/* This is a software floating point library which can be used for targets without hardware floating point. Copyright (C) 1994, 1995, 1996, 1997, 1998, 2000, 2001, 2002 Free Software Foundation, Inc. This file is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. In addition to the permissions in the GNU General Public License, the Free Software Foundation gives you unlimited permission to link the compiled version of this file with other programs, and to distribute those programs without any restriction coming from the use of this file. (The General Public License restrictions do apply in other respects; for example, they cover modification of the file, and distribution when not linked into another program.) This file is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* As a special exception, if you link this library with other files, some of which are compiled with GCC, to produce an executable, this library does not by itself cause the resulting executable to be covered by the GNU General Public License. This exception does not however invalidate any other reasons why the executable file might be covered by the GNU General Public License. */ /* This implements IEEE 754 format arithmetic, but does not provide a mechanism for setting the rounding mode, or for generating or handling exceptions. The original code by Steve Chamberlain, hacked by Mark Eichin and Jim Wilson, all of Cygnus Support. */ /* The intended way to use this file is to make two copies, add `#define FLOAT' to one copy, then compile both copies and add them to libgcc.a. */ #include "tconfig.h" #include "fp-bit.h" /* The following macros can be defined to change the behaviour of this file: FLOAT: Implement a `float', aka SFmode, fp library. If this is not defined, then this file implements a `double', aka DFmode, fp library. FLOAT_ONLY: Used with FLOAT, to implement a `float' only library, i.e. don't include float->double conversion which requires the double library. This is useful only for machines which can't support doubles, e.g. some 8-bit processors. CMPtype: Specify the type that floating point compares should return. This defaults to SItype, aka int. US_SOFTWARE_GOFAST: This makes all entry points use the same names as the US Software goFast library. _DEBUG_BITFLOAT: This makes debugging the code a little easier, by adding two integers to the FLO_union_type. NO_DENORMALS: Disable handling of denormals. NO_NANS: Disable nan and infinity handling SMALL_MACHINE: Useful when operations on QIs and HIs are faster than on an SI */ /* We don't currently support extended floats (long doubles) on machines without hardware to deal with them. These stubs are just to keep the linker from complaining about unresolved references which can be pulled in from libio & libstdc++, even if the user isn't using long doubles. However, they may generate an unresolved external to abort if abort is not used by the function, and the stubs are referenced from within libc, since libgcc goes before and after the system library. */ #ifdef DECLARE_LIBRARY_RENAMES DECLARE_LIBRARY_RENAMES #endif #ifdef EXTENDED_FLOAT_STUBS __truncxfsf2 (){ abort(); } __extendsfxf2 (){ abort(); } __addxf3 (){ abort(); } __divxf3 (){ abort(); } __eqxf2 (){ abort(); } __extenddfxf2 (){ abort(); } __gtxf2 (){ abort(); } __lexf2 (){ abort(); } __ltxf2 (){ abort(); } __mulxf3 (){ abort(); } __negxf2 (){ abort(); } __nexf2 (){ abort(); } __subxf3 (){ abort(); } __truncxfdf2 (){ abort(); } __trunctfsf2 (){ abort(); } __extendsftf2 (){ abort(); } __addtf3 (){ abort(); } __divtf3 (){ abort(); } __eqtf2 (){ abort(); } __extenddftf2 (){ abort(); } __gttf2 (){ abort(); } __letf2 (){ abort(); } __lttf2 (){ abort(); } __multf3 (){ abort(); } __negtf2 (){ abort(); } __netf2 (){ abort(); } __subtf3 (){ abort(); } __trunctfdf2 (){ abort(); } __gexf2 (){ abort(); } __fixxfsi (){ abort(); } __floatsixf (){ abort(); } #else /* !EXTENDED_FLOAT_STUBS, rest of file */ /* IEEE "special" number predicates */ #ifdef NO_NANS #define nan() 0 #define isnan(x) 0 #define isinf(x) 0 #else #if defined L_thenan_sf const fp_number_type __thenan_sf = { CLASS_SNAN, 0, 0, {(fractype) 0} }; #elif defined L_thenan_df const fp_number_type __thenan_df = { CLASS_SNAN, 0, 0, {(fractype) 0} }; #elif defined FLOAT extern const fp_number_type __thenan_sf; #else extern const fp_number_type __thenan_df; #endif INLINE static fp_number_type * nan (void) { /* Discard the const qualifier... */ #ifdef FLOAT return (fp_number_type *) (& __thenan_sf); #else return (fp_number_type *) (& __thenan_df); #endif } INLINE static int isnan ( fp_number_type * x) { return x->class == CLASS_SNAN || x->class == CLASS_QNAN; } INLINE static int isinf ( fp_number_type * x) { return x->class == CLASS_INFINITY; } #endif /* NO_NANS */ INLINE static int iszero ( fp_number_type * x) { return x->class == CLASS_ZERO; } INLINE static void flip_sign ( fp_number_type * x) { x->sign = !x->sign; } extern FLO_type pack_d ( fp_number_type * ); #if defined(L_pack_df) || defined(L_pack_sf) FLO_type pack_d ( fp_number_type * src) { FLO_union_type dst; fractype fraction = src->fraction.ll; /* wasn't unsigned before? */ int sign = src->sign; int exp = 0; if (LARGEST_EXPONENT_IS_NORMAL (FRAC_NBITS) && (isnan (src) || isinf (src))) { /* We can't represent these values accurately. By using the largest possible magnitude, we guarantee that the conversion of infinity is at least as big as any finite number. */ exp = EXPMAX; fraction = ((fractype) 1 << FRACBITS) - 1; } else if (isnan (src)) { exp = EXPMAX; if (src->class == CLASS_QNAN || 1) { fraction |= QUIET_NAN; } } else if (isinf (src)) { exp = EXPMAX; fraction = 0; } else if (iszero (src)) { exp = 0; fraction = 0; } else if (fraction == 0) { exp = 0; } else { if (src->normal_exp < NORMAL_EXPMIN) { #ifdef NO_DENORMALS /* Go straight to a zero representation if denormals are not supported. The denormal handling would be harmless but isn't unnecessary. */ exp = 0; fraction = 0; #else /* NO_DENORMALS */ /* This number's exponent is too low to fit into the bits available in the number, so we'll store 0 in the exponent and shift the fraction to the right to make up for it. */ int shift = NORMAL_EXPMIN - src->normal_exp; exp = 0; if (shift > FRAC_NBITS - NGARDS) { /* No point shifting, since it's more that 64 out. */ fraction = 0; } else { int lowbit = (fraction & (((fractype)1 << shift) - 1)) ? 1 : 0; fraction = (fraction >> shift) | lowbit; } if ((fraction & GARDMASK) == GARDMSB) { if ((fraction & (1 << NGARDS))) fraction += GARDROUND + 1; } else { /* Add to the guards to round up. */ fraction += GARDROUND; } /* Perhaps the rounding means we now need to change the exponent, because the fraction is no longer denormal. */ if (fraction >= IMPLICIT_1) { exp += 1; } fraction >>= NGARDS; #endif /* NO_DENORMALS */ } else if (!LARGEST_EXPONENT_IS_NORMAL (FRAC_NBITS) && src->normal_exp > EXPBIAS) { exp = EXPMAX; fraction = 0; } else { exp = src->normal_exp + EXPBIAS; if (!ROUND_TOWARDS_ZERO) { /* IF the gard bits are the all zero, but the first, then we're half way between two numbers, choose the one which makes the lsb of the answer 0. */ if ((fraction & GARDMASK) == GARDMSB) { if (fraction & (1 << NGARDS)) fraction += GARDROUND + 1; } else { /* Add a one to the guards to round up */ fraction += GARDROUND; } if (fraction >= IMPLICIT_2) { fraction >>= 1; exp += 1; } } fraction >>= NGARDS; if (LARGEST_EXPONENT_IS_NORMAL (FRAC_NBITS) && exp > EXPMAX) { /* Saturate on overflow. */ exp = EXPMAX; fraction = ((fractype) 1 << FRACBITS) - 1; } } } /* We previously used bitfields to store the number, but this doesn't handle little/big endian systems conveniently, so use shifts and masks */ #ifdef FLOAT_BIT_ORDER_MISMATCH dst.bits.fraction = fraction; dst.bits.exp = exp; dst.bits.sign = sign; #else dst.value_raw = fraction & ((((fractype)1) << FRACBITS) - (fractype)1); dst.value_raw |= ((fractype) (exp & ((1 << EXPBITS) - 1))) << FRACBITS; dst.value_raw |= ((fractype) (sign & 1)) << (FRACBITS | EXPBITS); #endif #if defined(FLOAT_WORD_ORDER_MISMATCH) && !defined(FLOAT) { halffractype tmp = dst.words[0]; dst.words[0] = dst.words[1]; dst.words[1] = tmp; } #endif return dst.value; } #endif #if defined(L_unpack_df) || defined(L_unpack_sf) void unpack_d (FLO_union_type * src, fp_number_type * dst) { /* We previously used bitfields to store the number, but this doesn't handle little/big endian systems conveniently, so use shifts and masks */ fractype fraction; int exp; int sign; #if defined(FLOAT_WORD_ORDER_MISMATCH) && !defined(FLOAT) FLO_union_type swapped; swapped.words[0] = src->words[1]; swapped.words[1] = src->words[0]; src = &swapped; #endif #ifdef FLOAT_BIT_ORDER_MISMATCH fraction = src->bits.fraction; exp = src->bits.exp; sign = src->bits.sign; #else fraction = src->value_raw & ((((fractype)1) << FRACBITS) - (fractype)1); exp = ((int)(src->value_raw >> FRACBITS)) & ((1 << EXPBITS) - 1); sign = ((int)(src->value_raw >> (FRACBITS + EXPBITS))) & 1; #endif dst->sign = sign; if (exp == 0) { /* Hmm. Looks like 0 */ if (fraction == 0 #ifdef NO_DENORMALS || 1 #endif ) { /* tastes like zero */ dst->class = CLASS_ZERO; } else { /* Zero exponent with non zero fraction - it's denormalized, so there isn't a leading implicit one - we'll shift it so it gets one. */ dst->normal_exp = exp - EXPBIAS + 1; fraction <<= NGARDS; dst->class = CLASS_NUMBER; #if 1 while (fraction < IMPLICIT_1) { fraction <<= 1; dst->normal_exp--; } #endif dst->fraction.ll = fraction; } } else if (!LARGEST_EXPONENT_IS_NORMAL (FRAC_NBITS) && exp == EXPMAX) { /* Huge exponent*/ if (fraction == 0) { /* Attached to a zero fraction - means infinity */ dst->class = CLASS_INFINITY; } else { /* Non zero fraction, means nan */ if (fraction & QUIET_NAN) { dst->class = CLASS_QNAN; } else { dst->class = CLASS_SNAN; } /* Keep the fraction part as the nan number */ dst->fraction.ll = fraction; } } else { /* Nothing strange about this number */ dst->normal_exp = exp - EXPBIAS; dst->class = CLASS_NUMBER; dst->fraction.ll = (fraction << NGARDS) | IMPLICIT_1; } } #endif /* L_unpack_df || L_unpack_sf */ #if defined(L_addsub_sf) || defined(L_addsub_df) static fp_number_type * _fpadd_parts (fp_number_type * a, fp_number_type * b, fp_number_type * tmp) { intfrac tfraction; /* Put commonly used fields in local variables. */ int a_normal_exp; int b_normal_exp; fractype a_fraction; fractype b_fraction; if (isnan (a)) { return a; } if (isnan (b)) { return b; } if (isinf (a)) { /* Adding infinities with opposite signs yields a NaN. */ if (isinf (b) && a->sign != b->sign) return nan (); return a; } if (isinf (b)) { return b; } if (iszero (b)) { if (iszero (a)) { *tmp = *a; tmp->sign = a->sign & b->sign; return tmp; } return a; } if (iszero (a)) { return b; } /* Got two numbers. shift the smaller and increment the exponent till they're the same */ { int diff; a_normal_exp = a->normal_exp; b_normal_exp = b->normal_exp; a_fraction = a->fraction.ll; b_fraction = b->fraction.ll; diff = a_normal_exp - b_normal_exp; if (diff < 0) diff = -diff; if (diff < FRAC_NBITS) { /* ??? This does shifts one bit at a time. Optimize. */ while (a_normal_exp > b_normal_exp) { b_normal_exp++; LSHIFT (b_fraction); } while (b_normal_exp > a_normal_exp) { a_normal_exp++; LSHIFT (a_fraction); } } else { /* Somethings's up.. choose the biggest */ if (a_normal_exp > b_normal_exp) { b_normal_exp = a_normal_exp; b_fraction = 0; } else { a_normal_exp = b_normal_exp; a_fraction = 0; } } } if (a->sign != b->sign) { if (a->sign) { tfraction = -a_fraction + b_fraction; } else { tfraction = a_fraction - b_fraction; } if (tfraction >= 0) { tmp->sign = 0; tmp->normal_exp = a_normal_exp; tmp->fraction.ll = tfraction; } else { tmp->sign = 1; tmp->normal_exp = a_normal_exp; tmp->fraction.ll = -tfraction; } /* and renormalize it */ while (tmp->fraction.ll < IMPLICIT_1 && tmp->fraction.ll) { tmp->fraction.ll <<= 1; tmp->normal_exp--; } } else { tmp->sign = a->sign; tmp->normal_exp = a_normal_exp; tmp->fraction.ll = a_fraction + b_fraction; } tmp->class = CLASS_NUMBER; /* Now the fraction is added, we have to shift down to renormalize the number */ if (tmp->fraction.ll >= IMPLICIT_2) { LSHIFT (tmp->fraction.ll); tmp->normal_exp++; } return tmp; } FLO_type add (FLO_type arg_a, FLO_type arg_b) { fp_number_type a; fp_number_type b; fp_number_type tmp; fp_number_type *res; FLO_union_type au, bu; au.value = arg_a; bu.value = arg_b; unpack_d (&au, &a); unpack_d (&bu, &b); res = _fpadd_parts (&a, &b, &tmp); return pack_d (res); } FLO_type sub (FLO_type arg_a, FLO_type arg_b) { fp_number_type a; fp_number_type b; fp_number_type tmp; fp_number_type *res; FLO_union_type au, bu; au.value = arg_a; bu.value = arg_b; unpack_d (&au, &a); unpack_d (&bu, &b); b.sign ^= 1; res = _fpadd_parts (&a, &b, &tmp); return pack_d (res); } #endif /* L_addsub_sf || L_addsub_df */ #if defined(L_mul_sf) || defined(L_mul_df) static inline __attribute__ ((__always_inline__)) fp_number_type * _fpmul_parts ( fp_number_type * a, fp_number_type * b, fp_number_type * tmp) { fractype low = 0; fractype high = 0; if (isnan (a)) { a->sign = a->sign != b->sign; return a; } if (isnan (b)) { b->sign = a->sign != b->sign; return b; } if (isinf (a)) { if (iszero (b)) return nan (); a->sign = a->sign != b->sign; return a; } if (isinf (b)) { if (iszero (a)) { return nan (); } b->sign = a->sign != b->sign; return b; } if (iszero (a)) { a->sign = a->sign != b->sign; return a; } if (iszero (b)) { b->sign = a->sign != b->sign; return b; } /* Calculate the mantissa by multiplying both numbers to get a twice-as-wide number. */ { #if defined(NO_DI_MODE) { fractype x = a->fraction.ll; fractype ylow = b->fraction.ll; fractype yhigh = 0; int bit; /* ??? This does multiplies one bit at a time. Optimize. */ for (bit = 0; bit < FRAC_NBITS; bit++) { int carry; if (x & 1) { carry = (low += ylow) < ylow; high += yhigh + carry; } yhigh <<= 1; if (ylow & FRACHIGH) { yhigh |= 1; } ylow <<= 1; x >>= 1; } } #elif defined(FLOAT) /* Multiplying two USIs to get a UDI, we're safe. */ { UDItype answer = (UDItype)a->fraction.ll * (UDItype)b->fraction.ll; high = answer >> BITS_PER_SI; low = answer; } #else /* fractype is DImode, but we need the result to be twice as wide. Assuming a widening multiply from DImode to TImode is not available, build one by hand. */ { USItype nl = a->fraction.ll; USItype nh = a->fraction.ll >> BITS_PER_SI; USItype ml = b->fraction.ll; USItype mh = b->fraction.ll >> BITS_PER_SI; UDItype pp_ll = (UDItype) ml * nl; UDItype pp_hl = (UDItype) mh * nl; UDItype pp_lh = (UDItype) ml * nh; UDItype pp_hh = (UDItype) mh * nh; UDItype res2 = 0; UDItype res0 = 0; UDItype ps_hh__ = pp_hl + pp_lh; if (ps_hh__ < pp_hl) res2 += (UDItype)1 << BITS_PER_SI; pp_hl = (UDItype)(USItype)ps_hh__ << BITS_PER_SI; res0 = pp_ll + pp_hl; if (res0 < pp_ll) res2++; res2 += (ps_hh__ >> BITS_PER_SI) + pp_hh; high = res2; low = res0; } #endif } tmp->normal_exp = a->normal_exp + b->normal_exp; tmp->sign = a->sign != b->sign; #ifdef FLOAT tmp->normal_exp += 2; /* ??????????????? */ #else tmp->normal_exp += 4; /* ??????????????? */ #endif while (high >= IMPLICIT_2) { tmp->normal_exp++; if (high & 1) { low >>= 1; low |= FRACHIGH; } high >>= 1; } while (high < IMPLICIT_1) { tmp->normal_exp--; high <<= 1; if (low & FRACHIGH) high |= 1; low <<= 1; } /* rounding is tricky. if we only round if it won't make us round later. */ #if 0 if (low & FRACHIGH2) { if (((high & GARDMASK) != GARDMSB) && (((high + 1) & GARDMASK) == GARDMSB)) { /* don't round, it gets done again later. */ } else { high++; } } #endif if (!ROUND_TOWARDS_ZERO && (high & GARDMASK) == GARDMSB) { if (high & (1 << NGARDS)) { /* half way, so round to even */ high += GARDROUND + 1; } else if (low) { /* but we really weren't half way */ high += GARDROUND + 1; } } tmp->fraction.ll = high; tmp->class = CLASS_NUMBER; return tmp; } FLO_type multiply (FLO_type arg_a, FLO_type arg_b) { fp_number_type a; fp_number_type b; fp_number_type tmp; fp_number_type *res; FLO_union_type au, bu; au.value = arg_a; bu.value = arg_b; unpack_d (&au, &a); unpack_d (&bu, &b); res = _fpmul_parts (&a, &b, &tmp); return pack_d (res); } #endif /* L_mul_sf || L_mul_df */ #if defined(L_div_sf) || defined(L_div_df) static inline __attribute__ ((__always_inline__)) fp_number_type * _fpdiv_parts (fp_number_type * a, fp_number_type * b) { fractype bit; fractype numerator; fractype denominator; fractype quotient; if (isnan (a)) { return a; } if (isnan (b)) { return b; } a->sign = a->sign ^ b->sign; if (isinf (a) || iszero (a)) { if (a->class == b->class) return nan (); return a; } if (isinf (b)) { a->fraction.ll = 0; a->normal_exp = 0; return a; } if (iszero (b)) { a->class = CLASS_INFINITY; return a; } /* Calculate the mantissa by multiplying both 64bit numbers to get a 128 bit number */ { /* quotient = ( numerator / denominator) * 2^(numerator exponent - denominator exponent) */ a->normal_exp = a->normal_exp - b->normal_exp; numerator = a->fraction.ll; denominator = b->fraction.ll; if (numerator < denominator) { /* Fraction will be less than 1.0 */ numerator *= 2; a->normal_exp--; } bit = IMPLICIT_1; quotient = 0; /* ??? Does divide one bit at a time. Optimize. */ while (bit) { if (numerator >= denominator) { quotient |= bit; numerator -= denominator; } bit >>= 1; numerator *= 2; } if (!ROUND_TOWARDS_ZERO && (quotient & GARDMASK) == GARDMSB) { if (quotient & (1 << NGARDS)) { /* half way, so round to even */ quotient += GARDROUND + 1; } else if (numerator) { /* but we really weren't half way, more bits exist */ quotient += GARDROUND + 1; } } a->fraction.ll = quotient; return (a); } } FLO_type divide (FLO_type arg_a, FLO_type arg_b) { fp_number_type a; fp_number_type b; fp_number_type *res; FLO_union_type au, bu; au.value = arg_a; bu.value = arg_b; unpack_d (&au, &a); unpack_d (&bu, &b); res = _fpdiv_parts (&a, &b); return pack_d (res); } #endif /* L_div_sf || L_div_df */ #if defined(L_fpcmp_parts_sf) || defined(L_fpcmp_parts_df) /* according to the demo, fpcmp returns a comparison with 0... thus a -1 a==b -> 0 a>b -> +1 */ int __fpcmp_parts (fp_number_type * a, fp_number_type * b) { #if 0 /* either nan -> unordered. Must be checked outside of this routine. */ if (isnan (a) && isnan (b)) { return 1; /* still unordered! */ } #endif if (isnan (a) || isnan (b)) { return 1; /* how to indicate unordered compare? */ } if (isinf (a) && isinf (b)) { /* +inf > -inf, but +inf != +inf */ /* b \a| +inf(0)| -inf(1) ______\+--------+-------- +inf(0)| a==b(0)| ab(1) | a==b(0) -------+--------+-------- So since unordered must be non zero, just line up the columns... */ return b->sign - a->sign; } /* but not both... */ if (isinf (a)) { return a->sign ? -1 : 1; } if (isinf (b)) { return b->sign ? 1 : -1; } if (iszero (a) && iszero (b)) { return 0; } if (iszero (a)) { return b->sign ? 1 : -1; } if (iszero (b)) { return a->sign ? -1 : 1; } /* now both are "normal". */ if (a->sign != b->sign) { /* opposite signs */ return a->sign ? -1 : 1; } /* same sign; exponents? */ if (a->normal_exp > b->normal_exp) { return a->sign ? -1 : 1; } if (a->normal_exp < b->normal_exp) { return a->sign ? 1 : -1; } /* same exponents; check size. */ if (a->fraction.ll > b->fraction.ll) { return a->sign ? -1 : 1; } if (a->fraction.ll < b->fraction.ll) { return a->sign ? 1 : -1; } /* after all that, they're equal. */ return 0; } #endif #if defined(L_compare_sf) || defined(L_compare_df) CMPtype compare (FLO_type arg_a, FLO_type arg_b) { fp_number_type a; fp_number_type b; FLO_union_type au, bu; au.value = arg_a; bu.value = arg_b; unpack_d (&au, &a); unpack_d (&bu, &b); return __fpcmp_parts (&a, &b); } #endif /* L_compare_sf || L_compare_df */ #ifndef US_SOFTWARE_GOFAST /* These should be optimized for their specific tasks someday. */ #if defined(L_eq_sf) || defined(L_eq_df) CMPtype _eq_f2 (FLO_type arg_a, FLO_type arg_b) { fp_number_type a; fp_number_type b; FLO_union_type au, bu; au.value = arg_a; bu.value = arg_b; unpack_d (&au, &a); unpack_d (&bu, &b); if (isnan (&a) || isnan (&b)) return 1; /* false, truth == 0 */ return __fpcmp_parts (&a, &b) ; } #endif /* L_eq_sf || L_eq_df */ #if defined(L_ne_sf) || defined(L_ne_df) CMPtype _ne_f2 (FLO_type arg_a, FLO_type arg_b) { fp_number_type a; fp_number_type b; FLO_union_type au, bu; au.value = arg_a; bu.value = arg_b; unpack_d (&au, &a); unpack_d (&bu, &b); if (isnan (&a) || isnan (&b)) return 1; /* true, truth != 0 */ return __fpcmp_parts (&a, &b) ; } #endif /* L_ne_sf || L_ne_df */ #if defined(L_gt_sf) || defined(L_gt_df) CMPtype _gt_f2 (FLO_type arg_a, FLO_type arg_b) { fp_number_type a; fp_number_type b; FLO_union_type au, bu; au.value = arg_a; bu.value = arg_b; unpack_d (&au, &a); unpack_d (&bu, &b); if (isnan (&a) || isnan (&b)) return -1; /* false, truth > 0 */ return __fpcmp_parts (&a, &b); } #endif /* L_gt_sf || L_gt_df */ #if defined(L_ge_sf) || defined(L_ge_df) CMPtype _ge_f2 (FLO_type arg_a, FLO_type arg_b) { fp_number_type a; fp_number_type b; FLO_union_type au, bu; au.value = arg_a; bu.value = arg_b; unpack_d (&au, &a); unpack_d (&bu, &b); if (isnan (&a) || isnan (&b)) return -1; /* false, truth >= 0 */ return __fpcmp_parts (&a, &b) ; } #endif /* L_ge_sf || L_ge_df */ #if defined(L_lt_sf) || defined(L_lt_df) CMPtype _lt_f2 (FLO_type arg_a, FLO_type arg_b) { fp_number_type a; fp_number_type b; FLO_union_type au, bu; au.value = arg_a; bu.value = arg_b; unpack_d (&au, &a); unpack_d (&bu, &b); if (isnan (&a) || isnan (&b)) return 1; /* false, truth < 0 */ return __fpcmp_parts (&a, &b); } #endif /* L_lt_sf || L_lt_df */ #if defined(L_le_sf) || defined(L_le_df) CMPtype _le_f2 (FLO_type arg_a, FLO_type arg_b) { fp_number_type a; fp_number_type b; FLO_union_type au, bu; au.value = arg_a; bu.value = arg_b; unpack_d (&au, &a); unpack_d (&bu, &b); if (isnan (&a) || isnan (&b)) return 1; /* false, truth <= 0 */ return __fpcmp_parts (&a, &b) ; } #endif /* L_le_sf || L_le_df */ #endif /* ! US_SOFTWARE_GOFAST */ #if defined(L_unord_sf) || defined(L_unord_df) CMPtype _unord_f2 (FLO_type arg_a, FLO_type arg_b) { fp_number_type a; fp_number_type b; FLO_union_type au, bu; au.value = arg_a; bu.value = arg_b; unpack_d (&au, &a); unpack_d (&bu, &b); return (isnan (&a) || isnan (&b)); } #endif /* L_unord_sf || L_unord_df */ #if defined(L_si_to_sf) || defined(L_si_to_df) FLO_type si_to_float (SItype arg_a) { fp_number_type in; in.class = CLASS_NUMBER; in.sign = arg_a < 0; if (!arg_a) { in.class = CLASS_ZERO; } else { in.normal_exp = FRACBITS + NGARDS; if (in.sign) { /* Special case for minint, since there is no +ve integer representation for it */ if (arg_a == (- MAX_SI_INT - 1)) { return (FLO_type)(- MAX_SI_INT - 1); } in.fraction.ll = (-arg_a); } else in.fraction.ll = arg_a; while (in.fraction.ll < (1LL << (FRACBITS + NGARDS))) { in.fraction.ll <<= 1; in.normal_exp -= 1; } } return pack_d (&in); } #endif /* L_si_to_sf || L_si_to_df */ #if defined(L_usi_to_sf) || defined(L_usi_to_df) FLO_type usi_to_float (USItype arg_a) { fp_number_type in; in.sign = 0; if (!arg_a) { in.class = CLASS_ZERO; } else { in.class = CLASS_NUMBER; in.normal_exp = FRACBITS + NGARDS; in.fraction.ll = arg_a; while (in.fraction.ll > (1LL << (FRACBITS + NGARDS))) { in.fraction.ll >>= 1; in.normal_exp += 1; } while (in.fraction.ll < (1LL << (FRACBITS + NGARDS))) { in.fraction.ll <<= 1; in.normal_exp -= 1; } } return pack_d (&in); } #endif #if defined(L_sf_to_si) || defined(L_df_to_si) SItype float_to_si (FLO_type arg_a) { fp_number_type a; SItype tmp; FLO_union_type au; au.value = arg_a; unpack_d (&au, &a); if (iszero (&a)) return 0; if (isnan (&a)) return 0; /* get reasonable MAX_SI_INT... */ if (isinf (&a)) return a.sign ? (-MAX_SI_INT)-1 : MAX_SI_INT; /* it is a number, but a small one */ if (a.normal_exp < 0) return 0; if (a.normal_exp > BITS_PER_SI - 2) return a.sign ? (-MAX_SI_INT)-1 : MAX_SI_INT; tmp = a.fraction.ll >> ((FRACBITS + NGARDS) - a.normal_exp); return a.sign ? (-tmp) : (tmp); } #endif /* L_sf_to_si || L_df_to_si */ #if defined(L_sf_to_usi) || defined(L_df_to_usi) #ifdef US_SOFTWARE_GOFAST /* While libgcc2.c defines its own __fixunssfsi and __fixunsdfsi routines, we also define them for GOFAST because the ones in libgcc2.c have the wrong names and I'd rather define these here and keep GOFAST CYG-LOC's out of libgcc2.c. We can't define these here if not GOFAST because then there'd be duplicate copies. */ USItype float_to_usi (FLO_type arg_a) { fp_number_type a; FLO_union_type au; au.value = arg_a; unpack_d (&au, &a); if (iszero (&a)) return 0; if (isnan (&a)) return 0; /* it is a negative number */ if (a.sign) return 0; /* get reasonable MAX_USI_INT... */ if (isinf (&a)) return MAX_USI_INT; /* it is a number, but a small one */ if (a.normal_exp < 0) return 0; if (a.normal_exp > BITS_PER_SI - 1) return MAX_USI_INT; else if (a.normal_exp > (FRACBITS + NGARDS)) return a.fraction.ll << (a.normal_exp - (FRACBITS + NGARDS)); else return a.fraction.ll >> ((FRACBITS + NGARDS) - a.normal_exp); } #endif /* US_SOFTWARE_GOFAST */ #endif /* L_sf_to_usi || L_df_to_usi */ #if defined(L_negate_sf) || defined(L_negate_df) FLO_type negate (FLO_type arg_a) { fp_number_type a; FLO_union_type au; au.value = arg_a; unpack_d (&au, &a); flip_sign (&a); return pack_d (&a); } #endif /* L_negate_sf || L_negate_df */ #ifdef FLOAT #if defined(L_make_sf) SFtype __make_fp(fp_class_type class, unsigned int sign, int exp, USItype frac) { fp_number_type in; in.class = class; in.sign = sign; in.normal_exp = exp; in.fraction.ll = frac; return pack_d (&in); } #endif /* L_make_sf */ #ifndef FLOAT_ONLY /* This enables one to build an fp library that supports float but not double. Otherwise, we would get an undefined reference to __make_dp. This is needed for some 8-bit ports that can't handle well values that are 8-bytes in size, so we just don't support double for them at all. */ #if defined(L_sf_to_df) DFtype sf_to_df (SFtype arg_a) { fp_number_type in; FLO_union_type au; au.value = arg_a; unpack_d (&au, &in); return __make_dp (in.class, in.sign, in.normal_exp, ((UDItype) in.fraction.ll) << F_D_BITOFF); } #endif /* L_sf_to_df */ #endif /* ! FLOAT_ONLY */ #endif /* FLOAT */ #ifndef FLOAT extern SFtype __make_fp (fp_class_type, unsigned int, int, USItype); #if defined(L_make_df) DFtype __make_dp (fp_class_type class, unsigned int sign, int exp, UDItype frac) { fp_number_type in; in.class = class; in.sign = sign; in.normal_exp = exp; in.fraction.ll = frac; return pack_d (&in); } #endif /* L_make_df */ #if defined(L_df_to_sf) SFtype df_to_sf (DFtype arg_a) { fp_number_type in; USItype sffrac; FLO_union_type au; au.value = arg_a; unpack_d (&au, &in); sffrac = in.fraction.ll >> F_D_BITOFF; /* We set the lowest guard bit in SFFRAC if we discarded any non zero bits. */ if ((in.fraction.ll & (((USItype) 1 << F_D_BITOFF) - 1)) != 0) sffrac |= 1; return __make_fp (in.class, in.sign, in.normal_exp, sffrac); } #endif /* L_df_to_sf */ #endif /* ! FLOAT */ #endif /* !EXTENDED_FLOAT_STUBS */