/**************************************************************************** * * * GNAT COMPILER COMPONENTS * * * * T R A N S * * * * C Implementation File * * * * Copyright (C) 1992-2004, Free Software Foundation, Inc. * * * * GNAT is free software; you can redistribute it and/or modify it under * * terms of the GNU General Public License as published by the Free Soft- * * ware Foundation; either version 2, or (at your option) any later ver- * * sion. GNAT is distributed in the hope that it will be useful, but WITH- * * OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * * for more details. You should have received a copy of the GNU General * * Public License distributed with GNAT; see file COPYING. If not, write * * to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, * * MA 02111-1307, USA. * * * * GNAT was originally developed by the GNAT team at New York University. * * Extensive contributions were provided by Ada Core Technologies Inc. * * * ****************************************************************************/ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "tree.h" #include "real.h" #include "flags.h" #include "toplev.h" #include "rtl.h" #include "expr.h" #include "ggc.h" #include "function.h" #include "except.h" #include "debug.h" #include "output.h" #include "tree-gimple.h" #include "ada.h" #include "types.h" #include "atree.h" #include "elists.h" #include "namet.h" #include "nlists.h" #include "snames.h" #include "stringt.h" #include "uintp.h" #include "urealp.h" #include "fe.h" #include "sinfo.h" #include "einfo.h" #include "ada-tree.h" #include "gigi.h" int max_gnat_nodes; int number_names; struct Node *Nodes_Ptr; Node_Id *Next_Node_Ptr; Node_Id *Prev_Node_Ptr; struct Elist_Header *Elists_Ptr; struct Elmt_Item *Elmts_Ptr; struct String_Entry *Strings_Ptr; Char_Code *String_Chars_Ptr; struct List_Header *List_Headers_Ptr; /* Current filename without path. */ const char *ref_filename; /* If true, then gigi is being called on an analyzed but unexpanded tree, and the only purpose of the call is to properly annotate types with representation information. */ int type_annotate_only; /* A structure used to gather together information about a statement group. We use this to gather related statements, for example the "then" part of a IF. In the case where it represents a lexical scope, we may also have a BLOCK node corresponding to it and/or cleanups. */ struct stmt_group GTY((chain_next ("%h.previous"))) { struct stmt_group *previous; /* Previous code group. */ tree stmt_list; /* List of statements for this code group. */ tree block; /* BLOCK for this code group, if any. */ tree cleanups; /* Cleanups for this code group, if any. */ }; static GTY(()) struct stmt_group *current_stmt_group; static struct stmt_group *global_stmt_group; /* List of unused struct stmt_group nodes. */ static GTY((deletable)) struct stmt_group *stmt_group_free_list; /* Free list of TREE_LIST nodes used for stacks. */ static GTY((deletable)) tree gnu_stack_free_list; /* List of TREE_LIST nodes representing a stack of exception pointer variables. TREE_VALUE is the VAR_DECL that stores the address of the raised exception. Nonzero means we are in an exception handler. Not used in the zero-cost case. */ static GTY(()) tree gnu_except_ptr_stack; /* Variable that stores a list of labels to be used as a goto target instead of a return in some functions. See processing for N_Subprogram_Body. */ static GTY(()) tree gnu_return_label_stack; /* List of TREE_LIST nodes representing a stack of LOOP_STMT nodes. TREE_VALUE of each entry is the label of the corresponding LOOP_STMT. */ static GTY(()) tree gnu_loop_label_stack; /* List of TREE_LIST nodes representing labels for switch statements. TREE_VALUE of each entry is the label at the end of the switch. */ static GTY(()) tree gnu_switch_label_stack; /* The FUNCTION_DECL for the elaboration procedure for the main unit. */ static GTY(()) tree gnu_elab_proc_decl; /* Map GNAT tree codes to GCC tree codes for simple expressions. */ static enum tree_code gnu_codes[Number_Node_Kinds]; /* Current node being treated, in case gigi_abort called. */ Node_Id error_gnat_node; static void record_code_position (Node_Id); static void insert_code_for (Node_Id); static void start_stmt_group (void); static void add_cleanup (tree); static tree mark_visited (tree *, int *, void *); static tree mark_unvisited (tree *, int *, void *); static tree end_stmt_group (void); static void add_stmt_list (List_Id); static tree build_stmt_group (List_Id, bool); static void push_stack (tree *, tree, tree); static void pop_stack (tree *); static enum gimplify_status gnat_gimplify_stmt (tree *); static void gnat_expand_body_1 (tree, bool); static void elaborate_all_entities (Node_Id); static void process_freeze_entity (Node_Id); static void process_inlined_subprograms (Node_Id); static void process_decls (List_Id, List_Id, Node_Id, int, int); static tree emit_range_check (tree, Node_Id); static tree emit_index_check (tree, tree, tree, tree); static tree emit_check (tree, tree, int); static tree convert_with_check (Entity_Id, tree, int, int, int); static int addressable_p (tree); static tree assoc_to_constructor (Node_Id, tree); static tree extract_values (tree, tree); static tree pos_to_constructor (Node_Id, tree, Entity_Id); static tree maybe_implicit_deref (tree); static tree gnat_stabilize_reference_1 (tree, int); static bool build_unit_elab (void); static void annotate_with_node (tree, Node_Id); /* Constants for +0.5 and -0.5 for float-to-integer rounding. */ static REAL_VALUE_TYPE dconstp5; static REAL_VALUE_TYPE dconstmp5; /* This is the main program of the back-end. It sets up all the table structures and then generates code. */ void gigi (Node_Id gnat_root, int max_gnat_node, int number_name, struct Node *nodes_ptr, Node_Id *next_node_ptr, Node_Id *prev_node_ptr, struct Elist_Header *elists_ptr, struct Elmt_Item *elmts_ptr, struct String_Entry *strings_ptr, Char_Code *string_chars_ptr, struct List_Header *list_headers_ptr, Int number_units ATTRIBUTE_UNUSED, char *file_info_ptr ATTRIBUTE_UNUSED, Entity_Id standard_integer, Entity_Id standard_long_long_float, Entity_Id standard_exception_type, Int gigi_operating_mode) { tree gnu_standard_long_long_float; tree gnu_standard_exception_type; max_gnat_nodes = max_gnat_node; number_names = number_name; Nodes_Ptr = nodes_ptr; Next_Node_Ptr = next_node_ptr; Prev_Node_Ptr = prev_node_ptr; Elists_Ptr = elists_ptr; Elmts_Ptr = elmts_ptr; Strings_Ptr = strings_ptr; String_Chars_Ptr = string_chars_ptr; List_Headers_Ptr = list_headers_ptr; type_annotate_only = (gigi_operating_mode == 1); init_gnat_to_gnu (); gnat_compute_largest_alignment (); init_dummy_type (); /* If we are just annotating types, give VOID_TYPE zero sizes to avoid errors. */ if (type_annotate_only) { TYPE_SIZE (void_type_node) = bitsize_zero_node; TYPE_SIZE_UNIT (void_type_node) = size_zero_node; } if (Nkind (gnat_root) != N_Compilation_Unit) gigi_abort (301); /* Save the type we made for integer as the type for Standard.Integer. Then make the rest of the standard types. Note that some of these may be subtypes. */ save_gnu_tree (Base_Type (standard_integer), TYPE_NAME (integer_type_node), 0); gnu_except_ptr_stack = tree_cons (NULL_TREE, NULL_TREE, NULL_TREE); gnu_standard_long_long_float = gnat_to_gnu_entity (Base_Type (standard_long_long_float), NULL_TREE, 0); gnu_standard_exception_type = gnat_to_gnu_entity (Base_Type (standard_exception_type), NULL_TREE, 0); init_gigi_decls (gnu_standard_long_long_float, gnu_standard_exception_type); /* Process any Pragma Ident for the main unit. */ #ifdef ASM_OUTPUT_IDENT if (Present (Ident_String (Main_Unit))) ASM_OUTPUT_IDENT (asm_out_file, TREE_STRING_POINTER (gnat_to_gnu (Ident_String (Main_Unit)))); #endif /* If we are using the GCC exception mechanism, let GCC know. */ if (Exception_Mechanism == GCC_ZCX) gnat_init_gcc_eh (); gnat_to_gnu (gnat_root); } /* Perform initializations for this module. */ void gnat_init_stmt_group () { /* Initialize ourselves. */ init_code_table (); start_stmt_group (); global_stmt_group = current_stmt_group; /* Enable GNAT stack checking method if needed */ if (!Stack_Check_Probes_On_Target) set_stack_check_libfunc (gen_rtx_SYMBOL_REF (Pmode, "_gnat_stack_check")); if (Exception_Mechanism == Front_End_ZCX) abort (); REAL_ARITHMETIC (dconstp5, RDIV_EXPR, dconst1, dconst2); REAL_ARITHMETIC (dconstmp5, RDIV_EXPR, dconstm1, dconst2); } /* This function is the driver of the GNAT to GCC tree transformation process. It is the entry point of the tree transformer. GNAT_NODE is the root of some GNAT tree. Return the root of the corresponding GCC tree. If this is an expression, return the GCC equivalent of the expression. If it is a statement, return the statement. In the case when called for a statement, it may also add statements to the current statement group, in which case anything it returns is to be interpreted as occuring after anything `it already added. */ tree gnat_to_gnu (Node_Id gnat_node) { bool went_into_elab_proc = false; tree gnu_result = error_mark_node; /* Default to no value. */ tree gnu_result_type = void_type_node; tree gnu_expr; tree gnu_lhs, gnu_rhs; Node_Id gnat_temp; Entity_Id gnat_temp_type; /* Save node number for error message and set location information. */ error_gnat_node = gnat_node; Sloc_to_locus (Sloc (gnat_node), &input_location); if (type_annotate_only && IN (Nkind (gnat_node), N_Statement_Other_Than_Procedure_Call)) return alloc_stmt_list (); /* If this node is a non-static subexpression and we are only annotating types, make this into a NULL_EXPR. */ if (type_annotate_only && IN (Nkind (gnat_node), N_Subexpr) && Nkind (gnat_node) != N_Identifier && ! Compile_Time_Known_Value (gnat_node)) return build1 (NULL_EXPR, get_unpadded_type (Etype (gnat_node)), build_call_raise (CE_Range_Check_Failed)); /* If this is a Statement and we are at top level, it must be part of the elaboration procedure, so mark us as being in that procedure and push our context. */ if (!current_function_decl && ((IN (Nkind (gnat_node), N_Statement_Other_Than_Procedure_Call) && Nkind (gnat_node) != N_Null_Statement) || Nkind (gnat_node) == N_Procedure_Call_Statement || Nkind (gnat_node) == N_Label || Nkind (gnat_node) == N_Handled_Sequence_Of_Statements || ((Nkind (gnat_node) == N_Raise_Constraint_Error || Nkind (gnat_node) == N_Raise_Storage_Error || Nkind (gnat_node) == N_Raise_Program_Error) && (Ekind (Etype (gnat_node)) == E_Void)))) { current_function_decl = gnu_elab_proc_decl; start_stmt_group (); gnat_pushlevel (); went_into_elab_proc = true; } switch (Nkind (gnat_node)) { /********************************/ /* Chapter 2: Lexical Elements: */ /********************************/ case N_Identifier: case N_Expanded_Name: case N_Operator_Symbol: case N_Defining_Identifier: /* If the Etype of this node does not equal the Etype of the Entity, something is wrong with the entity map, probably in generic instantiation. However, this does not apply to types. Since we sometime have strange Ekind's, just do this test for objects. Also, if the Etype of the Entity is private, the Etype of the N_Identifier is allowed to be the full type and also we consider a packed array type to be the same as the original type. Similarly, a class-wide type is equivalent to a subtype of itself. Finally, if the types are Itypes, one may be a copy of the other, which is also legal. */ gnat_temp = (Nkind (gnat_node) == N_Defining_Identifier ? gnat_node : Entity (gnat_node)); gnat_temp_type = Etype (gnat_temp); if (Etype (gnat_node) != gnat_temp_type && ! (Is_Packed (gnat_temp_type) && Etype (gnat_node) == Packed_Array_Type (gnat_temp_type)) && ! (Is_Class_Wide_Type (Etype (gnat_node))) && ! (IN (Ekind (gnat_temp_type), Private_Kind) && Present (Full_View (gnat_temp_type)) && ((Etype (gnat_node) == Full_View (gnat_temp_type)) || (Is_Packed (Full_View (gnat_temp_type)) && Etype (gnat_node) == Packed_Array_Type (Full_View (gnat_temp_type))))) && (!Is_Itype (Etype (gnat_node)) || !Is_Itype (gnat_temp_type)) && (Ekind (gnat_temp) == E_Variable || Ekind (gnat_temp) == E_Component || Ekind (gnat_temp) == E_Constant || Ekind (gnat_temp) == E_Loop_Parameter || IN (Ekind (gnat_temp), Formal_Kind))) gigi_abort (304); /* If this is a reference to a deferred constant whose partial view is an unconstrained private type, the proper type is on the full view of the constant, not on the full view of the type, which may be unconstrained. This may be a reference to a type, for example in the prefix of the attribute Position, generated for dispatching code (see Make_DT in exp_disp,adb). In that case we need the type itself, not is parent, in particular if it is a derived type */ if (Is_Private_Type (gnat_temp_type) && Has_Unknown_Discriminants (gnat_temp_type) && Present (Full_View (gnat_temp)) && ! Is_Type (gnat_temp)) { gnat_temp = Full_View (gnat_temp); gnat_temp_type = Etype (gnat_temp); gnu_result_type = get_unpadded_type (gnat_temp_type); } else { /* Expand the type of this identitier first, in case it is an enumeral literal, which only get made when the type is expanded. There is no order-of-elaboration issue here. We want to use the Actual_Subtype if it has already been elaborated, otherwise the Etype. Avoid using Actual_Subtype for packed arrays to simplify things. */ if ((Ekind (gnat_temp) == E_Constant || Ekind (gnat_temp) == E_Variable || Is_Formal (gnat_temp)) && ! (Is_Array_Type (Etype (gnat_temp)) && Present (Packed_Array_Type (Etype (gnat_temp)))) && Present (Actual_Subtype (gnat_temp)) && present_gnu_tree (Actual_Subtype (gnat_temp))) gnat_temp_type = Actual_Subtype (gnat_temp); else gnat_temp_type = Etype (gnat_node); gnu_result_type = get_unpadded_type (gnat_temp_type); } gnu_result = gnat_to_gnu_entity (gnat_temp, NULL_TREE, 0); /* If we are in an exception handler, force this variable into memory to ensure optimization does not remove stores that appear redundant but are actually needed in case an exception occurs. ??? Note that we need not do this if the variable is declared within the handler, only if it is referenced in the handler and declared in an enclosing block, but we have no way of testing that right now. ??? Also, for now all we can do is make it volatile. But we only do this for SJLJ. */ if (TREE_VALUE (gnu_except_ptr_stack) != 0 && TREE_CODE (gnu_result) == VAR_DECL) TREE_THIS_VOLATILE (gnu_result) = TREE_SIDE_EFFECTS (gnu_result) = 1; /* Some objects (such as parameters passed by reference, globals of variable size, and renamed objects) actually represent the address of the object. In that case, we must do the dereference. Likewise, deal with parameters to foreign convention subprograms. Call fold here since GNU_RESULT may be a CONST_DECL. */ if (DECL_P (gnu_result) && (DECL_BY_REF_P (gnu_result) || (TREE_CODE (gnu_result) == PARM_DECL && DECL_BY_COMPONENT_PTR_P (gnu_result)))) { int ro = DECL_POINTS_TO_READONLY_P (gnu_result); tree initial; if (TREE_CODE (gnu_result) == PARM_DECL && DECL_BY_COMPONENT_PTR_P (gnu_result)) gnu_result = convert (build_pointer_type (gnu_result_type), gnu_result); /* If the object is constant, we try to do the dereference directly through the DECL_INITIAL. This is actually required in order to get correct aliasing information for renamed objects that are components of non-aliased aggregates, because the type of the renamed object and that of the aggregate don't alias. */ if (TREE_READONLY (gnu_result) && DECL_INITIAL (gnu_result) /* Strip possible conversion to reference type. */ && (initial = TREE_CODE (DECL_INITIAL (gnu_result)) == NOP_EXPR ? TREE_OPERAND (DECL_INITIAL (gnu_result), 0) : DECL_INITIAL (gnu_result), 1) && TREE_CODE (initial) == ADDR_EXPR && (TREE_CODE (TREE_OPERAND (initial, 0)) == ARRAY_REF || TREE_CODE (TREE_OPERAND (initial, 0)) == COMPONENT_REF)) gnu_result = TREE_OPERAND (initial, 0); else gnu_result = build_unary_op (INDIRECT_REF, NULL_TREE, fold (gnu_result)); TREE_READONLY (gnu_result) = TREE_STATIC (gnu_result) = ro; } /* The GNAT tree has the type of a function as the type of its result. Also use the type of the result if the Etype is a subtype which is nominally unconstrained. But remove any padding from the resulting type. */ if (TREE_CODE (TREE_TYPE (gnu_result)) == FUNCTION_TYPE || Is_Constr_Subt_For_UN_Aliased (gnat_temp_type)) { gnu_result_type = TREE_TYPE (gnu_result); if (TREE_CODE (gnu_result_type) == RECORD_TYPE && TYPE_IS_PADDING_P (gnu_result_type)) gnu_result_type = TREE_TYPE (TYPE_FIELDS (gnu_result_type)); } /* We always want to return the underlying INTEGER_CST for an enumeration literal to avoid the need to call fold in lots of places. But don't do this is the parent will be taking the address of this object. */ if (TREE_CODE (gnu_result) == CONST_DECL) { gnat_temp = Parent (gnat_node); if (DECL_CONST_CORRESPONDING_VAR (gnu_result) == 0 || (Nkind (gnat_temp) != N_Reference && ! (Nkind (gnat_temp) == N_Attribute_Reference && ((Get_Attribute_Id (Attribute_Name (gnat_temp)) == Attr_Address) || (Get_Attribute_Id (Attribute_Name (gnat_temp)) == Attr_Access) || (Get_Attribute_Id (Attribute_Name (gnat_temp)) == Attr_Unchecked_Access) || (Get_Attribute_Id (Attribute_Name (gnat_temp)) == Attr_Unrestricted_Access))))) gnu_result = DECL_INITIAL (gnu_result); } break; case N_Integer_Literal: { tree gnu_type; /* Get the type of the result, looking inside any padding and left-justified modular types. Then get the value in that type. */ gnu_type = gnu_result_type = get_unpadded_type (Etype (gnat_node)); if (TREE_CODE (gnu_type) == RECORD_TYPE && TYPE_LEFT_JUSTIFIED_MODULAR_P (gnu_type)) gnu_type = TREE_TYPE (TYPE_FIELDS (gnu_type)); gnu_result = UI_To_gnu (Intval (gnat_node), gnu_type); /* If the result overflows (meaning it doesn't fit in its base type), abort. We would like to check that the value is within the range of the subtype, but that causes problems with subtypes whose usage will raise Constraint_Error and with biased representation, so we don't. */ if (TREE_CONSTANT_OVERFLOW (gnu_result)) gigi_abort (305); } break; case N_Character_Literal: /* If a Entity is present, it means that this was one of the literals in a user-defined character type. In that case, just return the value in the CONST_DECL. Otherwise, use the character code. In that case, the base type should be an INTEGER_TYPE, but we won't bother checking for that. */ gnu_result_type = get_unpadded_type (Etype (gnat_node)); if (Present (Entity (gnat_node))) gnu_result = DECL_INITIAL (get_gnu_tree (Entity (gnat_node))); else gnu_result = convert (gnu_result_type, build_int_2 (Char_Literal_Value (gnat_node), 0)); break; case N_Real_Literal: /* If this is of a fixed-point type, the value we want is the value of the corresponding integer. */ if (IN (Ekind (Underlying_Type (Etype (gnat_node))), Fixed_Point_Kind)) { gnu_result_type = get_unpadded_type (Etype (gnat_node)); gnu_result = UI_To_gnu (Corresponding_Integer_Value (gnat_node), gnu_result_type); if (TREE_CONSTANT_OVERFLOW (gnu_result)) gigi_abort (305); } /* We should never see a Vax_Float type literal, since the front end is supposed to transform these using appropriate conversions */ else if (Vax_Float (Underlying_Type (Etype (gnat_node)))) gigi_abort (334); else { Ureal ur_realval = Realval (gnat_node); gnu_result_type = get_unpadded_type (Etype (gnat_node)); /* If the real value is zero, so is the result. Otherwise, convert it to a machine number if it isn't already. That forces BASE to 0 or 2 and simplifies the rest of our logic. */ if (UR_Is_Zero (ur_realval)) gnu_result = convert (gnu_result_type, integer_zero_node); else { if (! Is_Machine_Number (gnat_node)) ur_realval = Machine (Base_Type (Underlying_Type (Etype (gnat_node))), ur_realval, Round_Even, gnat_node); gnu_result = UI_To_gnu (Numerator (ur_realval), gnu_result_type); /* If we have a base of zero, divide by the denominator. Otherwise, the base must be 2 and we scale the value, which we know can fit in the mantissa of the type (hence the use of that type above). */ if (Rbase (ur_realval) == 0) gnu_result = build_binary_op (RDIV_EXPR, get_base_type (gnu_result_type), gnu_result, UI_To_gnu (Denominator (ur_realval), gnu_result_type)); else if (Rbase (ur_realval) != 2) gigi_abort (336); else { REAL_VALUE_TYPE tmp; real_ldexp (&tmp, &TREE_REAL_CST (gnu_result), - UI_To_Int (Denominator (ur_realval))); gnu_result = build_real (gnu_result_type, tmp); } } /* Now see if we need to negate the result. Do it this way to properly handle -0. */ if (UR_Is_Negative (Realval (gnat_node))) gnu_result = build_unary_op (NEGATE_EXPR, get_base_type (gnu_result_type), gnu_result); } break; case N_String_Literal: gnu_result_type = get_unpadded_type (Etype (gnat_node)); if (TYPE_PRECISION (TREE_TYPE (gnu_result_type)) == HOST_BITS_PER_CHAR) { /* We assume here that all strings are of type standard.string. "Weird" types of string have been converted to an aggregate by the expander. */ String_Id gnat_string = Strval (gnat_node); int length = String_Length (gnat_string); char *string = (char *) alloca (length + 1); int i; /* Build the string with the characters in the literal. Note that Ada strings are 1-origin. */ for (i = 0; i < length; i++) string[i] = Get_String_Char (gnat_string, i + 1); /* Put a null at the end of the string in case it's in a context where GCC will want to treat it as a C string. */ string[i] = 0; gnu_result = build_string (length, string); /* Strings in GCC don't normally have types, but we want this to not be converted to the array type. */ TREE_TYPE (gnu_result) = gnu_result_type; } else { /* Build a list consisting of each character, then make the aggregate. */ String_Id gnat_string = Strval (gnat_node); int length = String_Length (gnat_string); int i; tree gnu_list = NULL_TREE; for (i = 0; i < length; i++) gnu_list = tree_cons (NULL_TREE, convert (TREE_TYPE (gnu_result_type), build_int_2 (Get_String_Char (gnat_string, i + 1), 0)), gnu_list); gnu_result = gnat_build_constructor (gnu_result_type, nreverse (gnu_list)); } break; case N_Pragma: gnu_result = alloc_stmt_list (); /* Check for (and ignore) unrecognized pragma and do nothing if we are just annotating types. */ if (type_annotate_only || ! Is_Pragma_Name (Chars (gnat_node))) break; switch (Get_Pragma_Id (Chars (gnat_node))) { case Pragma_Inspection_Point: /* Do nothing at top level: all such variables are already viewable. */ if (global_bindings_p ()) break; for (gnat_temp = First (Pragma_Argument_Associations (gnat_node)); Present (gnat_temp); gnat_temp = Next (gnat_temp)) { gnu_expr = gnat_to_gnu (Expression (gnat_temp)); if (TREE_CODE (gnu_expr) == UNCONSTRAINED_ARRAY_REF) gnu_expr = TREE_OPERAND (gnu_expr, 0); gnu_expr = build1 (USE_STMT, void_type_node, gnu_expr); add_stmt (gnu_expr); } break; case Pragma_Optimize: switch (Chars (Expression (First (Pragma_Argument_Associations (gnat_node))))) { case Name_Time: case Name_Space: if (optimize == 0) post_error ("insufficient -O value?", gnat_node); break; case Name_Off: if (optimize != 0) post_error ("must specify -O0?", gnat_node); break; default: gigi_abort (331); break; } break; case Pragma_Reviewable: if (write_symbols == NO_DEBUG) post_error ("must specify -g?", gnat_node); break; } break; /**************************************/ /* Chapter 3: Declarations and Types: */ /**************************************/ case N_Subtype_Declaration: case N_Full_Type_Declaration: case N_Incomplete_Type_Declaration: case N_Private_Type_Declaration: case N_Private_Extension_Declaration: case N_Task_Type_Declaration: process_type (Defining_Entity (gnat_node)); gnu_result = alloc_stmt_list (); break; case N_Object_Declaration: case N_Exception_Declaration: gnat_temp = Defining_Entity (gnat_node); gnu_result = alloc_stmt_list (); /* If we are just annotating types and this object has an unconstrained or task type, don't elaborate it. */ if (type_annotate_only && (((Is_Array_Type (Etype (gnat_temp)) || Is_Record_Type (Etype (gnat_temp))) && ! Is_Constrained (Etype (gnat_temp))) || Is_Concurrent_Type (Etype (gnat_temp)))) break; if (Present (Expression (gnat_node)) && ! (Nkind (gnat_node) == N_Object_Declaration && No_Initialization (gnat_node)) && (! type_annotate_only || Compile_Time_Known_Value (Expression (gnat_node)))) { gnu_expr = gnat_to_gnu (Expression (gnat_node)); if (Do_Range_Check (Expression (gnat_node))) gnu_expr = emit_range_check (gnu_expr, Etype (gnat_temp)); /* If this object has its elaboration delayed, we must force evaluation of GNU_EXPR right now and save it for when the object is frozen. */ if (Present (Freeze_Node (gnat_temp))) { if ((Is_Public (gnat_temp) || global_bindings_p ()) && ! TREE_CONSTANT (gnu_expr)) gnu_expr = create_var_decl (create_concat_name (gnat_temp, "init"), NULL_TREE, TREE_TYPE (gnu_expr), gnu_expr, 0, Is_Public (gnat_temp), 0, 0, 0, gnat_temp); else gnu_expr = maybe_variable (gnu_expr); save_gnu_tree (gnat_node, gnu_expr, 1); } } else gnu_expr = 0; if (type_annotate_only && gnu_expr != 0 && TREE_CODE (gnu_expr) == ERROR_MARK) gnu_expr = 0; if (No (Freeze_Node (gnat_temp))) gnat_to_gnu_entity (gnat_temp, gnu_expr, 1); break; case N_Object_Renaming_Declaration: gnat_temp = Defining_Entity (gnat_node); /* Don't do anything if this renaming is handled by the front end. or if we are just annotating types and this object has a composite or task type, don't elaborate it. We return the result in case it has any SAVE_EXPRs in it that need to be evaluated here. */ if (! Is_Renaming_Of_Object (gnat_temp) && ! (type_annotate_only && (Is_Array_Type (Etype (gnat_temp)) || Is_Record_Type (Etype (gnat_temp)) || Is_Concurrent_Type (Etype (gnat_temp))))) gnu_result = gnat_to_gnu_entity (gnat_temp, gnat_to_gnu (Renamed_Object (gnat_temp)), 1); else gnu_result = alloc_stmt_list (); break; case N_Implicit_Label_Declaration: gnat_to_gnu_entity (Defining_Entity (gnat_node), NULL_TREE, 1); gnu_result = alloc_stmt_list (); break; case N_Exception_Renaming_Declaration: case N_Number_Declaration: case N_Package_Renaming_Declaration: case N_Subprogram_Renaming_Declaration: /* These are fully handled in the front end. */ gnu_result = alloc_stmt_list (); break; /*************************************/ /* Chapter 4: Names and Expressions: */ /*************************************/ case N_Explicit_Dereference: gnu_result = gnat_to_gnu (Prefix (gnat_node)); gnu_result_type = get_unpadded_type (Etype (gnat_node)); gnu_result = build_unary_op (INDIRECT_REF, NULL_TREE, gnu_result); break; case N_Indexed_Component: { tree gnu_array_object = gnat_to_gnu (Prefix (gnat_node)); tree gnu_type; int ndim; int i; Node_Id *gnat_expr_array; gnu_array_object = maybe_implicit_deref (gnu_array_object); gnu_array_object = maybe_unconstrained_array (gnu_array_object); /* If we got a padded type, remove it too. */ if (TREE_CODE (TREE_TYPE (gnu_array_object)) == RECORD_TYPE && TYPE_IS_PADDING_P (TREE_TYPE (gnu_array_object))) gnu_array_object = convert (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (gnu_array_object))), gnu_array_object); gnu_result = gnu_array_object; /* First compute the number of dimensions of the array, then fill the expression array, the order depending on whether this is a Convention_Fortran array or not. */ for (ndim = 1, gnu_type = TREE_TYPE (gnu_array_object); TREE_CODE (TREE_TYPE (gnu_type)) == ARRAY_TYPE && TYPE_MULTI_ARRAY_P (TREE_TYPE (gnu_type)); ndim++, gnu_type = TREE_TYPE (gnu_type)) ; gnat_expr_array = (Node_Id *) alloca (ndim * sizeof (Node_Id)); if (TYPE_CONVENTION_FORTRAN_P (TREE_TYPE (gnu_array_object))) for (i = ndim - 1, gnat_temp = First (Expressions (gnat_node)); i >= 0; i--, gnat_temp = Next (gnat_temp)) gnat_expr_array[i] = gnat_temp; else for (i = 0, gnat_temp = First (Expressions (gnat_node)); i < ndim; i++, gnat_temp = Next (gnat_temp)) gnat_expr_array[i] = gnat_temp; for (i = 0, gnu_type = TREE_TYPE (gnu_array_object); i < ndim; i++, gnu_type = TREE_TYPE (gnu_type)) { if (TREE_CODE (gnu_type) != ARRAY_TYPE) gigi_abort (307); gnat_temp = gnat_expr_array[i]; gnu_expr = gnat_to_gnu (gnat_temp); if (Do_Range_Check (gnat_temp)) gnu_expr = emit_index_check (gnu_array_object, gnu_expr, TYPE_MIN_VALUE (TYPE_INDEX_TYPE (TYPE_DOMAIN (gnu_type))), TYPE_MAX_VALUE (TYPE_INDEX_TYPE (TYPE_DOMAIN (gnu_type)))); gnu_result = build_binary_op (ARRAY_REF, NULL_TREE, gnu_result, gnu_expr); } } gnu_result_type = get_unpadded_type (Etype (gnat_node)); break; case N_Slice: { tree gnu_type; Node_Id gnat_range_node = Discrete_Range (gnat_node); gnu_result = gnat_to_gnu (Prefix (gnat_node)); gnu_result_type = get_unpadded_type (Etype (gnat_node)); /* Do any implicit dereferences of the prefix and do any needed range check. */ gnu_result = maybe_implicit_deref (gnu_result); gnu_result = maybe_unconstrained_array (gnu_result); gnu_type = TREE_TYPE (gnu_result); if (Do_Range_Check (gnat_range_node)) { /* Get the bounds of the slice. */ tree gnu_index_type = TYPE_INDEX_TYPE (TYPE_DOMAIN (gnu_result_type)); tree gnu_min_expr = TYPE_MIN_VALUE (gnu_index_type); tree gnu_max_expr = TYPE_MAX_VALUE (gnu_index_type); tree gnu_expr_l, gnu_expr_h, gnu_expr_type; /* Check to see that the minimum slice value is in range */ gnu_expr_l = emit_index_check (gnu_result, gnu_min_expr, TYPE_MIN_VALUE (TYPE_INDEX_TYPE (TYPE_DOMAIN (gnu_type))), TYPE_MAX_VALUE (TYPE_INDEX_TYPE (TYPE_DOMAIN (gnu_type)))); /* Check to see that the maximum slice value is in range */ gnu_expr_h = emit_index_check (gnu_result, gnu_max_expr, TYPE_MIN_VALUE (TYPE_INDEX_TYPE (TYPE_DOMAIN (gnu_type))), TYPE_MAX_VALUE (TYPE_INDEX_TYPE (TYPE_DOMAIN (gnu_type)))); /* Derive a good type to convert everything too */ gnu_expr_type = get_base_type (TREE_TYPE (gnu_expr_l)); /* Build a compound expression that does the range checks */ gnu_expr = build_binary_op (COMPOUND_EXPR, gnu_expr_type, convert (gnu_expr_type, gnu_expr_h), convert (gnu_expr_type, gnu_expr_l)); /* Build a conditional expression that returns the range checks expression if the slice range is not null (max >= min) or returns the min if the slice range is null */ gnu_expr = fold (build (COND_EXPR, gnu_expr_type, build_binary_op (GE_EXPR, gnu_expr_type, convert (gnu_expr_type, gnu_max_expr), convert (gnu_expr_type, gnu_min_expr)), gnu_expr, gnu_min_expr)); } else gnu_expr = TYPE_MIN_VALUE (TYPE_DOMAIN (gnu_result_type)); gnu_result = build_binary_op (ARRAY_RANGE_REF, gnu_result_type, gnu_result, gnu_expr); } break; case N_Selected_Component: { tree gnu_prefix = gnat_to_gnu (Prefix (gnat_node)); Entity_Id gnat_field = Entity (Selector_Name (gnat_node)); Entity_Id gnat_pref_type = Etype (Prefix (gnat_node)); tree gnu_field; while (IN (Ekind (gnat_pref_type), Incomplete_Or_Private_Kind) || IN (Ekind (gnat_pref_type), Access_Kind)) { if (IN (Ekind (gnat_pref_type), Incomplete_Or_Private_Kind)) gnat_pref_type = Underlying_Type (gnat_pref_type); else if (IN (Ekind (gnat_pref_type), Access_Kind)) gnat_pref_type = Designated_Type (gnat_pref_type); } gnu_prefix = maybe_implicit_deref (gnu_prefix); /* For discriminant references in tagged types always substitute the corresponding discriminant as the actual selected component. */ if (Is_Tagged_Type (gnat_pref_type)) while (Present (Corresponding_Discriminant (gnat_field))) gnat_field = Corresponding_Discriminant (gnat_field); /* For discriminant references of untagged types always substitute the corresponding stored discriminant. */ else if (Present (Corresponding_Discriminant (gnat_field))) gnat_field = Original_Record_Component (gnat_field); /* Handle extracting the real or imaginary part of a complex. The real part is the first field and the imaginary the last. */ if (TREE_CODE (TREE_TYPE (gnu_prefix)) == COMPLEX_TYPE) gnu_result = build_unary_op (Present (Next_Entity (gnat_field)) ? REALPART_EXPR : IMAGPART_EXPR, NULL_TREE, gnu_prefix); else { gnu_field = gnat_to_gnu_entity (gnat_field, NULL_TREE, 0); /* If there are discriminants, the prefix might be evaluated more than once, which is a problem if it has side-effects. */ if (Has_Discriminants (Is_Access_Type (Etype (Prefix (gnat_node))) ? Designated_Type (Etype (Prefix (gnat_node))) : Etype (Prefix (gnat_node)))) gnu_prefix = gnat_stabilize_reference (gnu_prefix, 0); gnu_result = build_component_ref (gnu_prefix, NULL_TREE, gnu_field, (Nkind (Parent (gnat_node)) == N_Attribute_Reference)); } if (gnu_result == 0) gigi_abort (308); gnu_result_type = get_unpadded_type (Etype (gnat_node)); } break; case N_Attribute_Reference: { /* The attribute designator (like an enumeration value). */ int attribute = Get_Attribute_Id (Attribute_Name (gnat_node)); int prefix_unused = 0; tree gnu_prefix; tree gnu_type; /* The Elab_Spec and Elab_Body attributes are special in that Prefix is a unit, not an object with a GCC equivalent. Similarly for Elaborated, since that variable isn't otherwise known. */ if (attribute == Attr_Elab_Body || attribute == Attr_Elab_Spec) return (create_subprog_decl (create_concat_name (Entity (Prefix (gnat_node)), attribute == Attr_Elab_Body ? "elabb" : "elabs"), NULL_TREE, void_ftype, NULL_TREE, 0, 1, 1, 0, gnat_node)); gnu_prefix = gnat_to_gnu (Prefix (gnat_node)); gnu_type = TREE_TYPE (gnu_prefix); /* If the input is a NULL_EXPR, make a new one. */ if (TREE_CODE (gnu_prefix) == NULL_EXPR) { gnu_result_type = get_unpadded_type (Etype (gnat_node)); gnu_result = build1 (NULL_EXPR, gnu_result_type, TREE_OPERAND (gnu_prefix, 0)); break; } switch (attribute) { case Attr_Pos: case Attr_Val: /* These are just conversions until since representation clauses for enumerations are handled in the front end. */ { int check_p = Do_Range_Check (First (Expressions (gnat_node))); gnu_result = gnat_to_gnu (First (Expressions (gnat_node))); gnu_result_type = get_unpadded_type (Etype (gnat_node)); gnu_result = convert_with_check (Etype (gnat_node), gnu_result, check_p, check_p, 1); } break; case Attr_Pred: case Attr_Succ: /* These just add or subject the constant 1. Representation clauses for enumerations are handled in the front-end. */ gnu_expr = gnat_to_gnu (First (Expressions (gnat_node))); gnu_result_type = get_unpadded_type (Etype (gnat_node)); if (Do_Range_Check (First (Expressions (gnat_node)))) { gnu_expr = protect_multiple_eval (gnu_expr); gnu_expr = emit_check (build_binary_op (EQ_EXPR, integer_type_node, gnu_expr, attribute == Attr_Pred ? TYPE_MIN_VALUE (gnu_result_type) : TYPE_MAX_VALUE (gnu_result_type)), gnu_expr, CE_Range_Check_Failed); } gnu_result = build_binary_op (attribute == Attr_Pred ? MINUS_EXPR : PLUS_EXPR, gnu_result_type, gnu_expr, convert (gnu_result_type, integer_one_node)); break; case Attr_Address: case Attr_Unrestricted_Access: /* Conversions don't change something's address but can cause us to miss the COMPONENT_REF case below, so strip them off. */ gnu_prefix = remove_conversions (gnu_prefix, ! Must_Be_Byte_Aligned (gnat_node)); /* If we are taking 'Address of an unconstrained object, this is the pointer to the underlying array. */ gnu_prefix = maybe_unconstrained_array (gnu_prefix); /* ... fall through ... */ case Attr_Access: case Attr_Unchecked_Access: case Attr_Code_Address: gnu_result_type = get_unpadded_type (Etype (gnat_node)); gnu_result = build_unary_op (((attribute == Attr_Address || attribute == Attr_Unrestricted_Access) && ! Must_Be_Byte_Aligned (gnat_node)) ? ATTR_ADDR_EXPR : ADDR_EXPR, gnu_result_type, gnu_prefix); /* For 'Code_Address, find an inner ADDR_EXPR and mark it so that we don't try to build a trampoline. */ if (attribute == Attr_Code_Address) { for (gnu_expr = gnu_result; TREE_CODE (gnu_expr) == NOP_EXPR || TREE_CODE (gnu_expr) == CONVERT_EXPR; gnu_expr = TREE_OPERAND (gnu_expr, 0)) TREE_CONSTANT (gnu_expr) = 1; ; if (TREE_CODE (gnu_expr) == ADDR_EXPR) TREE_STATIC (gnu_expr) = TREE_CONSTANT (gnu_expr) = 1; } break; case Attr_Pool_Address: { tree gnu_obj_type; tree gnu_ptr = gnu_prefix; gnu_result_type = get_unpadded_type (Etype (gnat_node)); /* If this is an unconstrained array, we know the object must have been allocated with the template in front of the object. So compute the template address.*/ if (TYPE_FAT_POINTER_P (TREE_TYPE (gnu_ptr))) gnu_ptr = convert (build_pointer_type (TYPE_OBJECT_RECORD_TYPE (TYPE_UNCONSTRAINED_ARRAY (TREE_TYPE (gnu_ptr)))), gnu_ptr); gnu_obj_type = TREE_TYPE (TREE_TYPE (gnu_ptr)); if (TREE_CODE (gnu_obj_type) == RECORD_TYPE && TYPE_CONTAINS_TEMPLATE_P (gnu_obj_type)) { tree gnu_char_ptr_type = build_pointer_type (char_type_node); tree gnu_pos = byte_position (TYPE_FIELDS (gnu_obj_type)); tree gnu_byte_offset = convert (gnu_char_ptr_type, size_diffop (size_zero_node, gnu_pos)); gnu_ptr = convert (gnu_char_ptr_type, gnu_ptr); gnu_ptr = build_binary_op (MINUS_EXPR, gnu_char_ptr_type, gnu_ptr, gnu_byte_offset); } gnu_result = convert (gnu_result_type, gnu_ptr); } break; case Attr_Size: case Attr_Object_Size: case Attr_Value_Size: case Attr_Max_Size_In_Storage_Elements: gnu_expr = gnu_prefix; /* Remove NOPS from gnu_expr and conversions from gnu_prefix. We only use GNU_EXPR to see if a COMPONENT_REF was involved. */ while (TREE_CODE (gnu_expr) == NOP_EXPR) gnu_expr = TREE_OPERAND (gnu_expr, 0); gnu_prefix = remove_conversions (gnu_prefix, 1); prefix_unused = 1; gnu_type = TREE_TYPE (gnu_prefix); /* Replace an unconstrained array type with the type of the underlying array. We can't do this with a call to maybe_unconstrained_array since we may have a TYPE_DECL. For 'Max_Size_In_Storage_Elements, use the record type that will be used to allocate the object and its template. */ if (TREE_CODE (gnu_type) == UNCONSTRAINED_ARRAY_TYPE) { gnu_type = TYPE_OBJECT_RECORD_TYPE (gnu_type); if (attribute != Attr_Max_Size_In_Storage_Elements) gnu_type = TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (gnu_type))); } /* If we are looking for the size of a field, return the field size. Otherwise, if the prefix is an object, or if 'Object_Size or 'Max_Size_In_Storage_Elements has been specified, the result is the GCC size of the type. Otherwise, the result is the RM_Size of the type. */ if (TREE_CODE (gnu_prefix) == COMPONENT_REF) gnu_result = DECL_SIZE (TREE_OPERAND (gnu_prefix, 1)); else if (TREE_CODE (gnu_prefix) != TYPE_DECL || attribute == Attr_Object_Size || attribute == Attr_Max_Size_In_Storage_Elements) { /* If this is a padded type, the GCC size isn't relevant to the programmer. Normally, what we want is the RM_Size, which was set from the specified size, but if it was not set, we want the size of the relevant field. Using the MAX of those two produces the right result in all case. Don't use the size of the field if it's a self-referential type, since that's never what's wanted. */ if (TREE_CODE (gnu_type) == RECORD_TYPE && TYPE_IS_PADDING_P (gnu_type) && TREE_CODE (gnu_expr) == COMPONENT_REF) { gnu_result = rm_size (gnu_type); if (! (CONTAINS_PLACEHOLDER_P (DECL_SIZE (TREE_OPERAND (gnu_expr, 1))))) gnu_result = size_binop (MAX_EXPR, gnu_result, DECL_SIZE (TREE_OPERAND (gnu_expr, 1))); } else gnu_result = TYPE_SIZE (gnu_type); } else gnu_result = rm_size (gnu_type); if (gnu_result == 0) gigi_abort (325); /* Deal with a self-referential size by returning the maximum size for a type and by qualifying the size with the object for 'Size of an object. */ if (CONTAINS_PLACEHOLDER_P (gnu_result)) { if (TREE_CODE (gnu_prefix) != TYPE_DECL) gnu_result = substitute_placeholder_in_expr (gnu_result, gnu_expr); else gnu_result = max_size (gnu_result, 1); } /* If the type contains a template, subtract the size of the template. */ if (TREE_CODE (gnu_type) == RECORD_TYPE && TYPE_CONTAINS_TEMPLATE_P (gnu_type)) gnu_result = size_binop (MINUS_EXPR, gnu_result, DECL_SIZE (TYPE_FIELDS (gnu_type))); gnu_result_type = get_unpadded_type (Etype (gnat_node)); /* Always perform division using unsigned arithmetic as the size cannot be negative, but may be an overflowed positive value. This provides correct results for sizes up to 512 MB. ??? Size should be calculated in storage elements directly. */ if (attribute == Attr_Max_Size_In_Storage_Elements) gnu_result = convert (sizetype, fold (build (CEIL_DIV_EXPR, bitsizetype, gnu_result, bitsize_unit_node))); break; case Attr_Alignment: if (TREE_CODE (gnu_prefix) == COMPONENT_REF && (TREE_CODE (TREE_TYPE (TREE_OPERAND (gnu_prefix, 0))) == RECORD_TYPE) && (TYPE_IS_PADDING_P (TREE_TYPE (TREE_OPERAND (gnu_prefix, 0))))) gnu_prefix = TREE_OPERAND (gnu_prefix, 0); gnu_type = TREE_TYPE (gnu_prefix); gnu_result_type = get_unpadded_type (Etype (gnat_node)); prefix_unused = 1; if (TREE_CODE (gnu_prefix) == COMPONENT_REF) gnu_result = size_int (DECL_ALIGN (TREE_OPERAND (gnu_prefix, 1))); else gnu_result = size_int (TYPE_ALIGN (gnu_type) / BITS_PER_UNIT); break; case Attr_First: case Attr_Last: case Attr_Range_Length: prefix_unused = 1; if (INTEGRAL_TYPE_P (gnu_type) || TREE_CODE (gnu_type) == REAL_TYPE) { gnu_result_type = get_unpadded_type (Etype (gnat_node)); if (attribute == Attr_First) gnu_result = TYPE_MIN_VALUE (gnu_type); else if (attribute == Attr_Last) gnu_result = TYPE_MAX_VALUE (gnu_type); else gnu_result = build_binary_op (MAX_EXPR, get_base_type (gnu_result_type), build_binary_op (PLUS_EXPR, get_base_type (gnu_result_type), build_binary_op (MINUS_EXPR, get_base_type (gnu_result_type), convert (gnu_result_type, TYPE_MAX_VALUE (gnu_type)), convert (gnu_result_type, TYPE_MIN_VALUE (gnu_type))), convert (gnu_result_type, integer_one_node)), convert (gnu_result_type, integer_zero_node)); break; } /* ... fall through ... */ case Attr_Length: { int Dimension = (Present (Expressions (gnat_node)) ? UI_To_Int (Intval (First (Expressions (gnat_node)))) : 1); /* Make sure any implicit dereference gets done. */ gnu_prefix = maybe_implicit_deref (gnu_prefix); gnu_prefix = maybe_unconstrained_array (gnu_prefix); gnu_type = TREE_TYPE (gnu_prefix); prefix_unused = 1; gnu_result_type = get_unpadded_type (Etype (gnat_node)); if (TYPE_CONVENTION_FORTRAN_P (gnu_type)) { int ndim; tree gnu_type_temp; for (ndim = 1, gnu_type_temp = gnu_type; TREE_CODE (TREE_TYPE (gnu_type_temp)) == ARRAY_TYPE && TYPE_MULTI_ARRAY_P (TREE_TYPE (gnu_type_temp)); ndim++, gnu_type_temp = TREE_TYPE (gnu_type_temp)) ; Dimension = ndim + 1 - Dimension; } for (; Dimension > 1; Dimension--) gnu_type = TREE_TYPE (gnu_type); if (TREE_CODE (gnu_type) != ARRAY_TYPE) gigi_abort (309); if (attribute == Attr_First) gnu_result = TYPE_MIN_VALUE (TYPE_INDEX_TYPE (TYPE_DOMAIN (gnu_type))); else if (attribute == Attr_Last) gnu_result = TYPE_MAX_VALUE (TYPE_INDEX_TYPE (TYPE_DOMAIN (gnu_type))); else /* 'Length or 'Range_Length. */ { tree gnu_compute_type = gnat_signed_or_unsigned_type (0, get_base_type (gnu_result_type)); gnu_result = build_binary_op (MAX_EXPR, gnu_compute_type, build_binary_op (PLUS_EXPR, gnu_compute_type, build_binary_op (MINUS_EXPR, gnu_compute_type, convert (gnu_compute_type, TYPE_MAX_VALUE (TYPE_INDEX_TYPE (TYPE_DOMAIN (gnu_type)))), convert (gnu_compute_type, TYPE_MIN_VALUE (TYPE_INDEX_TYPE (TYPE_DOMAIN (gnu_type))))), convert (gnu_compute_type, integer_one_node)), convert (gnu_compute_type, integer_zero_node)); } /* If this has a PLACEHOLDER_EXPR, qualify it by the object we are handling. Note that these attributes could not have been used on an unconstrained array type. */ gnu_result = SUBSTITUTE_PLACEHOLDER_IN_EXPR (gnu_result, gnu_prefix); break; } case Attr_Bit_Position: case Attr_Position: case Attr_First_Bit: case Attr_Last_Bit: case Attr_Bit: { HOST_WIDE_INT bitsize; HOST_WIDE_INT bitpos; tree gnu_offset; tree gnu_field_bitpos; tree gnu_field_offset; tree gnu_inner; enum machine_mode mode; int unsignedp, volatilep; gnu_result_type = get_unpadded_type (Etype (gnat_node)); gnu_prefix = remove_conversions (gnu_prefix, 1); prefix_unused = 1; /* We can have 'Bit on any object, but if it isn't a COMPONENT_REF, the result is zero. Do not allow 'Bit on a bare component, though. */ if (attribute == Attr_Bit && TREE_CODE (gnu_prefix) != COMPONENT_REF && TREE_CODE (gnu_prefix) != FIELD_DECL) { gnu_result = integer_zero_node; break; } else if (TREE_CODE (gnu_prefix) != COMPONENT_REF && ! (attribute == Attr_Bit_Position && TREE_CODE (gnu_prefix) == FIELD_DECL)) gigi_abort (310); get_inner_reference (gnu_prefix, &bitsize, &bitpos, &gnu_offset, &mode, &unsignedp, &volatilep); if (TREE_CODE (gnu_prefix) == COMPONENT_REF) { gnu_field_bitpos = bit_position (TREE_OPERAND (gnu_prefix, 1)); gnu_field_offset = byte_position (TREE_OPERAND (gnu_prefix, 1)); for (gnu_inner = TREE_OPERAND (gnu_prefix, 0); TREE_CODE (gnu_inner) == COMPONENT_REF && DECL_INTERNAL_P (TREE_OPERAND (gnu_inner, 1)); gnu_inner = TREE_OPERAND (gnu_inner, 0)) { gnu_field_bitpos = size_binop (PLUS_EXPR, gnu_field_bitpos, bit_position (TREE_OPERAND (gnu_inner, 1))); gnu_field_offset = size_binop (PLUS_EXPR, gnu_field_offset, byte_position (TREE_OPERAND (gnu_inner, 1))); } } else if (TREE_CODE (gnu_prefix) == FIELD_DECL) { gnu_field_bitpos = bit_position (gnu_prefix); gnu_field_offset = byte_position (gnu_prefix); } else { gnu_field_bitpos = bitsize_zero_node; gnu_field_offset = size_zero_node; } switch (attribute) { case Attr_Position: gnu_result = gnu_field_offset; break; case Attr_First_Bit: case Attr_Bit: gnu_result = size_int (bitpos % BITS_PER_UNIT); break; case Attr_Last_Bit: gnu_result = bitsize_int (bitpos % BITS_PER_UNIT); gnu_result = size_binop (PLUS_EXPR, gnu_result, TYPE_SIZE (TREE_TYPE (gnu_prefix))); gnu_result = size_binop (MINUS_EXPR, gnu_result, bitsize_one_node); break; case Attr_Bit_Position: gnu_result = gnu_field_bitpos; break; } /* If this has a PLACEHOLDER_EXPR, qualify it by the object we are handling. */ gnu_result = SUBSTITUTE_PLACEHOLDER_IN_EXPR (gnu_result, gnu_prefix); break; } case Attr_Min: case Attr_Max: gnu_lhs = gnat_to_gnu (First (Expressions (gnat_node))); gnu_rhs = gnat_to_gnu (Next (First (Expressions (gnat_node)))); gnu_result_type = get_unpadded_type (Etype (gnat_node)); gnu_result = build_binary_op (attribute == Attr_Min ? MIN_EXPR : MAX_EXPR, gnu_result_type, gnu_lhs, gnu_rhs); break; case Attr_Passed_By_Reference: gnu_result = size_int (default_pass_by_ref (gnu_type) || must_pass_by_ref (gnu_type)); gnu_result_type = get_unpadded_type (Etype (gnat_node)); break; case Attr_Component_Size: if (TREE_CODE (gnu_prefix) == COMPONENT_REF && (TREE_CODE (TREE_TYPE (TREE_OPERAND (gnu_prefix, 0))) == RECORD_TYPE) && (TYPE_IS_PADDING_P (TREE_TYPE (TREE_OPERAND (gnu_prefix, 0))))) gnu_prefix = TREE_OPERAND (gnu_prefix, 0); gnu_prefix = maybe_implicit_deref (gnu_prefix); gnu_type = TREE_TYPE (gnu_prefix); if (TREE_CODE (gnu_type) == UNCONSTRAINED_ARRAY_TYPE) gnu_type = TREE_TYPE (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (gnu_type)))); while (TREE_CODE (TREE_TYPE (gnu_type)) == ARRAY_TYPE && TYPE_MULTI_ARRAY_P (TREE_TYPE (gnu_type))) gnu_type = TREE_TYPE (gnu_type); if (TREE_CODE (gnu_type) != ARRAY_TYPE) gigi_abort (330); /* Note this size cannot be self-referential. */ gnu_result = TYPE_SIZE (TREE_TYPE (gnu_type)); gnu_result_type = get_unpadded_type (Etype (gnat_node)); prefix_unused = 1; break; case Attr_Null_Parameter: /* This is just a zero cast to the pointer type for our prefix and dereferenced. */ gnu_result_type = get_unpadded_type (Etype (gnat_node)); gnu_result = build_unary_op (INDIRECT_REF, NULL_TREE, convert (build_pointer_type (gnu_result_type), integer_zero_node)); TREE_PRIVATE (gnu_result) = 1; break; case Attr_Mechanism_Code: { int code; Entity_Id gnat_obj = Entity (Prefix (gnat_node)); prefix_unused = 1; gnu_result_type = get_unpadded_type (Etype (gnat_node)); if (Present (Expressions (gnat_node))) { int i = UI_To_Int (Intval (First (Expressions (gnat_node)))); for (gnat_obj = First_Formal (gnat_obj); i > 1; i--, gnat_obj = Next_Formal (gnat_obj)) ; } code = Mechanism (gnat_obj); if (code == Default) code = ((present_gnu_tree (gnat_obj) && (DECL_BY_REF_P (get_gnu_tree (gnat_obj)) || ((TREE_CODE (get_gnu_tree (gnat_obj)) == PARM_DECL) && (DECL_BY_COMPONENT_PTR_P (get_gnu_tree (gnat_obj)))))) ? By_Reference : By_Copy); gnu_result = convert (gnu_result_type, size_int (- code)); } break; default: /* Say we have an unimplemented attribute. Then set the value to be returned to be a zero and hope that's something we can convert to the type of this attribute. */ post_error ("unimplemented attribute", gnat_node); gnu_result_type = get_unpadded_type (Etype (gnat_node)); gnu_result = integer_zero_node; break; } /* If this is an attribute where the prefix was unused, force a use of it if it has a side-effect. But don't do it if the prefix is just an entity name. However, if an access check is needed, we must do it. See second example in AARM 11.6(5.e). */ if (prefix_unused && TREE_SIDE_EFFECTS (gnu_prefix) && ! Is_Entity_Name (Prefix (gnat_node))) gnu_result = fold (build (COMPOUND_EXPR, TREE_TYPE (gnu_result), gnu_prefix, gnu_result)); } break; case N_Reference: /* Like 'Access as far as we are concerned. */ gnu_result = gnat_to_gnu (Prefix (gnat_node)); gnu_result = build_unary_op (ADDR_EXPR, NULL_TREE, gnu_result); gnu_result_type = get_unpadded_type (Etype (gnat_node)); break; case N_Aggregate: case N_Extension_Aggregate: { tree gnu_aggr_type; /* ??? It is wrong to evaluate the type now, but there doesn't seem to be any other practical way of doing it. */ gnu_aggr_type = gnu_result_type = get_unpadded_type (Etype (gnat_node)); if (TREE_CODE (gnu_result_type) == RECORD_TYPE && TYPE_CONTAINS_TEMPLATE_P (gnu_result_type)) gnu_aggr_type = TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (gnu_result_type))); if (Null_Record_Present (gnat_node)) gnu_result = gnat_build_constructor (gnu_aggr_type, NULL_TREE); else if (TREE_CODE (gnu_aggr_type) == RECORD_TYPE) gnu_result = assoc_to_constructor (First (Component_Associations (gnat_node)), gnu_aggr_type); else if (TREE_CODE (gnu_aggr_type) == UNION_TYPE) { /* The first element is the discrimant, which we ignore. The next is the field we're building. Convert the expression to the type of the field and then to the union type. */ Node_Id gnat_assoc = Next (First (Component_Associations (gnat_node))); Entity_Id gnat_field = Entity (First (Choices (gnat_assoc))); tree gnu_field_type = TREE_TYPE (gnat_to_gnu_entity (gnat_field, NULL_TREE, 0)); gnu_result = convert (gnu_field_type, gnat_to_gnu (Expression (gnat_assoc))); } else if (TREE_CODE (gnu_aggr_type) == ARRAY_TYPE) gnu_result = pos_to_constructor (First (Expressions (gnat_node)), gnu_aggr_type, Component_Type (Etype (gnat_node))); else if (TREE_CODE (gnu_aggr_type) == COMPLEX_TYPE) gnu_result = build_binary_op (COMPLEX_EXPR, gnu_aggr_type, gnat_to_gnu (Expression (First (Component_Associations (gnat_node)))), gnat_to_gnu (Expression (Next (First (Component_Associations (gnat_node)))))); else gigi_abort (312); gnu_result = convert (gnu_result_type, gnu_result); } break; case N_Null: gnu_result = null_pointer_node; gnu_result_type = get_unpadded_type (Etype (gnat_node)); break; case N_Type_Conversion: case N_Qualified_Expression: /* Get the operand expression. */ gnu_result = gnat_to_gnu (Expression (gnat_node)); gnu_result_type = get_unpadded_type (Etype (gnat_node)); gnu_result = convert_with_check (Etype (gnat_node), gnu_result, Do_Overflow_Check (gnat_node), Do_Range_Check (Expression (gnat_node)), Nkind (gnat_node) == N_Type_Conversion && Float_Truncate (gnat_node)); break; case N_Unchecked_Type_Conversion: gnu_result = gnat_to_gnu (Expression (gnat_node)); gnu_result_type = get_unpadded_type (Etype (gnat_node)); /* If the result is a pointer type, see if we are improperly converting to a stricter alignment. */ if (STRICT_ALIGNMENT && POINTER_TYPE_P (gnu_result_type) && IN (Ekind (Etype (gnat_node)), Access_Kind)) { unsigned int align = known_alignment (gnu_result); tree gnu_obj_type = TREE_TYPE (gnu_result_type); unsigned int oalign = TYPE_ALIGN (gnu_obj_type); if (align != 0 && align < oalign && ! TYPE_ALIGN_OK (gnu_obj_type)) post_error_ne_tree_2 ("?source alignment (^) < alignment of & (^)", gnat_node, Designated_Type (Etype (gnat_node)), size_int (align / BITS_PER_UNIT), oalign / BITS_PER_UNIT); } gnu_result = unchecked_convert (gnu_result_type, gnu_result, No_Truncation (gnat_node)); break; case N_In: case N_Not_In: { tree gnu_object = gnat_to_gnu (Left_Opnd (gnat_node)); Node_Id gnat_range = Right_Opnd (gnat_node); tree gnu_low; tree gnu_high; /* GNAT_RANGE is either an N_Range node or an identifier denoting a subtype. */ if (Nkind (gnat_range) == N_Range) { gnu_low = gnat_to_gnu (Low_Bound (gnat_range)); gnu_high = gnat_to_gnu (High_Bound (gnat_range)); } else if (Nkind (gnat_range) == N_Identifier || Nkind (gnat_range) == N_Expanded_Name) { tree gnu_range_type = get_unpadded_type (Entity (gnat_range)); gnu_low = TYPE_MIN_VALUE (gnu_range_type); gnu_high = TYPE_MAX_VALUE (gnu_range_type); } else gigi_abort (313); gnu_result_type = get_unpadded_type (Etype (gnat_node)); /* If LOW and HIGH are identical, perform an equality test. Otherwise, ensure that GNU_OBJECT is only evaluated once and perform a full range test. */ if (operand_equal_p (gnu_low, gnu_high, 0)) gnu_result = build_binary_op (EQ_EXPR, gnu_result_type, gnu_object, gnu_low); else { gnu_object = protect_multiple_eval (gnu_object); gnu_result = build_binary_op (TRUTH_ANDIF_EXPR, gnu_result_type, build_binary_op (GE_EXPR, gnu_result_type, gnu_object, gnu_low), build_binary_op (LE_EXPR, gnu_result_type, gnu_object, gnu_high)); } if (Nkind (gnat_node) == N_Not_In) gnu_result = invert_truthvalue (gnu_result); } break; case N_Op_Divide: gnu_lhs = gnat_to_gnu (Left_Opnd (gnat_node)); gnu_rhs = gnat_to_gnu (Right_Opnd (gnat_node)); gnu_result_type = get_unpadded_type (Etype (gnat_node)); gnu_result = build_binary_op (FLOAT_TYPE_P (gnu_result_type) ? RDIV_EXPR : (Rounded_Result (gnat_node) ? ROUND_DIV_EXPR : TRUNC_DIV_EXPR), gnu_result_type, gnu_lhs, gnu_rhs); break; case N_Op_Or: case N_Op_And: case N_Op_Xor: /* These can either be operations on booleans or on modular types. Fall through for boolean types since that's the way GNU_CODES is set up. */ if (IN (Ekind (Underlying_Type (Etype (gnat_node))), Modular_Integer_Kind)) { enum tree_code code = (Nkind (gnat_node) == N_Op_Or ? BIT_IOR_EXPR : Nkind (gnat_node) == N_Op_And ? BIT_AND_EXPR : BIT_XOR_EXPR); gnu_lhs = gnat_to_gnu (Left_Opnd (gnat_node)); gnu_rhs = gnat_to_gnu (Right_Opnd (gnat_node)); gnu_result_type = get_unpadded_type (Etype (gnat_node)); gnu_result = build_binary_op (code, gnu_result_type, gnu_lhs, gnu_rhs); break; } /* ... fall through ... */ case N_Op_Eq: case N_Op_Ne: case N_Op_Lt: case N_Op_Le: case N_Op_Gt: case N_Op_Ge: case N_Op_Add: case N_Op_Subtract: case N_Op_Multiply: case N_Op_Mod: case N_Op_Rem: case N_Op_Rotate_Left: case N_Op_Rotate_Right: case N_Op_Shift_Left: case N_Op_Shift_Right: case N_Op_Shift_Right_Arithmetic: case N_And_Then: case N_Or_Else: { enum tree_code code = gnu_codes[Nkind (gnat_node)]; tree gnu_type; gnu_lhs = gnat_to_gnu (Left_Opnd (gnat_node)); gnu_rhs = gnat_to_gnu (Right_Opnd (gnat_node)); gnu_type = gnu_result_type = get_unpadded_type (Etype (gnat_node)); /* If this is a comparison operator, convert any references to an unconstrained array value into a reference to the actual array. */ if (TREE_CODE_CLASS (code) == '<') { gnu_lhs = maybe_unconstrained_array (gnu_lhs); gnu_rhs = maybe_unconstrained_array (gnu_rhs); } /* If the result type is a private type, its full view may be a numeric subtype. The representation we need is that of its base type, given that it is the result of an arithmetic operation. */ else if (Is_Private_Type (Etype (gnat_node))) gnu_type = gnu_result_type = get_unpadded_type (Base_Type (Full_View (Etype (gnat_node)))); /* If this is a shift whose count is not guaranteed to be correct, we need to adjust the shift count. */ if (IN (Nkind (gnat_node), N_Op_Shift) && ! Shift_Count_OK (gnat_node)) { tree gnu_count_type = get_base_type (TREE_TYPE (gnu_rhs)); tree gnu_max_shift = convert (gnu_count_type, TYPE_SIZE (gnu_type)); if (Nkind (gnat_node) == N_Op_Rotate_Left || Nkind (gnat_node) == N_Op_Rotate_Right) gnu_rhs = build_binary_op (TRUNC_MOD_EXPR, gnu_count_type, gnu_rhs, gnu_max_shift); else if (Nkind (gnat_node) == N_Op_Shift_Right_Arithmetic) gnu_rhs = build_binary_op (MIN_EXPR, gnu_count_type, build_binary_op (MINUS_EXPR, gnu_count_type, gnu_max_shift, convert (gnu_count_type, integer_one_node)), gnu_rhs); } /* For right shifts, the type says what kind of shift to do, so we may need to choose a different type. */ if (Nkind (gnat_node) == N_Op_Shift_Right && ! TYPE_UNSIGNED (gnu_type)) gnu_type = gnat_unsigned_type (gnu_type); else if (Nkind (gnat_node) == N_Op_Shift_Right_Arithmetic && TYPE_UNSIGNED (gnu_type)) gnu_type = gnat_signed_type (gnu_type); if (gnu_type != gnu_result_type) { gnu_lhs = convert (gnu_type, gnu_lhs); gnu_rhs = convert (gnu_type, gnu_rhs); } gnu_result = build_binary_op (code, gnu_type, gnu_lhs, gnu_rhs); /* If this is a logical shift with the shift count not verified, we must return zero if it is too large. We cannot compensate above in this case. */ if ((Nkind (gnat_node) == N_Op_Shift_Left || Nkind (gnat_node) == N_Op_Shift_Right) && ! Shift_Count_OK (gnat_node)) gnu_result = build_cond_expr (gnu_type, build_binary_op (GE_EXPR, integer_type_node, gnu_rhs, convert (TREE_TYPE (gnu_rhs), TYPE_SIZE (gnu_type))), convert (gnu_type, integer_zero_node), gnu_result); } break; case N_Conditional_Expression: { tree gnu_cond = gnat_to_gnu (First (Expressions (gnat_node))); tree gnu_true = gnat_to_gnu (Next (First (Expressions (gnat_node)))); tree gnu_false = gnat_to_gnu (Next (Next (First (Expressions (gnat_node))))); gnu_result_type = get_unpadded_type (Etype (gnat_node)); gnu_result = build_cond_expr (gnu_result_type, gnat_truthvalue_conversion (gnu_cond), gnu_true, gnu_false); } break; case N_Op_Plus: gnu_result = gnat_to_gnu (Right_Opnd (gnat_node)); gnu_result_type = get_unpadded_type (Etype (gnat_node)); break; case N_Op_Not: /* This case can apply to a boolean or a modular type. Fall through for a boolean operand since GNU_CODES is set up to handle this. */ if (IN (Ekind (Etype (gnat_node)), Modular_Integer_Kind)) { gnu_expr = gnat_to_gnu (Right_Opnd (gnat_node)); gnu_result_type = get_unpadded_type (Etype (gnat_node)); gnu_result = build_unary_op (BIT_NOT_EXPR, gnu_result_type, gnu_expr); break; } /* ... fall through ... */ case N_Op_Minus: case N_Op_Abs: gnu_expr = gnat_to_gnu (Right_Opnd (gnat_node)); if (Ekind (Etype (gnat_node)) != E_Private_Type) gnu_result_type = get_unpadded_type (Etype (gnat_node)); else gnu_result_type = get_unpadded_type (Base_Type (Full_View (Etype (gnat_node)))); gnu_result = build_unary_op (gnu_codes[Nkind (gnat_node)], gnu_result_type, gnu_expr); break; case N_Allocator: { tree gnu_init = 0; tree gnu_type; gnat_temp = Expression (gnat_node); /* The Expression operand can either be an N_Identifier or Expanded_Name, which must represent a type, or a N_Qualified_Expression, which contains both the object type and an initial value for the object. */ if (Nkind (gnat_temp) == N_Identifier || Nkind (gnat_temp) == N_Expanded_Name) gnu_type = gnat_to_gnu_type (Entity (gnat_temp)); else if (Nkind (gnat_temp) == N_Qualified_Expression) { Entity_Id gnat_desig_type = Designated_Type (Underlying_Type (Etype (gnat_node))); gnu_init = gnat_to_gnu (Expression (gnat_temp)); gnu_init = maybe_unconstrained_array (gnu_init); if (Do_Range_Check (Expression (gnat_temp))) gnu_init = emit_range_check (gnu_init, gnat_desig_type); if (Is_Elementary_Type (gnat_desig_type) || Is_Constrained (gnat_desig_type)) { gnu_type = gnat_to_gnu_type (gnat_desig_type); gnu_init = convert (gnu_type, gnu_init); } else { gnu_type = gnat_to_gnu_type (Etype (Expression (gnat_temp))); if (TREE_CODE (gnu_type) == UNCONSTRAINED_ARRAY_TYPE) gnu_type = TREE_TYPE (gnu_init); gnu_init = convert (gnu_type, gnu_init); } } else gigi_abort (315); gnu_result_type = get_unpadded_type (Etype (gnat_node)); return build_allocator (gnu_type, gnu_init, gnu_result_type, Procedure_To_Call (gnat_node), Storage_Pool (gnat_node), gnat_node); } break; /***************************/ /* Chapter 5: Statements: */ /***************************/ case N_Label: gnu_result = build1 (LABEL_EXPR, void_type_node, gnat_to_gnu (Identifier (gnat_node))); break; case N_Null_Statement: gnu_result = alloc_stmt_list (); break; case N_Assignment_Statement: /* Get the LHS and RHS of the statement and convert any reference to an unconstrained array into a reference to the underlying array. */ gnu_lhs = maybe_unconstrained_array (gnat_to_gnu (Name (gnat_node))); gnu_rhs = maybe_unconstrained_array (gnat_to_gnu (Expression (gnat_node))); /* If range check is needed, emit code to generate it */ if (Do_Range_Check (Expression (gnat_node))) gnu_rhs = emit_range_check (gnu_rhs, Etype (Name (gnat_node))); /* If either side's type has a size that overflows, convert this into raise of Storage_Error: execution shouldn't have gotten here anyway. */ if ((TREE_CODE (TYPE_SIZE (TREE_TYPE (gnu_lhs))) == INTEGER_CST && TREE_OVERFLOW (TYPE_SIZE (TREE_TYPE (gnu_lhs)))) || (TREE_CODE (TYPE_SIZE (TREE_TYPE (gnu_rhs))) == INTEGER_CST && TREE_OVERFLOW (TYPE_SIZE (TREE_TYPE (gnu_rhs))))) gnu_result = build_call_raise (SE_Object_Too_Large); else gnu_result = build_binary_op (MODIFY_EXPR, NULL_TREE, gnu_lhs, gnu_rhs); break; case N_If_Statement: { tree *gnu_else_ptr; /* Point to put next "else if" or "else". */ /* Make the outer COND_EXPR. Avoid non-determinism. */ gnu_result = build (COND_EXPR, void_type_node, gnat_to_gnu (Condition (gnat_node)), NULL_TREE, NULL_TREE); COND_EXPR_THEN (gnu_result) = build_stmt_group (Then_Statements (gnat_node), false); TREE_SIDE_EFFECTS (gnu_result) = 1; gnu_else_ptr = &COND_EXPR_ELSE (gnu_result); /* Now make a COND_EXPR for each of the "else if" parts. Put each into the previous "else" part and point to where to put any outer "else". Also avoid non-determinism. */ if (Present (Elsif_Parts (gnat_node))) for (gnat_temp = First (Elsif_Parts (gnat_node)); Present (gnat_temp); gnat_temp = Next (gnat_temp)) { gnu_expr = build (COND_EXPR, void_type_node, gnat_to_gnu (Condition (gnat_temp)), NULL_TREE, NULL_TREE); COND_EXPR_THEN (gnu_expr) = build_stmt_group (Then_Statements (gnat_temp), false); TREE_SIDE_EFFECTS (gnu_expr) = 1; annotate_with_node (gnu_expr, gnat_temp); *gnu_else_ptr = gnu_expr; gnu_else_ptr = &COND_EXPR_ELSE (gnu_expr); } *gnu_else_ptr = build_stmt_group (Else_Statements (gnat_node), false); } break; case N_Case_Statement: { Node_Id gnat_when; gnu_expr = gnat_to_gnu (Expression (gnat_node)); gnu_expr = convert (get_base_type (TREE_TYPE (gnu_expr)), gnu_expr); /* The range of values in a case statement is determined by the rules in RM 5.4(7-9). In almost all cases, this range is represented by the Etype of the expression. One exception arises in the case of a simple name that is parenthesized. This still has the Etype of the name, but since it is not a name, para 7 does not apply, and we need to go to the base type. This is the only case where parenthesization affects the dynamic semantics (i.e. the range of possible values at runtime that is covered by the others alternative. Another exception is if the subtype of the expression is non-static. In that case, we also have to use the base type. */ if (Paren_Count (Expression (gnat_node)) != 0 || !Is_OK_Static_Subtype (Underlying_Type (Etype (Expression (gnat_node))))) gnu_expr = convert (get_base_type (TREE_TYPE (gnu_expr)), gnu_expr); /* We build a SWITCH_EXPR that contains the code with interspersed CASE_LABEL_EXPRs for each label. */ push_stack (&gnu_switch_label_stack, NULL_TREE, create_artificial_label ()); start_stmt_group (); for (gnat_when = First_Non_Pragma (Alternatives (gnat_node)); Present (gnat_when); gnat_when = Next_Non_Pragma (gnat_when)) { Node_Id gnat_choice; /* First compile all the different case choices for the current WHEN alternative. */ for (gnat_choice = First (Discrete_Choices (gnat_when)); Present (gnat_choice); gnat_choice = Next (gnat_choice)) { tree gnu_low = NULL_TREE, gnu_high = NULL_TREE; switch (Nkind (gnat_choice)) { case N_Range: gnu_low = gnat_to_gnu (Low_Bound (gnat_choice)); gnu_high = gnat_to_gnu (High_Bound (gnat_choice)); break; case N_Subtype_Indication: gnu_low = gnat_to_gnu (Low_Bound (Range_Expression (Constraint (gnat_choice)))); gnu_high = gnat_to_gnu (High_Bound (Range_Expression (Constraint (gnat_choice)))); break; case N_Identifier: case N_Expanded_Name: /* This represents either a subtype range or a static value of some kind; Ekind says which. If a static value, fall through to the next case. */ if (IN (Ekind (Entity (gnat_choice)), Type_Kind)) { tree gnu_type = get_unpadded_type (Entity (gnat_choice)); gnu_low = fold (TYPE_MIN_VALUE (gnu_type)); gnu_high = fold (TYPE_MAX_VALUE (gnu_type)); break; } /* ... fall through ... */ case N_Character_Literal: case N_Integer_Literal: gnu_low = gnat_to_gnu (gnat_choice); break; case N_Others_Choice: break; default: gigi_abort (316); } add_stmt_with_node (build (CASE_LABEL_EXPR, void_type_node, gnu_low, gnu_high, create_artificial_label ()), gnat_choice); } /* Push a binding level here in case variables are declared since we want them to be local to this set of statements instead of the block containing the Case statement. */ add_stmt (build_stmt_group (Statements (gnat_when), true)); add_stmt (build1 (GOTO_EXPR, void_type_node, TREE_VALUE (gnu_switch_label_stack))); } /* Now emit a definition of the label all the cases branched to. */ add_stmt (build1 (LABEL_EXPR, void_type_node, TREE_VALUE (gnu_switch_label_stack))); gnu_result = build (SWITCH_EXPR, TREE_TYPE (gnu_expr), gnu_expr, end_stmt_group (), NULL_TREE); pop_stack (&gnu_switch_label_stack); break; } case N_Loop_Statement: { /* ??? It would be nice to use "build" here, but there's no build5. */ tree gnu_loop_stmt = build_nt (LOOP_STMT, NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE); tree gnu_loop_var = NULL_TREE; Node_Id gnat_iter_scheme = Iteration_Scheme (gnat_node); tree gnu_cond_expr = NULL_TREE; TREE_TYPE (gnu_loop_stmt) = void_type_node; TREE_SIDE_EFFECTS (gnu_loop_stmt) = 1; LOOP_STMT_LABEL (gnu_loop_stmt) = create_artificial_label (); annotate_with_node (gnu_loop_stmt, gnat_node); /* Save the end label of this LOOP_STMT in a stack so that the corresponding N_Exit_Statement can find it. */ push_stack (&gnu_loop_label_stack, NULL_TREE, LOOP_STMT_LABEL (gnu_loop_stmt)); /* Set the condition that under which the loop should continue. For "LOOP .... END LOOP;" the condition is always true. */ if (No (gnat_iter_scheme)) ; /* The case "WHILE condition LOOP ..... END LOOP;" */ else if (Present (Condition (gnat_iter_scheme))) LOOP_STMT_TOP_COND (gnu_loop_stmt) = gnat_to_gnu (Condition (gnat_iter_scheme)); else { /* We have an iteration scheme. */ Node_Id gnat_loop_spec = Loop_Parameter_Specification (gnat_iter_scheme); Entity_Id gnat_loop_var = Defining_Entity (gnat_loop_spec); Entity_Id gnat_type = Etype (gnat_loop_var); tree gnu_type = get_unpadded_type (gnat_type); tree gnu_low = TYPE_MIN_VALUE (gnu_type); tree gnu_high = TYPE_MAX_VALUE (gnu_type); int reversep = Reverse_Present (gnat_loop_spec); tree gnu_first = reversep ? gnu_high : gnu_low; tree gnu_last = reversep ? gnu_low : gnu_high; enum tree_code end_code = reversep ? GE_EXPR : LE_EXPR; tree gnu_base_type = get_base_type (gnu_type); tree gnu_limit = (reversep ? TYPE_MIN_VALUE (gnu_base_type) : TYPE_MAX_VALUE (gnu_base_type)); /* We know the loop variable will not overflow if GNU_LAST is a constant and is not equal to GNU_LIMIT. If it might overflow, we have to move the limit test to the end of the loop. In that case, we have to test for an empty loop outside the loop. */ if (TREE_CODE (gnu_last) != INTEGER_CST || TREE_CODE (gnu_limit) != INTEGER_CST || tree_int_cst_equal (gnu_last, gnu_limit)) { gnu_cond_expr = build (COND_EXPR, void_type_node, build_binary_op (LE_EXPR, integer_type_node, gnu_low, gnu_high), NULL_TREE, alloc_stmt_list ()); annotate_with_node (gnu_cond_expr, gnat_loop_spec); } /* Open a new nesting level that will surround the loop to declare the loop index variable. */ start_stmt_group (); gnat_pushlevel (); /* Declare the loop index and set it to its initial value. */ gnu_loop_var = gnat_to_gnu_entity (gnat_loop_var, gnu_first, 1); if (DECL_BY_REF_P (gnu_loop_var)) gnu_loop_var = build_unary_op (INDIRECT_REF, NULL_TREE, gnu_loop_var); /* The loop variable might be a padded type, so use `convert' to get a reference to the inner variable if so. */ gnu_loop_var = convert (get_base_type (gnu_type), gnu_loop_var); /* Set either the top or bottom exit condition as appropriate depending on whether we know an overflow cannot occur or not. */ if (gnu_cond_expr) LOOP_STMT_BOT_COND (gnu_loop_stmt) = build_binary_op (NE_EXPR, integer_type_node, gnu_loop_var, gnu_last); else LOOP_STMT_TOP_COND (gnu_loop_stmt) = build_binary_op (end_code, integer_type_node, gnu_loop_var, gnu_last); LOOP_STMT_UPDATE (gnu_loop_stmt) = build_binary_op (reversep ? PREDECREMENT_EXPR : PREINCREMENT_EXPR, TREE_TYPE (gnu_loop_var), gnu_loop_var, convert (TREE_TYPE (gnu_loop_var), integer_one_node)); annotate_with_node (LOOP_STMT_UPDATE (gnu_loop_stmt), gnat_iter_scheme); } /* If the loop was named, have the name point to this loop. In this case, the association is not a ..._DECL node, but the end label from this LOOP_STMT. */ if (Present (Identifier (gnat_node))) save_gnu_tree (Entity (Identifier (gnat_node)), LOOP_STMT_LABEL (gnu_loop_stmt), 1); /* Make the loop body into its own block, so any allocated storage will be released every iteration. This is needed for stack allocation. */ LOOP_STMT_BODY (gnu_loop_stmt) = build_stmt_group (Statements (gnat_node), true); /* If we declared a variable, then we are in a statement group for that declaration. Add the LOOP_STMT to it and make that the "loop". */ if (gnu_loop_var) { add_stmt (gnu_loop_stmt); gnat_poplevel (); gnu_loop_stmt = end_stmt_group (); } /* If we have an outer COND_EXPR, that's our result and this loop is its "true" statement. Otherwise, the result is the LOOP_STMT. */ if (gnu_cond_expr) { COND_EXPR_THEN (gnu_cond_expr) = gnu_loop_stmt; gnu_result = gnu_cond_expr; recalculate_side_effects (gnu_cond_expr); } else gnu_result = gnu_loop_stmt; pop_stack (&gnu_loop_label_stack); } break; case N_Block_Statement: start_stmt_group (); gnat_pushlevel (); process_decls (Declarations (gnat_node), Empty, Empty, 1, 1); add_stmt (gnat_to_gnu (Handled_Statement_Sequence (gnat_node))); gnat_poplevel (); gnu_result = end_stmt_group (); if (Present (Identifier (gnat_node))) mark_out_of_scope (Entity (Identifier (gnat_node))); break; case N_Exit_Statement: gnu_result = build (EXIT_STMT, void_type_node, (Present (Condition (gnat_node)) ? gnat_to_gnu (Condition (gnat_node)) : NULL_TREE), (Present (Name (gnat_node)) ? get_gnu_tree (Entity (Name (gnat_node))) : TREE_VALUE (gnu_loop_label_stack))); break; case N_Return_Statement: { /* The gnu function type of the subprogram currently processed. */ tree gnu_subprog_type = TREE_TYPE (current_function_decl); /* The return value from the subprogram. */ tree gnu_ret_val = 0; /* If we are dealing with a "return;" from an Ada procedure with parameters passed by copy in copy out, we need to return a record containing the final values of these parameters. If the list contains only one entry, return just that entry. For a full description of the copy in copy out parameter mechanism, see the part of the gnat_to_gnu_entity routine dealing with the translation of subprograms. But if we have a return label defined, convert this into a branch to that label. */ if (TREE_VALUE (gnu_return_label_stack) != 0) { gnu_result = build1 (GOTO_EXPR, void_type_node, TREE_VALUE (gnu_return_label_stack)); break; } else if (TYPE_CI_CO_LIST (gnu_subprog_type) != NULL_TREE) { if (list_length (TYPE_CI_CO_LIST (gnu_subprog_type)) == 1) gnu_ret_val = TREE_VALUE (TYPE_CI_CO_LIST (gnu_subprog_type)); else gnu_ret_val = gnat_build_constructor (TREE_TYPE (gnu_subprog_type), TYPE_CI_CO_LIST (gnu_subprog_type)); } /* If the Ada subprogram is a function, we just need to return the expression. If the subprogram returns an unconstrained array, we have to allocate a new version of the result and return it. If we return by reference, return a pointer. */ else if (Present (Expression (gnat_node))) { gnu_ret_val = gnat_to_gnu (Expression (gnat_node)); /* Do not remove the padding from GNU_RET_VAL if the inner type is self-referential since we want to allocate the fixed size in that case. */ if (TREE_CODE (gnu_ret_val) == COMPONENT_REF && (TREE_CODE (TREE_TYPE (TREE_OPERAND (gnu_ret_val, 0))) == RECORD_TYPE) && (TYPE_IS_PADDING_P (TREE_TYPE (TREE_OPERAND (gnu_ret_val, 0)))) && (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (TREE_TYPE (gnu_ret_val))))) gnu_ret_val = TREE_OPERAND (gnu_ret_val, 0); if (TYPE_RETURNS_BY_REF_P (gnu_subprog_type) || By_Ref (gnat_node)) gnu_ret_val = build_unary_op (ADDR_EXPR, NULL_TREE, gnu_ret_val); else if (TYPE_RETURNS_UNCONSTRAINED_P (gnu_subprog_type)) { gnu_ret_val = maybe_unconstrained_array (gnu_ret_val); /* We have two cases: either the function returns with depressed stack or not. If not, we allocate on the secondary stack. If so, we allocate in the stack frame. if no copy is needed, the front end will set By_Ref, which we handle in the case above. */ if (TYPE_RETURNS_STACK_DEPRESSED (gnu_subprog_type)) gnu_ret_val = build_allocator (TREE_TYPE (gnu_ret_val), gnu_ret_val, TREE_TYPE (gnu_subprog_type), 0, -1, gnat_node); else gnu_ret_val = build_allocator (TREE_TYPE (gnu_ret_val), gnu_ret_val, TREE_TYPE (gnu_subprog_type), Procedure_To_Call (gnat_node), Storage_Pool (gnat_node), gnat_node); } } gnu_result = build1 (RETURN_EXPR, void_type_node, (gnu_ret_val ? build (MODIFY_EXPR, TREE_TYPE (gnu_ret_val), DECL_RESULT (current_function_decl), gnu_ret_val) : NULL_TREE)); } break; case N_Goto_Statement: gnu_result = build1 (GOTO_EXPR, void_type_node, gnat_to_gnu (Name (gnat_node))); break; /****************************/ /* Chapter 6: Subprograms: */ /****************************/ case N_Subprogram_Declaration: /* Unless there is a freeze node, declare the subprogram. We consider this a "definition" even though we're not generating code for the subprogram because we will be making the corresponding GCC node here. */ if (No (Freeze_Node (Defining_Entity (Specification (gnat_node))))) gnat_to_gnu_entity (Defining_Entity (Specification (gnat_node)), NULL_TREE, 1); gnu_result = alloc_stmt_list (); break; case N_Abstract_Subprogram_Declaration: /* This subprogram doesn't exist for code generation purposes, but we have to elaborate the types of any parameters, unless they are imported types (nothing to generate in this case). */ for (gnat_temp = First_Formal (Defining_Entity (Specification (gnat_node))); Present (gnat_temp); gnat_temp = Next_Formal_With_Extras (gnat_temp)) if (Is_Itype (Etype (gnat_temp)) && !From_With_Type (Etype (gnat_temp))) gnat_to_gnu_entity (Etype (gnat_temp), NULL_TREE, 0); gnu_result = alloc_stmt_list (); break; case N_Defining_Program_Unit_Name: /* For a child unit identifier go up a level to get the specificaton. We get this when we try to find the spec of a child unit package that is the compilation unit being compiled. */ gnu_result = gnat_to_gnu (Parent (gnat_node)); break; case N_Subprogram_Body: { /* Save debug output mode in case it is reset. */ enum debug_info_type save_write_symbols = write_symbols; const struct gcc_debug_hooks *const save_debug_hooks = debug_hooks; /* Definining identifier of a parameter to the subprogram. */ Entity_Id gnat_param; /* The defining identifier for the subprogram body. Note that if a specification has appeared before for this body, then the identifier occurring in that specification will also be a defining identifier and all the calls to this subprogram will point to that specification. */ Entity_Id gnat_subprog_id = (Present (Corresponding_Spec (gnat_node)) ? Corresponding_Spec (gnat_node) : Defining_Entity (gnat_node)); /* The FUNCTION_DECL node corresponding to the subprogram spec. */ tree gnu_subprog_decl; /* The FUNCTION_TYPE node corresponding to the subprogram spec. */ tree gnu_subprog_type; tree gnu_cico_list; /* If this is a generic object or if it has been eliminated, ignore it. */ if (Ekind (gnat_subprog_id) == E_Generic_Procedure || Ekind (gnat_subprog_id) == E_Generic_Function || Is_Eliminated (gnat_subprog_id)) return alloc_stmt_list (); /* If debug information is suppressed for the subprogram, turn debug mode off for the duration of processing. */ if (!Needs_Debug_Info (gnat_subprog_id)) { write_symbols = NO_DEBUG; debug_hooks = &do_nothing_debug_hooks; } /* If this subprogram acts as its own spec, define it. Otherwise, just get the already-elaborated tree node. However, if this subprogram had its elaboration deferred, we will already have made a tree node for it. So treat it as not being defined in that case. Such a subprogram cannot have an address clause or a freeze node, so this test is safe, though it does disable some otherwise-useful error checking. */ gnu_subprog_decl = gnat_to_gnu_entity (gnat_subprog_id, NULL_TREE, Acts_As_Spec (gnat_node) && ! present_gnu_tree (gnat_subprog_id)); gnu_subprog_type = TREE_TYPE (gnu_subprog_decl); /* Set the line number in the decl to correspond to that of the body so that the line number notes are written correctly. */ Sloc_to_locus (Sloc (gnat_node), &DECL_SOURCE_LOCATION (gnu_subprog_decl)); begin_subprog_body (gnu_subprog_decl); gnu_cico_list = TYPE_CI_CO_LIST (gnu_subprog_type); /* If there are OUT parameters, we need to ensure that the return statement properly copies them out. We do this by making a new block and converting any inner return into a goto to a label at the end of the block. */ push_stack (&gnu_return_label_stack, NULL_TREE, gnu_cico_list ? create_artificial_label () : NULL_TREE); /* Get a tree corresponding to the code for the subprogram. */ start_stmt_group (); gnat_pushlevel (); /* See if there are any parameters for which we don't yet have GCC entities. These must be for OUT parameters for which we will be making VAR_DECL nodes here. Fill them in to TYPE_CI_CO_LIST, which must contain the empty entry as well. We can match up the entries because TYPE_CI_CO_LIST is in the order of the parameters. */ for (gnat_param = First_Formal (gnat_subprog_id); Present (gnat_param); gnat_param = Next_Formal_With_Extras (gnat_param)) if (!present_gnu_tree (gnat_param)) { /* Skip any entries that have been already filled in; they must correspond to IN OUT parameters. */ for (; gnu_cico_list != 0 && TREE_VALUE (gnu_cico_list) != 0; gnu_cico_list = TREE_CHAIN (gnu_cico_list)) ; /* Do any needed references for padded types. */ TREE_VALUE (gnu_cico_list) = convert (TREE_TYPE (TREE_PURPOSE (gnu_cico_list)), gnat_to_gnu_entity (gnat_param, NULL_TREE, 1)); } process_decls (Declarations (gnat_node), Empty, Empty, 1, 1); /* Generate the code of the subprogram itself. A return statement will be present and any OUT parameters will be handled there. */ add_stmt (gnat_to_gnu (Handled_Statement_Sequence (gnat_node))); gnat_poplevel (); gnu_result = end_stmt_group (); /* If we made a special return label, we need to make a block that contains the definition of that label and the copying to the return value. That block first contains the function, then the label and copy statement. */ if (TREE_VALUE (gnu_return_label_stack) != 0) { tree gnu_retval; start_stmt_group (); gnat_pushlevel (); add_stmt (gnu_result); add_stmt (build1 (LABEL_EXPR, void_type_node, TREE_VALUE (gnu_return_label_stack))); gnu_cico_list = TYPE_CI_CO_LIST (gnu_subprog_type); if (list_length (gnu_cico_list) == 1) gnu_retval = TREE_VALUE (gnu_cico_list); else gnu_retval = gnat_build_constructor (TREE_TYPE (gnu_subprog_type), gnu_cico_list); if (DECL_P (gnu_retval) && DECL_BY_REF_P (gnu_retval)) gnu_retval = build_unary_op (INDIRECT_REF, NULL_TREE, gnu_retval); add_stmt_with_node (build1 (RETURN_EXPR, void_type_node, build (MODIFY_EXPR, TREE_TYPE (gnu_retval), DECL_RESULT (current_function_decl), gnu_retval)), gnat_node); gnat_poplevel (); gnu_result = end_stmt_group (); } pop_stack (&gnu_return_label_stack); /* Initialize the information node for the function and set the end location. */ allocate_struct_function (current_function_decl); Sloc_to_locus ((Present (End_Label (Handled_Statement_Sequence (gnat_node))) ? Sloc (End_Label (Handled_Statement_Sequence (gnat_node))) : Sloc (gnat_node)), &cfun->function_end_locus); end_subprog_body (gnu_result); /* Disconnect the trees for parameters that we made variables for from the GNAT entities since these will become unusable after we end the function. */ for (gnat_param = First_Formal (gnat_subprog_id); Present (gnat_param); gnat_param = Next_Formal_With_Extras (gnat_param)) if (TREE_CODE (get_gnu_tree (gnat_param)) == VAR_DECL) save_gnu_tree (gnat_param, NULL_TREE, 0); mark_out_of_scope (Defining_Unit_Name (Specification (gnat_node))); write_symbols = save_write_symbols; debug_hooks = save_debug_hooks; gnu_result = alloc_stmt_list (); } break; case N_Function_Call: case N_Procedure_Call_Statement: { /* The GCC node corresponding to the GNAT subprogram name. This can either be a FUNCTION_DECL node if we are dealing with a standard subprogram call, or an indirect reference expression (an INDIRECT_REF node) pointing to a subprogram. */ tree gnu_subprog_node = gnat_to_gnu (Name (gnat_node)); /* The FUNCTION_TYPE node giving the GCC type of the subprogram. */ tree gnu_subprog_type = TREE_TYPE (gnu_subprog_node); tree gnu_subprog_addr = build_unary_op (ADDR_EXPR, NULL_TREE, gnu_subprog_node); Entity_Id gnat_formal; Node_Id gnat_actual; tree gnu_actual_list = NULL_TREE; tree gnu_name_list = NULL_TREE; tree gnu_before_list = NULL_TREE; tree gnu_after_list = NULL_TREE; tree gnu_subprog_call; switch (Nkind (Name (gnat_node))) { case N_Identifier: case N_Operator_Symbol: case N_Expanded_Name: case N_Attribute_Reference: if (Is_Eliminated (Entity (Name (gnat_node)))) Eliminate_Error_Msg (gnat_node, Entity (Name (gnat_node))); } if (TREE_CODE (gnu_subprog_type) != FUNCTION_TYPE) gigi_abort (317); /* If we are calling a stubbed function, make this into a raise of Program_Error. Elaborate all our args first. */ if (TREE_CODE (gnu_subprog_node) == FUNCTION_DECL && DECL_STUBBED_P (gnu_subprog_node)) { for (gnat_actual = First_Actual (gnat_node); Present (gnat_actual); gnat_actual = Next_Actual (gnat_actual)) add_stmt (gnat_to_gnu (gnat_actual)); if (Nkind (gnat_node) == N_Function_Call) { gnu_result_type = TREE_TYPE (gnu_subprog_type); gnu_result = build1 (NULL_EXPR, gnu_result_type, build_call_raise (PE_Stubbed_Subprogram_Called)); } else gnu_result = build_call_raise (PE_Stubbed_Subprogram_Called); break; } /* The only way we can be making a call via an access type is if Name is an explicit dereference. In that case, get the list of formal args from the type the access type is pointing to. Otherwise, get the formals from entity being called. */ if (Nkind (Name (gnat_node)) == N_Explicit_Dereference) gnat_formal = First_Formal (Etype (Name (gnat_node))); else if (Nkind (Name (gnat_node)) == N_Attribute_Reference) /* Assume here that this must be 'Elab_Body or 'Elab_Spec. */ gnat_formal = 0; else gnat_formal = First_Formal (Entity (Name (gnat_node))); /* Create the list of the actual parameters as GCC expects it, namely a chain of TREE_LIST nodes in which the TREE_VALUE field of each node is a parameter-expression and the TREE_PURPOSE field is null. Skip OUT parameters that are not passed by reference and don't need to be copied in. */ for (gnat_actual = First_Actual (gnat_node); Present (gnat_actual); gnat_formal = Next_Formal_With_Extras (gnat_formal), gnat_actual = Next_Actual (gnat_actual)) { tree gnu_formal_type = gnat_to_gnu_type (Etype (gnat_formal)); /* We treat a conversion between aggregate types as if it is an unchecked conversion. */ int unchecked_convert_p = (Nkind (gnat_actual) == N_Unchecked_Type_Conversion || (Nkind (gnat_actual) == N_Type_Conversion && Is_Composite_Type (Underlying_Type (Etype (gnat_formal))))); Node_Id gnat_name = unchecked_convert_p ? Expression (gnat_actual) : gnat_actual; tree gnu_name = gnat_to_gnu (gnat_name); tree gnu_name_type = gnat_to_gnu_type (Etype (gnat_name)); tree gnu_actual; /* If it's possible we may need to use this expression twice, make sure than any side-effects are handled via SAVE_EXPRs. Likewise if we need to force side-effects before the call. ??? This is more conservative than we need since we don't need to do this for pass-by-ref with no conversion. If we are passing a non-addressable Out or In Out parameter by reference, pass the address of a copy and set up to copy back out after the call. */ if (Ekind (gnat_formal) != E_In_Parameter) { gnu_name = gnat_stabilize_reference (gnu_name, 1); if (! addressable_p (gnu_name) && present_gnu_tree (gnat_formal) && (DECL_BY_REF_P (get_gnu_tree (gnat_formal)) || (TREE_CODE (get_gnu_tree (gnat_formal)) == PARM_DECL && (DECL_BY_COMPONENT_PTR_P (get_gnu_tree (gnat_formal)) || DECL_BY_DESCRIPTOR_P (get_gnu_tree (gnat_formal)))))) { tree gnu_copy = gnu_name; tree gnu_temp; /* Remove any unpadding on the actual and make a copy. But if the actual is a left-justified modular type, first convert to it. */ if (TREE_CODE (gnu_name) == COMPONENT_REF && ((TREE_CODE (TREE_TYPE (TREE_OPERAND (gnu_name, 0))) == RECORD_TYPE) && (TYPE_IS_PADDING_P (TREE_TYPE (TREE_OPERAND (gnu_name, 0)))))) gnu_name = gnu_copy = TREE_OPERAND (gnu_name, 0); else if (TREE_CODE (gnu_name_type) == RECORD_TYPE && (TYPE_LEFT_JUSTIFIED_MODULAR_P (gnu_name_type))) gnu_name = convert (gnu_name_type, gnu_name); gnu_actual = save_expr (gnu_name); /* Since we're going to take the address of the SAVE_EXPR, we don't want it to be marked as unchanging. So set TREE_ADDRESSABLE. */ gnu_temp = skip_simple_arithmetic (gnu_actual); if (TREE_CODE (gnu_temp) == SAVE_EXPR) { TREE_ADDRESSABLE (gnu_temp) = 1; TREE_READONLY (gnu_temp) = 0; } /* Set up to move the copy back to the original. */ gnu_temp = build (MODIFY_EXPR, TREE_TYPE (gnu_copy), gnu_copy, gnu_actual); annotate_with_node (gnu_temp, gnat_actual); append_to_statement_list (gnu_temp, &gnu_after_list); } } /* If this was a procedure call, we may not have removed any padding. So do it here for the part we will use as an input, if any. */ gnu_actual = gnu_name; if (Ekind (gnat_formal) != E_Out_Parameter && TREE_CODE (TREE_TYPE (gnu_actual)) == RECORD_TYPE && TYPE_IS_PADDING_P (TREE_TYPE (gnu_actual))) gnu_actual = convert (get_unpadded_type (Etype (gnat_actual)), gnu_actual); if (Ekind (gnat_formal) != E_Out_Parameter && ! unchecked_convert_p && Do_Range_Check (gnat_actual)) gnu_actual = emit_range_check (gnu_actual, Etype (gnat_formal)); /* Do any needed conversions. We need only check for unchecked conversion since normal conversions will be handled by just converting to the formal type. */ if (unchecked_convert_p) { gnu_actual = unchecked_convert (gnat_to_gnu_type (Etype (gnat_actual)), gnu_actual, (Nkind (gnat_actual) == N_Unchecked_Type_Conversion) && No_Truncation (gnat_actual)); /* One we've done the unchecked conversion, we still must ensure that the object is in range of the formal's type. */ if (Ekind (gnat_formal) != E_Out_Parameter && Do_Range_Check (gnat_actual)) gnu_actual = emit_range_check (gnu_actual, Etype (gnat_formal)); } else if (TREE_CODE (gnu_actual) != SAVE_EXPR) /* We may have suppressed a conversion to the Etype of the actual since the parent is a procedure call. So add the conversion here. */ gnu_actual = convert (gnat_to_gnu_type (Etype (gnat_actual)), gnu_actual); if (TREE_CODE (gnu_actual) != SAVE_EXPR) gnu_actual = convert (gnu_formal_type, gnu_actual); /* If we have not saved a GCC object for the formal, it means it is an OUT parameter not passed by reference and that does not need to be copied in. Otherwise, look at the PARM_DECL to see if it is passed by reference. */ if (present_gnu_tree (gnat_formal) && TREE_CODE (get_gnu_tree (gnat_formal)) == PARM_DECL && DECL_BY_REF_P (get_gnu_tree (gnat_formal))) { if (Ekind (gnat_formal) != E_In_Parameter) { gnu_actual = gnu_name; /* If we have a padded type, be sure we've removed the padding. */ if (TREE_CODE (TREE_TYPE (gnu_actual)) == RECORD_TYPE && TYPE_IS_PADDING_P (TREE_TYPE (gnu_actual)) && TREE_CODE (gnu_actual) != SAVE_EXPR) gnu_actual = convert (get_unpadded_type (Etype (gnat_actual)), gnu_actual); } /* Otherwise, if we have a non-addressable COMPONENT_REF of a variable-size type see if it's doing a unpadding operation. If so, remove that operation since we have no way of allocating the required temporary. */ if (TREE_CODE (gnu_actual) == COMPONENT_REF && ! TREE_CONSTANT (TYPE_SIZE (TREE_TYPE (gnu_actual))) && (TREE_CODE (TREE_TYPE (TREE_OPERAND (gnu_actual, 0))) == RECORD_TYPE) && TYPE_IS_PADDING_P (TREE_TYPE (TREE_OPERAND (gnu_actual, 0))) && !addressable_p (gnu_actual)) gnu_actual = TREE_OPERAND (gnu_actual, 0); /* The symmetry of the paths to the type of an entity is broken here since arguments don't know that they will be passed by ref. */ gnu_formal_type = TREE_TYPE (get_gnu_tree (gnat_formal)); gnu_actual = build_unary_op (ADDR_EXPR, gnu_formal_type, gnu_actual); } else if (present_gnu_tree (gnat_formal) && TREE_CODE (get_gnu_tree (gnat_formal)) == PARM_DECL && DECL_BY_COMPONENT_PTR_P (get_gnu_tree (gnat_formal))) { gnu_formal_type = TREE_TYPE (get_gnu_tree (gnat_formal)); gnu_actual = maybe_implicit_deref (gnu_actual); gnu_actual = maybe_unconstrained_array (gnu_actual); if (TREE_CODE (gnu_formal_type) == RECORD_TYPE && TYPE_IS_PADDING_P (gnu_formal_type)) { gnu_formal_type = TREE_TYPE (TYPE_FIELDS (gnu_formal_type)); gnu_actual = convert (gnu_formal_type, gnu_actual); } /* Take the address of the object and convert to the proper pointer type. We'd like to actually compute the address of the beginning of the array using an ADDR_EXPR of an ARRAY_REF, but there's a possibility that the ARRAY_REF might return a constant and we'd be getting the wrong address. Neither approach is exactly correct, but this is the most likely to work in all cases. */ gnu_actual = convert (gnu_formal_type, build_unary_op (ADDR_EXPR, NULL_TREE, gnu_actual)); } else if (present_gnu_tree (gnat_formal) && TREE_CODE (get_gnu_tree (gnat_formal)) == PARM_DECL && DECL_BY_DESCRIPTOR_P (get_gnu_tree (gnat_formal))) { /* If arg is 'Null_Parameter, pass zero descriptor. */ if ((TREE_CODE (gnu_actual) == INDIRECT_REF || TREE_CODE (gnu_actual) == UNCONSTRAINED_ARRAY_REF) && TREE_PRIVATE (gnu_actual)) gnu_actual = convert (DECL_ARG_TYPE (get_gnu_tree (gnat_formal)), integer_zero_node); else gnu_actual = build_unary_op (ADDR_EXPR, NULL_TREE, fill_vms_descriptor (gnu_actual, gnat_formal)); } else { tree gnu_actual_size = TYPE_SIZE (TREE_TYPE (gnu_actual)); if (Ekind (gnat_formal) != E_In_Parameter) gnu_name_list = chainon (gnu_name_list, build_tree_list (NULL_TREE, gnu_name)); if (! present_gnu_tree (gnat_formal) || TREE_CODE (get_gnu_tree (gnat_formal)) != PARM_DECL) continue; /* If this is 'Null_Parameter, pass a zero even though we are dereferencing it. */ else if (TREE_CODE (gnu_actual) == INDIRECT_REF && TREE_PRIVATE (gnu_actual) && host_integerp (gnu_actual_size, 1) && 0 >= compare_tree_int (gnu_actual_size, BITS_PER_WORD)) gnu_actual = unchecked_convert (DECL_ARG_TYPE (get_gnu_tree (gnat_formal)), convert (gnat_type_for_size (tree_low_cst (gnu_actual_size, 1), 1), integer_zero_node), 0); else gnu_actual = convert (TYPE_MAIN_VARIANT (DECL_ARG_TYPE (get_gnu_tree (gnat_formal))), gnu_actual); } gnu_actual_list = chainon (gnu_actual_list, build_tree_list (NULL_TREE, gnu_actual)); } gnu_subprog_call = build (CALL_EXPR, TREE_TYPE (gnu_subprog_type), gnu_subprog_addr, gnu_actual_list, NULL_TREE); TREE_SIDE_EFFECTS (gnu_subprog_call) = 1; /* If it is a function call, the result is the call expression. */ if (Nkind (gnat_node) == N_Function_Call) { gnu_result = gnu_subprog_call; /* If the function returns an unconstrained array or by reference, we have to de-dereference the pointer. */ if (TYPE_RETURNS_UNCONSTRAINED_P (gnu_subprog_type) || TYPE_RETURNS_BY_REF_P (gnu_subprog_type)) gnu_result = build_unary_op (INDIRECT_REF, NULL_TREE, gnu_result); gnu_result_type = get_unpadded_type (Etype (gnat_node)); break; } /* If this is the case where the GNAT tree contains a procedure call but the Ada procedure has copy in copy out parameters, the special parameter passing mechanism must be used. */ else if (TYPE_CI_CO_LIST (gnu_subprog_type) != NULL_TREE) { /* List of FIELD_DECLs associated with the PARM_DECLs of the copy in copy out parameters. */ tree scalar_return_list = TYPE_CI_CO_LIST (gnu_subprog_type); int length = list_length (scalar_return_list); if (length > 1) { tree gnu_name; gnu_subprog_call = protect_multiple_eval (gnu_subprog_call); /* If any of the names had side-effects, ensure they are all evaluated before the call. */ for (gnu_name = gnu_name_list; gnu_name; gnu_name = TREE_CHAIN (gnu_name)) if (TREE_SIDE_EFFECTS (TREE_VALUE (gnu_name))) gnu_subprog_call = build (COMPOUND_EXPR, TREE_TYPE (gnu_subprog_call), TREE_VALUE (gnu_name), gnu_subprog_call); } if (Nkind (Name (gnat_node)) == N_Explicit_Dereference) gnat_formal = First_Formal (Etype (Name (gnat_node))); else gnat_formal = First_Formal (Entity (Name (gnat_node))); for (gnat_actual = First_Actual (gnat_node); Present (gnat_actual); gnat_formal = Next_Formal_With_Extras (gnat_formal), gnat_actual = Next_Actual (gnat_actual)) /* If we are dealing with a copy in copy out parameter, we must retrieve its value from the record returned in the function call. */ if (! (present_gnu_tree (gnat_formal) && TREE_CODE (get_gnu_tree (gnat_formal)) == PARM_DECL && (DECL_BY_REF_P (get_gnu_tree (gnat_formal)) || ((TREE_CODE (get_gnu_tree (gnat_formal)) == PARM_DECL) && ((DECL_BY_COMPONENT_PTR_P (get_gnu_tree (gnat_formal)) || (DECL_BY_DESCRIPTOR_P (get_gnu_tree (gnat_formal)))))))) && Ekind (gnat_formal) != E_In_Parameter) { /* Get the value to assign to this OUT or IN OUT parameter. It is either the result of the function if there is only a single such parameter or the appropriate field from the record returned. */ tree gnu_result = length == 1 ? gnu_subprog_call : build_component_ref (gnu_subprog_call, NULL_TREE, TREE_PURPOSE (scalar_return_list), 0); int unchecked_conversion = Nkind (gnat_actual) == N_Unchecked_Type_Conversion; /* If the actual is a conversion, get the inner expression, which will be the real destination, and convert the result to the type of the actual parameter. */ tree gnu_actual = maybe_unconstrained_array (TREE_VALUE (gnu_name_list)); /* If the result is a padded type, remove the padding. */ if (TREE_CODE (TREE_TYPE (gnu_result)) == RECORD_TYPE && TYPE_IS_PADDING_P (TREE_TYPE (gnu_result))) gnu_result = convert (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (gnu_result))), gnu_result); /* If the result is a type conversion, do it. */ if (Nkind (gnat_actual) == N_Type_Conversion) gnu_result = convert_with_check (Etype (Expression (gnat_actual)), gnu_result, Do_Overflow_Check (gnat_actual), Do_Range_Check (Expression (gnat_actual)), Float_Truncate (gnat_actual)); else if (unchecked_conversion) gnu_result = unchecked_convert (TREE_TYPE (gnu_actual), gnu_result, No_Truncation (gnat_actual)); else { if (Do_Range_Check (gnat_actual)) gnu_result = emit_range_check (gnu_result, Etype (gnat_actual)); if (! (! TREE_CONSTANT (TYPE_SIZE (TREE_TYPE (gnu_actual))) && TREE_CONSTANT (TYPE_SIZE (TREE_TYPE (gnu_result))))) gnu_result = convert (TREE_TYPE (gnu_actual), gnu_result); } gnu_result = build_binary_op (MODIFY_EXPR, NULL_TREE, gnu_actual, gnu_result); annotate_with_node (gnu_result, gnat_actual); append_to_statement_list (gnu_result, &gnu_before_list); scalar_return_list = TREE_CHAIN (scalar_return_list); gnu_name_list = TREE_CHAIN (gnu_name_list); } } else { annotate_with_node (gnu_subprog_call, gnat_node); append_to_statement_list (gnu_subprog_call, &gnu_before_list); } append_to_statement_list (gnu_after_list, &gnu_before_list); gnu_result = gnu_before_list; } break; /*************************/ /* Chapter 7: Packages: */ /*************************/ case N_Package_Declaration: gnu_result = gnat_to_gnu (Specification (gnat_node)); break; case N_Package_Specification: start_stmt_group (); process_decls (Visible_Declarations (gnat_node), Private_Declarations (gnat_node), Empty, 1, 1); gnu_result = end_stmt_group (); break; case N_Package_Body: /* If this is the body of a generic package - do nothing */ if (Ekind (Corresponding_Spec (gnat_node)) == E_Generic_Package) { gnu_result = alloc_stmt_list (); break; } start_stmt_group (); process_decls (Declarations (gnat_node), Empty, Empty, 1, 1); if (Present (Handled_Statement_Sequence (gnat_node))) add_stmt (gnat_to_gnu (Handled_Statement_Sequence (gnat_node))); gnu_result = end_stmt_group (); break; /*********************************/ /* Chapter 8: Visibility Rules: */ /*********************************/ case N_Use_Package_Clause: case N_Use_Type_Clause: /* Nothing to do here - but these may appear in list of declarations */ gnu_result = alloc_stmt_list (); break; /***********************/ /* Chapter 9: Tasks: */ /***********************/ case N_Protected_Type_Declaration: gnu_result = alloc_stmt_list (); break; case N_Single_Task_Declaration: gnat_to_gnu_entity (Defining_Entity (gnat_node), NULL_TREE, 1); gnu_result = alloc_stmt_list (); break; /***********************************************************/ /* Chapter 10: Program Structure and Compilation Issues: */ /***********************************************************/ case N_Compilation_Unit: /* If this is the main unit, make the decl for the elaboration procedure. Otherwise, push a statement group for this nested compilation unit. */ if (gnat_node == Cunit (Main_Unit)) { bool body_p = (Defining_Entity (Unit (gnat_node)), Nkind (Unit (gnat_node)) == N_Package_Body || Nkind (Unit (gnat_node)) == N_Subprogram_Body); Entity_Id gnat_unit_entity = Defining_Entity (Unit (gnat_node)); gnu_elab_proc_decl = create_subprog_decl (create_concat_name (gnat_unit_entity, body_p ? "elabb" : "elabs"), NULL_TREE, void_ftype, NULL_TREE, 0, 1, 0, 0, gnat_unit_entity); DECL_ELABORATION_PROC_P (gnu_elab_proc_decl) = 1; allocate_struct_function (gnu_elab_proc_decl); Sloc_to_locus (Sloc (gnat_unit_entity), &cfun->function_end_locus); cfun = 0; } else start_stmt_group (); /* For a body, first process the spec if there is one. */ if (Nkind (Unit (gnat_node)) == N_Package_Body || (Nkind (Unit (gnat_node)) == N_Subprogram_Body && ! Acts_As_Spec (gnat_node))) add_stmt (gnat_to_gnu (Library_Unit (gnat_node))); process_inlined_subprograms (gnat_node); if (type_annotate_only && gnat_node == Cunit (Main_Unit)) { elaborate_all_entities (gnat_node); if (Nkind (Unit (gnat_node)) == N_Subprogram_Declaration || Nkind (Unit (gnat_node)) == N_Generic_Package_Declaration || Nkind (Unit (gnat_node)) == N_Generic_Subprogram_Declaration) { gnu_result = alloc_stmt_list (); break; } } process_decls (Declarations (Aux_Decls_Node (gnat_node)), Empty, Empty, 1, 1); add_stmt (gnat_to_gnu (Unit (gnat_node))); /* Process any pragmas and actions following the unit. */ add_stmt_list (Pragmas_After (Aux_Decls_Node (gnat_node))); add_stmt_list (Actions (Aux_Decls_Node (gnat_node))); /* If this is the main unit, generate elaboration code for this unit, if necessary, and say whether we did or not. Otherwise, there is no elaboration code and we end our statement group. */ if (gnat_node == Cunit (Main_Unit)) { Set_Has_No_Elaboration_Code (gnat_node, build_unit_elab ()); gnu_result = alloc_stmt_list (); } else { Set_Has_No_Elaboration_Code (gnat_node, 1); gnu_result = end_stmt_group (); } break; case N_Subprogram_Body_Stub: case N_Package_Body_Stub: case N_Protected_Body_Stub: case N_Task_Body_Stub: /* Simply process whatever unit is being inserted. */ gnu_result = gnat_to_gnu (Unit (Library_Unit (gnat_node))); break; case N_Subunit: gnu_result = gnat_to_gnu (Proper_Body (gnat_node)); break; /***************************/ /* Chapter 11: Exceptions: */ /***************************/ case N_Handled_Sequence_Of_Statements: /* The GCC exception handling mechanism can handle both ZCX and SJLJ schemes and we have our own SJLJ mechanism. To call the GCC mechanism, we first call expand_eh_region_start if there is at least one handler associated with the region. We then generate code for the region and call expand_start_all_catch to announce that the associated handlers are going to be generated. For each handler we call expand_start_catch, generate code for the handler, and then call expand_end_catch. After all the handlers, we call expand_end_all_catch. Here we deal with the region level calls and the N_Exception_Handler branch deals with the handler level calls (start_catch/end_catch). ??? The region level calls down there have been specifically put in place for a ZCX context and currently the order in which things are emitted (region/handlers) is different from the SJLJ case. Instead of putting other calls with different conditions at other places for the SJLJ case, it seems cleaner to reorder things for the SJLJ case and generalize the condition to make it not ZCX specific. */ /* If there is an At_End procedure attached to this node, and the eh mechanism is SJLJ, we must have at least a corresponding At_End handler, unless the No_Exception_Handlers restriction is set. */ if (! type_annotate_only && Exception_Mechanism == Setjmp_Longjmp && Present (At_End_Proc (gnat_node)) && ! Present (Exception_Handlers (gnat_node)) && ! No_Exception_Handlers_Set()) gigi_abort (335); { tree gnu_jmpsave_decl = NULL_TREE; tree gnu_jmpbuf_decl = NULL_TREE; /* If just annotating, ignore all EH and cleanups. */ bool gcc_zcx = (!type_annotate_only && Present (Exception_Handlers (gnat_node)) && Exception_Mechanism == GCC_ZCX); bool setjmp_longjmp = (!type_annotate_only && Present (Exception_Handlers (gnat_node)) && Exception_Mechanism == Setjmp_Longjmp); bool at_end = !type_annotate_only && Present (At_End_Proc (gnat_node)); bool binding_for_block = (at_end || gcc_zcx || setjmp_longjmp); tree gnu_inner_block; /* The statement(s) for the block itself. */ /* If there are any exceptions or cleanup processing involved, we need an outer statement group (for Setjmp_Longjmp) and binding level. */ if (binding_for_block) { start_stmt_group (); gnat_pushlevel (); } /* If we are to call a function when exiting this block add a cleanup to the binding level we made above. */ if (at_end) add_cleanup (build_call_0_expr (gnat_to_gnu (At_End_Proc (gnat_node)))); /* If using setjmp_longjmp, make the variables for the setjmp buffer and save area for address of previous buffer. Do this first since we need to have the setjmp buf known for any decls in this block. */ if (setjmp_longjmp) { gnu_jmpsave_decl = create_var_decl (get_identifier ("JMPBUF_SAVE"), NULL_TREE, jmpbuf_ptr_type, build_call_0_expr (get_jmpbuf_decl), 0, 0, 0, 0, 0, gnat_node); gnu_jmpbuf_decl = create_var_decl (get_identifier ("JMP_BUF"), NULL_TREE, jmpbuf_type, NULL_TREE, 0, 0, 0, 0, 0, gnat_node); set_block_jmpbuf_decl (gnu_jmpbuf_decl); /* When we exit this block, restore the saved value. */ add_cleanup (build_call_1_expr (set_jmpbuf_decl, gnu_jmpsave_decl)); } /* Now build the tree for the declarations and statements inside this block. If this is SJLJ, set our jmp_buf as the current buffer. */ start_stmt_group (); if (setjmp_longjmp) add_stmt (build_call_1_expr (set_jmpbuf_decl, build_unary_op (ADDR_EXPR, NULL_TREE, gnu_jmpbuf_decl))); if (Present (First_Real_Statement (gnat_node))) process_decls (Statements (gnat_node), Empty, First_Real_Statement (gnat_node), 1, 1); /* Generate code for each statement in the block. */ for (gnat_temp = (Present (First_Real_Statement (gnat_node)) ? First_Real_Statement (gnat_node) : First (Statements (gnat_node))); Present (gnat_temp); gnat_temp = Next (gnat_temp)) add_stmt (gnat_to_gnu (gnat_temp)); gnu_inner_block = end_stmt_group (); /* Now generate code for the two exception models, if either is relevant for this block. */ if (setjmp_longjmp) { tree *gnu_else_ptr = 0; tree gnu_handler; /* Make a binding level for the exception handling declarations and code and set up gnu_except_ptr_stack for the handlers to use. */ start_stmt_group (); gnat_pushlevel (); push_stack (&gnu_except_ptr_stack, NULL_TREE, create_var_decl (get_identifier ("EXCEPT_PTR"), NULL_TREE, build_pointer_type (except_type_node), build_call_0_expr (get_excptr_decl), 0, 0, 0, 0, 0, gnat_node)); /* Generate code for each handler. The N_Exception_Handler case below does the real work and returns a COND_EXPR for each handler, which we chain together here. */ for (gnat_temp = First_Non_Pragma (Exception_Handlers (gnat_node)); Present (gnat_temp); gnat_temp = Next_Non_Pragma (gnat_temp)) { gnu_expr = gnat_to_gnu (gnat_temp); /* If this is the first one, set it as the outer one. Otherwise, point the "else" part of the previous handler to us. Then point to our "else" part. */ if (!gnu_else_ptr) add_stmt (gnu_expr); else *gnu_else_ptr = gnu_expr; gnu_else_ptr = &COND_EXPR_ELSE (gnu_expr); } /* If none of the exception handlers did anything, re-raise but do not defer abortion. */ gnu_expr = build_call_1_expr (raise_nodefer_decl, TREE_VALUE (gnu_except_ptr_stack)); annotate_with_node (gnu_expr, gnat_node); if (gnu_else_ptr) *gnu_else_ptr = gnu_expr; else add_stmt (gnu_expr); /* End the binding level dedicated to the exception handlers and get the whole statement group. */ pop_stack (&gnu_except_ptr_stack); gnat_poplevel (); gnu_handler = end_stmt_group (); /* If the setjmp returns 1, we restore our incoming longjmp value and then check the handlers. */ start_stmt_group (); add_stmt_with_node (build_call_1_expr (set_jmpbuf_decl, gnu_jmpsave_decl), gnat_node); add_stmt (gnu_handler); gnu_handler = end_stmt_group (); /* This block is now "if (setjmp) ... else ". */ gnu_result = build (COND_EXPR, void_type_node, (build_call_1_expr (setjmp_decl, build_unary_op (ADDR_EXPR, NULL_TREE, gnu_jmpbuf_decl))), gnu_handler, gnu_inner_block); } else if (gcc_zcx) { tree gnu_handlers; /* First make a block containing the handlers. */ start_stmt_group (); for (gnat_temp = First_Non_Pragma (Exception_Handlers (gnat_node)); Present (gnat_temp); gnat_temp = Next_Non_Pragma (gnat_temp)) add_stmt (gnat_to_gnu (gnat_temp)); gnu_handlers = end_stmt_group (); /* Now make the TRY_CATCH_EXPR for the block. */ gnu_result = build (TRY_CATCH_EXPR, void_type_node, gnu_inner_block, gnu_handlers); } else gnu_result = gnu_inner_block; /* Now close our outer block, if we had to make one. */ if (binding_for_block) { add_stmt (gnu_result); gnat_poplevel (); gnu_result = end_stmt_group (); } } break; case N_Exception_Handler: if (Exception_Mechanism == Setjmp_Longjmp) { /* Unless this is "Others" or the special "Non-Ada" exception for Ada, make an "if" statement to select the proper exceptions. For "Others", exclude exceptions where Handled_By_Others is nonzero unless the All_Others flag is set. For "Non-ada", accept an exception if "Lang" is 'V'. */ tree gnu_choice = integer_zero_node; tree gnu_body = build_stmt_group (Statements (gnat_node), false); for (gnat_temp = First (Exception_Choices (gnat_node)); gnat_temp; gnat_temp = Next (gnat_temp)) { tree this_choice; if (Nkind (gnat_temp) == N_Others_Choice) { if (All_Others (gnat_temp)) this_choice = integer_one_node; else this_choice = build_binary_op (EQ_EXPR, integer_type_node, convert (integer_type_node, build_component_ref (build_unary_op (INDIRECT_REF, NULL_TREE, TREE_VALUE (gnu_except_ptr_stack)), get_identifier ("not_handled_by_others"), NULL_TREE, 0)), integer_zero_node); } else if (Nkind (gnat_temp) == N_Identifier || Nkind (gnat_temp) == N_Expanded_Name) { gnu_expr = gnat_to_gnu_entity (Entity (gnat_temp), NULL_TREE, 0); this_choice = build_binary_op (EQ_EXPR, integer_type_node, TREE_VALUE (gnu_except_ptr_stack), convert (TREE_TYPE (TREE_VALUE (gnu_except_ptr_stack)), build_unary_op (ADDR_EXPR, NULL_TREE, gnu_expr))); /* If this is the distinguished exception "Non_Ada_Error" (and we are in VMS mode), also allow a non-Ada exception (a VMS condition) to match. */ if (Is_Non_Ada_Error (Entity (gnat_temp))) { tree gnu_comp = build_component_ref (build_unary_op (INDIRECT_REF, NULL_TREE, TREE_VALUE (gnu_except_ptr_stack)), get_identifier ("lang"), NULL_TREE, 0); this_choice = build_binary_op (TRUTH_ORIF_EXPR, integer_type_node, build_binary_op (EQ_EXPR, integer_type_node, gnu_comp, convert (TREE_TYPE (gnu_comp), build_int_2 ('V', 0))), this_choice); } } else gigi_abort (318); gnu_choice = build_binary_op (TRUTH_ORIF_EXPR, integer_type_node, gnu_choice, this_choice); } gnu_result = build (COND_EXPR, void_type_node, gnu_choice, gnu_body, NULL_TREE); } /* Tell the back end that we start an exception handler if necessary. */ else if (Exception_Mechanism == GCC_ZCX) { /* We build a TREE_LIST of nodes representing what exception types this handler is able to catch, with special cases for others and all others cases. Each exception type is actually identified by a pointer to the exception id, with special value zero for "others" and one for "all others". Beware that these special values are known and used by the personality routine to identify the corresponding specific kinds of handlers. ??? For initial time frame reasons, the others and all_others cases have been handled using specific type trees, but this somehow hides information to the back-end, which expects NULL to be passed for catch all and end_cleanup to be used for cleanups. Care should be taken to ensure that the control flow impact of such clauses is rendered in some way. lang_eh_type_covers is doing the trick currently. */ tree gnu_etypes_list = NULL_TREE; tree gnu_etype; tree gnu_current_exc_ptr; tree gnu_incoming_exc_ptr; for (gnat_temp = First (Exception_Choices (gnat_node)); gnat_temp; gnat_temp = Next (gnat_temp)) { if (Nkind (gnat_temp) == N_Others_Choice) gnu_etype = All_Others (gnat_temp) ? integer_one_node : integer_zero_node; else if (Nkind (gnat_temp) == N_Identifier || Nkind (gnat_temp) == N_Expanded_Name) { Entity_Id gnat_ex_id = Entity (gnat_temp); /* Exception may be a renaming. Recover original exception which is the one elaborated and registered. */ if (Present (Renamed_Object (gnat_ex_id))) gnat_ex_id = Renamed_Object (gnat_ex_id); gnu_expr = gnat_to_gnu_entity (gnat_ex_id, NULL_TREE, 0); gnu_etype = build_unary_op (ADDR_EXPR, NULL_TREE, gnu_expr); /* The Non_Ada_Error case for VMS exceptions is handled by the personality routine. */ } else gigi_abort (337); /* The GCC interface expects NULL to be passed for catch all handlers, so it would be quite tempting to set gnu_etypes_list to NULL if gnu_etype is integer_zero_node. It would not work, however, because GCC's notion of "catch all" is stronger than our notion of "others". Until we correctly use the cleanup interface as well, the doing tht would prevent the "all others" handlers from beeing seen, because nothing can be caught beyond a catch all from GCC's point of view. */ gnu_etypes_list = tree_cons (NULL_TREE, gnu_etype, gnu_etypes_list); } start_stmt_group (); gnat_pushlevel (); /* Expand a call to the begin_handler hook at the beginning of the handler, and arrange for a call to the end_handler hook to occur on every possible exit path. The hooks expect a pointer to the low level occurrence. This is required for our stack management scheme because a raise inside the handler pushes a new occurrence on top of the stack, which means that this top does not necessarily match the occurrence this handler was dealing with. The EXC_PTR_EXPR object references the exception occurrence beeing propagated. Upon handler entry, this is the exception for which the handler is triggered. This might not be the case upon handler exit, however, as we might have a new occurrence propagated by the handler's body, and the end_handler hook called as a cleanup in this context. We use a local variable to retrieve the incoming value at handler entry time, and reuse it to feed the end_handler hook's argument at exit time. */ gnu_current_exc_ptr = build (EXC_PTR_EXPR, ptr_type_node); gnu_incoming_exc_ptr = create_var_decl (get_identifier ("EXPTR"), NULL_TREE, ptr_type_node, gnu_current_exc_ptr, 0, 0, 0, 0, 0, gnat_node); add_stmt_with_node (build_call_1_expr (begin_handler_decl, gnu_incoming_exc_ptr), gnat_node); add_cleanup (build_call_1_expr (end_handler_decl, gnu_incoming_exc_ptr)); add_stmt_list (Statements (gnat_node)); gnat_poplevel (); gnu_result = build (CATCH_EXPR, void_type_node, gnu_etypes_list, end_stmt_group ()); } else abort (); break; /*******************************/ /* Chapter 12: Generic Units: */ /*******************************/ case N_Generic_Function_Renaming_Declaration: case N_Generic_Package_Renaming_Declaration: case N_Generic_Procedure_Renaming_Declaration: case N_Generic_Package_Declaration: case N_Generic_Subprogram_Declaration: case N_Package_Instantiation: case N_Procedure_Instantiation: case N_Function_Instantiation: /* These nodes can appear on a declaration list but there is nothing to to be done with them. */ gnu_result = alloc_stmt_list (); break; /***************************************************/ /* Chapter 13: Representation Clauses and */ /* Implementation-Dependent Features: */ /***************************************************/ case N_Attribute_Definition_Clause: gnu_result = alloc_stmt_list (); /* The only one we need deal with is for 'Address. For the others, SEM puts the information elsewhere. We need only deal with 'Address if the object has a Freeze_Node (which it never will currently). */ if (Get_Attribute_Id (Chars (gnat_node)) != Attr_Address || No (Freeze_Node (Entity (Name (gnat_node))))) break; /* Get the value to use as the address and save it as the equivalent for GNAT_TEMP. When the object is frozen, gnat_to_gnu_entity will do the right thing. */ save_gnu_tree (Entity (Name (gnat_node)), gnat_to_gnu (Expression (gnat_node)), 1); break; case N_Enumeration_Representation_Clause: case N_Record_Representation_Clause: case N_At_Clause: /* We do nothing with these. SEM puts the information elsewhere. */ gnu_result = alloc_stmt_list (); break; case N_Code_Statement: if (! type_annotate_only) { tree gnu_template = gnat_to_gnu (Asm_Template (gnat_node)); tree gnu_input_list = 0, gnu_output_list = 0; tree gnu_clobber_list = 0; char *clobber; /* First process inputs, then outputs, then clobbers. */ Setup_Asm_Inputs (gnat_node); while (Present (gnat_temp = Asm_Input_Value ())) { tree gnu_value = gnat_to_gnu (gnat_temp); tree gnu_constr = build_tree_list (NULL_TREE, gnat_to_gnu (Asm_Input_Constraint ())); gnu_input_list = tree_cons (gnu_constr, gnu_value, gnu_input_list); Next_Asm_Input (); } Setup_Asm_Outputs (gnat_node); while (Present (gnat_temp = Asm_Output_Variable ())) { tree gnu_value = gnat_to_gnu (gnat_temp); tree gnu_constr = build_tree_list (NULL_TREE, gnat_to_gnu (Asm_Output_Constraint ())); gnu_output_list = tree_cons (gnu_constr, gnu_value, gnu_output_list); Next_Asm_Output (); } Clobber_Setup (gnat_node); while ((clobber = Clobber_Get_Next ()) != 0) gnu_clobber_list = tree_cons (NULL_TREE, build_string (strlen (clobber) + 1, clobber), gnu_clobber_list); gnu_input_list = nreverse (gnu_input_list); gnu_output_list = nreverse (gnu_output_list); gnu_result = build (ASM_EXPR, void_type_node, gnu_template, gnu_output_list, gnu_input_list, gnu_clobber_list); ASM_VOLATILE_P (gnu_result) = Is_Asm_Volatile (gnat_node); } else gnu_result = alloc_stmt_list (); break; /***************************************************/ /* Added Nodes */ /***************************************************/ case N_Freeze_Entity: start_stmt_group (); process_freeze_entity (gnat_node); process_decls (Actions (gnat_node), Empty, Empty, 1, 1); gnu_result = end_stmt_group (); break; case N_Itype_Reference: if (! present_gnu_tree (Itype (gnat_node))) process_type (Itype (gnat_node)); gnu_result = alloc_stmt_list (); break; case N_Free_Statement: if (! type_annotate_only) { tree gnu_ptr = gnat_to_gnu (Expression (gnat_node)); tree gnu_obj_type; tree gnu_obj_size; int align; /* If this is a thin pointer, we must dereference it to create a fat pointer, then go back below to a thin pointer. The reason for this is that we need a fat pointer someplace in order to properly compute the size. */ if (TYPE_THIN_POINTER_P (TREE_TYPE (gnu_ptr))) gnu_ptr = build_unary_op (ADDR_EXPR, NULL_TREE, build_unary_op (INDIRECT_REF, NULL_TREE, gnu_ptr)); /* If this is an unconstrained array, we know the object must have been allocated with the template in front of the object. So pass the template address, but get the total size. Do this by converting to a thin pointer. */ if (TYPE_FAT_POINTER_P (TREE_TYPE (gnu_ptr))) gnu_ptr = convert (build_pointer_type (TYPE_OBJECT_RECORD_TYPE (TYPE_UNCONSTRAINED_ARRAY (TREE_TYPE (gnu_ptr)))), gnu_ptr); gnu_obj_type = TREE_TYPE (TREE_TYPE (gnu_ptr)); gnu_obj_size = TYPE_SIZE_UNIT (gnu_obj_type); align = TYPE_ALIGN (gnu_obj_type); if (TREE_CODE (gnu_obj_type) == RECORD_TYPE && TYPE_CONTAINS_TEMPLATE_P (gnu_obj_type)) { tree gnu_char_ptr_type = build_pointer_type (char_type_node); tree gnu_pos = byte_position (TYPE_FIELDS (gnu_obj_type)); tree gnu_byte_offset = convert (gnu_char_ptr_type, size_diffop (size_zero_node, gnu_pos)); gnu_ptr = convert (gnu_char_ptr_type, gnu_ptr); gnu_ptr = build_binary_op (MINUS_EXPR, gnu_char_ptr_type, gnu_ptr, gnu_byte_offset); } gnu_result = build_call_alloc_dealloc (gnu_ptr, gnu_obj_size, align, Procedure_To_Call (gnat_node), Storage_Pool (gnat_node), gnat_node); } break; case N_Raise_Constraint_Error: case N_Raise_Program_Error: case N_Raise_Storage_Error: if (type_annotate_only) { gnu_result = alloc_stmt_list (); break; } gnu_result_type = get_unpadded_type (Etype (gnat_node)); gnu_result = build_call_raise (UI_To_Int (Reason (gnat_node))); /* If the type is VOID, this is a statement, so we need to generate the code for the call. Handle a Condition, if there is one. */ if (TREE_CODE (gnu_result_type) == VOID_TYPE) { annotate_with_node (gnu_result, gnat_node); if (Present (Condition (gnat_node))) gnu_result = build (COND_EXPR, void_type_node, gnat_to_gnu (Condition (gnat_node)), gnu_result, alloc_stmt_list ()); } else gnu_result = build1 (NULL_EXPR, gnu_result_type, gnu_result); break; case N_Validate_Unchecked_Conversion: /* If the result is a pointer type, see if we are either converting from a non-pointer or from a pointer to a type with a different alias set and warn if so. If the result defined in the same unit as this unchecked convertion, we can allow this because we can know to make that type have alias set 0. */ { tree gnu_source_type = gnat_to_gnu_type (Source_Type (gnat_node)); tree gnu_target_type = gnat_to_gnu_type (Target_Type (gnat_node)); if (POINTER_TYPE_P (gnu_target_type) && !In_Same_Source_Unit (Target_Type (gnat_node), gnat_node) && get_alias_set (TREE_TYPE (gnu_target_type)) != 0 && !No_Strict_Aliasing (Underlying_Type (Target_Type (gnat_node))) && (!POINTER_TYPE_P (gnu_source_type) || (get_alias_set (TREE_TYPE (gnu_source_type)) != get_alias_set (TREE_TYPE (gnu_target_type))))) { post_error_ne ("?possible aliasing problem for type&", gnat_node, Target_Type (gnat_node)); post_error ("\\?use -fno-strict-aliasing switch for references", gnat_node); post_error_ne ("\\?or use `pragma No_Strict_Aliasing (&);`", gnat_node, Target_Type (gnat_node)); } } gnu_result = alloc_stmt_list (); break; case N_Raise_Statement: case N_Function_Specification: case N_Procedure_Specification: case N_Op_Concat: case N_Component_Association: case N_Task_Body: default: if (! type_annotate_only) gigi_abort (321); gnu_result = alloc_stmt_list (); } /* If we pushed our level as part of processing the elaboration routine, pop it back now. */ if (went_into_elab_proc) { add_stmt (gnu_result); gnat_poplevel (); gnu_result = end_stmt_group (); current_function_decl = NULL_TREE; } /* Set the location information into the result. If we're supposed to return something of void_type, it means we have something we're elaborating for effect, so just return. */ if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (TREE_CODE (gnu_result)))) annotate_with_node (gnu_result, gnat_node); if (TREE_CODE (gnu_result_type) == VOID_TYPE) return gnu_result; /* If the result is a constant that overflows, raise constraint error. */ else if (TREE_CODE (gnu_result) == INTEGER_CST && TREE_CONSTANT_OVERFLOW (gnu_result)) { post_error ("Constraint_Error will be raised at run-time?", gnat_node); gnu_result = build1 (NULL_EXPR, gnu_result_type, build_call_raise (CE_Overflow_Check_Failed)); } /* If our result has side-effects and is of an unconstrained type, make a SAVE_EXPR so that we can be sure it will only be referenced once. Note we must do this before any conversions. */ if (TREE_SIDE_EFFECTS (gnu_result) && (TREE_CODE (gnu_result_type) == UNCONSTRAINED_ARRAY_TYPE || CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_result_type)))) gnu_result = gnat_stabilize_reference (gnu_result, 0); /* Now convert the result to the proper type. If the type is void or if we have no result, return error_mark_node to show we have no result. If the type of the result is correct or if we have a label (which doesn't have any well-defined type), return our result. Also don't do the conversion if the "desired" type involves a PLACEHOLDER_EXPR in its size since those are the cases where the front end may have the type wrong due to "instantiating" the unconstrained record with discriminant values or if this is a FIELD_DECL. If this is the Name of an assignment statement or a parameter of a procedure call, return what we have since the RHS has to be converted to our type there in that case, unless GNU_RESULT_TYPE has a simpler size. Similarly, if the two types are record types with the same name, the expression type has integral mode, and GNU_RESULT_TYPE BLKmode, don't convert. This will be the case when we are converting from a packable type to its actual type and we need those conversions to be NOPs in order for assignments into these types to work properly if the inner object is a bitfield and hence can't have its address taken. Finally, don't convert integral types that are the operand of an unchecked conversion since we need to ignore those conversions (for 'Valid). Otherwise, convert the result to the proper type. */ if (Present (Parent (gnat_node)) && ((Nkind (Parent (gnat_node)) == N_Assignment_Statement && Name (Parent (gnat_node)) == gnat_node) || (Nkind (Parent (gnat_node)) == N_Procedure_Call_Statement && Name (Parent (gnat_node)) != gnat_node) || (Nkind (Parent (gnat_node)) == N_Unchecked_Type_Conversion && ! AGGREGATE_TYPE_P (gnu_result_type) && ! AGGREGATE_TYPE_P (TREE_TYPE (gnu_result))) || Nkind (Parent (gnat_node)) == N_Parameter_Association) && ! (TYPE_SIZE (gnu_result_type) != 0 && TYPE_SIZE (TREE_TYPE (gnu_result)) != 0 && (AGGREGATE_TYPE_P (gnu_result_type) == AGGREGATE_TYPE_P (TREE_TYPE (gnu_result))) && ((TREE_CODE (TYPE_SIZE (gnu_result_type)) == INTEGER_CST && (TREE_CODE (TYPE_SIZE (TREE_TYPE (gnu_result))) != INTEGER_CST)) || (TREE_CODE (TYPE_SIZE (gnu_result_type)) != INTEGER_CST && ! CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_result_type)) && (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (TREE_TYPE (gnu_result)))))) && ! (TREE_CODE (gnu_result_type) == RECORD_TYPE && TYPE_LEFT_JUSTIFIED_MODULAR_P (gnu_result_type)))) { /* In this case remove padding only if the inner object is of self-referential size: in that case it must be an object of unconstrained type with a default discriminant. In other cases, we want to avoid copying too much data. */ if (TREE_CODE (TREE_TYPE (gnu_result)) == RECORD_TYPE && TYPE_IS_PADDING_P (TREE_TYPE (gnu_result)) && CONTAINS_PLACEHOLDER_P (TYPE_SIZE (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (gnu_result)))))) gnu_result = convert (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (gnu_result))), gnu_result); } else if (TREE_CODE (gnu_result) == LABEL_DECL || TREE_CODE (gnu_result) == FIELD_DECL || TREE_CODE (gnu_result) == ERROR_MARK || (TYPE_SIZE (gnu_result_type) != 0 && TREE_CODE (TYPE_SIZE (gnu_result_type)) != INTEGER_CST && TREE_CODE (gnu_result) != INDIRECT_REF && CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_result_type))) || ((TYPE_NAME (gnu_result_type) == TYPE_NAME (TREE_TYPE (gnu_result))) && TREE_CODE (gnu_result_type) == RECORD_TYPE && TREE_CODE (TREE_TYPE (gnu_result)) == RECORD_TYPE && TYPE_MODE (gnu_result_type) == BLKmode && (GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (gnu_result))) == MODE_INT))) { /* Remove any padding record, but do nothing more in this case. */ if (TREE_CODE (TREE_TYPE (gnu_result)) == RECORD_TYPE && TYPE_IS_PADDING_P (TREE_TYPE (gnu_result))) gnu_result = convert (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (gnu_result))), gnu_result); } else if (gnu_result == error_mark_node || gnu_result_type == void_type_node) gnu_result = error_mark_node; else if (gnu_result_type != TREE_TYPE (gnu_result)) gnu_result = convert (gnu_result_type, gnu_result); /* We don't need any NOP_EXPR or NON_LVALUE_EXPR on GNU_RESULT. */ while ((TREE_CODE (gnu_result) == NOP_EXPR || TREE_CODE (gnu_result) == NON_LVALUE_EXPR) && TREE_TYPE (TREE_OPERAND (gnu_result, 0)) == TREE_TYPE (gnu_result)) gnu_result = TREE_OPERAND (gnu_result, 0); return gnu_result; } /* Record the current code position in GNAT_NODE. */ static void record_code_position (Node_Id gnat_node) { tree stmt_stmt = build (STMT_STMT, void_type_node, NULL_TREE); add_stmt_with_node (stmt_stmt, gnat_node); save_gnu_tree (gnat_node, stmt_stmt, 1); } /* Insert the code for GNAT_NODE at the position saved for that node. */ static void insert_code_for (Node_Id gnat_node) { STMT_STMT_STMT (get_gnu_tree (gnat_node)) = gnat_to_gnu (gnat_node); save_gnu_tree (gnat_node, NULL_TREE, 1); } /* Start a new statement group chained to the previous group. */ static void start_stmt_group () { struct stmt_group *group = stmt_group_free_list; /* First see if we can get one from the free list. */ if (group) stmt_group_free_list = group->previous; else group = (struct stmt_group *) ggc_alloc (sizeof (struct stmt_group)); group->previous = current_stmt_group; group->stmt_list = group->block = group->cleanups = NULL_TREE; current_stmt_group = group; } /* Add GNU_STMT to the current statement group. */ void add_stmt (tree gnu_stmt) { append_to_statement_list (gnu_stmt, ¤t_stmt_group->stmt_list); /* If we're at top level, show everything in here is in use in case any of it is shared by a subprogram. */ if (!current_function_decl) walk_tree (&gnu_stmt, mark_visited, NULL, NULL); } /* Similar, but set the location of GNU_STMT to that of GNAT_NODE. */ void add_stmt_with_node (tree gnu_stmt, Node_Id gnat_node) { if (Present (gnat_node)) annotate_with_node (gnu_stmt, gnat_node); add_stmt (gnu_stmt); } /* Add a declaration statement for GNU_DECL to the current statement group. Get SLOC from Entity_Id. */ void add_decl_expr (tree gnu_decl, Entity_Id gnat_entity) { struct stmt_group *save_stmt_group = current_stmt_group; /* If this is a variable that Gigi is to ignore, we may have been given an ERROR_MARK. So test for it. We also might have been given a reference for a renaming. So only do something for a decl. Also ignore a TYPE_DECL for an UNCONSTRAINED_ARRAY_TYPE. */ if (!DECL_P (gnu_decl) || (TREE_CODE (gnu_decl) == TYPE_DECL && TREE_CODE (TREE_TYPE (gnu_decl)) == UNCONSTRAINED_ARRAY_TYPE)) return; if (global_bindings_p ()) current_stmt_group = global_stmt_group; add_stmt_with_node (build (DECL_EXPR, void_type_node, gnu_decl), gnat_entity); if (global_bindings_p ()) current_stmt_group = save_stmt_group; /* If this is a DECL_EXPR for a variable with DECL_INITIAl set, there are two cases we need to handle here. */ if (TREE_CODE (gnu_decl) == VAR_DECL && DECL_INITIAL (gnu_decl)) { tree gnu_init = DECL_INITIAL (gnu_decl); tree gnu_lhs = NULL_TREE; /* If this is a DECL_EXPR for a variable with DECL_INITIAL set and decl has a padded type, convert it to the unpadded type so the assignment is done properly. */ if (TREE_CODE (TREE_TYPE (gnu_decl)) == RECORD_TYPE && TYPE_IS_PADDING_P (TREE_TYPE (gnu_decl))) gnu_lhs = convert (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (gnu_decl))), gnu_decl); /* Otherwise, if this is going into memory and the initializer isn't valid for the assembler and loader. Gimplification could do this, but would be run too late if -fno-unit-at-a-time. */ else if (TREE_STATIC (gnu_decl) && !initializer_constant_valid_p (gnu_init, TREE_TYPE (gnu_decl))) gnu_lhs = gnu_decl; if (gnu_lhs) { tree gnu_assign_stmt = build_binary_op (MODIFY_EXPR, NULL_TREE, gnu_lhs, DECL_INITIAL (gnu_decl)); DECL_INITIAL (gnu_decl) = 0; annotate_with_locus (gnu_assign_stmt, DECL_SOURCE_LOCATION (gnu_decl)); add_stmt (gnu_assign_stmt); } } } /* Utility function to mark nodes with TREE_VISITED. Called from walk_tree. We use this to indicate all variable sizes and positions in global types may not be shared by any subprogram. */ static tree mark_visited (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED) { if (TREE_VISITED (*tp)) *walk_subtrees = 0; else TREE_VISITED (*tp) = 1; return NULL_TREE; } /* Likewise, but to mark as unvisited. */ static tree mark_unvisited (tree *tp, int *walk_subtrees ATTRIBUTE_UNUSED, void *data ATTRIBUTE_UNUSED) { TREE_VISITED (*tp) = 0; return NULL_TREE; } /* Add GNU_CLEANUP, a cleanup action, to the current code group. */ static void add_cleanup (tree gnu_cleanup) { append_to_statement_list (gnu_cleanup, ¤t_stmt_group->cleanups); } /* Set the BLOCK node corresponding to the current code group to GNU_BLOCK. */ void set_block_for_group (tree gnu_block) { if (current_stmt_group->block) abort (); current_stmt_group->block = gnu_block; } /* Return code corresponding to the current code group. It is normally a STATEMENT_LIST, but may also be a BIND_EXPR or TRY_FINALLY_EXPR if BLOCK or cleanups were set. */ static tree end_stmt_group () { struct stmt_group *group = current_stmt_group; tree gnu_retval = group->stmt_list; /* If this is a null list, allocate a new STATEMENT_LIST. Then, if there are cleanups, make a TRY_FINALLY_EXPR. Last, if there is a BLOCK, make a BIND_EXPR. Note that we nest in that because the cleanup may reference variables in the block. */ if (gnu_retval == NULL_TREE) gnu_retval = alloc_stmt_list (); if (group->cleanups) gnu_retval = build (TRY_FINALLY_EXPR, void_type_node, gnu_retval, group->cleanups); if (current_stmt_group->block) gnu_retval = build (BIND_EXPR, void_type_node, BLOCK_VARS (group->block), gnu_retval, group->block); /* Remove this group from the stack and add it to the free list. */ current_stmt_group = group->previous; group->previous = stmt_group_free_list; stmt_group_free_list = group; return gnu_retval; } /* Add a list of statements from GNAT_LIST, a possibly-empty list of statements.*/ static void add_stmt_list (List_Id gnat_list) { Node_Id gnat_node; if (Present (gnat_list)) for (gnat_node = First (gnat_list); Present (gnat_node); gnat_node = Next (gnat_node)) add_stmt (gnat_to_gnu (gnat_node)); } /* Build a tree from GNAT_LIST, a possibly-empty list of statements. If BINDING_P is true, push and pop a binding level around the list. */ static tree build_stmt_group (List_Id gnat_list, bool binding_p) { start_stmt_group (); if (binding_p) gnat_pushlevel (); add_stmt_list (gnat_list); if (binding_p) gnat_poplevel (); return end_stmt_group (); } /* Push and pop routines for stacks. We keep a free list around so we don't waste tree nodes. */ static void push_stack (tree *gnu_stack_ptr, tree gnu_purpose, tree gnu_value) { tree gnu_node = gnu_stack_free_list; if (gnu_node) { gnu_stack_free_list = TREE_CHAIN (gnu_node); TREE_CHAIN (gnu_node) = *gnu_stack_ptr; TREE_PURPOSE (gnu_node) = gnu_purpose; TREE_VALUE (gnu_node) = gnu_value; } else gnu_node = tree_cons (gnu_purpose, gnu_value, *gnu_stack_ptr); *gnu_stack_ptr = gnu_node; } static void pop_stack (tree *gnu_stack_ptr) { tree gnu_node = *gnu_stack_ptr; *gnu_stack_ptr = TREE_CHAIN (gnu_node); TREE_CHAIN (gnu_node) = gnu_stack_free_list; gnu_stack_free_list = gnu_node; } /* GNU_STMT is a statement. We generate code for that statement. */ void gnat_expand_stmt (tree gnu_stmt) { #if 0 tree gnu_elmt, gnu_elmt_2; #endif switch (TREE_CODE (gnu_stmt)) { #if 0 case USE_STMT: /* First write a volatile ASM_INPUT to prevent anything from being moved. */ gnu_elmt = gen_rtx_ASM_INPUT (VOIDmode, ""); MEM_VOLATILE_P (gnu_elmt) = 1; emit_insn (gnu_elmt); gnu_elmt = expand_expr (TREE_OPERAND (gnu_stmt, 0), NULL_RTX, VOIDmode, modifier); emit_insn (gen_rtx_USE (VOIDmode, )); return target; #endif default: abort (); } } /* Generate GIMPLE in place for the expression at *EXPR_P. */ int gnat_gimplify_expr (tree *expr_p, tree *pre_p ATTRIBUTE_UNUSED, tree *post_p) { tree expr = *expr_p; if (IS_ADA_STMT (expr)) return gnat_gimplify_stmt (expr_p); switch (TREE_CODE (expr)) { case NULL_EXPR: /* If this is for a scalar, just make a VAR_DECL for it. If for an aggregate, get a null pointer of the appropriate type and dereference it. */ if (AGGREGATE_TYPE_P (TREE_TYPE (expr))) *expr_p = build1 (INDIRECT_REF, TREE_TYPE (expr), convert (build_pointer_type (TREE_TYPE (expr)), integer_zero_node)); else *expr_p = create_tmp_var (TREE_TYPE (expr), NULL); append_to_statement_list (TREE_OPERAND (expr, 0), post_p); return GS_OK; case UNCONSTRAINED_ARRAY_REF: /* We should only do this if we are just elaborating for side-effects, but we can't know that yet. */ *expr_p = TREE_OPERAND (*expr_p, 0); return GS_OK; default: return GS_UNHANDLED; } } /* Generate GIMPLE in place for the statement at *STMT_P. */ static enum gimplify_status gnat_gimplify_stmt (tree *stmt_p) { tree stmt = *stmt_p; switch (TREE_CODE (stmt)) { case STMT_STMT: *stmt_p = STMT_STMT_STMT (stmt); return GS_OK; case USE_STMT: *stmt_p = NULL_TREE; return GS_ALL_DONE; case LOOP_STMT: { tree gnu_start_label = create_artificial_label (); tree gnu_end_label = LOOP_STMT_LABEL (stmt); /* Set to emit the statements of the loop. */ *stmt_p = NULL_TREE; /* We first emit the start label and then a conditional jump to the end label if there's a top condition, then the body of the loop, then a conditional branch to the end label, then the update, if any, and finally a jump to the start label and the definition of the end label. */ append_to_statement_list (build1 (LABEL_EXPR, void_type_node, gnu_start_label), stmt_p); if (LOOP_STMT_TOP_COND (stmt)) append_to_statement_list (build (COND_EXPR, void_type_node, LOOP_STMT_TOP_COND (stmt), alloc_stmt_list (), build1 (GOTO_EXPR, void_type_node, gnu_end_label)), stmt_p); append_to_statement_list (LOOP_STMT_BODY (stmt), stmt_p); if (LOOP_STMT_BOT_COND (stmt)) append_to_statement_list (build (COND_EXPR, void_type_node, LOOP_STMT_BOT_COND (stmt), alloc_stmt_list (), build1 (GOTO_EXPR, void_type_node, gnu_end_label)), stmt_p); if (LOOP_STMT_UPDATE (stmt)) append_to_statement_list (LOOP_STMT_UPDATE (stmt), stmt_p); append_to_statement_list (build1 (GOTO_EXPR, void_type_node, gnu_start_label), stmt_p); append_to_statement_list (build1 (LABEL_EXPR, void_type_node, gnu_end_label), stmt_p); return GS_OK; } case EXIT_STMT: /* Build a statement to jump to the corresponding end label, then see if it needs to be conditional. */ *stmt_p = build1 (GOTO_EXPR, void_type_node, EXIT_STMT_LABEL (stmt)); if (EXIT_STMT_COND (stmt)) *stmt_p = build (COND_EXPR, void_type_node, EXIT_STMT_COND (stmt), *stmt_p, alloc_stmt_list ()); return GS_OK; default: abort (); } } /* Generate the RTL for the body of GNU_DECL. If NESTED_P is nonzero, then we are already in the process of generating RTL for another function. */ static void gnat_expand_body_1 (tree gnu_decl, bool nested_p) { if (nested_p) push_function_context (); tree_rest_of_compilation (gnu_decl, nested_p); if (nested_p) pop_function_context (); } /* Expand the body of GNU_DECL, which is not a nested function. */ void gnat_expand_body (tree gnu_decl) { if (DECL_INITIAL (gnu_decl) && DECL_INITIAL (gnu_decl) != error_mark_node) gnat_expand_body_1 (gnu_decl, false); } /* Force references to each of the entities in packages GNAT_NODE with's so that the debugging information for all of them are identical in all clients. Operate recursively on anything it with's, but check that we aren't elaborating something more than once. */ /* The reason for this routine's existence is two-fold. First, with some debugging formats, notably MDEBUG on SGI IRIX, the linker will remove duplicate debugging information if two clients have identical debugguing information. With the normal scheme of elaboration, this does not usually occur, since entities in with'ed packages are elaborated on demand, and if clients have different usage patterns, the normal case, then the order and selection of entities will differ. In most cases however, it seems that linkers do not know how to eliminate duplicate debugging information, even if it is identical, so the use of this routine would increase the total amount of debugging information in the final executable. Second, this routine is called in type_annotate mode, to compute DDA information for types in withed units, for ASIS use */ static void elaborate_all_entities (Node_Id gnat_node) { Entity_Id gnat_with_clause, gnat_entity; /* Process each unit only once. As we trace the context of all relevant units transitively, including generic bodies, we may encounter the same generic unit repeatedly */ if (!present_gnu_tree (gnat_node)) save_gnu_tree (gnat_node, integer_zero_node, 1); /* Save entities in all context units. A body may have an implicit_with on its own spec, if the context includes a child unit, so don't save the spec twice. */ for (gnat_with_clause = First (Context_Items (gnat_node)); Present (gnat_with_clause); gnat_with_clause = Next (gnat_with_clause)) if (Nkind (gnat_with_clause) == N_With_Clause && ! present_gnu_tree (Library_Unit (gnat_with_clause)) && Library_Unit (gnat_with_clause) != Library_Unit (Cunit (Main_Unit))) { elaborate_all_entities (Library_Unit (gnat_with_clause)); if (Ekind (Entity (Name (gnat_with_clause))) == E_Package) { for (gnat_entity = First_Entity (Entity (Name (gnat_with_clause))); Present (gnat_entity); gnat_entity = Next_Entity (gnat_entity)) if (Is_Public (gnat_entity) && Convention (gnat_entity) != Convention_Intrinsic && Ekind (gnat_entity) != E_Package && Ekind (gnat_entity) != E_Package_Body && Ekind (gnat_entity) != E_Operator && ! (IN (Ekind (gnat_entity), Type_Kind) && ! Is_Frozen (gnat_entity)) && ! ((Ekind (gnat_entity) == E_Procedure || Ekind (gnat_entity) == E_Function) && Is_Intrinsic_Subprogram (gnat_entity)) && ! IN (Ekind (gnat_entity), Named_Kind) && ! IN (Ekind (gnat_entity), Generic_Unit_Kind)) gnat_to_gnu_entity (gnat_entity, NULL_TREE, 0); } else if (Ekind (Entity (Name (gnat_with_clause))) == E_Generic_Package) { Node_Id gnat_body = Corresponding_Body (Unit (Library_Unit (gnat_with_clause))); /* Retrieve compilation unit node of generic body. */ while (Present (gnat_body) && Nkind (gnat_body) != N_Compilation_Unit) gnat_body = Parent (gnat_body); /* If body is available, elaborate its context. */ if (Present (gnat_body)) elaborate_all_entities (gnat_body); } } if (Nkind (Unit (gnat_node)) == N_Package_Body && type_annotate_only) elaborate_all_entities (Library_Unit (gnat_node)); } /* Do the processing of N_Freeze_Entity, GNAT_NODE. */ static void process_freeze_entity (Node_Id gnat_node) { Entity_Id gnat_entity = Entity (gnat_node); tree gnu_old; tree gnu_new; tree gnu_init = (Nkind (Declaration_Node (gnat_entity)) == N_Object_Declaration && present_gnu_tree (Declaration_Node (gnat_entity))) ? get_gnu_tree (Declaration_Node (gnat_entity)) : NULL_TREE; /* If this is a package, need to generate code for the package. */ if (Ekind (gnat_entity) == E_Package) { insert_code_for (Parent (Corresponding_Body (Parent (Declaration_Node (gnat_entity))))); return; } /* Check for old definition after the above call. This Freeze_Node might be for one its Itypes. */ gnu_old = present_gnu_tree (gnat_entity) ? get_gnu_tree (gnat_entity) : 0; /* If this entity has an Address representation clause, GNU_OLD is the address, so discard it here. */ if (Present (Address_Clause (gnat_entity))) gnu_old = 0; /* Don't do anything for class-wide types they are always transformed into their root type. */ if (Ekind (gnat_entity) == E_Class_Wide_Type || (Ekind (gnat_entity) == E_Class_Wide_Subtype && Present (Equivalent_Type (gnat_entity)))) return; /* Don't do anything for subprograms that may have been elaborated before their freeze nodes. This can happen, for example because of an inner call in an instance body. */ if (gnu_old != 0 && TREE_CODE (gnu_old) == FUNCTION_DECL && (Ekind (gnat_entity) == E_Function || Ekind (gnat_entity) == E_Procedure)) return; /* If we have a non-dummy type old tree, we have nothing to do. Unless this is the public view of a private type whose full view was not delayed, this node was never delayed as it should have been. Also allow this to happen for concurrent types since we may have frozen both the Corresponding_Record_Type and this type. */ if (gnu_old != 0 && ! (TREE_CODE (gnu_old) == TYPE_DECL && TYPE_IS_DUMMY_P (TREE_TYPE (gnu_old)))) { if (IN (Ekind (gnat_entity), Incomplete_Or_Private_Kind) && Present (Full_View (gnat_entity)) && No (Freeze_Node (Full_View (gnat_entity)))) return; else if (Is_Concurrent_Type (gnat_entity)) return; else gigi_abort (320); } /* Reset the saved tree, if any, and elaborate the object or type for real. If there is a full declaration, elaborate it and copy the type to GNAT_ENTITY. Likewise if this is the record subtype corresponding to a class wide type or subtype. */ if (gnu_old != 0) { save_gnu_tree (gnat_entity, NULL_TREE, 0); if (IN (Ekind (gnat_entity), Incomplete_Or_Private_Kind) && Present (Full_View (gnat_entity)) && present_gnu_tree (Full_View (gnat_entity))) save_gnu_tree (Full_View (gnat_entity), NULL_TREE, 0); if (Present (Class_Wide_Type (gnat_entity)) && Class_Wide_Type (gnat_entity) != gnat_entity) save_gnu_tree (Class_Wide_Type (gnat_entity), NULL_TREE, 0); } if (IN (Ekind (gnat_entity), Incomplete_Or_Private_Kind) && Present (Full_View (gnat_entity))) { gnu_new = gnat_to_gnu_entity (Full_View (gnat_entity), NULL_TREE, 1); /* The above call may have defined this entity (the simplest example of this is when we have a private enumeral type since the bounds will have the public view. */ if (! present_gnu_tree (gnat_entity)) save_gnu_tree (gnat_entity, gnu_new, 0); if (Present (Class_Wide_Type (gnat_entity)) && Class_Wide_Type (gnat_entity) != gnat_entity) save_gnu_tree (Class_Wide_Type (gnat_entity), gnu_new, 0); } else gnu_new = gnat_to_gnu_entity (gnat_entity, gnu_init, 1); /* If we've made any pointers to the old version of this type, we have to update them. */ if (gnu_old != 0) update_pointer_to (TYPE_MAIN_VARIANT (TREE_TYPE (gnu_old)), TREE_TYPE (gnu_new)); } /* Process the list of inlined subprograms of GNAT_NODE, which is an N_Compilation_Unit. */ static void process_inlined_subprograms (Node_Id gnat_node) { Entity_Id gnat_entity; Node_Id gnat_body; /* If we can inline, generate RTL for all the inlined subprograms. Define the entity first so we set DECL_EXTERNAL. */ if (optimize > 0 && ! flag_no_inline) for (gnat_entity = First_Inlined_Subprogram (gnat_node); Present (gnat_entity); gnat_entity = Next_Inlined_Subprogram (gnat_entity)) { gnat_body = Parent (Declaration_Node (gnat_entity)); if (Nkind (gnat_body) != N_Subprogram_Body) { /* ??? This really should always be Present. */ if (No (Corresponding_Body (gnat_body))) continue; gnat_body = Parent (Declaration_Node (Corresponding_Body (gnat_body))); } if (Present (gnat_body)) { gnat_to_gnu_entity (gnat_entity, NULL_TREE, 0); add_stmt (gnat_to_gnu (gnat_body)); } } } /* Elaborate decls in the lists GNAT_DECLS and GNAT_DECLS2, if present. We make two passes, one to elaborate anything other than bodies (but we declare a function if there was no spec). The second pass elaborates the bodies. GNAT_END_LIST gives the element in the list past the end. Normally, this is Empty, but can be First_Real_Statement for a Handled_Sequence_Of_Statements. We make a complete pass through both lists if PASS1P is true, then make the second pass over both lists if PASS2P is true. The lists usually correspond to the public and private parts of a package. */ static void process_decls (List_Id gnat_decls, List_Id gnat_decls2, Node_Id gnat_end_list, int pass1p, int pass2p) { List_Id gnat_decl_array[2]; Node_Id gnat_decl; int i; gnat_decl_array[0] = gnat_decls, gnat_decl_array[1] = gnat_decls2; if (pass1p) for (i = 0; i <= 1; i++) if (Present (gnat_decl_array[i])) for (gnat_decl = First (gnat_decl_array[i]); gnat_decl != gnat_end_list; gnat_decl = Next (gnat_decl)) { /* For package specs, we recurse inside the declarations, thus taking the two pass approach inside the boundary. */ if (Nkind (gnat_decl) == N_Package_Declaration && (Nkind (Specification (gnat_decl) == N_Package_Specification))) process_decls (Visible_Declarations (Specification (gnat_decl)), Private_Declarations (Specification (gnat_decl)), Empty, 1, 0); /* Similarly for any declarations in the actions of a freeze node. */ else if (Nkind (gnat_decl) == N_Freeze_Entity) { process_freeze_entity (gnat_decl); process_decls (Actions (gnat_decl), Empty, Empty, 1, 0); } /* Package bodies with freeze nodes get their elaboration deferred until the freeze node, but the code must be placed in the right place, so record the code position now. */ else if (Nkind (gnat_decl) == N_Package_Body && Present (Freeze_Node (Corresponding_Spec (gnat_decl)))) record_code_position (gnat_decl); else if (Nkind (gnat_decl) == N_Package_Body_Stub && Present (Library_Unit (gnat_decl)) && Present (Freeze_Node (Corresponding_Spec (Proper_Body (Unit (Library_Unit (gnat_decl))))))) record_code_position (Proper_Body (Unit (Library_Unit (gnat_decl)))); /* We defer most subprogram bodies to the second pass. */ else if (Nkind (gnat_decl) == N_Subprogram_Body) { if (Acts_As_Spec (gnat_decl)) { Node_Id gnat_subprog_id = Defining_Entity (gnat_decl); if (Ekind (gnat_subprog_id) != E_Generic_Procedure && Ekind (gnat_subprog_id) != E_Generic_Function) gnat_to_gnu_entity (gnat_subprog_id, NULL_TREE, 1); } } /* For bodies and stubs that act as their own specs, the entity itself must be elaborated in the first pass, because it may be used in other declarations. */ else if (Nkind (gnat_decl) == N_Subprogram_Body_Stub) { Node_Id gnat_subprog_id = Defining_Entity (Specification (gnat_decl)); if (Ekind (gnat_subprog_id) != E_Subprogram_Body && Ekind (gnat_subprog_id) != E_Generic_Procedure && Ekind (gnat_subprog_id) != E_Generic_Function) gnat_to_gnu_entity (gnat_subprog_id, NULL_TREE, 1); } /* Concurrent stubs stand for the corresponding subprogram bodies, which are deferred like other bodies. */ else if (Nkind (gnat_decl) == N_Task_Body_Stub || Nkind (gnat_decl) == N_Protected_Body_Stub) ; else add_stmt (gnat_to_gnu (gnat_decl)); } /* Here we elaborate everything we deferred above except for package bodies, which are elaborated at their freeze nodes. Note that we must also go inside things (package specs and freeze nodes) the first pass did. */ if (pass2p) for (i = 0; i <= 1; i++) if (Present (gnat_decl_array[i])) for (gnat_decl = First (gnat_decl_array[i]); gnat_decl != gnat_end_list; gnat_decl = Next (gnat_decl)) { if (Nkind (gnat_decl) == N_Subprogram_Body || Nkind (gnat_decl) == N_Subprogram_Body_Stub || Nkind (gnat_decl) == N_Task_Body_Stub || Nkind (gnat_decl) == N_Protected_Body_Stub) add_stmt (gnat_to_gnu (gnat_decl)); else if (Nkind (gnat_decl) == N_Package_Declaration && (Nkind (Specification (gnat_decl) == N_Package_Specification))) process_decls (Visible_Declarations (Specification (gnat_decl)), Private_Declarations (Specification (gnat_decl)), Empty, 0, 1); else if (Nkind (gnat_decl) == N_Freeze_Entity) process_decls (Actions (gnat_decl), Empty, Empty, 0, 1); } } /* Emit code for a range check. GNU_EXPR is the expression to be checked, GNAT_RANGE_TYPE the gnat type or subtype containing the bounds against which we have to check. */ static tree emit_range_check (tree gnu_expr, Entity_Id gnat_range_type) { tree gnu_range_type = get_unpadded_type (gnat_range_type); tree gnu_low = TYPE_MIN_VALUE (gnu_range_type); tree gnu_high = TYPE_MAX_VALUE (gnu_range_type); tree gnu_compare_type = get_base_type (TREE_TYPE (gnu_expr)); /* If GNU_EXPR has an integral type that is narrower than GNU_RANGE_TYPE, we can't do anything since we might be truncating the bounds. No check is needed in this case. */ if (INTEGRAL_TYPE_P (TREE_TYPE (gnu_expr)) && (TYPE_PRECISION (gnu_compare_type) < TYPE_PRECISION (get_base_type (gnu_range_type)))) return gnu_expr; /* Checked expressions must be evaluated only once. */ gnu_expr = protect_multiple_eval (gnu_expr); /* There's no good type to use here, so we might as well use integer_type_node. Note that the form of the check is (not (expr >= lo)) or (not (expr >= hi)) the reason for this slightly convoluted form is that NaN's are not considered to be in range in the float case. */ return emit_check (build_binary_op (TRUTH_ORIF_EXPR, integer_type_node, invert_truthvalue (build_binary_op (GE_EXPR, integer_type_node, convert (gnu_compare_type, gnu_expr), convert (gnu_compare_type, gnu_low))), invert_truthvalue (build_binary_op (LE_EXPR, integer_type_node, convert (gnu_compare_type, gnu_expr), convert (gnu_compare_type, gnu_high)))), gnu_expr, CE_Range_Check_Failed); } /* Emit code for an index check. GNU_ARRAY_OBJECT is the array object which we are about to index, GNU_EXPR is the index expression to be checked, GNU_LOW and GNU_HIGH are the lower and upper bounds against which GNU_EXPR has to be checked. Note that for index checking we cannot use the emit_range_check function (although very similar code needs to be generated in both cases) since for index checking the array type against which we are checking the indeces may be unconstrained and consequently we need to retrieve the actual index bounds from the array object itself (GNU_ARRAY_OBJECT). The place where we need to do that is in subprograms having unconstrained array formal parameters */ static tree emit_index_check (tree gnu_array_object, tree gnu_expr, tree gnu_low, tree gnu_high) { tree gnu_expr_check; /* Checked expressions must be evaluated only once. */ gnu_expr = protect_multiple_eval (gnu_expr); /* Must do this computation in the base type in case the expression's type is an unsigned subtypes. */ gnu_expr_check = convert (get_base_type (TREE_TYPE (gnu_expr)), gnu_expr); /* If GNU_LOW or GNU_HIGH are a PLACEHOLDER_EXPR, qualify them by the object we are handling. */ gnu_low = SUBSTITUTE_PLACEHOLDER_IN_EXPR (gnu_low, gnu_array_object); gnu_high = SUBSTITUTE_PLACEHOLDER_IN_EXPR (gnu_high, gnu_array_object); /* There's no good type to use here, so we might as well use integer_type_node. */ return emit_check (build_binary_op (TRUTH_ORIF_EXPR, integer_type_node, build_binary_op (LT_EXPR, integer_type_node, gnu_expr_check, convert (TREE_TYPE (gnu_expr_check), gnu_low)), build_binary_op (GT_EXPR, integer_type_node, gnu_expr_check, convert (TREE_TYPE (gnu_expr_check), gnu_high))), gnu_expr, CE_Index_Check_Failed); } /* Given GNU_COND which contains the condition corresponding to an access, discriminant or range check, of value GNU_EXPR, build a COND_EXPR that returns GNU_EXPR if GNU_COND is false and raises a CONSTRAINT_ERROR if GNU_COND is true. REASON is the code that says why the exception was raised. */ static tree emit_check (tree gnu_cond, tree gnu_expr, int reason) { tree gnu_call; tree gnu_result; gnu_call = build_call_raise (reason); /* Use an outer COMPOUND_EXPR to make sure that GNU_EXPR will get evaluated in front of the comparison in case it ends up being a SAVE_EXPR. Put the whole thing inside its own SAVE_EXPR so the inner SAVE_EXPR doesn't leak out. */ gnu_result = fold (build (COND_EXPR, TREE_TYPE (gnu_expr), gnu_cond, build (COMPOUND_EXPR, TREE_TYPE (gnu_expr), gnu_call, gnu_expr), gnu_expr)); /* If GNU_EXPR has side effects, make the outer COMPOUND_EXPR and protect it. Otherwise, show GNU_RESULT has no side effects: we don't need to evaluate it just for the check. */ if (TREE_SIDE_EFFECTS (gnu_expr)) gnu_result = build (COMPOUND_EXPR, TREE_TYPE (gnu_expr), gnu_expr, gnu_result); else TREE_SIDE_EFFECTS (gnu_result) = 0; /* ??? Unfortunately, if we don't put a SAVE_EXPR around this whole thing, we will repeatedly do the test. It would be nice if GCC was able to optimize this and only do it once. */ return save_expr (gnu_result); } /* Return an expression that converts GNU_EXPR to GNAT_TYPE, doing overflow checks if OVERFLOW_P is nonzero and range checks if RANGE_P is nonzero. GNAT_TYPE is known to be an integral type. If TRUNCATE_P is nonzero, do a float to integer conversion with truncation; otherwise round. */ static tree convert_with_check (Entity_Id gnat_type, tree gnu_expr, int overflow_p, int range_p, int truncate_p) { tree gnu_type = get_unpadded_type (gnat_type); tree gnu_in_type = TREE_TYPE (gnu_expr); tree gnu_in_basetype = get_base_type (gnu_in_type); tree gnu_base_type = get_base_type (gnu_type); tree gnu_ada_base_type = get_ada_base_type (gnu_type); tree gnu_result = gnu_expr; /* If we are not doing any checks, the output is an integral type, and the input is not a floating type, just do the conversion. This shortcut is required to avoid problems with packed array types and simplifies code in all cases anyway. */ if (! range_p && ! overflow_p && INTEGRAL_TYPE_P (gnu_base_type) && ! FLOAT_TYPE_P (gnu_in_type)) return convert (gnu_type, gnu_expr); /* First convert the expression to its base type. This will never generate code, but makes the tests below much simpler. But don't do this if converting from an integer type to an unconstrained array type since then we need to get the bounds from the original (unpacked) type. */ if (TREE_CODE (gnu_type) != UNCONSTRAINED_ARRAY_TYPE) gnu_result = convert (gnu_in_basetype, gnu_result); /* If overflow checks are requested, we need to be sure the result will fit in the output base type. But don't do this if the input is integer and the output floating-point. */ if (overflow_p && ! (FLOAT_TYPE_P (gnu_base_type) && INTEGRAL_TYPE_P (gnu_in_basetype))) { /* Ensure GNU_EXPR only gets evaluated once. */ tree gnu_input = protect_multiple_eval (gnu_result); tree gnu_cond = integer_zero_node; tree gnu_in_lb = TYPE_MIN_VALUE (gnu_in_basetype); tree gnu_in_ub = TYPE_MAX_VALUE (gnu_in_basetype); tree gnu_out_lb = TYPE_MIN_VALUE (gnu_base_type); tree gnu_out_ub = TYPE_MAX_VALUE (gnu_base_type); /* Convert the lower bounds to signed types, so we're sure we're comparing them properly. Likewise, convert the upper bounds to unsigned types. */ if (INTEGRAL_TYPE_P (gnu_in_basetype) && TYPE_UNSIGNED (gnu_in_basetype)) gnu_in_lb = convert (gnat_signed_type (gnu_in_basetype), gnu_in_lb); if (INTEGRAL_TYPE_P (gnu_in_basetype) && !TYPE_UNSIGNED (gnu_in_basetype)) gnu_in_ub = convert (gnat_unsigned_type (gnu_in_basetype), gnu_in_ub); if (INTEGRAL_TYPE_P (gnu_base_type) && TYPE_UNSIGNED (gnu_base_type)) gnu_out_lb = convert (gnat_signed_type (gnu_base_type), gnu_out_lb); if (INTEGRAL_TYPE_P (gnu_base_type) && !TYPE_UNSIGNED (gnu_base_type)) gnu_out_ub = convert (gnat_unsigned_type (gnu_base_type), gnu_out_ub); /* Check each bound separately and only if the result bound is tighter than the bound on the input type. Note that all the types are base types, so the bounds must be constant. Also, the comparison is done in the base type of the input, which always has the proper signedness. First check for input integer (which means output integer), output float (which means both float), or mixed, in which case we always compare. Note that we have to do the comparison which would *fail* in the case of an error since if it's an FP comparison and one of the values is a NaN or Inf, the comparison will fail. */ if (INTEGRAL_TYPE_P (gnu_in_basetype) ? tree_int_cst_lt (gnu_in_lb, gnu_out_lb) : (FLOAT_TYPE_P (gnu_base_type) ? REAL_VALUES_LESS (TREE_REAL_CST (gnu_in_lb), TREE_REAL_CST (gnu_out_lb)) : 1)) gnu_cond = invert_truthvalue (build_binary_op (GE_EXPR, integer_type_node, gnu_input, convert (gnu_in_basetype, gnu_out_lb))); if (INTEGRAL_TYPE_P (gnu_in_basetype) ? tree_int_cst_lt (gnu_out_ub, gnu_in_ub) : (FLOAT_TYPE_P (gnu_base_type) ? REAL_VALUES_LESS (TREE_REAL_CST (gnu_out_ub), TREE_REAL_CST (gnu_in_lb)) : 1)) gnu_cond = build_binary_op (TRUTH_ORIF_EXPR, integer_type_node, gnu_cond, invert_truthvalue (build_binary_op (LE_EXPR, integer_type_node, gnu_input, convert (gnu_in_basetype, gnu_out_ub)))); if (! integer_zerop (gnu_cond)) gnu_result = emit_check (gnu_cond, gnu_input, CE_Overflow_Check_Failed); } /* Now convert to the result base type. If this is a non-truncating float-to-integer conversion, round. */ if (INTEGRAL_TYPE_P (gnu_ada_base_type) && FLOAT_TYPE_P (gnu_in_basetype) && ! truncate_p) { tree gnu_point_5 = build_real (gnu_in_basetype, dconstp5); tree gnu_minus_point_5 = build_real (gnu_in_basetype, dconstmp5); tree gnu_zero = convert (gnu_in_basetype, integer_zero_node); tree gnu_saved_result = save_expr (gnu_result); tree gnu_comp = build (GE_EXPR, integer_type_node, gnu_saved_result, gnu_zero); tree gnu_adjust = build (COND_EXPR, gnu_in_basetype, gnu_comp, gnu_point_5, gnu_minus_point_5); gnu_result = build (PLUS_EXPR, gnu_in_basetype, gnu_saved_result, gnu_adjust); } if (TREE_CODE (gnu_ada_base_type) == INTEGER_TYPE && TYPE_HAS_ACTUAL_BOUNDS_P (gnu_ada_base_type) && TREE_CODE (gnu_result) == UNCONSTRAINED_ARRAY_REF) gnu_result = unchecked_convert (gnu_ada_base_type, gnu_result, 0); else gnu_result = convert (gnu_ada_base_type, gnu_result); /* Finally, do the range check if requested. Note that if the result type is a modular type, the range check is actually an overflow check. */ if (range_p || (TREE_CODE (gnu_base_type) == INTEGER_TYPE && TYPE_MODULAR_P (gnu_base_type) && overflow_p)) gnu_result = emit_range_check (gnu_result, gnat_type); return convert (gnu_type, gnu_result); } /* Return 1 if GNU_EXPR can be directly addressed. This is the case unless it is an expression involving computation or if it involves a bitfield reference. This returns the same as gnat_mark_addressable in most cases. */ static int addressable_p (tree gnu_expr) { switch (TREE_CODE (gnu_expr)) { case VAR_DECL: case PARM_DECL: case FUNCTION_DECL: case RESULT_DECL: /* All DECLs are addressable: if they are in a register, we can force them to memory. */ return 1; case UNCONSTRAINED_ARRAY_REF: case INDIRECT_REF: case CONSTRUCTOR: case NULL_EXPR: case SAVE_EXPR: return 1; case COMPONENT_REF: return (! DECL_BIT_FIELD (TREE_OPERAND (gnu_expr, 1)) && (! DECL_NONADDRESSABLE_P (TREE_OPERAND (gnu_expr, 1)) || ! flag_strict_aliasing) && addressable_p (TREE_OPERAND (gnu_expr, 0))); case ARRAY_REF: case ARRAY_RANGE_REF: case REALPART_EXPR: case IMAGPART_EXPR: case NOP_EXPR: return addressable_p (TREE_OPERAND (gnu_expr, 0)); case CONVERT_EXPR: return (AGGREGATE_TYPE_P (TREE_TYPE (gnu_expr)) && addressable_p (TREE_OPERAND (gnu_expr, 0))); case VIEW_CONVERT_EXPR: { /* This is addressable if we can avoid a copy. */ tree type = TREE_TYPE (gnu_expr); tree inner_type = TREE_TYPE (TREE_OPERAND (gnu_expr, 0)); return (((TYPE_MODE (type) == TYPE_MODE (inner_type) && (TYPE_ALIGN (type) <= TYPE_ALIGN (inner_type) || TYPE_ALIGN (inner_type) >= BIGGEST_ALIGNMENT)) || ((TYPE_MODE (type) == BLKmode || TYPE_MODE (inner_type) == BLKmode) && (TYPE_ALIGN (type) <= TYPE_ALIGN (inner_type) || TYPE_ALIGN (inner_type) >= BIGGEST_ALIGNMENT || TYPE_ALIGN_OK (type) || TYPE_ALIGN_OK (inner_type)))) && addressable_p (TREE_OPERAND (gnu_expr, 0))); } default: return 0; } } /* Do the processing for the declaration of a GNAT_ENTITY, a type. If a separate Freeze node exists, delay the bulk of the processing. Otherwise make a GCC type for GNAT_ENTITY and set up the correspondance. */ void process_type (Entity_Id gnat_entity) { tree gnu_old = present_gnu_tree (gnat_entity) ? get_gnu_tree (gnat_entity) : 0; tree gnu_new; /* If we are to delay elaboration of this type, just do any elaborations needed for expressions within the declaration and make a dummy type entry for this node and its Full_View (if any) in case something points to it. Don't do this if it has already been done (the only way that can happen is if the private completion is also delayed). */ if (Present (Freeze_Node (gnat_entity)) || (IN (Ekind (gnat_entity), Incomplete_Or_Private_Kind) && Present (Full_View (gnat_entity)) && Freeze_Node (Full_View (gnat_entity)) && ! present_gnu_tree (Full_View (gnat_entity)))) { elaborate_entity (gnat_entity); if (gnu_old == 0) { tree gnu_decl = create_type_decl (get_entity_name (gnat_entity), make_dummy_type (gnat_entity), 0, 0, 0, gnat_entity); save_gnu_tree (gnat_entity, gnu_decl, 0); if (IN (Ekind (gnat_entity), Incomplete_Or_Private_Kind) && Present (Full_View (gnat_entity))) save_gnu_tree (Full_View (gnat_entity), gnu_decl, 0); } return; } /* If we saved away a dummy type for this node it means that this made the type that corresponds to the full type of an incomplete type. Clear that type for now and then update the type in the pointers. */ if (gnu_old != 0) { if (TREE_CODE (gnu_old) != TYPE_DECL || ! TYPE_IS_DUMMY_P (TREE_TYPE (gnu_old))) { /* If this was a withed access type, this is not an error and merely indicates we've already elaborated the type already. */ if (Is_Type (gnat_entity) && From_With_Type (gnat_entity)) return; gigi_abort (323); } save_gnu_tree (gnat_entity, NULL_TREE, 0); } /* Now fully elaborate the type. */ gnu_new = gnat_to_gnu_entity (gnat_entity, NULL_TREE, 1); if (TREE_CODE (gnu_new) != TYPE_DECL) gigi_abort (324); /* If we have an old type and we've made pointers to this type, update those pointers. */ if (gnu_old != 0) update_pointer_to (TYPE_MAIN_VARIANT (TREE_TYPE (gnu_old)), TREE_TYPE (gnu_new)); /* If this is a record type corresponding to a task or protected type that is a completion of an incomplete type, perform a similar update on the type. */ /* ??? Including protected types here is a guess. */ if (IN (Ekind (gnat_entity), Record_Kind) && Is_Concurrent_Record_Type (gnat_entity) && present_gnu_tree (Corresponding_Concurrent_Type (gnat_entity))) { tree gnu_task_old = get_gnu_tree (Corresponding_Concurrent_Type (gnat_entity)); save_gnu_tree (Corresponding_Concurrent_Type (gnat_entity), NULL_TREE, 0); save_gnu_tree (Corresponding_Concurrent_Type (gnat_entity), gnu_new, 0); update_pointer_to (TYPE_MAIN_VARIANT (TREE_TYPE (gnu_task_old)), TREE_TYPE (gnu_new)); } } /* GNAT_ASSOC is the front of the Component_Associations of an N_Aggregate. GNU_TYPE is the GCC type of the corresponding record. Return a CONSTRUCTOR to build the record. */ static tree assoc_to_constructor (Node_Id gnat_assoc, tree gnu_type) { tree gnu_field, gnu_list, gnu_result; /* We test for GNU_FIELD being empty in the case where a variant was the last thing since we don't take things off GNAT_ASSOC in that case. We check GNAT_ASSOC in case we have a variant, but it has no fields. */ for (gnu_list = NULL_TREE; Present (gnat_assoc); gnat_assoc = Next (gnat_assoc)) { Node_Id gnat_field = First (Choices (gnat_assoc)); tree gnu_field = gnat_to_gnu_entity (Entity (gnat_field), NULL_TREE, 0); tree gnu_expr = gnat_to_gnu (Expression (gnat_assoc)); /* The expander is supposed to put a single component selector name in every record component association */ if (Next (gnat_field)) gigi_abort (328); /* Before assigning a value in an aggregate make sure range checks are done if required. Then convert to the type of the field. */ if (Do_Range_Check (Expression (gnat_assoc))) gnu_expr = emit_range_check (gnu_expr, Etype (gnat_field)); gnu_expr = convert (TREE_TYPE (gnu_field), gnu_expr); /* Add the field and expression to the list. */ gnu_list = tree_cons (gnu_field, gnu_expr, gnu_list); } gnu_result = extract_values (gnu_list, gnu_type); /* Verify every enty in GNU_LIST was used. */ for (gnu_field = gnu_list; gnu_field; gnu_field = TREE_CHAIN (gnu_field)) if (! TREE_ADDRESSABLE (gnu_field)) gigi_abort (311); return gnu_result; } /* Builds a possibly nested constructor for array aggregates. GNAT_EXPR is the first element of an array aggregate. It may itself be an aggregate (an array or record aggregate). GNU_ARRAY_TYPE is the gnu type corresponding to the array aggregate. GNAT_COMPONENT_TYPE is the type of the array component. It is needed for range checking. */ static tree pos_to_constructor (Node_Id gnat_expr, tree gnu_array_type, Entity_Id gnat_component_type) { tree gnu_expr_list = NULL_TREE; tree gnu_index = TYPE_MIN_VALUE (TYPE_DOMAIN (gnu_array_type)); tree gnu_expr; for ( ; Present (gnat_expr); gnat_expr = Next (gnat_expr)) { /* If the expression is itself an array aggregate then first build the innermost constructor if it is part of our array (multi-dimensional case). */ if (Nkind (gnat_expr) == N_Aggregate && TREE_CODE (TREE_TYPE (gnu_array_type)) == ARRAY_TYPE && TYPE_MULTI_ARRAY_P (TREE_TYPE (gnu_array_type))) gnu_expr = pos_to_constructor (First (Expressions (gnat_expr)), TREE_TYPE (gnu_array_type), gnat_component_type); else { gnu_expr = gnat_to_gnu (gnat_expr); /* before assigning the element to the array make sure it is in range */ if (Do_Range_Check (gnat_expr)) gnu_expr = emit_range_check (gnu_expr, gnat_component_type); } gnu_expr_list = tree_cons (gnu_index, convert (TREE_TYPE (gnu_array_type), gnu_expr), gnu_expr_list); gnu_index = fold (build2 (PLUS_EXPR, TREE_TYPE (gnu_index), gnu_index, convert (TREE_TYPE (gnu_index), integer_one_node))); } return gnat_build_constructor (gnu_array_type, nreverse (gnu_expr_list)); } /* Subroutine of assoc_to_constructor: VALUES is a list of field associations, some of which are from RECORD_TYPE. Return a CONSTRUCTOR consisting of the associations that are from RECORD_TYPE. If we see an internal record, make a recursive call to fill it in as well. */ static tree extract_values (tree values, tree record_type) { tree result = NULL_TREE; tree field, tem; for (field = TYPE_FIELDS (record_type); field; field = TREE_CHAIN (field)) { tree value = 0; /* _Parent is an internal field, but may have values in the aggregate, so check for values first. */ if ((tem = purpose_member (field, values)) != 0) { value = TREE_VALUE (tem); TREE_ADDRESSABLE (tem) = 1; } else if (DECL_INTERNAL_P (field)) { value = extract_values (values, TREE_TYPE (field)); if (TREE_CODE (value) == CONSTRUCTOR && CONSTRUCTOR_ELTS (value) == 0) value = 0; } else /* If we have a record subtype, the names will match, but not the actual FIELD_DECLs. */ for (tem = values; tem; tem = TREE_CHAIN (tem)) if (DECL_NAME (TREE_PURPOSE (tem)) == DECL_NAME (field)) { value = convert (TREE_TYPE (field), TREE_VALUE (tem)); TREE_ADDRESSABLE (tem) = 1; } if (value == 0) continue; result = tree_cons (field, value, result); } return gnat_build_constructor (record_type, nreverse (result)); } /* EXP is to be treated as an array or record. Handle the cases when it is an access object and perform the required dereferences. */ static tree maybe_implicit_deref (tree exp) { /* If the type is a pointer, dereference it. */ if (POINTER_TYPE_P (TREE_TYPE (exp)) || TYPE_FAT_POINTER_P (TREE_TYPE (exp))) exp = build_unary_op (INDIRECT_REF, NULL_TREE, exp); /* If we got a padded type, remove it too. */ if (TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE && TYPE_IS_PADDING_P (TREE_TYPE (exp))) exp = convert (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (exp))), exp); return exp; } /* Protect EXP from multiple evaluation. This may make a SAVE_EXPR. */ tree protect_multiple_eval (tree exp) { tree type = TREE_TYPE (exp); /* If this has no side effects, we don't need to do anything. */ if (! TREE_SIDE_EFFECTS (exp)) return exp; /* If it is a conversion, protect what's inside the conversion. Similarly, if we're indirectly referencing something, we only actually need to protect the address since the data itself can't change in these situations. */ else if (TREE_CODE (exp) == NON_LVALUE_EXPR || TREE_CODE (exp) == NOP_EXPR || TREE_CODE (exp) == CONVERT_EXPR || TREE_CODE (exp) == VIEW_CONVERT_EXPR || TREE_CODE (exp) == INDIRECT_REF || TREE_CODE (exp) == UNCONSTRAINED_ARRAY_REF) return build1 (TREE_CODE (exp), type, protect_multiple_eval (TREE_OPERAND (exp, 0))); /* If EXP is a fat pointer or something that can be placed into a register, just make a SAVE_EXPR. */ if (TYPE_FAT_POINTER_P (type) || TYPE_MODE (type) != BLKmode) return save_expr (exp); /* Otherwise, dereference, protect the address, and re-reference. */ else return build_unary_op (INDIRECT_REF, type, save_expr (build_unary_op (ADDR_EXPR, build_reference_type (type), exp))); } /* This is equivalent to stabilize_reference in GCC's tree.c, but we know how to handle our new nodes and we take an extra argument that says whether to force evaluation of everything. */ tree gnat_stabilize_reference (tree ref, int force) { tree type = TREE_TYPE (ref); enum tree_code code = TREE_CODE (ref); tree result; switch (code) { case VAR_DECL: case PARM_DECL: case RESULT_DECL: /* No action is needed in this case. */ return ref; case NOP_EXPR: case CONVERT_EXPR: case FLOAT_EXPR: case FIX_TRUNC_EXPR: case FIX_FLOOR_EXPR: case FIX_ROUND_EXPR: case FIX_CEIL_EXPR: case VIEW_CONVERT_EXPR: case ADDR_EXPR: result = build1 (code, type, gnat_stabilize_reference (TREE_OPERAND (ref, 0), force)); break; case INDIRECT_REF: case UNCONSTRAINED_ARRAY_REF: result = build1 (code, type, gnat_stabilize_reference_1 (TREE_OPERAND (ref, 0), force)); break; case COMPONENT_REF: result = build (COMPONENT_REF, type, gnat_stabilize_reference (TREE_OPERAND (ref, 0), force), TREE_OPERAND (ref, 1), NULL_TREE); break; case BIT_FIELD_REF: result = build (BIT_FIELD_REF, type, gnat_stabilize_reference (TREE_OPERAND (ref, 0), force), gnat_stabilize_reference_1 (TREE_OPERAND (ref, 1), force), gnat_stabilize_reference_1 (TREE_OPERAND (ref, 2), force)); break; case ARRAY_REF: case ARRAY_RANGE_REF: result = build (code, type, gnat_stabilize_reference (TREE_OPERAND (ref, 0), force), gnat_stabilize_reference_1 (TREE_OPERAND (ref, 1), force), NULL_TREE, NULL_TREE); break; case COMPOUND_EXPR: result = build (COMPOUND_EXPR, type, gnat_stabilize_reference_1 (TREE_OPERAND (ref, 0), force), gnat_stabilize_reference (TREE_OPERAND (ref, 1), force)); break; /* If arg isn't a kind of lvalue we recognize, make no change. Caller should recognize the error for an invalid lvalue. */ default: return ref; case ERROR_MARK: return error_mark_node; } TREE_READONLY (result) = TREE_READONLY (ref); return result; } /* Similar to stabilize_reference_1 in tree.c, but supports an extra arg to force a SAVE_EXPR for everything. */ static tree gnat_stabilize_reference_1 (tree e, int force) { enum tree_code code = TREE_CODE (e); tree type = TREE_TYPE (e); tree result; /* We cannot ignore const expressions because it might be a reference to a const array but whose index contains side-effects. But we can ignore things that are actual constant or that already have been handled by this function. */ if (TREE_CONSTANT (e) || code == SAVE_EXPR) return e; switch (TREE_CODE_CLASS (code)) { case 'x': case 't': case 'd': case '<': case 's': case 'e': case 'r': /* If this is a COMPONENT_REF of a fat pointer, save the entire fat pointer. This may be more efficient, but will also allow us to more easily find the match for the PLACEHOLDER_EXPR. */ if (code == COMPONENT_REF && TYPE_FAT_POINTER_P (TREE_TYPE (TREE_OPERAND (e, 0)))) result = build (COMPONENT_REF, type, gnat_stabilize_reference_1 (TREE_OPERAND (e, 0), force), TREE_OPERAND (e, 1), TREE_OPERAND (e, 2)); else if (TREE_SIDE_EFFECTS (e) || force) return save_expr (e); else return e; break; case 'c': /* Constants need no processing. In fact, we should never reach here. */ return e; case '2': /* Recursively stabilize each operand. */ result = build (code, type, gnat_stabilize_reference_1 (TREE_OPERAND (e, 0), force), gnat_stabilize_reference_1 (TREE_OPERAND (e, 1), force)); break; case '1': /* Recursively stabilize each operand. */ result = build1 (code, type, gnat_stabilize_reference_1 (TREE_OPERAND (e, 0), force)); break; default: abort (); } TREE_READONLY (result) = TREE_READONLY (e); return result; } /* Take care of building the elaboration procedure for the main unit. Return true if we didn't need an elaboration function, false otherwise. */ static bool build_unit_elab () { tree body, stmts; /* Mark everything we have as not visited. */ walk_tree_without_duplicates (¤t_stmt_group->stmt_list, mark_unvisited, NULL); /* Set the current function to be the elaboration procedure, pop our binding level, end our statement group, and gimplify what we have. */ set_current_block_context (gnu_elab_proc_decl); gnat_poplevel (); body = end_stmt_group (); current_function_decl = gnu_elab_proc_decl; gimplify_body (&body, gnu_elab_proc_decl); /* We should have a BIND_EXPR, but it may or may not have any statements in it. If it doesn't have any, we have nothing to do. */ stmts = body; if (TREE_CODE (stmts) == BIND_EXPR) stmts = BIND_EXPR_BODY (stmts); /* If there are no statements, we have nothing to do. */ if (!stmts || !STATEMENT_LIST_HEAD (stmts)) return true; /* Otherwise, compile the function. Note that we'll be gimplifying it twice, but that's fine for the nodes we use. */ begin_subprog_body (gnu_elab_proc_decl); end_subprog_body (body); return false; } extern char *__gnat_to_canonical_file_spec (char *); /* Convert Sloc into *LOCUS (a location_t). Return true if this Sloc corresponds to a source code location and false if it doesn't. In the latter case, we don't update *LOCUS. We also set the Gigi global variable REF_FILENAME to the reference file name as given by sinput (i.e no directory). */ bool Sloc_to_locus (Source_Ptr Sloc, location_t *locus) { /* If node not from source code, ignore. */ if (Sloc < 0) return false; /* Use the identifier table to make a hashed, permanent copy of the filename, since the name table gets reallocated after Gigi returns but before all the debugging information is output. The __gnat_to_canonical_file_spec call translates filenames from pragmas Source_Reference that contain host style syntax not understood by gdb. */ locus->file = IDENTIFIER_POINTER (get_identifier (__gnat_to_canonical_file_spec (Get_Name_String (Full_Debug_Name (Get_Source_File_Index (Sloc)))))); locus->line = Get_Logical_Line_Number (Sloc); ref_filename = IDENTIFIER_POINTER (get_identifier (Get_Name_String (Debug_Source_Name (Get_Source_File_Index (Sloc)))));; return true; } /* Similar to annotate_with_locus, but start with the Sloc of GNAT_NODE and don't do anything if it doesn't correspond to a source location. */ static void annotate_with_node (tree node, Node_Id gnat_node) { location_t locus; if (!Sloc_to_locus (Sloc (gnat_node), &locus)) return; annotate_with_locus (node, locus); } /* Post an error message. MSG is the error message, properly annotated. NODE is the node at which to post the error and the node to use for the "&" substitution. */ void post_error (const char *msg, Node_Id node) { String_Template temp; Fat_Pointer fp; temp.Low_Bound = 1, temp.High_Bound = strlen (msg); fp.Array = msg, fp.Bounds = &temp; if (Present (node)) Error_Msg_N (fp, node); } /* Similar, but NODE is the node at which to post the error and ENT is the node to use for the "&" substitution. */ void post_error_ne (const char *msg, Node_Id node, Entity_Id ent) { String_Template temp; Fat_Pointer fp; temp.Low_Bound = 1, temp.High_Bound = strlen (msg); fp.Array = msg, fp.Bounds = &temp; if (Present (node)) Error_Msg_NE (fp, node, ent); } /* Similar, but NODE is the node at which to post the error, ENT is the node to use for the "&" substitution, and N is the number to use for the ^. */ void post_error_ne_num (const char *msg, Node_Id node, Entity_Id ent, int n) { String_Template temp; Fat_Pointer fp; temp.Low_Bound = 1, temp.High_Bound = strlen (msg); fp.Array = msg, fp.Bounds = &temp; Error_Msg_Uint_1 = UI_From_Int (n); if (Present (node)) Error_Msg_NE (fp, node, ent); } /* Similar to post_error_ne_num, but T is a GCC tree representing the number to write. If the tree represents a constant that fits within a host integer, the text inside curly brackets in MSG will be output (presumably including a '^'). Otherwise that text will not be output and the text inside square brackets will be output instead. */ void post_error_ne_tree (const char *msg, Node_Id node, Entity_Id ent, tree t) { char *newmsg = alloca (strlen (msg) + 1); String_Template temp = {1, 0}; Fat_Pointer fp; char start_yes, end_yes, start_no, end_no; const char *p; char *q; fp.Array = newmsg, fp.Bounds = &temp; if (host_integerp (t, 1) #if HOST_BITS_PER_WIDE_INT > HOST_BITS_PER_INT && compare_tree_int (t, (((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_INT - 1)) - 1)) < 0 #endif ) { Error_Msg_Uint_1 = UI_From_Int (tree_low_cst (t, 1)); start_yes = '{', end_yes = '}', start_no = '[', end_no = ']'; } else start_yes = '[', end_yes = ']', start_no = '{', end_no = '}'; for (p = msg, q = newmsg; *p != 0; p++) { if (*p == start_yes) for (p++; *p != end_yes; p++) *q++ = *p; else if (*p == start_no) for (p++; *p != end_no; p++) ; else *q++ = *p; } *q = 0; temp.High_Bound = strlen (newmsg); if (Present (node)) Error_Msg_NE (fp, node, ent); } /* Similar to post_error_ne_tree, except that NUM is a second integer to write in the message. */ void post_error_ne_tree_2 (const char *msg, Node_Id node, Entity_Id ent, tree t, int num) { Error_Msg_Uint_2 = UI_From_Int (num); post_error_ne_tree (msg, node, ent, t); } /* Set the node for a second '&' in the error message. */ void set_second_error_entity (Entity_Id e) { Error_Msg_Node_2 = e; } /* Signal abort, with "Gigi abort" as the error label, and error_gnat_node as the relevant node that provides the location info for the error */ void gigi_abort (int code) { String_Template temp = {1, 10}; Fat_Pointer fp; fp.Array = "Gigi abort", fp.Bounds = &temp; Current_Error_Node = error_gnat_node; Compiler_Abort (fp, code); } /* Initialize the table that maps GNAT codes to GCC codes for simple binary and unary operations. */ void init_code_table (void) { gnu_codes[N_And_Then] = TRUTH_ANDIF_EXPR; gnu_codes[N_Or_Else] = TRUTH_ORIF_EXPR; gnu_codes[N_Op_And] = TRUTH_AND_EXPR; gnu_codes[N_Op_Or] = TRUTH_OR_EXPR; gnu_codes[N_Op_Xor] = TRUTH_XOR_EXPR; gnu_codes[N_Op_Eq] = EQ_EXPR; gnu_codes[N_Op_Ne] = NE_EXPR; gnu_codes[N_Op_Lt] = LT_EXPR; gnu_codes[N_Op_Le] = LE_EXPR; gnu_codes[N_Op_Gt] = GT_EXPR; gnu_codes[N_Op_Ge] = GE_EXPR; gnu_codes[N_Op_Add] = PLUS_EXPR; gnu_codes[N_Op_Subtract] = MINUS_EXPR; gnu_codes[N_Op_Multiply] = MULT_EXPR; gnu_codes[N_Op_Mod] = FLOOR_MOD_EXPR; gnu_codes[N_Op_Rem] = TRUNC_MOD_EXPR; gnu_codes[N_Op_Minus] = NEGATE_EXPR; gnu_codes[N_Op_Abs] = ABS_EXPR; gnu_codes[N_Op_Not] = TRUTH_NOT_EXPR; gnu_codes[N_Op_Rotate_Left] = LROTATE_EXPR; gnu_codes[N_Op_Rotate_Right] = RROTATE_EXPR; gnu_codes[N_Op_Shift_Left] = LSHIFT_EXPR; gnu_codes[N_Op_Shift_Right] = RSHIFT_EXPR; gnu_codes[N_Op_Shift_Right_Arithmetic] = RSHIFT_EXPR; } #include "gt-ada-trans.h"