;; ARM Cortex-A9 pipeline description ;; Copyright (C) 2008-2013 Free Software Foundation, Inc. ;; Originally written by CodeSourcery for VFP. ;; ;; Rewritten by Ramana Radhakrishnan ;; Integer Pipeline description contributed by ARM Ltd. ;; VFP Pipeline description rewritten and contributed by ARM Ltd. ;; This file is part of GCC. ;; ;; GCC is free software; you can redistribute it and/or modify it ;; under the terms of the GNU General Public License as published by ;; the Free Software Foundation; either version 3, or (at your option) ;; any later version. ;; ;; GCC is distributed in the hope that it will be useful, but ;; WITHOUT ANY WARRANTY; without even the implied warranty of ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ;; General Public License for more details. ;; ;; You should have received a copy of the GNU General Public License ;; along with GCC; see the file COPYING3. If not see ;; . (define_automaton "cortex_a9") ;; The Cortex-A9 core is modelled as a dual issue pipeline that has ;; the following components. ;; 1. 1 Load Store Pipeline. ;; 2. P0 / main pipeline for data processing instructions. ;; 3. P1 / Dual pipeline for Data processing instructions. ;; 4. MAC pipeline for multiply as well as multiply ;; and accumulate instructions. ;; 5. 1 VFP and an optional Neon unit. ;; The Load/Store, VFP and Neon issue pipeline are multiplexed. ;; The P0 / main pipeline and M1 stage of the MAC pipeline are ;; multiplexed. ;; The P1 / dual pipeline and M2 stage of the MAC pipeline are ;; multiplexed. ;; There are only 4 integer register read ports and hence at any point of ;; time we can't have issue down the E1 and the E2 ports unless ;; of course there are bypass paths that get exercised. ;; Both P0 and P1 have 2 stages E1 and E2. ;; Data processing instructions issue to E1 or E2 depending on ;; whether they have an early shift or not. (define_cpu_unit "ca9_issue_vfp_neon, cortex_a9_ls" "cortex_a9") (define_cpu_unit "cortex_a9_p0_e1, cortex_a9_p0_e2" "cortex_a9") (define_cpu_unit "cortex_a9_p1_e1, cortex_a9_p1_e2" "cortex_a9") (define_cpu_unit "cortex_a9_p0_wb, cortex_a9_p1_wb" "cortex_a9") (define_cpu_unit "cortex_a9_mac_m1, cortex_a9_mac_m2" "cortex_a9") (define_cpu_unit "cortex_a9_branch, cortex_a9_issue_branch" "cortex_a9") (define_reservation "cortex_a9_p0_default" "cortex_a9_p0_e2, cortex_a9_p0_wb") (define_reservation "cortex_a9_p1_default" "cortex_a9_p1_e2, cortex_a9_p1_wb") (define_reservation "cortex_a9_p0_shift" "cortex_a9_p0_e1, cortex_a9_p0_default") (define_reservation "cortex_a9_p1_shift" "cortex_a9_p1_e1, cortex_a9_p1_default") (define_reservation "cortex_a9_multcycle1" "cortex_a9_p0_e2 + cortex_a9_mac_m1 + cortex_a9_mac_m2 + \ cortex_a9_p1_e2 + cortex_a9_p0_e1 + cortex_a9_p1_e1") (define_reservation "cortex_a9_mult16" "cortex_a9_mac_m1, cortex_a9_mac_m2, cortex_a9_p0_wb") (define_reservation "cortex_a9_mac16" "cortex_a9_multcycle1, cortex_a9_mac_m2, cortex_a9_p0_wb") (define_reservation "cortex_a9_mult" "cortex_a9_mac_m1*2, cortex_a9_mac_m2, cortex_a9_p0_wb") (define_reservation "cortex_a9_mac" "cortex_a9_multcycle1*2 ,cortex_a9_mac_m2, cortex_a9_p0_wb") (define_reservation "cortex_a9_mult_long" "cortex_a9_mac_m1*3, cortex_a9_mac_m2, cortex_a9_p0_wb") ;; Issue at the same time along the load store pipeline and ;; the VFP / Neon pipeline is not possible. (exclusion_set "cortex_a9_ls" "ca9_issue_vfp_neon") ;; Default data processing instruction without any shift ;; The only exception to this is the mov instruction ;; which can go down E2 without any problem. (define_insn_reservation "cortex_a9_dp" 2 (and (eq_attr "tune" "cortexa9") (and (eq_attr "type" "arlo_imm,arlo_reg,shift,shift_reg,\ mov_imm,mov_reg,mvn_imm,mvn_reg,\ mov_shift_reg,mov_shift") (eq_attr "neon_type" "none"))) "cortex_a9_p0_default|cortex_a9_p1_default") ;; An instruction using the shifter will go down E1. (define_insn_reservation "cortex_a9_dp_shift" 3 (and (eq_attr "tune" "cortexa9") (eq_attr "type" "arlo_shift_reg,extend,arlo_shift,\ mvn_shift,mvn_shift_reg")) "cortex_a9_p0_shift | cortex_a9_p1_shift") ;; Loads have a latency of 4 cycles. ;; We don't model autoincrement instructions. These ;; instructions use the load store pipeline and 1 of ;; the E2 units to write back the result of the increment. (define_insn_reservation "cortex_a9_load1_2" 4 (and (eq_attr "tune" "cortexa9") (eq_attr "type" "load1, load2, load_byte, f_loads, f_loadd")) "cortex_a9_ls") ;; Loads multiples and store multiples can't be issued for 2 cycles in a ;; row. The description below assumes that addresses are 64 bit aligned. ;; If not, there is an extra cycle latency which is not modelled. (define_insn_reservation "cortex_a9_load3_4" 5 (and (eq_attr "tune" "cortexa9") (eq_attr "type" "load3, load4")) "cortex_a9_ls, cortex_a9_ls") (define_insn_reservation "cortex_a9_store1_2" 0 (and (eq_attr "tune" "cortexa9") (eq_attr "type" "store1, store2, f_stores, f_stored")) "cortex_a9_ls") ;; Almost all our store multiples use an auto-increment ;; form. Don't issue back to back load and store multiples ;; because the load store unit will stall. (define_insn_reservation "cortex_a9_store3_4" 0 (and (eq_attr "tune" "cortexa9") (eq_attr "type" "store3, store4")) "cortex_a9_ls+(cortex_a9_p0_default | cortex_a9_p1_default), cortex_a9_ls") ;; We get 16*16 multiply / mac results in 3 cycles. (define_insn_reservation "cortex_a9_mult16" 3 (and (eq_attr "tune" "cortexa9") (eq_attr "type" "smulxy")) "cortex_a9_mult16") ;; The 16*16 mac is slightly different that it ;; reserves M1 and M2 in the same cycle. (define_insn_reservation "cortex_a9_mac16" 3 (and (eq_attr "tune" "cortexa9") (eq_attr "type" "smlaxy")) "cortex_a9_mac16") (define_insn_reservation "cortex_a9_multiply" 4 (and (eq_attr "tune" "cortexa9") (eq_attr "type" "mul,smmul,smmulr")) "cortex_a9_mult") (define_insn_reservation "cortex_a9_mac" 4 (and (eq_attr "tune" "cortexa9") (eq_attr "type" "mla,smmla")) "cortex_a9_mac") (define_insn_reservation "cortex_a9_multiply_long" 5 (and (eq_attr "tune" "cortexa9") (eq_attr "type" "smull,umull,smulls,umulls,smlal,smlals,umlal,umlals")) "cortex_a9_mult_long") ;; An instruction with a result in E2 can be forwarded ;; to E2 or E1 or M1 or the load store unit in the next cycle. (define_bypass 1 "cortex_a9_dp" "cortex_a9_dp_shift, cortex_a9_multiply, cortex_a9_load1_2, cortex_a9_dp, cortex_a9_store1_2, cortex_a9_mult16, cortex_a9_mac16, cortex_a9_mac, cortex_a9_store3_4, cortex_a9_load3_4, cortex_a9_multiply_long") (define_bypass 2 "cortex_a9_dp_shift" "cortex_a9_dp_shift, cortex_a9_multiply, cortex_a9_load1_2, cortex_a9_dp, cortex_a9_store1_2, cortex_a9_mult16, cortex_a9_mac16, cortex_a9_mac, cortex_a9_store3_4, cortex_a9_load3_4, cortex_a9_multiply_long") ;; An instruction in the load store pipeline can provide ;; read access to a DP instruction in the P0 default pipeline ;; before the writeback stage. (define_bypass 3 "cortex_a9_load1_2" "cortex_a9_dp, cortex_a9_load1_2, cortex_a9_store3_4, cortex_a9_store1_2") (define_bypass 4 "cortex_a9_load3_4" "cortex_a9_dp, cortex_a9_load1_2, cortex_a9_store3_4, cortex_a9_store1_2, cortex_a9_load3_4") ;; Calls and branches. ;; Branch instructions (define_insn_reservation "cortex_a9_branch" 0 (and (eq_attr "tune" "cortexa9") (eq_attr "type" "branch")) "cortex_a9_branch") ;; Call latencies are essentially 0 but make sure ;; dual issue doesn't happen i.e the next instruction ;; starts at the next cycle. (define_insn_reservation "cortex_a9_call" 0 (and (eq_attr "tune" "cortexa9") (eq_attr "type" "call")) "cortex_a9_issue_branch + cortex_a9_multcycle1 + cortex_a9_ls + ca9_issue_vfp_neon") ;; Pipelining for VFP instructions. ;; Issue happens either along load store unit or the VFP / Neon unit. ;; Pipeline Instruction Classification. ;; FPS - fcpys, ffariths, ffarithd,r_2_f,f_2_r ;; FP_ADD - fadds, faddd, fcmps (1) ;; FPMUL - fmul{s,d}, fmac{s,d}, ffma{s,d} ;; FPDIV - fdiv{s,d} (define_cpu_unit "ca9fps" "cortex_a9") (define_cpu_unit "ca9fp_add1, ca9fp_add2, ca9fp_add3, ca9fp_add4" "cortex_a9") (define_cpu_unit "ca9fp_mul1, ca9fp_mul2 , ca9fp_mul3, ca9fp_mul4" "cortex_a9") (define_cpu_unit "ca9fp_ds1" "cortex_a9") ;; fmrs, fmrrd, fmstat and fmrx - The data is available after 1 cycle. (define_insn_reservation "cortex_a9_fps" 2 (and (eq_attr "tune" "cortexa9") (eq_attr "type" "fcpys, fconsts, fconstd, ffariths, ffarithd, r_2_f, f_2_r, f_flag")) "ca9_issue_vfp_neon + ca9fps") (define_bypass 1 "cortex_a9_fps" "cortex_a9_fadd, cortex_a9_fps, cortex_a9_fcmp, cortex_a9_dp, cortex_a9_dp_shift, cortex_a9_multiply, cortex_a9_multiply_long") ;; Scheduling on the FP_ADD pipeline. (define_reservation "ca9fp_add" "ca9_issue_vfp_neon + ca9fp_add1, ca9fp_add2, ca9fp_add3, ca9fp_add4") (define_insn_reservation "cortex_a9_fadd" 4 (and (eq_attr "tune" "cortexa9") (eq_attr "type" "fadds, faddd, f_cvt")) "ca9fp_add") (define_insn_reservation "cortex_a9_fcmp" 1 (and (eq_attr "tune" "cortexa9") (eq_attr "type" "fcmps, fcmpd")) "ca9_issue_vfp_neon + ca9fp_add1") ;; Scheduling for the Multiply and MAC instructions. (define_reservation "ca9fmuls" "ca9fp_mul1 + ca9_issue_vfp_neon, ca9fp_mul2, ca9fp_mul3, ca9fp_mul4") (define_reservation "ca9fmuld" "ca9fp_mul1 + ca9_issue_vfp_neon, (ca9fp_mul1 + ca9fp_mul2), ca9fp_mul2, ca9fp_mul3, ca9fp_mul4") (define_insn_reservation "cortex_a9_fmuls" 4 (and (eq_attr "tune" "cortexa9") (eq_attr "type" "fmuls")) "ca9fmuls") (define_insn_reservation "cortex_a9_fmuld" 5 (and (eq_attr "tune" "cortexa9") (eq_attr "type" "fmuld")) "ca9fmuld") (define_insn_reservation "cortex_a9_fmacs" 8 (and (eq_attr "tune" "cortexa9") (eq_attr "type" "fmacs,ffmas")) "ca9fmuls, ca9fp_add") (define_insn_reservation "cortex_a9_fmacd" 9 (and (eq_attr "tune" "cortexa9") (eq_attr "type" "fmacd,ffmad")) "ca9fmuld, ca9fp_add") ;; Division pipeline description. (define_insn_reservation "cortex_a9_fdivs" 15 (and (eq_attr "tune" "cortexa9") (eq_attr "type" "fdivs")) "ca9fp_ds1 + ca9_issue_vfp_neon, nothing*14") (define_insn_reservation "cortex_a9_fdivd" 25 (and (eq_attr "tune" "cortexa9") (eq_attr "type" "fdivd")) "ca9fp_ds1 + ca9_issue_vfp_neon, nothing*24") ;; Include Neon pipeline description (include "cortex-a9-neon.md")