elmt (Discriminant_Constraint (Full_Type)); while Present (Discr) loop if not Is_OK_Static_Expression (Node (Discr)) then return False; end if; Next_Elmt (Discr); end loop; -- Check that initialized components are OK, and that non- -- initialized components do not require a call to their own -- initialization procedure. Comp := First_Component (Full_Type); while Present (Comp) loop if Ekind (Comp) = E_Component and then Present (Expression (Parent (Comp))) and then not Is_OK_Static_Expression (Expression (Parent (Comp))) then return False; elsif Has_Non_Null_Base_Init_Proc (Etype (Comp)) then return False; end if; Next_Component (Comp); end loop; -- Everything is static, assemble the aggregate, discriminant -- values first. Aggr := Make_Aggregate (Loc, Expressions => New_List, Component_Associations => New_List); Discr := First_Elmt (Discriminant_Constraint (Full_Type)); while Present (Discr) loop Append_To (Expressions (Aggr), New_Copy (Node (Discr))); Next_Elmt (Discr); end loop; -- Now collect values of initialized components Comp := First_Component (Full_Type); while Present (Comp) loop if Ekind (Comp) = E_Component and then Present (Expression (Parent (Comp))) then Append_To (Component_Associations (Aggr), Make_Component_Association (Loc, Choices => New_List (New_Occurrence_Of (Comp, Loc)), Expression => New_Copy_Tree (Expression (Parent (Comp))))); end if; Next_Component (Comp); end loop; -- Finally, box-initialize remaining components Append_To (Component_Associations (Aggr), Make_Component_Association (Loc, Choices => New_List (Make_Others_Choice (Loc)), Expression => Empty)); Set_Box_Present (Last (Component_Associations (Aggr))); Set_Expression (N, Aggr); if Typ /= Full_Type then Analyze_And_Resolve (Aggr, Full_View (Base_Type (Full_Type))); Rewrite (Aggr, Unchecked_Convert_To (Typ, Aggr)); Analyze_And_Resolve (Aggr, Typ); else Analyze_And_Resolve (Aggr, Full_Type); end if; return True; else return False; end if; end Build_Equivalent_Aggregate; ------------------------- -- Rewrite_As_Renaming -- ------------------------- function Rewrite_As_Renaming return Boolean is begin return not Aliased_Present (N) and then Is_Entity_Name (Expr_Q) and then Ekind (Entity (Expr_Q)) = E_Variable and then OK_To_Rename (Entity (Expr_Q)) and then Is_Entity_Name (Object_Definition (N)); end Rewrite_As_Renaming; -- Start of processing for Expand_N_Object_Declaration begin -- Don't do anything for deferred constants. All proper actions will be -- expanded during the full declaration. if No (Expr) and Constant_Present (N) then return; end if; -- First we do special processing for objects of a tagged type where -- this is the point at which the type is frozen. The creation of the -- dispatch table and the initialization procedure have to be deferred -- to this point, since we reference previously declared primitive -- subprograms. -- Force construction of dispatch tables of library level tagged types if Tagged_Type_Expansion and then Static_Dispatch_Tables and then Is_Library_Level_Entity (Def_Id) and then Is_Library_Level_Tagged_Type (Base_Typ) and then (Ekind (Base_Typ) = E_Record_Type or else Ekind (Base_Typ) = E_Protected_Type or else Ekind (Base_Typ) = E_Task_Type) and then not Has_Dispatch_Table (Base_Typ) then declare New_Nodes : List_Id := No_List; begin if Is_Concurrent_Type (Base_Typ) then New_Nodes := Make_DT (Corresponding_Record_Type (Base_Typ), N); else New_Nodes := Make_DT (Base_Typ, N); end if; if not Is_Empty_List (New_Nodes) then Insert_List_Before (N, New_Nodes); end if; end; end if; -- Make shared memory routines for shared passive variable if Is_Shared_Passive (Def_Id) then Init_After := Make_Shared_Var_Procs (N); end if; -- If tasks being declared, make sure we have an activation chain -- defined for the tasks (has no effect if we already have one), and -- also that a Master variable is established and that the appropriate -- enclosing construct is established as a task master. if Has_Task (Typ) then Build_Activation_Chain_Entity (N); Build_Master_Entity (Def_Id); end if; -- Default initialization required, and no expression present if No (Expr) then -- For the default initialization case, if we have a private type -- with invariants, and invariant checks are enabled, then insert an -- invariant check after the object declaration. Note that it is OK -- to clobber the object with an invalid value since if the exception -- is raised, then the object will go out of scope. In the case where -- an array object is initialized with an aggregate, the expression -- is removed. Check flag Has_Init_Expression to avoid generating a -- junk invariant check. if Has_Invariants (Base_Typ) and then Present (Invariant_Procedure (Base_Typ)) and then not Has_Init_Expression (N) then Insert_After (N, Make_Invariant_Call (New_Occurrence_Of (Def_Id, Loc))); end if; -- Expand Initialize call for controlled objects. One may wonder why -- the Initialize Call is not done in the regular Init procedure -- attached to the record type. That's because the init procedure is -- recursively called on each component, including _Parent, thus the -- Init call for a controlled object would generate not only one -- Initialize call as it is required but one for each ancestor of -- its type. This processing is suppressed if No_Initialization set. if not Needs_Finalization (Typ) or else No_Initialization (N) then null; elsif not Abort_Allowed or else not Comes_From_Source (N) then Insert_Action_After (Init_After, Make_Init_Call (Obj_Ref => New_Occurrence_Of (Def_Id, Loc), Typ => Base_Typ)); -- Abort allowed else -- We need to protect the initialize call -- begin -- Defer_Abort.all; -- Initialize (...); -- at end -- Undefer_Abort.all; -- end; -- ??? this won't protect the initialize call for controlled -- components which are part of the init proc, so this block -- should probably also contain the call to _init_proc but this -- requires some code reorganization... declare L : constant List_Id := New_List ( Make_Init_Call (Obj_Ref => New_Occurrence_Of (Def_Id, Loc), Typ => Base_Typ)); Blk : constant Node_Id := Make_Block_Statement (Loc, Handled_Statement_Sequence => Make_Handled_Sequence_Of_Statements (Loc, L)); begin Prepend_To (L, Build_Runtime_Call (Loc, RE_Abort_Defer)); Set_At_End_Proc (Handled_Statement_Sequence (Blk), New_Occurrence_Of (RTE (RE_Abort_Undefer_Direct), Loc)); Insert_Actions_After (Init_After, New_List (Blk)); Expand_At_End_Handler (Handled_Statement_Sequence (Blk), Entity (Identifier (Blk))); end; end if; -- Call type initialization procedure if there is one. We build the -- call and put it immediately after the object declaration, so that -- it will be expanded in the usual manner. Note that this will -- result in proper handling of defaulted discriminants. -- Need call if there is a base init proc if Has_Non_Null_Base_Init_Proc (Typ) -- Suppress call if No_Initialization set on declaration and then not No_Initialization (N) -- Suppress call for special case of value type for VM and then not Is_Value_Type (Typ) -- Suppress call if initialization suppressed for the type and then not Initialization_Suppressed (Typ) then -- Return without initializing when No_Default_Initialization -- applies. Note that the actual restriction check occurs later, -- when the object is frozen, because we don't know yet whether -- the object is imported, which is a case where the check does -- not apply. if Restriction_Active (No_Default_Initialization) then return; end if; -- The call to the initialization procedure does NOT freeze the -- object being initialized. This is because the call is not a -- source level call. This works fine, because the only possible -- statements depending on freeze status that can appear after the -- Init_Proc call are rep clauses which can safely appear after -- actual references to the object. Note that this call may -- subsequently be removed (if a pragma Import is encountered), -- or moved to the freeze actions for the object (e.g. if an -- address clause is applied to the object, causing it to get -- delayed freezing). Id_Ref := New_Reference_To (Def_Id, Loc); Set_Must_Not_Freeze (Id_Ref); Set_Assignment_OK (Id_Ref); declare Init_Expr : constant Node_Id := Static_Initialization (Base_Init_Proc (Typ)); begin if Present (Init_Expr) then Set_Expression (N, New_Copy_Tree (Init_Expr, New_Scope => Current_Scope)); return; -- If type has discriminants, try to build equivalent aggregate -- using discriminant values from the declaration. This -- is a useful optimization, in particular if restriction -- No_Elaboration_Code is active. elsif Build_Equivalent_Aggregate then return; else Initialization_Warning (Id_Ref); Insert_Actions_After (Init_After, Build_Initialization_Call (Loc, Id_Ref, Typ)); end if; end; -- If simple initialization is required, then set an appropriate -- simple initialization expression in place. This special -- initialization is required even though No_Init_Flag is present, -- but is not needed if there was an explicit initialization. -- An internally generated temporary needs no initialization because -- it will be assigned subsequently. In particular, there is no point -- in applying Initialize_Scalars to such a temporary. elsif Needs_Simple_Initialization (Typ, Initialize_Scalars and then not Has_Following_Address_Clause (N)) and then not Is_Internal (Def_Id) and then not Has_Init_Expression (N) then Set_No_Initialization (N, False); Set_Expression (N, Get_Simple_Init_Val (Typ, N, Esize (Def_Id))); Analyze_And_Resolve (Expression (N), Typ); end if; -- Generate attribute for Persistent_BSS if needed if Persistent_BSS_Mode and then Comes_From_Source (N) and then Is_Potentially_Persistent_Type (Typ) and then not Has_Init_Expression (N) and then Is_Library_Level_Entity (Def_Id) then declare Prag : Node_Id; begin Prag := Make_Linker_Section_Pragma (Def_Id, Sloc (N), ".persistent.bss"); Insert_After (N, Prag); Analyze (Prag); end; end if; -- If access type, then we know it is null if not initialized if Is_Access_Type (Typ) then Set_Is_Known_Null (Def_Id); end if; -- Explicit initialization present else -- Obtain actual expression from qualified expression if Nkind (Expr) = N_Qualified_Expression then Expr_Q := Expression (Expr); else Expr_Q := Expr; end if; -- When we have the appropriate type of aggregate in the expression -- (it has been determined during analysis of the aggregate by -- setting the delay flag), let's perform in place assignment and -- thus avoid creating a temporary. if Is_Delayed_Aggregate (Expr_Q) then Convert_Aggr_In_Object_Decl (N); -- Ada 2005 (AI-318-02): If the initialization expression is a call -- to a build-in-place function, then access to the declared object -- must be passed to the function. Currently we limit such functions -- to those with constrained limited result subtypes, but eventually -- plan to expand the allowed forms of functions that are treated as -- build-in-place. elsif Ada_Version >= Ada_2005 and then Is_Build_In_Place_Function_Call (Expr_Q) then Make_Build_In_Place_Call_In_Object_Declaration (N, Expr_Q); -- The previous call expands the expression initializing the -- built-in-place object into further code that will be analyzed -- later. No further expansion needed here. return; -- Ada 2005 (AI-251): Rewrite the expression that initializes a -- class-wide interface object to ensure that we copy the full -- object, unless we are targetting a VM where interfaces are handled -- by VM itself. Note that if the root type of Typ is an ancestor of -- Expr's type, both types share the same dispatch table and there is -- no need to displace the pointer. elsif Is_Interface (Typ) -- Avoid never-ending recursion because if Equivalent_Type is set -- then we've done it already and must not do it again! and then not (Nkind (Object_Definition (N)) = N_Identifier and then Present (Equivalent_Type (Entity (Object_Definition (N))))) then pragma Assert (Is_Class_Wide_Type (Typ)); -- If the object is a return object of an inherently limited type, -- which implies build-in-place treatment, bypass the special -- treatment of class-wide interface initialization below. In this -- case, the expansion of the return statement will take care of -- creating the object (via allocator) and initializing it. if Is_Return_Object (Def_Id) and then Is_Limited_View (Typ) then null; elsif Tagged_Type_Expansion then declare Iface : constant Entity_Id := Root_Type (Typ); Expr_N : Node_Id := Expr; Expr_Typ : Entity_Id; New_Expr : Node_Id; Obj_Id : Entity_Id; Tag_Comp : Node_Id; begin -- If the original node of the expression was a conversion -- to this specific class-wide interface type then restore -- the original node because we must copy the object before -- displacing the pointer to reference the secondary tag -- component. This code must be kept synchronized with the -- expansion done by routine Expand_Interface_Conversion if not Comes_From_Source (Expr_N) and then Nkind (Expr_N) = N_Explicit_Dereference and then Nkind (Original_Node (Expr_N)) = N_Type_Conversion and then Etype (Original_Node (Expr_N)) = Typ then Rewrite (Expr_N, Original_Node (Expression (N))); end if; -- Avoid expansion of redundant interface conversion if Is_Interface (Etype (Expr_N)) and then Nkind (Expr_N) = N_Type_Conversion and then Etype (Expr_N) = Typ then Expr_N := Expression (Expr_N); Set_Expression (N, Expr_N); end if; Obj_Id := Make_Temporary (Loc, 'D', Expr_N); Expr_Typ := Base_Type (Etype (Expr_N)); if Is_Class_Wide_Type (Expr_Typ) then Expr_Typ := Root_Type (Expr_Typ); end if; -- Replace -- CW : I'Class := Obj; -- by -- Tmp : T := Obj; -- type Ityp is not null access I'Class; -- CW : I'Class renames Ityp(Tmp.I_Tag'Address).all; if Comes_From_Source (Expr_N) and then Nkind (Expr_N) = N_Identifier and then not Is_Interface (Expr_Typ) and then Interface_Present_In_Ancestor (Expr_Typ, Typ) and then (Expr_Typ = Etype (Expr_Typ) or else not Is_Variable_Size_Record (Etype (Expr_Typ))) then -- Copy the object Insert_Action (N, Make_Object_Declaration (Loc, Defining_Identifier => Obj_Id, Object_Definition => New_Occurrence_Of (Expr_Typ, Loc), Expression => Relocate_Node (Expr_N))); -- Statically reference the tag associated with the -- interface Tag_Comp := Make_Selected_Component (Loc, Prefix => New_Occurrence_Of (Obj_Id, Loc), Selector_Name => New_Reference_To (Find_Interface_Tag (Expr_Typ, Iface), Loc)); -- Replace -- IW : I'Class := Obj; -- by -- type Equiv_Record is record ... end record; -- implicit subtype CW is ; -- Tmp : CW := CW!(Obj); -- type Ityp is not null access I'Class; -- IW : I'Class renames -- Ityp!(Displace (Temp'Address, I'Tag)).all; else -- Generate the equivalent record type and update the -- subtype indication to reference it. Expand_Subtype_From_Expr (N => N, Unc_Type => Typ, Subtype_Indic => Object_Definition (N), Exp => Expr_N); if not Is_Interface (Etype (Expr_N)) then New_Expr := Relocate_Node (Expr_N); -- For interface types we use 'Address which displaces -- the pointer to the base of the object (if required) else New_Expr := Unchecked_Convert_To (Etype (Object_Definition (N)), Make_Explicit_Dereference (Loc, Unchecked_Convert_To (RTE (RE_Tag_Ptr), Make_Attribute_Reference (Loc, Prefix => Relocate_Node (Expr_N), Attribute_Name => Name_Address)))); end if; -- Copy the object if not Is_Limited_Record (Expr_Typ) then Insert_Action (N, Make_Object_Declaration (Loc, Defining_Identifier => Obj_Id, Object_Definition => New_Occurrence_Of (Etype (Object_Definition (N)), Loc), Expression => New_Expr)); -- Rename limited type object since they cannot be copied -- This case occurs when the initialization expression -- has been previously expanded into a temporary object. else pragma Assert (not Comes_From_Source (Expr_Q)); Insert_Action (N, Make_Object_Renaming_Declaration (Loc, Defining_Identifier => Obj_Id, Subtype_Mark => New_Occurrence_Of (Etype (Object_Definition (N)), Loc), Name => Unchecked_Convert_To (Etype (Object_Definition (N)), New_Expr))); end if; -- Dynamically reference the tag associated with the -- interface. Tag_Comp := Make_Function_Call (Loc, Name => New_Reference_To (RTE (RE_Displace), Loc), Parameter_Associations => New_List ( Make_Attribute_Reference (Loc, Prefix => New_Occurrence_Of (Obj_Id, Loc), Attribute_Name => Name_Address), New_Reference_To (Node (First_Elmt (Access_Disp_Table (Iface))), Loc))); end if; Rewrite (N, Make_Object_Renaming_Declaration (Loc, Defining_Identifier => Make_Temporary (Loc, 'D'), Subtype_Mark => New_Occurrence_Of (Typ, Loc), Name => Convert_Tag_To_Interface (Typ, Tag_Comp))); -- If the original entity comes from source, then mark the -- new entity as needing debug information, even though it's -- defined by a generated renaming that does not come from -- source, so that Materialize_Entity will be set on the -- entity when Debug_Renaming_Declaration is called during -- analysis. if Comes_From_Source (Def_Id) then Set_Debug_Info_Needed (Defining_Identifier (N)); end if; Analyze (N, Suppress => All_Checks); -- Replace internal identifier of rewritten node by the -- identifier found in the sources. We also have to exchange -- entities containing their defining identifiers to ensure -- the correct replacement of the object declaration by this -- object renaming declaration because these identifiers -- were previously added by Enter_Name to the current scope. -- We must preserve the homonym chain of the source entity -- as well. We must also preserve the kind of the entity, -- which may be a constant. Preserve entity chain because -- itypes may have been generated already, and the full -- chain must be preserved for final freezing. Finally, -- preserve Comes_From_Source setting, so that debugging -- and cross-referencing information is properly kept, and -- preserve source location, to prevent spurious errors when -- entities are declared (they must have their own Sloc). declare New_Id : constant Entity_Id := Defining_Identifier (N); Next_Temp : constant Entity_Id := Next_Entity (New_Id); S_Flag : constant Boolean := Comes_From_Source (Def_Id); begin Set_Next_Entity (New_Id, Next_Entity (Def_Id)); Set_Next_Entity (Def_Id, Next_Temp); Set_Chars (Defining_Identifier (N), Chars (Def_Id)); Set_Homonym (Defining_Identifier (N), Homonym (Def_Id)); Set_Ekind (Defining_Identifier (N), Ekind (Def_Id)); Set_Sloc (Defining_Identifier (N), Sloc (Def_Id)); Set_Comes_From_Source (Def_Id, False); Exchange_Entities (Defining_Identifier (N), Def_Id); Set_Comes_From_Source (Def_Id, S_Flag); end; end; end if; return; -- Common case of explicit object initialization else -- In most cases, we must check that the initial value meets any -- constraint imposed by the declared type. However, there is one -- very important exception to this rule. If the entity has an -- unconstrained nominal subtype, then it acquired its constraints -- from the expression in the first place, and not only does this -- mean that the constraint check is not needed, but an attempt to -- perform the constraint check can cause order of elaboration -- problems. if not Is_Constr_Subt_For_U_Nominal (Typ) then -- If this is an allocator for an aggregate that has been -- allocated in place, delay checks until assignments are -- made, because the discriminants are not initialized. if Nkind (Expr) = N_Allocator and then No_Initialization (Expr) then null; -- Otherwise apply a constraint check now if no prev error elsif Nkind (Expr) /= N_Error then Apply_Constraint_Check (Expr, Typ); -- If the expression has been marked as requiring a range -- check, generate it now and reset the flag. if Do_Range_Check (Expr) then Set_Do_Range_Check (Expr, False); if not Suppress_Assignment_Checks (N) then Generate_Range_Check (Expr, Typ, CE_Range_Check_Failed); end if; end if; end if; end if; -- If the type is controlled and not inherently limited, then -- the target is adjusted after the copy and attached to the -- finalization list. However, no adjustment is done in the case -- where the object was initialized by a call to a function whose -- result is built in place, since no copy occurred. (Eventually -- we plan to support in-place function results for some cases -- of nonlimited types. ???) Similarly, no adjustment is required -- if we are going to rewrite the object declaration into a -- renaming declaration. if Needs_Finalization (Typ) and then not Is_Limited_View (Typ) and then not Rewrite_As_Renaming then Insert_Action_After (Init_After, Make_Adjust_Call ( Obj_Ref => New_Reference_To (Def_Id, Loc), Typ => Base_Typ)); end if; -- For tagged types, when an init value is given, the tag has to -- be re-initialized separately in order to avoid the propagation -- of a wrong tag coming from a view conversion unless the type -- is class wide (in this case the tag comes from the init value). -- Suppress the tag assignment when VM_Target because VM tags are -- represented implicitly in objects. Ditto for types that are -- CPP_CLASS, and for initializations that are aggregates, because -- they have to have the right tag. if Is_Tagged_Type (Typ) and then not Is_Class_Wide_Type (Typ) and then not Is_CPP_Class (Typ) and then Tagged_Type_Expansion and then Nkind (Expr) /= N_Aggregate and then (Nkind (Expr) /= N_Qualified_Expression or else Nkind (Expression (Expr)) /= N_Aggregate) then declare Full_Typ : constant Entity_Id := Underlying_Type (Typ); begin -- The re-assignment of the tag has to be done even if the -- object is a constant. The assignment must be analyzed -- after the declaration. New_Ref := Make_Selected_Component (Loc, Prefix => New_Occurrence_Of (Def_Id, Loc), Selector_Name => New_Reference_To (First_Tag_Component (Full_Typ), Loc)); Set_Assignment_OK (New_Ref); Insert_Action_After (Init_After, Make_Assignment_Statement (Loc, Name => New_Ref, Expression => Unchecked_Convert_To (RTE (RE_Tag), New_Reference_To (Node (First_Elmt (Access_Disp_Table (Full_Typ))), Loc)))); end; -- Handle C++ constructor calls. Note that we do not check that -- Typ is a tagged type since the equivalent Ada type of a C++ -- class that has no virtual methods is a non-tagged limited -- record type. elsif Is_CPP_Constructor_Call (Expr) then -- The call to the initialization procedure does NOT freeze the -- object being initialized. Id_Ref := New_Reference_To (Def_Id, Loc); Set_Must_Not_Freeze (Id_Ref); Set_Assignment_OK (Id_Ref); Insert_Actions_After (Init_After, Build_Initialization_Call (Loc, Id_Ref, Typ, Constructor_Ref => Expr)); -- We remove here the original call to the constructor -- to avoid its management in the backend Set_Expression (N, Empty); return; -- For discrete types, set the Is_Known_Valid flag if the -- initializing value is known to be valid. elsif Is_Discrete_Type (Typ) and then Expr_Known_Valid (Expr) then Set_Is_Known_Valid (Def_Id); elsif Is_Access_Type (Typ) then -- For access types set the Is_Known_Non_Null flag if the -- initializing value is known to be non-null. We can also set -- Can_Never_Be_Null if this is a constant. if Known_Non_Null (Expr) then Set_Is_Known_Non_Null (Def_Id, True); if Constant_Present (N) then Set_Can_Never_Be_Null (Def_Id); end if; end if; end if; -- If validity checking on copies, validate initial expression. -- But skip this if declaration is for a generic type, since it -- makes no sense to validate generic types. Not clear if this -- can happen for legal programs, but it definitely can arise -- from previous instantiation errors. if Validity_Checks_On and then Validity_Check_Copies and then not Is_Generic_Type (Etype (Def_Id)) then Ensure_Valid (Expr); Set_Is_Known_Valid (Def_Id); end if; end if; -- Cases where the back end cannot handle the initialization directly -- In such cases, we expand an assignment that will be appropriately -- handled by Expand_N_Assignment_Statement. -- The exclusion of the unconstrained case is wrong, but for now it -- is too much trouble ??? if (Is_Possibly_Unaligned_Slice (Expr) or else (Is_Possibly_Unaligned_Object (Expr) and then not Represented_As_Scalar (Etype (Expr)))) and then not (Is_Array_Type (Etype (Expr)) and then not Is_Constrained (Etype (Expr))) then declare Stat : constant Node_Id := Make_Assignment_Statement (Loc, Name => New_Reference_To (Def_Id, Loc), Expression => Relocate_Node (Expr)); begin Set_Expression (N, Empty); Set_No_Initialization (N); Set_Assignment_OK (Name (Stat)); Set_No_Ctrl_Actions (Stat); Insert_After_And_Analyze (Init_After, Stat); end; end if; -- Final transformation, if the initializing expression is an entity -- for a variable with OK_To_Rename set, then we transform: -- X : typ := expr; -- into -- X : typ renames expr -- provided that X is not aliased. The aliased case has to be -- excluded in general because Expr will not be aliased in general. if Rewrite_As_Renaming then Rewrite (N, Make_Object_Renaming_Declaration (Loc, Defining_Identifier => Defining_Identifier (N), Subtype_Mark => Object_Definition (N), Name => Expr_Q)); -- We do not analyze this renaming declaration, because all its -- components have already been analyzed, and if we were to go -- ahead and analyze it, we would in effect be trying to generate -- another declaration of X, which won't do! Set_Renamed_Object (Defining_Identifier (N), Expr_Q); Set_Analyzed (N); -- We do need to deal with debug issues for this renaming -- First, if entity comes from source, then mark it as needing -- debug information, even though it is defined by a generated -- renaming that does not come from source. if Comes_From_Source (Defining_Identifier (N)) then Set_Debug_Info_Needed (Defining_Identifier (N)); end if; -- Now call the routine to generate debug info for the renaming declare Decl : constant Node_Id := Debug_Renaming_Declaration (N); begin if Present (Decl) then Insert_Action (N, Decl); end if; end; end if; end if; if Nkind (N) = N_Object_Declaration and then Nkind (Object_Definition (N)) = N_Access_Definition and then not Is_Local_Anonymous_Access (Etype (Def_Id)) then -- An Ada 2012 stand-alone object of an anonymous access type declare Loc : constant Source_Ptr := Sloc (N); Level : constant Entity_Id := Make_Defining_Identifier (Sloc (N), Chars => New_External_Name (Chars (Def_Id), Suffix => "L")); Level_Expr : Node_Id; Level_Decl : Node_Id; begin Set_Ekind (Level, Ekind (Def_Id)); Set_Etype (Level, Standard_Natural); Set_Scope (Level, Scope (Def_Id)); if No (Expr) then -- Set accessibility level of null Level_Expr := Make_Integer_Literal (Loc, Scope_Depth (Standard_Standard)); else Level_Expr := Dynamic_Accessibility_Level (Expr); end if; Level_Decl := Make_Object_Declaration (Loc, Defining_Identifier => Level, Object_Definition => New_Occurrence_Of (Standard_Natural, Loc), Expression => Level_Expr, Constant_Present => Constant_Present (N), Has_Init_Expression => True); Insert_Action_After (Init_After, Level_Decl); Set_Extra_Accessibility (Def_Id, Level); end; end if; -- Exception on library entity not available exception when RE_Not_Available => return; end Expand_N_Object_Declaration; --------------------------------- -- Expand_N_Subtype_Indication -- --------------------------------- -- Add a check on the range of the subtype. The static case is partially -- duplicated by Process_Range_Expr_In_Decl in Sem_Ch3, but we still need -- to check here for the static case in order to avoid generating -- extraneous expanded code. Also deal with validity checking. procedure Expand_N_Subtype_Indication (N : Node_Id) is Ran : constant Node_Id := Range_Expression (Constraint (N)); Typ : constant Entity_Id := Entity (Subtype_Mark (N)); begin if Nkind (Constraint (N)) = N_Range_Constraint then Validity_Check_Range (Range_Expression (Constraint (N))); end if; if Nkind_In (Parent (N), N_Constrained_Array_Definition, N_Slice) then Apply_Range_Check (Ran, Typ); end if; end Expand_N_Subtype_Indication; --------------------------- -- Expand_N_Variant_Part -- --------------------------- -- Note: this procedure no longer has any effect. It used to be that we -- would replace the choices in the last variant by a when others, and -- also expanded static predicates in variant choices here, but both of -- those activities were being done too early, since we can't check the -- choices until the statically predicated subtypes are frozen, which can -- happen as late as the free point of the record, and we can't change the -- last choice to an others before checking the choices, which is now done -- at the freeze point of the record. procedure Expand_N_Variant_Part (N : Node_Id) is begin null; end Expand_N_Variant_Part; --------------------------------- -- Expand_Previous_Access_Type -- --------------------------------- procedure Expand_Previous_Access_Type (Def_Id : Entity_Id) is Ptr_Typ : Entity_Id; begin -- Find all access types in the current scope whose designated type is -- Def_Id and build master renamings for them. Ptr_Typ := First_Entity (Current_Scope); while Present (Ptr_Typ) loop if Is_Access_Type (Ptr_Typ) and then Designated_Type (Ptr_Typ) = Def_Id and then No (Master_Id (Ptr_Typ)) then -- Ensure that the designated type has a master Build_Master_Entity (Def_Id); -- Private and incomplete types complicate the insertion of master -- renamings because the access type may precede the full view of -- the designated type. For this reason, the master renamings are -- inserted relative to the designated type. Build_Master_Renaming (Ptr_Typ, Ins_Nod => Parent (Def_Id)); end if; Next_Entity (Ptr_Typ); end loop; end Expand_Previous_Access_Type; ------------------------ -- Expand_Tagged_Root -- ------------------------ procedure Expand_Tagged_Root (T : Entity_Id) is Def : constant Node_Id := Type_Definition (Parent (T)); Comp_List : Node_Id; Comp_Decl : Node_Id; Sloc_N : Source_Ptr; begin if Null_Present (Def) then Set_Component_List (Def, Make_Component_List (Sloc (Def), Component_Items => Empty_List, Variant_Part => Empty, Null_Present => True)); end if; Comp_List := Component_List (Def); if Null_Present (Comp_List) or else Is_Empty_List (Component_Items (Comp_List)) then Sloc_N := Sloc (Comp_List); else Sloc_N := Sloc (First (Component_Items (Comp_List))); end if; Comp_Decl := Make_Component_Declaration (Sloc_N, Defining_Identifier => First_Tag_Component (T), Component_Definition => Make_Component_Definition (Sloc_N, Aliased_Present => False, Subtype_Indication => New_Reference_To (RTE (RE_Tag), Sloc_N))); if Null_Present (Comp_List) or else Is_Empty_List (Component_Items (Comp_List)) then Set_Component_Items (Comp_List, New_List (Comp_Decl)); Set_Null_Present (Comp_List, False); else Insert_Before (First (Component_Items (Comp_List)), Comp_Decl); end if; -- We don't Analyze the whole expansion because the tag component has -- already been analyzed previously. Here we just insure that the tree -- is coherent with the semantic decoration Find_Type (Subtype_Indication (Component_Definition (Comp_Decl))); exception when RE_Not_Available => return; end Expand_Tagged_Root; ---------------------- -- Clean_Task_Names -- ---------------------- procedure Clean_Task_Names (Typ : Entity_Id; Proc_Id : Entity_Id) is begin if Has_Task (Typ) and then not Restriction_Active (No_Implicit_Heap_Allocations) and then not Global_Discard_Names and then Tagged_Type_Expansion then Set_Uses_Sec_Stack (Proc_Id); end if; end Clean_Task_Names; ------------------------------ -- Expand_Freeze_Array_Type -- ------------------------------ procedure Expand_Freeze_Array_Type (N : Node_Id) is Typ : constant Entity_Id := Entity (N); Comp_Typ : constant Entity_Id := Component_Type (Typ); Base : constant Entity_Id := Base_Type (Typ); begin if not Is_Bit_Packed_Array (Typ) then -- If the component contains tasks, so does the array type. This may -- not be indicated in the array type because the component may have -- been a private type at the point of definition. Same if component -- type is controlled. Set_Has_Task (Base, Has_Task (Comp_Typ)); Set_Has_Controlled_Component (Base, Has_Controlled_Component (Comp_Typ) or else Is_Controlled (Comp_Typ)); if No (Init_Proc (Base)) then -- If this is an anonymous array created for a declaration with -- an initial value, its init_proc will never be called. The -- initial value itself may have been expanded into assignments, -- in which case the object declaration is carries the -- No_Initialization flag. if Is_Itype (Base) and then Nkind (Associated_Node_For_Itype (Base)) = N_Object_Declaration and then (Present (Expression (Associated_Node_For_Itype (Base))) or else No_Initialization (Associated_Node_For_Itype (Base))) then null; -- We do not need an init proc for string or wide [wide] string, -- since the only time these need initialization in normalize or -- initialize scalars mode, and these types are treated specially -- and do not need initialization procedures. elsif Root_Type (Base) = Standard_String or else Root_Type (Base) = Standard_Wide_String or else Root_Type (Base) = Standard_Wide_Wide_String then null; -- Otherwise we have to build an init proc for the subtype else Build_Array_Init_Proc (Base, N); end if; end if; if Typ = Base then if Has_Controlled_Component (Base) then Build_Controlling_Procs (Base); if not Is_Limited_Type (Comp_Typ) and then Number_Dimensions (Typ) = 1 then Build_Slice_Assignment (Typ); end if; end if; -- Create a finalization master to service the anonymous access -- components of the array. if Ekind (Comp_Typ) = E_Anonymous_Access_Type and then Needs_Finalization (Designated_Type (Comp_Typ)) then Build_Finalization_Master (Typ => Comp_Typ, Ins_Node => Parent (Typ), Encl_Scope => Scope (Typ)); end if; end if; -- For packed case, default initialization, except if the component type -- is itself a packed structure with an initialization procedure, or -- initialize/normalize scalars active, and we have a base type, or the -- type is public, because in that case a client might specify -- Normalize_Scalars and there better be a public Init_Proc for it. elsif (Present (Init_Proc (Component_Type (Base))) and then No (Base_Init_Proc (Base))) or else (Init_Or_Norm_Scalars and then Base = Typ) or else Is_Public (Typ) then Build_Array_Init_Proc (Base, N); end if; if Has_Invariants (Component_Type (Base)) and then In_Open_Scopes (Scope (Component_Type (Base))) then -- Generate component invariant checking procedure. This is only -- relevant if the array type is within the scope of the component -- type. Otherwise an array object can only be built using the public -- subprograms for the component type, and calls to those will have -- invariant checks. Insert_Component_Invariant_Checks (N, Base, Build_Array_Invariant_Proc (Base, N)); end if; end Expand_Freeze_Array_Type; ----------------------------------- -- Expand_Freeze_Class_Wide_Type -- ----------------------------------- procedure Expand_Freeze_Class_Wide_Type (N : Node_Id) is Typ : constant Entity_Id := Entity (N); Root : constant Entity_Id := Root_Type (Typ); function Is_C_Derivation (Typ : Entity_Id) return Boolean; -- Given a type, determine whether it is derived from a C or C++ root --------------------- -- Is_C_Derivation -- --------------------- function Is_C_Derivation (Typ : Entity_Id) return Boolean is T : Entity_Id := Typ; begin loop if Is_CPP_Class (T) or else Convention (T) = Convention_C or else Convention (T) = Convention_CPP then return True; end if; exit when T = Etype (T); T := Etype (T); end loop; return False; end Is_C_Derivation; -- Start of processing for Expand_Freeze_Class_Wide_Type begin -- Certain run-time configurations and targets do not provide support -- for controlled types. if Restriction_Active (No_Finalization) then return; -- Do not create TSS routine Finalize_Address when dispatching calls are -- disabled since the core of the routine is a dispatching call. elsif Restriction_Active (No_Dispatching_Calls) then return; -- Do not create TSS routine Finalize_Address for concurrent class-wide -- types. Ignore C, C++, CIL and Java types since it is assumed that the -- non-Ada side will handle their destruction. elsif Is_Concurrent_Type (Root) or else Is_C_Derivation (Root) or else Convention (Typ) = Convention_CIL or else Convention (Typ) = Convention_CPP or else Convention (Typ) = Convention_Java then return; -- Do not create TSS routine Finalize_Address for .NET/JVM because these -- targets do not support address arithmetic and unchecked conversions. elsif VM_Target /= No_VM then return; -- Do not create TSS routine Finalize_Address when compiling in CodePeer -- mode since the routine contains an Unchecked_Conversion. elsif CodePeer_Mode then return; end if; -- Create the body of TSS primitive Finalize_Address. This automatically -- sets the TSS entry for the class-wide type. Make_Finalize_Address_Body (Typ); end Expand_Freeze_Class_Wide_Type; ------------------------------------ -- Expand_Freeze_Enumeration_Type -- ------------------------------------ procedure Expand_Freeze_Enumeration_Type (N : Node_Id) is Typ : constant Entity_Id := Entity (N); Loc : constant Source_Ptr := Sloc (Typ); Ent : Entity_Id; Lst : List_Id; Num : Nat; Arr : Entity_Id; Fent : Entity_Id; Ityp : Entity_Id; Is_Contiguous : Boolean; Pos_Expr : Node_Id; Last_Repval : Uint; Func : Entity_Id; pragma Warnings (Off, Func); begin -- Various optimizations possible if given representation is contiguous Is_Contiguous := True; Ent := First_Literal (Typ); Last_Repval := Enumeration_Rep (Ent); Next_Literal (Ent); while Present (Ent) loop if Enumeration_Rep (Ent) - Last_Repval /= 1 then Is_Contiguous := False; exit; else Last_Repval := Enumeration_Rep (Ent); end if; Next_Literal (Ent); end loop; if Is_Contiguous then Set_Has_Contiguous_Rep (Typ); Ent := First_Literal (Typ); Num := 1; Lst := New_List (New_Reference_To (Ent, Sloc (Ent))); else -- Build list of literal references Lst := New_List; Num := 0; Ent := First_Literal (Typ); while Present (Ent) loop Append_To (Lst, New_Reference_To (Ent, Sloc (Ent))); Num := Num + 1; Next_Literal (Ent); end loop; end if; -- Now build an array declaration -- typA : array (Natural range 0 .. num - 1) of ctype := -- (v, v, v, v, v, ....) -- where ctype is the corresponding integer type. If the representation -- is contiguous, we only keep the first literal, which provides the -- offset for Pos_To_Rep computations. Arr := Make_Defining_Identifier (Loc, Chars => New_External_Name (Chars (Typ), 'A')); Append_Freeze_Action (Typ, Make_Object_Declaration (Loc, Defining_Identifier => Arr, Constant_Present => True, Object_Definition => Make_Constrained_Array_Definition (Loc, Discrete_Subtype_Definitions => New_List ( Make_Subtype_Indication (Loc, Subtype_Mark => New_Reference_To (Standard_Natural, Loc), Constraint => Make_Range_Constraint (Loc, Range_Expression => Make_Range (Loc, Low_Bound => Make_Integer_Literal (Loc, 0), High_Bound => Make_Integer_Literal (Loc, Num - 1))))), Component_Definition => Make_Component_Definition (Loc, Aliased_Present => False, Subtype_Indication => New_Reference_To (Typ, Loc))), Expression => Make_Aggregate (Loc, Expressions => Lst))); Set_Enum_Pos_To_Rep (Typ, Arr); -- Now we build the function that converts representation values to -- position values. This function has the form: -- function _Rep_To_Pos (A : etype; F : Boolean) return Integer is -- begin -- case ityp!(A) is -- when enum-lit'Enum_Rep => return posval; -- when enum-lit'Enum_Rep => return posval; -- ... -- when others => -- [raise Constraint_Error when F "invalid data"] -- return -1; -- end case; -- end; -- Note: the F parameter determines whether the others case (no valid -- representation) raises Constraint_Error or returns a unique value -- of minus one. The latter case is used, e.g. in 'Valid code. -- Note: the reason we use Enum_Rep values in the case here is to avoid -- the code generator making inappropriate assumptions about the range -- of the values in the case where the value is invalid. ityp is a -- signed or unsigned integer type of appropriate width. -- Note: if exceptions are not supported, then we suppress the raise -- and return -1 unconditionally (this is an erroneous program in any -- case and there is no obligation to raise Constraint_Error here!) We -- also do this if pragma Restrictions (No_Exceptions) is active. -- Is this right??? What about No_Exception_Propagation??? -- Representations are signed if Enumeration_Rep (First_Literal (Typ)) < 0 then -- The underlying type is signed. Reset the Is_Unsigned_Type -- explicitly, because it might have been inherited from -- parent type. Set_Is_Unsigned_Type (Typ, False); if Esize (Typ) <= Standard_Integer_Size then Ityp := Standard_Integer; else Ityp := Universal_Integer; end if; -- Representations are unsigned else if Esize (Typ) <= Standard_Integer_Size then Ityp := RTE (RE_Unsigned); else Ityp := RTE (RE_Long_Long_Unsigned); end if; end if; -- The body of the function is a case statement. First collect case -- alternatives, or optimize the contiguous case. Lst := New_List; -- If representation is contiguous, Pos is computed by subtracting -- the representation of the first literal. if Is_Contiguous then Ent := First_Literal (Typ); if Enumeration_Rep (Ent) = Last_Repval then -- Another special case: for a single literal, Pos is zero Pos_Expr := Make_Integer_Literal (Loc, Uint_0); else Pos_Expr := Convert_To (Standard_Integer, Make_Op_Subtract (Loc, Left_Opnd => Unchecked_Convert_To (Ityp, Make_Identifier (Loc, Name_uA)), Right_Opnd => Make_Integer_Literal (Loc, Intval => Enumeration_Rep (First_Literal (Typ))))); end if; Append_To (Lst, Make_Case_Statement_Alternative (Loc, Discrete_Choices => New_List ( Make_Range (Sloc (Enumeration_Rep_Expr (Ent)), Low_Bound => Make_Integer_Literal (Loc, Intval => Enumeration_Rep (Ent)), High_Bound => Make_Integer_Literal (Loc, Intval => Last_Repval))), Statements => New_List ( Make_Simple_Return_Statement (Loc, Expression => Pos_Expr)))); else Ent := First_Literal (Typ); while Present (Ent) loop Append_To (Lst, Make_Case_Statement_Alternative (Loc, Discrete_Choices => New_List ( Make_Integer_Literal (Sloc (Enumeration_Rep_Expr (Ent)), Intval => Enumeration_Rep (Ent))), Statements => New_List ( Make_Simple_Return_Statement (Loc, Expression => Make_Integer_Literal (Loc, Intval => Enumeration_Pos (Ent)))))); Next_Literal (Ent); end loop; end if; -- In normal mode, add the others clause with the test if not No_Exception_Handlers_Set then Append_To (Lst, Make_Case_Statement_Alternative (Loc, Discrete_Choices => New_List (Make_Others_Choice (Loc)), Statements => New_List ( Make_Raise_Constraint_Error (Loc, Condition => Make_Identifier (Loc, Name_uF), Reason => CE_Invalid_Data), Make_Simple_Return_Statement (Loc, Expression => Make_Integer_Literal (Loc, -1))))); -- If either of the restrictions No_Exceptions_Handlers/Propagation is -- active then return -1 (we cannot usefully raise Constraint_Error in -- this case). See description above for further details. else Append_To (Lst, Make_Case_Statement_Alternative (Loc, Discrete_Choices => New_List (Make_Others_Choice (Loc)), Statements => New_List ( Make_Simple_Return_Statement (Loc, Expression => Make_Integer_Literal (Loc, -1))))); end if; -- Now we can build the function body Fent := Make_Defining_Identifier (Loc, Make_TSS_Name (Typ, TSS_Rep_To_Pos)); Func := Make_Subprogram_Body (Loc, Specification => Make_Function_Specification (Loc, Defining_Unit_Name => Fent, Parameter_Specifications => New_List ( Make_Parameter_Specification (Loc, Defining_Identifier => Make_Defining_Identifier (Loc, Name_uA), Parameter_Type => New_Reference_To (Typ, Loc)), Make_Parameter_Specification (Loc, Defining_Identifier => Make_Defining_Identifier (Loc, Name_uF), Parameter_Type => New_Reference_To (Standard_Boolean, Loc))), Result_Definition => New_Reference_To (Standard_Integer, Loc)), Declarations => Empty_List, Handled_Statement_Sequence => Make_Handled_Sequence_Of_Statements (Loc, Statements => New_List ( Make_Case_Statement (Loc, Expression => Unchecked_Convert_To (Ityp, Make_Identifier (Loc, Name_uA)), Alternatives => Lst)))); Set_TSS (Typ, Fent); -- Set Pure flag (it will be reset if the current context is not Pure). -- We also pretend there was a pragma Pure_Function so that for purposes -- of optimization and constant-folding, we will consider the function -- Pure even if we are not in a Pure context). Set_Is_Pure (Fent); Set_Has_Pragma_Pure_Function (Fent); -- Unless we are in -gnatD mode, where we are debugging generated code, -- this is an internal entity for which we don't need debug info. if not Debug_Generated_Code then Set_Debug_Info_Off (Fent); end if; exception when RE_Not_Available => return; end Expand_Freeze_Enumeration_Type; ------------------------------- -- Expand_Freeze_Record_Type -- ------------------------------- procedure Expand_Freeze_Record_Type (N : Node_Id) is Def_Id : constant Node_Id := Entity (N); Type_Decl : constant Node_Id := Parent (Def_Id); Comp : Entity_Id; Comp_Typ : Entity_Id; Has_AACC : Boolean; Predef_List : List_Id; Renamed_Eq : Node_Id := Empty; -- Defining unit name for the predefined equality function in the case -- where the type has a primitive operation that is a renaming of -- predefined equality (but only if there is also an overriding -- user-defined equality function). Used to pass this entity from -- Make_Predefined_Primitive_Specs to Predefined_Primitive_Bodies. Wrapper_Decl_List : List_Id := No_List; Wrapper_Body_List : List_Id := No_List; -- Start of processing for Expand_Freeze_Record_Type begin -- Build discriminant checking functions if not a derived type (for -- derived types that are not tagged types, always use the discriminant -- checking functions of the parent type). However, for untagged types -- the derivation may have taken place before the parent was frozen, so -- we copy explicitly the discriminant checking functions from the -- parent into the components of the derived type. if not Is_Derived_Type (Def_Id) or else Has_New_Non_Standard_Rep (Def_Id) or else Is_Tagged_Type (Def_Id) then Build_Discr_Checking_Funcs (Type_Decl); elsif Is_Derived_Type (Def_Id) and then not Is_Tagged_Type (Def_Id) -- If we have a derived Unchecked_Union, we do not inherit the -- discriminant checking functions from the parent type since the -- discriminants are non existent. and then not Is_Unchecked_Union (Def_Id) and then Has_Discriminants (Def_Id) then declare Old_Comp : Entity_Id; begin Old_Comp := First_Component (Base_Type (Underlying_Type (Etype (Def_Id)))); Comp := First_Component (Def_Id); while Present (Comp) loop if Ekind (Comp) = E_Component and then Chars (Comp) = Chars (Old_Comp) then Set_Discriminant_Checking_Func (Comp, Discriminant_Checking_Func (Old_Comp)); end if; Next_Component (Old_Comp); Next_Component (Comp); end loop; end; end if; if Is_Derived_Type (Def_Id) and then Is_Limited_Type (Def_Id) and then Is_Tagged_Type (Def_Id) then Check_Stream_Attributes (Def_Id); end if; -- Update task and controlled component flags, because some of the -- component types may have been private at the point of the record -- declaration. Detect anonymous access-to-controlled components. Has_AACC := False; Comp := First_Component (Def_Id); while Present (Comp) loop Comp_Typ := Etype (Comp); if Has_Task (Comp_Typ) then Set_Has_Task (Def_Id); -- Do not set Has_Controlled_Component on a class-wide equivalent -- type. See Make_CW_Equivalent_Type. elsif not Is_Class_Wide_Equivalent_Type (Def_Id) and then (Has_Controlled_Component (Comp_Typ) or else (Chars (Comp) /= Name_uParent and then Is_Controlled (Comp_Typ))) then Set_Has_Controlled_Component (Def_Id); -- Non-self-referential anonymous access-to-controlled component elsif Ekind (Comp_Typ) = E_Anonymous_Access_Type and then Needs_Finalization (Designated_Type (Comp_Typ)) and then Designated_Type (Comp_Typ) /= Def_Id then Has_AACC := True; end if; Next_Component (Comp); end loop; -- Handle constructors of non-tagged CPP_Class types if not Is_Tagged_Type (Def_Id) and then Is_CPP_Class (Def_Id) then Set_CPP_Constructors (Def_Id); end if; -- Creation of the Dispatch Table. Note that a Dispatch Table is built -- for regular tagged types as well as for Ada types deriving from a C++ -- Class, but not for tagged types directly corresponding to C++ classes -- In the later case we assume that it is created in the C++ side and we -- just use it. if Is_Tagged_Type (Def_Id) then -- Add the _Tag component if Underlying_Type (Etype (Def_Id)) = Def_Id then Expand_Tagged_Root (Def_Id); end if; if Is_CPP_Class (Def_Id) then Set_All_DT_Position (Def_Id); -- Create the tag entities with a minimum decoration if Tagged_Type_Expansion then Append_Freeze_Actions (Def_Id, Make_Tags (Def_Id)); end if; Set_CPP_Constructors (Def_Id); else if not Building_Static_DT (Def_Id) then -- Usually inherited primitives are not delayed but the first -- Ada extension of a CPP_Class is an exception since the -- address of the inherited subprogram has to be inserted in -- the new Ada Dispatch Table and this is a freezing action. -- Similarly, if this is an inherited operation whose parent is -- not frozen yet, it is not in the DT of the parent, and we -- generate an explicit freeze node for the inherited operation -- so it is properly inserted in the DT of the current type. declare Elmt : Elmt_Id; Subp : Entity_Id; begin Elmt := First_Elmt (Primitive_Operations (Def_Id)); while Present (Elmt) loop Subp := Node (Elmt); if Present (Alias (Subp)) then if Is_CPP_Class (Etype (Def_Id)) then Set_Has_Delayed_Freeze (Subp); elsif Has_Delayed_Freeze (Alias (Subp)) and then not Is_Frozen (Alias (Subp)) then Set_Is_Frozen (Subp, False); Set_Has_Delayed_Freeze (Subp); end if; end if; Next_Elmt (Elmt); end loop; end; end if; -- Unfreeze momentarily the type to add the predefined primitives -- operations. The reason we unfreeze is so that these predefined -- operations will indeed end up as primitive operations (which -- must be before the freeze point). Set_Is_Frozen (Def_Id, False); -- Do not add the spec of predefined primitives in case of -- CPP tagged type derivations that have convention CPP. if Is_CPP_Class (Root_Type (Def_Id)) and then Convention (Def_Id) = Convention_CPP then null; -- Do not add the spec of predefined primitives in case of -- CIL and Java tagged types elsif Convention (Def_Id) = Convention_CIL or else Convention (Def_Id) = Convention_Java then null; -- Do not add the spec of the predefined primitives if we are -- compiling under restriction No_Dispatching_Calls. elsif not Restriction_Active (No_Dispatching_Calls) then Make_Predefined_Primitive_Specs (Def_Id, Predef_List, Renamed_Eq); Insert_List_Before_And_Analyze (N, Predef_List); end if; -- Ada 2005 (AI-391): For a nonabstract null extension, create -- wrapper functions for each nonoverridden inherited function -- with a controlling result of the type. The wrapper for such -- a function returns an extension aggregate that invokes the -- parent function. if Ada_Version >= Ada_2005 and then not Is_Abstract_Type (Def_Id) and then Is_Null_Extension (Def_Id) then Make_Controlling_Function_Wrappers (Def_Id, Wrapper_Decl_List, Wrapper_Body_List); Insert_List_Before_And_Analyze (N, Wrapper_Decl_List); end if; -- Ada 2005 (AI-251): For a nonabstract type extension, build -- null procedure declarations for each set of homographic null -- procedures that are inherited from interface types but not -- overridden. This is done to ensure that the dispatch table -- entry associated with such null primitives are properly filled. if Ada_Version >= Ada_2005 and then Etype (Def_Id) /= Def_Id and then not Is_Abstract_Type (Def_Id) and then Has_Interfaces (Def_Id) then Insert_Actions (N, Make_Null_Procedure_Specs (Def_Id)); end if; Set_Is_Frozen (Def_Id); if not Is_Derived_Type (Def_Id) or else Is_Tagged_Type (Etype (Def_Id)) then Set_All_DT_Position (Def_Id); end if; -- Create and decorate the tags. Suppress their creation when -- VM_Target because the dispatching mechanism is handled -- internally by the VMs. if Tagged_Type_Expansion then Append_Freeze_Actions (Def_Id, Make_Tags (Def_Id)); -- Generate dispatch table of locally defined tagged type. -- Dispatch tables of library level tagged types are built -- later (see Analyze_Declarations). if not Building_Static_DT (Def_Id) then Append_Freeze_Actions (Def_Id, Make_DT (Def_Id)); end if; elsif VM_Target /= No_VM then Append_Freeze_Actions (Def_Id, Make_VM_TSD (Def_Id)); end if; -- If the type has unknown discriminants, propagate dispatching -- information to its underlying record view, which does not get -- its own dispatch table. if Is_Derived_Type (Def_Id) and then Has_Unknown_Discriminants (Def_Id) and then Present (Underlying_Record_View (Def_Id)) then declare Rep : constant Entity_Id := Underlying_Record_View (Def_Id); begin Set_Access_Disp_Table (Rep, Access_Disp_Table (Def_Id)); Set_Dispatch_Table_Wrappers (Rep, Dispatch_Table_Wrappers (Def_Id)); Set_Direct_Primitive_Operations (Rep, Direct_Primitive_Operations (Def_Id)); end; end if; -- Make sure that the primitives Initialize, Adjust and Finalize -- are Frozen before other TSS subprograms. We don't want them -- Frozen inside. if Is_Controlled (Def_Id) then if not Is_Limited_Type (Def_Id) then Append_Freeze_Actions (Def_Id, Freeze_Entity (Find_Prim_Op (Def_Id, Name_Adjust), Def_Id)); end if; Append_Freeze_Actions (Def_Id, Freeze_Entity (Find_Prim_Op (Def_Id, Name_Initialize), Def_Id)); Append_Freeze_Actions (Def_Id, Freeze_Entity (Find_Prim_Op (Def_Id, Name_Finalize), Def_Id)); end if; -- Freeze rest of primitive operations. There is no need to handle -- the predefined primitives if we are compiling under restriction -- No_Dispatching_Calls. if not Restriction_Active (No_Dispatching_Calls) then Append_Freeze_Actions (Def_Id, Predefined_Primitive_Freeze (Def_Id)); end if; end if; -- In the non-tagged case, ever since Ada 83 an equality function must -- be provided for variant records that are not unchecked unions. -- In Ada 2012 the equality function composes, and thus must be built -- explicitly just as for tagged records. elsif Has_Discriminants (Def_Id) and then not Is_Limited_Type (Def_Id) then declare Comps : constant Node_Id := Component_List (Type_Definition (Type_Decl)); begin if Present (Comps) and then Present (Variant_Part (Comps)) then Build_Variant_Record_Equality (Def_Id); end if; end; -- Otherwise create primitive equality operation (AI05-0123) -- This is done unconditionally to ensure that tools can be linked -- properly with user programs compiled with older language versions. -- In addition, this is needed because "=" composes for bounded strings -- in all language versions (see Exp_Ch4.Expand_Composite_Equality). elsif Comes_From_Source (Def_Id) and then Convention (Def_Id) = Convention_Ada and then not Is_Limited_Type (Def_Id) then Build_Untagged_Equality (Def_Id); end if; -- Before building the record initialization procedure, if we are -- dealing with a concurrent record value type, then we must go through -- the discriminants, exchanging discriminals between the concurrent -- type and the concurrent record value type. See the section "Handling -- of Discriminants" in the Einfo spec for details. if Is_Concurrent_Record_Type (Def_Id) and then Has_Discriminants (Def_Id) then declare Ctyp : constant Entity_Id := Corresponding_Concurrent_Type (Def_Id); Conc_Discr : Entity_Id; Rec_Discr : Entity_Id; Temp : Entity_Id; begin Conc_Discr := First_Discriminant (Ctyp); Rec_Discr := First_Discriminant (Def_Id); while Present (Conc_Discr) loop Temp := Discriminal (Conc_Discr); Set_Discriminal (Conc_Discr, Discriminal (Rec_Discr)); Set_Discriminal (Rec_Discr, Temp); Set_Discriminal_Link (Discriminal (Conc_Discr), Conc_Discr); Set_Discriminal_Link (Discriminal (Rec_Discr), Rec_Discr); Next_Discriminant (Conc_Discr); Next_Discriminant (Rec_Discr); end loop; end; end if; if Has_Controlled_Component (Def_Id) then Build_Controlling_Procs (Def_Id); end if; Adjust_Discriminants (Def_Id); if Tagged_Type_Expansion or else not Is_Interface (Def_Id) then -- Do not need init for interfaces on e.g. CIL since they're -- abstract. Helps operation of peverify (the PE Verify tool). Build_Record_Init_Proc (Type_Decl, Def_Id); end if; -- For tagged type that are not interfaces, build bodies of primitive -- operations. Note: do this after building the record initialization -- procedure, since the primitive operations may need the initialization -- routine. There is no need to add predefined primitives of interfaces -- because all their predefined primitives are abstract. if Is_Tagged_Type (Def_Id) and then not Is_Interface (Def_Id) then -- Do not add the body of predefined primitives in case of -- CPP tagged type derivations that have convention CPP. if Is_CPP_Class (Root_Type (Def_Id)) and then Convention (Def_Id) = Convention_CPP then null; -- Do not add the body of predefined primitives in case of -- CIL and Java tagged types. elsif Convention (Def_Id) = Convention_CIL or else Convention (Def_Id) = Convention_Java then null; -- Do not add the body of the predefined primitives if we are -- compiling under restriction No_Dispatching_Calls or if we are -- compiling a CPP tagged type. elsif not Restriction_Active (No_Dispatching_Calls) then -- Create the body of TSS primitive Finalize_Address. This must -- be done before the bodies of all predefined primitives are -- created. If Def_Id is limited, Stream_Input and Stream_Read -- may produce build-in-place allocations and for those the -- expander needs Finalize_Address. Make_Finalize_Address_Body (Def_Id); Predef_List := Predefined_Primitive_Bodies (Def_Id, Renamed_Eq); Append_Freeze_Actions (Def_Id, Predef_List); end if; -- Ada 2005 (AI-391): If any wrappers were created for nonoverridden -- inherited functions, then add their bodies to the freeze actions. if Present (Wrapper_Body_List) then Append_Freeze_Actions (Def_Id, Wrapper_Body_List); end if; -- Create extra formals for the primitive operations of the type. -- This must be done before analyzing the body of the initialization -- procedure, because a self-referential type might call one of these -- primitives in the body of the init_proc itself. declare Elmt : Elmt_Id; Subp : Entity_Id; begin Elmt := First_Elmt (Primitive_Operations (Def_Id)); while Present (Elmt) loop Subp := Node (Elmt); if not Has_Foreign_Convention (Subp) and then not Is_Predefined_Dispatching_Operation (Subp) then Create_Extra_Formals (Subp); end if; Next_Elmt (Elmt); end loop; end; end if; -- Create a heterogeneous finalization master to service the anonymous -- access-to-controlled components of the record type. if Has_AACC then declare Encl_Scope : constant Entity_Id := Scope (Def_Id); Ins_Node : constant Node_Id := Parent (Def_Id); Loc : constant Source_Ptr := Sloc (Def_Id); Fin_Mas_Id : Entity_Id; Attributes_Set : Boolean := False; Master_Built : Boolean := False; -- Two flags which control the creation and initialization of a -- common heterogeneous master. begin Comp := First_Component (Def_Id); while Present (Comp) loop Comp_Typ := Etype (Comp); -- A non-self-referential anonymous access-to-controlled -- component. if Ekind (Comp_Typ) = E_Anonymous_Access_Type and then Needs_Finalization (Designated_Type (Comp_Typ)) and then Designated_Type (Comp_Typ) /= Def_Id then if VM_Target = No_VM then -- Build a homogeneous master for the first anonymous -- access-to-controlled component. This master may be -- converted into a heterogeneous collection if more -- components are to follow. if not Master_Built then Master_Built := True; -- All anonymous access-to-controlled types allocate -- on the global pool. Set_Associated_Storage_Pool (Comp_Typ, Get_Global_Pool_For_Access_Type (Comp_Typ)); Build_Finalization_Master (Typ => Comp_Typ, Ins_Node => Ins_Node, Encl_Scope => Encl_Scope); Fin_Mas_Id := Finalization_Master (Comp_Typ); -- Subsequent anonymous access-to-controlled components -- reuse the already available master. else -- All anonymous access-to-controlled types allocate -- on the global pool. Set_Associated_Storage_Pool (Comp_Typ, Get_Global_Pool_For_Access_Type (Comp_Typ)); -- Shared the master among multiple components Set_Finalization_Master (Comp_Typ, Fin_Mas_Id); -- Convert the master into a heterogeneous collection. -- Generate: -- -- Set_Is_Heterogeneous (); if not Attributes_Set then Attributes_Set := True; Insert_Action (Ins_Node, Make_Procedure_Call_Statement (Loc, Name => New_Reference_To (RTE (RE_Set_Is_Heterogeneous), Loc), Parameter_Associations => New_List ( New_Reference_To (Fin_Mas_Id, Loc)))); end if; end if; -- Since .NET/JVM targets do not support heterogeneous -- masters, each component must have its own master. else Build_Finalization_Master (Typ => Comp_Typ, Ins_Node => Ins_Node, Encl_Scope => Encl_Scope); end if; end if; Next_Component (Comp); end loop; end; end if; -- Check whether individual components have a defined invariant, -- and add the corresponding component invariant checks. Insert_Component_Invariant_Checks (N, Def_Id, Build_Record_Invariant_Proc (Def_Id, N)); end Expand_Freeze_Record_Type; ------------------------------ -- Freeze_Stream_Operations -- ------------------------------ procedure Freeze_Stream_Operations (N : Node_Id; Typ : Entity_Id) is Names : constant array (1 .. 4) of TSS_Name_Type := (TSS_Stream_Input, TSS_Stream_Output, TSS_Stream_Read, TSS_Stream_Write); Stream_Op : Entity_Id; begin -- Primitive operations of tagged types are frozen when the dispatch -- table is constructed. if not Comes_From_Source (Typ) or else Is_Tagged_Type (Typ) then return; end if; for J in Names'Range loop Stream_Op := TSS (Typ, Names (J)); if Present (Stream_Op) and then Is_Subprogram (Stream_Op) and then Nkind (Unit_Declaration_Node (Stream_Op)) = N_Subprogram_Declaration and then not Is_Frozen (Stream_Op) then Append_Freeze_Actions (Typ, Freeze_Entity (Stream_Op, N)); end if; end loop; end Freeze_Stream_Operations; ----------------- -- Freeze_Type -- ----------------- -- Full type declarations are expanded at the point at which the type is -- frozen. The formal N is the Freeze_Node for the type. Any statements or -- declarations generated by the freezing (e.g. the procedure generated -- for initialization) are chained in the Actions field list of the freeze -- node using Append_Freeze_Actions. function Freeze_Type (N : Node_Id) return Boolean is Def_Id : constant Entity_Id := Entity (N); RACW_Seen : Boolean := False; Result : Boolean := False; begin -- Process associated access types needing special processing if Present (Access_Types_To_Process (N)) then declare E : Elmt_Id := First_Elmt (Access_Types_To_Process (N)); begin while Present (E) loop if Is_Remote_Access_To_Class_Wide_Type (Node (E)) then Validate_RACW_Primitives (Node (E)); RACW_Seen := True; end if; E := Next_Elmt (E); end loop; end; if RACW_Seen then -- If there are RACWs designating this type, make stubs now Remote_Types_Tagged_Full_View_Encountered (Def_Id); end if; end if; -- Freeze processing for record types if Is_Record_Type (Def_Id) then if Ekind (Def_Id) = E_Record_Type then Expand_Freeze_Record_Type (N); elsif Is_Class_Wide_Type (Def_Id) then Expand_Freeze_Class_Wide_Type (N); end if; -- Freeze processing for array types elsif Is_Array_Type (Def_Id) then Expand_Freeze_Array_Type (N); -- Freeze processing for access types -- For pool-specific access types, find out the pool object used for -- this type, needs actual expansion of it in some cases. Here are the -- different cases : -- 1. Rep Clause "for Def_Id'Storage_Size use 0;" -- ---> don't use any storage pool -- 2. Rep Clause : for Def_Id'Storage_Size use Expr. -- Expand: -- Def_Id__Pool : Stack_Bounded_Pool (Expr, DT'Size, DT'Alignment); -- 3. Rep Clause "for Def_Id'Storage_Pool use a_Pool_Object" -- ---> Storage Pool is the specified one -- See GNAT Pool packages in the Run-Time for more details elsif Ekind_In (Def_Id, E_Access_Type, E_General_Access_Type) then declare Loc : constant Source_Ptr := Sloc (N); Desig_Type : constant Entity_Id := Designated_Type (Def_Id); Pool_Object : Entity_Id; Freeze_Action_Typ : Entity_Id; begin -- Case 1 -- Rep Clause "for Def_Id'Storage_Size use 0;" -- ---> don't use any storage pool if No_Pool_Assigned (Def_Id) then null; -- Case 2 -- Rep Clause : for Def_Id'Storage_Size use Expr. -- ---> Expand: -- Def_Id__Pool : Stack_Bounded_Pool -- (Expr, DT'Size, DT'Alignment); elsif Has_Storage_Size_Clause (Def_Id) then declare DT_Size : Node_Id; DT_Align : Node_Id; begin -- For unconstrained composite types we give a size of zero -- so that the pool knows that it needs a special algorithm -- for variable size object allocation. if Is_Composite_Type (Desig_Type) and then not Is_Constrained (Desig_Type) then DT_Size := Make_Integer_Literal (Loc, 0); DT_Align := Make_Integer_Literal (Loc, Maximum_Alignment); else DT_Size := Make_Attribute_Reference (Loc, Prefix => New_Reference_To (Desig_Type, Loc), Attribute_Name => Name_Max_Size_In_Storage_Elements); DT_Align := Make_Attribute_Reference (Loc, Prefix => New_Reference_To (Desig_Type, Loc), Attribute_Name => Name_Alignment); end if; Pool_Object := Make_Defining_Identifier (Loc, Chars => New_External_Name (Chars (Def_Id), 'P')); -- We put the code associated with the pools in the entity -- that has the later freeze node, usually the access type -- but it can also be the designated_type; because the pool -- code requires both those types to be frozen if Is_Frozen (Desig_Type) and then (No (Freeze_Node (Desig_Type)) or else Analyzed (Freeze_Node (Desig_Type))) then Freeze_Action_Typ := Def_Id; -- A Taft amendment type cannot get the freeze actions -- since the full view is not there. elsif Is_Incomplete_Or_Private_Type (Desig_Type) and then No (Full_View (Desig_Type)) then Freeze_Action_Typ := Def_Id; else Freeze_Action_Typ := Desig_Type; end if; Append_Freeze_Action (Freeze_Action_Typ, Make_Object_Declaration (Loc, Defining_Identifier => Pool_Object, Object_Definition => Make_Subtype_Indication (Loc, Subtype_Mark => New_Reference_To (RTE (RE_Stack_Bounded_Pool), Loc), Constraint => Make_Index_Or_Discriminant_Constraint (Loc, Constraints => New_List ( -- First discriminant is the Pool Size New_Reference_To ( Storage_Size_Variable (Def_Id), Loc), -- Second discriminant is the element size DT_Size, -- Third discriminant is the alignment DT_Align))))); end; Set_Associated_Storage_Pool (Def_Id, Pool_Object); -- Case 3 -- Rep Clause "for Def_Id'Storage_Pool use a_Pool_Object" -- ---> Storage Pool is the specified one -- When compiling in Ada 2012 mode, ensure that the accessibility -- level of the subpool access type is not deeper than that of the -- pool_with_subpools. elsif Ada_Version >= Ada_2012 and then Present (Associated_Storage_Pool (Def_Id)) -- Omit this check on .NET/JVM where pools are not supported and then VM_Target = No_VM -- Omit this check for the case of a configurable run-time that -- does not provide package System.Storage_Pools.Subpools. and then RTE_Available (RE_Root_Storage_Pool_With_Subpools) then declare Loc : constant Source_Ptr := Sloc (Def_Id); Pool : constant Entity_Id := Associated_Storage_Pool (Def_Id); RSPWS : constant Entity_Id := RTE (RE_Root_Storage_Pool_With_Subpools); begin -- It is known that the accessibility level of the access -- type is deeper than that of the pool. if Type_Access_Level (Def_Id) > Object_Access_Level (Pool) and then not Accessibility_Checks_Suppressed (Def_Id) and then not Accessibility_Checks_Suppressed (Pool) then -- Static case: the pool is known to be a descendant of -- Root_Storage_Pool_With_Subpools. if Is_Ancestor (RSPWS, Etype (Pool)) then Error_Msg_N ("??subpool access type has deeper accessibility " & "level than pool", Def_Id); Append_Freeze_Action (Def_Id, Make_Raise_Program_Error (Loc, Reason => PE_Accessibility_Check_Failed)); -- Dynamic case: when the pool is of a class-wide type, -- it may or may not support subpools depending on the -- path of derivation. Generate: -- if Def_Id in RSPWS'Class then -- raise Program_Error; -- end if; elsif Is_Class_Wide_Type (Etype (Pool)) then Append_Freeze_Action (Def_Id, Make_If_Statement (Loc, Condition => Make_In (Loc, Left_Opnd => New_Reference_To (Pool, Loc), Right_Opnd => New_Reference_To (Class_Wide_Type (RSPWS), Loc)), Then_Statements => New_List ( Make_Raise_Program_Error (Loc, Reason => PE_Accessibility_Check_Failed)))); end if; end if; end; end if; -- For access-to-controlled types (including class-wide types and -- Taft-amendment types, which potentially have controlled -- components), expand the list controller object that will store -- the dynamically allocated objects. Don't do this transformation -- for expander-generated access types, but do it for types that -- are the full view of types derived from other private types. -- Also suppress the list controller in the case of a designated -- type with convention Java, since this is used when binding to -- Java API specs, where there's no equivalent of a finalization -- list and we don't want to pull in the finalization support if -- not needed. if not Comes_From_Source (Def_Id) and then not Has_Private_Declaration (Def_Id) then null; -- An exception is made for types defined in the run-time because -- Ada.Tags.Tag itself is such a type and cannot afford this -- unnecessary overhead that would generates a loop in the -- expansion scheme. Another exception is if Restrictions -- (No_Finalization) is active, since then we know nothing is -- controlled. elsif Restriction_Active (No_Finalization) or else In_Runtime (Def_Id) then null; -- Assume that incomplete and private types are always completed -- by a controlled full view. elsif Needs_Finalization (Desig_Type) or else (Is_Incomplete_Or_Private_Type (Desig_Type) and then No (Full_View (Desig_Type))) or else (Is_Array_Type (Desig_Type) and then Needs_Finalization (Component_Type (Desig_Type))) then Build_Finalization_Master (Def_Id); end if; end; -- Freeze processing for enumeration types elsif Ekind (Def_Id) = E_Enumeration_Type then -- We only have something to do if we have a non-standard -- representation (i.e. at least one literal whose pos value -- is not the same as its representation) if Has_Non_Standard_Rep (Def_Id) then Expand_Freeze_Enumeration_Type (N); end if; -- Private types that are completed by a derivation from a private -- type have an internally generated full view, that needs to be -- frozen. This must be done explicitly because the two views share -- the freeze node, and the underlying full view is not visible when -- the freeze node is analyzed. elsif Is_Private_Type (Def_Id) and then Is_Derived_Type (Def_Id) and then Present (Full_View (Def_Id)) and then Is_Itype (Full_View (Def_Id)) and then Has_Private_Declaration (Full_View (Def_Id)) and then Freeze_Node (Full_View (Def_Id)) = N then Set_Entity (N, Full_View (Def_Id)); Result := Freeze_Type (N); Set_Entity (N, Def_Id); -- All other types require no expander action. There are such cases -- (e.g. task types and protected types). In such cases, the freeze -- nodes are there for use by Gigi. end if; Freeze_Stream_Operations (N, Def_Id); return Result; exception when RE_Not_Available => return False; end Freeze_Type; ------------------------- -- Get_Simple_Init_Val -- ------------------------- function Get_Simple_Init_Val (T : Entity_Id; N : Node_Id; Size : Uint := No_Uint) return Node_Id is Loc : constant Source_Ptr := Sloc (N); Val : Node_Id; Result : Node_Id; Val_RE : RE_Id; Size_To_Use : Uint; -- This is the size to be used for computation of the appropriate -- initial value for the Normalize_Scalars and Initialize_Scalars case. IV_Attribute : constant Boolean := Nkind (N) = N_Attribute_Reference and then Attribute_Name (N) = Name_Invalid_Value; Lo_Bound : Uint; Hi_Bound : Uint; -- These are the values computed by the procedure Check_Subtype_Bounds procedure Check_Subtype_Bounds; -- This procedure examines the subtype T, and its ancestor subtypes and -- derived types to determine the best known information about the -- bounds of the subtype. After the call Lo_Bound is set either to -- No_Uint if no information can be determined, or to a value which -- represents a known low bound, i.e. a valid value of the subtype can -- not be less than this value. Hi_Bound is similarly set to a known -- high bound (valid value cannot be greater than this). -------------------------- -- Check_Subtype_Bounds -- -------------------------- procedure Check_Subtype_Bounds is ST1 : Entity_Id; ST2 : Entity_Id; Lo : Node_Id; Hi : Node_Id; Loval : Uint; Hival : Uint; begin Lo_Bound := No_Uint; Hi_Bound := No_Uint; -- Loop to climb ancestor subtypes and derived types ST1 := T; loop if not Is_Discrete_Type (ST1) then return; end if; Lo := Type_Low_Bound (ST1); Hi := Type_High_Bound (ST1); if Compile_Time_Known_Value (Lo) then Loval := Expr_Value (Lo); if Lo_Bound = No_Uint or else Lo_Bound < Loval then Lo_Bound := Loval; end if; end if; if Compile_Time_Known_Value (Hi) then Hival := Expr_Value (Hi); if Hi_Bound = No_Uint or else Hi_Bound > Hival then Hi_Bound := Hival; end if; end if; ST2 := Ancestor_Subtype (ST1); if No (ST2) then ST2 := Etype (ST1); end if; exit when ST1 = ST2; ST1 := ST2; end loop; end Check_Subtype_Bounds; -- Start of processing for Get_Simple_Init_Val begin -- For a private type, we should always have an underlying type -- (because this was already checked in Needs_Simple_Initialization). -- What we do is to get the value for the underlying type and then do -- an Unchecked_Convert to the private type. if Is_Private_Type (T) then Val := Get_Simple_Init_Val (Underlying_Type (T), N, Size); -- A special case, if the underlying value is null, then qualify it -- with the underlying type, so that the null is properly typed -- Similarly, if it is an aggregate it must be qualified, because an -- unchecked conversion does not provide a context for it. if Nkind_In (Val, N_Null, N_Aggregate) then Val := Make_Qualified_Expression (Loc, Subtype_Mark => New_Occurrence_Of (Underlying_Type (T), Loc), Expression => Val); end if; Result := Unchecked_Convert_To (T, Val); -- Don't truncate result (important for Initialize/Normalize_Scalars) if Nkind (Result) = N_Unchecked_Type_Conversion and then Is_Scalar_Type (Underlying_Type (T)) then Set_No_Truncation (Result); end if; return Result; -- Scalars with Default_Value aspect. The first subtype may now be -- private, so retrieve value from underlying type. elsif Is_Scalar_Type (T) and then Has_Default_Aspect (T) then if Is_Private_Type (First_Subtype (T)) then return Unchecked_Convert_To (T, Default_Aspect_Value (Full_View (First_Subtype (T)))); else return Convert_To (T, Default_Aspect_Value (First_Subtype (T))); end if; -- Otherwise, for scalars, we must have normalize/initialize scalars -- case, or if the node N is an 'Invalid_Value attribute node. elsif Is_Scalar_Type (T) then pragma Assert (Init_Or_Norm_Scalars or IV_Attribute); -- Compute size of object. If it is given by the caller, we can use -- it directly, otherwise we use Esize (T) as an estimate. As far as -- we know this covers all cases correctly. if Size = No_Uint or else Size <= Uint_0 then Size_To_Use := UI_Max (Uint_1, Esize (T)); else Size_To_Use := Size; end if; -- Maximum size to use is 64 bits, since we will create values of -- type Unsigned_64 and the range must fit this type. if Size_To_Use /= No_Uint and then Size_To_Use > Uint_64 then Size_To_Use := Uint_64; end if; -- Check known bounds of subtype Check_Subtype_Bounds; -- Processing for Normalize_Scalars case if Normalize_Scalars and then not IV_Attribute then -- If zero is invalid, it is a convenient value to use that is -- for sure an appropriate invalid value in all situations. if Lo_Bound /= No_Uint and then Lo_Bound > Uint_0 then Val := Make_Integer_Literal (Loc, 0); -- Cases where all one bits is the appropriate invalid value -- For modular types, all 1 bits is either invalid or valid. If -- it is valid, then there is nothing that can be done since there -- are no invalid values (we ruled out zero already). -- For signed integer types that have no negative values, either -- there is room for negative values, or there is not. If there -- is, then all 1-bits may be interpreted as minus one, which is -- certainly invalid. Alternatively it is treated as the largest -- positive value, in which case the observation for modular types -- still applies. -- For float types, all 1-bits is a NaN (not a number), which is -- certainly an appropriately invalid value. elsif Is_Unsigned_Type (T) or else Is_Floating_Point_Type (T) or else Is_Enumeration_Type (T) then Val := Make_Integer_Literal (Loc, 2 ** Size_To_Use - 1); -- Resolve as Unsigned_64, because the largest number we can -- generate is out of range of universal integer. Analyze_And_Resolve (Val, RTE (RE_Unsigned_64)); -- Case of signed types else declare Signed_Size : constant Uint := UI_Min (Uint_63, Size_To_Use - 1); begin -- Normally we like to use the most negative number. The one -- exception is when this number is in the known subtype -- range and the largest positive number is not in the known -- subtype range. -- For this exceptional case, use largest positive value if Lo_Bound /= No_Uint and then Hi_Bound /= No_Uint and then Lo_Bound <= (-(2 ** Signed_Size)) and then Hi_Bound < 2 ** Signed_Size then Val := Make_Integer_Literal (Loc, 2 ** Signed_Size - 1); -- Normal case of largest negative value else Val := Make_Integer_Literal (Loc, -(2 ** Signed_Size)); end if; end; end if; -- Here for Initialize_Scalars case (or Invalid_Value attribute used) else -- For float types, use float values from System.Scalar_Values if Is_Floating_Point_Type (T) then if Root_Type (T) = Standard_Short_Float then Val_RE := RE_IS_Isf; elsif Root_Type (T) = Standard_Float then Val_RE := RE_IS_Ifl; elsif Root_Type (T) = Standard_Long_Float then Val_RE := RE_IS_Ilf; else pragma Assert (Root_Type (T) = Standard_Long_Long_Float); Val_RE := RE_IS_Ill; end if; -- If zero is invalid, use zero values from System.Scalar_Values elsif Lo_Bound /= No_Uint and then Lo_Bound > Uint_0 then if Size_To_Use <= 8 then Val_RE := RE_IS_Iz1; elsif Size_To_Use <= 16 then Val_RE := RE_IS_Iz2; elsif Size_To_Use <= 32 then Val_RE := RE_IS_Iz4; else Val_RE := RE_IS_Iz8; end if; -- For unsigned, use unsigned values from System.Scalar_Values elsif Is_Unsigned_Type (T) then if Size_To_Use <= 8 then Val_RE := RE_IS_Iu1; elsif Size_To_Use <= 16 then Val_RE := RE_IS_Iu2; elsif Size_To_Use <= 32 then Val_RE := RE_IS_Iu4; else Val_RE := RE_IS_Iu8; end if; -- For signed, use signed values from System.Scalar_Values else if Size_To_Use <= 8 then Val_RE := RE_IS_Is1; elsif Size_To_Use <= 16 then Val_RE := RE_IS_Is2; elsif Size_To_Use <= 32 then Val_RE := RE_IS_Is4; else Val_RE := RE_IS_Is8; end if; end if; Val := New_Occurrence_Of (RTE (Val_RE), Loc); end if; -- The final expression is obtained by doing an unchecked conversion -- of this result to the base type of the required subtype. We use -- the base type to prevent the unchecked conversion from chopping -- bits, and then we set Kill_Range_Check to preserve the "bad" -- value. Result := Unchecked_Convert_To (Base_Type (T), Val); -- Ensure result is not truncated, since we want the "bad" bits, and -- also kill range check on result. if Nkind (Result) = N_Unchecked_Type_Conversion then Set_No_Truncation (Result); Set_Kill_Range_Check (Result, True); end if; return Result; -- String or Wide_[Wide]_String (must have Initialize_Scalars set) elsif Root_Type (T) = Standard_String or else Root_Type (T) = Standard_Wide_String or else Root_Type (T) = Standard_Wide_Wide_String then pragma Assert (Init_Or_Norm_Scalars); return Make_Aggregate (Loc, Component_Associations => New_List ( Make_Component_Association (Loc, Choices => New_List ( Make_Others_Choice (Loc)), Expression => Get_Simple_Init_Val (Component_Type (T), N, Esize (Root_Type (T)))))); -- Access type is initialized to null elsif Is_Access_Type (T) then return Make_Null (Loc); -- No other possibilities should arise, since we should only be calling -- Get_Simple_Init_Val if Needs_Simple_Initialization returned True, -- indicating one of the above cases held. else raise Program_Error; end if; exception when RE_Not_Available => return Empty; end Get_Simple_Init_Val; ------------------------------ -- Has_New_Non_Standard_Rep -- ------------------------------ function Has_New_Non_Standard_Rep (T : Entity_Id) return Boolean is begin if not Is_Derived_Type (T) then return Has_Non_Standard_Rep (T) or else Has_Non_Standard_Rep (Root_Type (T)); -- If Has_Non_Standard_Rep is not set on the derived type, the -- representation is fully inherited. elsif not Has_Non_Standard_Rep (T) then return False; else return First_Rep_Item (T) /= First_Rep_Item (Root_Type (T)); -- May need a more precise check here: the First_Rep_Item may -- be a stream attribute, which does not affect the representation -- of the type ??? end if; end Has_New_Non_Standard_Rep; ---------------- -- In_Runtime -- ---------------- function In_Runtime (E : Entity_Id) return Boolean is S1 : Entity_Id; begin S1 := Scope (E); while Scope (S1) /= Standard_Standard loop S1 := Scope (S1); end loop; return Is_RTU (S1, System) or else Is_RTU (S1, Ada); end In_Runtime; --------------------------------------- -- Insert_Component_Invariant_Checks -- --------------------------------------- procedure Insert_Component_Invariant_Checks (N : Node_Id; Typ : Entity_Id; Proc : Node_Id) is Loc : constant Source_Ptr := Sloc (Typ); Proc_Id : Entity_Id; begin if Present (Proc) then Proc_Id := Defining_Entity (Proc); if not Has_Invariants (Typ) then Set_Has_Invariants (Typ); Set_Is_Invariant_Procedure (Proc_Id); Set_Invariant_Procedure (Typ, Proc_Id); Insert_After (N, Proc); Analyze (Proc); else -- Find already created invariant body, insert body of component -- invariant proc in it, and add call after other checks. declare Bod : Node_Id; Inv_Id : constant Entity_Id := Invariant_Procedure (Typ); Call : constant Node_Id := Make_Procedure_Call_Statement (Loc, Name => New_Occurrence_Of (Proc_Id, Loc), Parameter_Associations => New_List (New_Reference_To (First_Formal (Inv_Id), Loc))); begin -- The invariant body has not been analyzed yet, so we do a -- sequential search forward, and retrieve it by name. Bod := Next (N); while Present (Bod) loop exit when Nkind (Bod) = N_Subprogram_Body and then Chars (Defining_Entity (Bod)) = Chars (Inv_Id); Next (Bod); end loop; Append_To (Declarations (Bod), Proc); Append_To (Statements (Handled_Statement_Sequence (Bod)), Call); end; end if; end if; end Insert_Component_Invariant_Checks; ---------------------------- -- Initialization_Warning -- ---------------------------- procedure Initialization_Warning (E : Entity_Id) is Warning_Needed : Boolean; begin Warning_Needed := False; if Ekind (Current_Scope) = E_Package and then Static_Elaboration_Desired (Current_Scope) then if Is_Type (E) then if Is_Record_Type (E) then if Has_Discriminants (E) or else Is_Limited_Type (E) or else Has_Non_Standard_Rep (E) then Warning_Needed := True; else -- Verify that at least one component has an initialization -- expression. No need for a warning on a type if all its -- components have no initialization. declare Comp : Entity_Id; begin Comp := First_Component (E); while Present (Comp) loop if Ekind (Comp) = E_Discriminant or else (Nkind (Parent (Comp)) = N_Component_Declaration and then Present (Expression (Parent (Comp)))) then Warning_Needed := True; exit; end if; Next_Component (Comp); end loop; end; end if; if Warning_Needed then Error_Msg_N ("Objects of the type cannot be initialized " & "statically by default??", Parent (E)); end if; end if; else Error_Msg_N ("Object cannot be initialized statically??", E); end if; end if; end Initialization_Warning; ------------------ -- Init_Formals -- ------------------ function Init_Formals (Typ : Entity_Id) return List_Id is Loc : constant Source_Ptr := Sloc (Typ); Formals : List_Id; begin -- First parameter is always _Init : in out typ. Note that we need -- this to be in/out because in the case of the task record value, -- there are default record fields (_Priority, _Size, -Task_Info) -- that may be referenced in the generated initialization routine. Formals := New_List ( Make_Parameter_Specification (Loc, Defining_Identifier => Make_Defining_Identifier (Loc, Name_uInit), In_Present => True, Out_Present => True, Parameter_Type => New_Reference_To (Typ, Loc))); -- For task record value, or type that contains tasks, add two more -- formals, _Master : Master_Id and _Chain : in out Activation_Chain -- We also add these parameters for the task record type case. if Has_Task (Typ) or else (Is_Record_Type (Typ) and then Is_Task_Record_Type (Typ)) then Append_To (Formals, Make_Parameter_Specification (Loc, Defining_Identifier => Make_Defining_Identifier (Loc, Name_uMaster), Parameter_Type => New_Reference_To (RTE (RE_Master_Id), Loc))); -- Add _Chain (not done for sequential elaboration policy, see -- comment for Create_Restricted_Task_Sequential in s-tarest.ads). if Partition_Elaboration_Policy /= 'S' then Append_To (Formals, Make_Parameter_Specification (Loc, Defining_Identifier => Make_Defining_Identifier (Loc, Name_uChain), In_Present => True, Out_Present => True, Parameter_Type => New_Reference_To (RTE (RE_Activation_Chain), Loc))); end if; Append_To (Formals, Make_Parameter_Specification (Loc, Defining_Identifier => Make_Defining_Identifier (Loc, Name_uTask_Name), In_Present => True, Parameter_Type => New_Reference_To (Standard_String, Loc))); end if; return Formals; exception when RE_Not_Available => return Empty_List; end Init_Formals; ------------------------- -- Init_Secondary_Tags -- ------------------------- procedure Init_Secondary_Tags (Typ : Entity_Id; Target : Node_Id; Stmts_List : List_Id; Fixed_Comps : Boolean := True; Variable_Comps : Boolean := True) is Loc : constant Source_Ptr := Sloc (Target); -- Inherit the C++ tag of the secondary dispatch table of Typ associated -- with Iface. Tag_Comp is the component of Typ that stores Iface_Tag. procedure Initialize_Tag (Typ : Entity_Id; Iface : Entity_Id; Tag_Comp : Entity_Id; Iface_Tag : Node_Id); -- Initialize the tag of the secondary dispatch table of Typ associated -- with Iface. Tag_Comp is the component of Typ that stores Iface_Tag. -- Compiling under the CPP full ABI compatibility mode, if the ancestor -- of Typ CPP tagged type we generate code to inherit the contents of -- the dispatch table directly from the ancestor. -------------------- -- Initialize_Tag -- -------------------- procedure Initialize_Tag (Typ : Entity_Id; Iface : Entity_Id; Tag_Comp : Entity_Id; Iface_Tag : Node_Id) is Comp_Typ : Entity_Id; Offset_To_Top_Comp : Entity_Id := Empty; begin -- Initialize the pointer to the secondary DT associated with the -- interface. if not Is_Ancestor (Iface, Typ, Use_Full_View => True) then Append_To (Stmts_List, Make_Assignment_Statement (Loc, Name => Make_Selected_Component (Loc, Prefix => New_Copy_Tree (Target), Selector_Name => New_Reference_To (Tag_Comp, Loc)), Expression => New_Reference_To (Iface_Tag, Loc))); end if; Comp_Typ := Scope (Tag_Comp); -- Initialize the entries of the table of interfaces. We generate a -- different call when the parent of the type has variable size -- components. if Comp_Typ /= Etype (Comp_Typ) and then Is_Variable_Size_Record (Etype (Comp_Typ)) and then Chars (Tag_Comp) /= Name_uTag then pragma Assert (Present (DT_Offset_To_Top_Func (Tag_Comp))); -- Issue error if Set_Dynamic_Offset_To_Top is not available in a -- configurable run-time environment. if not RTE_Available (RE_Set_Dynamic_Offset_To_Top) then Error_Msg_CRT ("variable size record with interface types", Typ); return; end if; -- Generate: -- Set_Dynamic_Offset_To_Top -- (This => Init, -- Interface_T => Iface'Tag, -- Offset_Value => n, -- Offset_Func => Fn'Address) Append_To (Stmts_List, Make_Procedure_Call_Statement (Loc, Name => New_Reference_To (RTE (RE_Set_Dynamic_Offset_To_Top), Loc), Parameter_Associations => New_List ( Make_Attribute_Reference (Loc, Prefix => New_Copy_Tree (Target), Attribute_Name => Name_Address), Unchecked_Convert_To (RTE (RE_Tag), New_Reference_To (Node (First_Elmt (Access_Disp_Table (Iface))), Loc)), Unchecked_Convert_To (RTE (RE_Storage_Offset), Make_Attribute_Reference (Loc, Prefix => Make_Selected_Component (Loc, Prefix => New_Copy_Tree (Target), Selector_Name => New_Reference_To (Tag_Comp, Loc)), Attribute_Name => Name_Position)), Unchecked_Convert_To (RTE (RE_Offset_To_Top_Function_Ptr), Make_Attribute_Reference (Loc, Prefix => New_Reference_To (DT_Offset_To_Top_Func (Tag_Comp), Loc), Attribute_Name => Name_Address))))); -- In this case the next component stores the value of the -- offset to the top. Offset_To_Top_Comp := Next_Entity (Tag_Comp); pragma Assert (Present (Offset_To_Top_Comp)); Append_To (Stmts_List, Make_Assignment_Statement (Loc, Name => Make_Selected_Component (Loc, Prefix => New_Copy_Tree (Target), Selector_Name => New_Reference_To (Offset_To_Top_Comp, Loc)), Expression => Make_Attribute_Reference (Loc, Prefix => Make_Selected_Component (Loc, Prefix => New_Copy_Tree (Target), Selector_Name => New_Reference_To (Tag_Comp, Loc)), Attribute_Name => Name_Position))); -- Normal case: No discriminants in the parent type else -- Don't need to set any value if this interface shares the -- primary dispatch table. if not Is_Ancestor (Iface, Typ, Use_Full_View => True) then Append_To (Stmts_List, Build_Set_Static_Offset_To_Top (Loc, Iface_Tag => New_Reference_To (Iface_Tag, Loc), Offset_Value => Unchecked_Convert_To (RTE (RE_Storage_Offset), Make_Attribute_Reference (Loc, Prefix => Make_Selected_Component (Loc, Prefix => New_Copy_Tree (Target), Selector_Name => New_Reference_To (Tag_Comp, Loc)), Attribute_Name => Name_Position)))); end if; -- Generate: -- Register_Interface_Offset -- (This => Init, -- Interface_T => Iface'Tag, -- Is_Constant => True, -- Offset_Value => n, -- Offset_Func => null); if RTE_Available (RE_Register_Interface_Offset) then Append_To (Stmts_List, Make_Procedure_Call_Statement (Loc, Name => New_Reference_To (RTE (RE_Register_Interface_Offset), Loc), Parameter_Associations => New_List ( Make_Attribute_Reference (Loc, Prefix => New_Copy_Tree (Target), Attribute_Name => Name_Address), Unchecked_Convert_To (RTE (RE_Tag), New_Reference_To (Node (First_Elmt (Access_Disp_Table (Iface))), Loc)), New_Occurrence_Of (Standard_True, Loc), Unchecked_Convert_To (RTE (RE_Storage_Offset), Make_Attribute_Reference (Loc, Prefix => Make_Selected_Component (Loc, Prefix => New_Copy_Tree (Target), Selector_Name => New_Reference_To (Tag_Comp, Loc)), Attribute_Name => Name_Position)), Make_Null (Loc)))); end if; end if; end Initialize_Tag; -- Local variables Full_Typ : Entity_Id; Ifaces_List : Elist_Id; Ifaces_Comp_List : Elist_Id; Ifaces_Tag_List : Elist_Id; Iface_Elmt : Elmt_Id; Iface_Comp_Elmt : Elmt_Id; Iface_Tag_Elmt : Elmt_Id; Tag_Comp : Node_Id; In_Variable_Pos : Boolean; -- Start of processing for Init_Secondary_Tags begin -- Handle private types if Present (Full_View (Typ)) then Full_Typ := Full_View (Typ); else Full_Typ := Typ; end if; Collect_Interfaces_Info (Full_Typ, Ifaces_List, Ifaces_Comp_List, Ifaces_Tag_List); Iface_Elmt := First_Elmt (Ifaces_List); Iface_Comp_Elmt := First_Elmt (Ifaces_Comp_List); Iface_Tag_Elmt := First_Elmt (Ifaces_Tag_List); while Present (Iface_Elmt) loop Tag_Comp := Node (Iface_Comp_Elmt); -- Check if parent of record type has variable size components In_Variable_Pos := Scope (Tag_Comp) /= Etype (Scope (Tag_Comp)) and then Is_Variable_Size_Record (Etype (Scope (Tag_Comp))); -- If we are compiling under the CPP full ABI compatibility mode and -- the ancestor is a CPP_Pragma tagged type then we generate code to -- initialize the secondary tag components from tags that reference -- secondary tables filled with copy of parent slots. if Is_CPP_Class (Root_Type (Full_Typ)) then -- Reject interface components located at variable offset in -- C++ derivations. This is currently unsupported. if not Fixed_Comps and then In_Variable_Pos then -- Locate the first dynamic component of the record. Done to -- improve the text of the warning. declare Comp : Entity_Id; Comp_Typ : Entity_Id; begin Comp := First_Entity (Typ); while Present (Comp) loop Comp_Typ := Etype (Comp); if Ekind (Comp) /= E_Discriminant and then not Is_Tag (Comp) then exit when (Is_Record_Type (Comp_Typ) and then Is_Variable_Size_Record (Base_Type (Comp_Typ))) or else (Is_Array_Type (Comp_Typ) and then Is_Variable_Size_Array (Comp_Typ)); end if; Next_Entity (Comp); end loop; pragma Assert (Present (Comp)); Error_Msg_Node_2 := Comp; Error_Msg_NE ("parent type & with dynamic component & cannot be parent" & " of 'C'P'P derivation if new interfaces are present", Typ, Scope (Original_Record_Component (Comp))); Error_Msg_Sloc := Sloc (Scope (Original_Record_Component (Comp))); Error_Msg_NE ("type derived from 'C'P'P type & defined #", Typ, Scope (Original_Record_Component (Comp))); -- Avoid duplicated warnings exit; end; -- Initialize secondary tags else Append_To (Stmts_List, Make_Assignment_Statement (Loc, Name => Make_Selected_Component (Loc, Prefix => New_Copy_Tree (Target), Selector_Name => New_Reference_To (Node (Iface_Comp_Elmt), Loc)), Expression => New_Reference_To (Node (Iface_Tag_Elmt), Loc))); end if; -- Otherwise generate code to initialize the tag else if (In_Variable_Pos and then Variable_Comps) or else (not In_Variable_Pos and then Fixed_Comps) then Initialize_Tag (Full_Typ, Iface => Node (Iface_Elmt), Tag_Comp => Tag_Comp, Iface_Tag => Node (Iface_Tag_Elmt)); end if; end if; Next_Elmt (Iface_Elmt); Next_Elmt (Iface_Comp_Elmt); Next_Elmt (Iface_Tag_Elmt); end loop; end Init_Secondary_Tags; ------------------------ -- Is_User_Defined_Eq -- ------------------------ function Is_User_Defined_Equality (Prim : Node_Id) return Boolean is begin return Chars (Prim) = Name_Op_Eq and then Etype (First_Formal (Prim)) = Etype (Next_Formal (First_Formal (Prim))) and then Base_Type (Etype (Prim)) = Standard_Boolean; end Is_User_Defined_Equality; ---------------------------------------- -- Make_Controlling_Function_Wrappers -- ---------------------------------------- procedure Make_Controlling_Function_Wrappers (Tag_Typ : Entity_Id; Decl_List : out List_Id; Body_List : out List_Id) is Loc : constant Source_Ptr := Sloc (Tag_Typ); Prim_Elmt : Elmt_Id; Subp : Entity_Id; Actual_List : List_Id; Formal_List : List_Id; Formal : Entity_Id; Par_Formal : Entity_Id; Formal_Node : Node_Id; Func_Body : Node_Id; Func_Decl : Node_Id; Func_Spec : Node_Id; Return_Stmt : Node_Id; begin Decl_List := New_List; Body_List := New_List; Prim_Elmt := First_Elmt (Primitive_Operations (Tag_Typ)); while Present (Prim_Elmt) loop Subp := Node (Prim_Elmt); -- If a primitive function with a controlling result of the type has -- not been overridden by the user, then we must create a wrapper -- function here that effectively overrides it and invokes the -- (non-abstract) parent function. This can only occur for a null -- extension. Note that functions with anonymous controlling access -- results don't qualify and must be overridden. We also exclude -- Input attributes, since each type will have its own version of -- Input constructed by the expander. The test for Comes_From_Source -- is needed to distinguish inherited operations from renamings -- (which also have Alias set). We exclude internal entities with -- Interface_Alias to avoid generating duplicated wrappers since -- the primitive which covers the interface is also available in -- the list of primitive operations. -- The function may be abstract, or require_Overriding may be set -- for it, because tests for null extensions may already have reset -- the Is_Abstract_Subprogram_Flag. If Requires_Overriding is not -- set, functions that need wrappers are recognized by having an -- alias that returns the parent type. if Comes_From_Source (Subp) or else No (Alias (Subp)) or else Present (Interface_Alias (Subp)) or else Ekind (Subp) /= E_Function or else not Has_Controlling_Result (Subp) or else Is_Access_Type (Etype (Subp)) or else Is_Abstract_Subprogram (Alias (Subp)) or else Is_TSS (Subp, TSS_Stream_Input) then goto Next_Prim; elsif Is_Abstract_Subprogram (Subp) or else Requires_Overriding (Subp) or else (Is_Null_Extension (Etype (Subp)) and then Etype (Alias (Subp)) /= Etype (Subp)) then Formal_List := No_List; Formal := First_Formal (Subp); if Present (Formal) then Formal_List := New_List; while Present (Formal) loop Append (Make_Parameter_Specification (Loc, Defining_Identifier => Make_Defining_Identifier (Sloc (Formal), Chars => Chars (Formal)), In_Present => In_Present (Parent (Formal)), Out_Present => Out_Present (Parent (Formal)), Null_Exclusion_Present => Null_Exclusion_Present (Parent (Formal)), Parameter_Type => New_Reference_To (Etype (Formal), Loc), Expression => New_Copy_Tree (Expression (Parent (Formal)))), Formal_List); Next_Formal (Formal); end loop; end if; Func_Spec := Make_Function_Specification (Loc, Defining_Unit_Name => Make_Defining_Identifier (Loc, Chars => Chars (Subp)), Parameter_Specifications => Formal_List, Result_Definition => New_Reference_To (Etype (Subp), Loc)); Func_Decl := Make_Subprogram_Declaration (Loc, Func_Spec); Append_To (Decl_List, Func_Decl); -- Build a wrapper body that calls the parent function. The body -- contains a single return statement that returns an extension -- aggregate whose ancestor part is a call to the parent function, -- passing the formals as actuals (with any controlling arguments -- converted to the types of the corresponding formals of the -- parent function, which might be anonymous access types), and -- having a null extension. Formal := First_Formal (Subp); Par_Formal := First_Formal (Alias (Subp)); Formal_Node := First (Formal_List); if Present (Formal) then Actual_List := New_List; else Actual_List := No_List; end if; while Present (Formal) loop if Is_Controlling_Formal (Formal) then Append_To (Actual_List, Make_Type_Conversion (Loc, Subtype_Mark => New_Occurrence_Of (Etype (Par_Formal), Loc), Expression => New_Reference_To (Defining_Identifier (Formal_Node), Loc))); else Append_To (Actual_List, New_Reference_To (Defining_Identifier (Formal_Node), Loc)); end if; Next_Formal (Formal); Next_Formal (Par_Formal); Next (Formal_Node); end loop; Return_Stmt := Make_Simple_Return_Statement (Loc, Expression => Make_Extension_Aggregate (Loc, Ancestor_Part => Make_Function_Call (Loc, Name => New_Reference_To (Alias (Subp), Loc), Parameter_Associations => Actual_List), Null_Record_Present => True)); Func_Body := Make_Subprogram_Body (Loc, Specification => New_Copy_Tree (Func_Spec), Declarations => Empty_List, Handled_Statement_Sequence => Make_Handled_Sequence_Of_Statements (Loc, Statements => New_List (Return_Stmt))); Set_Defining_Unit_Name (Specification (Func_Body), Make_Defining_Identifier (Loc, Chars (Subp))); Append_To (Body_List, Func_Body); -- Replace the inherited function with the wrapper function in the -- primitive operations list. We add the minimum decoration needed -- to override interface primitives. Set_Ekind (Defining_Unit_Name (Func_Spec), E_Function); Override_Dispatching_Operation (Tag_Typ, Subp, New_Op => Defining_Unit_Name (Func_Spec), Is_Wrapper => True); end if; <> Next_Elmt (Prim_Elmt); end loop; end Make_Controlling_Function_Wrappers; ------------------- -- Make_Eq_Body -- ------------------- function Make_Eq_Body (Typ : Entity_Id; Eq_Name : Name_Id) return Node_Id is Loc : constant Source_Ptr := Sloc (Parent (Typ)); Decl : Node_Id; Def : constant Node_Id := Parent (Typ); Stmts : constant List_Id := New_List; Variant_Case : Boolean := Has_Discriminants (Typ); Comps : Node_Id := Empty; Typ_Def : Node_Id := Type_Definition (Def); begin Decl := Predef_Spec_Or_Body (Loc, Tag_Typ => Typ, Name => Eq_Name, Profile => New_List ( Make_Parameter_Specification (Loc, Defining_Identifier => Make_Defining_Identifier (Loc, Name_X), Parameter_Type => New_Reference_To (Typ, Loc)), Make_Parameter_Specification (Loc, Defining_Identifier => Make_Defining_Identifier (Loc, Name_Y), Parameter_Type => New_Reference_To (Typ, Loc))), Ret_Type => Standard_Boolean, For_Body => True); if Variant_Case then if Nkind (Typ_Def) = N_Derived_Type_Definition then Typ_Def := Record_Extension_Part (Typ_Def); end if; if Present (Typ_Def) then Comps := Component_List (Typ_Def); end if; Variant_Case := Present (Comps) and then Present (Variant_Part (Comps)); end if; if Variant_Case then Append_To (Stmts, Make_Eq_If (Typ, Discriminant_Specifications (Def))); Append_List_To (Stmts, Make_Eq_Case (Typ, Comps)); Append_To (Stmts, Make_Simple_Return_Statement (Loc, Expression => New_Reference_To (Standard_True, Loc))); else Append_To (Stmts, Make_Simple_Return_Statement (Loc, Expression => Expand_Record_Equality (Typ, Typ => Typ, Lhs => Make_Identifier (Loc, Name_X), Rhs => Make_Identifier (Loc, Name_Y), Bodies => Declarations (Decl)))); end if; Set_Handled_Statement_Sequence (Decl, Make_Handled_Sequence_Of_Statements (Loc, Stmts)); return Decl; end Make_Eq_Body; ------------------ -- Make_Eq_Case -- ------------------ -- -- case X.D1 is -- when V1 => on subcomponents -- ... -- when Vn => on subcomponents -- end case; function Make_Eq_Case (E : Entity_Id; CL : Node_Id; Discrs : Elist_Id := New_Elmt_List) return List_Id is Loc : constant Source_Ptr := Sloc (E); Result : constant List_Id := New_List; Variant : Node_Id; Alt_List : List_Id; function Corresponding_Formal (C : Node_Id) return Entity_Id; -- Given the discriminant that controls a given variant of an unchecked -- union, find the formal of the equality function that carries the -- inferred value of the discriminant. function External_Name (E : Entity_Id) return Name_Id; -- The value of a given discriminant is conveyed in the corresponding -- formal parameter of the equality routine. The name of this formal -- parameter carries a one-character suffix which is removed here. -------------------------- -- Corresponding_Formal -- -------------------------- function Corresponding_Formal (C : Node_Id) return Entity_Id is Discr : constant Entity_Id := Entity (Name (Variant_Part (C))); Elm : Elmt_Id; begin Elm := First_Elmt (Discrs); while Present (Elm) loop if Chars (Discr) = External_Name (Node (Elm)) then return Node (Elm); end if; Next_Elmt (Elm); end loop; -- A formal of the proper name must be found raise Program_Error; end Corresponding_Formal; ------------------- -- External_Name -- ------------------- function External_Name (E : Entity_Id) return Name_Id is begin Get_Name_String (Chars (E)); Name_Len := Name_Len - 1; return Name_Find; end External_Name; -- Start of processing for Make_Eq_Case begin Append_To (Result, Make_Eq_If (E, Component_Items (CL))); if No (Variant_Part (CL)) then return Result; end if; Variant := First_Non_Pragma (Variants (Variant_Part (CL))); if No (Variant) then return Result; end if; Alt_List := New_List; while Present (Variant) loop Append_To (Alt_List, Make_Case_Statement_Alternative (Loc, Discrete_Choices => New_Copy_List (Discrete_Choices (Variant)), Statements => Make_Eq_Case (E, Component_List (Variant), Discrs))); Next_Non_Pragma (Variant); end loop; -- If we have an Unchecked_Union, use one of the parameters of the -- enclosing equality routine that captures the discriminant, to use -- as the expression in the generated case statement. if Is_Unchecked_Union (E) then Append_To (Result, Make_Case_Statement (Loc, Expression => New_Reference_To (Corresponding_Formal (CL), Loc), Alternatives => Alt_List)); else Append_To (Result, Make_Case_Statement (Loc, Expression => Make_Selected_Component (Loc, Prefix => Make_Identifier (Loc, Name_X), Selector_Name => New_Copy (Name (Variant_Part (CL)))), Alternatives => Alt_List)); end if; return Result; end Make_Eq_Case; ---------------- -- Make_Eq_If -- ---------------- -- Generates: -- if -- X.C1 /= Y.C1 -- or else -- X.C2 /= Y.C2 -- ... -- then -- return False; -- end if; -- or a null statement if the list L is empty function Make_Eq_If (E : Entity_Id; L : List_Id) return Node_Id is Loc : constant Source_Ptr := Sloc (E); C : Node_Id; Field_Name : Name_Id; Cond : Node_Id; begin if No (L) then return Make_Null_Statement (Loc); else Cond := Empty; C := First_Non_Pragma (L); while Present (C) loop Field_Name := Chars (Defining_Identifier (C)); -- The tags must not be compared: they are not part of the value. -- Ditto for parent interfaces because their equality operator is -- abstract. -- Note also that in the following, we use Make_Identifier for -- the component names. Use of New_Reference_To to identify the -- components would be incorrect because the wrong entities for -- discriminants could be picked up in the private type case. if Field_Name = Name_uParent and then Is_Interface (Etype (Defining_Identifier (C))) then null; elsif Field_Name /= Name_uTag then Evolve_Or_Else (Cond, Make_Op_Ne (Loc, Left_Opnd => Make_Selected_Component (Loc, Prefix => Make_Identifier (Loc, Name_X), Selector_Name => Make_Identifier (Loc, Field_Name)), Right_Opnd => Make_Selected_Component (Loc, Prefix => Make_Identifier (Loc, Name_Y), Selector_Name => Make_Identifier (Loc, Field_Name)))); end if; Next_Non_Pragma (C); end loop; if No (Cond) then return Make_Null_Statement (Loc); else return Make_Implicit_If_Statement (E, Condition => Cond, Then_Statements => New_List ( Make_Simple_Return_Statement (Loc, Expression => New_Occurrence_Of (Standard_False, Loc)))); end if; end if; end Make_Eq_If; -------------------- -- Make_Neq_Body -- -------------------- function Make_Neq_Body (Tag_Typ : Entity_Id) return Node_Id is function Is_Predefined_Neq_Renaming (Prim : Node_Id) return Boolean; -- Returns true if Prim is a renaming of an unresolved predefined -- inequality operation. -------------------------------- -- Is_Predefined_Neq_Renaming -- -------------------------------- function Is_Predefined_Neq_Renaming (Prim : Node_Id) return Boolean is begin return Chars (Prim) /= Name_Op_Ne and then Present (Alias (Prim)) and then Comes_From_Source (Prim) and then Is_Intrinsic_Subprogram (Alias (Prim)) and then Chars (Alias (Prim)) = Name_Op_Ne; end Is_Predefined_Neq_Renaming; -- Local variables Loc : constant Source_Ptr := Sloc (Parent (Tag_Typ)); Stmts : constant List_Id := New_List; Decl : Node_Id; Eq_Prim : Entity_Id; Left_Op : Entity_Id; Renaming_Prim : Entity_Id; Right_Op : Entity_Id; Target : Entity_Id; -- Start of processing for Make_Neq_Body begin -- For a call on a renaming of a dispatching subprogram that is -- overridden, if the overriding occurred before the renaming, then -- the body executed is that of the overriding declaration, even if the -- overriding declaration is not visible at the place of the renaming; -- otherwise, the inherited or predefined subprogram is called, see -- (RM 8.5.4(8)) -- Stage 1: Search for a renaming of the inequality primitive and also -- search for an overriding of the equality primitive located before the -- renaming declaration. declare Elmt : Elmt_Id; Prim : Node_Id; begin Eq_Prim := Empty; Renaming_Prim := Empty; Elmt := First_Elmt (Primitive_Operations (Tag_Typ)); while Present (Elmt) loop Prim := Node (Elmt); if Is_User_Defined_Equality (Prim) and then No (Alias (Prim)) then if No (Renaming_Prim) then pragma Assert (No (Eq_Prim)); Eq_Prim := Prim; end if; elsif Is_Predefined_Neq_Renaming (Prim) then Renaming_Prim := Prim; end if; Next_Elmt (Elmt); end loop; end; -- No further action needed if no renaming was found if No (Renaming_Prim) then return Empty; end if; -- Stage 2: Replace the renaming declaration by a subprogram declaration -- (required to add its body) Decl := Parent (Parent (Renaming_Prim)); Rewrite (Decl, Make_Subprogram_Declaration (Loc, Specification => Specification (Decl))); Set_Analyzed (Decl); -- Remove the decoration of intrinsic renaming subprogram Set_Is_Intrinsic_Subprogram (Renaming_Prim, False); Set_Convention (Renaming_Prim, Convention_Ada); Set_Alias (Renaming_Prim, Empty); Set_Has_Completion (Renaming_Prim, False); -- Stage 3: Build the corresponding body Left_Op := First_Formal (Renaming_Prim); Right_Op := Next_Formal (Left_Op); Decl := Predef_Spec_Or_Body (Loc, Tag_Typ => Tag_Typ, Name => Chars (Renaming_Prim), Profile => New_List ( Make_Parameter_Specification (Loc, Defining_Identifier => Make_Defining_Identifier (Loc, Chars (Left_Op)), Parameter_Type => New_Reference_To (Tag_Typ, Loc)), Make_Parameter_Specification (Loc, Defining_Identifier => Make_Defining_Identifier (Loc, Chars (Right_Op)), Parameter_Type => New_Reference_To (Tag_Typ, Loc))), Ret_Type => Standard_Boolean, For_Body => True); -- If the overriding of the equality primitive occurred before the -- renaming, then generate: -- function (X : Y : Typ) return Boolean is -- begin -- return not Oeq (X, Y); -- end; if Present (Eq_Prim) then Target := Eq_Prim; -- Otherwise build a nested subprogram which performs the predefined -- evaluation of the equality operator. That is, generate: -- function (X : Y : Typ) return Boolean is -- function Oeq (X : Y) return Boolean is -- begin -- <> -- end; -- begin -- return not Oeq (X, Y); -- end; else declare Local_Subp : Node_Id; begin Local_Subp := Make_Eq_Body (Tag_Typ, Name_Op_Eq); Set_Declarations (Decl, New_List (Local_Subp)); Target := Defining_Entity (Local_Subp); end; end if; Append_To (Stmts, Make_Simple_Return_Statement (Loc, Expression => Make_Op_Not (Loc, Make_Function_Call (Loc, Name => New_Reference_To (Target, Loc), Parameter_Associations => New_List ( Make_Identifier (Loc, Chars (Left_Op)), Make_Identifier (Loc, Chars (Right_Op))))))); Set_Handled_Statement_Sequence (Decl, Make_Handled_Sequence_Of_Statements (Loc, Stmts)); return Decl; end Make_Neq_Body; ------------------------------- -- Make_Null_Procedure_Specs -- ------------------------------- function Make_Null_Procedure_Specs (Tag_Typ : Entity_Id) return List_Id is Decl_List : constant List_Id := New_List; Loc : constant Source_Ptr := Sloc (Tag_Typ); Formal : Entity_Id; Formal_List : List_Id; New_Param_Spec : Node_Id; Parent_Subp : Entity_Id; Prim_Elmt : Elmt_Id; Subp : Entity_Id; begin Prim_Elmt := First_Elmt (Primitive_Operations (Tag_Typ)); while Present (Prim_Elmt) loop Subp := Node (Prim_Elmt); -- If a null procedure inherited from an interface has not been -- overridden, then we build a null procedure declaration to -- override the inherited procedure. Parent_Subp := Alias (Subp); if Present (Parent_Subp) and then Is_Null_Interface_Primitive (Parent_Subp) then Formal_List := No_List; Formal := First_Formal (Subp); if Present (Formal) then Formal_List := New_List; while Present (Formal) loop -- Copy the parameter spec including default expressions New_Param_Spec := New_Copy_Tree (Parent (Formal), New_Sloc => Loc); -- Generate a new defining identifier for the new formal. -- required because New_Copy_Tree does not duplicate -- semantic fields (except itypes). Set_Defining_Identifier (New_Param_Spec, Make_Defining_Identifier (Sloc (Formal), Chars => Chars (Formal))); -- For controlling arguments we must change their -- parameter type to reference the tagged type (instead -- of the interface type) if Is_Controlling_Formal (Formal) then if Nkind (Parameter_Type (Parent (Formal))) = N_Identifier then Set_Parameter_Type (New_Param_Spec, New_Occurrence_Of (Tag_Typ, Loc)); else pragma Assert (Nkind (Parameter_Type (Parent (Formal))) = N_Access_Definition); Set_Subtype_Mark (Parameter_Type (New_Param_Spec), New_Occurrence_Of (Tag_Typ, Loc)); end if; end if; Append (New_Param_Spec, Formal_List); Next_Formal (Formal); end loop; end if; Append_To (Decl_List, Make_Subprogram_Declaration (Loc, Make_Procedure_Specification (Loc, Defining_Unit_Name => Make_Defining_Identifier (Loc, Chars (Subp)), Parameter_Specifications => Formal_List, Null_Present => True))); end if; Next_Elmt (Prim_Elmt); end loop; return Decl_List; end Make_Null_Procedure_Specs; ------------------------------------- -- Make_Predefined_Primitive_Specs -- ------------------------------------- procedure Make_Predefined_Primitive_Specs (Tag_Typ : Entity_Id; Predef_List : out List_Id; Renamed_Eq : out Entity_Id) is function Is_Predefined_Eq_Renaming (Prim : Node_Id) return Boolean; -- Returns true if Prim is a renaming of an unresolved predefined -- equality operation. ------------------------------- -- Is_Predefined_Eq_Renaming -- ------------------------------- function Is_Predefined_Eq_Renaming (Prim : Node_Id) return Boolean is begin return Chars (Prim) /= Name_Op_Eq and then Present (Alias (Prim)) and then Comes_From_Source (Prim) and then Is_Intrinsic_Subprogram (Alias (Prim)) and then Chars (Alias (Prim)) = Name_Op_Eq; end Is_Predefined_Eq_Renaming; -- Local variables Loc : constant Source_Ptr := Sloc (Tag_Typ); Res : constant List_Id := New_List; Eq_Name : Name_Id := Name_Op_Eq; Eq_Needed : Boolean; Eq_Spec : Node_Id; Prim : Elmt_Id; Has_Predef_Eq_Renaming : Boolean := False; -- Set to True if Tag_Typ has a primitive that renames the predefined -- equality operator. Used to implement (RM 8-5-4(8)). -- Start of processing for Make_Predefined_Primitive_Specs begin Renamed_Eq := Empty; -- Spec of _Size Append_To (Res, Predef_Spec_Or_Body (Loc, Tag_Typ => Tag_Typ, Name => Name_uSize, Profile => New_List ( Make_Parameter_Specification (Loc, Defining_Identifier => Make_Defining_Identifier (Loc, Name_X), Parameter_Type => New_Reference_To (Tag_Typ, Loc))), Ret_Type => Standard_Long_Long_Integer)); -- Specs for dispatching stream attributes declare Stream_Op_TSS_Names : constant array (Integer range <>) of TSS_Name_Type := (TSS_Stream_Read, TSS_Stream_Write, TSS_Stream_Input, TSS_Stream_Output); begin for Op in Stream_Op_TSS_Names'Range loop if Stream_Operation_OK (Tag_Typ, Stream_Op_TSS_Names (Op)) then Append_To (Res, Predef_Stream_Attr_Spec (Loc, Tag_Typ, Stream_Op_TSS_Names (Op))); end if; end loop; end; -- Spec of "=" is expanded if the type is not limited and if a user -- defined "=" was not already declared for the non-full view of a -- private extension if not Is_Limited_Type (Tag_Typ) then Eq_Needed := True; Prim := First_Elmt (Primitive_Operations (Tag_Typ)); while Present (Prim) loop -- If a primitive is encountered that renames the predefined -- equality operator before reaching any explicit equality -- primitive, then we still need to create a predefined equality -- function, because calls to it can occur via the renaming. A -- new name is created for the equality to avoid conflicting with -- any user-defined equality. (Note that this doesn't account for -- renamings of equality nested within subpackages???) if Is_Predefined_Eq_Renaming (Node (Prim)) then Has_Predef_Eq_Renaming := True; Eq_Name := New_External_Name (Chars (Node (Prim)), 'E'); -- User-defined equality elsif Is_User_Defined_Equality (Node (Prim)) then if No (Alias (Node (Prim))) or else Nkind (Unit_Declaration_Node (Node (Prim))) = N_Subprogram_Renaming_Declaration then Eq_Needed := False; exit; -- If the parent is not an interface type and has an abstract -- equality function, the inherited equality is abstract as -- well, and no body can be created for it. elsif not Is_Interface (Etype (Tag_Typ)) and then Present (Alias (Node (Prim))) and then Is_Abstract_Subprogram (Alias (Node (Prim))) then Eq_Needed := False; exit; -- If the type has an equality function corresponding with -- a primitive defined in an interface type, the inherited -- equality is abstract as well, and no body can be created -- for it. elsif Present (Alias (Node (Prim))) and then Comes_From_Source (Ultimate_Alias (Node (Prim))) and then Is_Interface (Find_Dispatching_Type (Ultimate_Alias (Node (Prim)))) then Eq_Needed := False; exit; end if; end if; Next_Elmt (Prim); end loop; -- If a renaming of predefined equality was found but there was no -- user-defined equality (so Eq_Needed is still true), then set the -- name back to Name_Op_Eq. But in the case where a user-defined -- equality was located after such a renaming, then the predefined -- equality function is still needed, so Eq_Needed must be set back -- to True. if Eq_Name /= Name_Op_Eq then if Eq_Needed then Eq_Name := Name_Op_Eq; else Eq_Needed := True; end if; end if; if Eq_Needed then Eq_Spec := Predef_Spec_Or_Body (Loc, Tag_Typ => Tag_Typ, Name => Eq_Name, Profile => New_List ( Make_Parameter_Specification (Loc, Defining_Identifier => Make_Defining_Identifier (Loc, Name_X), Parameter_Type => New_Reference_To (Tag_Typ, Loc)), Make_Parameter_Specification (Loc, Defining_Identifier => Make_Defining_Identifier (Loc, Name_Y), Parameter_Type => New_Reference_To (Tag_Typ, Loc))), Ret_Type => Standard_Boolean); Append_To (Res, Eq_Spec); if Has_Predef_Eq_Renaming then Renamed_Eq := Defining_Unit_Name (Specification (Eq_Spec)); Prim := First_Elmt (Primitive_Operations (Tag_Typ)); while Present (Prim) loop -- Any renamings of equality that appeared before an -- overriding equality must be updated to refer to the -- entity for the predefined equality, otherwise calls via -- the renaming would get incorrectly resolved to call the -- user-defined equality function. if Is_Predefined_Eq_Renaming (Node (Prim)) then Set_Alias (Node (Prim), Renamed_Eq); -- Exit upon encountering a user-defined equality elsif Chars (Node (Prim)) = Name_Op_Eq and then No (Alias (Node (Prim))) then exit; end if; Next_Elmt (Prim); end loop; end if; end if; -- Spec for dispatching assignment Append_To (Res, Predef_Spec_Or_Body (Loc, Tag_Typ => Tag_Typ, Name => Name_uAssign, Profile => New_List ( Make_Parameter_Specification (Loc, Defining_Identifier => Make_Defining_Identifier (Loc, Name_X), Out_Present => True, Parameter_Type => New_Reference_To (Tag_Typ, Loc)), Make_Parameter_Specification (Loc, Defining_Identifier => Make_Defining_Identifier (Loc, Name_Y), Parameter_Type => New_Reference_To (Tag_Typ, Loc))))); end if; -- Ada 2005: Generate declarations for the following primitive -- operations for limited interfaces and synchronized types that -- implement a limited interface. -- Disp_Asynchronous_Select -- Disp_Conditional_Select -- Disp_Get_Prim_Op_Kind -- Disp_Get_Task_Id -- Disp_Requeue -- Disp_Timed_Select -- Disable the generation of these bodies if No_Dispatching_Calls, -- Ravenscar or ZFP is active. if Ada_Version >= Ada_2005 and then not Restriction_Active (No_Dispatching_Calls) and then not Restriction_Active (No_Select_Statements) and then RTE_Available (RE_Select_Specific_Data) then -- These primitives are defined abstract in interface types if Is_Interface (Tag_Typ) and then Is_Limited_Record (Tag_Typ) then Append_To (Res, Make_Abstract_Subprogram_Declaration (Loc, Specification => Make_Disp_Asynchronous_Select_Spec (Tag_Typ))); Append_To (Res, Make_Abstract_Subprogram_Declaration (Loc, Specification => Make_Disp_Conditional_Select_Spec (Tag_Typ))); Append_To (Res, Make_Abstract_Subprogram_Declaration (Loc, Specification => Make_Disp_Get_Prim_Op_Kind_Spec (Tag_Typ))); Append_To (Res, Make_Abstract_Subprogram_Declaration (Loc, Specification => Make_Disp_Get_Task_Id_Spec (Tag_Typ))); Append_To (Res, Make_Abstract_Subprogram_Declaration (Loc, Specification => Make_Disp_Requeue_Spec (Tag_Typ))); Append_To (Res, Make_Abstract_Subprogram_Declaration (Loc, Specification => Make_Disp_Timed_Select_Spec (Tag_Typ))); -- If the ancestor is an interface type we declare non-abstract -- primitives to override the abstract primitives of the interface -- type. -- In VM targets we define these primitives in all root tagged types -- that are not interface types. Done because in VM targets we don't -- have secondary dispatch tables and any derivation of Tag_Typ may -- cover limited interfaces (which always have these primitives since -- they may be ancestors of synchronized interface types). elsif (not Is_Interface (Tag_Typ) and then Is_Interface (Etype (Tag_Typ)) and then Is_Limited_Record (Etype (Tag_Typ))) or else (Is_Concurrent_Record_Type (Tag_Typ) and then Has_Interfaces (Tag_Typ)) or else (not Tagged_Type_Expansion and then not Is_Interface (Tag_Typ) and then Tag_Typ = Root_Type (Tag_Typ)) then Append_To (Res, Make_Subprogram_Declaration (Loc, Specification => Make_Disp_Asynchronous_Select_Spec (Tag_Typ))); Append_To (Res, Make_Subprogram_Declaration (Loc, Specification => Make_Disp_Conditional_Select_Spec (Tag_Typ))); Append_To (Res, Make_Subprogram_Declaration (Loc, Specification => Make_Disp_Get_Prim_Op_Kind_Spec (Tag_Typ))); Append_To (Res, Make_Subprogram_Declaration (Loc, Specification => Make_Disp_Get_Task_Id_Spec (Tag_Typ))); Append_To (Res, Make_Subprogram_Declaration (Loc, Specification => Make_Disp_Requeue_Spec (Tag_Typ))); Append_To (Res, Make_Subprogram_Declaration (Loc, Specification => Make_Disp_Timed_Select_Spec (Tag_Typ))); end if; end if; -- All tagged types receive their own Deep_Adjust and Deep_Finalize -- regardless of whether they are controlled or may contain controlled -- components. -- Do not generate the routines if finalization is disabled if Restriction_Active (No_Finalization) then null; -- Finalization is not available for CIL value types elsif Is_Value_Type (Tag_Typ) then null; else if not Is_Limited_Type (Tag_Typ) then Append_To (Res, Predef_Deep_Spec (Loc, Tag_Typ, TSS_Deep_Adjust)); end if; Append_To (Res, Predef_Deep_Spec (Loc, Tag_Typ, TSS_Deep_Finalize)); end if; Predef_List := Res; end Make_Predefined_Primitive_Specs; --------------------------------- -- Needs_Simple_Initialization -- --------------------------------- function Needs_Simple_Initialization (T : Entity_Id; Consider_IS : Boolean := True) return Boolean is Consider_IS_NS : constant Boolean := Normalize_Scalars or (Initialize_Scalars and Consider_IS); begin -- Never need initialization if it is suppressed if Initialization_Suppressed (T) then return False; end if; -- Check for private type, in which case test applies to the underlying -- type of the private type. if Is_Private_Type (T) then declare RT : constant Entity_Id := Underlying_Type (T); begin if Present (RT) then return Needs_Simple_Initialization (RT); else return False; end if; end; -- Scalar type with Default_Value aspect requires initialization elsif Is_Scalar_Type (T) and then Has_Default_Aspect (T) then return True; -- Cases needing simple initialization are access types, and, if pragma -- Normalize_Scalars or Initialize_Scalars is in effect, then all scalar -- types. elsif Is_Access_Type (T) or else (Consider_IS_NS and then (Is_Scalar_Type (T))) then return True; -- If Initialize/Normalize_Scalars is in effect, string objects also -- need initialization, unless they are created in the course of -- expanding an aggregate (since in the latter case they will be -- filled with appropriate initializing values before they are used). elsif Consider_IS_NS and then (Root_Type (T) = Standard_String or else Root_Type (T) = Standard_Wide_String or else Root_Type (T) = Standard_Wide_Wide_String) and then (not Is_Itype (T) or else Nkind (Associated_Node_For_Itype (T)) /= N_Aggregate) then return True; else return False; end if; end Needs_Simple_Initialization; ---------------------- -- Predef_Deep_Spec -- ---------------------- function Predef_Deep_Spec (Loc : Source_Ptr; Tag_Typ : Entity_Id; Name : TSS_Name_Type; For_Body : Boolean := False) return Node_Id is Formals : List_Id; begin -- V : in out Tag_Typ Formals := New_List ( Make_Parameter_Specification (Loc, Defining_Identifier => Make_Defining_Identifier (Loc, Name_V), In_Present => True, Out_Present => True, Parameter_Type => New_Reference_To (Tag_Typ, Loc))); -- F : Boolean := True if Name = TSS_Deep_Adjust or else Name = TSS_Deep_Finalize then Append_To (Formals, Make_Parameter_Specification (Loc, Defining_Identifier => Make_Defining_Identifier (Loc, Name_F), Parameter_Type => New_Reference_To (Standard_Boolean, Loc), Expression => New_Reference_To (Standard_True, Loc))); end if; return Predef_Spec_Or_Body (Loc, Name => Make_TSS_Name (Tag_Typ, Name), Tag_Typ => Tag_Typ, Profile => Formals, For_Body => For_Body); exception when RE_Not_Available => return Empty; end Predef_Deep_Spec; ------------------------- -- Predef_Spec_Or_Body -- ------------------------- function Predef_Spec_Or_Body (Loc : Source_Ptr; Tag_Typ : Entity_Id; Name : Name_Id; Profile : List_Id; Ret_Type : Entity_Id := Empty; For_Body : Boolean := False) return Node_Id is Id : constant Entity_Id := Make_Defining_Identifier (Loc, Name); Spec : Node_Id; begin Set_Is_Public (Id, Is_Public (Tag_Typ)); -- The internal flag is set to mark these declarations because they have -- specific properties. First, they are primitives even if they are not -- defined in the type scope (the freezing point is not necessarily in -- the same scope). Second, the predefined equality can be overridden by -- a user-defined equality, no body will be generated in this case. Set_Is_Internal (Id); if not Debug_Generated_Code then Set_Debug_Info_Off (Id); end if; if No (Ret_Type) then Spec := Make_Procedure_Specification (Loc, Defining_Unit_Name => Id, Parameter_Specifications => Profile); else Spec := Make_Function_Specification (Loc, Defining_Unit_Name => Id, Parameter_Specifications => Profile, Result_Definition => New_Reference_To (Ret_Type, Loc)); end if; if Is_Interface (Tag_Typ) then return Make_Abstract_Subprogram_Declaration (Loc, Spec); -- If body case, return empty subprogram body. Note that this is ill- -- formed, because there is not even a null statement, and certainly not -- a return in the function case. The caller is expected to do surgery -- on the body to add the appropriate stuff. elsif For_Body then return Make_Subprogram_Body (Loc, Spec, Empty_List, Empty); -- For the case of an Input attribute predefined for an abstract type, -- generate an abstract specification. This will never be called, but we -- need the slot allocated in the dispatching table so that attributes -- typ'Class'Input and typ'Class'Output will work properly. elsif Is_TSS (Name, TSS_Stream_Input) and then Is_Abstract_Type (Tag_Typ) then return Make_Abstract_Subprogram_Declaration (Loc, Spec); -- Normal spec case, where we return a subprogram declaration else return Make_Subprogram_Declaration (Loc, Spec); end if; end Predef_Spec_Or_Body; ----------------------------- -- Predef_Stream_Attr_Spec -- ----------------------------- function Predef_Stream_Attr_Spec (Loc : Source_Ptr; Tag_Typ : Entity_Id; Name : TSS_Name_Type; For_Body : Boolean := False) return Node_Id is Ret_Type : Entity_Id; begin if Name = TSS_Stream_Input then Ret_Type := Tag_Typ; else Ret_Type := Empty; end if; return Predef_Spec_Or_Body (Loc, Name => Make_TSS_Name (Tag_Typ, Name), Tag_Typ => Tag_Typ, Profile => Build_Stream_Attr_Profile (Loc, Tag_Typ, Name), Ret_Type => Ret_Type, For_Body => For_Body); end Predef_Stream_Attr_Spec; --------------------------------- -- Predefined_Primitive_Bodies -- --------------------------------- function Predefined_Primitive_Bodies (Tag_Typ : Entity_Id; Renamed_Eq : Entity_Id) return List_Id is Loc : constant Source_Ptr := Sloc (Tag_Typ); Res : constant List_Id := New_List; Decl : Node_Id; Prim : Elmt_Id; Eq_Needed : Boolean; Eq_Name : Name_Id; Ent : Entity_Id; pragma Warnings (Off, Ent); begin pragma Assert (not Is_Interface (Tag_Typ)); -- See if we have a predefined "=" operator if Present (Renamed_Eq) then Eq_Needed := True; Eq_Name := Chars (Renamed_Eq); -- If the parent is an interface type then it has defined all the -- predefined primitives abstract and we need to check if the type -- has some user defined "=" function to avoid generating it. elsif Is_Interface (Etype (Tag_Typ)) then Eq_Needed := True; Eq_Name := Name_Op_Eq; Prim := First_Elmt (Primitive_Operations (Tag_Typ)); while Present (Prim) loop if Chars (Node (Prim)) = Name_Op_Eq and then not Is_Internal (Node (Prim)) then Eq_Needed := False; Eq_Name := No_Name; exit; end if; Next_Elmt (Prim); end loop; else Eq_Needed := False; Eq_Name := No_Name; Prim := First_Elmt (Primitive_Operations (Tag_Typ)); while Present (Prim) loop if Chars (Node (Prim)) = Name_Op_Eq and then Is_Internal (Node (Prim)) then Eq_Needed := True; Eq_Name := Name_Op_Eq; exit; end if; Next_Elmt (Prim); end loop; end if; -- Body of _Size Decl := Predef_Spec_Or_Body (Loc, Tag_Typ => Tag_Typ, Name => Name_uSize, Profile => New_List ( Make_Parameter_Specification (Loc, Defining_Identifier => Make_Defining_Identifier (Loc, Name_X), Parameter_Type => New_Reference_To (Tag_Typ, Loc))), Ret_Type => Standard_Long_Long_Integer, For_Body => True); Set_Handled_Statement_Sequence (Decl, Make_Handled_Sequence_Of_Statements (Loc, New_List ( Make_Simple_Return_Statement (Loc, Expression => Make_Attribute_Reference (Loc, Prefix => Make_Identifier (Loc, Name_X), Attribute_Name => Name_Size))))); Append_To (Res, Decl); -- Bodies for Dispatching stream IO routines. We need these only for -- non-limited types (in the limited case there is no dispatching). -- We also skip them if dispatching or finalization are not available. if Stream_Operation_OK (Tag_Typ, TSS_Stream_Read) and then No (TSS (Tag_Typ, TSS_Stream_Read)) then Build_Record_Read_Procedure (Loc, Tag_Typ, Decl, Ent); Append_To (Res, Decl); end if; if Stream_Operation_OK (Tag_Typ, TSS_Stream_Write) and then No (TSS (Tag_Typ, TSS_Stream_Write)) then Build_Record_Write_Procedure (Loc, Tag_Typ, Decl, Ent); Append_To (Res, Decl); end if; -- Skip body of _Input for the abstract case, since the corresponding -- spec is abstract (see Predef_Spec_Or_Body). if not Is_Abstract_Type (Tag_Typ) and then Stream_Operation_OK (Tag_Typ, TSS_Stream_Input) and then No (TSS (Tag_Typ, TSS_Stream_Input)) then Build_Record_Or_Elementary_Input_Function (Loc, Tag_Typ, Decl, Ent); Append_To (Res, Decl); end if; if Stream_Operation_OK (Tag_Typ, TSS_Stream_Output) and then No (TSS (Tag_Typ, TSS_Stream_Output)) then Build_Record_Or_Elementary_Output_Procedure (Loc, Tag_Typ, Decl, Ent); Append_To (Res, Decl); end if; -- Ada 2005: Generate bodies for the following primitive operations for -- limited interfaces and synchronized types that implement a limited -- interface. -- disp_asynchronous_select -- disp_conditional_select -- disp_get_prim_op_kind -- disp_get_task_id -- disp_timed_select -- The interface versions will have null bodies -- Disable the generation of these bodies if No_Dispatching_Calls, -- Ravenscar or ZFP is active. -- In VM targets we define these primitives in all root tagged types -- that are not interface types. Done because in VM targets we don't -- have secondary dispatch tables and any derivation of Tag_Typ may -- cover limited interfaces (which always have these primitives since -- they may be ancestors of synchronized interface types). if Ada_Version >= Ada_2005 and then not Is_Interface (Tag_Typ) and then ((Is_Interface (Etype (Tag_Typ)) and then Is_Limited_Record (Etype (Tag_Typ))) or else (Is_Concurrent_Record_Type (Tag_Typ) and then Has_Interfaces (Tag_Typ)) or else (not Tagged_Type_Expansion and then Tag_Typ = Root_Type (Tag_Typ))) and then not Restriction_Active (No_Dispatching_Calls) and then not Restriction_Active (No_Select_Statements) and then RTE_Available (RE_Select_Specific_Data) then Append_To (Res, Make_Disp_Asynchronous_Select_Body (Tag_Typ)); Append_To (Res, Make_Disp_Conditional_Select_Body (Tag_Typ)); Append_To (Res, Make_Disp_Get_Prim_Op_Kind_Body (Tag_Typ)); Append_To (Res, Make_Disp_Get_Task_Id_Body (Tag_Typ)); Append_To (Res, Make_Disp_Requeue_Body (Tag_Typ)); Append_To (Res, Make_Disp_Timed_Select_Body (Tag_Typ)); end if; if not Is_Limited_Type (Tag_Typ) and then not Is_Interface (Tag_Typ) then -- Body for equality if Eq_Needed then Decl := Make_Eq_Body (Tag_Typ, Eq_Name); Append_To (Res, Decl); end if; -- Body for inequality (if required!) Decl := Make_Neq_Body (Tag_Typ); if Present (Decl) then Append_To (Res, Decl); end if; -- Body for dispatching assignment Decl := Predef_Spec_Or_Body (Loc, Tag_Typ => Tag_Typ, Name => Name_uAssign, Profile => New_List ( Make_Parameter_Specification (Loc, Defining_Identifier => Make_Defining_Identifier (Loc, Name_X), Out_Present => True, Parameter_Type => New_Reference_To (Tag_Typ, Loc)), Make_Parameter_Specification (Loc, Defining_Identifier => Make_Defining_Identifier (Loc, Name_Y), Parameter_Type => New_Reference_To (Tag_Typ, Loc))), For_Body => True); Set_Handled_Statement_Sequence (Decl, Make_Handled_Sequence_Of_Statements (Loc, New_List ( Make_Assignment_Statement (Loc, Name => Make_Identifier (Loc, Name_X), Expression => Make_Identifier (Loc, Name_Y))))); Append_To (Res, Decl); end if; -- Generate empty bodies of routines Deep_Adjust and Deep_Finalize for -- tagged types which do not contain controlled components. -- Do not generate the routines if finalization is disabled if Restriction_Active (No_Finalization) then null; elsif not Has_Controlled_Component (Tag_Typ) then if not Is_Limited_Type (Tag_Typ) then Decl := Predef_Deep_Spec (Loc, Tag_Typ, TSS_Deep_Adjust, True); if Is_Controlled (Tag_Typ) then Set_Handled_Statement_Sequence (Decl, Make_Handled_Sequence_Of_Statements (Loc, Statements => New_List ( Make_Adjust_Call ( Obj_Ref => Make_Identifier (Loc, Name_V), Typ => Tag_Typ)))); else Set_Handled_Statement_Sequence (Decl, Make_Handled_Sequence_Of_Statements (Loc, Statements => New_List ( Make_Null_Statement (Loc)))); end if; Append_To (Res, Decl); end if; Decl := Predef_Deep_Spec (Loc, Tag_Typ, TSS_Deep_Finalize, True); if Is_Controlled (Tag_Typ) then Set_Handled_Statement_Sequence (Decl, Make_Handled_Sequence_Of_Statements (Loc, Statements => New_List ( Make_Final_Call (Obj_Ref => Make_Identifier (Loc, Name_V), Typ => Tag_Typ)))); else Set_Handled_Statement_Sequence (Decl, Make_Handled_Sequence_Of_Statements (Loc, Statements => New_List (Make_Null_Statement (Loc)))); end if; Append_To (Res, Decl); end if; return Res; end Predefined_Primitive_Bodies; --------------------------------- -- Predefined_Primitive_Freeze -- --------------------------------- function Predefined_Primitive_Freeze (Tag_Typ : Entity_Id) return List_Id is Res : constant List_Id := New_List; Prim : Elmt_Id; Frnodes : List_Id; begin Prim := First_Elmt (Primitive_Operations (Tag_Typ)); while Present (Prim) loop if Is_Predefined_Dispatching_Operation (Node (Prim)) then Frnodes := Freeze_Entity (Node (Prim), Tag_Typ); if Present (Frnodes) then Append_List_To (Res, Frnodes); end if; end if; Next_Elmt (Prim); end loop; return Res; end Predefined_Primitive_Freeze; ------------------------- -- Stream_Operation_OK -- ------------------------- function Stream_Operation_OK (Typ : Entity_Id; Operation : TSS_Name_Type) return Boolean is Has_Predefined_Or_Specified_Stream_Attribute : Boolean := False; begin -- Special case of a limited type extension: a default implementation -- of the stream attributes Read or Write exists if that attribute -- has been specified or is available for an ancestor type; a default -- implementation of the attribute Output (resp. Input) exists if the -- attribute has been specified or Write (resp. Read) is available for -- an ancestor type. The last condition only applies under Ada 2005. if Is_Limited_Type (Typ) and then Is_Tagged_Type (Typ) then if Operation = TSS_Stream_Read then Has_Predefined_Or_Specified_Stream_Attribute := Has_Specified_Stream_Read (Typ); elsif Operation = TSS_Stream_Write then Has_Predefined_Or_Specified_Stream_Attribute := Has_Specified_Stream_Write (Typ); elsif Operation = TSS_Stream_Input then Has_Predefined_Or_Specified_Stream_Attribute := Has_Specified_Stream_Input (Typ) or else (Ada_Version >= Ada_2005 and then Stream_Operation_OK (Typ, TSS_Stream_Read)); elsif Operation = TSS_Stream_Output then Has_Predefined_Or_Specified_Stream_Attribute := Has_Specified_Stream_Output (Typ) or else (Ada_Version >= Ada_2005 and then Stream_Operation_OK (Typ, TSS_Stream_Write)); end if; -- Case of inherited TSS_Stream_Read or TSS_Stream_Write if not Has_Predefined_Or_Specified_Stream_Attribute and then Is_Derived_Type (Typ) and then (Operation = TSS_Stream_Read or else Operation = TSS_Stream_Write) then Has_Predefined_Or_Specified_Stream_Attribute := Present (Find_Inherited_TSS (Base_Type (Etype (Typ)), Operation)); end if; end if; -- If the type is not limited, or else is limited but the attribute is -- explicitly specified or is predefined for the type, then return True, -- unless other conditions prevail, such as restrictions prohibiting -- streams or dispatching operations. We also return True for limited -- interfaces, because they may be extended by nonlimited types and -- permit inheritance in this case (addresses cases where an abstract -- extension doesn't get 'Input declared, as per comments below, but -- 'Class'Input must still be allowed). Note that attempts to apply -- stream attributes to a limited interface or its class-wide type -- (or limited extensions thereof) will still get properly rejected -- by Check_Stream_Attribute. -- We exclude the Input operation from being a predefined subprogram in -- the case where the associated type is an abstract extension, because -- the attribute is not callable in that case, per 13.13.2(49/2). Also, -- we don't want an abstract version created because types derived from -- the abstract type may not even have Input available (for example if -- derived from a private view of the abstract type that doesn't have -- a visible Input), but a VM such as .NET or the Java VM can treat the -- operation as inherited anyway, and we don't want an abstract function -- to be (implicitly) inherited in that case because it can lead to a VM -- exception. -- Do not generate stream routines for type Finalization_Master because -- a master may never appear in types and therefore cannot be read or -- written. return (not Is_Limited_Type (Typ) or else Is_Interface (Typ) or else Has_Predefined_Or_Specified_Stream_Attribute) and then (Operation /= TSS_Stream_Input or else not Is_Abstract_Type (Typ) or else not Is_Derived_Type (Typ)) and then not Has_Unknown_Discriminants (Typ) and then not (Is_Interface (Typ) and then (Is_Task_Interface (Typ) or else Is_Protected_Interface (Typ) or else Is_Synchronized_Interface (Typ))) and then not Restriction_Active (No_Streams) and then not Restriction_Active (No_Dispatch) and then not No_Run_Time_Mode and then RTE_Available (RE_Tag) and then No (Type_Without_Stream_Operation (Typ)) and then RTE_Available (RE_Root_Stream_Type) and then not Is_RTE (Typ, RE_Finalization_Master); end Stream_Operation_OK; end Exp_Ch3;