@ libgcc routines for ARM cpu. @ Division routines, written by Richard Earnshaw, (rearnsha@armltd.co.uk) /* Copyright 1995, 1996, 1998, 1999, 2000, 2003, 2004 Free Software Foundation, Inc. This file is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. In addition to the permissions in the GNU General Public License, the Free Software Foundation gives you unlimited permission to link the compiled version of this file into combinations with other programs, and to distribute those combinations without any restriction coming from the use of this file. (The General Public License restrictions do apply in other respects; for example, they cover modification of the file, and distribution when not linked into a combine executable.) This file is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* ------------------------------------------------------------------------ */ /* We need to know what prefix to add to function names. */ #ifndef __USER_LABEL_PREFIX__ #error __USER_LABEL_PREFIX__ not defined #endif /* ANSI concatenation macros. */ #define CONCAT1(a, b) CONCAT2(a, b) #define CONCAT2(a, b) a ## b /* Use the right prefix for global labels. */ #define SYM(x) CONCAT1 (__USER_LABEL_PREFIX__, x) #ifdef __ELF__ #ifdef __thumb__ #define __PLT__ /* Not supported in Thumb assembler (for now). */ #else #define __PLT__ (PLT) #endif #define TYPE(x) .type SYM(x),function #define SIZE(x) .size SYM(x), . - SYM(x) #define LSYM(x) .x #else #define __PLT__ #define TYPE(x) #define SIZE(x) #define LSYM(x) x #endif /* Function end macros. Variants for interworking. */ @ This selects the minimum architecture level required. #define __ARM_ARCH__ 3 #if defined(__ARM_ARCH_3M__) || defined(__ARM_ARCH_4__) \ || defined(__ARM_ARCH_4T__) /* We use __ARM_ARCH__ set to 4 here, but in reality it's any processor with long multiply instructions. That includes v3M. */ # undef __ARM_ARCH__ # define __ARM_ARCH__ 4 #endif #if defined(__ARM_ARCH_5__) || defined(__ARM_ARCH_5T__) \ || defined(__ARM_ARCH_5E__) || defined(__ARM_ARCH_5TE__) \ || defined(__ARM_ARCH_5TEJ__) # undef __ARM_ARCH__ # define __ARM_ARCH__ 5 #endif #if defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) # undef __ARM_ARCH__ # define __ARM_ARCH__ 6 #endif /* How to return from a function call depends on the architecture variant. */ #if (__ARM_ARCH__ > 4) || defined(__ARM_ARCH_4T__) # define RET bx lr # define RETc(x) bx##x lr # if (__ARM_ARCH__ == 4) \ && (defined(__thumb__) || defined(__THUMB_INTERWORK__)) # define __INTERWORKING__ # endif #else # define RET mov pc, lr # define RETc(x) mov##x pc, lr #endif /* Don't pass dirn, it's there just to get token pasting right. */ .macro RETLDM regs=, cond=, dirn=ia #if defined (__INTERWORKING__) .ifc "\regs","" ldr\cond lr, [sp], #4 .else ldm\cond\dirn sp!, {\regs, lr} .endif bx\cond lr #else .ifc "\regs","" ldr\cond pc, [sp], #4 .else ldm\cond\dirn sp!, {\regs, pc} .endif #endif .endm .macro ARM_LDIV0 LSYM(Ldiv0): str lr, [sp, #-4]! bl SYM (__div0) __PLT__ mov r0, #0 @ About as wrong as it could be. RETLDM .endm .macro THUMB_LDIV0 LSYM(Ldiv0): push { lr } bl SYM (__div0) mov r0, #0 @ About as wrong as it could be. #if defined (__INTERWORKING__) pop { r1 } bx r1 #else pop { pc } #endif .endm .macro FUNC_END name SIZE (__\name) .endm .macro DIV_FUNC_END name LSYM(Ldiv0): #ifdef __thumb__ THUMB_LDIV0 #else ARM_LDIV0 #endif FUNC_END \name .endm .macro THUMB_FUNC_START name .globl SYM (\name) TYPE (\name) .thumb_func SYM (\name): .endm /* Function start macros. Variants for ARM and Thumb. */ #ifdef __thumb__ #define THUMB_FUNC .thumb_func #define THUMB_CODE .force_thumb #else #define THUMB_FUNC #define THUMB_CODE #endif .macro FUNC_START name .text .globl SYM (__\name) TYPE (__\name) .align 0 THUMB_CODE THUMB_FUNC SYM (__\name): .endm /* Special function that will always be coded in ARM assembly, even if in Thumb-only compilation. */ #if defined(__thumb__) && !defined(__THUMB_INTERWORK__) .macro ARM_FUNC_START name FUNC_START \name bx pc nop .arm /* A hook to tell gdb that we've switched to ARM mode. Also used to call directly from other local arm routines. */ _L__\name: .endm #define EQUIV .thumb_set /* Branch directly to a function declared with ARM_FUNC_START. Must be called in arm mode. */ .macro ARM_CALL name bl _L__\name .endm #else .macro ARM_FUNC_START name .text .globl SYM (__\name) TYPE (__\name) .align 0 .arm SYM (__\name): .endm #define EQUIV .set .macro ARM_CALL name bl __\name .endm #endif .macro ARM_FUNC_ALIAS new old .globl SYM (__\new) EQUIV SYM (__\new), SYM (__\old) #ifdef __thumb__ .set SYM (_L__\new), SYM (_L__\old) #endif .endm #ifdef __thumb__ /* Register aliases. */ work .req r4 @ XXXX is this safe ? dividend .req r0 divisor .req r1 overdone .req r2 result .req r2 curbit .req r3 #endif #if 0 ip .req r12 sp .req r13 lr .req r14 pc .req r15 #endif /* ------------------------------------------------------------------------ */ /* Bodies of the division and modulo routines. */ /* ------------------------------------------------------------------------ */ .macro ARM_DIV_BODY dividend, divisor, result, curbit #if __ARM_ARCH__ >= 5 && ! defined (__OPTIMIZE_SIZE__) clz \curbit, \dividend clz \result, \divisor sub \curbit, \result, \curbit rsbs \curbit, \curbit, #31 addne \curbit, \curbit, \curbit, lsl #1 mov \result, #0 addne pc, pc, \curbit, lsl #2 nop .set shift, 32 .rept 32 .set shift, shift - 1 cmp \dividend, \divisor, lsl #shift adc \result, \result, \result subcs \dividend, \dividend, \divisor, lsl #shift .endr #else /* __ARM_ARCH__ < 5 || defined (__OPTIMIZE_SIZE__) */ #if __ARM_ARCH__ >= 5 clz \curbit, \divisor clz \result, \dividend sub \result, \curbit, \result mov \curbit, #1 mov \divisor, \divisor, lsl \result mov \curbit, \curbit, lsl \result mov \result, #0 #else /* __ARM_ARCH__ < 5 */ @ Initially shift the divisor left 3 bits if possible, @ set curbit accordingly. This allows for curbit to be located @ at the left end of each 4 bit nibbles in the division loop @ to save one loop in most cases. tst \divisor, #0xe0000000 moveq \divisor, \divisor, lsl #3 moveq \curbit, #8 movne \curbit, #1 @ Unless the divisor is very big, shift it up in multiples of @ four bits, since this is the amount of unwinding in the main @ division loop. Continue shifting until the divisor is @ larger than the dividend. 1: cmp \divisor, #0x10000000 cmplo \divisor, \dividend movlo \divisor, \divisor, lsl #4 movlo \curbit, \curbit, lsl #4 blo 1b @ For very big divisors, we must shift it a bit at a time, or @ we will be in danger of overflowing. 1: cmp \divisor, #0x80000000 cmplo \divisor, \dividend movlo \divisor, \divisor, lsl #1 movlo \curbit, \curbit, lsl #1 blo 1b mov \result, #0 #endif /* __ARM_ARCH__ < 5 */ @ Division loop 1: cmp \dividend, \divisor subhs \dividend, \dividend, \divisor orrhs \result, \result, \curbit cmp \dividend, \divisor, lsr #1 subhs \dividend, \dividend, \divisor, lsr #1 orrhs \result, \result, \curbit, lsr #1 cmp \dividend, \divisor, lsr #2 subhs \dividend, \dividend, \divisor, lsr #2 orrhs \result, \result, \curbit, lsr #2 cmp \dividend, \divisor, lsr #3 subhs \dividend, \dividend, \divisor, lsr #3 orrhs \result, \result, \curbit, lsr #3 cmp \dividend, #0 @ Early termination? movnes \curbit, \curbit, lsr #4 @ No, any more bits to do? movne \divisor, \divisor, lsr #4 bne 1b #endif /* __ARM_ARCH__ < 5 || defined (__OPTIMIZE_SIZE__) */ .endm /* ------------------------------------------------------------------------ */ .macro ARM_DIV2_ORDER divisor, order #if __ARM_ARCH__ >= 5 clz \order, \divisor rsb \order, \order, #31 #else cmp \divisor, #(1 << 16) movhs \divisor, \divisor, lsr #16 movhs \order, #16 movlo \order, #0 cmp \divisor, #(1 << 8) movhs \divisor, \divisor, lsr #8 addhs \order, \order, #8 cmp \divisor, #(1 << 4) movhs \divisor, \divisor, lsr #4 addhs \order, \order, #4 cmp \divisor, #(1 << 2) addhi \order, \order, #3 addls \order, \order, \divisor, lsr #1 #endif .endm /* ------------------------------------------------------------------------ */ .macro ARM_MOD_BODY dividend, divisor, order, spare #if __ARM_ARCH__ >= 5 && ! defined (__OPTIMIZE_SIZE__) clz \order, \divisor clz \spare, \dividend sub \order, \order, \spare rsbs \order, \order, #31 addne pc, pc, \order, lsl #3 nop .set shift, 32 .rept 32 .set shift, shift - 1 cmp \dividend, \divisor, lsl #shift subcs \dividend, \dividend, \divisor, lsl #shift .endr #else /* __ARM_ARCH__ < 5 || defined (__OPTIMIZE_SIZE__) */ #if __ARM_ARCH__ >= 5 clz \order, \divisor clz \spare, \dividend sub \order, \order, \spare mov \divisor, \divisor, lsl \order #else /* __ARM_ARCH__ < 5 */ mov \order, #0 @ Unless the divisor is very big, shift it up in multiples of @ four bits, since this is the amount of unwinding in the main @ division loop. Continue shifting until the divisor is @ larger than the dividend. 1: cmp \divisor, #0x10000000 cmplo \divisor, \dividend movlo \divisor, \divisor, lsl #4 addlo \order, \order, #4 blo 1b @ For very big divisors, we must shift it a bit at a time, or @ we will be in danger of overflowing. 1: cmp \divisor, #0x80000000 cmplo \divisor, \dividend movlo \divisor, \divisor, lsl #1 addlo \order, \order, #1 blo 1b #endif /* __ARM_ARCH__ < 5 */ @ Perform all needed substractions to keep only the reminder. @ Do comparisons in batch of 4 first. subs \order, \order, #3 @ yes, 3 is intended here blt 2f 1: cmp \dividend, \divisor subhs \dividend, \dividend, \divisor cmp \dividend, \divisor, lsr #1 subhs \dividend, \dividend, \divisor, lsr #1 cmp \dividend, \divisor, lsr #2 subhs \dividend, \dividend, \divisor, lsr #2 cmp \dividend, \divisor, lsr #3 subhs \dividend, \dividend, \divisor, lsr #3 cmp \dividend, #1 mov \divisor, \divisor, lsr #4 subges \order, \order, #4 bge 1b tst \order, #3 teqne \dividend, #0 beq 5f @ Either 1, 2 or 3 comparison/substractions are left. 2: cmn \order, #2 blt 4f beq 3f cmp \dividend, \divisor subhs \dividend, \dividend, \divisor mov \divisor, \divisor, lsr #1 3: cmp \dividend, \divisor subhs \dividend, \dividend, \divisor mov \divisor, \divisor, lsr #1 4: cmp \dividend, \divisor subhs \dividend, \dividend, \divisor 5: #endif /* __ARM_ARCH__ < 5 || defined (__OPTIMIZE_SIZE__) */ .endm /* ------------------------------------------------------------------------ */ .macro THUMB_DIV_MOD_BODY modulo @ Load the constant 0x10000000 into our work register. mov work, #1 lsl work, #28 LSYM(Loop1): @ Unless the divisor is very big, shift it up in multiples of @ four bits, since this is the amount of unwinding in the main @ division loop. Continue shifting until the divisor is @ larger than the dividend. cmp divisor, work bhs LSYM(Lbignum) cmp divisor, dividend bhs LSYM(Lbignum) lsl divisor, #4 lsl curbit, #4 b LSYM(Loop1) LSYM(Lbignum): @ Set work to 0x80000000 lsl work, #3 LSYM(Loop2): @ For very big divisors, we must shift it a bit at a time, or @ we will be in danger of overflowing. cmp divisor, work bhs LSYM(Loop3) cmp divisor, dividend bhs LSYM(Loop3) lsl divisor, #1 lsl curbit, #1 b LSYM(Loop2) LSYM(Loop3): @ Test for possible subtractions ... .if \modulo @ ... On the final pass, this may subtract too much from the dividend, @ so keep track of which subtractions are done, we can fix them up @ afterwards. mov overdone, #0 cmp dividend, divisor blo LSYM(Lover1) sub dividend, dividend, divisor LSYM(Lover1): lsr work, divisor, #1 cmp dividend, work blo LSYM(Lover2) sub dividend, dividend, work mov ip, curbit mov work, #1 ror curbit, work orr overdone, curbit mov curbit, ip LSYM(Lover2): lsr work, divisor, #2 cmp dividend, work blo LSYM(Lover3) sub dividend, dividend, work mov ip, curbit mov work, #2 ror curbit, work orr overdone, curbit mov curbit, ip LSYM(Lover3): lsr work, divisor, #3 cmp dividend, work blo LSYM(Lover4) sub dividend, dividend, work mov ip, curbit mov work, #3 ror curbit, work orr overdone, curbit mov curbit, ip LSYM(Lover4): mov ip, curbit .else @ ... and note which bits are done in the result. On the final pass, @ this may subtract too much from the dividend, but the result will be ok, @ since the "bit" will have been shifted out at the bottom. cmp dividend, divisor blo LSYM(Lover1) sub dividend, dividend, divisor orr result, result, curbit LSYM(Lover1): lsr work, divisor, #1 cmp dividend, work blo LSYM(Lover2) sub dividend, dividend, work lsr work, curbit, #1 orr result, work LSYM(Lover2): lsr work, divisor, #2 cmp dividend, work blo LSYM(Lover3) sub dividend, dividend, work lsr work, curbit, #2 orr result, work LSYM(Lover3): lsr work, divisor, #3 cmp dividend, work blo LSYM(Lover4) sub dividend, dividend, work lsr work, curbit, #3 orr result, work LSYM(Lover4): .endif cmp dividend, #0 @ Early termination? beq LSYM(Lover5) lsr curbit, #4 @ No, any more bits to do? beq LSYM(Lover5) lsr divisor, #4 b LSYM(Loop3) LSYM(Lover5): .if \modulo @ Any subtractions that we should not have done will be recorded in @ the top three bits of "overdone". Exactly which were not needed @ are governed by the position of the bit, stored in ip. mov work, #0xe lsl work, #28 and overdone, work beq LSYM(Lgot_result) @ If we terminated early, because dividend became zero, then the @ bit in ip will not be in the bottom nibble, and we should not @ perform the additions below. We must test for this though @ (rather relying upon the TSTs to prevent the additions) since @ the bit in ip could be in the top two bits which might then match @ with one of the smaller RORs. mov curbit, ip mov work, #0x7 tst curbit, work beq LSYM(Lgot_result) mov curbit, ip mov work, #3 ror curbit, work tst overdone, curbit beq LSYM(Lover6) lsr work, divisor, #3 add dividend, work LSYM(Lover6): mov curbit, ip mov work, #2 ror curbit, work tst overdone, curbit beq LSYM(Lover7) lsr work, divisor, #2 add dividend, work LSYM(Lover7): mov curbit, ip mov work, #1 ror curbit, work tst overdone, curbit beq LSYM(Lgot_result) lsr work, divisor, #1 add dividend, work .endif LSYM(Lgot_result): .endm /* ------------------------------------------------------------------------ */ /* Start of the Real Functions */ /* ------------------------------------------------------------------------ */ #ifdef L_udivsi3 FUNC_START udivsi3 #ifdef __thumb__ cmp divisor, #0 beq LSYM(Ldiv0) mov curbit, #1 mov result, #0 push { work } cmp dividend, divisor blo LSYM(Lgot_result) THUMB_DIV_MOD_BODY 0 mov r0, result pop { work } RET #else /* ARM version. */ subs r2, r1, #1 RETc(eq) bcc LSYM(Ldiv0) cmp r0, r1 bls 11f tst r1, r2 beq 12f ARM_DIV_BODY r0, r1, r2, r3 mov r0, r2 RET 11: moveq r0, #1 movne r0, #0 RET 12: ARM_DIV2_ORDER r1, r2 mov r0, r0, lsr r2 RET #endif /* ARM version */ DIV_FUNC_END udivsi3 FUNC_START aeabi_uidivmod #ifdef __thumb__ push {r0, r1, lr} bl SYM(__udivsi3) POP {r1, r2, r3} mul r2, r0 sub r1, r1, r2 bx r3 #else stmfd sp!, { r0, r1, lr } bl SYM(__udivsi3) ldmfd sp!, { r1, r2, lr } mul r3, r2, r0 sub r1, r1, r3 RET #endif FUNC_END aeabi_uidivmod #endif /* L_udivsi3 */ /* ------------------------------------------------------------------------ */ #ifdef L_umodsi3 FUNC_START umodsi3 #ifdef __thumb__ cmp divisor, #0 beq LSYM(Ldiv0) mov curbit, #1 cmp dividend, divisor bhs LSYM(Lover10) RET LSYM(Lover10): push { work } THUMB_DIV_MOD_BODY 1 pop { work } RET #else /* ARM version. */ subs r2, r1, #1 @ compare divisor with 1 bcc LSYM(Ldiv0) cmpne r0, r1 @ compare dividend with divisor moveq r0, #0 tsthi r1, r2 @ see if divisor is power of 2 andeq r0, r0, r2 RETc(ls) ARM_MOD_BODY r0, r1, r2, r3 RET #endif /* ARM version. */ DIV_FUNC_END umodsi3 #endif /* L_umodsi3 */ /* ------------------------------------------------------------------------ */ #ifdef L_divsi3 FUNC_START divsi3 #ifdef __thumb__ cmp divisor, #0 beq LSYM(Ldiv0) push { work } mov work, dividend eor work, divisor @ Save the sign of the result. mov ip, work mov curbit, #1 mov result, #0 cmp divisor, #0 bpl LSYM(Lover10) neg divisor, divisor @ Loops below use unsigned. LSYM(Lover10): cmp dividend, #0 bpl LSYM(Lover11) neg dividend, dividend LSYM(Lover11): cmp dividend, divisor blo LSYM(Lgot_result) THUMB_DIV_MOD_BODY 0 mov r0, result mov work, ip cmp work, #0 bpl LSYM(Lover12) neg r0, r0 LSYM(Lover12): pop { work } RET #else /* ARM version. */ cmp r1, #0 eor ip, r0, r1 @ save the sign of the result. beq LSYM(Ldiv0) rsbmi r1, r1, #0 @ loops below use unsigned. subs r2, r1, #1 @ division by 1 or -1 ? beq 10f movs r3, r0 rsbmi r3, r0, #0 @ positive dividend value cmp r3, r1 bls 11f tst r1, r2 @ divisor is power of 2 ? beq 12f ARM_DIV_BODY r3, r1, r0, r2 cmp ip, #0 rsbmi r0, r0, #0 RET 10: teq ip, r0 @ same sign ? rsbmi r0, r0, #0 RET 11: movlo r0, #0 moveq r0, ip, asr #31 orreq r0, r0, #1 RET 12: ARM_DIV2_ORDER r1, r2 cmp ip, #0 mov r0, r3, lsr r2 rsbmi r0, r0, #0 RET #endif /* ARM version */ DIV_FUNC_END divsi3 FUNC_START aeabi_idivmod #ifdef __thumb__ push {r0, r1, lr} bl SYM(__divsi3) POP {r1, r2, r3} mul r2, r0 sub r1, r1, r2 bx r3 #else stmfd sp!, { r0, r1, lr } bl SYM(__divsi3) ldmfd sp!, { r1, r2, lr } mul r3, r2, r0 sub r1, r1, r3 RET #endif FUNC_END aeabi_idivmod #endif /* L_divsi3 */ /* ------------------------------------------------------------------------ */ #ifdef L_modsi3 FUNC_START modsi3 #ifdef __thumb__ mov curbit, #1 cmp divisor, #0 beq LSYM(Ldiv0) bpl LSYM(Lover10) neg divisor, divisor @ Loops below use unsigned. LSYM(Lover10): push { work } @ Need to save the sign of the dividend, unfortunately, we need @ work later on. Must do this after saving the original value of @ the work register, because we will pop this value off first. push { dividend } cmp dividend, #0 bpl LSYM(Lover11) neg dividend, dividend LSYM(Lover11): cmp dividend, divisor blo LSYM(Lgot_result) THUMB_DIV_MOD_BODY 1 pop { work } cmp work, #0 bpl LSYM(Lover12) neg dividend, dividend LSYM(Lover12): pop { work } RET #else /* ARM version. */ cmp r1, #0 beq LSYM(Ldiv0) rsbmi r1, r1, #0 @ loops below use unsigned. movs ip, r0 @ preserve sign of dividend rsbmi r0, r0, #0 @ if negative make positive subs r2, r1, #1 @ compare divisor with 1 cmpne r0, r1 @ compare dividend with divisor moveq r0, #0 tsthi r1, r2 @ see if divisor is power of 2 andeq r0, r0, r2 bls 10f ARM_MOD_BODY r0, r1, r2, r3 10: cmp ip, #0 rsbmi r0, r0, #0 RET #endif /* ARM version */ DIV_FUNC_END modsi3 #endif /* L_modsi3 */ /* ------------------------------------------------------------------------ */ #ifdef L_dvmd_tls FUNC_START div0 ARM_FUNC_ALIAS aeabi_idiv0 div0 ARM_FUNC_ALIAS aeabi_ldiv0 div0 RET FUNC_END aeabi_ldiv0 FUNC_END aeabi_idiv0 FUNC_END div0 #endif /* L_divmodsi_tools */ /* ------------------------------------------------------------------------ */ #ifdef L_dvmd_lnx @ GNU/Linux division-by zero handler. Used in place of L_dvmd_tls /* Constants taken from and */ #define SIGFPE 8 #define __NR_SYSCALL_BASE 0x900000 #define __NR_getpid (__NR_SYSCALL_BASE+ 20) #define __NR_kill (__NR_SYSCALL_BASE+ 37) .code 32 FUNC_START div0 stmfd sp!, {r1, lr} swi __NR_getpid cmn r0, #1000 RETLDM r1 hs mov r1, #SIGFPE swi __NR_kill RETLDM r1 FUNC_END div0 #endif /* L_dvmd_lnx */ /* ------------------------------------------------------------------------ */ /* Dword shift operations. */ /* All the following Dword shift variants rely on the fact that shft xxx, Reg is in fact done as shft xxx, (Reg & 255) so for Reg value in (32...63) and (-1...-31) we will get zero (in the case of logical shifts) or the sign (for asr). */ #ifdef __ARMEB__ #define al r1 #define ah r0 #else #define al r0 #define ah r1 #endif #ifdef L_lshrdi3 FUNC_START lshrdi3 ARM_FUNC_ALIAS aeabi_llsr lshrdi3 #ifdef __thumb__ lsr al, r2 mov r3, ah lsr ah, r2 mov ip, r3 sub r2, #32 lsr r3, r2 orr al, r3 neg r2, r2 mov r3, ip lsl r3, r2 orr al, r3 RET #else subs r3, r2, #32 rsb ip, r2, #32 movmi al, al, lsr r2 movpl al, ah, lsr r3 orrmi al, al, ah, lsl ip mov ah, ah, lsr r2 RET #endif FUNC_END aeabi_llsr FUNC_END lshrdi3 #endif #ifdef L_ashrdi3 FUNC_START ashrdi3 ARM_FUNC_ALIAS aeabi_lasr ashrdi3 #ifdef __thumb__ lsr al, r2 mov r3, ah asr ah, r2 sub r2, #32 @ If r2 is negative at this point the following step would OR @ the sign bit into all of AL. That's not what we want... bmi 1f mov ip, r3 asr r3, r2 orr al, r3 mov r3, ip 1: neg r2, r2 lsl r3, r2 orr al, r3 RET #else subs r3, r2, #32 rsb ip, r2, #32 movmi al, al, lsr r2 movpl al, ah, asr r3 orrmi al, al, ah, lsl ip mov ah, ah, asr r2 RET #endif FUNC_END aeabi_lasr FUNC_END ashrdi3 #endif #ifdef L_ashldi3 FUNC_START ashldi3 ARM_FUNC_ALIAS aeabi_llsl ashldi3 #ifdef __thumb__ lsl ah, r2 mov r3, al lsl al, r2 mov ip, r3 sub r2, #32 lsl r3, r2 orr ah, r3 neg r2, r2 mov r3, ip lsr r3, r2 orr ah, r3 RET #else subs r3, r2, #32 rsb ip, r2, #32 movmi ah, ah, lsl r2 movpl ah, al, lsl r3 orrmi ah, ah, al, lsr ip mov al, al, lsl r2 RET #endif FUNC_END aeabi_llsl FUNC_END ashldi3 #endif /* ------------------------------------------------------------------------ */ /* These next two sections are here despite the fact that they contain Thumb assembler because their presence allows interworked code to be linked even when the GCC library is this one. */ /* Do not build the interworking functions when the target architecture does not support Thumb instructions. (This can be a multilib option). */ #if defined __ARM_ARCH_4T__ || defined __ARM_ARCH_5T__\ || defined __ARM_ARCH_5TE__ || defined __ARM_ARCH_5TEJ__ \ || __ARM_ARCH__ >= 6 #if defined L_call_via_rX /* These labels & instructions are used by the Arm/Thumb interworking code. The address of function to be called is loaded into a register and then one of these labels is called via a BL instruction. This puts the return address into the link register with the bottom bit set, and the code here switches to the correct mode before executing the function. */ .text .align 0 .force_thumb .macro call_via register THUMB_FUNC_START _call_via_\register bx \register nop SIZE (_call_via_\register) .endm call_via r0 call_via r1 call_via r2 call_via r3 call_via r4 call_via r5 call_via r6 call_via r7 call_via r8 call_via r9 call_via sl call_via fp call_via ip call_via sp call_via lr #endif /* L_call_via_rX */ #if defined L_interwork_call_via_rX /* These labels & instructions are used by the Arm/Thumb interworking code, when the target address is in an unknown instruction set. The address of function to be called is loaded into a register and then one of these labels is called via a BL instruction. This puts the return address into the link register with the bottom bit set, and the code here switches to the correct mode before executing the function. Unfortunately the target code cannot be relied upon to return via a BX instruction, so instead we have to store the resturn address on the stack and allow the called function to return here instead. Upon return we recover the real return address and use a BX to get back to Thumb mode. */ .text .align 0 .code 32 .globl _arm_return _arm_return: RETLDM .code 16 .macro interwork register .code 16 THUMB_FUNC_START _interwork_call_via_\register bx pc nop .code 32 .globl LSYM(Lchange_\register) LSYM(Lchange_\register): tst \register, #1 streq lr, [sp, #-4]! adreq lr, _arm_return bx \register SIZE (_interwork_call_via_\register) .endm interwork r0 interwork r1 interwork r2 interwork r3 interwork r4 interwork r5 interwork r6 interwork r7 interwork r8 interwork r9 interwork sl interwork fp interwork ip interwork sp /* The LR case has to be handled a little differently... */ .code 16 THUMB_FUNC_START _interwork_call_via_lr bx pc nop .code 32 .globl .Lchange_lr .Lchange_lr: tst lr, #1 stmeqdb r13!, {lr} mov ip, lr adreq lr, _arm_return bx ip SIZE (_interwork_call_via_lr) #endif /* L_interwork_call_via_rX */ #endif /* Arch supports thumb. */ #include "ieee754-df.S" #include "ieee754-sf.S" #include "bpabi.S"