------------------------------------------------------------------------------ -- -- -- GNAT COMPILER COMPONENTS -- -- -- -- S E M _ C H 1 2 -- -- -- -- B o d y -- -- -- -- $Revision: 1.776 $ -- -- -- Copyright (C) 1992-2001, Free Software Foundation, Inc. -- -- -- -- GNAT is free software; you can redistribute it and/or modify it under -- -- terms of the GNU General Public License as published by the Free Soft- -- -- ware Foundation; either version 2, or (at your option) any later ver- -- -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- -- for more details. You should have received a copy of the GNU General -- -- Public License distributed with GNAT; see file COPYING. If not, write -- -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, -- -- MA 02111-1307, USA. -- -- -- -- GNAT was originally developed by the GNAT team at New York University. -- -- It is now maintained by Ada Core Technologies Inc (http://www.gnat.com). -- -- -- ------------------------------------------------------------------------------ with Atree; use Atree; with Einfo; use Einfo; with Elists; use Elists; with Errout; use Errout; with Expander; use Expander; with Fname; use Fname; with Fname.UF; use Fname.UF; with Freeze; use Freeze; with Hostparm; with Inline; use Inline; with Lib; use Lib; with Lib.Load; use Lib.Load; with Lib.Xref; use Lib.Xref; with Nlists; use Nlists; with Nmake; use Nmake; with Opt; use Opt; with Restrict; use Restrict; with Rtsfind; use Rtsfind; with Sem; use Sem; with Sem_Cat; use Sem_Cat; with Sem_Ch3; use Sem_Ch3; with Sem_Ch6; use Sem_Ch6; with Sem_Ch7; use Sem_Ch7; with Sem_Ch8; use Sem_Ch8; with Sem_Ch10; use Sem_Ch10; with Sem_Ch13; use Sem_Ch13; with Sem_Elab; use Sem_Elab; with Sem_Elim; use Sem_Elim; with Sem_Eval; use Sem_Eval; with Sem_Res; use Sem_Res; with Sem_Type; use Sem_Type; with Sem_Util; use Sem_Util; with Stand; use Stand; with Sinfo; use Sinfo; with Sinfo.CN; use Sinfo.CN; with Sinput; use Sinput; with Sinput.L; use Sinput.L; with Snames; use Snames; with Stringt; use Stringt; with Uname; use Uname; with Table; with Tbuild; use Tbuild; with Uintp; use Uintp; with Urealp; use Urealp; with GNAT.HTable; package body Sem_Ch12 is use Atree.Unchecked_Access; -- This package performs untyped traversals of the tree, therefore it -- needs direct access to the fields of a node. ---------------------------------------------------------- -- Implementation of Generic Analysis and Instantiation -- ----------------------------------------------------------- -- GNAT implements generics by macro expansion. No attempt is made to -- share generic instantiations (for now). Analysis of a generic definition -- does not perform any expansion action, but the expander must be called -- on the tree for each instantiation, because the expansion may of course -- depend on the generic actuals. All of this is best achieved as follows: -- -- a) Semantic analysis of a generic unit is performed on a copy of the -- tree for the generic unit. All tree modifications that follow analysis -- do not affect the original tree. Links are kept between the original -- tree and the copy, in order to recognize non-local references within -- the generic, and propagate them to each instance (recall that name -- resolution is done on the generic declaration: generics are not really -- macros!). This is summarized in the following diagram: -- -- .-----------. .----------. -- | semantic |<--------------| generic | -- | copy | | unit | -- | |==============>| | -- |___________| global |__________| -- references | | | -- | | | -- .-----|--|. -- | .-----|---. -- | | .----------. -- | | | generic | -- |__| | | -- |__| instance | -- |__________| -- -- b) Each instantiation copies the original tree, and inserts into it a -- series of declarations that describe the mapping between generic formals -- and actuals. For example, a generic In OUT parameter is an object -- renaming of the corresponing actual, etc. Generic IN parameters are -- constant declarations. -- -- c) In order to give the right visibility for these renamings, we use -- a different scheme for package and subprogram instantiations. For -- packages, the list of renamings is inserted into the package -- specification, before the visible declarations of the package. The -- renamings are analyzed before any of the text of the instance, and are -- thus visible at the right place. Furthermore, outside of the instance, -- the generic parameters are visible and denote their corresponding -- actuals. -- For subprograms, we create a container package to hold the renamings -- and the subprogram instance itself. Analysis of the package makes the -- renaming declarations visible to the subprogram. After analyzing the -- package, the defining entity for the subprogram is touched-up so that -- it appears declared in the current scope, and not inside the container -- package. -- If the instantiation is a compilation unit, the container package is -- given the same name as the subprogram instance. This ensures that -- the elaboration procedure called by the binder, using the compilation -- unit name, calls in fact the elaboration procedure for the package. -- Not surprisingly, private types complicate this approach. By saving in -- the original generic object the non-local references, we guarantee that -- the proper entities are referenced at the point of instantiation. -- However, for private types, this by itself does not insure that the -- proper VIEW of the entity is used (the full type may be visible at the -- point of generic definition, but not at instantiation, or vice-versa). -- In order to reference the proper view, we special-case any reference -- to private types in the generic object, by saving both views, one in -- the generic and one in the semantic copy. At time of instantiation, we -- check whether the two views are consistent, and exchange declarations if -- necessary, in order to restore the correct visibility. Similarly, if -- the instance view is private when the generic view was not, we perform -- the exchange. After completing the instantiation, we restore the -- current visibility. The flag Has_Private_View marks identifiers in the -- the generic unit that require checking. -- Visibility within nested generic units requires special handling. -- Consider the following scheme: -- -- type Global is ... -- outside of generic unit. -- generic ... -- package Outer is -- ... -- type Semi_Global is ... -- global to inner. -- -- generic ... -- 1 -- procedure inner (X1 : Global; X2 : Semi_Global); -- -- procedure in2 is new inner (...); -- 4 -- end Outer; -- package New_Outer is new Outer (...); -- 2 -- procedure New_Inner is new New_Outer.Inner (...); -- 3 -- The semantic analysis of Outer captures all occurrences of Global. -- The semantic analysis of Inner (at 1) captures both occurrences of -- Global and Semi_Global. -- At point 2 (instantiation of Outer), we also produce a generic copy -- of Inner, even though Inner is, at that point, not being instantiated. -- (This is just part of the semantic analysis of New_Outer). -- Critically, references to Global within Inner must be preserved, while -- references to Semi_Global should not preserved, because they must now -- resolve to an entity within New_Outer. To distinguish between these, we -- use a global variable, Current_Instantiated_Parent, which is set when -- performing a generic copy during instantiation (at 2). This variable is -- used when performing a generic copy that is not an instantiation, but -- that is nested within one, as the occurrence of 1 within 2. The analysis -- of a nested generic only preserves references that are global to the -- enclosing Current_Instantiated_Parent. We use the Scope_Depth value to -- determine whether a reference is external to the given parent. -- The instantiation at point 3 requires no special treatment. The method -- works as well for further nestings of generic units, but of course the -- variable Current_Instantiated_Parent must be stacked because nested -- instantiations can occur, e.g. the occurrence of 4 within 2. -- The instantiation of package and subprogram bodies is handled in a -- similar manner, except that it is delayed until after semantic -- analysis is complete. In this fashion complex cross-dependencies -- between several package declarations and bodies containing generics -- can be compiled which otherwise would diagnose spurious circularities. -- For example, it is possible to compile two packages A and B that -- have the following structure: -- package A is package B is -- generic ... generic ... -- package G_A is package G_B is -- with B; with A; -- package body A is package body B is -- package N_B is new G_B (..) package N_A is new G_A (..) -- The table Pending_Instantiations in package Inline is used to keep -- track of body instantiations that are delayed in this manner. Inline -- handles the actual calls to do the body instantiations. This activity -- is part of Inline, since the processing occurs at the same point, and -- for essentially the same reason, as the handling of inlined routines. ---------------------------------------------- -- Detection of Instantiation Circularities -- ---------------------------------------------- -- If we have a chain of instantiations that is circular, this is a -- static error which must be detected at compile time. The detection -- of these circularities is carried out at the point that we insert -- a generic instance spec or body. If there is a circularity, then -- the analysis of the offending spec or body will eventually result -- in trying to load the same unit again, and we detect this problem -- as we analyze the package instantiation for the second time. -- At least in some cases after we have detected the circularity, we -- get into trouble if we try to keep going. The following flag is -- set if a circularity is detected, and used to abandon compilation -- after the messages have been posted. Circularity_Detected : Boolean := False; -- This should really be reset on encountering a new main unit, but in -- practice we are not using multiple main units so it is not critical. ----------------------- -- Local subprograms -- ----------------------- procedure Abandon_Instantiation (N : Node_Id); pragma No_Return (Abandon_Instantiation); -- Posts an error message "instantiation abandoned" at the indicated -- node and then raises the exception Instantiation_Error to do it. procedure Analyze_Formal_Array_Type (T : in out Entity_Id; Def : Node_Id); -- A formal array type is treated like an array type declaration, and -- invokes Array_Type_Declaration (sem_ch3) whose first parameter is -- in-out, because in the case of an anonymous type the entity is -- actually created in the procedure. -- The following procedures treat other kinds of formal parameters. procedure Analyze_Formal_Derived_Type (N : Node_Id; T : Entity_Id; Def : Node_Id); -- All the following need comments??? procedure Analyze_Formal_Decimal_Fixed_Point_Type (T : Entity_Id; Def : Node_Id); procedure Analyze_Formal_Discrete_Type (T : Entity_Id; Def : Node_Id); procedure Analyze_Formal_Floating_Type (T : Entity_Id; Def : Node_Id); procedure Analyze_Formal_Signed_Integer_Type (T : Entity_Id; Def : Node_Id); procedure Analyze_Formal_Modular_Type (T : Entity_Id; Def : Node_Id); procedure Analyze_Formal_Ordinary_Fixed_Point_Type (T : Entity_Id; Def : Node_Id); procedure Analyze_Formal_Private_Type (N : Node_Id; T : Entity_Id; Def : Node_Id); -- This needs comments??? procedure Analyze_Generic_Formal_Part (N : Node_Id); procedure Analyze_Generic_Access_Type (T : Entity_Id; Def : Node_Id); -- This needs comments ??? function Analyze_Associations (I_Node : Node_Id; Formals : List_Id; F_Copy : List_Id) return List_Id; -- At instantiation time, build the list of associations between formals -- and actuals. Each association becomes a renaming declaration for the -- formal entity. F_Copy is the analyzed list of formals in the generic -- copy. It is used to apply legality checks to the actuals. I_Node is the -- instantiation node itself. procedure Analyze_Subprogram_Instantiation (N : Node_Id; K : Entity_Kind); procedure Build_Instance_Compilation_Unit_Nodes (N : Node_Id; Act_Body : Node_Id; Act_Decl : Node_Id); -- This procedure is used in the case where the generic instance of a -- subprogram body or package body is a library unit. In this case, the -- original library unit node for the generic instantiation must be -- replaced by the resulting generic body, and a link made to a new -- compilation unit node for the generic declaration. The argument N is -- the original generic instantiation. Act_Body and Act_Decl are the body -- and declaration of the instance (either package body and declaration -- nodes or subprogram body and declaration nodes depending on the case). -- On return, the node N has been rewritten with the actual body. procedure Check_Formal_Packages (P_Id : Entity_Id); -- Apply the following to all formal packages in generic associations. procedure Check_Formal_Package_Instance (Formal_Pack : Entity_Id; Actual_Pack : Entity_Id); -- Verify that the actuals of the actual instance match the actuals of -- the template for a formal package that is not declared with a box. procedure Check_Forward_Instantiation (N : Node_Id; Decl : Node_Id); -- If the generic is a local entity and the corresponding body has not -- been seen yet, flag enclosing packages to indicate that it will be -- elaborated after the generic body. Subprograms declared in the same -- package cannot be inlined by the front-end because front-end inlining -- requires a strict linear order of elaboration. procedure Check_Hidden_Child_Unit (N : Node_Id; Gen_Unit : Entity_Id; Act_Decl_Id : Entity_Id); -- If the generic unit is an implicit child instance within a parent -- instance, we need to make an explicit test that it is not hidden by -- a child instance of the same name and parent. procedure Check_Private_View (N : Node_Id); -- Check whether the type of a generic entity has a different view between -- the point of generic analysis and the point of instantiation. If the -- view has changed, then at the point of instantiation we restore the -- correct view to perform semantic analysis of the instance, and reset -- the current view after instantiation. The processing is driven by the -- current private status of the type of the node, and Has_Private_View, -- a flag that is set at the point of generic compilation. If view and -- flag are inconsistent then the type is updated appropriately. procedure Check_Generic_Actuals (Instance : Entity_Id; Is_Formal_Box : Boolean); -- Similar to previous one. Check the actuals in the instantiation, -- whose views can change between the point of instantiation and the point -- of instantiation of the body. In addition, mark the generic renamings -- as generic actuals, so that they are not compatible with other actuals. -- Recurse on an actual that is a formal package whose declaration has -- a box. function Contains_Instance_Of (Inner : Entity_Id; Outer : Entity_Id; N : Node_Id) return Boolean; -- Inner is instantiated within the generic Outer. Check whether Inner -- directly or indirectly contains an instance of Outer or of one of its -- parents, in the case of a subunit. Each generic unit holds a list of -- the entities instantiated within (at any depth). This procedure -- determines whether the set of such lists contains a cycle, i.e. an -- illegal circular instantiation. function Denotes_Formal_Package (Pack : Entity_Id) return Boolean; -- Returns True if E is a formal package of an enclosing generic, or -- the actual for such a formal in an enclosing instantiation. Used in -- Restore_Private_Views, to keep the formals of such a package visible -- on exit from an inner instantiation. function Find_Actual_Type (Typ : Entity_Id; Gen_Scope : Entity_Id) return Entity_Id; -- When validating the actual types of a child instance, check whether -- the formal is a formal type of the parent unit, and retrieve the current -- actual for it. Typ is the entity in the analyzed formal type declaration -- (component or index type of an array type) and Gen_Scope is the scope of -- the analyzed formal array type. function Get_Package_Instantiation_Node (A : Entity_Id) return Node_Id; -- Given the entity of a unit that is an instantiation, retrieve the -- original instance node. This is used when loading the instantiations -- of the ancestors of a child generic that is being instantiated. function In_Same_Declarative_Part (F_Node : Node_Id; Inst : Node_Id) return Boolean; -- True if the instantiation Inst and the given freeze_node F_Node appear -- within the same declarative part, ignoring subunits, but with no inter- -- vening suprograms or concurrent units. If true, the freeze node -- of the instance can be placed after the freeze node of the parent, -- which it itself an instance. procedure Set_Instance_Of (A : Entity_Id; B : Entity_Id); -- Associate analyzed generic parameter with corresponding -- instance. Used for semantic checks at instantiation time. function Has_Been_Exchanged (E : Entity_Id) return Boolean; -- Traverse the Exchanged_Views list to see if a type was private -- and has already been flipped during this phase of instantiation. procedure Hide_Current_Scope; -- When compiling a generic child unit, the parent context must be -- present, but the instance and all entities that may be generated -- must be inserted in the current scope. We leave the current scope -- on the stack, but make its entities invisible to avoid visibility -- problems. This is reversed at the end of instantiations. This is -- not done for the instantiation of the bodies, which only require the -- instances of the generic parents to be in scope. procedure Install_Body (Act_Body : Node_Id; N : Node_Id; Gen_Body : Node_Id; Gen_Decl : Node_Id); -- If the instantiation happens textually before the body of the generic, -- the instantiation of the body must be analyzed after the generic body, -- and not at the point of instantiation. Such early instantiations can -- happen if the generic and the instance appear in a package declaration -- because the generic body can only appear in the corresponding package -- body. Early instantiations can also appear if generic, instance and -- body are all in the declarative part of a subprogram or entry. Entities -- of packages that are early instantiations are delayed, and their freeze -- node appears after the generic body. procedure Insert_After_Last_Decl (N : Node_Id; F_Node : Node_Id); -- Insert freeze node at the end of the declarative part that includes the -- instance node N. If N is in the visible part of an enclosing package -- declaration, the freeze node has to be inserted at the end of the -- private declarations, if any. procedure Freeze_Subprogram_Body (Inst_Node : Node_Id; Gen_Body : Node_Id; Pack_Id : Entity_Id); -- The generic body may appear textually after the instance, including -- in the proper body of a stub, or within a different package instance. -- Given that the instance can only be elaborated after the generic, we -- place freeze_nodes for the instance and/or for packages that may enclose -- the instance and the generic, so that the back-end can establish the -- proper order of elaboration. procedure Install_Parent (P : Entity_Id; In_Body : Boolean := False); -- When compiling an instance of a child unit the parent (which is -- itself an instance) is an enclosing scope that must be made -- immediately visible. This procedure is also used to install the non- -- generic parent of a generic child unit when compiling its body, so that -- full views of types in the parent are made visible. procedure Remove_Parent (In_Body : Boolean := False); -- Reverse effect after instantiation of child is complete. procedure Inline_Instance_Body (N : Node_Id; Gen_Unit : Entity_Id; Act_Decl : Node_Id); -- If front-end inlining is requested, instantiate the package body, -- and preserve the visibility of its compilation unit, to insure -- that successive instantiations succeed. -- The functions Instantiate_XXX perform various legality checks and build -- the declarations for instantiated generic parameters. -- Need to describe what the parameters are ??? function Instantiate_Object (Formal : Node_Id; Actual : Node_Id; Analyzed_Formal : Node_Id) return List_Id; function Instantiate_Type (Formal : Node_Id; Actual : Node_Id; Analyzed_Formal : Node_Id) return Node_Id; function Instantiate_Formal_Subprogram (Formal : Node_Id; Actual : Node_Id; Analyzed_Formal : Node_Id) return Node_Id; function Instantiate_Formal_Package (Formal : Node_Id; Actual : Node_Id; Analyzed_Formal : Node_Id) return List_Id; -- If the formal package is declared with a box, special visibility rules -- apply to its formals: they are in the visible part of the package. This -- is true in the declarative region of the formal package, that is to say -- in the enclosing generic or instantiation. For an instantiation, the -- parameters of the formal package are made visible in an explicit step. -- Furthermore, if the actual is a visible use_clause, these formals must -- be made potentially use_visible as well. On exit from the enclosing -- instantiation, the reverse must be done. -- For a formal package declared without a box, there are conformance rules -- that apply to the actuals in the generic declaration and the actuals of -- the actual package in the enclosing instantiation. The simplest way to -- apply these rules is to repeat the instantiation of the formal package -- in the context of the enclosing instance, and compare the generic -- associations of this instantiation with those of the actual package. function Is_In_Main_Unit (N : Node_Id) return Boolean; -- Test if given node is in the main unit procedure Load_Parent_Of_Generic (N : Node_Id; Spec : Node_Id); -- If the generic appears in a separate non-generic library unit, -- load the corresponding body to retrieve the body of the generic. -- N is the node for the generic instantiation, Spec is the generic -- package declaration. procedure Inherit_Context (Gen_Decl : Node_Id; Inst : Node_Id); -- Add the context clause of the unit containing a generic unit to -- an instantiation that is a compilation unit. function Associated_Node (N : Node_Id) return Node_Id; -- In order to propagate semantic information back from the analyzed -- copy to the original generic, we maintain links between selected nodes -- in the generic and their corresponding copies. At the end of generic -- analysis, the routine Save_Global_References traverses the generic -- tree, examines the semantic information, and preserves the links to -- those nodes that contain global information. At instantiation, the -- information from the associated node is placed on the new copy, so that -- name resolution is not repeated. -- Two kinds of nodes have associated nodes: -- a) those that contain entities, that is to say identifiers, expanded_ -- names, and operators. -- b) aggregates. -- For the first class, the associated node preserves the entity if it is -- global. If the generic contains nested instantiations, the associated_ -- node itself has been recopied, and a chain of them must be followed. -- For aggregates, the associated node allows retrieval of the type, which -- may otherwise not appear in the generic. The view of this type may be -- different between generic and instantiation, and the full view can be -- installed before the instantiation is analyzed. For aggregates of -- type extensions, the same view exchange may have to be performed for -- some of the ancestor types, if their view is private at the point of -- instantiation. -- The associated node is stored in Node4, using this field as a free -- union in a fashion that should clearly be under control of sinfo ??? procedure Move_Freeze_Nodes (Out_Of : Entity_Id; After : Node_Id; L : List_Id); -- Freeze nodes can be generated in the analysis of a generic unit, but -- will not be seen by the back-end. It is necessary to move those nodes -- to the enclosing scope if they freeze an outer entity. We place them -- at the end of the enclosing generic package, which is semantically -- neutral. procedure Pre_Analyze_Actuals (N : Node_Id); -- Analyze actuals to perform name resolution. Full resolution is done -- later, when the expected types are known, but names have to be captured -- before installing parents of generics, that are not visible for the -- actuals themselves. procedure Set_Associated_Node (Gen_Node : Node_Id; Copy_Node : Node_Id); -- Establish the link between an identifier in the generic unit, and the -- corresponding node in the semantic copy. procedure Valid_Default_Attribute (Nam : Entity_Id; Def : Node_Id); -- Verify that an attribute that appears as the default for a formal -- subprogram is a function or procedure with the correct profile. ------------------------------------------- -- Data Structures for Generic Renamings -- ------------------------------------------- -- The map Generic_Renamings associates generic entities with their -- corresponding actuals. Currently used to validate type instances. -- It will eventually be used for all generic parameters to eliminate -- the need for overload resolution in the instance. type Assoc_Ptr is new Int; Assoc_Null : constant Assoc_Ptr := -1; type Assoc is record Gen_Id : Entity_Id; Act_Id : Entity_Id; Next_In_HTable : Assoc_Ptr; end record; package Generic_Renamings is new Table.Table (Table_Component_Type => Assoc, Table_Index_Type => Assoc_Ptr, Table_Low_Bound => 0, Table_Initial => 10, Table_Increment => 100, Table_Name => "Generic_Renamings"); -- Variable to hold enclosing instantiation. When the environment is -- saved for a subprogram inlining, the corresponding Act_Id is empty. Current_Instantiated_Parent : Assoc := (Empty, Empty, Assoc_Null); -- Hash table for associations HTable_Size : constant := 37; type HTable_Range is range 0 .. HTable_Size - 1; procedure Set_Next_Assoc (E : Assoc_Ptr; Next : Assoc_Ptr); function Next_Assoc (E : Assoc_Ptr) return Assoc_Ptr; function Get_Gen_Id (E : Assoc_Ptr) return Entity_Id; function Hash (F : Entity_Id) return HTable_Range; package Generic_Renamings_HTable is new GNAT.HTable.Static_HTable ( Header_Num => HTable_Range, Element => Assoc, Elmt_Ptr => Assoc_Ptr, Null_Ptr => Assoc_Null, Set_Next => Set_Next_Assoc, Next => Next_Assoc, Key => Entity_Id, Get_Key => Get_Gen_Id, Hash => Hash, Equal => "="); Exchanged_Views : Elist_Id; -- This list holds the private views that have been exchanged during -- instantiation to restore the visibility of the generic declaration. -- (see comments above). After instantiation, the current visibility is -- reestablished by means of a traversal of this list. Hidden_Entities : Elist_Id; -- This list holds the entities of the current scope that are removed -- from immediate visibility when instantiating a child unit. Their -- visibility is restored in Remove_Parent. -- Because instantiations can be recursive, the following must be saved -- on entry and restored on exit from an instantiation (spec or body). -- This is done by the two procedures Save_Env and Restore_Env. type Instance_Env is record Ada_83 : Boolean; Instantiated_Parent : Assoc; Exchanged_Views : Elist_Id; Hidden_Entities : Elist_Id; Current_Sem_Unit : Unit_Number_Type; end record; package Instance_Envs is new Table.Table ( Table_Component_Type => Instance_Env, Table_Index_Type => Int, Table_Low_Bound => 0, Table_Initial => 32, Table_Increment => 100, Table_Name => "Instance_Envs"); procedure Restore_Private_Views (Pack_Id : Entity_Id; Is_Package : Boolean := True); -- Restore the private views of external types, and unmark the generic -- renamings of actuals, so that they become comptible subtypes again. -- For subprograms, Pack_Id is the package constructed to hold the -- renamings. procedure Switch_View (T : Entity_Id); -- Switch the partial and full views of a type and its private -- dependents (i.e. its subtypes and derived types). ------------------------------------ -- Structures for Error Reporting -- ------------------------------------ Instantiation_Node : Node_Id; -- Used by subprograms that validate instantiation of formal parameters -- where there might be no actual on which to place the error message. -- Also used to locate the instantiation node for generic subunits. Instantiation_Error : exception; -- When there is a semantic error in the generic parameter matching, -- there is no point in continuing the instantiation, because the -- number of cascaded errors is unpredictable. This exception aborts -- the instantiation process altogether. S_Adjustment : Sloc_Adjustment; -- Offset created for each node in an instantiation, in order to keep -- track of the source position of the instantiation in each of its nodes. -- A subsequent semantic error or warning on a construct of the instance -- points to both places: the original generic node, and the point of -- instantiation. See Sinput and Sinput.L for additional details. ------------------------------------------------------------ -- Data structure for keeping track when inside a Generic -- ------------------------------------------------------------ -- The following table is used to save values of the Inside_A_Generic -- flag (see spec of Sem) when they are saved by Start_Generic. package Generic_Flags is new Table.Table ( Table_Component_Type => Boolean, Table_Index_Type => Int, Table_Low_Bound => 0, Table_Initial => 32, Table_Increment => 200, Table_Name => "Generic_Flags"); --------------------------- -- Abandon_Instantiation -- --------------------------- procedure Abandon_Instantiation (N : Node_Id) is begin Error_Msg_N ("instantiation abandoned!", N); raise Instantiation_Error; end Abandon_Instantiation; -------------------------- -- Analyze_Associations -- -------------------------- function Analyze_Associations (I_Node : Node_Id; Formals : List_Id; F_Copy : List_Id) return List_Id is Actuals : List_Id := Generic_Associations (I_Node); Actual : Node_Id; Actual_Types : Elist_Id := New_Elmt_List; Assoc : List_Id := New_List; Formal : Node_Id; Next_Formal : Node_Id; Temp_Formal : Node_Id; Analyzed_Formal : Node_Id; Defaults : Elist_Id := New_Elmt_List; Match : Node_Id; Named : Node_Id; First_Named : Node_Id := Empty; Found_Assoc : Node_Id; Is_Named_Assoc : Boolean; Num_Matched : Int := 0; Num_Actuals : Int := 0; function Matching_Actual (F : Entity_Id; A_F : Entity_Id) return Node_Id; -- Find actual that corresponds to a given a formal parameter. If the -- actuals are positional, return the next one, if any. If the actuals -- are named, scan the parameter associations to find the right one. -- A_F is the corresponding entity in the analyzed generic,which is -- placed on the selector name for ASIS use. procedure Set_Analyzed_Formal; -- Find the node in the generic copy that corresponds to a given formal. -- The semantic information on this node is used to perform legality -- checks on the actuals. Because semantic analysis can introduce some -- anonymous entities or modify the declaration node itself, the -- correspondence between the two lists is not one-one. In addition to -- anonymous types, the presence a formal equality will introduce an -- implicit declaration for the corresponding inequality. --------------------- -- Matching_Actual -- --------------------- function Matching_Actual (F : Entity_Id; A_F : Entity_Id) return Node_Id is Found : Node_Id; Prev : Node_Id; begin Is_Named_Assoc := False; -- End of list of purely positional parameters if No (Actual) then Found := Empty; -- Case of positional parameter corresponding to current formal elsif No (Selector_Name (Actual)) then Found := Explicit_Generic_Actual_Parameter (Actual); Found_Assoc := Actual; Num_Matched := Num_Matched + 1; Next (Actual); -- Otherwise scan list of named actuals to find the one with the -- desired name. All remaining actuals have explicit names. else Is_Named_Assoc := True; Found := Empty; Prev := Empty; while Present (Actual) loop if Chars (Selector_Name (Actual)) = Chars (F) then Found := Explicit_Generic_Actual_Parameter (Actual); Set_Entity (Selector_Name (Actual), A_F); Set_Etype (Selector_Name (Actual), Etype (A_F)); Found_Assoc := Actual; Num_Matched := Num_Matched + 1; exit; end if; Prev := Actual; Next (Actual); end loop; -- Reset for subsequent searches. In most cases the named -- associations are in order. If they are not, we reorder them -- to avoid scanning twice the same actual. This is not just a -- question of efficiency: there may be multiple defaults with -- boxes that have the same name. In a nested instantiation we -- insert actuals for those defaults, and cannot rely on their -- names to disambiguate them. if Actual = First_Named then Next (First_Named); elsif Present (Actual) then Insert_Before (First_Named, Remove_Next (Prev)); end if; Actual := First_Named; end if; return Found; end Matching_Actual; ------------------------- -- Set_Analyzed_Formal -- ------------------------- procedure Set_Analyzed_Formal is Kind : Node_Kind; begin while Present (Analyzed_Formal) loop Kind := Nkind (Analyzed_Formal); case Nkind (Formal) is when N_Formal_Subprogram_Declaration => exit when Kind = N_Formal_Subprogram_Declaration and then Chars (Defining_Unit_Name (Specification (Formal))) = Chars (Defining_Unit_Name (Specification (Analyzed_Formal))); when N_Formal_Package_Declaration => exit when Kind = N_Formal_Package_Declaration or else Kind = N_Generic_Package_Declaration; when N_Use_Package_Clause | N_Use_Type_Clause => exit; when others => -- Skip freeze nodes, and nodes inserted to replace -- unrecognized pragmas. exit when Kind /= N_Formal_Subprogram_Declaration and then Kind /= N_Subprogram_Declaration and then Kind /= N_Freeze_Entity and then Kind /= N_Null_Statement and then Kind /= N_Itype_Reference and then Chars (Defining_Identifier (Formal)) = Chars (Defining_Identifier (Analyzed_Formal)); end case; Next (Analyzed_Formal); end loop; end Set_Analyzed_Formal; -- Start of processing for Analyze_Associations begin -- If named associations are present, save the first named association -- (it may of course be Empty) to facilitate subsequent name search. if Present (Actuals) then First_Named := First (Actuals); while Present (First_Named) and then No (Selector_Name (First_Named)) loop Num_Actuals := Num_Actuals + 1; Next (First_Named); end loop; end if; Named := First_Named; while Present (Named) loop if No (Selector_Name (Named)) then Error_Msg_N ("invalid positional actual after named one", Named); Abandon_Instantiation (Named); end if; Num_Actuals := Num_Actuals + 1; Next (Named); end loop; if Present (Formals) then Formal := First_Non_Pragma (Formals); Analyzed_Formal := First_Non_Pragma (F_Copy); if Present (Actuals) then Actual := First (Actuals); -- All formals should have default values else Actual := Empty; end if; while Present (Formal) loop Set_Analyzed_Formal; Next_Formal := Next_Non_Pragma (Formal); case Nkind (Formal) is when N_Formal_Object_Declaration => Match := Matching_Actual ( Defining_Identifier (Formal), Defining_Identifier (Analyzed_Formal)); Append_List (Instantiate_Object (Formal, Match, Analyzed_Formal), Assoc); when N_Formal_Type_Declaration => Match := Matching_Actual ( Defining_Identifier (Formal), Defining_Identifier (Analyzed_Formal)); if No (Match) then Error_Msg_NE ("missing actual for instantiation of &", Instantiation_Node, Defining_Identifier (Formal)); Abandon_Instantiation (Instantiation_Node); else Analyze (Match); Append_To (Assoc, Instantiate_Type (Formal, Match, Analyzed_Formal)); -- an instantiation is a freeze point for the actuals, -- unless this is a rewritten formal package. if Nkind (I_Node) /= N_Formal_Package_Declaration then Append_Elmt (Entity (Match), Actual_Types); end if; end if; -- A remote access-to-class-wide type must not be an -- actual parameter for a generic formal of an access -- type (E.2.2 (17)). if Nkind (Analyzed_Formal) = N_Formal_Type_Declaration and then Nkind (Formal_Type_Definition (Analyzed_Formal)) = N_Access_To_Object_Definition then Validate_Remote_Access_To_Class_Wide_Type (Match); end if; when N_Formal_Subprogram_Declaration => Match := Matching_Actual ( Defining_Unit_Name (Specification (Formal)), Defining_Unit_Name (Specification (Analyzed_Formal))); -- If the formal subprogram has the same name as -- another formal subprogram of the generic, then -- a named association is illegal (12.3(9)). Exclude -- named associations that are generated for a nested -- instance. if Present (Match) and then Is_Named_Assoc and then Comes_From_Source (Found_Assoc) then Temp_Formal := First (Formals); while Present (Temp_Formal) loop if Nkind (Temp_Formal) = N_Formal_Subprogram_Declaration and then Temp_Formal /= Formal and then Chars (Selector_Name (Found_Assoc)) = Chars (Defining_Unit_Name (Specification (Temp_Formal))) then Error_Msg_N ("name not allowed for overloaded formal", Found_Assoc); Abandon_Instantiation (Instantiation_Node); end if; Next (Temp_Formal); end loop; end if; Append_To (Assoc, Instantiate_Formal_Subprogram (Formal, Match, Analyzed_Formal)); if No (Match) and then Box_Present (Formal) then Append_Elmt (Defining_Unit_Name (Specification (Last (Assoc))), Defaults); end if; when N_Formal_Package_Declaration => Match := Matching_Actual ( Defining_Identifier (Formal), Defining_Identifier (Original_Node (Analyzed_Formal))); if No (Match) then Error_Msg_NE ("missing actual for instantiation of&", Instantiation_Node, Defining_Identifier (Formal)); Abandon_Instantiation (Instantiation_Node); else Analyze (Match); Append_List (Instantiate_Formal_Package (Formal, Match, Analyzed_Formal), Assoc); end if; -- For use type and use package appearing in the context -- clause, we have already copied them, so we can just -- move them where they belong (we mustn't recopy them -- since this would mess up the Sloc values). when N_Use_Package_Clause | N_Use_Type_Clause => Remove (Formal); Append (Formal, Assoc); when others => raise Program_Error; end case; Formal := Next_Formal; Next_Non_Pragma (Analyzed_Formal); end loop; if Num_Actuals > Num_Matched then Error_Msg_N ("unmatched actuals in instantiation", Instantiation_Node); end if; elsif Present (Actuals) then Error_Msg_N ("too many actuals in generic instantiation", Instantiation_Node); end if; declare Elmt : Elmt_Id := First_Elmt (Actual_Types); begin while Present (Elmt) loop Freeze_Before (I_Node, Node (Elmt)); Next_Elmt (Elmt); end loop; end; -- If there are default subprograms, normalize the tree by adding -- explicit associations for them. This is required if the instance -- appears within a generic. declare Elmt : Elmt_Id; Subp : Entity_Id; New_D : Node_Id; begin Elmt := First_Elmt (Defaults); while Present (Elmt) loop if No (Actuals) then Actuals := New_List; Set_Generic_Associations (I_Node, Actuals); end if; Subp := Node (Elmt); New_D := Make_Generic_Association (Sloc (Subp), Selector_Name => New_Occurrence_Of (Subp, Sloc (Subp)), Explicit_Generic_Actual_Parameter => New_Occurrence_Of (Subp, Sloc (Subp))); Mark_Rewrite_Insertion (New_D); Append_To (Actuals, New_D); Next_Elmt (Elmt); end loop; end; return Assoc; end Analyze_Associations; ------------------------------- -- Analyze_Formal_Array_Type -- ------------------------------- procedure Analyze_Formal_Array_Type (T : in out Entity_Id; Def : Node_Id) is DSS : Node_Id; begin -- Treated like a non-generic array declaration, with -- additional semantic checks. Enter_Name (T); if Nkind (Def) = N_Constrained_Array_Definition then DSS := First (Discrete_Subtype_Definitions (Def)); while Present (DSS) loop if Nkind (DSS) = N_Subtype_Indication or else Nkind (DSS) = N_Range or else Nkind (DSS) = N_Attribute_Reference then Error_Msg_N ("only a subtype mark is allowed in a formal", DSS); end if; Next (DSS); end loop; end if; Array_Type_Declaration (T, Def); Set_Is_Generic_Type (Base_Type (T)); if Ekind (Component_Type (T)) = E_Incomplete_Type and then No (Full_View (Component_Type (T))) then Error_Msg_N ("premature usage of incomplete type", Def); elsif Is_Internal (Component_Type (T)) and then Nkind (Original_Node (Subtype_Indication (Def))) /= N_Attribute_Reference then Error_Msg_N ("only a subtype mark is allowed in a formal", Subtype_Indication (Def)); end if; end Analyze_Formal_Array_Type; --------------------------------------------- -- Analyze_Formal_Decimal_Fixed_Point_Type -- --------------------------------------------- -- As for other generic types, we create a valid type representation -- with legal but arbitrary attributes, whose values are never considered -- static. For all scalar types we introduce an anonymous base type, with -- the same attributes. We choose the corresponding integer type to be -- Standard_Integer. procedure Analyze_Formal_Decimal_Fixed_Point_Type (T : Entity_Id; Def : Node_Id) is Loc : constant Source_Ptr := Sloc (Def); Base : constant Entity_Id := New_Internal_Entity (E_Decimal_Fixed_Point_Type, Current_Scope, Sloc (Def), 'G'); Int_Base : constant Entity_Id := Standard_Integer; Delta_Val : constant Ureal := Ureal_1; Digs_Val : constant Uint := Uint_6; begin Enter_Name (T); Set_Etype (Base, Base); Set_Size_Info (Base, Int_Base); Set_RM_Size (Base, RM_Size (Int_Base)); Set_First_Rep_Item (Base, First_Rep_Item (Int_Base)); Set_Digits_Value (Base, Digs_Val); Set_Delta_Value (Base, Delta_Val); Set_Small_Value (Base, Delta_Val); Set_Scalar_Range (Base, Make_Range (Loc, Low_Bound => Make_Real_Literal (Loc, Ureal_1), High_Bound => Make_Real_Literal (Loc, Ureal_1))); Set_Is_Generic_Type (Base); Set_Parent (Base, Parent (Def)); Set_Ekind (T, E_Decimal_Fixed_Point_Subtype); Set_Etype (T, Base); Set_Size_Info (T, Int_Base); Set_RM_Size (T, RM_Size (Int_Base)); Set_First_Rep_Item (T, First_Rep_Item (Int_Base)); Set_Digits_Value (T, Digs_Val); Set_Delta_Value (T, Delta_Val); Set_Small_Value (T, Delta_Val); Set_Scalar_Range (T, Scalar_Range (Base)); end Analyze_Formal_Decimal_Fixed_Point_Type; --------------------------------- -- Analyze_Formal_Derived_Type -- --------------------------------- procedure Analyze_Formal_Derived_Type (N : Node_Id; T : Entity_Id; Def : Node_Id) is Loc : constant Source_Ptr := Sloc (Def); New_N : Node_Id; Unk_Disc : Boolean := Unknown_Discriminants_Present (N); begin Set_Is_Generic_Type (T); if Private_Present (Def) then New_N := Make_Private_Extension_Declaration (Loc, Defining_Identifier => T, Discriminant_Specifications => Discriminant_Specifications (N), Unknown_Discriminants_Present => Unk_Disc, Subtype_Indication => Subtype_Mark (Def)); Set_Abstract_Present (New_N, Abstract_Present (Def)); else New_N := Make_Full_Type_Declaration (Loc, Defining_Identifier => T, Discriminant_Specifications => Discriminant_Specifications (Parent (T)), Type_Definition => Make_Derived_Type_Definition (Loc, Subtype_Indication => Subtype_Mark (Def))); Set_Abstract_Present (Type_Definition (New_N), Abstract_Present (Def)); end if; Rewrite (N, New_N); Analyze (N); if Unk_Disc then if not Is_Composite_Type (T) then Error_Msg_N ("unknown discriminants not allowed for elementary types", N); else Set_Has_Unknown_Discriminants (T); Set_Is_Constrained (T, False); end if; end if; -- If the parent type has a known size, so does the formal, which -- makes legal representation clauses that involve the formal. Set_Size_Known_At_Compile_Time (T, Size_Known_At_Compile_Time (Entity (Subtype_Mark (Def)))); end Analyze_Formal_Derived_Type; ---------------------------------- -- Analyze_Formal_Discrete_Type -- ---------------------------------- -- The operations defined for a discrete types are those of an -- enumeration type. The size is set to an arbitrary value, for use -- in analyzing the generic unit. procedure Analyze_Formal_Discrete_Type (T : Entity_Id; Def : Node_Id) is Loc : constant Source_Ptr := Sloc (Def); Lo : Node_Id; Hi : Node_Id; begin Enter_Name (T); Set_Ekind (T, E_Enumeration_Type); Set_Etype (T, T); Init_Size (T, 8); Init_Alignment (T); -- For semantic analysis, the bounds of the type must be set to some -- non-static value. The simplest is to create attribute nodes for -- those bounds, that refer to the type itself. These bounds are never -- analyzed but serve as place-holders. Lo := Make_Attribute_Reference (Loc, Attribute_Name => Name_First, Prefix => New_Reference_To (T, Loc)); Set_Etype (Lo, T); Hi := Make_Attribute_Reference (Loc, Attribute_Name => Name_Last, Prefix => New_Reference_To (T, Loc)); Set_Etype (Hi, T); Set_Scalar_Range (T, Make_Range (Loc, Low_Bound => Lo, High_Bound => Hi)); end Analyze_Formal_Discrete_Type; ---------------------------------- -- Analyze_Formal_Floating_Type -- --------------------------------- procedure Analyze_Formal_Floating_Type (T : Entity_Id; Def : Node_Id) is Base : constant Entity_Id := New_Internal_Entity (E_Floating_Point_Type, Current_Scope, Sloc (Def), 'G'); begin -- The various semantic attributes are taken from the predefined type -- Float, just so that all of them are initialized. Their values are -- never used because no constant folding or expansion takes place in -- the generic itself. Enter_Name (T); Set_Ekind (T, E_Floating_Point_Subtype); Set_Etype (T, Base); Set_Size_Info (T, (Standard_Float)); Set_RM_Size (T, RM_Size (Standard_Float)); Set_Digits_Value (T, Digits_Value (Standard_Float)); Set_Scalar_Range (T, Scalar_Range (Standard_Float)); Set_Is_Generic_Type (Base); Set_Etype (Base, Base); Set_Size_Info (Base, (Standard_Float)); Set_RM_Size (Base, RM_Size (Standard_Float)); Set_Digits_Value (Base, Digits_Value (Standard_Float)); Set_Scalar_Range (Base, Scalar_Range (Standard_Float)); Set_Parent (Base, Parent (Def)); end Analyze_Formal_Floating_Type; --------------------------------- -- Analyze_Formal_Modular_Type -- --------------------------------- procedure Analyze_Formal_Modular_Type (T : Entity_Id; Def : Node_Id) is begin -- Apart from their entity kind, generic modular types are treated -- like signed integer types, and have the same attributes. Analyze_Formal_Signed_Integer_Type (T, Def); Set_Ekind (T, E_Modular_Integer_Subtype); Set_Ekind (Etype (T), E_Modular_Integer_Type); end Analyze_Formal_Modular_Type; --------------------------------------- -- Analyze_Formal_Object_Declaration -- --------------------------------------- procedure Analyze_Formal_Object_Declaration (N : Node_Id) is E : constant Node_Id := Expression (N); Id : Node_Id := Defining_Identifier (N); K : Entity_Kind; T : Node_Id; begin Enter_Name (Id); -- Determine the mode of the formal object if Out_Present (N) then K := E_Generic_In_Out_Parameter; if not In_Present (N) then Error_Msg_N ("formal generic objects cannot have mode OUT", N); end if; else K := E_Generic_In_Parameter; end if; Find_Type (Subtype_Mark (N)); T := Entity (Subtype_Mark (N)); if Ekind (T) = E_Incomplete_Type then Error_Msg_N ("premature usage of incomplete type", Subtype_Mark (N)); end if; if K = E_Generic_In_Parameter then if Is_Limited_Type (T) then Error_Msg_N ("generic formal of mode IN must not be of limited type", N); end if; if Is_Abstract (T) then Error_Msg_N ("generic formal of mode IN must not be of abstract type", N); end if; if Present (E) then Analyze_Default_Expression (E, T); end if; Set_Ekind (Id, K); Set_Etype (Id, T); -- Case of generic IN OUT parameter. else -- If the formal has an unconstrained type, construct its -- actual subtype, as is done for subprogram formals. In this -- fashion, all its uses can refer to specific bounds. Set_Ekind (Id, K); Set_Etype (Id, T); if (Is_Array_Type (T) and then not Is_Constrained (T)) or else (Ekind (T) = E_Record_Type and then Has_Discriminants (T)) then declare Non_Freezing_Ref : constant Node_Id := New_Reference_To (Id, Sloc (Id)); Decl : Node_Id; begin -- Make sure that the actual subtype doesn't generate -- bogus freezing. Set_Must_Not_Freeze (Non_Freezing_Ref); Decl := Build_Actual_Subtype (T, Non_Freezing_Ref); Insert_Before_And_Analyze (N, Decl); Set_Actual_Subtype (Id, Defining_Identifier (Decl)); end; else Set_Actual_Subtype (Id, T); end if; if Present (E) then Error_Msg_N ("initialization not allowed for `IN OUT` formals", N); end if; end if; end Analyze_Formal_Object_Declaration; ---------------------------------------------- -- Analyze_Formal_Ordinary_Fixed_Point_Type -- ---------------------------------------------- procedure Analyze_Formal_Ordinary_Fixed_Point_Type (T : Entity_Id; Def : Node_Id) is Loc : constant Source_Ptr := Sloc (Def); Base : constant Entity_Id := New_Internal_Entity (E_Ordinary_Fixed_Point_Type, Current_Scope, Sloc (Def), 'G'); begin -- The semantic attributes are set for completeness only, their -- values will never be used, because all properties of the type -- are non-static. Enter_Name (T); Set_Ekind (T, E_Ordinary_Fixed_Point_Subtype); Set_Etype (T, Base); Set_Size_Info (T, Standard_Integer); Set_RM_Size (T, RM_Size (Standard_Integer)); Set_Small_Value (T, Ureal_1); Set_Delta_Value (T, Ureal_1); Set_Scalar_Range (T, Make_Range (Loc, Low_Bound => Make_Real_Literal (Loc, Ureal_1), High_Bound => Make_Real_Literal (Loc, Ureal_1))); Set_Is_Generic_Type (Base); Set_Etype (Base, Base); Set_Size_Info (Base, Standard_Integer); Set_RM_Size (Base, RM_Size (Standard_Integer)); Set_Small_Value (Base, Ureal_1); Set_Delta_Value (Base, Ureal_1); Set_Scalar_Range (Base, Scalar_Range (T)); Set_Parent (Base, Parent (Def)); end Analyze_Formal_Ordinary_Fixed_Point_Type; ---------------------------- -- Analyze_Formal_Package -- ---------------------------- procedure Analyze_Formal_Package (N : Node_Id) is Loc : constant Source_Ptr := Sloc (N); Formal : Entity_Id := Defining_Identifier (N); Gen_Id : constant Node_Id := Name (N); Gen_Decl : Node_Id; Gen_Unit : Entity_Id; New_N : Node_Id; Parent_Installed : Boolean := False; Renaming : Node_Id; Parent_Instance : Entity_Id; Renaming_In_Par : Entity_Id; begin Text_IO_Kludge (Gen_Id); Check_Generic_Child_Unit (Gen_Id, Parent_Installed); Gen_Unit := Entity (Gen_Id); if Ekind (Gen_Unit) /= E_Generic_Package then Error_Msg_N ("expect generic package name", Gen_Id); return; elsif Gen_Unit = Current_Scope then Error_Msg_N ("generic package cannot be used as a formal package of itself", Gen_Id); return; end if; -- Check for a formal package that is a package renaming. if Present (Renamed_Object (Gen_Unit)) then Gen_Unit := Renamed_Object (Gen_Unit); end if; -- The formal package is treated like a regular instance, but only -- the specification needs to be instantiated, to make entities visible. if not Box_Present (N) then Hidden_Entities := New_Elmt_List; Analyze_Package_Instantiation (N); if Parent_Installed then Remove_Parent; end if; else -- If there are no generic associations, the generic parameters -- appear as local entities and are instantiated like them. We copy -- the generic package declaration as if it were an instantiation, -- and analyze it like a regular package, except that we treat the -- formals as additional visible components. Save_Env (Gen_Unit, Formal); Gen_Decl := Unit_Declaration_Node (Gen_Unit); if In_Extended_Main_Source_Unit (N) then Set_Is_Instantiated (Gen_Unit); Generate_Reference (Gen_Unit, N); end if; New_N := Copy_Generic_Node (Original_Node (Gen_Decl), Empty, Instantiating => True); Set_Defining_Unit_Name (Specification (New_N), Formal); Rewrite (N, New_N); Enter_Name (Formal); Set_Ekind (Formal, E_Generic_Package); Set_Etype (Formal, Standard_Void_Type); Set_Inner_Instances (Formal, New_Elmt_List); New_Scope (Formal); -- Within the formal, the name of the generic package is a renaming -- of the formal (as for a regular instantiation). Renaming := Make_Package_Renaming_Declaration (Loc, Defining_Unit_Name => Make_Defining_Identifier (Loc, Chars (Gen_Unit)), Name => New_Reference_To (Formal, Loc)); if Present (Visible_Declarations (Specification (N))) then Prepend (Renaming, To => Visible_Declarations (Specification (N))); elsif Present (Private_Declarations (Specification (N))) then Prepend (Renaming, To => Private_Declarations (Specification (N))); end if; if Is_Child_Unit (Gen_Unit) and then Parent_Installed then -- Similarly, we have to make the name of the formal visible in -- the parent instance, to resolve properly fully qualified names -- that may appear in the generic unit. The parent instance has -- been placed on the scope stack ahead of the current scope. Parent_Instance := Scope_Stack.Table (Scope_Stack.Last - 1).Entity; Renaming_In_Par := Make_Defining_Identifier (Loc, Chars (Gen_Unit)); Set_Ekind (Renaming_In_Par, E_Package); Set_Etype (Renaming_In_Par, Standard_Void_Type); Set_Scope (Renaming_In_Par, Parent_Instance); Set_Parent (Renaming_In_Par, Parent (Formal)); Set_Renamed_Object (Renaming_In_Par, Formal); Append_Entity (Renaming_In_Par, Parent_Instance); end if; Analyze_Generic_Formal_Part (N); Analyze (Specification (N)); End_Package_Scope (Formal); if Parent_Installed then Remove_Parent; end if; Restore_Env; -- Inside the generic unit, the formal package is a regular -- package, but no body is needed for it. Note that after -- instantiation, the defining_unit_name we need is in the -- new tree and not in the original. (see Package_Instantiation). -- A generic formal package is an instance, and can be used as -- an actual for an inner instance. Mark its generic parent. Set_Ekind (Formal, E_Package); Set_Generic_Parent (Specification (N), Gen_Unit); Set_Has_Completion (Formal, True); end if; end Analyze_Formal_Package; --------------------------------- -- Analyze_Formal_Private_Type -- --------------------------------- procedure Analyze_Formal_Private_Type (N : Node_Id; T : Entity_Id; Def : Node_Id) is begin New_Private_Type (N, T, Def); -- Set the size to an arbitrary but legal value. Set_Size_Info (T, Standard_Integer); Set_RM_Size (T, RM_Size (Standard_Integer)); end Analyze_Formal_Private_Type; ---------------------------------------- -- Analyze_Formal_Signed_Integer_Type -- ---------------------------------------- procedure Analyze_Formal_Signed_Integer_Type (T : Entity_Id; Def : Node_Id) is Base : constant Entity_Id := New_Internal_Entity (E_Signed_Integer_Type, Current_Scope, Sloc (Def), 'G'); begin Enter_Name (T); Set_Ekind (T, E_Signed_Integer_Subtype); Set_Etype (T, Base); Set_Size_Info (T, Standard_Integer); Set_RM_Size (T, RM_Size (Standard_Integer)); Set_Scalar_Range (T, Scalar_Range (Standard_Integer)); Set_Is_Generic_Type (Base); Set_Size_Info (Base, Standard_Integer); Set_RM_Size (Base, RM_Size (Standard_Integer)); Set_Etype (Base, Base); Set_Scalar_Range (Base, Scalar_Range (Standard_Integer)); Set_Parent (Base, Parent (Def)); end Analyze_Formal_Signed_Integer_Type; ------------------------------- -- Analyze_Formal_Subprogram -- ------------------------------- procedure Analyze_Formal_Subprogram (N : Node_Id) is Spec : constant Node_Id := Specification (N); Def : constant Node_Id := Default_Name (N); Nam : constant Entity_Id := Defining_Unit_Name (Spec); Subp : Entity_Id; begin if Nkind (Nam) = N_Defining_Program_Unit_Name then Error_Msg_N ("name of formal subprogram must be a direct name", Nam); return; end if; Analyze_Subprogram_Declaration (N); Set_Is_Formal_Subprogram (Nam); Set_Has_Completion (Nam); -- Default name is resolved at the point of instantiation if Box_Present (N) then null; -- Else default is bound at the point of generic declaration elsif Present (Def) then if Nkind (Def) = N_Operator_Symbol then Find_Direct_Name (Def); elsif Nkind (Def) /= N_Attribute_Reference then Analyze (Def); else -- For an attribute reference, analyze the prefix and verify -- that it has the proper profile for the subprogram. Analyze (Prefix (Def)); Valid_Default_Attribute (Nam, Def); return; end if; -- Default name may be overloaded, in which case the interpretation -- with the correct profile must be selected, as for a renaming. if Etype (Def) = Any_Type then return; elsif Nkind (Def) = N_Selected_Component then Subp := Entity (Selector_Name (Def)); if Ekind (Subp) /= E_Entry then Error_Msg_N ("expect valid subprogram name as default", Def); return; end if; elsif Nkind (Def) = N_Indexed_Component then if Nkind (Prefix (Def)) /= N_Selected_Component then Error_Msg_N ("expect valid subprogram name as default", Def); return; else Subp := Entity (Selector_Name (Prefix (Def))); if Ekind (Subp) /= E_Entry_Family then Error_Msg_N ("expect valid subprogram name as default", Def); return; end if; end if; elsif Nkind (Def) = N_Character_Literal then -- Needs some type checks: subprogram should be parameterless??? Resolve (Def, (Etype (Nam))); elsif (not Is_Entity_Name (Def) or else not Is_Overloadable (Entity (Def))) then Error_Msg_N ("expect valid subprogram name as default", Def); return; elsif not Is_Overloaded (Def) then Subp := Entity (Def); if Subp = Nam then Error_Msg_N ("premature usage of formal subprogram", Def); elsif not Entity_Matches_Spec (Subp, Nam) then Error_Msg_N ("no visible entity matches specification", Def); end if; else declare I : Interp_Index; I1 : Interp_Index := 0; It : Interp; It1 : Interp; begin Subp := Any_Id; Get_First_Interp (Def, I, It); while Present (It.Nam) loop if Entity_Matches_Spec (It.Nam, Nam) then if Subp /= Any_Id then It1 := Disambiguate (Def, I1, I, Etype (Subp)); if It1 = No_Interp then Error_Msg_N ("ambiguous default subprogram", Def); else Subp := It1.Nam; end if; exit; else I1 := I; Subp := It.Nam; end if; end if; Get_Next_Interp (I, It); end loop; end; if Subp /= Any_Id then Set_Entity (Def, Subp); if Subp = Nam then Error_Msg_N ("premature usage of formal subprogram", Def); elsif Ekind (Subp) /= E_Operator then Check_Mode_Conformant (Subp, Nam); end if; else Error_Msg_N ("no visible subprogram matches specification", N); end if; end if; end if; end Analyze_Formal_Subprogram; ------------------------------------- -- Analyze_Formal_Type_Declaration -- ------------------------------------- procedure Analyze_Formal_Type_Declaration (N : Node_Id) is Def : constant Node_Id := Formal_Type_Definition (N); T : Entity_Id; begin T := Defining_Identifier (N); if Present (Discriminant_Specifications (N)) and then Nkind (Def) /= N_Formal_Private_Type_Definition then Error_Msg_N ("discriminants not allowed for this formal type", Defining_Identifier (First (Discriminant_Specifications (N)))); end if; -- Enter the new name, and branch to specific routine. case Nkind (Def) is when N_Formal_Private_Type_Definition => Analyze_Formal_Private_Type (N, T, Def); when N_Formal_Derived_Type_Definition => Analyze_Formal_Derived_Type (N, T, Def); when N_Formal_Discrete_Type_Definition => Analyze_Formal_Discrete_Type (T, Def); when N_Formal_Signed_Integer_Type_Definition => Analyze_Formal_Signed_Integer_Type (T, Def); when N_Formal_Modular_Type_Definition => Analyze_Formal_Modular_Type (T, Def); when N_Formal_Floating_Point_Definition => Analyze_Formal_Floating_Type (T, Def); when N_Formal_Ordinary_Fixed_Point_Definition => Analyze_Formal_Ordinary_Fixed_Point_Type (T, Def); when N_Formal_Decimal_Fixed_Point_Definition => Analyze_Formal_Decimal_Fixed_Point_Type (T, Def); when N_Array_Type_Definition => Analyze_Formal_Array_Type (T, Def); when N_Access_To_Object_Definition | N_Access_Function_Definition | N_Access_Procedure_Definition => Analyze_Generic_Access_Type (T, Def); when others => raise Program_Error; end case; Set_Is_Generic_Type (T); end Analyze_Formal_Type_Declaration; ------------------------------------ -- Analyze_Function_Instantiation -- ------------------------------------ procedure Analyze_Function_Instantiation (N : Node_Id) is begin Analyze_Subprogram_Instantiation (N, E_Function); end Analyze_Function_Instantiation; --------------------------------- -- Analyze_Generic_Access_Type -- --------------------------------- procedure Analyze_Generic_Access_Type (T : Entity_Id; Def : Node_Id) is begin Enter_Name (T); if Nkind (Def) = N_Access_To_Object_Definition then Access_Type_Declaration (T, Def); if Is_Incomplete_Or_Private_Type (Designated_Type (T)) and then No (Full_View (Designated_Type (T))) and then not Is_Generic_Type (Designated_Type (T)) then Error_Msg_N ("premature usage of incomplete type", Def); elsif Is_Internal (Designated_Type (T)) then Error_Msg_N ("only a subtype mark is allowed in a formal", Def); end if; else Access_Subprogram_Declaration (T, Def); end if; end Analyze_Generic_Access_Type; --------------------------------- -- Analyze_Generic_Formal_Part -- --------------------------------- procedure Analyze_Generic_Formal_Part (N : Node_Id) is Gen_Parm_Decl : Node_Id; begin -- The generic formals are processed in the scope of the generic -- unit, where they are immediately visible. The scope is installed -- by the caller. Gen_Parm_Decl := First (Generic_Formal_Declarations (N)); while Present (Gen_Parm_Decl) loop Analyze (Gen_Parm_Decl); Next (Gen_Parm_Decl); end loop; end Analyze_Generic_Formal_Part; ------------------------------------------ -- Analyze_Generic_Package_Declaration -- ------------------------------------------ procedure Analyze_Generic_Package_Declaration (N : Node_Id) is Id : Entity_Id; New_N : Node_Id; Save_Parent : Node_Id; begin -- Create copy of generic unit, and save for instantiation. -- If the unit is a child unit, do not copy the specifications -- for the parent, which are not part of the generic tree. Save_Parent := Parent_Spec (N); Set_Parent_Spec (N, Empty); New_N := Copy_Generic_Node (N, Empty, Instantiating => False); Set_Parent_Spec (New_N, Save_Parent); Rewrite (N, New_N); Id := Defining_Entity (N); Generate_Definition (Id); -- Expansion is not applied to generic units. Start_Generic; Enter_Name (Id); Set_Ekind (Id, E_Generic_Package); Set_Etype (Id, Standard_Void_Type); New_Scope (Id); Enter_Generic_Scope (Id); Set_Inner_Instances (Id, New_Elmt_List); Set_Categorization_From_Pragmas (N); Set_Is_Pure (Id, Is_Pure (Current_Scope)); -- For a library unit, we have reconstructed the entity for the -- unit, and must reset it in the library tables. if Nkind (Parent (N)) = N_Compilation_Unit then Set_Cunit_Entity (Current_Sem_Unit, Id); end if; Analyze_Generic_Formal_Part (N); -- After processing the generic formals, analysis proceeds -- as for a non-generic package. Analyze (Specification (N)); Validate_Categorization_Dependency (N, Id); End_Generic; End_Package_Scope (Id); Exit_Generic_Scope (Id); if Nkind (Parent (N)) /= N_Compilation_Unit then Move_Freeze_Nodes (Id, N, Visible_Declarations (Specification (N))); Move_Freeze_Nodes (Id, N, Private_Declarations (Specification (N))); Move_Freeze_Nodes (Id, N, Generic_Formal_Declarations (N)); else Set_Body_Required (Parent (N), Unit_Requires_Body (Id)); Validate_RT_RAT_Component (N); end if; end Analyze_Generic_Package_Declaration; -------------------------------------------- -- Analyze_Generic_Subprogram_Declaration -- -------------------------------------------- procedure Analyze_Generic_Subprogram_Declaration (N : Node_Id) is Spec : Node_Id; Id : Entity_Id; Formals : List_Id; New_N : Node_Id; Save_Parent : Node_Id; begin -- Create copy of generic unit,and save for instantiation. -- If the unit is a child unit, do not copy the specifications -- for the parent, which are not part of the generic tree. Save_Parent := Parent_Spec (N); Set_Parent_Spec (N, Empty); New_N := Copy_Generic_Node (N, Empty, Instantiating => False); Set_Parent_Spec (New_N, Save_Parent); Rewrite (N, New_N); Spec := Specification (N); Id := Defining_Entity (Spec); Generate_Definition (Id); if Nkind (Id) = N_Defining_Operator_Symbol then Error_Msg_N ("operator symbol not allowed for generic subprogram", Id); end if; Start_Generic; Enter_Name (Id); New_Scope (Id); Set_Inner_Instances (Id, New_Elmt_List); Set_Is_Pure (Id, Is_Pure (Current_Scope)); Analyze_Generic_Formal_Part (N); Formals := Parameter_Specifications (Spec); if Present (Formals) then Process_Formals (Id, Formals, Spec); end if; if Nkind (Spec) = N_Function_Specification then Set_Ekind (Id, E_Generic_Function); Find_Type (Subtype_Mark (Spec)); Set_Etype (Id, Entity (Subtype_Mark (Spec))); else Set_Ekind (Id, E_Generic_Procedure); Set_Etype (Id, Standard_Void_Type); end if; -- For a library unit, we have reconstructed the entity for the -- unit, and must reset it in the library tables. We also need -- to make sure that Body_Required is set properly in the original -- compilation unit node. if Nkind (Parent (N)) = N_Compilation_Unit then Set_Cunit_Entity (Current_Sem_Unit, Id); Set_Body_Required (Parent (N), Unit_Requires_Body (Id)); end if; Set_Categorization_From_Pragmas (N); Validate_Categorization_Dependency (N, Id); Save_Global_References (Original_Node (N)); End_Generic; End_Scope; end Analyze_Generic_Subprogram_Declaration; ----------------------------------- -- Analyze_Package_Instantiation -- ----------------------------------- -- Note: this procedure is also used for formal package declarations, -- in which case the argument N is an N_Formal_Package_Declaration -- node. This should really be noted in the spec! ??? procedure Analyze_Package_Instantiation (N : Node_Id) is Loc : constant Source_Ptr := Sloc (N); Gen_Id : constant Node_Id := Name (N); Act_Decl : Node_Id; Act_Decl_Name : Node_Id; Act_Decl_Id : Entity_Id; Act_Spec : Node_Id; Act_Tree : Node_Id; Gen_Decl : Node_Id; Gen_Unit : Entity_Id; Is_Actual_Pack : Boolean := Is_Internal (Defining_Entity (N)); Parent_Installed : Boolean := False; Renaming_List : List_Id; Unit_Renaming : Node_Id; Needs_Body : Boolean; Inline_Now : Boolean := False; procedure Delay_Descriptors (E : Entity_Id); -- Delay generation of subprogram descriptors for given entity function Might_Inline_Subp return Boolean; -- If inlining is active and the generic contains inlined subprograms, -- we instantiate the body. This may cause superfluous instantiations, -- but it is simpler than detecting the need for the body at the point -- of inlining, when the context of the instance is not available. ----------------------- -- Delay_Descriptors -- ----------------------- procedure Delay_Descriptors (E : Entity_Id) is begin if not Delay_Subprogram_Descriptors (E) then Set_Delay_Subprogram_Descriptors (E); Pending_Descriptor.Increment_Last; Pending_Descriptor.Table (Pending_Descriptor.Last) := E; end if; end Delay_Descriptors; ----------------------- -- Might_Inline_Subp -- ----------------------- function Might_Inline_Subp return Boolean is E : Entity_Id; begin if not Inline_Processing_Required then return False; else E := First_Entity (Gen_Unit); while Present (E) loop if Is_Subprogram (E) and then Is_Inlined (E) then return True; end if; Next_Entity (E); end loop; end if; return False; end Might_Inline_Subp; -- Start of processing for Analyze_Package_Instantiation begin -- Very first thing: apply the special kludge for Text_IO processing -- in case we are instantiating one of the children of [Wide_]Text_IO. Text_IO_Kludge (Name (N)); -- Make node global for error reporting. Instantiation_Node := N; -- Case of instantiation of a generic package if Nkind (N) = N_Package_Instantiation then Act_Decl_Id := New_Copy (Defining_Entity (N)); Set_Comes_From_Source (Act_Decl_Id, True); if Nkind (Defining_Unit_Name (N)) = N_Defining_Program_Unit_Name then Act_Decl_Name := Make_Defining_Program_Unit_Name (Loc, Name => New_Copy_Tree (Name (Defining_Unit_Name (N))), Defining_Identifier => Act_Decl_Id); else Act_Decl_Name := Act_Decl_Id; end if; -- Case of instantiation of a formal package else Act_Decl_Id := Defining_Identifier (N); Act_Decl_Name := Act_Decl_Id; end if; Generate_Definition (Act_Decl_Id); Pre_Analyze_Actuals (N); Check_Generic_Child_Unit (Gen_Id, Parent_Installed); Gen_Unit := Entity (Gen_Id); -- Verify that it is the name of a generic package if Etype (Gen_Unit) = Any_Type then return; elsif Ekind (Gen_Unit) /= E_Generic_Package then Error_Msg_N ("expect name of generic package in instantiation", Gen_Id); return; end if; if In_Extended_Main_Source_Unit (N) then Set_Is_Instantiated (Gen_Unit); Generate_Reference (Gen_Unit, N); if Present (Renamed_Object (Gen_Unit)) then Set_Is_Instantiated (Renamed_Object (Gen_Unit)); Generate_Reference (Renamed_Object (Gen_Unit), N); end if; end if; if Nkind (Gen_Id) = N_Identifier and then Chars (Gen_Unit) = Chars (Defining_Entity (N)) then Error_Msg_NE ("& is hidden within declaration of instance", Gen_Id, Gen_Unit); elsif Nkind (Gen_Id) = N_Expanded_Name and then Is_Child_Unit (Gen_Unit) and then Nkind (Prefix (Gen_Id)) = N_Identifier and then Chars (Act_Decl_Id) = Chars (Prefix (Gen_Id)) then Error_Msg_N ("& is hidden within declaration of instance ", Prefix (Gen_Id)); end if; -- If renaming, indicate this is an instantiation of renamed unit. if Present (Renamed_Object (Gen_Unit)) and then Ekind (Renamed_Object (Gen_Unit)) = E_Generic_Package then Gen_Unit := Renamed_Object (Gen_Unit); Set_Entity (Gen_Id, Gen_Unit); end if; -- Verify that there are no circular instantiations. if In_Open_Scopes (Gen_Unit) then Error_Msg_NE ("instantiation of & within itself", N, Gen_Unit); return; elsif Contains_Instance_Of (Gen_Unit, Current_Scope, Gen_Id) then Error_Msg_Node_2 := Current_Scope; Error_Msg_NE ("circular Instantiation: & instantiated in &!", N, Gen_Unit); Circularity_Detected := True; return; else Save_Env (Gen_Unit, Act_Decl_Id); Gen_Decl := Unit_Declaration_Node (Gen_Unit); -- Initialize renamings map, for error checking, and the list -- that holds private entities whose views have changed between -- generic definition and instantiation. If this is the instance -- created to validate an actual package, the instantiation -- environment is that of the enclosing instance. Generic_Renamings.Set_Last (0); Generic_Renamings_HTable.Reset; Create_Instantiation_Source (N, Gen_Unit, S_Adjustment); -- Copy original generic tree, to produce text for instantiation. Act_Tree := Copy_Generic_Node (Original_Node (Gen_Decl), Empty, Instantiating => True); Act_Spec := Specification (Act_Tree); -- If this is the instance created to validate an actual package, -- only the formals matter, do not examine the package spec itself. if Is_Actual_Pack then Set_Visible_Declarations (Act_Spec, New_List); Set_Private_Declarations (Act_Spec, New_List); end if; Renaming_List := Analyze_Associations (N, Generic_Formal_Declarations (Act_Tree), Generic_Formal_Declarations (Gen_Decl)); Set_Defining_Unit_Name (Act_Spec, Act_Decl_Name); Set_Is_Generic_Instance (Act_Decl_Id); Set_Generic_Parent (Act_Spec, Gen_Unit); -- References to the generic in its own declaration or its body -- are references to the instance. Add a renaming declaration for -- the generic unit itself. This declaration, as well as the renaming -- declarations for the generic formals, must remain private to the -- unit: the formals, because this is the language semantics, and -- the unit because its use is an artifact of the implementation. Unit_Renaming := Make_Package_Renaming_Declaration (Loc, Defining_Unit_Name => Make_Defining_Identifier (Loc, Chars (Gen_Unit)), Name => New_Reference_To (Act_Decl_Id, Loc)); Append (Unit_Renaming, Renaming_List); -- The renaming declarations are the first local declarations of -- the new unit. if Is_Non_Empty_List (Visible_Declarations (Act_Spec)) then Insert_List_Before (First (Visible_Declarations (Act_Spec)), Renaming_List); else Set_Visible_Declarations (Act_Spec, Renaming_List); end if; Act_Decl := Make_Package_Declaration (Loc, Specification => Act_Spec); -- Save the instantiation node, for subsequent instantiation -- of the body, if there is one and we are generating code for -- the current unit. Mark the unit as having a body, to avoid -- a premature error message. -- We instantiate the body if we are generating code, if we are -- generating cross-reference information, or if we are building -- trees for ASIS use. declare Enclosing_Body_Present : Boolean := False; Scop : Entity_Id; begin if Scope (Gen_Unit) /= Standard_Standard and then not Is_Child_Unit (Gen_Unit) then Scop := Scope (Gen_Unit); while Present (Scop) and then Scop /= Standard_Standard loop if Unit_Requires_Body (Scop) then Enclosing_Body_Present := True; exit; end if; Scop := Scope (Scop); end loop; end if; -- If front-end inlining is enabled, and this is a unit for which -- code will be generated, we instantiate the body at once. -- This is done if the instance is not the main unit, and if the -- generic is not a child unit, to avoid scope problems. if Front_End_Inlining and then Expander_Active and then not Is_Child_Unit (Gen_Unit) and then Is_In_Main_Unit (N) and then Nkind (Parent (N)) /= N_Compilation_Unit and then Might_Inline_Subp then Inline_Now := True; end if; Needs_Body := (Unit_Requires_Body (Gen_Unit) or else Enclosing_Body_Present or else Present (Corresponding_Body (Gen_Decl))) and then (Is_In_Main_Unit (N) or else Might_Inline_Subp) and then not Is_Actual_Pack and then not Inline_Now and then (Operating_Mode = Generate_Code or else (Operating_Mode = Check_Semantics and then Tree_Output)); -- If front_end_inlining is enabled, do not instantiate a -- body if within a generic context. if Front_End_Inlining and then not Expander_Active then Needs_Body := False; end if; end; -- If we are generating the calling stubs from the instantiation -- of a generic RCI package, we will not use the body of the -- generic package. if Distribution_Stub_Mode = Generate_Caller_Stub_Body and then Is_Compilation_Unit (Defining_Entity (N)) then Needs_Body := False; end if; if Needs_Body then -- Here is a defence against a ludicrous number of instantiations -- caused by a circular set of instantiation attempts. if Pending_Instantiations.Last > Hostparm.Max_Instantiations then Error_Msg_N ("too many instantiations", N); raise Unrecoverable_Error; end if; -- Indicate that the enclosing scopes contain an instantiation, -- and that cleanup actions should be delayed until after the -- instance body is expanded. Check_Forward_Instantiation (N, Gen_Decl); if Nkind (N) = N_Package_Instantiation then declare Enclosing_Master : Entity_Id := Current_Scope; begin while Enclosing_Master /= Standard_Standard loop if Ekind (Enclosing_Master) = E_Package then if Is_Compilation_Unit (Enclosing_Master) then if In_Package_Body (Enclosing_Master) then Delay_Descriptors (Body_Entity (Enclosing_Master)); else Delay_Descriptors (Enclosing_Master); end if; exit; else Enclosing_Master := Scope (Enclosing_Master); end if; elsif Ekind (Enclosing_Master) = E_Generic_Package then Enclosing_Master := Scope (Enclosing_Master); elsif Ekind (Enclosing_Master) = E_Generic_Function or else Ekind (Enclosing_Master) = E_Generic_Procedure or else Ekind (Enclosing_Master) = E_Void then -- Cleanup actions will eventually be performed on -- the enclosing instance, if any. enclosing scope -- is void in the formal part of a generic subp. exit; else if Ekind (Enclosing_Master) = E_Entry and then Ekind (Scope (Enclosing_Master)) = E_Protected_Type then Enclosing_Master := Protected_Body_Subprogram (Enclosing_Master); end if; Set_Delay_Cleanups (Enclosing_Master); while Ekind (Enclosing_Master) = E_Block loop Enclosing_Master := Scope (Enclosing_Master); end loop; if Is_Subprogram (Enclosing_Master) then Delay_Descriptors (Enclosing_Master); elsif Is_Task_Type (Enclosing_Master) then declare TBP : constant Node_Id := Get_Task_Body_Procedure (Enclosing_Master); begin if Present (TBP) then Delay_Descriptors (TBP); Set_Delay_Cleanups (TBP); end if; end; end if; exit; end if; end loop; end; -- Make entry in table Pending_Instantiations.Increment_Last; Pending_Instantiations.Table (Pending_Instantiations.Last) := (N, Act_Decl, Expander_Active, Current_Sem_Unit); end if; end if; Set_Categorization_From_Pragmas (Act_Decl); if Parent_Installed then Hide_Current_Scope; end if; Set_Instance_Spec (N, Act_Decl); -- Case of not a compilation unit if Nkind (Parent (N)) /= N_Compilation_Unit then Mark_Rewrite_Insertion (Act_Decl); Insert_Before (N, Act_Decl); Analyze (Act_Decl); -- Case of compilation unit that is generic instantiation -- Place declaration on current node so context is complete -- for analysis (including nested instantiations). else if Cunit_Entity (Current_Sem_Unit) = Defining_Entity (N) then -- The entity for the current unit is the newly created one, -- and all semantic information is attached to it. Set_Cunit_Entity (Current_Sem_Unit, Act_Decl_Id); -- If this is the main unit, replace the main entity as well. if Current_Sem_Unit = Main_Unit then Main_Unit_Entity := Act_Decl_Id; end if; end if; Set_Unit (Parent (N), Act_Decl); Set_Parent_Spec (Act_Decl, Parent_Spec (N)); Analyze (Act_Decl); Set_Unit (Parent (N), N); Set_Body_Required (Parent (N), False); -- We never need elaboration checks on instantiations, since -- by definition, the body instantiation is elaborated at the -- same time as the spec instantiation. Set_Suppress_Elaboration_Warnings (Act_Decl_Id); Set_Suppress_Elaboration_Checks (Act_Decl_Id); end if; Check_Elab_Instantiation (N); if ABE_Is_Certain (N) and then Needs_Body then Pending_Instantiations.Decrement_Last; end if; Check_Hidden_Child_Unit (N, Gen_Unit, Act_Decl_Id); Set_First_Private_Entity (Defining_Unit_Name (Unit_Renaming), First_Private_Entity (Act_Decl_Id)); if Nkind (Parent (N)) = N_Compilation_Unit and then not Needs_Body then Rewrite (N, Act_Decl); end if; if Present (Corresponding_Body (Gen_Decl)) or else Unit_Requires_Body (Gen_Unit) then Set_Has_Completion (Act_Decl_Id); end if; Check_Formal_Packages (Act_Decl_Id); Restore_Private_Views (Act_Decl_Id); if not Generic_Separately_Compiled (Gen_Unit) then Inherit_Context (Gen_Decl, N); end if; if Parent_Installed then Remove_Parent; end if; Restore_Env; end if; Validate_Categorization_Dependency (N, Act_Decl_Id); -- Check restriction, but skip this if something went wrong in -- the above analysis, indicated by Act_Decl_Id being void. if Ekind (Act_Decl_Id) /= E_Void and then not Is_Library_Level_Entity (Act_Decl_Id) then Check_Restriction (No_Local_Allocators, N); end if; if Inline_Now then Inline_Instance_Body (N, Gen_Unit, Act_Decl); end if; exception when Instantiation_Error => if Parent_Installed then Remove_Parent; end if; end Analyze_Package_Instantiation; --------------------------- -- Inline_Instance_Body -- --------------------------- procedure Inline_Instance_Body (N : Node_Id; Gen_Unit : Entity_Id; Act_Decl : Node_Id) is Vis : Boolean; Gen_Comp : constant Entity_Id := Cunit_Entity (Get_Source_Unit (Gen_Unit)); Curr_Comp : constant Node_Id := Cunit (Current_Sem_Unit); Curr_Scope : Entity_Id := Empty; Curr_Unit : constant Entity_Id := Cunit_Entity (Current_Sem_Unit); Removed : Boolean := False; Num_Scopes : Int := 0; Use_Clauses : array (1 .. Scope_Stack.Last) of Node_Id; Instances : array (1 .. Scope_Stack.Last) of Entity_Id; Inner_Scopes : array (1 .. Scope_Stack.Last) of Entity_Id; Num_Inner : Int := 0; N_Instances : Int := 0; S : Entity_Id; begin -- Case of generic unit defined in another unit if Gen_Comp /= Cunit_Entity (Current_Sem_Unit) then Vis := Is_Immediately_Visible (Gen_Comp); S := Current_Scope; while Present (S) and then S /= Standard_Standard loop Num_Scopes := Num_Scopes + 1; Use_Clauses (Num_Scopes) := (Scope_Stack.Table (Scope_Stack.Last - Num_Scopes + 1). First_Use_Clause); End_Use_Clauses (Use_Clauses (Num_Scopes)); exit when Is_Generic_Instance (S) and then (In_Package_Body (S) or else Ekind (S) = E_Procedure or else Ekind (S) = E_Function); S := Scope (S); end loop; -- Find and save all enclosing instances. S := Current_Scope; while Present (S) and then S /= Standard_Standard loop if Is_Generic_Instance (S) then N_Instances := N_Instances + 1; Instances (N_Instances) := S; end if; S := Scope (S); end loop; -- Remove context of current compilation unit, unless we -- are within a nested package instantiation, in which case -- the context has been removed previously. -- If current scope is the body of a child unit, remove context -- of spec as well. S := Current_Scope; while Present (S) and then S /= Standard_Standard loop exit when Is_Generic_Instance (S) and then In_Package_Body (S); if S = Curr_Unit or else (Ekind (Curr_Unit) = E_Package_Body and then S = Spec_Entity (Curr_Unit)) then Removed := True; if Is_Child_Unit (S) then -- Remove child unit from stack, as well as inner scopes. -- Removing its context of child unit will remove parent -- units as well. while Current_Scope /= S loop Num_Inner := Num_Inner + 1; Inner_Scopes (Num_Inner) := Current_Scope; Pop_Scope; end loop; Pop_Scope; Remove_Context (Curr_Comp); Curr_Scope := S; else Remove_Context (Curr_Comp); end if; if Ekind (Curr_Unit) = E_Package_Body then Remove_Context (Library_Unit (Curr_Comp)); end if; end if; S := Scope (S); end loop; Instantiate_Package_Body ((N, Act_Decl, Expander_Active, Current_Sem_Unit)); -- Restore context. Set_Is_Immediately_Visible (Gen_Comp, Vis); -- Reset Generic_Instance flag so that use clauses can be installed -- in the proper order. (See Use_One_Package for effect of enclosing -- instances on processing of use clauses). for J in 1 .. N_Instances loop Set_Is_Generic_Instance (Instances (J), False); end loop; if Removed then -- Make local entities not visible, so that when the context of -- unit is restored, there are not spurious hidings of use- -- visible entities (which appear in the environment before the -- current scope). if Current_Scope /= Standard_Standard then S := First_Entity (Current_Scope); while Present (S) loop if Is_Overloadable (S) then Set_Is_Immediately_Visible (S, False); end if; Next_Entity (S); end loop; end if; Install_Context (Curr_Comp); if Current_Scope /= Standard_Standard then S := First_Entity (Current_Scope); while Present (S) loop if Is_Overloadable (S) then Set_Is_Immediately_Visible (S); end if; Next_Entity (S); end loop; end if; if Present (Curr_Scope) and then Is_Child_Unit (Curr_Scope) then New_Scope (Curr_Scope); Set_Is_Immediately_Visible (Curr_Scope); -- Finally, restore inner scopes as well. for J in reverse 1 .. Num_Inner loop New_Scope (Inner_Scopes (J)); end loop; end if; end if; for J in reverse 1 .. Num_Scopes loop Install_Use_Clauses (Use_Clauses (J)); end loop; for J in 1 .. N_Instances loop Set_Is_Generic_Instance (Instances (J), True); end loop; -- If generic unit is in current unit, current context is correct. else Instantiate_Package_Body ((N, Act_Decl, Expander_Active, Current_Sem_Unit)); end if; end Inline_Instance_Body; ------------------------------------- -- Analyze_Procedure_Instantiation -- ------------------------------------- procedure Analyze_Procedure_Instantiation (N : Node_Id) is begin Analyze_Subprogram_Instantiation (N, E_Procedure); end Analyze_Procedure_Instantiation; -------------------------------------- -- Analyze_Subprogram_Instantiation -- -------------------------------------- procedure Analyze_Subprogram_Instantiation (N : Node_Id; K : Entity_Kind) is Loc : constant Source_Ptr := Sloc (N); Gen_Id : constant Node_Id := Name (N); Act_Decl_Id : Entity_Id; Anon_Id : Entity_Id := Make_Defining_Identifier (Sloc (Defining_Entity (N)), New_External_Name (Chars (Defining_Entity (N)), 'R')); Act_Decl : Node_Id; Act_Spec : Node_Id; Act_Tree : Node_Id; Gen_Unit : Entity_Id; Gen_Decl : Node_Id; Pack_Id : Entity_Id; Parent_Installed : Boolean := False; Renaming_List : List_Id; Spec : Node_Id; procedure Analyze_Instance_And_Renamings; -- The instance must be analyzed in a context that includes the -- mappings of generic parameters into actuals. We create a package -- declaration for this purpose, and a subprogram with an internal -- name within the package. The subprogram instance is simply an -- alias for the internal subprogram, declared in the current scope. ------------------------------------ -- Analyze_Instance_And_Renamings -- ------------------------------------ procedure Analyze_Instance_And_Renamings is Def_Ent : constant Entity_Id := Defining_Entity (N); Pack_Decl : Node_Id; begin if Nkind (Parent (N)) = N_Compilation_Unit then -- For the case of a compilation unit, the container package -- has the same name as the instantiation, to insure that the -- binder calls the elaboration procedure with the right name. -- Copy the entity of the instance, which may have compilation -- level flags (eg. is_child_unit) set. Pack_Id := New_Copy (Def_Ent); else -- Otherwise we use the name of the instantiation concatenated -- with its source position to ensure uniqueness if there are -- several instantiations with the same name. Pack_Id := Make_Defining_Identifier (Loc, Chars => New_External_Name (Related_Id => Chars (Def_Ent), Suffix => "GP", Suffix_Index => Source_Offset (Sloc (Def_Ent)))); end if; Pack_Decl := Make_Package_Declaration (Loc, Specification => Make_Package_Specification (Loc, Defining_Unit_Name => Pack_Id, Visible_Declarations => Renaming_List, End_Label => Empty)); Set_Instance_Spec (N, Pack_Decl); Set_Is_Generic_Instance (Pack_Id); -- Case of not a compilation unit if Nkind (Parent (N)) /= N_Compilation_Unit then Mark_Rewrite_Insertion (Pack_Decl); Insert_Before (N, Pack_Decl); Set_Has_Completion (Pack_Id); -- Case of an instantiation that is a compilation unit -- Place declaration on current node so context is complete -- for analysis (including nested instantiations), and for -- use in a context_clause (see Analyze_With_Clause). else Set_Unit (Parent (N), Pack_Decl); Set_Parent_Spec (Pack_Decl, Parent_Spec (N)); end if; Analyze (Pack_Decl); Check_Formal_Packages (Pack_Id); Set_Is_Generic_Instance (Pack_Id, False); -- Body of the enclosing package is supplied when instantiating -- the subprogram body, after semantic analysis is completed. if Nkind (Parent (N)) = N_Compilation_Unit then -- Remove package itself from visibility, so it does not -- conflict with subprogram. Set_Name_Entity_Id (Chars (Pack_Id), Homonym (Pack_Id)); -- Set name and scope of internal subprogram so that the -- proper external name will be generated. The proper scope -- is the scope of the wrapper package. Set_Chars (Anon_Id, Chars (Defining_Entity (N))); Set_Scope (Anon_Id, Scope (Pack_Id)); end if; Set_Is_Generic_Instance (Anon_Id); Act_Decl_Id := New_Copy (Anon_Id); Set_Parent (Act_Decl_Id, Parent (Anon_Id)); Set_Chars (Act_Decl_Id, Chars (Defining_Entity (N))); Set_Sloc (Act_Decl_Id, Sloc (Defining_Entity (N))); Set_Comes_From_Source (Act_Decl_Id, True); -- The signature may involve types that are not frozen yet, but -- the subprogram will be frozen at the point the wrapper package -- is frozen, so it does not need its own freeze node. In fact, if -- one is created, it might conflict with the freezing actions from -- the wrapper package (see 7206-013). Set_Has_Delayed_Freeze (Anon_Id, False); -- If the instance is a child unit, mark the Id accordingly. Mark -- the anonymous entity as well, which is the real subprogram and -- which is used when the instance appears in a context clause. Set_Is_Child_Unit (Act_Decl_Id, Is_Child_Unit (Defining_Entity (N))); Set_Is_Child_Unit (Anon_Id, Is_Child_Unit (Defining_Entity (N))); New_Overloaded_Entity (Act_Decl_Id); Check_Eliminated (Act_Decl_Id); -- In compilation unit case, kill elaboration checks on the -- instantiation, since they are never needed -- the body is -- instantiated at the same point as the spec. if Nkind (Parent (N)) = N_Compilation_Unit then Set_Suppress_Elaboration_Warnings (Act_Decl_Id); Set_Suppress_Elaboration_Checks (Act_Decl_Id); Set_Is_Compilation_Unit (Anon_Id); Set_Cunit_Entity (Current_Sem_Unit, Pack_Id); end if; -- The instance is not a freezing point for the new subprogram. Set_Is_Frozen (Act_Decl_Id, False); if Nkind (Defining_Entity (N)) = N_Defining_Operator_Symbol then Valid_Operator_Definition (Act_Decl_Id); end if; Set_Alias (Act_Decl_Id, Anon_Id); Set_Parent (Act_Decl_Id, Parent (Anon_Id)); Set_Has_Completion (Act_Decl_Id); Set_Related_Instance (Pack_Id, Act_Decl_Id); if Nkind (Parent (N)) = N_Compilation_Unit then Set_Body_Required (Parent (N), False); end if; end Analyze_Instance_And_Renamings; -- Start of processing for Analyze_Subprogram_Instantiation begin -- Very first thing: apply the special kludge for Text_IO processing -- in case we are instantiating one of the children of [Wide_]Text_IO. -- Of course such an instantiation is bogus (these are packages, not -- subprograms), but we get a better error message if we do this. Text_IO_Kludge (Gen_Id); -- Make node global for error reporting. Instantiation_Node := N; Pre_Analyze_Actuals (N); Check_Generic_Child_Unit (Gen_Id, Parent_Installed); Gen_Unit := Entity (Gen_Id); Generate_Reference (Gen_Unit, Gen_Id); if Nkind (Gen_Id) = N_Identifier and then Chars (Gen_Unit) = Chars (Defining_Entity (N)) then Error_Msg_NE ("& is hidden within declaration of instance", Gen_Id, Gen_Unit); end if; if Etype (Gen_Unit) = Any_Type then return; end if; -- Verify that it is a generic subprogram of the right kind, and that -- it does not lead to a circular instantiation. if Ekind (Gen_Unit) /= E_Generic_Procedure and then Ekind (Gen_Unit) /= E_Generic_Function then Error_Msg_N ("expect generic subprogram in instantiation", Gen_Id); elsif In_Open_Scopes (Gen_Unit) then Error_Msg_NE ("instantiation of & within itself", N, Gen_Unit); elsif Contains_Instance_Of (Gen_Unit, Current_Scope, Gen_Id) then Error_Msg_Node_2 := Current_Scope; Error_Msg_NE ("circular Instantiation: & instantiated in &!", N, Gen_Unit); Circularity_Detected := True; elsif K = E_Procedure and then Ekind (Gen_Unit) /= E_Generic_Procedure then if Ekind (Gen_Unit) = E_Generic_Function then Error_Msg_N ("cannot instantiate generic function as procedure", Gen_Id); else Error_Msg_N ("expect name of generic procedure in instantiation", Gen_Id); end if; elsif K = E_Function and then Ekind (Gen_Unit) /= E_Generic_Function then if Ekind (Gen_Unit) = E_Generic_Procedure then Error_Msg_N ("cannot instantiate generic procedure as function", Gen_Id); else Error_Msg_N ("expect name of generic function in instantiation", Gen_Id); end if; else -- If renaming, indicate that this is instantiation of renamed unit if Present (Renamed_Object (Gen_Unit)) and then (Ekind (Renamed_Object (Gen_Unit)) = E_Generic_Procedure or else Ekind (Renamed_Object (Gen_Unit)) = E_Generic_Function) then Gen_Unit := Renamed_Object (Gen_Unit); Set_Entity (Gen_Id, Gen_Unit); end if; if In_Extended_Main_Source_Unit (N) then Set_Is_Instantiated (Gen_Unit); Generate_Reference (Gen_Unit, N); end if; Gen_Decl := Unit_Declaration_Node (Gen_Unit); Spec := Specification (Gen_Decl); -- The subprogram itself cannot contain a nested instance, so -- the current parent is left empty. Save_Env (Gen_Unit, Empty); -- Initialize renamings map, for error checking. Generic_Renamings.Set_Last (0); Generic_Renamings_HTable.Reset; Create_Instantiation_Source (N, Gen_Unit, S_Adjustment); -- Copy original generic tree, to produce text for instantiation. Act_Tree := Copy_Generic_Node (Original_Node (Gen_Decl), Empty, Instantiating => True); Act_Spec := Specification (Act_Tree); Renaming_List := Analyze_Associations (N, Generic_Formal_Declarations (Act_Tree), Generic_Formal_Declarations (Gen_Decl)); -- Build the subprogram declaration, which does not appear -- in the generic template, and give it a sloc consistent -- with that of the template. Set_Defining_Unit_Name (Act_Spec, Anon_Id); Set_Generic_Parent (Act_Spec, Gen_Unit); Act_Decl := Make_Subprogram_Declaration (Sloc (Act_Spec), Specification => Act_Spec); Set_Categorization_From_Pragmas (Act_Decl); if Parent_Installed then Hide_Current_Scope; end if; Append (Act_Decl, Renaming_List); Analyze_Instance_And_Renamings; -- If the generic is marked Import (Intrinsic), then so is the -- instance. This indicates that there is no body to instantiate. -- If generic is marked inline, so it the instance, and the -- anonymous subprogram it renames. If inlined, or else if inlining -- is enabled for the compilation, we generate the instance body -- even if it is not within the main unit. -- Any other pragmas might also be inherited ??? if Is_Intrinsic_Subprogram (Gen_Unit) then Set_Is_Intrinsic_Subprogram (Anon_Id); Set_Is_Intrinsic_Subprogram (Act_Decl_Id); if Chars (Gen_Unit) = Name_Unchecked_Conversion then Validate_Unchecked_Conversion (N, Act_Decl_Id); end if; end if; Generate_Definition (Act_Decl_Id); Set_Is_Inlined (Act_Decl_Id, Is_Inlined (Gen_Unit)); Set_Is_Inlined (Anon_Id, Is_Inlined (Gen_Unit)); Check_Elab_Instantiation (N); Check_Hidden_Child_Unit (N, Gen_Unit, Act_Decl_Id); -- Subject to change, pending on if other pragmas are inherited ??? Validate_Categorization_Dependency (N, Act_Decl_Id); if not Is_Intrinsic_Subprogram (Act_Decl_Id) then if not Generic_Separately_Compiled (Gen_Unit) then Inherit_Context (Gen_Decl, N); end if; Restore_Private_Views (Pack_Id, False); -- If the context requires a full instantiation, mark node for -- subsequent construction of the body. if (Is_In_Main_Unit (N) or else Is_Inlined (Act_Decl_Id)) and then (Operating_Mode = Generate_Code or else (Operating_Mode = Check_Semantics and then Tree_Output)) and then (Expander_Active or else Tree_Output) and then not ABE_Is_Certain (N) and then not Is_Eliminated (Act_Decl_Id) then Pending_Instantiations.Increment_Last; Pending_Instantiations.Table (Pending_Instantiations.Last) := (N, Act_Decl, Expander_Active, Current_Sem_Unit); Check_Forward_Instantiation (N, Gen_Decl); -- The wrapper package is always delayed, because it does -- not constitute a freeze point, but to insure that the -- freeze node is placed properly, it is created directly -- when instantiating the body (otherwise the freeze node -- might appear to early for nested instantiations). elsif Nkind (Parent (N)) = N_Compilation_Unit then -- For ASIS purposes, indicate that the wrapper package has -- replaced the instantiation node. Rewrite (N, Unit (Parent (N))); Set_Unit (Parent (N), N); end if; elsif Nkind (Parent (N)) = N_Compilation_Unit then -- Replace instance node for library-level instantiations -- of intrinsic subprograms, for ASIS use. Rewrite (N, Unit (Parent (N))); Set_Unit (Parent (N), N); end if; if Parent_Installed then Remove_Parent; end if; Restore_Env; Generic_Renamings.Set_Last (0); Generic_Renamings_HTable.Reset; end if; exception when Instantiation_Error => if Parent_Installed then Remove_Parent; end if; end Analyze_Subprogram_Instantiation; --------------------- -- Associated_Node -- --------------------- function Associated_Node (N : Node_Id) return Node_Id is Assoc : Node_Id := Node4 (N); -- ??? what is Node4 being used for here? begin if Nkind (Assoc) /= Nkind (N) then return Assoc; elsif Nkind (Assoc) = N_Aggregate or else Nkind (Assoc) = N_Extension_Aggregate then return Assoc; else -- If the node is part of an inner generic, it may itself have been -- remapped into a further generic copy. Node4 is otherwise used for -- the entity of the node, and will be of a different node kind, or -- else N has been rewritten as a literal or function call. while Present (Node4 (Assoc)) and then Nkind (Node4 (Assoc)) = Nkind (Assoc) loop Assoc := Node4 (Assoc); end loop; -- Follow and additional link in case the final node was rewritten. -- This can only happen with nested generic units. if (Nkind (Assoc) = N_Identifier or else Nkind (Assoc) in N_Op) and then Present (Node4 (Assoc)) and then (Nkind (Node4 (Assoc)) = N_Function_Call or else Nkind (Node4 (Assoc)) = N_Explicit_Dereference or else Nkind (Node4 (Assoc)) = N_Integer_Literal or else Nkind (Node4 (Assoc)) = N_Real_Literal or else Nkind (Node4 (Assoc)) = N_String_Literal) then Assoc := Node4 (Assoc); end if; return Assoc; end if; end Associated_Node; ------------------------------------------- -- Build_Instance_Compilation_Unit_Nodes -- ------------------------------------------- procedure Build_Instance_Compilation_Unit_Nodes (N : Node_Id; Act_Body : Node_Id; Act_Decl : Node_Id) is Decl_Cunit : Node_Id; Body_Cunit : Node_Id; Citem : Node_Id; New_Main : constant Entity_Id := Defining_Entity (Act_Decl); Old_Main : constant Entity_Id := Cunit_Entity (Main_Unit); begin -- A new compilation unit node is built for the instance declaration Decl_Cunit := Make_Compilation_Unit (Sloc (N), Context_Items => Empty_List, Unit => Act_Decl, Aux_Decls_Node => Make_Compilation_Unit_Aux (Sloc (N))); Set_Parent_Spec (Act_Decl, Parent_Spec (N)); Set_Body_Required (Decl_Cunit, True); -- We use the original instantiation compilation unit as the resulting -- compilation unit of the instance, since this is the main unit. Rewrite (N, Act_Body); Body_Cunit := Parent (N); -- The two compilation unit nodes are linked by the Library_Unit field Set_Library_Unit (Decl_Cunit, Body_Cunit); Set_Library_Unit (Body_Cunit, Decl_Cunit); -- The context clause items on the instantiation, which are now -- attached to the body compilation unit (since the body overwrote -- the original instantiation node), semantically belong on the spec, -- so copy them there. It's harmless to leave them on the body as well. -- In fact one could argue that they belong in both places. Citem := First (Context_Items (Body_Cunit)); while Present (Citem) loop Append (New_Copy (Citem), Context_Items (Decl_Cunit)); Next (Citem); end loop; -- Propagate categorization flags on packages, so that they appear -- in ali file for the spec of the unit. if Ekind (New_Main) = E_Package then Set_Is_Pure (Old_Main, Is_Pure (New_Main)); Set_Is_Preelaborated (Old_Main, Is_Preelaborated (New_Main)); Set_Is_Remote_Types (Old_Main, Is_Remote_Types (New_Main)); Set_Is_Shared_Passive (Old_Main, Is_Shared_Passive (New_Main)); Set_Is_Remote_Call_Interface (Old_Main, Is_Remote_Call_Interface (New_Main)); end if; -- Make entry in Units table, so that binder can generate call to -- elaboration procedure for body, if any. Make_Instance_Unit (Body_Cunit); Main_Unit_Entity := New_Main; Set_Cunit_Entity (Main_Unit, Main_Unit_Entity); -- Build elaboration entity, since the instance may certainly -- generate elaboration code requiring a flag for protection. Build_Elaboration_Entity (Decl_Cunit, New_Main); end Build_Instance_Compilation_Unit_Nodes; ----------------------------------- -- Check_Formal_Package_Instance -- ----------------------------------- -- If the formal has specific parameters, they must match those of the -- actual. Both of them are instances, and the renaming declarations -- for their formal parameters appear in the same order in both. The -- analyzed formal has been analyzed in the context of the current -- instance. procedure Check_Formal_Package_Instance (Formal_Pack : Entity_Id; Actual_Pack : Entity_Id) is E1 : Entity_Id := First_Entity (Actual_Pack); E2 : Entity_Id := First_Entity (Formal_Pack); Expr1 : Node_Id; Expr2 : Node_Id; procedure Check_Mismatch (B : Boolean); -- Common error routine for mismatch between the parameters of -- the actual instance and those of the formal package. procedure Check_Mismatch (B : Boolean) is begin if B then Error_Msg_NE ("actual for & in actual instance does not match formal", Parent (Actual_Pack), E1); end if; end Check_Mismatch; -- Start of processing for Check_Formal_Package_Instance begin while Present (E1) and then Present (E2) loop exit when Ekind (E1) = E_Package and then Renamed_Entity (E1) = Renamed_Entity (Actual_Pack); if Is_Type (E1) then -- Subtypes must statically match. E1 and E2 are the -- local entities that are subtypes of the actuals. -- Itypes generated for other parameters need not be checked, -- the check will be performed on the parameters themselves. if not Is_Itype (E1) and then not Is_Itype (E2) then Check_Mismatch (not Is_Type (E2) or else Etype (E1) /= Etype (E2) or else not Subtypes_Statically_Match (E1, E2)); end if; elsif Ekind (E1) = E_Constant then -- IN parameters must denote the same static value, or -- the same constant, or the literal null. Expr1 := Expression (Parent (E1)); if Ekind (E2) /= E_Constant then Check_Mismatch (True); goto Next_E; else Expr2 := Expression (Parent (E2)); end if; if Is_Static_Expression (Expr1) then if not Is_Static_Expression (Expr2) then Check_Mismatch (True); elsif Is_Integer_Type (Etype (E1)) then declare V1 : Uint := Expr_Value (Expr1); V2 : Uint := Expr_Value (Expr2); begin Check_Mismatch (V1 /= V2); end; elsif Is_Real_Type (Etype (E1)) then declare V1 : Ureal := Expr_Value_R (Expr1); V2 : Ureal := Expr_Value_R (Expr2); begin Check_Mismatch (V1 /= V2); end; elsif Is_String_Type (Etype (E1)) and then Nkind (Expr1) = N_String_Literal then if Nkind (Expr2) /= N_String_Literal then Check_Mismatch (True); else Check_Mismatch (not String_Equal (Strval (Expr1), Strval (Expr2))); end if; end if; elsif Is_Entity_Name (Expr1) then if Is_Entity_Name (Expr2) then if Entity (Expr1) = Entity (Expr2) then null; elsif Ekind (Entity (Expr2)) = E_Constant and then Is_Entity_Name (Constant_Value (Entity (Expr2))) and then Entity (Constant_Value (Entity (Expr2))) = Entity (Expr1) then null; else Check_Mismatch (True); end if; else Check_Mismatch (True); end if; elsif Nkind (Expr1) = N_Null then Check_Mismatch (Nkind (Expr1) /= N_Null); else Check_Mismatch (True); end if; elsif Ekind (E1) = E_Variable or else Ekind (E1) = E_Package then Check_Mismatch (Ekind (E1) /= Ekind (E2) or else Renamed_Object (E1) /= Renamed_Object (E2)); elsif Is_Overloadable (E1) then -- Verify that the names of the entities match. -- What if actual is an attribute ??? Check_Mismatch (Ekind (E2) /= Ekind (E1) or else (Alias (E1)) /= Alias (E2)); else raise Program_Error; end if; <> Next_Entity (E1); Next_Entity (E2); end loop; end Check_Formal_Package_Instance; --------------------------- -- Check_Formal_Packages -- --------------------------- procedure Check_Formal_Packages (P_Id : Entity_Id) is E : Entity_Id; Formal_P : Entity_Id; begin -- Iterate through the declarations in the instance, looking for -- package renaming declarations that denote instances of formal -- packages. Stop when we find the renaming of the current package -- itself. The declaration for a formal package without a box is -- followed by an internal entity that repeats the instantiation. E := First_Entity (P_Id); while Present (E) loop if Ekind (E) = E_Package then if Renamed_Object (E) = P_Id then exit; elsif Nkind (Parent (E)) /= N_Package_Renaming_Declaration then null; elsif not Box_Present (Parent (Associated_Formal_Package (E))) then Formal_P := Next_Entity (E); Check_Formal_Package_Instance (Formal_P, E); end if; end if; Next_Entity (E); end loop; end Check_Formal_Packages; --------------------------------- -- Check_Forward_Instantiation -- --------------------------------- procedure Check_Forward_Instantiation (N : Node_Id; Decl : Node_Id) is S : Entity_Id; Gen_Comp : Entity_Id := Cunit_Entity (Get_Source_Unit (Decl)); begin -- The instantiation appears before the generic body if we are in the -- scope of the unit containing the generic, either in its spec or in -- the package body. and before the generic body. if Ekind (Gen_Comp) = E_Package_Body then Gen_Comp := Spec_Entity (Gen_Comp); end if; if In_Open_Scopes (Gen_Comp) and then No (Corresponding_Body (Decl)) then S := Current_Scope; while Present (S) and then not Is_Compilation_Unit (S) and then not Is_Child_Unit (S) loop if Ekind (S) = E_Package then Set_Has_Forward_Instantiation (S); end if; S := Scope (S); end loop; end if; end Check_Forward_Instantiation; --------------------------- -- Check_Generic_Actuals -- --------------------------- -- The visibility of the actuals may be different between the -- point of generic instantiation and the instantiation of the body. procedure Check_Generic_Actuals (Instance : Entity_Id; Is_Formal_Box : Boolean) is E : Entity_Id; Astype : Entity_Id; begin E := First_Entity (Instance); while Present (E) loop if Is_Type (E) and then Nkind (Parent (E)) = N_Subtype_Declaration and then Scope (Etype (E)) /= Instance and then Is_Entity_Name (Subtype_Indication (Parent (E))) then Check_Private_View (Subtype_Indication (Parent (E))); Set_Is_Generic_Actual_Type (E, True); Set_Is_Hidden (E, False); -- We constructed the generic actual type as a subtype of -- the supplied type. This means that it normally would not -- inherit subtype specific attributes of the actual, which -- is wrong for the generic case. Astype := Ancestor_Subtype (E); if No (Astype) then -- can happen when E is an itype that is the full view of -- a private type completed, e.g. with a constrained array. Astype := Base_Type (E); end if; Set_Size_Info (E, (Astype)); Set_RM_Size (E, RM_Size (Astype)); Set_First_Rep_Item (E, First_Rep_Item (Astype)); if Is_Discrete_Or_Fixed_Point_Type (E) then Set_RM_Size (E, RM_Size (Astype)); -- In nested instances, the base type of an access actual -- may itself be private, and need to be exchanged. elsif Is_Access_Type (E) and then Is_Private_Type (Etype (E)) then Check_Private_View (New_Occurrence_Of (Etype (E), Sloc (Instance))); end if; elsif Ekind (E) = E_Package then -- If this is the renaming for the current instance, we're done. -- Otherwise it is a formal package. If the corresponding formal -- was declared with a box, the (instantiations of the) generic -- formal part are also visible. Otherwise, ignore the entity -- created to validate the actuals. if Renamed_Object (E) = Instance then exit; elsif Nkind (Parent (E)) /= N_Package_Renaming_Declaration then null; -- The visibility of a formal of an enclosing generic is already -- correct. elsif Denotes_Formal_Package (E) then null; elsif Present (Associated_Formal_Package (E)) and then Box_Present (Parent (Associated_Formal_Package (E))) then Check_Generic_Actuals (Renamed_Object (E), True); Set_Is_Hidden (E, False); end if; else Set_Is_Hidden (E, not Is_Formal_Box); end if; Next_Entity (E); end loop; end Check_Generic_Actuals; ------------------------------ -- Check_Generic_Child_Unit -- ------------------------------ procedure Check_Generic_Child_Unit (Gen_Id : Node_Id; Parent_Installed : in out Boolean) is Loc : constant Source_Ptr := Sloc (Gen_Id); Gen_Par : Entity_Id := Empty; Inst_Par : Entity_Id; E : Entity_Id; S : Node_Id; function Find_Generic_Child (Scop : Entity_Id; Id : Node_Id) return Entity_Id; -- Search generic parent for possible child unit. function In_Enclosing_Instance return Boolean; -- Within an instance of the parent, the child unit may be denoted -- by a simple name. Examine enclosing scopes to locate a possible -- parent instantiation. function Find_Generic_Child (Scop : Entity_Id; Id : Node_Id) return Entity_Id is E : Entity_Id; begin -- If entity of name is already set, instance has already been -- resolved, e.g. in an enclosing instantiation. if Present (Entity (Id)) then if Scope (Entity (Id)) = Scop then return Entity (Id); else return Empty; end if; else E := First_Entity (Scop); while Present (E) loop if Chars (E) = Chars (Id) and then Is_Child_Unit (E) then if Is_Child_Unit (E) and then not Is_Visible_Child_Unit (E) then Error_Msg_NE ("generic child unit& is not visible", Gen_Id, E); end if; Set_Entity (Id, E); return E; end if; Next_Entity (E); end loop; return Empty; end if; end Find_Generic_Child; function In_Enclosing_Instance return Boolean is Enclosing_Instance : Node_Id; begin Enclosing_Instance := Current_Scope; while Present (Enclosing_Instance) loop exit when Ekind (Enclosing_Instance) = E_Package and then Nkind (Parent (Enclosing_Instance)) = N_Package_Specification and then Present (Generic_Parent (Parent (Enclosing_Instance))); Enclosing_Instance := Scope (Enclosing_Instance); end loop; if Present (Enclosing_Instance) then E := Find_Generic_Child (Generic_Parent (Parent (Enclosing_Instance)), Gen_Id); else return False; end if; if Present (E) then Rewrite (Gen_Id, Make_Expanded_Name (Loc, Chars => Chars (E), Prefix => New_Occurrence_Of (Enclosing_Instance, Loc), Selector_Name => New_Occurrence_Of (E, Loc))); Set_Entity (Gen_Id, E); Set_Etype (Gen_Id, Etype (E)); Parent_Installed := False; -- Already in scope. return True; else Analyze (Gen_Id); return False; end if; end In_Enclosing_Instance; -- Start of processing for Check_Generic_Child_Unit begin -- If the name of the generic is given by a selected component, it -- may be the name of a generic child unit, and the prefix is the name -- of an instance of the parent, in which case the child unit must be -- visible. If this instance is not in scope, it must be placed there -- and removed after instantiation, because what is being instantiated -- is not the original child, but the corresponding child present in -- the instance of the parent. -- If the child is instantiated within the parent, it can be given by -- a simple name. In this case the instance is already in scope, but -- the child generic must be recovered from the generic parent as well. if Nkind (Gen_Id) = N_Selected_Component then S := Selector_Name (Gen_Id); Analyze (Prefix (Gen_Id)); Inst_Par := Entity (Prefix (Gen_Id)); if Ekind (Inst_Par) = E_Package and then Present (Renamed_Object (Inst_Par)) then Inst_Par := Renamed_Object (Inst_Par); end if; if Ekind (Inst_Par) = E_Package then if Nkind (Parent (Inst_Par)) = N_Package_Specification then Gen_Par := Generic_Parent (Parent (Inst_Par)); elsif Nkind (Parent (Inst_Par)) = N_Defining_Program_Unit_Name and then Nkind (Parent (Parent (Inst_Par))) = N_Package_Specification then Gen_Par := Generic_Parent (Parent (Parent (Inst_Par))); end if; elsif Ekind (Inst_Par) = E_Generic_Package and then Nkind (Parent (Gen_Id)) = N_Formal_Package_Declaration then -- A formal package may be a real child package, and not the -- implicit instance within a parent. In this case the child is -- not visible and has to be retrieved explicitly as well. Gen_Par := Inst_Par; end if; if Present (Gen_Par) then -- The prefix denotes an instantiation. The entity itself -- may be a nested generic, or a child unit. E := Find_Generic_Child (Gen_Par, S); if Present (E) then Change_Selected_Component_To_Expanded_Name (Gen_Id); Set_Entity (Gen_Id, E); Set_Etype (Gen_Id, Etype (E)); Set_Entity (S, E); Set_Etype (S, Etype (E)); -- Indicate that this is a reference to the parent. if In_Extended_Main_Source_Unit (Gen_Id) then Set_Is_Instantiated (Inst_Par); end if; -- A common mistake is to replicate the naming scheme of -- a hierarchy by instantiating a generic child directly, -- rather than the implicit child in a parent instance: -- -- generic .. package Gpar is .. -- generic .. package Gpar.Child is .. -- package Par is new Gpar (); -- with Gpar.Child; -- package Par.Child is new Gpar.Child (); -- rather than Par.Child -- -- In this case the instantiation is within Par, which is -- an instance, but Gpar does not denote Par because we are -- not IN the instance of Gpar, so this is illegal. The test -- below recognizes this particular case. if Is_Child_Unit (E) and then not Comes_From_Source (Entity (Prefix (Gen_Id))) and then (not In_Instance or else Nkind (Parent (Parent (Gen_Id))) = N_Compilation_Unit) then Error_Msg_N ("prefix of generic child unit must be instance of parent", Gen_Id); end if; if not In_Open_Scopes (Inst_Par) and then Nkind (Parent (Gen_Id)) not in N_Generic_Renaming_Declaration then Install_Parent (Inst_Par); Parent_Installed := True; end if; else -- If the generic parent does not contain an entity that -- corresponds to the selector, the instance doesn't either. -- Analyzing the node will yield the appropriate error message. -- If the entity is not a child unit, then it is an inner -- generic in the parent. Analyze (Gen_Id); end if; else Analyze (Gen_Id); if Is_Child_Unit (Entity (Gen_Id)) and then Nkind (Parent (Gen_Id)) not in N_Generic_Renaming_Declaration and then not In_Open_Scopes (Inst_Par) then Install_Parent (Inst_Par); Parent_Installed := True; end if; end if; elsif Nkind (Gen_Id) = N_Expanded_Name then -- Entity already present, analyze prefix, whose meaning may be -- an instance in the current context. If it is an instance of -- a relative within another, the proper parent may still have -- to be installed, if they are not of the same generation. Analyze (Prefix (Gen_Id)); Inst_Par := Entity (Prefix (Gen_Id)); if In_Enclosing_Instance then null; elsif Present (Entity (Gen_Id)) and then Is_Child_Unit (Entity (Gen_Id)) and then not In_Open_Scopes (Inst_Par) then Install_Parent (Inst_Par); Parent_Installed := True; end if; elsif In_Enclosing_Instance then -- The child unit is found in some enclosing scope. null; else Analyze (Gen_Id); -- If this is the renaming of the implicit child in a parent -- instance, recover the parent name and install it. if Is_Entity_Name (Gen_Id) then E := Entity (Gen_Id); if Is_Generic_Unit (E) and then Nkind (Parent (E)) in N_Generic_Renaming_Declaration and then Is_Child_Unit (Renamed_Object (E)) and then Is_Generic_Unit (Scope (Renamed_Object (E))) and then Nkind (Name (Parent (E))) = N_Expanded_Name then Rewrite (Gen_Id, New_Copy_Tree (Name (Parent (E)))); Inst_Par := Entity (Prefix (Gen_Id)); if not In_Open_Scopes (Inst_Par) then Install_Parent (Inst_Par); Parent_Installed := True; end if; -- If it is a child unit of a non-generic parent, it may be -- use-visible and given by a direct name. Install parent as -- for other cases. elsif Is_Generic_Unit (E) and then Is_Child_Unit (E) and then Nkind (Parent (Gen_Id)) not in N_Generic_Renaming_Declaration and then not Is_Generic_Unit (Scope (E)) then if not In_Open_Scopes (Scope (E)) then Install_Parent (Scope (E)); Parent_Installed := True; end if; end if; end if; end if; end Check_Generic_Child_Unit; ----------------------------- -- Check_Hidden_Child_Unit -- ----------------------------- procedure Check_Hidden_Child_Unit (N : Node_Id; Gen_Unit : Entity_Id; Act_Decl_Id : Entity_Id) is Gen_Id : Node_Id := Name (N); begin if Is_Child_Unit (Gen_Unit) and then Is_Child_Unit (Act_Decl_Id) and then Nkind (Gen_Id) = N_Expanded_Name and then Entity (Prefix (Gen_Id)) = Scope (Act_Decl_Id) and then Chars (Gen_Unit) = Chars (Act_Decl_Id) then Error_Msg_Node_2 := Scope (Act_Decl_Id); Error_Msg_NE ("generic unit & is implicitly declared in &", Defining_Unit_Name (N), Gen_Unit); Error_Msg_N ("\instance must have different name", Defining_Unit_Name (N)); end if; end Check_Hidden_Child_Unit; ------------------------ -- Check_Private_View -- ------------------------ procedure Check_Private_View (N : Node_Id) is T : constant Entity_Id := Etype (N); BT : Entity_Id; begin -- Exchange views if the type was not private in the generic but is -- private at the point of instantiation. Do not exchange views if -- the scope of the type is in scope. This can happen if both generic -- and instance are sibling units, or if type is defined in a parent. -- In this case the visibility of the type will be correct for all -- semantic checks. if Present (T) then BT := Base_Type (T); if Is_Private_Type (T) and then not Has_Private_View (N) and then Present (Full_View (T)) and then not In_Open_Scopes (Scope (T)) then -- In the generic, the full type was visible. Save the -- private entity, for subsequent exchange. Switch_View (T); elsif Has_Private_View (N) and then not Is_Private_Type (T) and then not Has_Been_Exchanged (T) and then Etype (Associated_Node (N)) /= T then -- Only the private declaration was visible in the generic. If -- the type appears in a subtype declaration, the subtype in the -- instance must have a view compatible with that of its parent, -- which must be exchanged (see corresponding code in Restore_ -- Private_Views). Otherwise, if the type is defined in a parent -- unit, leave full visibility within instance, which is safe. if In_Open_Scopes (Scope (Base_Type (T))) and then not Is_Private_Type (Base_Type (T)) and then Comes_From_Source (Base_Type (T)) then null; elsif Nkind (Parent (N)) = N_Subtype_Declaration or else not In_Private_Part (Scope (Base_Type (T))) then Append_Elmt (T, Exchanged_Views); Exchange_Declarations (Etype (Associated_Node (N))); end if; -- For composite types with inconsistent representation -- exchange component types accordingly. elsif Is_Access_Type (T) and then Is_Private_Type (Designated_Type (T)) and then Present (Full_View (Designated_Type (T))) then Switch_View (Designated_Type (T)); elsif Is_Array_Type (T) and then Is_Private_Type (Component_Type (T)) and then not Has_Private_View (N) and then Present (Full_View (Component_Type (T))) then Switch_View (Component_Type (T)); elsif Is_Private_Type (T) and then Present (Full_View (T)) and then Is_Array_Type (Full_View (T)) and then Is_Private_Type (Component_Type (Full_View (T))) then Switch_View (T); -- Finally, a non-private subtype may have a private base type, -- which must be exchanged for consistency. This can happen when -- instantiating a package body, when the scope stack is empty but -- in fact the subtype and the base type are declared in an enclosing -- scope. elsif not Is_Private_Type (T) and then not Has_Private_View (N) and then Is_Private_Type (Base_Type (T)) and then Present (Full_View (BT)) and then not Is_Generic_Type (BT) and then not In_Open_Scopes (BT) then Append_Elmt (Full_View (BT), Exchanged_Views); Exchange_Declarations (BT); end if; end if; end Check_Private_View; -------------------------- -- Contains_Instance_Of -- -------------------------- function Contains_Instance_Of (Inner : Entity_Id; Outer : Entity_Id; N : Node_Id) return Boolean is Elmt : Elmt_Id; Scop : Entity_Id; begin Scop := Outer; -- Verify that there are no circular instantiations. We check whether -- the unit contains an instance of the current scope or some enclosing -- scope (in case one of the instances appears in a subunit). Longer -- circularities involving subunits might seem too pathological to -- consider, but they were not too pathological for the authors of -- DEC bc30vsq, so we loop over all enclosing scopes, and mark all -- enclosing generic scopes as containing an instance. loop -- Within a generic subprogram body, the scope is not generic, to -- allow for recursive subprograms. Use the declaration to determine -- whether this is a generic unit. if Ekind (Scop) = E_Generic_Package or else (Is_Subprogram (Scop) and then Nkind (Unit_Declaration_Node (Scop)) = N_Generic_Subprogram_Declaration) then Elmt := First_Elmt (Inner_Instances (Inner)); while Present (Elmt) loop if Node (Elmt) = Scop then Error_Msg_Node_2 := Inner; Error_Msg_NE ("circular Instantiation: & instantiated within &!", N, Scop); return True; elsif Node (Elmt) = Inner then return True; elsif Contains_Instance_Of (Node (Elmt), Scop, N) then Error_Msg_Node_2 := Inner; Error_Msg_NE ("circular Instantiation: & instantiated within &!", N, Node (Elmt)); return True; end if; Next_Elmt (Elmt); end loop; -- Indicate that Inner is being instantiated within Scop. Append_Elmt (Inner, Inner_Instances (Scop)); end if; if Scop = Standard_Standard then exit; else Scop := Scope (Scop); end if; end loop; return False; end Contains_Instance_Of; ----------------------- -- Copy_Generic_Node -- ----------------------- function Copy_Generic_Node (N : Node_Id; Parent_Id : Node_Id; Instantiating : Boolean) return Node_Id is Ent : Entity_Id; New_N : Node_Id; function Copy_Generic_Descendant (D : Union_Id) return Union_Id; -- Check the given value of one of the Fields referenced by the -- current node to determine whether to copy it recursively. The -- field may hold a Node_Id, a List_Id, or an Elist_Id, or a plain -- value (Sloc, Uint, Char) in which case it need not be copied. function Copy_Generic_Elist (E : Elist_Id) return Elist_Id; -- Make copy of element list. function Copy_Generic_List (L : List_Id; Parent_Id : Node_Id) return List_Id; -- Apply Copy_Node recursively to the members of a node list. ----------------------------- -- Copy_Generic_Descendant -- ----------------------------- function Copy_Generic_Descendant (D : Union_Id) return Union_Id is begin if D = Union_Id (Empty) then return D; elsif D in Node_Range then return Union_Id (Copy_Generic_Node (Node_Id (D), New_N, Instantiating)); elsif D in List_Range then return Union_Id (Copy_Generic_List (List_Id (D), New_N)); elsif D in Elist_Range then return Union_Id (Copy_Generic_Elist (Elist_Id (D))); -- Nothing else is copyable (e.g. Uint values), return as is else return D; end if; end Copy_Generic_Descendant; ------------------------ -- Copy_Generic_Elist -- ------------------------ function Copy_Generic_Elist (E : Elist_Id) return Elist_Id is M : Elmt_Id; L : Elist_Id; begin if Present (E) then L := New_Elmt_List; M := First_Elmt (E); while Present (M) loop Append_Elmt (Copy_Generic_Node (Node (M), Empty, Instantiating), L); Next_Elmt (M); end loop; return L; else return No_Elist; end if; end Copy_Generic_Elist; ----------------------- -- Copy_Generic_List -- ----------------------- function Copy_Generic_List (L : List_Id; Parent_Id : Node_Id) return List_Id is N : Node_Id; New_L : List_Id; begin if Present (L) then New_L := New_List; Set_Parent (New_L, Parent_Id); N := First (L); while Present (N) loop Append (Copy_Generic_Node (N, Empty, Instantiating), New_L); Next (N); end loop; return New_L; else return No_List; end if; end Copy_Generic_List; -- Start of processing for Copy_Generic_Node begin if N = Empty then return N; end if; New_N := New_Copy (N); if Instantiating then Adjust_Instantiation_Sloc (New_N, S_Adjustment); end if; if not Is_List_Member (N) then Set_Parent (New_N, Parent_Id); end if; -- If defining identifier, then all fields have been copied already if Nkind (New_N) in N_Entity then null; -- Special casing for identifiers and other entity names and operators elsif (Nkind (New_N) = N_Identifier or else Nkind (New_N) = N_Character_Literal or else Nkind (New_N) = N_Expanded_Name or else Nkind (New_N) = N_Operator_Symbol or else Nkind (New_N) in N_Op) then if not Instantiating then -- Link both nodes in order to assign subsequently the -- entity of the copy to the original node, in case this -- is a global reference. Set_Associated_Node (N, New_N); -- If we are within an instantiation, this is a nested generic -- that has already been analyzed at the point of definition. We -- must preserve references that were global to the enclosing -- parent at that point. Other occurrences, whether global or -- local to the current generic, must be resolved anew, so we -- reset the entity in the generic copy. A global reference has -- a smaller depth than the parent, or else the same depth in -- case both are distinct compilation units. -- It is also possible for Current_Instantiated_Parent to be -- defined, and for this not to be a nested generic, namely -- if the unit is loaded through Rtsfind. In that case, the -- entity of New_N is only a link to the associated node, and -- not a defining occurrence. -- The entities for parent units in the defining_program_unit -- of a generic child unit are established when the context of -- the unit is first analyzed, before the generic copy is made. -- They are preserved in the copy for use in ASIS queries. Ent := Entity (New_N); if No (Current_Instantiated_Parent.Gen_Id) then if No (Ent) or else Nkind (Ent) /= N_Defining_Identifier or else Nkind (Parent (N)) /= N_Defining_Program_Unit_Name then Set_Associated_Node (New_N, Empty); end if; elsif No (Ent) or else not (Nkind (Ent) = N_Defining_Identifier or else Nkind (Ent) = N_Defining_Character_Literal or else Nkind (Ent) = N_Defining_Operator_Symbol) or else No (Scope (Ent)) or else Scope (Ent) = Current_Instantiated_Parent.Gen_Id or else (Scope_Depth (Scope (Ent)) > Scope_Depth (Current_Instantiated_Parent.Gen_Id) and then Get_Source_Unit (Ent) = Get_Source_Unit (Current_Instantiated_Parent.Gen_Id)) then Set_Associated_Node (New_N, Empty); end if; -- Case of instantiating identifier or some other name or operator else -- If the associated node is still defined, the entity in -- it is global, and must be copied to the instance. if Present (Associated_Node (N)) then if Nkind (Associated_Node (N)) = Nkind (N) then Set_Entity (New_N, Entity (Associated_Node (N))); Check_Private_View (N); elsif Nkind (Associated_Node (N)) = N_Function_Call then Set_Entity (New_N, Entity (Name (Associated_Node (N)))); else Set_Entity (New_N, Empty); end if; end if; end if; -- For expanded name, we must copy the Prefix and Selector_Name if Nkind (N) = N_Expanded_Name then Set_Prefix (New_N, Copy_Generic_Node (Prefix (N), New_N, Instantiating)); Set_Selector_Name (New_N, Copy_Generic_Node (Selector_Name (N), New_N, Instantiating)); -- For operators, we must copy the right operand elsif Nkind (N) in N_Op then Set_Right_Opnd (New_N, Copy_Generic_Node (Right_Opnd (N), New_N, Instantiating)); -- And for binary operators, the left operand as well if Nkind (N) in N_Binary_Op then Set_Left_Opnd (New_N, Copy_Generic_Node (Left_Opnd (N), New_N, Instantiating)); end if; end if; -- Special casing for stubs elsif Nkind (N) in N_Body_Stub then -- In any case, we must copy the specification or defining -- identifier as appropriate. if Nkind (N) = N_Subprogram_Body_Stub then Set_Specification (New_N, Copy_Generic_Node (Specification (N), New_N, Instantiating)); else Set_Defining_Identifier (New_N, Copy_Generic_Node (Defining_Identifier (N), New_N, Instantiating)); end if; -- If we are not instantiating, then this is where we load and -- analyze subunits, i.e. at the point where the stub occurs. A -- more permissivle system might defer this analysis to the point -- of instantiation, but this seems to complicated for now. if not Instantiating then declare Subunit_Name : constant Unit_Name_Type := Get_Unit_Name (N); Subunit : Node_Id; Unum : Unit_Number_Type; New_Body : Node_Id; begin Unum := Load_Unit (Load_Name => Subunit_Name, Required => False, Subunit => True, Error_Node => N); -- If the proper body is not found, a warning message will -- be emitted when analyzing the stub, or later at the the -- point of instantiation. Here we just leave the stub as is. if Unum = No_Unit then Subunits_Missing := True; goto Subunit_Not_Found; end if; Subunit := Cunit (Unum); -- We must create a generic copy of the subunit, in order -- to perform semantic analysis on it, and we must replace -- the stub in the original generic unit with the subunit, -- in order to preserve non-local references within. -- Only the proper body needs to be copied. Library_Unit and -- context clause are simply inherited by the generic copy. -- Note that the copy (which may be recursive if there are -- nested subunits) must be done first, before attaching it -- to the enclosing generic. New_Body := Copy_Generic_Node (Proper_Body (Unit (Subunit)), Empty, Instantiating => False); -- Now place the original proper body in the original -- generic unit. Rewrite (N, Proper_Body (Unit (Subunit))); Set_Was_Originally_Stub (N); -- Finally replace the body of the subunit with its copy, -- and make this new subunit into the library unit of the -- generic copy, which does not have stubs any longer. Set_Proper_Body (Unit (Subunit), New_Body); Set_Library_Unit (New_N, Subunit); Inherit_Context (Unit (Subunit), N); end; -- If we are instantiating, this must be an error case, since -- otherwise we would have replaced the stub node by the proper -- body that corresponds. So just ignore it in the copy (i.e. -- we have copied it, and that is good enough). else null; end if; <> null; -- If the node is a compilation unit, it is the subunit of a stub, -- which has been loaded already (see code below). In this case, -- the library unit field of N points to the parent unit (which -- is a compilation unit) and need not (and cannot!) be copied. -- When the proper body of the stub is analyzed, thie library_unit -- link is used to establish the proper context (see sem_ch10). -- The other fields of a compilation unit are copied as usual elsif Nkind (N) = N_Compilation_Unit then -- This code can only be executed when not instantiating, because -- in the copy made for an instantiation, the compilation unit -- node has disappeared at the point that a stub is replaced by -- its proper body. pragma Assert (not Instantiating); Set_Context_Items (New_N, Copy_Generic_List (Context_Items (N), New_N)); Set_Unit (New_N, Copy_Generic_Node (Unit (N), New_N, False)); Set_First_Inlined_Subprogram (New_N, Copy_Generic_Node (First_Inlined_Subprogram (N), New_N, False)); Set_Aux_Decls_Node (New_N, Copy_Generic_Node (Aux_Decls_Node (N), New_N, False)); -- For an assignment node, the assignment is known to be semantically -- legal if we are instantiating the template. This avoids incorrect -- diagnostics in generated code. elsif Nkind (N) = N_Assignment_Statement then -- Copy name and expression fields in usual manner Set_Name (New_N, Copy_Generic_Node (Name (N), New_N, Instantiating)); Set_Expression (New_N, Copy_Generic_Node (Expression (N), New_N, Instantiating)); if Instantiating then Set_Assignment_OK (Name (New_N), True); end if; elsif Nkind (N) = N_Aggregate or else Nkind (N) = N_Extension_Aggregate then if not Instantiating then Set_Associated_Node (N, New_N); else if Present (Associated_Node (N)) and then Nkind (Associated_Node (N)) = Nkind (N) then -- In the generic the aggregate has some composite type. -- If at the point of instantiation the type has a private -- view, install the full view (and that of its ancestors, -- if any). declare T : Entity_Id := (Etype (Associated_Node (New_N))); Rt : Entity_Id; begin if Present (T) and then Is_Private_Type (T) then Switch_View (T); end if; if Present (T) and then Is_Tagged_Type (T) and then Is_Derived_Type (T) then Rt := Root_Type (T); loop T := Etype (T); if Is_Private_Type (T) then Switch_View (T); end if; exit when T = Rt; end loop; end if; end; end if; end if; Set_Field1 (New_N, Copy_Generic_Descendant (Field1 (N))); Set_Field2 (New_N, Copy_Generic_Descendant (Field2 (N))); Set_Field3 (New_N, Copy_Generic_Descendant (Field3 (N))); Set_Field5 (New_N, Copy_Generic_Descendant (Field5 (N))); -- For a proper body, we must catch the case of a proper body that -- replaces a stub. This represents the point at which a separate -- compilation unit, and hence template file, may be referenced, so -- we must make a new source instantiation entry for the template -- of the subunit, and ensure that all nodes in the subunit are -- adjusted using this new source instantiation entry. elsif Nkind (N) in N_Proper_Body then declare Save_Adjustment : constant Sloc_Adjustment := S_Adjustment; begin if Instantiating and then Was_Originally_Stub (N) then Create_Instantiation_Source (Instantiation_Node, Defining_Entity (N), S_Adjustment); end if; -- Now copy the fields of the proper body, using the new -- adjustment factor if one was needed as per test above. Set_Field1 (New_N, Copy_Generic_Descendant (Field1 (N))); Set_Field2 (New_N, Copy_Generic_Descendant (Field2 (N))); Set_Field3 (New_N, Copy_Generic_Descendant (Field3 (N))); Set_Field4 (New_N, Copy_Generic_Descendant (Field4 (N))); Set_Field5 (New_N, Copy_Generic_Descendant (Field5 (N))); -- Restore the original adjustment factor in case changed S_Adjustment := Save_Adjustment; end; -- Don't copy Ident or Comment pragmas, since the comment belongs -- to the generic unit, not to the instantiating unit. elsif Nkind (N) = N_Pragma and then Instantiating then declare Prag_Id : constant Pragma_Id := Get_Pragma_Id (Chars (N)); begin if Prag_Id = Pragma_Ident or else Prag_Id = Pragma_Comment then New_N := Make_Null_Statement (Sloc (N)); else Set_Field1 (New_N, Copy_Generic_Descendant (Field1 (N))); Set_Field2 (New_N, Copy_Generic_Descendant (Field2 (N))); Set_Field3 (New_N, Copy_Generic_Descendant (Field3 (N))); Set_Field4 (New_N, Copy_Generic_Descendant (Field4 (N))); Set_Field5 (New_N, Copy_Generic_Descendant (Field5 (N))); end if; end; -- For the remaining nodes, copy recursively their descendants. else Set_Field1 (New_N, Copy_Generic_Descendant (Field1 (N))); Set_Field2 (New_N, Copy_Generic_Descendant (Field2 (N))); Set_Field3 (New_N, Copy_Generic_Descendant (Field3 (N))); Set_Field4 (New_N, Copy_Generic_Descendant (Field4 (N))); Set_Field5 (New_N, Copy_Generic_Descendant (Field5 (N))); if Instantiating and then Nkind (N) = N_Subprogram_Body then Set_Generic_Parent (Specification (New_N), N); end if; end if; return New_N; end Copy_Generic_Node; ---------------------------- -- Denotes_Formal_Package -- ---------------------------- function Denotes_Formal_Package (Pack : Entity_Id) return Boolean is Par : constant Entity_Id := Current_Instantiated_Parent.Act_Id; Scop : Entity_Id := Scope (Pack); E : Entity_Id; begin if Ekind (Scop) = E_Generic_Package or else Nkind (Unit_Declaration_Node (Scop)) = N_Generic_Subprogram_Declaration then return True; elsif Nkind (Parent (Pack)) = N_Formal_Package_Declaration then return True; elsif No (Par) then return False; else -- Check whether this package is associated with a formal -- package of the enclosing instantiation. Iterate over the -- list of renamings. E := First_Entity (Par); while Present (E) loop if Ekind (E) /= E_Package or else Nkind (Parent (E)) /= N_Package_Renaming_Declaration then null; elsif Renamed_Object (E) = Par then return False; elsif Renamed_Object (E) = Pack then return True; end if; Next_Entity (E); end loop; return False; end if; end Denotes_Formal_Package; ----------------- -- End_Generic -- ----------------- procedure End_Generic is begin -- ??? More things could be factored out in this -- routine. Should probably be done at a later stage. Inside_A_Generic := Generic_Flags.Table (Generic_Flags.Last); Generic_Flags.Decrement_Last; Expander_Mode_Restore; end End_Generic; ---------------------- -- Find_Actual_Type -- ---------------------- function Find_Actual_Type (Typ : Entity_Id; Gen_Scope : Entity_Id) return Entity_Id is T : Entity_Id; begin if not Is_Child_Unit (Gen_Scope) then return Get_Instance_Of (Typ); elsif not Is_Generic_Type (Typ) or else Scope (Typ) = Gen_Scope then return Get_Instance_Of (Typ); else T := Current_Entity (Typ); while Present (T) loop if In_Open_Scopes (Scope (T)) then return T; end if; T := Homonym (T); end loop; return Typ; end if; end Find_Actual_Type; ---------------------------- -- Freeze_Subprogram_Body -- ---------------------------- procedure Freeze_Subprogram_Body (Inst_Node : Node_Id; Gen_Body : Node_Id; Pack_Id : Entity_Id) is F_Node : Node_Id; Gen_Unit : constant Entity_Id := Entity (Name (Inst_Node)); Par : constant Entity_Id := Scope (Gen_Unit); Enc_G : Entity_Id; Enc_I : Node_Id; E_G_Id : Entity_Id; function Earlier (N1, N2 : Node_Id) return Boolean; -- Yields True if N1 and N2 appear in the same compilation unit, -- ignoring subunits, and if N1 is to the left of N2 in a left-to-right -- traversal of the tree for the unit. function Enclosing_Body (N : Node_Id) return Node_Id; -- Find innermost package body that encloses the given node, and which -- is not a compilation unit. Freeze nodes for the instance, or for its -- enclosing body, may be inserted after the enclosing_body of the -- generic unit. function Package_Freeze_Node (B : Node_Id) return Node_Id; -- Find entity for given package body, and locate or create a freeze -- node for it. function True_Parent (N : Node_Id) return Node_Id; -- For a subunit, return parent of corresponding stub. ------------- -- Earlier -- ------------- function Earlier (N1, N2 : Node_Id) return Boolean is D1 : Integer := 0; D2 : Integer := 0; P1 : Node_Id := N1; P2 : Node_Id := N2; procedure Find_Depth (P : in out Node_Id; D : in out Integer); -- Find distance from given node to enclosing compilation unit. procedure Find_Depth (P : in out Node_Id; D : in out Integer) is begin while Present (P) and then Nkind (P) /= N_Compilation_Unit loop P := True_Parent (P); D := D + 1; end loop; end Find_Depth; begin Find_Depth (P1, D1); Find_Depth (P2, D2); if P1 /= P2 then return False; else P1 := N1; P2 := N2; end if; while D1 > D2 loop P1 := True_Parent (P1); D1 := D1 - 1; end loop; while D2 > D1 loop P2 := True_Parent (P2); D2 := D2 - 1; end loop; -- At this point P1 and P2 are at the same distance from the root. -- We examine their parents until we find a common declarative -- list, at which point we can establish their relative placement -- by comparing their ultimate slocs. If we reach the root, -- N1 and N2 do not descend from the same declarative list (e.g. -- one is nested in the declarative part and the other is in a block -- in the statement part) and the earlier one is already frozen. while not Is_List_Member (P1) or else not Is_List_Member (P2) or else List_Containing (P1) /= List_Containing (P2) loop P1 := True_Parent (P1); P2 := True_Parent (P2); if Nkind (Parent (P1)) = N_Subunit then P1 := Corresponding_Stub (Parent (P1)); end if; if Nkind (Parent (P2)) = N_Subunit then P2 := Corresponding_Stub (Parent (P2)); end if; if P1 = P2 then return False; end if; end loop; return Top_Level_Location (Sloc (P1)) < Top_Level_Location (Sloc (P2)); end Earlier; -------------------- -- Enclosing_Body -- -------------------- function Enclosing_Body (N : Node_Id) return Node_Id is P : Node_Id := Parent (N); begin while Present (P) and then Nkind (Parent (P)) /= N_Compilation_Unit loop if Nkind (P) = N_Package_Body then if Nkind (Parent (P)) = N_Subunit then return Corresponding_Stub (Parent (P)); else return P; end if; end if; P := True_Parent (P); end loop; return Empty; end Enclosing_Body; ------------------------- -- Package_Freeze_Node -- ------------------------- function Package_Freeze_Node (B : Node_Id) return Node_Id is Id : Entity_Id; begin if Nkind (B) = N_Package_Body then Id := Corresponding_Spec (B); else pragma Assert (Nkind (B) = N_Package_Body_Stub); Id := Corresponding_Spec (Proper_Body (Unit (Library_Unit (B)))); end if; Ensure_Freeze_Node (Id); return Freeze_Node (Id); end Package_Freeze_Node; ----------------- -- True_Parent -- ----------------- function True_Parent (N : Node_Id) return Node_Id is begin if Nkind (Parent (N)) = N_Subunit then return Parent (Corresponding_Stub (Parent (N))); else return Parent (N); end if; end True_Parent; -- Start of processing of Freeze_Subprogram_Body begin -- If the instance and the generic body appear within the same -- unit, and the instance preceeds the generic, the freeze node for -- the instance must appear after that of the generic. If the generic -- is nested within another instance I2, then current instance must -- be frozen after I2. In both cases, the freeze nodes are those of -- enclosing packages. Otherwise, the freeze node is placed at the end -- of the current declarative part. Enc_G := Enclosing_Body (Gen_Body); Enc_I := Enclosing_Body (Inst_Node); Ensure_Freeze_Node (Pack_Id); F_Node := Freeze_Node (Pack_Id); if Is_Generic_Instance (Par) and then Present (Freeze_Node (Par)) and then In_Same_Declarative_Part (Freeze_Node (Par), Inst_Node) then Insert_After (Freeze_Node (Par), F_Node); -- The body enclosing the instance should be frozen after the body -- that includes the generic, because the body of the instance may -- make references to entities therein. If the two are not in the -- same declarative part, or if the one enclosing the instance is -- frozen already, freeze the instance at the end of the current -- declarative part. elsif Is_Generic_Instance (Par) and then Present (Freeze_Node (Par)) and then Present (Enc_I) then if In_Same_Declarative_Part (Freeze_Node (Par), Enc_I) or else (Nkind (Enc_I) = N_Package_Body and then In_Same_Declarative_Part (Freeze_Node (Par), Parent (Enc_I))) then -- The enclosing package may contain several instances. Rather -- than computing the earliest point at which to insert its -- freeze node, we place it at the end of the declarative part -- of the parent of the generic. Insert_After_Last_Decl (Freeze_Node (Par), Package_Freeze_Node (Enc_I)); end if; Insert_After_Last_Decl (Inst_Node, F_Node); elsif Present (Enc_G) and then Present (Enc_I) and then Enc_G /= Enc_I and then Earlier (Inst_Node, Gen_Body) then if Nkind (Enc_G) = N_Package_Body then E_G_Id := Corresponding_Spec (Enc_G); else pragma Assert (Nkind (Enc_G) = N_Package_Body_Stub); E_G_Id := Corresponding_Spec (Proper_Body (Unit (Library_Unit (Enc_G)))); end if; -- Freeze package that encloses instance, and place node after -- package that encloses generic. If enclosing package is already -- frozen we have to assume it is at the proper place. This may -- be a potential ABE that requires dynamic checking. Insert_After_Last_Decl (Enc_G, Package_Freeze_Node (Enc_I)); -- Freeze enclosing subunit before instance Ensure_Freeze_Node (E_G_Id); if not Is_List_Member (Freeze_Node (E_G_Id)) then Insert_After (Enc_G, Freeze_Node (E_G_Id)); end if; Insert_After_Last_Decl (Inst_Node, F_Node); else -- If none of the above, insert freeze node at the end of the -- current declarative part. Insert_After_Last_Decl (Inst_Node, F_Node); end if; end Freeze_Subprogram_Body; ---------------- -- Get_Gen_Id -- ---------------- function Get_Gen_Id (E : Assoc_Ptr) return Entity_Id is begin return Generic_Renamings.Table (E).Gen_Id; end Get_Gen_Id; --------------------- -- Get_Instance_Of -- --------------------- function Get_Instance_Of (A : Entity_Id) return Entity_Id is Res : Assoc_Ptr := Generic_Renamings_HTable.Get (A); begin if Res /= Assoc_Null then return Generic_Renamings.Table (Res).Act_Id; else -- On exit, entity is not instantiated: not a generic parameter, -- or else parameter of an inner generic unit. return A; end if; end Get_Instance_Of; ------------------------------------ -- Get_Package_Instantiation_Node -- ------------------------------------ function Get_Package_Instantiation_Node (A : Entity_Id) return Node_Id is Decl : Node_Id := Unit_Declaration_Node (A); Inst : Node_Id; begin -- If the instantiation is a compilation unit that does not need a -- body then the instantiation node has been rewritten as a package -- declaration for the instance, and we return the original node. -- If it is a compilation unit and the instance node has not been -- rewritten, then it is still the unit of the compilation. -- Otherwise the instantiation node appears after the declaration. -- If the entity is a formal package, the declaration may have been -- rewritten as a generic declaration (in the case of a formal with a -- box) or left as a formal package declaration if it has actuals, and -- is found with a forward search. if Nkind (Parent (Decl)) = N_Compilation_Unit then if Nkind (Original_Node (Decl)) = N_Package_Instantiation then return Original_Node (Decl); else return Unit (Parent (Decl)); end if; elsif Nkind (Decl) = N_Generic_Package_Declaration and then Nkind (Original_Node (Decl)) = N_Formal_Package_Declaration then return Original_Node (Decl); else Inst := Next (Decl); while Nkind (Inst) /= N_Package_Instantiation and then Nkind (Inst) /= N_Formal_Package_Declaration loop Next (Inst); end loop; return Inst; end if; end Get_Package_Instantiation_Node; ------------------------ -- Has_Been_Exchanged -- ------------------------ function Has_Been_Exchanged (E : Entity_Id) return Boolean is Next : Elmt_Id := First_Elmt (Exchanged_Views); begin while Present (Next) loop if Full_View (Node (Next)) = E then return True; end if; Next_Elmt (Next); end loop; return False; end Has_Been_Exchanged; ---------- -- Hash -- ---------- function Hash (F : Entity_Id) return HTable_Range is begin return HTable_Range (F mod HTable_Size); end Hash; ------------------------ -- Hide_Current_Scope -- ------------------------ procedure Hide_Current_Scope is C : constant Entity_Id := Current_Scope; E : Entity_Id; begin Set_Is_Hidden_Open_Scope (C); E := First_Entity (C); while Present (E) loop if Is_Immediately_Visible (E) then Set_Is_Immediately_Visible (E, False); Append_Elmt (E, Hidden_Entities); end if; Next_Entity (E); end loop; -- Make the scope name invisible as well. This is necessary, but -- might conflict with calls to Rtsfind later on, in case the scope -- is a predefined one. There is no clean solution to this problem, so -- for now we depend on the user not redefining Standard itself in one -- of the parent units. if Is_Immediately_Visible (C) and then C /= Standard_Standard then Set_Is_Immediately_Visible (C, False); Append_Elmt (C, Hidden_Entities); end if; end Hide_Current_Scope; ------------------------------ -- In_Same_Declarative_Part -- ------------------------------ function In_Same_Declarative_Part (F_Node : Node_Id; Inst : Node_Id) return Boolean is Decls : Node_Id := Parent (F_Node); Nod : Node_Id := Parent (Inst); begin while Present (Nod) loop if Nod = Decls then return True; elsif Nkind (Nod) = N_Subprogram_Body or else Nkind (Nod) = N_Package_Body or else Nkind (Nod) = N_Task_Body or else Nkind (Nod) = N_Protected_Body or else Nkind (Nod) = N_Block_Statement then return False; elsif Nkind (Nod) = N_Subunit then Nod := Corresponding_Stub (Nod); elsif Nkind (Nod) = N_Compilation_Unit then return False; else Nod := Parent (Nod); end if; end loop; return False; end In_Same_Declarative_Part; --------------------- -- Inherit_Context -- --------------------- procedure Inherit_Context (Gen_Decl : Node_Id; Inst : Node_Id) is Current_Context : List_Id; Current_Unit : Node_Id; Item : Node_Id; New_I : Node_Id; begin if Nkind (Parent (Gen_Decl)) = N_Compilation_Unit then -- The inherited context is attached to the enclosing compilation -- unit. This is either the main unit, or the declaration for the -- main unit (in case the instantation appears within the package -- declaration and the main unit is its body). Current_Unit := Parent (Inst); while Present (Current_Unit) and then Nkind (Current_Unit) /= N_Compilation_Unit loop Current_Unit := Parent (Current_Unit); end loop; Current_Context := Context_Items (Current_Unit); Item := First (Context_Items (Parent (Gen_Decl))); while Present (Item) loop if Nkind (Item) = N_With_Clause then New_I := New_Copy (Item); Set_Implicit_With (New_I, True); Append (New_I, Current_Context); end if; Next (Item); end loop; end if; end Inherit_Context; ---------------------------- -- Insert_After_Last_Decl -- ---------------------------- procedure Insert_After_Last_Decl (N : Node_Id; F_Node : Node_Id) is L : List_Id := List_Containing (N); P : Node_Id := Parent (L); begin if not Is_List_Member (F_Node) then if Nkind (P) = N_Package_Specification and then L = Visible_Declarations (P) and then Present (Private_Declarations (P)) and then not Is_Empty_List (Private_Declarations (P)) then L := Private_Declarations (P); end if; Insert_After (Last (L), F_Node); end if; end Insert_After_Last_Decl; ------------------ -- Install_Body -- ------------------ procedure Install_Body (Act_Body : Node_Id; N : Node_Id; Gen_Body : Node_Id; Gen_Decl : Node_Id) is Act_Id : Entity_Id := Corresponding_Spec (Act_Body); Act_Unit : constant Node_Id := Unit (Cunit (Get_Source_Unit (N))); F_Node : Node_Id; Gen_Id : Entity_Id := Corresponding_Spec (Gen_Body); Gen_Unit : constant Node_Id := Unit (Cunit (Get_Source_Unit (Gen_Decl))); Orig_Body : Node_Id := Gen_Body; Par : constant Entity_Id := Scope (Gen_Id); Body_Unit : Node_Id; Must_Delay : Boolean; function Enclosing_Subp (Id : Entity_Id) return Entity_Id; -- Find subprogram (if any) that encloses instance and/or generic body. function True_Sloc (N : Node_Id) return Source_Ptr; -- If the instance is nested inside a generic unit, the Sloc of the -- instance indicates the place of the original definition, not the -- point of the current enclosing instance. Pending a better usage of -- Slocs to indicate instantiation places, we determine the place of -- origin of a node by finding the maximum sloc of any ancestor node. -- Why is this not equivalent fo Top_Level_Location ??? function Enclosing_Subp (Id : Entity_Id) return Entity_Id is Scop : Entity_Id := Scope (Id); begin while Scop /= Standard_Standard and then not Is_Overloadable (Scop) loop Scop := Scope (Scop); end loop; return Scop; end Enclosing_Subp; function True_Sloc (N : Node_Id) return Source_Ptr is Res : Source_Ptr; N1 : Node_Id; begin Res := Sloc (N); N1 := N; while Present (N1) and then N1 /= Act_Unit loop if Sloc (N1) > Res then Res := Sloc (N1); end if; N1 := Parent (N1); end loop; return Res; end True_Sloc; -- Start of processing for Install_Body begin -- If the body is a subunit, the freeze point is the corresponding -- stub in the current compilation, not the subunit itself. if Nkind (Parent (Gen_Body)) = N_Subunit then Orig_Body := Corresponding_Stub (Parent (Gen_Body)); else Orig_Body := Gen_Body; end if; Body_Unit := Unit (Cunit (Get_Source_Unit (Orig_Body))); -- If the instantiation and the generic definition appear in the -- same package declaration, this is an early instantiation. -- If they appear in the same declarative part, it is an early -- instantiation only if the generic body appears textually later, -- and the generic body is also in the main unit. -- If instance is nested within a subprogram, and the generic body is -- not, the instance is delayed because the enclosing body is. If -- instance and body are within the same scope, or the same sub- -- program body, indicate explicitly that the instance is delayed. Must_Delay := (Gen_Unit = Act_Unit and then ((Nkind (Gen_Unit) = N_Package_Declaration) or else Nkind (Gen_Unit) = N_Generic_Package_Declaration or else (Gen_Unit = Body_Unit and then True_Sloc (N) < Sloc (Orig_Body))) and then Is_In_Main_Unit (Gen_Unit) and then (Scope (Act_Id) = Scope (Gen_Id) or else Enclosing_Subp (Act_Id) = Enclosing_Subp (Gen_Id))); -- If this is an early instantiation, the freeze node is placed after -- the generic body. Otherwise, if the generic appears in an instance, -- we cannot freeze the current instance until the outer one is frozen. -- This is only relevant if the current instance is nested within some -- inner scope not itself within the outer instance. If this scope is -- a package body in the same declarative part as the outer instance, -- then that body needs to be frozen after the outer instance. Finally, -- if no delay is needed, we place the freeze node at the end of the -- current declarative part. if Expander_Active then Ensure_Freeze_Node (Act_Id); F_Node := Freeze_Node (Act_Id); if Must_Delay then Insert_After (Orig_Body, F_Node); elsif Is_Generic_Instance (Par) and then Present (Freeze_Node (Par)) and then Scope (Act_Id) /= Par then -- Freeze instance of inner generic after instance of enclosing -- generic. if In_Same_Declarative_Part (Freeze_Node (Par), N) then Insert_After (Freeze_Node (Par), F_Node); -- Freeze package enclosing instance of inner generic after -- instance of enclosing generic. elsif Nkind (Parent (N)) = N_Package_Body and then In_Same_Declarative_Part (Freeze_Node (Par), Parent (N)) then declare Enclosing : Entity_Id := Corresponding_Spec (Parent (N)); begin Insert_After_Last_Decl (N, F_Node); Ensure_Freeze_Node (Enclosing); if not Is_List_Member (Freeze_Node (Enclosing)) then Insert_After (Freeze_Node (Par), Freeze_Node (Enclosing)); end if; end; else Insert_After_Last_Decl (N, F_Node); end if; else Insert_After_Last_Decl (N, F_Node); end if; end if; Set_Is_Frozen (Act_Id); Insert_Before (N, Act_Body); Mark_Rewrite_Insertion (Act_Body); end Install_Body; -------------------- -- Install_Parent -- -------------------- procedure Install_Parent (P : Entity_Id; In_Body : Boolean := False) is S : Entity_Id := Current_Scope; Inst_Par : Entity_Id; First_Par : Entity_Id; Inst_Node : Node_Id; Gen_Par : Entity_Id; First_Gen : Entity_Id; Ancestors : Elist_Id := New_Elmt_List; Elmt : Elmt_Id; procedure Install_Formal_Packages (Par : Entity_Id); -- If any of the formals of the parent are formal packages with box, -- their formal parts are visible in the parent and thus in the child -- unit as well. Analogous to what is done in Check_Generic_Actuals -- for the unit itself. procedure Install_Noninstance_Specs (Par : Entity_Id); -- Install the scopes of noninstance parent units ending with Par. procedure Install_Spec (Par : Entity_Id); -- The child unit is within the declarative part of the parent, so -- the declarations within the parent are immediately visible. ----------------------------- -- Install_Formal_Packages -- ----------------------------- procedure Install_Formal_Packages (Par : Entity_Id) is E : Entity_Id; begin E := First_Entity (Par); while Present (E) loop if Ekind (E) = E_Package and then Nkind (Parent (E)) = N_Package_Renaming_Declaration then -- If this is the renaming for the parent instance, done. if Renamed_Object (E) = Par then exit; -- The visibility of a formal of an enclosing generic is -- already correct. elsif Denotes_Formal_Package (E) then null; elsif Present (Associated_Formal_Package (E)) and then Box_Present (Parent (Associated_Formal_Package (E))) then Check_Generic_Actuals (Renamed_Object (E), True); Set_Is_Hidden (E, False); end if; end if; Next_Entity (E); end loop; end Install_Formal_Packages; ------------------------------- -- Install_Noninstance_Specs -- ------------------------------- procedure Install_Noninstance_Specs (Par : Entity_Id) is begin if Present (Par) and then Par /= Standard_Standard and then not In_Open_Scopes (Par) then Install_Noninstance_Specs (Scope (Par)); Install_Spec (Par); end if; end Install_Noninstance_Specs; ------------------ -- Install_Spec -- ------------------ procedure Install_Spec (Par : Entity_Id) is Spec : constant Node_Id := Specification (Unit_Declaration_Node (Par)); begin New_Scope (Par); Set_Is_Immediately_Visible (Par); Install_Visible_Declarations (Par); Install_Private_Declarations (Par); Set_Use (Visible_Declarations (Spec)); Set_Use (Private_Declarations (Spec)); end Install_Spec; -- Start of processing for Install_Parent begin -- We need to install the parent instance to compile the instantiation -- of the child, but the child instance must appear in the current -- scope. Given that we cannot place the parent above the current -- scope in the scope stack, we duplicate the current scope and unstack -- both after the instantiation is complete. -- If the parent is itself the instantiation of a child unit, we must -- also stack the instantiation of its parent, and so on. Each such -- ancestor is the prefix of the name in a prior instantiation. -- If this is a nested instance, the parent unit itself resolves to -- a renaming of the parent instance, whose declaration we need. -- Finally, the parent may be a generic (not an instance) when the -- child unit appears as a formal package. Inst_Par := P; if Present (Renamed_Entity (Inst_Par)) then Inst_Par := Renamed_Entity (Inst_Par); end if; First_Par := Inst_Par; Gen_Par := Generic_Parent (Specification (Unit_Declaration_Node (Inst_Par))); First_Gen := Gen_Par; while Present (Gen_Par) and then Is_Child_Unit (Gen_Par) loop -- Load grandparent instance as well. Inst_Node := Get_Package_Instantiation_Node (Inst_Par); if Nkind (Name (Inst_Node)) = N_Expanded_Name then Inst_Par := Entity (Prefix (Name (Inst_Node))); if Present (Renamed_Entity (Inst_Par)) then Inst_Par := Renamed_Entity (Inst_Par); end if; Gen_Par := Generic_Parent (Specification (Unit_Declaration_Node (Inst_Par))); if Present (Gen_Par) then Prepend_Elmt (Inst_Par, Ancestors); else -- Parent is not the name of an instantiation. Install_Noninstance_Specs (Inst_Par); exit; end if; else -- Previous error. exit; end if; end loop; if Present (First_Gen) then Append_Elmt (First_Par, Ancestors); else Install_Noninstance_Specs (First_Par); end if; if not Is_Empty_Elmt_List (Ancestors) then Elmt := First_Elmt (Ancestors); while Present (Elmt) loop Install_Spec (Node (Elmt)); Install_Formal_Packages (Node (Elmt)); Next_Elmt (Elmt); end loop; end if; if not In_Body then New_Scope (S); end if; end Install_Parent; -------------------------------- -- Instantiate_Formal_Package -- -------------------------------- function Instantiate_Formal_Package (Formal : Node_Id; Actual : Node_Id; Analyzed_Formal : Node_Id) return List_Id is Loc : constant Source_Ptr := Sloc (Actual); Actual_Pack : Entity_Id; Formal_Pack : Entity_Id; Gen_Parent : Entity_Id; Decls : List_Id; Nod : Node_Id; Parent_Spec : Node_Id; function Formal_Entity (F : Node_Id; Act_Ent : Entity_Id) return Entity_Id; -- Returns the entity associated with the given formal F. In the -- case where F is a formal package, this function will iterate -- through all of F's formals and enter map associations from the -- actuals occurring in the formal package's corresponding actual -- package (obtained via Act_Ent) to the formal package's formal -- parameters. This function is called recursively for arbitrary -- levels of formal packages. procedure Map_Entities (Form : Entity_Id; Act : Entity_Id); -- Within the generic part, entities in the formal package are -- visible. To validate subsequent type declarations, indicate -- the correspondence betwen the entities in the analyzed formal, -- and the entities in the actual package. There are three packages -- involved in the instantiation of a formal package: the parent -- generic P1 which appears in the generic declaration, the fake -- instantiation P2 which appears in the analyzed generic, and whose -- visible entities may be used in subsequent formals, and the actual -- P3 in the instance. To validate subsequent formals, me indicate -- that the entities in P2 are mapped into those of P3. The mapping of -- entities has to be done recursively for nested packages. ------------------- -- Formal_Entity -- ------------------- function Formal_Entity (F : Node_Id; Act_Ent : Entity_Id) return Entity_Id is Orig_Node : Node_Id := F; begin case Nkind (F) is when N_Formal_Object_Declaration => return Defining_Identifier (F); when N_Formal_Type_Declaration => return Defining_Identifier (F); when N_Formal_Subprogram_Declaration => return Defining_Unit_Name (Specification (F)); when N_Formal_Package_Declaration | N_Generic_Package_Declaration => if Nkind (F) = N_Generic_Package_Declaration then Orig_Node := Original_Node (F); end if; declare Actual_Ent : Entity_Id := First_Entity (Act_Ent); Formal_Node : Node_Id; Formal_Ent : Entity_Id; Gen_Decl : Node_Id := Unit_Declaration_Node (Entity (Name (Orig_Node))); Formals : List_Id := Generic_Formal_Declarations (Gen_Decl); begin if Present (Formals) then Formal_Node := First_Non_Pragma (Formals); else Formal_Node := Empty; end if; -- As for the loop further below, this loop is making -- a probably invalid assumption about the correspondence -- between formals and actuals and eventually needs to -- corrected to account for cases where the formals are -- not synchronized and in one-to-one correspondence -- with actuals. ??? -- What is certain is that for a legal program the -- presence of actual entities guarantees the existing -- of formal ones. while Present (Actual_Ent) and then Present (Formal_Node) and then Actual_Ent /= First_Private_Entity (Act_Ent) loop -- ??? Are the following calls also needed here: -- -- Set_Is_Hidden (Actual_Ent, False); -- Set_Is_Potentially_Use_Visible -- (Actual_Ent, In_Use (Act_Ent)); Formal_Ent := Formal_Entity (Formal_Node, Actual_Ent); if Present (Formal_Ent) then Set_Instance_Of (Formal_Ent, Actual_Ent); end if; Next_Non_Pragma (Formal_Node); Next_Entity (Actual_Ent); end loop; end; return Defining_Identifier (Orig_Node); when N_Use_Package_Clause => return Empty; when N_Use_Type_Clause => return Empty; -- We return Empty for all other encountered forms of -- declarations because there are some cases of nonformal -- sorts of declaration that can show up (e.g., when array -- formals are present). Since it's not clear what kinds -- can appear among the formals, we won't raise failure here. when others => return Empty; end case; end Formal_Entity; ------------------ -- Map_Entities -- ------------------ procedure Map_Entities (Form : Entity_Id; Act : Entity_Id) is E1 : Entity_Id; E2 : Entity_Id; begin Set_Instance_Of (Form, Act); E1 := First_Entity (Form); E2 := First_Entity (Act); while Present (E1) and then E1 /= First_Private_Entity (Form) loop if not Is_Internal (E1) and then not Is_Class_Wide_Type (E1) then while Present (E2) and then Chars (E2) /= Chars (E1) loop Next_Entity (E2); end loop; if No (E2) then exit; else Set_Instance_Of (E1, E2); if Is_Type (E1) and then Is_Tagged_Type (E2) then Set_Instance_Of (Class_Wide_Type (E1), Class_Wide_Type (E2)); end if; if Ekind (E1) = E_Package and then No (Renamed_Object (E1)) then Map_Entities (E1, E2); end if; end if; end if; Next_Entity (E1); end loop; end Map_Entities; -- Start of processing for Instantiate_Formal_Package begin Analyze (Actual); if not Is_Entity_Name (Actual) or else Ekind (Entity (Actual)) /= E_Package then Error_Msg_N ("expect package instance to instantiate formal", Actual); Abandon_Instantiation (Actual); raise Program_Error; else Actual_Pack := Entity (Actual); Set_Is_Instantiated (Actual_Pack); -- The actual may be a renamed package, or an outer generic -- formal package whose instantiation is converted into a renaming. if Present (Renamed_Object (Actual_Pack)) then Actual_Pack := Renamed_Object (Actual_Pack); end if; if Nkind (Analyzed_Formal) = N_Formal_Package_Declaration then Gen_Parent := Get_Instance_Of (Entity (Name (Analyzed_Formal))); Formal_Pack := Defining_Identifier (Analyzed_Formal); else Gen_Parent := Generic_Parent (Specification (Analyzed_Formal)); Formal_Pack := Defining_Unit_Name (Specification (Analyzed_Formal)); end if; if Nkind (Parent (Actual_Pack)) = N_Defining_Program_Unit_Name then Parent_Spec := Specification (Unit_Declaration_Node (Actual_Pack)); else Parent_Spec := Parent (Actual_Pack); end if; if Gen_Parent = Any_Id then Error_Msg_N ("previous error in declaration of formal package", Actual); Abandon_Instantiation (Actual); elsif Generic_Parent (Parent_Spec) /= Get_Instance_Of (Gen_Parent) then Error_Msg_NE ("actual parameter must be instance of&", Actual, Gen_Parent); Abandon_Instantiation (Actual); end if; Set_Instance_Of (Defining_Identifier (Formal), Actual_Pack); Map_Entities (Formal_Pack, Actual_Pack); Nod := Make_Package_Renaming_Declaration (Loc, Defining_Unit_Name => New_Copy (Defining_Identifier (Formal)), Name => New_Reference_To (Actual_Pack, Loc)); Set_Associated_Formal_Package (Defining_Unit_Name (Nod), Defining_Identifier (Formal)); Decls := New_List (Nod); -- If the formal F has a box, then the generic declarations are -- visible in the generic G. In an instance of G, the corresponding -- entities in the actual for F (which are the actuals for the -- instantiation of the generic that F denotes) must also be made -- visible for analysis of the current instance. On exit from the -- current instance, those entities are made private again. If the -- actual is currently in use, these entities are also use-visible. -- The loop through the actual entities also steps through the -- formal entities and enters associations from formals to -- actuals into the renaming map. This is necessary to properly -- handle checking of actual parameter associations for later -- formals that depend on actuals declared in the formal package. -- -- This processing needs to be reviewed at some point because -- it is probably not entirely correct as written. For example -- there may not be a strict one-to-one correspondence between -- actuals and formals and this loop is currently assuming that -- there is. ??? if Box_Present (Formal) then declare Actual_Ent : Entity_Id := First_Entity (Actual_Pack); Formal_Node : Node_Id := Empty; Formal_Ent : Entity_Id; Gen_Decl : Node_Id := Unit_Declaration_Node (Gen_Parent); Formals : List_Id := Generic_Formal_Declarations (Gen_Decl); begin if Present (Formals) then Formal_Node := First_Non_Pragma (Formals); end if; while Present (Actual_Ent) and then Actual_Ent /= First_Private_Entity (Actual_Pack) loop Set_Is_Hidden (Actual_Ent, False); Set_Is_Potentially_Use_Visible (Actual_Ent, In_Use (Actual_Pack)); if Present (Formal_Node) then Formal_Ent := Formal_Entity (Formal_Node, Actual_Ent); if Present (Formal_Ent) then Set_Instance_Of (Formal_Ent, Actual_Ent); end if; Next_Non_Pragma (Formal_Node); end if; Next_Entity (Actual_Ent); end loop; end; -- If the formal is not declared with a box, reanalyze it as -- an instantiation, to verify the matching rules of 12.7. The -- actual checks are performed after the generic associations -- been analyzed. else declare I_Pack : constant Entity_Id := Make_Defining_Identifier (Sloc (Actual), Chars => New_Internal_Name ('P')); begin Set_Is_Internal (I_Pack); Append_To (Decls, Make_Package_Instantiation (Sloc (Actual), Defining_Unit_Name => I_Pack, Name => New_Occurrence_Of (Gen_Parent, Sloc (Actual)), Generic_Associations => Generic_Associations (Formal))); end; end if; return Decls; end if; end Instantiate_Formal_Package; ----------------------------------- -- Instantiate_Formal_Subprogram -- ----------------------------------- function Instantiate_Formal_Subprogram (Formal : Node_Id; Actual : Node_Id; Analyzed_Formal : Node_Id) return Node_Id is Loc : Source_Ptr := Sloc (Instantiation_Node); Formal_Sub : constant Entity_Id := Defining_Unit_Name (Specification (Formal)); Analyzed_S : constant Entity_Id := Defining_Unit_Name (Specification (Analyzed_Formal)); Decl_Node : Node_Id; Nam : Node_Id; New_Spec : Node_Id; function From_Parent_Scope (Subp : Entity_Id) return Boolean; -- If the generic is a child unit, the parent has been installed -- on the scope stack, but a default subprogram cannot resolve to -- something on the parent because that parent is not really part -- of the visible context (it is there to resolve explicit local -- entities). If the default has resolved in this way, we remove -- the entity from immediate visibility and analyze the node again -- to emit an error message or find another visible candidate. procedure Valid_Actual_Subprogram (Act : Node_Id); -- Perform legality check and raise exception on failure. ----------------------- -- From_Parent_Scope -- ----------------------- function From_Parent_Scope (Subp : Entity_Id) return Boolean is Gen_Scope : Node_Id := Scope (Analyzed_S); begin while Present (Gen_Scope) and then Is_Child_Unit (Gen_Scope) loop if Scope (Subp) = Scope (Gen_Scope) then return True; end if; Gen_Scope := Scope (Gen_Scope); end loop; return False; end From_Parent_Scope; ----------------------------- -- Valid_Actual_Subprogram -- ----------------------------- procedure Valid_Actual_Subprogram (Act : Node_Id) is begin if not Is_Entity_Name (Act) and then Nkind (Act) /= N_Operator_Symbol and then Nkind (Act) /= N_Attribute_Reference and then Nkind (Act) /= N_Selected_Component and then Nkind (Act) /= N_Indexed_Component and then Nkind (Act) /= N_Character_Literal and then Nkind (Act) /= N_Explicit_Dereference then if Etype (Act) /= Any_Type then Error_Msg_NE ("Expect subprogram name to instantiate &", Instantiation_Node, Formal_Sub); end if; -- In any case, instantiation cannot continue. Abandon_Instantiation (Instantiation_Node); end if; end Valid_Actual_Subprogram; -- Start of processing for Instantiate_Formal_Subprogram begin New_Spec := New_Copy_Tree (Specification (Formal)); -- Create new entity for the actual (New_Copy_Tree does not). Set_Defining_Unit_Name (New_Spec, Make_Defining_Identifier (Loc, Chars (Formal_Sub))); -- Find entity of actual. If the actual is an attribute reference, it -- cannot be resolved here (its formal is missing) but is handled -- instead in Attribute_Renaming. If the actual is overloaded, it is -- fully resolved subsequently, when the renaming declaration for the -- formal is analyzed. If it is an explicit dereference, resolve the -- prefix but not the actual itself, to prevent interpretation as a -- call. if Present (Actual) then Loc := Sloc (Actual); Set_Sloc (New_Spec, Loc); if Nkind (Actual) = N_Operator_Symbol then Find_Direct_Name (Actual); elsif Nkind (Actual) = N_Explicit_Dereference then Analyze (Prefix (Actual)); elsif Nkind (Actual) /= N_Attribute_Reference then Analyze (Actual); end if; Valid_Actual_Subprogram (Actual); Nam := Actual; elsif Present (Default_Name (Formal)) then if Nkind (Default_Name (Formal)) /= N_Attribute_Reference and then Nkind (Default_Name (Formal)) /= N_Selected_Component and then Nkind (Default_Name (Formal)) /= N_Indexed_Component and then Nkind (Default_Name (Formal)) /= N_Character_Literal and then Present (Entity (Default_Name (Formal))) then Nam := New_Occurrence_Of (Entity (Default_Name (Formal)), Loc); else Nam := New_Copy (Default_Name (Formal)); Set_Sloc (Nam, Loc); end if; elsif Box_Present (Formal) then -- Actual is resolved at the point of instantiation. Create -- an identifier or operator with the same name as the formal. if Nkind (Formal_Sub) = N_Defining_Operator_Symbol then Nam := Make_Operator_Symbol (Loc, Chars => Chars (Formal_Sub), Strval => No_String); else Nam := Make_Identifier (Loc, Chars (Formal_Sub)); end if; else Error_Msg_NE ("missing actual for instantiation of &", Instantiation_Node, Formal_Sub); Abandon_Instantiation (Instantiation_Node); end if; Decl_Node := Make_Subprogram_Renaming_Declaration (Loc, Specification => New_Spec, Name => Nam); -- Gather possible interpretations for the actual before analyzing the -- instance. If overloaded, it will be resolved when analyzing the -- renaming declaration. if Box_Present (Formal) and then No (Actual) then Analyze (Nam); if Is_Child_Unit (Scope (Analyzed_S)) and then Present (Entity (Nam)) then if not Is_Overloaded (Nam) then if From_Parent_Scope (Entity (Nam)) then Set_Is_Immediately_Visible (Entity (Nam), False); Set_Entity (Nam, Empty); Set_Etype (Nam, Empty); Analyze (Nam); Set_Is_Immediately_Visible (Entity (Nam)); end if; else declare I : Interp_Index; It : Interp; begin Get_First_Interp (Nam, I, It); while Present (It.Nam) loop if From_Parent_Scope (It.Nam) then Remove_Interp (I); end if; Get_Next_Interp (I, It); end loop; end; end if; end if; end if; -- The generic instantiation freezes the actual. This can only be -- done once the actual is resolved, in the analysis of the renaming -- declaration. To indicate that must be done, we set the corresponding -- spec of the node to point to the formal subprogram declaration. Set_Corresponding_Spec (Decl_Node, Analyzed_Formal); -- We cannot analyze the renaming declaration, and thus find the -- actual, until the all the actuals are assembled in the instance. -- For subsequent checks of other actuals, indicate the node that -- will hold the instance of this formal. Set_Instance_Of (Analyzed_S, Nam); if Nkind (Actual) = N_Selected_Component and then Is_Task_Type (Etype (Prefix (Actual))) and then not Is_Frozen (Etype (Prefix (Actual))) then -- The renaming declaration will create a body, which must appear -- outside of the instantiation, We move the renaming declaration -- out of the instance, and create an additional renaming inside, -- to prevent freezing anomalies. declare Anon_Id : constant Entity_Id := Make_Defining_Identifier (Loc, New_Internal_Name ('E')); begin Set_Defining_Unit_Name (New_Spec, Anon_Id); Insert_Before (Instantiation_Node, Decl_Node); Analyze (Decl_Node); -- Now create renaming within the instance. Decl_Node := Make_Subprogram_Renaming_Declaration (Loc, Specification => New_Copy_Tree (New_Spec), Name => New_Occurrence_Of (Anon_Id, Loc)); Set_Defining_Unit_Name (Specification (Decl_Node), Make_Defining_Identifier (Loc, Chars (Formal_Sub))); end; end if; return Decl_Node; end Instantiate_Formal_Subprogram; ------------------------ -- Instantiate_Object -- ------------------------ function Instantiate_Object (Formal : Node_Id; Actual : Node_Id; Analyzed_Formal : Node_Id) return List_Id is Formal_Id : constant Entity_Id := Defining_Identifier (Formal); Type_Id : constant Node_Id := Subtype_Mark (Formal); Loc : constant Source_Ptr := Sloc (Actual); Act_Assoc : constant Node_Id := Parent (Actual); Orig_Ftyp : constant Entity_Id := Etype (Defining_Identifier (Analyzed_Formal)); Ftyp : Entity_Id; Decl_Node : Node_Id; Subt_Decl : Node_Id := Empty; List : List_Id := New_List; begin if Get_Instance_Of (Formal_Id) /= Formal_Id then Error_Msg_N ("duplicate instantiation of generic parameter", Actual); end if; Set_Parent (List, Parent (Actual)); -- OUT present if Out_Present (Formal) then -- An IN OUT generic actual must be a name. The instantiation is -- a renaming declaration. The actual is the name being renamed. -- We use the actual directly, rather than a copy, because it is not -- used further in the list of actuals, and because a copy or a use -- of relocate_node is incorrect if the instance is nested within -- a generic. In order to simplify ASIS searches, the Generic_Parent -- field links the declaration to the generic association. if No (Actual) then Error_Msg_NE ("missing actual for instantiation of &", Instantiation_Node, Formal_Id); Abandon_Instantiation (Instantiation_Node); end if; Decl_Node := Make_Object_Renaming_Declaration (Loc, Defining_Identifier => New_Copy (Formal_Id), Subtype_Mark => New_Copy_Tree (Type_Id), Name => Actual); Set_Corresponding_Generic_Association (Decl_Node, Act_Assoc); -- The analysis of the actual may produce insert_action nodes, so -- the declaration must have a context in which to attach them. Append (Decl_Node, List); Analyze (Actual); -- This check is performed here because Analyze_Object_Renaming -- will not check it when Comes_From_Source is False. Note -- though that the check for the actual being the name of an -- object will be performed in Analyze_Object_Renaming. if Is_Object_Reference (Actual) and then Is_Dependent_Component_Of_Mutable_Object (Actual) then Error_Msg_N ("illegal discriminant-dependent component for in out parameter", Actual); end if; -- The actual has to be resolved in order to check that it is -- a variable (due to cases such as F(1), where F returns -- access to an array, and for overloaded prefixes). Ftyp := Get_Instance_Of (Etype (Defining_Identifier (Analyzed_Formal))); if Is_Private_Type (Ftyp) and then not Is_Private_Type (Etype (Actual)) and then (Base_Type (Full_View (Ftyp)) = Base_Type (Etype (Actual)) or else Base_Type (Etype (Actual)) = Ftyp) then -- If the actual has the type of the full view of the formal, -- or else a non-private subtype of the formal, then -- the visibility of the formal type has changed. Add to the -- actuals a subtype declaration that will force the exchange -- of views in the body of the instance as well. Subt_Decl := Make_Subtype_Declaration (Loc, Defining_Identifier => Make_Defining_Identifier (Loc, New_Internal_Name ('P')), Subtype_Indication => New_Occurrence_Of (Ftyp, Loc)); Prepend (Subt_Decl, List); Append_Elmt (Full_View (Ftyp), Exchanged_Views); Exchange_Declarations (Ftyp); end if; Resolve (Actual, Ftyp); if not Is_Variable (Actual) or else Paren_Count (Actual) > 0 then Error_Msg_NE ("actual for& must be a variable", Actual, Formal_Id); elsif Base_Type (Ftyp) /= Base_Type (Etype (Actual)) then Error_Msg_NE ( "type of actual does not match type of&", Actual, Formal_Id); end if; Note_Possible_Modification (Actual); -- Check for instantiation of atomic/volatile actual for -- non-atomic/volatile formal (RM C.6 (12)). if Is_Atomic_Object (Actual) and then not Is_Atomic (Orig_Ftyp) then Error_Msg_N ("cannot instantiate non-atomic formal object " & "with atomic actual", Actual); elsif Is_Volatile_Object (Actual) and then not Is_Volatile (Orig_Ftyp) then Error_Msg_N ("cannot instantiate non-volatile formal object " & "with volatile actual", Actual); end if; -- OUT not present else -- The instantiation of a generic formal in-parameter -- is a constant declaration. The actual is the expression for -- that declaration. if Present (Actual) then Decl_Node := Make_Object_Declaration (Loc, Defining_Identifier => New_Copy (Formal_Id), Constant_Present => True, Object_Definition => New_Copy_Tree (Type_Id), Expression => Actual); Set_Corresponding_Generic_Association (Decl_Node, Act_Assoc); -- A generic formal object of a tagged type is defined -- to be aliased so the new constant must also be treated -- as aliased. if Is_Tagged_Type (Etype (Defining_Identifier (Analyzed_Formal))) then Set_Aliased_Present (Decl_Node); end if; Append (Decl_Node, List); Analyze (Actual); declare Typ : Entity_Id := Get_Instance_Of (Etype (Defining_Identifier (Analyzed_Formal))); begin Freeze_Before (Instantiation_Node, Typ); -- If the actual is an aggregate, perform name resolution -- on its components (the analysis of an aggregate does not -- do it) to capture local names that may be hidden if the -- generic is a child unit. if Nkind (Actual) = N_Aggregate then Pre_Analyze_And_Resolve (Actual, Typ); end if; end; elsif Present (Expression (Formal)) then -- Use default to construct declaration. Decl_Node := Make_Object_Declaration (Sloc (Formal), Defining_Identifier => New_Copy (Formal_Id), Constant_Present => True, Object_Definition => New_Copy (Type_Id), Expression => New_Copy_Tree (Expression (Formal))); Append (Decl_Node, List); Set_Analyzed (Expression (Decl_Node), False); else Error_Msg_NE ("missing actual for instantiation of &", Instantiation_Node, Formal_Id); Abandon_Instantiation (Instantiation_Node); end if; end if; return List; end Instantiate_Object; ------------------------------ -- Instantiate_Package_Body -- ------------------------------ procedure Instantiate_Package_Body (Body_Info : Pending_Body_Info) is Act_Decl : constant Node_Id := Body_Info.Act_Decl; Inst_Node : constant Node_Id := Body_Info.Inst_Node; Loc : constant Source_Ptr := Sloc (Inst_Node); Gen_Id : constant Node_Id := Name (Inst_Node); Gen_Unit : constant Entity_Id := Entity (Name (Inst_Node)); Gen_Decl : constant Node_Id := Unit_Declaration_Node (Gen_Unit); Act_Spec : constant Node_Id := Specification (Act_Decl); Act_Decl_Id : constant Entity_Id := Defining_Entity (Act_Spec); Act_Body_Name : Node_Id; Gen_Body : Node_Id; Gen_Body_Id : Node_Id; Act_Body : Node_Id; Act_Body_Id : Entity_Id; Parent_Installed : Boolean := False; Save_Style_Check : Boolean := Style_Check; begin Gen_Body_Id := Corresponding_Body (Gen_Decl); Expander_Mode_Save_And_Set (Body_Info.Expander_Status); if No (Gen_Body_Id) then Load_Parent_Of_Generic (Inst_Node, Specification (Gen_Decl)); Gen_Body_Id := Corresponding_Body (Gen_Decl); end if; -- Establish global variable for sloc adjustment and for error -- recovery. Instantiation_Node := Inst_Node; if Present (Gen_Body_Id) then Save_Env (Gen_Unit, Act_Decl_Id); Style_Check := False; Current_Sem_Unit := Body_Info.Current_Sem_Unit; Gen_Body := Unit_Declaration_Node (Gen_Body_Id); Create_Instantiation_Source (Inst_Node, Gen_Body_Id, S_Adjustment); Act_Body := Copy_Generic_Node (Original_Node (Gen_Body), Empty, Instantiating => True); -- Build new name (possibly qualified) for body declaration. Act_Body_Id := New_Copy (Act_Decl_Id); -- Some attributes of the spec entity are not inherited by the -- body entity. Set_Handler_Records (Act_Body_Id, No_List); if Nkind (Defining_Unit_Name (Act_Spec)) = N_Defining_Program_Unit_Name then Act_Body_Name := Make_Defining_Program_Unit_Name (Loc, Name => New_Copy_Tree (Name (Defining_Unit_Name (Act_Spec))), Defining_Identifier => Act_Body_Id); else Act_Body_Name := Act_Body_Id; end if; Set_Defining_Unit_Name (Act_Body, Act_Body_Name); Set_Corresponding_Spec (Act_Body, Act_Decl_Id); Check_Generic_Actuals (Act_Decl_Id, False); -- If it is a child unit, make the parent instance (which is an -- instance of the parent of the generic) visible. The parent -- instance is the prefix of the name of the generic unit. if Ekind (Scope (Gen_Unit)) = E_Generic_Package and then Nkind (Gen_Id) = N_Expanded_Name then Install_Parent (Entity (Prefix (Gen_Id)), In_Body => True); Parent_Installed := True; elsif Is_Child_Unit (Gen_Unit) then Install_Parent (Scope (Gen_Unit), In_Body => True); Parent_Installed := True; end if; -- If the instantiation is a library unit, and this is the main -- unit, then build the resulting compilation unit nodes for the -- instance. If this is a compilation unit but it is not the main -- unit, then it is the body of a unit in the context, that is being -- compiled because it is encloses some inlined unit or another -- generic unit being instantiated. In that case, this body is not -- part of the current compilation, and is not attached to the tree, -- but its parent must be set for analysis. if Nkind (Parent (Inst_Node)) = N_Compilation_Unit then if Parent (Inst_Node) = Cunit (Main_Unit) then Build_Instance_Compilation_Unit_Nodes (Inst_Node, Act_Body, Act_Decl); Analyze (Inst_Node); -- If the instance is a child unit itself, then set the -- scope of the expanded body to be the parent of the -- instantiation (ensuring that the fully qualified name -- will be generated for the elaboration subprogram). if Nkind (Defining_Unit_Name (Act_Spec)) = N_Defining_Program_Unit_Name then Set_Scope (Defining_Entity (Inst_Node), Scope (Act_Decl_Id)); end if; else Set_Parent (Act_Body, Parent (Inst_Node)); Analyze (Act_Body); end if; -- Case where instantiation is not a library unit else -- If this is an early instantiation, i.e. appears textually -- before the corresponding body and must be elaborated first, -- indicate that the body instance is to be delayed. Install_Body (Act_Body, Inst_Node, Gen_Body, Gen_Decl); -- Now analyze the body. We turn off all checks if this is -- an internal unit, since there is no reason to have checks -- on for any predefined run-time library code. All such -- code is designed to be compiled with checks off. -- Note that we do NOT apply this criterion to children of -- GNAT (or on VMS, children of DEC). The latter units must -- suppress checks explicitly if this is needed. if Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (Gen_Decl))) then Analyze (Act_Body, Suppress => All_Checks); else Analyze (Act_Body); end if; end if; if not Generic_Separately_Compiled (Gen_Unit) then Inherit_Context (Gen_Body, Inst_Node); end if; Restore_Private_Views (Act_Decl_Id); Restore_Env; Style_Check := Save_Style_Check; -- If we have no body, and the unit requires a body, then complain. -- This complaint is suppressed if we have detected other errors -- (since a common reason for missing the body is that it had errors). elsif Unit_Requires_Body (Gen_Unit) then if Errors_Detected = 0 then Error_Msg_NE ("cannot find body of generic package &", Inst_Node, Gen_Unit); -- Don't attempt to perform any cleanup actions if some other -- error was aready detected, since this can cause blowups. else return; end if; -- Case of package that does not need a body else -- If the instantiation of the declaration is a library unit, -- rewrite the original package instantiation as a package -- declaration in the compilation unit node. if Nkind (Parent (Inst_Node)) = N_Compilation_Unit then Set_Parent_Spec (Act_Decl, Parent_Spec (Inst_Node)); Rewrite (Inst_Node, Act_Decl); -- If the instantiation is not a library unit, then append the -- declaration to the list of implicitly generated entities. -- unless it is already a list member which means that it was -- already processed elsif not Is_List_Member (Act_Decl) then Mark_Rewrite_Insertion (Act_Decl); Insert_Before (Inst_Node, Act_Decl); end if; end if; Expander_Mode_Restore; -- Remove the parent instances if they have been placed on the -- scope stack to compile the body. if Parent_Installed then Remove_Parent (In_Body => True); end if; end Instantiate_Package_Body; --------------------------------- -- Instantiate_Subprogram_Body -- --------------------------------- procedure Instantiate_Subprogram_Body (Body_Info : Pending_Body_Info) is Act_Decl : constant Node_Id := Body_Info.Act_Decl; Inst_Node : constant Node_Id := Body_Info.Inst_Node; Loc : constant Source_Ptr := Sloc (Inst_Node); Decls : List_Id; Gen_Id : constant Node_Id := Name (Inst_Node); Gen_Unit : constant Entity_Id := Entity (Name (Inst_Node)); Gen_Decl : constant Node_Id := Unit_Declaration_Node (Gen_Unit); Anon_Id : constant Entity_Id := Defining_Unit_Name (Specification (Act_Decl)); Gen_Body : Node_Id; Gen_Body_Id : Node_Id; Act_Body : Node_Id; Act_Body_Id : Entity_Id; Pack_Id : Entity_Id := Defining_Unit_Name (Parent (Act_Decl)); Pack_Body : Node_Id; Prev_Formal : Entity_Id; Unit_Renaming : Node_Id; Parent_Installed : Boolean := False; Save_Style_Check : Boolean := Style_Check; begin Gen_Body_Id := Corresponding_Body (Gen_Decl); Expander_Mode_Save_And_Set (Body_Info.Expander_Status); if No (Gen_Body_Id) then Load_Parent_Of_Generic (Inst_Node, Specification (Gen_Decl)); Gen_Body_Id := Corresponding_Body (Gen_Decl); end if; Instantiation_Node := Inst_Node; if Present (Gen_Body_Id) then Gen_Body := Unit_Declaration_Node (Gen_Body_Id); if Nkind (Gen_Body) = N_Subprogram_Body_Stub then -- Either body is not present, or context is non-expanding, as -- when compiling a subunit. Mark the instance as completed. Set_Has_Completion (Anon_Id); return; end if; Save_Env (Gen_Unit, Anon_Id); Style_Check := False; Current_Sem_Unit := Body_Info.Current_Sem_Unit; Create_Instantiation_Source (Inst_Node, Gen_Body_Id, S_Adjustment); Act_Body := Copy_Generic_Node (Original_Node (Gen_Body), Empty, Instantiating => True); Act_Body_Id := Defining_Entity (Act_Body); Set_Chars (Act_Body_Id, Chars (Anon_Id)); Set_Sloc (Act_Body_Id, Sloc (Defining_Entity (Inst_Node))); Set_Corresponding_Spec (Act_Body, Anon_Id); Set_Has_Completion (Anon_Id); Check_Generic_Actuals (Pack_Id, False); -- If it is a child unit, make the parent instance (which is an -- instance of the parent of the generic) visible. The parent -- instance is the prefix of the name of the generic unit. if Ekind (Scope (Gen_Unit)) = E_Generic_Package and then Nkind (Gen_Id) = N_Expanded_Name then Install_Parent (Entity (Prefix (Gen_Id)), In_Body => True); Parent_Installed := True; elsif Is_Child_Unit (Gen_Unit) then Install_Parent (Scope (Gen_Unit), In_Body => True); Parent_Installed := True; end if; -- Inside its body, a reference to the generic unit is a reference -- to the instance. The corresponding renaming is the first -- declaration in the body. Unit_Renaming := Make_Subprogram_Renaming_Declaration (Loc, Specification => Copy_Generic_Node ( Specification (Original_Node (Gen_Body)), Empty, Instantiating => True), Name => New_Occurrence_Of (Anon_Id, Loc)); -- If there is a formal subprogram with the same name as the -- unit itself, do not add this renaming declaration. This is -- a temporary fix for one ACVC test. ??? Prev_Formal := First_Entity (Pack_Id); while Present (Prev_Formal) loop if Chars (Prev_Formal) = Chars (Gen_Unit) and then Is_Overloadable (Prev_Formal) then exit; end if; Next_Entity (Prev_Formal); end loop; if Present (Prev_Formal) then Decls := New_List (Act_Body); else Decls := New_List (Unit_Renaming, Act_Body); end if; -- The subprogram body is placed in the body of a dummy package -- body, whose spec contains the subprogram declaration as well -- as the renaming declarations for the generic parameters. Pack_Body := Make_Package_Body (Loc, Defining_Unit_Name => New_Copy (Pack_Id), Declarations => Decls); Set_Corresponding_Spec (Pack_Body, Pack_Id); -- If the instantiation is a library unit, then build resulting -- compilation unit nodes for the instance. The declaration of -- the enclosing package is the grandparent of the subprogram -- declaration. First replace the instantiation node as the unit -- of the corresponding compilation. if Nkind (Parent (Inst_Node)) = N_Compilation_Unit then if Parent (Inst_Node) = Cunit (Main_Unit) then Set_Unit (Parent (Inst_Node), Inst_Node); Build_Instance_Compilation_Unit_Nodes (Inst_Node, Pack_Body, Parent (Parent (Act_Decl))); Analyze (Inst_Node); else Set_Parent (Pack_Body, Parent (Inst_Node)); Analyze (Pack_Body); end if; else Insert_Before (Inst_Node, Pack_Body); Mark_Rewrite_Insertion (Pack_Body); Analyze (Pack_Body); if Expander_Active then Freeze_Subprogram_Body (Inst_Node, Gen_Body, Pack_Id); end if; end if; if not Generic_Separately_Compiled (Gen_Unit) then Inherit_Context (Gen_Body, Inst_Node); end if; Restore_Private_Views (Pack_Id, False); if Parent_Installed then Remove_Parent (In_Body => True); end if; Restore_Env; Style_Check := Save_Style_Check; -- Body not found. Error was emitted already. If there were no -- previous errors, this may be an instance whose scope is a premature -- instance. In that case we must insure that the (legal) program does -- raise program error if executed. We generate a subprogram body for -- this purpose. See DEC ac30vso. elsif Errors_Detected = 0 and then Nkind (Parent (Inst_Node)) /= N_Compilation_Unit then if Ekind (Anon_Id) = E_Procedure then Act_Body := Make_Subprogram_Body (Loc, Specification => Make_Procedure_Specification (Loc, Defining_Unit_Name => New_Copy (Anon_Id), Parameter_Specifications => New_Copy_List (Parameter_Specifications (Parent (Anon_Id)))), Declarations => Empty_List, Handled_Statement_Sequence => Make_Handled_Sequence_Of_Statements (Loc, Statements => New_List (Make_Raise_Program_Error (Loc)))); else Act_Body := Make_Subprogram_Body (Loc, Specification => Make_Function_Specification (Loc, Defining_Unit_Name => New_Copy (Anon_Id), Parameter_Specifications => New_Copy_List (Parameter_Specifications (Parent (Anon_Id))), Subtype_Mark => New_Occurrence_Of (Etype (Anon_Id), Loc)), Declarations => Empty_List, Handled_Statement_Sequence => Make_Handled_Sequence_Of_Statements (Loc, Statements => New_List ( Make_Return_Statement (Loc, Expression => Make_Raise_Program_Error (Loc))))); end if; Pack_Body := Make_Package_Body (Loc, Defining_Unit_Name => New_Copy (Pack_Id), Declarations => New_List (Act_Body)); Insert_After (Inst_Node, Pack_Body); Set_Corresponding_Spec (Pack_Body, Pack_Id); Analyze (Pack_Body); end if; Expander_Mode_Restore; end Instantiate_Subprogram_Body; ---------------------- -- Instantiate_Type -- ---------------------- function Instantiate_Type (Formal : Node_Id; Actual : Node_Id; Analyzed_Formal : Node_Id) return Node_Id is Loc : constant Source_Ptr := Sloc (Actual); Gen_T : constant Entity_Id := Defining_Identifier (Formal); A_Gen_T : constant Entity_Id := Defining_Identifier (Analyzed_Formal); Ancestor : Entity_Id; Def : constant Node_Id := Formal_Type_Definition (Formal); Act_T : Entity_Id; Decl_Node : Node_Id; procedure Validate_Array_Type_Instance; procedure Validate_Access_Subprogram_Instance; procedure Validate_Access_Type_Instance; procedure Validate_Derived_Type_Instance; procedure Validate_Private_Type_Instance; -- These procedures perform validation tests for the named case function Subtypes_Match (Gen_T, Act_T : Entity_Id) return Boolean; -- Check that base types are the same and that the subtypes match -- statically. Used in several of the above. -------------------- -- Subtypes_Match -- -------------------- function Subtypes_Match (Gen_T, Act_T : Entity_Id) return Boolean is T : constant Entity_Id := Get_Instance_Of (Gen_T); begin return (Base_Type (T) = Base_Type (Act_T) -- why is the and then commented out here??? -- and then Is_Constrained (T) = Is_Constrained (Act_T) and then Subtypes_Statically_Match (T, Act_T)) or else (Is_Class_Wide_Type (Gen_T) and then Is_Class_Wide_Type (Act_T) and then Subtypes_Match ( Get_Instance_Of (Root_Type (Gen_T)), Root_Type (Act_T))); end Subtypes_Match; ----------------------------------------- -- Validate_Access_Subprogram_Instance -- ----------------------------------------- procedure Validate_Access_Subprogram_Instance is begin if not Is_Access_Type (Act_T) or else Ekind (Designated_Type (Act_T)) /= E_Subprogram_Type then Error_Msg_NE ("expect access type in instantiation of &", Actual, Gen_T); Abandon_Instantiation (Actual); end if; Check_Mode_Conformant (Designated_Type (Act_T), Designated_Type (A_Gen_T), Actual, Get_Inst => True); if Ekind (Base_Type (Act_T)) = E_Access_Protected_Subprogram_Type then if Ekind (A_Gen_T) = E_Access_Subprogram_Type then Error_Msg_NE ("protected access type not allowed for formal &", Actual, Gen_T); end if; elsif Ekind (A_Gen_T) = E_Access_Protected_Subprogram_Type then Error_Msg_NE ("expect protected access type for formal &", Actual, Gen_T); end if; end Validate_Access_Subprogram_Instance; ----------------------------------- -- Validate_Access_Type_Instance -- ----------------------------------- procedure Validate_Access_Type_Instance is Desig_Type : Entity_Id := Find_Actual_Type (Designated_Type (A_Gen_T), Scope (A_Gen_T)); begin if not Is_Access_Type (Act_T) then Error_Msg_NE ("expect access type in instantiation of &", Actual, Gen_T); Abandon_Instantiation (Actual); end if; if Is_Access_Constant (A_Gen_T) then if not Is_Access_Constant (Act_T) then Error_Msg_N ("actual type must be access-to-constant type", Actual); Abandon_Instantiation (Actual); end if; else if Is_Access_Constant (Act_T) then Error_Msg_N ("actual type must be access-to-variable type", Actual); Abandon_Instantiation (Actual); elsif Ekind (A_Gen_T) = E_General_Access_Type and then Ekind (Base_Type (Act_T)) /= E_General_Access_Type then Error_Msg_N ("actual must be general access type!", Actual); Error_Msg_NE ("add ALL to }!", Actual, Act_T); Abandon_Instantiation (Actual); end if; end if; -- The designated subtypes, that is to say the subtypes introduced -- by an access type declaration (and not by a subtype declaration) -- must match. if not Subtypes_Match (Desig_Type, Designated_Type (Base_Type (Act_T))) then Error_Msg_NE ("designated type of actual does not match that of formal &", Actual, Gen_T); Abandon_Instantiation (Actual); elsif Is_Access_Type (Designated_Type (Act_T)) and then Is_Constrained (Designated_Type (Designated_Type (Act_T))) /= Is_Constrained (Designated_Type (Desig_Type)) then Error_Msg_NE ("designated type of actual does not match that of formal &", Actual, Gen_T); Abandon_Instantiation (Actual); end if; end Validate_Access_Type_Instance; ---------------------------------- -- Validate_Array_Type_Instance -- ---------------------------------- procedure Validate_Array_Type_Instance is I1 : Node_Id; I2 : Node_Id; T2 : Entity_Id; function Formal_Dimensions return Int; -- Count number of dimensions in array type formal function Formal_Dimensions return Int is Num : Int := 0; Index : Node_Id; begin if Nkind (Def) = N_Constrained_Array_Definition then Index := First (Discrete_Subtype_Definitions (Def)); else Index := First (Subtype_Marks (Def)); end if; while Present (Index) loop Num := Num + 1; Next_Index (Index); end loop; return Num; end Formal_Dimensions; -- Start of processing for Validate_Array_Type_Instance begin if not Is_Array_Type (Act_T) then Error_Msg_NE ("expect array type in instantiation of &", Actual, Gen_T); Abandon_Instantiation (Actual); elsif Nkind (Def) = N_Constrained_Array_Definition then if not (Is_Constrained (Act_T)) then Error_Msg_NE ("expect constrained array in instantiation of &", Actual, Gen_T); Abandon_Instantiation (Actual); end if; else if Is_Constrained (Act_T) then Error_Msg_NE ("expect unconstrained array in instantiation of &", Actual, Gen_T); Abandon_Instantiation (Actual); end if; end if; if Formal_Dimensions /= Number_Dimensions (Act_T) then Error_Msg_NE ("dimensions of actual do not match formal &", Actual, Gen_T); Abandon_Instantiation (Actual); end if; I1 := First_Index (A_Gen_T); I2 := First_Index (Act_T); for J in 1 .. Formal_Dimensions loop -- If the indices of the actual were given by a subtype_mark, -- the index was transformed into a range attribute. Retrieve -- the original type mark for checking. if Is_Entity_Name (Original_Node (I2)) then T2 := Entity (Original_Node (I2)); else T2 := Etype (I2); end if; if not Subtypes_Match (Find_Actual_Type (Etype (I1), Scope (A_Gen_T)), T2) then Error_Msg_NE ("index types of actual do not match those of formal &", Actual, Gen_T); Abandon_Instantiation (Actual); end if; Next_Index (I1); Next_Index (I2); end loop; if not Subtypes_Match ( Find_Actual_Type (Component_Type (A_Gen_T), Scope (A_Gen_T)), Component_Type (Act_T)) then Error_Msg_NE ("component subtype of actual does not match that of formal &", Actual, Gen_T); Abandon_Instantiation (Actual); end if; if Has_Aliased_Components (A_Gen_T) and then not Has_Aliased_Components (Act_T) then Error_Msg_NE ("actual must have aliased components to match formal type &", Actual, Gen_T); end if; end Validate_Array_Type_Instance; ------------------------------------ -- Validate_Derived_Type_Instance -- ------------------------------------ procedure Validate_Derived_Type_Instance is Actual_Discr : Entity_Id; Ancestor_Discr : Entity_Id; begin -- If the parent type in the generic declaration is itself -- a previous formal type, then it is local to the generic -- and absent from the analyzed generic definition. In that -- case the ancestor is the instance of the formal (which must -- have been instantiated previously). Otherwise, the analyzed -- generic carries the parent type. If the parent type is defined -- in a previous formal package, then the scope of that formal -- package is that of the generic type itself, and it has already -- been mapped into the corresponding type in the actual package. -- Common case: parent type defined outside of the generic. if Is_Entity_Name (Subtype_Mark (Def)) and then Present (Entity (Subtype_Mark (Def))) then Ancestor := Get_Instance_Of (Entity (Subtype_Mark (Def))); -- Check whether parent is defined in a previous formal package. elsif Scope (Scope (Base_Type (Etype (A_Gen_T)))) = Scope (A_Gen_T) then Ancestor := Get_Instance_Of (Base_Type (Etype (A_Gen_T))); elsif Is_Derived_Type (Get_Instance_Of (A_Gen_T)) then Ancestor := Get_Instance_Of (Base_Type (Get_Instance_Of (A_Gen_T))); else Ancestor := Get_Instance_Of (Etype (Base_Type (A_Gen_T))); end if; if not Is_Ancestor (Base_Type (Ancestor), Act_T) then Error_Msg_NE ("expect type derived from & in instantiation", Actual, First_Subtype (Ancestor)); Abandon_Instantiation (Actual); end if; -- Perform atomic/volatile checks (RM C.6(12)) if Is_Atomic (Act_T) and then not Is_Atomic (Ancestor) then Error_Msg_N ("cannot have atomic actual type for non-atomic formal type", Actual); elsif Is_Volatile (Act_T) and then not Is_Volatile (Ancestor) and then Is_By_Reference_Type (Ancestor) then Error_Msg_N ("cannot have volatile actual type for non-volatile formal type", Actual); end if; -- It should not be necessary to check for unknown discriminants -- on Formal, but for some reason Has_Unknown_Discriminants is -- false for A_Gen_T, so Is_Indefinite_Subtype incorrectly -- returns False. This needs fixing. ??? if not Is_Indefinite_Subtype (A_Gen_T) and then not Unknown_Discriminants_Present (Formal) and then Is_Indefinite_Subtype (Act_T) then Error_Msg_N ("actual subtype must be constrained", Actual); Abandon_Instantiation (Actual); end if; if not Unknown_Discriminants_Present (Formal) then if Is_Constrained (Ancestor) then if not Is_Constrained (Act_T) then Error_Msg_N ("actual subtype must be constrained", Actual); Abandon_Instantiation (Actual); end if; -- Ancestor is unconstrained elsif Is_Constrained (Act_T) then if Ekind (Ancestor) = E_Access_Type or else Is_Composite_Type (Ancestor) then Error_Msg_N ("actual subtype must be unconstrained", Actual); Abandon_Instantiation (Actual); end if; -- A class-wide type is only allowed if the formal has -- unknown discriminants. elsif Is_Class_Wide_Type (Act_T) and then not Has_Unknown_Discriminants (Ancestor) then Error_Msg_NE ("actual for & cannot be a class-wide type", Actual, Gen_T); Abandon_Instantiation (Actual); -- Otherwise, the formal and actual shall have the same -- number of discriminants and each discriminant of the -- actual must correspond to a discriminant of the formal. elsif Has_Discriminants (Act_T) and then Has_Discriminants (Ancestor) then Actual_Discr := First_Discriminant (Act_T); Ancestor_Discr := First_Discriminant (Ancestor); while Present (Actual_Discr) and then Present (Ancestor_Discr) loop if Base_Type (Act_T) /= Base_Type (Ancestor) and then not Present (Corresponding_Discriminant (Actual_Discr)) then Error_Msg_NE ("discriminant & does not correspond " & "to ancestor discriminant", Actual, Actual_Discr); Abandon_Instantiation (Actual); end if; Next_Discriminant (Actual_Discr); Next_Discriminant (Ancestor_Discr); end loop; if Present (Actual_Discr) or else Present (Ancestor_Discr) then Error_Msg_NE ("actual for & must have same number of discriminants", Actual, Gen_T); Abandon_Instantiation (Actual); end if; -- This case should be caught by the earlier check for -- for constrainedness, but the check here is added for -- completeness. elsif Has_Discriminants (Act_T) then Error_Msg_NE ("actual for & must not have discriminants", Actual, Gen_T); Abandon_Instantiation (Actual); elsif Has_Discriminants (Ancestor) then Error_Msg_NE ("actual for & must have known discriminants", Actual, Gen_T); Abandon_Instantiation (Actual); end if; if not Subtypes_Statically_Compatible (Act_T, Ancestor) then Error_Msg_N ("constraint on actual is incompatible with formal", Actual); Abandon_Instantiation (Actual); end if; end if; end Validate_Derived_Type_Instance; ------------------------------------ -- Validate_Private_Type_Instance -- ------------------------------------ procedure Validate_Private_Type_Instance is Formal_Discr : Entity_Id; Actual_Discr : Entity_Id; Formal_Subt : Entity_Id; begin if (Is_Limited_Type (Act_T) or else Is_Limited_Composite (Act_T)) and then not Is_Limited_Type (A_Gen_T) then Error_Msg_NE ("actual for non-limited & cannot be a limited type", Actual, Gen_T); Abandon_Instantiation (Actual); elsif Is_Indefinite_Subtype (Act_T) and then not Is_Indefinite_Subtype (A_Gen_T) and then Ada_95 then Error_Msg_NE ("actual for & must be a definite subtype", Actual, Gen_T); elsif not Is_Tagged_Type (Act_T) and then Is_Tagged_Type (A_Gen_T) then Error_Msg_NE ("actual for & must be a tagged type", Actual, Gen_T); elsif Has_Discriminants (A_Gen_T) then if not Has_Discriminants (Act_T) then Error_Msg_NE ("actual for & must have discriminants", Actual, Gen_T); Abandon_Instantiation (Actual); elsif Is_Constrained (Act_T) then Error_Msg_NE ("actual for & must be unconstrained", Actual, Gen_T); Abandon_Instantiation (Actual); else Formal_Discr := First_Discriminant (A_Gen_T); Actual_Discr := First_Discriminant (Act_T); while Formal_Discr /= Empty loop if Actual_Discr = Empty then Error_Msg_NE ("discriminants on actual do not match formal", Actual, Gen_T); Abandon_Instantiation (Actual); end if; Formal_Subt := Get_Instance_Of (Etype (Formal_Discr)); -- access discriminants match if designated types do. if Ekind (Base_Type (Formal_Subt)) = E_Anonymous_Access_Type and then (Ekind (Base_Type (Etype (Actual_Discr)))) = E_Anonymous_Access_Type and then Get_Instance_Of ( Designated_Type (Base_Type (Formal_Subt))) = Designated_Type (Base_Type (Etype (Actual_Discr))) then null; elsif Base_Type (Formal_Subt) /= Base_Type (Etype (Actual_Discr)) then Error_Msg_NE ("types of actual discriminants must match formal", Actual, Gen_T); Abandon_Instantiation (Actual); elsif not Subtypes_Statically_Match (Formal_Subt, Etype (Actual_Discr)) and then Ada_95 then Error_Msg_NE ("subtypes of actual discriminants must match formal", Actual, Gen_T); Abandon_Instantiation (Actual); end if; Next_Discriminant (Formal_Discr); Next_Discriminant (Actual_Discr); end loop; if Actual_Discr /= Empty then Error_Msg_NE ("discriminants on actual do not match formal", Actual, Gen_T); Abandon_Instantiation (Actual); end if; end if; end if; Ancestor := Gen_T; end Validate_Private_Type_Instance; -- Start of processing for Instantiate_Type begin if Get_Instance_Of (A_Gen_T) /= A_Gen_T then Error_Msg_N ("duplicate instantiation of generic type", Actual); return Error; elsif not Is_Entity_Name (Actual) or else not Is_Type (Entity (Actual)) then Error_Msg_NE ("expect valid subtype mark to instantiate &", Actual, Gen_T); Abandon_Instantiation (Actual); else Act_T := Entity (Actual); if Ekind (Act_T) = E_Incomplete_Type then if No (Underlying_Type (Act_T)) then Error_Msg_N ("premature use of incomplete type", Actual); Abandon_Instantiation (Actual); else Act_T := Full_View (Act_T); Set_Entity (Actual, Act_T); if Has_Private_Component (Act_T) then Error_Msg_N ("premature use of type with private component", Actual); end if; end if; elsif Is_Private_Type (Act_T) and then Is_Private_Type (Base_Type (Act_T)) and then not Is_Generic_Type (Act_T) and then not Is_Derived_Type (Act_T) and then No (Full_View (Root_Type (Act_T))) then Error_Msg_N ("premature use of private type", Actual); elsif Has_Private_Component (Act_T) then Error_Msg_N ("premature use of type with private component", Actual); end if; Set_Instance_Of (A_Gen_T, Act_T); -- If the type is generic, the class-wide type may also be used if Is_Tagged_Type (A_Gen_T) and then Is_Tagged_Type (Act_T) and then not Is_Class_Wide_Type (A_Gen_T) then Set_Instance_Of (Class_Wide_Type (A_Gen_T), Class_Wide_Type (Act_T)); end if; if not Is_Abstract (A_Gen_T) and then Is_Abstract (Act_T) then Error_Msg_N ("actual of non-abstract formal cannot be abstract", Actual); end if; if Is_Scalar_Type (Gen_T) then Set_Instance_Of (Etype (A_Gen_T), Etype (Act_T)); end if; end if; case Nkind (Def) is when N_Formal_Private_Type_Definition => Validate_Private_Type_Instance; when N_Formal_Derived_Type_Definition => Validate_Derived_Type_Instance; when N_Formal_Discrete_Type_Definition => if not Is_Discrete_Type (Act_T) then Error_Msg_NE ("expect discrete type in instantiation of&", Actual, Gen_T); Abandon_Instantiation (Actual); end if; when N_Formal_Signed_Integer_Type_Definition => if not Is_Signed_Integer_Type (Act_T) then Error_Msg_NE ("expect signed integer type in instantiation of&", Actual, Gen_T); Abandon_Instantiation (Actual); end if; when N_Formal_Modular_Type_Definition => if not Is_Modular_Integer_Type (Act_T) then Error_Msg_NE ("expect modular type in instantiation of &", Actual, Gen_T); Abandon_Instantiation (Actual); end if; when N_Formal_Floating_Point_Definition => if not Is_Floating_Point_Type (Act_T) then Error_Msg_NE ("expect float type in instantiation of &", Actual, Gen_T); Abandon_Instantiation (Actual); end if; when N_Formal_Ordinary_Fixed_Point_Definition => if not Is_Ordinary_Fixed_Point_Type (Act_T) then Error_Msg_NE ("expect ordinary fixed point type in instantiation of &", Actual, Gen_T); Abandon_Instantiation (Actual); end if; when N_Formal_Decimal_Fixed_Point_Definition => if not Is_Decimal_Fixed_Point_Type (Act_T) then Error_Msg_NE ("expect decimal type in instantiation of &", Actual, Gen_T); Abandon_Instantiation (Actual); end if; when N_Array_Type_Definition => Validate_Array_Type_Instance; when N_Access_To_Object_Definition => Validate_Access_Type_Instance; when N_Access_Function_Definition | N_Access_Procedure_Definition => Validate_Access_Subprogram_Instance; when others => raise Program_Error; end case; Decl_Node := Make_Subtype_Declaration (Loc, Defining_Identifier => New_Copy (Gen_T), Subtype_Indication => New_Reference_To (Act_T, Loc)); if Is_Private_Type (Act_T) then Set_Has_Private_View (Subtype_Indication (Decl_Node)); end if; -- Flag actual derived types so their elaboration produces the -- appropriate renamings for the primitive operations of the ancestor. -- Flag actual for formal private types as well, to determine whether -- operations in the private part may override inherited operations. if Nkind (Def) = N_Formal_Derived_Type_Definition or else Nkind (Def) = N_Formal_Private_Type_Definition then Set_Generic_Parent_Type (Decl_Node, Ancestor); end if; return Decl_Node; end Instantiate_Type; --------------------- -- Is_In_Main_Unit -- --------------------- function Is_In_Main_Unit (N : Node_Id) return Boolean is Unum : constant Unit_Number_Type := Get_Source_Unit (N); Current_Unit : Node_Id; begin if Unum = Main_Unit then return True; -- If the current unit is a subunit then it is either the main unit -- or is being compiled as part of the main unit. elsif Nkind (N) = N_Compilation_Unit then return Nkind (Unit (N)) = N_Subunit; end if; Current_Unit := Parent (N); while Present (Current_Unit) and then Nkind (Current_Unit) /= N_Compilation_Unit loop Current_Unit := Parent (Current_Unit); end loop; -- The instantiation node is in the main unit, or else the current -- node (perhaps as the result of nested instantiations) is in the -- main unit, or in the declaration of the main unit, which in this -- last case must be a body. return Unum = Main_Unit or else Current_Unit = Cunit (Main_Unit) or else Current_Unit = Library_Unit (Cunit (Main_Unit)) or else (Present (Library_Unit (Current_Unit)) and then Is_In_Main_Unit (Library_Unit (Current_Unit))); end Is_In_Main_Unit; ---------------------------- -- Load_Parent_Of_Generic -- ---------------------------- procedure Load_Parent_Of_Generic (N : Node_Id; Spec : Node_Id) is Comp_Unit : constant Node_Id := Cunit (Get_Source_Unit (Spec)); True_Parent : Node_Id; Inst_Node : Node_Id; OK : Boolean; Save_Style_Check : Boolean := Style_Check; begin if not In_Same_Source_Unit (N, Spec) or else Nkind (Unit (Comp_Unit)) = N_Package_Declaration or else (Nkind (Unit (Comp_Unit)) = N_Package_Body and then not Is_In_Main_Unit (Spec)) then -- Find body of parent of spec, and analyze it. A special case -- arises when the parent is an instantiation, that is to say when -- we are currently instantiating a nested generic. In that case, -- there is no separate file for the body of the enclosing instance. -- Instead, the enclosing body must be instantiated as if it were -- a pending instantiation, in order to produce the body for the -- nested generic we require now. Note that in that case the -- generic may be defined in a package body, the instance defined -- in the same package body, and the original enclosing body may not -- be in the main unit. True_Parent := Parent (Spec); Inst_Node := Empty; while Present (True_Parent) and then Nkind (True_Parent) /= N_Compilation_Unit loop if Nkind (True_Parent) = N_Package_Declaration and then Nkind (Original_Node (True_Parent)) = N_Package_Instantiation then -- Parent is a compilation unit that is an instantiation. -- Instantiation node has been replaced with package decl. Inst_Node := Original_Node (True_Parent); exit; elsif Nkind (True_Parent) = N_Package_Declaration and then Present (Generic_Parent (Specification (True_Parent))) then -- Parent is an instantiation within another specification. -- Declaration for instance has been inserted before original -- instantiation node. A direct link would be preferable? Inst_Node := Next (True_Parent); while Present (Inst_Node) and then Nkind (Inst_Node) /= N_Package_Instantiation loop Next (Inst_Node); end loop; -- If the instance appears within a generic, and the generic -- unit is defined within a formal package of the enclosing -- generic, there is no generic body available, and none -- needed. A more precise test should be used ??? if No (Inst_Node) then return; end if; exit; else True_Parent := Parent (True_Parent); end if; end loop; if Present (Inst_Node) then if Nkind (Parent (True_Parent)) = N_Compilation_Unit then -- Instantiation node and declaration of instantiated package -- were exchanged when only the declaration was needed. -- Restore instantiation node before proceeding with body. Set_Unit (Parent (True_Parent), Inst_Node); end if; -- Now complete instantiation of enclosing body, if it appears -- in some other unit. If it appears in the current unit, the -- body will have been instantiated already. if No (Corresponding_Body (Instance_Spec (Inst_Node))) then Instantiate_Package_Body (Pending_Body_Info'( Inst_Node, True_Parent, Expander_Active, Get_Code_Unit (Sloc (Inst_Node)))); end if; else Opt.Style_Check := False; Load_Needed_Body (Comp_Unit, OK); Opt.Style_Check := Save_Style_Check; if not OK and then Unit_Requires_Body (Defining_Entity (Spec)) then declare Bname : constant Unit_Name_Type := Get_Body_Name (Get_Unit_Name (Unit (Comp_Unit))); begin Error_Msg_Unit_1 := Bname; Error_Msg_N ("this instantiation requires$!", N); Error_Msg_Name_1 := Get_File_Name (Bname, Subunit => False); Error_Msg_N ("\but file{ was not found!", N); raise Unrecoverable_Error; end; end if; end if; end if; -- If loading the parent of the generic caused an instantiation -- circularity, we abandon compilation at this point, because -- otherwise in some cases we get into trouble with infinite -- recursions after this point. if Circularity_Detected then raise Unrecoverable_Error; end if; end Load_Parent_Of_Generic; ----------------------- -- Move_Freeze_Nodes -- ----------------------- procedure Move_Freeze_Nodes (Out_Of : Entity_Id; After : Node_Id; L : List_Id) is Decl : Node_Id; Next_Decl : Node_Id; Next_Node : Node_Id := After; Spec : Node_Id; function Is_Outer_Type (T : Entity_Id) return Boolean; -- Check whether entity is declared in a scope external to that -- of the generic unit. ------------------- -- Is_Outer_Type -- ------------------- function Is_Outer_Type (T : Entity_Id) return Boolean is Scop : Entity_Id := Scope (T); begin if Scope_Depth (Scop) < Scope_Depth (Out_Of) then return True; else while Scop /= Standard_Standard loop if Scop = Out_Of then return False; else Scop := Scope (Scop); end if; end loop; return True; end if; end Is_Outer_Type; -- Start of processing for Move_Freeze_Nodes begin if No (L) then return; end if; -- First remove the freeze nodes that may appear before all other -- declarations. Decl := First (L); while Present (Decl) and then Nkind (Decl) = N_Freeze_Entity and then Is_Outer_Type (Entity (Decl)) loop Decl := Remove_Head (L); Insert_After (Next_Node, Decl); Set_Analyzed (Decl, False); Next_Node := Decl; Decl := First (L); end loop; -- Next scan the list of declarations and remove each freeze node that -- appears ahead of the current node. while Present (Decl) loop while Present (Next (Decl)) and then Nkind (Next (Decl)) = N_Freeze_Entity and then Is_Outer_Type (Entity (Next (Decl))) loop Next_Decl := Remove_Next (Decl); Insert_After (Next_Node, Next_Decl); Set_Analyzed (Next_Decl, False); Next_Node := Next_Decl; end loop; -- If the declaration is a nested package or concurrent type, then -- recurse. Nested generic packages will have been processed from the -- inside out. if Nkind (Decl) = N_Package_Declaration then Spec := Specification (Decl); elsif Nkind (Decl) = N_Task_Type_Declaration then Spec := Task_Definition (Decl); elsif Nkind (Decl) = N_Protected_Type_Declaration then Spec := Protected_Definition (Decl); else Spec := Empty; end if; if Present (Spec) then Move_Freeze_Nodes (Out_Of, Next_Node, Visible_Declarations (Spec)); Move_Freeze_Nodes (Out_Of, Next_Node, Private_Declarations (Spec)); end if; Next (Decl); end loop; end Move_Freeze_Nodes; ---------------- -- Next_Assoc -- ---------------- function Next_Assoc (E : Assoc_Ptr) return Assoc_Ptr is begin return Generic_Renamings.Table (E).Next_In_HTable; end Next_Assoc; ------------------------ -- Preanalyze_Actuals -- ------------------------ procedure Pre_Analyze_Actuals (N : Node_Id) is Assoc : Node_Id; Act : Node_Id; Errs : Int := Errors_Detected; begin Assoc := First (Generic_Associations (N)); while Present (Assoc) loop Act := Explicit_Generic_Actual_Parameter (Assoc); -- Within a nested instantiation, a defaulted actual is an -- empty association, so nothing to analyze. If the actual for -- a subprogram is an attribute, analyze prefix only, because -- actual is not a complete attribute reference. -- String literals may be operators, but at this point we do not -- know whether the actual is a formal subprogram or a string. if No (Act) then null; elsif Nkind (Act) = N_Attribute_Reference then Analyze (Prefix (Act)); elsif Nkind (Act) = N_Explicit_Dereference then Analyze (Prefix (Act)); elsif Nkind (Act) /= N_Operator_Symbol then Analyze (Act); end if; if Errs /= Errors_Detected then Abandon_Instantiation (Act); end if; Next (Assoc); end loop; end Pre_Analyze_Actuals; ------------------- -- Remove_Parent -- ------------------- procedure Remove_Parent (In_Body : Boolean := False) is S : Entity_Id := Current_Scope; E : Entity_Id; P : Entity_Id; Hidden : Elmt_Id; begin -- After child instantiation is complete, remove from scope stack -- the extra copy of the current scope, and then remove parent -- instances. if not In_Body then Pop_Scope; while Current_Scope /= S loop P := Current_Scope; End_Package_Scope (Current_Scope); if In_Open_Scopes (P) then E := First_Entity (P); while Present (E) loop Set_Is_Immediately_Visible (E, True); Next_Entity (E); end loop; elsif not In_Open_Scopes (Scope (P)) then Set_Is_Immediately_Visible (P, False); end if; end loop; -- Reset visibility of entities in the enclosing scope. Set_Is_Hidden_Open_Scope (Current_Scope, False); Hidden := First_Elmt (Hidden_Entities); while Present (Hidden) loop Set_Is_Immediately_Visible (Node (Hidden), True); Next_Elmt (Hidden); end loop; else -- Each body is analyzed separately, and there is no context -- that needs preserving from one body instance to the next, -- so remove all parent scopes that have been installed. while Present (S) loop End_Package_Scope (S); S := Current_Scope; exit when S = Standard_Standard; end loop; end if; end Remove_Parent; ----------------- -- Restore_Env -- ----------------- procedure Restore_Env is Saved : Instance_Env renames Instance_Envs.Table (Instance_Envs.Last); begin Ada_83 := Saved.Ada_83; if No (Current_Instantiated_Parent.Act_Id) then -- Restore environment after subprogram inlining Restore_Private_Views (Empty); end if; Current_Instantiated_Parent := Saved.Instantiated_Parent; Exchanged_Views := Saved.Exchanged_Views; Hidden_Entities := Saved.Hidden_Entities; Current_Sem_Unit := Saved.Current_Sem_Unit; Instance_Envs.Decrement_Last; end Restore_Env; --------------------------- -- Restore_Private_Views -- --------------------------- procedure Restore_Private_Views (Pack_Id : Entity_Id; Is_Package : Boolean := True) is M : Elmt_Id; E : Entity_Id; Typ : Entity_Id; Dep_Elmt : Elmt_Id; Dep_Typ : Node_Id; begin M := First_Elmt (Exchanged_Views); while Present (M) loop Typ := Node (M); -- Subtypes of types whose views have been exchanged, and that -- are defined within the instance, were not on the list of -- Private_Dependents on entry to the instance, so they have to -- be exchanged explicitly now, in order to remain consistent with -- the view of the parent type. if Ekind (Typ) = E_Private_Type or else Ekind (Typ) = E_Limited_Private_Type or else Ekind (Typ) = E_Record_Type_With_Private then Dep_Elmt := First_Elmt (Private_Dependents (Typ)); while Present (Dep_Elmt) loop Dep_Typ := Node (Dep_Elmt); if Scope (Dep_Typ) = Pack_Id and then Present (Full_View (Dep_Typ)) then Replace_Elmt (Dep_Elmt, Full_View (Dep_Typ)); Exchange_Declarations (Dep_Typ); end if; Next_Elmt (Dep_Elmt); end loop; end if; Exchange_Declarations (Node (M)); Next_Elmt (M); end loop; if No (Pack_Id) then return; end if; -- Make the generic formal parameters private, and make the formal -- types into subtypes of the actuals again. E := First_Entity (Pack_Id); while Present (E) loop Set_Is_Hidden (E, True); if Is_Type (E) and then Nkind (Parent (E)) = N_Subtype_Declaration then Set_Is_Generic_Actual_Type (E, False); -- An unusual case of aliasing: the actual may also be directly -- visible in the generic, and be private there, while it is -- fully visible in the context of the instance. The internal -- subtype is private in the instance, but has full visibility -- like its parent in the enclosing scope. This enforces the -- invariant that the privacy status of all private dependents of -- a type coincide with that of the parent type. This can only -- happen when a generic child unit is instantiated within a -- sibling. if Is_Private_Type (E) and then not Is_Private_Type (Etype (E)) then Exchange_Declarations (E); end if; elsif Ekind (E) = E_Package then -- The end of the renaming list is the renaming of the generic -- package itself. If the instance is a subprogram, all entities -- in the corresponding package are renamings. If this entity is -- a formal package, make its own formals private as well. The -- actual in this case is itself the renaming of an instantation. -- If the entity is not a package renaming, it is the entity -- created to validate formal package actuals: ignore. -- If the actual is itself a formal package for the enclosing -- generic, or the actual for such a formal package, it remains -- visible after the current instance, and therefore nothing -- needs to be done either, except to keep it accessible. if Is_Package and then Renamed_Object (E) = Pack_Id then exit; elsif Nkind (Parent (E)) /= N_Package_Renaming_Declaration then null; elsif Denotes_Formal_Package (Renamed_Object (E)) then Set_Is_Hidden (E, False); else declare Act_P : Entity_Id := Renamed_Object (E); Id : Entity_Id := First_Entity (Act_P); begin while Present (Id) and then Id /= First_Private_Entity (Act_P) loop Set_Is_Hidden (Id, True); Set_Is_Potentially_Use_Visible (Id, In_Use (Act_P)); exit when Ekind (Id) = E_Package and then Renamed_Object (Id) = Act_P; Next_Entity (Id); end loop; end; null; end if; end if; Next_Entity (E); end loop; end Restore_Private_Views; -------------- -- Save_Env -- -------------- procedure Save_Env (Gen_Unit : Entity_Id; Act_Unit : Entity_Id) is Saved : Instance_Env; begin Saved.Ada_83 := Ada_83; Saved.Instantiated_Parent := Current_Instantiated_Parent; Saved.Exchanged_Views := Exchanged_Views; Saved.Hidden_Entities := Hidden_Entities; Saved.Current_Sem_Unit := Current_Sem_Unit; Instance_Envs.Increment_Last; Instance_Envs.Table (Instance_Envs.Last) := Saved; -- Regardless of the current mode, predefined units are analyzed in -- Ada95 mode, and Ada83 checks don't apply. if Is_Internal_File_Name (Fname => Unit_File_Name (Get_Source_Unit (Gen_Unit)), Renamings_Included => True) then Ada_83 := False; end if; Current_Instantiated_Parent := (Gen_Unit, Act_Unit, Assoc_Null); Exchanged_Views := New_Elmt_List; Hidden_Entities := New_Elmt_List; end Save_Env; ---------------------------- -- Save_Global_References -- ---------------------------- procedure Save_Global_References (N : Node_Id) is Gen_Scope : Entity_Id; E : Entity_Id; N2 : Node_Id; function Is_Global (E : Entity_Id) return Boolean; -- Check whether entity is defined outside of generic unit. -- Examine the scope of an entity, and the scope of the scope, -- etc, until we find either Standard, in which case the entity -- is global, or the generic unit itself, which indicates that -- the entity is local. If the entity is the generic unit itself, -- as in the case of a recursive call, or the enclosing generic unit, -- if different from the current scope, then it is local as well, -- because it will be replaced at the point of instantiation. On -- the other hand, if it is a reference to a child unit of a common -- ancestor, which appears in an instantiation, it is global because -- it is used to denote a specific compilation unit at the time the -- instantiations will be analyzed. procedure Reset_Entity (N : Node_Id); -- Save semantic information on global entity, so that it is not -- resolved again at instantiation time. procedure Save_Global_Defaults (N1, N2 : Node_Id); -- Default actuals in nested instances must be handled specially -- because there is no link to them from the original tree. When an -- actual subprogram is given by a default, we add an explicit generic -- association for it in the instantiation node. When we save the -- global references on the name of the instance, we recover the list -- of generic associations, and add an explicit one to the original -- generic tree, through which a global actual can be preserved. -- Similarly, if a child unit is instantiated within a sibling, in the -- context of the parent, we must preserve the identifier of the parent -- so that it can be properly resolved in a subsequent instantiation. procedure Save_Global_Descendant (D : Union_Id); -- Apply Save_Global_References recursively to the descendents of -- current node. procedure Save_References (N : Node_Id); -- This is the recursive procedure that does the work, once the -- enclosing generic scope has been established. --------------- -- Is_Global -- --------------- function Is_Global (E : Entity_Id) return Boolean is Se : Entity_Id := Scope (E); function Is_Instance_Node (Decl : Node_Id) return Boolean; -- Determine whether the parent node of a reference to a child unit -- denotes an instantiation or a formal package, in which case the -- reference to the child unit is global, even if it appears within -- the current scope (e.g. when the instance appears within the body -- of an ancestor). function Is_Instance_Node (Decl : Node_Id) return Boolean is begin return (Nkind (Decl) in N_Generic_Instantiation or else Nkind (Original_Node (Decl)) = N_Formal_Package_Declaration); end Is_Instance_Node; -- Start of processing for Is_Global begin if E = Gen_Scope then return False; elsif E = Standard_Standard then return True; elsif Is_Child_Unit (E) and then (Is_Instance_Node (Parent (N2)) or else (Nkind (Parent (N2)) = N_Expanded_Name and then N2 = Selector_Name (Parent (N2)) and then Is_Instance_Node (Parent (Parent (N2))))) then return True; else while Se /= Gen_Scope loop if Se = Standard_Standard then return True; else Se := Scope (Se); end if; end loop; return False; end if; end Is_Global; ------------------ -- Reset_Entity -- ------------------ procedure Reset_Entity (N : Node_Id) is procedure Set_Global_Type (N : Node_Id; N2 : Node_Id); -- The type of N2 is global to the generic unit. Save the -- type in the generic node. procedure Set_Global_Type (N : Node_Id; N2 : Node_Id) is Typ : constant Entity_Id := Etype (N2); begin Set_Etype (N, Typ); if Entity (N) /= N2 and then Has_Private_View (Entity (N)) then -- If the entity of N is not the associated node, this is -- a nested generic and it has an associated node as well, -- whose type is already the full view (see below). Indicate -- that the original node has a private view. Set_Has_Private_View (N); end if; -- If not a private type, nothing else to do if not Is_Private_Type (Typ) then if Is_Array_Type (Typ) and then Is_Private_Type (Component_Type (Typ)) then Set_Has_Private_View (N); end if; -- If it is a derivation of a private type in a context where -- no full view is needed, nothing to do either. elsif No (Full_View (Typ)) and then Typ /= Etype (Typ) then null; -- Otherwise mark the type for flipping and use the full_view -- when available. else Set_Has_Private_View (N); if Present (Full_View (Typ)) then Set_Etype (N2, Full_View (Typ)); end if; end if; end Set_Global_Type; -- Start of processing for Reset_Entity begin N2 := Associated_Node (N); E := Entity (N2); if Present (E) then if Is_Global (E) then Set_Global_Type (N, N2); elsif Nkind (N) = N_Op_Concat and then Is_Generic_Type (Etype (N2)) and then (Base_Type (Etype (Right_Opnd (N2))) = Etype (N2) or else Base_Type (Etype (Left_Opnd (N2))) = Etype (N2)) and then Is_Intrinsic_Subprogram (E) then null; else -- Entity is local. Mark generic node as unresolved. -- Note that now it does not have an entity. Set_Associated_Node (N, Empty); Set_Etype (N, Empty); end if; if (Nkind (Parent (N)) = N_Package_Instantiation or else Nkind (Parent (N)) = N_Function_Instantiation or else Nkind (Parent (N)) = N_Procedure_Instantiation) and then N = Name (Parent (N)) then Save_Global_Defaults (Parent (N), Parent (N2)); end if; elsif Nkind (Parent (N)) = N_Selected_Component and then Nkind (Parent (N2)) = N_Expanded_Name then if Is_Global (Entity (Parent (N2))) then Change_Selected_Component_To_Expanded_Name (Parent (N)); Set_Associated_Node (Parent (N), Parent (N2)); Set_Global_Type (Parent (N), Parent (N2)); Save_Global_Descendant (Field2 (N)); Save_Global_Descendant (Field3 (N)); -- If this is a reference to the current generic entity, -- replace it with a simple name. This is to avoid anomalies -- when the enclosing scope is also a generic unit, in which -- case the selected component will not resolve to the current -- unit within an instance of the outer one. Ditto if the -- entity is an enclosing scope, e.g. a parent unit. elsif In_Open_Scopes (Entity (Parent (N2))) and then not Is_Generic_Unit (Entity (Prefix (Parent (N2)))) then Rewrite (Parent (N), Make_Identifier (Sloc (N), Chars => Chars (Selector_Name (Parent (N2))))); end if; if (Nkind (Parent (Parent (N))) = N_Package_Instantiation or else Nkind (Parent (Parent (N))) = N_Function_Instantiation or else Nkind (Parent (Parent (N))) = N_Procedure_Instantiation) and then Parent (N) = Name (Parent (Parent (N))) then Save_Global_Defaults (Parent (Parent (N)), Parent (Parent ((N2)))); end if; -- A selected component may denote a static constant that has -- been folded. Make the same replacement in original tree. elsif Nkind (Parent (N)) = N_Selected_Component and then (Nkind (Parent (N2)) = N_Integer_Literal or else Nkind (Parent (N2)) = N_Real_Literal) then Rewrite (Parent (N), New_Copy (Parent (N2))); Set_Analyzed (Parent (N), False); -- a selected component may be transformed into a parameterless -- function call. If the called entity is global, rewrite the -- node appropriately, i.e. as an extended name for the global -- entity. elsif Nkind (Parent (N)) = N_Selected_Component and then Nkind (Parent (N2)) = N_Function_Call and then Is_Global (Entity (Name (Parent (N2)))) then Change_Selected_Component_To_Expanded_Name (Parent (N)); Set_Associated_Node (Parent (N), Name (Parent (N2))); Set_Global_Type (Parent (N), Name (Parent (N2))); Save_Global_Descendant (Field2 (N)); Save_Global_Descendant (Field3 (N)); else -- Entity is local. Reset in generic unit, so that node -- is resolved anew at the point of instantiation. Set_Associated_Node (N, Empty); Set_Etype (N, Empty); end if; end Reset_Entity; -------------------------- -- Save_Global_Defaults -- -------------------------- procedure Save_Global_Defaults (N1, N2 : Node_Id) is Loc : constant Source_Ptr := Sloc (N1); Assoc1 : List_Id := Generic_Associations (N1); Assoc2 : List_Id := Generic_Associations (N2); Act1 : Node_Id; Act2 : Node_Id; Def : Node_Id; Gen_Id : Entity_Id := Entity (Name (N2)); Ndec : Node_Id; Subp : Entity_Id; Actual : Entity_Id; begin if Present (Assoc1) then Act1 := First (Assoc1); else Act1 := Empty; Set_Generic_Associations (N1, New_List); Assoc1 := Generic_Associations (N1); end if; if Present (Assoc2) then Act2 := First (Assoc2); else return; end if; while Present (Act1) and then Present (Act2) loop Next (Act1); Next (Act2); end loop; -- Find the associations added for default suprograms. if Present (Act2) then while Nkind (Act2) /= N_Generic_Association or else No (Entity (Selector_Name (Act2))) or else not Is_Overloadable (Entity (Selector_Name (Act2))) loop Next (Act2); end loop; -- Add a similar association if the default is global. The -- renaming declaration for the actual has been analyzed, and -- its alias is the program it renames. Link the actual in the -- original generic tree with the node in the analyzed tree. while Present (Act2) loop Subp := Entity (Selector_Name (Act2)); Def := Explicit_Generic_Actual_Parameter (Act2); -- Following test is defence against rubbish errors if No (Alias (Subp)) then return; end if; -- Retrieve the resolved actual from the renaming declaration -- created for the instantiated formal. Actual := Entity (Name (Parent (Parent (Subp)))); Set_Entity (Def, Actual); Set_Etype (Def, Etype (Actual)); if Is_Global (Actual) then Ndec := Make_Generic_Association (Loc, Selector_Name => New_Occurrence_Of (Subp, Loc), Explicit_Generic_Actual_Parameter => New_Occurrence_Of (Actual, Loc)); Set_Associated_Node (Explicit_Generic_Actual_Parameter (Ndec), Def); Append (Ndec, Assoc1); -- If there are other defaults, add a dummy association -- in case there are other defaulted formals with the same -- name. elsif Present (Next (Act2)) then Ndec := Make_Generic_Association (Loc, Selector_Name => New_Occurrence_Of (Subp, Loc), Explicit_Generic_Actual_Parameter => Empty); Append (Ndec, Assoc1); end if; Next (Act2); end loop; end if; if Nkind (Name (N1)) = N_Identifier and then Is_Child_Unit (Gen_Id) and then Is_Global (Gen_Id) and then Is_Generic_Unit (Scope (Gen_Id)) and then In_Open_Scopes (Scope (Gen_Id)) then -- This is an instantiation of a child unit within a sibling, -- so that the generic parent is in scope. An eventual instance -- must occur within the scope of an instance of the parent. -- Make name in instance into an expanded name, to preserve the -- identifier of the parent, so it can be resolved subsequently. Rewrite (Name (N2), Make_Expanded_Name (Loc, Chars => Chars (Gen_Id), Prefix => New_Occurrence_Of (Scope (Gen_Id), Loc), Selector_Name => New_Occurrence_Of (Gen_Id, Loc))); Set_Entity (Name (N2), Gen_Id); Rewrite (Name (N1), Make_Expanded_Name (Loc, Chars => Chars (Gen_Id), Prefix => New_Occurrence_Of (Scope (Gen_Id), Loc), Selector_Name => New_Occurrence_Of (Gen_Id, Loc))); Set_Associated_Node (Name (N1), Name (N2)); Set_Associated_Node (Prefix (Name (N1)), Empty); Set_Associated_Node (Selector_Name (Name (N1)), Selector_Name (Name (N2))); Set_Etype (Name (N1), Etype (Gen_Id)); end if; end Save_Global_Defaults; ---------------------------- -- Save_Global_Descendant -- ---------------------------- procedure Save_Global_Descendant (D : Union_Id) is N1 : Node_Id; begin if D in Node_Range then if D = Union_Id (Empty) then null; elsif Nkind (Node_Id (D)) /= N_Compilation_Unit then Save_References (Node_Id (D)); end if; elsif D in List_Range then if D = Union_Id (No_List) or else Is_Empty_List (List_Id (D)) then null; else N1 := First (List_Id (D)); while Present (N1) loop Save_References (N1); Next (N1); end loop; end if; -- Element list or other non-node field, nothing to do else null; end if; end Save_Global_Descendant; --------------------- -- Save_References -- --------------------- -- This is the recursive procedure that does the work, once the -- enclosing generic scope has been established. We have to treat -- specially a number of node rewritings that are required by semantic -- processing and which change the kind of nodes in the generic copy: -- typically constant-folding, replacing an operator node by a string -- literal, or a selected component by an expanded name. In each of -- those cases, the transformation is propagated to the generic unit. procedure Save_References (N : Node_Id) is begin if N = Empty then null; elsif (Nkind (N) = N_Character_Literal or else Nkind (N) = N_Operator_Symbol) then if Nkind (N) = Nkind (Associated_Node (N)) then Reset_Entity (N); elsif Nkind (N) = N_Operator_Symbol and then Nkind (Associated_Node (N)) = N_String_Literal then Change_Operator_Symbol_To_String_Literal (N); end if; elsif Nkind (N) in N_Op then if Nkind (N) = Nkind (Associated_Node (N)) then if Nkind (N) = N_Op_Concat then Set_Is_Component_Left_Opnd (N, Is_Component_Left_Opnd (Associated_Node (N))); Set_Is_Component_Right_Opnd (N, Is_Component_Right_Opnd (Associated_Node (N))); end if; Reset_Entity (N); else -- Node may be transformed into call to a user-defined operator N2 := Associated_Node (N); if Nkind (N2) = N_Function_Call then E := Entity (Name (N2)); if Present (E) and then Is_Global (E) then Set_Etype (N, Etype (N2)); else Set_Associated_Node (N, Empty); Set_Etype (N, Empty); end if; elsif Nkind (N2) = N_Integer_Literal or else Nkind (N2) = N_Real_Literal or else Nkind (N2) = N_String_Literal or else (Nkind (N2) = N_Identifier and then Ekind (Entity (N2)) = E_Enumeration_Literal) then -- Operation was constant-folded, perform the same -- replacement in generic. -- Note: we do a Replace here rather than a Rewrite, -- which is a definite violation of the standard rules -- with regard to retrievability of the original tree, -- and likely ASIS bugs or at least irregularities are -- caused by this choice. -- The reason we do this is that the appropriate original -- nodes are never constructed (we don't go applying the -- generic instantiation to rewritten nodes in general). -- We could try to create an appropriate copy but it would -- be hard work and does not seem worth while, because -- the original expression is accessible in the generic, -- and ASIS rules for traversing instances are fuzzy. Replace (N, New_Copy (N2)); Set_Analyzed (N, False); end if; end if; -- Complete the check on operands. Save_Global_Descendant (Field2 (N)); Save_Global_Descendant (Field3 (N)); elsif Nkind (N) = N_Identifier then if Nkind (N) = Nkind (Associated_Node (N)) then -- If this is a discriminant reference, always save it. -- It is used in the instance to find the corresponding -- discriminant positionally rather than by name. Set_Original_Discriminant (N, Original_Discriminant (Associated_Node (N))); Reset_Entity (N); else N2 := Associated_Node (N); if Nkind (N2) = N_Function_Call then E := Entity (Name (N2)); -- Name resolves to a call to parameterless function. -- If original entity is global, mark node as resolved. if Present (E) and then Is_Global (E) then Set_Etype (N, Etype (N2)); else Set_Associated_Node (N, Empty); Set_Etype (N, Empty); end if; elsif Nkind (N2) = N_Integer_Literal or else Nkind (N2) = N_Real_Literal or else Nkind (N2) = N_String_Literal then -- Name resolves to named number that is constant-folded, -- or to string literal from concatenation. -- Perform the same replacement in generic. Rewrite (N, New_Copy (N2)); Set_Analyzed (N, False); elsif Nkind (N2) = N_Explicit_Dereference then -- An identifier is rewritten as a dereference if it is -- the prefix in a selected component, and it denotes an -- access to a composite type, or a parameterless function -- call that returns an access type. -- Check whether corresponding entity in prefix is global. if Is_Entity_Name (Prefix (N2)) and then Present (Entity (Prefix (N2))) and then Is_Global (Entity (Prefix (N2))) then Rewrite (N, Make_Explicit_Dereference (Sloc (N), Prefix => Make_Identifier (Sloc (N), Chars => Chars (N)))); Set_Associated_Node (Prefix (N), Prefix (N2)); elsif Nkind (Prefix (N2)) = N_Function_Call and then Is_Global (Entity (Name (Prefix (N2)))) then Rewrite (N, Make_Explicit_Dereference (Sloc (N), Prefix => Make_Function_Call (Sloc (N), Name => Make_Identifier (Sloc (N), Chars => Chars (N))))); Set_Associated_Node (Name (Prefix (N)), Name (Prefix (N2))); else Set_Associated_Node (N, Empty); Set_Etype (N, Empty); end if; -- The subtype mark of a nominally unconstrained object -- is rewritten as a subtype indication using the bounds -- of the expression. Recover the original subtype mark. elsif Nkind (N2) = N_Subtype_Indication and then Is_Entity_Name (Original_Node (N2)) then Set_Associated_Node (N, Original_Node (N2)); Reset_Entity (N); else null; end if; end if; elsif Nkind (N) in N_Entity then null; elsif Nkind (N) = N_Aggregate or else Nkind (N) = N_Extension_Aggregate then N2 := Associated_Node (N); if No (N2) or else No (Etype (N2)) or else not Is_Global (Etype (N2)) then Set_Associated_Node (N, Empty); end if; Save_Global_Descendant (Field1 (N)); Save_Global_Descendant (Field2 (N)); Save_Global_Descendant (Field3 (N)); Save_Global_Descendant (Field5 (N)); else Save_Global_Descendant (Field1 (N)); Save_Global_Descendant (Field2 (N)); Save_Global_Descendant (Field3 (N)); Save_Global_Descendant (Field4 (N)); Save_Global_Descendant (Field5 (N)); end if; end Save_References; -- Start of processing for Save_Global_References begin Gen_Scope := Current_Scope; -- If the generic unit is a child unit, references to entities in -- the parent are treated as local, because they will be resolved -- anew in the context of the instance of the parent. while Is_Child_Unit (Gen_Scope) and then Ekind (Scope (Gen_Scope)) = E_Generic_Package loop Gen_Scope := Scope (Gen_Scope); end loop; Save_References (N); end Save_Global_References; ------------------------- -- Set_Associated_Node -- ------------------------- -- Note from RBKD: the uncommented use of Set_Node4 below is ugly ??? procedure Set_Associated_Node (Gen_Node : Node_Id; Copy_Node : Node_Id) is begin Set_Node4 (Gen_Node, Copy_Node); end Set_Associated_Node; --------------------- -- Set_Copied_Sloc -- --------------------- procedure Set_Copied_Sloc (N : Node_Id; E : Entity_Id) is begin Create_Instantiation_Source (N, E, S_Adjustment); end Set_Copied_Sloc; --------------------- -- Set_Instance_Of -- --------------------- procedure Set_Instance_Of (A : Entity_Id; B : Entity_Id) is begin Generic_Renamings.Table (Generic_Renamings.Last) := (A, B, Assoc_Null); Generic_Renamings_HTable.Set (Generic_Renamings.Last); Generic_Renamings.Increment_Last; end Set_Instance_Of; -------------------- -- Set_Next_Assoc -- -------------------- procedure Set_Next_Assoc (E : Assoc_Ptr; Next : Assoc_Ptr) is begin Generic_Renamings.Table (E).Next_In_HTable := Next; end Set_Next_Assoc; ------------------- -- Start_Generic -- ------------------- procedure Start_Generic is begin -- ??? I am sure more things could be factored out in this -- routine. Should probably be done at a later stage. Generic_Flags.Increment_Last; Generic_Flags.Table (Generic_Flags.Last) := Inside_A_Generic; Inside_A_Generic := True; Expander_Mode_Save_And_Set (False); end Start_Generic; ----------------- -- Switch_View -- ----------------- procedure Switch_View (T : Entity_Id) is Priv_Elmt : Elmt_Id := No_Elmt; Priv_Sub : Entity_Id; BT : Entity_Id := Base_Type (T); begin -- T may be private but its base type may have been exchanged through -- some other occurrence, in which case there is nothing to switch. if not Is_Private_Type (BT) then return; end if; Priv_Elmt := First_Elmt (Private_Dependents (BT)); if Present (Full_View (BT)) then Append_Elmt (Full_View (BT), Exchanged_Views); Exchange_Declarations (BT); end if; while Present (Priv_Elmt) loop Priv_Sub := (Node (Priv_Elmt)); -- We avoid flipping the subtype if the Etype of its full -- view is private because this would result in a malformed -- subtype. This occurs when the Etype of the subtype full -- view is the full view of the base type (and since the -- base types were just switched, the subtype is pointing -- to the wrong view). This is currently the case for -- tagged record types, access types (maybe more?) and -- needs to be resolved. ??? if Present (Full_View (Priv_Sub)) and then not Is_Private_Type (Etype (Full_View (Priv_Sub))) then Append_Elmt (Full_View (Priv_Sub), Exchanged_Views); Exchange_Declarations (Priv_Sub); end if; Next_Elmt (Priv_Elmt); end loop; end Switch_View; ----------------------------- -- Valid_Default_Attribute -- ----------------------------- procedure Valid_Default_Attribute (Nam : Entity_Id; Def : Node_Id) is Attr_Id : constant Attribute_Id := Get_Attribute_Id (Attribute_Name (Def)); F : Entity_Id; Num_F : Int; T : Entity_Id := Entity (Prefix (Def)); OK : Boolean; Is_Fun : constant Boolean := (Ekind (Nam) = E_Function); begin if No (T) or else T = Any_Id then return; end if; Num_F := 0; F := First_Formal (Nam); while Present (F) loop Num_F := Num_F + 1; Next_Formal (F); end loop; case Attr_Id is when Attribute_Adjacent | Attribute_Ceiling | Attribute_Copy_Sign | Attribute_Floor | Attribute_Fraction | Attribute_Machine | Attribute_Model | Attribute_Remainder | Attribute_Rounding | Attribute_Unbiased_Rounding => OK := (Is_Fun and then Num_F = 1 and then Is_Floating_Point_Type (T)); when Attribute_Image | Attribute_Pred | Attribute_Succ | Attribute_Value | Attribute_Wide_Image | Attribute_Wide_Value => OK := (Is_Fun and then Num_F = 1 and then Is_Scalar_Type (T)); when Attribute_Max | Attribute_Min => OK := (Is_Fun and then Num_F = 2 and then Is_Scalar_Type (T)); when Attribute_Input => OK := (Is_Fun and then Num_F = 1); when Attribute_Output | Attribute_Read | Attribute_Write => OK := (not Is_Fun and then Num_F = 2); when others => OK := False; end case; if not OK then Error_Msg_N ("attribute reference has wrong profile for subprogram", Def); end if; end Valid_Default_Attribute; end Sem_Ch12;