/* Control flow graph manipulation code for GNU compiler. Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* This file contains low level functions to manipulate the CFG and analyze it. All other modules should not transform the data structure directly and use abstraction instead. The file is supposed to be ordered bottom-up and should not contain any code dependent on a particular intermediate language (RTL or trees). Available functionality: - Initialization/deallocation init_flow, clear_edges - Low level basic block manipulation alloc_block, expunge_block - Edge manipulation make_edge, make_single_succ_edge, cached_make_edge, remove_edge - Low level edge redirection (without updating instruction chain) redirect_edge_succ, redirect_edge_succ_nodup, redirect_edge_pred - Dumping and debugging dump_flow_info, debug_flow_info, dump_edge_info - Allocation of AUX fields for basic blocks alloc_aux_for_blocks, free_aux_for_blocks, alloc_aux_for_block - clear_bb_flags - Consistency checking verify_flow_info - Dumping and debugging print_rtl_with_bb, dump_bb, debug_bb, debug_bb_n */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "tree.h" #include "rtl.h" #include "hard-reg-set.h" #include "basic-block.h" #include "regs.h" #include "flags.h" #include "output.h" #include "function.h" #include "except.h" #include "toplev.h" #include "tm_p.h" #include "obstack.h" #include "alloc-pool.h" #include "timevar.h" #include "ggc.h" /* The obstack on which the flow graph components are allocated. */ struct obstack flow_obstack; static char *flow_firstobj; /* Number of basic blocks in the current function. */ int n_basic_blocks; /* First free basic block number. */ int last_basic_block; /* Number of edges in the current function. */ int n_edges; /* The basic block array. */ varray_type basic_block_info; /* The special entry and exit blocks. */ basic_block ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR; /* Memory alloc pool for bb member rbi. */ alloc_pool rbi_pool; void debug_flow_info (void); static void free_edge (edge); /* Indicate the presence of the profile. */ enum profile_status profile_status; /* Called once at initialization time. */ void init_flow (void) { static int initialized; n_edges = 0; if (!initialized) { gcc_obstack_init (&flow_obstack); flow_firstobj = obstack_alloc (&flow_obstack, 0); initialized = 1; } else { obstack_free (&flow_obstack, flow_firstobj); flow_firstobj = obstack_alloc (&flow_obstack, 0); } ENTRY_BLOCK_PTR = ggc_alloc_cleared (sizeof (*ENTRY_BLOCK_PTR)); ENTRY_BLOCK_PTR->index = ENTRY_BLOCK; EXIT_BLOCK_PTR = ggc_alloc_cleared (sizeof (*EXIT_BLOCK_PTR)); EXIT_BLOCK_PTR->index = EXIT_BLOCK; ENTRY_BLOCK_PTR->next_bb = EXIT_BLOCK_PTR; EXIT_BLOCK_PTR->prev_bb = ENTRY_BLOCK_PTR; } /* Helper function for remove_edge and clear_edges. Frees edge structure without actually unlinking it from the pred/succ lists. */ static void free_edge (edge e ATTRIBUTE_UNUSED) { n_edges--; ggc_free (e); } /* Free the memory associated with the edge structures. */ void clear_edges (void) { basic_block bb; edge e; edge_iterator ei; FOR_EACH_BB (bb) { FOR_EACH_EDGE (e, ei, bb->succs) free_edge (e); VEC_truncate (edge, bb->succs, 0); VEC_truncate (edge, bb->preds, 0); } FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs) free_edge (e); VEC_truncate (edge, EXIT_BLOCK_PTR->preds, 0); VEC_truncate (edge, ENTRY_BLOCK_PTR->succs, 0); gcc_assert (!n_edges); } /* Allocate memory for basic_block. */ basic_block alloc_block (void) { basic_block bb; bb = ggc_alloc_cleared (sizeof (*bb)); return bb; } /* Create memory pool for rbi_pool. */ void alloc_rbi_pool (void) { rbi_pool = create_alloc_pool ("rbi pool", sizeof (struct reorder_block_def), n_basic_blocks + 2); } /* Free rbi_pool. */ void free_rbi_pool (void) { free_alloc_pool (rbi_pool); } /* Initialize rbi (the structure containing data used by basic block duplication and reordering) for the given basic block. */ void initialize_bb_rbi (basic_block bb) { gcc_assert (!bb->rbi); bb->rbi = pool_alloc (rbi_pool); memset (bb->rbi, 0, sizeof (struct reorder_block_def)); } /* Link block B to chain after AFTER. */ void link_block (basic_block b, basic_block after) { b->next_bb = after->next_bb; b->prev_bb = after; after->next_bb = b; b->next_bb->prev_bb = b; } /* Unlink block B from chain. */ void unlink_block (basic_block b) { b->next_bb->prev_bb = b->prev_bb; b->prev_bb->next_bb = b->next_bb; b->prev_bb = NULL; b->next_bb = NULL; } /* Sequentially order blocks and compact the arrays. */ void compact_blocks (void) { int i; basic_block bb; i = 0; FOR_EACH_BB (bb) { BASIC_BLOCK (i) = bb; bb->index = i; i++; } gcc_assert (i == n_basic_blocks); for (; i < last_basic_block; i++) BASIC_BLOCK (i) = NULL; last_basic_block = n_basic_blocks; } /* Remove block B from the basic block array. */ void expunge_block (basic_block b) { unlink_block (b); BASIC_BLOCK (b->index) = NULL; n_basic_blocks--; /* We should be able to ggc_free here, but we are not. The dead SSA_NAMES are left pointing to dead statements that are pointing to dead basic blocks making garbage collector to die. We should be able to release all dead SSA_NAMES and at the same time we should clear out BB pointer of dead statements consistently. */ } /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly created edge. Use this only if you are sure that this edge can't possibly already exist. */ edge unchecked_make_edge (basic_block src, basic_block dst, int flags) { edge e; e = ggc_alloc_cleared (sizeof (*e)); n_edges++; VEC_safe_insert (edge, src->succs, 0, e); VEC_safe_insert (edge, dst->preds, 0, e); e->src = src; e->dest = dst; e->flags = flags; return e; } /* Create an edge connecting SRC and DST with FLAGS optionally using edge cache CACHE. Return the new edge, NULL if already exist. */ edge cached_make_edge (sbitmap *edge_cache, basic_block src, basic_block dst, int flags) { int use_edge_cache; edge e; edge_iterator ei; /* Don't bother with edge cache for ENTRY or EXIT, if there aren't that many edges to them, or we didn't allocate memory for it. */ use_edge_cache = (edge_cache && src != ENTRY_BLOCK_PTR && dst != EXIT_BLOCK_PTR); /* Make sure we don't add duplicate edges. */ switch (use_edge_cache) { default: /* Quick test for non-existence of the edge. */ if (! TEST_BIT (edge_cache[src->index], dst->index)) break; /* The edge exists; early exit if no work to do. */ if (flags == 0) return NULL; /* Fall through. */ case 0: FOR_EACH_EDGE (e, ei, src->succs) if (e->dest == dst) { e->flags |= flags; return NULL; } break; } e = unchecked_make_edge (src, dst, flags); if (use_edge_cache) SET_BIT (edge_cache[src->index], dst->index); return e; } /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly created edge or NULL if already exist. */ edge make_edge (basic_block src, basic_block dest, int flags) { return cached_make_edge (NULL, src, dest, flags); } /* Create an edge connecting SRC to DEST and set probability by knowing that it is the single edge leaving SRC. */ edge make_single_succ_edge (basic_block src, basic_block dest, int flags) { edge e = make_edge (src, dest, flags); e->probability = REG_BR_PROB_BASE; e->count = src->count; return e; } /* This function will remove an edge from the flow graph. */ void remove_edge (edge e) { edge tmp; basic_block src, dest; bool found = false; edge_iterator ei; src = e->src; dest = e->dest; for (ei = ei_start (src->succs); (tmp = ei_safe_edge (ei)); ) { if (tmp == e) { VEC_ordered_remove (edge, src->succs, ei.index); found = true; break; } else ei_next (&ei); } gcc_assert (found); found = false; for (ei = ei_start (dest->preds); (tmp = ei_safe_edge (ei)); ) { if (tmp == e) { VEC_ordered_remove (edge, dest->preds, ei.index); found = true; break; } else ei_next (&ei); } gcc_assert (found); free_edge (e); } /* Redirect an edge's successor from one block to another. */ void redirect_edge_succ (edge e, basic_block new_succ) { edge tmp; edge_iterator ei; bool found = false; /* Disconnect the edge from the old successor block. */ for (ei = ei_start (e->dest->preds); (tmp = ei_safe_edge (ei)); ) { if (tmp == e) { VEC_ordered_remove (edge, e->dest->preds, ei.index); found = true; break; } else ei_next (&ei); } gcc_assert (found); /* Reconnect the edge to the new successor block. */ VEC_safe_insert (edge, new_succ->preds, 0, e); e->dest = new_succ; } /* Like previous but avoid possible duplicate edge. */ edge redirect_edge_succ_nodup (edge e, basic_block new_succ) { edge s; edge_iterator ei; /* Check whether the edge is already present. */ FOR_EACH_EDGE (s, ei, e->src->succs) if (s->dest == new_succ && s != e) break; if (s) { s->flags |= e->flags; s->probability += e->probability; if (s->probability > REG_BR_PROB_BASE) s->probability = REG_BR_PROB_BASE; s->count += e->count; remove_edge (e); e = s; } else redirect_edge_succ (e, new_succ); return e; } /* Redirect an edge's predecessor from one block to another. */ void redirect_edge_pred (edge e, basic_block new_pred) { edge tmp; edge_iterator ei; bool found = false; /* Disconnect the edge from the old predecessor block. */ for (ei = ei_start (e->src->succs); (tmp = ei_safe_edge (ei)); ) { if (tmp == e) { VEC_ordered_remove (edge, e->src->succs, ei.index); found = true; break; } else ei_next (&ei); } gcc_assert (found); /* Reconnect the edge to the new predecessor block. */ VEC_safe_insert (edge, new_pred->succs, 0, e); e->src = new_pred; } /* Clear all basic block flags, with the exception of partitioning. */ void clear_bb_flags (void) { basic_block bb; FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb) bb->flags = BB_PARTITION (bb); } /* Check the consistency of profile information. We can't do that in verify_flow_info, as the counts may get invalid for incompletely solved graphs, later eliminating of conditionals or roundoff errors. It is still practical to have them reported for debugging of simple testcases. */ void check_bb_profile (basic_block bb, FILE * file) { edge e; int sum = 0; gcov_type lsum; edge_iterator ei; if (profile_status == PROFILE_ABSENT) return; if (bb != EXIT_BLOCK_PTR) { FOR_EACH_EDGE (e, ei, bb->succs) sum += e->probability; if (EDGE_COUNT (bb->succs) && abs (sum - REG_BR_PROB_BASE) > 100) fprintf (file, "Invalid sum of outgoing probabilities %.1f%%\n", sum * 100.0 / REG_BR_PROB_BASE); lsum = 0; FOR_EACH_EDGE (e, ei, bb->succs) lsum += e->count; if (EDGE_COUNT (bb->succs) && (lsum - bb->count > 100 || lsum - bb->count < -100)) fprintf (file, "Invalid sum of outgoing counts %i, should be %i\n", (int) lsum, (int) bb->count); } if (bb != ENTRY_BLOCK_PTR) { sum = 0; FOR_EACH_EDGE (e, ei, bb->preds) sum += EDGE_FREQUENCY (e); if (abs (sum - bb->frequency) > 100) fprintf (file, "Invalid sum of incoming frequencies %i, should be %i\n", sum, bb->frequency); lsum = 0; FOR_EACH_EDGE (e, ei, bb->preds) lsum += e->count; if (lsum - bb->count > 100 || lsum - bb->count < -100) fprintf (file, "Invalid sum of incoming counts %i, should be %i\n", (int) lsum, (int) bb->count); } } void dump_flow_info (FILE *file) { int i; basic_block bb; static const char * const reg_class_names[] = REG_CLASS_NAMES; if (reg_n_info) { int max_regno = max_reg_num (); fprintf (file, "%d registers.\n", max_regno); for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++) if (REG_N_REFS (i)) { enum reg_class class, altclass; fprintf (file, "\nRegister %d used %d times across %d insns", i, REG_N_REFS (i), REG_LIVE_LENGTH (i)); if (REG_BASIC_BLOCK (i) >= 0) fprintf (file, " in block %d", REG_BASIC_BLOCK (i)); if (REG_N_SETS (i)) fprintf (file, "; set %d time%s", REG_N_SETS (i), (REG_N_SETS (i) == 1) ? "" : "s"); if (regno_reg_rtx[i] != NULL && REG_USERVAR_P (regno_reg_rtx[i])) fprintf (file, "; user var"); if (REG_N_DEATHS (i) != 1) fprintf (file, "; dies in %d places", REG_N_DEATHS (i)); if (REG_N_CALLS_CROSSED (i) == 1) fprintf (file, "; crosses 1 call"); else if (REG_N_CALLS_CROSSED (i)) fprintf (file, "; crosses %d calls", REG_N_CALLS_CROSSED (i)); if (regno_reg_rtx[i] != NULL && PSEUDO_REGNO_BYTES (i) != UNITS_PER_WORD) fprintf (file, "; %d bytes", PSEUDO_REGNO_BYTES (i)); class = reg_preferred_class (i); altclass = reg_alternate_class (i); if (class != GENERAL_REGS || altclass != ALL_REGS) { if (altclass == ALL_REGS || class == ALL_REGS) fprintf (file, "; pref %s", reg_class_names[(int) class]); else if (altclass == NO_REGS) fprintf (file, "; %s or none", reg_class_names[(int) class]); else fprintf (file, "; pref %s, else %s", reg_class_names[(int) class], reg_class_names[(int) altclass]); } if (regno_reg_rtx[i] != NULL && REG_POINTER (regno_reg_rtx[i])) fprintf (file, "; pointer"); fprintf (file, ".\n"); } } fprintf (file, "\n%d basic blocks, %d edges.\n", n_basic_blocks, n_edges); FOR_EACH_BB (bb) { edge e; edge_iterator ei; fprintf (file, "\nBasic block %d ", bb->index); fprintf (file, "prev %d, next %d, ", bb->prev_bb->index, bb->next_bb->index); fprintf (file, "loop_depth %d, count ", bb->loop_depth); fprintf (file, HOST_WIDEST_INT_PRINT_DEC, bb->count); fprintf (file, ", freq %i", bb->frequency); if (maybe_hot_bb_p (bb)) fprintf (file, ", maybe hot"); if (probably_never_executed_bb_p (bb)) fprintf (file, ", probably never executed"); fprintf (file, ".\n"); fprintf (file, "Predecessors: "); FOR_EACH_EDGE (e, ei, bb->preds) dump_edge_info (file, e, 0); fprintf (file, "\nSuccessors: "); FOR_EACH_EDGE (e, ei, bb->succs) dump_edge_info (file, e, 1); fprintf (file, "\nRegisters live at start:"); dump_regset (bb->global_live_at_start, file); fprintf (file, "\nRegisters live at end:"); dump_regset (bb->global_live_at_end, file); putc ('\n', file); if (bb->global_live_at_start) { fprintf (file, "\nRegisters live at start:"); dump_regset (bb->global_live_at_start, file); } if (bb->global_live_at_end) { fprintf (file, "\nRegisters live at end:"); dump_regset (bb->global_live_at_end, file); } putc ('\n', file); check_bb_profile (bb, file); } putc ('\n', file); } void debug_flow_info (void) { dump_flow_info (stderr); } void dump_edge_info (FILE *file, edge e, int do_succ) { basic_block side = (do_succ ? e->dest : e->src); if (side == ENTRY_BLOCK_PTR) fputs (" ENTRY", file); else if (side == EXIT_BLOCK_PTR) fputs (" EXIT", file); else fprintf (file, " %d", side->index); if (e->probability) fprintf (file, " [%.1f%%] ", e->probability * 100.0 / REG_BR_PROB_BASE); if (e->count) { fprintf (file, " count:"); fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count); } if (e->flags) { static const char * const bitnames[] = { "fallthru", "ab", "abcall", "eh", "fake", "dfs_back", "can_fallthru", "irreducible", "sibcall", "loop_exit", "true", "false", "exec" }; int comma = 0; int i, flags = e->flags; fputs (" (", file); for (i = 0; flags; i++) if (flags & (1 << i)) { flags &= ~(1 << i); if (comma) fputc (',', file); if (i < (int) ARRAY_SIZE (bitnames)) fputs (bitnames[i], file); else fprintf (file, "%d", i); comma = 1; } fputc (')', file); } } /* Simple routines to easily allocate AUX fields of basic blocks. */ static struct obstack block_aux_obstack; static void *first_block_aux_obj = 0; static struct obstack edge_aux_obstack; static void *first_edge_aux_obj = 0; /* Allocate a memory block of SIZE as BB->aux. The obstack must be first initialized by alloc_aux_for_blocks. */ inline void alloc_aux_for_block (basic_block bb, int size) { /* Verify that aux field is clear. */ gcc_assert (!bb->aux && first_block_aux_obj); bb->aux = obstack_alloc (&block_aux_obstack, size); memset (bb->aux, 0, size); } /* Initialize the block_aux_obstack and if SIZE is nonzero, call alloc_aux_for_block for each basic block. */ void alloc_aux_for_blocks (int size) { static int initialized; if (!initialized) { gcc_obstack_init (&block_aux_obstack); initialized = 1; } else /* Check whether AUX data are still allocated. */ gcc_assert (!first_block_aux_obj); first_block_aux_obj = obstack_alloc (&block_aux_obstack, 0); if (size) { basic_block bb; FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb) alloc_aux_for_block (bb, size); } } /* Clear AUX pointers of all blocks. */ void clear_aux_for_blocks (void) { basic_block bb; FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb) bb->aux = NULL; } /* Free data allocated in block_aux_obstack and clear AUX pointers of all blocks. */ void free_aux_for_blocks (void) { gcc_assert (first_block_aux_obj); obstack_free (&block_aux_obstack, first_block_aux_obj); first_block_aux_obj = NULL; clear_aux_for_blocks (); } /* Allocate a memory edge of SIZE as BB->aux. The obstack must be first initialized by alloc_aux_for_edges. */ inline void alloc_aux_for_edge (edge e, int size) { /* Verify that aux field is clear. */ gcc_assert (!e->aux && first_edge_aux_obj); e->aux = obstack_alloc (&edge_aux_obstack, size); memset (e->aux, 0, size); } /* Initialize the edge_aux_obstack and if SIZE is nonzero, call alloc_aux_for_edge for each basic edge. */ void alloc_aux_for_edges (int size) { static int initialized; if (!initialized) { gcc_obstack_init (&edge_aux_obstack); initialized = 1; } else /* Check whether AUX data are still allocated. */ gcc_assert (!first_edge_aux_obj); first_edge_aux_obj = obstack_alloc (&edge_aux_obstack, 0); if (size) { basic_block bb; FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb) { edge e; edge_iterator ei; FOR_EACH_EDGE (e, ei, bb->succs) alloc_aux_for_edge (e, size); } } } /* Clear AUX pointers of all edges. */ void clear_aux_for_edges (void) { basic_block bb; edge e; FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb) { edge_iterator ei; FOR_EACH_EDGE (e, ei, bb->succs) e->aux = NULL; } } /* Free data allocated in edge_aux_obstack and clear AUX pointers of all edges. */ void free_aux_for_edges (void) { gcc_assert (first_edge_aux_obj); obstack_free (&edge_aux_obstack, first_edge_aux_obj); first_edge_aux_obj = NULL; clear_aux_for_edges (); } void debug_bb (basic_block bb) { dump_bb (bb, stderr, 0); } basic_block debug_bb_n (int n) { basic_block bb = BASIC_BLOCK (n); dump_bb (bb, stderr, 0); return bb; } /* Dumps cfg related information about basic block BB to FILE. */ static void dump_cfg_bb_info (FILE *file, basic_block bb) { unsigned i; edge_iterator ei; bool first = true; static const char * const bb_bitnames[] = { "dirty", "new", "reachable", "visited", "irreducible_loop", "superblock" }; const unsigned n_bitnames = sizeof (bb_bitnames) / sizeof (char *); edge e; fprintf (file, "Basic block %d", bb->index); for (i = 0; i < n_bitnames; i++) if (bb->flags & (1 << i)) { if (first) fprintf (file, " ("); else fprintf (file, ", "); first = false; fprintf (file, bb_bitnames[i]); } if (!first) fprintf (file, ")"); fprintf (file, "\n"); fprintf (file, "Predecessors: "); FOR_EACH_EDGE (e, ei, bb->preds) dump_edge_info (file, e, 0); fprintf (file, "\nSuccessors: "); FOR_EACH_EDGE (e, ei, bb->succs) dump_edge_info (file, e, 1); fprintf (file, "\n\n"); } /* Dumps a brief description of cfg to FILE. */ void brief_dump_cfg (FILE *file) { basic_block bb; FOR_EACH_BB (bb) { dump_cfg_bb_info (file, bb); } } /* An edge originally destinating BB of FREQUENCY and COUNT has been proved to leave the block by TAKEN_EDGE. Update profile of BB such that edge E can be redirected to destination of TAKEN_EDGE. This function may leave the profile inconsistent in the case TAKEN_EDGE frequency or count is believed to be lower than FREQUENCY or COUNT respectively. */ void update_bb_profile_for_threading (basic_block bb, int edge_frequency, gcov_type count, edge taken_edge) { edge c; int prob; edge_iterator ei; bb->count -= count; if (bb->count < 0) bb->count = 0; /* Compute the probability of TAKEN_EDGE being reached via threaded edge. Watch for overflows. */ if (bb->frequency) prob = edge_frequency * REG_BR_PROB_BASE / bb->frequency; else prob = 0; if (prob > taken_edge->probability) { if (dump_file) fprintf (dump_file, "Jump threading proved probability of edge " "%i->%i too small (it is %i, should be %i).\n", taken_edge->src->index, taken_edge->dest->index, taken_edge->probability, prob); prob = taken_edge->probability; } /* Now rescale the probabilities. */ taken_edge->probability -= prob; prob = REG_BR_PROB_BASE - prob; bb->frequency -= edge_frequency; if (bb->frequency < 0) bb->frequency = 0; if (prob <= 0) { if (dump_file) fprintf (dump_file, "Edge frequencies of bb %i has been reset, " "frequency of block should end up being 0, it is %i\n", bb->index, bb->frequency); EDGE_SUCC (bb, 0)->probability = REG_BR_PROB_BASE; ei = ei_start (bb->succs); ei_next (&ei); for (; (c = ei_safe_edge (ei)); ei_next (&ei)) c->probability = 0; } else FOR_EACH_EDGE (c, ei, bb->succs) c->probability = ((c->probability * REG_BR_PROB_BASE) / (double) prob); if (bb != taken_edge->src) abort (); taken_edge->count -= count; if (taken_edge->count < 0) taken_edge->count = 0; }