/* Definitions of target machine for GNU compiler. System/370 version. Copyright (C) 1989, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc. Contributed by Jan Stein (jan@cd.chalmers.se). Modified for OS/390 LanguageEnvironment C by Dave Pitts (dpitts@cozx.com) Hacked for Linux-ELF/390 by Linas Vepstas (linas@linas.org) This file is part of GNU CC. GNU CC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GNU CC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU CC; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #ifndef GCC_I370_H #define GCC_I370_H /* Target CPU builtins. */ #define TARGET_CPU_CPP_BUILTINS() \ do \ { \ builtin_define_std ("GCC"); \ builtin_define_std ("gcc"); \ builtin_assert ("machine=i370"); \ builtin_assert ("cpu=i370"); \ } \ while (0) /* Run-time compilation parameters selecting different hardware subsets. */ extern int target_flags; /* The sizes of the code and literals on the current page. */ extern int mvs_page_code, mvs_page_lit; /* The current page number and the base page number for the function. */ extern int mvs_page_num, function_base_page; /* The name of the current function. */ extern char *mvs_function_name; /* The length of the function name malloc'd area. */ extern int mvs_function_name_length; /* Compile using char instructions (mvc, nc, oc, xc). On 4341 use this since these are more than twice as fast as load-op-store. On 3090 don't use this since load-op-store is much faster. */ #define TARGET_CHAR_INSTRUCTIONS (target_flags & 1) /* Default target switches */ #define TARGET_DEFAULT 1 /* Macro to define tables used to set the flags. This is a list in braces of pairs in braces, each pair being { "NAME", VALUE } where VALUE is the bits to set or minus the bits to clear. An empty string NAME is used to identify the default VALUE. */ #define TARGET_SWITCHES \ { { "char-instructions", 1, N_("Generate char instructions")}, \ { "no-char-instructions", -1, N_("Do not generate char instructions")}, \ { "", TARGET_DEFAULT, 0} } #define OVERRIDE_OPTIONS override_options () /* To use IBM supplied macro function prologue and epilogue, define the following to 1. Should only be needed if IBM changes the definition of their prologue and epilogue. */ #define MACROPROLOGUE 0 #define MACROEPILOGUE 0 /* Target machine storage layout */ /* Define this if most significant bit is lowest numbered in instructions that operate on numbered bit-fields. */ #define BITS_BIG_ENDIAN 1 /* Define this if most significant byte of a word is the lowest numbered. */ #define BYTES_BIG_ENDIAN 1 /* Define this if MS word of a multiword is the lowest numbered. */ #define WORDS_BIG_ENDIAN 1 /* Width of a word, in units (bytes). */ #define UNITS_PER_WORD 4 /* Allocation boundary (in *bits*) for storing pointers in memory. */ #define POINTER_BOUNDARY 32 /* Allocation boundary (in *bits*) for storing arguments in argument list. */ #define PARM_BOUNDARY 32 /* Boundary (in *bits*) on which stack pointer should be aligned. */ #define STACK_BOUNDARY 32 /* Allocation boundary (in *bits*) for the code of a function. */ #define FUNCTION_BOUNDARY 32 /* There is no point aligning anything to a rounder boundary than this. */ #define BIGGEST_ALIGNMENT 64 /* Alignment of field after `int : 0' in a structure. */ #define EMPTY_FIELD_BOUNDARY 32 /* Define this if move instructions will actually fail to work when given unaligned data. */ #define STRICT_ALIGNMENT 0 /* Define target floating point format. */ #define TARGET_FLOAT_FORMAT IBM_FLOAT_FORMAT /* Define character mapping for cross-compiling. */ /* but only define it if really needed, since otherwise it will break builds */ #ifdef TARGET_EBCDIC #ifdef HOST_EBCDIC #define MAP_CHARACTER(c) ((char)(c)) #else #define MAP_CHARACTER(c) ((char)mvs_map_char (c)) #endif #endif #ifdef TARGET_HLASM /* HLASM requires #pragma map. */ #define REGISTER_TARGET_PRAGMAS(PFILE) \ cpp_register_pragma (PFILE, 0, "map", i370_pr_map) #endif /* TARGET_HLASM */ /* Define maximum length of page minus page escape overhead. */ #define MAX_MVS_PAGE_LENGTH 4080 /* Define special register allocation order desired. Don't fiddle with this. I did, and I got all sorts of register spill errors when compiling even relatively simple programs... I have no clue why ... E.g. this one is bad: { 0, 1, 2, 9, 8, 7, 6, 5, 10, 15, 14, 12, 3, 4, 16, 17, 18, 19, 11, 13 } */ #define REG_ALLOC_ORDER \ { 0, 1, 2, 3, 14, 15, 12, 10, 9, 8, 7, 6, 5, 4, 16, 17, 18, 19, 11, 13 } /* Standard register usage. */ /* Number of actual hardware registers. The hardware registers are assigned numbers for the compiler from 0 to just below FIRST_PSEUDO_REGISTER. All registers that the compiler knows about must be given numbers, even those that are not normally considered general registers. For the 370, we give the data registers numbers 0-15, and the floating point registers numbers 16-19. */ #define FIRST_PSEUDO_REGISTER 20 /* Define base and page registers. */ #define BASE_REGISTER 3 #define PAGE_REGISTER 4 #ifdef TARGET_HLASM /* 1 for registers that have pervasive standard uses and are not available for the register allocator. These are registers that must have fixed, valid values stored in them for the entire length of the subroutine call, and must not in any way be moved around, jiggered with, etc. That is, they must never be clobbered, and, if clobbered, the register allocator will never restore them back. We use five registers in this special way: -- R3 which is used as the base register -- R4 the page origin table pointer used to load R3, -- R11 the arg pointer. -- R12 the TCA pointer -- R13 the stack (DSA) pointer A fifth register is also exceptional: R14 is used in many branch instructions to hold the target of the branch. Technically, this does not qualify R14 as a register with a long-term meaning; it should be enough, theoretically, to note that these instructions clobber R14, and let the compiler deal with that. In practice, however, the "clobber" directive acts as a barrier to optimization, and the optimizer appears to be unable to perform optimizations around branches. Thus, a much better strategy appears to give R14 a pervasive use; this eliminates it from the register pool witout hurting optimization. There are other registers which have special meanings, but its OK for them to get clobbered, since other allocator config below will make sure that they always have the right value. These are for example: -- R1 the returned structure pointer. -- R10 the static chain reg. -- R15 holds the value a subroutine returns. Notice that it is *almost* safe to mark R11 as available to the allocator. By marking it as a call_used_register, in most cases, the compiler can handle it being clobbered. However, there are a few rare circumstances where the register allocator will allocate r11 and also try to use it as the arg pointer ... thus it must be marked fixed. I think this is a bug, but I can't track it down... */ #define FIXED_REGISTERS \ { 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0 } /*0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19*/ /* 1 for registers not available across function calls. These must include the FIXED_REGISTERS and also any registers that can be used without being saved. The latter must include the registers where values are returned and the register where structure-value addresses are passed. NOTE: all floating registers are undefined across calls. */ #define CALL_USED_REGISTERS \ { 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1 } /*0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19*/ /* Return number of consecutive hard regs needed starting at reg REGNO to hold something of mode MODE. This is ordinarily the length in words of a value of mode MODE but can be less for certain modes in special long registers. Note that DCmode (complex double) needs two regs. */ #endif /* TARGET_HLASM */ /* ================= */ #ifdef TARGET_ELF_ABI /* The Linux/ELF ABI uses the same register layout as the * the MVS/OE version, with the following exceptions: * -- r12 (rtca) is not used. */ #define FIXED_REGISTERS \ { 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0 } /*0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19*/ #define CALL_USED_REGISTERS \ { 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1 } /*0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19*/ #endif /* TARGET_ELF_ABI */ /* ================= */ #define HARD_REGNO_NREGS(REGNO, MODE) \ ((REGNO) > 15 ? \ ((GET_MODE_SIZE (MODE) + 2*UNITS_PER_WORD - 1) / (2*UNITS_PER_WORD)) : \ (GET_MODE_SIZE(MODE)+UNITS_PER_WORD-1) / UNITS_PER_WORD) /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. On the 370, the cpu registers can hold QI, HI, SI, SF and DF. The even registers can hold DI. The floating point registers can hold either SF, DF, SC or DC. */ #define HARD_REGNO_MODE_OK(REGNO, MODE) \ ((REGNO) < 16 ? (((REGNO) & 1) == 0 || \ (((MODE) != DImode) && ((MODE) != DFmode))) \ : ((MODE) == SFmode || (MODE) == DFmode) || \ (MODE) == SCmode || (MODE) == DCmode) /* Value is 1 if it is a good idea to tie two pseudo registers when one has mode MODE1 and one has mode MODE2. If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2, for any hard reg, then this must be 0 for correct output. */ #define MODES_TIEABLE_P(MODE1, MODE2) \ (((MODE1) == SFmode || (MODE1) == DFmode) \ == ((MODE2) == SFmode || (MODE2) == DFmode)) /* Specify the registers used for certain standard purposes. The values of these macros are register numbers. */ /* 370 PC isn't overloaded on a register. */ /* #define PC_REGNUM */ /* Register to use for pushing function arguments. */ #define STACK_POINTER_REGNUM 13 /* Base register for access to local variables of the function. */ #define FRAME_POINTER_REGNUM 13 /* Value should be nonzero if functions must have frame pointers. Zero means the frame pointer need not be set up (and parms may be accessed via the stack pointer) in functions that seem suitable. This is computed in `reload', in reload1.c. */ #define FRAME_POINTER_REQUIRED 1 /* Base register for access to arguments of the function. */ #define ARG_POINTER_REGNUM 11 /* R10 is register in which static-chain is passed to a function. Static-chaining is done when a nested function references as a global a stack variable of its parent: e.g. int parent_func (int arg) { int x; // x is in parents stack void child_func (void) { x++: } // child references x as global var ... } */ #define STATIC_CHAIN_REGNUM 10 /* R1 is register in which address to store a structure value is passed to a function. This is used only when returning 64-bit long-long in a 32-bit arch and when calling functions that return structs by value. e.g. typedef struct A_s { int a,b,c; } A_t; A_t fun_returns_value (void) { A_t a; a.a=1; a.b=2 a.c=3; return a; } In the above, the storage for the return value is in the callers stack, and the R1 points at that mem location. */ #define STRUCT_VALUE_REGNUM 1 /* Define the classes of registers for register constraints in the machine description. Also define ranges of constants. One of the classes must always be named ALL_REGS and include all hard regs. If there is more than one class, another class must be named NO_REGS and contain no registers. The name GENERAL_REGS must be the name of a class (or an alias for another name such as ALL_REGS). This is the class of registers that is allowed by "g" or "r" in a register constraint. Also, registers outside this class are allocated only when instructions express preferences for them. The classes must be numbered in nondecreasing order; that is, a larger-numbered class must never be contained completely in a smaller-numbered class. For any two classes, it is very desirable that there be another class that represents their union. */ enum reg_class { NO_REGS, ADDR_REGS, DATA_REGS, FP_REGS, ALL_REGS, LIM_REG_CLASSES }; #define GENERAL_REGS DATA_REGS #define N_REG_CLASSES (int) LIM_REG_CLASSES /* Give names of register classes as strings for dump file. */ #define REG_CLASS_NAMES \ { "NO_REGS", "ADDR_REGS", "DATA_REGS", "FP_REGS", "ALL_REGS" } /* Define which registers fit in which classes. This is an initializer for a vector of HARD_REG_SET of length N_REG_CLASSES. */ #define REG_CLASS_CONTENTS {{0}, {0x0fffe}, {0x0ffff}, {0xf0000}, {0xfffff}} /* The same information, inverted: Return the class number of the smallest class containing reg number REGNO. This could be a conditional expression or could index an array. */ #define REGNO_REG_CLASS(REGNO) \ ((REGNO) >= 16 ? FP_REGS : (REGNO) != 0 ? ADDR_REGS : DATA_REGS) /* The class value for index registers, and the one for base regs. */ #define INDEX_REG_CLASS ADDR_REGS #define BASE_REG_CLASS ADDR_REGS /* Get reg_class from a letter such as appears in the machine description. */ #define REG_CLASS_FROM_LETTER(C) \ ((C) == 'a' ? ADDR_REGS : \ ((C) == 'd' ? DATA_REGS : \ ((C) == 'f' ? FP_REGS : NO_REGS))) /* The letters I, J, K, L and M in a register constraint string can be used to stand for particular ranges of immediate operands. This macro defines what the ranges are. C is the letter, and VALUE is a constant value. Return 1 if VALUE is in the range specified by C. */ #define CONST_OK_FOR_LETTER_P(VALUE, C) \ ((C) == 'I' ? (unsigned) (VALUE) < 256 : \ (C) == 'J' ? (unsigned) (VALUE) < 4096 : \ (C) == 'K' ? (VALUE) >= -32768 && (VALUE) < 32768 : 0) /* Similar, but for floating constants, and defining letters G and H. Here VALUE is the CONST_DOUBLE rtx itself. */ #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) 1 /* see recog.c for details */ #define EXTRA_CONSTRAINT(OP,C) \ ((C) == 'R' ? r_or_s_operand (OP, GET_MODE(OP)) : \ (C) == 'S' ? s_operand (OP, GET_MODE(OP)) : 0) \ /* Given an rtx X being reloaded into a reg required to be in class CLASS, return the class of reg to actually use. In general this is just CLASS; but on some machines in some cases it is preferable to use a more restrictive class. XXX We reload CONST_INT's into ADDR not DATA regs because on certain rare occasions when lots of egisters are spilled, reload() will try to put a const int into r0 and then use r0 as an index register. */ #define PREFERRED_RELOAD_CLASS(X, CLASS) \ (GET_CODE(X) == CONST_DOUBLE ? FP_REGS : \ GET_CODE(X) == CONST_INT ? (reload_in_progress ? ADDR_REGS : DATA_REGS) : \ GET_CODE(X) == LABEL_REF || \ GET_CODE(X) == SYMBOL_REF || \ GET_CODE(X) == CONST ? ADDR_REGS : (CLASS)) /* Return the maximum number of consecutive registers needed to represent mode MODE in a register of class CLASS. Note that DCmode (complex double) needs two regs. */ #define CLASS_MAX_NREGS(CLASS, MODE) \ ((CLASS) == FP_REGS ? \ ((GET_MODE_SIZE (MODE) + 2*UNITS_PER_WORD - 1) / (2*UNITS_PER_WORD)) : \ (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) /* Stack layout; function entry, exit and calling. */ /* Define this if pushing a word on the stack makes the stack pointer a smaller address. */ /* ------------------------------------------------------------------- */ /* ================= */ #ifdef TARGET_HLASM /* #define STACK_GROWS_DOWNWARD */ /* Define this if the nominal address of the stack frame is at the high-address end of the local variables; that is, each additional local variable allocated goes at a more negative offset in the frame. */ /* #define FRAME_GROWS_DOWNWARD */ /* Offset within stack frame to start allocating local variables at. If FRAME_GROWS_DOWNWARD, this is the offset to the END of the first local allocated. Otherwise, it is the offset to the BEGINNING of the first local allocated. */ #define STARTING_FRAME_OFFSET \ (STACK_POINTER_OFFSET + current_function_outgoing_args_size) #define INITIAL_FRAME_POINTER_OFFSET(DEPTH) (DEPTH) = STARTING_FRAME_OFFSET /* If we generate an insn to push BYTES bytes, this says how many the stack pointer really advances by. On the 370, we have no push instruction. */ #endif /* TARGET_HLASM */ /* ================= */ #ifdef TARGET_ELF_ABI /* With ELF/Linux, stack is placed at large virtual addrs and grows down. But we want the compiler to generate posistive displacements from the stack pointer, and so we make the frame lie above the stack. */ #define STACK_GROWS_DOWNWARD /* #define FRAME_GROWS_DOWNWARD */ /* Offset within stack frame to start allocating local variables at. This is the offset to the BEGINNING of the first local allocated. */ #define STARTING_FRAME_OFFSET \ (STACK_POINTER_OFFSET + current_function_outgoing_args_size) #define INITIAL_FRAME_POINTER_OFFSET(DEPTH) (DEPTH) = STARTING_FRAME_OFFSET #endif /* TARGET_ELF_ABI */ /* ================= */ /* #define PUSH_ROUNDING(BYTES) */ /* Accumulate the outgoing argument count so we can request the right DSA size and determine stack offset. */ #define ACCUMULATE_OUTGOING_ARGS 1 /* Define offset from stack pointer, to location where a parm can be pushed. */ #define STACK_POINTER_OFFSET 148 /* Offset of first parameter from the argument pointer register value. */ #define FIRST_PARM_OFFSET(FNDECL) 0 /* 1 if N is a possible register number for function argument passing. On the 370, no registers are used in this way. */ #define FUNCTION_ARG_REGNO_P(N) 0 /* Define a data type for recording info about an argument list during the scan of that argument list. This data type should hold all necessary information about the function itself and about the args processed so far, enough to enable macros such as FUNCTION_ARG to determine where the next arg should go. */ #define CUMULATIVE_ARGS int /* Initialize a variable CUM of type CUMULATIVE_ARGS for a call to a function whose data type is FNTYPE. For a library call, FNTYPE is 0. */ #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT) ((CUM) = 0) /* Update the data in CUM to advance over an argument of mode MODE and data type TYPE. (TYPE is null for libcalls where that information may not be available.) */ #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \ ((CUM) += ((MODE) == DFmode || (MODE) == SFmode \ ? 256 \ : (MODE) != BLKmode \ ? (GET_MODE_SIZE (MODE) + 3) / 4 \ : (int_size_in_bytes (TYPE) + 3) / 4)) /* Define where to put the arguments to a function. Value is zero to push the argument on the stack, or a hard register in which to store the argument. */ #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) 0 /* For an arg passed partly in registers and partly in memory, this is the number of registers used. For args passed entirely in registers or entirely in memory, zero. */ #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0 /* Define if returning from a function call automatically pops the arguments described by the number-of-args field in the call. */ #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0 /* The FUNCTION_VALUE macro defines how to find the value returned by a function. VALTYPE is the data type of the value (as a tree). If the precise function being called is known, FUNC is its FUNCTION_DECL; otherwise, FUNC is NULL. On the 370 the return value is in R15 or R16. However, DImode (64-bit ints) scalars need to get returned on the stack, with r15 pointing to the location. To accomplish this, we define the RETURN_IN_MEMORY macro to be true for both blockmode (structures) and the DImode scalars. */ #define RET_REG(MODE) \ (((MODE) == DCmode || (MODE) == SCmode || (MODE) == TFmode || (MODE) == DFmode || (MODE) == SFmode) ? 16 : 15) #define FUNCTION_VALUE(VALTYPE, FUNC) \ gen_rtx_REG (TYPE_MODE (VALTYPE), RET_REG (TYPE_MODE (VALTYPE))) #define RETURN_IN_MEMORY(VALTYPE) \ ((DImode == TYPE_MODE (VALTYPE)) || (BLKmode == TYPE_MODE (VALTYPE))) /* Define how to find the value returned by a library function assuming the value has mode MODE. */ #define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, RET_REG (MODE)) /* 1 if N is a possible register number for a function value. On the 370 under C/370, R15 and R16 are thus used. */ #define FUNCTION_VALUE_REGNO_P(N) ((N) == 15 || (N) == 16) /* This macro definition sets up a default value for `main' to return. */ #define DEFAULT_MAIN_RETURN c_expand_return (integer_zero_node) /* Output assembler code for a block containing the constant parts of a trampoline, leaving space for the variable parts. On the 370, the trampoline contains these instructions: BALR 14,0 USING *,14 L STATIC_CHAIN_REGISTER,X L 15,Y BR 15 X DS 0F Y DS 0F */ /* I am confused as to why this emitting raw binary, instead of instructions ... see for example, rs6000/rs000.c for an example of a different way to do this ... especially since BASR should probably be substituted for BALR. */ #define TRAMPOLINE_TEMPLATE(FILE) \ { \ assemble_aligned_integer (2, GEN_INT (0x05E0)); \ assemble_aligned_integer (2, GEN_INT (0x5800 | STATIC_CHAIN_REGNUM << 4)); \ assemble_aligned_integer (2, GEN_INT (0xE00A)); \ assemble_aligned_integer (2, GEN_INT (0x58F0)); \ assemble_aligned_integer (2, GEN_INT (0xE00E)); \ assemble_aligned_integer (2, GEN_INT (0x07FF)); \ assemble_aligned_integer (2, const0_rtx); \ assemble_aligned_integer (2, const0_rtx); \ assemble_aligned_integer (2, const0_rtx); \ assemble_aligned_integer (2, const0_rtx); \ } /* Length in units of the trampoline for entering a nested function. */ #define TRAMPOLINE_SIZE 20 /* Emit RTL insns to initialize the variable parts of a trampoline. */ #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \ { \ emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 12)), CXT); \ emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 16)), FNADDR); \ } /* Define EXIT_IGNORE_STACK if, when returning from a function, the stack pointer does not matter (provided there is a frame pointer). */ #define EXIT_IGNORE_STACK 1 /* Addressing modes, and classification of registers for them. */ /* #define HAVE_POST_INCREMENT */ /* #define HAVE_POST_DECREMENT */ /* #define HAVE_PRE_DECREMENT */ /* #define HAVE_PRE_INCREMENT */ /* These assume that REGNO is a hard or pseudo reg number. They give nonzero only if REGNO is a hard reg of the suitable class or a pseudo reg currently allocated to a suitable hard reg. These definitions are NOT overridden anywhere. */ #define REGNO_OK_FOR_INDEX_P(REGNO) \ (((REGNO) > 0 && (REGNO) < 16) \ || (reg_renumber[REGNO] > 0 && reg_renumber[REGNO] < 16)) #define REGNO_OK_FOR_BASE_P(REGNO) REGNO_OK_FOR_INDEX_P(REGNO) #define REGNO_OK_FOR_DATA_P(REGNO) \ ((REGNO) < 16 || (unsigned) reg_renumber[REGNO] < 16) #define REGNO_OK_FOR_FP_P(REGNO) \ ((unsigned) ((REGNO) - 16) < 4 || (unsigned) (reg_renumber[REGNO] - 16) < 4) /* Now macros that check whether X is a register and also, strictly, whether it is in a specified class. */ /* 1 if X is a data register. */ #define DATA_REG_P(X) (REG_P (X) && REGNO_OK_FOR_DATA_P (REGNO (X))) /* 1 if X is an fp register. */ #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X))) /* 1 if X is an address register. */ #define ADDRESS_REG_P(X) (REG_P (X) && REGNO_OK_FOR_BASE_P (REGNO (X))) /* Maximum number of registers that can appear in a valid memory address. */ #define MAX_REGS_PER_ADDRESS 2 /* Recognize any constant value that is a valid address. */ #define CONSTANT_ADDRESS_P(X) \ (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \ || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST_DOUBLE \ || (GET_CODE (X) == CONST \ && GET_CODE (XEXP (XEXP (X, 0), 0)) == LABEL_REF) \ || (GET_CODE (X) == CONST \ && GET_CODE (XEXP (XEXP (X, 0), 0)) == SYMBOL_REF \ && !SYMBOL_REF_FLAG (XEXP (XEXP (X, 0), 0)))) /* Nonzero if the constant value X is a legitimate general operand. It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */ #define LEGITIMATE_CONSTANT_P(X) 1 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx and check its validity for a certain class. We have two alternate definitions for each of them. The usual definition accepts all pseudo regs; the other rejects them all. The symbol REG_OK_STRICT causes the latter definition to be used. Most source files want to accept pseudo regs in the hope that they will get allocated to the class that the insn wants them to be in. Some source files that are used after register allocation need to be strict. */ #ifndef REG_OK_STRICT /* Nonzero if X is a hard reg that can be used as an index or if it is a pseudo reg. */ #define REG_OK_FOR_INDEX_P(X) \ ((REGNO(X) > 0 && REGNO(X) < 16) || REGNO(X) >= 20) /* Nonzero if X is a hard reg that can be used as a base reg or if it is a pseudo reg. */ #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_INDEX_P(X) #else /* REG_OK_STRICT */ /* Nonzero if X is a hard reg that can be used as an index. */ #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P(REGNO(X)) /* Nonzero if X is a hard reg that can be used as a base reg. */ #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P(REGNO(X)) #endif /* REG_OK_STRICT */ /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression that is a valid memory address for an instruction. The MODE argument is the machine mode for the MEM expression that wants to use this address. The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS, except for CONSTANT_ADDRESS_P which is actually machine-independent. */ #define COUNT_REGS(X, REGS, FAIL) \ if (REG_P (X)) { \ if (REG_OK_FOR_BASE_P (X)) REGS += 1; \ else goto FAIL; \ } \ else if (GET_CODE (X) != CONST_INT || (unsigned) INTVAL (X) >= 4096) \ goto FAIL; #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \ { \ if (REG_P (X) && REG_OK_FOR_BASE_P (X)) \ goto ADDR; \ if (GET_CODE (X) == PLUS) \ { \ int regs = 0; \ rtx x0 = XEXP (X, 0); \ rtx x1 = XEXP (X, 1); \ if (GET_CODE (x0) == PLUS) \ { \ COUNT_REGS (XEXP (x0, 0), regs, FAIL); \ COUNT_REGS (XEXP (x0, 1), regs, FAIL); \ COUNT_REGS (x1, regs, FAIL); \ if (regs == 2) \ goto ADDR; \ } \ else if (GET_CODE (x1) == PLUS) \ { \ COUNT_REGS (x0, regs, FAIL); \ COUNT_REGS (XEXP (x1, 0), regs, FAIL); \ COUNT_REGS (XEXP (x1, 1), regs, FAIL); \ if (regs == 2) \ goto ADDR; \ } \ else \ { \ COUNT_REGS (x0, regs, FAIL); \ COUNT_REGS (x1, regs, FAIL); \ if (regs != 0) \ goto ADDR; \ } \ } \ FAIL: ; \ } /* The 370 has no mode dependent addresses. */ #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) /* Macro: LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) Try machine-dependent ways of modifying an illegitimate address to be legitimate. If we find one, return the new, valid address. This macro is used in only one place: `memory_address' in explow.c. Several comments: (1) It's not obvious that this macro results in better code than its omission does. For historical reasons we leave it in. (2) This macro may be (???) implicated in the accidental promotion or RS operand to RX operands, which bombs out any RS, SI, SS instruction that was expecting a simple address. Note that this occurs fairly rarely ... (3) There is a bug somewhere that causes either r4 to be spilled, or causes r0 to be used as a base register. Changeing the macro below will make the bug move around, but will not make it go away ... Note that this is a rare bug ... */ #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \ { \ if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 1))) \ (X) = gen_rtx_PLUS (SImode, XEXP (X, 0), \ copy_to_mode_reg (SImode, XEXP (X, 1))); \ if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 0))) \ (X) = gen_rtx_PLUS (SImode, XEXP (X, 1), \ copy_to_mode_reg (SImode, XEXP (X, 0))); \ if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == MULT) \ (X) = gen_rtx_PLUS (SImode, XEXP (X, 1), \ force_operand (XEXP (X, 0), 0)); \ if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == MULT) \ (X) = gen_rtx_PLUS (SImode, XEXP (X, 0), \ force_operand (XEXP (X, 1), 0)); \ if (memory_address_p (MODE, X)) \ goto WIN; \ } /* Specify the machine mode that this machine uses for the index in the tablejump instruction. */ #define CASE_VECTOR_MODE SImode /* Define this if the tablejump instruction expects the table to contain offsets from the address of the table. Do not define this if the table should contain absolute addresses. */ /* #define CASE_VECTOR_PC_RELATIVE */ /* Define this if fixuns_trunc is the same as fix_trunc. */ #define FIXUNS_TRUNC_LIKE_FIX_TRUNC /* We use "unsigned char" as default. */ #define DEFAULT_SIGNED_CHAR 0 /* Max number of bytes we can move from memory to memory in one reasonably fast instruction. */ #define MOVE_MAX 256 /* Nonzero if access to memory by bytes is slow and undesirable. */ #define SLOW_BYTE_ACCESS 1 /* Define if shifts truncate the shift count which implies one can omit a sign-extension or zero-extension of a shift count. */ /* #define SHIFT_COUNT_TRUNCATED */ /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits is done just by pretending it is already truncated. */ #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) (OUTPREC != 16) /* We assume that the store-condition-codes instructions store 0 for false and some other value for true. This is the value stored for true. */ /* #define STORE_FLAG_VALUE (-1) */ /* When a prototype says `char' or `short', really pass an `int'. */ #define PROMOTE_PROTOTYPES 1 /* Don't perform CSE on function addresses. */ #define NO_FUNCTION_CSE /* Specify the machine mode that pointers have. After generation of rtl, the compiler makes no further distinction between pointers and any other objects of this machine mode. */ #define Pmode SImode /* A function address in a call instruction is a byte address (for indexing purposes) so give the MEM rtx a byte's mode. */ #define FUNCTION_MODE QImode /* Compute the cost of computing a constant rtl expression RTX whose rtx-code is CODE. The body of this macro is a portion of a switch statement. If the code is computed here, return it with a return statement. Otherwise, break from the switch. */ #define CONST_COSTS(RTX, CODE, OUTERCODE) \ case CONST_INT: \ if ((unsigned) INTVAL (RTX) < 0xfff) return 1; \ case CONST: \ case LABEL_REF: \ case SYMBOL_REF: \ return 2; \ case CONST_DOUBLE: \ return 4; /* A C statement (sans semicolon) to update the integer variable COST based on the relationship between INSN that is dependent on DEP_INSN through the dependence LINK. The default is to make no adjustment to COST. This can be used for example to specify to the scheduler that an output- or anti-dependence does not incur the same cost as a data-dependence. We will want to use this to indicate that there is a cost associated with the loading, followed by use of base registers ... #define ADJUST_COST (INSN, LINK, DEP_INSN, COST) */ /* Tell final.c how to eliminate redundant test instructions. */ /* Here we define machine-dependent flags and fields in cc_status (see `conditions.h'). */ /* Store in cc_status the expressions that the condition codes will describe after execution of an instruction whose pattern is EXP. Do not alter them if the instruction would not alter the cc's. On the 370, load insns do not alter the cc's. However, in some cases these instructions can make it possibly invalid to use the saved cc's. In those cases we clear out some or all of the saved cc's so they won't be used. Note that only some arith instructions set the CC. These include add, subtract, complement, various shifts. Note that multiply and divide do *not* set set the CC. Therefore, in the code below, don't set the status for MUL, DIV, etc. Note that the bitwise ops set the condition code, but not in a way that we can make use of it. So we treat these as clobbering, rather than setting the CC. These are clobbered in the individual instruction patterns that use them. Use CC_STATUS_INIT to clobber. */ #define NOTICE_UPDATE_CC(EXP, INSN) \ { \ rtx exp = (EXP); \ if (GET_CODE (exp) == PARALLEL) /* Check this */ \ exp = XVECEXP (exp, 0, 0); \ if (GET_CODE (exp) != SET) \ CC_STATUS_INIT; \ else \ { \ if (XEXP (exp, 0) == cc0_rtx) \ { \ cc_status.value1 = XEXP (exp, 0); \ cc_status.value2 = XEXP (exp, 1); \ cc_status.flags = 0; \ } \ else \ { \ if (cc_status.value1 \ && reg_mentioned_p (XEXP (exp, 0), cc_status.value1)) \ cc_status.value1 = 0; \ if (cc_status.value2 \ && reg_mentioned_p (XEXP (exp, 0), cc_status.value2)) \ cc_status.value2 = 0; \ switch (GET_CODE (XEXP (exp, 1))) \ { \ case PLUS: case MINUS: case NEG: \ case NOT: case ABS: \ CC_STATUS_SET (XEXP (exp, 0), XEXP (exp, 1)); \ \ /* mult and div don't set any cc codes !! */ \ case MULT: /* case UMULT: */ case DIV: case UDIV: \ /* and, or and xor set the cc's the wrong way !! */ \ case AND: case IOR: case XOR: \ /* some shifts set the CC some don't. */ \ case ASHIFT: case ASHIFTRT: \ do {} while (0); \ default: \ break; \ } \ } \ } \ } #define CC_STATUS_SET(V1, V2) \ { \ cc_status.flags = 0; \ cc_status.value1 = (V1); \ cc_status.value2 = (V2); \ if (cc_status.value1 \ && reg_mentioned_p (cc_status.value1, cc_status.value2)) \ cc_status.value2 = 0; \ } #define OUTPUT_JUMP(NORMAL, FLOAT, NO_OV) \ { if (cc_status.flags & CC_NO_OVERFLOW) return NO_OV; return NORMAL; } /* ------------------------------------------ */ /* Control the assembler format that we output. */ /* Define standard character escape sequences for non-ASCII targets only. */ #ifdef TARGET_EBCDIC #define TARGET_ESC 39 #define TARGET_BELL 47 #define TARGET_BS 22 #define TARGET_TAB 5 #define TARGET_NEWLINE 21 #define TARGET_VT 11 #define TARGET_FF 12 #define TARGET_CR 13 #endif /* ======================================================== */ #ifdef TARGET_HLASM #define TEXT_SECTION_ASM_OP "* Program text area" #define DATA_SECTION_ASM_OP "* Program data area" #define INIT_SECTION_ASM_OP "* Program initialization area" #define SHARED_SECTION_ASM_OP "* Program shared data" #define CTOR_LIST_BEGIN /* NO OP */ #define CTOR_LIST_END /* NO OP */ #define MAX_MVS_LABEL_SIZE 8 /* How to refer to registers in assembler output. This sequence is indexed by compiler's hard-register-number (see above). */ #define REGISTER_NAMES \ { "0", "1", "2", "3", "4", "5", "6", "7", \ "8", "9", "10", "11", "12", "13", "14", "15", \ "0", "2", "4", "6" \ } #define ASM_FILE_START(FILE) \ { fputs ("\tRMODE\tANY\n", FILE); \ fputs ("\tCSECT\n", FILE); } #define ASM_FILE_END(FILE) fputs ("\tEND\n", FILE); #define ASM_COMMENT_START "*" #define ASM_APP_OFF "" #define ASM_APP_ON "" #define ASM_OUTPUT_LABEL(FILE, NAME) \ { assemble_name (FILE, NAME); fputs ("\tEQU\t*\n", FILE); } #define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME) \ { \ char temp[MAX_MVS_LABEL_SIZE + 1]; \ if (mvs_check_alias (NAME, temp) == 2) \ { \ fprintf (FILE, "%s\tALIAS\tC'%s'\n", temp, NAME); \ } \ } /* MVS externals are limited to 8 characters, upper case only. The '_' is mapped to '@', except for MVS functions, then '#'. */ #define ASM_OUTPUT_LABELREF(FILE, NAME) \ { \ char *bp, ch, temp[MAX_MVS_LABEL_SIZE + 1]; \ if (!mvs_get_alias (NAME, temp)) \ strcpy (temp, NAME); \ if (!strcmp (temp,"main")) \ strcpy (temp,"gccmain"); \ if (mvs_function_check (temp)) \ ch = '#'; \ else \ ch = '@'; \ for (bp = temp; *bp; bp++) \ *bp = (*bp == '_' ? ch : TOUPPER (*bp)); \ fprintf (FILE, "%s", temp); \ } #define ASM_GENERATE_INTERNAL_LABEL(LABEL, PREFIX, NUM) \ sprintf (LABEL, "*%s%d", PREFIX, NUM) /* Generate internal label. Since we can branch here from off page, we must reload the base register. */ #define ASM_OUTPUT_INTERNAL_LABEL(FILE, PREFIX, NUM) \ { \ if (!strcmp (PREFIX,"L")) \ { \ mvs_add_label(NUM); \ } \ fprintf (FILE, "%s%d\tEQU\t*\n", PREFIX, NUM); \ } /* Generate case label. For HLASM we can change to the data CSECT and put the vectors out of the code body. The assembler just concatenates CSECTs with the same name. */ #define ASM_OUTPUT_CASE_LABEL(FILE, PREFIX, NUM, TABLE) \ fprintf (FILE, "\tDS\t0F\n"); \ fprintf (FILE,"\tCSECT\n"); \ fprintf (FILE, "%s%d\tEQU\t*\n", PREFIX, NUM) /* Put the CSECT back to the code body */ #define ASM_OUTPUT_CASE_END(FILE, NUM, TABLE) \ assemble_name (FILE, mvs_function_name); \ fputs ("\tCSECT\n", FILE); /* This is how to output an element of a case-vector that is absolute. */ #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \ fprintf (FILE, "\tDC\tA(L%d)\n", VALUE) /* This is how to output an element of a case-vector that is relative. */ #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \ fprintf (FILE, "\tDC\tA(L%d-L%d)\n", VALUE, REL) /* This is how to output an insn to push a register on the stack. It need not be very fast code. Right now, PUSH & POP are used only when profiling is enabled, and then, only to push the static chain reg and the function struct value reg, and only if those are used. Since profiling is not supported anyway, punt on this. */ #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \ mvs_check_page (FILE, 8, 4); \ fprintf (FILE, "\tS\t13,=F'4'\n\tST\t%s,%d(13)\n", \ reg_names[REGNO], STACK_POINTER_OFFSET) /* This is how to output an insn to pop a register from the stack. It need not be very fast code. */ #define ASM_OUTPUT_REG_POP(FILE, REGNO) \ mvs_check_page (FILE, 8, 0); \ fprintf (FILE, "\tL\t%s,%d(13)\n\tLA\t13,4(13)\n", \ reg_names[REGNO], STACK_POINTER_OFFSET) /* This outputs a text string. The string are chopped up to fit into an 80 byte record. Also, control and special characters, interpreted by the IBM assembler, are output numerically. */ #define MVS_ASCII_TEXT_LENGTH 48 #define ASM_OUTPUT_ASCII(FILE, PTR, LEN) \ { \ size_t i, limit = (LEN); \ int j; \ for (j = 0, i = 0; i < limit; j++, i++) \ { \ int c = (PTR)[i]; \ if (ISCNTRL (c) || c == '&') \ { \ if (j % MVS_ASCII_TEXT_LENGTH != 0 ) \ fprintf (FILE, "'\n"); \ j = -1; \ if (c == '&') c = MAP_CHARACTER (c); \ fprintf (FILE, "\tDC\tX'%X'\n", c ); \ } \ else \ { \ if (j % MVS_ASCII_TEXT_LENGTH == 0) \ fprintf (FILE, "\tDC\tC'"); \ if ( c == '\'' ) \ fprintf (FILE, "%c%c", c, c); \ else \ fprintf (FILE, "%c", c); \ if (j % MVS_ASCII_TEXT_LENGTH == MVS_ASCII_TEXT_LENGTH - 1) \ fprintf (FILE, "'\n" ); \ } \ } \ if (j % MVS_ASCII_TEXT_LENGTH != 0) \ fprintf (FILE, "'\n"); \ } /* This is how to output an assembler line that says to advance the location counter to a multiple of 2**LOG bytes. */ #define ASM_OUTPUT_ALIGN(FILE, LOG) \ if (LOG) \ { \ if ((LOG) == 1) \ fprintf (FILE, "\tDS\t0H\n" ); \ else \ fprintf (FILE, "\tDS\t0F\n" ); \ } \ /* The maximum length of memory that the IBM assembler will allow in one DS operation. */ #define MAX_CHUNK 32767 /* A C statement to output to the stdio stream FILE an assembler instruction to advance the location counter by SIZE bytes. Those bytes should be zero when loaded. */ #define ASM_OUTPUT_SKIP(FILE, SIZE) \ { \ int s, k; \ for (s = (SIZE); s > 0; s -= MAX_CHUNK) \ { \ if (s > MAX_CHUNK) \ k = MAX_CHUNK; \ else \ k = s; \ fprintf (FILE, "\tDS\tXL%d\n", k); \ } \ } /* A C statement (sans semicolon) to output to the stdio stream FILE the assembler definition of a common-label named NAME whose size is SIZE bytes. The variable ROUNDED is the size rounded up to whatever alignment the caller wants. */ #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \ { \ char temp[MAX_MVS_LABEL_SIZE + 1]; \ if (mvs_check_alias(NAME, temp) == 2) \ { \ fprintf (FILE, "%s\tALIAS\tC'%s'\n", temp, NAME); \ } \ fputs ("\tENTRY\t", FILE); \ assemble_name (FILE, NAME); \ fputs ("\n", FILE); \ fprintf (FILE, "\tDS\t0F\n"); \ ASM_OUTPUT_LABEL (FILE,NAME); \ ASM_OUTPUT_SKIP (FILE,SIZE); \ } /* A C statement (sans semicolon) to output to the stdio stream FILE the assembler definition of a local-common-label named NAME whose size is SIZE bytes. The variable ROUNDED is the size rounded up to whatever alignment the caller wants. */ #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \ { \ fprintf (FILE, "\tDS\t0F\n"); \ ASM_OUTPUT_LABEL (FILE,NAME); \ ASM_OUTPUT_SKIP (FILE,SIZE); \ } /* Store in OUTPUT a string (made with alloca) containing an assembler-name for a local static variable named NAME. LABELNO is an integer which is different for each call. */ #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \ { \ (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10); \ sprintf ((OUTPUT), "%s%d", (NAME), (LABELNO)); \ } /* Print operand XV (an rtx) in assembler syntax to file FILE. CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified. For `%' followed by punctuation, CODE is the punctuation and XV is null. */ #define PRINT_OPERAND(FILE, XV, CODE) \ { \ switch (GET_CODE (XV)) \ { \ static char curreg[4]; \ case REG: \ if (CODE == 'N') \ strcpy (curreg, reg_names[REGNO (XV) + 1]); \ else \ strcpy (curreg, reg_names[REGNO (XV)]); \ fprintf (FILE, "%s", curreg); \ break; \ case MEM: \ { \ rtx addr = XEXP (XV, 0); \ if (CODE == 'O') \ { \ if (GET_CODE (addr) == PLUS) \ fprintf (FILE, "%d", INTVAL (XEXP (addr, 1))); \ else \ fprintf (FILE, "0"); \ } \ else if (CODE == 'R') \ { \ if (GET_CODE (addr) == PLUS) \ fprintf (FILE, "%s", reg_names[REGNO (XEXP (addr, 0))]);\ else \ fprintf (FILE, "%s", reg_names[REGNO (addr)]); \ } \ else \ output_address (XEXP (XV, 0)); \ } \ break; \ case SYMBOL_REF: \ case LABEL_REF: \ mvs_page_lit += 4; \ if (SYMBOL_REF_FLAG (XV)) fprintf (FILE, "=V("); \ else fprintf (FILE, "=A("); \ output_addr_const (FILE, XV); \ fprintf (FILE, ")"); \ break; \ case CONST_INT: \ if (CODE == 'B') \ fprintf (FILE, "%d", INTVAL (XV) & 0xff); \ else if (CODE == 'X') \ fprintf (FILE, "%02X", INTVAL (XV) & 0xff); \ else if (CODE == 'h') \ fprintf (FILE, "%d", (INTVAL (XV) << 16) >> 16); \ else if (CODE == 'H') \ { \ mvs_page_lit += 2; \ fprintf (FILE, "=H'%d'", (INTVAL (XV) << 16) >> 16); \ } \ else if (CODE == 'K') \ { \ /* auto sign-extension of signed 16-bit to signed 32-bit */ \ mvs_page_lit += 4; \ fprintf (FILE, "=F'%d'", (INTVAL (XV) << 16) >> 16); \ } \ else if (CODE == 'W') \ { \ /* hand-built sign-extension of signed 32-bit to 64-bit */ \ mvs_page_lit += 8; \ if (0 <= INTVAL (XV)) { \ fprintf (FILE, "=XL8'00000000"); \ } else { \ fprintf (FILE, "=XL8'FFFFFFFF"); \ } \ fprintf (FILE, "%08X'", INTVAL (XV)); \ } \ else \ { \ mvs_page_lit += 4; \ fprintf (FILE, "=F'%d'", INTVAL (XV)); \ } \ break; \ case CONST_DOUBLE: \ if (GET_MODE (XV) == DImode) \ { \ if (CODE == 'M') \ { \ mvs_page_lit += 4; \ fprintf (FILE, "=XL4'%08X'", CONST_DOUBLE_LOW (XV)); \ } \ else if (CODE == 'L') \ { \ mvs_page_lit += 4; \ fprintf (FILE, "=XL4'%08X'", CONST_DOUBLE_HIGH (XV)); \ } \ else \ { \ mvs_page_lit += 8; \ fprintf (FILE, "=XL8'%08X%08X'", CONST_DOUBLE_LOW (XV), \ CONST_DOUBLE_HIGH (XV)); \ } \ } \ else \ { \ char buf[50]; \ if (GET_MODE (XV) == SFmode) \ { \ mvs_page_lit += 4; \ real_to_decimal (buf, CONST_DOUBLE_REAL_VALUE (XV), \ sizeof (buf), 0, 1); \ fprintf (FILE, "=E'%s'", buf); \ } \ else if (GET_MODE (XV) == DFmode) \ { \ mvs_page_lit += 8; \ real_to_decimal (buf, CONST_DOUBLE_REAL_VALUE (XV), \ sizeof (buf), 0, 1); \ fprintf (FILE, "=D'%s'", buf); \ } \ else /* VOIDmode */ \ { \ mvs_page_lit += 8; \ fprintf (FILE, "=XL8'%08X%08X'", \ CONST_DOUBLE_HIGH (XV), CONST_DOUBLE_LOW (XV)); \ } \ } \ break; \ case CONST: \ if (GET_CODE (XEXP (XV, 0)) == PLUS \ && GET_CODE (XEXP (XEXP (XV, 0), 0)) == SYMBOL_REF) \ { \ mvs_page_lit += 4; \ if (SYMBOL_REF_FLAG (XEXP (XEXP (XV, 0), 0))) \ { \ fprintf (FILE, "=V("); \ ASM_OUTPUT_LABELREF (FILE, \ XSTR (XEXP (XEXP (XV, 0), 0), 0)); \ fprintf (FILE, ")\n\tA\t%s,=F'%d'", curreg, \ INTVAL (XEXP (XEXP (XV, 0), 1))); \ } \ else \ { \ fprintf (FILE, "=A("); \ output_addr_const (FILE, XV); \ fprintf (FILE, ")"); \ } \ } \ else \ { \ mvs_page_lit += 4; \ fprintf (FILE, "=F'"); \ output_addr_const (FILE, XV); \ fprintf (FILE, "'"); \ } \ break; \ default: \ abort(); \ } \ } #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \ { \ rtx breg, xreg, offset, plus; \ \ switch (GET_CODE (ADDR)) \ { \ case REG: \ fprintf (FILE, "0(%s)", reg_names[REGNO (ADDR)]); \ break; \ case PLUS: \ breg = 0; \ xreg = 0; \ offset = 0; \ if (GET_CODE (XEXP (ADDR, 0)) == PLUS) \ { \ if (GET_CODE (XEXP (ADDR, 1)) == REG) \ breg = XEXP (ADDR, 1); \ else \ offset = XEXP (ADDR, 1); \ plus = XEXP (ADDR, 0); \ } \ else \ { \ if (GET_CODE (XEXP (ADDR, 0)) == REG) \ breg = XEXP (ADDR, 0); \ else \ offset = XEXP (ADDR, 0); \ plus = XEXP (ADDR, 1); \ } \ if (GET_CODE (plus) == PLUS) \ { \ if (GET_CODE (XEXP (plus, 0)) == REG) \ { \ if (breg) \ xreg = XEXP (plus, 0); \ else \ breg = XEXP (plus, 0); \ } \ else \ { \ offset = XEXP (plus, 0); \ } \ if (GET_CODE (XEXP (plus, 1)) == REG) \ { \ if (breg) \ xreg = XEXP (plus, 1); \ else \ breg = XEXP (plus, 1); \ } \ else \ { \ offset = XEXP (plus, 1); \ } \ } \ else if (GET_CODE (plus) == REG) \ { \ if (breg) \ xreg = plus; \ else \ breg = plus; \ } \ else \ { \ offset = plus; \ } \ if (offset) \ { \ if (GET_CODE (offset) == LABEL_REF) \ fprintf (FILE, "L%d", \ CODE_LABEL_NUMBER (XEXP (offset, 0))); \ else \ output_addr_const (FILE, offset); \ } \ else \ fprintf (FILE, "0"); \ if (xreg) \ fprintf (FILE, "(%s,%s)", \ reg_names[REGNO (xreg)], reg_names[REGNO (breg)]); \ else \ fprintf (FILE, "(%s)", reg_names[REGNO (breg)]); \ break; \ default: \ mvs_page_lit += 4; \ if (SYMBOL_REF_FLAG (ADDR)) fprintf (FILE, "=V("); \ else fprintf (FILE, "=A("); \ output_addr_const (FILE, ADDR); \ fprintf (FILE, ")"); \ break; \ } \ } #define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \ { \ if (strlen (NAME) + 1 > mvs_function_name_length) \ { \ if (mvs_function_name) \ free (mvs_function_name); \ mvs_function_name = 0; \ } \ if (!mvs_function_name) \ { \ mvs_function_name_length = strlen (NAME) * 2 + 1; \ mvs_function_name = (char *) xmalloc (mvs_function_name_length); \ } \ if (!strcmp (NAME, "main")) \ strcpy (mvs_function_name, "gccmain"); \ else \ strcpy (mvs_function_name, NAME); \ fprintf (FILE, "\tDS\t0F\n"); \ assemble_name (FILE, mvs_function_name); \ fputs ("\tRMODE\tANY\n", FILE); \ assemble_name (FILE, mvs_function_name); \ fputs ("\tCSECT\n", FILE); \ } /* Output assembler code to FILE to increment profiler label # LABELNO for profiling a function entry. */ #define FUNCTION_PROFILER(FILE, LABELNO) \ fprintf (FILE, "Error: No profiling available.\n") #endif /* TARGET_HLASM */ /* ======================================================== */ #ifdef TARGET_ELF_ABI /* How to refer to registers in assembler output. This sequence is indexed by compiler's hard-register-number (see above). */ #define REGISTER_NAMES \ { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \ "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \ "f0", "f2", "f4", "f6" \ } /* Print operand XV (an rtx) in assembler syntax to file FILE. CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified. For `%' followed by punctuation, CODE is the punctuation and XV is null. */ #define PRINT_OPERAND(FILE, XV, CODE) \ { \ switch (GET_CODE (XV)) \ { \ static char curreg[4]; \ case REG: \ if (CODE == 'N') \ strcpy (curreg, reg_names[REGNO (XV) + 1]); \ else \ strcpy (curreg, reg_names[REGNO (XV)]); \ fprintf (FILE, "%s", curreg); \ break; \ case MEM: \ { \ rtx addr = XEXP (XV, 0); \ if (CODE == 'O') \ { \ if (GET_CODE (addr) == PLUS) \ fprintf (FILE, "%d", INTVAL (XEXP (addr, 1))); \ else \ fprintf (FILE, "0"); \ } \ else if (CODE == 'R') \ { \ if (GET_CODE (addr) == PLUS) \ fprintf (FILE, "%s", reg_names[REGNO (XEXP (addr, 0))]);\ else \ fprintf (FILE, "%s", reg_names[REGNO (addr)]); \ } \ else \ output_address (XEXP (XV, 0)); \ } \ break; \ case SYMBOL_REF: \ case LABEL_REF: \ mvs_page_lit += 4; \ if (SYMBOL_REF_FLAG (XV)) fprintf (FILE, "=V("); \ else fprintf (FILE, "=A("); \ output_addr_const (FILE, XV); \ fprintf (FILE, ")"); \ break; \ case CONST_INT: \ if (CODE == 'B') \ fprintf (FILE, "%d", INTVAL (XV) & 0xff); \ else if (CODE == 'X') \ fprintf (FILE, "%02X", INTVAL (XV) & 0xff); \ else if (CODE == 'h') \ fprintf (FILE, "%d", (INTVAL (XV) << 16) >> 16); \ else if (CODE == 'H') \ { \ mvs_page_lit += 2; \ fprintf (FILE, "=H'%d'", (INTVAL (XV) << 16) >> 16); \ } \ else if (CODE == 'K') \ { \ /* auto sign-extension of signed 16-bit to signed 32-bit */ \ mvs_page_lit += 4; \ fprintf (FILE, "=F'%d'", (INTVAL (XV) << 16) >> 16); \ } \ else if (CODE == 'W') \ { \ /* hand-built sign-extension of signed 32-bit to 64-bit */ \ mvs_page_lit += 8; \ if (0 <= INTVAL (XV)) { \ fprintf (FILE, "=XL8'00000000"); \ } else { \ fprintf (FILE, "=XL8'FFFFFFFF"); \ } \ fprintf (FILE, "%08X'", INTVAL (XV)); \ } \ else \ { \ mvs_page_lit += 4; \ fprintf (FILE, "=F'%d'", INTVAL (XV)); \ } \ break; \ case CONST_DOUBLE: \ if (GET_MODE (XV) == DImode) \ { \ if (CODE == 'M') \ { \ mvs_page_lit += 4; \ fprintf (FILE, "=XL4'%08X'", CONST_DOUBLE_LOW (XV)); \ } \ else if (CODE == 'L') \ { \ mvs_page_lit += 4; \ fprintf (FILE, "=XL4'%08X'", CONST_DOUBLE_HIGH (XV)); \ } \ else \ { \ mvs_page_lit += 8; \ fprintf (FILE, "=yyyyXL8'%08X%08X'", \ CONST_DOUBLE_HIGH (XV), CONST_DOUBLE_LOW (XV)); \ } \ } \ else \ { \ char buf[50]; \ if (GET_MODE (XV) == SFmode) \ { \ mvs_page_lit += 4; \ real_to_decimal (buf, CONST_DOUBLE_REAL_VALUE (XV), \ sizeof (buf), 0, 1); \ fprintf (FILE, "=E'%s'", buf); \ } \ else if (GET_MODE (XV) == DFmode) \ { \ mvs_page_lit += 8; \ real_to_decimal (buf, CONST_DOUBLE_REAL_VALUE (XV), \ sizeof (buf), 0, 1); \ fprintf (FILE, "=D'%s'", buf); \ } \ else /* VOIDmode */ \ { \ mvs_page_lit += 8; \ fprintf (FILE, "=XL8'%08X%08X'", \ CONST_DOUBLE_HIGH (XV), CONST_DOUBLE_LOW (XV)); \ } \ } \ break; \ case CONST: \ if (GET_CODE (XEXP (XV, 0)) == PLUS \ && GET_CODE (XEXP (XEXP (XV, 0), 0)) == SYMBOL_REF) \ { \ mvs_page_lit += 4; \ if (SYMBOL_REF_FLAG (XEXP (XEXP (XV, 0), 0))) \ { \ fprintf (FILE, "=V("); \ ASM_OUTPUT_LABELREF (FILE, \ XSTR (XEXP (XEXP (XV, 0), 0), 0)); \ fprintf (FILE, ")\n\tA\t%s,=F'%d'", curreg, \ INTVAL (XEXP (XEXP (XV, 0), 1))); \ } \ else \ { \ fprintf (FILE, "=A("); \ output_addr_const (FILE, XV); \ fprintf (FILE, ")"); \ } \ } \ else \ { \ mvs_page_lit += 4; \ fprintf (FILE, "=bogus_bad_F'"); \ output_addr_const (FILE, XV); \ fprintf (FILE, "'"); \ /* XXX hack alert this gets gen'd in -fPIC code in relation to a tablejump */ \ /* but its somehow fundamentally broken, I can't make any sense out of it */ \ debug_rtx (XV); \ abort(); \ } \ break; \ default: \ abort(); \ } \ } #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \ { \ rtx breg, xreg, offset, plus; \ \ switch (GET_CODE (ADDR)) \ { \ case REG: \ fprintf (FILE, "0(%s)", reg_names[REGNO (ADDR)]); \ break; \ case PLUS: \ breg = 0; \ xreg = 0; \ offset = 0; \ if (GET_CODE (XEXP (ADDR, 0)) == PLUS) \ { \ if (GET_CODE (XEXP (ADDR, 1)) == REG) \ breg = XEXP (ADDR, 1); \ else \ offset = XEXP (ADDR, 1); \ plus = XEXP (ADDR, 0); \ } \ else \ { \ if (GET_CODE (XEXP (ADDR, 0)) == REG) \ breg = XEXP (ADDR, 0); \ else \ offset = XEXP (ADDR, 0); \ plus = XEXP (ADDR, 1); \ } \ if (GET_CODE (plus) == PLUS) \ { \ if (GET_CODE (XEXP (plus, 0)) == REG) \ { \ if (breg) \ xreg = XEXP (plus, 0); \ else \ breg = XEXP (plus, 0); \ } \ else \ { \ offset = XEXP (plus, 0); \ } \ if (GET_CODE (XEXP (plus, 1)) == REG) \ { \ if (breg) \ xreg = XEXP (plus, 1); \ else \ breg = XEXP (plus, 1); \ } \ else \ { \ offset = XEXP (plus, 1); \ } \ } \ else if (GET_CODE (plus) == REG) \ { \ if (breg) \ xreg = plus; \ else \ breg = plus; \ } \ else \ { \ offset = plus; \ } \ if (offset) \ { \ if (GET_CODE (offset) == LABEL_REF) \ fprintf (FILE, "L%d", \ CODE_LABEL_NUMBER (XEXP (offset, 0))); \ else \ output_addr_const (FILE, offset); \ } \ else \ fprintf (FILE, "0"); \ if (xreg) \ fprintf (FILE, "(%s,%s)", \ reg_names[REGNO (xreg)], reg_names[REGNO (breg)]); \ else \ fprintf (FILE, "(%s)", reg_names[REGNO (breg)]); \ break; \ default: \ mvs_page_lit += 4; \ if (SYMBOL_REF_FLAG (ADDR)) fprintf (FILE, "=V("); \ else fprintf (FILE, "=A("); \ output_addr_const (FILE, ADDR); \ fprintf (FILE, ")"); \ break; \ } \ } /* Output assembler code to FILE to increment profiler label # LABELNO for profiling a function entry. */ /* Make it a no-op for now, so we can at least compile glibc */ #define FUNCTION_PROFILER(FILE, LABELNO) { \ mvs_check_page (FILE, 24, 4); \ fprintf (FILE, "\tSTM\tr1,r2,%d(sp)\n", STACK_POINTER_OFFSET-8); \ fprintf (FILE, "\tLA\tr1,1(0,0)\n"); \ fprintf (FILE, "\tL\tr2,=A(.LP%d)\n", LABELNO); \ fprintf (FILE, "\tA\tr1,0(r2)\n"); \ fprintf (FILE, "\tST\tr1,0(r2)\n"); \ fprintf (FILE, "\tLM\tr1,r2,%d(sp)\n", STACK_POINTER_OFFSET-8); \ } /* Don't bother to output .extern pseudo-ops. They are not needed by ELF assemblers. */ #undef ASM_OUTPUT_EXTERNAL #define ASM_DOUBLE "\t.double" /* #define ASM_OUTPUT_LABELREF(FILE, NAME) */ /* use gas -- defaults.h */ /* Generate internal label. Since we can branch here from off page, we must reload the base register. Note that internal labels are generated for loops, goto's and case labels. */ #undef ASM_OUTPUT_INTERNAL_LABEL #define ASM_OUTPUT_INTERNAL_LABEL(FILE, PREFIX, NUM) \ { \ if (!strcmp (PREFIX,"L")) \ { \ mvs_add_label(NUM); \ } \ fprintf (FILE, ".%s%d:\n", PREFIX, NUM); \ } /* let config/svr4.h define this ... * #define ASM_OUTPUT_CASE_LABEL(FILE, PREFIX, NUM, TABLE) * fprintf (FILE, "%s%d:\n", PREFIX, NUM) */ /* This is how to output an element of a case-vector that is absolute. */ #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \ mvs_check_page (FILE, 4, 0); \ fprintf (FILE, "\t.long\t.L%d\n", VALUE) /* This is how to output an element of a case-vector that is relative. */ #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \ mvs_check_page (FILE, 4, 0); \ fprintf (FILE, "\t.long\t.L%d-.L%d\n", VALUE, REL) /* Right now, PUSH & POP are used only when profiling is enabled, and then, only to push the static chain reg and the function struct value reg, and only if those are used by the function being profiled. We don't need this for profiling, so punt. */ #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) #define ASM_OUTPUT_REG_POP(FILE, REGNO) /* Indicate that jump tables go in the text section. This is necessary when compiling PIC code. */ #define JUMP_TABLES_IN_TEXT_SECTION 1 /* Define macro used to output shift-double opcodes when the shift count is in %cl. Some assemblers require %cl as an argument; some don't. GAS requires the %cl argument, so override i386/unix.h. */ #undef SHIFT_DOUBLE_OMITS_COUNT #define SHIFT_DOUBLE_OMITS_COUNT 0 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \ ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \ sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO))) /* Implicit library calls should use memcpy, not bcopy, etc. */ #define TARGET_MEM_FUNCTIONS /* Output before read-only data. */ #define TEXT_SECTION_ASM_OP "\t.text" /* Output before writable (initialized) data. */ #define DATA_SECTION_ASM_OP "\t.data" /* Output before writable (uninitialized) data. */ #define BSS_SECTION_ASM_OP "\t.bss" /* In the past there was confusion as to what the argument to .align was in GAS. For the last several years the rule has been this: for a.out file formats that argument is LOG, and for all other file formats the argument is 1<