/* Subroutines for insn-output.c for Alliant FX computers. Copyright (C) 1989, 1991, 1997 Free Software Foundation, Inc. This file is part of GNU CC. GNU CC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GNU CC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU CC; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Some output-actions in alliant.md need these. */ #include "config.h" #include #include "rtl.h" #include "regs.h" #include "hard-reg-set.h" #include "real.h" #include "insn-config.h" #include "conditions.h" #include "insn-flags.h" #include "function.h" #include "output.h" #include "insn-attr.h" /* Index into this array by (register number >> 3) to find the smallest class which contains that register. */ enum reg_class regno_reg_class[] = { DATA_REGS, ADDR_REGS, FP_REGS }; static rtx find_addr_reg (); char * output_btst (operands, countop, dataop, insn, signpos) rtx *operands; rtx countop, dataop; rtx insn; int signpos; { operands[0] = countop; operands[1] = dataop; if (GET_CODE (countop) == CONST_INT) { register int count = INTVAL (countop); /* If COUNT is bigger than size of storage unit in use, advance to the containing unit of same size. */ if (count > signpos) { int offset = (count & ~signpos) / 8; count = count & signpos; operands[1] = dataop = adj_offsettable_operand (dataop, offset); } if (count == signpos) cc_status.flags = CC_NOT_POSITIVE | CC_Z_IN_NOT_N; else cc_status.flags = CC_NOT_NEGATIVE | CC_Z_IN_NOT_N; /* These three statements used to use next_insns_test_no... but it appears that this should do the same job. */ if (count == 31 && next_insn_tests_no_inequality (insn)) return "tst%.l %1"; if (count == 15 && next_insn_tests_no_inequality (insn)) return "tst%.w %1"; if (count == 7 && next_insn_tests_no_inequality (insn)) return "tst%.b %1"; cc_status.flags = CC_NOT_NEGATIVE; } return "btst %0,%1"; } /* Return the best assembler insn template for moving operands[1] into operands[0] as a fullword. */ static char * singlemove_string (operands) rtx *operands; { if (operands[1] != const0_rtx) return "mov%.l %1,%0"; if (! ADDRESS_REG_P (operands[0])) return "clr%.l %0"; return "sub%.l %0,%0"; } /* Output assembler code to perform a doubleword move insn with operands OPERANDS. */ char * output_move_double (operands) rtx *operands; { enum { REGOP, OFFSOP, MEMOP, PUSHOP, POPOP, CNSTOP, RNDOP } optype0, optype1; rtx latehalf[2]; rtx addreg0 = 0, addreg1 = 0; /* First classify both operands. */ if (REG_P (operands[0])) optype0 = REGOP; else if (offsettable_memref_p (operands[0])) optype0 = OFFSOP; else if (GET_CODE (XEXP (operands[0], 0)) == POST_INC) optype0 = POPOP; else if (GET_CODE (XEXP (operands[0], 0)) == PRE_DEC) optype0 = PUSHOP; else if (GET_CODE (operands[0]) == MEM) optype0 = MEMOP; else optype0 = RNDOP; if (REG_P (operands[1])) optype1 = REGOP; else if (CONSTANT_P (operands[1])) optype1 = CNSTOP; else if (offsettable_memref_p (operands[1])) optype1 = OFFSOP; else if (GET_CODE (XEXP (operands[1], 0)) == POST_INC) optype1 = POPOP; else if (GET_CODE (XEXP (operands[1], 0)) == PRE_DEC) optype1 = PUSHOP; else if (GET_CODE (operands[1]) == MEM) optype1 = MEMOP; else optype1 = RNDOP; /* Check for the cases that the operand constraints are not supposed to allow to happen. Abort if we get one, because generating code for these cases is painful. */ if (optype0 == RNDOP || optype1 == RNDOP) abort (); /* If one operand is decrementing and one is incrementing decrement the former register explicitly and change that operand into ordinary indexing. */ if (optype0 == PUSHOP && optype1 == POPOP) { operands[0] = XEXP (XEXP (operands[0], 0), 0); output_asm_insn ("subq%.l %#8,%0", operands); operands[0] = gen_rtx (MEM, DImode, operands[0]); optype0 = OFFSOP; } if (optype0 == POPOP && optype1 == PUSHOP) { operands[1] = XEXP (XEXP (operands[1], 0), 0); output_asm_insn ("subq%.l %#8,%1", operands); operands[1] = gen_rtx (MEM, DImode, operands[1]); optype1 = OFFSOP; } /* If an operand is an unoffsettable memory ref, find a register we can increment temporarily to make it refer to the second word. */ if (optype0 == MEMOP) addreg0 = find_addr_reg (XEXP (operands[0], 0)); if (optype1 == MEMOP) addreg1 = find_addr_reg (XEXP (operands[1], 0)); /* Ok, we can do one word at a time. Normally we do the low-numbered word first, but if either operand is autodecrementing then we do the high-numbered word first. In either case, set up in LATEHALF the operands to use for the high-numbered word and in some cases alter the operands in OPERANDS to be suitable for the low-numbered word. */ if (optype0 == REGOP) latehalf[0] = gen_rtx (REG, SImode, REGNO (operands[0]) + 1); else if (optype0 == OFFSOP) latehalf[0] = adj_offsettable_operand (operands[0], 4); else latehalf[0] = operands[0]; if (optype1 == REGOP) latehalf[1] = gen_rtx (REG, SImode, REGNO (operands[1]) + 1); else if (optype1 == OFFSOP) latehalf[1] = adj_offsettable_operand (operands[1], 4); else if (optype1 == CNSTOP) { if (GET_CODE (operands[1]) == CONST_DOUBLE) split_double (operands[1], &operands[1], &latehalf[1]); else if (CONSTANT_P (operands[1])) { latehalf[1] = operands[1]; operands[1] = const0_rtx; } } else latehalf[1] = operands[1]; /* If insn is effectively movd N(sp),-(sp) then we will do the high word first. We should use the adjusted operand 1 (which is N+4(sp)) for the low word as well, to compensate for the first decrement of sp. */ if (optype0 == PUSHOP && REGNO (XEXP (XEXP (operands[0], 0), 0)) == STACK_POINTER_REGNUM && reg_overlap_mentioned_p (stack_pointer_rtx, operands[1])) operands[1] = latehalf[1]; /* If one or both operands autodecrementing, do the two words, high-numbered first. */ /* Likewise, the first move would clobber the source of the second one, do them in the other order. This happens only for registers; such overlap can't happen in memory unless the user explicitly sets it up, and that is an undefined circumstance. */ if (optype0 == PUSHOP || optype1 == PUSHOP || (optype0 == REGOP && optype1 == REGOP && REGNO (operands[0]) == REGNO (latehalf[1]))) { /* Make any unoffsettable addresses point at high-numbered word. */ if (addreg0) output_asm_insn ("addql %#4,%0", &addreg0); if (addreg1) output_asm_insn ("addql %#4,%0", &addreg1); /* Do that word. */ output_asm_insn (singlemove_string (latehalf), latehalf); /* Undo the adds we just did. */ if (addreg0) output_asm_insn ("subql %#4,%0", &addreg0); if (addreg1) output_asm_insn ("subql %#4,%0", &addreg1); /* Do low-numbered word. */ return singlemove_string (operands); } /* Normal case: do the two words, low-numbered first. */ output_asm_insn (singlemove_string (operands), operands); /* Make any unoffsettable addresses point at high-numbered word. */ if (addreg0) output_asm_insn ("addql %#4,%0", &addreg0); if (addreg1) output_asm_insn ("addql %#4,%0", &addreg1); /* Do that word. */ output_asm_insn (singlemove_string (latehalf), latehalf); /* Undo the adds we just did. */ if (addreg0) output_asm_insn ("subql %#4,%0", &addreg0); if (addreg1) output_asm_insn ("subql %#4,%0", &addreg1); return ""; } /* Return a REG that occurs in ADDR with coefficient 1. ADDR can be effectively incremented by incrementing REG. */ static rtx find_addr_reg (addr) rtx addr; { while (GET_CODE (addr) == PLUS) { if (GET_CODE (XEXP (addr, 0)) == REG) addr = XEXP (addr, 0); else if (GET_CODE (XEXP (addr, 1)) == REG) addr = XEXP (addr, 1); else if (CONSTANT_P (XEXP (addr, 0))) addr = XEXP (addr, 1); else if (CONSTANT_P (XEXP (addr, 1))) addr = XEXP (addr, 0); else abort (); } if (GET_CODE (addr) == REG) return addr; abort (); } int standard_SunFPA_constant_p (x) rtx x; { return( 0 ); }