/* Subroutines used for code generation on IA-32. Copyright (C) 1988-2013 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "rtl.h" #include "tree.h" #include "stringpool.h" #include "attribs.h" #include "calls.h" #include "stor-layout.h" #include "varasm.h" #include "tm_p.h" #include "regs.h" #include "hard-reg-set.h" #include "insn-config.h" #include "conditions.h" #include "output.h" #include "insn-codes.h" #include "insn-attr.h" #include "flags.h" #include "except.h" #include "function.h" #include "recog.h" #include "expr.h" #include "optabs.h" #include "diagnostic-core.h" #include "toplev.h" #include "basic-block.h" #include "ggc.h" #include "target.h" #include "target-def.h" #include "common/common-target.h" #include "langhooks.h" #include "reload.h" #include "cgraph.h" #include "gimple.h" #include "gimplify.h" #include "dwarf2.h" #include "df.h" #include "tm-constrs.h" #include "params.h" #include "cselib.h" #include "debug.h" #include "sched-int.h" #include "sbitmap.h" #include "fibheap.h" #include "opts.h" #include "diagnostic.h" #include "dumpfile.h" #include "tree-pass.h" #include "context.h" #include "pass_manager.h" static rtx legitimize_dllimport_symbol (rtx, bool); static rtx legitimize_pe_coff_extern_decl (rtx, bool); static rtx legitimize_pe_coff_symbol (rtx, bool); #ifndef CHECK_STACK_LIMIT #define CHECK_STACK_LIMIT (-1) #endif /* Return index of given mode in mult and division cost tables. */ #define MODE_INDEX(mode) \ ((mode) == QImode ? 0 \ : (mode) == HImode ? 1 \ : (mode) == SImode ? 2 \ : (mode) == DImode ? 3 \ : 4) /* Processor costs (relative to an add) */ /* We assume COSTS_N_INSNS is defined as (N)*4 and an addition is 2 bytes. */ #define COSTS_N_BYTES(N) ((N) * 2) #define DUMMY_STRINGOP_ALGS {libcall, {{-1, libcall, false}}} static stringop_algs ix86_size_memcpy[2] = { {rep_prefix_1_byte, {{-1, rep_prefix_1_byte, false}}}, {rep_prefix_1_byte, {{-1, rep_prefix_1_byte, false}}}}; static stringop_algs ix86_size_memset[2] = { {rep_prefix_1_byte, {{-1, rep_prefix_1_byte, false}}}, {rep_prefix_1_byte, {{-1, rep_prefix_1_byte, false}}}}; const struct processor_costs ix86_size_cost = {/* costs for tuning for size */ COSTS_N_BYTES (2), /* cost of an add instruction */ COSTS_N_BYTES (3), /* cost of a lea instruction */ COSTS_N_BYTES (2), /* variable shift costs */ COSTS_N_BYTES (3), /* constant shift costs */ {COSTS_N_BYTES (3), /* cost of starting multiply for QI */ COSTS_N_BYTES (3), /* HI */ COSTS_N_BYTES (3), /* SI */ COSTS_N_BYTES (3), /* DI */ COSTS_N_BYTES (5)}, /* other */ 0, /* cost of multiply per each bit set */ {COSTS_N_BYTES (3), /* cost of a divide/mod for QI */ COSTS_N_BYTES (3), /* HI */ COSTS_N_BYTES (3), /* SI */ COSTS_N_BYTES (3), /* DI */ COSTS_N_BYTES (5)}, /* other */ COSTS_N_BYTES (3), /* cost of movsx */ COSTS_N_BYTES (3), /* cost of movzx */ 0, /* "large" insn */ 2, /* MOVE_RATIO */ 2, /* cost for loading QImode using movzbl */ {2, 2, 2}, /* cost of loading integer registers in QImode, HImode and SImode. Relative to reg-reg move (2). */ {2, 2, 2}, /* cost of storing integer registers */ 2, /* cost of reg,reg fld/fst */ {2, 2, 2}, /* cost of loading fp registers in SFmode, DFmode and XFmode */ {2, 2, 2}, /* cost of storing fp registers in SFmode, DFmode and XFmode */ 3, /* cost of moving MMX register */ {3, 3}, /* cost of loading MMX registers in SImode and DImode */ {3, 3}, /* cost of storing MMX registers in SImode and DImode */ 3, /* cost of moving SSE register */ {3, 3, 3}, /* cost of loading SSE registers in SImode, DImode and TImode */ {3, 3, 3}, /* cost of storing SSE registers in SImode, DImode and TImode */ 3, /* MMX or SSE register to integer */ 0, /* size of l1 cache */ 0, /* size of l2 cache */ 0, /* size of prefetch block */ 0, /* number of parallel prefetches */ 2, /* Branch cost */ COSTS_N_BYTES (2), /* cost of FADD and FSUB insns. */ COSTS_N_BYTES (2), /* cost of FMUL instruction. */ COSTS_N_BYTES (2), /* cost of FDIV instruction. */ COSTS_N_BYTES (2), /* cost of FABS instruction. */ COSTS_N_BYTES (2), /* cost of FCHS instruction. */ COSTS_N_BYTES (2), /* cost of FSQRT instruction. */ ix86_size_memcpy, ix86_size_memset, 1, /* scalar_stmt_cost. */ 1, /* scalar load_cost. */ 1, /* scalar_store_cost. */ 1, /* vec_stmt_cost. */ 1, /* vec_to_scalar_cost. */ 1, /* scalar_to_vec_cost. */ 1, /* vec_align_load_cost. */ 1, /* vec_unalign_load_cost. */ 1, /* vec_store_cost. */ 1, /* cond_taken_branch_cost. */ 1, /* cond_not_taken_branch_cost. */ }; /* Processor costs (relative to an add) */ static stringop_algs i386_memcpy[2] = { {rep_prefix_1_byte, {{-1, rep_prefix_1_byte, false}}}, DUMMY_STRINGOP_ALGS}; static stringop_algs i386_memset[2] = { {rep_prefix_1_byte, {{-1, rep_prefix_1_byte, false}}}, DUMMY_STRINGOP_ALGS}; static const struct processor_costs i386_cost = { /* 386 specific costs */ COSTS_N_INSNS (1), /* cost of an add instruction */ COSTS_N_INSNS (1), /* cost of a lea instruction */ COSTS_N_INSNS (3), /* variable shift costs */ COSTS_N_INSNS (2), /* constant shift costs */ {COSTS_N_INSNS (6), /* cost of starting multiply for QI */ COSTS_N_INSNS (6), /* HI */ COSTS_N_INSNS (6), /* SI */ COSTS_N_INSNS (6), /* DI */ COSTS_N_INSNS (6)}, /* other */ COSTS_N_INSNS (1), /* cost of multiply per each bit set */ {COSTS_N_INSNS (23), /* cost of a divide/mod for QI */ COSTS_N_INSNS (23), /* HI */ COSTS_N_INSNS (23), /* SI */ COSTS_N_INSNS (23), /* DI */ COSTS_N_INSNS (23)}, /* other */ COSTS_N_INSNS (3), /* cost of movsx */ COSTS_N_INSNS (2), /* cost of movzx */ 15, /* "large" insn */ 3, /* MOVE_RATIO */ 4, /* cost for loading QImode using movzbl */ {2, 4, 2}, /* cost of loading integer registers in QImode, HImode and SImode. Relative to reg-reg move (2). */ {2, 4, 2}, /* cost of storing integer registers */ 2, /* cost of reg,reg fld/fst */ {8, 8, 8}, /* cost of loading fp registers in SFmode, DFmode and XFmode */ {8, 8, 8}, /* cost of storing fp registers in SFmode, DFmode and XFmode */ 2, /* cost of moving MMX register */ {4, 8}, /* cost of loading MMX registers in SImode and DImode */ {4, 8}, /* cost of storing MMX registers in SImode and DImode */ 2, /* cost of moving SSE register */ {4, 8, 16}, /* cost of loading SSE registers in SImode, DImode and TImode */ {4, 8, 16}, /* cost of storing SSE registers in SImode, DImode and TImode */ 3, /* MMX or SSE register to integer */ 0, /* size of l1 cache */ 0, /* size of l2 cache */ 0, /* size of prefetch block */ 0, /* number of parallel prefetches */ 1, /* Branch cost */ COSTS_N_INSNS (23), /* cost of FADD and FSUB insns. */ COSTS_N_INSNS (27), /* cost of FMUL instruction. */ COSTS_N_INSNS (88), /* cost of FDIV instruction. */ COSTS_N_INSNS (22), /* cost of FABS instruction. */ COSTS_N_INSNS (24), /* cost of FCHS instruction. */ COSTS_N_INSNS (122), /* cost of FSQRT instruction. */ i386_memcpy, i386_memset, 1, /* scalar_stmt_cost. */ 1, /* scalar load_cost. */ 1, /* scalar_store_cost. */ 1, /* vec_stmt_cost. */ 1, /* vec_to_scalar_cost. */ 1, /* scalar_to_vec_cost. */ 1, /* vec_align_load_cost. */ 2, /* vec_unalign_load_cost. */ 1, /* vec_store_cost. */ 3, /* cond_taken_branch_cost. */ 1, /* cond_not_taken_branch_cost. */ }; static stringop_algs i486_memcpy[2] = { {rep_prefix_4_byte, {{-1, rep_prefix_4_byte, false}}}, DUMMY_STRINGOP_ALGS}; static stringop_algs i486_memset[2] = { {rep_prefix_4_byte, {{-1, rep_prefix_4_byte, false}}}, DUMMY_STRINGOP_ALGS}; static const struct processor_costs i486_cost = { /* 486 specific costs */ COSTS_N_INSNS (1), /* cost of an add instruction */ COSTS_N_INSNS (1), /* cost of a lea instruction */ COSTS_N_INSNS (3), /* variable shift costs */ COSTS_N_INSNS (2), /* constant shift costs */ {COSTS_N_INSNS (12), /* cost of starting multiply for QI */ COSTS_N_INSNS (12), /* HI */ COSTS_N_INSNS (12), /* SI */ COSTS_N_INSNS (12), /* DI */ COSTS_N_INSNS (12)}, /* other */ 1, /* cost of multiply per each bit set */ {COSTS_N_INSNS (40), /* cost of a divide/mod for QI */ COSTS_N_INSNS (40), /* HI */ COSTS_N_INSNS (40), /* SI */ COSTS_N_INSNS (40), /* DI */ COSTS_N_INSNS (40)}, /* other */ COSTS_N_INSNS (3), /* cost of movsx */ COSTS_N_INSNS (2), /* cost of movzx */ 15, /* "large" insn */ 3, /* MOVE_RATIO */ 4, /* cost for loading QImode using movzbl */ {2, 4, 2}, /* cost of loading integer registers in QImode, HImode and SImode. Relative to reg-reg move (2). */ {2, 4, 2}, /* cost of storing integer registers */ 2, /* cost of reg,reg fld/fst */ {8, 8, 8}, /* cost of loading fp registers in SFmode, DFmode and XFmode */ {8, 8, 8}, /* cost of storing fp registers in SFmode, DFmode and XFmode */ 2, /* cost of moving MMX register */ {4, 8}, /* cost of loading MMX registers in SImode and DImode */ {4, 8}, /* cost of storing MMX registers in SImode and DImode */ 2, /* cost of moving SSE register */ {4, 8, 16}, /* cost of loading SSE registers in SImode, DImode and TImode */ {4, 8, 16}, /* cost of storing SSE registers in SImode, DImode and TImode */ 3, /* MMX or SSE register to integer */ 4, /* size of l1 cache. 486 has 8kB cache shared for code and data, so 4kB is not really precise. */ 4, /* size of l2 cache */ 0, /* size of prefetch block */ 0, /* number of parallel prefetches */ 1, /* Branch cost */ COSTS_N_INSNS (8), /* cost of FADD and FSUB insns. */ COSTS_N_INSNS (16), /* cost of FMUL instruction. */ COSTS_N_INSNS (73), /* cost of FDIV instruction. */ COSTS_N_INSNS (3), /* cost of FABS instruction. */ COSTS_N_INSNS (3), /* cost of FCHS instruction. */ COSTS_N_INSNS (83), /* cost of FSQRT instruction. */ i486_memcpy, i486_memset, 1, /* scalar_stmt_cost. */ 1, /* scalar load_cost. */ 1, /* scalar_store_cost. */ 1, /* vec_stmt_cost. */ 1, /* vec_to_scalar_cost. */ 1, /* scalar_to_vec_cost. */ 1, /* vec_align_load_cost. */ 2, /* vec_unalign_load_cost. */ 1, /* vec_store_cost. */ 3, /* cond_taken_branch_cost. */ 1, /* cond_not_taken_branch_cost. */ }; static stringop_algs pentium_memcpy[2] = { {libcall, {{256, rep_prefix_4_byte, false}, {-1, libcall, false}}}, DUMMY_STRINGOP_ALGS}; static stringop_algs pentium_memset[2] = { {libcall, {{-1, rep_prefix_4_byte, false}}}, DUMMY_STRINGOP_ALGS}; static const struct processor_costs pentium_cost = { COSTS_N_INSNS (1), /* cost of an add instruction */ COSTS_N_INSNS (1), /* cost of a lea instruction */ COSTS_N_INSNS (4), /* variable shift costs */ COSTS_N_INSNS (1), /* constant shift costs */ {COSTS_N_INSNS (11), /* cost of starting multiply for QI */ COSTS_N_INSNS (11), /* HI */ COSTS_N_INSNS (11), /* SI */ COSTS_N_INSNS (11), /* DI */ COSTS_N_INSNS (11)}, /* other */ 0, /* cost of multiply per each bit set */ {COSTS_N_INSNS (25), /* cost of a divide/mod for QI */ COSTS_N_INSNS (25), /* HI */ COSTS_N_INSNS (25), /* SI */ COSTS_N_INSNS (25), /* DI */ COSTS_N_INSNS (25)}, /* other */ COSTS_N_INSNS (3), /* cost of movsx */ COSTS_N_INSNS (2), /* cost of movzx */ 8, /* "large" insn */ 6, /* MOVE_RATIO */ 6, /* cost for loading QImode using movzbl */ {2, 4, 2}, /* cost of loading integer registers in QImode, HImode and SImode. Relative to reg-reg move (2). */ {2, 4, 2}, /* cost of storing integer registers */ 2, /* cost of reg,reg fld/fst */ {2, 2, 6}, /* cost of loading fp registers in SFmode, DFmode and XFmode */ {4, 4, 6}, /* cost of storing fp registers in SFmode, DFmode and XFmode */ 8, /* cost of moving MMX register */ {8, 8}, /* cost of loading MMX registers in SImode and DImode */ {8, 8}, /* cost of storing MMX registers in SImode and DImode */ 2, /* cost of moving SSE register */ {4, 8, 16}, /* cost of loading SSE registers in SImode, DImode and TImode */ {4, 8, 16}, /* cost of storing SSE registers in SImode, DImode and TImode */ 3, /* MMX or SSE register to integer */ 8, /* size of l1 cache. */ 8, /* size of l2 cache */ 0, /* size of prefetch block */ 0, /* number of parallel prefetches */ 2, /* Branch cost */ COSTS_N_INSNS (3), /* cost of FADD and FSUB insns. */ COSTS_N_INSNS (3), /* cost of FMUL instruction. */ COSTS_N_INSNS (39), /* cost of FDIV instruction. */ COSTS_N_INSNS (1), /* cost of FABS instruction. */ COSTS_N_INSNS (1), /* cost of FCHS instruction. */ COSTS_N_INSNS (70), /* cost of FSQRT instruction. */ pentium_memcpy, pentium_memset, 1, /* scalar_stmt_cost. */ 1, /* scalar load_cost. */ 1, /* scalar_store_cost. */ 1, /* vec_stmt_cost. */ 1, /* vec_to_scalar_cost. */ 1, /* scalar_to_vec_cost. */ 1, /* vec_align_load_cost. */ 2, /* vec_unalign_load_cost. */ 1, /* vec_store_cost. */ 3, /* cond_taken_branch_cost. */ 1, /* cond_not_taken_branch_cost. */ }; /* PentiumPro has optimized rep instructions for blocks aligned by 8 bytes (we ensure the alignment). For small blocks inline loop is still a noticeable win, for bigger blocks either rep movsl or rep movsb is way to go. Rep movsb has apparently more expensive startup time in CPU, but after 4K the difference is down in the noise. */ static stringop_algs pentiumpro_memcpy[2] = { {rep_prefix_4_byte, {{128, loop, false}, {1024, unrolled_loop, false}, {8192, rep_prefix_4_byte, false}, {-1, rep_prefix_1_byte, false}}}, DUMMY_STRINGOP_ALGS}; static stringop_algs pentiumpro_memset[2] = { {rep_prefix_4_byte, {{1024, unrolled_loop, false}, {8192, rep_prefix_4_byte, false}, {-1, libcall, false}}}, DUMMY_STRINGOP_ALGS}; static const struct processor_costs pentiumpro_cost = { COSTS_N_INSNS (1), /* cost of an add instruction */ COSTS_N_INSNS (1), /* cost of a lea instruction */ COSTS_N_INSNS (1), /* variable shift costs */ COSTS_N_INSNS (1), /* constant shift costs */ {COSTS_N_INSNS (4), /* cost of starting multiply for QI */ COSTS_N_INSNS (4), /* HI */ COSTS_N_INSNS (4), /* SI */ COSTS_N_INSNS (4), /* DI */ COSTS_N_INSNS (4)}, /* other */ 0, /* cost of multiply per each bit set */ {COSTS_N_INSNS (17), /* cost of a divide/mod for QI */ COSTS_N_INSNS (17), /* HI */ COSTS_N_INSNS (17), /* SI */ COSTS_N_INSNS (17), /* DI */ COSTS_N_INSNS (17)}, /* other */ COSTS_N_INSNS (1), /* cost of movsx */ COSTS_N_INSNS (1), /* cost of movzx */ 8, /* "large" insn */ 6, /* MOVE_RATIO */ 2, /* cost for loading QImode using movzbl */ {4, 4, 4}, /* cost of loading integer registers in QImode, HImode and SImode. Relative to reg-reg move (2). */ {2, 2, 2}, /* cost of storing integer registers */ 2, /* cost of reg,reg fld/fst */ {2, 2, 6}, /* cost of loading fp registers in SFmode, DFmode and XFmode */ {4, 4, 6}, /* cost of storing fp registers in SFmode, DFmode and XFmode */ 2, /* cost of moving MMX register */ {2, 2}, /* cost of loading MMX registers in SImode and DImode */ {2, 2}, /* cost of storing MMX registers in SImode and DImode */ 2, /* cost of moving SSE register */ {2, 2, 8}, /* cost of loading SSE registers in SImode, DImode and TImode */ {2, 2, 8}, /* cost of storing SSE registers in SImode, DImode and TImode */ 3, /* MMX or SSE register to integer */ 8, /* size of l1 cache. */ 256, /* size of l2 cache */ 32, /* size of prefetch block */ 6, /* number of parallel prefetches */ 2, /* Branch cost */ COSTS_N_INSNS (3), /* cost of FADD and FSUB insns. */ COSTS_N_INSNS (5), /* cost of FMUL instruction. */ COSTS_N_INSNS (56), /* cost of FDIV instruction. */ COSTS_N_INSNS (2), /* cost of FABS instruction. */ COSTS_N_INSNS (2), /* cost of FCHS instruction. */ COSTS_N_INSNS (56), /* cost of FSQRT instruction. */ pentiumpro_memcpy, pentiumpro_memset, 1, /* scalar_stmt_cost. */ 1, /* scalar load_cost. */ 1, /* scalar_store_cost. */ 1, /* vec_stmt_cost. */ 1, /* vec_to_scalar_cost. */ 1, /* scalar_to_vec_cost. */ 1, /* vec_align_load_cost. */ 2, /* vec_unalign_load_cost. */ 1, /* vec_store_cost. */ 3, /* cond_taken_branch_cost. */ 1, /* cond_not_taken_branch_cost. */ }; static stringop_algs geode_memcpy[2] = { {libcall, {{256, rep_prefix_4_byte, false}, {-1, libcall, false}}}, DUMMY_STRINGOP_ALGS}; static stringop_algs geode_memset[2] = { {libcall, {{256, rep_prefix_4_byte, false}, {-1, libcall, false}}}, DUMMY_STRINGOP_ALGS}; static const struct processor_costs geode_cost = { COSTS_N_INSNS (1), /* cost of an add instruction */ COSTS_N_INSNS (1), /* cost of a lea instruction */ COSTS_N_INSNS (2), /* variable shift costs */ COSTS_N_INSNS (1), /* constant shift costs */ {COSTS_N_INSNS (3), /* cost of starting multiply for QI */ COSTS_N_INSNS (4), /* HI */ COSTS_N_INSNS (7), /* SI */ COSTS_N_INSNS (7), /* DI */ COSTS_N_INSNS (7)}, /* other */ 0, /* cost of multiply per each bit set */ {COSTS_N_INSNS (15), /* cost of a divide/mod for QI */ COSTS_N_INSNS (23), /* HI */ COSTS_N_INSNS (39), /* SI */ COSTS_N_INSNS (39), /* DI */ COSTS_N_INSNS (39)}, /* other */ COSTS_N_INSNS (1), /* cost of movsx */ COSTS_N_INSNS (1), /* cost of movzx */ 8, /* "large" insn */ 4, /* MOVE_RATIO */ 1, /* cost for loading QImode using movzbl */ {1, 1, 1}, /* cost of loading integer registers in QImode, HImode and SImode. Relative to reg-reg move (2). */ {1, 1, 1}, /* cost of storing integer registers */ 1, /* cost of reg,reg fld/fst */ {1, 1, 1}, /* cost of loading fp registers in SFmode, DFmode and XFmode */ {4, 6, 6}, /* cost of storing fp registers in SFmode, DFmode and XFmode */ 1, /* cost of moving MMX register */ {1, 1}, /* cost of loading MMX registers in SImode and DImode */ {1, 1}, /* cost of storing MMX registers in SImode and DImode */ 1, /* cost of moving SSE register */ {1, 1, 1}, /* cost of loading SSE registers in SImode, DImode and TImode */ {1, 1, 1}, /* cost of storing SSE registers in SImode, DImode and TImode */ 1, /* MMX or SSE register to integer */ 64, /* size of l1 cache. */ 128, /* size of l2 cache. */ 32, /* size of prefetch block */ 1, /* number of parallel prefetches */ 1, /* Branch cost */ COSTS_N_INSNS (6), /* cost of FADD and FSUB insns. */ COSTS_N_INSNS (11), /* cost of FMUL instruction. */ COSTS_N_INSNS (47), /* cost of FDIV instruction. */ COSTS_N_INSNS (1), /* cost of FABS instruction. */ COSTS_N_INSNS (1), /* cost of FCHS instruction. */ COSTS_N_INSNS (54), /* cost of FSQRT instruction. */ geode_memcpy, geode_memset, 1, /* scalar_stmt_cost. */ 1, /* scalar load_cost. */ 1, /* scalar_store_cost. */ 1, /* vec_stmt_cost. */ 1, /* vec_to_scalar_cost. */ 1, /* scalar_to_vec_cost. */ 1, /* vec_align_load_cost. */ 2, /* vec_unalign_load_cost. */ 1, /* vec_store_cost. */ 3, /* cond_taken_branch_cost. */ 1, /* cond_not_taken_branch_cost. */ }; static stringop_algs k6_memcpy[2] = { {libcall, {{256, rep_prefix_4_byte, false}, {-1, libcall, false}}}, DUMMY_STRINGOP_ALGS}; static stringop_algs k6_memset[2] = { {libcall, {{256, rep_prefix_4_byte, false}, {-1, libcall, false}}}, DUMMY_STRINGOP_ALGS}; static const struct processor_costs k6_cost = { COSTS_N_INSNS (1), /* cost of an add instruction */ COSTS_N_INSNS (2), /* cost of a lea instruction */ COSTS_N_INSNS (1), /* variable shift costs */ COSTS_N_INSNS (1), /* constant shift costs */ {COSTS_N_INSNS (3), /* cost of starting multiply for QI */ COSTS_N_INSNS (3), /* HI */ COSTS_N_INSNS (3), /* SI */ COSTS_N_INSNS (3), /* DI */ COSTS_N_INSNS (3)}, /* other */ 0, /* cost of multiply per each bit set */ {COSTS_N_INSNS (18), /* cost of a divide/mod for QI */ COSTS_N_INSNS (18), /* HI */ COSTS_N_INSNS (18), /* SI */ COSTS_N_INSNS (18), /* DI */ COSTS_N_INSNS (18)}, /* other */ COSTS_N_INSNS (2), /* cost of movsx */ COSTS_N_INSNS (2), /* cost of movzx */ 8, /* "large" insn */ 4, /* MOVE_RATIO */ 3, /* cost for loading QImode using movzbl */ {4, 5, 4}, /* cost of loading integer registers in QImode, HImode and SImode. Relative to reg-reg move (2). */ {2, 3, 2}, /* cost of storing integer registers */ 4, /* cost of reg,reg fld/fst */ {6, 6, 6}, /* cost of loading fp registers in SFmode, DFmode and XFmode */ {4, 4, 4}, /* cost of storing fp registers in SFmode, DFmode and XFmode */ 2, /* cost of moving MMX register */ {2, 2}, /* cost of loading MMX registers in SImode and DImode */ {2, 2}, /* cost of storing MMX registers in SImode and DImode */ 2, /* cost of moving SSE register */ {2, 2, 8}, /* cost of loading SSE registers in SImode, DImode and TImode */ {2, 2, 8}, /* cost of storing SSE registers in SImode, DImode and TImode */ 6, /* MMX or SSE register to integer */ 32, /* size of l1 cache. */ 32, /* size of l2 cache. Some models have integrated l2 cache, but optimizing for k6 is not important enough to worry about that. */ 32, /* size of prefetch block */ 1, /* number of parallel prefetches */ 1, /* Branch cost */ COSTS_N_INSNS (2), /* cost of FADD and FSUB insns. */ COSTS_N_INSNS (2), /* cost of FMUL instruction. */ COSTS_N_INSNS (56), /* cost of FDIV instruction. */ COSTS_N_INSNS (2), /* cost of FABS instruction. */ COSTS_N_INSNS (2), /* cost of FCHS instruction. */ COSTS_N_INSNS (56), /* cost of FSQRT instruction. */ k6_memcpy, k6_memset, 1, /* scalar_stmt_cost. */ 1, /* scalar load_cost. */ 1, /* scalar_store_cost. */ 1, /* vec_stmt_cost. */ 1, /* vec_to_scalar_cost. */ 1, /* scalar_to_vec_cost. */ 1, /* vec_align_load_cost. */ 2, /* vec_unalign_load_cost. */ 1, /* vec_store_cost. */ 3, /* cond_taken_branch_cost. */ 1, /* cond_not_taken_branch_cost. */ }; /* For some reason, Athlon deals better with REP prefix (relative to loops) compared to K8. Alignment becomes important after 8 bytes for memcpy and 128 bytes for memset. */ static stringop_algs athlon_memcpy[2] = { {libcall, {{2048, rep_prefix_4_byte, false}, {-1, libcall, false}}}, DUMMY_STRINGOP_ALGS}; static stringop_algs athlon_memset[2] = { {libcall, {{2048, rep_prefix_4_byte, false}, {-1, libcall, false}}}, DUMMY_STRINGOP_ALGS}; static const struct processor_costs athlon_cost = { COSTS_N_INSNS (1), /* cost of an add instruction */ COSTS_N_INSNS (2), /* cost of a lea instruction */ COSTS_N_INSNS (1), /* variable shift costs */ COSTS_N_INSNS (1), /* constant shift costs */ {COSTS_N_INSNS (5), /* cost of starting multiply for QI */ COSTS_N_INSNS (5), /* HI */ COSTS_N_INSNS (5), /* SI */ COSTS_N_INSNS (5), /* DI */ COSTS_N_INSNS (5)}, /* other */ 0, /* cost of multiply per each bit set */ {COSTS_N_INSNS (18), /* cost of a divide/mod for QI */ COSTS_N_INSNS (26), /* HI */ COSTS_N_INSNS (42), /* SI */ COSTS_N_INSNS (74), /* DI */ COSTS_N_INSNS (74)}, /* other */ COSTS_N_INSNS (1), /* cost of movsx */ COSTS_N_INSNS (1), /* cost of movzx */ 8, /* "large" insn */ 9, /* MOVE_RATIO */ 4, /* cost for loading QImode using movzbl */ {3, 4, 3}, /* cost of loading integer registers in QImode, HImode and SImode. Relative to reg-reg move (2). */ {3, 4, 3}, /* cost of storing integer registers */ 4, /* cost of reg,reg fld/fst */ {4, 4, 12}, /* cost of loading fp registers in SFmode, DFmode and XFmode */ {6, 6, 8}, /* cost of storing fp registers in SFmode, DFmode and XFmode */ 2, /* cost of moving MMX register */ {4, 4}, /* cost of loading MMX registers in SImode and DImode */ {4, 4}, /* cost of storing MMX registers in SImode and DImode */ 2, /* cost of moving SSE register */ {4, 4, 6}, /* cost of loading SSE registers in SImode, DImode and TImode */ {4, 4, 5}, /* cost of storing SSE registers in SImode, DImode and TImode */ 5, /* MMX or SSE register to integer */ 64, /* size of l1 cache. */ 256, /* size of l2 cache. */ 64, /* size of prefetch block */ 6, /* number of parallel prefetches */ 5, /* Branch cost */ COSTS_N_INSNS (4), /* cost of FADD and FSUB insns. */ COSTS_N_INSNS (4), /* cost of FMUL instruction. */ COSTS_N_INSNS (24), /* cost of FDIV instruction. */ COSTS_N_INSNS (2), /* cost of FABS instruction. */ COSTS_N_INSNS (2), /* cost of FCHS instruction. */ COSTS_N_INSNS (35), /* cost of FSQRT instruction. */ athlon_memcpy, athlon_memset, 1, /* scalar_stmt_cost. */ 1, /* scalar load_cost. */ 1, /* scalar_store_cost. */ 1, /* vec_stmt_cost. */ 1, /* vec_to_scalar_cost. */ 1, /* scalar_to_vec_cost. */ 1, /* vec_align_load_cost. */ 2, /* vec_unalign_load_cost. */ 1, /* vec_store_cost. */ 3, /* cond_taken_branch_cost. */ 1, /* cond_not_taken_branch_cost. */ }; /* K8 has optimized REP instruction for medium sized blocks, but for very small blocks it is better to use loop. For large blocks, libcall can do nontemporary accesses and beat inline considerably. */ static stringop_algs k8_memcpy[2] = { {libcall, {{6, loop, false}, {14, unrolled_loop, false}, {-1, rep_prefix_4_byte, false}}}, {libcall, {{16, loop, false}, {8192, rep_prefix_8_byte, false}, {-1, libcall, false}}}}; static stringop_algs k8_memset[2] = { {libcall, {{8, loop, false}, {24, unrolled_loop, false}, {2048, rep_prefix_4_byte, false}, {-1, libcall, false}}}, {libcall, {{48, unrolled_loop, false}, {8192, rep_prefix_8_byte, false}, {-1, libcall, false}}}}; static const struct processor_costs k8_cost = { COSTS_N_INSNS (1), /* cost of an add instruction */ COSTS_N_INSNS (2), /* cost of a lea instruction */ COSTS_N_INSNS (1), /* variable shift costs */ COSTS_N_INSNS (1), /* constant shift costs */ {COSTS_N_INSNS (3), /* cost of starting multiply for QI */ COSTS_N_INSNS (4), /* HI */ COSTS_N_INSNS (3), /* SI */ COSTS_N_INSNS (4), /* DI */ COSTS_N_INSNS (5)}, /* other */ 0, /* cost of multiply per each bit set */ {COSTS_N_INSNS (18), /* cost of a divide/mod for QI */ COSTS_N_INSNS (26), /* HI */ COSTS_N_INSNS (42), /* SI */ COSTS_N_INSNS (74), /* DI */ COSTS_N_INSNS (74)}, /* other */ COSTS_N_INSNS (1), /* cost of movsx */ COSTS_N_INSNS (1), /* cost of movzx */ 8, /* "large" insn */ 9, /* MOVE_RATIO */ 4, /* cost for loading QImode using movzbl */ {3, 4, 3}, /* cost of loading integer registers in QImode, HImode and SImode. Relative to reg-reg move (2). */ {3, 4, 3}, /* cost of storing integer registers */ 4, /* cost of reg,reg fld/fst */ {4, 4, 12}, /* cost of loading fp registers in SFmode, DFmode and XFmode */ {6, 6, 8}, /* cost of storing fp registers in SFmode, DFmode and XFmode */ 2, /* cost of moving MMX register */ {3, 3}, /* cost of loading MMX registers in SImode and DImode */ {4, 4}, /* cost of storing MMX registers in SImode and DImode */ 2, /* cost of moving SSE register */ {4, 3, 6}, /* cost of loading SSE registers in SImode, DImode and TImode */ {4, 4, 5}, /* cost of storing SSE registers in SImode, DImode and TImode */ 5, /* MMX or SSE register to integer */ 64, /* size of l1 cache. */ 512, /* size of l2 cache. */ 64, /* size of prefetch block */ /* New AMD processors never drop prefetches; if they cannot be performed immediately, they are queued. We set number of simultaneous prefetches to a large constant to reflect this (it probably is not a good idea not to limit number of prefetches at all, as their execution also takes some time). */ 100, /* number of parallel prefetches */ 3, /* Branch cost */ COSTS_N_INSNS (4), /* cost of FADD and FSUB insns. */ COSTS_N_INSNS (4), /* cost of FMUL instruction. */ COSTS_N_INSNS (19), /* cost of FDIV instruction. */ COSTS_N_INSNS (2), /* cost of FABS instruction. */ COSTS_N_INSNS (2), /* cost of FCHS instruction. */ COSTS_N_INSNS (35), /* cost of FSQRT instruction. */ k8_memcpy, k8_memset, 4, /* scalar_stmt_cost. */ 2, /* scalar load_cost. */ 2, /* scalar_store_cost. */ 5, /* vec_stmt_cost. */ 0, /* vec_to_scalar_cost. */ 2, /* scalar_to_vec_cost. */ 2, /* vec_align_load_cost. */ 3, /* vec_unalign_load_cost. */ 3, /* vec_store_cost. */ 3, /* cond_taken_branch_cost. */ 2, /* cond_not_taken_branch_cost. */ }; /* AMDFAM10 has optimized REP instruction for medium sized blocks, but for very small blocks it is better to use loop. For large blocks, libcall can do nontemporary accesses and beat inline considerably. */ static stringop_algs amdfam10_memcpy[2] = { {libcall, {{6, loop, false}, {14, unrolled_loop, false}, {-1, rep_prefix_4_byte, false}}}, {libcall, {{16, loop, false}, {8192, rep_prefix_8_byte, false}, {-1, libcall, false}}}}; static stringop_algs amdfam10_memset[2] = { {libcall, {{8, loop, false}, {24, unrolled_loop, false}, {2048, rep_prefix_4_byte, false}, {-1, libcall, false}}}, {libcall, {{48, unrolled_loop, false}, {8192, rep_prefix_8_byte, false}, {-1, libcall, false}}}}; struct processor_costs amdfam10_cost = { COSTS_N_INSNS (1), /* cost of an add instruction */ COSTS_N_INSNS (2), /* cost of a lea instruction */ COSTS_N_INSNS (1), /* variable shift costs */ COSTS_N_INSNS (1), /* constant shift costs */ {COSTS_N_INSNS (3), /* cost of starting multiply for QI */ COSTS_N_INSNS (4), /* HI */ COSTS_N_INSNS (3), /* SI */ COSTS_N_INSNS (4), /* DI */ COSTS_N_INSNS (5)}, /* other */ 0, /* cost of multiply per each bit set */ {COSTS_N_INSNS (19), /* cost of a divide/mod for QI */ COSTS_N_INSNS (35), /* HI */ COSTS_N_INSNS (51), /* SI */ COSTS_N_INSNS (83), /* DI */ COSTS_N_INSNS (83)}, /* other */ COSTS_N_INSNS (1), /* cost of movsx */ COSTS_N_INSNS (1), /* cost of movzx */ 8, /* "large" insn */ 9, /* MOVE_RATIO */ 4, /* cost for loading QImode using movzbl */ {3, 4, 3}, /* cost of loading integer registers in QImode, HImode and SImode. Relative to reg-reg move (2). */ {3, 4, 3}, /* cost of storing integer registers */ 4, /* cost of reg,reg fld/fst */ {4, 4, 12}, /* cost of loading fp registers in SFmode, DFmode and XFmode */ {6, 6, 8}, /* cost of storing fp registers in SFmode, DFmode and XFmode */ 2, /* cost of moving MMX register */ {3, 3}, /* cost of loading MMX registers in SImode and DImode */ {4, 4}, /* cost of storing MMX registers in SImode and DImode */ 2, /* cost of moving SSE register */ {4, 4, 3}, /* cost of loading SSE registers in SImode, DImode and TImode */ {4, 4, 5}, /* cost of storing SSE registers in SImode, DImode and TImode */ 3, /* MMX or SSE register to integer */ /* On K8: MOVD reg64, xmmreg Double FSTORE 4 MOVD reg32, xmmreg Double FSTORE 4 On AMDFAM10: MOVD reg64, xmmreg Double FADD 3 1/1 1/1 MOVD reg32, xmmreg Double FADD 3 1/1 1/1 */ 64, /* size of l1 cache. */ 512, /* size of l2 cache. */ 64, /* size of prefetch block */ /* New AMD processors never drop prefetches; if they cannot be performed immediately, they are queued. We set number of simultaneous prefetches to a large constant to reflect this (it probably is not a good idea not to limit number of prefetches at all, as their execution also takes some time). */ 100, /* number of parallel prefetches */ 2, /* Branch cost */ COSTS_N_INSNS (4), /* cost of FADD and FSUB insns. */ COSTS_N_INSNS (4), /* cost of FMUL instruction. */ COSTS_N_INSNS (19), /* cost of FDIV instruction. */ COSTS_N_INSNS (2), /* cost of FABS instruction. */ COSTS_N_INSNS (2), /* cost of FCHS instruction. */ COSTS_N_INSNS (35), /* cost of FSQRT instruction. */ amdfam10_memcpy, amdfam10_memset, 4, /* scalar_stmt_cost. */ 2, /* scalar load_cost. */ 2, /* scalar_store_cost. */ 6, /* vec_stmt_cost. */ 0, /* vec_to_scalar_cost. */ 2, /* scalar_to_vec_cost. */ 2, /* vec_align_load_cost. */ 2, /* vec_unalign_load_cost. */ 2, /* vec_store_cost. */ 2, /* cond_taken_branch_cost. */ 1, /* cond_not_taken_branch_cost. */ }; /* BDVER1 has optimized REP instruction for medium sized blocks, but for very small blocks it is better to use loop. For large blocks, libcall can do nontemporary accesses and beat inline considerably. */ static stringop_algs bdver1_memcpy[2] = { {libcall, {{6, loop, false}, {14, unrolled_loop, false}, {-1, rep_prefix_4_byte, false}}}, {libcall, {{16, loop, false}, {8192, rep_prefix_8_byte, false}, {-1, libcall, false}}}}; static stringop_algs bdver1_memset[2] = { {libcall, {{8, loop, false}, {24, unrolled_loop, false}, {2048, rep_prefix_4_byte, false}, {-1, libcall, false}}}, {libcall, {{48, unrolled_loop, false}, {8192, rep_prefix_8_byte, false}, {-1, libcall, false}}}}; const struct processor_costs bdver1_cost = { COSTS_N_INSNS (1), /* cost of an add instruction */ COSTS_N_INSNS (1), /* cost of a lea instruction */ COSTS_N_INSNS (1), /* variable shift costs */ COSTS_N_INSNS (1), /* constant shift costs */ {COSTS_N_INSNS (4), /* cost of starting multiply for QI */ COSTS_N_INSNS (4), /* HI */ COSTS_N_INSNS (4), /* SI */ COSTS_N_INSNS (6), /* DI */ COSTS_N_INSNS (6)}, /* other */ 0, /* cost of multiply per each bit set */ {COSTS_N_INSNS (19), /* cost of a divide/mod for QI */ COSTS_N_INSNS (35), /* HI */ COSTS_N_INSNS (51), /* SI */ COSTS_N_INSNS (83), /* DI */ COSTS_N_INSNS (83)}, /* other */ COSTS_N_INSNS (1), /* cost of movsx */ COSTS_N_INSNS (1), /* cost of movzx */ 8, /* "large" insn */ 9, /* MOVE_RATIO */ 4, /* cost for loading QImode using movzbl */ {5, 5, 4}, /* cost of loading integer registers in QImode, HImode and SImode. Relative to reg-reg move (2). */ {4, 4, 4}, /* cost of storing integer registers */ 2, /* cost of reg,reg fld/fst */ {5, 5, 12}, /* cost of loading fp registers in SFmode, DFmode and XFmode */ {4, 4, 8}, /* cost of storing fp registers in SFmode, DFmode and XFmode */ 2, /* cost of moving MMX register */ {4, 4}, /* cost of loading MMX registers in SImode and DImode */ {4, 4}, /* cost of storing MMX registers in SImode and DImode */ 2, /* cost of moving SSE register */ {4, 4, 4}, /* cost of loading SSE registers in SImode, DImode and TImode */ {4, 4, 4}, /* cost of storing SSE registers in SImode, DImode and TImode */ 2, /* MMX or SSE register to integer */ /* On K8: MOVD reg64, xmmreg Double FSTORE 4 MOVD reg32, xmmreg Double FSTORE 4 On AMDFAM10: MOVD reg64, xmmreg Double FADD 3 1/1 1/1 MOVD reg32, xmmreg Double FADD 3 1/1 1/1 */ 16, /* size of l1 cache. */ 2048, /* size of l2 cache. */ 64, /* size of prefetch block */ /* New AMD processors never drop prefetches; if they cannot be performed immediately, they are queued. We set number of simultaneous prefetches to a large constant to reflect this (it probably is not a good idea not to limit number of prefetches at all, as their execution also takes some time). */ 100, /* number of parallel prefetches */ 2, /* Branch cost */ COSTS_N_INSNS (6), /* cost of FADD and FSUB insns. */ COSTS_N_INSNS (6), /* cost of FMUL instruction. */ COSTS_N_INSNS (42), /* cost of FDIV instruction. */ COSTS_N_INSNS (2), /* cost of FABS instruction. */ COSTS_N_INSNS (2), /* cost of FCHS instruction. */ COSTS_N_INSNS (52), /* cost of FSQRT instruction. */ bdver1_memcpy, bdver1_memset, 6, /* scalar_stmt_cost. */ 4, /* scalar load_cost. */ 4, /* scalar_store_cost. */ 6, /* vec_stmt_cost. */ 0, /* vec_to_scalar_cost. */ 2, /* scalar_to_vec_cost. */ 4, /* vec_align_load_cost. */ 4, /* vec_unalign_load_cost. */ 4, /* vec_store_cost. */ 2, /* cond_taken_branch_cost. */ 1, /* cond_not_taken_branch_cost. */ }; /* BDVER2 has optimized REP instruction for medium sized blocks, but for very small blocks it is better to use loop. For large blocks, libcall can do nontemporary accesses and beat inline considerably. */ static stringop_algs bdver2_memcpy[2] = { {libcall, {{6, loop, false}, {14, unrolled_loop, false}, {-1, rep_prefix_4_byte, false}}}, {libcall, {{16, loop, false}, {8192, rep_prefix_8_byte, false}, {-1, libcall, false}}}}; static stringop_algs bdver2_memset[2] = { {libcall, {{8, loop, false}, {24, unrolled_loop, false}, {2048, rep_prefix_4_byte, false}, {-1, libcall, false}}}, {libcall, {{48, unrolled_loop, false}, {8192, rep_prefix_8_byte, false}, {-1, libcall, false}}}}; const struct processor_costs bdver2_cost = { COSTS_N_INSNS (1), /* cost of an add instruction */ COSTS_N_INSNS (1), /* cost of a lea instruction */ COSTS_N_INSNS (1), /* variable shift costs */ COSTS_N_INSNS (1), /* constant shift costs */ {COSTS_N_INSNS (4), /* cost of starting multiply for QI */ COSTS_N_INSNS (4), /* HI */ COSTS_N_INSNS (4), /* SI */ COSTS_N_INSNS (6), /* DI */ COSTS_N_INSNS (6)}, /* other */ 0, /* cost of multiply per each bit set */ {COSTS_N_INSNS (19), /* cost of a divide/mod for QI */ COSTS_N_INSNS (35), /* HI */ COSTS_N_INSNS (51), /* SI */ COSTS_N_INSNS (83), /* DI */ COSTS_N_INSNS (83)}, /* other */ COSTS_N_INSNS (1), /* cost of movsx */ COSTS_N_INSNS (1), /* cost of movzx */ 8, /* "large" insn */ 9, /* MOVE_RATIO */ 4, /* cost for loading QImode using movzbl */ {5, 5, 4}, /* cost of loading integer registers in QImode, HImode and SImode. Relative to reg-reg move (2). */ {4, 4, 4}, /* cost of storing integer registers */ 2, /* cost of reg,reg fld/fst */ {5, 5, 12}, /* cost of loading fp registers in SFmode, DFmode and XFmode */ {4, 4, 8}, /* cost of storing fp registers in SFmode, DFmode and XFmode */ 2, /* cost of moving MMX register */ {4, 4}, /* cost of loading MMX registers in SImode and DImode */ {4, 4}, /* cost of storing MMX registers in SImode and DImode */ 2, /* cost of moving SSE register */ {4, 4, 4}, /* cost of loading SSE registers in SImode, DImode and TImode */ {4, 4, 4}, /* cost of storing SSE registers in SImode, DImode and TImode */ 2, /* MMX or SSE register to integer */ /* On K8: MOVD reg64, xmmreg Double FSTORE 4 MOVD reg32, xmmreg Double FSTORE 4 On AMDFAM10: MOVD reg64, xmmreg Double FADD 3 1/1 1/1 MOVD reg32, xmmreg Double FADD 3 1/1 1/1 */ 16, /* size of l1 cache. */ 2048, /* size of l2 cache. */ 64, /* size of prefetch block */ /* New AMD processors never drop prefetches; if they cannot be performed immediately, they are queued. We set number of simultaneous prefetches to a large constant to reflect this (it probably is not a good idea not to limit number of prefetches at all, as their execution also takes some time). */ 100, /* number of parallel prefetches */ 2, /* Branch cost */ COSTS_N_INSNS (6), /* cost of FADD and FSUB insns. */ COSTS_N_INSNS (6), /* cost of FMUL instruction. */ COSTS_N_INSNS (42), /* cost of FDIV instruction. */ COSTS_N_INSNS (2), /* cost of FABS instruction. */ COSTS_N_INSNS (2), /* cost of FCHS instruction. */ COSTS_N_INSNS (52), /* cost of FSQRT instruction. */ bdver2_memcpy, bdver2_memset, 6, /* scalar_stmt_cost. */ 4, /* scalar load_cost. */ 4, /* scalar_store_cost. */ 6, /* vec_stmt_cost. */ 0, /* vec_to_scalar_cost. */ 2, /* scalar_to_vec_cost. */ 4, /* vec_align_load_cost. */ 4, /* vec_unalign_load_cost. */ 4, /* vec_store_cost. */ 2, /* cond_taken_branch_cost. */ 1, /* cond_not_taken_branch_cost. */ }; /* BDVER3 has optimized REP instruction for medium sized blocks, but for very small blocks it is better to use loop. For large blocks, libcall can do nontemporary accesses and beat inline considerably. */ static stringop_algs bdver3_memcpy[2] = { {libcall, {{6, loop, false}, {14, unrolled_loop, false}, {-1, rep_prefix_4_byte, false}}}, {libcall, {{16, loop, false}, {8192, rep_prefix_8_byte, false}, {-1, libcall, false}}}}; static stringop_algs bdver3_memset[2] = { {libcall, {{8, loop, false}, {24, unrolled_loop, false}, {2048, rep_prefix_4_byte, false}, {-1, libcall, false}}}, {libcall, {{48, unrolled_loop, false}, {8192, rep_prefix_8_byte, false}, {-1, libcall, false}}}}; struct processor_costs bdver3_cost = { COSTS_N_INSNS (1), /* cost of an add instruction */ COSTS_N_INSNS (1), /* cost of a lea instruction */ COSTS_N_INSNS (1), /* variable shift costs */ COSTS_N_INSNS (1), /* constant shift costs */ {COSTS_N_INSNS (4), /* cost of starting multiply for QI */ COSTS_N_INSNS (4), /* HI */ COSTS_N_INSNS (4), /* SI */ COSTS_N_INSNS (6), /* DI */ COSTS_N_INSNS (6)}, /* other */ 0, /* cost of multiply per each bit set */ {COSTS_N_INSNS (19), /* cost of a divide/mod for QI */ COSTS_N_INSNS (35), /* HI */ COSTS_N_INSNS (51), /* SI */ COSTS_N_INSNS (83), /* DI */ COSTS_N_INSNS (83)}, /* other */ COSTS_N_INSNS (1), /* cost of movsx */ COSTS_N_INSNS (1), /* cost of movzx */ 8, /* "large" insn */ 9, /* MOVE_RATIO */ 4, /* cost for loading QImode using movzbl */ {5, 5, 4}, /* cost of loading integer registers in QImode, HImode and SImode. Relative to reg-reg move (2). */ {4, 4, 4}, /* cost of storing integer registers */ 2, /* cost of reg,reg fld/fst */ {5, 5, 12}, /* cost of loading fp registers in SFmode, DFmode and XFmode */ {4, 4, 8}, /* cost of storing fp registers in SFmode, DFmode and XFmode */ 2, /* cost of moving MMX register */ {4, 4}, /* cost of loading MMX registers in SImode and DImode */ {4, 4}, /* cost of storing MMX registers in SImode and DImode */ 2, /* cost of moving SSE register */ {4, 4, 4}, /* cost of loading SSE registers in SImode, DImode and TImode */ {4, 4, 4}, /* cost of storing SSE registers in SImode, DImode and TImode */ 2, /* MMX or SSE register to integer */ 16, /* size of l1 cache. */ 2048, /* size of l2 cache. */ 64, /* size of prefetch block */ /* New AMD processors never drop prefetches; if they cannot be performed immediately, they are queued. We set number of simultaneous prefetches to a large constant to reflect this (it probably is not a good idea not to limit number of prefetches at all, as their execution also takes some time). */ 100, /* number of parallel prefetches */ 2, /* Branch cost */ COSTS_N_INSNS (6), /* cost of FADD and FSUB insns. */ COSTS_N_INSNS (6), /* cost of FMUL instruction. */ COSTS_N_INSNS (42), /* cost of FDIV instruction. */ COSTS_N_INSNS (2), /* cost of FABS instruction. */ COSTS_N_INSNS (2), /* cost of FCHS instruction. */ COSTS_N_INSNS (52), /* cost of FSQRT instruction. */ bdver3_memcpy, bdver3_memset, 6, /* scalar_stmt_cost. */ 4, /* scalar load_cost. */ 4, /* scalar_store_cost. */ 6, /* vec_stmt_cost. */ 0, /* vec_to_scalar_cost. */ 2, /* scalar_to_vec_cost. */ 4, /* vec_align_load_cost. */ 4, /* vec_unalign_load_cost. */ 4, /* vec_store_cost. */ 2, /* cond_taken_branch_cost. */ 1, /* cond_not_taken_branch_cost. */ }; /* BDVER4 has optimized REP instruction for medium sized blocks, but for very small blocks it is better to use loop. For large blocks, libcall can do nontemporary accesses and beat inline considerably. */ static stringop_algs bdver4_memcpy[2] = { {libcall, {{6, loop, false}, {14, unrolled_loop, false}, {-1, rep_prefix_4_byte, false}}}, {libcall, {{16, loop, false}, {8192, rep_prefix_8_byte, false}, {-1, libcall, false}}}}; static stringop_algs bdver4_memset[2] = { {libcall, {{8, loop, false}, {24, unrolled_loop, false}, {2048, rep_prefix_4_byte, false}, {-1, libcall, false}}}, {libcall, {{48, unrolled_loop, false}, {8192, rep_prefix_8_byte, false}, {-1, libcall, false}}}}; struct processor_costs bdver4_cost = { COSTS_N_INSNS (1), /* cost of an add instruction */ COSTS_N_INSNS (1), /* cost of a lea instruction */ COSTS_N_INSNS (1), /* variable shift costs */ COSTS_N_INSNS (1), /* constant shift costs */ {COSTS_N_INSNS (4), /* cost of starting multiply for QI */ COSTS_N_INSNS (4), /* HI */ COSTS_N_INSNS (4), /* SI */ COSTS_N_INSNS (6), /* DI */ COSTS_N_INSNS (6)}, /* other */ 0, /* cost of multiply per each bit set */ {COSTS_N_INSNS (19), /* cost of a divide/mod for QI */ COSTS_N_INSNS (35), /* HI */ COSTS_N_INSNS (51), /* SI */ COSTS_N_INSNS (83), /* DI */ COSTS_N_INSNS (83)}, /* other */ COSTS_N_INSNS (1), /* cost of movsx */ COSTS_N_INSNS (1), /* cost of movzx */ 8, /* "large" insn */ 9, /* MOVE_RATIO */ 4, /* cost for loading QImode using movzbl */ {5, 5, 4}, /* cost of loading integer registers in QImode, HImode and SImode. Relative to reg-reg move (2). */ {4, 4, 4}, /* cost of storing integer registers */ 2, /* cost of reg,reg fld/fst */ {5, 5, 12}, /* cost of loading fp registers in SFmode, DFmode and XFmode */ {4, 4, 8}, /* cost of storing fp registers in SFmode, DFmode and XFmode */ 2, /* cost of moving MMX register */ {4, 4}, /* cost of loading MMX registers in SImode and DImode */ {4, 4}, /* cost of storing MMX registers in SImode and DImode */ 2, /* cost of moving SSE register */ {4, 4, 4}, /* cost of loading SSE registers in SImode, DImode and TImode */ {4, 4, 4}, /* cost of storing SSE registers in SImode, DImode and TImode */ 2, /* MMX or SSE register to integer */ 16, /* size of l1 cache. */ 2048, /* size of l2 cache. */ 64, /* size of prefetch block */ /* New AMD processors never drop prefetches; if they cannot be performed immediately, they are queued. We set number of simultaneous prefetches to a large constant to reflect this (it probably is not a good idea not to limit number of prefetches at all, as their execution also takes some time). */ 100, /* number of parallel prefetches */ 2, /* Branch cost */ COSTS_N_INSNS (6), /* cost of FADD and FSUB insns. */ COSTS_N_INSNS (6), /* cost of FMUL instruction. */ COSTS_N_INSNS (42), /* cost of FDIV instruction. */ COSTS_N_INSNS (2), /* cost of FABS instruction. */ COSTS_N_INSNS (2), /* cost of FCHS instruction. */ COSTS_N_INSNS (52), /* cost of FSQRT instruction. */ bdver4_memcpy, bdver4_memset, 6, /* scalar_stmt_cost. */ 4, /* scalar load_cost. */ 4, /* scalar_store_cost. */ 6, /* vec_stmt_cost. */ 0, /* vec_to_scalar_cost. */ 2, /* scalar_to_vec_cost. */ 4, /* vec_align_load_cost. */ 4, /* vec_unalign_load_cost. */ 4, /* vec_store_cost. */ 2, /* cond_taken_branch_cost. */ 1, /* cond_not_taken_branch_cost. */ }; /* BTVER1 has optimized REP instruction for medium sized blocks, but for very small blocks it is better to use loop. For large blocks, libcall can do nontemporary accesses and beat inline considerably. */ static stringop_algs btver1_memcpy[2] = { {libcall, {{6, loop, false}, {14, unrolled_loop, false}, {-1, rep_prefix_4_byte, false}}}, {libcall, {{16, loop, false}, {8192, rep_prefix_8_byte, false}, {-1, libcall, false}}}}; static stringop_algs btver1_memset[2] = { {libcall, {{8, loop, false}, {24, unrolled_loop, false}, {2048, rep_prefix_4_byte, false}, {-1, libcall, false}}}, {libcall, {{48, unrolled_loop, false}, {8192, rep_prefix_8_byte, false}, {-1, libcall, false}}}}; const struct processor_costs btver1_cost = { COSTS_N_INSNS (1), /* cost of an add instruction */ COSTS_N_INSNS (2), /* cost of a lea instruction */ COSTS_N_INSNS (1), /* variable shift costs */ COSTS_N_INSNS (1), /* constant shift costs */ {COSTS_N_INSNS (3), /* cost of starting multiply for QI */ COSTS_N_INSNS (4), /* HI */ COSTS_N_INSNS (3), /* SI */ COSTS_N_INSNS (4), /* DI */ COSTS_N_INSNS (5)}, /* other */ 0, /* cost of multiply per each bit set */ {COSTS_N_INSNS (19), /* cost of a divide/mod for QI */ COSTS_N_INSNS (35), /* HI */ COSTS_N_INSNS (51), /* SI */ COSTS_N_INSNS (83), /* DI */ COSTS_N_INSNS (83)}, /* other */ COSTS_N_INSNS (1), /* cost of movsx */ COSTS_N_INSNS (1), /* cost of movzx */ 8, /* "large" insn */ 9, /* MOVE_RATIO */ 4, /* cost for loading QImode using movzbl */ {3, 4, 3}, /* cost of loading integer registers in QImode, HImode and SImode. Relative to reg-reg move (2). */ {3, 4, 3}, /* cost of storing integer registers */ 4, /* cost of reg,reg fld/fst */ {4, 4, 12}, /* cost of loading fp registers in SFmode, DFmode and XFmode */ {6, 6, 8}, /* cost of storing fp registers in SFmode, DFmode and XFmode */ 2, /* cost of moving MMX register */ {3, 3}, /* cost of loading MMX registers in SImode and DImode */ {4, 4}, /* cost of storing MMX registers in SImode and DImode */ 2, /* cost of moving SSE register */ {4, 4, 3}, /* cost of loading SSE registers in SImode, DImode and TImode */ {4, 4, 5}, /* cost of storing SSE registers in SImode, DImode and TImode */ 3, /* MMX or SSE register to integer */ /* On K8: MOVD reg64, xmmreg Double FSTORE 4 MOVD reg32, xmmreg Double FSTORE 4 On AMDFAM10: MOVD reg64, xmmreg Double FADD 3 1/1 1/1 MOVD reg32, xmmreg Double FADD 3 1/1 1/1 */ 32, /* size of l1 cache. */ 512, /* size of l2 cache. */ 64, /* size of prefetch block */ 100, /* number of parallel prefetches */ 2, /* Branch cost */ COSTS_N_INSNS (4), /* cost of FADD and FSUB insns. */ COSTS_N_INSNS (4), /* cost of FMUL instruction. */ COSTS_N_INSNS (19), /* cost of FDIV instruction. */ COSTS_N_INSNS (2), /* cost of FABS instruction. */ COSTS_N_INSNS (2), /* cost of FCHS instruction. */ COSTS_N_INSNS (35), /* cost of FSQRT instruction. */ btver1_memcpy, btver1_memset, 4, /* scalar_stmt_cost. */ 2, /* scalar load_cost. */ 2, /* scalar_store_cost. */ 6, /* vec_stmt_cost. */ 0, /* vec_to_scalar_cost. */ 2, /* scalar_to_vec_cost. */ 2, /* vec_align_load_cost. */ 2, /* vec_unalign_load_cost. */ 2, /* vec_store_cost. */ 2, /* cond_taken_branch_cost. */ 1, /* cond_not_taken_branch_cost. */ }; static stringop_algs btver2_memcpy[2] = { {libcall, {{6, loop, false}, {14, unrolled_loop, false}, {-1, rep_prefix_4_byte, false}}}, {libcall, {{16, loop, false}, {8192, rep_prefix_8_byte, false}, {-1, libcall, false}}}}; static stringop_algs btver2_memset[2] = { {libcall, {{8, loop, false}, {24, unrolled_loop, false}, {2048, rep_prefix_4_byte, false}, {-1, libcall, false}}}, {libcall, {{48, unrolled_loop, false}, {8192, rep_prefix_8_byte, false}, {-1, libcall, false}}}}; const struct processor_costs btver2_cost = { COSTS_N_INSNS (1), /* cost of an add instruction */ COSTS_N_INSNS (2), /* cost of a lea instruction */ COSTS_N_INSNS (1), /* variable shift costs */ COSTS_N_INSNS (1), /* constant shift costs */ {COSTS_N_INSNS (3), /* cost of starting multiply for QI */ COSTS_N_INSNS (4), /* HI */ COSTS_N_INSNS (3), /* SI */ COSTS_N_INSNS (4), /* DI */ COSTS_N_INSNS (5)}, /* other */ 0, /* cost of multiply per each bit set */ {COSTS_N_INSNS (19), /* cost of a divide/mod for QI */ COSTS_N_INSNS (35), /* HI */ COSTS_N_INSNS (51), /* SI */ COSTS_N_INSNS (83), /* DI */ COSTS_N_INSNS (83)}, /* other */ COSTS_N_INSNS (1), /* cost of movsx */ COSTS_N_INSNS (1), /* cost of movzx */ 8, /* "large" insn */ 9, /* MOVE_RATIO */ 4, /* cost for loading QImode using movzbl */ {3, 4, 3}, /* cost of loading integer registers in QImode, HImode and SImode. Relative to reg-reg move (2). */ {3, 4, 3}, /* cost of storing integer registers */ 4, /* cost of reg,reg fld/fst */ {4, 4, 12}, /* cost of loading fp registers in SFmode, DFmode and XFmode */ {6, 6, 8}, /* cost of storing fp registers in SFmode, DFmode and XFmode */ 2, /* cost of moving MMX register */ {3, 3}, /* cost of loading MMX registers in SImode and DImode */ {4, 4}, /* cost of storing MMX registers in SImode and DImode */ 2, /* cost of moving SSE register */ {4, 4, 3}, /* cost of loading SSE registers in SImode, DImode and TImode */ {4, 4, 5}, /* cost of storing SSE registers in SImode, DImode and TImode */ 3, /* MMX or SSE register to integer */ /* On K8: MOVD reg64, xmmreg Double FSTORE 4 MOVD reg32, xmmreg Double FSTORE 4 On AMDFAM10: MOVD reg64, xmmreg Double FADD 3 1/1 1/1 MOVD reg32, xmmreg Double FADD 3 1/1 1/1 */ 32, /* size of l1 cache. */ 2048, /* size of l2 cache. */ 64, /* size of prefetch block */ 100, /* number of parallel prefetches */ 2, /* Branch cost */ COSTS_N_INSNS (4), /* cost of FADD and FSUB insns. */ COSTS_N_INSNS (4), /* cost of FMUL instruction. */ COSTS_N_INSNS (19), /* cost of FDIV instruction. */ COSTS_N_INSNS (2), /* cost of FABS instruction. */ COSTS_N_INSNS (2), /* cost of FCHS instruction. */ COSTS_N_INSNS (35), /* cost of FSQRT instruction. */ btver2_memcpy, btver2_memset, 4, /* scalar_stmt_cost. */ 2, /* scalar load_cost. */ 2, /* scalar_store_cost. */ 6, /* vec_stmt_cost. */ 0, /* vec_to_scalar_cost. */ 2, /* scalar_to_vec_cost. */ 2, /* vec_align_load_cost. */ 2, /* vec_unalign_load_cost. */ 2, /* vec_store_cost. */ 2, /* cond_taken_branch_cost. */ 1, /* cond_not_taken_branch_cost. */ }; static stringop_algs pentium4_memcpy[2] = { {libcall, {{12, loop_1_byte, false}, {-1, rep_prefix_4_byte, false}}}, DUMMY_STRINGOP_ALGS}; static stringop_algs pentium4_memset[2] = { {libcall, {{6, loop_1_byte, false}, {48, loop, false}, {20480, rep_prefix_4_byte, false}, {-1, libcall, false}}}, DUMMY_STRINGOP_ALGS}; static const struct processor_costs pentium4_cost = { COSTS_N_INSNS (1), /* cost of an add instruction */ COSTS_N_INSNS (3), /* cost of a lea instruction */ COSTS_N_INSNS (4), /* variable shift costs */ COSTS_N_INSNS (4), /* constant shift costs */ {COSTS_N_INSNS (15), /* cost of starting multiply for QI */ COSTS_N_INSNS (15), /* HI */ COSTS_N_INSNS (15), /* SI */ COSTS_N_INSNS (15), /* DI */ COSTS_N_INSNS (15)}, /* other */ 0, /* cost of multiply per each bit set */ {COSTS_N_INSNS (56), /* cost of a divide/mod for QI */ COSTS_N_INSNS (56), /* HI */ COSTS_N_INSNS (56), /* SI */ COSTS_N_INSNS (56), /* DI */ COSTS_N_INSNS (56)}, /* other */ COSTS_N_INSNS (1), /* cost of movsx */ COSTS_N_INSNS (1), /* cost of movzx */ 16, /* "large" insn */ 6, /* MOVE_RATIO */ 2, /* cost for loading QImode using movzbl */ {4, 5, 4}, /* cost of loading integer registers in QImode, HImode and SImode. Relative to reg-reg move (2). */ {2, 3, 2}, /* cost of storing integer registers */ 2, /* cost of reg,reg fld/fst */ {2, 2, 6}, /* cost of loading fp registers in SFmode, DFmode and XFmode */ {4, 4, 6}, /* cost of storing fp registers in SFmode, DFmode and XFmode */ 2, /* cost of moving MMX register */ {2, 2}, /* cost of loading MMX registers in SImode and DImode */ {2, 2}, /* cost of storing MMX registers in SImode and DImode */ 12, /* cost of moving SSE register */ {12, 12, 12}, /* cost of loading SSE registers in SImode, DImode and TImode */ {2, 2, 8}, /* cost of storing SSE registers in SImode, DImode and TImode */ 10, /* MMX or SSE register to integer */ 8, /* size of l1 cache. */ 256, /* size of l2 cache. */ 64, /* size of prefetch block */ 6, /* number of parallel prefetches */ 2, /* Branch cost */ COSTS_N_INSNS (5), /* cost of FADD and FSUB insns. */ COSTS_N_INSNS (7), /* cost of FMUL instruction. */ COSTS_N_INSNS (43), /* cost of FDIV instruction. */ COSTS_N_INSNS (2), /* cost of FABS instruction. */ COSTS_N_INSNS (2), /* cost of FCHS instruction. */ COSTS_N_INSNS (43), /* cost of FSQRT instruction. */ pentium4_memcpy, pentium4_memset, 1, /* scalar_stmt_cost. */ 1, /* scalar load_cost. */ 1, /* scalar_store_cost. */ 1, /* vec_stmt_cost. */ 1, /* vec_to_scalar_cost. */ 1, /* scalar_to_vec_cost. */ 1, /* vec_align_load_cost. */ 2, /* vec_unalign_load_cost. */ 1, /* vec_store_cost. */ 3, /* cond_taken_branch_cost. */ 1, /* cond_not_taken_branch_cost. */ }; static stringop_algs nocona_memcpy[2] = { {libcall, {{12, loop_1_byte, false}, {-1, rep_prefix_4_byte, false}}}, {libcall, {{32, loop, false}, {20000, rep_prefix_8_byte, false}, {100000, unrolled_loop, false}, {-1, libcall, false}}}}; static stringop_algs nocona_memset[2] = { {libcall, {{6, loop_1_byte, false}, {48, loop, false}, {20480, rep_prefix_4_byte, false}, {-1, libcall, false}}}, {libcall, {{24, loop, false}, {64, unrolled_loop, false}, {8192, rep_prefix_8_byte, false}, {-1, libcall, false}}}}; static const struct processor_costs nocona_cost = { COSTS_N_INSNS (1), /* cost of an add instruction */ COSTS_N_INSNS (1), /* cost of a lea instruction */ COSTS_N_INSNS (1), /* variable shift costs */ COSTS_N_INSNS (1), /* constant shift costs */ {COSTS_N_INSNS (10), /* cost of starting multiply for QI */ COSTS_N_INSNS (10), /* HI */ COSTS_N_INSNS (10), /* SI */ COSTS_N_INSNS (10), /* DI */ COSTS_N_INSNS (10)}, /* other */ 0, /* cost of multiply per each bit set */ {COSTS_N_INSNS (66), /* cost of a divide/mod for QI */ COSTS_N_INSNS (66), /* HI */ COSTS_N_INSNS (66), /* SI */ COSTS_N_INSNS (66), /* DI */ COSTS_N_INSNS (66)}, /* other */ COSTS_N_INSNS (1), /* cost of movsx */ COSTS_N_INSNS (1), /* cost of movzx */ 16, /* "large" insn */ 17, /* MOVE_RATIO */ 4, /* cost for loading QImode using movzbl */ {4, 4, 4}, /* cost of loading integer registers in QImode, HImode and SImode. Relative to reg-reg move (2). */ {4, 4, 4}, /* cost of storing integer registers */ 3, /* cost of reg,reg fld/fst */ {12, 12, 12}, /* cost of loading fp registers in SFmode, DFmode and XFmode */ {4, 4, 4}, /* cost of storing fp registers in SFmode, DFmode and XFmode */ 6, /* cost of moving MMX register */ {12, 12}, /* cost of loading MMX registers in SImode and DImode */ {12, 12}, /* cost of storing MMX registers in SImode and DImode */ 6, /* cost of moving SSE register */ {12, 12, 12}, /* cost of loading SSE registers in SImode, DImode and TImode */ {12, 12, 12}, /* cost of storing SSE registers in SImode, DImode and TImode */ 8, /* MMX or SSE register to integer */ 8, /* size of l1 cache. */ 1024, /* size of l2 cache. */ 128, /* size of prefetch block */ 8, /* number of parallel prefetches */ 1, /* Branch cost */ COSTS_N_INSNS (6), /* cost of FADD and FSUB insns. */ COSTS_N_INSNS (8), /* cost of FMUL instruction. */ COSTS_N_INSNS (40), /* cost of FDIV instruction. */ COSTS_N_INSNS (3), /* cost of FABS instruction. */ COSTS_N_INSNS (3), /* cost of FCHS instruction. */ COSTS_N_INSNS (44), /* cost of FSQRT instruction. */ nocona_memcpy, nocona_memset, 1, /* scalar_stmt_cost. */ 1, /* scalar load_cost. */ 1, /* scalar_store_cost. */ 1, /* vec_stmt_cost. */ 1, /* vec_to_scalar_cost. */ 1, /* scalar_to_vec_cost. */ 1, /* vec_align_load_cost. */ 2, /* vec_unalign_load_cost. */ 1, /* vec_store_cost. */ 3, /* cond_taken_branch_cost. */ 1, /* cond_not_taken_branch_cost. */ }; static stringop_algs atom_memcpy[2] = { {libcall, {{11, loop, false}, {-1, rep_prefix_4_byte, false}}}, {libcall, {{32, loop, false}, {64, rep_prefix_4_byte, false}, {8192, rep_prefix_8_byte, false}, {-1, libcall, false}}}}; static stringop_algs atom_memset[2] = { {libcall, {{8, loop, false}, {15, unrolled_loop, false}, {2048, rep_prefix_4_byte, false}, {-1, libcall, false}}}, {libcall, {{24, loop, false}, {32, unrolled_loop, false}, {8192, rep_prefix_8_byte, false}, {-1, libcall, false}}}}; static const struct processor_costs atom_cost = { COSTS_N_INSNS (1), /* cost of an add instruction */ COSTS_N_INSNS (1) + 1, /* cost of a lea instruction */ COSTS_N_INSNS (1), /* variable shift costs */ COSTS_N_INSNS (1), /* constant shift costs */ {COSTS_N_INSNS (3), /* cost of starting multiply for QI */ COSTS_N_INSNS (4), /* HI */ COSTS_N_INSNS (3), /* SI */ COSTS_N_INSNS (4), /* DI */ COSTS_N_INSNS (2)}, /* other */ 0, /* cost of multiply per each bit set */ {COSTS_N_INSNS (18), /* cost of a divide/mod for QI */ COSTS_N_INSNS (26), /* HI */ COSTS_N_INSNS (42), /* SI */ COSTS_N_INSNS (74), /* DI */ COSTS_N_INSNS (74)}, /* other */ COSTS_N_INSNS (1), /* cost of movsx */ COSTS_N_INSNS (1), /* cost of movzx */ 8, /* "large" insn */ 17, /* MOVE_RATIO */ 4, /* cost for loading QImode using movzbl */ {4, 4, 4}, /* cost of loading integer registers in QImode, HImode and SImode. Relative to reg-reg move (2). */ {4, 4, 4}, /* cost of storing integer registers */ 4, /* cost of reg,reg fld/fst */ {12, 12, 12}, /* cost of loading fp registers in SFmode, DFmode and XFmode */ {6, 6, 8}, /* cost of storing fp registers in SFmode, DFmode and XFmode */ 2, /* cost of moving MMX register */ {8, 8}, /* cost of loading MMX registers in SImode and DImode */ {8, 8}, /* cost of storing MMX registers in SImode and DImode */ 2, /* cost of moving SSE register */ {8, 8, 8}, /* cost of loading SSE registers in SImode, DImode and TImode */ {8, 8, 8}, /* cost of storing SSE registers in SImode, DImode and TImode */ 5, /* MMX or SSE register to integer */ 32, /* size of l1 cache. */ 256, /* size of l2 cache. */ 64, /* size of prefetch block */ 6, /* number of parallel prefetches */ 3, /* Branch cost */ COSTS_N_INSNS (8), /* cost of FADD and FSUB insns. */ COSTS_N_INSNS (8), /* cost of FMUL instruction. */ COSTS_N_INSNS (20), /* cost of FDIV instruction. */ COSTS_N_INSNS (8), /* cost of FABS instruction. */ COSTS_N_INSNS (8), /* cost of FCHS instruction. */ COSTS_N_INSNS (40), /* cost of FSQRT instruction. */ atom_memcpy, atom_memset, 1, /* scalar_stmt_cost. */ 1, /* scalar load_cost. */ 1, /* scalar_store_cost. */ 1, /* vec_stmt_cost. */ 1, /* vec_to_scalar_cost. */ 1, /* scalar_to_vec_cost. */ 1, /* vec_align_load_cost. */ 2, /* vec_unalign_load_cost. */ 1, /* vec_store_cost. */ 3, /* cond_taken_branch_cost. */ 1, /* cond_not_taken_branch_cost. */ }; static stringop_algs slm_memcpy[2] = { {libcall, {{11, loop, false}, {-1, rep_prefix_4_byte, false}}}, {libcall, {{32, loop, false}, {64, rep_prefix_4_byte, false}, {8192, rep_prefix_8_byte, false}, {-1, libcall, false}}}}; static stringop_algs slm_memset[2] = { {libcall, {{8, loop, false}, {15, unrolled_loop, false}, {2048, rep_prefix_4_byte, false}, {-1, libcall, false}}}, {libcall, {{24, loop, false}, {32, unrolled_loop, false}, {8192, rep_prefix_8_byte, false}, {-1, libcall, false}}}}; static const struct processor_costs slm_cost = { COSTS_N_INSNS (1), /* cost of an add instruction */ COSTS_N_INSNS (1) + 1, /* cost of a lea instruction */ COSTS_N_INSNS (1), /* variable shift costs */ COSTS_N_INSNS (1), /* constant shift costs */ {COSTS_N_INSNS (3), /* cost of starting multiply for QI */ COSTS_N_INSNS (4), /* HI */ COSTS_N_INSNS (3), /* SI */ COSTS_N_INSNS (4), /* DI */ COSTS_N_INSNS (2)}, /* other */ 0, /* cost of multiply per each bit set */ {COSTS_N_INSNS (18), /* cost of a divide/mod for QI */ COSTS_N_INSNS (26), /* HI */ COSTS_N_INSNS (42), /* SI */ COSTS_N_INSNS (74), /* DI */ COSTS_N_INSNS (74)}, /* other */ COSTS_N_INSNS (1), /* cost of movsx */ COSTS_N_INSNS (1), /* cost of movzx */ 8, /* "large" insn */ 17, /* MOVE_RATIO */ 4, /* cost for loading QImode using movzbl */ {4, 4, 4}, /* cost of loading integer registers in QImode, HImode and SImode. Relative to reg-reg move (2). */ {4, 4, 4}, /* cost of storing integer registers */ 4, /* cost of reg,reg fld/fst */ {12, 12, 12}, /* cost of loading fp registers in SFmode, DFmode and XFmode */ {6, 6, 8}, /* cost of storing fp registers in SFmode, DFmode and XFmode */ 2, /* cost of moving MMX register */ {8, 8}, /* cost of loading MMX registers in SImode and DImode */ {8, 8}, /* cost of storing MMX registers in SImode and DImode */ 2, /* cost of moving SSE register */ {8, 8, 8}, /* cost of loading SSE registers in SImode, DImode and TImode */ {8, 8, 8}, /* cost of storing SSE registers in SImode, DImode and TImode */ 5, /* MMX or SSE register to integer */ 32, /* size of l1 cache. */ 256, /* size of l2 cache. */ 64, /* size of prefetch block */ 6, /* number of parallel prefetches */ 3, /* Branch cost */ COSTS_N_INSNS (8), /* cost of FADD and FSUB insns. */ COSTS_N_INSNS (8), /* cost of FMUL instruction. */ COSTS_N_INSNS (20), /* cost of FDIV instruction. */ COSTS_N_INSNS (8), /* cost of FABS instruction. */ COSTS_N_INSNS (8), /* cost of FCHS instruction. */ COSTS_N_INSNS (40), /* cost of FSQRT instruction. */ slm_memcpy, slm_memset, 1, /* scalar_stmt_cost. */ 1, /* scalar load_cost. */ 1, /* scalar_store_cost. */ 1, /* vec_stmt_cost. */ 1, /* vec_to_scalar_cost. */ 1, /* scalar_to_vec_cost. */ 1, /* vec_align_load_cost. */ 2, /* vec_unalign_load_cost. */ 1, /* vec_store_cost. */ 3, /* cond_taken_branch_cost. */ 1, /* cond_not_taken_branch_cost. */ }; /* Generic should produce code tuned for Core-i7 (and newer chips) and btver1 (and newer chips). */ static stringop_algs generic_memcpy[2] = { {libcall, {{32, loop, false}, {8192, rep_prefix_4_byte, false}, {-1, libcall, false}}}, {libcall, {{32, loop, false}, {8192, rep_prefix_8_byte, false}, {-1, libcall, false}}}}; static stringop_algs generic_memset[2] = { {libcall, {{32, loop, false}, {8192, rep_prefix_4_byte, false}, {-1, libcall, false}}}, {libcall, {{32, loop, false}, {8192, rep_prefix_8_byte, false}, {-1, libcall, false}}}}; static const struct processor_costs generic_cost = { COSTS_N_INSNS (1), /* cost of an add instruction */ /* On all chips taken into consideration lea is 2 cycles and more. With this cost however our current implementation of synth_mult results in use of unnecessary temporary registers causing regression on several SPECfp benchmarks. */ COSTS_N_INSNS (1) + 1, /* cost of a lea instruction */ COSTS_N_INSNS (1), /* variable shift costs */ COSTS_N_INSNS (1), /* constant shift costs */ {COSTS_N_INSNS (3), /* cost of starting multiply for QI */ COSTS_N_INSNS (4), /* HI */ COSTS_N_INSNS (3), /* SI */ COSTS_N_INSNS (4), /* DI */ COSTS_N_INSNS (2)}, /* other */ 0, /* cost of multiply per each bit set */ {COSTS_N_INSNS (18), /* cost of a divide/mod for QI */ COSTS_N_INSNS (26), /* HI */ COSTS_N_INSNS (42), /* SI */ COSTS_N_INSNS (74), /* DI */ COSTS_N_INSNS (74)}, /* other */ COSTS_N_INSNS (1), /* cost of movsx */ COSTS_N_INSNS (1), /* cost of movzx */ 8, /* "large" insn */ 17, /* MOVE_RATIO */ 4, /* cost for loading QImode using movzbl */ {4, 4, 4}, /* cost of loading integer registers in QImode, HImode and SImode. Relative to reg-reg move (2). */ {4, 4, 4}, /* cost of storing integer registers */ 4, /* cost of reg,reg fld/fst */ {12, 12, 12}, /* cost of loading fp registers in SFmode, DFmode and XFmode */ {6, 6, 8}, /* cost of storing fp registers in SFmode, DFmode and XFmode */ 2, /* cost of moving MMX register */ {8, 8}, /* cost of loading MMX registers in SImode and DImode */ {8, 8}, /* cost of storing MMX registers in SImode and DImode */ 2, /* cost of moving SSE register */ {8, 8, 8}, /* cost of loading SSE registers in SImode, DImode and TImode */ {8, 8, 8}, /* cost of storing SSE registers in SImode, DImode and TImode */ 5, /* MMX or SSE register to integer */ 32, /* size of l1 cache. */ 512, /* size of l2 cache. */ 64, /* size of prefetch block */ 6, /* number of parallel prefetches */ /* Benchmarks shows large regressions on K8 sixtrack benchmark when this value is increased to perhaps more appropriate value of 5. */ 3, /* Branch cost */ COSTS_N_INSNS (8), /* cost of FADD and FSUB insns. */ COSTS_N_INSNS (8), /* cost of FMUL instruction. */ COSTS_N_INSNS (20), /* cost of FDIV instruction. */ COSTS_N_INSNS (8), /* cost of FABS instruction. */ COSTS_N_INSNS (8), /* cost of FCHS instruction. */ COSTS_N_INSNS (40), /* cost of FSQRT instruction. */ generic_memcpy, generic_memset, 1, /* scalar_stmt_cost. */ 1, /* scalar load_cost. */ 1, /* scalar_store_cost. */ 1, /* vec_stmt_cost. */ 1, /* vec_to_scalar_cost. */ 1, /* scalar_to_vec_cost. */ 1, /* vec_align_load_cost. */ 2, /* vec_unalign_load_cost. */ 1, /* vec_store_cost. */ 3, /* cond_taken_branch_cost. */ 1, /* cond_not_taken_branch_cost. */ }; /* core_cost should produce code tuned for Core familly of CPUs. */ static stringop_algs core_memcpy[2] = { {libcall, {{1024, rep_prefix_4_byte, true}, {-1, libcall, false}}}, {libcall, {{24, loop, true}, {128, rep_prefix_8_byte, true}, {-1, libcall, false}}}}; static stringop_algs core_memset[2] = { {libcall, {{6, loop_1_byte, true}, {24, loop, true}, {8192, rep_prefix_4_byte, true}, {-1, libcall, false}}}, {libcall, {{24, loop, true}, {512, rep_prefix_8_byte, true}, {-1, libcall, false}}}}; static const struct processor_costs core_cost = { COSTS_N_INSNS (1), /* cost of an add instruction */ /* On all chips taken into consideration lea is 2 cycles and more. With this cost however our current implementation of synth_mult results in use of unnecessary temporary registers causing regression on several SPECfp benchmarks. */ COSTS_N_INSNS (1) + 1, /* cost of a lea instruction */ COSTS_N_INSNS (1), /* variable shift costs */ COSTS_N_INSNS (1), /* constant shift costs */ {COSTS_N_INSNS (3), /* cost of starting multiply for QI */ COSTS_N_INSNS (4), /* HI */ COSTS_N_INSNS (3), /* SI */ COSTS_N_INSNS (4), /* DI */ COSTS_N_INSNS (2)}, /* other */ 0, /* cost of multiply per each bit set */ {COSTS_N_INSNS (18), /* cost of a divide/mod for QI */ COSTS_N_INSNS (26), /* HI */ COSTS_N_INSNS (42), /* SI */ COSTS_N_INSNS (74), /* DI */ COSTS_N_INSNS (74)}, /* other */ COSTS_N_INSNS (1), /* cost of movsx */ COSTS_N_INSNS (1), /* cost of movzx */ 8, /* "large" insn */ 17, /* MOVE_RATIO */ 4, /* cost for loading QImode using movzbl */ {4, 4, 4}, /* cost of loading integer registers in QImode, HImode and SImode. Relative to reg-reg move (2). */ {4, 4, 4}, /* cost of storing integer registers */ 4, /* cost of reg,reg fld/fst */ {12, 12, 12}, /* cost of loading fp registers in SFmode, DFmode and XFmode */ {6, 6, 8}, /* cost of storing fp registers in SFmode, DFmode and XFmode */ 2, /* cost of moving MMX register */ {8, 8}, /* cost of loading MMX registers in SImode and DImode */ {8, 8}, /* cost of storing MMX registers in SImode and DImode */ 2, /* cost of moving SSE register */ {8, 8, 8}, /* cost of loading SSE registers in SImode, DImode and TImode */ {8, 8, 8}, /* cost of storing SSE registers in SImode, DImode and TImode */ 5, /* MMX or SSE register to integer */ 64, /* size of l1 cache. */ 512, /* size of l2 cache. */ 64, /* size of prefetch block */ 6, /* number of parallel prefetches */ /* FIXME perhaps more appropriate value is 5. */ 3, /* Branch cost */ COSTS_N_INSNS (8), /* cost of FADD and FSUB insns. */ COSTS_N_INSNS (8), /* cost of FMUL instruction. */ COSTS_N_INSNS (20), /* cost of FDIV instruction. */ COSTS_N_INSNS (8), /* cost of FABS instruction. */ COSTS_N_INSNS (8), /* cost of FCHS instruction. */ COSTS_N_INSNS (40), /* cost of FSQRT instruction. */ core_memcpy, core_memset, 1, /* scalar_stmt_cost. */ 1, /* scalar load_cost. */ 1, /* scalar_store_cost. */ 1, /* vec_stmt_cost. */ 1, /* vec_to_scalar_cost. */ 1, /* scalar_to_vec_cost. */ 1, /* vec_align_load_cost. */ 2, /* vec_unalign_load_cost. */ 1, /* vec_store_cost. */ 3, /* cond_taken_branch_cost. */ 1, /* cond_not_taken_branch_cost. */ }; /* Set by -mtune. */ const struct processor_costs *ix86_tune_cost = &pentium_cost; /* Set by -mtune or -Os. */ const struct processor_costs *ix86_cost = &pentium_cost; /* Processor feature/optimization bitmasks. */ #define m_386 (1<get_passes ()->execute_pass_mode_switching (); return 0; } namespace { const pass_data pass_data_insert_vzeroupper = { RTL_PASS, /* type */ "vzeroupper", /* name */ OPTGROUP_NONE, /* optinfo_flags */ true, /* has_gate */ true, /* has_execute */ TV_NONE, /* tv_id */ 0, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ ( TODO_df_finish | TODO_verify_rtl_sharing | 0 ), /* todo_flags_finish */ }; class pass_insert_vzeroupper : public rtl_opt_pass { public: pass_insert_vzeroupper(gcc::context *ctxt) : rtl_opt_pass(pass_data_insert_vzeroupper, ctxt) {} /* opt_pass methods: */ bool gate () { return gate_insert_vzeroupper (); } unsigned int execute () { return rest_of_handle_insert_vzeroupper (); } }; // class pass_insert_vzeroupper } // anon namespace rtl_opt_pass * make_pass_insert_vzeroupper (gcc::context *ctxt) { return new pass_insert_vzeroupper (ctxt); } /* Return true if a red-zone is in use. */ static inline bool ix86_using_red_zone (void) { return TARGET_RED_ZONE && !TARGET_64BIT_MS_ABI; } /* Return a string that documents the current -m options. The caller is responsible for freeing the string. */ static char * ix86_target_string (HOST_WIDE_INT isa, int flags, const char *arch, const char *tune, enum fpmath_unit fpmath, bool add_nl_p) { struct ix86_target_opts { const char *option; /* option string */ HOST_WIDE_INT mask; /* isa mask options */ }; /* This table is ordered so that options like -msse4.2 that imply preceding options while match those first. */ static struct ix86_target_opts isa_opts[] = { { "-mfma4", OPTION_MASK_ISA_FMA4 }, { "-mfma", OPTION_MASK_ISA_FMA }, { "-mxop", OPTION_MASK_ISA_XOP }, { "-mlwp", OPTION_MASK_ISA_LWP }, { "-mavx512f", OPTION_MASK_ISA_AVX512F }, { "-mavx512er", OPTION_MASK_ISA_AVX512ER }, { "-mavx512cd", OPTION_MASK_ISA_AVX512CD }, { "-mavx512pf", OPTION_MASK_ISA_AVX512PF }, { "-msse4a", OPTION_MASK_ISA_SSE4A }, { "-msse4.2", OPTION_MASK_ISA_SSE4_2 }, { "-msse4.1", OPTION_MASK_ISA_SSE4_1 }, { "-mssse3", OPTION_MASK_ISA_SSSE3 }, { "-msse3", OPTION_MASK_ISA_SSE3 }, { "-msse2", OPTION_MASK_ISA_SSE2 }, { "-msse", OPTION_MASK_ISA_SSE }, { "-m3dnow", OPTION_MASK_ISA_3DNOW }, { "-m3dnowa", OPTION_MASK_ISA_3DNOW_A }, { "-mmmx", OPTION_MASK_ISA_MMX }, { "-mabm", OPTION_MASK_ISA_ABM }, { "-mbmi", OPTION_MASK_ISA_BMI }, { "-mbmi2", OPTION_MASK_ISA_BMI2 }, { "-mlzcnt", OPTION_MASK_ISA_LZCNT }, { "-mhle", OPTION_MASK_ISA_HLE }, { "-mfxsr", OPTION_MASK_ISA_FXSR }, { "-mrdseed", OPTION_MASK_ISA_RDSEED }, { "-mprfchw", OPTION_MASK_ISA_PRFCHW }, { "-madx", OPTION_MASK_ISA_ADX }, { "-mtbm", OPTION_MASK_ISA_TBM }, { "-mpopcnt", OPTION_MASK_ISA_POPCNT }, { "-mmovbe", OPTION_MASK_ISA_MOVBE }, { "-mcrc32", OPTION_MASK_ISA_CRC32 }, { "-maes", OPTION_MASK_ISA_AES }, { "-mpclmul", OPTION_MASK_ISA_PCLMUL }, { "-mfsgsbase", OPTION_MASK_ISA_FSGSBASE }, { "-mrdrnd", OPTION_MASK_ISA_RDRND }, { "-mf16c", OPTION_MASK_ISA_F16C }, { "-mrtm", OPTION_MASK_ISA_RTM }, { "-mxsave", OPTION_MASK_ISA_XSAVE }, { "-mxsaveopt", OPTION_MASK_ISA_XSAVEOPT }, { "-mmpx", OPTION_MASK_ISA_MPX }, }; /* Flag options. */ static struct ix86_target_opts flag_opts[] = { { "-m128bit-long-double", MASK_128BIT_LONG_DOUBLE }, { "-mlong-double-64", MASK_LONG_DOUBLE_64 }, { "-m80387", MASK_80387 }, { "-maccumulate-outgoing-args", MASK_ACCUMULATE_OUTGOING_ARGS }, { "-malign-double", MASK_ALIGN_DOUBLE }, { "-mcld", MASK_CLD }, { "-mfp-ret-in-387", MASK_FLOAT_RETURNS }, { "-mieee-fp", MASK_IEEE_FP }, { "-minline-all-stringops", MASK_INLINE_ALL_STRINGOPS }, { "-minline-stringops-dynamically", MASK_INLINE_STRINGOPS_DYNAMICALLY }, { "-mms-bitfields", MASK_MS_BITFIELD_LAYOUT }, { "-mno-align-stringops", MASK_NO_ALIGN_STRINGOPS }, { "-mno-fancy-math-387", MASK_NO_FANCY_MATH_387 }, { "-mno-push-args", MASK_NO_PUSH_ARGS }, { "-mno-red-zone", MASK_NO_RED_ZONE }, { "-momit-leaf-frame-pointer", MASK_OMIT_LEAF_FRAME_POINTER }, { "-mrecip", MASK_RECIP }, { "-mrtd", MASK_RTD }, { "-msseregparm", MASK_SSEREGPARM }, { "-mstack-arg-probe", MASK_STACK_PROBE }, { "-mtls-direct-seg-refs", MASK_TLS_DIRECT_SEG_REFS }, { "-mvect8-ret-in-mem", MASK_VECT8_RETURNS }, { "-m8bit-idiv", MASK_USE_8BIT_IDIV }, { "-mvzeroupper", MASK_VZEROUPPER }, { "-mavx256-split-unaligned-load", MASK_AVX256_SPLIT_UNALIGNED_LOAD}, { "-mavx256-split-unaligned-store", MASK_AVX256_SPLIT_UNALIGNED_STORE}, { "-mprefer-avx128", MASK_PREFER_AVX128}, }; const char *opts[ARRAY_SIZE (isa_opts) + ARRAY_SIZE (flag_opts) + 6][2]; char isa_other[40]; char target_other[40]; unsigned num = 0; unsigned i, j; char *ret; char *ptr; size_t len; size_t line_len; size_t sep_len; const char *abi; memset (opts, '\0', sizeof (opts)); /* Add -march= option. */ if (arch) { opts[num][0] = "-march="; opts[num++][1] = arch; } /* Add -mtune= option. */ if (tune) { opts[num][0] = "-mtune="; opts[num++][1] = tune; } /* Add -m32/-m64/-mx32. */ if ((isa & OPTION_MASK_ISA_64BIT) != 0) { if ((isa & OPTION_MASK_ABI_64) != 0) abi = "-m64"; else abi = "-mx32"; isa &= ~ (OPTION_MASK_ISA_64BIT | OPTION_MASK_ABI_64 | OPTION_MASK_ABI_X32); } else abi = "-m32"; opts[num++][0] = abi; /* Pick out the options in isa options. */ for (i = 0; i < ARRAY_SIZE (isa_opts); i++) { if ((isa & isa_opts[i].mask) != 0) { opts[num++][0] = isa_opts[i].option; isa &= ~ isa_opts[i].mask; } } if (isa && add_nl_p) { opts[num++][0] = isa_other; sprintf (isa_other, "(other isa: %#" HOST_WIDE_INT_PRINT "x)", isa); } /* Add flag options. */ for (i = 0; i < ARRAY_SIZE (flag_opts); i++) { if ((flags & flag_opts[i].mask) != 0) { opts[num++][0] = flag_opts[i].option; flags &= ~ flag_opts[i].mask; } } if (flags && add_nl_p) { opts[num++][0] = target_other; sprintf (target_other, "(other flags: %#x)", flags); } /* Add -fpmath= option. */ if (fpmath) { opts[num][0] = "-mfpmath="; switch ((int) fpmath) { case FPMATH_387: opts[num++][1] = "387"; break; case FPMATH_SSE: opts[num++][1] = "sse"; break; case FPMATH_387 | FPMATH_SSE: opts[num++][1] = "sse+387"; break; default: gcc_unreachable (); } } /* Any options? */ if (num == 0) return NULL; gcc_assert (num < ARRAY_SIZE (opts)); /* Size the string. */ len = 0; sep_len = (add_nl_p) ? 3 : 1; for (i = 0; i < num; i++) { len += sep_len; for (j = 0; j < 2; j++) if (opts[i][j]) len += strlen (opts[i][j]); } /* Build the string. */ ret = ptr = (char *) xmalloc (len); line_len = 0; for (i = 0; i < num; i++) { size_t len2[2]; for (j = 0; j < 2; j++) len2[j] = (opts[i][j]) ? strlen (opts[i][j]) : 0; if (i != 0) { *ptr++ = ' '; line_len++; if (add_nl_p && line_len + len2[0] + len2[1] > 70) { *ptr++ = '\\'; *ptr++ = '\n'; line_len = 0; } } for (j = 0; j < 2; j++) if (opts[i][j]) { memcpy (ptr, opts[i][j], len2[j]); ptr += len2[j]; line_len += len2[j]; } } *ptr = '\0'; gcc_assert (ret + len >= ptr); return ret; } /* Return true, if profiling code should be emitted before prologue. Otherwise it returns false. Note: For x86 with "hotfix" it is sorried. */ static bool ix86_profile_before_prologue (void) { return flag_fentry != 0; } /* Function that is callable from the debugger to print the current options. */ void ATTRIBUTE_UNUSED ix86_debug_options (void) { char *opts = ix86_target_string (ix86_isa_flags, target_flags, ix86_arch_string, ix86_tune_string, ix86_fpmath, true); if (opts) { fprintf (stderr, "%s\n\n", opts); free (opts); } else fputs ("\n\n", stderr); return; } static const char *stringop_alg_names[] = { #define DEF_ENUM #define DEF_ALG(alg, name) #name, #include "stringop.def" #undef DEF_ENUM #undef DEF_ALG }; /* Parse parameter string passed to -mmemcpy-strategy= or -mmemset-strategy=. The string is of the following form (or comma separated list of it): strategy_alg:max_size:[align|noalign] where the full size range for the strategy is either [0, max_size] or [min_size, max_size], in which min_size is the max_size + 1 of the preceding range. The last size range must have max_size == -1. Examples: 1. -mmemcpy-strategy=libcall:-1:noalign this is equivalent to (for known size memcpy) -mstringop-strategy=libcall 2. -mmemset-strategy=rep_8byte:16:noalign,vector_loop:2048:align,libcall:-1:noalign This is to tell the compiler to use the following strategy for memset 1) when the expected size is between [1, 16], use rep_8byte strategy; 2) when the size is between [17, 2048], use vector_loop; 3) when the size is > 2048, use libcall. */ struct stringop_size_range { int max; stringop_alg alg; bool noalign; }; static void ix86_parse_stringop_strategy_string (char *strategy_str, bool is_memset) { const struct stringop_algs *default_algs; stringop_size_range input_ranges[MAX_STRINGOP_ALGS]; char *curr_range_str, *next_range_str; int i = 0, n = 0; if (is_memset) default_algs = &ix86_cost->memset[TARGET_64BIT != 0]; else default_algs = &ix86_cost->memcpy[TARGET_64BIT != 0]; curr_range_str = strategy_str; do { int maxs; stringop_alg alg; char alg_name[128]; char align[16]; next_range_str = strchr (curr_range_str, ','); if (next_range_str) *next_range_str++ = '\0'; if (3 != sscanf (curr_range_str, "%20[^:]:%d:%10s", alg_name, &maxs, align)) { error ("wrong arg %s to option %s", curr_range_str, is_memset ? "-mmemset_strategy=" : "-mmemcpy_strategy="); return; } if (n > 0 && (maxs < (input_ranges[n - 1].max + 1) && maxs != -1)) { error ("size ranges of option %s should be increasing", is_memset ? "-mmemset_strategy=" : "-mmemcpy_strategy="); return; } for (i = 0; i < last_alg; i++) { if (!strcmp (alg_name, stringop_alg_names[i])) { alg = (stringop_alg) i; break; } } if (i == last_alg) { error ("wrong stringop strategy name %s specified for option %s", alg_name, is_memset ? "-mmemset_strategy=" : "-mmemcpy_strategy="); return; } input_ranges[n].max = maxs; input_ranges[n].alg = alg; if (!strcmp (align, "align")) input_ranges[n].noalign = false; else if (!strcmp (align, "noalign")) input_ranges[n].noalign = true; else { error ("unknown alignment %s specified for option %s", align, is_memset ? "-mmemset_strategy=" : "-mmemcpy_strategy="); return; } n++; curr_range_str = next_range_str; } while (curr_range_str); if (input_ranges[n - 1].max != -1) { error ("the max value for the last size range should be -1" " for option %s", is_memset ? "-mmemset_strategy=" : "-mmemcpy_strategy="); return; } if (n > MAX_STRINGOP_ALGS) { error ("too many size ranges specified in option %s", is_memset ? "-mmemset_strategy=" : "-mmemcpy_strategy="); return; } /* Now override the default algs array. */ for (i = 0; i < n; i++) { *const_cast(&default_algs->size[i].max) = input_ranges[i].max; *const_cast(&default_algs->size[i].alg) = input_ranges[i].alg; *const_cast(&default_algs->size[i].noalign) = input_ranges[i].noalign; } } /* parse -mtune-ctrl= option. When DUMP is true, print the features that are explicitly set. */ static void parse_mtune_ctrl_str (bool dump) { if (!ix86_tune_ctrl_string) return; char *next_feature_string = NULL; char *curr_feature_string = xstrdup (ix86_tune_ctrl_string); char *orig = curr_feature_string; int i; do { bool clear = false; next_feature_string = strchr (curr_feature_string, ','); if (next_feature_string) *next_feature_string++ = '\0'; if (*curr_feature_string == '^') { curr_feature_string++; clear = true; } for (i = 0; i < X86_TUNE_LAST; i++) { if (!strcmp (curr_feature_string, ix86_tune_feature_names[i])) { ix86_tune_features[i] = !clear; if (dump) fprintf (stderr, "Explicitly %s feature %s\n", clear ? "clear" : "set", ix86_tune_feature_names[i]); break; } } if (i == X86_TUNE_LAST) error ("Unknown parameter to option -mtune-ctrl: %s", clear ? curr_feature_string - 1 : curr_feature_string); curr_feature_string = next_feature_string; } while (curr_feature_string); free (orig); } /* Helper function to set ix86_tune_features. IX86_TUNE is the processor type. */ static void set_ix86_tune_features (enum processor_type ix86_tune, bool dump) { unsigned int ix86_tune_mask = 1u << ix86_tune; int i; for (i = 0; i < X86_TUNE_LAST; ++i) { if (ix86_tune_no_default) ix86_tune_features[i] = 0; else ix86_tune_features[i] = !!(initial_ix86_tune_features[i] & ix86_tune_mask); } if (dump) { fprintf (stderr, "List of x86 specific tuning parameter names:\n"); for (i = 0; i < X86_TUNE_LAST; i++) fprintf (stderr, "%s : %s\n", ix86_tune_feature_names[i], ix86_tune_features[i] ? "on" : "off"); } parse_mtune_ctrl_str (dump); } /* Override various settings based on options. If MAIN_ARGS_P, the options are from the command line, otherwise they are from attributes. */ static void ix86_option_override_internal (bool main_args_p, struct gcc_options *opts, struct gcc_options *opts_set) { int i; unsigned int ix86_arch_mask; const bool ix86_tune_specified = (opts->x_ix86_tune_string != NULL); const char *prefix; const char *suffix; const char *sw; #define PTA_3DNOW (HOST_WIDE_INT_1 << 0) #define PTA_3DNOW_A (HOST_WIDE_INT_1 << 1) #define PTA_64BIT (HOST_WIDE_INT_1 << 2) #define PTA_ABM (HOST_WIDE_INT_1 << 3) #define PTA_AES (HOST_WIDE_INT_1 << 4) #define PTA_AVX (HOST_WIDE_INT_1 << 5) #define PTA_BMI (HOST_WIDE_INT_1 << 6) #define PTA_CX16 (HOST_WIDE_INT_1 << 7) #define PTA_F16C (HOST_WIDE_INT_1 << 8) #define PTA_FMA (HOST_WIDE_INT_1 << 9) #define PTA_FMA4 (HOST_WIDE_INT_1 << 10) #define PTA_FSGSBASE (HOST_WIDE_INT_1 << 11) #define PTA_LWP (HOST_WIDE_INT_1 << 12) #define PTA_LZCNT (HOST_WIDE_INT_1 << 13) #define PTA_MMX (HOST_WIDE_INT_1 << 14) #define PTA_MOVBE (HOST_WIDE_INT_1 << 15) #define PTA_NO_SAHF (HOST_WIDE_INT_1 << 16) #define PTA_PCLMUL (HOST_WIDE_INT_1 << 17) #define PTA_POPCNT (HOST_WIDE_INT_1 << 18) #define PTA_PREFETCH_SSE (HOST_WIDE_INT_1 << 19) #define PTA_RDRND (HOST_WIDE_INT_1 << 20) #define PTA_SSE (HOST_WIDE_INT_1 << 21) #define PTA_SSE2 (HOST_WIDE_INT_1 << 22) #define PTA_SSE3 (HOST_WIDE_INT_1 << 23) #define PTA_SSE4_1 (HOST_WIDE_INT_1 << 24) #define PTA_SSE4_2 (HOST_WIDE_INT_1 << 25) #define PTA_SSE4A (HOST_WIDE_INT_1 << 26) #define PTA_SSSE3 (HOST_WIDE_INT_1 << 27) #define PTA_TBM (HOST_WIDE_INT_1 << 28) #define PTA_XOP (HOST_WIDE_INT_1 << 29) #define PTA_AVX2 (HOST_WIDE_INT_1 << 30) #define PTA_BMI2 (HOST_WIDE_INT_1 << 31) #define PTA_RTM (HOST_WIDE_INT_1 << 32) #define PTA_HLE (HOST_WIDE_INT_1 << 33) #define PTA_PRFCHW (HOST_WIDE_INT_1 << 34) #define PTA_RDSEED (HOST_WIDE_INT_1 << 35) #define PTA_ADX (HOST_WIDE_INT_1 << 36) #define PTA_FXSR (HOST_WIDE_INT_1 << 37) #define PTA_XSAVE (HOST_WIDE_INT_1 << 38) #define PTA_XSAVEOPT (HOST_WIDE_INT_1 << 39) #define PTA_AVX512F (HOST_WIDE_INT_1 << 40) #define PTA_AVX512ER (HOST_WIDE_INT_1 << 41) #define PTA_AVX512PF (HOST_WIDE_INT_1 << 42) #define PTA_AVX512CD (HOST_WIDE_INT_1 << 43) #define PTA_MPX (HOST_WIDE_INT_1 << 44) /* if this reaches 64, need to widen struct pta flags below */ static struct pta { const char *const name; /* processor name or nickname. */ const enum processor_type processor; const enum attr_cpu schedule; const unsigned HOST_WIDE_INT flags; } const processor_alias_table[] = { {"i386", PROCESSOR_I386, CPU_NONE, 0}, {"i486", PROCESSOR_I486, CPU_NONE, 0}, {"i586", PROCESSOR_PENTIUM, CPU_PENTIUM, 0}, {"pentium", PROCESSOR_PENTIUM, CPU_PENTIUM, 0}, {"pentium-mmx", PROCESSOR_PENTIUM, CPU_PENTIUM, PTA_MMX}, {"winchip-c6", PROCESSOR_I486, CPU_NONE, PTA_MMX}, {"winchip2", PROCESSOR_I486, CPU_NONE, PTA_MMX | PTA_3DNOW | PTA_PRFCHW}, {"c3", PROCESSOR_I486, CPU_NONE, PTA_MMX | PTA_3DNOW | PTA_PRFCHW}, {"c3-2", PROCESSOR_PENTIUMPRO, CPU_PENTIUMPRO, PTA_MMX | PTA_SSE | PTA_FXSR}, {"i686", PROCESSOR_PENTIUMPRO, CPU_PENTIUMPRO, 0}, {"pentiumpro", PROCESSOR_PENTIUMPRO, CPU_PENTIUMPRO, 0}, {"pentium2", PROCESSOR_PENTIUMPRO, CPU_PENTIUMPRO, PTA_MMX | PTA_FXSR}, {"pentium3", PROCESSOR_PENTIUMPRO, CPU_PENTIUMPRO, PTA_MMX | PTA_SSE | PTA_FXSR}, {"pentium3m", PROCESSOR_PENTIUMPRO, CPU_PENTIUMPRO, PTA_MMX | PTA_SSE | PTA_FXSR}, {"pentium-m", PROCESSOR_PENTIUMPRO, CPU_PENTIUMPRO, PTA_MMX | PTA_SSE | PTA_SSE2 | PTA_FXSR}, {"pentium4", PROCESSOR_PENTIUM4, CPU_NONE, PTA_MMX |PTA_SSE | PTA_SSE2 | PTA_FXSR}, {"pentium4m", PROCESSOR_PENTIUM4, CPU_NONE, PTA_MMX | PTA_SSE | PTA_SSE2 | PTA_FXSR}, {"prescott", PROCESSOR_NOCONA, CPU_NONE, PTA_MMX | PTA_SSE | PTA_SSE2 | PTA_SSE3 | PTA_FXSR}, {"nocona", PROCESSOR_NOCONA, CPU_NONE, PTA_64BIT | PTA_MMX | PTA_SSE | PTA_SSE2 | PTA_SSE3 | PTA_CX16 | PTA_NO_SAHF | PTA_FXSR}, {"core2", PROCESSOR_CORE2, CPU_CORE2, PTA_64BIT | PTA_MMX | PTA_SSE | PTA_SSE2 | PTA_SSE3 | PTA_SSSE3 | PTA_CX16 | PTA_FXSR}, {"corei7", PROCESSOR_COREI7, CPU_COREI7, PTA_64BIT | PTA_MMX | PTA_SSE | PTA_SSE2 | PTA_SSE3 | PTA_SSSE3 | PTA_SSE4_1 | PTA_SSE4_2 | PTA_CX16 | PTA_POPCNT | PTA_FXSR}, {"corei7-avx", PROCESSOR_COREI7_AVX, CPU_COREI7, PTA_64BIT | PTA_MMX | PTA_SSE | PTA_SSE2 | PTA_SSE3 | PTA_SSSE3 | PTA_SSE4_1 | PTA_SSE4_2 | PTA_AVX | PTA_CX16 | PTA_POPCNT | PTA_AES | PTA_PCLMUL | PTA_FXSR | PTA_XSAVE | PTA_XSAVEOPT}, {"core-avx-i", PROCESSOR_COREI7_AVX, CPU_COREI7, PTA_64BIT | PTA_MMX | PTA_SSE | PTA_SSE2 | PTA_SSE3 | PTA_SSSE3 | PTA_SSE4_1 | PTA_SSE4_2 | PTA_AVX | PTA_CX16 | PTA_POPCNT | PTA_AES | PTA_PCLMUL | PTA_FSGSBASE | PTA_RDRND | PTA_F16C | PTA_FXSR | PTA_XSAVE | PTA_XSAVEOPT}, {"core-avx2", PROCESSOR_HASWELL, CPU_COREI7, PTA_64BIT | PTA_MMX | PTA_SSE | PTA_SSE2 | PTA_SSE3 | PTA_SSSE3 | PTA_SSE4_1 | PTA_SSE4_2 | PTA_AVX | PTA_AVX2 | PTA_CX16 | PTA_POPCNT | PTA_AES | PTA_PCLMUL | PTA_FSGSBASE | PTA_RDRND | PTA_F16C | PTA_BMI | PTA_BMI2 | PTA_LZCNT | PTA_FMA | PTA_MOVBE | PTA_RTM | PTA_HLE | PTA_FXSR | PTA_XSAVE | PTA_XSAVEOPT}, {"atom", PROCESSOR_ATOM, CPU_ATOM, PTA_64BIT | PTA_MMX | PTA_SSE | PTA_SSE2 | PTA_SSE3 | PTA_SSSE3 | PTA_CX16 | PTA_MOVBE | PTA_FXSR}, {"slm", PROCESSOR_SLM, CPU_SLM, PTA_64BIT | PTA_MMX | PTA_SSE | PTA_SSE2 | PTA_SSE3 | PTA_SSSE3 | PTA_SSE4_1 | PTA_SSE4_2 | PTA_CX16 | PTA_MOVBE | PTA_FXSR}, {"geode", PROCESSOR_GEODE, CPU_GEODE, PTA_MMX | PTA_3DNOW | PTA_3DNOW_A | PTA_PREFETCH_SSE | PTA_PRFCHW}, {"k6", PROCESSOR_K6, CPU_K6, PTA_MMX}, {"k6-2", PROCESSOR_K6, CPU_K6, PTA_MMX | PTA_3DNOW | PTA_PRFCHW}, {"k6-3", PROCESSOR_K6, CPU_K6, PTA_MMX | PTA_3DNOW | PTA_PRFCHW}, {"athlon", PROCESSOR_ATHLON, CPU_ATHLON, PTA_MMX | PTA_3DNOW | PTA_3DNOW_A | PTA_PREFETCH_SSE | PTA_PRFCHW}, {"athlon-tbird", PROCESSOR_ATHLON, CPU_ATHLON, PTA_MMX | PTA_3DNOW | PTA_3DNOW_A | PTA_PREFETCH_SSE | PTA_PRFCHW}, {"athlon-4", PROCESSOR_ATHLON, CPU_ATHLON, PTA_MMX | PTA_3DNOW | PTA_3DNOW_A | PTA_SSE | PTA_PRFCHW | PTA_FXSR}, {"athlon-xp", PROCESSOR_ATHLON, CPU_ATHLON, PTA_MMX | PTA_3DNOW | PTA_3DNOW_A | PTA_SSE | PTA_PRFCHW | PTA_FXSR}, {"athlon-mp", PROCESSOR_ATHLON, CPU_ATHLON, PTA_MMX | PTA_3DNOW | PTA_3DNOW_A | PTA_SSE | PTA_PRFCHW | PTA_FXSR}, {"x86-64", PROCESSOR_K8, CPU_K8, PTA_64BIT | PTA_MMX | PTA_SSE | PTA_SSE2 | PTA_NO_SAHF | PTA_FXSR}, {"k8", PROCESSOR_K8, CPU_K8, PTA_64BIT | PTA_MMX | PTA_3DNOW | PTA_3DNOW_A | PTA_SSE | PTA_SSE2 | PTA_NO_SAHF | PTA_PRFCHW | PTA_FXSR}, {"k8-sse3", PROCESSOR_K8, CPU_K8, PTA_64BIT | PTA_MMX | PTA_3DNOW | PTA_3DNOW_A | PTA_SSE | PTA_SSE2 | PTA_SSE3 | PTA_NO_SAHF | PTA_PRFCHW | PTA_FXSR}, {"opteron", PROCESSOR_K8, CPU_K8, PTA_64BIT | PTA_MMX | PTA_3DNOW | PTA_3DNOW_A | PTA_SSE | PTA_SSE2 | PTA_NO_SAHF | PTA_PRFCHW | PTA_FXSR}, {"opteron-sse3", PROCESSOR_K8, CPU_K8, PTA_64BIT | PTA_MMX | PTA_3DNOW | PTA_3DNOW_A | PTA_SSE | PTA_SSE2 | PTA_SSE3 | PTA_NO_SAHF | PTA_PRFCHW | PTA_FXSR}, {"athlon64", PROCESSOR_K8, CPU_K8, PTA_64BIT | PTA_MMX | PTA_3DNOW | PTA_3DNOW_A | PTA_SSE | PTA_SSE2 | PTA_NO_SAHF | PTA_PRFCHW | PTA_FXSR}, {"athlon64-sse3", PROCESSOR_K8, CPU_K8, PTA_64BIT | PTA_MMX | PTA_3DNOW | PTA_3DNOW_A | PTA_SSE | PTA_SSE2 | PTA_SSE3 | PTA_NO_SAHF | PTA_PRFCHW | PTA_FXSR}, {"athlon-fx", PROCESSOR_K8, CPU_K8, PTA_64BIT | PTA_MMX | PTA_3DNOW | PTA_3DNOW_A | PTA_SSE | PTA_SSE2 | PTA_NO_SAHF | PTA_PRFCHW | PTA_FXSR}, {"amdfam10", PROCESSOR_AMDFAM10, CPU_AMDFAM10, PTA_64BIT | PTA_MMX | PTA_3DNOW | PTA_3DNOW_A | PTA_SSE | PTA_SSE2 | PTA_SSE3 | PTA_SSE4A | PTA_CX16 | PTA_ABM | PTA_PRFCHW | PTA_FXSR}, {"barcelona", PROCESSOR_AMDFAM10, CPU_AMDFAM10, PTA_64BIT | PTA_MMX | PTA_3DNOW | PTA_3DNOW_A | PTA_SSE | PTA_SSE2 | PTA_SSE3 | PTA_SSE4A | PTA_CX16 | PTA_ABM | PTA_PRFCHW | PTA_FXSR}, {"bdver1", PROCESSOR_BDVER1, CPU_BDVER1, PTA_64BIT | PTA_MMX | PTA_SSE | PTA_SSE2 | PTA_SSE3 | PTA_SSE4A | PTA_CX16 | PTA_ABM | PTA_SSSE3 | PTA_SSE4_1 | PTA_SSE4_2 | PTA_AES | PTA_PCLMUL | PTA_AVX | PTA_FMA4 | PTA_XOP | PTA_LWP | PTA_PRFCHW | PTA_FXSR | PTA_XSAVE}, {"bdver2", PROCESSOR_BDVER2, CPU_BDVER2, PTA_64BIT | PTA_MMX | PTA_SSE | PTA_SSE2 | PTA_SSE3 | PTA_SSE4A | PTA_CX16 | PTA_ABM | PTA_SSSE3 | PTA_SSE4_1 | PTA_SSE4_2 | PTA_AES | PTA_PCLMUL | PTA_AVX | PTA_FMA4 | PTA_XOP | PTA_LWP | PTA_BMI | PTA_TBM | PTA_F16C | PTA_FMA | PTA_PRFCHW | PTA_FXSR | PTA_XSAVE}, {"bdver3", PROCESSOR_BDVER3, CPU_BDVER3, PTA_64BIT | PTA_MMX | PTA_SSE | PTA_SSE2 | PTA_SSE3 | PTA_SSE4A | PTA_CX16 | PTA_ABM | PTA_SSSE3 | PTA_SSE4_1 | PTA_SSE4_2 | PTA_AES | PTA_PCLMUL | PTA_AVX | PTA_FMA4 | PTA_XOP | PTA_LWP | PTA_BMI | PTA_TBM | PTA_F16C | PTA_FMA | PTA_PRFCHW | PTA_FXSR | PTA_XSAVE | PTA_XSAVEOPT | PTA_FSGSBASE}, {"bdver4", PROCESSOR_BDVER4, CPU_BDVER4, PTA_64BIT | PTA_MMX | PTA_SSE | PTA_SSE2 | PTA_SSE3 | PTA_SSE4A | PTA_CX16 | PTA_ABM | PTA_SSSE3 | PTA_SSE4_1 | PTA_SSE4_2 | PTA_AES | PTA_PCLMUL | PTA_AVX | PTA_AVX2 | PTA_FMA4 | PTA_XOP | PTA_LWP | PTA_BMI | PTA_BMI2 | PTA_TBM | PTA_F16C | PTA_FMA | PTA_PRFCHW | PTA_FXSR | PTA_XSAVE | PTA_XSAVEOPT | PTA_FSGSBASE}, {"btver1", PROCESSOR_BTVER1, CPU_GENERIC, PTA_64BIT | PTA_MMX | PTA_SSE | PTA_SSE2 | PTA_SSE3 | PTA_SSSE3 | PTA_SSE4A |PTA_ABM | PTA_CX16 | PTA_PRFCHW | PTA_FXSR | PTA_XSAVE}, {"btver2", PROCESSOR_BTVER2, CPU_BTVER2, PTA_64BIT | PTA_MMX | PTA_SSE | PTA_SSE2 | PTA_SSE3 | PTA_SSSE3 | PTA_SSE4A |PTA_ABM | PTA_CX16 | PTA_SSE4_1 | PTA_SSE4_2 | PTA_AES | PTA_PCLMUL | PTA_AVX | PTA_BMI | PTA_F16C | PTA_MOVBE | PTA_PRFCHW | PTA_FXSR | PTA_XSAVE | PTA_XSAVEOPT}, {"generic", PROCESSOR_GENERIC, CPU_GENERIC, PTA_64BIT | PTA_HLE /* flags are only used for -march switch. */ }, }; /* -mrecip options. */ static struct { const char *string; /* option name */ unsigned int mask; /* mask bits to set */ } const recip_options[] = { { "all", RECIP_MASK_ALL }, { "none", RECIP_MASK_NONE }, { "div", RECIP_MASK_DIV }, { "sqrt", RECIP_MASK_SQRT }, { "vec-div", RECIP_MASK_VEC_DIV }, { "vec-sqrt", RECIP_MASK_VEC_SQRT }, }; int const pta_size = ARRAY_SIZE (processor_alias_table); /* Set up prefix/suffix so the error messages refer to either the command line argument, or the attribute(target). */ if (main_args_p) { prefix = "-m"; suffix = ""; sw = "switch"; } else { prefix = "option(\""; suffix = "\")"; sw = "attribute"; } /* Turn off both OPTION_MASK_ABI_64 and OPTION_MASK_ABI_X32 if TARGET_64BIT_DEFAULT is true and TARGET_64BIT is false. */ if (TARGET_64BIT_DEFAULT && !TARGET_64BIT_P (opts->x_ix86_isa_flags)) opts->x_ix86_isa_flags &= ~(OPTION_MASK_ABI_64 | OPTION_MASK_ABI_X32); #ifdef TARGET_BI_ARCH else { #if TARGET_BI_ARCH == 1 /* When TARGET_BI_ARCH == 1, by default, OPTION_MASK_ABI_64 is on and OPTION_MASK_ABI_X32 is off. We turn off OPTION_MASK_ABI_64 if OPTION_MASK_ABI_X32 is turned on by -mx32. */ if (TARGET_X32_P (opts->x_ix86_isa_flags)) opts->x_ix86_isa_flags &= ~OPTION_MASK_ABI_64; #else /* When TARGET_BI_ARCH == 2, by default, OPTION_MASK_ABI_X32 is on and OPTION_MASK_ABI_64 is off. We turn off OPTION_MASK_ABI_X32 if OPTION_MASK_ABI_64 is turned on by -m64. */ if (TARGET_LP64_P (opts->x_ix86_isa_flags)) opts->x_ix86_isa_flags &= ~OPTION_MASK_ABI_X32; #endif } #endif if (TARGET_X32_P (opts->x_ix86_isa_flags)) { /* Always turn on OPTION_MASK_ISA_64BIT and turn off OPTION_MASK_ABI_64 for TARGET_X32. */ opts->x_ix86_isa_flags |= OPTION_MASK_ISA_64BIT; opts->x_ix86_isa_flags &= ~OPTION_MASK_ABI_64; } else if (TARGET_LP64_P (opts->x_ix86_isa_flags)) { /* Always turn on OPTION_MASK_ISA_64BIT and turn off OPTION_MASK_ABI_X32 for TARGET_LP64. */ opts->x_ix86_isa_flags |= OPTION_MASK_ISA_64BIT; opts->x_ix86_isa_flags &= ~OPTION_MASK_ABI_X32; } #ifdef SUBTARGET_OVERRIDE_OPTIONS SUBTARGET_OVERRIDE_OPTIONS; #endif #ifdef SUBSUBTARGET_OVERRIDE_OPTIONS SUBSUBTARGET_OVERRIDE_OPTIONS; #endif /* -fPIC is the default for x86_64. */ if (TARGET_MACHO && TARGET_64BIT_P (opts->x_ix86_isa_flags)) opts->x_flag_pic = 2; /* Need to check -mtune=generic first. */ if (opts->x_ix86_tune_string) { if (!strcmp (opts->x_ix86_tune_string, "generic") || !strcmp (opts->x_ix86_tune_string, "i686") /* As special support for cross compilers we read -mtune=native as -mtune=generic. With native compilers we won't see the -mtune=native, as it was changed by the driver. */ || !strcmp (opts->x_ix86_tune_string, "native")) { opts->x_ix86_tune_string = "generic"; } /* If this call is for setting the option attribute, allow the generic that was previously set. */ else if (!main_args_p && !strcmp (opts->x_ix86_tune_string, "generic")) ; else if (!strncmp (opts->x_ix86_tune_string, "generic", 7)) error ("bad value (%s) for %stune=%s %s", opts->x_ix86_tune_string, prefix, suffix, sw); else if (!strcmp (opts->x_ix86_tune_string, "x86-64")) warning (OPT_Wdeprecated, "%stune=x86-64%s is deprecated; use " "%stune=k8%s or %stune=generic%s instead as appropriate", prefix, suffix, prefix, suffix, prefix, suffix); } else { if (opts->x_ix86_arch_string) opts->x_ix86_tune_string = opts->x_ix86_arch_string; if (!opts->x_ix86_tune_string) { opts->x_ix86_tune_string = cpu_names[TARGET_CPU_DEFAULT]; ix86_tune_defaulted = 1; } /* opts->x_ix86_tune_string is set to opts->x_ix86_arch_string or defaulted. We need to use a sensible tune option. */ if (!strcmp (opts->x_ix86_tune_string, "generic") || !strcmp (opts->x_ix86_tune_string, "x86-64") || !strcmp (opts->x_ix86_tune_string, "i686")) { opts->x_ix86_tune_string = "generic"; } } if (opts->x_ix86_stringop_alg == rep_prefix_8_byte && !TARGET_64BIT_P (opts->x_ix86_isa_flags)) { /* rep; movq isn't available in 32-bit code. */ error ("-mstringop-strategy=rep_8byte not supported for 32-bit code"); opts->x_ix86_stringop_alg = no_stringop; } if (!opts->x_ix86_arch_string) opts->x_ix86_arch_string = TARGET_64BIT_P (opts->x_ix86_isa_flags) ? "x86-64" : SUBTARGET32_DEFAULT_CPU; else ix86_arch_specified = 1; if (opts_set->x_ix86_pmode) { if ((TARGET_LP64_P (opts->x_ix86_isa_flags) && opts->x_ix86_pmode == PMODE_SI) || (!TARGET_64BIT_P (opts->x_ix86_isa_flags) && opts->x_ix86_pmode == PMODE_DI)) error ("address mode %qs not supported in the %s bit mode", TARGET_64BIT_P (opts->x_ix86_isa_flags) ? "short" : "long", TARGET_64BIT_P (opts->x_ix86_isa_flags) ? "64" : "32"); } else opts->x_ix86_pmode = TARGET_LP64_P (opts->x_ix86_isa_flags) ? PMODE_DI : PMODE_SI; if (!opts_set->x_ix86_abi) opts->x_ix86_abi = DEFAULT_ABI; /* For targets using ms ABI enable ms-extensions, if not explicit turned off. For non-ms ABI we turn off this option. */ if (!opts_set->x_flag_ms_extensions) opts->x_flag_ms_extensions = (MS_ABI == DEFAULT_ABI); if (opts_set->x_ix86_cmodel) { switch (opts->x_ix86_cmodel) { case CM_SMALL: case CM_SMALL_PIC: if (opts->x_flag_pic) opts->x_ix86_cmodel = CM_SMALL_PIC; if (!TARGET_64BIT_P (opts->x_ix86_isa_flags)) error ("code model %qs not supported in the %s bit mode", "small", "32"); break; case CM_MEDIUM: case CM_MEDIUM_PIC: if (opts->x_flag_pic) opts->x_ix86_cmodel = CM_MEDIUM_PIC; if (!TARGET_64BIT_P (opts->x_ix86_isa_flags)) error ("code model %qs not supported in the %s bit mode", "medium", "32"); else if (TARGET_X32_P (opts->x_ix86_isa_flags)) error ("code model %qs not supported in x32 mode", "medium"); break; case CM_LARGE: case CM_LARGE_PIC: if (opts->x_flag_pic) opts->x_ix86_cmodel = CM_LARGE_PIC; if (!TARGET_64BIT_P (opts->x_ix86_isa_flags)) error ("code model %qs not supported in the %s bit mode", "large", "32"); else if (TARGET_X32_P (opts->x_ix86_isa_flags)) error ("code model %qs not supported in x32 mode", "large"); break; case CM_32: if (opts->x_flag_pic) error ("code model %s does not support PIC mode", "32"); if (TARGET_64BIT_P (opts->x_ix86_isa_flags)) error ("code model %qs not supported in the %s bit mode", "32", "64"); break; case CM_KERNEL: if (opts->x_flag_pic) { error ("code model %s does not support PIC mode", "kernel"); opts->x_ix86_cmodel = CM_32; } if (!TARGET_64BIT_P (opts->x_ix86_isa_flags)) error ("code model %qs not supported in the %s bit mode", "kernel", "32"); break; default: gcc_unreachable (); } } else { /* For TARGET_64BIT and MS_ABI, force pic on, in order to enable the use of rip-relative addressing. This eliminates fixups that would otherwise be needed if this object is to be placed in a DLL, and is essentially just as efficient as direct addressing. */ if (TARGET_64BIT_P (opts->x_ix86_isa_flags) && (TARGET_RDOS || TARGET_PECOFF)) opts->x_ix86_cmodel = CM_MEDIUM_PIC, opts->x_flag_pic = 1; else if (TARGET_64BIT_P (opts->x_ix86_isa_flags)) opts->x_ix86_cmodel = opts->x_flag_pic ? CM_SMALL_PIC : CM_SMALL; else opts->x_ix86_cmodel = CM_32; } if (TARGET_MACHO && opts->x_ix86_asm_dialect == ASM_INTEL) { error ("-masm=intel not supported in this configuration"); opts->x_ix86_asm_dialect = ASM_ATT; } if ((TARGET_64BIT_P (opts->x_ix86_isa_flags) != 0) != ((opts->x_ix86_isa_flags & OPTION_MASK_ISA_64BIT) != 0)) sorry ("%i-bit mode not compiled in", (opts->x_ix86_isa_flags & OPTION_MASK_ISA_64BIT) ? 64 : 32); for (i = 0; i < pta_size; i++) if (! strcmp (opts->x_ix86_arch_string, processor_alias_table[i].name)) { ix86_schedule = processor_alias_table[i].schedule; ix86_arch = processor_alias_table[i].processor; /* Default cpu tuning to the architecture. */ ix86_tune = ix86_arch; if (TARGET_64BIT_P (opts->x_ix86_isa_flags) && !(processor_alias_table[i].flags & PTA_64BIT)) error ("CPU you selected does not support x86-64 " "instruction set"); if (processor_alias_table[i].flags & PTA_MMX && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_MMX)) opts->x_ix86_isa_flags |= OPTION_MASK_ISA_MMX; if (processor_alias_table[i].flags & PTA_3DNOW && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_3DNOW)) opts->x_ix86_isa_flags |= OPTION_MASK_ISA_3DNOW; if (processor_alias_table[i].flags & PTA_3DNOW_A && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_3DNOW_A)) opts->x_ix86_isa_flags |= OPTION_MASK_ISA_3DNOW_A; if (processor_alias_table[i].flags & PTA_SSE && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_SSE)) opts->x_ix86_isa_flags |= OPTION_MASK_ISA_SSE; if (processor_alias_table[i].flags & PTA_SSE2 && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_SSE2)) opts->x_ix86_isa_flags |= OPTION_MASK_ISA_SSE2; if (processor_alias_table[i].flags & PTA_SSE3 && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_SSE3)) opts->x_ix86_isa_flags |= OPTION_MASK_ISA_SSE3; if (processor_alias_table[i].flags & PTA_SSSE3 && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_SSSE3)) opts->x_ix86_isa_flags |= OPTION_MASK_ISA_SSSE3; if (processor_alias_table[i].flags & PTA_SSE4_1 && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_SSE4_1)) opts->x_ix86_isa_flags |= OPTION_MASK_ISA_SSE4_1; if (processor_alias_table[i].flags & PTA_SSE4_2 && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_SSE4_2)) opts->x_ix86_isa_flags |= OPTION_MASK_ISA_SSE4_2; if (processor_alias_table[i].flags & PTA_AVX && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_AVX)) opts->x_ix86_isa_flags |= OPTION_MASK_ISA_AVX; if (processor_alias_table[i].flags & PTA_AVX2 && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_AVX2)) opts->x_ix86_isa_flags |= OPTION_MASK_ISA_AVX2; if (processor_alias_table[i].flags & PTA_FMA && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_FMA)) opts->x_ix86_isa_flags |= OPTION_MASK_ISA_FMA; if (processor_alias_table[i].flags & PTA_SSE4A && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_SSE4A)) opts->x_ix86_isa_flags |= OPTION_MASK_ISA_SSE4A; if (processor_alias_table[i].flags & PTA_FMA4 && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_FMA4)) opts->x_ix86_isa_flags |= OPTION_MASK_ISA_FMA4; if (processor_alias_table[i].flags & PTA_XOP && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_XOP)) opts->x_ix86_isa_flags |= OPTION_MASK_ISA_XOP; if (processor_alias_table[i].flags & PTA_LWP && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_LWP)) opts->x_ix86_isa_flags |= OPTION_MASK_ISA_LWP; if (processor_alias_table[i].flags & PTA_ABM && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_ABM)) opts->x_ix86_isa_flags |= OPTION_MASK_ISA_ABM; if (processor_alias_table[i].flags & PTA_BMI && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_BMI)) opts->x_ix86_isa_flags |= OPTION_MASK_ISA_BMI; if (processor_alias_table[i].flags & (PTA_LZCNT | PTA_ABM) && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_LZCNT)) opts->x_ix86_isa_flags |= OPTION_MASK_ISA_LZCNT; if (processor_alias_table[i].flags & PTA_TBM && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_TBM)) opts->x_ix86_isa_flags |= OPTION_MASK_ISA_TBM; if (processor_alias_table[i].flags & PTA_BMI2 && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_BMI2)) opts->x_ix86_isa_flags |= OPTION_MASK_ISA_BMI2; if (processor_alias_table[i].flags & PTA_CX16 && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_CX16)) opts->x_ix86_isa_flags |= OPTION_MASK_ISA_CX16; if (processor_alias_table[i].flags & (PTA_POPCNT | PTA_ABM) && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_POPCNT)) opts->x_ix86_isa_flags |= OPTION_MASK_ISA_POPCNT; if (!(TARGET_64BIT_P (opts->x_ix86_isa_flags) && (processor_alias_table[i].flags & PTA_NO_SAHF)) && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_SAHF)) opts->x_ix86_isa_flags |= OPTION_MASK_ISA_SAHF; if (processor_alias_table[i].flags & PTA_MOVBE && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_MOVBE)) opts->x_ix86_isa_flags |= OPTION_MASK_ISA_MOVBE; if (processor_alias_table[i].flags & PTA_AES && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_AES)) opts->x_ix86_isa_flags |= OPTION_MASK_ISA_AES; if (processor_alias_table[i].flags & PTA_PCLMUL && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_PCLMUL)) opts->x_ix86_isa_flags |= OPTION_MASK_ISA_PCLMUL; if (processor_alias_table[i].flags & PTA_FSGSBASE && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_FSGSBASE)) opts->x_ix86_isa_flags |= OPTION_MASK_ISA_FSGSBASE; if (processor_alias_table[i].flags & PTA_RDRND && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_RDRND)) opts->x_ix86_isa_flags |= OPTION_MASK_ISA_RDRND; if (processor_alias_table[i].flags & PTA_F16C && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_F16C)) opts->x_ix86_isa_flags |= OPTION_MASK_ISA_F16C; if (processor_alias_table[i].flags & PTA_RTM && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_RTM)) opts->x_ix86_isa_flags |= OPTION_MASK_ISA_RTM; if (processor_alias_table[i].flags & PTA_HLE && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_HLE)) opts->x_ix86_isa_flags |= OPTION_MASK_ISA_HLE; if (processor_alias_table[i].flags & PTA_PRFCHW && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_PRFCHW)) opts->x_ix86_isa_flags |= OPTION_MASK_ISA_PRFCHW; if (processor_alias_table[i].flags & PTA_RDSEED && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_RDSEED)) opts->x_ix86_isa_flags |= OPTION_MASK_ISA_RDSEED; if (processor_alias_table[i].flags & PTA_ADX && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_ADX)) opts->x_ix86_isa_flags |= OPTION_MASK_ISA_ADX; if (processor_alias_table[i].flags & PTA_FXSR && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_FXSR)) opts->x_ix86_isa_flags |= OPTION_MASK_ISA_FXSR; if (processor_alias_table[i].flags & PTA_XSAVE && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_XSAVE)) opts->x_ix86_isa_flags |= OPTION_MASK_ISA_XSAVE; if (processor_alias_table[i].flags & PTA_XSAVEOPT && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_XSAVEOPT)) opts->x_ix86_isa_flags |= OPTION_MASK_ISA_XSAVEOPT; if (processor_alias_table[i].flags & PTA_AVX512F && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_AVX512F)) opts->x_ix86_isa_flags |= OPTION_MASK_ISA_AVX512F; if (processor_alias_table[i].flags & PTA_AVX512ER && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_AVX512ER)) opts->x_ix86_isa_flags |= OPTION_MASK_ISA_AVX512ER; if (processor_alias_table[i].flags & PTA_AVX512PF && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_AVX512PF)) opts->x_ix86_isa_flags |= OPTION_MASK_ISA_AVX512PF; if (processor_alias_table[i].flags & PTA_AVX512CD && !(opts->x_ix86_isa_flags_explicit & OPTION_MASK_ISA_AVX512CD)) opts->x_ix86_isa_flags |= OPTION_MASK_ISA_AVX512CD; if (processor_alias_table[i].flags & (PTA_PREFETCH_SSE | PTA_SSE)) x86_prefetch_sse = true; break; } if (!strcmp (opts->x_ix86_arch_string, "generic")) error ("generic CPU can be used only for %stune=%s %s", prefix, suffix, sw); else if (!strncmp (opts->x_ix86_arch_string, "generic", 7) || i == pta_size) error ("bad value (%s) for %sarch=%s %s", opts->x_ix86_arch_string, prefix, suffix, sw); ix86_arch_mask = 1u << ix86_arch; for (i = 0; i < X86_ARCH_LAST; ++i) ix86_arch_features[i] = !!(initial_ix86_arch_features[i] & ix86_arch_mask); for (i = 0; i < pta_size; i++) if (! strcmp (opts->x_ix86_tune_string, processor_alias_table[i].name)) { ix86_schedule = processor_alias_table[i].schedule; ix86_tune = processor_alias_table[i].processor; if (TARGET_64BIT_P (opts->x_ix86_isa_flags)) { if (!(processor_alias_table[i].flags & PTA_64BIT)) { if (ix86_tune_defaulted) { opts->x_ix86_tune_string = "x86-64"; for (i = 0; i < pta_size; i++) if (! strcmp (opts->x_ix86_tune_string, processor_alias_table[i].name)) break; ix86_schedule = processor_alias_table[i].schedule; ix86_tune = processor_alias_table[i].processor; } else error ("CPU you selected does not support x86-64 " "instruction set"); } } /* Intel CPUs have always interpreted SSE prefetch instructions as NOPs; so, we can enable SSE prefetch instructions even when -mtune (rather than -march) points us to a processor that has them. However, the VIA C3 gives a SIGILL, so we only do that for i686 and higher processors. */ if (TARGET_CMOV && (processor_alias_table[i].flags & (PTA_PREFETCH_SSE | PTA_SSE))) x86_prefetch_sse = true; break; } if (ix86_tune_specified && i == pta_size) error ("bad value (%s) for %stune=%s %s", opts->x_ix86_tune_string, prefix, suffix, sw); set_ix86_tune_features (ix86_tune, opts->x_ix86_dump_tunes); #ifndef USE_IX86_FRAME_POINTER #define USE_IX86_FRAME_POINTER 0 #endif #ifndef USE_X86_64_FRAME_POINTER #define USE_X86_64_FRAME_POINTER 0 #endif /* Set the default values for switches whose default depends on TARGET_64BIT in case they weren't overwritten by command line options. */ if (TARGET_64BIT_P (opts->x_ix86_isa_flags)) { if (opts->x_optimize >= 1 && !opts_set->x_flag_omit_frame_pointer) opts->x_flag_omit_frame_pointer = !USE_X86_64_FRAME_POINTER; if (opts->x_flag_asynchronous_unwind_tables == 2) opts->x_flag_unwind_tables = opts->x_flag_asynchronous_unwind_tables = 1; if (opts->x_flag_pcc_struct_return == 2) opts->x_flag_pcc_struct_return = 0; } else { if (opts->x_optimize >= 1 && !opts_set->x_flag_omit_frame_pointer) opts->x_flag_omit_frame_pointer = !(USE_IX86_FRAME_POINTER || opts->x_optimize_size); if (opts->x_flag_asynchronous_unwind_tables == 2) opts->x_flag_asynchronous_unwind_tables = !USE_IX86_FRAME_POINTER; if (opts->x_flag_pcc_struct_return == 2) opts->x_flag_pcc_struct_return = DEFAULT_PCC_STRUCT_RETURN; } ix86_tune_cost = processor_target_table[ix86_tune].cost; if (opts->x_optimize_size) ix86_cost = &ix86_size_cost; else ix86_cost = ix86_tune_cost; /* Arrange to set up i386_stack_locals for all functions. */ init_machine_status = ix86_init_machine_status; /* Validate -mregparm= value. */ if (opts_set->x_ix86_regparm) { if (TARGET_64BIT_P (opts->x_ix86_isa_flags)) warning (0, "-mregparm is ignored in 64-bit mode"); if (opts->x_ix86_regparm > REGPARM_MAX) { error ("-mregparm=%d is not between 0 and %d", opts->x_ix86_regparm, REGPARM_MAX); opts->x_ix86_regparm = 0; } } if (TARGET_64BIT_P (opts->x_ix86_isa_flags)) opts->x_ix86_regparm = REGPARM_MAX; /* Default align_* from the processor table. */ if (opts->x_align_loops == 0) { opts->x_align_loops = processor_target_table[ix86_tune].align_loop; align_loops_max_skip = processor_target_table[ix86_tune].align_loop_max_skip; } if (opts->x_align_jumps == 0) { opts->x_align_jumps = processor_target_table[ix86_tune].align_jump; align_jumps_max_skip = processor_target_table[ix86_tune].align_jump_max_skip; } if (opts->x_align_functions == 0) { opts->x_align_functions = processor_target_table[ix86_tune].align_func; } /* Provide default for -mbranch-cost= value. */ if (!opts_set->x_ix86_branch_cost) opts->x_ix86_branch_cost = ix86_cost->branch_cost; if (TARGET_64BIT_P (opts->x_ix86_isa_flags)) { opts->x_target_flags |= TARGET_SUBTARGET64_DEFAULT & ~opts_set->x_target_flags; /* Enable by default the SSE and MMX builtins. Do allow the user to explicitly disable any of these. In particular, disabling SSE and MMX for kernel code is extremely useful. */ if (!ix86_arch_specified) opts->x_ix86_isa_flags |= ((OPTION_MASK_ISA_SSE2 | OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_MMX | TARGET_SUBTARGET64_ISA_DEFAULT) & ~opts->x_ix86_isa_flags_explicit); if (TARGET_RTD_P (opts->x_target_flags)) warning (0, "%srtd%s is ignored in 64bit mode", prefix, suffix); } else { opts->x_target_flags |= TARGET_SUBTARGET32_DEFAULT & ~opts_set->x_target_flags; if (!ix86_arch_specified) opts->x_ix86_isa_flags |= TARGET_SUBTARGET32_ISA_DEFAULT & ~opts->x_ix86_isa_flags_explicit; /* i386 ABI does not specify red zone. It still makes sense to use it when programmer takes care to stack from being destroyed. */ if (!(opts_set->x_target_flags & MASK_NO_RED_ZONE)) opts->x_target_flags |= MASK_NO_RED_ZONE; } /* Keep nonleaf frame pointers. */ if (opts->x_flag_omit_frame_pointer) opts->x_target_flags &= ~MASK_OMIT_LEAF_FRAME_POINTER; else if (TARGET_OMIT_LEAF_FRAME_POINTER_P (opts->x_target_flags)) opts->x_flag_omit_frame_pointer = 1; /* If we're doing fast math, we don't care about comparison order wrt NaNs. This lets us use a shorter comparison sequence. */ if (opts->x_flag_finite_math_only) opts->x_target_flags &= ~MASK_IEEE_FP; /* If the architecture always has an FPU, turn off NO_FANCY_MATH_387, since the insns won't need emulation. */ if (ix86_tune_features [X86_TUNE_ALWAYS_FANCY_MATH_387]) opts->x_target_flags &= ~MASK_NO_FANCY_MATH_387; /* Likewise, if the target doesn't have a 387, or we've specified software floating point, don't use 387 inline intrinsics. */ if (!TARGET_80387_P (opts->x_target_flags)) opts->x_target_flags |= MASK_NO_FANCY_MATH_387; /* Turn on MMX builtins for -msse. */ if (TARGET_SSE_P (opts->x_ix86_isa_flags)) opts->x_ix86_isa_flags |= OPTION_MASK_ISA_MMX & ~opts->x_ix86_isa_flags_explicit; /* Enable SSE prefetch. */ if (TARGET_SSE_P (opts->x_ix86_isa_flags) || (TARGET_PRFCHW && !TARGET_3DNOW_P (opts->x_ix86_isa_flags))) x86_prefetch_sse = true; /* Enable prefetch{,w} instructions for -m3dnow. */ if (TARGET_3DNOW_P (opts->x_ix86_isa_flags)) opts->x_ix86_isa_flags |= OPTION_MASK_ISA_PRFCHW & ~opts->x_ix86_isa_flags_explicit; /* Enable popcnt instruction for -msse4.2 or -mabm. */ if (TARGET_SSE4_2_P (opts->x_ix86_isa_flags) || TARGET_ABM_P (opts->x_ix86_isa_flags)) opts->x_ix86_isa_flags |= OPTION_MASK_ISA_POPCNT & ~opts->x_ix86_isa_flags_explicit; /* Enable lzcnt instruction for -mabm. */ if (TARGET_ABM_P(opts->x_ix86_isa_flags)) opts->x_ix86_isa_flags |= OPTION_MASK_ISA_LZCNT & ~opts->x_ix86_isa_flags_explicit; /* Validate -mpreferred-stack-boundary= value or default it to PREFERRED_STACK_BOUNDARY_DEFAULT. */ ix86_preferred_stack_boundary = PREFERRED_STACK_BOUNDARY_DEFAULT; if (opts_set->x_ix86_preferred_stack_boundary_arg) { int min = (TARGET_64BIT_P (opts->x_ix86_isa_flags) ? (TARGET_SSE_P (opts->x_ix86_isa_flags) ? 4 : 3) : 2); int max = (TARGET_SEH ? 4 : 12); if (opts->x_ix86_preferred_stack_boundary_arg < min || opts->x_ix86_preferred_stack_boundary_arg > max) { if (min == max) error ("-mpreferred-stack-boundary is not supported " "for this target"); else error ("-mpreferred-stack-boundary=%d is not between %d and %d", opts->x_ix86_preferred_stack_boundary_arg, min, max); } else ix86_preferred_stack_boundary = (1 << opts->x_ix86_preferred_stack_boundary_arg) * BITS_PER_UNIT; } /* Set the default value for -mstackrealign. */ if (opts->x_ix86_force_align_arg_pointer == -1) opts->x_ix86_force_align_arg_pointer = STACK_REALIGN_DEFAULT; ix86_default_incoming_stack_boundary = PREFERRED_STACK_BOUNDARY; /* Validate -mincoming-stack-boundary= value or default it to MIN_STACK_BOUNDARY/PREFERRED_STACK_BOUNDARY. */ ix86_incoming_stack_boundary = ix86_default_incoming_stack_boundary; if (opts_set->x_ix86_incoming_stack_boundary_arg) { if (ix86_incoming_stack_boundary_arg < (TARGET_64BIT_P (opts->x_ix86_isa_flags) ? 4 : 2) || ix86_incoming_stack_boundary_arg > 12) error ("-mincoming-stack-boundary=%d is not between %d and 12", ix86_incoming_stack_boundary_arg, TARGET_64BIT_P (opts->x_ix86_isa_flags) ? 4 : 2); else { ix86_user_incoming_stack_boundary = (1 << ix86_incoming_stack_boundary_arg) * BITS_PER_UNIT; ix86_incoming_stack_boundary = ix86_user_incoming_stack_boundary; } } /* Accept -msseregparm only if at least SSE support is enabled. */ if (TARGET_SSEREGPARM_P (opts->x_target_flags) && ! TARGET_SSE_P (opts->x_ix86_isa_flags)) error ("%ssseregparm%s used without SSE enabled", prefix, suffix); if (opts_set->x_ix86_fpmath) { if (opts->x_ix86_fpmath & FPMATH_SSE) { if (!TARGET_SSE_P (opts->x_ix86_isa_flags)) { warning (0, "SSE instruction set disabled, using 387 arithmetics"); opts->x_ix86_fpmath = FPMATH_387; } else if ((opts->x_ix86_fpmath & FPMATH_387) && !TARGET_80387_P (opts->x_target_flags)) { warning (0, "387 instruction set disabled, using SSE arithmetics"); opts->x_ix86_fpmath = FPMATH_SSE; } } } /* For all chips supporting SSE2, -mfpmath=sse performs better than fpmath=387. The second is however default at many targets since the extra 80bit precision of temporaries is considered to be part of ABI. Overwrite the default at least for -ffast-math. TODO: -mfpmath=both seems to produce same performing code with bit smaller binaries. It is however not clear if register allocation is ready for this setting. Also -mfpmath=387 is overall a lot more compact (bout 4-5%) than SSE codegen. We may switch to 387 with -ffast-math for size optimized functions. */ else if (fast_math_flags_set_p (&global_options) && TARGET_SSE2_P (opts->x_ix86_isa_flags)) ix86_fpmath = FPMATH_SSE; else opts->x_ix86_fpmath = TARGET_FPMATH_DEFAULT_P (opts->x_ix86_isa_flags); /* If the i387 is disabled, then do not return values in it. */ if (!TARGET_80387_P (opts->x_target_flags)) opts->x_target_flags &= ~MASK_FLOAT_RETURNS; /* Use external vectorized library in vectorizing intrinsics. */ if (opts_set->x_ix86_veclibabi_type) switch (opts->x_ix86_veclibabi_type) { case ix86_veclibabi_type_svml: ix86_veclib_handler = ix86_veclibabi_svml; break; case ix86_veclibabi_type_acml: ix86_veclib_handler = ix86_veclibabi_acml; break; default: gcc_unreachable (); } if (ix86_tune_features [X86_TUNE_ACCUMULATE_OUTGOING_ARGS] && !(opts_set->x_target_flags & MASK_ACCUMULATE_OUTGOING_ARGS) && !opts->x_optimize_size) opts->x_target_flags |= MASK_ACCUMULATE_OUTGOING_ARGS; /* If stack probes are required, the space used for large function arguments on the stack must also be probed, so enable -maccumulate-outgoing-args so this happens in the prologue. */ if (TARGET_STACK_PROBE_P (opts->x_target_flags) && !(opts->x_target_flags & MASK_ACCUMULATE_OUTGOING_ARGS)) { if (opts_set->x_target_flags & MASK_ACCUMULATE_OUTGOING_ARGS) warning (0, "stack probing requires %saccumulate-outgoing-args%s " "for correctness", prefix, suffix); opts->x_target_flags |= MASK_ACCUMULATE_OUTGOING_ARGS; } /* Figure out what ASM_GENERATE_INTERNAL_LABEL builds as a prefix. */ { char *p; ASM_GENERATE_INTERNAL_LABEL (internal_label_prefix, "LX", 0); p = strchr (internal_label_prefix, 'X'); internal_label_prefix_len = p - internal_label_prefix; *p = '\0'; } /* When scheduling description is not available, disable scheduler pass so it won't slow down the compilation and make x87 code slower. */ if (!TARGET_SCHEDULE) opts->x_flag_schedule_insns_after_reload = opts->x_flag_schedule_insns = 0; maybe_set_param_value (PARAM_SIMULTANEOUS_PREFETCHES, ix86_tune_cost->simultaneous_prefetches, opts->x_param_values, opts_set->x_param_values); maybe_set_param_value (PARAM_L1_CACHE_LINE_SIZE, ix86_tune_cost->prefetch_block, opts->x_param_values, opts_set->x_param_values); maybe_set_param_value (PARAM_L1_CACHE_SIZE, ix86_tune_cost->l1_cache_size, opts->x_param_values, opts_set->x_param_values); maybe_set_param_value (PARAM_L2_CACHE_SIZE, ix86_tune_cost->l2_cache_size, opts->x_param_values, opts_set->x_param_values); /* Enable sw prefetching at -O3 for CPUS that prefetching is helpful. */ if (opts->x_flag_prefetch_loop_arrays < 0 && HAVE_prefetch && (opts->x_optimize >= 3 || opts->x_flag_profile_use) && TARGET_SOFTWARE_PREFETCHING_BENEFICIAL) opts->x_flag_prefetch_loop_arrays = 1; /* If using typedef char *va_list, signal that __builtin_va_start (&ap, 0) can be opts->x_optimized to ap = __builtin_next_arg (0). */ if (!TARGET_64BIT_P (opts->x_ix86_isa_flags) && !opts->x_flag_split_stack) targetm.expand_builtin_va_start = NULL; if (TARGET_64BIT_P (opts->x_ix86_isa_flags)) { ix86_gen_leave = gen_leave_rex64; if (Pmode == DImode) { ix86_gen_tls_global_dynamic_64 = gen_tls_global_dynamic_64_di; ix86_gen_tls_local_dynamic_base_64 = gen_tls_local_dynamic_base_64_di; } else { ix86_gen_tls_global_dynamic_64 = gen_tls_global_dynamic_64_si; ix86_gen_tls_local_dynamic_base_64 = gen_tls_local_dynamic_base_64_si; } } else ix86_gen_leave = gen_leave; if (Pmode == DImode) { ix86_gen_add3 = gen_adddi3; ix86_gen_sub3 = gen_subdi3; ix86_gen_sub3_carry = gen_subdi3_carry; ix86_gen_one_cmpl2 = gen_one_cmpldi2; ix86_gen_andsp = gen_anddi3; ix86_gen_allocate_stack_worker = gen_allocate_stack_worker_probe_di; ix86_gen_adjust_stack_and_probe = gen_adjust_stack_and_probedi; ix86_gen_probe_stack_range = gen_probe_stack_rangedi; ix86_gen_monitor = gen_sse3_monitor_di; } else { ix86_gen_add3 = gen_addsi3; ix86_gen_sub3 = gen_subsi3; ix86_gen_sub3_carry = gen_subsi3_carry; ix86_gen_one_cmpl2 = gen_one_cmplsi2; ix86_gen_andsp = gen_andsi3; ix86_gen_allocate_stack_worker = gen_allocate_stack_worker_probe_si; ix86_gen_adjust_stack_and_probe = gen_adjust_stack_and_probesi; ix86_gen_probe_stack_range = gen_probe_stack_rangesi; ix86_gen_monitor = gen_sse3_monitor_si; } #ifdef USE_IX86_CLD /* Use -mcld by default for 32-bit code if configured with --enable-cld. */ if (!TARGET_64BIT_P (opts->x_ix86_isa_flags)) opts->x_target_flags |= MASK_CLD & ~opts_set->x_target_flags; #endif if (!TARGET_64BIT_P (opts->x_ix86_isa_flags) && opts->x_flag_pic) { if (opts->x_flag_fentry > 0) sorry ("-mfentry isn%'t supported for 32-bit in combination " "with -fpic"); opts->x_flag_fentry = 0; } else if (TARGET_SEH) { if (opts->x_flag_fentry == 0) sorry ("-mno-fentry isn%'t compatible with SEH"); opts->x_flag_fentry = 1; } else if (opts->x_flag_fentry < 0) { #if defined(PROFILE_BEFORE_PROLOGUE) opts->x_flag_fentry = 1; #else opts->x_flag_fentry = 0; #endif } /* When not opts->x_optimize for size, enable vzeroupper optimization for TARGET_AVX with -fexpensive-optimizations and split 32-byte AVX unaligned load/store. */ if (!opts->x_optimize_size) { if (flag_expensive_optimizations && !(opts_set->x_target_flags & MASK_VZEROUPPER)) opts->x_target_flags |= MASK_VZEROUPPER; if (!ix86_tune_features[X86_TUNE_AVX256_UNALIGNED_LOAD_OPTIMAL] && !(opts_set->x_target_flags & MASK_AVX256_SPLIT_UNALIGNED_LOAD)) opts->x_target_flags |= MASK_AVX256_SPLIT_UNALIGNED_LOAD; if (!ix86_tune_features[X86_TUNE_AVX256_UNALIGNED_STORE_OPTIMAL] && !(opts_set->x_target_flags & MASK_AVX256_SPLIT_UNALIGNED_STORE)) opts->x_target_flags |= MASK_AVX256_SPLIT_UNALIGNED_STORE; /* Enable 128-bit AVX instruction generation for the auto-vectorizer. */ if (TARGET_AVX128_OPTIMAL && !(opts_set->x_target_flags & MASK_PREFER_AVX128)) opts->x_target_flags |= MASK_PREFER_AVX128; } if (opts->x_ix86_recip_name) { char *p = ASTRDUP (opts->x_ix86_recip_name); char *q; unsigned int mask, i; bool invert; while ((q = strtok (p, ",")) != NULL) { p = NULL; if (*q == '!') { invert = true; q++; } else invert = false; if (!strcmp (q, "default")) mask = RECIP_MASK_ALL; else { for (i = 0; i < ARRAY_SIZE (recip_options); i++) if (!strcmp (q, recip_options[i].string)) { mask = recip_options[i].mask; break; } if (i == ARRAY_SIZE (recip_options)) { error ("unknown option for -mrecip=%s", q); invert = false; mask = RECIP_MASK_NONE; } } opts->x_recip_mask_explicit |= mask; if (invert) opts->x_recip_mask &= ~mask; else opts->x_recip_mask |= mask; } } if (TARGET_RECIP_P (opts->x_target_flags)) opts->x_recip_mask |= RECIP_MASK_ALL & ~opts->x_recip_mask_explicit; else if (opts_set->x_target_flags & MASK_RECIP) opts->x_recip_mask &= ~(RECIP_MASK_ALL & ~opts->x_recip_mask_explicit); /* Default long double to 64-bit for Bionic. */ if (TARGET_HAS_BIONIC && !(opts_set->x_target_flags & MASK_LONG_DOUBLE_64)) opts->x_target_flags |= MASK_LONG_DOUBLE_64; /* Save the initial options in case the user does function specific options. */ if (main_args_p) target_option_default_node = target_option_current_node = build_target_option_node (opts); /* Handle stack protector */ if (!opts_set->x_ix86_stack_protector_guard) opts->x_ix86_stack_protector_guard = TARGET_HAS_BIONIC ? SSP_GLOBAL : SSP_TLS; /* Handle -mmemcpy-strategy= and -mmemset-strategy= */ if (opts->x_ix86_tune_memcpy_strategy) { char *str = xstrdup (opts->x_ix86_tune_memcpy_strategy); ix86_parse_stringop_strategy_string (str, false); free (str); } if (opts->x_ix86_tune_memset_strategy) { char *str = xstrdup (opts->x_ix86_tune_memset_strategy); ix86_parse_stringop_strategy_string (str, true); free (str); } } /* Implement the TARGET_OPTION_OVERRIDE hook. */ static void ix86_option_override (void) { opt_pass *pass_insert_vzeroupper = make_pass_insert_vzeroupper (g); static struct register_pass_info insert_vzeroupper_info = { pass_insert_vzeroupper, "reload", 1, PASS_POS_INSERT_AFTER }; ix86_option_override_internal (true, &global_options, &global_options_set); /* This needs to be done at start up. It's convenient to do it here. */ register_pass (&insert_vzeroupper_info); } /* Update register usage after having seen the compiler flags. */ static void ix86_conditional_register_usage (void) { int i, c_mask; unsigned int j; /* The PIC register, if it exists, is fixed. */ j = PIC_OFFSET_TABLE_REGNUM; if (j != INVALID_REGNUM) fixed_regs[j] = call_used_regs[j] = 1; /* For 32-bit targets, squash the REX registers. */ if (! TARGET_64BIT) { for (i = FIRST_REX_INT_REG; i <= LAST_REX_INT_REG; i++) fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; for (i = FIRST_REX_SSE_REG; i <= LAST_REX_SSE_REG; i++) fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; for (i = FIRST_EXT_REX_SSE_REG; i <= LAST_EXT_REX_SSE_REG; i++) fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; } /* See the definition of CALL_USED_REGISTERS in i386.h. */ c_mask = (TARGET_64BIT_MS_ABI ? (1 << 3) : TARGET_64BIT ? (1 << 2) : (1 << 1)); CLEAR_HARD_REG_SET (reg_class_contents[(int)CLOBBERED_REGS]); for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) { /* Set/reset conditionally defined registers from CALL_USED_REGISTERS initializer. */ if (call_used_regs[i] > 1) call_used_regs[i] = !!(call_used_regs[i] & c_mask); /* Calculate registers of CLOBBERED_REGS register set as call used registers from GENERAL_REGS register set. */ if (TEST_HARD_REG_BIT (reg_class_contents[(int)GENERAL_REGS], i) && call_used_regs[i]) SET_HARD_REG_BIT (reg_class_contents[(int)CLOBBERED_REGS], i); } /* If MMX is disabled, squash the registers. */ if (! TARGET_MMX) for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i)) fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; /* If SSE is disabled, squash the registers. */ if (! TARGET_SSE) for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i)) fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; /* If the FPU is disabled, squash the registers. */ if (! (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387)) for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) if (TEST_HARD_REG_BIT (reg_class_contents[(int)FLOAT_REGS], i)) fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; /* If AVX512F is disabled, squash the registers. */ if (! TARGET_AVX512F) { for (i = FIRST_EXT_REX_SSE_REG; i <= LAST_EXT_REX_SSE_REG; i++) fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; for (i = FIRST_MASK_REG; i <= LAST_MASK_REG; i++) fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; } /* If MPX is disabled, squash the registers. */ if (! TARGET_MPX) for (i = FIRST_BND_REG; i <= LAST_BND_REG; i++) fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; } /* Save the current options */ static void ix86_function_specific_save (struct cl_target_option *ptr, struct gcc_options *opts) { ptr->arch = ix86_arch; ptr->schedule = ix86_schedule; ptr->tune = ix86_tune; ptr->branch_cost = ix86_branch_cost; ptr->tune_defaulted = ix86_tune_defaulted; ptr->arch_specified = ix86_arch_specified; ptr->x_ix86_isa_flags_explicit = opts->x_ix86_isa_flags_explicit; ptr->x_ix86_target_flags_explicit = opts->x_ix86_target_flags_explicit; ptr->x_recip_mask_explicit = opts->x_recip_mask_explicit; /* The fields are char but the variables are not; make sure the values fit in the fields. */ gcc_assert (ptr->arch == ix86_arch); gcc_assert (ptr->schedule == ix86_schedule); gcc_assert (ptr->tune == ix86_tune); gcc_assert (ptr->branch_cost == ix86_branch_cost); } /* Restore the current options */ static void ix86_function_specific_restore (struct gcc_options *opts, struct cl_target_option *ptr) { enum processor_type old_tune = ix86_tune; enum processor_type old_arch = ix86_arch; unsigned int ix86_arch_mask; int i; ix86_arch = (enum processor_type) ptr->arch; ix86_schedule = (enum attr_cpu) ptr->schedule; ix86_tune = (enum processor_type) ptr->tune; opts->x_ix86_branch_cost = ptr->branch_cost; ix86_tune_defaulted = ptr->tune_defaulted; ix86_arch_specified = ptr->arch_specified; opts->x_ix86_isa_flags_explicit = ptr->x_ix86_isa_flags_explicit; opts->x_ix86_target_flags_explicit = ptr->x_ix86_target_flags_explicit; opts->x_recip_mask_explicit = ptr->x_recip_mask_explicit; /* Recreate the arch feature tests if the arch changed */ if (old_arch != ix86_arch) { ix86_arch_mask = 1u << ix86_arch; for (i = 0; i < X86_ARCH_LAST; ++i) ix86_arch_features[i] = !!(initial_ix86_arch_features[i] & ix86_arch_mask); } /* Recreate the tune optimization tests */ if (old_tune != ix86_tune) set_ix86_tune_features (ix86_tune, false); } /* Print the current options */ static void ix86_function_specific_print (FILE *file, int indent, struct cl_target_option *ptr) { char *target_string = ix86_target_string (ptr->x_ix86_isa_flags, ptr->x_target_flags, NULL, NULL, ptr->x_ix86_fpmath, false); fprintf (file, "%*sarch = %d (%s)\n", indent, "", ptr->arch, ((ptr->arch < TARGET_CPU_DEFAULT_max) ? cpu_names[ptr->arch] : "")); fprintf (file, "%*stune = %d (%s)\n", indent, "", ptr->tune, ((ptr->tune < TARGET_CPU_DEFAULT_max) ? cpu_names[ptr->tune] : "")); fprintf (file, "%*sbranch_cost = %d\n", indent, "", ptr->branch_cost); if (target_string) { fprintf (file, "%*s%s\n", indent, "", target_string); free (target_string); } } /* Inner function to process the attribute((target(...))), take an argument and set the current options from the argument. If we have a list, recursively go over the list. */ static bool ix86_valid_target_attribute_inner_p (tree args, char *p_strings[], struct gcc_options *opts, struct gcc_options *opts_set, struct gcc_options *enum_opts_set) { char *next_optstr; bool ret = true; #define IX86_ATTR_ISA(S,O) { S, sizeof (S)-1, ix86_opt_isa, O, 0 } #define IX86_ATTR_STR(S,O) { S, sizeof (S)-1, ix86_opt_str, O, 0 } #define IX86_ATTR_ENUM(S,O) { S, sizeof (S)-1, ix86_opt_enum, O, 0 } #define IX86_ATTR_YES(S,O,M) { S, sizeof (S)-1, ix86_opt_yes, O, M } #define IX86_ATTR_NO(S,O,M) { S, sizeof (S)-1, ix86_opt_no, O, M } enum ix86_opt_type { ix86_opt_unknown, ix86_opt_yes, ix86_opt_no, ix86_opt_str, ix86_opt_enum, ix86_opt_isa }; static const struct { const char *string; size_t len; enum ix86_opt_type type; int opt; int mask; } attrs[] = { /* isa options */ IX86_ATTR_ISA ("3dnow", OPT_m3dnow), IX86_ATTR_ISA ("abm", OPT_mabm), IX86_ATTR_ISA ("bmi", OPT_mbmi), IX86_ATTR_ISA ("bmi2", OPT_mbmi2), IX86_ATTR_ISA ("lzcnt", OPT_mlzcnt), IX86_ATTR_ISA ("tbm", OPT_mtbm), IX86_ATTR_ISA ("aes", OPT_maes), IX86_ATTR_ISA ("avx", OPT_mavx), IX86_ATTR_ISA ("avx2", OPT_mavx2), IX86_ATTR_ISA ("avx512f", OPT_mavx512f), IX86_ATTR_ISA ("avx512pf", OPT_mavx512pf), IX86_ATTR_ISA ("avx512er", OPT_mavx512er), IX86_ATTR_ISA ("avx512cd", OPT_mavx512cd), IX86_ATTR_ISA ("mmx", OPT_mmmx), IX86_ATTR_ISA ("pclmul", OPT_mpclmul), IX86_ATTR_ISA ("popcnt", OPT_mpopcnt), IX86_ATTR_ISA ("sse", OPT_msse), IX86_ATTR_ISA ("sse2", OPT_msse2), IX86_ATTR_ISA ("sse3", OPT_msse3), IX86_ATTR_ISA ("sse4", OPT_msse4), IX86_ATTR_ISA ("sse4.1", OPT_msse4_1), IX86_ATTR_ISA ("sse4.2", OPT_msse4_2), IX86_ATTR_ISA ("sse4a", OPT_msse4a), IX86_ATTR_ISA ("ssse3", OPT_mssse3), IX86_ATTR_ISA ("fma4", OPT_mfma4), IX86_ATTR_ISA ("fma", OPT_mfma), IX86_ATTR_ISA ("xop", OPT_mxop), IX86_ATTR_ISA ("lwp", OPT_mlwp), IX86_ATTR_ISA ("fsgsbase", OPT_mfsgsbase), IX86_ATTR_ISA ("rdrnd", OPT_mrdrnd), IX86_ATTR_ISA ("f16c", OPT_mf16c), IX86_ATTR_ISA ("rtm", OPT_mrtm), IX86_ATTR_ISA ("hle", OPT_mhle), IX86_ATTR_ISA ("prfchw", OPT_mprfchw), IX86_ATTR_ISA ("rdseed", OPT_mrdseed), IX86_ATTR_ISA ("adx", OPT_madx), IX86_ATTR_ISA ("fxsr", OPT_mfxsr), IX86_ATTR_ISA ("xsave", OPT_mxsave), IX86_ATTR_ISA ("xsaveopt", OPT_mxsaveopt), /* enum options */ IX86_ATTR_ENUM ("fpmath=", OPT_mfpmath_), /* string options */ IX86_ATTR_STR ("arch=", IX86_FUNCTION_SPECIFIC_ARCH), IX86_ATTR_STR ("tune=", IX86_FUNCTION_SPECIFIC_TUNE), /* flag options */ IX86_ATTR_YES ("cld", OPT_mcld, MASK_CLD), IX86_ATTR_NO ("fancy-math-387", OPT_mfancy_math_387, MASK_NO_FANCY_MATH_387), IX86_ATTR_YES ("ieee-fp", OPT_mieee_fp, MASK_IEEE_FP), IX86_ATTR_YES ("inline-all-stringops", OPT_minline_all_stringops, MASK_INLINE_ALL_STRINGOPS), IX86_ATTR_YES ("inline-stringops-dynamically", OPT_minline_stringops_dynamically, MASK_INLINE_STRINGOPS_DYNAMICALLY), IX86_ATTR_NO ("align-stringops", OPT_mno_align_stringops, MASK_NO_ALIGN_STRINGOPS), IX86_ATTR_YES ("recip", OPT_mrecip, MASK_RECIP), }; /* If this is a list, recurse to get the options. */ if (TREE_CODE (args) == TREE_LIST) { bool ret = true; for (; args; args = TREE_CHAIN (args)) if (TREE_VALUE (args) && !ix86_valid_target_attribute_inner_p (TREE_VALUE (args), p_strings, opts, opts_set, enum_opts_set)) ret = false; return ret; } else if (TREE_CODE (args) != STRING_CST) { error ("attribute % argument not a string"); return false; } /* Handle multiple arguments separated by commas. */ next_optstr = ASTRDUP (TREE_STRING_POINTER (args)); while (next_optstr && *next_optstr != '\0') { char *p = next_optstr; char *orig_p = p; char *comma = strchr (next_optstr, ','); const char *opt_string; size_t len, opt_len; int opt; bool opt_set_p; char ch; unsigned i; enum ix86_opt_type type = ix86_opt_unknown; int mask = 0; if (comma) { *comma = '\0'; len = comma - next_optstr; next_optstr = comma + 1; } else { len = strlen (p); next_optstr = NULL; } /* Recognize no-xxx. */ if (len > 3 && p[0] == 'n' && p[1] == 'o' && p[2] == '-') { opt_set_p = false; p += 3; len -= 3; } else opt_set_p = true; /* Find the option. */ ch = *p; opt = N_OPTS; for (i = 0; i < ARRAY_SIZE (attrs); i++) { type = attrs[i].type; opt_len = attrs[i].len; if (ch == attrs[i].string[0] && ((type != ix86_opt_str && type != ix86_opt_enum) ? len == opt_len : len > opt_len) && memcmp (p, attrs[i].string, opt_len) == 0) { opt = attrs[i].opt; mask = attrs[i].mask; opt_string = attrs[i].string; break; } } /* Process the option. */ if (opt == N_OPTS) { error ("attribute(target(\"%s\")) is unknown", orig_p); ret = false; } else if (type == ix86_opt_isa) { struct cl_decoded_option decoded; generate_option (opt, NULL, opt_set_p, CL_TARGET, &decoded); ix86_handle_option (opts, opts_set, &decoded, input_location); } else if (type == ix86_opt_yes || type == ix86_opt_no) { if (type == ix86_opt_no) opt_set_p = !opt_set_p; if (opt_set_p) opts->x_target_flags |= mask; else opts->x_target_flags &= ~mask; } else if (type == ix86_opt_str) { if (p_strings[opt]) { error ("option(\"%s\") was already specified", opt_string); ret = false; } else p_strings[opt] = xstrdup (p + opt_len); } else if (type == ix86_opt_enum) { bool arg_ok; int value; arg_ok = opt_enum_arg_to_value (opt, p + opt_len, &value, CL_TARGET); if (arg_ok) set_option (opts, enum_opts_set, opt, value, p + opt_len, DK_UNSPECIFIED, input_location, global_dc); else { error ("attribute(target(\"%s\")) is unknown", orig_p); ret = false; } } else gcc_unreachable (); } return ret; } /* Return a TARGET_OPTION_NODE tree of the target options listed or NULL. */ tree ix86_valid_target_attribute_tree (tree args, struct gcc_options *opts, struct gcc_options *opts_set) { const char *orig_arch_string = ix86_arch_string; const char *orig_tune_string = ix86_tune_string; enum fpmath_unit orig_fpmath_set = opts_set->x_ix86_fpmath; int orig_tune_defaulted = ix86_tune_defaulted; int orig_arch_specified = ix86_arch_specified; char *option_strings[IX86_FUNCTION_SPECIFIC_MAX] = { NULL, NULL }; tree t = NULL_TREE; int i; struct cl_target_option *def = TREE_TARGET_OPTION (target_option_default_node); struct gcc_options enum_opts_set; memset (&enum_opts_set, 0, sizeof (enum_opts_set)); /* Process each of the options on the chain. */ if (! ix86_valid_target_attribute_inner_p (args, option_strings, opts, opts_set, &enum_opts_set)) return error_mark_node; /* If the changed options are different from the default, rerun ix86_option_override_internal, and then save the options away. The string options are are attribute options, and will be undone when we copy the save structure. */ if (opts->x_ix86_isa_flags != def->x_ix86_isa_flags || opts->x_target_flags != def->x_target_flags || option_strings[IX86_FUNCTION_SPECIFIC_ARCH] || option_strings[IX86_FUNCTION_SPECIFIC_TUNE] || enum_opts_set.x_ix86_fpmath) { /* If we are using the default tune= or arch=, undo the string assigned, and use the default. */ if (option_strings[IX86_FUNCTION_SPECIFIC_ARCH]) opts->x_ix86_arch_string = option_strings[IX86_FUNCTION_SPECIFIC_ARCH]; else if (!orig_arch_specified) opts->x_ix86_arch_string = NULL; if (option_strings[IX86_FUNCTION_SPECIFIC_TUNE]) opts->x_ix86_tune_string = option_strings[IX86_FUNCTION_SPECIFIC_TUNE]; else if (orig_tune_defaulted) opts->x_ix86_tune_string = NULL; /* If fpmath= is not set, and we now have sse2 on 32-bit, use it. */ if (enum_opts_set.x_ix86_fpmath) opts_set->x_ix86_fpmath = (enum fpmath_unit) 1; else if (!TARGET_64BIT_P (opts->x_ix86_isa_flags) && TARGET_SSE_P (opts->x_ix86_isa_flags)) { opts->x_ix86_fpmath = (enum fpmath_unit) (FPMATH_SSE | FPMATH_387); opts_set->x_ix86_fpmath = (enum fpmath_unit) 1; } /* Do any overrides, such as arch=xxx, or tune=xxx support. */ ix86_option_override_internal (false, opts, opts_set); /* Add any builtin functions with the new isa if any. */ ix86_add_new_builtins (opts->x_ix86_isa_flags); /* Save the current options unless we are validating options for #pragma. */ t = build_target_option_node (opts); opts->x_ix86_arch_string = orig_arch_string; opts->x_ix86_tune_string = orig_tune_string; opts_set->x_ix86_fpmath = orig_fpmath_set; /* Free up memory allocated to hold the strings */ for (i = 0; i < IX86_FUNCTION_SPECIFIC_MAX; i++) free (option_strings[i]); } return t; } /* Hook to validate attribute((target("string"))). */ static bool ix86_valid_target_attribute_p (tree fndecl, tree ARG_UNUSED (name), tree args, int ARG_UNUSED (flags)) { struct gcc_options func_options; tree new_target, new_optimize; bool ret = true; /* attribute((target("default"))) does nothing, beyond affecting multi-versioning. */ if (TREE_VALUE (args) && TREE_CODE (TREE_VALUE (args)) == STRING_CST && TREE_CHAIN (args) == NULL_TREE && strcmp (TREE_STRING_POINTER (TREE_VALUE (args)), "default") == 0) return true; tree old_optimize = build_optimization_node (&global_options); /* Get the optimization options of the current function. */ tree func_optimize = DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl); if (!func_optimize) func_optimize = old_optimize; /* Init func_options. */ memset (&func_options, 0, sizeof (func_options)); init_options_struct (&func_options, NULL); lang_hooks.init_options_struct (&func_options); cl_optimization_restore (&func_options, TREE_OPTIMIZATION (func_optimize)); /* Initialize func_options to the default before its target options can be set. */ cl_target_option_restore (&func_options, TREE_TARGET_OPTION (target_option_default_node)); new_target = ix86_valid_target_attribute_tree (args, &func_options, &global_options_set); new_optimize = build_optimization_node (&func_options); if (new_target == error_mark_node) ret = false; else if (fndecl && new_target) { DECL_FUNCTION_SPECIFIC_TARGET (fndecl) = new_target; if (old_optimize != new_optimize) DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl) = new_optimize; } return ret; } /* Hook to determine if one function can safely inline another. */ static bool ix86_can_inline_p (tree caller, tree callee) { bool ret = false; tree caller_tree = DECL_FUNCTION_SPECIFIC_TARGET (caller); tree callee_tree = DECL_FUNCTION_SPECIFIC_TARGET (callee); /* If callee has no option attributes, then it is ok to inline. */ if (!callee_tree) ret = true; /* If caller has no option attributes, but callee does then it is not ok to inline. */ else if (!caller_tree) ret = false; else { struct cl_target_option *caller_opts = TREE_TARGET_OPTION (caller_tree); struct cl_target_option *callee_opts = TREE_TARGET_OPTION (callee_tree); /* Callee's isa options should a subset of the caller's, i.e. a SSE4 function can inline a SSE2 function but a SSE2 function can't inline a SSE4 function. */ if ((caller_opts->x_ix86_isa_flags & callee_opts->x_ix86_isa_flags) != callee_opts->x_ix86_isa_flags) ret = false; /* See if we have the same non-isa options. */ else if (caller_opts->x_target_flags != callee_opts->x_target_flags) ret = false; /* See if arch, tune, etc. are the same. */ else if (caller_opts->arch != callee_opts->arch) ret = false; else if (caller_opts->tune != callee_opts->tune) ret = false; else if (caller_opts->x_ix86_fpmath != callee_opts->x_ix86_fpmath) ret = false; else if (caller_opts->branch_cost != callee_opts->branch_cost) ret = false; else ret = true; } return ret; } /* Remember the last target of ix86_set_current_function. */ static GTY(()) tree ix86_previous_fndecl; /* Invalidate ix86_previous_fndecl cache. */ void ix86_reset_previous_fndecl (void) { ix86_previous_fndecl = NULL_TREE; } /* Establish appropriate back-end context for processing the function FNDECL. The argument might be NULL to indicate processing at top level, outside of any function scope. */ static void ix86_set_current_function (tree fndecl) { /* Only change the context if the function changes. This hook is called several times in the course of compiling a function, and we don't want to slow things down too much or call target_reinit when it isn't safe. */ if (fndecl && fndecl != ix86_previous_fndecl) { tree old_tree = (ix86_previous_fndecl ? DECL_FUNCTION_SPECIFIC_TARGET (ix86_previous_fndecl) : NULL_TREE); tree new_tree = (fndecl ? DECL_FUNCTION_SPECIFIC_TARGET (fndecl) : NULL_TREE); ix86_previous_fndecl = fndecl; if (old_tree == new_tree) ; else if (new_tree) { cl_target_option_restore (&global_options, TREE_TARGET_OPTION (new_tree)); target_reinit (); } else if (old_tree) { struct cl_target_option *def = TREE_TARGET_OPTION (target_option_current_node); cl_target_option_restore (&global_options, def); target_reinit (); } } } /* Return true if this goes in large data/bss. */ static bool ix86_in_large_data_p (tree exp) { if (ix86_cmodel != CM_MEDIUM && ix86_cmodel != CM_MEDIUM_PIC) return false; /* Functions are never large data. */ if (TREE_CODE (exp) == FUNCTION_DECL) return false; if (TREE_CODE (exp) == VAR_DECL && DECL_SECTION_NAME (exp)) { const char *section = TREE_STRING_POINTER (DECL_SECTION_NAME (exp)); if (strcmp (section, ".ldata") == 0 || strcmp (section, ".lbss") == 0) return true; return false; } else { HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (exp)); /* If this is an incomplete type with size 0, then we can't put it in data because it might be too big when completed. */ if (!size || size > ix86_section_threshold) return true; } return false; } /* Switch to the appropriate section for output of DECL. DECL is either a `VAR_DECL' node or a constant of some sort. RELOC indicates whether forming the initial value of DECL requires link-time relocations. */ ATTRIBUTE_UNUSED static section * x86_64_elf_select_section (tree decl, int reloc, unsigned HOST_WIDE_INT align) { if ((ix86_cmodel == CM_MEDIUM || ix86_cmodel == CM_MEDIUM_PIC) && ix86_in_large_data_p (decl)) { const char *sname = NULL; unsigned int flags = SECTION_WRITE; switch (categorize_decl_for_section (decl, reloc)) { case SECCAT_DATA: sname = ".ldata"; break; case SECCAT_DATA_REL: sname = ".ldata.rel"; break; case SECCAT_DATA_REL_LOCAL: sname = ".ldata.rel.local"; break; case SECCAT_DATA_REL_RO: sname = ".ldata.rel.ro"; break; case SECCAT_DATA_REL_RO_LOCAL: sname = ".ldata.rel.ro.local"; break; case SECCAT_BSS: sname = ".lbss"; flags |= SECTION_BSS; break; case SECCAT_RODATA: case SECCAT_RODATA_MERGE_STR: case SECCAT_RODATA_MERGE_STR_INIT: case SECCAT_RODATA_MERGE_CONST: sname = ".lrodata"; flags = 0; break; case SECCAT_SRODATA: case SECCAT_SDATA: case SECCAT_SBSS: gcc_unreachable (); case SECCAT_TEXT: case SECCAT_TDATA: case SECCAT_TBSS: /* We don't split these for medium model. Place them into default sections and hope for best. */ break; } if (sname) { /* We might get called with string constants, but get_named_section doesn't like them as they are not DECLs. Also, we need to set flags in that case. */ if (!DECL_P (decl)) return get_section (sname, flags, NULL); return get_named_section (decl, sname, reloc); } } return default_elf_select_section (decl, reloc, align); } /* Select a set of attributes for section NAME based on the properties of DECL and whether or not RELOC indicates that DECL's initializer might contain runtime relocations. */ static unsigned int ATTRIBUTE_UNUSED x86_64_elf_section_type_flags (tree decl, const char *name, int reloc) { unsigned int flags = default_section_type_flags (decl, name, reloc); if (decl == NULL_TREE && (strcmp (name, ".ldata.rel.ro") == 0 || strcmp (name, ".ldata.rel.ro.local") == 0)) flags |= SECTION_RELRO; if (strcmp (name, ".lbss") == 0 || strncmp (name, ".lbss.", 5) == 0 || strncmp (name, ".gnu.linkonce.lb.", 16) == 0) flags |= SECTION_BSS; return flags; } /* Build up a unique section name, expressed as a STRING_CST node, and assign it to DECL_SECTION_NAME (decl). RELOC indicates whether the initial value of EXP requires link-time relocations. */ static void ATTRIBUTE_UNUSED x86_64_elf_unique_section (tree decl, int reloc) { if ((ix86_cmodel == CM_MEDIUM || ix86_cmodel == CM_MEDIUM_PIC) && ix86_in_large_data_p (decl)) { const char *prefix = NULL; /* We only need to use .gnu.linkonce if we don't have COMDAT groups. */ bool one_only = DECL_ONE_ONLY (decl) && !HAVE_COMDAT_GROUP; switch (categorize_decl_for_section (decl, reloc)) { case SECCAT_DATA: case SECCAT_DATA_REL: case SECCAT_DATA_REL_LOCAL: case SECCAT_DATA_REL_RO: case SECCAT_DATA_REL_RO_LOCAL: prefix = one_only ? ".ld" : ".ldata"; break; case SECCAT_BSS: prefix = one_only ? ".lb" : ".lbss"; break; case SECCAT_RODATA: case SECCAT_RODATA_MERGE_STR: case SECCAT_RODATA_MERGE_STR_INIT: case SECCAT_RODATA_MERGE_CONST: prefix = one_only ? ".lr" : ".lrodata"; break; case SECCAT_SRODATA: case SECCAT_SDATA: case SECCAT_SBSS: gcc_unreachable (); case SECCAT_TEXT: case SECCAT_TDATA: case SECCAT_TBSS: /* We don't split these for medium model. Place them into default sections and hope for best. */ break; } if (prefix) { const char *name, *linkonce; char *string; name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)); name = targetm.strip_name_encoding (name); /* If we're using one_only, then there needs to be a .gnu.linkonce prefix to the section name. */ linkonce = one_only ? ".gnu.linkonce" : ""; string = ACONCAT ((linkonce, prefix, ".", name, NULL)); DECL_SECTION_NAME (decl) = build_string (strlen (string), string); return; } } default_unique_section (decl, reloc); } #ifdef COMMON_ASM_OP /* This says how to output assembler code to declare an uninitialized external linkage data object. For medium model x86-64 we need to use .largecomm opcode for large objects. */ void x86_elf_aligned_common (FILE *file, const char *name, unsigned HOST_WIDE_INT size, int align) { if ((ix86_cmodel == CM_MEDIUM || ix86_cmodel == CM_MEDIUM_PIC) && size > (unsigned int)ix86_section_threshold) fputs (".largecomm\t", file); else fputs (COMMON_ASM_OP, file); assemble_name (file, name); fprintf (file, "," HOST_WIDE_INT_PRINT_UNSIGNED ",%u\n", size, align / BITS_PER_UNIT); } #endif /* Utility function for targets to use in implementing ASM_OUTPUT_ALIGNED_BSS. */ void x86_output_aligned_bss (FILE *file, tree decl ATTRIBUTE_UNUSED, const char *name, unsigned HOST_WIDE_INT size, int align) { if ((ix86_cmodel == CM_MEDIUM || ix86_cmodel == CM_MEDIUM_PIC) && size > (unsigned int)ix86_section_threshold) switch_to_section (get_named_section (decl, ".lbss", 0)); else switch_to_section (bss_section); ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT)); #ifdef ASM_DECLARE_OBJECT_NAME last_assemble_variable_decl = decl; ASM_DECLARE_OBJECT_NAME (file, name, decl); #else /* Standard thing is just output label for the object. */ ASM_OUTPUT_LABEL (file, name); #endif /* ASM_DECLARE_OBJECT_NAME */ ASM_OUTPUT_SKIP (file, size ? size : 1); } /* Decide whether we must probe the stack before any space allocation on this target. It's essentially TARGET_STACK_PROBE except when -fstack-check causes the stack to be already probed differently. */ bool ix86_target_stack_probe (void) { /* Do not probe the stack twice if static stack checking is enabled. */ if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK) return false; return TARGET_STACK_PROBE; } /* Decide whether we can make a sibling call to a function. DECL is the declaration of the function being targeted by the call and EXP is the CALL_EXPR representing the call. */ static bool ix86_function_ok_for_sibcall (tree decl, tree exp) { tree type, decl_or_type; rtx a, b; /* If we are generating position-independent code, we cannot sibcall optimize any indirect call, or a direct call to a global function, as the PLT requires %ebx be live. (Darwin does not have a PLT.) */ if (!TARGET_MACHO && !TARGET_64BIT && flag_pic && (!decl || !targetm.binds_local_p (decl))) return false; /* If we need to align the outgoing stack, then sibcalling would unalign the stack, which may break the called function. */ if (ix86_minimum_incoming_stack_boundary (true) < PREFERRED_STACK_BOUNDARY) return false; if (decl) { decl_or_type = decl; type = TREE_TYPE (decl); } else { /* We're looking at the CALL_EXPR, we need the type of the function. */ type = CALL_EXPR_FN (exp); /* pointer expression */ type = TREE_TYPE (type); /* pointer type */ type = TREE_TYPE (type); /* function type */ decl_or_type = type; } /* Check that the return value locations are the same. Like if we are returning floats on the 80387 register stack, we cannot make a sibcall from a function that doesn't return a float to a function that does or, conversely, from a function that does return a float to a function that doesn't; the necessary stack adjustment would not be executed. This is also the place we notice differences in the return value ABI. Note that it is ok for one of the functions to have void return type as long as the return value of the other is passed in a register. */ a = ix86_function_value (TREE_TYPE (exp), decl_or_type, false); b = ix86_function_value (TREE_TYPE (DECL_RESULT (cfun->decl)), cfun->decl, false); if (STACK_REG_P (a) || STACK_REG_P (b)) { if (!rtx_equal_p (a, b)) return false; } else if (VOID_TYPE_P (TREE_TYPE (DECL_RESULT (cfun->decl)))) ; else if (!rtx_equal_p (a, b)) return false; if (TARGET_64BIT) { /* The SYSV ABI has more call-clobbered registers; disallow sibcalls from MS to SYSV. */ if (cfun->machine->call_abi == MS_ABI && ix86_function_type_abi (type) == SYSV_ABI) return false; } else { /* If this call is indirect, we'll need to be able to use a call-clobbered register for the address of the target function. Make sure that all such registers are not used for passing parameters. Note that DLLIMPORT functions are indirect. */ if (!decl || (TARGET_DLLIMPORT_DECL_ATTRIBUTES && DECL_DLLIMPORT_P (decl))) { if (ix86_function_regparm (type, NULL) >= 3) { /* ??? Need to count the actual number of registers to be used, not the possible number of registers. Fix later. */ return false; } } } /* Otherwise okay. That also includes certain types of indirect calls. */ return true; } /* Handle "cdecl", "stdcall", "fastcall", "regparm", "thiscall", and "sseregparm" calling convention attributes; arguments as in struct attribute_spec.handler. */ static tree ix86_handle_cconv_attribute (tree *node, tree name, tree args, int flags ATTRIBUTE_UNUSED, bool *no_add_attrs) { if (TREE_CODE (*node) != FUNCTION_TYPE && TREE_CODE (*node) != METHOD_TYPE && TREE_CODE (*node) != FIELD_DECL && TREE_CODE (*node) != TYPE_DECL) { warning (OPT_Wattributes, "%qE attribute only applies to functions", name); *no_add_attrs = true; return NULL_TREE; } /* Can combine regparm with all attributes but fastcall, and thiscall. */ if (is_attribute_p ("regparm", name)) { tree cst; if (lookup_attribute ("fastcall", TYPE_ATTRIBUTES (*node))) { error ("fastcall and regparm attributes are not compatible"); } if (lookup_attribute ("thiscall", TYPE_ATTRIBUTES (*node))) { error ("regparam and thiscall attributes are not compatible"); } cst = TREE_VALUE (args); if (TREE_CODE (cst) != INTEGER_CST) { warning (OPT_Wattributes, "%qE attribute requires an integer constant argument", name); *no_add_attrs = true; } else if (compare_tree_int (cst, REGPARM_MAX) > 0) { warning (OPT_Wattributes, "argument to %qE attribute larger than %d", name, REGPARM_MAX); *no_add_attrs = true; } return NULL_TREE; } if (TARGET_64BIT) { /* Do not warn when emulating the MS ABI. */ if ((TREE_CODE (*node) != FUNCTION_TYPE && TREE_CODE (*node) != METHOD_TYPE) || ix86_function_type_abi (*node) != MS_ABI) warning (OPT_Wattributes, "%qE attribute ignored", name); *no_add_attrs = true; return NULL_TREE; } /* Can combine fastcall with stdcall (redundant) and sseregparm. */ if (is_attribute_p ("fastcall", name)) { if (lookup_attribute ("cdecl", TYPE_ATTRIBUTES (*node))) { error ("fastcall and cdecl attributes are not compatible"); } if (lookup_attribute ("stdcall", TYPE_ATTRIBUTES (*node))) { error ("fastcall and stdcall attributes are not compatible"); } if (lookup_attribute ("regparm", TYPE_ATTRIBUTES (*node))) { error ("fastcall and regparm attributes are not compatible"); } if (lookup_attribute ("thiscall", TYPE_ATTRIBUTES (*node))) { error ("fastcall and thiscall attributes are not compatible"); } } /* Can combine stdcall with fastcall (redundant), regparm and sseregparm. */ else if (is_attribute_p ("stdcall", name)) { if (lookup_attribute ("cdecl", TYPE_ATTRIBUTES (*node))) { error ("stdcall and cdecl attributes are not compatible"); } if (lookup_attribute ("fastcall", TYPE_ATTRIBUTES (*node))) { error ("stdcall and fastcall attributes are not compatible"); } if (lookup_attribute ("thiscall", TYPE_ATTRIBUTES (*node))) { error ("stdcall and thiscall attributes are not compatible"); } } /* Can combine cdecl with regparm and sseregparm. */ else if (is_attribute_p ("cdecl", name)) { if (lookup_attribute ("stdcall", TYPE_ATTRIBUTES (*node))) { error ("stdcall and cdecl attributes are not compatible"); } if (lookup_attribute ("fastcall", TYPE_ATTRIBUTES (*node))) { error ("fastcall and cdecl attributes are not compatible"); } if (lookup_attribute ("thiscall", TYPE_ATTRIBUTES (*node))) { error ("cdecl and thiscall attributes are not compatible"); } } else if (is_attribute_p ("thiscall", name)) { if (TREE_CODE (*node) != METHOD_TYPE && pedantic) warning (OPT_Wattributes, "%qE attribute is used for none class-method", name); if (lookup_attribute ("stdcall", TYPE_ATTRIBUTES (*node))) { error ("stdcall and thiscall attributes are not compatible"); } if (lookup_attribute ("fastcall", TYPE_ATTRIBUTES (*node))) { error ("fastcall and thiscall attributes are not compatible"); } if (lookup_attribute ("cdecl", TYPE_ATTRIBUTES (*node))) { error ("cdecl and thiscall attributes are not compatible"); } } /* Can combine sseregparm with all attributes. */ return NULL_TREE; } /* The transactional memory builtins are implicitly regparm or fastcall depending on the ABI. Override the generic do-nothing attribute that these builtins were declared with, and replace it with one of the two attributes that we expect elsewhere. */ static tree ix86_handle_tm_regparm_attribute (tree *node, tree name ATTRIBUTE_UNUSED, tree args ATTRIBUTE_UNUSED, int flags, bool *no_add_attrs) { tree alt; /* In no case do we want to add the placeholder attribute. */ *no_add_attrs = true; /* The 64-bit ABI is unchanged for transactional memory. */ if (TARGET_64BIT) return NULL_TREE; /* ??? Is there a better way to validate 32-bit windows? We have cfun->machine->call_abi, but that seems to be set only for 64-bit. */ if (CHECK_STACK_LIMIT > 0) alt = tree_cons (get_identifier ("fastcall"), NULL, NULL); else { alt = tree_cons (NULL, build_int_cst (NULL, 2), NULL); alt = tree_cons (get_identifier ("regparm"), alt, NULL); } decl_attributes (node, alt, flags); return NULL_TREE; } /* This function determines from TYPE the calling-convention. */ unsigned int ix86_get_callcvt (const_tree type) { unsigned int ret = 0; bool is_stdarg; tree attrs; if (TARGET_64BIT) return IX86_CALLCVT_CDECL; attrs = TYPE_ATTRIBUTES (type); if (attrs != NULL_TREE) { if (lookup_attribute ("cdecl", attrs)) ret |= IX86_CALLCVT_CDECL; else if (lookup_attribute ("stdcall", attrs)) ret |= IX86_CALLCVT_STDCALL; else if (lookup_attribute ("fastcall", attrs)) ret |= IX86_CALLCVT_FASTCALL; else if (lookup_attribute ("thiscall", attrs)) ret |= IX86_CALLCVT_THISCALL; /* Regparam isn't allowed for thiscall and fastcall. */ if ((ret & (IX86_CALLCVT_THISCALL | IX86_CALLCVT_FASTCALL)) == 0) { if (lookup_attribute ("regparm", attrs)) ret |= IX86_CALLCVT_REGPARM; if (lookup_attribute ("sseregparm", attrs)) ret |= IX86_CALLCVT_SSEREGPARM; } if (IX86_BASE_CALLCVT(ret) != 0) return ret; } is_stdarg = stdarg_p (type); if (TARGET_RTD && !is_stdarg) return IX86_CALLCVT_STDCALL | ret; if (ret != 0 || is_stdarg || TREE_CODE (type) != METHOD_TYPE || ix86_function_type_abi (type) != MS_ABI) return IX86_CALLCVT_CDECL | ret; return IX86_CALLCVT_THISCALL; } /* Return 0 if the attributes for two types are incompatible, 1 if they are compatible, and 2 if they are nearly compatible (which causes a warning to be generated). */ static int ix86_comp_type_attributes (const_tree type1, const_tree type2) { unsigned int ccvt1, ccvt2; if (TREE_CODE (type1) != FUNCTION_TYPE && TREE_CODE (type1) != METHOD_TYPE) return 1; ccvt1 = ix86_get_callcvt (type1); ccvt2 = ix86_get_callcvt (type2); if (ccvt1 != ccvt2) return 0; if (ix86_function_regparm (type1, NULL) != ix86_function_regparm (type2, NULL)) return 0; return 1; } /* Return the regparm value for a function with the indicated TYPE and DECL. DECL may be NULL when calling function indirectly or considering a libcall. */ static int ix86_function_regparm (const_tree type, const_tree decl) { tree attr; int regparm; unsigned int ccvt; if (TARGET_64BIT) return (ix86_function_type_abi (type) == SYSV_ABI ? X86_64_REGPARM_MAX : X86_64_MS_REGPARM_MAX); ccvt = ix86_get_callcvt (type); regparm = ix86_regparm; if ((ccvt & IX86_CALLCVT_REGPARM) != 0) { attr = lookup_attribute ("regparm", TYPE_ATTRIBUTES (type)); if (attr) { regparm = TREE_INT_CST_LOW (TREE_VALUE (TREE_VALUE (attr))); return regparm; } } else if ((ccvt & IX86_CALLCVT_FASTCALL) != 0) return 2; else if ((ccvt & IX86_CALLCVT_THISCALL) != 0) return 1; /* Use register calling convention for local functions when possible. */ if (decl && TREE_CODE (decl) == FUNCTION_DECL && optimize && !(profile_flag && !flag_fentry)) { /* FIXME: remove this CONST_CAST when cgraph.[ch] is constified. */ struct cgraph_local_info *i = cgraph_local_info (CONST_CAST_TREE (decl)); if (i && i->local && i->can_change_signature) { int local_regparm, globals = 0, regno; /* Make sure no regparm register is taken by a fixed register variable. */ for (local_regparm = 0; local_regparm < REGPARM_MAX; local_regparm++) if (fixed_regs[local_regparm]) break; /* We don't want to use regparm(3) for nested functions as these use a static chain pointer in the third argument. */ if (local_regparm == 3 && DECL_STATIC_CHAIN (decl)) local_regparm = 2; /* In 32-bit mode save a register for the split stack. */ if (!TARGET_64BIT && local_regparm == 3 && flag_split_stack) local_regparm = 2; /* Each fixed register usage increases register pressure, so less registers should be used for argument passing. This functionality can be overriden by an explicit regparm value. */ for (regno = AX_REG; regno <= DI_REG; regno++) if (fixed_regs[regno]) globals++; local_regparm = globals < local_regparm ? local_regparm - globals : 0; if (local_regparm > regparm) regparm = local_regparm; } } return regparm; } /* Return 1 or 2, if we can pass up to SSE_REGPARM_MAX SFmode (1) and DFmode (2) arguments in SSE registers for a function with the indicated TYPE and DECL. DECL may be NULL when calling function indirectly or considering a libcall. Otherwise return 0. */ static int ix86_function_sseregparm (const_tree type, const_tree decl, bool warn) { gcc_assert (!TARGET_64BIT); /* Use SSE registers to pass SFmode and DFmode arguments if requested by the sseregparm attribute. */ if (TARGET_SSEREGPARM || (type && lookup_attribute ("sseregparm", TYPE_ATTRIBUTES (type)))) { if (!TARGET_SSE) { if (warn) { if (decl) error ("calling %qD with attribute sseregparm without " "SSE/SSE2 enabled", decl); else error ("calling %qT with attribute sseregparm without " "SSE/SSE2 enabled", type); } return 0; } return 2; } /* For local functions, pass up to SSE_REGPARM_MAX SFmode (and DFmode for SSE2) arguments in SSE registers. */ if (decl && TARGET_SSE_MATH && optimize && !(profile_flag && !flag_fentry)) { /* FIXME: remove this CONST_CAST when cgraph.[ch] is constified. */ struct cgraph_local_info *i = cgraph_local_info (CONST_CAST_TREE(decl)); if (i && i->local && i->can_change_signature) return TARGET_SSE2 ? 2 : 1; } return 0; } /* Return true if EAX is live at the start of the function. Used by ix86_expand_prologue to determine if we need special help before calling allocate_stack_worker. */ static bool ix86_eax_live_at_start_p (void) { /* Cheat. Don't bother working forward from ix86_function_regparm to the function type to whether an actual argument is located in eax. Instead just look at cfg info, which is still close enough to correct at this point. This gives false positives for broken functions that might use uninitialized data that happens to be allocated in eax, but who cares? */ return REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun)), 0); } static bool ix86_keep_aggregate_return_pointer (tree fntype) { tree attr; if (!TARGET_64BIT) { attr = lookup_attribute ("callee_pop_aggregate_return", TYPE_ATTRIBUTES (fntype)); if (attr) return (TREE_INT_CST_LOW (TREE_VALUE (TREE_VALUE (attr))) == 0); /* For 32-bit MS-ABI the default is to keep aggregate return pointer. */ if (ix86_function_type_abi (fntype) == MS_ABI) return true; } return KEEP_AGGREGATE_RETURN_POINTER != 0; } /* Value is the number of bytes of arguments automatically popped when returning from a subroutine call. FUNDECL is the declaration node of the function (as a tree), FUNTYPE is the data type of the function (as a tree), or for a library call it is an identifier node for the subroutine name. SIZE is the number of bytes of arguments passed on the stack. On the 80386, the RTD insn may be used to pop them if the number of args is fixed, but if the number is variable then the caller must pop them all. RTD can't be used for library calls now because the library is compiled with the Unix compiler. Use of RTD is a selectable option, since it is incompatible with standard Unix calling sequences. If the option is not selected, the caller must always pop the args. The attribute stdcall is equivalent to RTD on a per module basis. */ static int ix86_return_pops_args (tree fundecl, tree funtype, int size) { unsigned int ccvt; /* None of the 64-bit ABIs pop arguments. */ if (TARGET_64BIT) return 0; ccvt = ix86_get_callcvt (funtype); if ((ccvt & (IX86_CALLCVT_STDCALL | IX86_CALLCVT_FASTCALL | IX86_CALLCVT_THISCALL)) != 0 && ! stdarg_p (funtype)) return size; /* Lose any fake structure return argument if it is passed on the stack. */ if (aggregate_value_p (TREE_TYPE (funtype), fundecl) && !ix86_keep_aggregate_return_pointer (funtype)) { int nregs = ix86_function_regparm (funtype, fundecl); if (nregs == 0) return GET_MODE_SIZE (Pmode); } return 0; } /* Implement the TARGET_LEGITIMATE_COMBINED_INSN hook. */ static bool ix86_legitimate_combined_insn (rtx insn) { /* Check operand constraints in case hard registers were propagated into insn pattern. This check prevents combine pass from generating insn patterns with invalid hard register operands. These invalid insns can eventually confuse reload to error out with a spill failure. See also PRs 46829 and 46843. */ if ((INSN_CODE (insn) = recog (PATTERN (insn), insn, 0)) >= 0) { int i; extract_insn (insn); preprocess_constraints (); for (i = 0; i < recog_data.n_operands; i++) { rtx op = recog_data.operand[i]; enum machine_mode mode = GET_MODE (op); struct operand_alternative *op_alt; int offset = 0; bool win; int j; /* A unary operator may be accepted by the predicate, but it is irrelevant for matching constraints. */ if (UNARY_P (op)) op = XEXP (op, 0); if (GET_CODE (op) == SUBREG) { if (REG_P (SUBREG_REG (op)) && REGNO (SUBREG_REG (op)) < FIRST_PSEUDO_REGISTER) offset = subreg_regno_offset (REGNO (SUBREG_REG (op)), GET_MODE (SUBREG_REG (op)), SUBREG_BYTE (op), GET_MODE (op)); op = SUBREG_REG (op); } if (!(REG_P (op) && HARD_REGISTER_P (op))) continue; op_alt = recog_op_alt[i]; /* Operand has no constraints, anything is OK. */ win = !recog_data.n_alternatives; for (j = 0; j < recog_data.n_alternatives; j++) { if (op_alt[j].anything_ok || (op_alt[j].matches != -1 && operands_match_p (recog_data.operand[i], recog_data.operand[op_alt[j].matches])) || reg_fits_class_p (op, op_alt[j].cl, offset, mode)) { win = true; break; } } if (!win) return false; } } return true; } /* Implement the TARGET_ASAN_SHADOW_OFFSET hook. */ static unsigned HOST_WIDE_INT ix86_asan_shadow_offset (void) { return TARGET_LP64 ? (TARGET_MACHO ? (HOST_WIDE_INT_1 << 44) : HOST_WIDE_INT_C (0x7fff8000)) : (HOST_WIDE_INT_1 << 29); } /* Argument support functions. */ /* Return true when register may be used to pass function parameters. */ bool ix86_function_arg_regno_p (int regno) { int i; const int *parm_regs; if (!TARGET_64BIT) { if (TARGET_MACHO) return (regno < REGPARM_MAX || (TARGET_SSE && SSE_REGNO_P (regno) && !fixed_regs[regno])); else return (regno < REGPARM_MAX || (TARGET_MMX && MMX_REGNO_P (regno) && (regno < FIRST_MMX_REG + MMX_REGPARM_MAX)) || (TARGET_SSE && SSE_REGNO_P (regno) && (regno < FIRST_SSE_REG + SSE_REGPARM_MAX))); } if (TARGET_SSE && SSE_REGNO_P (regno) && (regno < FIRST_SSE_REG + SSE_REGPARM_MAX)) return true; /* TODO: The function should depend on current function ABI but builtins.c would need updating then. Therefore we use the default ABI. */ /* RAX is used as hidden argument to va_arg functions. */ if (ix86_abi == SYSV_ABI && regno == AX_REG) return true; if (ix86_abi == MS_ABI) parm_regs = x86_64_ms_abi_int_parameter_registers; else parm_regs = x86_64_int_parameter_registers; for (i = 0; i < (ix86_abi == MS_ABI ? X86_64_MS_REGPARM_MAX : X86_64_REGPARM_MAX); i++) if (regno == parm_regs[i]) return true; return false; } /* Return if we do not know how to pass TYPE solely in registers. */ static bool ix86_must_pass_in_stack (enum machine_mode mode, const_tree type) { if (must_pass_in_stack_var_size_or_pad (mode, type)) return true; /* For 32-bit, we want TImode aggregates to go on the stack. But watch out! The layout_type routine is crafty and tries to trick us into passing currently unsupported vector types on the stack by using TImode. */ return (!TARGET_64BIT && mode == TImode && type && TREE_CODE (type) != VECTOR_TYPE); } /* It returns the size, in bytes, of the area reserved for arguments passed in registers for the function represented by fndecl dependent to the used abi format. */ int ix86_reg_parm_stack_space (const_tree fndecl) { enum calling_abi call_abi = SYSV_ABI; if (fndecl != NULL_TREE && TREE_CODE (fndecl) == FUNCTION_DECL) call_abi = ix86_function_abi (fndecl); else call_abi = ix86_function_type_abi (fndecl); if (TARGET_64BIT && call_abi == MS_ABI) return 32; return 0; } /* Returns value SYSV_ABI, MS_ABI dependent on fntype, specifying the call abi used. */ enum calling_abi ix86_function_type_abi (const_tree fntype) { if (fntype != NULL_TREE && TYPE_ATTRIBUTES (fntype) != NULL_TREE) { enum calling_abi abi = ix86_abi; if (abi == SYSV_ABI) { if (lookup_attribute ("ms_abi", TYPE_ATTRIBUTES (fntype))) abi = MS_ABI; } else if (lookup_attribute ("sysv_abi", TYPE_ATTRIBUTES (fntype))) abi = SYSV_ABI; return abi; } return ix86_abi; } /* We add this as a workaround in order to use libc_has_function hook in i386.md. */ bool ix86_libc_has_function (enum function_class fn_class) { return targetm.libc_has_function (fn_class); } static bool ix86_function_ms_hook_prologue (const_tree fn) { if (fn && lookup_attribute ("ms_hook_prologue", DECL_ATTRIBUTES (fn))) { if (decl_function_context (fn) != NULL_TREE) error_at (DECL_SOURCE_LOCATION (fn), "ms_hook_prologue is not compatible with nested function"); else return true; } return false; } static enum calling_abi ix86_function_abi (const_tree fndecl) { if (! fndecl) return ix86_abi; return ix86_function_type_abi (TREE_TYPE (fndecl)); } /* Returns value SYSV_ABI, MS_ABI dependent on cfun, specifying the call abi used. */ enum calling_abi ix86_cfun_abi (void) { if (! cfun) return ix86_abi; return cfun->machine->call_abi; } /* Write the extra assembler code needed to declare a function properly. */ void ix86_asm_output_function_label (FILE *asm_out_file, const char *fname, tree decl) { bool is_ms_hook = ix86_function_ms_hook_prologue (decl); if (is_ms_hook) { int i, filler_count = (TARGET_64BIT ? 32 : 16); unsigned int filler_cc = 0xcccccccc; for (i = 0; i < filler_count; i += 4) fprintf (asm_out_file, ASM_LONG " %#x\n", filler_cc); } #ifdef SUBTARGET_ASM_UNWIND_INIT SUBTARGET_ASM_UNWIND_INIT (asm_out_file); #endif ASM_OUTPUT_LABEL (asm_out_file, fname); /* Output magic byte marker, if hot-patch attribute is set. */ if (is_ms_hook) { if (TARGET_64BIT) { /* leaq [%rsp + 0], %rsp */ asm_fprintf (asm_out_file, ASM_BYTE "0x48, 0x8d, 0xa4, 0x24, 0x00, 0x00, 0x00, 0x00\n"); } else { /* movl.s %edi, %edi push %ebp movl.s %esp, %ebp */ asm_fprintf (asm_out_file, ASM_BYTE "0x8b, 0xff, 0x55, 0x8b, 0xec\n"); } } } /* regclass.c */ extern void init_regs (void); /* Implementation of call abi switching target hook. Specific to FNDECL the specific call register sets are set. See also ix86_conditional_register_usage for more details. */ void ix86_call_abi_override (const_tree fndecl) { if (fndecl == NULL_TREE) cfun->machine->call_abi = ix86_abi; else cfun->machine->call_abi = ix86_function_type_abi (TREE_TYPE (fndecl)); } /* 64-bit MS and SYSV ABI have different set of call used registers. Avoid expensive re-initialization of init_regs each time we switch function context since this is needed only during RTL expansion. */ static void ix86_maybe_switch_abi (void) { if (TARGET_64BIT && call_used_regs[SI_REG] == (cfun->machine->call_abi == MS_ABI)) reinit_regs (); } /* Initialize a variable CUM of type CUMULATIVE_ARGS for a call to a function whose data type is FNTYPE. For a library call, FNTYPE is 0. */ void init_cumulative_args (CUMULATIVE_ARGS *cum, /* Argument info to initialize */ tree fntype, /* tree ptr for function decl */ rtx libname, /* SYMBOL_REF of library name or 0 */ tree fndecl, int caller) { struct cgraph_local_info *i; memset (cum, 0, sizeof (*cum)); if (fndecl) { i = cgraph_local_info (fndecl); cum->call_abi = ix86_function_abi (fndecl); } else { i = NULL; cum->call_abi = ix86_function_type_abi (fntype); } cum->caller = caller; /* Set up the number of registers to use for passing arguments. */ if (TARGET_64BIT && cum->call_abi == MS_ABI && !ACCUMULATE_OUTGOING_ARGS) sorry ("ms_abi attribute requires -maccumulate-outgoing-args " "or subtarget optimization implying it"); cum->nregs = ix86_regparm; if (TARGET_64BIT) { cum->nregs = (cum->call_abi == SYSV_ABI ? X86_64_REGPARM_MAX : X86_64_MS_REGPARM_MAX); } if (TARGET_SSE) { cum->sse_nregs = SSE_REGPARM_MAX; if (TARGET_64BIT) { cum->sse_nregs = (cum->call_abi == SYSV_ABI ? X86_64_SSE_REGPARM_MAX : X86_64_MS_SSE_REGPARM_MAX); } } if (TARGET_MMX) cum->mmx_nregs = MMX_REGPARM_MAX; cum->warn_avx = true; cum->warn_sse = true; cum->warn_mmx = true; /* Because type might mismatch in between caller and callee, we need to use actual type of function for local calls. FIXME: cgraph_analyze can be told to actually record if function uses va_start so for local functions maybe_vaarg can be made aggressive helping K&R code. FIXME: once typesytem is fixed, we won't need this code anymore. */ if (i && i->local && i->can_change_signature) fntype = TREE_TYPE (fndecl); cum->maybe_vaarg = (fntype ? (!prototype_p (fntype) || stdarg_p (fntype)) : !libname); if (!TARGET_64BIT) { /* If there are variable arguments, then we won't pass anything in registers in 32-bit mode. */ if (stdarg_p (fntype)) { cum->nregs = 0; cum->sse_nregs = 0; cum->mmx_nregs = 0; cum->warn_avx = 0; cum->warn_sse = 0; cum->warn_mmx = 0; return; } /* Use ecx and edx registers if function has fastcall attribute, else look for regparm information. */ if (fntype) { unsigned int ccvt = ix86_get_callcvt (fntype); if ((ccvt & IX86_CALLCVT_THISCALL) != 0) { cum->nregs = 1; cum->fastcall = 1; /* Same first register as in fastcall. */ } else if ((ccvt & IX86_CALLCVT_FASTCALL) != 0) { cum->nregs = 2; cum->fastcall = 1; } else cum->nregs = ix86_function_regparm (fntype, fndecl); } /* Set up the number of SSE registers used for passing SFmode and DFmode arguments. Warn for mismatching ABI. */ cum->float_in_sse = ix86_function_sseregparm (fntype, fndecl, true); } } /* Return the "natural" mode for TYPE. In most cases, this is just TYPE_MODE. But in the case of vector types, it is some vector mode. When we have only some of our vector isa extensions enabled, then there are some modes for which vector_mode_supported_p is false. For these modes, the generic vector support in gcc will choose some non-vector mode in order to implement the type. By computing the natural mode, we'll select the proper ABI location for the operand and not depend on whatever the middle-end decides to do with these vector types. The midde-end can't deal with the vector types > 16 bytes. In this case, we return the original mode and warn ABI change if CUM isn't NULL. */ static enum machine_mode type_natural_mode (const_tree type, const CUMULATIVE_ARGS *cum) { enum machine_mode mode = TYPE_MODE (type); if (TREE_CODE (type) == VECTOR_TYPE && !VECTOR_MODE_P (mode)) { HOST_WIDE_INT size = int_size_in_bytes (type); if ((size == 8 || size == 16 || size == 32) /* ??? Generic code allows us to create width 1 vectors. Ignore. */ && TYPE_VECTOR_SUBPARTS (type) > 1) { enum machine_mode innermode = TYPE_MODE (TREE_TYPE (type)); if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE) mode = MIN_MODE_VECTOR_FLOAT; else mode = MIN_MODE_VECTOR_INT; /* Get the mode which has this inner mode and number of units. */ for (; mode != VOIDmode; mode = GET_MODE_WIDER_MODE (mode)) if (GET_MODE_NUNITS (mode) == TYPE_VECTOR_SUBPARTS (type) && GET_MODE_INNER (mode) == innermode) { if (size == 32 && !TARGET_AVX) { static bool warnedavx; if (cum && !warnedavx && cum->warn_avx) { warnedavx = true; warning (0, "AVX vector argument without AVX " "enabled changes the ABI"); } return TYPE_MODE (type); } else if ((size == 8 || size == 16) && !TARGET_SSE) { static bool warnedsse; if (cum && !warnedsse && cum->warn_sse) { warnedsse = true; warning (0, "SSE vector argument without SSE " "enabled changes the ABI"); } return mode; } else return mode; } gcc_unreachable (); } } return mode; } /* We want to pass a value in REGNO whose "natural" mode is MODE. However, this may not agree with the mode that the type system has chosen for the register, which is ORIG_MODE. If ORIG_MODE is not BLKmode, then we can go ahead and use it. Otherwise we have to build a PARALLEL instead. */ static rtx gen_reg_or_parallel (enum machine_mode mode, enum machine_mode orig_mode, unsigned int regno) { rtx tmp; if (orig_mode != BLKmode) tmp = gen_rtx_REG (orig_mode, regno); else { tmp = gen_rtx_REG (mode, regno); tmp = gen_rtx_EXPR_LIST (VOIDmode, tmp, const0_rtx); tmp = gen_rtx_PARALLEL (orig_mode, gen_rtvec (1, tmp)); } return tmp; } /* x86-64 register passing implementation. See x86-64 ABI for details. Goal of this code is to classify each 8bytes of incoming argument by the register class and assign registers accordingly. */ /* Return the union class of CLASS1 and CLASS2. See the x86-64 PS ABI for details. */ static enum x86_64_reg_class merge_classes (enum x86_64_reg_class class1, enum x86_64_reg_class class2) { /* Rule #1: If both classes are equal, this is the resulting class. */ if (class1 == class2) return class1; /* Rule #2: If one of the classes is NO_CLASS, the resulting class is the other class. */ if (class1 == X86_64_NO_CLASS) return class2; if (class2 == X86_64_NO_CLASS) return class1; /* Rule #3: If one of the classes is MEMORY, the result is MEMORY. */ if (class1 == X86_64_MEMORY_CLASS || class2 == X86_64_MEMORY_CLASS) return X86_64_MEMORY_CLASS; /* Rule #4: If one of the classes is INTEGER, the result is INTEGER. */ if ((class1 == X86_64_INTEGERSI_CLASS && class2 == X86_64_SSESF_CLASS) || (class2 == X86_64_INTEGERSI_CLASS && class1 == X86_64_SSESF_CLASS)) return X86_64_INTEGERSI_CLASS; if (class1 == X86_64_INTEGER_CLASS || class1 == X86_64_INTEGERSI_CLASS || class2 == X86_64_INTEGER_CLASS || class2 == X86_64_INTEGERSI_CLASS) return X86_64_INTEGER_CLASS; /* Rule #5: If one of the classes is X87, X87UP, or COMPLEX_X87 class, MEMORY is used. */ if (class1 == X86_64_X87_CLASS || class1 == X86_64_X87UP_CLASS || class1 == X86_64_COMPLEX_X87_CLASS || class2 == X86_64_X87_CLASS || class2 == X86_64_X87UP_CLASS || class2 == X86_64_COMPLEX_X87_CLASS) return X86_64_MEMORY_CLASS; /* Rule #6: Otherwise class SSE is used. */ return X86_64_SSE_CLASS; } /* Classify the argument of type TYPE and mode MODE. CLASSES will be filled by the register class used to pass each word of the operand. The number of words is returned. In case the parameter should be passed in memory, 0 is returned. As a special case for zero sized containers, classes[0] will be NO_CLASS and 1 is returned. BIT_OFFSET is used internally for handling records and specifies offset of the offset in bits modulo 256 to avoid overflow cases. See the x86-64 PS ABI for details. */ static int classify_argument (enum machine_mode mode, const_tree type, enum x86_64_reg_class classes[MAX_CLASSES], int bit_offset) { HOST_WIDE_INT bytes = (mode == BLKmode) ? int_size_in_bytes (type) : (int) GET_MODE_SIZE (mode); int words = (bytes + (bit_offset % 64) / 8 + UNITS_PER_WORD - 1) / UNITS_PER_WORD; /* Variable sized entities are always passed/returned in memory. */ if (bytes < 0) return 0; if (mode != VOIDmode && targetm.calls.must_pass_in_stack (mode, type)) return 0; if (type && AGGREGATE_TYPE_P (type)) { int i; tree field; enum x86_64_reg_class subclasses[MAX_CLASSES]; /* On x86-64 we pass structures larger than 32 bytes on the stack. */ if (bytes > 32) return 0; for (i = 0; i < words; i++) classes[i] = X86_64_NO_CLASS; /* Zero sized arrays or structures are NO_CLASS. We return 0 to signalize memory class, so handle it as special case. */ if (!words) { classes[0] = X86_64_NO_CLASS; return 1; } /* Classify each field of record and merge classes. */ switch (TREE_CODE (type)) { case RECORD_TYPE: /* And now merge the fields of structure. */ for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field)) { if (TREE_CODE (field) == FIELD_DECL) { int num; if (TREE_TYPE (field) == error_mark_node) continue; /* Bitfields are always classified as integer. Handle them early, since later code would consider them to be misaligned integers. */ if (DECL_BIT_FIELD (field)) { for (i = (int_bit_position (field) + (bit_offset % 64)) / 8 / 8; i < ((int_bit_position (field) + (bit_offset % 64)) + tree_to_shwi (DECL_SIZE (field)) + 63) / 8 / 8; i++) classes[i] = merge_classes (X86_64_INTEGER_CLASS, classes[i]); } else { int pos; type = TREE_TYPE (field); /* Flexible array member is ignored. */ if (TYPE_MODE (type) == BLKmode && TREE_CODE (type) == ARRAY_TYPE && TYPE_SIZE (type) == NULL_TREE && TYPE_DOMAIN (type) != NULL_TREE && (TYPE_MAX_VALUE (TYPE_DOMAIN (type)) == NULL_TREE)) { static bool warned; if (!warned && warn_psabi) { warned = true; inform (input_location, "the ABI of passing struct with" " a flexible array member has" " changed in GCC 4.4"); } continue; } num = classify_argument (TYPE_MODE (type), type, subclasses, (int_bit_position (field) + bit_offset) % 256); if (!num) return 0; pos = (int_bit_position (field) + (bit_offset % 64)) / 8 / 8; for (i = 0; i < num && (i + pos) < words; i++) classes[i + pos] = merge_classes (subclasses[i], classes[i + pos]); } } } break; case ARRAY_TYPE: /* Arrays are handled as small records. */ { int num; num = classify_argument (TYPE_MODE (TREE_TYPE (type)), TREE_TYPE (type), subclasses, bit_offset); if (!num) return 0; /* The partial classes are now full classes. */ if (subclasses[0] == X86_64_SSESF_CLASS && bytes != 4) subclasses[0] = X86_64_SSE_CLASS; if (subclasses[0] == X86_64_INTEGERSI_CLASS && !((bit_offset % 64) == 0 && bytes == 4)) subclasses[0] = X86_64_INTEGER_CLASS; for (i = 0; i < words; i++) classes[i] = subclasses[i % num]; break; } case UNION_TYPE: case QUAL_UNION_TYPE: /* Unions are similar to RECORD_TYPE but offset is always 0. */ for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field)) { if (TREE_CODE (field) == FIELD_DECL) { int num; if (TREE_TYPE (field) == error_mark_node) continue; num = classify_argument (TYPE_MODE (TREE_TYPE (field)), TREE_TYPE (field), subclasses, bit_offset); if (!num) return 0; for (i = 0; i < num; i++) classes[i] = merge_classes (subclasses[i], classes[i]); } } break; default: gcc_unreachable (); } if (words > 2) { /* When size > 16 bytes, if the first one isn't X86_64_SSE_CLASS or any other ones aren't X86_64_SSEUP_CLASS, everything should be passed in memory. */ if (classes[0] != X86_64_SSE_CLASS) return 0; for (i = 1; i < words; i++) if (classes[i] != X86_64_SSEUP_CLASS) return 0; } /* Final merger cleanup. */ for (i = 0; i < words; i++) { /* If one class is MEMORY, everything should be passed in memory. */ if (classes[i] == X86_64_MEMORY_CLASS) return 0; /* The X86_64_SSEUP_CLASS should be always preceded by X86_64_SSE_CLASS or X86_64_SSEUP_CLASS. */ if (classes[i] == X86_64_SSEUP_CLASS && classes[i - 1] != X86_64_SSE_CLASS && classes[i - 1] != X86_64_SSEUP_CLASS) { /* The first one should never be X86_64_SSEUP_CLASS. */ gcc_assert (i != 0); classes[i] = X86_64_SSE_CLASS; } /* If X86_64_X87UP_CLASS isn't preceded by X86_64_X87_CLASS, everything should be passed in memory. */ if (classes[i] == X86_64_X87UP_CLASS && (classes[i - 1] != X86_64_X87_CLASS)) { static bool warned; /* The first one should never be X86_64_X87UP_CLASS. */ gcc_assert (i != 0); if (!warned && warn_psabi) { warned = true; inform (input_location, "the ABI of passing union with long double" " has changed in GCC 4.4"); } return 0; } } return words; } /* Compute alignment needed. We align all types to natural boundaries with exception of XFmode that is aligned to 64bits. */ if (mode != VOIDmode && mode != BLKmode) { int mode_alignment = GET_MODE_BITSIZE (mode); if (mode == XFmode) mode_alignment = 128; else if (mode == XCmode) mode_alignment = 256; if (COMPLEX_MODE_P (mode)) mode_alignment /= 2; /* Misaligned fields are always returned in memory. */ if (bit_offset % mode_alignment) return 0; } /* for V1xx modes, just use the base mode */ if (VECTOR_MODE_P (mode) && mode != V1DImode && mode != V1TImode && GET_MODE_SIZE (GET_MODE_INNER (mode)) == bytes) mode = GET_MODE_INNER (mode); /* Classification of atomic types. */ switch (mode) { case SDmode: case DDmode: classes[0] = X86_64_SSE_CLASS; return 1; case TDmode: classes[0] = X86_64_SSE_CLASS; classes[1] = X86_64_SSEUP_CLASS; return 2; case DImode: case SImode: case HImode: case QImode: case CSImode: case CHImode: case CQImode: { int size = (bit_offset % 64)+ (int) GET_MODE_BITSIZE (mode); if (size <= 32) { classes[0] = X86_64_INTEGERSI_CLASS; return 1; } else if (size <= 64) { classes[0] = X86_64_INTEGER_CLASS; return 1; } else if (size <= 64+32) { classes[0] = X86_64_INTEGER_CLASS; classes[1] = X86_64_INTEGERSI_CLASS; return 2; } else if (size <= 64+64) { classes[0] = classes[1] = X86_64_INTEGER_CLASS; return 2; } else gcc_unreachable (); } case CDImode: case TImode: classes[0] = classes[1] = X86_64_INTEGER_CLASS; return 2; case COImode: case OImode: /* OImode shouldn't be used directly. */ gcc_unreachable (); case CTImode: return 0; case SFmode: if (!(bit_offset % 64)) classes[0] = X86_64_SSESF_CLASS; else classes[0] = X86_64_SSE_CLASS; return 1; case DFmode: classes[0] = X86_64_SSEDF_CLASS; return 1; case XFmode: classes[0] = X86_64_X87_CLASS; classes[1] = X86_64_X87UP_CLASS; return 2; case TFmode: classes[0] = X86_64_SSE_CLASS; classes[1] = X86_64_SSEUP_CLASS; return 2; case SCmode: classes[0] = X86_64_SSE_CLASS; if (!(bit_offset % 64)) return 1; else { static bool warned; if (!warned && warn_psabi) { warned = true; inform (input_location, "the ABI of passing structure with complex float" " member has changed in GCC 4.4"); } classes[1] = X86_64_SSESF_CLASS; return 2; } case DCmode: classes[0] = X86_64_SSEDF_CLASS; classes[1] = X86_64_SSEDF_CLASS; return 2; case XCmode: classes[0] = X86_64_COMPLEX_X87_CLASS; return 1; case TCmode: /* This modes is larger than 16 bytes. */ return 0; case V8SFmode: case V8SImode: case V32QImode: case V16HImode: case V4DFmode: case V4DImode: classes[0] = X86_64_SSE_CLASS; classes[1] = X86_64_SSEUP_CLASS; classes[2] = X86_64_SSEUP_CLASS; classes[3] = X86_64_SSEUP_CLASS; return 4; case V4SFmode: case V4SImode: case V16QImode: case V8HImode: case V2DFmode: case V2DImode: classes[0] = X86_64_SSE_CLASS; classes[1] = X86_64_SSEUP_CLASS; return 2; case V1TImode: case V1DImode: case V2SFmode: case V2SImode: case V4HImode: case V8QImode: classes[0] = X86_64_SSE_CLASS; return 1; case BLKmode: case VOIDmode: return 0; default: gcc_assert (VECTOR_MODE_P (mode)); if (bytes > 16) return 0; gcc_assert (GET_MODE_CLASS (GET_MODE_INNER (mode)) == MODE_INT); if (bit_offset + GET_MODE_BITSIZE (mode) <= 32) classes[0] = X86_64_INTEGERSI_CLASS; else classes[0] = X86_64_INTEGER_CLASS; classes[1] = X86_64_INTEGER_CLASS; return 1 + (bytes > 8); } } /* Examine the argument and return set number of register required in each class. Return 0 iff parameter should be passed in memory. */ static int examine_argument (enum machine_mode mode, const_tree type, int in_return, int *int_nregs, int *sse_nregs) { enum x86_64_reg_class regclass[MAX_CLASSES]; int n = classify_argument (mode, type, regclass, 0); *int_nregs = 0; *sse_nregs = 0; if (!n) return 0; for (n--; n >= 0; n--) switch (regclass[n]) { case X86_64_INTEGER_CLASS: case X86_64_INTEGERSI_CLASS: (*int_nregs)++; break; case X86_64_SSE_CLASS: case X86_64_SSESF_CLASS: case X86_64_SSEDF_CLASS: (*sse_nregs)++; break; case X86_64_NO_CLASS: case X86_64_SSEUP_CLASS: break; case X86_64_X87_CLASS: case X86_64_X87UP_CLASS: if (!in_return) return 0; break; case X86_64_COMPLEX_X87_CLASS: return in_return ? 2 : 0; case X86_64_MEMORY_CLASS: gcc_unreachable (); } return 1; } /* Construct container for the argument used by GCC interface. See FUNCTION_ARG for the detailed description. */ static rtx construct_container (enum machine_mode mode, enum machine_mode orig_mode, const_tree type, int in_return, int nintregs, int nsseregs, const int *intreg, int sse_regno) { /* The following variables hold the static issued_error state. */ static bool issued_sse_arg_error; static bool issued_sse_ret_error; static bool issued_x87_ret_error; enum machine_mode tmpmode; int bytes = (mode == BLKmode) ? int_size_in_bytes (type) : (int) GET_MODE_SIZE (mode); enum x86_64_reg_class regclass[MAX_CLASSES]; int n; int i; int nexps = 0; int needed_sseregs, needed_intregs; rtx exp[MAX_CLASSES]; rtx ret; n = classify_argument (mode, type, regclass, 0); if (!n) return NULL; if (!examine_argument (mode, type, in_return, &needed_intregs, &needed_sseregs)) return NULL; if (needed_intregs > nintregs || needed_sseregs > nsseregs) return NULL; /* We allowed the user to turn off SSE for kernel mode. Don't crash if some less clueful developer tries to use floating-point anyway. */ if (needed_sseregs && !TARGET_SSE) { if (in_return) { if (!issued_sse_ret_error) { error ("SSE register return with SSE disabled"); issued_sse_ret_error = true; } } else if (!issued_sse_arg_error) { error ("SSE register argument with SSE disabled"); issued_sse_arg_error = true; } return NULL; } /* Likewise, error if the ABI requires us to return values in the x87 registers and the user specified -mno-80387. */ if (!TARGET_FLOAT_RETURNS_IN_80387 && in_return) for (i = 0; i < n; i++) if (regclass[i] == X86_64_X87_CLASS || regclass[i] == X86_64_X87UP_CLASS || regclass[i] == X86_64_COMPLEX_X87_CLASS) { if (!issued_x87_ret_error) { error ("x87 register return with x87 disabled"); issued_x87_ret_error = true; } return NULL; } /* First construct simple cases. Avoid SCmode, since we want to use single register to pass this type. */ if (n == 1 && mode != SCmode) switch (regclass[0]) { case X86_64_INTEGER_CLASS: case X86_64_INTEGERSI_CLASS: return gen_rtx_REG (mode, intreg[0]); case X86_64_SSE_CLASS: case X86_64_SSESF_CLASS: case X86_64_SSEDF_CLASS: if (mode != BLKmode) return gen_reg_or_parallel (mode, orig_mode, SSE_REGNO (sse_regno)); break; case X86_64_X87_CLASS: case X86_64_COMPLEX_X87_CLASS: return gen_rtx_REG (mode, FIRST_STACK_REG); case X86_64_NO_CLASS: /* Zero sized array, struct or class. */ return NULL; default: gcc_unreachable (); } if (n == 2 && regclass[0] == X86_64_SSE_CLASS && regclass[1] == X86_64_SSEUP_CLASS && mode != BLKmode) return gen_reg_or_parallel (mode, orig_mode, SSE_REGNO (sse_regno)); if (n == 4 && regclass[0] == X86_64_SSE_CLASS && regclass[1] == X86_64_SSEUP_CLASS && regclass[2] == X86_64_SSEUP_CLASS && regclass[3] == X86_64_SSEUP_CLASS && mode != BLKmode) return gen_reg_or_parallel (mode, orig_mode, SSE_REGNO (sse_regno)); if (n == 2 && regclass[0] == X86_64_X87_CLASS && regclass[1] == X86_64_X87UP_CLASS) return gen_rtx_REG (XFmode, FIRST_STACK_REG); if (n == 2 && regclass[0] == X86_64_INTEGER_CLASS && regclass[1] == X86_64_INTEGER_CLASS && (mode == CDImode || mode == TImode || mode == TFmode) && intreg[0] + 1 == intreg[1]) return gen_rtx_REG (mode, intreg[0]); /* Otherwise figure out the entries of the PARALLEL. */ for (i = 0; i < n; i++) { int pos; switch (regclass[i]) { case X86_64_NO_CLASS: break; case X86_64_INTEGER_CLASS: case X86_64_INTEGERSI_CLASS: /* Merge TImodes on aligned occasions here too. */ if (i * 8 + 8 > bytes) tmpmode = mode_for_size ((bytes - i * 8) * BITS_PER_UNIT, MODE_INT, 0); else if (regclass[i] == X86_64_INTEGERSI_CLASS) tmpmode = SImode; else tmpmode = DImode; /* We've requested 24 bytes we don't have mode for. Use DImode. */ if (tmpmode == BLKmode) tmpmode = DImode; exp [nexps++] = gen_rtx_EXPR_LIST (VOIDmode, gen_rtx_REG (tmpmode, *intreg), GEN_INT (i*8)); intreg++; break; case X86_64_SSESF_CLASS: exp [nexps++] = gen_rtx_EXPR_LIST (VOIDmode, gen_rtx_REG (SFmode, SSE_REGNO (sse_regno)), GEN_INT (i*8)); sse_regno++; break; case X86_64_SSEDF_CLASS: exp [nexps++] = gen_rtx_EXPR_LIST (VOIDmode, gen_rtx_REG (DFmode, SSE_REGNO (sse_regno)), GEN_INT (i*8)); sse_regno++; break; case X86_64_SSE_CLASS: pos = i; switch (n) { case 1: tmpmode = DImode; break; case 2: if (i == 0 && regclass[1] == X86_64_SSEUP_CLASS) { tmpmode = TImode; i++; } else tmpmode = DImode; break; case 4: gcc_assert (i == 0 && regclass[1] == X86_64_SSEUP_CLASS && regclass[2] == X86_64_SSEUP_CLASS && regclass[3] == X86_64_SSEUP_CLASS); tmpmode = OImode; i += 3; break; default: gcc_unreachable (); } exp [nexps++] = gen_rtx_EXPR_LIST (VOIDmode, gen_rtx_REG (tmpmode, SSE_REGNO (sse_regno)), GEN_INT (pos*8)); sse_regno++; break; default: gcc_unreachable (); } } /* Empty aligned struct, union or class. */ if (nexps == 0) return NULL; ret = gen_rtx_PARALLEL (mode, rtvec_alloc (nexps)); for (i = 0; i < nexps; i++) XVECEXP (ret, 0, i) = exp [i]; return ret; } /* Update the data in CUM to advance over an argument of mode MODE and data type TYPE. (TYPE is null for libcalls where that information may not be available.) */ static void function_arg_advance_32 (CUMULATIVE_ARGS *cum, enum machine_mode mode, const_tree type, HOST_WIDE_INT bytes, HOST_WIDE_INT words) { switch (mode) { default: break; case BLKmode: if (bytes < 0) break; /* FALLTHRU */ case DImode: case SImode: case HImode: case QImode: cum->words += words; cum->nregs -= words; cum->regno += words; if (cum->nregs <= 0) { cum->nregs = 0; cum->regno = 0; } break; case OImode: /* OImode shouldn't be used directly. */ gcc_unreachable (); case DFmode: if (cum->float_in_sse < 2) break; case SFmode: if (cum->float_in_sse < 1) break; /* FALLTHRU */ case V8SFmode: case V8SImode: case V32QImode: case V16HImode: case V4DFmode: case V4DImode: case TImode: case V16QImode: case V8HImode: case V4SImode: case V2DImode: case V4SFmode: case V2DFmode: if (!type || !AGGREGATE_TYPE_P (type)) { cum->sse_words += words; cum->sse_nregs -= 1; cum->sse_regno += 1; if (cum->sse_nregs <= 0) { cum->sse_nregs = 0; cum->sse_regno = 0; } } break; case V8QImode: case V4HImode: case V2SImode: case V2SFmode: case V1TImode: case V1DImode: if (!type || !AGGREGATE_TYPE_P (type)) { cum->mmx_words += words; cum->mmx_nregs -= 1; cum->mmx_regno += 1; if (cum->mmx_nregs <= 0) { cum->mmx_nregs = 0; cum->mmx_regno = 0; } } break; } } static void function_arg_advance_64 (CUMULATIVE_ARGS *cum, enum machine_mode mode, const_tree type, HOST_WIDE_INT words, bool named) { int int_nregs, sse_nregs; /* Unnamed 256bit vector mode parameters are passed on stack. */ if (!named && VALID_AVX256_REG_MODE (mode)) return; if (examine_argument (mode, type, 0, &int_nregs, &sse_nregs) && sse_nregs <= cum->sse_nregs && int_nregs <= cum->nregs) { cum->nregs -= int_nregs; cum->sse_nregs -= sse_nregs; cum->regno += int_nregs; cum->sse_regno += sse_nregs; } else { int align = ix86_function_arg_boundary (mode, type) / BITS_PER_WORD; cum->words = (cum->words + align - 1) & ~(align - 1); cum->words += words; } } static void function_arg_advance_ms_64 (CUMULATIVE_ARGS *cum, HOST_WIDE_INT bytes, HOST_WIDE_INT words) { /* Otherwise, this should be passed indirect. */ gcc_assert (bytes == 1 || bytes == 2 || bytes == 4 || bytes == 8); cum->words += words; if (cum->nregs > 0) { cum->nregs -= 1; cum->regno += 1; } } /* Update the data in CUM to advance over an argument of mode MODE and data type TYPE. (TYPE is null for libcalls where that information may not be available.) */ static void ix86_function_arg_advance (cumulative_args_t cum_v, enum machine_mode mode, const_tree type, bool named) { CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v); HOST_WIDE_INT bytes, words; if (mode == BLKmode) bytes = int_size_in_bytes (type); else bytes = GET_MODE_SIZE (mode); words = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD; if (type) mode = type_natural_mode (type, NULL); if (TARGET_64BIT && (cum ? cum->call_abi : ix86_abi) == MS_ABI) function_arg_advance_ms_64 (cum, bytes, words); else if (TARGET_64BIT) function_arg_advance_64 (cum, mode, type, words, named); else function_arg_advance_32 (cum, mode, type, bytes, words); } /* Define where to put the arguments to a function. Value is zero to push the argument on the stack, or a hard register in which to store the argument. MODE is the argument's machine mode. TYPE is the data type of the argument (as a tree). This is null for libcalls where that information may not be available. CUM is a variable of type CUMULATIVE_ARGS which gives info about the preceding args and about the function being called. NAMED is nonzero if this argument is a named parameter (otherwise it is an extra parameter matching an ellipsis). */ static rtx function_arg_32 (const CUMULATIVE_ARGS *cum, enum machine_mode mode, enum machine_mode orig_mode, const_tree type, HOST_WIDE_INT bytes, HOST_WIDE_INT words) { static bool warnedsse, warnedmmx; /* Avoid the AL settings for the Unix64 ABI. */ if (mode == VOIDmode) return constm1_rtx; switch (mode) { default: break; case BLKmode: if (bytes < 0) break; /* FALLTHRU */ case DImode: case SImode: case HImode: case QImode: if (words <= cum->nregs) { int regno = cum->regno; /* Fastcall allocates the first two DWORD (SImode) or smaller arguments to ECX and EDX if it isn't an aggregate type . */ if (cum->fastcall) { if (mode == BLKmode || mode == DImode || (type && AGGREGATE_TYPE_P (type))) break; /* ECX not EAX is the first allocated register. */ if (regno == AX_REG) regno = CX_REG; } return gen_rtx_REG (mode, regno); } break; case DFmode: if (cum->float_in_sse < 2) break; case SFmode: if (cum->float_in_sse < 1) break; /* FALLTHRU */ case TImode: /* In 32bit, we pass TImode in xmm registers. */ case V16QImode: case V8HImode: case V4SImode: case V2DImode: case V4SFmode: case V2DFmode: if (!type || !AGGREGATE_TYPE_P (type)) { if (!TARGET_SSE && !warnedsse && cum->warn_sse) { warnedsse = true; warning (0, "SSE vector argument without SSE enabled " "changes the ABI"); } if (cum->sse_nregs) return gen_reg_or_parallel (mode, orig_mode, cum->sse_regno + FIRST_SSE_REG); } break; case OImode: /* OImode shouldn't be used directly. */ gcc_unreachable (); case V8SFmode: case V8SImode: case V32QImode: case V16HImode: case V4DFmode: case V4DImode: if (!type || !AGGREGATE_TYPE_P (type)) { if (cum->sse_nregs) return gen_reg_or_parallel (mode, orig_mode, cum->sse_regno + FIRST_SSE_REG); } break; case V8QImode: case V4HImode: case V2SImode: case V2SFmode: case V1TImode: case V1DImode: if (!type || !AGGREGATE_TYPE_P (type)) { if (!TARGET_MMX && !warnedmmx && cum->warn_mmx) { warnedmmx = true; warning (0, "MMX vector argument without MMX enabled " "changes the ABI"); } if (cum->mmx_nregs) return gen_reg_or_parallel (mode, orig_mode, cum->mmx_regno + FIRST_MMX_REG); } break; } return NULL_RTX; } static rtx function_arg_64 (const CUMULATIVE_ARGS *cum, enum machine_mode mode, enum machine_mode orig_mode, const_tree type, bool named) { /* Handle a hidden AL argument containing number of registers for varargs x86-64 functions. */ if (mode == VOIDmode) return GEN_INT (cum->maybe_vaarg ? (cum->sse_nregs < 0 ? X86_64_SSE_REGPARM_MAX : cum->sse_regno) : -1); switch (mode) { default: break; case V8SFmode: case V8SImode: case V32QImode: case V16HImode: case V4DFmode: case V4DImode: /* Unnamed 256bit vector mode parameters are passed on stack. */ if (!named) return NULL; break; } return construct_container (mode, orig_mode, type, 0, cum->nregs, cum->sse_nregs, &x86_64_int_parameter_registers [cum->regno], cum->sse_regno); } static rtx function_arg_ms_64 (const CUMULATIVE_ARGS *cum, enum machine_mode mode, enum machine_mode orig_mode, bool named, HOST_WIDE_INT bytes) { unsigned int regno; /* We need to add clobber for MS_ABI->SYSV ABI calls in expand_call. We use value of -2 to specify that current function call is MSABI. */ if (mode == VOIDmode) return GEN_INT (-2); /* If we've run out of registers, it goes on the stack. */ if (cum->nregs == 0) return NULL_RTX; regno = x86_64_ms_abi_int_parameter_registers[cum->regno]; /* Only floating point modes are passed in anything but integer regs. */ if (TARGET_SSE && (mode == SFmode || mode == DFmode)) { if (named) regno = cum->regno + FIRST_SSE_REG; else { rtx t1, t2; /* Unnamed floating parameters are passed in both the SSE and integer registers. */ t1 = gen_rtx_REG (mode, cum->regno + FIRST_SSE_REG); t2 = gen_rtx_REG (mode, regno); t1 = gen_rtx_EXPR_LIST (VOIDmode, t1, const0_rtx); t2 = gen_rtx_EXPR_LIST (VOIDmode, t2, const0_rtx); return gen_rtx_PARALLEL (mode, gen_rtvec (2, t1, t2)); } } /* Handle aggregated types passed in register. */ if (orig_mode == BLKmode) { if (bytes > 0 && bytes <= 8) mode = (bytes > 4 ? DImode : SImode); if (mode == BLKmode) mode = DImode; } return gen_reg_or_parallel (mode, orig_mode, regno); } /* Return where to put the arguments to a function. Return zero to push the argument on the stack, or a hard register in which to store the argument. MODE is the argument's machine mode. TYPE is the data type of the argument. It is null for libcalls where that information may not be available. CUM gives information about the preceding args and about the function being called. NAMED is nonzero if this argument is a named parameter (otherwise it is an extra parameter matching an ellipsis). */ static rtx ix86_function_arg (cumulative_args_t cum_v, enum machine_mode omode, const_tree type, bool named) { CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v); enum machine_mode mode = omode; HOST_WIDE_INT bytes, words; rtx arg; if (mode == BLKmode) bytes = int_size_in_bytes (type); else bytes = GET_MODE_SIZE (mode); words = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD; /* To simplify the code below, represent vector types with a vector mode even if MMX/SSE are not active. */ if (type && TREE_CODE (type) == VECTOR_TYPE) mode = type_natural_mode (type, cum); if (TARGET_64BIT && (cum ? cum->call_abi : ix86_abi) == MS_ABI) arg = function_arg_ms_64 (cum, mode, omode, named, bytes); else if (TARGET_64BIT) arg = function_arg_64 (cum, mode, omode, type, named); else arg = function_arg_32 (cum, mode, omode, type, bytes, words); return arg; } /* A C expression that indicates when an argument must be passed by reference. If nonzero for an argument, a copy of that argument is made in memory and a pointer to the argument is passed instead of the argument itself. The pointer is passed in whatever way is appropriate for passing a pointer to that type. */ static bool ix86_pass_by_reference (cumulative_args_t cum_v, enum machine_mode mode, const_tree type, bool named ATTRIBUTE_UNUSED) { CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v); /* See Windows x64 Software Convention. */ if (TARGET_64BIT && (cum ? cum->call_abi : ix86_abi) == MS_ABI) { int msize = (int) GET_MODE_SIZE (mode); if (type) { /* Arrays are passed by reference. */ if (TREE_CODE (type) == ARRAY_TYPE) return true; if (AGGREGATE_TYPE_P (type)) { /* Structs/unions of sizes other than 8, 16, 32, or 64 bits are passed by reference. */ msize = int_size_in_bytes (type); } } /* __m128 is passed by reference. */ switch (msize) { case 1: case 2: case 4: case 8: break; default: return true; } } else if (TARGET_64BIT && type && int_size_in_bytes (type) == -1) return 1; return 0; } /* Return true when TYPE should be 128bit aligned for 32bit argument passing ABI. XXX: This function is obsolete and is only used for checking psABI compatibility with previous versions of GCC. */ static bool ix86_compat_aligned_value_p (const_tree type) { enum machine_mode mode = TYPE_MODE (type); if (((TARGET_SSE && SSE_REG_MODE_P (mode)) || mode == TDmode || mode == TFmode || mode == TCmode) && (!TYPE_USER_ALIGN (type) || TYPE_ALIGN (type) > 128)) return true; if (TYPE_ALIGN (type) < 128) return false; if (AGGREGATE_TYPE_P (type)) { /* Walk the aggregates recursively. */ switch (TREE_CODE (type)) { case RECORD_TYPE: case UNION_TYPE: case QUAL_UNION_TYPE: { tree field; /* Walk all the structure fields. */ for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field)) { if (TREE_CODE (field) == FIELD_DECL && ix86_compat_aligned_value_p (TREE_TYPE (field))) return true; } break; } case ARRAY_TYPE: /* Just for use if some languages passes arrays by value. */ if (ix86_compat_aligned_value_p (TREE_TYPE (type))) return true; break; default: gcc_unreachable (); } } return false; } /* Return the alignment boundary for MODE and TYPE with alignment ALIGN. XXX: This function is obsolete and is only used for checking psABI compatibility with previous versions of GCC. */ static unsigned int ix86_compat_function_arg_boundary (enum machine_mode mode, const_tree type, unsigned int align) { /* In 32bit, only _Decimal128 and __float128 are aligned to their natural boundaries. */ if (!TARGET_64BIT && mode != TDmode && mode != TFmode) { /* i386 ABI defines all arguments to be 4 byte aligned. We have to make an exception for SSE modes since these require 128bit alignment. The handling here differs from field_alignment. ICC aligns MMX arguments to 4 byte boundaries, while structure fields are aligned to 8 byte boundaries. */ if (!type) { if (!(TARGET_SSE && SSE_REG_MODE_P (mode))) align = PARM_BOUNDARY; } else { if (!ix86_compat_aligned_value_p (type)) align = PARM_BOUNDARY; } } if (align > BIGGEST_ALIGNMENT) align = BIGGEST_ALIGNMENT; return align; } /* Return true when TYPE should be 128bit aligned for 32bit argument passing ABI. */ static bool ix86_contains_aligned_value_p (const_tree type) { enum machine_mode mode = TYPE_MODE (type); if (mode == XFmode || mode == XCmode) return false; if (TYPE_ALIGN (type) < 128) return false; if (AGGREGATE_TYPE_P (type)) { /* Walk the aggregates recursively. */ switch (TREE_CODE (type)) { case RECORD_TYPE: case UNION_TYPE: case QUAL_UNION_TYPE: { tree field; /* Walk all the structure fields. */ for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field)) { if (TREE_CODE (field) == FIELD_DECL && ix86_contains_aligned_value_p (TREE_TYPE (field))) return true; } break; } case ARRAY_TYPE: /* Just for use if some languages passes arrays by value. */ if (ix86_contains_aligned_value_p (TREE_TYPE (type))) return true; break; default: gcc_unreachable (); } } else return TYPE_ALIGN (type) >= 128; return false; } /* Gives the alignment boundary, in bits, of an argument with the specified mode and type. */ static unsigned int ix86_function_arg_boundary (enum machine_mode mode, const_tree type) { unsigned int align; if (type) { /* Since the main variant type is used for call, we convert it to the main variant type. */ type = TYPE_MAIN_VARIANT (type); align = TYPE_ALIGN (type); } else align = GET_MODE_ALIGNMENT (mode); if (align < PARM_BOUNDARY) align = PARM_BOUNDARY; else { static bool warned; unsigned int saved_align = align; if (!TARGET_64BIT) { /* i386 ABI defines XFmode arguments to be 4 byte aligned. */ if (!type) { if (mode == XFmode || mode == XCmode) align = PARM_BOUNDARY; } else if (!ix86_contains_aligned_value_p (type)) align = PARM_BOUNDARY; if (align < 128) align = PARM_BOUNDARY; } if (warn_psabi && !warned && align != ix86_compat_function_arg_boundary (mode, type, saved_align)) { warned = true; inform (input_location, "The ABI for passing parameters with %d-byte" " alignment has changed in GCC 4.6", align / BITS_PER_UNIT); } } return align; } /* Return true if N is a possible register number of function value. */ static bool ix86_function_value_regno_p (const unsigned int regno) { switch (regno) { case AX_REG: case DX_REG: return true; case DI_REG: case SI_REG: return TARGET_64BIT && ix86_abi != MS_ABI; /* Complex values are returned in %st(0)/%st(1) pair. */ case ST0_REG: case ST1_REG: /* TODO: The function should depend on current function ABI but builtins.c would need updating then. Therefore we use the default ABI. */ if (TARGET_64BIT && ix86_abi == MS_ABI) return false; return TARGET_FLOAT_RETURNS_IN_80387; /* Complex values are returned in %xmm0/%xmm1 pair. */ case XMM0_REG: case XMM1_REG: return TARGET_SSE; case MM0_REG: if (TARGET_MACHO || TARGET_64BIT) return false; return TARGET_MMX; } return false; } /* Define how to find the value returned by a function. VALTYPE is the data type of the value (as a tree). If the precise function being called is known, FUNC is its FUNCTION_DECL; otherwise, FUNC is 0. */ static rtx function_value_32 (enum machine_mode orig_mode, enum machine_mode mode, const_tree fntype, const_tree fn) { unsigned int regno; /* 8-byte vector modes in %mm0. See ix86_return_in_memory for where we normally prevent this case when mmx is not available. However some ABIs may require the result to be returned like DImode. */ if (VECTOR_MODE_P (mode) && GET_MODE_SIZE (mode) == 8) regno = FIRST_MMX_REG; /* 16-byte vector modes in %xmm0. See ix86_return_in_memory for where we prevent this case when sse is not available. However some ABIs may require the result to be returned like integer TImode. */ else if (mode == TImode || (VECTOR_MODE_P (mode) && GET_MODE_SIZE (mode) == 16)) regno = FIRST_SSE_REG; /* 32-byte vector modes in %ymm0. */ else if (VECTOR_MODE_P (mode) && GET_MODE_SIZE (mode) == 32) regno = FIRST_SSE_REG; /* Floating point return values in %st(0) (unless -mno-fp-ret-in-387). */ else if (X87_FLOAT_MODE_P (mode) && TARGET_FLOAT_RETURNS_IN_80387) regno = FIRST_FLOAT_REG; else /* Most things go in %eax. */ regno = AX_REG; /* Override FP return register with %xmm0 for local functions when SSE math is enabled or for functions with sseregparm attribute. */ if ((fn || fntype) && (mode == SFmode || mode == DFmode)) { int sse_level = ix86_function_sseregparm (fntype, fn, false); if ((sse_level >= 1 && mode == SFmode) || (sse_level == 2 && mode == DFmode)) regno = FIRST_SSE_REG; } /* OImode shouldn't be used directly. */ gcc_assert (mode != OImode); return gen_rtx_REG (orig_mode, regno); } static rtx function_value_64 (enum machine_mode orig_mode, enum machine_mode mode, const_tree valtype) { rtx ret; /* Handle libcalls, which don't provide a type node. */ if (valtype == NULL) { unsigned int regno; switch (mode) { case SFmode: case SCmode: case DFmode: case DCmode: case TFmode: case SDmode: case DDmode: case TDmode: regno = FIRST_SSE_REG; break; case XFmode: case XCmode: regno = FIRST_FLOAT_REG; break; case TCmode: return NULL; default: regno = AX_REG; } return gen_rtx_REG (mode, regno); } else if (POINTER_TYPE_P (valtype)) { /* Pointers are always returned in word_mode. */ mode = word_mode; } ret = construct_container (mode, orig_mode, valtype, 1, X86_64_REGPARM_MAX, X86_64_SSE_REGPARM_MAX, x86_64_int_return_registers, 0); /* For zero sized structures, construct_container returns NULL, but we need to keep rest of compiler happy by returning meaningful value. */ if (!ret) ret = gen_rtx_REG (orig_mode, AX_REG); return ret; } static rtx function_value_ms_64 (enum machine_mode orig_mode, enum machine_mode mode, const_tree valtype) { unsigned int regno = AX_REG; if (TARGET_SSE) { switch (GET_MODE_SIZE (mode)) { case 16: if (valtype != NULL_TREE && !VECTOR_INTEGER_TYPE_P (valtype) && !VECTOR_INTEGER_TYPE_P (valtype) && !INTEGRAL_TYPE_P (valtype) && !VECTOR_FLOAT_TYPE_P (valtype)) break; if ((SCALAR_INT_MODE_P (mode) || VECTOR_MODE_P (mode)) && !COMPLEX_MODE_P (mode)) regno = FIRST_SSE_REG; break; case 8: case 4: if (mode == SFmode || mode == DFmode) regno = FIRST_SSE_REG; break; default: break; } } return gen_rtx_REG (orig_mode, regno); } static rtx ix86_function_value_1 (const_tree valtype, const_tree fntype_or_decl, enum machine_mode orig_mode, enum machine_mode mode) { const_tree fn, fntype; fn = NULL_TREE; if (fntype_or_decl && DECL_P (fntype_or_decl)) fn = fntype_or_decl; fntype = fn ? TREE_TYPE (fn) : fntype_or_decl; if (TARGET_64BIT && ix86_function_type_abi (fntype) == MS_ABI) return function_value_ms_64 (orig_mode, mode, valtype); else if (TARGET_64BIT) return function_value_64 (orig_mode, mode, valtype); else return function_value_32 (orig_mode, mode, fntype, fn); } static rtx ix86_function_value (const_tree valtype, const_tree fntype_or_decl, bool outgoing ATTRIBUTE_UNUSED) { enum machine_mode mode, orig_mode; orig_mode = TYPE_MODE (valtype); mode = type_natural_mode (valtype, NULL); return ix86_function_value_1 (valtype, fntype_or_decl, orig_mode, mode); } /* Pointer function arguments and return values are promoted to word_mode. */ static enum machine_mode ix86_promote_function_mode (const_tree type, enum machine_mode mode, int *punsignedp, const_tree fntype, int for_return) { if (type != NULL_TREE && POINTER_TYPE_P (type)) { *punsignedp = POINTERS_EXTEND_UNSIGNED; return word_mode; } return default_promote_function_mode (type, mode, punsignedp, fntype, for_return); } /* Return true if a structure, union or array with MODE containing FIELD should be accessed using BLKmode. */ static bool ix86_member_type_forces_blk (const_tree field, enum machine_mode mode) { /* Union with XFmode must be in BLKmode. */ return (mode == XFmode && (TREE_CODE (DECL_FIELD_CONTEXT (field)) == UNION_TYPE || TREE_CODE (DECL_FIELD_CONTEXT (field)) == QUAL_UNION_TYPE)); } rtx ix86_libcall_value (enum machine_mode mode) { return ix86_function_value_1 (NULL, NULL, mode, mode); } /* Return true iff type is returned in memory. */ static bool ATTRIBUTE_UNUSED return_in_memory_32 (const_tree type, enum machine_mode mode) { HOST_WIDE_INT size; if (mode == BLKmode) return true; size = int_size_in_bytes (type); if (MS_AGGREGATE_RETURN && AGGREGATE_TYPE_P (type) && size <= 8) return false; if (VECTOR_MODE_P (mode) || mode == TImode) { /* User-created vectors small enough to fit in EAX. */ if (size < 8) return false; /* MMX/3dNow values are returned in MM0, except when it doesn't exits or the ABI prescribes otherwise. */ if (size == 8) return !TARGET_MMX || TARGET_VECT8_RETURNS; /* SSE values are returned in XMM0, except when it doesn't exist. */ if (size == 16) return !TARGET_SSE; /* AVX values are returned in YMM0, except when it doesn't exist. */ if (size == 32) return !TARGET_AVX; } if (mode == XFmode) return false; if (size > 12) return true; /* OImode shouldn't be used directly. */ gcc_assert (mode != OImode); return false; } static bool ATTRIBUTE_UNUSED return_in_memory_64 (const_tree type, enum machine_mode mode) { int needed_intregs, needed_sseregs; return !examine_argument (mode, type, 1, &needed_intregs, &needed_sseregs); } static bool ATTRIBUTE_UNUSED return_in_memory_ms_64 (const_tree type, enum machine_mode mode) { HOST_WIDE_INT size = int_size_in_bytes (type); /* __m128 is returned in xmm0. */ if ((!type || VECTOR_INTEGER_TYPE_P (type) || INTEGRAL_TYPE_P (type) || VECTOR_FLOAT_TYPE_P (type)) && (SCALAR_INT_MODE_P (mode) || VECTOR_MODE_P (mode)) && !COMPLEX_MODE_P (mode) && (GET_MODE_SIZE (mode) == 16 || size == 16)) return false; /* Otherwise, the size must be exactly in [1248]. */ return size != 1 && size != 2 && size != 4 && size != 8; } static bool ix86_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED) { #ifdef SUBTARGET_RETURN_IN_MEMORY return SUBTARGET_RETURN_IN_MEMORY (type, fntype); #else const enum machine_mode mode = type_natural_mode (type, NULL); if (TARGET_64BIT) { if (ix86_function_type_abi (fntype) == MS_ABI) return return_in_memory_ms_64 (type, mode); else return return_in_memory_64 (type, mode); } else return return_in_memory_32 (type, mode); #endif } /* When returning SSE vector types, we have a choice of either (1) being abi incompatible with a -march switch, or (2) generating an error. Given no good solution, I think the safest thing is one warning. The user won't be able to use -Werror, but.... Choose the STRUCT_VALUE_RTX hook because that's (at present) only called in response to actually generating a caller or callee that uses such a type. As opposed to TARGET_RETURN_IN_MEMORY, which is called via aggregate_value_p for general type probing from tree-ssa. */ static rtx ix86_struct_value_rtx (tree type, int incoming ATTRIBUTE_UNUSED) { static bool warnedsse, warnedmmx; if (!TARGET_64BIT && type) { /* Look at the return type of the function, not the function type. */ enum machine_mode mode = TYPE_MODE (TREE_TYPE (type)); if (!TARGET_SSE && !warnedsse) { if (mode == TImode || (VECTOR_MODE_P (mode) && GET_MODE_SIZE (mode) == 16)) { warnedsse = true; warning (0, "SSE vector return without SSE enabled " "changes the ABI"); } } if (!TARGET_MMX && !warnedmmx) { if (VECTOR_MODE_P (mode) && GET_MODE_SIZE (mode) == 8) { warnedmmx = true; warning (0, "MMX vector return without MMX enabled " "changes the ABI"); } } } return NULL; } /* Create the va_list data type. */ /* Returns the calling convention specific va_list date type. The argument ABI can be DEFAULT_ABI, MS_ABI, or SYSV_ABI. */ static tree ix86_build_builtin_va_list_abi (enum calling_abi abi) { tree f_gpr, f_fpr, f_ovf, f_sav, record, type_decl; /* For i386 we use plain pointer to argument area. */ if (!TARGET_64BIT || abi == MS_ABI) return build_pointer_type (char_type_node); record = lang_hooks.types.make_type (RECORD_TYPE); type_decl = build_decl (BUILTINS_LOCATION, TYPE_DECL, get_identifier ("__va_list_tag"), record); f_gpr = build_decl (BUILTINS_LOCATION, FIELD_DECL, get_identifier ("gp_offset"), unsigned_type_node); f_fpr = build_decl (BUILTINS_LOCATION, FIELD_DECL, get_identifier ("fp_offset"), unsigned_type_node); f_ovf = build_decl (BUILTINS_LOCATION, FIELD_DECL, get_identifier ("overflow_arg_area"), ptr_type_node); f_sav = build_decl (BUILTINS_LOCATION, FIELD_DECL, get_identifier ("reg_save_area"), ptr_type_node); va_list_gpr_counter_field = f_gpr; va_list_fpr_counter_field = f_fpr; DECL_FIELD_CONTEXT (f_gpr) = record; DECL_FIELD_CONTEXT (f_fpr) = record; DECL_FIELD_CONTEXT (f_ovf) = record; DECL_FIELD_CONTEXT (f_sav) = record; TYPE_STUB_DECL (record) = type_decl; TYPE_NAME (record) = type_decl; TYPE_FIELDS (record) = f_gpr; DECL_CHAIN (f_gpr) = f_fpr; DECL_CHAIN (f_fpr) = f_ovf; DECL_CHAIN (f_ovf) = f_sav; layout_type (record); /* The correct type is an array type of one element. */ return build_array_type (record, build_index_type (size_zero_node)); } /* Setup the builtin va_list data type and for 64-bit the additional calling convention specific va_list data types. */ static tree ix86_build_builtin_va_list (void) { tree ret = ix86_build_builtin_va_list_abi (ix86_abi); /* Initialize abi specific va_list builtin types. */ if (TARGET_64BIT) { tree t; if (ix86_abi == MS_ABI) { t = ix86_build_builtin_va_list_abi (SYSV_ABI); if (TREE_CODE (t) != RECORD_TYPE) t = build_variant_type_copy (t); sysv_va_list_type_node = t; } else { t = ret; if (TREE_CODE (t) != RECORD_TYPE) t = build_variant_type_copy (t); sysv_va_list_type_node = t; } if (ix86_abi != MS_ABI) { t = ix86_build_builtin_va_list_abi (MS_ABI); if (TREE_CODE (t) != RECORD_TYPE) t = build_variant_type_copy (t); ms_va_list_type_node = t; } else { t = ret; if (TREE_CODE (t) != RECORD_TYPE) t = build_variant_type_copy (t); ms_va_list_type_node = t; } } return ret; } /* Worker function for TARGET_SETUP_INCOMING_VARARGS. */ static void setup_incoming_varargs_64 (CUMULATIVE_ARGS *cum) { rtx save_area, mem; alias_set_type set; int i, max; /* GPR size of varargs save area. */ if (cfun->va_list_gpr_size) ix86_varargs_gpr_size = X86_64_REGPARM_MAX * UNITS_PER_WORD; else ix86_varargs_gpr_size = 0; /* FPR size of varargs save area. We don't need it if we don't pass anything in SSE registers. */ if (TARGET_SSE && cfun->va_list_fpr_size) ix86_varargs_fpr_size = X86_64_SSE_REGPARM_MAX * 16; else ix86_varargs_fpr_size = 0; if (! ix86_varargs_gpr_size && ! ix86_varargs_fpr_size) return; save_area = frame_pointer_rtx; set = get_varargs_alias_set (); max = cum->regno + cfun->va_list_gpr_size / UNITS_PER_WORD; if (max > X86_64_REGPARM_MAX) max = X86_64_REGPARM_MAX; for (i = cum->regno; i < max; i++) { mem = gen_rtx_MEM (word_mode, plus_constant (Pmode, save_area, i * UNITS_PER_WORD)); MEM_NOTRAP_P (mem) = 1; set_mem_alias_set (mem, set); emit_move_insn (mem, gen_rtx_REG (word_mode, x86_64_int_parameter_registers[i])); } if (ix86_varargs_fpr_size) { enum machine_mode smode; rtx label, test; /* Now emit code to save SSE registers. The AX parameter contains number of SSE parameter registers used to call this function, though all we actually check here is the zero/non-zero status. */ label = gen_label_rtx (); test = gen_rtx_EQ (VOIDmode, gen_rtx_REG (QImode, AX_REG), const0_rtx); emit_jump_insn (gen_cbranchqi4 (test, XEXP (test, 0), XEXP (test, 1), label)); /* ??? If !TARGET_SSE_TYPELESS_STORES, would we perform better if we used movdqa (i.e. TImode) instead? Perhaps even better would be if we could determine the real mode of the data, via a hook into pass_stdarg. Ignore all that for now. */ smode = V4SFmode; if (crtl->stack_alignment_needed < GET_MODE_ALIGNMENT (smode)) crtl->stack_alignment_needed = GET_MODE_ALIGNMENT (smode); max = cum->sse_regno + cfun->va_list_fpr_size / 16; if (max > X86_64_SSE_REGPARM_MAX) max = X86_64_SSE_REGPARM_MAX; for (i = cum->sse_regno; i < max; ++i) { mem = plus_constant (Pmode, save_area, i * 16 + ix86_varargs_gpr_size); mem = gen_rtx_MEM (smode, mem); MEM_NOTRAP_P (mem) = 1; set_mem_alias_set (mem, set); set_mem_align (mem, GET_MODE_ALIGNMENT (smode)); emit_move_insn (mem, gen_rtx_REG (smode, SSE_REGNO (i))); } emit_label (label); } } static void setup_incoming_varargs_ms_64 (CUMULATIVE_ARGS *cum) { alias_set_type set = get_varargs_alias_set (); int i; /* Reset to zero, as there might be a sysv vaarg used before. */ ix86_varargs_gpr_size = 0; ix86_varargs_fpr_size = 0; for (i = cum->regno; i < X86_64_MS_REGPARM_MAX; i++) { rtx reg, mem; mem = gen_rtx_MEM (Pmode, plus_constant (Pmode, virtual_incoming_args_rtx, i * UNITS_PER_WORD)); MEM_NOTRAP_P (mem) = 1; set_mem_alias_set (mem, set); reg = gen_rtx_REG (Pmode, x86_64_ms_abi_int_parameter_registers[i]); emit_move_insn (mem, reg); } } static void ix86_setup_incoming_varargs (cumulative_args_t cum_v, enum machine_mode mode, tree type, int *pretend_size ATTRIBUTE_UNUSED, int no_rtl) { CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v); CUMULATIVE_ARGS next_cum; tree fntype; /* This argument doesn't appear to be used anymore. Which is good, because the old code here didn't suppress rtl generation. */ gcc_assert (!no_rtl); if (!TARGET_64BIT) return; fntype = TREE_TYPE (current_function_decl); /* For varargs, we do not want to skip the dummy va_dcl argument. For stdargs, we do want to skip the last named argument. */ next_cum = *cum; if (stdarg_p (fntype)) ix86_function_arg_advance (pack_cumulative_args (&next_cum), mode, type, true); if (cum->call_abi == MS_ABI) setup_incoming_varargs_ms_64 (&next_cum); else setup_incoming_varargs_64 (&next_cum); } /* Checks if TYPE is of kind va_list char *. */ static bool is_va_list_char_pointer (tree type) { tree canonic; /* For 32-bit it is always true. */ if (!TARGET_64BIT) return true; canonic = ix86_canonical_va_list_type (type); return (canonic == ms_va_list_type_node || (ix86_abi == MS_ABI && canonic == va_list_type_node)); } /* Implement va_start. */ static void ix86_va_start (tree valist, rtx nextarg) { HOST_WIDE_INT words, n_gpr, n_fpr; tree f_gpr, f_fpr, f_ovf, f_sav; tree gpr, fpr, ovf, sav, t; tree type; rtx ovf_rtx; if (flag_split_stack && cfun->machine->split_stack_varargs_pointer == NULL_RTX) { unsigned int scratch_regno; /* When we are splitting the stack, we can't refer to the stack arguments using internal_arg_pointer, because they may be on the old stack. The split stack prologue will arrange to leave a pointer to the old stack arguments in a scratch register, which we here copy to a pseudo-register. The split stack prologue can't set the pseudo-register directly because it (the prologue) runs before any registers have been saved. */ scratch_regno = split_stack_prologue_scratch_regno (); if (scratch_regno != INVALID_REGNUM) { rtx reg, seq; reg = gen_reg_rtx (Pmode); cfun->machine->split_stack_varargs_pointer = reg; start_sequence (); emit_move_insn (reg, gen_rtx_REG (Pmode, scratch_regno)); seq = get_insns (); end_sequence (); push_topmost_sequence (); emit_insn_after (seq, entry_of_function ()); pop_topmost_sequence (); } } /* Only 64bit target needs something special. */ if (!TARGET_64BIT || is_va_list_char_pointer (TREE_TYPE (valist))) { if (cfun->machine->split_stack_varargs_pointer == NULL_RTX) std_expand_builtin_va_start (valist, nextarg); else { rtx va_r, next; va_r = expand_expr (valist, NULL_RTX, VOIDmode, EXPAND_WRITE); next = expand_binop (ptr_mode, add_optab, cfun->machine->split_stack_varargs_pointer, crtl->args.arg_offset_rtx, NULL_RTX, 0, OPTAB_LIB_WIDEN); convert_move (va_r, next, 0); } return; } f_gpr = TYPE_FIELDS (TREE_TYPE (sysv_va_list_type_node)); f_fpr = DECL_CHAIN (f_gpr); f_ovf = DECL_CHAIN (f_fpr); f_sav = DECL_CHAIN (f_ovf); valist = build_simple_mem_ref (valist); TREE_TYPE (valist) = TREE_TYPE (sysv_va_list_type_node); /* The following should be folded into the MEM_REF offset. */ gpr = build3 (COMPONENT_REF, TREE_TYPE (f_gpr), unshare_expr (valist), f_gpr, NULL_TREE); fpr = build3 (COMPONENT_REF, TREE_TYPE (f_fpr), unshare_expr (valist), f_fpr, NULL_TREE); ovf = build3 (COMPONENT_REF, TREE_TYPE (f_ovf), unshare_expr (valist), f_ovf, NULL_TREE); sav = build3 (COMPONENT_REF, TREE_TYPE (f_sav), unshare_expr (valist), f_sav, NULL_TREE); /* Count number of gp and fp argument registers used. */ words = crtl->args.info.words; n_gpr = crtl->args.info.regno; n_fpr = crtl->args.info.sse_regno; if (cfun->va_list_gpr_size) { type = TREE_TYPE (gpr); t = build2 (MODIFY_EXPR, type, gpr, build_int_cst (type, n_gpr * 8)); TREE_SIDE_EFFECTS (t) = 1; expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); } if (TARGET_SSE && cfun->va_list_fpr_size) { type = TREE_TYPE (fpr); t = build2 (MODIFY_EXPR, type, fpr, build_int_cst (type, n_fpr * 16 + 8*X86_64_REGPARM_MAX)); TREE_SIDE_EFFECTS (t) = 1; expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); } /* Find the overflow area. */ type = TREE_TYPE (ovf); if (cfun->machine->split_stack_varargs_pointer == NULL_RTX) ovf_rtx = crtl->args.internal_arg_pointer; else ovf_rtx = cfun->machine->split_stack_varargs_pointer; t = make_tree (type, ovf_rtx); if (words != 0) t = fold_build_pointer_plus_hwi (t, words * UNITS_PER_WORD); t = build2 (MODIFY_EXPR, type, ovf, t); TREE_SIDE_EFFECTS (t) = 1; expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); if (ix86_varargs_gpr_size || ix86_varargs_fpr_size) { /* Find the register save area. Prologue of the function save it right above stack frame. */ type = TREE_TYPE (sav); t = make_tree (type, frame_pointer_rtx); if (!ix86_varargs_gpr_size) t = fold_build_pointer_plus_hwi (t, -8 * X86_64_REGPARM_MAX); t = build2 (MODIFY_EXPR, type, sav, t); TREE_SIDE_EFFECTS (t) = 1; expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); } } /* Implement va_arg. */ static tree ix86_gimplify_va_arg (tree valist, tree type, gimple_seq *pre_p, gimple_seq *post_p) { static const int intreg[6] = { 0, 1, 2, 3, 4, 5 }; tree f_gpr, f_fpr, f_ovf, f_sav; tree gpr, fpr, ovf, sav, t; int size, rsize; tree lab_false, lab_over = NULL_TREE; tree addr, t2; rtx container; int indirect_p = 0; tree ptrtype; enum machine_mode nat_mode; unsigned int arg_boundary; /* Only 64bit target needs something special. */ if (!TARGET_64BIT || is_va_list_char_pointer (TREE_TYPE (valist))) return std_gimplify_va_arg_expr (valist, type, pre_p, post_p); f_gpr = TYPE_FIELDS (TREE_TYPE (sysv_va_list_type_node)); f_fpr = DECL_CHAIN (f_gpr); f_ovf = DECL_CHAIN (f_fpr); f_sav = DECL_CHAIN (f_ovf); gpr = build3 (COMPONENT_REF, TREE_TYPE (f_gpr), build_va_arg_indirect_ref (valist), f_gpr, NULL_TREE); valist = build_va_arg_indirect_ref (valist); fpr = build3 (COMPONENT_REF, TREE_TYPE (f_fpr), valist, f_fpr, NULL_TREE); ovf = build3 (COMPONENT_REF, TREE_TYPE (f_ovf), valist, f_ovf, NULL_TREE); sav = build3 (COMPONENT_REF, TREE_TYPE (f_sav), valist, f_sav, NULL_TREE); indirect_p = pass_by_reference (NULL, TYPE_MODE (type), type, false); if (indirect_p) type = build_pointer_type (type); size = int_size_in_bytes (type); rsize = (size + UNITS_PER_WORD - 1) / UNITS_PER_WORD; nat_mode = type_natural_mode (type, NULL); switch (nat_mode) { case V8SFmode: case V8SImode: case V32QImode: case V16HImode: case V4DFmode: case V4DImode: /* Unnamed 256bit vector mode parameters are passed on stack. */ if (!TARGET_64BIT_MS_ABI) { container = NULL; break; } default: container = construct_container (nat_mode, TYPE_MODE (type), type, 0, X86_64_REGPARM_MAX, X86_64_SSE_REGPARM_MAX, intreg, 0); break; } /* Pull the value out of the saved registers. */ addr = create_tmp_var (ptr_type_node, "addr"); if (container) { int needed_intregs, needed_sseregs; bool need_temp; tree int_addr, sse_addr; lab_false = create_artificial_label (UNKNOWN_LOCATION); lab_over = create_artificial_label (UNKNOWN_LOCATION); examine_argument (nat_mode, type, 0, &needed_intregs, &needed_sseregs); need_temp = (!REG_P (container) && ((needed_intregs && TYPE_ALIGN (type) > 64) || TYPE_ALIGN (type) > 128)); /* In case we are passing structure, verify that it is consecutive block on the register save area. If not we need to do moves. */ if (!need_temp && !REG_P (container)) { /* Verify that all registers are strictly consecutive */ if (SSE_REGNO_P (REGNO (XEXP (XVECEXP (container, 0, 0), 0)))) { int i; for (i = 0; i < XVECLEN (container, 0) && !need_temp; i++) { rtx slot = XVECEXP (container, 0, i); if (REGNO (XEXP (slot, 0)) != FIRST_SSE_REG + (unsigned int) i || INTVAL (XEXP (slot, 1)) != i * 16) need_temp = 1; } } else { int i; for (i = 0; i < XVECLEN (container, 0) && !need_temp; i++) { rtx slot = XVECEXP (container, 0, i); if (REGNO (XEXP (slot, 0)) != (unsigned int) i || INTVAL (XEXP (slot, 1)) != i * 8) need_temp = 1; } } } if (!need_temp) { int_addr = addr; sse_addr = addr; } else { int_addr = create_tmp_var (ptr_type_node, "int_addr"); sse_addr = create_tmp_var (ptr_type_node, "sse_addr"); } /* First ensure that we fit completely in registers. */ if (needed_intregs) { t = build_int_cst (TREE_TYPE (gpr), (X86_64_REGPARM_MAX - needed_intregs + 1) * 8); t = build2 (GE_EXPR, boolean_type_node, gpr, t); t2 = build1 (GOTO_EXPR, void_type_node, lab_false); t = build3 (COND_EXPR, void_type_node, t, t2, NULL_TREE); gimplify_and_add (t, pre_p); } if (needed_sseregs) { t = build_int_cst (TREE_TYPE (fpr), (X86_64_SSE_REGPARM_MAX - needed_sseregs + 1) * 16 + X86_64_REGPARM_MAX * 8); t = build2 (GE_EXPR, boolean_type_node, fpr, t); t2 = build1 (GOTO_EXPR, void_type_node, lab_false); t = build3 (COND_EXPR, void_type_node, t, t2, NULL_TREE); gimplify_and_add (t, pre_p); } /* Compute index to start of area used for integer regs. */ if (needed_intregs) { /* int_addr = gpr + sav; */ t = fold_build_pointer_plus (sav, gpr); gimplify_assign (int_addr, t, pre_p); } if (needed_sseregs) { /* sse_addr = fpr + sav; */ t = fold_build_pointer_plus (sav, fpr); gimplify_assign (sse_addr, t, pre_p); } if (need_temp) { int i, prev_size = 0; tree temp = create_tmp_var (type, "va_arg_tmp"); /* addr = &temp; */ t = build1 (ADDR_EXPR, build_pointer_type (type), temp); gimplify_assign (addr, t, pre_p); for (i = 0; i < XVECLEN (container, 0); i++) { rtx slot = XVECEXP (container, 0, i); rtx reg = XEXP (slot, 0); enum machine_mode mode = GET_MODE (reg); tree piece_type; tree addr_type; tree daddr_type; tree src_addr, src; int src_offset; tree dest_addr, dest; int cur_size = GET_MODE_SIZE (mode); gcc_assert (prev_size <= INTVAL (XEXP (slot, 1))); prev_size = INTVAL (XEXP (slot, 1)); if (prev_size + cur_size > size) { cur_size = size - prev_size; mode = mode_for_size (cur_size * BITS_PER_UNIT, MODE_INT, 1); if (mode == BLKmode) mode = QImode; } piece_type = lang_hooks.types.type_for_mode (mode, 1); if (mode == GET_MODE (reg)) addr_type = build_pointer_type (piece_type); else addr_type = build_pointer_type_for_mode (piece_type, ptr_mode, true); daddr_type = build_pointer_type_for_mode (piece_type, ptr_mode, true); if (SSE_REGNO_P (REGNO (reg))) { src_addr = sse_addr; src_offset = (REGNO (reg) - FIRST_SSE_REG) * 16; } else { src_addr = int_addr; src_offset = REGNO (reg) * 8; } src_addr = fold_convert (addr_type, src_addr); src_addr = fold_build_pointer_plus_hwi (src_addr, src_offset); dest_addr = fold_convert (daddr_type, addr); dest_addr = fold_build_pointer_plus_hwi (dest_addr, prev_size); if (cur_size == GET_MODE_SIZE (mode)) { src = build_va_arg_indirect_ref (src_addr); dest = build_va_arg_indirect_ref (dest_addr); gimplify_assign (dest, src, pre_p); } else { tree copy = build_call_expr (builtin_decl_implicit (BUILT_IN_MEMCPY), 3, dest_addr, src_addr, size_int (cur_size)); gimplify_and_add (copy, pre_p); } prev_size += cur_size; } } if (needed_intregs) { t = build2 (PLUS_EXPR, TREE_TYPE (gpr), gpr, build_int_cst (TREE_TYPE (gpr), needed_intregs * 8)); gimplify_assign (gpr, t, pre_p); } if (needed_sseregs) { t = build2 (PLUS_EXPR, TREE_TYPE (fpr), fpr, build_int_cst (TREE_TYPE (fpr), needed_sseregs * 16)); gimplify_assign (fpr, t, pre_p); } gimple_seq_add_stmt (pre_p, gimple_build_goto (lab_over)); gimple_seq_add_stmt (pre_p, gimple_build_label (lab_false)); } /* ... otherwise out of the overflow area. */ /* When we align parameter on stack for caller, if the parameter alignment is beyond MAX_SUPPORTED_STACK_ALIGNMENT, it will be aligned at MAX_SUPPORTED_STACK_ALIGNMENT. We will match callee here with caller. */ arg_boundary = ix86_function_arg_boundary (VOIDmode, type); if ((unsigned int) arg_boundary > MAX_SUPPORTED_STACK_ALIGNMENT) arg_boundary = MAX_SUPPORTED_STACK_ALIGNMENT; /* Care for on-stack alignment if needed. */ if (arg_boundary <= 64 || size == 0) t = ovf; else { HOST_WIDE_INT align = arg_boundary / 8; t = fold_build_pointer_plus_hwi (ovf, align - 1); t = build2 (BIT_AND_EXPR, TREE_TYPE (t), t, build_int_cst (TREE_TYPE (t), -align)); } gimplify_expr (&t, pre_p, NULL, is_gimple_val, fb_rvalue); gimplify_assign (addr, t, pre_p); t = fold_build_pointer_plus_hwi (t, rsize * UNITS_PER_WORD); gimplify_assign (unshare_expr (ovf), t, pre_p); if (container) gimple_seq_add_stmt (pre_p, gimple_build_label (lab_over)); ptrtype = build_pointer_type_for_mode (type, ptr_mode, true); addr = fold_convert (ptrtype, addr); if (indirect_p) addr = build_va_arg_indirect_ref (addr); return build_va_arg_indirect_ref (addr); } /* Return true if OPNUM's MEM should be matched in movabs* patterns. */ bool ix86_check_movabs (rtx insn, int opnum) { rtx set, mem; set = PATTERN (insn); if (GET_CODE (set) == PARALLEL) set = XVECEXP (set, 0, 0); gcc_assert (GET_CODE (set) == SET); mem = XEXP (set, opnum); while (GET_CODE (mem) == SUBREG) mem = SUBREG_REG (mem); gcc_assert (MEM_P (mem)); return volatile_ok || !MEM_VOLATILE_P (mem); } /* Initialize the table of extra 80387 mathematical constants. */ static void init_ext_80387_constants (void) { static const char * cst[5] = { "0.3010299956639811952256464283594894482", /* 0: fldlg2 */ "0.6931471805599453094286904741849753009", /* 1: fldln2 */ "1.4426950408889634073876517827983434472", /* 2: fldl2e */ "3.3219280948873623478083405569094566090", /* 3: fldl2t */ "3.1415926535897932385128089594061862044", /* 4: fldpi */ }; int i; for (i = 0; i < 5; i++) { real_from_string (&ext_80387_constants_table[i], cst[i]); /* Ensure each constant is rounded to XFmode precision. */ real_convert (&ext_80387_constants_table[i], XFmode, &ext_80387_constants_table[i]); } ext_80387_constants_init = 1; } /* Return non-zero if the constant is something that can be loaded with a special instruction. */ int standard_80387_constant_p (rtx x) { enum machine_mode mode = GET_MODE (x); REAL_VALUE_TYPE r; if (!(X87_FLOAT_MODE_P (mode) && (GET_CODE (x) == CONST_DOUBLE))) return -1; if (x == CONST0_RTX (mode)) return 1; if (x == CONST1_RTX (mode)) return 2; REAL_VALUE_FROM_CONST_DOUBLE (r, x); /* For XFmode constants, try to find a special 80387 instruction when optimizing for size or on those CPUs that benefit from them. */ if (mode == XFmode && (optimize_function_for_size_p (cfun) || TARGET_EXT_80387_CONSTANTS)) { int i; if (! ext_80387_constants_init) init_ext_80387_constants (); for (i = 0; i < 5; i++) if (real_identical (&r, &ext_80387_constants_table[i])) return i + 3; } /* Load of the constant -0.0 or -1.0 will be split as fldz;fchs or fld1;fchs sequence. */ if (real_isnegzero (&r)) return 8; if (real_identical (&r, &dconstm1)) return 9; return 0; } /* Return the opcode of the special instruction to be used to load the constant X. */ const char * standard_80387_constant_opcode (rtx x) { switch (standard_80387_constant_p (x)) { case 1: return "fldz"; case 2: return "fld1"; case 3: return "fldlg2"; case 4: return "fldln2"; case 5: return "fldl2e"; case 6: return "fldl2t"; case 7: return "fldpi"; case 8: case 9: return "#"; default: gcc_unreachable (); } } /* Return the CONST_DOUBLE representing the 80387 constant that is loaded by the specified special instruction. The argument IDX matches the return value from standard_80387_constant_p. */ rtx standard_80387_constant_rtx (int idx) { int i; if (! ext_80387_constants_init) init_ext_80387_constants (); switch (idx) { case 3: case 4: case 5: case 6: case 7: i = idx - 3; break; default: gcc_unreachable (); } return CONST_DOUBLE_FROM_REAL_VALUE (ext_80387_constants_table[i], XFmode); } /* Return 1 if X is all 0s and 2 if x is all 1s in supported SSE/AVX vector mode. */ int standard_sse_constant_p (rtx x) { enum machine_mode mode = GET_MODE (x); if (x == const0_rtx || x == CONST0_RTX (GET_MODE (x))) return 1; if (vector_all_ones_operand (x, mode)) switch (mode) { case V16QImode: case V8HImode: case V4SImode: case V2DImode: if (TARGET_SSE2) return 2; case V32QImode: case V16HImode: case V8SImode: case V4DImode: if (TARGET_AVX2) return 2; default: break; } return 0; } /* Return the opcode of the special instruction to be used to load the constant X. */ const char * standard_sse_constant_opcode (rtx insn, rtx x) { switch (standard_sse_constant_p (x)) { case 1: switch (get_attr_mode (insn)) { case MODE_TI: return "%vpxor\t%0, %d0"; case MODE_V2DF: return "%vxorpd\t%0, %d0"; case MODE_V4SF: return "%vxorps\t%0, %d0"; case MODE_OI: return "vpxor\t%x0, %x0, %x0"; case MODE_V4DF: return "vxorpd\t%x0, %x0, %x0"; case MODE_V8SF: return "vxorps\t%x0, %x0, %x0"; default: break; } case 2: if (get_attr_mode (insn) == MODE_XI || get_attr_mode (insn) == MODE_V8DF || get_attr_mode (insn) == MODE_V16SF) return "vpternlogd\t{$0xFF, %g0, %g0, %g0|%g0, %g0, %g0, 0xFF}"; if (TARGET_AVX) return "vpcmpeqd\t%0, %0, %0"; else return "pcmpeqd\t%0, %0"; default: break; } gcc_unreachable (); } /* Returns true if OP contains a symbol reference */ bool symbolic_reference_mentioned_p (rtx op) { const char *fmt; int i; if (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == LABEL_REF) return true; fmt = GET_RTX_FORMAT (GET_CODE (op)); for (i = GET_RTX_LENGTH (GET_CODE (op)) - 1; i >= 0; i--) { if (fmt[i] == 'E') { int j; for (j = XVECLEN (op, i) - 1; j >= 0; j--) if (symbolic_reference_mentioned_p (XVECEXP (op, i, j))) return true; } else if (fmt[i] == 'e' && symbolic_reference_mentioned_p (XEXP (op, i))) return true; } return false; } /* Return true if it is appropriate to emit `ret' instructions in the body of a function. Do this only if the epilogue is simple, needing a couple of insns. Prior to reloading, we can't tell how many registers must be saved, so return false then. Return false if there is no frame marker to de-allocate. */ bool ix86_can_use_return_insn_p (void) { struct ix86_frame frame; if (! reload_completed || frame_pointer_needed) return 0; /* Don't allow more than 32k pop, since that's all we can do with one instruction. */ if (crtl->args.pops_args && crtl->args.size >= 32768) return 0; ix86_compute_frame_layout (&frame); return (frame.stack_pointer_offset == UNITS_PER_WORD && (frame.nregs + frame.nsseregs) == 0); } /* Value should be nonzero if functions must have frame pointers. Zero means the frame pointer need not be set up (and parms may be accessed via the stack pointer) in functions that seem suitable. */ static bool ix86_frame_pointer_required (void) { /* If we accessed previous frames, then the generated code expects to be able to access the saved ebp value in our frame. */ if (cfun->machine->accesses_prev_frame) return true; /* Several x86 os'es need a frame pointer for other reasons, usually pertaining to setjmp. */ if (SUBTARGET_FRAME_POINTER_REQUIRED) return true; /* For older 32-bit runtimes setjmp requires valid frame-pointer. */ if (TARGET_32BIT_MS_ABI && cfun->calls_setjmp) return true; /* Win64 SEH, very large frames need a frame-pointer as maximum stack allocation is 4GB. */ if (TARGET_64BIT_MS_ABI && get_frame_size () > SEH_MAX_FRAME_SIZE) return true; /* In ix86_option_override_internal, TARGET_OMIT_LEAF_FRAME_POINTER turns off the frame pointer by default. Turn it back on now if we've not got a leaf function. */ if (TARGET_OMIT_LEAF_FRAME_POINTER && (!crtl->is_leaf || ix86_current_function_calls_tls_descriptor)) return true; if (crtl->profile && !flag_fentry) return true; return false; } /* Record that the current function accesses previous call frames. */ void ix86_setup_frame_addresses (void) { cfun->machine->accesses_prev_frame = 1; } #ifndef USE_HIDDEN_LINKONCE # if defined(HAVE_GAS_HIDDEN) && (SUPPORTS_ONE_ONLY - 0) # define USE_HIDDEN_LINKONCE 1 # else # define USE_HIDDEN_LINKONCE 0 # endif #endif static int pic_labels_used; /* Fills in the label name that should be used for a pc thunk for the given register. */ static void get_pc_thunk_name (char name[32], unsigned int regno) { gcc_assert (!TARGET_64BIT); if (USE_HIDDEN_LINKONCE) sprintf (name, "__x86.get_pc_thunk.%s", reg_names[regno]); else ASM_GENERATE_INTERNAL_LABEL (name, "LPR", regno); } /* This function generates code for -fpic that loads %ebx with the return address of the caller and then returns. */ static void ix86_code_end (void) { rtx xops[2]; int regno; for (regno = AX_REG; regno <= SP_REG; regno++) { char name[32]; tree decl; if (!(pic_labels_used & (1 << regno))) continue; get_pc_thunk_name (name, regno); decl = build_decl (BUILTINS_LOCATION, FUNCTION_DECL, get_identifier (name), build_function_type_list (void_type_node, NULL_TREE)); DECL_RESULT (decl) = build_decl (BUILTINS_LOCATION, RESULT_DECL, NULL_TREE, void_type_node); TREE_PUBLIC (decl) = 1; TREE_STATIC (decl) = 1; DECL_IGNORED_P (decl) = 1; #if TARGET_MACHO if (TARGET_MACHO) { switch_to_section (darwin_sections[text_coal_section]); fputs ("\t.weak_definition\t", asm_out_file); assemble_name (asm_out_file, name); fputs ("\n\t.private_extern\t", asm_out_file); assemble_name (asm_out_file, name); putc ('\n', asm_out_file); ASM_OUTPUT_LABEL (asm_out_file, name); DECL_WEAK (decl) = 1; } else #endif if (USE_HIDDEN_LINKONCE) { DECL_COMDAT_GROUP (decl) = DECL_ASSEMBLER_NAME (decl); targetm.asm_out.unique_section (decl, 0); switch_to_section (get_named_section (decl, NULL, 0)); targetm.asm_out.globalize_label (asm_out_file, name); fputs ("\t.hidden\t", asm_out_file); assemble_name (asm_out_file, name); putc ('\n', asm_out_file); ASM_DECLARE_FUNCTION_NAME (asm_out_file, name, decl); } else { switch_to_section (text_section); ASM_OUTPUT_LABEL (asm_out_file, name); } DECL_INITIAL (decl) = make_node (BLOCK); current_function_decl = decl; init_function_start (decl); first_function_block_is_cold = false; /* Make sure unwind info is emitted for the thunk if needed. */ final_start_function (emit_barrier (), asm_out_file, 1); /* Pad stack IP move with 4 instructions (two NOPs count as one instruction). */ if (TARGET_PAD_SHORT_FUNCTION) { int i = 8; while (i--) fputs ("\tnop\n", asm_out_file); } xops[0] = gen_rtx_REG (Pmode, regno); xops[1] = gen_rtx_MEM (Pmode, stack_pointer_rtx); output_asm_insn ("mov%z0\t{%1, %0|%0, %1}", xops); output_asm_insn ("%!ret", NULL); final_end_function (); init_insn_lengths (); free_after_compilation (cfun); set_cfun (NULL); current_function_decl = NULL; } if (flag_split_stack) file_end_indicate_split_stack (); } /* Emit code for the SET_GOT patterns. */ const char * output_set_got (rtx dest, rtx label) { rtx xops[3]; xops[0] = dest; if (TARGET_VXWORKS_RTP && flag_pic) { /* Load (*VXWORKS_GOTT_BASE) into the PIC register. */ xops[2] = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, VXWORKS_GOTT_BASE)); output_asm_insn ("mov{l}\t{%2, %0|%0, %2}", xops); /* Load (*VXWORKS_GOTT_BASE)[VXWORKS_GOTT_INDEX] into the PIC register. Use %P and a local symbol in order to print VXWORKS_GOTT_INDEX as an unadorned address. */ xops[2] = gen_rtx_SYMBOL_REF (Pmode, VXWORKS_GOTT_INDEX); SYMBOL_REF_FLAGS (xops[2]) |= SYMBOL_FLAG_LOCAL; output_asm_insn ("mov{l}\t{%P2(%0), %0|%0, DWORD PTR %P2[%0]}", xops); return ""; } xops[1] = gen_rtx_SYMBOL_REF (Pmode, GOT_SYMBOL_NAME); if (!flag_pic) { if (TARGET_MACHO) /* We don't need a pic base, we're not producing pic. */ gcc_unreachable (); xops[2] = gen_rtx_LABEL_REF (Pmode, label ? label : gen_label_rtx ()); output_asm_insn ("mov%z0\t{%2, %0|%0, %2}", xops); targetm.asm_out.internal_label (asm_out_file, "L", CODE_LABEL_NUMBER (XEXP (xops[2], 0))); } else { char name[32]; get_pc_thunk_name (name, REGNO (dest)); pic_labels_used |= 1 << REGNO (dest); xops[2] = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (name)); xops[2] = gen_rtx_MEM (QImode, xops[2]); output_asm_insn ("%!call\t%X2", xops); #if TARGET_MACHO /* Output the Mach-O "canonical" pic base label name ("Lxx$pb") here. This is what will be referenced by the Mach-O PIC subsystem. */ if (machopic_should_output_picbase_label () || !label) ASM_OUTPUT_LABEL (asm_out_file, MACHOPIC_FUNCTION_BASE_NAME); /* When we are restoring the pic base at the site of a nonlocal label, and we decided to emit the pic base above, we will still output a local label used for calculating the correction offset (even though the offset will be 0 in that case). */ if (label) targetm.asm_out.internal_label (asm_out_file, "L", CODE_LABEL_NUMBER (label)); #endif } if (!TARGET_MACHO) output_asm_insn ("add%z0\t{%1, %0|%0, %1}", xops); return ""; } /* Generate an "push" pattern for input ARG. */ static rtx gen_push (rtx arg) { struct machine_function *m = cfun->machine; if (m->fs.cfa_reg == stack_pointer_rtx) m->fs.cfa_offset += UNITS_PER_WORD; m->fs.sp_offset += UNITS_PER_WORD; if (REG_P (arg) && GET_MODE (arg) != word_mode) arg = gen_rtx_REG (word_mode, REGNO (arg)); return gen_rtx_SET (VOIDmode, gen_rtx_MEM (word_mode, gen_rtx_PRE_DEC (Pmode, stack_pointer_rtx)), arg); } /* Generate an "pop" pattern for input ARG. */ static rtx gen_pop (rtx arg) { if (REG_P (arg) && GET_MODE (arg) != word_mode) arg = gen_rtx_REG (word_mode, REGNO (arg)); return gen_rtx_SET (VOIDmode, arg, gen_rtx_MEM (word_mode, gen_rtx_POST_INC (Pmode, stack_pointer_rtx))); } /* Return >= 0 if there is an unused call-clobbered register available for the entire function. */ static unsigned int ix86_select_alt_pic_regnum (void) { if (crtl->is_leaf && !crtl->profile && !ix86_current_function_calls_tls_descriptor) { int i, drap; /* Can't use the same register for both PIC and DRAP. */ if (crtl->drap_reg) drap = REGNO (crtl->drap_reg); else drap = -1; for (i = 2; i >= 0; --i) if (i != drap && !df_regs_ever_live_p (i)) return i; } return INVALID_REGNUM; } /* Return TRUE if we need to save REGNO. */ static bool ix86_save_reg (unsigned int regno, bool maybe_eh_return) { if (pic_offset_table_rtx && regno == REAL_PIC_OFFSET_TABLE_REGNUM && (df_regs_ever_live_p (REAL_PIC_OFFSET_TABLE_REGNUM) || crtl->profile || crtl->calls_eh_return || crtl->uses_const_pool || cfun->has_nonlocal_label)) return ix86_select_alt_pic_regnum () == INVALID_REGNUM; if (crtl->calls_eh_return && maybe_eh_return) { unsigned i; for (i = 0; ; i++) { unsigned test = EH_RETURN_DATA_REGNO (i); if (test == INVALID_REGNUM) break; if (test == regno) return true; } } if (crtl->drap_reg && regno == REGNO (crtl->drap_reg)) return true; return (df_regs_ever_live_p (regno) && !call_used_regs[regno] && !fixed_regs[regno] && (regno != HARD_FRAME_POINTER_REGNUM || !frame_pointer_needed)); } /* Return number of saved general prupose registers. */ static int ix86_nsaved_regs (void) { int nregs = 0; int regno; for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) if (!SSE_REGNO_P (regno) && ix86_save_reg (regno, true)) nregs ++; return nregs; } /* Return number of saved SSE registrers. */ static int ix86_nsaved_sseregs (void) { int nregs = 0; int regno; if (!TARGET_64BIT_MS_ABI) return 0; for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) if (SSE_REGNO_P (regno) && ix86_save_reg (regno, true)) nregs ++; return nregs; } /* Given FROM and TO register numbers, say whether this elimination is allowed. If stack alignment is needed, we can only replace argument pointer with hard frame pointer, or replace frame pointer with stack pointer. Otherwise, frame pointer elimination is automatically handled and all other eliminations are valid. */ static bool ix86_can_eliminate (const int from, const int to) { if (stack_realign_fp) return ((from == ARG_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM) || (from == FRAME_POINTER_REGNUM && to == STACK_POINTER_REGNUM)); else return to == STACK_POINTER_REGNUM ? !frame_pointer_needed : true; } /* Return the offset between two registers, one to be eliminated, and the other its replacement, at the start of a routine. */ HOST_WIDE_INT ix86_initial_elimination_offset (int from, int to) { struct ix86_frame frame; ix86_compute_frame_layout (&frame); if (from == ARG_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM) return frame.hard_frame_pointer_offset; else if (from == FRAME_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM) return frame.hard_frame_pointer_offset - frame.frame_pointer_offset; else { gcc_assert (to == STACK_POINTER_REGNUM); if (from == ARG_POINTER_REGNUM) return frame.stack_pointer_offset; gcc_assert (from == FRAME_POINTER_REGNUM); return frame.stack_pointer_offset - frame.frame_pointer_offset; } } /* In a dynamically-aligned function, we can't know the offset from stack pointer to frame pointer, so we must ensure that setjmp eliminates fp against the hard fp (%ebp) rather than trying to index from %esp up to the top of the frame across a gap that is of unknown (at compile-time) size. */ static rtx ix86_builtin_setjmp_frame_value (void) { return stack_realign_fp ? hard_frame_pointer_rtx : virtual_stack_vars_rtx; } /* When using -fsplit-stack, the allocation routines set a field in the TCB to the bottom of the stack plus this much space, measured in bytes. */ #define SPLIT_STACK_AVAILABLE 256 /* Fill structure ix86_frame about frame of currently computed function. */ static void ix86_compute_frame_layout (struct ix86_frame *frame) { unsigned HOST_WIDE_INT stack_alignment_needed; HOST_WIDE_INT offset; unsigned HOST_WIDE_INT preferred_alignment; HOST_WIDE_INT size = get_frame_size (); HOST_WIDE_INT to_allocate; frame->nregs = ix86_nsaved_regs (); frame->nsseregs = ix86_nsaved_sseregs (); stack_alignment_needed = crtl->stack_alignment_needed / BITS_PER_UNIT; preferred_alignment = crtl->preferred_stack_boundary / BITS_PER_UNIT; /* 64-bit MS ABI seem to require stack alignment to be always 16 except for function prologues and leaf. */ if ((TARGET_64BIT_MS_ABI && preferred_alignment < 16) && (!crtl->is_leaf || cfun->calls_alloca != 0 || ix86_current_function_calls_tls_descriptor)) { preferred_alignment = 16; stack_alignment_needed = 16; crtl->preferred_stack_boundary = 128; crtl->stack_alignment_needed = 128; } gcc_assert (!size || stack_alignment_needed); gcc_assert (preferred_alignment >= STACK_BOUNDARY / BITS_PER_UNIT); gcc_assert (preferred_alignment <= stack_alignment_needed); /* For SEH we have to limit the amount of code movement into the prologue. At present we do this via a BLOCKAGE, at which point there's very little scheduling that can be done, which means that there's very little point in doing anything except PUSHs. */ if (TARGET_SEH) cfun->machine->use_fast_prologue_epilogue = false; /* During reload iteration the amount of registers saved can change. Recompute the value as needed. Do not recompute when amount of registers didn't change as reload does multiple calls to the function and does not expect the decision to change within single iteration. */ else if (!optimize_bb_for_size_p (ENTRY_BLOCK_PTR_FOR_FN (cfun)) && cfun->machine->use_fast_prologue_epilogue_nregs != frame->nregs) { int count = frame->nregs; struct cgraph_node *node = cgraph_get_node (current_function_decl); cfun->machine->use_fast_prologue_epilogue_nregs = count; /* The fast prologue uses move instead of push to save registers. This is significantly longer, but also executes faster as modern hardware can execute the moves in parallel, but can't do that for push/pop. Be careful about choosing what prologue to emit: When function takes many instructions to execute we may use slow version as well as in case function is known to be outside hot spot (this is known with feedback only). Weight the size of function by number of registers to save as it is cheap to use one or two push instructions but very slow to use many of them. */ if (count) count = (count - 1) * FAST_PROLOGUE_INSN_COUNT; if (node->frequency < NODE_FREQUENCY_NORMAL || (flag_branch_probabilities && node->frequency < NODE_FREQUENCY_HOT)) cfun->machine->use_fast_prologue_epilogue = false; else cfun->machine->use_fast_prologue_epilogue = !expensive_function_p (count); } frame->save_regs_using_mov = (TARGET_PROLOGUE_USING_MOVE && cfun->machine->use_fast_prologue_epilogue /* If static stack checking is enabled and done with probes, the registers need to be saved before allocating the frame. */ && flag_stack_check != STATIC_BUILTIN_STACK_CHECK); /* Skip return address. */ offset = UNITS_PER_WORD; /* Skip pushed static chain. */ if (ix86_static_chain_on_stack) offset += UNITS_PER_WORD; /* Skip saved base pointer. */ if (frame_pointer_needed) offset += UNITS_PER_WORD; frame->hfp_save_offset = offset; /* The traditional frame pointer location is at the top of the frame. */ frame->hard_frame_pointer_offset = offset; /* Register save area */ offset += frame->nregs * UNITS_PER_WORD; frame->reg_save_offset = offset; /* On SEH target, registers are pushed just before the frame pointer location. */ if (TARGET_SEH) frame->hard_frame_pointer_offset = offset; /* Align and set SSE register save area. */ if (frame->nsseregs) { /* The only ABI that has saved SSE registers (Win64) also has a 16-byte aligned default stack, and thus we don't need to be within the re-aligned local stack frame to save them. */ gcc_assert (INCOMING_STACK_BOUNDARY >= 128); offset = (offset + 16 - 1) & -16; offset += frame->nsseregs * 16; } frame->sse_reg_save_offset = offset; /* The re-aligned stack starts here. Values before this point are not directly comparable with values below this point. In order to make sure that no value happens to be the same before and after, force the alignment computation below to add a non-zero value. */ if (stack_realign_fp) offset = (offset + stack_alignment_needed) & -stack_alignment_needed; /* Va-arg area */ frame->va_arg_size = ix86_varargs_gpr_size + ix86_varargs_fpr_size; offset += frame->va_arg_size; /* Align start of frame for local function. */ if (stack_realign_fp || offset != frame->sse_reg_save_offset || size != 0 || !crtl->is_leaf || cfun->calls_alloca || ix86_current_function_calls_tls_descriptor) offset = (offset + stack_alignment_needed - 1) & -stack_alignment_needed; /* Frame pointer points here. */ frame->frame_pointer_offset = offset; offset += size; /* Add outgoing arguments area. Can be skipped if we eliminated all the function calls as dead code. Skipping is however impossible when function calls alloca. Alloca expander assumes that last crtl->outgoing_args_size of stack frame are unused. */ if (ACCUMULATE_OUTGOING_ARGS && (!crtl->is_leaf || cfun->calls_alloca || ix86_current_function_calls_tls_descriptor)) { offset += crtl->outgoing_args_size; frame->outgoing_arguments_size = crtl->outgoing_args_size; } else frame->outgoing_arguments_size = 0; /* Align stack boundary. Only needed if we're calling another function or using alloca. */ if (!crtl->is_leaf || cfun->calls_alloca || ix86_current_function_calls_tls_descriptor) offset = (offset + preferred_alignment - 1) & -preferred_alignment; /* We've reached end of stack frame. */ frame->stack_pointer_offset = offset; /* Size prologue needs to allocate. */ to_allocate = offset - frame->sse_reg_save_offset; if ((!to_allocate && frame->nregs <= 1) || (TARGET_64BIT && to_allocate >= (HOST_WIDE_INT) 0x80000000)) frame->save_regs_using_mov = false; if (ix86_using_red_zone () && crtl->sp_is_unchanging && crtl->is_leaf && !ix86_current_function_calls_tls_descriptor) { frame->red_zone_size = to_allocate; if (frame->save_regs_using_mov) frame->red_zone_size += frame->nregs * UNITS_PER_WORD; if (frame->red_zone_size > RED_ZONE_SIZE - RED_ZONE_RESERVE) frame->red_zone_size = RED_ZONE_SIZE - RED_ZONE_RESERVE; } else frame->red_zone_size = 0; frame->stack_pointer_offset -= frame->red_zone_size; /* The SEH frame pointer location is near the bottom of the frame. This is enforced by the fact that the difference between the stack pointer and the frame pointer is limited to 240 bytes in the unwind data structure. */ if (TARGET_SEH) { HOST_WIDE_INT diff; /* If we can leave the frame pointer where it is, do so. Also, returns the establisher frame for __builtin_frame_address (0). */ diff = frame->stack_pointer_offset - frame->hard_frame_pointer_offset; if (diff <= SEH_MAX_FRAME_SIZE && (diff > 240 || (diff & 15) != 0) && !crtl->accesses_prior_frames) { /* Ideally we'd determine what portion of the local stack frame (within the constraint of the lowest 240) is most heavily used. But without that complication, simply bias the frame pointer by 128 bytes so as to maximize the amount of the local stack frame that is addressable with 8-bit offsets. */ frame->hard_frame_pointer_offset = frame->stack_pointer_offset - 128; } } } /* This is semi-inlined memory_address_length, but simplified since we know that we're always dealing with reg+offset, and to avoid having to create and discard all that rtl. */ static inline int choose_baseaddr_len (unsigned int regno, HOST_WIDE_INT offset) { int len = 4; if (offset == 0) { /* EBP and R13 cannot be encoded without an offset. */ len = (regno == BP_REG || regno == R13_REG); } else if (IN_RANGE (offset, -128, 127)) len = 1; /* ESP and R12 must be encoded with a SIB byte. */ if (regno == SP_REG || regno == R12_REG) len++; return len; } /* Return an RTX that points to CFA_OFFSET within the stack frame. The valid base registers are taken from CFUN->MACHINE->FS. */ static rtx choose_baseaddr (HOST_WIDE_INT cfa_offset) { const struct machine_function *m = cfun->machine; rtx base_reg = NULL; HOST_WIDE_INT base_offset = 0; if (m->use_fast_prologue_epilogue) { /* Choose the base register most likely to allow the most scheduling opportunities. Generally FP is valid throughout the function, while DRAP must be reloaded within the epilogue. But choose either over the SP due to increased encoding size. */ if (m->fs.fp_valid) { base_reg = hard_frame_pointer_rtx; base_offset = m->fs.fp_offset - cfa_offset; } else if (m->fs.drap_valid) { base_reg = crtl->drap_reg; base_offset = 0 - cfa_offset; } else if (m->fs.sp_valid) { base_reg = stack_pointer_rtx; base_offset = m->fs.sp_offset - cfa_offset; } } else { HOST_WIDE_INT toffset; int len = 16, tlen; /* Choose the base register with the smallest address encoding. With a tie, choose FP > DRAP > SP. */ if (m->fs.sp_valid) { base_reg = stack_pointer_rtx; base_offset = m->fs.sp_offset - cfa_offset; len = choose_baseaddr_len (STACK_POINTER_REGNUM, base_offset); } if (m->fs.drap_valid) { toffset = 0 - cfa_offset; tlen = choose_baseaddr_len (REGNO (crtl->drap_reg), toffset); if (tlen <= len) { base_reg = crtl->drap_reg; base_offset = toffset; len = tlen; } } if (m->fs.fp_valid) { toffset = m->fs.fp_offset - cfa_offset; tlen = choose_baseaddr_len (HARD_FRAME_POINTER_REGNUM, toffset); if (tlen <= len) { base_reg = hard_frame_pointer_rtx; base_offset = toffset; len = tlen; } } } gcc_assert (base_reg != NULL); return plus_constant (Pmode, base_reg, base_offset); } /* Emit code to save registers in the prologue. */ static void ix86_emit_save_regs (void) { unsigned int regno; rtx insn; for (regno = FIRST_PSEUDO_REGISTER - 1; regno-- > 0; ) if (!SSE_REGNO_P (regno) && ix86_save_reg (regno, true)) { insn = emit_insn (gen_push (gen_rtx_REG (word_mode, regno))); RTX_FRAME_RELATED_P (insn) = 1; } } /* Emit a single register save at CFA - CFA_OFFSET. */ static void ix86_emit_save_reg_using_mov (enum machine_mode mode, unsigned int regno, HOST_WIDE_INT cfa_offset) { struct machine_function *m = cfun->machine; rtx reg = gen_rtx_REG (mode, regno); rtx mem, addr, base, insn; addr = choose_baseaddr (cfa_offset); mem = gen_frame_mem (mode, addr); /* For SSE saves, we need to indicate the 128-bit alignment. */ set_mem_align (mem, GET_MODE_ALIGNMENT (mode)); insn = emit_move_insn (mem, reg); RTX_FRAME_RELATED_P (insn) = 1; base = addr; if (GET_CODE (base) == PLUS) base = XEXP (base, 0); gcc_checking_assert (REG_P (base)); /* When saving registers into a re-aligned local stack frame, avoid any tricky guessing by dwarf2out. */ if (m->fs.realigned) { gcc_checking_assert (stack_realign_drap); if (regno == REGNO (crtl->drap_reg)) { /* A bit of a hack. We force the DRAP register to be saved in the re-aligned stack frame, which provides us with a copy of the CFA that will last past the prologue. Install it. */ gcc_checking_assert (cfun->machine->fs.fp_valid); addr = plus_constant (Pmode, hard_frame_pointer_rtx, cfun->machine->fs.fp_offset - cfa_offset); mem = gen_rtx_MEM (mode, addr); add_reg_note (insn, REG_CFA_DEF_CFA, mem); } else { /* The frame pointer is a stable reference within the aligned frame. Use it. */ gcc_checking_assert (cfun->machine->fs.fp_valid); addr = plus_constant (Pmode, hard_frame_pointer_rtx, cfun->machine->fs.fp_offset - cfa_offset); mem = gen_rtx_MEM (mode, addr); add_reg_note (insn, REG_CFA_EXPRESSION, gen_rtx_SET (VOIDmode, mem, reg)); } } /* The memory may not be relative to the current CFA register, which means that we may need to generate a new pattern for use by the unwind info. */ else if (base != m->fs.cfa_reg) { addr = plus_constant (Pmode, m->fs.cfa_reg, m->fs.cfa_offset - cfa_offset); mem = gen_rtx_MEM (mode, addr); add_reg_note (insn, REG_CFA_OFFSET, gen_rtx_SET (VOIDmode, mem, reg)); } } /* Emit code to save registers using MOV insns. First register is stored at CFA - CFA_OFFSET. */ static void ix86_emit_save_regs_using_mov (HOST_WIDE_INT cfa_offset) { unsigned int regno; for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) if (!SSE_REGNO_P (regno) && ix86_save_reg (regno, true)) { ix86_emit_save_reg_using_mov (word_mode, regno, cfa_offset); cfa_offset -= UNITS_PER_WORD; } } /* Emit code to save SSE registers using MOV insns. First register is stored at CFA - CFA_OFFSET. */ static void ix86_emit_save_sse_regs_using_mov (HOST_WIDE_INT cfa_offset) { unsigned int regno; for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) if (SSE_REGNO_P (regno) && ix86_save_reg (regno, true)) { ix86_emit_save_reg_using_mov (V4SFmode, regno, cfa_offset); cfa_offset -= 16; } } static GTY(()) rtx queued_cfa_restores; /* Add a REG_CFA_RESTORE REG note to INSN or queue them until next stack manipulation insn. The value is on the stack at CFA - CFA_OFFSET. Don't add the note if the previously saved value will be left untouched within stack red-zone till return, as unwinders can find the same value in the register and on the stack. */ static void ix86_add_cfa_restore_note (rtx insn, rtx reg, HOST_WIDE_INT cfa_offset) { if (!crtl->shrink_wrapped && cfa_offset <= cfun->machine->fs.red_zone_offset) return; if (insn) { add_reg_note (insn, REG_CFA_RESTORE, reg); RTX_FRAME_RELATED_P (insn) = 1; } else queued_cfa_restores = alloc_reg_note (REG_CFA_RESTORE, reg, queued_cfa_restores); } /* Add queued REG_CFA_RESTORE notes if any to INSN. */ static void ix86_add_queued_cfa_restore_notes (rtx insn) { rtx last; if (!queued_cfa_restores) return; for (last = queued_cfa_restores; XEXP (last, 1); last = XEXP (last, 1)) ; XEXP (last, 1) = REG_NOTES (insn); REG_NOTES (insn) = queued_cfa_restores; queued_cfa_restores = NULL_RTX; RTX_FRAME_RELATED_P (insn) = 1; } /* Expand prologue or epilogue stack adjustment. The pattern exist to put a dependency on all ebp-based memory accesses. STYLE should be negative if instructions should be marked as frame related, zero if %r11 register is live and cannot be freely used and positive otherwise. */ static void pro_epilogue_adjust_stack (rtx dest, rtx src, rtx offset, int style, bool set_cfa) { struct machine_function *m = cfun->machine; rtx insn; bool add_frame_related_expr = false; if (Pmode == SImode) insn = gen_pro_epilogue_adjust_stack_si_add (dest, src, offset); else if (x86_64_immediate_operand (offset, DImode)) insn = gen_pro_epilogue_adjust_stack_di_add (dest, src, offset); else { rtx tmp; /* r11 is used by indirect sibcall return as well, set before the epilogue and used after the epilogue. */ if (style) tmp = gen_rtx_REG (DImode, R11_REG); else { gcc_assert (src != hard_frame_pointer_rtx && dest != hard_frame_pointer_rtx); tmp = hard_frame_pointer_rtx; } insn = emit_insn (gen_rtx_SET (DImode, tmp, offset)); if (style < 0) add_frame_related_expr = true; insn = gen_pro_epilogue_adjust_stack_di_add (dest, src, tmp); } insn = emit_insn (insn); if (style >= 0) ix86_add_queued_cfa_restore_notes (insn); if (set_cfa) { rtx r; gcc_assert (m->fs.cfa_reg == src); m->fs.cfa_offset += INTVAL (offset); m->fs.cfa_reg = dest; r = gen_rtx_PLUS (Pmode, src, offset); r = gen_rtx_SET (VOIDmode, dest, r); add_reg_note (insn, REG_CFA_ADJUST_CFA, r); RTX_FRAME_RELATED_P (insn) = 1; } else if (style < 0) { RTX_FRAME_RELATED_P (insn) = 1; if (add_frame_related_expr) { rtx r = gen_rtx_PLUS (Pmode, src, offset); r = gen_rtx_SET (VOIDmode, dest, r); add_reg_note (insn, REG_FRAME_RELATED_EXPR, r); } } if (dest == stack_pointer_rtx) { HOST_WIDE_INT ooffset = m->fs.sp_offset; bool valid = m->fs.sp_valid; if (src == hard_frame_pointer_rtx) { valid = m->fs.fp_valid; ooffset = m->fs.fp_offset; } else if (src == crtl->drap_reg) { valid = m->fs.drap_valid; ooffset = 0; } else { /* Else there are two possibilities: SP itself, which we set up as the default above. Or EH_RETURN_STACKADJ_RTX, which is taken care of this by hand along the eh_return path. */ gcc_checking_assert (src == stack_pointer_rtx || offset == const0_rtx); } m->fs.sp_offset = ooffset - INTVAL (offset); m->fs.sp_valid = valid; } } /* Find an available register to be used as dynamic realign argument pointer regsiter. Such a register will be written in prologue and used in begin of body, so it must not be 1. parameter passing register. 2. GOT pointer. We reuse static-chain register if it is available. Otherwise, we use DI for i386 and R13 for x86-64. We chose R13 since it has shorter encoding. Return: the regno of chosen register. */ static unsigned int find_drap_reg (void) { tree decl = cfun->decl; if (TARGET_64BIT) { /* Use R13 for nested function or function need static chain. Since function with tail call may use any caller-saved registers in epilogue, DRAP must not use caller-saved register in such case. */ if (DECL_STATIC_CHAIN (decl) || crtl->tail_call_emit) return R13_REG; return R10_REG; } else { /* Use DI for nested function or function need static chain. Since function with tail call may use any caller-saved registers in epilogue, DRAP must not use caller-saved register in such case. */ if (DECL_STATIC_CHAIN (decl) || crtl->tail_call_emit) return DI_REG; /* Reuse static chain register if it isn't used for parameter passing. */ if (ix86_function_regparm (TREE_TYPE (decl), decl) <= 2) { unsigned int ccvt = ix86_get_callcvt (TREE_TYPE (decl)); if ((ccvt & (IX86_CALLCVT_FASTCALL | IX86_CALLCVT_THISCALL)) == 0) return CX_REG; } return DI_REG; } } /* Return minimum incoming stack alignment. */ static unsigned int ix86_minimum_incoming_stack_boundary (bool sibcall) { unsigned int incoming_stack_boundary; /* Prefer the one specified at command line. */ if (ix86_user_incoming_stack_boundary) incoming_stack_boundary = ix86_user_incoming_stack_boundary; /* In 32bit, use MIN_STACK_BOUNDARY for incoming stack boundary if -mstackrealign is used, it isn't used for sibcall check and estimated stack alignment is 128bit. */ else if (!sibcall && !TARGET_64BIT && ix86_force_align_arg_pointer && crtl->stack_alignment_estimated == 128) incoming_stack_boundary = MIN_STACK_BOUNDARY; else incoming_stack_boundary = ix86_default_incoming_stack_boundary; /* Incoming stack alignment can be changed on individual functions via force_align_arg_pointer attribute. We use the smallest incoming stack boundary. */ if (incoming_stack_boundary > MIN_STACK_BOUNDARY && lookup_attribute (ix86_force_align_arg_pointer_string, TYPE_ATTRIBUTES (TREE_TYPE (current_function_decl)))) incoming_stack_boundary = MIN_STACK_BOUNDARY; /* The incoming stack frame has to be aligned at least at parm_stack_boundary. */ if (incoming_stack_boundary < crtl->parm_stack_boundary) incoming_stack_boundary = crtl->parm_stack_boundary; /* Stack at entrance of main is aligned by runtime. We use the smallest incoming stack boundary. */ if (incoming_stack_boundary > MAIN_STACK_BOUNDARY && DECL_NAME (current_function_decl) && MAIN_NAME_P (DECL_NAME (current_function_decl)) && DECL_FILE_SCOPE_P (current_function_decl)) incoming_stack_boundary = MAIN_STACK_BOUNDARY; return incoming_stack_boundary; } /* Update incoming stack boundary and estimated stack alignment. */ static void ix86_update_stack_boundary (void) { ix86_incoming_stack_boundary = ix86_minimum_incoming_stack_boundary (false); /* x86_64 vararg needs 16byte stack alignment for register save area. */ if (TARGET_64BIT && cfun->stdarg && crtl->stack_alignment_estimated < 128) crtl->stack_alignment_estimated = 128; } /* Handle the TARGET_GET_DRAP_RTX hook. Return NULL if no DRAP is needed or an rtx for DRAP otherwise. */ static rtx ix86_get_drap_rtx (void) { if (ix86_force_drap || !ACCUMULATE_OUTGOING_ARGS) crtl->need_drap = true; if (stack_realign_drap) { /* Assign DRAP to vDRAP and returns vDRAP */ unsigned int regno = find_drap_reg (); rtx drap_vreg; rtx arg_ptr; rtx seq, insn; arg_ptr = gen_rtx_REG (Pmode, regno); crtl->drap_reg = arg_ptr; start_sequence (); drap_vreg = copy_to_reg (arg_ptr); seq = get_insns (); end_sequence (); insn = emit_insn_before (seq, NEXT_INSN (entry_of_function ())); if (!optimize) { add_reg_note (insn, REG_CFA_SET_VDRAP, drap_vreg); RTX_FRAME_RELATED_P (insn) = 1; } return drap_vreg; } else return NULL; } /* Handle the TARGET_INTERNAL_ARG_POINTER hook. */ static rtx ix86_internal_arg_pointer (void) { return virtual_incoming_args_rtx; } struct scratch_reg { rtx reg; bool saved; }; /* Return a short-lived scratch register for use on function entry. In 32-bit mode, it is valid only after the registers are saved in the prologue. This register must be released by means of release_scratch_register_on_entry once it is dead. */ static void get_scratch_register_on_entry (struct scratch_reg *sr) { int regno; sr->saved = false; if (TARGET_64BIT) { /* We always use R11 in 64-bit mode. */ regno = R11_REG; } else { tree decl = current_function_decl, fntype = TREE_TYPE (decl); bool fastcall_p = lookup_attribute ("fastcall", TYPE_ATTRIBUTES (fntype)) != NULL_TREE; bool thiscall_p = lookup_attribute ("thiscall", TYPE_ATTRIBUTES (fntype)) != NULL_TREE; bool static_chain_p = DECL_STATIC_CHAIN (decl); int regparm = ix86_function_regparm (fntype, decl); int drap_regno = crtl->drap_reg ? REGNO (crtl->drap_reg) : INVALID_REGNUM; /* 'fastcall' sets regparm to 2, uses ecx/edx for arguments and eax for the static chain register. */ if ((regparm < 1 || (fastcall_p && !static_chain_p)) && drap_regno != AX_REG) regno = AX_REG; /* 'thiscall' sets regparm to 1, uses ecx for arguments and edx for the static chain register. */ else if (thiscall_p && !static_chain_p && drap_regno != AX_REG) regno = AX_REG; else if (regparm < 2 && !thiscall_p && drap_regno != DX_REG) regno = DX_REG; /* ecx is the static chain register. */ else if (regparm < 3 && !fastcall_p && !thiscall_p && !static_chain_p && drap_regno != CX_REG) regno = CX_REG; else if (ix86_save_reg (BX_REG, true)) regno = BX_REG; /* esi is the static chain register. */ else if (!(regparm == 3 && static_chain_p) && ix86_save_reg (SI_REG, true)) regno = SI_REG; else if (ix86_save_reg (DI_REG, true)) regno = DI_REG; else { regno = (drap_regno == AX_REG ? DX_REG : AX_REG); sr->saved = true; } } sr->reg = gen_rtx_REG (Pmode, regno); if (sr->saved) { rtx insn = emit_insn (gen_push (sr->reg)); RTX_FRAME_RELATED_P (insn) = 1; } } /* Release a scratch register obtained from the preceding function. */ static void release_scratch_register_on_entry (struct scratch_reg *sr) { if (sr->saved) { struct machine_function *m = cfun->machine; rtx x, insn = emit_insn (gen_pop (sr->reg)); /* The RTX_FRAME_RELATED_P mechanism doesn't know about pop. */ RTX_FRAME_RELATED_P (insn) = 1; x = gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (UNITS_PER_WORD)); x = gen_rtx_SET (VOIDmode, stack_pointer_rtx, x); add_reg_note (insn, REG_FRAME_RELATED_EXPR, x); m->fs.sp_offset -= UNITS_PER_WORD; } } #define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP) /* Emit code to adjust the stack pointer by SIZE bytes while probing it. */ static void ix86_adjust_stack_and_probe (const HOST_WIDE_INT size) { /* We skip the probe for the first interval + a small dope of 4 words and probe that many bytes past the specified size to maintain a protection area at the botton of the stack. */ const int dope = 4 * UNITS_PER_WORD; rtx size_rtx = GEN_INT (size), last; /* See if we have a constant small number of probes to generate. If so, that's the easy case. The run-time loop is made up of 11 insns in the generic case while the compile-time loop is made up of 3+2*(n-1) insns for n # of intervals. */ if (size <= 5 * PROBE_INTERVAL) { HOST_WIDE_INT i, adjust; bool first_probe = true; /* Adjust SP and probe at PROBE_INTERVAL + N * PROBE_INTERVAL for values of N from 1 until it exceeds SIZE. If only one probe is needed, this will not generate any code. Then adjust and probe to PROBE_INTERVAL + SIZE. */ for (i = PROBE_INTERVAL; i < size; i += PROBE_INTERVAL) { if (first_probe) { adjust = 2 * PROBE_INTERVAL + dope; first_probe = false; } else adjust = PROBE_INTERVAL; emit_insn (gen_rtx_SET (VOIDmode, stack_pointer_rtx, plus_constant (Pmode, stack_pointer_rtx, -adjust))); emit_stack_probe (stack_pointer_rtx); } if (first_probe) adjust = size + PROBE_INTERVAL + dope; else adjust = size + PROBE_INTERVAL - i; emit_insn (gen_rtx_SET (VOIDmode, stack_pointer_rtx, plus_constant (Pmode, stack_pointer_rtx, -adjust))); emit_stack_probe (stack_pointer_rtx); /* Adjust back to account for the additional first interval. */ last = emit_insn (gen_rtx_SET (VOIDmode, stack_pointer_rtx, plus_constant (Pmode, stack_pointer_rtx, PROBE_INTERVAL + dope))); } /* Otherwise, do the same as above, but in a loop. Note that we must be extra careful with variables wrapping around because we might be at the very top (or the very bottom) of the address space and we have to be able to handle this case properly; in particular, we use an equality test for the loop condition. */ else { HOST_WIDE_INT rounded_size; struct scratch_reg sr; get_scratch_register_on_entry (&sr); /* Step 1: round SIZE to the previous multiple of the interval. */ rounded_size = size & -PROBE_INTERVAL; /* Step 2: compute initial and final value of the loop counter. */ /* SP = SP_0 + PROBE_INTERVAL. */ emit_insn (gen_rtx_SET (VOIDmode, stack_pointer_rtx, plus_constant (Pmode, stack_pointer_rtx, - (PROBE_INTERVAL + dope)))); /* LAST_ADDR = SP_0 + PROBE_INTERVAL + ROUNDED_SIZE. */ emit_move_insn (sr.reg, GEN_INT (-rounded_size)); emit_insn (gen_rtx_SET (VOIDmode, sr.reg, gen_rtx_PLUS (Pmode, sr.reg, stack_pointer_rtx))); /* Step 3: the loop while (SP != LAST_ADDR) { SP = SP + PROBE_INTERVAL probe at SP } adjusts SP and probes to PROBE_INTERVAL + N * PROBE_INTERVAL for values of N from 1 until it is equal to ROUNDED_SIZE. */ emit_insn (ix86_gen_adjust_stack_and_probe (sr.reg, sr.reg, size_rtx)); /* Step 4: adjust SP and probe at PROBE_INTERVAL + SIZE if we cannot assert at compile-time that SIZE is equal to ROUNDED_SIZE. */ if (size != rounded_size) { emit_insn (gen_rtx_SET (VOIDmode, stack_pointer_rtx, plus_constant (Pmode, stack_pointer_rtx, rounded_size - size))); emit_stack_probe (stack_pointer_rtx); } /* Adjust back to account for the additional first interval. */ last = emit_insn (gen_rtx_SET (VOIDmode, stack_pointer_rtx, plus_constant (Pmode, stack_pointer_rtx, PROBE_INTERVAL + dope))); release_scratch_register_on_entry (&sr); } gcc_assert (cfun->machine->fs.cfa_reg != stack_pointer_rtx); /* Even if the stack pointer isn't the CFA register, we need to correctly describe the adjustments made to it, in particular differentiate the frame-related ones from the frame-unrelated ones. */ if (size > 0) { rtx expr = gen_rtx_SEQUENCE (VOIDmode, rtvec_alloc (2)); XVECEXP (expr, 0, 0) = gen_rtx_SET (VOIDmode, stack_pointer_rtx, plus_constant (Pmode, stack_pointer_rtx, -size)); XVECEXP (expr, 0, 1) = gen_rtx_SET (VOIDmode, stack_pointer_rtx, plus_constant (Pmode, stack_pointer_rtx, PROBE_INTERVAL + dope + size)); add_reg_note (last, REG_FRAME_RELATED_EXPR, expr); RTX_FRAME_RELATED_P (last) = 1; cfun->machine->fs.sp_offset += size; } /* Make sure nothing is scheduled before we are done. */ emit_insn (gen_blockage ()); } /* Adjust the stack pointer up to REG while probing it. */ const char * output_adjust_stack_and_probe (rtx reg) { static int labelno = 0; char loop_lab[32], end_lab[32]; rtx xops[2]; ASM_GENERATE_INTERNAL_LABEL (loop_lab, "LPSRL", labelno); ASM_GENERATE_INTERNAL_LABEL (end_lab, "LPSRE", labelno++); ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, loop_lab); /* Jump to END_LAB if SP == LAST_ADDR. */ xops[0] = stack_pointer_rtx; xops[1] = reg; output_asm_insn ("cmp%z0\t{%1, %0|%0, %1}", xops); fputs ("\tje\t", asm_out_file); assemble_name_raw (asm_out_file, end_lab); fputc ('\n', asm_out_file); /* SP = SP + PROBE_INTERVAL. */ xops[1] = GEN_INT (PROBE_INTERVAL); output_asm_insn ("sub%z0\t{%1, %0|%0, %1}", xops); /* Probe at SP. */ xops[1] = const0_rtx; output_asm_insn ("or%z0\t{%1, (%0)|DWORD PTR [%0], %1}", xops); fprintf (asm_out_file, "\tjmp\t"); assemble_name_raw (asm_out_file, loop_lab); fputc ('\n', asm_out_file); ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, end_lab); return ""; } /* Emit code to probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive. These are offsets from the current stack pointer. */ static void ix86_emit_probe_stack_range (HOST_WIDE_INT first, HOST_WIDE_INT size) { /* See if we have a constant small number of probes to generate. If so, that's the easy case. The run-time loop is made up of 7 insns in the generic case while the compile-time loop is made up of n insns for n # of intervals. */ if (size <= 7 * PROBE_INTERVAL) { HOST_WIDE_INT i; /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 1 until it exceeds SIZE. If only one probe is needed, this will not generate any code. Then probe at FIRST + SIZE. */ for (i = PROBE_INTERVAL; i < size; i += PROBE_INTERVAL) emit_stack_probe (plus_constant (Pmode, stack_pointer_rtx, -(first + i))); emit_stack_probe (plus_constant (Pmode, stack_pointer_rtx, -(first + size))); } /* Otherwise, do the same as above, but in a loop. Note that we must be extra careful with variables wrapping around because we might be at the very top (or the very bottom) of the address space and we have to be able to handle this case properly; in particular, we use an equality test for the loop condition. */ else { HOST_WIDE_INT rounded_size, last; struct scratch_reg sr; get_scratch_register_on_entry (&sr); /* Step 1: round SIZE to the previous multiple of the interval. */ rounded_size = size & -PROBE_INTERVAL; /* Step 2: compute initial and final value of the loop counter. */ /* TEST_OFFSET = FIRST. */ emit_move_insn (sr.reg, GEN_INT (-first)); /* LAST_OFFSET = FIRST + ROUNDED_SIZE. */ last = first + rounded_size; /* Step 3: the loop while (TEST_ADDR != LAST_ADDR) { TEST_ADDR = TEST_ADDR + PROBE_INTERVAL probe at TEST_ADDR } probes at FIRST + N * PROBE_INTERVAL for values of N from 1 until it is equal to ROUNDED_SIZE. */ emit_insn (ix86_gen_probe_stack_range (sr.reg, sr.reg, GEN_INT (-last))); /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time that SIZE is equal to ROUNDED_SIZE. */ if (size != rounded_size) emit_stack_probe (plus_constant (Pmode, gen_rtx_PLUS (Pmode, stack_pointer_rtx, sr.reg), rounded_size - size)); release_scratch_register_on_entry (&sr); } /* Make sure nothing is scheduled before we are done. */ emit_insn (gen_blockage ()); } /* Probe a range of stack addresses from REG to END, inclusive. These are offsets from the current stack pointer. */ const char * output_probe_stack_range (rtx reg, rtx end) { static int labelno = 0; char loop_lab[32], end_lab[32]; rtx xops[3]; ASM_GENERATE_INTERNAL_LABEL (loop_lab, "LPSRL", labelno); ASM_GENERATE_INTERNAL_LABEL (end_lab, "LPSRE", labelno++); ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, loop_lab); /* Jump to END_LAB if TEST_ADDR == LAST_ADDR. */ xops[0] = reg; xops[1] = end; output_asm_insn ("cmp%z0\t{%1, %0|%0, %1}", xops); fputs ("\tje\t", asm_out_file); assemble_name_raw (asm_out_file, end_lab); fputc ('\n', asm_out_file); /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL. */ xops[1] = GEN_INT (PROBE_INTERVAL); output_asm_insn ("sub%z0\t{%1, %0|%0, %1}", xops); /* Probe at TEST_ADDR. */ xops[0] = stack_pointer_rtx; xops[1] = reg; xops[2] = const0_rtx; output_asm_insn ("or%z0\t{%2, (%0,%1)|DWORD PTR [%0+%1], %2}", xops); fprintf (asm_out_file, "\tjmp\t"); assemble_name_raw (asm_out_file, loop_lab); fputc ('\n', asm_out_file); ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, end_lab); return ""; } /* Finalize stack_realign_needed flag, which will guide prologue/epilogue to be generated in correct form. */ static void ix86_finalize_stack_realign_flags (void) { /* Check if stack realign is really needed after reload, and stores result in cfun */ unsigned int incoming_stack_boundary = (crtl->parm_stack_boundary > ix86_incoming_stack_boundary ? crtl->parm_stack_boundary : ix86_incoming_stack_boundary); unsigned int stack_realign = (incoming_stack_boundary < (crtl->is_leaf ? crtl->max_used_stack_slot_alignment : crtl->stack_alignment_needed)); if (crtl->stack_realign_finalized) { /* After stack_realign_needed is finalized, we can't no longer change it. */ gcc_assert (crtl->stack_realign_needed == stack_realign); return; } /* If the only reason for frame_pointer_needed is that we conservatively assumed stack realignment might be needed, but in the end nothing that needed the stack alignment had been spilled, clear frame_pointer_needed and say we don't need stack realignment. */ if (stack_realign && !crtl->need_drap && frame_pointer_needed && crtl->is_leaf && flag_omit_frame_pointer && crtl->sp_is_unchanging && !ix86_current_function_calls_tls_descriptor && !crtl->accesses_prior_frames && !cfun->calls_alloca && !crtl->calls_eh_return && !(flag_stack_check && STACK_CHECK_MOVING_SP) && !ix86_frame_pointer_required () && get_frame_size () == 0 && ix86_nsaved_sseregs () == 0 && ix86_varargs_gpr_size + ix86_varargs_fpr_size == 0) { HARD_REG_SET set_up_by_prologue, prologue_used; basic_block bb; CLEAR_HARD_REG_SET (prologue_used); CLEAR_HARD_REG_SET (set_up_by_prologue); add_to_hard_reg_set (&set_up_by_prologue, Pmode, STACK_POINTER_REGNUM); add_to_hard_reg_set (&set_up_by_prologue, Pmode, ARG_POINTER_REGNUM); add_to_hard_reg_set (&set_up_by_prologue, Pmode, HARD_FRAME_POINTER_REGNUM); FOR_EACH_BB (bb) { rtx insn; FOR_BB_INSNS (bb, insn) if (NONDEBUG_INSN_P (insn) && requires_stack_frame_p (insn, prologue_used, set_up_by_prologue)) { crtl->stack_realign_needed = stack_realign; crtl->stack_realign_finalized = true; return; } } frame_pointer_needed = false; stack_realign = false; crtl->max_used_stack_slot_alignment = incoming_stack_boundary; crtl->stack_alignment_needed = incoming_stack_boundary; crtl->stack_alignment_estimated = incoming_stack_boundary; if (crtl->preferred_stack_boundary > incoming_stack_boundary) crtl->preferred_stack_boundary = incoming_stack_boundary; df_finish_pass (true); df_scan_alloc (NULL); df_scan_blocks (); df_compute_regs_ever_live (true); df_analyze (); } crtl->stack_realign_needed = stack_realign; crtl->stack_realign_finalized = true; } /* Expand the prologue into a bunch of separate insns. */ void ix86_expand_prologue (void) { struct machine_function *m = cfun->machine; rtx insn, t; bool pic_reg_used; struct ix86_frame frame; HOST_WIDE_INT allocate; bool int_registers_saved; bool sse_registers_saved; ix86_finalize_stack_realign_flags (); /* DRAP should not coexist with stack_realign_fp */ gcc_assert (!(crtl->drap_reg && stack_realign_fp)); memset (&m->fs, 0, sizeof (m->fs)); /* Initialize CFA state for before the prologue. */ m->fs.cfa_reg = stack_pointer_rtx; m->fs.cfa_offset = INCOMING_FRAME_SP_OFFSET; /* Track SP offset to the CFA. We continue tracking this after we've swapped the CFA register away from SP. In the case of re-alignment this is fudged; we're interested to offsets within the local frame. */ m->fs.sp_offset = INCOMING_FRAME_SP_OFFSET; m->fs.sp_valid = true; ix86_compute_frame_layout (&frame); if (!TARGET_64BIT && ix86_function_ms_hook_prologue (current_function_decl)) { /* We should have already generated an error for any use of ms_hook on a nested function. */ gcc_checking_assert (!ix86_static_chain_on_stack); /* Check if profiling is active and we shall use profiling before prologue variant. If so sorry. */ if (crtl->profile && flag_fentry != 0) sorry ("ms_hook_prologue attribute isn%'t compatible " "with -mfentry for 32-bit"); /* In ix86_asm_output_function_label we emitted: 8b ff movl.s %edi,%edi 55 push %ebp 8b ec movl.s %esp,%ebp This matches the hookable function prologue in Win32 API functions in Microsoft Windows XP Service Pack 2 and newer. Wine uses this to enable Windows apps to hook the Win32 API functions provided by Wine. What that means is that we've already set up the frame pointer. */ if (frame_pointer_needed && !(crtl->drap_reg && crtl->stack_realign_needed)) { rtx push, mov; /* We've decided to use the frame pointer already set up. Describe this to the unwinder by pretending that both push and mov insns happen right here. Putting the unwind info here at the end of the ms_hook is done so that we can make absolutely certain we get the required byte sequence at the start of the function, rather than relying on an assembler that can produce the exact encoding required. However it does mean (in the unpatched case) that we have a 1 insn window where the asynchronous unwind info is incorrect. However, if we placed the unwind info at its correct location we would have incorrect unwind info in the patched case. Which is probably all moot since I don't expect Wine generates dwarf2 unwind info for the system libraries that use this feature. */ insn = emit_insn (gen_blockage ()); push = gen_push (hard_frame_pointer_rtx); mov = gen_rtx_SET (VOIDmode, hard_frame_pointer_rtx, stack_pointer_rtx); RTX_FRAME_RELATED_P (push) = 1; RTX_FRAME_RELATED_P (mov) = 1; RTX_FRAME_RELATED_P (insn) = 1; add_reg_note (insn, REG_FRAME_RELATED_EXPR, gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, push, mov))); /* Note that gen_push incremented m->fs.cfa_offset, even though we didn't emit the push insn here. */ m->fs.cfa_reg = hard_frame_pointer_rtx; m->fs.fp_offset = m->fs.cfa_offset; m->fs.fp_valid = true; } else { /* The frame pointer is not needed so pop %ebp again. This leaves us with a pristine state. */ emit_insn (gen_pop (hard_frame_pointer_rtx)); } } /* The first insn of a function that accepts its static chain on the stack is to push the register that would be filled in by a direct call. This insn will be skipped by the trampoline. */ else if (ix86_static_chain_on_stack) { insn = emit_insn (gen_push (ix86_static_chain (cfun->decl, false))); emit_insn (gen_blockage ()); /* We don't want to interpret this push insn as a register save, only as a stack adjustment. The real copy of the register as a save will be done later, if needed. */ t = plus_constant (Pmode, stack_pointer_rtx, -UNITS_PER_WORD); t = gen_rtx_SET (VOIDmode, stack_pointer_rtx, t); add_reg_note (insn, REG_CFA_ADJUST_CFA, t); RTX_FRAME_RELATED_P (insn) = 1; } /* Emit prologue code to adjust stack alignment and setup DRAP, in case of DRAP is needed and stack realignment is really needed after reload */ if (stack_realign_drap) { int align_bytes = crtl->stack_alignment_needed / BITS_PER_UNIT; /* Only need to push parameter pointer reg if it is caller saved. */ if (!call_used_regs[REGNO (crtl->drap_reg)]) { /* Push arg pointer reg */ insn = emit_insn (gen_push (crtl->drap_reg)); RTX_FRAME_RELATED_P (insn) = 1; } /* Grab the argument pointer. */ t = plus_constant (Pmode, stack_pointer_rtx, m->fs.sp_offset); insn = emit_insn (gen_rtx_SET (VOIDmode, crtl->drap_reg, t)); RTX_FRAME_RELATED_P (insn) = 1; m->fs.cfa_reg = crtl->drap_reg; m->fs.cfa_offset = 0; /* Align the stack. */ insn = emit_insn (ix86_gen_andsp (stack_pointer_rtx, stack_pointer_rtx, GEN_INT (-align_bytes))); RTX_FRAME_RELATED_P (insn) = 1; /* Replicate the return address on the stack so that return address can be reached via (argp - 1) slot. This is needed to implement macro RETURN_ADDR_RTX and intrinsic function expand_builtin_return_addr etc. */ t = plus_constant (Pmode, crtl->drap_reg, -UNITS_PER_WORD); t = gen_frame_mem (word_mode, t); insn = emit_insn (gen_push (t)); RTX_FRAME_RELATED_P (insn) = 1; /* For the purposes of frame and register save area addressing, we've started over with a new frame. */ m->fs.sp_offset = INCOMING_FRAME_SP_OFFSET; m->fs.realigned = true; } int_registers_saved = (frame.nregs == 0); sse_registers_saved = (frame.nsseregs == 0); if (frame_pointer_needed && !m->fs.fp_valid) { /* Note: AT&T enter does NOT have reversed args. Enter is probably slower on all targets. Also sdb doesn't like it. */ insn = emit_insn (gen_push (hard_frame_pointer_rtx)); RTX_FRAME_RELATED_P (insn) = 1; /* Push registers now, before setting the frame pointer on SEH target. */ if (!int_registers_saved && TARGET_SEH && !frame.save_regs_using_mov) { ix86_emit_save_regs (); int_registers_saved = true; gcc_assert (m->fs.sp_offset == frame.reg_save_offset); } if (m->fs.sp_offset == frame.hard_frame_pointer_offset) { insn = emit_move_insn (hard_frame_pointer_rtx, stack_pointer_rtx); RTX_FRAME_RELATED_P (insn) = 1; if (m->fs.cfa_reg == stack_pointer_rtx) m->fs.cfa_reg = hard_frame_pointer_rtx; m->fs.fp_offset = m->fs.sp_offset; m->fs.fp_valid = true; } } if (!int_registers_saved) { /* If saving registers via PUSH, do so now. */ if (!frame.save_regs_using_mov) { ix86_emit_save_regs (); int_registers_saved = true; gcc_assert (m->fs.sp_offset == frame.reg_save_offset); } /* When using red zone we may start register saving before allocating the stack frame saving one cycle of the prologue. However, avoid doing this if we have to probe the stack; at least on x86_64 the stack probe can turn into a call that clobbers a red zone location. */ else if (ix86_using_red_zone () && (! TARGET_STACK_PROBE || frame.stack_pointer_offset < CHECK_STACK_LIMIT)) { ix86_emit_save_regs_using_mov (frame.reg_save_offset); int_registers_saved = true; } } if (stack_realign_fp) { int align_bytes = crtl->stack_alignment_needed / BITS_PER_UNIT; gcc_assert (align_bytes > MIN_STACK_BOUNDARY / BITS_PER_UNIT); /* The computation of the size of the re-aligned stack frame means that we must allocate the size of the register save area before performing the actual alignment. Otherwise we cannot guarantee that there's enough storage above the realignment point. */ if (m->fs.sp_offset != frame.sse_reg_save_offset) pro_epilogue_adjust_stack (stack_pointer_rtx, stack_pointer_rtx, GEN_INT (m->fs.sp_offset - frame.sse_reg_save_offset), -1, false); /* Align the stack. */ insn = emit_insn (ix86_gen_andsp (stack_pointer_rtx, stack_pointer_rtx, GEN_INT (-align_bytes))); /* For the purposes of register save area addressing, the stack pointer is no longer valid. As for the value of sp_offset, see ix86_compute_frame_layout, which we need to match in order to pass verification of stack_pointer_offset at the end. */ m->fs.sp_offset = (m->fs.sp_offset + align_bytes) & -align_bytes; m->fs.sp_valid = false; } allocate = frame.stack_pointer_offset - m->fs.sp_offset; if (flag_stack_usage_info) { /* We start to count from ARG_POINTER. */ HOST_WIDE_INT stack_size = frame.stack_pointer_offset; /* If it was realigned, take into account the fake frame. */ if (stack_realign_drap) { if (ix86_static_chain_on_stack) stack_size += UNITS_PER_WORD; if (!call_used_regs[REGNO (crtl->drap_reg)]) stack_size += UNITS_PER_WORD; /* This over-estimates by 1 minimal-stack-alignment-unit but mitigates that by counting in the new return address slot. */ current_function_dynamic_stack_size += crtl->stack_alignment_needed / BITS_PER_UNIT; } current_function_static_stack_size = stack_size; } /* On SEH target with very large frame size, allocate an area to save SSE registers (as the very large allocation won't be described). */ if (TARGET_SEH && frame.stack_pointer_offset > SEH_MAX_FRAME_SIZE && !sse_registers_saved) { HOST_WIDE_INT sse_size = frame.sse_reg_save_offset - frame.reg_save_offset; gcc_assert (int_registers_saved); /* No need to do stack checking as the area will be immediately written. */ pro_epilogue_adjust_stack (stack_pointer_rtx, stack_pointer_rtx, GEN_INT (-sse_size), -1, m->fs.cfa_reg == stack_pointer_rtx); allocate -= sse_size; ix86_emit_save_sse_regs_using_mov (frame.sse_reg_save_offset); sse_registers_saved = true; } /* The stack has already been decremented by the instruction calling us so probe if the size is non-negative to preserve the protection area. */ if (allocate >= 0 && flag_stack_check == STATIC_BUILTIN_STACK_CHECK) { /* We expect the registers to be saved when probes are used. */ gcc_assert (int_registers_saved); if (STACK_CHECK_MOVING_SP) { if (!(crtl->is_leaf && !cfun->calls_alloca && allocate <= PROBE_INTERVAL)) { ix86_adjust_stack_and_probe (allocate); allocate = 0; } } else { HOST_WIDE_INT size = allocate; if (TARGET_64BIT && size >= (HOST_WIDE_INT) 0x80000000) size = 0x80000000 - STACK_CHECK_PROTECT - 1; if (TARGET_STACK_PROBE) { if (crtl->is_leaf && !cfun->calls_alloca) { if (size > PROBE_INTERVAL) ix86_emit_probe_stack_range (0, size); } else ix86_emit_probe_stack_range (0, size + STACK_CHECK_PROTECT); } else { if (crtl->is_leaf && !cfun->calls_alloca) { if (size > PROBE_INTERVAL && size > STACK_CHECK_PROTECT) ix86_emit_probe_stack_range (STACK_CHECK_PROTECT, size - STACK_CHECK_PROTECT); } else ix86_emit_probe_stack_range (STACK_CHECK_PROTECT, size); } } } if (allocate == 0) ; else if (!ix86_target_stack_probe () || frame.stack_pointer_offset < CHECK_STACK_LIMIT) { pro_epilogue_adjust_stack (stack_pointer_rtx, stack_pointer_rtx, GEN_INT (-allocate), -1, m->fs.cfa_reg == stack_pointer_rtx); } else { rtx eax = gen_rtx_REG (Pmode, AX_REG); rtx r10 = NULL; rtx (*adjust_stack_insn)(rtx, rtx, rtx); const bool sp_is_cfa_reg = (m->fs.cfa_reg == stack_pointer_rtx); bool eax_live = false; bool r10_live = false; if (TARGET_64BIT) r10_live = (DECL_STATIC_CHAIN (current_function_decl) != 0); if (!TARGET_64BIT_MS_ABI) eax_live = ix86_eax_live_at_start_p (); /* Note that SEH directives need to continue tracking the stack pointer even after the frame pointer has been set up. */ if (eax_live) { insn = emit_insn (gen_push (eax)); allocate -= UNITS_PER_WORD; if (sp_is_cfa_reg || TARGET_SEH) { if (sp_is_cfa_reg) m->fs.cfa_offset += UNITS_PER_WORD; RTX_FRAME_RELATED_P (insn) = 1; } } if (r10_live) { r10 = gen_rtx_REG (Pmode, R10_REG); insn = emit_insn (gen_push (r10)); allocate -= UNITS_PER_WORD; if (sp_is_cfa_reg || TARGET_SEH) { if (sp_is_cfa_reg) m->fs.cfa_offset += UNITS_PER_WORD; RTX_FRAME_RELATED_P (insn) = 1; } } emit_move_insn (eax, GEN_INT (allocate)); emit_insn (ix86_gen_allocate_stack_worker (eax, eax)); /* Use the fact that AX still contains ALLOCATE. */ adjust_stack_insn = (Pmode == DImode ? gen_pro_epilogue_adjust_stack_di_sub : gen_pro_epilogue_adjust_stack_si_sub); insn = emit_insn (adjust_stack_insn (stack_pointer_rtx, stack_pointer_rtx, eax)); if (sp_is_cfa_reg || TARGET_SEH) { if (sp_is_cfa_reg) m->fs.cfa_offset += allocate; RTX_FRAME_RELATED_P (insn) = 1; add_reg_note (insn, REG_FRAME_RELATED_EXPR, gen_rtx_SET (VOIDmode, stack_pointer_rtx, plus_constant (Pmode, stack_pointer_rtx, -allocate))); } m->fs.sp_offset += allocate; if (r10_live && eax_live) { t = choose_baseaddr (m->fs.sp_offset - allocate); emit_move_insn (gen_rtx_REG (word_mode, R10_REG), gen_frame_mem (word_mode, t)); t = choose_baseaddr (m->fs.sp_offset - allocate - UNITS_PER_WORD); emit_move_insn (gen_rtx_REG (word_mode, AX_REG), gen_frame_mem (word_mode, t)); } else if (eax_live || r10_live) { t = choose_baseaddr (m->fs.sp_offset - allocate); emit_move_insn (gen_rtx_REG (word_mode, (eax_live ? AX_REG : R10_REG)), gen_frame_mem (word_mode, t)); } } gcc_assert (m->fs.sp_offset == frame.stack_pointer_offset); /* If we havn't already set up the frame pointer, do so now. */ if (frame_pointer_needed && !m->fs.fp_valid) { insn = ix86_gen_add3 (hard_frame_pointer_rtx, stack_pointer_rtx, GEN_INT (frame.stack_pointer_offset - frame.hard_frame_pointer_offset)); insn = emit_insn (insn); RTX_FRAME_RELATED_P (insn) = 1; add_reg_note (insn, REG_CFA_ADJUST_CFA, NULL); if (m->fs.cfa_reg == stack_pointer_rtx) m->fs.cfa_reg = hard_frame_pointer_rtx; m->fs.fp_offset = frame.hard_frame_pointer_offset; m->fs.fp_valid = true; } if (!int_registers_saved) ix86_emit_save_regs_using_mov (frame.reg_save_offset); if (!sse_registers_saved) ix86_emit_save_sse_regs_using_mov (frame.sse_reg_save_offset); pic_reg_used = false; /* We don't use pic-register for pe-coff target. */ if (pic_offset_table_rtx && !TARGET_PECOFF && (df_regs_ever_live_p (REAL_PIC_OFFSET_TABLE_REGNUM) || crtl->profile)) { unsigned int alt_pic_reg_used = ix86_select_alt_pic_regnum (); if (alt_pic_reg_used != INVALID_REGNUM) SET_REGNO (pic_offset_table_rtx, alt_pic_reg_used); pic_reg_used = true; } if (pic_reg_used) { if (TARGET_64BIT) { if (ix86_cmodel == CM_LARGE_PIC) { rtx label, tmp_reg; gcc_assert (Pmode == DImode); label = gen_label_rtx (); emit_label (label); LABEL_PRESERVE_P (label) = 1; tmp_reg = gen_rtx_REG (Pmode, R11_REG); gcc_assert (REGNO (pic_offset_table_rtx) != REGNO (tmp_reg)); insn = emit_insn (gen_set_rip_rex64 (pic_offset_table_rtx, label)); insn = emit_insn (gen_set_got_offset_rex64 (tmp_reg, label)); insn = emit_insn (ix86_gen_add3 (pic_offset_table_rtx, pic_offset_table_rtx, tmp_reg)); } else insn = emit_insn (gen_set_got_rex64 (pic_offset_table_rtx)); } else { insn = emit_insn (gen_set_got (pic_offset_table_rtx)); RTX_FRAME_RELATED_P (insn) = 1; add_reg_note (insn, REG_CFA_FLUSH_QUEUE, NULL_RTX); } } /* In the pic_reg_used case, make sure that the got load isn't deleted when mcount needs it. Blockage to avoid call movement across mcount call is emitted in generic code after the NOTE_INSN_PROLOGUE_END note. */ if (crtl->profile && !flag_fentry && pic_reg_used) emit_insn (gen_prologue_use (pic_offset_table_rtx)); if (crtl->drap_reg && !crtl->stack_realign_needed) { /* vDRAP is setup but after reload it turns out stack realign isn't necessary, here we will emit prologue to setup DRAP without stack realign adjustment */ t = choose_baseaddr (0); emit_insn (gen_rtx_SET (VOIDmode, crtl->drap_reg, t)); } /* Prevent instructions from being scheduled into register save push sequence when access to the redzone area is done through frame pointer. The offset between the frame pointer and the stack pointer is calculated relative to the value of the stack pointer at the end of the function prologue, and moving instructions that access redzone area via frame pointer inside push sequence violates this assumption. */ if (frame_pointer_needed && frame.red_zone_size) emit_insn (gen_memory_blockage ()); /* Emit cld instruction if stringops are used in the function. */ if (TARGET_CLD && ix86_current_function_needs_cld) emit_insn (gen_cld ()); /* SEH requires that the prologue end within 256 bytes of the start of the function. Prevent instruction schedules that would extend that. Further, prevent alloca modifications to the stack pointer from being combined with prologue modifications. */ if (TARGET_SEH) emit_insn (gen_prologue_use (stack_pointer_rtx)); } /* Emit code to restore REG using a POP insn. */ static void ix86_emit_restore_reg_using_pop (rtx reg) { struct machine_function *m = cfun->machine; rtx insn = emit_insn (gen_pop (reg)); ix86_add_cfa_restore_note (insn, reg, m->fs.sp_offset); m->fs.sp_offset -= UNITS_PER_WORD; if (m->fs.cfa_reg == crtl->drap_reg && REGNO (reg) == REGNO (crtl->drap_reg)) { /* Previously we'd represented the CFA as an expression like *(%ebp - 8). We've just popped that value from the stack, which means we need to reset the CFA to the drap register. This will remain until we restore the stack pointer. */ add_reg_note (insn, REG_CFA_DEF_CFA, reg); RTX_FRAME_RELATED_P (insn) = 1; /* This means that the DRAP register is valid for addressing too. */ m->fs.drap_valid = true; return; } if (m->fs.cfa_reg == stack_pointer_rtx) { rtx x = plus_constant (Pmode, stack_pointer_rtx, UNITS_PER_WORD); x = gen_rtx_SET (VOIDmode, stack_pointer_rtx, x); add_reg_note (insn, REG_CFA_ADJUST_CFA, x); RTX_FRAME_RELATED_P (insn) = 1; m->fs.cfa_offset -= UNITS_PER_WORD; } /* When the frame pointer is the CFA, and we pop it, we are swapping back to the stack pointer as the CFA. This happens for stack frames that don't allocate other data, so we assume the stack pointer is now pointing at the return address, i.e. the function entry state, which makes the offset be 1 word. */ if (reg == hard_frame_pointer_rtx) { m->fs.fp_valid = false; if (m->fs.cfa_reg == hard_frame_pointer_rtx) { m->fs.cfa_reg = stack_pointer_rtx; m->fs.cfa_offset -= UNITS_PER_WORD; add_reg_note (insn, REG_CFA_DEF_CFA, gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (m->fs.cfa_offset))); RTX_FRAME_RELATED_P (insn) = 1; } } } /* Emit code to restore saved registers using POP insns. */ static void ix86_emit_restore_regs_using_pop (void) { unsigned int regno; for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) if (!SSE_REGNO_P (regno) && ix86_save_reg (regno, false)) ix86_emit_restore_reg_using_pop (gen_rtx_REG (word_mode, regno)); } /* Emit code and notes for the LEAVE instruction. */ static void ix86_emit_leave (void) { struct machine_function *m = cfun->machine; rtx insn = emit_insn (ix86_gen_leave ()); ix86_add_queued_cfa_restore_notes (insn); gcc_assert (m->fs.fp_valid); m->fs.sp_valid = true; m->fs.sp_offset = m->fs.fp_offset - UNITS_PER_WORD; m->fs.fp_valid = false; if (m->fs.cfa_reg == hard_frame_pointer_rtx) { m->fs.cfa_reg = stack_pointer_rtx; m->fs.cfa_offset = m->fs.sp_offset; add_reg_note (insn, REG_CFA_DEF_CFA, plus_constant (Pmode, stack_pointer_rtx, m->fs.sp_offset)); RTX_FRAME_RELATED_P (insn) = 1; } ix86_add_cfa_restore_note (insn, hard_frame_pointer_rtx, m->fs.fp_offset); } /* Emit code to restore saved registers using MOV insns. First register is restored from CFA - CFA_OFFSET. */ static void ix86_emit_restore_regs_using_mov (HOST_WIDE_INT cfa_offset, bool maybe_eh_return) { struct machine_function *m = cfun->machine; unsigned int regno; for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) if (!SSE_REGNO_P (regno) && ix86_save_reg (regno, maybe_eh_return)) { rtx reg = gen_rtx_REG (word_mode, regno); rtx insn, mem; mem = choose_baseaddr (cfa_offset); mem = gen_frame_mem (word_mode, mem); insn = emit_move_insn (reg, mem); if (m->fs.cfa_reg == crtl->drap_reg && regno == REGNO (crtl->drap_reg)) { /* Previously we'd represented the CFA as an expression like *(%ebp - 8). We've just popped that value from the stack, which means we need to reset the CFA to the drap register. This will remain until we restore the stack pointer. */ add_reg_note (insn, REG_CFA_DEF_CFA, reg); RTX_FRAME_RELATED_P (insn) = 1; /* This means that the DRAP register is valid for addressing. */ m->fs.drap_valid = true; } else ix86_add_cfa_restore_note (NULL_RTX, reg, cfa_offset); cfa_offset -= UNITS_PER_WORD; } } /* Emit code to restore saved registers using MOV insns. First register is restored from CFA - CFA_OFFSET. */ static void ix86_emit_restore_sse_regs_using_mov (HOST_WIDE_INT cfa_offset, bool maybe_eh_return) { unsigned int regno; for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) if (SSE_REGNO_P (regno) && ix86_save_reg (regno, maybe_eh_return)) { rtx reg = gen_rtx_REG (V4SFmode, regno); rtx mem; mem = choose_baseaddr (cfa_offset); mem = gen_rtx_MEM (V4SFmode, mem); set_mem_align (mem, 128); emit_move_insn (reg, mem); ix86_add_cfa_restore_note (NULL_RTX, reg, cfa_offset); cfa_offset -= 16; } } /* Restore function stack, frame, and registers. */ void ix86_expand_epilogue (int style) { struct machine_function *m = cfun->machine; struct machine_frame_state frame_state_save = m->fs; struct ix86_frame frame; bool restore_regs_via_mov; bool using_drap; ix86_finalize_stack_realign_flags (); ix86_compute_frame_layout (&frame); m->fs.sp_valid = (!frame_pointer_needed || (crtl->sp_is_unchanging && !stack_realign_fp)); gcc_assert (!m->fs.sp_valid || m->fs.sp_offset == frame.stack_pointer_offset); /* The FP must be valid if the frame pointer is present. */ gcc_assert (frame_pointer_needed == m->fs.fp_valid); gcc_assert (!m->fs.fp_valid || m->fs.fp_offset == frame.hard_frame_pointer_offset); /* We must have *some* valid pointer to the stack frame. */ gcc_assert (m->fs.sp_valid || m->fs.fp_valid); /* The DRAP is never valid at this point. */ gcc_assert (!m->fs.drap_valid); /* See the comment about red zone and frame pointer usage in ix86_expand_prologue. */ if (frame_pointer_needed && frame.red_zone_size) emit_insn (gen_memory_blockage ()); using_drap = crtl->drap_reg && crtl->stack_realign_needed; gcc_assert (!using_drap || m->fs.cfa_reg == crtl->drap_reg); /* Determine the CFA offset of the end of the red-zone. */ m->fs.red_zone_offset = 0; if (ix86_using_red_zone () && crtl->args.pops_args < 65536) { /* The red-zone begins below the return address. */ m->fs.red_zone_offset = RED_ZONE_SIZE + UNITS_PER_WORD; /* When the register save area is in the aligned portion of the stack, determine the maximum runtime displacement that matches up with the aligned frame. */ if (stack_realign_drap) m->fs.red_zone_offset -= (crtl->stack_alignment_needed / BITS_PER_UNIT + UNITS_PER_WORD); } /* Special care must be taken for the normal return case of a function using eh_return: the eax and edx registers are marked as saved, but not restored along this path. Adjust the save location to match. */ if (crtl->calls_eh_return && style != 2) frame.reg_save_offset -= 2 * UNITS_PER_WORD; /* EH_RETURN requires the use of moves to function properly. */ if (crtl->calls_eh_return) restore_regs_via_mov = true; /* SEH requires the use of pops to identify the epilogue. */ else if (TARGET_SEH) restore_regs_via_mov = false; /* If we're only restoring one register and sp is not valid then using a move instruction to restore the register since it's less work than reloading sp and popping the register. */ else if (!m->fs.sp_valid && frame.nregs <= 1) restore_regs_via_mov = true; else if (TARGET_EPILOGUE_USING_MOVE && cfun->machine->use_fast_prologue_epilogue && (frame.nregs > 1 || m->fs.sp_offset != frame.reg_save_offset)) restore_regs_via_mov = true; else if (frame_pointer_needed && !frame.nregs && m->fs.sp_offset != frame.reg_save_offset) restore_regs_via_mov = true; else if (frame_pointer_needed && TARGET_USE_LEAVE && cfun->machine->use_fast_prologue_epilogue && frame.nregs == 1) restore_regs_via_mov = true; else restore_regs_via_mov = false; if (restore_regs_via_mov || frame.nsseregs) { /* Ensure that the entire register save area is addressable via the stack pointer, if we will restore via sp. */ if (TARGET_64BIT && m->fs.sp_offset > 0x7fffffff && !(m->fs.fp_valid || m->fs.drap_valid) && (frame.nsseregs + frame.nregs) != 0) { pro_epilogue_adjust_stack (stack_pointer_rtx, stack_pointer_rtx, GEN_INT (m->fs.sp_offset - frame.sse_reg_save_offset), style, m->fs.cfa_reg == stack_pointer_rtx); } } /* If there are any SSE registers to restore, then we have to do it via moves, since there's obviously no pop for SSE regs. */ if (frame.nsseregs) ix86_emit_restore_sse_regs_using_mov (frame.sse_reg_save_offset, style == 2); if (restore_regs_via_mov) { rtx t; if (frame.nregs) ix86_emit_restore_regs_using_mov (frame.reg_save_offset, style == 2); /* eh_return epilogues need %ecx added to the stack pointer. */ if (style == 2) { rtx insn, sa = EH_RETURN_STACKADJ_RTX; /* Stack align doesn't work with eh_return. */ gcc_assert (!stack_realign_drap); /* Neither does regparm nested functions. */ gcc_assert (!ix86_static_chain_on_stack); if (frame_pointer_needed) { t = gen_rtx_PLUS (Pmode, hard_frame_pointer_rtx, sa); t = plus_constant (Pmode, t, m->fs.fp_offset - UNITS_PER_WORD); emit_insn (gen_rtx_SET (VOIDmode, sa, t)); t = gen_frame_mem (Pmode, hard_frame_pointer_rtx); insn = emit_move_insn (hard_frame_pointer_rtx, t); /* Note that we use SA as a temporary CFA, as the return address is at the proper place relative to it. We pretend this happens at the FP restore insn because prior to this insn the FP would be stored at the wrong offset relative to SA, and after this insn we have no other reasonable register to use for the CFA. We don't bother resetting the CFA to the SP for the duration of the return insn. */ add_reg_note (insn, REG_CFA_DEF_CFA, plus_constant (Pmode, sa, UNITS_PER_WORD)); ix86_add_queued_cfa_restore_notes (insn); add_reg_note (insn, REG_CFA_RESTORE, hard_frame_pointer_rtx); RTX_FRAME_RELATED_P (insn) = 1; m->fs.cfa_reg = sa; m->fs.cfa_offset = UNITS_PER_WORD; m->fs.fp_valid = false; pro_epilogue_adjust_stack (stack_pointer_rtx, sa, const0_rtx, style, false); } else { t = gen_rtx_PLUS (Pmode, stack_pointer_rtx, sa); t = plus_constant (Pmode, t, m->fs.sp_offset - UNITS_PER_WORD); insn = emit_insn (gen_rtx_SET (VOIDmode, stack_pointer_rtx, t)); ix86_add_queued_cfa_restore_notes (insn); gcc_assert (m->fs.cfa_reg == stack_pointer_rtx); if (m->fs.cfa_offset != UNITS_PER_WORD) { m->fs.cfa_offset = UNITS_PER_WORD; add_reg_note (insn, REG_CFA_DEF_CFA, plus_constant (Pmode, stack_pointer_rtx, UNITS_PER_WORD)); RTX_FRAME_RELATED_P (insn) = 1; } } m->fs.sp_offset = UNITS_PER_WORD; m->fs.sp_valid = true; } } else { /* SEH requires that the function end with (1) a stack adjustment if necessary, (2) a sequence of pops, and (3) a return or jump instruction. Prevent insns from the function body from being scheduled into this sequence. */ if (TARGET_SEH) { /* Prevent a catch region from being adjacent to the standard epilogue sequence. Unfortuantely crtl->uses_eh_lsda nor several other flags that would be interesting to test are not yet set up. */ if (flag_non_call_exceptions) emit_insn (gen_nops (const1_rtx)); else emit_insn (gen_blockage ()); } /* First step is to deallocate the stack frame so that we can pop the registers. Also do it on SEH target for very large frame as the emitted instructions aren't allowed by the ABI in epilogues. */ if (!m->fs.sp_valid || (TARGET_SEH && (m->fs.sp_offset - frame.reg_save_offset >= SEH_MAX_FRAME_SIZE))) { pro_epilogue_adjust_stack (stack_pointer_rtx, hard_frame_pointer_rtx, GEN_INT (m->fs.fp_offset - frame.reg_save_offset), style, false); } else if (m->fs.sp_offset != frame.reg_save_offset) { pro_epilogue_adjust_stack (stack_pointer_rtx, stack_pointer_rtx, GEN_INT (m->fs.sp_offset - frame.reg_save_offset), style, m->fs.cfa_reg == stack_pointer_rtx); } ix86_emit_restore_regs_using_pop (); } /* If we used a stack pointer and haven't already got rid of it, then do so now. */ if (m->fs.fp_valid) { /* If the stack pointer is valid and pointing at the frame pointer store address, then we only need a pop. */ if (m->fs.sp_valid && m->fs.sp_offset == frame.hfp_save_offset) ix86_emit_restore_reg_using_pop (hard_frame_pointer_rtx); /* Leave results in shorter dependency chains on CPUs that are able to grok it fast. */ else if (TARGET_USE_LEAVE || optimize_bb_for_size_p (EXIT_BLOCK_PTR_FOR_FN (cfun)) || !cfun->machine->use_fast_prologue_epilogue) ix86_emit_leave (); else { pro_epilogue_adjust_stack (stack_pointer_rtx, hard_frame_pointer_rtx, const0_rtx, style, !using_drap); ix86_emit_restore_reg_using_pop (hard_frame_pointer_rtx); } } if (using_drap) { int param_ptr_offset = UNITS_PER_WORD; rtx insn; gcc_assert (stack_realign_drap); if (ix86_static_chain_on_stack) param_ptr_offset += UNITS_PER_WORD; if (!call_used_regs[REGNO (crtl->drap_reg)]) param_ptr_offset += UNITS_PER_WORD; insn = emit_insn (gen_rtx_SET (VOIDmode, stack_pointer_rtx, gen_rtx_PLUS (Pmode, crtl->drap_reg, GEN_INT (-param_ptr_offset)))); m->fs.cfa_reg = stack_pointer_rtx; m->fs.cfa_offset = param_ptr_offset; m->fs.sp_offset = param_ptr_offset; m->fs.realigned = false; add_reg_note (insn, REG_CFA_DEF_CFA, gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (param_ptr_offset))); RTX_FRAME_RELATED_P (insn) = 1; if (!call_used_regs[REGNO (crtl->drap_reg)]) ix86_emit_restore_reg_using_pop (crtl->drap_reg); } /* At this point the stack pointer must be valid, and we must have restored all of the registers. We may not have deallocated the entire stack frame. We've delayed this until now because it may be possible to merge the local stack deallocation with the deallocation forced by ix86_static_chain_on_stack. */ gcc_assert (m->fs.sp_valid); gcc_assert (!m->fs.fp_valid); gcc_assert (!m->fs.realigned); if (m->fs.sp_offset != UNITS_PER_WORD) { pro_epilogue_adjust_stack (stack_pointer_rtx, stack_pointer_rtx, GEN_INT (m->fs.sp_offset - UNITS_PER_WORD), style, true); } else ix86_add_queued_cfa_restore_notes (get_last_insn ()); /* Sibcall epilogues don't want a return instruction. */ if (style == 0) { m->fs = frame_state_save; return; } if (crtl->args.pops_args && crtl->args.size) { rtx popc = GEN_INT (crtl->args.pops_args); /* i386 can only pop 64K bytes. If asked to pop more, pop return address, do explicit add, and jump indirectly to the caller. */ if (crtl->args.pops_args >= 65536) { rtx ecx = gen_rtx_REG (SImode, CX_REG); rtx insn; /* There is no "pascal" calling convention in any 64bit ABI. */ gcc_assert (!TARGET_64BIT); insn = emit_insn (gen_pop (ecx)); m->fs.cfa_offset -= UNITS_PER_WORD; m->fs.sp_offset -= UNITS_PER_WORD; add_reg_note (insn, REG_CFA_ADJUST_CFA, copy_rtx (XVECEXP (PATTERN (insn), 0, 1))); add_reg_note (insn, REG_CFA_REGISTER, gen_rtx_SET (VOIDmode, ecx, pc_rtx)); RTX_FRAME_RELATED_P (insn) = 1; pro_epilogue_adjust_stack (stack_pointer_rtx, stack_pointer_rtx, popc, -1, true); emit_jump_insn (gen_simple_return_indirect_internal (ecx)); } else emit_jump_insn (gen_simple_return_pop_internal (popc)); } else emit_jump_insn (gen_simple_return_internal ()); /* Restore the state back to the state from the prologue, so that it's correct for the next epilogue. */ m->fs = frame_state_save; } /* Reset from the function's potential modifications. */ static void ix86_output_function_epilogue (FILE *file ATTRIBUTE_UNUSED, HOST_WIDE_INT size ATTRIBUTE_UNUSED) { if (pic_offset_table_rtx) SET_REGNO (pic_offset_table_rtx, REAL_PIC_OFFSET_TABLE_REGNUM); #if TARGET_MACHO /* Mach-O doesn't support labels at the end of objects, so if it looks like we might want one, insert a NOP. */ { rtx insn = get_last_insn (); rtx deleted_debug_label = NULL_RTX; while (insn && NOTE_P (insn) && NOTE_KIND (insn) != NOTE_INSN_DELETED_LABEL) { /* Don't insert a nop for NOTE_INSN_DELETED_DEBUG_LABEL notes only, instead set their CODE_LABEL_NUMBER to -1, otherwise there would be code generation differences in between -g and -g0. */ if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_DELETED_DEBUG_LABEL) deleted_debug_label = insn; insn = PREV_INSN (insn); } if (insn && (LABEL_P (insn) || (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_DELETED_LABEL))) fputs ("\tnop\n", file); else if (deleted_debug_label) for (insn = deleted_debug_label; insn; insn = NEXT_INSN (insn)) if (NOTE_KIND (insn) == NOTE_INSN_DELETED_DEBUG_LABEL) CODE_LABEL_NUMBER (insn) = -1; } #endif } /* Return a scratch register to use in the split stack prologue. The split stack prologue is used for -fsplit-stack. It is the first instructions in the function, even before the regular prologue. The scratch register can be any caller-saved register which is not used for parameters or for the static chain. */ static unsigned int split_stack_prologue_scratch_regno (void) { if (TARGET_64BIT) return R11_REG; else { bool is_fastcall, is_thiscall; int regparm; is_fastcall = (lookup_attribute ("fastcall", TYPE_ATTRIBUTES (TREE_TYPE (cfun->decl))) != NULL); is_thiscall = (lookup_attribute ("thiscall", TYPE_ATTRIBUTES (TREE_TYPE (cfun->decl))) != NULL); regparm = ix86_function_regparm (TREE_TYPE (cfun->decl), cfun->decl); if (is_fastcall) { if (DECL_STATIC_CHAIN (cfun->decl)) { sorry ("-fsplit-stack does not support fastcall with " "nested function"); return INVALID_REGNUM; } return AX_REG; } else if (is_thiscall) { if (!DECL_STATIC_CHAIN (cfun->decl)) return DX_REG; return AX_REG; } else if (regparm < 3) { if (!DECL_STATIC_CHAIN (cfun->decl)) return CX_REG; else { if (regparm >= 2) { sorry ("-fsplit-stack does not support 2 register " " parameters for a nested function"); return INVALID_REGNUM; } return DX_REG; } } else { /* FIXME: We could make this work by pushing a register around the addition and comparison. */ sorry ("-fsplit-stack does not support 3 register parameters"); return INVALID_REGNUM; } } } /* A SYMBOL_REF for the function which allocates new stackspace for -fsplit-stack. */ static GTY(()) rtx split_stack_fn; /* A SYMBOL_REF for the more stack function when using the large model. */ static GTY(()) rtx split_stack_fn_large; /* Handle -fsplit-stack. These are the first instructions in the function, even before the regular prologue. */ void ix86_expand_split_stack_prologue (void) { struct ix86_frame frame; HOST_WIDE_INT allocate; unsigned HOST_WIDE_INT args_size; rtx label, limit, current, jump_insn, allocate_rtx, call_insn, call_fusage; rtx scratch_reg = NULL_RTX; rtx varargs_label = NULL_RTX; rtx fn; gcc_assert (flag_split_stack && reload_completed); ix86_finalize_stack_realign_flags (); ix86_compute_frame_layout (&frame); allocate = frame.stack_pointer_offset - INCOMING_FRAME_SP_OFFSET; /* This is the label we will branch to if we have enough stack space. We expect the basic block reordering pass to reverse this branch if optimizing, so that we branch in the unlikely case. */ label = gen_label_rtx (); /* We need to compare the stack pointer minus the frame size with the stack boundary in the TCB. The stack boundary always gives us SPLIT_STACK_AVAILABLE bytes, so if we need less than that we can compare directly. Otherwise we need to do an addition. */ limit = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx), UNSPEC_STACK_CHECK); limit = gen_rtx_CONST (Pmode, limit); limit = gen_rtx_MEM (Pmode, limit); if (allocate < SPLIT_STACK_AVAILABLE) current = stack_pointer_rtx; else { unsigned int scratch_regno; rtx offset; /* We need a scratch register to hold the stack pointer minus the required frame size. Since this is the very start of the function, the scratch register can be any caller-saved register which is not used for parameters. */ offset = GEN_INT (- allocate); scratch_regno = split_stack_prologue_scratch_regno (); if (scratch_regno == INVALID_REGNUM) return; scratch_reg = gen_rtx_REG (Pmode, scratch_regno); if (!TARGET_64BIT || x86_64_immediate_operand (offset, Pmode)) { /* We don't use ix86_gen_add3 in this case because it will want to split to lea, but when not optimizing the insn will not be split after this point. */ emit_insn (gen_rtx_SET (VOIDmode, scratch_reg, gen_rtx_PLUS (Pmode, stack_pointer_rtx, offset))); } else { emit_move_insn (scratch_reg, offset); emit_insn (ix86_gen_add3 (scratch_reg, scratch_reg, stack_pointer_rtx)); } current = scratch_reg; } ix86_expand_branch (GEU, current, limit, label); jump_insn = get_last_insn (); JUMP_LABEL (jump_insn) = label; /* Mark the jump as very likely to be taken. */ add_int_reg_note (jump_insn, REG_BR_PROB, REG_BR_PROB_BASE - REG_BR_PROB_BASE / 100); if (split_stack_fn == NULL_RTX) split_stack_fn = gen_rtx_SYMBOL_REF (Pmode, "__morestack"); fn = split_stack_fn; /* Get more stack space. We pass in the desired stack space and the size of the arguments to copy to the new stack. In 32-bit mode we push the parameters; __morestack will return on a new stack anyhow. In 64-bit mode we pass the parameters in r10 and r11. */ allocate_rtx = GEN_INT (allocate); args_size = crtl->args.size >= 0 ? crtl->args.size : 0; call_fusage = NULL_RTX; if (TARGET_64BIT) { rtx reg10, reg11; reg10 = gen_rtx_REG (Pmode, R10_REG); reg11 = gen_rtx_REG (Pmode, R11_REG); /* If this function uses a static chain, it will be in %r10. Preserve it across the call to __morestack. */ if (DECL_STATIC_CHAIN (cfun->decl)) { rtx rax; rax = gen_rtx_REG (word_mode, AX_REG); emit_move_insn (rax, gen_rtx_REG (word_mode, R10_REG)); use_reg (&call_fusage, rax); } if ((ix86_cmodel == CM_LARGE || ix86_cmodel == CM_LARGE_PIC) && !TARGET_PECOFF) { HOST_WIDE_INT argval; gcc_assert (Pmode == DImode); /* When using the large model we need to load the address into a register, and we've run out of registers. So we switch to a different calling convention, and we call a different function: __morestack_large. We pass the argument size in the upper 32 bits of r10 and pass the frame size in the lower 32 bits. */ gcc_assert ((allocate & (HOST_WIDE_INT) 0xffffffff) == allocate); gcc_assert ((args_size & 0xffffffff) == args_size); if (split_stack_fn_large == NULL_RTX) split_stack_fn_large = gen_rtx_SYMBOL_REF (Pmode, "__morestack_large_model"); if (ix86_cmodel == CM_LARGE_PIC) { rtx label, x; label = gen_label_rtx (); emit_label (label); LABEL_PRESERVE_P (label) = 1; emit_insn (gen_set_rip_rex64 (reg10, label)); emit_insn (gen_set_got_offset_rex64 (reg11, label)); emit_insn (ix86_gen_add3 (reg10, reg10, reg11)); x = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, split_stack_fn_large), UNSPEC_GOT); x = gen_rtx_CONST (Pmode, x); emit_move_insn (reg11, x); x = gen_rtx_PLUS (Pmode, reg10, reg11); x = gen_const_mem (Pmode, x); emit_move_insn (reg11, x); } else emit_move_insn (reg11, split_stack_fn_large); fn = reg11; argval = ((args_size << 16) << 16) + allocate; emit_move_insn (reg10, GEN_INT (argval)); } else { emit_move_insn (reg10, allocate_rtx); emit_move_insn (reg11, GEN_INT (args_size)); use_reg (&call_fusage, reg11); } use_reg (&call_fusage, reg10); } else { emit_insn (gen_push (GEN_INT (args_size))); emit_insn (gen_push (allocate_rtx)); } call_insn = ix86_expand_call (NULL_RTX, gen_rtx_MEM (QImode, fn), GEN_INT (UNITS_PER_WORD), constm1_rtx, NULL_RTX, false); add_function_usage_to (call_insn, call_fusage); /* In order to make call/return prediction work right, we now need to execute a return instruction. See libgcc/config/i386/morestack.S for the details on how this works. For flow purposes gcc must not see this as a return instruction--we need control flow to continue at the subsequent label. Therefore, we use an unspec. */ gcc_assert (crtl->args.pops_args < 65536); emit_insn (gen_split_stack_return (GEN_INT (crtl->args.pops_args))); /* If we are in 64-bit mode and this function uses a static chain, we saved %r10 in %rax before calling _morestack. */ if (TARGET_64BIT && DECL_STATIC_CHAIN (cfun->decl)) emit_move_insn (gen_rtx_REG (word_mode, R10_REG), gen_rtx_REG (word_mode, AX_REG)); /* If this function calls va_start, we need to store a pointer to the arguments on the old stack, because they may not have been all copied to the new stack. At this point the old stack can be found at the frame pointer value used by __morestack, because __morestack has set that up before calling back to us. Here we store that pointer in a scratch register, and in ix86_expand_prologue we store the scratch register in a stack slot. */ if (cfun->machine->split_stack_varargs_pointer != NULL_RTX) { unsigned int scratch_regno; rtx frame_reg; int words; scratch_regno = split_stack_prologue_scratch_regno (); scratch_reg = gen_rtx_REG (Pmode, scratch_regno); frame_reg = gen_rtx_REG (Pmode, BP_REG); /* 64-bit: fp -> old fp value return address within this function return address of caller of this function stack arguments So we add three words to get to the stack arguments. 32-bit: fp -> old fp value return address within this function first argument to __morestack second argument to __morestack return address of caller of this function stack arguments So we add five words to get to the stack arguments. */ words = TARGET_64BIT ? 3 : 5; emit_insn (gen_rtx_SET (VOIDmode, scratch_reg, gen_rtx_PLUS (Pmode, frame_reg, GEN_INT (words * UNITS_PER_WORD)))); varargs_label = gen_label_rtx (); emit_jump_insn (gen_jump (varargs_label)); JUMP_LABEL (get_last_insn ()) = varargs_label; emit_barrier (); } emit_label (label); LABEL_NUSES (label) = 1; /* If this function calls va_start, we now have to set the scratch register for the case where we do not call __morestack. In this case we need to set it based on the stack pointer. */ if (cfun->machine->split_stack_varargs_pointer != NULL_RTX) { emit_insn (gen_rtx_SET (VOIDmode, scratch_reg, gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (UNITS_PER_WORD)))); emit_label (varargs_label); LABEL_NUSES (varargs_label) = 1; } } /* We may have to tell the dataflow pass that the split stack prologue is initializing a scratch register. */ static void ix86_live_on_entry (bitmap regs) { if (cfun->machine->split_stack_varargs_pointer != NULL_RTX) { gcc_assert (flag_split_stack); bitmap_set_bit (regs, split_stack_prologue_scratch_regno ()); } } /* Extract the parts of an RTL expression that is a valid memory address for an instruction. Return 0 if the structure of the address is grossly off. Return -1 if the address contains ASHIFT, so it is not strictly valid, but still used for computing length of lea instruction. */ int ix86_decompose_address (rtx addr, struct ix86_address *out) { rtx base = NULL_RTX, index = NULL_RTX, disp = NULL_RTX; rtx base_reg, index_reg; HOST_WIDE_INT scale = 1; rtx scale_rtx = NULL_RTX; rtx tmp; int retval = 1; enum ix86_address_seg seg = SEG_DEFAULT; /* Allow zero-extended SImode addresses, they will be emitted with addr32 prefix. */ if (TARGET_64BIT && GET_MODE (addr) == DImode) { if (GET_CODE (addr) == ZERO_EXTEND && GET_MODE (XEXP (addr, 0)) == SImode) { addr = XEXP (addr, 0); if (CONST_INT_P (addr)) return 0; } else if (GET_CODE (addr) == AND && const_32bit_mask (XEXP (addr, 1), DImode)) { addr = simplify_gen_subreg (SImode, XEXP (addr, 0), DImode, 0); if (addr == NULL_RTX) return 0; if (CONST_INT_P (addr)) return 0; } } /* Allow SImode subregs of DImode addresses, they will be emitted with addr32 prefix. */ if (TARGET_64BIT && GET_MODE (addr) == SImode) { if (GET_CODE (addr) == SUBREG && GET_MODE (SUBREG_REG (addr)) == DImode) { addr = SUBREG_REG (addr); if (CONST_INT_P (addr)) return 0; } } if (REG_P (addr)) base = addr; else if (GET_CODE (addr) == SUBREG) { if (REG_P (SUBREG_REG (addr))) base = addr; else return 0; } else if (GET_CODE (addr) == PLUS) { rtx addends[4], op; int n = 0, i; op = addr; do { if (n >= 4) return 0; addends[n++] = XEXP (op, 1); op = XEXP (op, 0); } while (GET_CODE (op) == PLUS); if (n >= 4) return 0; addends[n] = op; for (i = n; i >= 0; --i) { op = addends[i]; switch (GET_CODE (op)) { case MULT: if (index) return 0; index = XEXP (op, 0); scale_rtx = XEXP (op, 1); break; case ASHIFT: if (index) return 0; index = XEXP (op, 0); tmp = XEXP (op, 1); if (!CONST_INT_P (tmp)) return 0; scale = INTVAL (tmp); if ((unsigned HOST_WIDE_INT) scale > 3) return 0; scale = 1 << scale; break; case ZERO_EXTEND: op = XEXP (op, 0); if (GET_CODE (op) != UNSPEC) return 0; /* FALLTHRU */ case UNSPEC: if (XINT (op, 1) == UNSPEC_TP && TARGET_TLS_DIRECT_SEG_REFS && seg == SEG_DEFAULT) seg = DEFAULT_TLS_SEG_REG; else return 0; break; case SUBREG: if (!REG_P (SUBREG_REG (op))) return 0; /* FALLTHRU */ case REG: if (!base) base = op; else if (!index) index = op; else return 0; break; case CONST: case CONST_INT: case SYMBOL_REF: case LABEL_REF: if (disp) return 0; disp = op; break; default: return 0; } } } else if (GET_CODE (addr) == MULT) { index = XEXP (addr, 0); /* index*scale */ scale_rtx = XEXP (addr, 1); } else if (GET_CODE (addr) == ASHIFT) { /* We're called for lea too, which implements ashift on occasion. */ index = XEXP (addr, 0); tmp = XEXP (addr, 1); if (!CONST_INT_P (tmp)) return 0; scale = INTVAL (tmp); if ((unsigned HOST_WIDE_INT) scale > 3) return 0; scale = 1 << scale; retval = -1; } else disp = addr; /* displacement */ if (index) { if (REG_P (index)) ; else if (GET_CODE (index) == SUBREG && REG_P (SUBREG_REG (index))) ; else return 0; } /* Extract the integral value of scale. */ if (scale_rtx) { if (!CONST_INT_P (scale_rtx)) return 0; scale = INTVAL (scale_rtx); } base_reg = base && GET_CODE (base) == SUBREG ? SUBREG_REG (base) : base; index_reg = index && GET_CODE (index) == SUBREG ? SUBREG_REG (index) : index; /* Avoid useless 0 displacement. */ if (disp == const0_rtx && (base || index)) disp = NULL_RTX; /* Allow arg pointer and stack pointer as index if there is not scaling. */ if (base_reg && index_reg && scale == 1 && (index_reg == arg_pointer_rtx || index_reg == frame_pointer_rtx || (REG_P (index_reg) && REGNO (index_reg) == STACK_POINTER_REGNUM))) { rtx tmp; tmp = base, base = index, index = tmp; tmp = base_reg, base_reg = index_reg, index_reg = tmp; } /* Special case: %ebp cannot be encoded as a base without a displacement. Similarly %r13. */ if (!disp && base_reg && (base_reg == hard_frame_pointer_rtx || base_reg == frame_pointer_rtx || base_reg == arg_pointer_rtx || (REG_P (base_reg) && (REGNO (base_reg) == HARD_FRAME_POINTER_REGNUM || REGNO (base_reg) == R13_REG)))) disp = const0_rtx; /* Special case: on K6, [%esi] makes the instruction vector decoded. Avoid this by transforming to [%esi+0]. Reload calls address legitimization without cfun defined, so we need to test cfun for being non-NULL. */ if (TARGET_K6 && cfun && optimize_function_for_speed_p (cfun) && base_reg && !index_reg && !disp && REG_P (base_reg) && REGNO (base_reg) == SI_REG) disp = const0_rtx; /* Special case: encode reg+reg instead of reg*2. */ if (!base && index && scale == 2) base = index, base_reg = index_reg, scale = 1; /* Special case: scaling cannot be encoded without base or displacement. */ if (!base && !disp && index && scale != 1) disp = const0_rtx; out->base = base; out->index = index; out->disp = disp; out->scale = scale; out->seg = seg; return retval; } /* Return cost of the memory address x. For i386, it is better to use a complex address than let gcc copy the address into a reg and make a new pseudo. But not if the address requires to two regs - that would mean more pseudos with longer lifetimes. */ static int ix86_address_cost (rtx x, enum machine_mode mode ATTRIBUTE_UNUSED, addr_space_t as ATTRIBUTE_UNUSED, bool speed ATTRIBUTE_UNUSED) { struct ix86_address parts; int cost = 1; int ok = ix86_decompose_address (x, &parts); gcc_assert (ok); if (parts.base && GET_CODE (parts.base) == SUBREG) parts.base = SUBREG_REG (parts.base); if (parts.index && GET_CODE (parts.index) == SUBREG) parts.index = SUBREG_REG (parts.index); /* Attempt to minimize number of registers in the address. */ if ((parts.base && (!REG_P (parts.base) || REGNO (parts.base) >= FIRST_PSEUDO_REGISTER)) || (parts.index && (!REG_P (parts.index) || REGNO (parts.index) >= FIRST_PSEUDO_REGISTER))) cost++; if (parts.base && (!REG_P (parts.base) || REGNO (parts.base) >= FIRST_PSEUDO_REGISTER) && parts.index && (!REG_P (parts.index) || REGNO (parts.index) >= FIRST_PSEUDO_REGISTER) && parts.base != parts.index) cost++; /* AMD-K6 don't like addresses with ModR/M set to 00_xxx_100b, since it's predecode logic can't detect the length of instructions and it degenerates to vector decoded. Increase cost of such addresses here. The penalty is minimally 2 cycles. It may be worthwhile to split such addresses or even refuse such addresses at all. Following addressing modes are affected: [base+scale*index] [scale*index+disp] [base+index] The first and last case may be avoidable by explicitly coding the zero in memory address, but I don't have AMD-K6 machine handy to check this theory. */ if (TARGET_K6 && ((!parts.disp && parts.base && parts.index && parts.scale != 1) || (parts.disp && !parts.base && parts.index && parts.scale != 1) || (!parts.disp && parts.base && parts.index && parts.scale == 1))) cost += 10; return cost; } /* Allow {LABEL | SYMBOL}_REF - SYMBOL_REF-FOR-PICBASE for Mach-O as this is used for to form addresses to local data when -fPIC is in use. */ static bool darwin_local_data_pic (rtx disp) { return (GET_CODE (disp) == UNSPEC && XINT (disp, 1) == UNSPEC_MACHOPIC_OFFSET); } /* Determine if a given RTX is a valid constant. We already know this satisfies CONSTANT_P. */ static bool ix86_legitimate_constant_p (enum machine_mode mode ATTRIBUTE_UNUSED, rtx x) { switch (GET_CODE (x)) { case CONST: x = XEXP (x, 0); if (GET_CODE (x) == PLUS) { if (!CONST_INT_P (XEXP (x, 1))) return false; x = XEXP (x, 0); } if (TARGET_MACHO && darwin_local_data_pic (x)) return true; /* Only some unspecs are valid as "constants". */ if (GET_CODE (x) == UNSPEC) switch (XINT (x, 1)) { case UNSPEC_GOT: case UNSPEC_GOTOFF: case UNSPEC_PLTOFF: return TARGET_64BIT; case UNSPEC_TPOFF: case UNSPEC_NTPOFF: x = XVECEXP (x, 0, 0); return (GET_CODE (x) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (x) == TLS_MODEL_LOCAL_EXEC); case UNSPEC_DTPOFF: x = XVECEXP (x, 0, 0); return (GET_CODE (x) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (x) == TLS_MODEL_LOCAL_DYNAMIC); default: return false; } /* We must have drilled down to a symbol. */ if (GET_CODE (x) == LABEL_REF) return true; if (GET_CODE (x) != SYMBOL_REF) return false; /* FALLTHRU */ case SYMBOL_REF: /* TLS symbols are never valid. */ if (SYMBOL_REF_TLS_MODEL (x)) return false; /* DLLIMPORT symbols are never valid. */ if (TARGET_DLLIMPORT_DECL_ATTRIBUTES && SYMBOL_REF_DLLIMPORT_P (x)) return false; #if TARGET_MACHO /* mdynamic-no-pic */ if (MACHO_DYNAMIC_NO_PIC_P) return machopic_symbol_defined_p (x); #endif break; case CONST_DOUBLE: if (GET_MODE (x) == TImode && x != CONST0_RTX (TImode) && !TARGET_64BIT) return false; break; case CONST_VECTOR: if (!standard_sse_constant_p (x)) return false; default: break; } /* Otherwise we handle everything else in the move patterns. */ return true; } /* Determine if it's legal to put X into the constant pool. This is not possible for the address of thread-local symbols, which is checked above. */ static bool ix86_cannot_force_const_mem (enum machine_mode mode, rtx x) { /* We can always put integral constants and vectors in memory. */ switch (GET_CODE (x)) { case CONST_INT: case CONST_DOUBLE: case CONST_VECTOR: return false; default: break; } return !ix86_legitimate_constant_p (mode, x); } /* Nonzero if the symbol is marked as dllimport, or as stub-variable, otherwise zero. */ static bool is_imported_p (rtx x) { if (!TARGET_DLLIMPORT_DECL_ATTRIBUTES || GET_CODE (x) != SYMBOL_REF) return false; return SYMBOL_REF_DLLIMPORT_P (x) || SYMBOL_REF_STUBVAR_P (x); } /* Nonzero if the constant value X is a legitimate general operand when generating PIC code. It is given that flag_pic is on and that X satisfies CONSTANT_P or is a CONST_DOUBLE. */ bool legitimate_pic_operand_p (rtx x) { rtx inner; switch (GET_CODE (x)) { case CONST: inner = XEXP (x, 0); if (GET_CODE (inner) == PLUS && CONST_INT_P (XEXP (inner, 1))) inner = XEXP (inner, 0); /* Only some unspecs are valid as "constants". */ if (GET_CODE (inner) == UNSPEC) switch (XINT (inner, 1)) { case UNSPEC_GOT: case UNSPEC_GOTOFF: case UNSPEC_PLTOFF: return TARGET_64BIT; case UNSPEC_TPOFF: x = XVECEXP (inner, 0, 0); return (GET_CODE (x) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (x) == TLS_MODEL_LOCAL_EXEC); case UNSPEC_MACHOPIC_OFFSET: return legitimate_pic_address_disp_p (x); default: return false; } /* FALLTHRU */ case SYMBOL_REF: case LABEL_REF: return legitimate_pic_address_disp_p (x); default: return true; } } /* Determine if a given CONST RTX is a valid memory displacement in PIC mode. */ bool legitimate_pic_address_disp_p (rtx disp) { bool saw_plus; /* In 64bit mode we can allow direct addresses of symbols and labels when they are not dynamic symbols. */ if (TARGET_64BIT) { rtx op0 = disp, op1; switch (GET_CODE (disp)) { case LABEL_REF: return true; case CONST: if (GET_CODE (XEXP (disp, 0)) != PLUS) break; op0 = XEXP (XEXP (disp, 0), 0); op1 = XEXP (XEXP (disp, 0), 1); if (!CONST_INT_P (op1) || INTVAL (op1) >= 16*1024*1024 || INTVAL (op1) < -16*1024*1024) break; if (GET_CODE (op0) == LABEL_REF) return true; if (GET_CODE (op0) == CONST && GET_CODE (XEXP (op0, 0)) == UNSPEC && XINT (XEXP (op0, 0), 1) == UNSPEC_PCREL) return true; if (GET_CODE (op0) == UNSPEC && XINT (op0, 1) == UNSPEC_PCREL) return true; if (GET_CODE (op0) != SYMBOL_REF) break; /* FALLTHRU */ case SYMBOL_REF: /* TLS references should always be enclosed in UNSPEC. The dllimported symbol needs always to be resolved. */ if (SYMBOL_REF_TLS_MODEL (op0) || (TARGET_DLLIMPORT_DECL_ATTRIBUTES && SYMBOL_REF_DLLIMPORT_P (op0))) return false; if (TARGET_PECOFF) { if (is_imported_p (op0)) return true; if (SYMBOL_REF_FAR_ADDR_P (op0) || !SYMBOL_REF_LOCAL_P (op0)) break; /* Function-symbols need to be resolved only for large-model. For the small-model we don't need to resolve anything here. */ if ((ix86_cmodel != CM_LARGE_PIC && SYMBOL_REF_FUNCTION_P (op0)) || ix86_cmodel == CM_SMALL_PIC) return true; /* Non-external symbols don't need to be resolved for large, and medium-model. */ if ((ix86_cmodel == CM_LARGE_PIC || ix86_cmodel == CM_MEDIUM_PIC) && !SYMBOL_REF_EXTERNAL_P (op0)) return true; } else if (!SYMBOL_REF_FAR_ADDR_P (op0) && SYMBOL_REF_LOCAL_P (op0) && ix86_cmodel != CM_LARGE_PIC) return true; break; default: break; } } if (GET_CODE (disp) != CONST) return false; disp = XEXP (disp, 0); if (TARGET_64BIT) { /* We are unsafe to allow PLUS expressions. This limit allowed distance of GOT tables. We should not need these anyway. */ if (GET_CODE (disp) != UNSPEC || (XINT (disp, 1) != UNSPEC_GOTPCREL && XINT (disp, 1) != UNSPEC_GOTOFF && XINT (disp, 1) != UNSPEC_PCREL && XINT (disp, 1) != UNSPEC_PLTOFF)) return false; if (GET_CODE (XVECEXP (disp, 0, 0)) != SYMBOL_REF && GET_CODE (XVECEXP (disp, 0, 0)) != LABEL_REF) return false; return true; } saw_plus = false; if (GET_CODE (disp) == PLUS) { if (!CONST_INT_P (XEXP (disp, 1))) return false; disp = XEXP (disp, 0); saw_plus = true; } if (TARGET_MACHO && darwin_local_data_pic (disp)) return true; if (GET_CODE (disp) != UNSPEC) return false; switch (XINT (disp, 1)) { case UNSPEC_GOT: if (saw_plus) return false; /* We need to check for both symbols and labels because VxWorks loads text labels with @GOT rather than @GOTOFF. See gotoff_operand for details. */ return (GET_CODE (XVECEXP (disp, 0, 0)) == SYMBOL_REF || GET_CODE (XVECEXP (disp, 0, 0)) == LABEL_REF); case UNSPEC_GOTOFF: /* Refuse GOTOFF in 64bit mode since it is always 64bit when used. While ABI specify also 32bit relocation but we don't produce it in small PIC model at all. */ if ((GET_CODE (XVECEXP (disp, 0, 0)) == SYMBOL_REF || GET_CODE (XVECEXP (disp, 0, 0)) == LABEL_REF) && !TARGET_64BIT) return !TARGET_PECOFF && gotoff_operand (XVECEXP (disp, 0, 0), Pmode); return false; case UNSPEC_GOTTPOFF: case UNSPEC_GOTNTPOFF: case UNSPEC_INDNTPOFF: if (saw_plus) return false; disp = XVECEXP (disp, 0, 0); return (GET_CODE (disp) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (disp) == TLS_MODEL_INITIAL_EXEC); case UNSPEC_NTPOFF: disp = XVECEXP (disp, 0, 0); return (GET_CODE (disp) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (disp) == TLS_MODEL_LOCAL_EXEC); case UNSPEC_DTPOFF: disp = XVECEXP (disp, 0, 0); return (GET_CODE (disp) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (disp) == TLS_MODEL_LOCAL_DYNAMIC); } return false; } /* Our implementation of LEGITIMIZE_RELOAD_ADDRESS. Returns a value to replace the input X, or the original X if no replacement is called for. The output parameter *WIN is 1 if the calling macro should goto WIN, 0 if it should not. */ bool ix86_legitimize_reload_address (rtx x, enum machine_mode mode ATTRIBUTE_UNUSED, int opnum, int type, int ind_levels ATTRIBUTE_UNUSED) { /* Reload can generate: (plus:DI (plus:DI (unspec:DI [(const_int 0 [0])] UNSPEC_TP) (reg:DI 97)) (reg:DI 2 cx)) This RTX is rejected from ix86_legitimate_address_p due to non-strictness of base register 97. Following this rejection, reload pushes all three components into separate registers, creating invalid memory address RTX. Following code reloads only the invalid part of the memory address RTX. */ if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1)) && GET_CODE (XEXP (x, 0)) == PLUS && REG_P (XEXP (XEXP (x, 0), 1))) { rtx base, index; bool something_reloaded = false; base = XEXP (XEXP (x, 0), 1); if (!REG_OK_FOR_BASE_STRICT_P (base)) { push_reload (base, NULL_RTX, &XEXP (XEXP (x, 0), 1), NULL, BASE_REG_CLASS, GET_MODE (x), VOIDmode, 0, 0, opnum, (enum reload_type) type); something_reloaded = true; } index = XEXP (x, 1); if (!REG_OK_FOR_INDEX_STRICT_P (index)) { push_reload (index, NULL_RTX, &XEXP (x, 1), NULL, INDEX_REG_CLASS, GET_MODE (x), VOIDmode, 0, 0, opnum, (enum reload_type) type); something_reloaded = true; } gcc_assert (something_reloaded); return true; } return false; } /* Determine if op is suitable RTX for an address register. Return naked register if a register or a register subreg is found, otherwise return NULL_RTX. */ static rtx ix86_validate_address_register (rtx op) { enum machine_mode mode = GET_MODE (op); /* Only SImode or DImode registers can form the address. */ if (mode != SImode && mode != DImode) return NULL_RTX; if (REG_P (op)) return op; else if (GET_CODE (op) == SUBREG) { rtx reg = SUBREG_REG (op); if (!REG_P (reg)) return NULL_RTX; mode = GET_MODE (reg); /* Don't allow SUBREGs that span more than a word. It can lead to spill failures when the register is one word out of a two word structure. */ if (GET_MODE_SIZE (mode) > UNITS_PER_WORD) return NULL_RTX; /* Allow only SUBREGs of non-eliminable hard registers. */ if (register_no_elim_operand (reg, mode)) return reg; } /* Op is not a register. */ return NULL_RTX; } /* Recognizes RTL expressions that are valid memory addresses for an instruction. The MODE argument is the machine mode for the MEM expression that wants to use this address. It only recognizes address in canonical form. LEGITIMIZE_ADDRESS should convert common non-canonical forms to canonical form so that they will be recognized. */ static bool ix86_legitimate_address_p (enum machine_mode mode ATTRIBUTE_UNUSED, rtx addr, bool strict) { struct ix86_address parts; rtx base, index, disp; HOST_WIDE_INT scale; enum ix86_address_seg seg; if (ix86_decompose_address (addr, &parts) <= 0) /* Decomposition failed. */ return false; base = parts.base; index = parts.index; disp = parts.disp; scale = parts.scale; seg = parts.seg; /* Validate base register. */ if (base) { rtx reg = ix86_validate_address_register (base); if (reg == NULL_RTX) return false; if ((strict && ! REG_OK_FOR_BASE_STRICT_P (reg)) || (! strict && ! REG_OK_FOR_BASE_NONSTRICT_P (reg))) /* Base is not valid. */ return false; } /* Validate index register. */ if (index) { rtx reg = ix86_validate_address_register (index); if (reg == NULL_RTX) return false; if ((strict && ! REG_OK_FOR_INDEX_STRICT_P (reg)) || (! strict && ! REG_OK_FOR_INDEX_NONSTRICT_P (reg))) /* Index is not valid. */ return false; } /* Index and base should have the same mode. */ if (base && index && GET_MODE (base) != GET_MODE (index)) return false; /* Address override works only on the (%reg) part of %fs:(%reg). */ if (seg != SEG_DEFAULT && ((base && GET_MODE (base) != word_mode) || (index && GET_MODE (index) != word_mode))) return false; /* Validate scale factor. */ if (scale != 1) { if (!index) /* Scale without index. */ return false; if (scale != 2 && scale != 4 && scale != 8) /* Scale is not a valid multiplier. */ return false; } /* Validate displacement. */ if (disp) { if (GET_CODE (disp) == CONST && GET_CODE (XEXP (disp, 0)) == UNSPEC && XINT (XEXP (disp, 0), 1) != UNSPEC_MACHOPIC_OFFSET) switch (XINT (XEXP (disp, 0), 1)) { /* Refuse GOTOFF and GOT in 64bit mode since it is always 64bit when used. While ABI specify also 32bit relocations, we don't produce them at all and use IP relative instead. */ case UNSPEC_GOT: case UNSPEC_GOTOFF: gcc_assert (flag_pic); if (!TARGET_64BIT) goto is_legitimate_pic; /* 64bit address unspec. */ return false; case UNSPEC_GOTPCREL: case UNSPEC_PCREL: gcc_assert (flag_pic); goto is_legitimate_pic; case UNSPEC_GOTTPOFF: case UNSPEC_GOTNTPOFF: case UNSPEC_INDNTPOFF: case UNSPEC_NTPOFF: case UNSPEC_DTPOFF: break; case UNSPEC_STACK_CHECK: gcc_assert (flag_split_stack); break; default: /* Invalid address unspec. */ return false; } else if (SYMBOLIC_CONST (disp) && (flag_pic || (TARGET_MACHO #if TARGET_MACHO && MACHOPIC_INDIRECT && !machopic_operand_p (disp) #endif ))) { is_legitimate_pic: if (TARGET_64BIT && (index || base)) { /* foo@dtpoff(%rX) is ok. */ if (GET_CODE (disp) != CONST || GET_CODE (XEXP (disp, 0)) != PLUS || GET_CODE (XEXP (XEXP (disp, 0), 0)) != UNSPEC || !CONST_INT_P (XEXP (XEXP (disp, 0), 1)) || (XINT (XEXP (XEXP (disp, 0), 0), 1) != UNSPEC_DTPOFF && XINT (XEXP (XEXP (disp, 0), 0), 1) != UNSPEC_NTPOFF)) /* Non-constant pic memory reference. */ return false; } else if ((!TARGET_MACHO || flag_pic) && ! legitimate_pic_address_disp_p (disp)) /* Displacement is an invalid pic construct. */ return false; #if TARGET_MACHO else if (MACHO_DYNAMIC_NO_PIC_P && !ix86_legitimate_constant_p (Pmode, disp)) /* displacment must be referenced via non_lazy_pointer */ return false; #endif /* This code used to verify that a symbolic pic displacement includes the pic_offset_table_rtx register. While this is good idea, unfortunately these constructs may be created by "adds using lea" optimization for incorrect code like: int a; int foo(int i) { return *(&a+i); } This code is nonsensical, but results in addressing GOT table with pic_offset_table_rtx base. We can't just refuse it easily, since it gets matched by "addsi3" pattern, that later gets split to lea in the case output register differs from input. While this can be handled by separate addsi pattern for this case that never results in lea, this seems to be easier and correct fix for crash to disable this test. */ } else if (GET_CODE (disp) != LABEL_REF && !CONST_INT_P (disp) && (GET_CODE (disp) != CONST || !ix86_legitimate_constant_p (Pmode, disp)) && (GET_CODE (disp) != SYMBOL_REF || !ix86_legitimate_constant_p (Pmode, disp))) /* Displacement is not constant. */ return false; else if (TARGET_64BIT && !x86_64_immediate_operand (disp, VOIDmode)) /* Displacement is out of range. */ return false; /* In x32 mode, constant addresses are sign extended to 64bit, so we have to prevent addresses from 0x80000000 to 0xffffffff. */ else if (TARGET_X32 && !(index || base) && CONST_INT_P (disp) && val_signbit_known_set_p (SImode, INTVAL (disp))) return false; } /* Everything looks valid. */ return true; } /* Determine if a given RTX is a valid constant address. */ bool constant_address_p (rtx x) { return CONSTANT_P (x) && ix86_legitimate_address_p (Pmode, x, 1); } /* Return a unique alias set for the GOT. */ static alias_set_type ix86_GOT_alias_set (void) { static alias_set_type set = -1; if (set == -1) set = new_alias_set (); return set; } /* Return a legitimate reference for ORIG (an address) using the register REG. If REG is 0, a new pseudo is generated. There are two types of references that must be handled: 1. Global data references must load the address from the GOT, via the PIC reg. An insn is emitted to do this load, and the reg is returned. 2. Static data references, constant pool addresses, and code labels compute the address as an offset from the GOT, whose base is in the PIC reg. Static data objects have SYMBOL_FLAG_LOCAL set to differentiate them from global data objects. The returned address is the PIC reg + an unspec constant. TARGET_LEGITIMATE_ADDRESS_P rejects symbolic references unless the PIC reg also appears in the address. */ static rtx legitimize_pic_address (rtx orig, rtx reg) { rtx addr = orig; rtx new_rtx = orig; #if TARGET_MACHO if (TARGET_MACHO && !TARGET_64BIT) { if (reg == 0) reg = gen_reg_rtx (Pmode); /* Use the generic Mach-O PIC machinery. */ return machopic_legitimize_pic_address (orig, GET_MODE (orig), reg); } #endif if (TARGET_64BIT && TARGET_DLLIMPORT_DECL_ATTRIBUTES) { rtx tmp = legitimize_pe_coff_symbol (addr, true); if (tmp) return tmp; } if (TARGET_64BIT && legitimate_pic_address_disp_p (addr)) new_rtx = addr; else if (TARGET_64BIT && !TARGET_PECOFF && ix86_cmodel != CM_SMALL_PIC && gotoff_operand (addr, Pmode)) { rtx tmpreg; /* This symbol may be referenced via a displacement from the PIC base address (@GOTOFF). */ if (reload_in_progress) df_set_regs_ever_live (PIC_OFFSET_TABLE_REGNUM, true); if (GET_CODE (addr) == CONST) addr = XEXP (addr, 0); if (GET_CODE (addr) == PLUS) { new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, XEXP (addr, 0)), UNSPEC_GOTOFF); new_rtx = gen_rtx_PLUS (Pmode, new_rtx, XEXP (addr, 1)); } else new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_GOTOFF); new_rtx = gen_rtx_CONST (Pmode, new_rtx); if (!reg) tmpreg = gen_reg_rtx (Pmode); else tmpreg = reg; emit_move_insn (tmpreg, new_rtx); if (reg != 0) { new_rtx = expand_simple_binop (Pmode, PLUS, reg, pic_offset_table_rtx, tmpreg, 1, OPTAB_DIRECT); new_rtx = reg; } else new_rtx = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, tmpreg); } else if (!TARGET_64BIT && !TARGET_PECOFF && gotoff_operand (addr, Pmode)) { /* This symbol may be referenced via a displacement from the PIC base address (@GOTOFF). */ if (reload_in_progress) df_set_regs_ever_live (PIC_OFFSET_TABLE_REGNUM, true); if (GET_CODE (addr) == CONST) addr = XEXP (addr, 0); if (GET_CODE (addr) == PLUS) { new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, XEXP (addr, 0)), UNSPEC_GOTOFF); new_rtx = gen_rtx_PLUS (Pmode, new_rtx, XEXP (addr, 1)); } else new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_GOTOFF); new_rtx = gen_rtx_CONST (Pmode, new_rtx); new_rtx = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, new_rtx); if (reg != 0) { emit_move_insn (reg, new_rtx); new_rtx = reg; } } else if ((GET_CODE (addr) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (addr) == 0) /* We can't use @GOTOFF for text labels on VxWorks; see gotoff_operand. */ || (TARGET_VXWORKS_RTP && GET_CODE (addr) == LABEL_REF)) { rtx tmp = legitimize_pe_coff_symbol (addr, true); if (tmp) return tmp; /* For x64 PE-COFF there is no GOT table. So we use address directly. */ if (TARGET_64BIT && TARGET_PECOFF) { new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_PCREL); new_rtx = gen_rtx_CONST (Pmode, new_rtx); if (reg == 0) reg = gen_reg_rtx (Pmode); emit_move_insn (reg, new_rtx); new_rtx = reg; } else if (TARGET_64BIT && ix86_cmodel != CM_LARGE_PIC) { new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_GOTPCREL); new_rtx = gen_rtx_CONST (Pmode, new_rtx); new_rtx = gen_const_mem (Pmode, new_rtx); set_mem_alias_set (new_rtx, ix86_GOT_alias_set ()); if (reg == 0) reg = gen_reg_rtx (Pmode); /* Use directly gen_movsi, otherwise the address is loaded into register for CSE. We don't want to CSE this addresses, instead we CSE addresses from the GOT table, so skip this. */ emit_insn (gen_movsi (reg, new_rtx)); new_rtx = reg; } else { /* This symbol must be referenced via a load from the Global Offset Table (@GOT). */ if (reload_in_progress) df_set_regs_ever_live (PIC_OFFSET_TABLE_REGNUM, true); new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_GOT); new_rtx = gen_rtx_CONST (Pmode, new_rtx); if (TARGET_64BIT) new_rtx = force_reg (Pmode, new_rtx); new_rtx = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, new_rtx); new_rtx = gen_const_mem (Pmode, new_rtx); set_mem_alias_set (new_rtx, ix86_GOT_alias_set ()); if (reg == 0) reg = gen_reg_rtx (Pmode); emit_move_insn (reg, new_rtx); new_rtx = reg; } } else { if (CONST_INT_P (addr) && !x86_64_immediate_operand (addr, VOIDmode)) { if (reg) { emit_move_insn (reg, addr); new_rtx = reg; } else new_rtx = force_reg (Pmode, addr); } else if (GET_CODE (addr) == CONST) { addr = XEXP (addr, 0); /* We must match stuff we generate before. Assume the only unspecs that can get here are ours. Not that we could do anything with them anyway.... */ if (GET_CODE (addr) == UNSPEC || (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 0)) == UNSPEC)) return orig; gcc_assert (GET_CODE (addr) == PLUS); } if (GET_CODE (addr) == PLUS) { rtx op0 = XEXP (addr, 0), op1 = XEXP (addr, 1); /* Check first to see if this is a constant offset from a @GOTOFF symbol reference. */ if (!TARGET_PECOFF && gotoff_operand (op0, Pmode) && CONST_INT_P (op1)) { if (!TARGET_64BIT) { if (reload_in_progress) df_set_regs_ever_live (PIC_OFFSET_TABLE_REGNUM, true); new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, op0), UNSPEC_GOTOFF); new_rtx = gen_rtx_PLUS (Pmode, new_rtx, op1); new_rtx = gen_rtx_CONST (Pmode, new_rtx); new_rtx = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, new_rtx); if (reg != 0) { emit_move_insn (reg, new_rtx); new_rtx = reg; } } else { if (INTVAL (op1) < -16*1024*1024 || INTVAL (op1) >= 16*1024*1024) { if (!x86_64_immediate_operand (op1, Pmode)) op1 = force_reg (Pmode, op1); new_rtx = gen_rtx_PLUS (Pmode, force_reg (Pmode, op0), op1); } } } else { rtx base = legitimize_pic_address (op0, reg); enum machine_mode mode = GET_MODE (base); new_rtx = legitimize_pic_address (op1, base == reg ? NULL_RTX : reg); if (CONST_INT_P (new_rtx)) { if (INTVAL (new_rtx) < -16*1024*1024 || INTVAL (new_rtx) >= 16*1024*1024) { if (!x86_64_immediate_operand (new_rtx, mode)) new_rtx = force_reg (mode, new_rtx); new_rtx = gen_rtx_PLUS (mode, force_reg (mode, base), new_rtx); } else new_rtx = plus_constant (mode, base, INTVAL (new_rtx)); } else { if (GET_CODE (new_rtx) == PLUS && CONSTANT_P (XEXP (new_rtx, 1))) { base = gen_rtx_PLUS (mode, base, XEXP (new_rtx, 0)); new_rtx = XEXP (new_rtx, 1); } new_rtx = gen_rtx_PLUS (mode, base, new_rtx); } } } } return new_rtx; } /* Load the thread pointer. If TO_REG is true, force it into a register. */ static rtx get_thread_pointer (enum machine_mode tp_mode, bool to_reg) { rtx tp = gen_rtx_UNSPEC (ptr_mode, gen_rtvec (1, const0_rtx), UNSPEC_TP); if (GET_MODE (tp) != tp_mode) { gcc_assert (GET_MODE (tp) == SImode); gcc_assert (tp_mode == DImode); tp = gen_rtx_ZERO_EXTEND (tp_mode, tp); } if (to_reg) tp = copy_to_mode_reg (tp_mode, tp); return tp; } /* Construct the SYMBOL_REF for the tls_get_addr function. */ static GTY(()) rtx ix86_tls_symbol; static rtx ix86_tls_get_addr (void) { if (!ix86_tls_symbol) { const char *sym = ((TARGET_ANY_GNU_TLS && !TARGET_64BIT) ? "___tls_get_addr" : "__tls_get_addr"); ix86_tls_symbol = gen_rtx_SYMBOL_REF (Pmode, sym); } if (ix86_cmodel == CM_LARGE_PIC && !TARGET_PECOFF) { rtx unspec = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, ix86_tls_symbol), UNSPEC_PLTOFF); return gen_rtx_PLUS (Pmode, pic_offset_table_rtx, gen_rtx_CONST (Pmode, unspec)); } return ix86_tls_symbol; } /* Construct the SYMBOL_REF for the _TLS_MODULE_BASE_ symbol. */ static GTY(()) rtx ix86_tls_module_base_symbol; rtx ix86_tls_module_base (void) { if (!ix86_tls_module_base_symbol) { ix86_tls_module_base_symbol = gen_rtx_SYMBOL_REF (Pmode, "_TLS_MODULE_BASE_"); SYMBOL_REF_FLAGS (ix86_tls_module_base_symbol) |= TLS_MODEL_GLOBAL_DYNAMIC << SYMBOL_FLAG_TLS_SHIFT; } return ix86_tls_module_base_symbol; } /* A subroutine of ix86_legitimize_address and ix86_expand_move. FOR_MOV is false if we expect this to be used for a memory address and true if we expect to load the address into a register. */ static rtx legitimize_tls_address (rtx x, enum tls_model model, bool for_mov) { rtx dest, base, off; rtx pic = NULL_RTX, tp = NULL_RTX; enum machine_mode tp_mode = Pmode; int type; switch (model) { case TLS_MODEL_GLOBAL_DYNAMIC: dest = gen_reg_rtx (Pmode); if (!TARGET_64BIT) { if (flag_pic && !TARGET_PECOFF) pic = pic_offset_table_rtx; else { pic = gen_reg_rtx (Pmode); emit_insn (gen_set_got (pic)); } } if (TARGET_GNU2_TLS) { if (TARGET_64BIT) emit_insn (gen_tls_dynamic_gnu2_64 (dest, x)); else emit_insn (gen_tls_dynamic_gnu2_32 (dest, x, pic)); tp = get_thread_pointer (Pmode, true); dest = force_reg (Pmode, gen_rtx_PLUS (Pmode, tp, dest)); if (GET_MODE (x) != Pmode) x = gen_rtx_ZERO_EXTEND (Pmode, x); set_unique_reg_note (get_last_insn (), REG_EQUAL, x); } else { rtx caddr = ix86_tls_get_addr (); if (TARGET_64BIT) { rtx rax = gen_rtx_REG (Pmode, AX_REG); rtx insns; start_sequence (); emit_call_insn (ix86_gen_tls_global_dynamic_64 (rax, x, caddr)); insns = get_insns (); end_sequence (); if (GET_MODE (x) != Pmode) x = gen_rtx_ZERO_EXTEND (Pmode, x); RTL_CONST_CALL_P (insns) = 1; emit_libcall_block (insns, dest, rax, x); } else emit_insn (gen_tls_global_dynamic_32 (dest, x, pic, caddr)); } break; case TLS_MODEL_LOCAL_DYNAMIC: base = gen_reg_rtx (Pmode); if (!TARGET_64BIT) { if (flag_pic) pic = pic_offset_table_rtx; else { pic = gen_reg_rtx (Pmode); emit_insn (gen_set_got (pic)); } } if (TARGET_GNU2_TLS) { rtx tmp = ix86_tls_module_base (); if (TARGET_64BIT) emit_insn (gen_tls_dynamic_gnu2_64 (base, tmp)); else emit_insn (gen_tls_dynamic_gnu2_32 (base, tmp, pic)); tp = get_thread_pointer (Pmode, true); set_unique_reg_note (get_last_insn (), REG_EQUAL, gen_rtx_MINUS (Pmode, tmp, tp)); } else { rtx caddr = ix86_tls_get_addr (); if (TARGET_64BIT) { rtx rax = gen_rtx_REG (Pmode, AX_REG); rtx insns, eqv; start_sequence (); emit_call_insn (ix86_gen_tls_local_dynamic_base_64 (rax, caddr)); insns = get_insns (); end_sequence (); /* Attach a unique REG_EQUAL, to allow the RTL optimizers to share the LD_BASE result with other LD model accesses. */ eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx), UNSPEC_TLS_LD_BASE); RTL_CONST_CALL_P (insns) = 1; emit_libcall_block (insns, base, rax, eqv); } else emit_insn (gen_tls_local_dynamic_base_32 (base, pic, caddr)); } off = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, x), UNSPEC_DTPOFF); off = gen_rtx_CONST (Pmode, off); dest = force_reg (Pmode, gen_rtx_PLUS (Pmode, base, off)); if (TARGET_GNU2_TLS) { dest = force_reg (Pmode, gen_rtx_PLUS (Pmode, dest, tp)); if (GET_MODE (x) != Pmode) x = gen_rtx_ZERO_EXTEND (Pmode, x); set_unique_reg_note (get_last_insn (), REG_EQUAL, x); } break; case TLS_MODEL_INITIAL_EXEC: if (TARGET_64BIT) { if (TARGET_SUN_TLS && !TARGET_X32) { /* The Sun linker took the AMD64 TLS spec literally and can only handle %rax as destination of the initial executable code sequence. */ dest = gen_reg_rtx (DImode); emit_insn (gen_tls_initial_exec_64_sun (dest, x)); return dest; } /* Generate DImode references to avoid %fs:(%reg32) problems and linker IE->LE relaxation bug. */ tp_mode = DImode; pic = NULL; type = UNSPEC_GOTNTPOFF; } else if (flag_pic) { if (reload_in_progress) df_set_regs_ever_live (PIC_OFFSET_TABLE_REGNUM, true); pic = pic_offset_table_rtx; type = TARGET_ANY_GNU_TLS ? UNSPEC_GOTNTPOFF : UNSPEC_GOTTPOFF; } else if (!TARGET_ANY_GNU_TLS) { pic = gen_reg_rtx (Pmode); emit_insn (gen_set_got (pic)); type = UNSPEC_GOTTPOFF; } else { pic = NULL; type = UNSPEC_INDNTPOFF; } off = gen_rtx_UNSPEC (tp_mode, gen_rtvec (1, x), type); off = gen_rtx_CONST (tp_mode, off); if (pic) off = gen_rtx_PLUS (tp_mode, pic, off); off = gen_const_mem (tp_mode, off); set_mem_alias_set (off, ix86_GOT_alias_set ()); if (TARGET_64BIT || TARGET_ANY_GNU_TLS) { base = get_thread_pointer (tp_mode, for_mov || !TARGET_TLS_DIRECT_SEG_REFS); off = force_reg (tp_mode, off); return gen_rtx_PLUS (tp_mode, base, off); } else { base = get_thread_pointer (Pmode, true); dest = gen_reg_rtx (Pmode); emit_insn (ix86_gen_sub3 (dest, base, off)); } break; case TLS_MODEL_LOCAL_EXEC: off = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, x), (TARGET_64BIT || TARGET_ANY_GNU_TLS) ? UNSPEC_NTPOFF : UNSPEC_TPOFF); off = gen_rtx_CONST (Pmode, off); if (TARGET_64BIT || TARGET_ANY_GNU_TLS) { base = get_thread_pointer (Pmode, for_mov || !TARGET_TLS_DIRECT_SEG_REFS); return gen_rtx_PLUS (Pmode, base, off); } else { base = get_thread_pointer (Pmode, true); dest = gen_reg_rtx (Pmode); emit_insn (ix86_gen_sub3 (dest, base, off)); } break; default: gcc_unreachable (); } return dest; } /* Create or return the unique __imp_DECL dllimport symbol corresponding to symbol DECL if BEIMPORT is true. Otherwise create or return the unique refptr-DECL symbol corresponding to symbol DECL. */ static GTY((if_marked ("tree_map_marked_p"), param_is (struct tree_map))) htab_t dllimport_map; static tree get_dllimport_decl (tree decl, bool beimport) { struct tree_map *h, in; void **loc; const char *name; const char *prefix; size_t namelen, prefixlen; char *imp_name; tree to; rtx rtl; if (!dllimport_map) dllimport_map = htab_create_ggc (512, tree_map_hash, tree_map_eq, 0); in.hash = htab_hash_pointer (decl); in.base.from = decl; loc = htab_find_slot_with_hash (dllimport_map, &in, in.hash, INSERT); h = (struct tree_map *) *loc; if (h) return h->to; *loc = h = ggc_alloc_tree_map (); h->hash = in.hash; h->base.from = decl; h->to = to = build_decl (DECL_SOURCE_LOCATION (decl), VAR_DECL, NULL, ptr_type_node); DECL_ARTIFICIAL (to) = 1; DECL_IGNORED_P (to) = 1; DECL_EXTERNAL (to) = 1; TREE_READONLY (to) = 1; name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)); name = targetm.strip_name_encoding (name); if (beimport) prefix = name[0] == FASTCALL_PREFIX || user_label_prefix[0] == 0 ? "*__imp_" : "*__imp__"; else prefix = user_label_prefix[0] == 0 ? "*.refptr." : "*refptr."; namelen = strlen (name); prefixlen = strlen (prefix); imp_name = (char *) alloca (namelen + prefixlen + 1); memcpy (imp_name, prefix, prefixlen); memcpy (imp_name + prefixlen, name, namelen + 1); name = ggc_alloc_string (imp_name, namelen + prefixlen); rtl = gen_rtx_SYMBOL_REF (Pmode, name); SET_SYMBOL_REF_DECL (rtl, to); SYMBOL_REF_FLAGS (rtl) = SYMBOL_FLAG_LOCAL | SYMBOL_FLAG_STUBVAR; if (!beimport) { SYMBOL_REF_FLAGS (rtl) |= SYMBOL_FLAG_EXTERNAL; #ifdef SUB_TARGET_RECORD_STUB SUB_TARGET_RECORD_STUB (name); #endif } rtl = gen_const_mem (Pmode, rtl); set_mem_alias_set (rtl, ix86_GOT_alias_set ()); SET_DECL_RTL (to, rtl); SET_DECL_ASSEMBLER_NAME (to, get_identifier (name)); return to; } /* Expand SYMBOL into its corresponding far-addresse symbol. WANT_REG is true if we require the result be a register. */ static rtx legitimize_pe_coff_extern_decl (rtx symbol, bool want_reg) { tree imp_decl; rtx x; gcc_assert (SYMBOL_REF_DECL (symbol)); imp_decl = get_dllimport_decl (SYMBOL_REF_DECL (symbol), false); x = DECL_RTL (imp_decl); if (want_reg) x = force_reg (Pmode, x); return x; } /* Expand SYMBOL into its corresponding dllimport symbol. WANT_REG is true if we require the result be a register. */ static rtx legitimize_dllimport_symbol (rtx symbol, bool want_reg) { tree imp_decl; rtx x; gcc_assert (SYMBOL_REF_DECL (symbol)); imp_decl = get_dllimport_decl (SYMBOL_REF_DECL (symbol), true); x = DECL_RTL (imp_decl); if (want_reg) x = force_reg (Pmode, x); return x; } /* Expand SYMBOL into its corresponding dllimport or refptr symbol. WANT_REG is true if we require the result be a register. */ static rtx legitimize_pe_coff_symbol (rtx addr, bool inreg) { if (!TARGET_PECOFF) return NULL_RTX; if (TARGET_DLLIMPORT_DECL_ATTRIBUTES) { if (GET_CODE (addr) == SYMBOL_REF && SYMBOL_REF_DLLIMPORT_P (addr)) return legitimize_dllimport_symbol (addr, inreg); if (GET_CODE (addr) == CONST && GET_CODE (XEXP (addr, 0)) == PLUS && GET_CODE (XEXP (XEXP (addr, 0), 0)) == SYMBOL_REF && SYMBOL_REF_DLLIMPORT_P (XEXP (XEXP (addr, 0), 0))) { rtx t = legitimize_dllimport_symbol (XEXP (XEXP (addr, 0), 0), inreg); return gen_rtx_PLUS (Pmode, t, XEXP (XEXP (addr, 0), 1)); } } if (ix86_cmodel != CM_LARGE_PIC && ix86_cmodel != CM_MEDIUM_PIC) return NULL_RTX; if (GET_CODE (addr) == SYMBOL_REF && !is_imported_p (addr) && SYMBOL_REF_EXTERNAL_P (addr) && SYMBOL_REF_DECL (addr)) return legitimize_pe_coff_extern_decl (addr, inreg); if (GET_CODE (addr) == CONST && GET_CODE (XEXP (addr, 0)) == PLUS && GET_CODE (XEXP (XEXP (addr, 0), 0)) == SYMBOL_REF && !is_imported_p (XEXP (XEXP (addr, 0), 0)) && SYMBOL_REF_EXTERNAL_P (XEXP (XEXP (addr, 0), 0)) && SYMBOL_REF_DECL (XEXP (XEXP (addr, 0), 0))) { rtx t = legitimize_pe_coff_extern_decl (XEXP (XEXP (addr, 0), 0), inreg); return gen_rtx_PLUS (Pmode, t, XEXP (XEXP (addr, 0), 1)); } return NULL_RTX; } /* Try machine-dependent ways of modifying an illegitimate address to be legitimate. If we find one, return the new, valid address. This macro is used in only one place: `memory_address' in explow.c. OLDX is the address as it was before break_out_memory_refs was called. In some cases it is useful to look at this to decide what needs to be done. It is always safe for this macro to do nothing. It exists to recognize opportunities to optimize the output. For the 80386, we handle X+REG by loading X into a register R and using R+REG. R will go in a general reg and indexing will be used. However, if REG is a broken-out memory address or multiplication, nothing needs to be done because REG can certainly go in a general reg. When -fpic is used, special handling is needed for symbolic references. See comments by legitimize_pic_address in i386.c for details. */ static rtx ix86_legitimize_address (rtx x, rtx oldx ATTRIBUTE_UNUSED, enum machine_mode mode) { int changed = 0; unsigned log; log = GET_CODE (x) == SYMBOL_REF ? SYMBOL_REF_TLS_MODEL (x) : 0; if (log) return legitimize_tls_address (x, (enum tls_model) log, false); if (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == PLUS && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF && (log = SYMBOL_REF_TLS_MODEL (XEXP (XEXP (x, 0), 0)))) { rtx t = legitimize_tls_address (XEXP (XEXP (x, 0), 0), (enum tls_model) log, false); return gen_rtx_PLUS (Pmode, t, XEXP (XEXP (x, 0), 1)); } if (TARGET_DLLIMPORT_DECL_ATTRIBUTES) { rtx tmp = legitimize_pe_coff_symbol (x, true); if (tmp) return tmp; } if (flag_pic && SYMBOLIC_CONST (x)) return legitimize_pic_address (x, 0); #if TARGET_MACHO if (MACHO_DYNAMIC_NO_PIC_P && SYMBOLIC_CONST (x)) return machopic_indirect_data_reference (x, 0); #endif /* Canonicalize shifts by 0, 1, 2, 3 into multiply */ if (GET_CODE (x) == ASHIFT && CONST_INT_P (XEXP (x, 1)) && (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) < 4) { changed = 1; log = INTVAL (XEXP (x, 1)); x = gen_rtx_MULT (Pmode, force_reg (Pmode, XEXP (x, 0)), GEN_INT (1 << log)); } if (GET_CODE (x) == PLUS) { /* Canonicalize shifts by 0, 1, 2, 3 into multiply. */ if (GET_CODE (XEXP (x, 0)) == ASHIFT && CONST_INT_P (XEXP (XEXP (x, 0), 1)) && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (x, 0), 1)) < 4) { changed = 1; log = INTVAL (XEXP (XEXP (x, 0), 1)); XEXP (x, 0) = gen_rtx_MULT (Pmode, force_reg (Pmode, XEXP (XEXP (x, 0), 0)), GEN_INT (1 << log)); } if (GET_CODE (XEXP (x, 1)) == ASHIFT && CONST_INT_P (XEXP (XEXP (x, 1), 1)) && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (x, 1), 1)) < 4) { changed = 1; log = INTVAL (XEXP (XEXP (x, 1), 1)); XEXP (x, 1) = gen_rtx_MULT (Pmode, force_reg (Pmode, XEXP (XEXP (x, 1), 0)), GEN_INT (1 << log)); } /* Put multiply first if it isn't already. */ if (GET_CODE (XEXP (x, 1)) == MULT) { rtx tmp = XEXP (x, 0); XEXP (x, 0) = XEXP (x, 1); XEXP (x, 1) = tmp; changed = 1; } /* Canonicalize (plus (mult (reg) (const)) (plus (reg) (const))) into (plus (plus (mult (reg) (const)) (reg)) (const)). This can be created by virtual register instantiation, register elimination, and similar optimizations. */ if (GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == PLUS) { changed = 1; x = gen_rtx_PLUS (Pmode, gen_rtx_PLUS (Pmode, XEXP (x, 0), XEXP (XEXP (x, 1), 0)), XEXP (XEXP (x, 1), 1)); } /* Canonicalize (plus (plus (mult (reg) (const)) (plus (reg) (const))) const) into (plus (plus (mult (reg) (const)) (reg)) (const)). */ else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == PLUS && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT && GET_CODE (XEXP (XEXP (x, 0), 1)) == PLUS && CONSTANT_P (XEXP (x, 1))) { rtx constant; rtx other = NULL_RTX; if (CONST_INT_P (XEXP (x, 1))) { constant = XEXP (x, 1); other = XEXP (XEXP (XEXP (x, 0), 1), 1); } else if (CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 1), 1))) { constant = XEXP (XEXP (XEXP (x, 0), 1), 1); other = XEXP (x, 1); } else constant = 0; if (constant) { changed = 1; x = gen_rtx_PLUS (Pmode, gen_rtx_PLUS (Pmode, XEXP (XEXP (x, 0), 0), XEXP (XEXP (XEXP (x, 0), 1), 0)), plus_constant (Pmode, other, INTVAL (constant))); } } if (changed && ix86_legitimate_address_p (mode, x, false)) return x; if (GET_CODE (XEXP (x, 0)) == MULT) { changed = 1; XEXP (x, 0) = force_operand (XEXP (x, 0), 0); } if (GET_CODE (XEXP (x, 1)) == MULT) { changed = 1; XEXP (x, 1) = force_operand (XEXP (x, 1), 0); } if (changed && REG_P (XEXP (x, 1)) && REG_P (XEXP (x, 0))) return x; if (flag_pic && SYMBOLIC_CONST (XEXP (x, 1))) { changed = 1; x = legitimize_pic_address (x, 0); } if (changed && ix86_legitimate_address_p (mode, x, false)) return x; if (REG_P (XEXP (x, 0))) { rtx temp = gen_reg_rtx (Pmode); rtx val = force_operand (XEXP (x, 1), temp); if (val != temp) { val = convert_to_mode (Pmode, val, 1); emit_move_insn (temp, val); } XEXP (x, 1) = temp; return x; } else if (REG_P (XEXP (x, 1))) { rtx temp = gen_reg_rtx (Pmode); rtx val = force_operand (XEXP (x, 0), temp); if (val != temp) { val = convert_to_mode (Pmode, val, 1); emit_move_insn (temp, val); } XEXP (x, 0) = temp; return x; } } return x; } /* Print an integer constant expression in assembler syntax. Addition and subtraction are the only arithmetic that may appear in these expressions. FILE is the stdio stream to write to, X is the rtx, and CODE is the operand print code from the output string. */ static void output_pic_addr_const (FILE *file, rtx x, int code) { char buf[256]; switch (GET_CODE (x)) { case PC: gcc_assert (flag_pic); putc ('.', file); break; case SYMBOL_REF: if (TARGET_64BIT || ! TARGET_MACHO_BRANCH_ISLANDS) output_addr_const (file, x); else { const char *name = XSTR (x, 0); /* Mark the decl as referenced so that cgraph will output the function. */ if (SYMBOL_REF_DECL (x)) mark_decl_referenced (SYMBOL_REF_DECL (x)); #if TARGET_MACHO if (MACHOPIC_INDIRECT && machopic_classify_symbol (x) == MACHOPIC_UNDEFINED_FUNCTION) name = machopic_indirection_name (x, /*stub_p=*/true); #endif assemble_name (file, name); } if (!TARGET_MACHO && !(TARGET_64BIT && TARGET_PECOFF) && code == 'P' && ! SYMBOL_REF_LOCAL_P (x)) fputs ("@PLT", file); break; case LABEL_REF: x = XEXP (x, 0); /* FALLTHRU */ case CODE_LABEL: ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x)); assemble_name (asm_out_file, buf); break; case CONST_INT: fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x)); break; case CONST: /* This used to output parentheses around the expression, but that does not work on the 386 (either ATT or BSD assembler). */ output_pic_addr_const (file, XEXP (x, 0), code); break; case CONST_DOUBLE: if (GET_MODE (x) == VOIDmode) { /* We can use %d if the number is <32 bits and positive. */ if (CONST_DOUBLE_HIGH (x) || CONST_DOUBLE_LOW (x) < 0) fprintf (file, "0x%lx%08lx", (unsigned long) CONST_DOUBLE_HIGH (x), (unsigned long) CONST_DOUBLE_LOW (x)); else fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x)); } else /* We can't handle floating point constants; TARGET_PRINT_OPERAND must handle them. */ output_operand_lossage ("floating constant misused"); break; case PLUS: /* Some assemblers need integer constants to appear first. */ if (CONST_INT_P (XEXP (x, 0))) { output_pic_addr_const (file, XEXP (x, 0), code); putc ('+', file); output_pic_addr_const (file, XEXP (x, 1), code); } else { gcc_assert (CONST_INT_P (XEXP (x, 1))); output_pic_addr_const (file, XEXP (x, 1), code); putc ('+', file); output_pic_addr_const (file, XEXP (x, 0), code); } break; case MINUS: if (!TARGET_MACHO) putc (ASSEMBLER_DIALECT == ASM_INTEL ? '(' : '[', file); output_pic_addr_const (file, XEXP (x, 0), code); putc ('-', file); output_pic_addr_const (file, XEXP (x, 1), code); if (!TARGET_MACHO) putc (ASSEMBLER_DIALECT == ASM_INTEL ? ')' : ']', file); break; case UNSPEC: if (XINT (x, 1) == UNSPEC_STACK_CHECK) { bool f = i386_asm_output_addr_const_extra (file, x); gcc_assert (f); break; } gcc_assert (XVECLEN (x, 0) == 1); output_pic_addr_const (file, XVECEXP (x, 0, 0), code); switch (XINT (x, 1)) { case UNSPEC_GOT: fputs ("@GOT", file); break; case UNSPEC_GOTOFF: fputs ("@GOTOFF", file); break; case UNSPEC_PLTOFF: fputs ("@PLTOFF", file); break; case UNSPEC_PCREL: fputs (ASSEMBLER_DIALECT == ASM_ATT ? "(%rip)" : "[rip]", file); break; case UNSPEC_GOTPCREL: fputs (ASSEMBLER_DIALECT == ASM_ATT ? "@GOTPCREL(%rip)" : "@GOTPCREL[rip]", file); break; case UNSPEC_GOTTPOFF: /* FIXME: This might be @TPOFF in Sun ld too. */ fputs ("@gottpoff", file); break; case UNSPEC_TPOFF: fputs ("@tpoff", file); break; case UNSPEC_NTPOFF: if (TARGET_64BIT) fputs ("@tpoff", file); else fputs ("@ntpoff", file); break; case UNSPEC_DTPOFF: fputs ("@dtpoff", file); break; case UNSPEC_GOTNTPOFF: if (TARGET_64BIT) fputs (ASSEMBLER_DIALECT == ASM_ATT ? "@gottpoff(%rip)": "@gottpoff[rip]", file); else fputs ("@gotntpoff", file); break; case UNSPEC_INDNTPOFF: fputs ("@indntpoff", file); break; #if TARGET_MACHO case UNSPEC_MACHOPIC_OFFSET: putc ('-', file); machopic_output_function_base_name (file); break; #endif default: output_operand_lossage ("invalid UNSPEC as operand"); break; } break; default: output_operand_lossage ("invalid expression as operand"); } } /* This is called from dwarf2out.c via TARGET_ASM_OUTPUT_DWARF_DTPREL. We need to emit DTP-relative relocations. */ static void ATTRIBUTE_UNUSED i386_output_dwarf_dtprel (FILE *file, int size, rtx x) { fputs (ASM_LONG, file); output_addr_const (file, x); fputs ("@dtpoff", file); switch (size) { case 4: break; case 8: fputs (", 0", file); break; default: gcc_unreachable (); } } /* Return true if X is a representation of the PIC register. This copes with calls from ix86_find_base_term, where the register might have been replaced by a cselib value. */ static bool ix86_pic_register_p (rtx x) { if (GET_CODE (x) == VALUE && CSELIB_VAL_PTR (x)) return (pic_offset_table_rtx && rtx_equal_for_cselib_p (x, pic_offset_table_rtx)); else return REG_P (x) && REGNO (x) == PIC_OFFSET_TABLE_REGNUM; } /* Helper function for ix86_delegitimize_address. Attempt to delegitimize TLS local-exec accesses. */ static rtx ix86_delegitimize_tls_address (rtx orig_x) { rtx x = orig_x, unspec; struct ix86_address addr; if (!TARGET_TLS_DIRECT_SEG_REFS) return orig_x; if (MEM_P (x)) x = XEXP (x, 0); if (GET_CODE (x) != PLUS || GET_MODE (x) != Pmode) return orig_x; if (ix86_decompose_address (x, &addr) == 0 || addr.seg != DEFAULT_TLS_SEG_REG || addr.disp == NULL_RTX || GET_CODE (addr.disp) != CONST) return orig_x; unspec = XEXP (addr.disp, 0); if (GET_CODE (unspec) == PLUS && CONST_INT_P (XEXP (unspec, 1))) unspec = XEXP (unspec, 0); if (GET_CODE (unspec) != UNSPEC || XINT (unspec, 1) != UNSPEC_NTPOFF) return orig_x; x = XVECEXP (unspec, 0, 0); gcc_assert (GET_CODE (x) == SYMBOL_REF); if (unspec != XEXP (addr.disp, 0)) x = gen_rtx_PLUS (Pmode, x, XEXP (XEXP (addr.disp, 0), 1)); if (addr.index) { rtx idx = addr.index; if (addr.scale != 1) idx = gen_rtx_MULT (Pmode, idx, GEN_INT (addr.scale)); x = gen_rtx_PLUS (Pmode, idx, x); } if (addr.base) x = gen_rtx_PLUS (Pmode, addr.base, x); if (MEM_P (orig_x)) x = replace_equiv_address_nv (orig_x, x); return x; } /* In the name of slightly smaller debug output, and to cater to general assembler lossage, recognize PIC+GOTOFF and turn it back into a direct symbol reference. On Darwin, this is necessary to avoid a crash, because Darwin has a different PIC label for each routine but the DWARF debugging information is not associated with any particular routine, so it's necessary to remove references to the PIC label from RTL stored by the DWARF output code. */ static rtx ix86_delegitimize_address (rtx x) { rtx orig_x = delegitimize_mem_from_attrs (x); /* addend is NULL or some rtx if x is something+GOTOFF where something doesn't include the PIC register. */ rtx addend = NULL_RTX; /* reg_addend is NULL or a multiple of some register. */ rtx reg_addend = NULL_RTX; /* const_addend is NULL or a const_int. */ rtx const_addend = NULL_RTX; /* This is the result, or NULL. */ rtx result = NULL_RTX; x = orig_x; if (MEM_P (x)) x = XEXP (x, 0); if (TARGET_64BIT) { if (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == PLUS && GET_MODE (XEXP (x, 0)) == Pmode && CONST_INT_P (XEXP (XEXP (x, 0), 1)) && GET_CODE (XEXP (XEXP (x, 0), 0)) == UNSPEC && XINT (XEXP (XEXP (x, 0), 0), 1) == UNSPEC_PCREL) { rtx x2 = XVECEXP (XEXP (XEXP (x, 0), 0), 0, 0); x = gen_rtx_PLUS (Pmode, XEXP (XEXP (x, 0), 1), x2); if (MEM_P (orig_x)) x = replace_equiv_address_nv (orig_x, x); return x; } if (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == UNSPEC && (XINT (XEXP (x, 0), 1) == UNSPEC_GOTPCREL || XINT (XEXP (x, 0), 1) == UNSPEC_PCREL) && (MEM_P (orig_x) || XINT (XEXP (x, 0), 1) == UNSPEC_PCREL)) { x = XVECEXP (XEXP (x, 0), 0, 0); if (GET_MODE (orig_x) != GET_MODE (x) && MEM_P (orig_x)) { x = simplify_gen_subreg (GET_MODE (orig_x), x, GET_MODE (x), 0); if (x == NULL_RTX) return orig_x; } return x; } if (ix86_cmodel != CM_MEDIUM_PIC && ix86_cmodel != CM_LARGE_PIC) return ix86_delegitimize_tls_address (orig_x); /* Fall thru into the code shared with -m32 for -mcmodel=large -fpic and -mcmodel=medium -fpic. */ } if (GET_CODE (x) != PLUS || GET_CODE (XEXP (x, 1)) != CONST) return ix86_delegitimize_tls_address (orig_x); if (ix86_pic_register_p (XEXP (x, 0))) /* %ebx + GOT/GOTOFF */ ; else if (GET_CODE (XEXP (x, 0)) == PLUS) { /* %ebx + %reg * scale + GOT/GOTOFF */ reg_addend = XEXP (x, 0); if (ix86_pic_register_p (XEXP (reg_addend, 0))) reg_addend = XEXP (reg_addend, 1); else if (ix86_pic_register_p (XEXP (reg_addend, 1))) reg_addend = XEXP (reg_addend, 0); else { reg_addend = NULL_RTX; addend = XEXP (x, 0); } } else addend = XEXP (x, 0); x = XEXP (XEXP (x, 1), 0); if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1))) { const_addend = XEXP (x, 1); x = XEXP (x, 0); } if (GET_CODE (x) == UNSPEC && ((XINT (x, 1) == UNSPEC_GOT && MEM_P (orig_x) && !addend) || (XINT (x, 1) == UNSPEC_GOTOFF && !MEM_P (orig_x)) || (XINT (x, 1) == UNSPEC_PLTOFF && ix86_cmodel == CM_LARGE_PIC && !MEM_P (orig_x) && !addend))) result = XVECEXP (x, 0, 0); if (!TARGET_64BIT && TARGET_MACHO && darwin_local_data_pic (x) && !MEM_P (orig_x)) result = XVECEXP (x, 0, 0); if (! result) return ix86_delegitimize_tls_address (orig_x); if (const_addend) result = gen_rtx_CONST (Pmode, gen_rtx_PLUS (Pmode, result, const_addend)); if (reg_addend) result = gen_rtx_PLUS (Pmode, reg_addend, result); if (addend) { /* If the rest of original X doesn't involve the PIC register, add addend and subtract pic_offset_table_rtx. This can happen e.g. for code like: leal (%ebx, %ecx, 4), %ecx ... movl foo@GOTOFF(%ecx), %edx in which case we return (%ecx - %ebx) + foo. */ if (pic_offset_table_rtx) result = gen_rtx_PLUS (Pmode, gen_rtx_MINUS (Pmode, copy_rtx (addend), pic_offset_table_rtx), result); else return orig_x; } if (GET_MODE (orig_x) != Pmode && MEM_P (orig_x)) { result = simplify_gen_subreg (GET_MODE (orig_x), result, Pmode, 0); if (result == NULL_RTX) return orig_x; } return result; } /* If X is a machine specific address (i.e. a symbol or label being referenced as a displacement from the GOT implemented using an UNSPEC), then return the base term. Otherwise return X. */ rtx ix86_find_base_term (rtx x) { rtx term; if (TARGET_64BIT) { if (GET_CODE (x) != CONST) return x; term = XEXP (x, 0); if (GET_CODE (term) == PLUS && (CONST_INT_P (XEXP (term, 1)) || GET_CODE (XEXP (term, 1)) == CONST_DOUBLE)) term = XEXP (term, 0); if (GET_CODE (term) != UNSPEC || (XINT (term, 1) != UNSPEC_GOTPCREL && XINT (term, 1) != UNSPEC_PCREL)) return x; return XVECEXP (term, 0, 0); } return ix86_delegitimize_address (x); } static void put_condition_code (enum rtx_code code, enum machine_mode mode, bool reverse, bool fp, FILE *file) { const char *suffix; if (mode == CCFPmode || mode == CCFPUmode) { code = ix86_fp_compare_code_to_integer (code); mode = CCmode; } if (reverse) code = reverse_condition (code); switch (code) { case EQ: switch (mode) { case CCAmode: suffix = "a"; break; case CCCmode: suffix = "c"; break; case CCOmode: suffix = "o"; break; case CCSmode: suffix = "s"; break; default: suffix = "e"; } break; case NE: switch (mode) { case CCAmode: suffix = "na"; break; case CCCmode: suffix = "nc"; break; case CCOmode: suffix = "no"; break; case CCSmode: suffix = "ns"; break; default: suffix = "ne"; } break; case GT: gcc_assert (mode == CCmode || mode == CCNOmode || mode == CCGCmode); suffix = "g"; break; case GTU: /* ??? Use "nbe" instead of "a" for fcmov lossage on some assemblers. Those same assemblers have the same but opposite lossage on cmov. */ if (mode == CCmode) suffix = fp ? "nbe" : "a"; else gcc_unreachable (); break; case LT: switch (mode) { case CCNOmode: case CCGOCmode: suffix = "s"; break; case CCmode: case CCGCmode: suffix = "l"; break; default: gcc_unreachable (); } break; case LTU: if (mode == CCmode) suffix = "b"; else if (mode == CCCmode) suffix = "c"; else gcc_unreachable (); break; case GE: switch (mode) { case CCNOmode: case CCGOCmode: suffix = "ns"; break; case CCmode: case CCGCmode: suffix = "ge"; break; default: gcc_unreachable (); } break; case GEU: if (mode == CCmode) suffix = fp ? "nb" : "ae"; else if (mode == CCCmode) suffix = "nc"; else gcc_unreachable (); break; case LE: gcc_assert (mode == CCmode || mode == CCGCmode || mode == CCNOmode); suffix = "le"; break; case LEU: if (mode == CCmode) suffix = "be"; else gcc_unreachable (); break; case UNORDERED: suffix = fp ? "u" : "p"; break; case ORDERED: suffix = fp ? "nu" : "np"; break; default: gcc_unreachable (); } fputs (suffix, file); } /* Print the name of register X to FILE based on its machine mode and number. If CODE is 'w', pretend the mode is HImode. If CODE is 'b', pretend the mode is QImode. If CODE is 'k', pretend the mode is SImode. If CODE is 'q', pretend the mode is DImode. If CODE is 'x', pretend the mode is V4SFmode. If CODE is 't', pretend the mode is V8SFmode. If CODE is 'g', pretend the mode is V16SFmode. If CODE is 'h', pretend the reg is the 'high' byte register. If CODE is 'y', print "st(0)" instead of "st", if the reg is stack op. If CODE is 'd', duplicate the operand for AVX instruction. */ void print_reg (rtx x, int code, FILE *file) { const char *reg; unsigned int regno; bool duplicated = code == 'd' && TARGET_AVX; if (ASSEMBLER_DIALECT == ASM_ATT) putc ('%', file); if (x == pc_rtx) { gcc_assert (TARGET_64BIT); fputs ("rip", file); return; } regno = true_regnum (x); gcc_assert (regno != ARG_POINTER_REGNUM && regno != FRAME_POINTER_REGNUM && regno != FLAGS_REG && regno != FPSR_REG && regno != FPCR_REG); if (code == 'w' || MMX_REG_P (x)) code = 2; else if (code == 'b') code = 1; else if (code == 'k') code = 4; else if (code == 'q') code = 8; else if (code == 'y') code = 3; else if (code == 'h') code = 0; else if (code == 'x') code = 16; else if (code == 't') code = 32; else if (code == 'g') code = 64; else code = GET_MODE_SIZE (GET_MODE (x)); /* Irritatingly, AMD extended registers use different naming convention from the normal registers: "r%d[bwd]" */ if (REX_INT_REGNO_P (regno)) { gcc_assert (TARGET_64BIT); putc ('r', file); fprint_ul (file, regno - FIRST_REX_INT_REG + 8); switch (code) { case 0: error ("extended registers have no high halves"); break; case 1: putc ('b', file); break; case 2: putc ('w', file); break; case 4: putc ('d', file); break; case 8: /* no suffix */ break; default: error ("unsupported operand size for extended register"); break; } return; } reg = NULL; switch (code) { case 3: if (STACK_TOP_P (x)) { reg = "st(0)"; break; } /* FALLTHRU */ case 8: case 4: case 12: if (! ANY_FP_REG_P (x) && ! ANY_BND_REG_P (x)) putc (code == 8 && TARGET_64BIT ? 'r' : 'e', file); /* FALLTHRU */ case 16: case 2: normal: reg = hi_reg_name[regno]; break; case 1: if (regno >= ARRAY_SIZE (qi_reg_name)) goto normal; reg = qi_reg_name[regno]; break; case 0: if (regno >= ARRAY_SIZE (qi_high_reg_name)) goto normal; reg = qi_high_reg_name[regno]; break; case 32: if (SSE_REG_P (x)) { gcc_assert (!duplicated); putc ('y', file); fputs (hi_reg_name[regno] + 1, file); return; } case 64: if (SSE_REG_P (x)) { gcc_assert (!duplicated); putc ('z', file); fputs (hi_reg_name[REGNO (x)] + 1, file); return; } break; default: gcc_unreachable (); } fputs (reg, file); if (duplicated) { if (ASSEMBLER_DIALECT == ASM_ATT) fprintf (file, ", %%%s", reg); else fprintf (file, ", %s", reg); } } /* Locate some local-dynamic symbol still in use by this function so that we can print its name in some tls_local_dynamic_base pattern. */ static int get_some_local_dynamic_name_1 (rtx *px, void *data ATTRIBUTE_UNUSED) { rtx x = *px; if (GET_CODE (x) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (x) == TLS_MODEL_LOCAL_DYNAMIC) { cfun->machine->some_ld_name = XSTR (x, 0); return 1; } return 0; } static const char * get_some_local_dynamic_name (void) { rtx insn; if (cfun->machine->some_ld_name) return cfun->machine->some_ld_name; for (insn = get_insns (); insn ; insn = NEXT_INSN (insn)) if (NONDEBUG_INSN_P (insn) && for_each_rtx (&PATTERN (insn), get_some_local_dynamic_name_1, 0)) return cfun->machine->some_ld_name; return NULL; } /* Meaning of CODE: L,W,B,Q,S,T -- print the opcode suffix for specified size of operand. C -- print opcode suffix for set/cmov insn. c -- like C, but print reversed condition F,f -- likewise, but for floating-point. O -- if HAVE_AS_IX86_CMOV_SUN_SYNTAX, expand to "w.", "l." or "q.", otherwise nothing R -- print the prefix for register names. z -- print the opcode suffix for the size of the current operand. Z -- likewise, with special suffixes for x87 instructions. * -- print a star (in certain assembler syntax) A -- print an absolute memory reference. E -- print address with DImode register names if TARGET_64BIT. w -- print the operand as if it's a "word" (HImode) even if it isn't. s -- print a shift double count, followed by the assemblers argument delimiter. b -- print the QImode name of the register for the indicated operand. %b0 would print %al if operands[0] is reg 0. w -- likewise, print the HImode name of the register. k -- likewise, print the SImode name of the register. q -- likewise, print the DImode name of the register. x -- likewise, print the V4SFmode name of the register. t -- likewise, print the V8SFmode name of the register. g -- likewise, print the V16SFmode name of the register. h -- print the QImode name for a "high" register, either ah, bh, ch or dh. y -- print "st(0)" instead of "st" as a register. d -- print duplicated register operand for AVX instruction. D -- print condition for SSE cmp instruction. P -- if PIC, print an @PLT suffix. p -- print raw symbol name. X -- don't print any sort of PIC '@' suffix for a symbol. & -- print some in-use local-dynamic symbol name. H -- print a memory address offset by 8; used for sse high-parts Y -- print condition for XOP pcom* instruction. + -- print a branch hint as 'cs' or 'ds' prefix ; -- print a semicolon (after prefixes due to bug in older gas). ~ -- print "i" if TARGET_AVX2, "f" otherwise. @ -- print a segment register of thread base pointer load ^ -- print addr32 prefix if TARGET_64BIT and Pmode != word_mode ! -- print MPX prefix for jxx/call/ret instructions if required. */ void ix86_print_operand (FILE *file, rtx x, int code) { if (code) { switch (code) { case 'A': switch (ASSEMBLER_DIALECT) { case ASM_ATT: putc ('*', file); break; case ASM_INTEL: /* Intel syntax. For absolute addresses, registers should not be surrounded by braces. */ if (!REG_P (x)) { putc ('[', file); ix86_print_operand (file, x, 0); putc (']', file); return; } break; default: gcc_unreachable (); } ix86_print_operand (file, x, 0); return; case 'E': /* Wrap address in an UNSPEC to declare special handling. */ if (TARGET_64BIT) x = gen_rtx_UNSPEC (DImode, gen_rtvec (1, x), UNSPEC_LEA_ADDR); output_address (x); return; case 'L': if (ASSEMBLER_DIALECT == ASM_ATT) putc ('l', file); return; case 'W': if (ASSEMBLER_DIALECT == ASM_ATT) putc ('w', file); return; case 'B': if (ASSEMBLER_DIALECT == ASM_ATT) putc ('b', file); return; case 'Q': if (ASSEMBLER_DIALECT == ASM_ATT) putc ('l', file); return; case 'S': if (ASSEMBLER_DIALECT == ASM_ATT) putc ('s', file); return; case 'T': if (ASSEMBLER_DIALECT == ASM_ATT) putc ('t', file); return; case 'O': #ifdef HAVE_AS_IX86_CMOV_SUN_SYNTAX if (ASSEMBLER_DIALECT != ASM_ATT) return; switch (GET_MODE_SIZE (GET_MODE (x))) { case 2: putc ('w', file); break; case 4: putc ('l', file); break; case 8: putc ('q', file); break; default: output_operand_lossage ("invalid operand size for operand code 'O'"); return; } putc ('.', file); #endif return; case 'z': if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT) { /* Opcodes don't get size suffixes if using Intel opcodes. */ if (ASSEMBLER_DIALECT == ASM_INTEL) return; switch (GET_MODE_SIZE (GET_MODE (x))) { case 1: putc ('b', file); return; case 2: putc ('w', file); return; case 4: putc ('l', file); return; case 8: putc ('q', file); return; default: output_operand_lossage ("invalid operand size for operand code 'z'"); return; } } if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT) warning (0, "non-integer operand used with operand code 'z'"); /* FALLTHRU */ case 'Z': /* 387 opcodes don't get size suffixes if using Intel opcodes. */ if (ASSEMBLER_DIALECT == ASM_INTEL) return; if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT) { switch (GET_MODE_SIZE (GET_MODE (x))) { case 2: #ifdef HAVE_AS_IX86_FILDS putc ('s', file); #endif return; case 4: putc ('l', file); return; case 8: #ifdef HAVE_AS_IX86_FILDQ putc ('q', file); #else fputs ("ll", file); #endif return; default: break; } } else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT) { /* 387 opcodes don't get size suffixes if the operands are registers. */ if (STACK_REG_P (x)) return; switch (GET_MODE_SIZE (GET_MODE (x))) { case 4: putc ('s', file); return; case 8: putc ('l', file); return; case 12: case 16: putc ('t', file); return; default: break; } } else { output_operand_lossage ("invalid operand type used with operand code 'Z'"); return; } output_operand_lossage ("invalid operand size for operand code 'Z'"); return; case 'd': case 'b': case 'w': case 'k': case 'q': case 'h': case 't': case 'g': case 'y': case 'x': case 'X': case 'P': case 'p': break; case 's': if (CONST_INT_P (x) || ! SHIFT_DOUBLE_OMITS_COUNT) { ix86_print_operand (file, x, 0); fputs (", ", file); } return; case 'Y': switch (GET_CODE (x)) { case NE: fputs ("neq", file); break; case EQ: fputs ("eq", file); break; case GE: case GEU: fputs (INTEGRAL_MODE_P (GET_MODE (x)) ? "ge" : "unlt", file); break; case GT: case GTU: fputs (INTEGRAL_MODE_P (GET_MODE (x)) ? "gt" : "unle", file); break; case LE: case LEU: fputs ("le", file); break; case LT: case LTU: fputs ("lt", file); break; case UNORDERED: fputs ("unord", file); break; case ORDERED: fputs ("ord", file); break; case UNEQ: fputs ("ueq", file); break; case UNGE: fputs ("nlt", file); break; case UNGT: fputs ("nle", file); break; case UNLE: fputs ("ule", file); break; case UNLT: fputs ("ult", file); break; case LTGT: fputs ("une", file); break; default: output_operand_lossage ("operand is not a condition code, " "invalid operand code 'Y'"); return; } return; case 'D': /* Little bit of braindamage here. The SSE compare instructions does use completely different names for the comparisons that the fp conditional moves. */ switch (GET_CODE (x)) { case UNEQ: if (TARGET_AVX) { fputs ("eq_us", file); break; } case EQ: fputs ("eq", file); break; case UNLT: if (TARGET_AVX) { fputs ("nge", file); break; } case LT: fputs ("lt", file); break; case UNLE: if (TARGET_AVX) { fputs ("ngt", file); break; } case LE: fputs ("le", file); break; case UNORDERED: fputs ("unord", file); break; case LTGT: if (TARGET_AVX) { fputs ("neq_oq", file); break; } case NE: fputs ("neq", file); break; case GE: if (TARGET_AVX) { fputs ("ge", file); break; } case UNGE: fputs ("nlt", file); break; case GT: if (TARGET_AVX) { fputs ("gt", file); break; } case UNGT: fputs ("nle", file); break; case ORDERED: fputs ("ord", file); break; default: output_operand_lossage ("operand is not a condition code, " "invalid operand code 'D'"); return; } return; case 'F': case 'f': #ifdef HAVE_AS_IX86_CMOV_SUN_SYNTAX if (ASSEMBLER_DIALECT == ASM_ATT) putc ('.', file); #endif case 'C': case 'c': if (!COMPARISON_P (x)) { output_operand_lossage ("operand is not a condition code, " "invalid operand code '%c'", code); return; } put_condition_code (GET_CODE (x), GET_MODE (XEXP (x, 0)), code == 'c' || code == 'f', code == 'F' || code == 'f', file); return; case 'H': if (!offsettable_memref_p (x)) { output_operand_lossage ("operand is not an offsettable memory " "reference, invalid operand code 'H'"); return; } /* It doesn't actually matter what mode we use here, as we're only going to use this for printing. */ x = adjust_address_nv (x, DImode, 8); /* Output 'qword ptr' for intel assembler dialect. */ if (ASSEMBLER_DIALECT == ASM_INTEL) code = 'q'; break; case 'K': gcc_assert (CONST_INT_P (x)); if (INTVAL (x) & IX86_HLE_ACQUIRE) #ifdef HAVE_AS_IX86_HLE fputs ("xacquire ", file); #else fputs ("\n" ASM_BYTE "0xf2\n\t", file); #endif else if (INTVAL (x) & IX86_HLE_RELEASE) #ifdef HAVE_AS_IX86_HLE fputs ("xrelease ", file); #else fputs ("\n" ASM_BYTE "0xf3\n\t", file); #endif /* We do not want to print value of the operand. */ return; case 'N': if (x == const0_rtx || x == CONST0_RTX (GET_MODE (x))) fputs ("{z}", file); return; case '*': if (ASSEMBLER_DIALECT == ASM_ATT) putc ('*', file); return; case '&': { const char *name = get_some_local_dynamic_name (); if (name == NULL) output_operand_lossage ("'%%&' used without any " "local dynamic TLS references"); else assemble_name (file, name); return; } case '+': { rtx x; if (!optimize || optimize_function_for_size_p (cfun) || !TARGET_BRANCH_PREDICTION_HINTS) return; x = find_reg_note (current_output_insn, REG_BR_PROB, 0); if (x) { int pred_val = XINT (x, 0); if (pred_val < REG_BR_PROB_BASE * 45 / 100 || pred_val > REG_BR_PROB_BASE * 55 / 100) { bool taken = pred_val > REG_BR_PROB_BASE / 2; bool cputaken = final_forward_branch_p (current_output_insn) == 0; /* Emit hints only in the case default branch prediction heuristics would fail. */ if (taken != cputaken) { /* We use 3e (DS) prefix for taken branches and 2e (CS) prefix for not taken branches. */ if (taken) fputs ("ds ; ", file); else fputs ("cs ; ", file); } } } return; } case ';': #ifndef HAVE_AS_IX86_REP_LOCK_PREFIX putc (';', file); #endif return; case '@': if (ASSEMBLER_DIALECT == ASM_ATT) putc ('%', file); /* The kernel uses a different segment register for performance reasons; a system call would not have to trash the userspace segment register, which would be expensive. */ if (TARGET_64BIT && ix86_cmodel != CM_KERNEL) fputs ("fs", file); else fputs ("gs", file); return; case '~': putc (TARGET_AVX2 ? 'i' : 'f', file); return; case '^': if (TARGET_64BIT && Pmode != word_mode) fputs ("addr32 ", file); return; case '!': if (ix86_bnd_prefixed_insn_p (NULL_RTX)) fputs ("bnd ", file); return; default: output_operand_lossage ("invalid operand code '%c'", code); } } if (REG_P (x)) print_reg (x, code, file); else if (MEM_P (x)) { /* No `byte ptr' prefix for call instructions or BLKmode operands. */ if (ASSEMBLER_DIALECT == ASM_INTEL && code != 'X' && code != 'P' && GET_MODE (x) != BLKmode) { const char * size; switch (GET_MODE_SIZE (GET_MODE (x))) { case 1: size = "BYTE"; break; case 2: size = "WORD"; break; case 4: size = "DWORD"; break; case 8: size = "QWORD"; break; case 12: size = "TBYTE"; break; case 16: if (GET_MODE (x) == XFmode) size = "TBYTE"; else size = "XMMWORD"; break; case 32: size = "YMMWORD"; break; case 64: size = "ZMMWORD"; break; default: gcc_unreachable (); } /* Check for explicit size override (codes 'b', 'w', 'k', 'q' and 'x') */ if (code == 'b') size = "BYTE"; else if (code == 'w') size = "WORD"; else if (code == 'k') size = "DWORD"; else if (code == 'q') size = "QWORD"; else if (code == 'x') size = "XMMWORD"; fputs (size, file); fputs (" PTR ", file); } x = XEXP (x, 0); /* Avoid (%rip) for call operands. */ if (CONSTANT_ADDRESS_P (x) && code == 'P' && !CONST_INT_P (x)) output_addr_const (file, x); else if (this_is_asm_operands && ! address_operand (x, VOIDmode)) output_operand_lossage ("invalid constraints for operand"); else output_address (x); } else if (GET_CODE (x) == CONST_DOUBLE && GET_MODE (x) == SFmode) { REAL_VALUE_TYPE r; long l; REAL_VALUE_FROM_CONST_DOUBLE (r, x); REAL_VALUE_TO_TARGET_SINGLE (r, l); if (ASSEMBLER_DIALECT == ASM_ATT) putc ('$', file); /* Sign extend 32bit SFmode immediate to 8 bytes. */ if (code == 'q') fprintf (file, "0x%08" HOST_LONG_LONG_FORMAT "x", (unsigned long long) (int) l); else fprintf (file, "0x%08x", (unsigned int) l); } else if (GET_CODE (x) == CONST_DOUBLE && GET_MODE (x) == DFmode) { REAL_VALUE_TYPE r; long l[2]; REAL_VALUE_FROM_CONST_DOUBLE (r, x); REAL_VALUE_TO_TARGET_DOUBLE (r, l); if (ASSEMBLER_DIALECT == ASM_ATT) putc ('$', file); fprintf (file, "0x%lx%08lx", l[1] & 0xffffffff, l[0] & 0xffffffff); } /* These float cases don't actually occur as immediate operands. */ else if (GET_CODE (x) == CONST_DOUBLE && GET_MODE (x) == XFmode) { char dstr[30]; real_to_decimal (dstr, CONST_DOUBLE_REAL_VALUE (x), sizeof (dstr), 0, 1); fputs (dstr, file); } else { /* We have patterns that allow zero sets of memory, for instance. In 64-bit mode, we should probably support all 8-byte vectors, since we can in fact encode that into an immediate. */ if (GET_CODE (x) == CONST_VECTOR) { gcc_assert (x == CONST0_RTX (GET_MODE (x))); x = const0_rtx; } if (code != 'P' && code != 'p') { if (CONST_INT_P (x) || GET_CODE (x) == CONST_DOUBLE) { if (ASSEMBLER_DIALECT == ASM_ATT) putc ('$', file); } else if (GET_CODE (x) == CONST || GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF) { if (ASSEMBLER_DIALECT == ASM_ATT) putc ('$', file); else fputs ("OFFSET FLAT:", file); } } if (CONST_INT_P (x)) fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x)); else if (flag_pic || MACHOPIC_INDIRECT) output_pic_addr_const (file, x, code); else output_addr_const (file, x); } } static bool ix86_print_operand_punct_valid_p (unsigned char code) { return (code == '@' || code == '*' || code == '+' || code == '&' || code == ';' || code == '~' || code == '^' || code == '!'); } /* Print a memory operand whose address is ADDR. */ static void ix86_print_operand_address (FILE *file, rtx addr) { struct ix86_address parts; rtx base, index, disp; int scale; int ok; bool vsib = false; int code = 0; if (GET_CODE (addr) == UNSPEC && XINT (addr, 1) == UNSPEC_VSIBADDR) { ok = ix86_decompose_address (XVECEXP (addr, 0, 0), &parts); gcc_assert (parts.index == NULL_RTX); parts.index = XVECEXP (addr, 0, 1); parts.scale = INTVAL (XVECEXP (addr, 0, 2)); addr = XVECEXP (addr, 0, 0); vsib = true; } else if (GET_CODE (addr) == UNSPEC && XINT (addr, 1) == UNSPEC_LEA_ADDR) { gcc_assert (TARGET_64BIT); ok = ix86_decompose_address (XVECEXP (addr, 0, 0), &parts); code = 'q'; } else if (GET_CODE (addr) == UNSPEC && XINT (addr, 1) == UNSPEC_BNDMK_ADDR) { ok = ix86_decompose_address (XVECEXP (addr, 0, 1), &parts); gcc_assert (parts.base == NULL_RTX || parts.index == NULL_RTX); if (parts.base != NULL_RTX) { parts.index = parts.base; parts.scale = 1; } parts.base = XVECEXP (addr, 0, 0); addr = XVECEXP (addr, 0, 0); } else if (GET_CODE (addr) == UNSPEC && XINT (addr, 1) == UNSPEC_BNDLDX_ADDR) { ok = ix86_decompose_address (XVECEXP (addr, 0, 0), &parts); gcc_assert (parts.index == NULL_RTX); parts.index = XVECEXP (addr, 0, 1); addr = XVECEXP (addr, 0, 0); } else ok = ix86_decompose_address (addr, &parts); gcc_assert (ok); base = parts.base; index = parts.index; disp = parts.disp; scale = parts.scale; switch (parts.seg) { case SEG_DEFAULT: break; case SEG_FS: case SEG_GS: if (ASSEMBLER_DIALECT == ASM_ATT) putc ('%', file); fputs ((parts.seg == SEG_FS ? "fs:" : "gs:"), file); break; default: gcc_unreachable (); } /* Use one byte shorter RIP relative addressing for 64bit mode. */ if (TARGET_64BIT && !base && !index) { rtx symbol = disp; if (GET_CODE (disp) == CONST && GET_CODE (XEXP (disp, 0)) == PLUS && CONST_INT_P (XEXP (XEXP (disp, 0), 1))) symbol = XEXP (XEXP (disp, 0), 0); if (GET_CODE (symbol) == LABEL_REF || (GET_CODE (symbol) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (symbol) == 0)) base = pc_rtx; } if (!base && !index) { /* Displacement only requires special attention. */ if (CONST_INT_P (disp)) { if (ASSEMBLER_DIALECT == ASM_INTEL && parts.seg == SEG_DEFAULT) fputs ("ds:", file); fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (disp)); } else if (flag_pic) output_pic_addr_const (file, disp, 0); else output_addr_const (file, disp); } else { /* Print SImode register names to force addr32 prefix. */ if (SImode_address_operand (addr, VOIDmode)) { #ifdef ENABLE_CHECKING gcc_assert (TARGET_64BIT); switch (GET_CODE (addr)) { case SUBREG: gcc_assert (GET_MODE (addr) == SImode); gcc_assert (GET_MODE (SUBREG_REG (addr)) == DImode); break; case ZERO_EXTEND: case AND: gcc_assert (GET_MODE (addr) == DImode); break; default: gcc_unreachable (); } #endif gcc_assert (!code); code = 'k'; } else if (code == 0 && TARGET_X32 && disp && CONST_INT_P (disp) && INTVAL (disp) < -16*1024*1024) { /* X32 runs in 64-bit mode, where displacement, DISP, in address DISP(%r64), is encoded as 32-bit immediate sign- extended from 32-bit to 64-bit. For -0x40000300(%r64), address is %r64 + 0xffffffffbffffd00. When %r64 < 0x40000300, like 0x37ffe064, address is 0xfffffffff7ffdd64, which is invalid for x32. The correct address is %r64 - 0x40000300 == 0xf7ffdd64. To properly encode -0x40000300(%r64) for x32, we zero-extend negative displacement by forcing addr32 prefix which truncates 0xfffffffff7ffdd64 to 0xf7ffdd64. In theory, we should zero-extend all negative displacements, including -1(%rsp). However, for small negative displacements, sign-extension won't cause overflow. We only zero-extend negative displacements if they < -16*1024*1024, which is also used to check legitimate address displacements for PIC. */ code = 'k'; } if (ASSEMBLER_DIALECT == ASM_ATT) { if (disp) { if (flag_pic) output_pic_addr_const (file, disp, 0); else if (GET_CODE (disp) == LABEL_REF) output_asm_label (disp); else output_addr_const (file, disp); } putc ('(', file); if (base) print_reg (base, code, file); if (index) { putc (',', file); print_reg (index, vsib ? 0 : code, file); if (scale != 1 || vsib) fprintf (file, ",%d", scale); } putc (')', file); } else { rtx offset = NULL_RTX; if (disp) { /* Pull out the offset of a symbol; print any symbol itself. */ if (GET_CODE (disp) == CONST && GET_CODE (XEXP (disp, 0)) == PLUS && CONST_INT_P (XEXP (XEXP (disp, 0), 1))) { offset = XEXP (XEXP (disp, 0), 1); disp = gen_rtx_CONST (VOIDmode, XEXP (XEXP (disp, 0), 0)); } if (flag_pic) output_pic_addr_const (file, disp, 0); else if (GET_CODE (disp) == LABEL_REF) output_asm_label (disp); else if (CONST_INT_P (disp)) offset = disp; else output_addr_const (file, disp); } putc ('[', file); if (base) { print_reg (base, code, file); if (offset) { if (INTVAL (offset) >= 0) putc ('+', file); fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (offset)); } } else if (offset) fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (offset)); else putc ('0', file); if (index) { putc ('+', file); print_reg (index, vsib ? 0 : code, file); if (scale != 1 || vsib) fprintf (file, "*%d", scale); } putc (']', file); } } } /* Implementation of TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA. */ static bool i386_asm_output_addr_const_extra (FILE *file, rtx x) { rtx op; if (GET_CODE (x) != UNSPEC) return false; op = XVECEXP (x, 0, 0); switch (XINT (x, 1)) { case UNSPEC_GOTTPOFF: output_addr_const (file, op); /* FIXME: This might be @TPOFF in Sun ld. */ fputs ("@gottpoff", file); break; case UNSPEC_TPOFF: output_addr_const (file, op); fputs ("@tpoff", file); break; case UNSPEC_NTPOFF: output_addr_const (file, op); if (TARGET_64BIT) fputs ("@tpoff", file); else fputs ("@ntpoff", file); break; case UNSPEC_DTPOFF: output_addr_const (file, op); fputs ("@dtpoff", file); break; case UNSPEC_GOTNTPOFF: output_addr_const (file, op); if (TARGET_64BIT) fputs (ASSEMBLER_DIALECT == ASM_ATT ? "@gottpoff(%rip)" : "@gottpoff[rip]", file); else fputs ("@gotntpoff", file); break; case UNSPEC_INDNTPOFF: output_addr_const (file, op); fputs ("@indntpoff", file); break; #if TARGET_MACHO case UNSPEC_MACHOPIC_OFFSET: output_addr_const (file, op); putc ('-', file); machopic_output_function_base_name (file); break; #endif case UNSPEC_STACK_CHECK: { int offset; gcc_assert (flag_split_stack); #ifdef TARGET_THREAD_SPLIT_STACK_OFFSET offset = TARGET_THREAD_SPLIT_STACK_OFFSET; #else gcc_unreachable (); #endif fprintf (file, "%s:%d", TARGET_64BIT ? "%fs" : "%gs", offset); } break; default: return false; } return true; } /* Split one or more double-mode RTL references into pairs of half-mode references. The RTL can be REG, offsettable MEM, integer constant, or CONST_DOUBLE. "operands" is a pointer to an array of double-mode RTLs to split and "num" is its length. lo_half and hi_half are output arrays that parallel "operands". */ void split_double_mode (enum machine_mode mode, rtx operands[], int num, rtx lo_half[], rtx hi_half[]) { enum machine_mode half_mode; unsigned int byte; switch (mode) { case TImode: half_mode = DImode; break; case DImode: half_mode = SImode; break; default: gcc_unreachable (); } byte = GET_MODE_SIZE (half_mode); while (num--) { rtx op = operands[num]; /* simplify_subreg refuse to split volatile memory addresses, but we still have to handle it. */ if (MEM_P (op)) { lo_half[num] = adjust_address (op, half_mode, 0); hi_half[num] = adjust_address (op, half_mode, byte); } else { lo_half[num] = simplify_gen_subreg (half_mode, op, GET_MODE (op) == VOIDmode ? mode : GET_MODE (op), 0); hi_half[num] = simplify_gen_subreg (half_mode, op, GET_MODE (op) == VOIDmode ? mode : GET_MODE (op), byte); } } } /* Output code to perform a 387 binary operation in INSN, one of PLUS, MINUS, MULT or DIV. OPERANDS are the insn operands, where operands[3] is the expression of the binary operation. The output may either be emitted here, or returned to the caller, like all output_* functions. There is no guarantee that the operands are the same mode, as they might be within FLOAT or FLOAT_EXTEND expressions. */ #ifndef SYSV386_COMPAT /* Set to 1 for compatibility with brain-damaged assemblers. No-one wants to fix the assemblers because that causes incompatibility with gcc. No-one wants to fix gcc because that causes incompatibility with assemblers... You can use the option of -DSYSV386_COMPAT=0 if you recompile both gcc and gas this way. */ #define SYSV386_COMPAT 1 #endif const char * output_387_binary_op (rtx insn, rtx *operands) { static char buf[40]; const char *p; const char *ssep; int is_sse = SSE_REG_P (operands[0]) || SSE_REG_P (operands[1]) || SSE_REG_P (operands[2]); #ifdef ENABLE_CHECKING /* Even if we do not want to check the inputs, this documents input constraints. Which helps in understanding the following code. */ if (STACK_REG_P (operands[0]) && ((REG_P (operands[1]) && REGNO (operands[0]) == REGNO (operands[1]) && (STACK_REG_P (operands[2]) || MEM_P (operands[2]))) || (REG_P (operands[2]) && REGNO (operands[0]) == REGNO (operands[2]) && (STACK_REG_P (operands[1]) || MEM_P (operands[1])))) && (STACK_TOP_P (operands[1]) || STACK_TOP_P (operands[2]))) ; /* ok */ else gcc_assert (is_sse); #endif switch (GET_CODE (operands[3])) { case PLUS: if (GET_MODE_CLASS (GET_MODE (operands[1])) == MODE_INT || GET_MODE_CLASS (GET_MODE (operands[2])) == MODE_INT) p = "fiadd"; else p = "fadd"; ssep = "vadd"; break; case MINUS: if (GET_MODE_CLASS (GET_MODE (operands[1])) == MODE_INT || GET_MODE_CLASS (GET_MODE (operands[2])) == MODE_INT) p = "fisub"; else p = "fsub"; ssep = "vsub"; break; case MULT: if (GET_MODE_CLASS (GET_MODE (operands[1])) == MODE_INT || GET_MODE_CLASS (GET_MODE (operands[2])) == MODE_INT) p = "fimul"; else p = "fmul"; ssep = "vmul"; break; case DIV: if (GET_MODE_CLASS (GET_MODE (operands[1])) == MODE_INT || GET_MODE_CLASS (GET_MODE (operands[2])) == MODE_INT) p = "fidiv"; else p = "fdiv"; ssep = "vdiv"; break; default: gcc_unreachable (); } if (is_sse) { if (TARGET_AVX) { strcpy (buf, ssep); if (GET_MODE (operands[0]) == SFmode) strcat (buf, "ss\t{%2, %1, %0|%0, %1, %2}"); else strcat (buf, "sd\t{%2, %1, %0|%0, %1, %2}"); } else { strcpy (buf, ssep + 1); if (GET_MODE (operands[0]) == SFmode) strcat (buf, "ss\t{%2, %0|%0, %2}"); else strcat (buf, "sd\t{%2, %0|%0, %2}"); } return buf; } strcpy (buf, p); switch (GET_CODE (operands[3])) { case MULT: case PLUS: if (REG_P (operands[2]) && REGNO (operands[0]) == REGNO (operands[2])) { rtx temp = operands[2]; operands[2] = operands[1]; operands[1] = temp; } /* know operands[0] == operands[1]. */ if (MEM_P (operands[2])) { p = "%Z2\t%2"; break; } if (find_regno_note (insn, REG_DEAD, REGNO (operands[2]))) { if (STACK_TOP_P (operands[0])) /* How is it that we are storing to a dead operand[2]? Well, presumably operands[1] is dead too. We can't store the result to st(0) as st(0) gets popped on this instruction. Instead store to operands[2] (which I think has to be st(1)). st(1) will be popped later. gcc <= 2.8.1 didn't have this check and generated assembly code that the Unixware assembler rejected. */ p = "p\t{%0, %2|%2, %0}"; /* st(1) = st(0) op st(1); pop */ else p = "p\t{%2, %0|%0, %2}"; /* st(r1) = st(r1) op st(0); pop */ break; } if (STACK_TOP_P (operands[0])) p = "\t{%y2, %0|%0, %y2}"; /* st(0) = st(0) op st(r2) */ else p = "\t{%2, %0|%0, %2}"; /* st(r1) = st(r1) op st(0) */ break; case MINUS: case DIV: if (MEM_P (operands[1])) { p = "r%Z1\t%1"; break; } if (MEM_P (operands[2])) { p = "%Z2\t%2"; break; } if (find_regno_note (insn, REG_DEAD, REGNO (operands[2]))) { #if SYSV386_COMPAT /* The SystemV/386 SVR3.2 assembler, and probably all AT&T derived assemblers, confusingly reverse the direction of the operation for fsub{r} and fdiv{r} when the destination register is not st(0). The Intel assembler doesn't have this brain damage. Read !SYSV386_COMPAT to figure out what the hardware really does. */ if (STACK_TOP_P (operands[0])) p = "{p\t%0, %2|rp\t%2, %0}"; else p = "{rp\t%2, %0|p\t%0, %2}"; #else if (STACK_TOP_P (operands[0])) /* As above for fmul/fadd, we can't store to st(0). */ p = "rp\t{%0, %2|%2, %0}"; /* st(1) = st(0) op st(1); pop */ else p = "p\t{%2, %0|%0, %2}"; /* st(r1) = st(r1) op st(0); pop */ #endif break; } if (find_regno_note (insn, REG_DEAD, REGNO (operands[1]))) { #if SYSV386_COMPAT if (STACK_TOP_P (operands[0])) p = "{rp\t%0, %1|p\t%1, %0}"; else p = "{p\t%1, %0|rp\t%0, %1}"; #else if (STACK_TOP_P (operands[0])) p = "p\t{%0, %1|%1, %0}"; /* st(1) = st(1) op st(0); pop */ else p = "rp\t{%1, %0|%0, %1}"; /* st(r2) = st(0) op st(r2); pop */ #endif break; } if (STACK_TOP_P (operands[0])) { if (STACK_TOP_P (operands[1])) p = "\t{%y2, %0|%0, %y2}"; /* st(0) = st(0) op st(r2) */ else p = "r\t{%y1, %0|%0, %y1}"; /* st(0) = st(r1) op st(0) */ break; } else if (STACK_TOP_P (operands[1])) { #if SYSV386_COMPAT p = "{\t%1, %0|r\t%0, %1}"; #else p = "r\t{%1, %0|%0, %1}"; /* st(r2) = st(0) op st(r2) */ #endif } else { #if SYSV386_COMPAT p = "{r\t%2, %0|\t%0, %2}"; #else p = "\t{%2, %0|%0, %2}"; /* st(r1) = st(r1) op st(0) */ #endif } break; default: gcc_unreachable (); } strcat (buf, p); return buf; } /* Check if a 256bit AVX register is referenced inside of EXP. */ static int ix86_check_avx256_register (rtx *pexp, void *data ATTRIBUTE_UNUSED) { rtx exp = *pexp; if (GET_CODE (exp) == SUBREG) exp = SUBREG_REG (exp); if (REG_P (exp) && VALID_AVX256_REG_OR_OI_MODE (GET_MODE (exp))) return 1; return 0; } /* Return needed mode for entity in optimize_mode_switching pass. */ static int ix86_avx_u128_mode_needed (rtx insn) { if (CALL_P (insn)) { rtx link; /* Needed mode is set to AVX_U128_CLEAN if there are no 256bit modes used in function arguments. */ for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1)) { if (GET_CODE (XEXP (link, 0)) == USE) { rtx arg = XEXP (XEXP (link, 0), 0); if (ix86_check_avx256_register (&arg, NULL)) return AVX_U128_DIRTY; } } return AVX_U128_CLEAN; } /* Require DIRTY mode if a 256bit AVX register is referenced. Hardware changes state only when a 256bit register is written to, but we need to prevent the compiler from moving optimal insertion point above eventual read from 256bit register. */ if (for_each_rtx (&PATTERN (insn), ix86_check_avx256_register, NULL)) return AVX_U128_DIRTY; return AVX_U128_ANY; } /* Return mode that i387 must be switched into prior to the execution of insn. */ static int ix86_i387_mode_needed (int entity, rtx insn) { enum attr_i387_cw mode; /* The mode UNINITIALIZED is used to store control word after a function call or ASM pattern. The mode ANY specify that function has no requirements on the control word and make no changes in the bits we are interested in. */ if (CALL_P (insn) || (NONJUMP_INSN_P (insn) && (asm_noperands (PATTERN (insn)) >= 0 || GET_CODE (PATTERN (insn)) == ASM_INPUT))) return I387_CW_UNINITIALIZED; if (recog_memoized (insn) < 0) return I387_CW_ANY; mode = get_attr_i387_cw (insn); switch (entity) { case I387_TRUNC: if (mode == I387_CW_TRUNC) return mode; break; case I387_FLOOR: if (mode == I387_CW_FLOOR) return mode; break; case I387_CEIL: if (mode == I387_CW_CEIL) return mode; break; case I387_MASK_PM: if (mode == I387_CW_MASK_PM) return mode; break; default: gcc_unreachable (); } return I387_CW_ANY; } /* Return mode that entity must be switched into prior to the execution of insn. */ int ix86_mode_needed (int entity, rtx insn) { switch (entity) { case AVX_U128: return ix86_avx_u128_mode_needed (insn); case I387_TRUNC: case I387_FLOOR: case I387_CEIL: case I387_MASK_PM: return ix86_i387_mode_needed (entity, insn); default: gcc_unreachable (); } return 0; } /* Check if a 256bit AVX register is referenced in stores. */ static void ix86_check_avx256_stores (rtx dest, const_rtx set ATTRIBUTE_UNUSED, void *data) { if (ix86_check_avx256_register (&dest, NULL)) { bool *used = (bool *) data; *used = true; } } /* Calculate mode of upper 128bit AVX registers after the insn. */ static int ix86_avx_u128_mode_after (int mode, rtx insn) { rtx pat = PATTERN (insn); if (vzeroupper_operation (pat, VOIDmode) || vzeroall_operation (pat, VOIDmode)) return AVX_U128_CLEAN; /* We know that state is clean after CALL insn if there are no 256bit registers used in the function return register. */ if (CALL_P (insn)) { bool avx_reg256_found = false; note_stores (pat, ix86_check_avx256_stores, &avx_reg256_found); return avx_reg256_found ? AVX_U128_DIRTY : AVX_U128_CLEAN; } /* Otherwise, return current mode. Remember that if insn references AVX 256bit registers, the mode was already changed to DIRTY from MODE_NEEDED. */ return mode; } /* Return the mode that an insn results in. */ int ix86_mode_after (int entity, int mode, rtx insn) { switch (entity) { case AVX_U128: return ix86_avx_u128_mode_after (mode, insn); case I387_TRUNC: case I387_FLOOR: case I387_CEIL: case I387_MASK_PM: return mode; default: gcc_unreachable (); } } static int ix86_avx_u128_mode_entry (void) { tree arg; /* Entry mode is set to AVX_U128_DIRTY if there are 256bit modes used in function arguments. */ for (arg = DECL_ARGUMENTS (current_function_decl); arg; arg = TREE_CHAIN (arg)) { rtx incoming = DECL_INCOMING_RTL (arg); if (incoming && ix86_check_avx256_register (&incoming, NULL)) return AVX_U128_DIRTY; } return AVX_U128_CLEAN; } /* Return a mode that ENTITY is assumed to be switched to at function entry. */ int ix86_mode_entry (int entity) { switch (entity) { case AVX_U128: return ix86_avx_u128_mode_entry (); case I387_TRUNC: case I387_FLOOR: case I387_CEIL: case I387_MASK_PM: return I387_CW_ANY; default: gcc_unreachable (); } } static int ix86_avx_u128_mode_exit (void) { rtx reg = crtl->return_rtx; /* Exit mode is set to AVX_U128_DIRTY if there are 256bit modes used in the function return register. */ if (reg && ix86_check_avx256_register (®, NULL)) return AVX_U128_DIRTY; return AVX_U128_CLEAN; } /* Return a mode that ENTITY is assumed to be switched to at function exit. */ int ix86_mode_exit (int entity) { switch (entity) { case AVX_U128: return ix86_avx_u128_mode_exit (); case I387_TRUNC: case I387_FLOOR: case I387_CEIL: case I387_MASK_PM: return I387_CW_ANY; default: gcc_unreachable (); } } /* Output code to initialize control word copies used by trunc?f?i and rounding patterns. CURRENT_MODE is set to current control word, while NEW_MODE is set to new control word. */ static void emit_i387_cw_initialization (int mode) { rtx stored_mode = assign_386_stack_local (HImode, SLOT_CW_STORED); rtx new_mode; enum ix86_stack_slot slot; rtx reg = gen_reg_rtx (HImode); emit_insn (gen_x86_fnstcw_1 (stored_mode)); emit_move_insn (reg, copy_rtx (stored_mode)); if (TARGET_64BIT || TARGET_PARTIAL_REG_STALL || optimize_insn_for_size_p ()) { switch (mode) { case I387_CW_TRUNC: /* round toward zero (truncate) */ emit_insn (gen_iorhi3 (reg, reg, GEN_INT (0x0c00))); slot = SLOT_CW_TRUNC; break; case I387_CW_FLOOR: /* round down toward -oo */ emit_insn (gen_andhi3 (reg, reg, GEN_INT (~0x0c00))); emit_insn (gen_iorhi3 (reg, reg, GEN_INT (0x0400))); slot = SLOT_CW_FLOOR; break; case I387_CW_CEIL: /* round up toward +oo */ emit_insn (gen_andhi3 (reg, reg, GEN_INT (~0x0c00))); emit_insn (gen_iorhi3 (reg, reg, GEN_INT (0x0800))); slot = SLOT_CW_CEIL; break; case I387_CW_MASK_PM: /* mask precision exception for nearbyint() */ emit_insn (gen_iorhi3 (reg, reg, GEN_INT (0x0020))); slot = SLOT_CW_MASK_PM; break; default: gcc_unreachable (); } } else { switch (mode) { case I387_CW_TRUNC: /* round toward zero (truncate) */ emit_insn (gen_movsi_insv_1 (reg, GEN_INT (0xc))); slot = SLOT_CW_TRUNC; break; case I387_CW_FLOOR: /* round down toward -oo */ emit_insn (gen_movsi_insv_1 (reg, GEN_INT (0x4))); slot = SLOT_CW_FLOOR; break; case I387_CW_CEIL: /* round up toward +oo */ emit_insn (gen_movsi_insv_1 (reg, GEN_INT (0x8))); slot = SLOT_CW_CEIL; break; case I387_CW_MASK_PM: /* mask precision exception for nearbyint() */ emit_insn (gen_iorhi3 (reg, reg, GEN_INT (0x0020))); slot = SLOT_CW_MASK_PM; break; default: gcc_unreachable (); } } gcc_assert (slot < MAX_386_STACK_LOCALS); new_mode = assign_386_stack_local (HImode, slot); emit_move_insn (new_mode, reg); } /* Emit vzeroupper. */ void ix86_avx_emit_vzeroupper (HARD_REG_SET regs_live) { int i; /* Cancel automatic vzeroupper insertion if there are live call-saved SSE registers at the insertion point. */ for (i = FIRST_SSE_REG; i <= LAST_SSE_REG; i++) if (TEST_HARD_REG_BIT (regs_live, i) && !call_used_regs[i]) return; if (TARGET_64BIT) for (i = FIRST_REX_SSE_REG; i <= LAST_REX_SSE_REG; i++) if (TEST_HARD_REG_BIT (regs_live, i) && !call_used_regs[i]) return; emit_insn (gen_avx_vzeroupper ()); } /* Generate one or more insns to set ENTITY to MODE. */ void ix86_emit_mode_set (int entity, int mode, HARD_REG_SET regs_live) { switch (entity) { case AVX_U128: if (mode == AVX_U128_CLEAN) ix86_avx_emit_vzeroupper (regs_live); break; case I387_TRUNC: case I387_FLOOR: case I387_CEIL: case I387_MASK_PM: if (mode != I387_CW_ANY && mode != I387_CW_UNINITIALIZED) emit_i387_cw_initialization (mode); break; default: gcc_unreachable (); } } /* Output code for INSN to convert a float to a signed int. OPERANDS are the insn operands. The output may be [HSD]Imode and the input operand may be [SDX]Fmode. */ const char * output_fix_trunc (rtx insn, rtx *operands, bool fisttp) { int stack_top_dies = find_regno_note (insn, REG_DEAD, FIRST_STACK_REG) != 0; int dimode_p = GET_MODE (operands[0]) == DImode; int round_mode = get_attr_i387_cw (insn); /* Jump through a hoop or two for DImode, since the hardware has no non-popping instruction. We used to do this a different way, but that was somewhat fragile and broke with post-reload splitters. */ if ((dimode_p || fisttp) && !stack_top_dies) output_asm_insn ("fld\t%y1", operands); gcc_assert (STACK_TOP_P (operands[1])); gcc_assert (MEM_P (operands[0])); gcc_assert (GET_MODE (operands[1]) != TFmode); if (fisttp) output_asm_insn ("fisttp%Z0\t%0", operands); else { if (round_mode != I387_CW_ANY) output_asm_insn ("fldcw\t%3", operands); if (stack_top_dies || dimode_p) output_asm_insn ("fistp%Z0\t%0", operands); else output_asm_insn ("fist%Z0\t%0", operands); if (round_mode != I387_CW_ANY) output_asm_insn ("fldcw\t%2", operands); } return ""; } /* Output code for x87 ffreep insn. The OPNO argument, which may only have the values zero or one, indicates the ffreep insn's operand from the OPERANDS array. */ static const char * output_387_ffreep (rtx *operands ATTRIBUTE_UNUSED, int opno) { if (TARGET_USE_FFREEP) #ifdef HAVE_AS_IX86_FFREEP return opno ? "ffreep\t%y1" : "ffreep\t%y0"; #else { static char retval[32]; int regno = REGNO (operands[opno]); gcc_assert (STACK_REGNO_P (regno)); regno -= FIRST_STACK_REG; snprintf (retval, sizeof (retval), ASM_SHORT "0xc%ddf", regno); return retval; } #endif return opno ? "fstp\t%y1" : "fstp\t%y0"; } /* Output code for INSN to compare OPERANDS. EFLAGS_P is 1 when fcomi should be used. UNORDERED_P is true when fucom should be used. */ const char * output_fp_compare (rtx insn, rtx *operands, bool eflags_p, bool unordered_p) { int stack_top_dies; rtx cmp_op0, cmp_op1; int is_sse = SSE_REG_P (operands[0]) || SSE_REG_P (operands[1]); if (eflags_p) { cmp_op0 = operands[0]; cmp_op1 = operands[1]; } else { cmp_op0 = operands[1]; cmp_op1 = operands[2]; } if (is_sse) { if (GET_MODE (operands[0]) == SFmode) if (unordered_p) return "%vucomiss\t{%1, %0|%0, %1}"; else return "%vcomiss\t{%1, %0|%0, %1}"; else if (unordered_p) return "%vucomisd\t{%1, %0|%0, %1}"; else return "%vcomisd\t{%1, %0|%0, %1}"; } gcc_assert (STACK_TOP_P (cmp_op0)); stack_top_dies = find_regno_note (insn, REG_DEAD, FIRST_STACK_REG) != 0; if (cmp_op1 == CONST0_RTX (GET_MODE (cmp_op1))) { if (stack_top_dies) { output_asm_insn ("ftst\n\tfnstsw\t%0", operands); return output_387_ffreep (operands, 1); } else return "ftst\n\tfnstsw\t%0"; } if (STACK_REG_P (cmp_op1) && stack_top_dies && find_regno_note (insn, REG_DEAD, REGNO (cmp_op1)) && REGNO (cmp_op1) != FIRST_STACK_REG) { /* If both the top of the 387 stack dies, and the other operand is also a stack register that dies, then this must be a `fcompp' float compare */ if (eflags_p) { /* There is no double popping fcomi variant. Fortunately, eflags is immune from the fstp's cc clobbering. */ if (unordered_p) output_asm_insn ("fucomip\t{%y1, %0|%0, %y1}", operands); else output_asm_insn ("fcomip\t{%y1, %0|%0, %y1}", operands); return output_387_ffreep (operands, 0); } else { if (unordered_p) return "fucompp\n\tfnstsw\t%0"; else return "fcompp\n\tfnstsw\t%0"; } } else { /* Encoded here as eflags_p | intmode | unordered_p | stack_top_dies. */ static const char * const alt[16] = { "fcom%Z2\t%y2\n\tfnstsw\t%0", "fcomp%Z2\t%y2\n\tfnstsw\t%0", "fucom%Z2\t%y2\n\tfnstsw\t%0", "fucomp%Z2\t%y2\n\tfnstsw\t%0", "ficom%Z2\t%y2\n\tfnstsw\t%0", "ficomp%Z2\t%y2\n\tfnstsw\t%0", NULL, NULL, "fcomi\t{%y1, %0|%0, %y1}", "fcomip\t{%y1, %0|%0, %y1}", "fucomi\t{%y1, %0|%0, %y1}", "fucomip\t{%y1, %0|%0, %y1}", NULL, NULL, NULL, NULL }; int mask; const char *ret; mask = eflags_p << 3; mask |= (GET_MODE_CLASS (GET_MODE (cmp_op1)) == MODE_INT) << 2; mask |= unordered_p << 1; mask |= stack_top_dies; gcc_assert (mask < 16); ret = alt[mask]; gcc_assert (ret); return ret; } } void ix86_output_addr_vec_elt (FILE *file, int value) { const char *directive = ASM_LONG; #ifdef ASM_QUAD if (TARGET_LP64) directive = ASM_QUAD; #else gcc_assert (!TARGET_64BIT); #endif fprintf (file, "%s%s%d\n", directive, LPREFIX, value); } void ix86_output_addr_diff_elt (FILE *file, int value, int rel) { const char *directive = ASM_LONG; #ifdef ASM_QUAD if (TARGET_64BIT && CASE_VECTOR_MODE == DImode) directive = ASM_QUAD; #else gcc_assert (!TARGET_64BIT); #endif /* We can't use @GOTOFF for text labels on VxWorks; see gotoff_operand. */ if (TARGET_64BIT || TARGET_VXWORKS_RTP) fprintf (file, "%s%s%d-%s%d\n", directive, LPREFIX, value, LPREFIX, rel); else if (HAVE_AS_GOTOFF_IN_DATA) fprintf (file, ASM_LONG "%s%d@GOTOFF\n", LPREFIX, value); #if TARGET_MACHO else if (TARGET_MACHO) { fprintf (file, ASM_LONG "%s%d-", LPREFIX, value); machopic_output_function_base_name (file); putc ('\n', file); } #endif else asm_fprintf (file, ASM_LONG "%U%s+[.-%s%d]\n", GOT_SYMBOL_NAME, LPREFIX, value); } /* Generate either "mov $0, reg" or "xor reg, reg", as appropriate for the target. */ void ix86_expand_clear (rtx dest) { rtx tmp; /* We play register width games, which are only valid after reload. */ gcc_assert (reload_completed); /* Avoid HImode and its attendant prefix byte. */ if (GET_MODE_SIZE (GET_MODE (dest)) < 4) dest = gen_rtx_REG (SImode, REGNO (dest)); tmp = gen_rtx_SET (VOIDmode, dest, const0_rtx); /* This predicate should match that for movsi_xor and movdi_xor_rex64. */ if (!TARGET_USE_MOV0 || optimize_insn_for_speed_p ()) { rtx clob = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (CCmode, FLAGS_REG)); tmp = gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, tmp, clob)); } emit_insn (tmp); } /* X is an unchanging MEM. If it is a constant pool reference, return the constant pool rtx, else NULL. */ rtx maybe_get_pool_constant (rtx x) { x = ix86_delegitimize_address (XEXP (x, 0)); if (GET_CODE (x) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (x)) return get_pool_constant (x); return NULL_RTX; } void ix86_expand_move (enum machine_mode mode, rtx operands[]) { rtx op0, op1; enum tls_model model; op0 = operands[0]; op1 = operands[1]; if (GET_CODE (op1) == SYMBOL_REF) { rtx tmp; model = SYMBOL_REF_TLS_MODEL (op1); if (model) { op1 = legitimize_tls_address (op1, model, true); op1 = force_operand (op1, op0); if (op1 == op0) return; op1 = convert_to_mode (mode, op1, 1); } else if ((tmp = legitimize_pe_coff_symbol (op1, false)) != NULL_RTX) op1 = tmp; } else if (GET_CODE (op1) == CONST && GET_CODE (XEXP (op1, 0)) == PLUS && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SYMBOL_REF) { rtx addend = XEXP (XEXP (op1, 0), 1); rtx symbol = XEXP (XEXP (op1, 0), 0); rtx tmp; model = SYMBOL_REF_TLS_MODEL (symbol); if (model) tmp = legitimize_tls_address (symbol, model, true); else tmp = legitimize_pe_coff_symbol (symbol, true); if (tmp) { tmp = force_operand (tmp, NULL); tmp = expand_simple_binop (Pmode, PLUS, tmp, addend, op0, 1, OPTAB_DIRECT); if (tmp == op0) return; op1 = convert_to_mode (mode, tmp, 1); } } if ((flag_pic || MACHOPIC_INDIRECT) && symbolic_operand (op1, mode)) { if (TARGET_MACHO && !TARGET_64BIT) { #if TARGET_MACHO /* dynamic-no-pic */ if (MACHOPIC_INDIRECT) { rtx temp = ((reload_in_progress || ((op0 && REG_P (op0)) && mode == Pmode)) ? op0 : gen_reg_rtx (Pmode)); op1 = machopic_indirect_data_reference (op1, temp); if (MACHOPIC_PURE) op1 = machopic_legitimize_pic_address (op1, mode, temp == op1 ? 0 : temp); } if (op0 != op1 && GET_CODE (op0) != MEM) { rtx insn = gen_rtx_SET (VOIDmode, op0, op1); emit_insn (insn); return; } if (GET_CODE (op0) == MEM) op1 = force_reg (Pmode, op1); else { rtx temp = op0; if (GET_CODE (temp) != REG) temp = gen_reg_rtx (Pmode); temp = legitimize_pic_address (op1, temp); if (temp == op0) return; op1 = temp; } /* dynamic-no-pic */ #endif } else { if (MEM_P (op0)) op1 = force_reg (mode, op1); else if (!(TARGET_64BIT && x86_64_movabs_operand (op1, DImode))) { rtx reg = can_create_pseudo_p () ? NULL_RTX : op0; op1 = legitimize_pic_address (op1, reg); if (op0 == op1) return; op1 = convert_to_mode (mode, op1, 1); } } } else { if (MEM_P (op0) && (PUSH_ROUNDING (GET_MODE_SIZE (mode)) != GET_MODE_SIZE (mode) || !push_operand (op0, mode)) && MEM_P (op1)) op1 = force_reg (mode, op1); if (push_operand (op0, mode) && ! general_no_elim_operand (op1, mode)) op1 = copy_to_mode_reg (mode, op1); /* Force large constants in 64bit compilation into register to get them CSEed. */ if (can_create_pseudo_p () && (mode == DImode) && TARGET_64BIT && immediate_operand (op1, mode) && !x86_64_zext_immediate_operand (op1, VOIDmode) && !register_operand (op0, mode) && optimize) op1 = copy_to_mode_reg (mode, op1); if (can_create_pseudo_p () && FLOAT_MODE_P (mode) && GET_CODE (op1) == CONST_DOUBLE) { /* If we are loading a floating point constant to a register, force the value to memory now, since we'll get better code out the back end. */ op1 = validize_mem (force_const_mem (mode, op1)); if (!register_operand (op0, mode)) { rtx temp = gen_reg_rtx (mode); emit_insn (gen_rtx_SET (VOIDmode, temp, op1)); emit_move_insn (op0, temp); return; } } } emit_insn (gen_rtx_SET (VOIDmode, op0, op1)); } void ix86_expand_vector_move (enum machine_mode mode, rtx operands[]) { rtx op0 = operands[0], op1 = operands[1]; unsigned int align = GET_MODE_ALIGNMENT (mode); /* Force constants other than zero into memory. We do not know how the instructions used to build constants modify the upper 64 bits of the register, once we have that information we may be able to handle some of them more efficiently. */ if (can_create_pseudo_p () && register_operand (op0, mode) && (CONSTANT_P (op1) || (GET_CODE (op1) == SUBREG && CONSTANT_P (SUBREG_REG (op1)))) && !standard_sse_constant_p (op1)) op1 = validize_mem (force_const_mem (mode, op1)); /* We need to check memory alignment for SSE mode since attribute can make operands unaligned. */ if (can_create_pseudo_p () && SSE_REG_MODE_P (mode) && ((MEM_P (op0) && (MEM_ALIGN (op0) < align)) || (MEM_P (op1) && (MEM_ALIGN (op1) < align)))) { rtx tmp[2]; /* ix86_expand_vector_move_misalign() does not like constants ... */ if (CONSTANT_P (op1) || (GET_CODE (op1) == SUBREG && CONSTANT_P (SUBREG_REG (op1)))) op1 = validize_mem (force_const_mem (mode, op1)); /* ... nor both arguments in memory. */ if (!register_operand (op0, mode) && !register_operand (op1, mode)) op1 = force_reg (mode, op1); tmp[0] = op0; tmp[1] = op1; ix86_expand_vector_move_misalign (mode, tmp); return; } /* Make operand1 a register if it isn't already. */ if (can_create_pseudo_p () && !register_operand (op0, mode) && !register_operand (op1, mode)) { emit_move_insn (op0, force_reg (GET_MODE (op0), op1)); return; } emit_insn (gen_rtx_SET (VOIDmode, op0, op1)); } /* Split 32-byte AVX unaligned load and store if needed. */ static void ix86_avx256_split_vector_move_misalign (rtx op0, rtx op1) { rtx m; rtx (*extract) (rtx, rtx, rtx); rtx (*load_unaligned) (rtx, rtx); rtx (*store_unaligned) (rtx, rtx); enum machine_mode mode; switch (GET_MODE (op0)) { default: gcc_unreachable (); case V32QImode: extract = gen_avx_vextractf128v32qi; load_unaligned = gen_avx_loaddquv32qi; store_unaligned = gen_avx_storedquv32qi; mode = V16QImode; break; case V8SFmode: extract = gen_avx_vextractf128v8sf; load_unaligned = gen_avx_loadups256; store_unaligned = gen_avx_storeups256; mode = V4SFmode; break; case V4DFmode: extract = gen_avx_vextractf128v4df; load_unaligned = gen_avx_loadupd256; store_unaligned = gen_avx_storeupd256; mode = V2DFmode; break; } if (MEM_P (op1)) { if (TARGET_AVX256_SPLIT_UNALIGNED_LOAD) { rtx r = gen_reg_rtx (mode); m = adjust_address (op1, mode, 0); emit_move_insn (r, m); m = adjust_address (op1, mode, 16); r = gen_rtx_VEC_CONCAT (GET_MODE (op0), r, m); emit_move_insn (op0, r); } /* Normal *mov_internal pattern will handle unaligned loads just fine if misaligned_operand is true, and without the UNSPEC it can be combined with arithmetic instructions. */ else if (misaligned_operand (op1, GET_MODE (op1))) emit_insn (gen_rtx_SET (VOIDmode, op0, op1)); else emit_insn (load_unaligned (op0, op1)); } else if (MEM_P (op0)) { if (TARGET_AVX256_SPLIT_UNALIGNED_STORE) { m = adjust_address (op0, mode, 0); emit_insn (extract (m, op1, const0_rtx)); m = adjust_address (op0, mode, 16); emit_insn (extract (m, op1, const1_rtx)); } else emit_insn (store_unaligned (op0, op1)); } else gcc_unreachable (); } /* Implement the movmisalign patterns for SSE. Non-SSE modes go straight to ix86_expand_vector_move. */ /* Code generation for scalar reg-reg moves of single and double precision data: if (x86_sse_partial_reg_dependency == true | x86_sse_split_regs == true) movaps reg, reg else movss reg, reg if (x86_sse_partial_reg_dependency == true) movapd reg, reg else movsd reg, reg Code generation for scalar loads of double precision data: if (x86_sse_split_regs == true) movlpd mem, reg (gas syntax) else movsd mem, reg Code generation for unaligned packed loads of single precision data (x86_sse_unaligned_move_optimal overrides x86_sse_partial_reg_dependency): if (x86_sse_unaligned_move_optimal) movups mem, reg if (x86_sse_partial_reg_dependency == true) { xorps reg, reg movlps mem, reg movhps mem+8, reg } else { movlps mem, reg movhps mem+8, reg } Code generation for unaligned packed loads of double precision data (x86_sse_unaligned_move_optimal overrides x86_sse_split_regs): if (x86_sse_unaligned_move_optimal) movupd mem, reg if (x86_sse_split_regs == true) { movlpd mem, reg movhpd mem+8, reg } else { movsd mem, reg movhpd mem+8, reg } */ void ix86_expand_vector_move_misalign (enum machine_mode mode, rtx operands[]) { rtx op0, op1, orig_op0 = NULL_RTX, m; rtx (*load_unaligned) (rtx, rtx); rtx (*store_unaligned) (rtx, rtx); op0 = operands[0]; op1 = operands[1]; if (GET_MODE_SIZE (mode) == 64) { switch (GET_MODE_CLASS (mode)) { case MODE_VECTOR_INT: case MODE_INT: if (GET_MODE (op0) != V16SImode) { if (!MEM_P (op0)) { orig_op0 = op0; op0 = gen_reg_rtx (V16SImode); } else op0 = gen_lowpart (V16SImode, op0); } op1 = gen_lowpart (V16SImode, op1); /* FALLTHRU */ case MODE_VECTOR_FLOAT: switch (GET_MODE (op0)) { default: gcc_unreachable (); case V16SImode: load_unaligned = gen_avx512f_loaddquv16si; store_unaligned = gen_avx512f_storedquv16si; break; case V16SFmode: load_unaligned = gen_avx512f_loadups512; store_unaligned = gen_avx512f_storeups512; break; case V8DFmode: load_unaligned = gen_avx512f_loadupd512; store_unaligned = gen_avx512f_storeupd512; break; } if (MEM_P (op1)) emit_insn (load_unaligned (op0, op1)); else if (MEM_P (op0)) emit_insn (store_unaligned (op0, op1)); else gcc_unreachable (); if (orig_op0) emit_move_insn (orig_op0, gen_lowpart (GET_MODE (orig_op0), op0)); break; default: gcc_unreachable (); } return; } if (TARGET_AVX && GET_MODE_SIZE (mode) == 32) { switch (GET_MODE_CLASS (mode)) { case MODE_VECTOR_INT: case MODE_INT: if (GET_MODE (op0) != V32QImode) { if (!MEM_P (op0)) { orig_op0 = op0; op0 = gen_reg_rtx (V32QImode); } else op0 = gen_lowpart (V32QImode, op0); } op1 = gen_lowpart (V32QImode, op1); /* FALLTHRU */ case MODE_VECTOR_FLOAT: ix86_avx256_split_vector_move_misalign (op0, op1); if (orig_op0) emit_move_insn (orig_op0, gen_lowpart (GET_MODE (orig_op0), op0)); break; default: gcc_unreachable (); } return; } if (MEM_P (op1)) { /* Normal *mov_internal pattern will handle unaligned loads just fine if misaligned_operand is true, and without the UNSPEC it can be combined with arithmetic instructions. */ if (TARGET_AVX && (GET_MODE_CLASS (mode) == MODE_VECTOR_INT || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT) && misaligned_operand (op1, GET_MODE (op1))) emit_insn (gen_rtx_SET (VOIDmode, op0, op1)); /* ??? If we have typed data, then it would appear that using movdqu is the only way to get unaligned data loaded with integer type. */ else if (TARGET_SSE2 && GET_MODE_CLASS (mode) == MODE_VECTOR_INT) { if (GET_MODE (op0) != V16QImode) { orig_op0 = op0; op0 = gen_reg_rtx (V16QImode); } op1 = gen_lowpart (V16QImode, op1); /* We will eventually emit movups based on insn attributes. */ emit_insn (gen_sse2_loaddquv16qi (op0, op1)); if (orig_op0) emit_move_insn (orig_op0, gen_lowpart (GET_MODE (orig_op0), op0)); } else if (TARGET_SSE2 && mode == V2DFmode) { rtx zero; if (TARGET_AVX || TARGET_SSE_UNALIGNED_LOAD_OPTIMAL || TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL || optimize_insn_for_size_p ()) { /* We will eventually emit movups based on insn attributes. */ emit_insn (gen_sse2_loadupd (op0, op1)); return; } /* When SSE registers are split into halves, we can avoid writing to the top half twice. */ if (TARGET_SSE_SPLIT_REGS) { emit_clobber (op0); zero = op0; } else { /* ??? Not sure about the best option for the Intel chips. The following would seem to satisfy; the register is entirely cleared, breaking the dependency chain. We then store to the upper half, with a dependency depth of one. A rumor has it that Intel recommends two movsd followed by an unpacklpd, but this is unconfirmed. And given that the dependency depth of the unpacklpd would still be one, I'm not sure why this would be better. */ zero = CONST0_RTX (V2DFmode); } m = adjust_address (op1, DFmode, 0); emit_insn (gen_sse2_loadlpd (op0, zero, m)); m = adjust_address (op1, DFmode, 8); emit_insn (gen_sse2_loadhpd (op0, op0, m)); } else { rtx t; if (TARGET_AVX || TARGET_SSE_UNALIGNED_LOAD_OPTIMAL || TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL || optimize_insn_for_size_p ()) { if (GET_MODE (op0) != V4SFmode) { orig_op0 = op0; op0 = gen_reg_rtx (V4SFmode); } op1 = gen_lowpart (V4SFmode, op1); emit_insn (gen_sse_loadups (op0, op1)); if (orig_op0) emit_move_insn (orig_op0, gen_lowpart (GET_MODE (orig_op0), op0)); return; } if (mode != V4SFmode) t = gen_reg_rtx (V4SFmode); else t = op0; if (TARGET_SSE_PARTIAL_REG_DEPENDENCY) emit_move_insn (t, CONST0_RTX (V4SFmode)); else emit_clobber (t); m = adjust_address (op1, V2SFmode, 0); emit_insn (gen_sse_loadlps (t, t, m)); m = adjust_address (op1, V2SFmode, 8); emit_insn (gen_sse_loadhps (t, t, m)); if (mode != V4SFmode) emit_move_insn (op0, gen_lowpart (mode, t)); } } else if (MEM_P (op0)) { if (TARGET_SSE2 && GET_MODE_CLASS (mode) == MODE_VECTOR_INT) { op0 = gen_lowpart (V16QImode, op0); op1 = gen_lowpart (V16QImode, op1); /* We will eventually emit movups based on insn attributes. */ emit_insn (gen_sse2_storedquv16qi (op0, op1)); } else if (TARGET_SSE2 && mode == V2DFmode) { if (TARGET_AVX || TARGET_SSE_UNALIGNED_STORE_OPTIMAL || TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL || optimize_insn_for_size_p ()) /* We will eventually emit movups based on insn attributes. */ emit_insn (gen_sse2_storeupd (op0, op1)); else { m = adjust_address (op0, DFmode, 0); emit_insn (gen_sse2_storelpd (m, op1)); m = adjust_address (op0, DFmode, 8); emit_insn (gen_sse2_storehpd (m, op1)); } } else { if (mode != V4SFmode) op1 = gen_lowpart (V4SFmode, op1); if (TARGET_AVX || TARGET_SSE_UNALIGNED_STORE_OPTIMAL || TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL || optimize_insn_for_size_p ()) { op0 = gen_lowpart (V4SFmode, op0); emit_insn (gen_sse_storeups (op0, op1)); } else { m = adjust_address (op0, V2SFmode, 0); emit_insn (gen_sse_storelps (m, op1)); m = adjust_address (op0, V2SFmode, 8); emit_insn (gen_sse_storehps (m, op1)); } } } else gcc_unreachable (); } /* Expand a push in MODE. This is some mode for which we do not support proper push instructions, at least from the registers that we expect the value to live in. */ void ix86_expand_push (enum machine_mode mode, rtx x) { rtx tmp; tmp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx, GEN_INT (-GET_MODE_SIZE (mode)), stack_pointer_rtx, 1, OPTAB_DIRECT); if (tmp != stack_pointer_rtx) emit_move_insn (stack_pointer_rtx, tmp); tmp = gen_rtx_MEM (mode, stack_pointer_rtx); /* When we push an operand onto stack, it has to be aligned at least at the function argument boundary. However since we don't have the argument type, we can't determine the actual argument boundary. */ emit_move_insn (tmp, x); } /* Helper function of ix86_fixup_binary_operands to canonicalize operand order. Returns true if the operands should be swapped. */ static bool ix86_swap_binary_operands_p (enum rtx_code code, enum machine_mode mode, rtx operands[]) { rtx dst = operands[0]; rtx src1 = operands[1]; rtx src2 = operands[2]; /* If the operation is not commutative, we can't do anything. */ if (GET_RTX_CLASS (code) != RTX_COMM_ARITH) return false; /* Highest priority is that src1 should match dst. */ if (rtx_equal_p (dst, src1)) return false; if (rtx_equal_p (dst, src2)) return true; /* Next highest priority is that immediate constants come second. */ if (immediate_operand (src2, mode)) return false; if (immediate_operand (src1, mode)) return true; /* Lowest priority is that memory references should come second. */ if (MEM_P (src2)) return false; if (MEM_P (src1)) return true; return false; } /* Fix up OPERANDS to satisfy ix86_binary_operator_ok. Return the destination to use for the operation. If different from the true destination in operands[0], a copy operation will be required. */ rtx ix86_fixup_binary_operands (enum rtx_code code, enum machine_mode mode, rtx operands[]) { rtx dst = operands[0]; rtx src1 = operands[1]; rtx src2 = operands[2]; /* Canonicalize operand order. */ if (ix86_swap_binary_operands_p (code, mode, operands)) { rtx temp; /* It is invalid to swap operands of different modes. */ gcc_assert (GET_MODE (src1) == GET_MODE (src2)); temp = src1; src1 = src2; src2 = temp; } /* Both source operands cannot be in memory. */ if (MEM_P (src1) && MEM_P (src2)) { /* Optimization: Only read from memory once. */ if (rtx_equal_p (src1, src2)) { src2 = force_reg (mode, src2); src1 = src2; } else if (rtx_equal_p (dst, src1)) src2 = force_reg (mode, src2); else src1 = force_reg (mode, src1); } /* If the destination is memory, and we do not have matching source operands, do things in registers. */ if (MEM_P (dst) && !rtx_equal_p (dst, src1)) dst = gen_reg_rtx (mode); /* Source 1 cannot be a constant. */ if (CONSTANT_P (src1)) src1 = force_reg (mode, src1); /* Source 1 cannot be a non-matching memory. */ if (MEM_P (src1) && !rtx_equal_p (dst, src1)) src1 = force_reg (mode, src1); /* Improve address combine. */ if (code == PLUS && GET_MODE_CLASS (mode) == MODE_INT && MEM_P (src2)) src2 = force_reg (mode, src2); operands[1] = src1; operands[2] = src2; return dst; } /* Similarly, but assume that the destination has already been set up properly. */ void ix86_fixup_binary_operands_no_copy (enum rtx_code code, enum machine_mode mode, rtx operands[]) { rtx dst = ix86_fixup_binary_operands (code, mode, operands); gcc_assert (dst == operands[0]); } /* Attempt to expand a binary operator. Make the expansion closer to the actual machine, then just general_operand, which will allow 3 separate memory references (one output, two input) in a single insn. */ void ix86_expand_binary_operator (enum rtx_code code, enum machine_mode mode, rtx operands[]) { rtx src1, src2, dst, op, clob; dst = ix86_fixup_binary_operands (code, mode, operands); src1 = operands[1]; src2 = operands[2]; /* Emit the instruction. */ op = gen_rtx_SET (VOIDmode, dst, gen_rtx_fmt_ee (code, mode, src1, src2)); if (reload_in_progress) { /* Reload doesn't know about the flags register, and doesn't know that it doesn't want to clobber it. We can only do this with PLUS. */ gcc_assert (code == PLUS); emit_insn (op); } else if (reload_completed && code == PLUS && !rtx_equal_p (dst, src1)) { /* This is going to be an LEA; avoid splitting it later. */ emit_insn (op); } else { clob = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (CCmode, FLAGS_REG)); emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, op, clob))); } /* Fix up the destination if needed. */ if (dst != operands[0]) emit_move_insn (operands[0], dst); } /* Expand vector logical operation CODE (AND, IOR, XOR) in MODE with the given OPERANDS. */ void ix86_expand_vector_logical_operator (enum rtx_code code, enum machine_mode mode, rtx operands[]) { rtx op1 = NULL_RTX, op2 = NULL_RTX; if (GET_CODE (operands[1]) == SUBREG) { op1 = operands[1]; op2 = operands[2]; } else if (GET_CODE (operands[2]) == SUBREG) { op1 = operands[2]; op2 = operands[1]; } /* Optimize (__m128i) d | (__m128i) e and similar code when d and e are float vectors into float vector logical insn. In C/C++ without using intrinsics there is no other way to express vector logical operation on float vectors than to cast them temporarily to integer vectors. */ if (op1 && !TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL && ((GET_CODE (op2) == SUBREG || GET_CODE (op2) == CONST_VECTOR)) && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op1))) == MODE_VECTOR_FLOAT && GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1))) == GET_MODE_SIZE (mode) && SUBREG_BYTE (op1) == 0 && (GET_CODE (op2) == CONST_VECTOR || (GET_MODE (SUBREG_REG (op1)) == GET_MODE (SUBREG_REG (op2)) && SUBREG_BYTE (op2) == 0)) && can_create_pseudo_p ()) { rtx dst; switch (GET_MODE (SUBREG_REG (op1))) { case V4SFmode: case V8SFmode: case V2DFmode: case V4DFmode: dst = gen_reg_rtx (GET_MODE (SUBREG_REG (op1))); if (GET_CODE (op2) == CONST_VECTOR) { op2 = gen_lowpart (GET_MODE (dst), op2); op2 = force_reg (GET_MODE (dst), op2); } else { op1 = operands[1]; op2 = SUBREG_REG (operands[2]); if (!nonimmediate_operand (op2, GET_MODE (dst))) op2 = force_reg (GET_MODE (dst), op2); } op1 = SUBREG_REG (op1); if (!nonimmediate_operand (op1, GET_MODE (dst))) op1 = force_reg (GET_MODE (dst), op1); emit_insn (gen_rtx_SET (VOIDmode, dst, gen_rtx_fmt_ee (code, GET_MODE (dst), op1, op2))); emit_move_insn (operands[0], gen_lowpart (mode, dst)); return; default: break; } } if (!nonimmediate_operand (operands[1], mode)) operands[1] = force_reg (mode, operands[1]); if (!nonimmediate_operand (operands[2], mode)) operands[2] = force_reg (mode, operands[2]); ix86_fixup_binary_operands_no_copy (code, mode, operands); emit_insn (gen_rtx_SET (VOIDmode, operands[0], gen_rtx_fmt_ee (code, mode, operands[1], operands[2]))); } /* Return TRUE or FALSE depending on whether the binary operator meets the appropriate constraints. */ bool ix86_binary_operator_ok (enum rtx_code code, enum machine_mode mode, rtx operands[3]) { rtx dst = operands[0]; rtx src1 = operands[1]; rtx src2 = operands[2]; /* Both source operands cannot be in memory. */ if (MEM_P (src1) && MEM_P (src2)) return false; /* Canonicalize operand order for commutative operators. */ if (ix86_swap_binary_operands_p (code, mode, operands)) { rtx temp = src1; src1 = src2; src2 = temp; } /* If the destination is memory, we must have a matching source operand. */ if (MEM_P (dst) && !rtx_equal_p (dst, src1)) return false; /* Source 1 cannot be a constant. */ if (CONSTANT_P (src1)) return false; /* Source 1 cannot be a non-matching memory. */ if (MEM_P (src1) && !rtx_equal_p (dst, src1)) /* Support "andhi/andsi/anddi" as a zero-extending move. */ return (code == AND && (mode == HImode || mode == SImode || (TARGET_64BIT && mode == DImode)) && satisfies_constraint_L (src2)); return true; } /* Attempt to expand a unary operator. Make the expansion closer to the actual machine, then just general_operand, which will allow 2 separate memory references (one output, one input) in a single insn. */ void ix86_expand_unary_operator (enum rtx_code code, enum machine_mode mode, rtx operands[]) { int matching_memory; rtx src, dst, op, clob; dst = operands[0]; src = operands[1]; /* If the destination is memory, and we do not have matching source operands, do things in registers. */ matching_memory = 0; if (MEM_P (dst)) { if (rtx_equal_p (dst, src)) matching_memory = 1; else dst = gen_reg_rtx (mode); } /* When source operand is memory, destination must match. */ if (MEM_P (src) && !matching_memory) src = force_reg (mode, src); /* Emit the instruction. */ op = gen_rtx_SET (VOIDmode, dst, gen_rtx_fmt_e (code, mode, src)); if (reload_in_progress || code == NOT) { /* Reload doesn't know about the flags register, and doesn't know that it doesn't want to clobber it. */ gcc_assert (code == NOT); emit_insn (op); } else { clob = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (CCmode, FLAGS_REG)); emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, op, clob))); } /* Fix up the destination if needed. */ if (dst != operands[0]) emit_move_insn (operands[0], dst); } /* Split 32bit/64bit divmod with 8bit unsigned divmod if dividend and divisor are within the range [0-255]. */ void ix86_split_idivmod (enum machine_mode mode, rtx operands[], bool signed_p) { rtx end_label, qimode_label; rtx insn, div, mod; rtx scratch, tmp0, tmp1, tmp2; rtx (*gen_divmod4_1) (rtx, rtx, rtx, rtx); rtx (*gen_zero_extend) (rtx, rtx); rtx (*gen_test_ccno_1) (rtx, rtx); switch (mode) { case SImode: gen_divmod4_1 = signed_p ? gen_divmodsi4_1 : gen_udivmodsi4_1; gen_test_ccno_1 = gen_testsi_ccno_1; gen_zero_extend = gen_zero_extendqisi2; break; case DImode: gen_divmod4_1 = signed_p ? gen_divmoddi4_1 : gen_udivmoddi4_1; gen_test_ccno_1 = gen_testdi_ccno_1; gen_zero_extend = gen_zero_extendqidi2; break; default: gcc_unreachable (); } end_label = gen_label_rtx (); qimode_label = gen_label_rtx (); scratch = gen_reg_rtx (mode); /* Use 8bit unsigned divimod if dividend and divisor are within the range [0-255]. */ emit_move_insn (scratch, operands[2]); scratch = expand_simple_binop (mode, IOR, scratch, operands[3], scratch, 1, OPTAB_DIRECT); emit_insn (gen_test_ccno_1 (scratch, GEN_INT (-0x100))); tmp0 = gen_rtx_REG (CCNOmode, FLAGS_REG); tmp0 = gen_rtx_EQ (VOIDmode, tmp0, const0_rtx); tmp0 = gen_rtx_IF_THEN_ELSE (VOIDmode, tmp0, gen_rtx_LABEL_REF (VOIDmode, qimode_label), pc_rtx); insn = emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx, tmp0)); predict_jump (REG_BR_PROB_BASE * 50 / 100); JUMP_LABEL (insn) = qimode_label; /* Generate original signed/unsigned divimod. */ div = gen_divmod4_1 (operands[0], operands[1], operands[2], operands[3]); emit_insn (div); /* Branch to the end. */ emit_jump_insn (gen_jump (end_label)); emit_barrier (); /* Generate 8bit unsigned divide. */ emit_label (qimode_label); /* Don't use operands[0] for result of 8bit divide since not all registers support QImode ZERO_EXTRACT. */ tmp0 = simplify_gen_subreg (HImode, scratch, mode, 0); tmp1 = simplify_gen_subreg (HImode, operands[2], mode, 0); tmp2 = simplify_gen_subreg (QImode, operands[3], mode, 0); emit_insn (gen_udivmodhiqi3 (tmp0, tmp1, tmp2)); if (signed_p) { div = gen_rtx_DIV (SImode, operands[2], operands[3]); mod = gen_rtx_MOD (SImode, operands[2], operands[3]); } else { div = gen_rtx_UDIV (SImode, operands[2], operands[3]); mod = gen_rtx_UMOD (SImode, operands[2], operands[3]); } /* Extract remainder from AH. */ tmp1 = gen_rtx_ZERO_EXTRACT (mode, tmp0, GEN_INT (8), GEN_INT (8)); if (REG_P (operands[1])) insn = emit_move_insn (operands[1], tmp1); else { /* Need a new scratch register since the old one has result of 8bit divide. */ scratch = gen_reg_rtx (mode); emit_move_insn (scratch, tmp1); insn = emit_move_insn (operands[1], scratch); } set_unique_reg_note (insn, REG_EQUAL, mod); /* Zero extend quotient from AL. */ tmp1 = gen_lowpart (QImode, tmp0); insn = emit_insn (gen_zero_extend (operands[0], tmp1)); set_unique_reg_note (insn, REG_EQUAL, div); emit_label (end_label); } /* Whether it is OK to emit CFI directives when emitting asm code. */ bool ix86_emit_cfi () { return dwarf2out_do_cfi_asm (); } #define LEA_MAX_STALL (3) #define LEA_SEARCH_THRESHOLD (LEA_MAX_STALL << 1) /* Increase given DISTANCE in half-cycles according to dependencies between PREV and NEXT instructions. Add 1 half-cycle if there is no dependency and go to next cycle if there is some dependecy. */ static unsigned int increase_distance (rtx prev, rtx next, unsigned int distance) { df_ref *use_rec; df_ref *def_rec; if (!prev || !next) return distance + (distance & 1) + 2; if (!DF_INSN_USES (next) || !DF_INSN_DEFS (prev)) return distance + 1; for (use_rec = DF_INSN_USES (next); *use_rec; use_rec++) for (def_rec = DF_INSN_DEFS (prev); *def_rec; def_rec++) if (!DF_REF_IS_ARTIFICIAL (*def_rec) && DF_REF_REGNO (*use_rec) == DF_REF_REGNO (*def_rec)) return distance + (distance & 1) + 2; return distance + 1; } /* Function checks if instruction INSN defines register number REGNO1 or REGNO2. */ static bool insn_defines_reg (unsigned int regno1, unsigned int regno2, rtx insn) { df_ref *def_rec; for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++) if (DF_REF_REG_DEF_P (*def_rec) && !DF_REF_IS_ARTIFICIAL (*def_rec) && (regno1 == DF_REF_REGNO (*def_rec) || regno2 == DF_REF_REGNO (*def_rec))) { return true; } return false; } /* Function checks if instruction INSN uses register number REGNO as a part of address expression. */ static bool insn_uses_reg_mem (unsigned int regno, rtx insn) { df_ref *use_rec; for (use_rec = DF_INSN_USES (insn); *use_rec; use_rec++) if (DF_REF_REG_MEM_P (*use_rec) && regno == DF_REF_REGNO (*use_rec)) return true; return false; } /* Search backward for non-agu definition of register number REGNO1 or register number REGNO2 in basic block starting from instruction START up to head of basic block or instruction INSN. Function puts true value into *FOUND var if definition was found and false otherwise. Distance in half-cycles between START and found instruction or head of BB is added to DISTANCE and returned. */ static int distance_non_agu_define_in_bb (unsigned int regno1, unsigned int regno2, rtx insn, int distance, rtx start, bool *found) { basic_block bb = start ? BLOCK_FOR_INSN (start) : NULL; rtx prev = start; rtx next = NULL; *found = false; while (prev && prev != insn && distance < LEA_SEARCH_THRESHOLD) { if (NONDEBUG_INSN_P (prev) && NONJUMP_INSN_P (prev)) { distance = increase_distance (prev, next, distance); if (insn_defines_reg (regno1, regno2, prev)) { if (recog_memoized (prev) < 0 || get_attr_type (prev) != TYPE_LEA) { *found = true; return distance; } } next = prev; } if (prev == BB_HEAD (bb)) break; prev = PREV_INSN (prev); } return distance; } /* Search backward for non-agu definition of register number REGNO1 or register number REGNO2 in INSN's basic block until 1. Pass LEA_SEARCH_THRESHOLD instructions, or 2. Reach neighbour BBs boundary, or 3. Reach agu definition. Returns the distance between the non-agu definition point and INSN. If no definition point, returns -1. */ static int distance_non_agu_define (unsigned int regno1, unsigned int regno2, rtx insn) { basic_block bb = BLOCK_FOR_INSN (insn); int distance = 0; bool found = false; if (insn != BB_HEAD (bb)) distance = distance_non_agu_define_in_bb (regno1, regno2, insn, distance, PREV_INSN (insn), &found); if (!found && distance < LEA_SEARCH_THRESHOLD) { edge e; edge_iterator ei; bool simple_loop = false; FOR_EACH_EDGE (e, ei, bb->preds) if (e->src == bb) { simple_loop = true; break; } if (simple_loop) distance = distance_non_agu_define_in_bb (regno1, regno2, insn, distance, BB_END (bb), &found); else { int shortest_dist = -1; bool found_in_bb = false; FOR_EACH_EDGE (e, ei, bb->preds) { int bb_dist = distance_non_agu_define_in_bb (regno1, regno2, insn, distance, BB_END (e->src), &found_in_bb); if (found_in_bb) { if (shortest_dist < 0) shortest_dist = bb_dist; else if (bb_dist > 0) shortest_dist = MIN (bb_dist, shortest_dist); found = true; } } distance = shortest_dist; } } /* get_attr_type may modify recog data. We want to make sure that recog data is valid for instruction INSN, on which distance_non_agu_define is called. INSN is unchanged here. */ extract_insn_cached (insn); if (!found) return -1; return distance >> 1; } /* Return the distance in half-cycles between INSN and the next insn that uses register number REGNO in memory address added to DISTANCE. Return -1 if REGNO0 is set. Put true value into *FOUND if register usage was found and false otherwise. Put true value into *REDEFINED if register redefinition was found and false otherwise. */ static int distance_agu_use_in_bb (unsigned int regno, rtx insn, int distance, rtx start, bool *found, bool *redefined) { basic_block bb = NULL; rtx next = start; rtx prev = NULL; *found = false; *redefined = false; if (start != NULL_RTX) { bb = BLOCK_FOR_INSN (start); if (start != BB_HEAD (bb)) /* If insn and start belong to the same bb, set prev to insn, so the call to increase_distance will increase the distance between insns by 1. */ prev = insn; } while (next && next != insn && distance < LEA_SEARCH_THRESHOLD) { if (NONDEBUG_INSN_P (next) && NONJUMP_INSN_P (next)) { distance = increase_distance(prev, next, distance); if (insn_uses_reg_mem (regno, next)) { /* Return DISTANCE if OP0 is used in memory address in NEXT. */ *found = true; return distance; } if (insn_defines_reg (regno, INVALID_REGNUM, next)) { /* Return -1 if OP0 is set in NEXT. */ *redefined = true; return -1; } prev = next; } if (next == BB_END (bb)) break; next = NEXT_INSN (next); } return distance; } /* Return the distance between INSN and the next insn that uses register number REGNO0 in memory address. Return -1 if no such a use is found within LEA_SEARCH_THRESHOLD or REGNO0 is set. */ static int distance_agu_use (unsigned int regno0, rtx insn) { basic_block bb = BLOCK_FOR_INSN (insn); int distance = 0; bool found = false; bool redefined = false; if (insn != BB_END (bb)) distance = distance_agu_use_in_bb (regno0, insn, distance, NEXT_INSN (insn), &found, &redefined); if (!found && !redefined && distance < LEA_SEARCH_THRESHOLD) { edge e; edge_iterator ei; bool simple_loop = false; FOR_EACH_EDGE (e, ei, bb->succs) if (e->dest == bb) { simple_loop = true; break; } if (simple_loop) distance = distance_agu_use_in_bb (regno0, insn, distance, BB_HEAD (bb), &found, &redefined); else { int shortest_dist = -1; bool found_in_bb = false; bool redefined_in_bb = false; FOR_EACH_EDGE (e, ei, bb->succs) { int bb_dist = distance_agu_use_in_bb (regno0, insn, distance, BB_HEAD (e->dest), &found_in_bb, &redefined_in_bb); if (found_in_bb) { if (shortest_dist < 0) shortest_dist = bb_dist; else if (bb_dist > 0) shortest_dist = MIN (bb_dist, shortest_dist); found = true; } } distance = shortest_dist; } } if (!found || redefined) return -1; return distance >> 1; } /* Define this macro to tune LEA priority vs ADD, it take effect when there is a dilemma of choicing LEA or ADD Negative value: ADD is more preferred than LEA Zero: Netrual Positive value: LEA is more preferred than ADD*/ #define IX86_LEA_PRIORITY 0 /* Return true if usage of lea INSN has performance advantage over a sequence of instructions. Instructions sequence has SPLIT_COST cycles higher latency than lea latency. */ static bool ix86_lea_outperforms (rtx insn, unsigned int regno0, unsigned int regno1, unsigned int regno2, int split_cost, bool has_scale) { int dist_define, dist_use; /* For Silvermont if using a 2-source or 3-source LEA for non-destructive destination purposes, or due to wanting ability to use SCALE, the use of LEA is justified. */ if (ix86_tune == PROCESSOR_SLM) { if (has_scale) return true; if (split_cost < 1) return false; if (regno0 == regno1 || regno0 == regno2) return false; return true; } dist_define = distance_non_agu_define (regno1, regno2, insn); dist_use = distance_agu_use (regno0, insn); if (dist_define < 0 || dist_define >= LEA_MAX_STALL) { /* If there is no non AGU operand definition, no AGU operand usage and split cost is 0 then both lea and non lea variants have same priority. Currently we prefer lea for 64 bit code and non lea on 32 bit code. */ if (dist_use < 0 && split_cost == 0) return TARGET_64BIT || IX86_LEA_PRIORITY; else return true; } /* With longer definitions distance lea is more preferable. Here we change it to take into account splitting cost and lea priority. */ dist_define += split_cost + IX86_LEA_PRIORITY; /* If there is no use in memory addess then we just check that split cost exceeds AGU stall. */ if (dist_use < 0) return dist_define > LEA_MAX_STALL; /* If this insn has both backward non-agu dependence and forward agu dependence, the one with short distance takes effect. */ return dist_define >= dist_use; } /* Return true if it is legal to clobber flags by INSN and false otherwise. */ static bool ix86_ok_to_clobber_flags (rtx insn) { basic_block bb = BLOCK_FOR_INSN (insn); df_ref *use; bitmap live; while (insn) { if (NONDEBUG_INSN_P (insn)) { for (use = DF_INSN_USES (insn); *use; use++) if (DF_REF_REG_USE_P (*use) && DF_REF_REGNO (*use) == FLAGS_REG) return false; if (insn_defines_reg (FLAGS_REG, INVALID_REGNUM, insn)) return true; } if (insn == BB_END (bb)) break; insn = NEXT_INSN (insn); } live = df_get_live_out(bb); return !REGNO_REG_SET_P (live, FLAGS_REG); } /* Return true if we need to split op0 = op1 + op2 into a sequence of move and add to avoid AGU stalls. */ bool ix86_avoid_lea_for_add (rtx insn, rtx operands[]) { unsigned int regno0, regno1, regno2; /* Check if we need to optimize. */ if (!TARGET_OPT_AGU || optimize_function_for_size_p (cfun)) return false; /* Check it is correct to split here. */ if (!ix86_ok_to_clobber_flags(insn)) return false; regno0 = true_regnum (operands[0]); regno1 = true_regnum (operands[1]); regno2 = true_regnum (operands[2]); /* We need to split only adds with non destructive destination operand. */ if (regno0 == regno1 || regno0 == regno2) return false; else return !ix86_lea_outperforms (insn, regno0, regno1, regno2, 1, false); } /* Return true if we should emit lea instruction instead of mov instruction. */ bool ix86_use_lea_for_mov (rtx insn, rtx operands[]) { unsigned int regno0, regno1; /* Check if we need to optimize. */ if (!TARGET_OPT_AGU || optimize_function_for_size_p (cfun)) return false; /* Use lea for reg to reg moves only. */ if (!REG_P (operands[0]) || !REG_P (operands[1])) return false; regno0 = true_regnum (operands[0]); regno1 = true_regnum (operands[1]); return ix86_lea_outperforms (insn, regno0, regno1, INVALID_REGNUM, 0, false); } /* Return true if we need to split lea into a sequence of instructions to avoid AGU stalls. */ bool ix86_avoid_lea_for_addr (rtx insn, rtx operands[]) { unsigned int regno0, regno1, regno2; int split_cost; struct ix86_address parts; int ok; /* Check we need to optimize. */ if (!TARGET_OPT_AGU || optimize_function_for_size_p (cfun)) return false; /* Check it is correct to split here. */ if (!ix86_ok_to_clobber_flags(insn)) return false; ok = ix86_decompose_address (operands[1], &parts); gcc_assert (ok); /* There should be at least two components in the address. */ if ((parts.base != NULL_RTX) + (parts.index != NULL_RTX) + (parts.disp != NULL_RTX) + (parts.scale > 1) < 2) return false; /* We should not split into add if non legitimate pic operand is used as displacement. */ if (parts.disp && flag_pic && !LEGITIMATE_PIC_OPERAND_P (parts.disp)) return false; regno0 = true_regnum (operands[0]) ; regno1 = INVALID_REGNUM; regno2 = INVALID_REGNUM; if (parts.base) regno1 = true_regnum (parts.base); if (parts.index) regno2 = true_regnum (parts.index); split_cost = 0; /* Compute how many cycles we will add to execution time if split lea into a sequence of instructions. */ if (parts.base || parts.index) { /* Have to use mov instruction if non desctructive destination form is used. */ if (regno1 != regno0 && regno2 != regno0) split_cost += 1; /* Have to add index to base if both exist. */ if (parts.base && parts.index) split_cost += 1; /* Have to use shift and adds if scale is 2 or greater. */ if (parts.scale > 1) { if (regno0 != regno1) split_cost += 1; else if (regno2 == regno0) split_cost += 4; else split_cost += parts.scale; } /* Have to use add instruction with immediate if disp is non zero. */ if (parts.disp && parts.disp != const0_rtx) split_cost += 1; /* Subtract the price of lea. */ split_cost -= 1; } return !ix86_lea_outperforms (insn, regno0, regno1, regno2, split_cost, parts.scale > 1); } /* Emit x86 binary operand CODE in mode MODE, where the first operand matches destination. RTX includes clobber of FLAGS_REG. */ static void ix86_emit_binop (enum rtx_code code, enum machine_mode mode, rtx dst, rtx src) { rtx op, clob; op = gen_rtx_SET (VOIDmode, dst, gen_rtx_fmt_ee (code, mode, dst, src)); clob = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (CCmode, FLAGS_REG)); emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, op, clob))); } /* Return true if regno1 def is nearest to the insn. */ static bool find_nearest_reg_def (rtx insn, int regno1, int regno2) { rtx prev = insn; rtx start = BB_HEAD (BLOCK_FOR_INSN (insn)); if (insn == start) return false; while (prev && prev != start) { if (!INSN_P (prev) || !NONDEBUG_INSN_P (prev)) { prev = PREV_INSN (prev); continue; } if (insn_defines_reg (regno1, INVALID_REGNUM, prev)) return true; else if (insn_defines_reg (regno2, INVALID_REGNUM, prev)) return false; prev = PREV_INSN (prev); } /* None of the regs is defined in the bb. */ return false; } /* Split lea instructions into a sequence of instructions which are executed on ALU to avoid AGU stalls. It is assumed that it is allowed to clobber flags register at lea position. */ void ix86_split_lea_for_addr (rtx insn, rtx operands[], enum machine_mode mode) { unsigned int regno0, regno1, regno2; struct ix86_address parts; rtx target, tmp; int ok, adds; ok = ix86_decompose_address (operands[1], &parts); gcc_assert (ok); target = gen_lowpart (mode, operands[0]); regno0 = true_regnum (target); regno1 = INVALID_REGNUM; regno2 = INVALID_REGNUM; if (parts.base) { parts.base = gen_lowpart (mode, parts.base); regno1 = true_regnum (parts.base); } if (parts.index) { parts.index = gen_lowpart (mode, parts.index); regno2 = true_regnum (parts.index); } if (parts.disp) parts.disp = gen_lowpart (mode, parts.disp); if (parts.scale > 1) { /* Case r1 = r1 + ... */ if (regno1 == regno0) { /* If we have a case r1 = r1 + C * r1 then we should use multiplication which is very expensive. Assume cost model is wrong if we have such case here. */ gcc_assert (regno2 != regno0); for (adds = parts.scale; adds > 0; adds--) ix86_emit_binop (PLUS, mode, target, parts.index); } else { /* r1 = r2 + r3 * C case. Need to move r3 into r1. */ if (regno0 != regno2) emit_insn (gen_rtx_SET (VOIDmode, target, parts.index)); /* Use shift for scaling. */ ix86_emit_binop (ASHIFT, mode, target, GEN_INT (exact_log2 (parts.scale))); if (parts.base) ix86_emit_binop (PLUS, mode, target, parts.base); if (parts.disp && parts.disp != const0_rtx) ix86_emit_binop (PLUS, mode, target, parts.disp); } } else if (!parts.base && !parts.index) { gcc_assert(parts.disp); emit_insn (gen_rtx_SET (VOIDmode, target, parts.disp)); } else { if (!parts.base) { if (regno0 != regno2) emit_insn (gen_rtx_SET (VOIDmode, target, parts.index)); } else if (!parts.index) { if (regno0 != regno1) emit_insn (gen_rtx_SET (VOIDmode, target, parts.base)); } else { if (regno0 == regno1) tmp = parts.index; else if (regno0 == regno2) tmp = parts.base; else { rtx tmp1; /* Find better operand for SET instruction, depending on which definition is farther from the insn. */ if (find_nearest_reg_def (insn, regno1, regno2)) tmp = parts.index, tmp1 = parts.base; else tmp = parts.base, tmp1 = parts.index; emit_insn (gen_rtx_SET (VOIDmode, target, tmp)); if (parts.disp && parts.disp != const0_rtx) ix86_emit_binop (PLUS, mode, target, parts.disp); ix86_emit_binop (PLUS, mode, target, tmp1); return; } ix86_emit_binop (PLUS, mode, target, tmp); } if (parts.disp && parts.disp != const0_rtx) ix86_emit_binop (PLUS, mode, target, parts.disp); } } /* Return true if it is ok to optimize an ADD operation to LEA operation to avoid flag register consumation. For most processors, ADD is faster than LEA. For the processors like ATOM, if the destination register of LEA holds an actual address which will be used soon, LEA is better and otherwise ADD is better. */ bool ix86_lea_for_add_ok (rtx insn, rtx operands[]) { unsigned int regno0 = true_regnum (operands[0]); unsigned int regno1 = true_regnum (operands[1]); unsigned int regno2 = true_regnum (operands[2]); /* If a = b + c, (a!=b && a!=c), must use lea form. */ if (regno0 != regno1 && regno0 != regno2) return true; if (!TARGET_OPT_AGU || optimize_function_for_size_p (cfun)) return false; return ix86_lea_outperforms (insn, regno0, regno1, regno2, 0, false); } /* Return true if destination reg of SET_BODY is shift count of USE_BODY. */ static bool ix86_dep_by_shift_count_body (const_rtx set_body, const_rtx use_body) { rtx set_dest; rtx shift_rtx; int i; /* Retrieve destination of SET_BODY. */ switch (GET_CODE (set_body)) { case SET: set_dest = SET_DEST (set_body); if (!set_dest || !REG_P (set_dest)) return false; break; case PARALLEL: for (i = XVECLEN (set_body, 0) - 1; i >= 0; i--) if (ix86_dep_by_shift_count_body (XVECEXP (set_body, 0, i), use_body)) return true; default: return false; break; } /* Retrieve shift count of USE_BODY. */ switch (GET_CODE (use_body)) { case SET: shift_rtx = XEXP (use_body, 1); break; case PARALLEL: for (i = XVECLEN (use_body, 0) - 1; i >= 0; i--) if (ix86_dep_by_shift_count_body (set_body, XVECEXP (use_body, 0, i))) return true; default: return false; break; } if (shift_rtx && (GET_CODE (shift_rtx) == ASHIFT || GET_CODE (shift_rtx) == LSHIFTRT || GET_CODE (shift_rtx) == ASHIFTRT || GET_CODE (shift_rtx) == ROTATE || GET_CODE (shift_rtx) == ROTATERT)) { rtx shift_count = XEXP (shift_rtx, 1); /* Return true if shift count is dest of SET_BODY. */ if (REG_P (shift_count)) { /* Add check since it can be invoked before register allocation in pre-reload schedule. */ if (reload_completed && true_regnum (set_dest) == true_regnum (shift_count)) return true; else if (REGNO(set_dest) == REGNO(shift_count)) return true; } } return false; } /* Return true if destination reg of SET_INSN is shift count of USE_INSN. */ bool ix86_dep_by_shift_count (const_rtx set_insn, const_rtx use_insn) { return ix86_dep_by_shift_count_body (PATTERN (set_insn), PATTERN (use_insn)); } /* Return TRUE or FALSE depending on whether the unary operator meets the appropriate constraints. */ bool ix86_unary_operator_ok (enum rtx_code code ATTRIBUTE_UNUSED, enum machine_mode mode ATTRIBUTE_UNUSED, rtx operands[2]) { /* If one of operands is memory, source and destination must match. */ if ((MEM_P (operands[0]) || MEM_P (operands[1])) && ! rtx_equal_p (operands[0], operands[1])) return false; return true; } /* Return TRUE if the operands to a vec_interleave_{high,low}v2df are ok, keeping in mind the possible movddup alternative. */ bool ix86_vec_interleave_v2df_operator_ok (rtx operands[3], bool high) { if (MEM_P (operands[0])) return rtx_equal_p (operands[0], operands[1 + high]); if (MEM_P (operands[1]) && MEM_P (operands[2])) return TARGET_SSE3 && rtx_equal_p (operands[1], operands[2]); return true; } /* Post-reload splitter for converting an SF or DFmode value in an SSE register into an unsigned SImode. */ void ix86_split_convert_uns_si_sse (rtx operands[]) { enum machine_mode vecmode; rtx value, large, zero_or_two31, input, two31, x; large = operands[1]; zero_or_two31 = operands[2]; input = operands[3]; two31 = operands[4]; vecmode = GET_MODE (large); value = gen_rtx_REG (vecmode, REGNO (operands[0])); /* Load up the value into the low element. We must ensure that the other elements are valid floats -- zero is the easiest such value. */ if (MEM_P (input)) { if (vecmode == V4SFmode) emit_insn (gen_vec_setv4sf_0 (value, CONST0_RTX (V4SFmode), input)); else emit_insn (gen_sse2_loadlpd (value, CONST0_RTX (V2DFmode), input)); } else { input = gen_rtx_REG (vecmode, REGNO (input)); emit_move_insn (value, CONST0_RTX (vecmode)); if (vecmode == V4SFmode) emit_insn (gen_sse_movss (value, value, input)); else emit_insn (gen_sse2_movsd (value, value, input)); } emit_move_insn (large, two31); emit_move_insn (zero_or_two31, MEM_P (two31) ? large : two31); x = gen_rtx_fmt_ee (LE, vecmode, large, value); emit_insn (gen_rtx_SET (VOIDmode, large, x)); x = gen_rtx_AND (vecmode, zero_or_two31, large); emit_insn (gen_rtx_SET (VOIDmode, zero_or_two31, x)); x = gen_rtx_MINUS (vecmode, value, zero_or_two31); emit_insn (gen_rtx_SET (VOIDmode, value, x)); large = gen_rtx_REG (V4SImode, REGNO (large)); emit_insn (gen_ashlv4si3 (large, large, GEN_INT (31))); x = gen_rtx_REG (V4SImode, REGNO (value)); if (vecmode == V4SFmode) emit_insn (gen_fix_truncv4sfv4si2 (x, value)); else emit_insn (gen_sse2_cvttpd2dq (x, value)); value = x; emit_insn (gen_xorv4si3 (value, value, large)); } /* Convert an unsigned DImode value into a DFmode, using only SSE. Expects the 64-bit DImode to be supplied in a pair of integral registers. Requires SSE2; will use SSE3 if available. For x86_32, -mfpmath=sse, !optimize_size only. */ void ix86_expand_convert_uns_didf_sse (rtx target, rtx input) { REAL_VALUE_TYPE bias_lo_rvt, bias_hi_rvt; rtx int_xmm, fp_xmm; rtx biases, exponents; rtx x; int_xmm = gen_reg_rtx (V4SImode); if (TARGET_INTER_UNIT_MOVES_TO_VEC) emit_insn (gen_movdi_to_sse (int_xmm, input)); else if (TARGET_SSE_SPLIT_REGS) { emit_clobber (int_xmm); emit_move_insn (gen_lowpart (DImode, int_xmm), input); } else { x = gen_reg_rtx (V2DImode); ix86_expand_vector_init_one_nonzero (false, V2DImode, x, input, 0); emit_move_insn (int_xmm, gen_lowpart (V4SImode, x)); } x = gen_rtx_CONST_VECTOR (V4SImode, gen_rtvec (4, GEN_INT (0x43300000UL), GEN_INT (0x45300000UL), const0_rtx, const0_rtx)); exponents = validize_mem (force_const_mem (V4SImode, x)); /* int_xmm = {0x45300000UL, fp_xmm/hi, 0x43300000, fp_xmm/lo } */ emit_insn (gen_vec_interleave_lowv4si (int_xmm, int_xmm, exponents)); /* Concatenating (juxtaposing) (0x43300000UL ## fp_value_low_xmm) yields a valid DF value equal to (0x1.0p52 + double(fp_value_lo_xmm)). Similarly (0x45300000UL ## fp_value_hi_xmm) yields (0x1.0p84 + double(fp_value_hi_xmm)). Note these exponents differ by 32. */ fp_xmm = copy_to_mode_reg (V2DFmode, gen_lowpart (V2DFmode, int_xmm)); /* Subtract off those 0x1.0p52 and 0x1.0p84 biases, to produce values in [0,2**32-1] and [0]+[2**32,2**64-1] respectively. */ real_ldexp (&bias_lo_rvt, &dconst1, 52); real_ldexp (&bias_hi_rvt, &dconst1, 84); biases = const_double_from_real_value (bias_lo_rvt, DFmode); x = const_double_from_real_value (bias_hi_rvt, DFmode); biases = gen_rtx_CONST_VECTOR (V2DFmode, gen_rtvec (2, biases, x)); biases = validize_mem (force_const_mem (V2DFmode, biases)); emit_insn (gen_subv2df3 (fp_xmm, fp_xmm, biases)); /* Add the upper and lower DFmode values together. */ if (TARGET_SSE3) emit_insn (gen_sse3_haddv2df3 (fp_xmm, fp_xmm, fp_xmm)); else { x = copy_to_mode_reg (V2DFmode, fp_xmm); emit_insn (gen_vec_interleave_highv2df (fp_xmm, fp_xmm, fp_xmm)); emit_insn (gen_addv2df3 (fp_xmm, fp_xmm, x)); } ix86_expand_vector_extract (false, target, fp_xmm, 0); } /* Not used, but eases macroization of patterns. */ void ix86_expand_convert_uns_sixf_sse (rtx target ATTRIBUTE_UNUSED, rtx input ATTRIBUTE_UNUSED) { gcc_unreachable (); } /* Convert an unsigned SImode value into a DFmode. Only currently used for SSE, but applicable anywhere. */ void ix86_expand_convert_uns_sidf_sse (rtx target, rtx input) { REAL_VALUE_TYPE TWO31r; rtx x, fp; x = expand_simple_binop (SImode, PLUS, input, GEN_INT (-2147483647 - 1), NULL, 1, OPTAB_DIRECT); fp = gen_reg_rtx (DFmode); emit_insn (gen_floatsidf2 (fp, x)); real_ldexp (&TWO31r, &dconst1, 31); x = const_double_from_real_value (TWO31r, DFmode); x = expand_simple_binop (DFmode, PLUS, fp, x, target, 0, OPTAB_DIRECT); if (x != target) emit_move_insn (target, x); } /* Convert a signed DImode value into a DFmode. Only used for SSE in 32-bit mode; otherwise we have a direct convert instruction. */ void ix86_expand_convert_sign_didf_sse (rtx target, rtx input) { REAL_VALUE_TYPE TWO32r; rtx fp_lo, fp_hi, x; fp_lo = gen_reg_rtx (DFmode); fp_hi = gen_reg_rtx (DFmode); emit_insn (gen_floatsidf2 (fp_hi, gen_highpart (SImode, input))); real_ldexp (&TWO32r, &dconst1, 32); x = const_double_from_real_value (TWO32r, DFmode); fp_hi = expand_simple_binop (DFmode, MULT, fp_hi, x, fp_hi, 0, OPTAB_DIRECT); ix86_expand_convert_uns_sidf_sse (fp_lo, gen_lowpart (SImode, input)); x = expand_simple_binop (DFmode, PLUS, fp_hi, fp_lo, target, 0, OPTAB_DIRECT); if (x != target) emit_move_insn (target, x); } /* Convert an unsigned SImode value into a SFmode, using only SSE. For x86_32, -mfpmath=sse, !optimize_size only. */ void ix86_expand_convert_uns_sisf_sse (rtx target, rtx input) { REAL_VALUE_TYPE ONE16r; rtx fp_hi, fp_lo, int_hi, int_lo, x; real_ldexp (&ONE16r, &dconst1, 16); x = const_double_from_real_value (ONE16r, SFmode); int_lo = expand_simple_binop (SImode, AND, input, GEN_INT(0xffff), NULL, 0, OPTAB_DIRECT); int_hi = expand_simple_binop (SImode, LSHIFTRT, input, GEN_INT(16), NULL, 0, OPTAB_DIRECT); fp_hi = gen_reg_rtx (SFmode); fp_lo = gen_reg_rtx (SFmode); emit_insn (gen_floatsisf2 (fp_hi, int_hi)); emit_insn (gen_floatsisf2 (fp_lo, int_lo)); fp_hi = expand_simple_binop (SFmode, MULT, fp_hi, x, fp_hi, 0, OPTAB_DIRECT); fp_hi = expand_simple_binop (SFmode, PLUS, fp_hi, fp_lo, target, 0, OPTAB_DIRECT); if (!rtx_equal_p (target, fp_hi)) emit_move_insn (target, fp_hi); } /* floatunsv{4,8}siv{4,8}sf2 expander. Expand code to convert a vector of unsigned ints VAL to vector of floats TARGET. */ void ix86_expand_vector_convert_uns_vsivsf (rtx target, rtx val) { rtx tmp[8]; REAL_VALUE_TYPE TWO16r; enum machine_mode intmode = GET_MODE (val); enum machine_mode fltmode = GET_MODE (target); rtx (*cvt) (rtx, rtx); if (intmode == V4SImode) cvt = gen_floatv4siv4sf2; else cvt = gen_floatv8siv8sf2; tmp[0] = ix86_build_const_vector (intmode, 1, GEN_INT (0xffff)); tmp[0] = force_reg (intmode, tmp[0]); tmp[1] = expand_simple_binop (intmode, AND, val, tmp[0], NULL_RTX, 1, OPTAB_DIRECT); tmp[2] = expand_simple_binop (intmode, LSHIFTRT, val, GEN_INT (16), NULL_RTX, 1, OPTAB_DIRECT); tmp[3] = gen_reg_rtx (fltmode); emit_insn (cvt (tmp[3], tmp[1])); tmp[4] = gen_reg_rtx (fltmode); emit_insn (cvt (tmp[4], tmp[2])); real_ldexp (&TWO16r, &dconst1, 16); tmp[5] = const_double_from_real_value (TWO16r, SFmode); tmp[5] = force_reg (fltmode, ix86_build_const_vector (fltmode, 1, tmp[5])); tmp[6] = expand_simple_binop (fltmode, MULT, tmp[4], tmp[5], NULL_RTX, 1, OPTAB_DIRECT); tmp[7] = expand_simple_binop (fltmode, PLUS, tmp[3], tmp[6], target, 1, OPTAB_DIRECT); if (tmp[7] != target) emit_move_insn (target, tmp[7]); } /* Adjust a V*SFmode/V*DFmode value VAL so that *sfix_trunc* resp. fix_trunc* pattern can be used on it instead of *ufix_trunc* resp. fixuns_trunc*. This is done by doing just signed conversion if < 0x1p31, and otherwise by subtracting 0x1p31 first and xoring in 0x80000000 from *XORP afterwards. */ rtx ix86_expand_adjust_ufix_to_sfix_si (rtx val, rtx *xorp) { REAL_VALUE_TYPE TWO31r; rtx two31r, tmp[4]; enum machine_mode mode = GET_MODE (val); enum machine_mode scalarmode = GET_MODE_INNER (mode); enum machine_mode intmode = GET_MODE_SIZE (mode) == 32 ? V8SImode : V4SImode; rtx (*cmp) (rtx, rtx, rtx, rtx); int i; for (i = 0; i < 3; i++) tmp[i] = gen_reg_rtx (mode); real_ldexp (&TWO31r, &dconst1, 31); two31r = const_double_from_real_value (TWO31r, scalarmode); two31r = ix86_build_const_vector (mode, 1, two31r); two31r = force_reg (mode, two31r); switch (mode) { case V8SFmode: cmp = gen_avx_maskcmpv8sf3; break; case V4SFmode: cmp = gen_sse_maskcmpv4sf3; break; case V4DFmode: cmp = gen_avx_maskcmpv4df3; break; case V2DFmode: cmp = gen_sse2_maskcmpv2df3; break; default: gcc_unreachable (); } tmp[3] = gen_rtx_LE (mode, two31r, val); emit_insn (cmp (tmp[0], two31r, val, tmp[3])); tmp[1] = expand_simple_binop (mode, AND, tmp[0], two31r, tmp[1], 0, OPTAB_DIRECT); if (intmode == V4SImode || TARGET_AVX2) *xorp = expand_simple_binop (intmode, ASHIFT, gen_lowpart (intmode, tmp[0]), GEN_INT (31), NULL_RTX, 0, OPTAB_DIRECT); else { rtx two31 = GEN_INT ((unsigned HOST_WIDE_INT) 1 << 31); two31 = ix86_build_const_vector (intmode, 1, two31); *xorp = expand_simple_binop (intmode, AND, gen_lowpart (intmode, tmp[0]), two31, NULL_RTX, 0, OPTAB_DIRECT); } return expand_simple_binop (mode, MINUS, val, tmp[1], tmp[2], 0, OPTAB_DIRECT); } /* A subroutine of ix86_build_signbit_mask. If VECT is true, then replicate the value for all elements of the vector register. */ rtx ix86_build_const_vector (enum machine_mode mode, bool vect, rtx value) { int i, n_elt; rtvec v; enum machine_mode scalar_mode; switch (mode) { case V32QImode: case V16QImode: case V16HImode: case V8HImode: case V8SImode: case V4SImode: case V4DImode: case V2DImode: gcc_assert (vect); case V8SFmode: case V4SFmode: case V4DFmode: case V2DFmode: n_elt = GET_MODE_NUNITS (mode); v = rtvec_alloc (n_elt); scalar_mode = GET_MODE_INNER (mode); RTVEC_ELT (v, 0) = value; for (i = 1; i < n_elt; ++i) RTVEC_ELT (v, i) = vect ? value : CONST0_RTX (scalar_mode); return gen_rtx_CONST_VECTOR (mode, v); default: gcc_unreachable (); } } /* A subroutine of ix86_expand_fp_absneg_operator, copysign expanders and ix86_expand_int_vcond. Create a mask for the sign bit in MODE for an SSE register. If VECT is true, then replicate the mask for all elements of the vector register. If INVERT is true, then create a mask excluding the sign bit. */ rtx ix86_build_signbit_mask (enum machine_mode mode, bool vect, bool invert) { enum machine_mode vec_mode, imode; HOST_WIDE_INT hi, lo; int shift = 63; rtx v; rtx mask; /* Find the sign bit, sign extended to 2*HWI. */ switch (mode) { case V8SImode: case V4SImode: case V8SFmode: case V4SFmode: vec_mode = mode; mode = GET_MODE_INNER (mode); imode = SImode; lo = 0x80000000, hi = lo < 0; break; case V4DImode: case V2DImode: case V4DFmode: case V2DFmode: vec_mode = mode; mode = GET_MODE_INNER (mode); imode = DImode; if (HOST_BITS_PER_WIDE_INT >= 64) lo = (HOST_WIDE_INT)1 << shift, hi = -1; else lo = 0, hi = (HOST_WIDE_INT)1 << (shift - HOST_BITS_PER_WIDE_INT); break; case TImode: case TFmode: vec_mode = VOIDmode; if (HOST_BITS_PER_WIDE_INT >= 64) { imode = TImode; lo = 0, hi = (HOST_WIDE_INT)1 << shift; } else { rtvec vec; imode = DImode; lo = 0, hi = (HOST_WIDE_INT)1 << (shift - HOST_BITS_PER_WIDE_INT); if (invert) { lo = ~lo, hi = ~hi; v = constm1_rtx; } else v = const0_rtx; mask = immed_double_const (lo, hi, imode); vec = gen_rtvec (2, v, mask); v = gen_rtx_CONST_VECTOR (V2DImode, vec); v = copy_to_mode_reg (mode, gen_lowpart (mode, v)); return v; } break; default: gcc_unreachable (); } if (invert) lo = ~lo, hi = ~hi; /* Force this value into the low part of a fp vector constant. */ mask = immed_double_const (lo, hi, imode); mask = gen_lowpart (mode, mask); if (vec_mode == VOIDmode) return force_reg (mode, mask); v = ix86_build_const_vector (vec_mode, vect, mask); return force_reg (vec_mode, v); } /* Generate code for floating point ABS or NEG. */ void ix86_expand_fp_absneg_operator (enum rtx_code code, enum machine_mode mode, rtx operands[]) { rtx mask, set, dst, src; bool use_sse = false; bool vector_mode = VECTOR_MODE_P (mode); enum machine_mode vmode = mode; if (vector_mode) use_sse = true; else if (mode == TFmode) use_sse = true; else if (TARGET_SSE_MATH) { use_sse = SSE_FLOAT_MODE_P (mode); if (mode == SFmode) vmode = V4SFmode; else if (mode == DFmode) vmode = V2DFmode; } /* NEG and ABS performed with SSE use bitwise mask operations. Create the appropriate mask now. */ if (use_sse) mask = ix86_build_signbit_mask (vmode, vector_mode, code == ABS); else mask = NULL_RTX; dst = operands[0]; src = operands[1]; set = gen_rtx_fmt_e (code, mode, src); set = gen_rtx_SET (VOIDmode, dst, set); if (mask) { rtx use, clob; rtvec par; use = gen_rtx_USE (VOIDmode, mask); if (vector_mode) par = gen_rtvec (2, set, use); else { clob = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (CCmode, FLAGS_REG)); par = gen_rtvec (3, set, use, clob); } emit_insn (gen_rtx_PARALLEL (VOIDmode, par)); } else emit_insn (set); } /* Expand a copysign operation. Special case operand 0 being a constant. */ void ix86_expand_copysign (rtx operands[]) { enum machine_mode mode, vmode; rtx dest, op0, op1, mask, nmask; dest = operands[0]; op0 = operands[1]; op1 = operands[2]; mode = GET_MODE (dest); if (mode == SFmode) vmode = V4SFmode; else if (mode == DFmode) vmode = V2DFmode; else vmode = mode; if (GET_CODE (op0) == CONST_DOUBLE) { rtx (*copysign_insn)(rtx, rtx, rtx, rtx); if (real_isneg (CONST_DOUBLE_REAL_VALUE (op0))) op0 = simplify_unary_operation (ABS, mode, op0, mode); if (mode == SFmode || mode == DFmode) { if (op0 == CONST0_RTX (mode)) op0 = CONST0_RTX (vmode); else { rtx v = ix86_build_const_vector (vmode, false, op0); op0 = force_reg (vmode, v); } } else if (op0 != CONST0_RTX (mode)) op0 = force_reg (mode, op0); mask = ix86_build_signbit_mask (vmode, 0, 0); if (mode == SFmode) copysign_insn = gen_copysignsf3_const; else if (mode == DFmode) copysign_insn = gen_copysigndf3_const; else copysign_insn = gen_copysigntf3_const; emit_insn (copysign_insn (dest, op0, op1, mask)); } else { rtx (*copysign_insn)(rtx, rtx, rtx, rtx, rtx, rtx); nmask = ix86_build_signbit_mask (vmode, 0, 1); mask = ix86_build_signbit_mask (vmode, 0, 0); if (mode == SFmode) copysign_insn = gen_copysignsf3_var; else if (mode == DFmode) copysign_insn = gen_copysigndf3_var; else copysign_insn = gen_copysigntf3_var; emit_insn (copysign_insn (dest, NULL_RTX, op0, op1, nmask, mask)); } } /* Deconstruct a copysign operation into bit masks. Operand 0 is known to be a constant, and so has already been expanded into a vector constant. */ void ix86_split_copysign_const (rtx operands[]) { enum machine_mode mode, vmode; rtx dest, op0, mask, x; dest = operands[0]; op0 = operands[1]; mask = operands[3]; mode = GET_MODE (dest); vmode = GET_MODE (mask); dest = simplify_gen_subreg (vmode, dest, mode, 0); x = gen_rtx_AND (vmode, dest, mask); emit_insn (gen_rtx_SET (VOIDmode, dest, x)); if (op0 != CONST0_RTX (vmode)) { x = gen_rtx_IOR (vmode, dest, op0); emit_insn (gen_rtx_SET (VOIDmode, dest, x)); } } /* Deconstruct a copysign operation into bit masks. Operand 0 is variable, so we have to do two masks. */ void ix86_split_copysign_var (rtx operands[]) { enum machine_mode mode, vmode; rtx dest, scratch, op0, op1, mask, nmask, x; dest = operands[0]; scratch = operands[1]; op0 = operands[2]; op1 = operands[3]; nmask = operands[4]; mask = operands[5]; mode = GET_MODE (dest); vmode = GET_MODE (mask); if (rtx_equal_p (op0, op1)) { /* Shouldn't happen often (it's useless, obviously), but when it does we'd generate incorrect code if we continue below. */ emit_move_insn (dest, op0); return; } if (REG_P (mask) && REGNO (dest) == REGNO (mask)) /* alternative 0 */ { gcc_assert (REGNO (op1) == REGNO (scratch)); x = gen_rtx_AND (vmode, scratch, mask); emit_insn (gen_rtx_SET (VOIDmode, scratch, x)); dest = mask; op0 = simplify_gen_subreg (vmode, op0, mode, 0); x = gen_rtx_NOT (vmode, dest); x = gen_rtx_AND (vmode, x, op0); emit_insn (gen_rtx_SET (VOIDmode, dest, x)); } else { if (REGNO (op1) == REGNO (scratch)) /* alternative 1,3 */ { x = gen_rtx_AND (vmode, scratch, mask); } else /* alternative 2,4 */ { gcc_assert (REGNO (mask) == REGNO (scratch)); op1 = simplify_gen_subreg (vmode, op1, mode, 0); x = gen_rtx_AND (vmode, scratch, op1); } emit_insn (gen_rtx_SET (VOIDmode, scratch, x)); if (REGNO (op0) == REGNO (dest)) /* alternative 1,2 */ { dest = simplify_gen_subreg (vmode, op0, mode, 0); x = gen_rtx_AND (vmode, dest, nmask); } else /* alternative 3,4 */ { gcc_assert (REGNO (nmask) == REGNO (dest)); dest = nmask; op0 = simplify_gen_subreg (vmode, op0, mode, 0); x = gen_rtx_AND (vmode, dest, op0); } emit_insn (gen_rtx_SET (VOIDmode, dest, x)); } x = gen_rtx_IOR (vmode, dest, scratch); emit_insn (gen_rtx_SET (VOIDmode, dest, x)); } /* Return TRUE or FALSE depending on whether the first SET in INSN has source and destination with matching CC modes, and that the CC mode is at least as constrained as REQ_MODE. */ bool ix86_match_ccmode (rtx insn, enum machine_mode req_mode) { rtx set; enum machine_mode set_mode; set = PATTERN (insn); if (GET_CODE (set) == PARALLEL) set = XVECEXP (set, 0, 0); gcc_assert (GET_CODE (set) == SET); gcc_assert (GET_CODE (SET_SRC (set)) == COMPARE); set_mode = GET_MODE (SET_DEST (set)); switch (set_mode) { case CCNOmode: if (req_mode != CCNOmode && (req_mode != CCmode || XEXP (SET_SRC (set), 1) != const0_rtx)) return false; break; case CCmode: if (req_mode == CCGCmode) return false; /* FALLTHRU */ case CCGCmode: if (req_mode == CCGOCmode || req_mode == CCNOmode) return false; /* FALLTHRU */ case CCGOCmode: if (req_mode == CCZmode) return false; /* FALLTHRU */ case CCZmode: break; case CCAmode: case CCCmode: case CCOmode: case CCSmode: if (set_mode != req_mode) return false; break; default: gcc_unreachable (); } return GET_MODE (SET_SRC (set)) == set_mode; } /* Generate insn patterns to do an integer compare of OPERANDS. */ static rtx ix86_expand_int_compare (enum rtx_code code, rtx op0, rtx op1) { enum machine_mode cmpmode; rtx tmp, flags; cmpmode = SELECT_CC_MODE (code, op0, op1); flags = gen_rtx_REG (cmpmode, FLAGS_REG); /* This is very simple, but making the interface the same as in the FP case makes the rest of the code easier. */ tmp = gen_rtx_COMPARE (cmpmode, op0, op1); emit_insn (gen_rtx_SET (VOIDmode, flags, tmp)); /* Return the test that should be put into the flags user, i.e. the bcc, scc, or cmov instruction. */ return gen_rtx_fmt_ee (code, VOIDmode, flags, const0_rtx); } /* Figure out whether to use ordered or unordered fp comparisons. Return the appropriate mode to use. */ enum machine_mode ix86_fp_compare_mode (enum rtx_code code ATTRIBUTE_UNUSED) { /* ??? In order to make all comparisons reversible, we do all comparisons non-trapping when compiling for IEEE. Once gcc is able to distinguish all forms trapping and nontrapping comparisons, we can make inequality comparisons trapping again, since it results in better code when using FCOM based compares. */ return TARGET_IEEE_FP ? CCFPUmode : CCFPmode; } enum machine_mode ix86_cc_mode (enum rtx_code code, rtx op0, rtx op1) { enum machine_mode mode = GET_MODE (op0); if (SCALAR_FLOAT_MODE_P (mode)) { gcc_assert (!DECIMAL_FLOAT_MODE_P (mode)); return ix86_fp_compare_mode (code); } switch (code) { /* Only zero flag is needed. */ case EQ: /* ZF=0 */ case NE: /* ZF!=0 */ return CCZmode; /* Codes needing carry flag. */ case GEU: /* CF=0 */ case LTU: /* CF=1 */ /* Detect overflow checks. They need just the carry flag. */ if (GET_CODE (op0) == PLUS && rtx_equal_p (op1, XEXP (op0, 0))) return CCCmode; else return CCmode; case GTU: /* CF=0 & ZF=0 */ case LEU: /* CF=1 | ZF=1 */ return CCmode; /* Codes possibly doable only with sign flag when comparing against zero. */ case GE: /* SF=OF or SF=0 */ case LT: /* SF<>OF or SF=1 */ if (op1 == const0_rtx) return CCGOCmode; else /* For other cases Carry flag is not required. */ return CCGCmode; /* Codes doable only with sign flag when comparing against zero, but we miss jump instruction for it so we need to use relational tests against overflow that thus needs to be zero. */ case GT: /* ZF=0 & SF=OF */ case LE: /* ZF=1 | SF<>OF */ if (op1 == const0_rtx) return CCNOmode; else return CCGCmode; /* strcmp pattern do (use flags) and combine may ask us for proper mode. */ case USE: return CCmode; default: gcc_unreachable (); } } /* Return the fixed registers used for condition codes. */ static bool ix86_fixed_condition_code_regs (unsigned int *p1, unsigned int *p2) { *p1 = FLAGS_REG; *p2 = FPSR_REG; return true; } /* If two condition code modes are compatible, return a condition code mode which is compatible with both. Otherwise, return VOIDmode. */ static enum machine_mode ix86_cc_modes_compatible (enum machine_mode m1, enum machine_mode m2) { if (m1 == m2) return m1; if (GET_MODE_CLASS (m1) != MODE_CC || GET_MODE_CLASS (m2) != MODE_CC) return VOIDmode; if ((m1 == CCGCmode && m2 == CCGOCmode) || (m1 == CCGOCmode && m2 == CCGCmode)) return CCGCmode; if (m1 == CCZmode && (m2 == CCGCmode || m2 == CCGOCmode)) return m2; else if (m2 == CCZmode && (m1 == CCGCmode || m1 == CCGOCmode)) return m1; switch (m1) { default: gcc_unreachable (); case CCmode: case CCGCmode: case CCGOCmode: case CCNOmode: case CCAmode: case CCCmode: case CCOmode: case CCSmode: case CCZmode: switch (m2) { default: return VOIDmode; case CCmode: case CCGCmode: case CCGOCmode: case CCNOmode: case CCAmode: case CCCmode: case CCOmode: case CCSmode: case CCZmode: return CCmode; } case CCFPmode: case CCFPUmode: /* These are only compatible with themselves, which we already checked above. */ return VOIDmode; } } /* Return a comparison we can do and that it is equivalent to swap_condition (code) apart possibly from orderedness. But, never change orderedness if TARGET_IEEE_FP, returning UNKNOWN in that case if necessary. */ static enum rtx_code ix86_fp_swap_condition (enum rtx_code code) { switch (code) { case GT: /* GTU - CF=0 & ZF=0 */ return TARGET_IEEE_FP ? UNKNOWN : UNLT; case GE: /* GEU - CF=0 */ return TARGET_IEEE_FP ? UNKNOWN : UNLE; case UNLT: /* LTU - CF=1 */ return TARGET_IEEE_FP ? UNKNOWN : GT; case UNLE: /* LEU - CF=1 | ZF=1 */ return TARGET_IEEE_FP ? UNKNOWN : GE; default: return swap_condition (code); } } /* Return cost of comparison CODE using the best strategy for performance. All following functions do use number of instructions as a cost metrics. In future this should be tweaked to compute bytes for optimize_size and take into account performance of various instructions on various CPUs. */ static int ix86_fp_comparison_cost (enum rtx_code code) { int arith_cost; /* The cost of code using bit-twiddling on %ah. */ switch (code) { case UNLE: case UNLT: case LTGT: case GT: case GE: case UNORDERED: case ORDERED: case UNEQ: arith_cost = 4; break; case LT: case NE: case EQ: case UNGE: arith_cost = TARGET_IEEE_FP ? 5 : 4; break; case LE: case UNGT: arith_cost = TARGET_IEEE_FP ? 6 : 4; break; default: gcc_unreachable (); } switch (ix86_fp_comparison_strategy (code)) { case IX86_FPCMP_COMI: return arith_cost > 4 ? 3 : 2; case IX86_FPCMP_SAHF: return arith_cost > 4 ? 4 : 3; default: return arith_cost; } } /* Return strategy to use for floating-point. We assume that fcomi is always preferrable where available, since that is also true when looking at size (2 bytes, vs. 3 for fnstsw+sahf and at least 5 for fnstsw+test). */ enum ix86_fpcmp_strategy ix86_fp_comparison_strategy (enum rtx_code code ATTRIBUTE_UNUSED) { /* Do fcomi/sahf based test when profitable. */ if (TARGET_CMOVE) return IX86_FPCMP_COMI; if (TARGET_SAHF && (TARGET_USE_SAHF || optimize_insn_for_size_p ())) return IX86_FPCMP_SAHF; return IX86_FPCMP_ARITH; } /* Swap, force into registers, or otherwise massage the two operands to a fp comparison. The operands are updated in place; the new comparison code is returned. */ static enum rtx_code ix86_prepare_fp_compare_args (enum rtx_code code, rtx *pop0, rtx *pop1) { enum machine_mode fpcmp_mode = ix86_fp_compare_mode (code); rtx op0 = *pop0, op1 = *pop1; enum machine_mode op_mode = GET_MODE (op0); int is_sse = TARGET_SSE_MATH && SSE_FLOAT_MODE_P (op_mode); /* All of the unordered compare instructions only work on registers. The same is true of the fcomi compare instructions. The XFmode compare instructions require registers except when comparing against zero or when converting operand 1 from fixed point to floating point. */ if (!is_sse && (fpcmp_mode == CCFPUmode || (op_mode == XFmode && ! (standard_80387_constant_p (op0) == 1 || standard_80387_constant_p (op1) == 1) && GET_CODE (op1) != FLOAT) || ix86_fp_comparison_strategy (code) == IX86_FPCMP_COMI)) { op0 = force_reg (op_mode, op0); op1 = force_reg (op_mode, op1); } else { /* %%% We only allow op1 in memory; op0 must be st(0). So swap things around if they appear profitable, otherwise force op0 into a register. */ if (standard_80387_constant_p (op0) == 0 || (MEM_P (op0) && ! (standard_80387_constant_p (op1) == 0 || MEM_P (op1)))) { enum rtx_code new_code = ix86_fp_swap_condition (code); if (new_code != UNKNOWN) { rtx tmp; tmp = op0, op0 = op1, op1 = tmp; code = new_code; } } if (!REG_P (op0)) op0 = force_reg (op_mode, op0); if (CONSTANT_P (op1)) { int tmp = standard_80387_constant_p (op1); if (tmp == 0) op1 = validize_mem (force_const_mem (op_mode, op1)); else if (tmp == 1) { if (TARGET_CMOVE) op1 = force_reg (op_mode, op1); } else op1 = force_reg (op_mode, op1); } } /* Try to rearrange the comparison to make it cheaper. */ if (ix86_fp_comparison_cost (code) > ix86_fp_comparison_cost (swap_condition (code)) && (REG_P (op1) || can_create_pseudo_p ())) { rtx tmp; tmp = op0, op0 = op1, op1 = tmp; code = swap_condition (code); if (!REG_P (op0)) op0 = force_reg (op_mode, op0); } *pop0 = op0; *pop1 = op1; return code; } /* Convert comparison codes we use to represent FP comparison to integer code that will result in proper branch. Return UNKNOWN if no such code is available. */ enum rtx_code ix86_fp_compare_code_to_integer (enum rtx_code code) { switch (code) { case GT: return GTU; case GE: return GEU; case ORDERED: case UNORDERED: return code; break; case UNEQ: return EQ; break; case UNLT: return LTU; break; case UNLE: return LEU; break; case LTGT: return NE; break; default: return UNKNOWN; } } /* Generate insn patterns to do a floating point compare of OPERANDS. */ static rtx ix86_expand_fp_compare (enum rtx_code code, rtx op0, rtx op1, rtx scratch) { enum machine_mode fpcmp_mode, intcmp_mode; rtx tmp, tmp2; fpcmp_mode = ix86_fp_compare_mode (code); code = ix86_prepare_fp_compare_args (code, &op0, &op1); /* Do fcomi/sahf based test when profitable. */ switch (ix86_fp_comparison_strategy (code)) { case IX86_FPCMP_COMI: intcmp_mode = fpcmp_mode; tmp = gen_rtx_COMPARE (fpcmp_mode, op0, op1); tmp = gen_rtx_SET (VOIDmode, gen_rtx_REG (fpcmp_mode, FLAGS_REG), tmp); emit_insn (tmp); break; case IX86_FPCMP_SAHF: intcmp_mode = fpcmp_mode; tmp = gen_rtx_COMPARE (fpcmp_mode, op0, op1); tmp = gen_rtx_SET (VOIDmode, gen_rtx_REG (fpcmp_mode, FLAGS_REG), tmp); if (!scratch) scratch = gen_reg_rtx (HImode); tmp2 = gen_rtx_CLOBBER (VOIDmode, scratch); emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, tmp, tmp2))); break; case IX86_FPCMP_ARITH: /* Sadness wrt reg-stack pops killing fpsr -- gotta get fnstsw first. */ tmp = gen_rtx_COMPARE (fpcmp_mode, op0, op1); tmp2 = gen_rtx_UNSPEC (HImode, gen_rtvec (1, tmp), UNSPEC_FNSTSW); if (!scratch) scratch = gen_reg_rtx (HImode); emit_insn (gen_rtx_SET (VOIDmode, scratch, tmp2)); /* In the unordered case, we have to check C2 for NaN's, which doesn't happen to work out to anything nice combination-wise. So do some bit twiddling on the value we've got in AH to come up with an appropriate set of condition codes. */ intcmp_mode = CCNOmode; switch (code) { case GT: case UNGT: if (code == GT || !TARGET_IEEE_FP) { emit_insn (gen_testqi_ext_ccno_0 (scratch, GEN_INT (0x45))); code = EQ; } else { emit_insn (gen_andqi_ext_0 (scratch, scratch, GEN_INT (0x45))); emit_insn (gen_addqi_ext_1 (scratch, scratch, constm1_rtx)); emit_insn (gen_cmpqi_ext_3 (scratch, GEN_INT (0x44))); intcmp_mode = CCmode; code = GEU; } break; case LT: case UNLT: if (code == LT && TARGET_IEEE_FP) { emit_insn (gen_andqi_ext_0 (scratch, scratch, GEN_INT (0x45))); emit_insn (gen_cmpqi_ext_3 (scratch, const1_rtx)); intcmp_mode = CCmode; code = EQ; } else { emit_insn (gen_testqi_ext_ccno_0 (scratch, const1_rtx)); code = NE; } break; case GE: case UNGE: if (code == GE || !TARGET_IEEE_FP) { emit_insn (gen_testqi_ext_ccno_0 (scratch, GEN_INT (0x05))); code = EQ; } else { emit_insn (gen_andqi_ext_0 (scratch, scratch, GEN_INT (0x45))); emit_insn (gen_xorqi_cc_ext_1 (scratch, scratch, const1_rtx)); code = NE; } break; case LE: case UNLE: if (code == LE && TARGET_IEEE_FP) { emit_insn (gen_andqi_ext_0 (scratch, scratch, GEN_INT (0x45))); emit_insn (gen_addqi_ext_1 (scratch, scratch, constm1_rtx)); emit_insn (gen_cmpqi_ext_3 (scratch, GEN_INT (0x40))); intcmp_mode = CCmode; code = LTU; } else { emit_insn (gen_testqi_ext_ccno_0 (scratch, GEN_INT (0x45))); code = NE; } break; case EQ: case UNEQ: if (code == EQ && TARGET_IEEE_FP) { emit_insn (gen_andqi_ext_0 (scratch, scratch, GEN_INT (0x45))); emit_insn (gen_cmpqi_ext_3 (scratch, GEN_INT (0x40))); intcmp_mode = CCmode; code = EQ; } else { emit_insn (gen_testqi_ext_ccno_0 (scratch, GEN_INT (0x40))); code = NE; } break; case NE: case LTGT: if (code == NE && TARGET_IEEE_FP) { emit_insn (gen_andqi_ext_0 (scratch, scratch, GEN_INT (0x45))); emit_insn (gen_xorqi_cc_ext_1 (scratch, scratch, GEN_INT (0x40))); code = NE; } else { emit_insn (gen_testqi_ext_ccno_0 (scratch, GEN_INT (0x40))); code = EQ; } break; case UNORDERED: emit_insn (gen_testqi_ext_ccno_0 (scratch, GEN_INT (0x04))); code = NE; break; case ORDERED: emit_insn (gen_testqi_ext_ccno_0 (scratch, GEN_INT (0x04))); code = EQ; break; default: gcc_unreachable (); } break; default: gcc_unreachable(); } /* Return the test that should be put into the flags user, i.e. the bcc, scc, or cmov instruction. */ return gen_rtx_fmt_ee (code, VOIDmode, gen_rtx_REG (intcmp_mode, FLAGS_REG), const0_rtx); } static rtx ix86_expand_compare (enum rtx_code code, rtx op0, rtx op1) { rtx ret; if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC) ret = gen_rtx_fmt_ee (code, VOIDmode, op0, op1); else if (SCALAR_FLOAT_MODE_P (GET_MODE (op0))) { gcc_assert (!DECIMAL_FLOAT_MODE_P (GET_MODE (op0))); ret = ix86_expand_fp_compare (code, op0, op1, NULL_RTX); } else ret = ix86_expand_int_compare (code, op0, op1); return ret; } void ix86_expand_branch (enum rtx_code code, rtx op0, rtx op1, rtx label) { enum machine_mode mode = GET_MODE (op0); rtx tmp; switch (mode) { case SFmode: case DFmode: case XFmode: case QImode: case HImode: case SImode: simple: tmp = ix86_expand_compare (code, op0, op1); tmp = gen_rtx_IF_THEN_ELSE (VOIDmode, tmp, gen_rtx_LABEL_REF (VOIDmode, label), pc_rtx); emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx, tmp)); return; case DImode: if (TARGET_64BIT) goto simple; case TImode: /* Expand DImode branch into multiple compare+branch. */ { rtx lo[2], hi[2], label2; enum rtx_code code1, code2, code3; enum machine_mode submode; if (CONSTANT_P (op0) && !CONSTANT_P (op1)) { tmp = op0, op0 = op1, op1 = tmp; code = swap_condition (code); } split_double_mode (mode, &op0, 1, lo+0, hi+0); split_double_mode (mode, &op1, 1, lo+1, hi+1); submode = mode == DImode ? SImode : DImode; /* When comparing for equality, we can use (hi0^hi1)|(lo0^lo1) to avoid two branches. This costs one extra insn, so disable when optimizing for size. */ if ((code == EQ || code == NE) && (!optimize_insn_for_size_p () || hi[1] == const0_rtx || lo[1] == const0_rtx)) { rtx xor0, xor1; xor1 = hi[0]; if (hi[1] != const0_rtx) xor1 = expand_binop (submode, xor_optab, xor1, hi[1], NULL_RTX, 0, OPTAB_WIDEN); xor0 = lo[0]; if (lo[1] != const0_rtx) xor0 = expand_binop (submode, xor_optab, xor0, lo[1], NULL_RTX, 0, OPTAB_WIDEN); tmp = expand_binop (submode, ior_optab, xor1, xor0, NULL_RTX, 0, OPTAB_WIDEN); ix86_expand_branch (code, tmp, const0_rtx, label); return; } /* Otherwise, if we are doing less-than or greater-or-equal-than, op1 is a constant and the low word is zero, then we can just examine the high word. Similarly for low word -1 and less-or-equal-than or greater-than. */ if (CONST_INT_P (hi[1])) switch (code) { case LT: case LTU: case GE: case GEU: if (lo[1] == const0_rtx) { ix86_expand_branch (code, hi[0], hi[1], label); return; } break; case LE: case LEU: case GT: case GTU: if (lo[1] == constm1_rtx) { ix86_expand_branch (code, hi[0], hi[1], label); return; } break; default: break; } /* Otherwise, we need two or three jumps. */ label2 = gen_label_rtx (); code1 = code; code2 = swap_condition (code); code3 = unsigned_condition (code); switch (code) { case LT: case GT: case LTU: case GTU: break; case LE: code1 = LT; code2 = GT; break; case GE: code1 = GT; code2 = LT; break; case LEU: code1 = LTU; code2 = GTU; break; case GEU: code1 = GTU; code2 = LTU; break; case EQ: code1 = UNKNOWN; code2 = NE; break; case NE: code2 = UNKNOWN; break; default: gcc_unreachable (); } /* * a < b => * if (hi(a) < hi(b)) goto true; * if (hi(a) > hi(b)) goto false; * if (lo(a) < lo(b)) goto true; * false: */ if (code1 != UNKNOWN) ix86_expand_branch (code1, hi[0], hi[1], label); if (code2 != UNKNOWN) ix86_expand_branch (code2, hi[0], hi[1], label2); ix86_expand_branch (code3, lo[0], lo[1], label); if (code2 != UNKNOWN) emit_label (label2); return; } default: gcc_assert (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC); goto simple; } } /* Split branch based on floating point condition. */ void ix86_split_fp_branch (enum rtx_code code, rtx op1, rtx op2, rtx target1, rtx target2, rtx tmp, rtx pushed) { rtx condition; rtx i; if (target2 != pc_rtx) { rtx tmp = target2; code = reverse_condition_maybe_unordered (code); target2 = target1; target1 = tmp; } condition = ix86_expand_fp_compare (code, op1, op2, tmp); /* Remove pushed operand from stack. */ if (pushed) ix86_free_from_memory (GET_MODE (pushed)); i = emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx, gen_rtx_IF_THEN_ELSE (VOIDmode, condition, target1, target2))); if (split_branch_probability >= 0) add_int_reg_note (i, REG_BR_PROB, split_branch_probability); } void ix86_expand_setcc (rtx dest, enum rtx_code code, rtx op0, rtx op1) { rtx ret; gcc_assert (GET_MODE (dest) == QImode); ret = ix86_expand_compare (code, op0, op1); PUT_MODE (ret, QImode); emit_insn (gen_rtx_SET (VOIDmode, dest, ret)); } /* Expand comparison setting or clearing carry flag. Return true when successful and set pop for the operation. */ static bool ix86_expand_carry_flag_compare (enum rtx_code code, rtx op0, rtx op1, rtx *pop) { enum machine_mode mode = GET_MODE (op0) != VOIDmode ? GET_MODE (op0) : GET_MODE (op1); /* Do not handle double-mode compares that go through special path. */ if (mode == (TARGET_64BIT ? TImode : DImode)) return false; if (SCALAR_FLOAT_MODE_P (mode)) { rtx compare_op, compare_seq; gcc_assert (!DECIMAL_FLOAT_MODE_P (mode)); /* Shortcut: following common codes never translate into carry flag compares. */ if (code == EQ || code == NE || code == UNEQ || code == LTGT || code == ORDERED || code == UNORDERED) return false; /* These comparisons require zero flag; swap operands so they won't. */ if ((code == GT || code == UNLE || code == LE || code == UNGT) && !TARGET_IEEE_FP) { rtx tmp = op0; op0 = op1; op1 = tmp; code = swap_condition (code); } /* Try to expand the comparison and verify that we end up with carry flag based comparison. This fails to be true only when we decide to expand comparison using arithmetic that is not too common scenario. */ start_sequence (); compare_op = ix86_expand_fp_compare (code, op0, op1, NULL_RTX); compare_seq = get_insns (); end_sequence (); if (GET_MODE (XEXP (compare_op, 0)) == CCFPmode || GET_MODE (XEXP (compare_op, 0)) == CCFPUmode) code = ix86_fp_compare_code_to_integer (GET_CODE (compare_op)); else code = GET_CODE (compare_op); if (code != LTU && code != GEU) return false; emit_insn (compare_seq); *pop = compare_op; return true; } if (!INTEGRAL_MODE_P (mode)) return false; switch (code) { case LTU: case GEU: break; /* Convert a==0 into (unsigned)a<1. */ case EQ: case NE: if (op1 != const0_rtx) return false; op1 = const1_rtx; code = (code == EQ ? LTU : GEU); break; /* Convert a>b into b=b-1. */ case GTU: case LEU: if (CONST_INT_P (op1)) { op1 = gen_int_mode (INTVAL (op1) + 1, GET_MODE (op0)); /* Bail out on overflow. We still can swap operands but that would force loading of the constant into register. */ if (op1 == const0_rtx || !x86_64_immediate_operand (op1, GET_MODE (op1))) return false; code = (code == GTU ? GEU : LTU); } else { rtx tmp = op1; op1 = op0; op0 = tmp; code = (code == GTU ? LTU : GEU); } break; /* Convert a>=0 into (unsigned)a<0x80000000. */ case LT: case GE: if (mode == DImode || op1 != const0_rtx) return false; op1 = gen_int_mode (1 << (GET_MODE_BITSIZE (mode) - 1), mode); code = (code == LT ? GEU : LTU); break; case LE: case GT: if (mode == DImode || op1 != constm1_rtx) return false; op1 = gen_int_mode (1 << (GET_MODE_BITSIZE (mode) - 1), mode); code = (code == LE ? GEU : LTU); break; default: return false; } /* Swapping operands may cause constant to appear as first operand. */ if (!nonimmediate_operand (op0, VOIDmode)) { if (!can_create_pseudo_p ()) return false; op0 = force_reg (mode, op0); } *pop = ix86_expand_compare (code, op0, op1); gcc_assert (GET_CODE (*pop) == LTU || GET_CODE (*pop) == GEU); return true; } bool ix86_expand_int_movcc (rtx operands[]) { enum rtx_code code = GET_CODE (operands[1]), compare_code; rtx compare_seq, compare_op; enum machine_mode mode = GET_MODE (operands[0]); bool sign_bit_compare_p = false; rtx op0 = XEXP (operands[1], 0); rtx op1 = XEXP (operands[1], 1); if (GET_MODE (op0) == TImode || (GET_MODE (op0) == DImode && !TARGET_64BIT)) return false; start_sequence (); compare_op = ix86_expand_compare (code, op0, op1); compare_seq = get_insns (); end_sequence (); compare_code = GET_CODE (compare_op); if ((op1 == const0_rtx && (code == GE || code == LT)) || (op1 == constm1_rtx && (code == GT || code == LE))) sign_bit_compare_p = true; /* Don't attempt mode expansion here -- if we had to expand 5 or 6 HImode insns, we'd be swallowed in word prefix ops. */ if ((mode != HImode || TARGET_FAST_PREFIX) && (mode != (TARGET_64BIT ? TImode : DImode)) && CONST_INT_P (operands[2]) && CONST_INT_P (operands[3])) { rtx out = operands[0]; HOST_WIDE_INT ct = INTVAL (operands[2]); HOST_WIDE_INT cf = INTVAL (operands[3]); HOST_WIDE_INT diff; diff = ct - cf; /* Sign bit compares are better done using shifts than we do by using sbb. */ if (sign_bit_compare_p || ix86_expand_carry_flag_compare (code, op0, op1, &compare_op)) { /* Detect overlap between destination and compare sources. */ rtx tmp = out; if (!sign_bit_compare_p) { rtx flags; bool fpcmp = false; compare_code = GET_CODE (compare_op); flags = XEXP (compare_op, 0); if (GET_MODE (flags) == CCFPmode || GET_MODE (flags) == CCFPUmode) { fpcmp = true; compare_code = ix86_fp_compare_code_to_integer (compare_code); } /* To simplify rest of code, restrict to the GEU case. */ if (compare_code == LTU) { HOST_WIDE_INT tmp = ct; ct = cf; cf = tmp; compare_code = reverse_condition (compare_code); code = reverse_condition (code); } else { if (fpcmp) PUT_CODE (compare_op, reverse_condition_maybe_unordered (GET_CODE (compare_op))); else PUT_CODE (compare_op, reverse_condition (GET_CODE (compare_op))); } diff = ct - cf; if (reg_overlap_mentioned_p (out, op0) || reg_overlap_mentioned_p (out, op1)) tmp = gen_reg_rtx (mode); if (mode == DImode) emit_insn (gen_x86_movdicc_0_m1 (tmp, flags, compare_op)); else emit_insn (gen_x86_movsicc_0_m1 (gen_lowpart (SImode, tmp), flags, compare_op)); } else { if (code == GT || code == GE) code = reverse_condition (code); else { HOST_WIDE_INT tmp = ct; ct = cf; cf = tmp; diff = ct - cf; } tmp = emit_store_flag (tmp, code, op0, op1, VOIDmode, 0, -1); } if (diff == 1) { /* * cmpl op0,op1 * sbbl dest,dest * [addl dest, ct] * * Size 5 - 8. */ if (ct) tmp = expand_simple_binop (mode, PLUS, tmp, GEN_INT (ct), copy_rtx (tmp), 1, OPTAB_DIRECT); } else if (cf == -1) { /* * cmpl op0,op1 * sbbl dest,dest * orl $ct, dest * * Size 8. */ tmp = expand_simple_binop (mode, IOR, tmp, GEN_INT (ct), copy_rtx (tmp), 1, OPTAB_DIRECT); } else if (diff == -1 && ct) { /* * cmpl op0,op1 * sbbl dest,dest * notl dest * [addl dest, cf] * * Size 8 - 11. */ tmp = expand_simple_unop (mode, NOT, tmp, copy_rtx (tmp), 1); if (cf) tmp = expand_simple_binop (mode, PLUS, copy_rtx (tmp), GEN_INT (cf), copy_rtx (tmp), 1, OPTAB_DIRECT); } else { /* * cmpl op0,op1 * sbbl dest,dest * [notl dest] * andl cf - ct, dest * [addl dest, ct] * * Size 8 - 11. */ if (cf == 0) { cf = ct; ct = 0; tmp = expand_simple_unop (mode, NOT, tmp, copy_rtx (tmp), 1); } tmp = expand_simple_binop (mode, AND, copy_rtx (tmp), gen_int_mode (cf - ct, mode), copy_rtx (tmp), 1, OPTAB_DIRECT); if (ct) tmp = expand_simple_binop (mode, PLUS, copy_rtx (tmp), GEN_INT (ct), copy_rtx (tmp), 1, OPTAB_DIRECT); } if (!rtx_equal_p (tmp, out)) emit_move_insn (copy_rtx (out), copy_rtx (tmp)); return true; } if (diff < 0) { enum machine_mode cmp_mode = GET_MODE (op0); HOST_WIDE_INT tmp; tmp = ct, ct = cf, cf = tmp; diff = -diff; if (SCALAR_FLOAT_MODE_P (cmp_mode)) { gcc_assert (!DECIMAL_FLOAT_MODE_P (cmp_mode)); /* We may be reversing unordered compare to normal compare, that is not valid in general (we may convert non-trapping condition to trapping one), however on i386 we currently emit all comparisons unordered. */ compare_code = reverse_condition_maybe_unordered (compare_code); code = reverse_condition_maybe_unordered (code); } else { compare_code = reverse_condition (compare_code); code = reverse_condition (code); } } compare_code = UNKNOWN; if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT && CONST_INT_P (op1)) { if (op1 == const0_rtx && (code == LT || code == GE)) compare_code = code; else if (op1 == constm1_rtx) { if (code == LE) compare_code = LT; else if (code == GT) compare_code = GE; } } /* Optimize dest = (op0 < 0) ? -1 : cf. */ if (compare_code != UNKNOWN && GET_MODE (op0) == GET_MODE (out) && (cf == -1 || ct == -1)) { /* If lea code below could be used, only optimize if it results in a 2 insn sequence. */ if (! (diff == 1 || diff == 2 || diff == 4 || diff == 8 || diff == 3 || diff == 5 || diff == 9) || (compare_code == LT && ct == -1) || (compare_code == GE && cf == -1)) { /* * notl op1 (if necessary) * sarl $31, op1 * orl cf, op1 */ if (ct != -1) { cf = ct; ct = -1; code = reverse_condition (code); } out = emit_store_flag (out, code, op0, op1, VOIDmode, 0, -1); out = expand_simple_binop (mode, IOR, out, GEN_INT (cf), out, 1, OPTAB_DIRECT); if (out != operands[0]) emit_move_insn (operands[0], out); return true; } } if ((diff == 1 || diff == 2 || diff == 4 || diff == 8 || diff == 3 || diff == 5 || diff == 9) && ((mode != QImode && mode != HImode) || !TARGET_PARTIAL_REG_STALL) && (mode != DImode || x86_64_immediate_operand (GEN_INT (cf), VOIDmode))) { /* * xorl dest,dest * cmpl op1,op2 * setcc dest * lea cf(dest*(ct-cf)),dest * * Size 14. * * This also catches the degenerate setcc-only case. */ rtx tmp; int nops; out = emit_store_flag (out, code, op0, op1, VOIDmode, 0, 1); nops = 0; /* On x86_64 the lea instruction operates on Pmode, so we need to get arithmetics done in proper mode to match. */ if (diff == 1) tmp = copy_rtx (out); else { rtx out1; out1 = copy_rtx (out); tmp = gen_rtx_MULT (mode, out1, GEN_INT (diff & ~1)); nops++; if (diff & 1) { tmp = gen_rtx_PLUS (mode, tmp, out1); nops++; } } if (cf != 0) { tmp = gen_rtx_PLUS (mode, tmp, GEN_INT (cf)); nops++; } if (!rtx_equal_p (tmp, out)) { if (nops == 1) out = force_operand (tmp, copy_rtx (out)); else emit_insn (gen_rtx_SET (VOIDmode, copy_rtx (out), copy_rtx (tmp))); } if (!rtx_equal_p (out, operands[0])) emit_move_insn (operands[0], copy_rtx (out)); return true; } /* * General case: Jumpful: * xorl dest,dest cmpl op1, op2 * cmpl op1, op2 movl ct, dest * setcc dest jcc 1f * decl dest movl cf, dest * andl (cf-ct),dest 1: * addl ct,dest * * Size 20. Size 14. * * This is reasonably steep, but branch mispredict costs are * high on modern cpus, so consider failing only if optimizing * for space. */ if ((!TARGET_CMOVE || (mode == QImode && TARGET_PARTIAL_REG_STALL)) && BRANCH_COST (optimize_insn_for_speed_p (), false) >= 2) { if (cf == 0) { enum machine_mode cmp_mode = GET_MODE (op0); cf = ct; ct = 0; if (SCALAR_FLOAT_MODE_P (cmp_mode)) { gcc_assert (!DECIMAL_FLOAT_MODE_P (cmp_mode)); /* We may be reversing unordered compare to normal compare, that is not valid in general (we may convert non-trapping condition to trapping one), however on i386 we currently emit all comparisons unordered. */ code = reverse_condition_maybe_unordered (code); } else { code = reverse_condition (code); if (compare_code != UNKNOWN) compare_code = reverse_condition (compare_code); } } if (compare_code != UNKNOWN) { /* notl op1 (if needed) sarl $31, op1 andl (cf-ct), op1 addl ct, op1 For x < 0 (resp. x <= -1) there will be no notl, so if possible swap the constants to get rid of the complement. True/false will be -1/0 while code below (store flag followed by decrement) is 0/-1, so the constants need to be exchanged once more. */ if (compare_code == GE || !cf) { code = reverse_condition (code); compare_code = LT; } else { HOST_WIDE_INT tmp = cf; cf = ct; ct = tmp; } out = emit_store_flag (out, code, op0, op1, VOIDmode, 0, -1); } else { out = emit_store_flag (out, code, op0, op1, VOIDmode, 0, 1); out = expand_simple_binop (mode, PLUS, copy_rtx (out), constm1_rtx, copy_rtx (out), 1, OPTAB_DIRECT); } out = expand_simple_binop (mode, AND, copy_rtx (out), gen_int_mode (cf - ct, mode), copy_rtx (out), 1, OPTAB_DIRECT); if (ct) out = expand_simple_binop (mode, PLUS, copy_rtx (out), GEN_INT (ct), copy_rtx (out), 1, OPTAB_DIRECT); if (!rtx_equal_p (out, operands[0])) emit_move_insn (operands[0], copy_rtx (out)); return true; } } if (!TARGET_CMOVE || (mode == QImode && TARGET_PARTIAL_REG_STALL)) { /* Try a few things more with specific constants and a variable. */ optab op; rtx var, orig_out, out, tmp; if (BRANCH_COST (optimize_insn_for_speed_p (), false) <= 2) return false; /* If one of the two operands is an interesting constant, load a constant with the above and mask it in with a logical operation. */ if (CONST_INT_P (operands[2])) { var = operands[3]; if (INTVAL (operands[2]) == 0 && operands[3] != constm1_rtx) operands[3] = constm1_rtx, op = and_optab; else if (INTVAL (operands[2]) == -1 && operands[3] != const0_rtx) operands[3] = const0_rtx, op = ior_optab; else return false; } else if (CONST_INT_P (operands[3])) { var = operands[2]; if (INTVAL (operands[3]) == 0 && operands[2] != constm1_rtx) operands[2] = constm1_rtx, op = and_optab; else if (INTVAL (operands[3]) == -1 && operands[3] != const0_rtx) operands[2] = const0_rtx, op = ior_optab; else return false; } else return false; orig_out = operands[0]; tmp = gen_reg_rtx (mode); operands[0] = tmp; /* Recurse to get the constant loaded. */ if (ix86_expand_int_movcc (operands) == 0) return false; /* Mask in the interesting variable. */ out = expand_binop (mode, op, var, tmp, orig_out, 0, OPTAB_WIDEN); if (!rtx_equal_p (out, orig_out)) emit_move_insn (copy_rtx (orig_out), copy_rtx (out)); return true; } /* * For comparison with above, * * movl cf,dest * movl ct,tmp * cmpl op1,op2 * cmovcc tmp,dest * * Size 15. */ if (! nonimmediate_operand (operands[2], mode)) operands[2] = force_reg (mode, operands[2]); if (! nonimmediate_operand (operands[3], mode)) operands[3] = force_reg (mode, operands[3]); if (! register_operand (operands[2], VOIDmode) && (mode == QImode || ! register_operand (operands[3], VOIDmode))) operands[2] = force_reg (mode, operands[2]); if (mode == QImode && ! register_operand (operands[3], VOIDmode)) operands[3] = force_reg (mode, operands[3]); emit_insn (compare_seq); emit_insn (gen_rtx_SET (VOIDmode, operands[0], gen_rtx_IF_THEN_ELSE (mode, compare_op, operands[2], operands[3]))); return true; } /* Swap, force into registers, or otherwise massage the two operands to an sse comparison with a mask result. Thus we differ a bit from ix86_prepare_fp_compare_args which expects to produce a flags result. The DEST operand exists to help determine whether to commute commutative operators. The POP0/POP1 operands are updated in place. The new comparison code is returned, or UNKNOWN if not implementable. */ static enum rtx_code ix86_prepare_sse_fp_compare_args (rtx dest, enum rtx_code code, rtx *pop0, rtx *pop1) { rtx tmp; switch (code) { case LTGT: case UNEQ: /* AVX supports all the needed comparisons. */ if (TARGET_AVX) break; /* We have no LTGT as an operator. We could implement it with NE & ORDERED, but this requires an extra temporary. It's not clear that it's worth it. */ return UNKNOWN; case LT: case LE: case UNGT: case UNGE: /* These are supported directly. */ break; case EQ: case NE: case UNORDERED: case ORDERED: /* AVX has 3 operand comparisons, no need to swap anything. */ if (TARGET_AVX) break; /* For commutative operators, try to canonicalize the destination operand to be first in the comparison - this helps reload to avoid extra moves. */ if (!dest || !rtx_equal_p (dest, *pop1)) break; /* FALLTHRU */ case GE: case GT: case UNLE: case UNLT: /* These are not supported directly before AVX, and furthermore ix86_expand_sse_fp_minmax only optimizes LT/UNGE. Swap the comparison operands to transform into something that is supported. */ tmp = *pop0; *pop0 = *pop1; *pop1 = tmp; code = swap_condition (code); break; default: gcc_unreachable (); } return code; } /* Detect conditional moves that exactly match min/max operational semantics. Note that this is IEEE safe, as long as we don't interchange the operands. Returns FALSE if this conditional move doesn't match a MIN/MAX, and TRUE if the operation is successful and instructions are emitted. */ static bool ix86_expand_sse_fp_minmax (rtx dest, enum rtx_code code, rtx cmp_op0, rtx cmp_op1, rtx if_true, rtx if_false) { enum machine_mode mode; bool is_min; rtx tmp; if (code == LT) ; else if (code == UNGE) { tmp = if_true; if_true = if_false; if_false = tmp; } else return false; if (rtx_equal_p (cmp_op0, if_true) && rtx_equal_p (cmp_op1, if_false)) is_min = true; else if (rtx_equal_p (cmp_op1, if_true) && rtx_equal_p (cmp_op0, if_false)) is_min = false; else return false; mode = GET_MODE (dest); /* We want to check HONOR_NANS and HONOR_SIGNED_ZEROS here, but MODE may be a vector mode and thus not appropriate. */ if (!flag_finite_math_only || !flag_unsafe_math_optimizations) { int u = is_min ? UNSPEC_IEEE_MIN : UNSPEC_IEEE_MAX; rtvec v; if_true = force_reg (mode, if_true); v = gen_rtvec (2, if_true, if_false); tmp = gen_rtx_UNSPEC (mode, v, u); } else { code = is_min ? SMIN : SMAX; tmp = gen_rtx_fmt_ee (code, mode, if_true, if_false); } emit_insn (gen_rtx_SET (VOIDmode, dest, tmp)); return true; } /* Expand an sse vector comparison. Return the register with the result. */ static rtx ix86_expand_sse_cmp (rtx dest, enum rtx_code code, rtx cmp_op0, rtx cmp_op1, rtx op_true, rtx op_false) { enum machine_mode mode = GET_MODE (dest); enum machine_mode cmp_mode = GET_MODE (cmp_op0); rtx x; cmp_op0 = force_reg (cmp_mode, cmp_op0); if (!nonimmediate_operand (cmp_op1, cmp_mode)) cmp_op1 = force_reg (cmp_mode, cmp_op1); if (optimize || reg_overlap_mentioned_p (dest, op_true) || reg_overlap_mentioned_p (dest, op_false)) dest = gen_reg_rtx (mode); x = gen_rtx_fmt_ee (code, cmp_mode, cmp_op0, cmp_op1); if (cmp_mode != mode) { x = force_reg (cmp_mode, x); convert_move (dest, x, false); } else emit_insn (gen_rtx_SET (VOIDmode, dest, x)); return dest; } /* Expand DEST = CMP ? OP_TRUE : OP_FALSE into a sequence of logical operations. This is used for both scalar and vector conditional moves. */ static void ix86_expand_sse_movcc (rtx dest, rtx cmp, rtx op_true, rtx op_false) { enum machine_mode mode = GET_MODE (dest); rtx t2, t3, x; if (vector_all_ones_operand (op_true, mode) && rtx_equal_p (op_false, CONST0_RTX (mode))) { emit_insn (gen_rtx_SET (VOIDmode, dest, cmp)); } else if (op_false == CONST0_RTX (mode)) { op_true = force_reg (mode, op_true); x = gen_rtx_AND (mode, cmp, op_true); emit_insn (gen_rtx_SET (VOIDmode, dest, x)); } else if (op_true == CONST0_RTX (mode)) { op_false = force_reg (mode, op_false); x = gen_rtx_NOT (mode, cmp); x = gen_rtx_AND (mode, x, op_false); emit_insn (gen_rtx_SET (VOIDmode, dest, x)); } else if (INTEGRAL_MODE_P (mode) && op_true == CONSTM1_RTX (mode)) { op_false = force_reg (mode, op_false); x = gen_rtx_IOR (mode, cmp, op_false); emit_insn (gen_rtx_SET (VOIDmode, dest, x)); } else if (TARGET_XOP) { op_true = force_reg (mode, op_true); if (!nonimmediate_operand (op_false, mode)) op_false = force_reg (mode, op_false); emit_insn (gen_rtx_SET (mode, dest, gen_rtx_IF_THEN_ELSE (mode, cmp, op_true, op_false))); } else { rtx (*gen) (rtx, rtx, rtx, rtx) = NULL; rtx d = dest; if (!nonimmediate_operand (op_true, mode)) op_true = force_reg (mode, op_true); op_false = force_reg (mode, op_false); switch (mode) { case V4SFmode: if (TARGET_SSE4_1) gen = gen_sse4_1_blendvps; break; case V2DFmode: if (TARGET_SSE4_1) gen = gen_sse4_1_blendvpd; break; case V16QImode: case V8HImode: case V4SImode: case V2DImode: if (TARGET_SSE4_1) { gen = gen_sse4_1_pblendvb; if (mode != V16QImode) d = gen_reg_rtx (V16QImode); op_false = gen_lowpart (V16QImode, op_false); op_true = gen_lowpart (V16QImode, op_true); cmp = gen_lowpart (V16QImode, cmp); } break; case V8SFmode: if (TARGET_AVX) gen = gen_avx_blendvps256; break; case V4DFmode: if (TARGET_AVX) gen = gen_avx_blendvpd256; break; case V32QImode: case V16HImode: case V8SImode: case V4DImode: if (TARGET_AVX2) { gen = gen_avx2_pblendvb; if (mode != V32QImode) d = gen_reg_rtx (V32QImode); op_false = gen_lowpart (V32QImode, op_false); op_true = gen_lowpart (V32QImode, op_true); cmp = gen_lowpart (V32QImode, cmp); } break; default: break; } if (gen != NULL) { emit_insn (gen (d, op_false, op_true, cmp)); if (d != dest) emit_move_insn (dest, gen_lowpart (GET_MODE (dest), d)); } else { op_true = force_reg (mode, op_true); t2 = gen_reg_rtx (mode); if (optimize) t3 = gen_reg_rtx (mode); else t3 = dest; x = gen_rtx_AND (mode, op_true, cmp); emit_insn (gen_rtx_SET (VOIDmode, t2, x)); x = gen_rtx_NOT (mode, cmp); x = gen_rtx_AND (mode, x, op_false); emit_insn (gen_rtx_SET (VOIDmode, t3, x)); x = gen_rtx_IOR (mode, t3, t2); emit_insn (gen_rtx_SET (VOIDmode, dest, x)); } } } /* Expand a floating-point conditional move. Return true if successful. */ bool ix86_expand_fp_movcc (rtx operands[]) { enum machine_mode mode = GET_MODE (operands[0]); enum rtx_code code = GET_CODE (operands[1]); rtx tmp, compare_op; rtx op0 = XEXP (operands[1], 0); rtx op1 = XEXP (operands[1], 1); if (TARGET_SSE_MATH && SSE_FLOAT_MODE_P (mode)) { enum machine_mode cmode; /* Since we've no cmove for sse registers, don't force bad register allocation just to gain access to it. Deny movcc when the comparison mode doesn't match the move mode. */ cmode = GET_MODE (op0); if (cmode == VOIDmode) cmode = GET_MODE (op1); if (cmode != mode) return false; code = ix86_prepare_sse_fp_compare_args (operands[0], code, &op0, &op1); if (code == UNKNOWN) return false; if (ix86_expand_sse_fp_minmax (operands[0], code, op0, op1, operands[2], operands[3])) return true; tmp = ix86_expand_sse_cmp (operands[0], code, op0, op1, operands[2], operands[3]); ix86_expand_sse_movcc (operands[0], tmp, operands[2], operands[3]); return true; } if (GET_MODE (op0) == TImode || (GET_MODE (op0) == DImode && !TARGET_64BIT)) return false; /* The floating point conditional move instructions don't directly support conditions resulting from a signed integer comparison. */ compare_op = ix86_expand_compare (code, op0, op1); if (!fcmov_comparison_operator (compare_op, VOIDmode)) { tmp = gen_reg_rtx (QImode); ix86_expand_setcc (tmp, code, op0, op1); compare_op = ix86_expand_compare (NE, tmp, const0_rtx); } emit_insn (gen_rtx_SET (VOIDmode, operands[0], gen_rtx_IF_THEN_ELSE (mode, compare_op, operands[2], operands[3]))); return true; } /* Expand a floating-point vector conditional move; a vcond operation rather than a movcc operation. */ bool ix86_expand_fp_vcond (rtx operands[]) { enum rtx_code code = GET_CODE (operands[3]); rtx cmp; code = ix86_prepare_sse_fp_compare_args (operands[0], code, &operands[4], &operands[5]); if (code == UNKNOWN) { rtx temp; switch (GET_CODE (operands[3])) { case LTGT: temp = ix86_expand_sse_cmp (operands[0], ORDERED, operands[4], operands[5], operands[0], operands[0]); cmp = ix86_expand_sse_cmp (operands[0], NE, operands[4], operands[5], operands[1], operands[2]); code = AND; break; case UNEQ: temp = ix86_expand_sse_cmp (operands[0], UNORDERED, operands[4], operands[5], operands[0], operands[0]); cmp = ix86_expand_sse_cmp (operands[0], EQ, operands[4], operands[5], operands[1], operands[2]); code = IOR; break; default: gcc_unreachable (); } cmp = expand_simple_binop (GET_MODE (cmp), code, temp, cmp, cmp, 1, OPTAB_DIRECT); ix86_expand_sse_movcc (operands[0], cmp, operands[1], operands[2]); return true; } if (ix86_expand_sse_fp_minmax (operands[0], code, operands[4], operands[5], operands[1], operands[2])) return true; cmp = ix86_expand_sse_cmp (operands[0], code, operands[4], operands[5], operands[1], operands[2]); ix86_expand_sse_movcc (operands[0], cmp, operands[1], operands[2]); return true; } /* Expand a signed/unsigned integral vector conditional move. */ bool ix86_expand_int_vcond (rtx operands[]) { enum machine_mode data_mode = GET_MODE (operands[0]); enum machine_mode mode = GET_MODE (operands[4]); enum rtx_code code = GET_CODE (operands[3]); bool negate = false; rtx x, cop0, cop1; cop0 = operands[4]; cop1 = operands[5]; /* Try to optimize x < 0 ? -1 : 0 into (signed) x >> 31 and x < 0 ? 1 : 0 into (unsigned) x >> 31. */ if ((code == LT || code == GE) && data_mode == mode && cop1 == CONST0_RTX (mode) && operands[1 + (code == LT)] == CONST0_RTX (data_mode) && GET_MODE_SIZE (GET_MODE_INNER (data_mode)) > 1 && GET_MODE_SIZE (GET_MODE_INNER (data_mode)) <= 8 && (GET_MODE_SIZE (data_mode) == 16 || (TARGET_AVX2 && GET_MODE_SIZE (data_mode) == 32))) { rtx negop = operands[2 - (code == LT)]; int shift = GET_MODE_BITSIZE (GET_MODE_INNER (data_mode)) - 1; if (negop == CONST1_RTX (data_mode)) { rtx res = expand_simple_binop (mode, LSHIFTRT, cop0, GEN_INT (shift), operands[0], 1, OPTAB_DIRECT); if (res != operands[0]) emit_move_insn (operands[0], res); return true; } else if (GET_MODE_INNER (data_mode) != DImode && vector_all_ones_operand (negop, data_mode)) { rtx res = expand_simple_binop (mode, ASHIFTRT, cop0, GEN_INT (shift), operands[0], 0, OPTAB_DIRECT); if (res != operands[0]) emit_move_insn (operands[0], res); return true; } } if (!nonimmediate_operand (cop1, mode)) cop1 = force_reg (mode, cop1); if (!general_operand (operands[1], data_mode)) operands[1] = force_reg (data_mode, operands[1]); if (!general_operand (operands[2], data_mode)) operands[2] = force_reg (data_mode, operands[2]); /* XOP supports all of the comparisons on all 128-bit vector int types. */ if (TARGET_XOP && (mode == V16QImode || mode == V8HImode || mode == V4SImode || mode == V2DImode)) ; else { /* Canonicalize the comparison to EQ, GT, GTU. */ switch (code) { case EQ: case GT: case GTU: break; case NE: case LE: case LEU: code = reverse_condition (code); negate = true; break; case GE: case GEU: code = reverse_condition (code); negate = true; /* FALLTHRU */ case LT: case LTU: code = swap_condition (code); x = cop0, cop0 = cop1, cop1 = x; break; default: gcc_unreachable (); } /* Only SSE4.1/SSE4.2 supports V2DImode. */ if (mode == V2DImode) { switch (code) { case EQ: /* SSE4.1 supports EQ. */ if (!TARGET_SSE4_1) return false; break; case GT: case GTU: /* SSE4.2 supports GT/GTU. */ if (!TARGET_SSE4_2) return false; break; default: gcc_unreachable (); } } /* Unsigned parallel compare is not supported by the hardware. Play some tricks to turn this into a signed comparison against 0. */ if (code == GTU) { cop0 = force_reg (mode, cop0); switch (mode) { case V8SImode: case V4DImode: case V4SImode: case V2DImode: { rtx t1, t2, mask; rtx (*gen_sub3) (rtx, rtx, rtx); switch (mode) { case V8SImode: gen_sub3 = gen_subv8si3; break; case V4DImode: gen_sub3 = gen_subv4di3; break; case V4SImode: gen_sub3 = gen_subv4si3; break; case V2DImode: gen_sub3 = gen_subv2di3; break; default: gcc_unreachable (); } /* Subtract (-(INT MAX) - 1) from both operands to make them signed. */ mask = ix86_build_signbit_mask (mode, true, false); t1 = gen_reg_rtx (mode); emit_insn (gen_sub3 (t1, cop0, mask)); t2 = gen_reg_rtx (mode); emit_insn (gen_sub3 (t2, cop1, mask)); cop0 = t1; cop1 = t2; code = GT; } break; case V32QImode: case V16HImode: case V16QImode: case V8HImode: /* Perform a parallel unsigned saturating subtraction. */ x = gen_reg_rtx (mode); emit_insn (gen_rtx_SET (VOIDmode, x, gen_rtx_US_MINUS (mode, cop0, cop1))); cop0 = x; cop1 = CONST0_RTX (mode); code = EQ; negate = !negate; break; default: gcc_unreachable (); } } } /* Allow the comparison to be done in one mode, but the movcc to happen in another mode. */ if (data_mode == mode) { x = ix86_expand_sse_cmp (operands[0], code, cop0, cop1, operands[1+negate], operands[2-negate]); } else { gcc_assert (GET_MODE_SIZE (data_mode) == GET_MODE_SIZE (mode)); x = ix86_expand_sse_cmp (gen_reg_rtx (mode), code, cop0, cop1, operands[1+negate], operands[2-negate]); x = gen_lowpart (data_mode, x); } ix86_expand_sse_movcc (operands[0], x, operands[1+negate], operands[2-negate]); return true; } /* Expand a variable vector permutation. */ void ix86_expand_vec_perm (rtx operands[]) { rtx target = operands[0]; rtx op0 = operands[1]; rtx op1 = operands[2]; rtx mask = operands[3]; rtx t1, t2, t3, t4, t5, t6, t7, t8, vt, vt2, vec[32]; enum machine_mode mode = GET_MODE (op0); enum machine_mode maskmode = GET_MODE (mask); int w, e, i; bool one_operand_shuffle = rtx_equal_p (op0, op1); /* Number of elements in the vector. */ w = GET_MODE_NUNITS (mode); e = GET_MODE_UNIT_SIZE (mode); gcc_assert (w <= 32); if (TARGET_AVX2) { if (mode == V4DImode || mode == V4DFmode || mode == V16HImode) { /* Unfortunately, the VPERMQ and VPERMPD instructions only support an constant shuffle operand. With a tiny bit of effort we can use VPERMD instead. A re-interpretation stall for V4DFmode is unfortunate but there's no avoiding it. Similarly for V16HImode we don't have instructions for variable shuffling, while for V32QImode we can use after preparing suitable masks vpshufb; vpshufb; vpermq; vpor. */ if (mode == V16HImode) { maskmode = mode = V32QImode; w = 32; e = 1; } else { maskmode = mode = V8SImode; w = 8; e = 4; } t1 = gen_reg_rtx (maskmode); /* Replicate the low bits of the V4DImode mask into V8SImode: mask = { A B C D } t1 = { A A B B C C D D }. */ for (i = 0; i < w / 2; ++i) vec[i*2 + 1] = vec[i*2] = GEN_INT (i * 2); vt = gen_rtx_CONST_VECTOR (maskmode, gen_rtvec_v (w, vec)); vt = force_reg (maskmode, vt); mask = gen_lowpart (maskmode, mask); if (maskmode == V8SImode) emit_insn (gen_avx2_permvarv8si (t1, mask, vt)); else emit_insn (gen_avx2_pshufbv32qi3 (t1, mask, vt)); /* Multiply the shuffle indicies by two. */ t1 = expand_simple_binop (maskmode, PLUS, t1, t1, t1, 1, OPTAB_DIRECT); /* Add one to the odd shuffle indicies: t1 = { A*2, A*2+1, B*2, B*2+1, ... }. */ for (i = 0; i < w / 2; ++i) { vec[i * 2] = const0_rtx; vec[i * 2 + 1] = const1_rtx; } vt = gen_rtx_CONST_VECTOR (maskmode, gen_rtvec_v (w, vec)); vt = validize_mem (force_const_mem (maskmode, vt)); t1 = expand_simple_binop (maskmode, PLUS, t1, vt, t1, 1, OPTAB_DIRECT); /* Continue as if V8SImode (resp. V32QImode) was used initially. */ operands[3] = mask = t1; target = gen_reg_rtx (mode); op0 = gen_lowpart (mode, op0); op1 = gen_lowpart (mode, op1); } switch (mode) { case V8SImode: /* The VPERMD and VPERMPS instructions already properly ignore the high bits of the shuffle elements. No need for us to perform an AND ourselves. */ if (one_operand_shuffle) { emit_insn (gen_avx2_permvarv8si (target, op0, mask)); if (target != operands[0]) emit_move_insn (operands[0], gen_lowpart (GET_MODE (operands[0]), target)); } else { t1 = gen_reg_rtx (V8SImode); t2 = gen_reg_rtx (V8SImode); emit_insn (gen_avx2_permvarv8si (t1, op0, mask)); emit_insn (gen_avx2_permvarv8si (t2, op1, mask)); goto merge_two; } return; case V8SFmode: mask = gen_lowpart (V8SFmode, mask); if (one_operand_shuffle) emit_insn (gen_avx2_permvarv8sf (target, op0, mask)); else { t1 = gen_reg_rtx (V8SFmode); t2 = gen_reg_rtx (V8SFmode); emit_insn (gen_avx2_permvarv8sf (t1, op0, mask)); emit_insn (gen_avx2_permvarv8sf (t2, op1, mask)); goto merge_two; } return; case V4SImode: /* By combining the two 128-bit input vectors into one 256-bit input vector, we can use VPERMD and VPERMPS for the full two-operand shuffle. */ t1 = gen_reg_rtx (V8SImode); t2 = gen_reg_rtx (V8SImode); emit_insn (gen_avx_vec_concatv8si (t1, op0, op1)); emit_insn (gen_avx_vec_concatv8si (t2, mask, mask)); emit_insn (gen_avx2_permvarv8si (t1, t1, t2)); emit_insn (gen_avx_vextractf128v8si (target, t1, const0_rtx)); return; case V4SFmode: t1 = gen_reg_rtx (V8SFmode); t2 = gen_reg_rtx (V8SImode); mask = gen_lowpart (V4SImode, mask); emit_insn (gen_avx_vec_concatv8sf (t1, op0, op1)); emit_insn (gen_avx_vec_concatv8si (t2, mask, mask)); emit_insn (gen_avx2_permvarv8sf (t1, t1, t2)); emit_insn (gen_avx_vextractf128v8sf (target, t1, const0_rtx)); return; case V32QImode: t1 = gen_reg_rtx (V32QImode); t2 = gen_reg_rtx (V32QImode); t3 = gen_reg_rtx (V32QImode); vt2 = GEN_INT (128); for (i = 0; i < 32; i++) vec[i] = vt2; vt = gen_rtx_CONST_VECTOR (V32QImode, gen_rtvec_v (32, vec)); vt = force_reg (V32QImode, vt); for (i = 0; i < 32; i++) vec[i] = i < 16 ? vt2 : const0_rtx; vt2 = gen_rtx_CONST_VECTOR (V32QImode, gen_rtvec_v (32, vec)); vt2 = force_reg (V32QImode, vt2); /* From mask create two adjusted masks, which contain the same bits as mask in the low 7 bits of each vector element. The first mask will have the most significant bit clear if it requests element from the same 128-bit lane and MSB set if it requests element from the other 128-bit lane. The second mask will have the opposite values of the MSB, and additionally will have its 128-bit lanes swapped. E.g. { 07 12 1e 09 ... | 17 19 05 1f ... } mask vector will have t1 { 07 92 9e 09 ... | 17 19 85 1f ... } and t3 { 97 99 05 9f ... | 87 12 1e 89 ... } where each ... stands for other 12 bytes. */ /* The bit whether element is from the same lane or the other lane is bit 4, so shift it up by 3 to the MSB position. */ t5 = gen_reg_rtx (V4DImode); emit_insn (gen_ashlv4di3 (t5, gen_lowpart (V4DImode, mask), GEN_INT (3))); /* Clear MSB bits from the mask just in case it had them set. */ emit_insn (gen_avx2_andnotv32qi3 (t2, vt, mask)); /* After this t1 will have MSB set for elements from other lane. */ emit_insn (gen_xorv32qi3 (t1, gen_lowpart (V32QImode, t5), vt2)); /* Clear bits other than MSB. */ emit_insn (gen_andv32qi3 (t1, t1, vt)); /* Or in the lower bits from mask into t3. */ emit_insn (gen_iorv32qi3 (t3, t1, t2)); /* And invert MSB bits in t1, so MSB is set for elements from the same lane. */ emit_insn (gen_xorv32qi3 (t1, t1, vt)); /* Swap 128-bit lanes in t3. */ t6 = gen_reg_rtx (V4DImode); emit_insn (gen_avx2_permv4di_1 (t6, gen_lowpart (V4DImode, t3), const2_rtx, GEN_INT (3), const0_rtx, const1_rtx)); /* And or in the lower bits from mask into t1. */ emit_insn (gen_iorv32qi3 (t1, t1, t2)); if (one_operand_shuffle) { /* Each of these shuffles will put 0s in places where element from the other 128-bit lane is needed, otherwise will shuffle in the requested value. */ emit_insn (gen_avx2_pshufbv32qi3 (t3, op0, gen_lowpart (V32QImode, t6))); emit_insn (gen_avx2_pshufbv32qi3 (t1, op0, t1)); /* For t3 the 128-bit lanes are swapped again. */ t7 = gen_reg_rtx (V4DImode); emit_insn (gen_avx2_permv4di_1 (t7, gen_lowpart (V4DImode, t3), const2_rtx, GEN_INT (3), const0_rtx, const1_rtx)); /* And oring both together leads to the result. */ emit_insn (gen_iorv32qi3 (target, t1, gen_lowpart (V32QImode, t7))); if (target != operands[0]) emit_move_insn (operands[0], gen_lowpart (GET_MODE (operands[0]), target)); return; } t4 = gen_reg_rtx (V32QImode); /* Similarly to the above one_operand_shuffle code, just for repeated twice for each operand. merge_two: code will merge the two results together. */ emit_insn (gen_avx2_pshufbv32qi3 (t4, op0, gen_lowpart (V32QImode, t6))); emit_insn (gen_avx2_pshufbv32qi3 (t3, op1, gen_lowpart (V32QImode, t6))); emit_insn (gen_avx2_pshufbv32qi3 (t2, op0, t1)); emit_insn (gen_avx2_pshufbv32qi3 (t1, op1, t1)); t7 = gen_reg_rtx (V4DImode); emit_insn (gen_avx2_permv4di_1 (t7, gen_lowpart (V4DImode, t4), const2_rtx, GEN_INT (3), const0_rtx, const1_rtx)); t8 = gen_reg_rtx (V4DImode); emit_insn (gen_avx2_permv4di_1 (t8, gen_lowpart (V4DImode, t3), const2_rtx, GEN_INT (3), const0_rtx, const1_rtx)); emit_insn (gen_iorv32qi3 (t4, t2, gen_lowpart (V32QImode, t7))); emit_insn (gen_iorv32qi3 (t3, t1, gen_lowpart (V32QImode, t8))); t1 = t4; t2 = t3; goto merge_two; default: gcc_assert (GET_MODE_SIZE (mode) <= 16); break; } } if (TARGET_XOP) { /* The XOP VPPERM insn supports three inputs. By ignoring the one_operand_shuffle special case, we avoid creating another set of constant vectors in memory. */ one_operand_shuffle = false; /* mask = mask & {2*w-1, ...} */ vt = GEN_INT (2*w - 1); } else { /* mask = mask & {w-1, ...} */ vt = GEN_INT (w - 1); } for (i = 0; i < w; i++) vec[i] = vt; vt = gen_rtx_CONST_VECTOR (maskmode, gen_rtvec_v (w, vec)); mask = expand_simple_binop (maskmode, AND, mask, vt, NULL_RTX, 0, OPTAB_DIRECT); /* For non-QImode operations, convert the word permutation control into a byte permutation control. */ if (mode != V16QImode) { mask = expand_simple_binop (maskmode, ASHIFT, mask, GEN_INT (exact_log2 (e)), NULL_RTX, 0, OPTAB_DIRECT); /* Convert mask to vector of chars. */ mask = force_reg (V16QImode, gen_lowpart (V16QImode, mask)); /* Replicate each of the input bytes into byte positions: (v2di) --> {0,0,0,0,0,0,0,0, 8,8,8,8,8,8,8,8} (v4si) --> {0,0,0,0, 4,4,4,4, 8,8,8,8, 12,12,12,12} (v8hi) --> {0,0, 2,2, 4,4, 6,6, ...}. */ for (i = 0; i < 16; ++i) vec[i] = GEN_INT (i/e * e); vt = gen_rtx_CONST_VECTOR (V16QImode, gen_rtvec_v (16, vec)); vt = validize_mem (force_const_mem (V16QImode, vt)); if (TARGET_XOP) emit_insn (gen_xop_pperm (mask, mask, mask, vt)); else emit_insn (gen_ssse3_pshufbv16qi3 (mask, mask, vt)); /* Convert it into the byte positions by doing mask = mask + {0,1,..,16/w, 0,1,..,16/w, ...} */ for (i = 0; i < 16; ++i) vec[i] = GEN_INT (i % e); vt = gen_rtx_CONST_VECTOR (V16QImode, gen_rtvec_v (16, vec)); vt = validize_mem (force_const_mem (V16QImode, vt)); emit_insn (gen_addv16qi3 (mask, mask, vt)); } /* The actual shuffle operations all operate on V16QImode. */ op0 = gen_lowpart (V16QImode, op0); op1 = gen_lowpart (V16QImode, op1); if (TARGET_XOP) { if (GET_MODE (target) != V16QImode) target = gen_reg_rtx (V16QImode); emit_insn (gen_xop_pperm (target, op0, op1, mask)); if (target != operands[0]) emit_move_insn (operands[0], gen_lowpart (GET_MODE (operands[0]), target)); } else if (one_operand_shuffle) { if (GET_MODE (target) != V16QImode) target = gen_reg_rtx (V16QImode); emit_insn (gen_ssse3_pshufbv16qi3 (target, op0, mask)); if (target != operands[0]) emit_move_insn (operands[0], gen_lowpart (GET_MODE (operands[0]), target)); } else { rtx xops[6]; bool ok; /* Shuffle the two input vectors independently. */ t1 = gen_reg_rtx (V16QImode); t2 = gen_reg_rtx (V16QImode); emit_insn (gen_ssse3_pshufbv16qi3 (t1, op0, mask)); emit_insn (gen_ssse3_pshufbv16qi3 (t2, op1, mask)); merge_two: /* Then merge them together. The key is whether any given control element contained a bit set that indicates the second word. */ mask = operands[3]; vt = GEN_INT (w); if (maskmode == V2DImode && !TARGET_SSE4_1) { /* Without SSE4.1, we don't have V2DImode EQ. Perform one more shuffle to convert the V2DI input mask into a V4SI input mask. At which point the masking that expand_int_vcond will work as desired. */ rtx t3 = gen_reg_rtx (V4SImode); emit_insn (gen_sse2_pshufd_1 (t3, gen_lowpart (V4SImode, mask), const0_rtx, const0_rtx, const2_rtx, const2_rtx)); mask = t3; maskmode = V4SImode; e = w = 4; } for (i = 0; i < w; i++) vec[i] = vt; vt = gen_rtx_CONST_VECTOR (maskmode, gen_rtvec_v (w, vec)); vt = force_reg (maskmode, vt); mask = expand_simple_binop (maskmode, AND, mask, vt, NULL_RTX, 0, OPTAB_DIRECT); if (GET_MODE (target) != mode) target = gen_reg_rtx (mode); xops[0] = target; xops[1] = gen_lowpart (mode, t2); xops[2] = gen_lowpart (mode, t1); xops[3] = gen_rtx_EQ (maskmode, mask, vt); xops[4] = mask; xops[5] = vt; ok = ix86_expand_int_vcond (xops); gcc_assert (ok); if (target != operands[0]) emit_move_insn (operands[0], gen_lowpart (GET_MODE (operands[0]), target)); } } /* Unpack OP[1] into the next wider integer vector type. UNSIGNED_P is true if we should do zero extension, else sign extension. HIGH_P is true if we want the N/2 high elements, else the low elements. */ void ix86_expand_sse_unpack (rtx dest, rtx src, bool unsigned_p, bool high_p) { enum machine_mode imode = GET_MODE (src); rtx tmp; if (TARGET_SSE4_1) { rtx (*unpack)(rtx, rtx); rtx (*extract)(rtx, rtx) = NULL; enum machine_mode halfmode = BLKmode; switch (imode) { case V32QImode: if (unsigned_p) unpack = gen_avx2_zero_extendv16qiv16hi2; else unpack = gen_avx2_sign_extendv16qiv16hi2; halfmode = V16QImode; extract = high_p ? gen_vec_extract_hi_v32qi : gen_vec_extract_lo_v32qi; break; case V16HImode: if (unsigned_p) unpack = gen_avx2_zero_extendv8hiv8si2; else unpack = gen_avx2_sign_extendv8hiv8si2; halfmode = V8HImode; extract = high_p ? gen_vec_extract_hi_v16hi : gen_vec_extract_lo_v16hi; break; case V8SImode: if (unsigned_p) unpack = gen_avx2_zero_extendv4siv4di2; else unpack = gen_avx2_sign_extendv4siv4di2; halfmode = V4SImode; extract = high_p ? gen_vec_extract_hi_v8si : gen_vec_extract_lo_v8si; break; case V16QImode: if (unsigned_p) unpack = gen_sse4_1_zero_extendv8qiv8hi2; else unpack = gen_sse4_1_sign_extendv8qiv8hi2; break; case V8HImode: if (unsigned_p) unpack = gen_sse4_1_zero_extendv4hiv4si2; else unpack = gen_sse4_1_sign_extendv4hiv4si2; break; case V4SImode: if (unsigned_p) unpack = gen_sse4_1_zero_extendv2siv2di2; else unpack = gen_sse4_1_sign_extendv2siv2di2; break; default: gcc_unreachable (); } if (GET_MODE_SIZE (imode) == 32) { tmp = gen_reg_rtx (halfmode); emit_insn (extract (tmp, src)); } else if (high_p) { /* Shift higher 8 bytes to lower 8 bytes. */ tmp = gen_reg_rtx (V1TImode); emit_insn (gen_sse2_lshrv1ti3 (tmp, gen_lowpart (V1TImode, src), GEN_INT (64))); tmp = gen_lowpart (imode, tmp); } else tmp = src; emit_insn (unpack (dest, tmp)); } else { rtx (*unpack)(rtx, rtx, rtx); switch (imode) { case V16QImode: if (high_p) unpack = gen_vec_interleave_highv16qi; else unpack = gen_vec_interleave_lowv16qi; break; case V8HImode: if (high_p) unpack = gen_vec_interleave_highv8hi; else unpack = gen_vec_interleave_lowv8hi; break; case V4SImode: if (high_p) unpack = gen_vec_interleave_highv4si; else unpack = gen_vec_interleave_lowv4si; break; default: gcc_unreachable (); } if (unsigned_p) tmp = force_reg (imode, CONST0_RTX (imode)); else tmp = ix86_expand_sse_cmp (gen_reg_rtx (imode), GT, CONST0_RTX (imode), src, pc_rtx, pc_rtx); rtx tmp2 = gen_reg_rtx (imode); emit_insn (unpack (tmp2, src, tmp)); emit_move_insn (dest, gen_lowpart (GET_MODE (dest), tmp2)); } } /* Expand conditional increment or decrement using adb/sbb instructions. The default case using setcc followed by the conditional move can be done by generic code. */ bool ix86_expand_int_addcc (rtx operands[]) { enum rtx_code code = GET_CODE (operands[1]); rtx flags; rtx (*insn)(rtx, rtx, rtx, rtx, rtx); rtx compare_op; rtx val = const0_rtx; bool fpcmp = false; enum machine_mode mode; rtx op0 = XEXP (operands[1], 0); rtx op1 = XEXP (operands[1], 1); if (operands[3] != const1_rtx && operands[3] != constm1_rtx) return false; if (!ix86_expand_carry_flag_compare (code, op0, op1, &compare_op)) return false; code = GET_CODE (compare_op); flags = XEXP (compare_op, 0); if (GET_MODE (flags) == CCFPmode || GET_MODE (flags) == CCFPUmode) { fpcmp = true; code = ix86_fp_compare_code_to_integer (code); } if (code != LTU) { val = constm1_rtx; if (fpcmp) PUT_CODE (compare_op, reverse_condition_maybe_unordered (GET_CODE (compare_op))); else PUT_CODE (compare_op, reverse_condition (GET_CODE (compare_op))); } mode = GET_MODE (operands[0]); /* Construct either adc or sbb insn. */ if ((code == LTU) == (operands[3] == constm1_rtx)) { switch (mode) { case QImode: insn = gen_subqi3_carry; break; case HImode: insn = gen_subhi3_carry; break; case SImode: insn = gen_subsi3_carry; break; case DImode: insn = gen_subdi3_carry; break; default: gcc_unreachable (); } } else { switch (mode) { case QImode: insn = gen_addqi3_carry; break; case HImode: insn = gen_addhi3_carry; break; case SImode: insn = gen_addsi3_carry; break; case DImode: insn = gen_adddi3_carry; break; default: gcc_unreachable (); } } emit_insn (insn (operands[0], operands[2], val, flags, compare_op)); return true; } /* Split operands 0 and 1 into half-mode parts. Similar to split_double_mode, but works for floating pointer parameters and nonoffsetable memories. For pushes, it returns just stack offsets; the values will be saved in the right order. Maximally three parts are generated. */ static int ix86_split_to_parts (rtx operand, rtx *parts, enum machine_mode mode) { int size; if (!TARGET_64BIT) size = mode==XFmode ? 3 : GET_MODE_SIZE (mode) / 4; else size = (GET_MODE_SIZE (mode) + 4) / 8; gcc_assert (!REG_P (operand) || !MMX_REGNO_P (REGNO (operand))); gcc_assert (size >= 2 && size <= 4); /* Optimize constant pool reference to immediates. This is used by fp moves, that force all constants to memory to allow combining. */ if (MEM_P (operand) && MEM_READONLY_P (operand)) { rtx tmp = maybe_get_pool_constant (operand); if (tmp) operand = tmp; } if (MEM_P (operand) && !offsettable_memref_p (operand)) { /* The only non-offsetable memories we handle are pushes. */ int ok = push_operand (operand, VOIDmode); gcc_assert (ok); operand = copy_rtx (operand); PUT_MODE (operand, word_mode); parts[0] = parts[1] = parts[2] = parts[3] = operand; return size; } if (GET_CODE (operand) == CONST_VECTOR) { enum machine_mode imode = int_mode_for_mode (mode); /* Caution: if we looked through a constant pool memory above, the operand may actually have a different mode now. That's ok, since we want to pun this all the way back to an integer. */ operand = simplify_subreg (imode, operand, GET_MODE (operand), 0); gcc_assert (operand != NULL); mode = imode; } if (!TARGET_64BIT) { if (mode == DImode) split_double_mode (mode, &operand, 1, &parts[0], &parts[1]); else { int i; if (REG_P (operand)) { gcc_assert (reload_completed); for (i = 0; i < size; i++) parts[i] = gen_rtx_REG (SImode, REGNO (operand) + i); } else if (offsettable_memref_p (operand)) { operand = adjust_address (operand, SImode, 0); parts[0] = operand; for (i = 1; i < size; i++) parts[i] = adjust_address (operand, SImode, 4 * i); } else if (GET_CODE (operand) == CONST_DOUBLE) { REAL_VALUE_TYPE r; long l[4]; REAL_VALUE_FROM_CONST_DOUBLE (r, operand); switch (mode) { case TFmode: real_to_target (l, &r, mode); parts[3] = gen_int_mode (l[3], SImode); parts[2] = gen_int_mode (l[2], SImode); break; case XFmode: /* We can't use REAL_VALUE_TO_TARGET_LONG_DOUBLE since long double may not be 80-bit. */ real_to_target (l, &r, mode); parts[2] = gen_int_mode (l[2], SImode); break; case DFmode: REAL_VALUE_TO_TARGET_DOUBLE (r, l); break; default: gcc_unreachable (); } parts[1] = gen_int_mode (l[1], SImode); parts[0] = gen_int_mode (l[0], SImode); } else gcc_unreachable (); } } else { if (mode == TImode) split_double_mode (mode, &operand, 1, &parts[0], &parts[1]); if (mode == XFmode || mode == TFmode) { enum machine_mode upper_mode = mode==XFmode ? SImode : DImode; if (REG_P (operand)) { gcc_assert (reload_completed); parts[0] = gen_rtx_REG (DImode, REGNO (operand) + 0); parts[1] = gen_rtx_REG (upper_mode, REGNO (operand) + 1); } else if (offsettable_memref_p (operand)) { operand = adjust_address (operand, DImode, 0); parts[0] = operand; parts[1] = adjust_address (operand, upper_mode, 8); } else if (GET_CODE (operand) == CONST_DOUBLE) { REAL_VALUE_TYPE r; long l[4]; REAL_VALUE_FROM_CONST_DOUBLE (r, operand); real_to_target (l, &r, mode); /* Do not use shift by 32 to avoid warning on 32bit systems. */ if (HOST_BITS_PER_WIDE_INT >= 64) parts[0] = gen_int_mode ((l[0] & (((HOST_WIDE_INT) 2 << 31) - 1)) + ((((HOST_WIDE_INT) l[1]) << 31) << 1), DImode); else parts[0] = immed_double_const (l[0], l[1], DImode); if (upper_mode == SImode) parts[1] = gen_int_mode (l[2], SImode); else if (HOST_BITS_PER_WIDE_INT >= 64) parts[1] = gen_int_mode ((l[2] & (((HOST_WIDE_INT) 2 << 31) - 1)) + ((((HOST_WIDE_INT) l[3]) << 31) << 1), DImode); else parts[1] = immed_double_const (l[2], l[3], DImode); } else gcc_unreachable (); } } return size; } /* Emit insns to perform a move or push of DI, DF, XF, and TF values. Return false when normal moves are needed; true when all required insns have been emitted. Operands 2-4 contain the input values int the correct order; operands 5-7 contain the output values. */ void ix86_split_long_move (rtx operands[]) { rtx part[2][4]; int nparts, i, j; int push = 0; int collisions = 0; enum machine_mode mode = GET_MODE (operands[0]); bool collisionparts[4]; /* The DFmode expanders may ask us to move double. For 64bit target this is single move. By hiding the fact here we simplify i386.md splitters. */ if (TARGET_64BIT && GET_MODE_SIZE (GET_MODE (operands[0])) == 8) { /* Optimize constant pool reference to immediates. This is used by fp moves, that force all constants to memory to allow combining. */ if (MEM_P (operands[1]) && GET_CODE (XEXP (operands[1], 0)) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (XEXP (operands[1], 0))) operands[1] = get_pool_constant (XEXP (operands[1], 0)); if (push_operand (operands[0], VOIDmode)) { operands[0] = copy_rtx (operands[0]); PUT_MODE (operands[0], word_mode); } else operands[0] = gen_lowpart (DImode, operands[0]); operands[1] = gen_lowpart (DImode, operands[1]); emit_move_insn (operands[0], operands[1]); return; } /* The only non-offsettable memory we handle is push. */ if (push_operand (operands[0], VOIDmode)) push = 1; else gcc_assert (!MEM_P (operands[0]) || offsettable_memref_p (operands[0])); nparts = ix86_split_to_parts (operands[1], part[1], GET_MODE (operands[0])); ix86_split_to_parts (operands[0], part[0], GET_MODE (operands[0])); /* When emitting push, take care for source operands on the stack. */ if (push && MEM_P (operands[1]) && reg_overlap_mentioned_p (stack_pointer_rtx, operands[1])) { rtx src_base = XEXP (part[1][nparts - 1], 0); /* Compensate for the stack decrement by 4. */ if (!TARGET_64BIT && nparts == 3 && mode == XFmode && TARGET_128BIT_LONG_DOUBLE) src_base = plus_constant (Pmode, src_base, 4); /* src_base refers to the stack pointer and is automatically decreased by emitted push. */ for (i = 0; i < nparts; i++) part[1][i] = change_address (part[1][i], GET_MODE (part[1][i]), src_base); } /* We need to do copy in the right order in case an address register of the source overlaps the destination. */ if (REG_P (part[0][0]) && MEM_P (part[1][0])) { rtx tmp; for (i = 0; i < nparts; i++) { collisionparts[i] = reg_overlap_mentioned_p (part[0][i], XEXP (part[1][0], 0)); if (collisionparts[i]) collisions++; } /* Collision in the middle part can be handled by reordering. */ if (collisions == 1 && nparts == 3 && collisionparts [1]) { tmp = part[0][1]; part[0][1] = part[0][2]; part[0][2] = tmp; tmp = part[1][1]; part[1][1] = part[1][2]; part[1][2] = tmp; } else if (collisions == 1 && nparts == 4 && (collisionparts [1] || collisionparts [2])) { if (collisionparts [1]) { tmp = part[0][1]; part[0][1] = part[0][2]; part[0][2] = tmp; tmp = part[1][1]; part[1][1] = part[1][2]; part[1][2] = tmp; } else { tmp = part[0][2]; part[0][2] = part[0][3]; part[0][3] = tmp; tmp = part[1][2]; part[1][2] = part[1][3]; part[1][3] = tmp; } } /* If there are more collisions, we can't handle it by reordering. Do an lea to the last part and use only one colliding move. */ else if (collisions > 1) { rtx base; collisions = 1; base = part[0][nparts - 1]; /* Handle the case when the last part isn't valid for lea. Happens in 64-bit mode storing the 12-byte XFmode. */ if (GET_MODE (base) != Pmode) base = gen_rtx_REG (Pmode, REGNO (base)); emit_insn (gen_rtx_SET (VOIDmode, base, XEXP (part[1][0], 0))); part[1][0] = replace_equiv_address (part[1][0], base); for (i = 1; i < nparts; i++) { tmp = plus_constant (Pmode, base, UNITS_PER_WORD * i); part[1][i] = replace_equiv_address (part[1][i], tmp); } } } if (push) { if (!TARGET_64BIT) { if (nparts == 3) { if (TARGET_128BIT_LONG_DOUBLE && mode == XFmode) emit_insn (ix86_gen_add3 (stack_pointer_rtx, stack_pointer_rtx, GEN_INT (-4))); emit_move_insn (part[0][2], part[1][2]); } else if (nparts == 4) { emit_move_insn (part[0][3], part[1][3]); emit_move_insn (part[0][2], part[1][2]); } } else { /* In 64bit mode we don't have 32bit push available. In case this is register, it is OK - we will just use larger counterpart. We also retype memory - these comes from attempt to avoid REX prefix on moving of second half of TFmode value. */ if (GET_MODE (part[1][1]) == SImode) { switch (GET_CODE (part[1][1])) { case MEM: part[1][1] = adjust_address (part[1][1], DImode, 0); break; case REG: part[1][1] = gen_rtx_REG (DImode, REGNO (part[1][1])); break; default: gcc_unreachable (); } if (GET_MODE (part[1][0]) == SImode) part[1][0] = part[1][1]; } } emit_move_insn (part[0][1], part[1][1]); emit_move_insn (part[0][0], part[1][0]); return; } /* Choose correct order to not overwrite the source before it is copied. */ if ((REG_P (part[0][0]) && REG_P (part[1][1]) && (REGNO (part[0][0]) == REGNO (part[1][1]) || (nparts == 3 && REGNO (part[0][0]) == REGNO (part[1][2])) || (nparts == 4 && REGNO (part[0][0]) == REGNO (part[1][3])))) || (collisions > 0 && reg_overlap_mentioned_p (part[0][0], XEXP (part[1][0], 0)))) { for (i = 0, j = nparts - 1; i < nparts; i++, j--) { operands[2 + i] = part[0][j]; operands[6 + i] = part[1][j]; } } else { for (i = 0; i < nparts; i++) { operands[2 + i] = part[0][i]; operands[6 + i] = part[1][i]; } } /* If optimizing for size, attempt to locally unCSE nonzero constants. */ if (optimize_insn_for_size_p ()) { for (j = 0; j < nparts - 1; j++) if (CONST_INT_P (operands[6 + j]) && operands[6 + j] != const0_rtx && REG_P (operands[2 + j])) for (i = j; i < nparts - 1; i++) if (CONST_INT_P (operands[7 + i]) && INTVAL (operands[7 + i]) == INTVAL (operands[6 + j])) operands[7 + i] = operands[2 + j]; } for (i = 0; i < nparts; i++) emit_move_insn (operands[2 + i], operands[6 + i]); return; } /* Helper function of ix86_split_ashl used to generate an SImode/DImode left shift by a constant, either using a single shift or a sequence of add instructions. */ static void ix86_expand_ashl_const (rtx operand, int count, enum machine_mode mode) { rtx (*insn)(rtx, rtx, rtx); if (count == 1 || (count * ix86_cost->add <= ix86_cost->shift_const && !optimize_insn_for_size_p ())) { insn = mode == DImode ? gen_addsi3 : gen_adddi3; while (count-- > 0) emit_insn (insn (operand, operand, operand)); } else { insn = mode == DImode ? gen_ashlsi3 : gen_ashldi3; emit_insn (insn (operand, operand, GEN_INT (count))); } } void ix86_split_ashl (rtx *operands, rtx scratch, enum machine_mode mode) { rtx (*gen_ashl3)(rtx, rtx, rtx); rtx (*gen_shld)(rtx, rtx, rtx); int half_width = GET_MODE_BITSIZE (mode) >> 1; rtx low[2], high[2]; int count; if (CONST_INT_P (operands[2])) { split_double_mode (mode, operands, 2, low, high); count = INTVAL (operands[2]) & (GET_MODE_BITSIZE (mode) - 1); if (count >= half_width) { emit_move_insn (high[0], low[1]); emit_move_insn (low[0], const0_rtx); if (count > half_width) ix86_expand_ashl_const (high[0], count - half_width, mode); } else { gen_shld = mode == DImode ? gen_x86_shld : gen_x86_64_shld; if (!rtx_equal_p (operands[0], operands[1])) emit_move_insn (operands[0], operands[1]); emit_insn (gen_shld (high[0], low[0], GEN_INT (count))); ix86_expand_ashl_const (low[0], count, mode); } return; } split_double_mode (mode, operands, 1, low, high); gen_ashl3 = mode == DImode ? gen_ashlsi3 : gen_ashldi3; if (operands[1] == const1_rtx) { /* Assuming we've chosen a QImode capable registers, then 1 << N can be done with two 32/64-bit shifts, no branches, no cmoves. */ if (ANY_QI_REG_P (low[0]) && ANY_QI_REG_P (high[0])) { rtx s, d, flags = gen_rtx_REG (CCZmode, FLAGS_REG); ix86_expand_clear (low[0]); ix86_expand_clear (high[0]); emit_insn (gen_testqi_ccz_1 (operands[2], GEN_INT (half_width))); d = gen_lowpart (QImode, low[0]); d = gen_rtx_STRICT_LOW_PART (VOIDmode, d); s = gen_rtx_EQ (QImode, flags, const0_rtx); emit_insn (gen_rtx_SET (VOIDmode, d, s)); d = gen_lowpart (QImode, high[0]); d = gen_rtx_STRICT_LOW_PART (VOIDmode, d); s = gen_rtx_NE (QImode, flags, const0_rtx); emit_insn (gen_rtx_SET (VOIDmode, d, s)); } /* Otherwise, we can get the same results by manually performing a bit extract operation on bit 5/6, and then performing the two shifts. The two methods of getting 0/1 into low/high are exactly the same size. Avoiding the shift in the bit extract case helps pentium4 a bit; no one else seems to care much either way. */ else { enum machine_mode half_mode; rtx (*gen_lshr3)(rtx, rtx, rtx); rtx (*gen_and3)(rtx, rtx, rtx); rtx (*gen_xor3)(rtx, rtx, rtx); HOST_WIDE_INT bits; rtx x; if (mode == DImode) { half_mode = SImode; gen_lshr3 = gen_lshrsi3; gen_and3 = gen_andsi3; gen_xor3 = gen_xorsi3; bits = 5; } else { half_mode = DImode; gen_lshr3 = gen_lshrdi3; gen_and3 = gen_anddi3; gen_xor3 = gen_xordi3; bits = 6; } if (TARGET_PARTIAL_REG_STALL && !optimize_insn_for_size_p ()) x = gen_rtx_ZERO_EXTEND (half_mode, operands[2]); else x = gen_lowpart (half_mode, operands[2]); emit_insn (gen_rtx_SET (VOIDmode, high[0], x)); emit_insn (gen_lshr3 (high[0], high[0], GEN_INT (bits))); emit_insn (gen_and3 (high[0], high[0], const1_rtx)); emit_move_insn (low[0], high[0]); emit_insn (gen_xor3 (low[0], low[0], const1_rtx)); } emit_insn (gen_ashl3 (low[0], low[0], operands[2])); emit_insn (gen_ashl3 (high[0], high[0], operands[2])); return; } if (operands[1] == constm1_rtx) { /* For -1 << N, we can avoid the shld instruction, because we know that we're shifting 0...31/63 ones into a -1. */ emit_move_insn (low[0], constm1_rtx); if (optimize_insn_for_size_p ()) emit_move_insn (high[0], low[0]); else emit_move_insn (high[0], constm1_rtx); } else { gen_shld = mode == DImode ? gen_x86_shld : gen_x86_64_shld; if (!rtx_equal_p (operands[0], operands[1])) emit_move_insn (operands[0], operands[1]); split_double_mode (mode, operands, 1, low, high); emit_insn (gen_shld (high[0], low[0], operands[2])); } emit_insn (gen_ashl3 (low[0], low[0], operands[2])); if (TARGET_CMOVE && scratch) { rtx (*gen_x86_shift_adj_1)(rtx, rtx, rtx, rtx) = mode == DImode ? gen_x86_shiftsi_adj_1 : gen_x86_shiftdi_adj_1; ix86_expand_clear (scratch); emit_insn (gen_x86_shift_adj_1 (high[0], low[0], operands[2], scratch)); } else { rtx (*gen_x86_shift_adj_2)(rtx, rtx, rtx) = mode == DImode ? gen_x86_shiftsi_adj_2 : gen_x86_shiftdi_adj_2; emit_insn (gen_x86_shift_adj_2 (high[0], low[0], operands[2])); } } void ix86_split_ashr (rtx *operands, rtx scratch, enum machine_mode mode) { rtx (*gen_ashr3)(rtx, rtx, rtx) = mode == DImode ? gen_ashrsi3 : gen_ashrdi3; rtx (*gen_shrd)(rtx, rtx, rtx); int half_width = GET_MODE_BITSIZE (mode) >> 1; rtx low[2], high[2]; int count; if (CONST_INT_P (operands[2])) { split_double_mode (mode, operands, 2, low, high); count = INTVAL (operands[2]) & (GET_MODE_BITSIZE (mode) - 1); if (count == GET_MODE_BITSIZE (mode) - 1) { emit_move_insn (high[0], high[1]); emit_insn (gen_ashr3 (high[0], high[0], GEN_INT (half_width - 1))); emit_move_insn (low[0], high[0]); } else if (count >= half_width) { emit_move_insn (low[0], high[1]); emit_move_insn (high[0], low[0]); emit_insn (gen_ashr3 (high[0], high[0], GEN_INT (half_width - 1))); if (count > half_width) emit_insn (gen_ashr3 (low[0], low[0], GEN_INT (count - half_width))); } else { gen_shrd = mode == DImode ? gen_x86_shrd : gen_x86_64_shrd; if (!rtx_equal_p (operands[0], operands[1])) emit_move_insn (operands[0], operands[1]); emit_insn (gen_shrd (low[0], high[0], GEN_INT (count))); emit_insn (gen_ashr3 (high[0], high[0], GEN_INT (count))); } } else { gen_shrd = mode == DImode ? gen_x86_shrd : gen_x86_64_shrd; if (!rtx_equal_p (operands[0], operands[1])) emit_move_insn (operands[0], operands[1]); split_double_mode (mode, operands, 1, low, high); emit_insn (gen_shrd (low[0], high[0], operands[2])); emit_insn (gen_ashr3 (high[0], high[0], operands[2])); if (TARGET_CMOVE && scratch) { rtx (*gen_x86_shift_adj_1)(rtx, rtx, rtx, rtx) = mode == DImode ? gen_x86_shiftsi_adj_1 : gen_x86_shiftdi_adj_1; emit_move_insn (scratch, high[0]); emit_insn (gen_ashr3 (scratch, scratch, GEN_INT (half_width - 1))); emit_insn (gen_x86_shift_adj_1 (low[0], high[0], operands[2], scratch)); } else { rtx (*gen_x86_shift_adj_3)(rtx, rtx, rtx) = mode == DImode ? gen_x86_shiftsi_adj_3 : gen_x86_shiftdi_adj_3; emit_insn (gen_x86_shift_adj_3 (low[0], high[0], operands[2])); } } } void ix86_split_lshr (rtx *operands, rtx scratch, enum machine_mode mode) { rtx (*gen_lshr3)(rtx, rtx, rtx) = mode == DImode ? gen_lshrsi3 : gen_lshrdi3; rtx (*gen_shrd)(rtx, rtx, rtx); int half_width = GET_MODE_BITSIZE (mode) >> 1; rtx low[2], high[2]; int count; if (CONST_INT_P (operands[2])) { split_double_mode (mode, operands, 2, low, high); count = INTVAL (operands[2]) & (GET_MODE_BITSIZE (mode) - 1); if (count >= half_width) { emit_move_insn (low[0], high[1]); ix86_expand_clear (high[0]); if (count > half_width) emit_insn (gen_lshr3 (low[0], low[0], GEN_INT (count - half_width))); } else { gen_shrd = mode == DImode ? gen_x86_shrd : gen_x86_64_shrd; if (!rtx_equal_p (operands[0], operands[1])) emit_move_insn (operands[0], operands[1]); emit_insn (gen_shrd (low[0], high[0], GEN_INT (count))); emit_insn (gen_lshr3 (high[0], high[0], GEN_INT (count))); } } else { gen_shrd = mode == DImode ? gen_x86_shrd : gen_x86_64_shrd; if (!rtx_equal_p (operands[0], operands[1])) emit_move_insn (operands[0], operands[1]); split_double_mode (mode, operands, 1, low, high); emit_insn (gen_shrd (low[0], high[0], operands[2])); emit_insn (gen_lshr3 (high[0], high[0], operands[2])); if (TARGET_CMOVE && scratch) { rtx (*gen_x86_shift_adj_1)(rtx, rtx, rtx, rtx) = mode == DImode ? gen_x86_shiftsi_adj_1 : gen_x86_shiftdi_adj_1; ix86_expand_clear (scratch); emit_insn (gen_x86_shift_adj_1 (low[0], high[0], operands[2], scratch)); } else { rtx (*gen_x86_shift_adj_2)(rtx, rtx, rtx) = mode == DImode ? gen_x86_shiftsi_adj_2 : gen_x86_shiftdi_adj_2; emit_insn (gen_x86_shift_adj_2 (low[0], high[0], operands[2])); } } } /* Predict just emitted jump instruction to be taken with probability PROB. */ static void predict_jump (int prob) { rtx insn = get_last_insn (); gcc_assert (JUMP_P (insn)); add_int_reg_note (insn, REG_BR_PROB, prob); } /* Helper function for the string operations below. Dest VARIABLE whether it is aligned to VALUE bytes. If true, jump to the label. */ static rtx ix86_expand_aligntest (rtx variable, int value, bool epilogue) { rtx label = gen_label_rtx (); rtx tmpcount = gen_reg_rtx (GET_MODE (variable)); if (GET_MODE (variable) == DImode) emit_insn (gen_anddi3 (tmpcount, variable, GEN_INT (value))); else emit_insn (gen_andsi3 (tmpcount, variable, GEN_INT (value))); emit_cmp_and_jump_insns (tmpcount, const0_rtx, EQ, 0, GET_MODE (variable), 1, label); if (epilogue) predict_jump (REG_BR_PROB_BASE * 50 / 100); else predict_jump (REG_BR_PROB_BASE * 90 / 100); return label; } /* Adjust COUNTER by the VALUE. */ static void ix86_adjust_counter (rtx countreg, HOST_WIDE_INT value) { rtx (*gen_add)(rtx, rtx, rtx) = GET_MODE (countreg) == DImode ? gen_adddi3 : gen_addsi3; emit_insn (gen_add (countreg, countreg, GEN_INT (-value))); } /* Zero extend possibly SImode EXP to Pmode register. */ rtx ix86_zero_extend_to_Pmode (rtx exp) { return force_reg (Pmode, convert_to_mode (Pmode, exp, 1)); } /* Divide COUNTREG by SCALE. */ static rtx scale_counter (rtx countreg, int scale) { rtx sc; if (scale == 1) return countreg; if (CONST_INT_P (countreg)) return GEN_INT (INTVAL (countreg) / scale); gcc_assert (REG_P (countreg)); sc = expand_simple_binop (GET_MODE (countreg), LSHIFTRT, countreg, GEN_INT (exact_log2 (scale)), NULL, 1, OPTAB_DIRECT); return sc; } /* Return mode for the memcpy/memset loop counter. Prefer SImode over DImode for constant loop counts. */ static enum machine_mode counter_mode (rtx count_exp) { if (GET_MODE (count_exp) != VOIDmode) return GET_MODE (count_exp); if (!CONST_INT_P (count_exp)) return Pmode; if (TARGET_64BIT && (INTVAL (count_exp) & ~0xffffffff)) return DImode; return SImode; } /* Copy the address to a Pmode register. This is used for x32 to truncate DImode TLS address to a SImode register. */ static rtx ix86_copy_addr_to_reg (rtx addr) { if (GET_MODE (addr) == Pmode) return copy_addr_to_reg (addr); else { gcc_assert (GET_MODE (addr) == DImode && Pmode == SImode); return gen_rtx_SUBREG (SImode, copy_to_mode_reg (DImode, addr), 0); } } /* When ISSETMEM is FALSE, output simple loop to move memory pointer to SRCPTR to DESTPTR via chunks of MODE unrolled UNROLL times, overall size is COUNT specified in bytes. When ISSETMEM is TRUE, output the equivalent loop to set memory by VALUE (supposed to be in MODE). The size is rounded down to whole number of chunk size moved at once. SRCMEM and DESTMEM provide MEMrtx to feed proper aliasing info. */ static void expand_set_or_movmem_via_loop (rtx destmem, rtx srcmem, rtx destptr, rtx srcptr, rtx value, rtx count, enum machine_mode mode, int unroll, int expected_size, bool issetmem) { rtx out_label, top_label, iter, tmp; enum machine_mode iter_mode = counter_mode (count); int piece_size_n = GET_MODE_SIZE (mode) * unroll; rtx piece_size = GEN_INT (piece_size_n); rtx piece_size_mask = GEN_INT (~((GET_MODE_SIZE (mode) * unroll) - 1)); rtx size; int i; top_label = gen_label_rtx (); out_label = gen_label_rtx (); iter = gen_reg_rtx (iter_mode); size = expand_simple_binop (iter_mode, AND, count, piece_size_mask, NULL, 1, OPTAB_DIRECT); /* Those two should combine. */ if (piece_size == const1_rtx) { emit_cmp_and_jump_insns (size, const0_rtx, EQ, NULL_RTX, iter_mode, true, out_label); predict_jump (REG_BR_PROB_BASE * 10 / 100); } emit_move_insn (iter, const0_rtx); emit_label (top_label); tmp = convert_modes (Pmode, iter_mode, iter, true); /* This assert could be relaxed - in this case we'll need to compute smallest power of two, containing in PIECE_SIZE_N and pass it to offset_address. */ gcc_assert ((piece_size_n & (piece_size_n - 1)) == 0); destmem = offset_address (destmem, tmp, piece_size_n); destmem = adjust_address (destmem, mode, 0); if (!issetmem) { srcmem = offset_address (srcmem, copy_rtx (tmp), piece_size_n); srcmem = adjust_address (srcmem, mode, 0); /* When unrolling for chips that reorder memory reads and writes, we can save registers by using single temporary. Also using 4 temporaries is overkill in 32bit mode. */ if (!TARGET_64BIT && 0) { for (i = 0; i < unroll; i++) { if (i) { destmem = adjust_address (copy_rtx (destmem), mode, GET_MODE_SIZE (mode)); srcmem = adjust_address (copy_rtx (srcmem), mode, GET_MODE_SIZE (mode)); } emit_move_insn (destmem, srcmem); } } else { rtx tmpreg[4]; gcc_assert (unroll <= 4); for (i = 0; i < unroll; i++) { tmpreg[i] = gen_reg_rtx (mode); if (i) { srcmem = adjust_address (copy_rtx (srcmem), mode, GET_MODE_SIZE (mode)); } emit_move_insn (tmpreg[i], srcmem); } for (i = 0; i < unroll; i++) { if (i) { destmem = adjust_address (copy_rtx (destmem), mode, GET_MODE_SIZE (mode)); } emit_move_insn (destmem, tmpreg[i]); } } } else for (i = 0; i < unroll; i++) { if (i) destmem = adjust_address (copy_rtx (destmem), mode, GET_MODE_SIZE (mode)); emit_move_insn (destmem, value); } tmp = expand_simple_binop (iter_mode, PLUS, iter, piece_size, iter, true, OPTAB_LIB_WIDEN); if (tmp != iter) emit_move_insn (iter, tmp); emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode, true, top_label); if (expected_size != -1) { expected_size /= GET_MODE_SIZE (mode) * unroll; if (expected_size == 0) predict_jump (0); else if (expected_size > REG_BR_PROB_BASE) predict_jump (REG_BR_PROB_BASE - 1); else predict_jump (REG_BR_PROB_BASE - (REG_BR_PROB_BASE + expected_size / 2) / expected_size); } else predict_jump (REG_BR_PROB_BASE * 80 / 100); iter = ix86_zero_extend_to_Pmode (iter); tmp = expand_simple_binop (Pmode, PLUS, destptr, iter, destptr, true, OPTAB_LIB_WIDEN); if (tmp != destptr) emit_move_insn (destptr, tmp); if (!issetmem) { tmp = expand_simple_binop (Pmode, PLUS, srcptr, iter, srcptr, true, OPTAB_LIB_WIDEN); if (tmp != srcptr) emit_move_insn (srcptr, tmp); } emit_label (out_label); } /* Output "rep; mov" or "rep; stos" instruction depending on ISSETMEM argument. When ISSETMEM is true, arguments SRCMEM and SRCPTR are ignored. When ISSETMEM is false, arguments VALUE and ORIG_VALUE are ignored. For setmem case, VALUE is a promoted to a wider size ORIG_VALUE. ORIG_VALUE is the original value passed to memset to fill the memory with. Other arguments have same meaning as for previous function. */ static void expand_set_or_movmem_via_rep (rtx destmem, rtx srcmem, rtx destptr, rtx srcptr, rtx value, rtx orig_value, rtx count, enum machine_mode mode, bool issetmem) { rtx destexp; rtx srcexp; rtx countreg; HOST_WIDE_INT rounded_count; /* If possible, it is shorter to use rep movs. TODO: Maybe it is better to move this logic to decide_alg. */ if (mode == QImode && CONST_INT_P (count) && !(INTVAL (count) & 3) && (!issetmem || orig_value == const0_rtx)) mode = SImode; if (destptr != XEXP (destmem, 0) || GET_MODE (destmem) != BLKmode) destmem = adjust_automodify_address_nv (destmem, BLKmode, destptr, 0); countreg = ix86_zero_extend_to_Pmode (scale_counter (count, GET_MODE_SIZE (mode))); if (mode != QImode) { destexp = gen_rtx_ASHIFT (Pmode, countreg, GEN_INT (exact_log2 (GET_MODE_SIZE (mode)))); destexp = gen_rtx_PLUS (Pmode, destexp, destptr); } else destexp = gen_rtx_PLUS (Pmode, destptr, countreg); if ((!issetmem || orig_value == const0_rtx) && CONST_INT_P (count)) { rounded_count = (INTVAL (count) & ~((HOST_WIDE_INT) GET_MODE_SIZE (mode) - 1)); destmem = shallow_copy_rtx (destmem); set_mem_size (destmem, rounded_count); } else if (MEM_SIZE_KNOWN_P (destmem)) clear_mem_size (destmem); if (issetmem) { value = force_reg (mode, gen_lowpart (mode, value)); emit_insn (gen_rep_stos (destptr, countreg, destmem, value, destexp)); } else { if (srcptr != XEXP (srcmem, 0) || GET_MODE (srcmem) != BLKmode) srcmem = adjust_automodify_address_nv (srcmem, BLKmode, srcptr, 0); if (mode != QImode) { srcexp = gen_rtx_ASHIFT (Pmode, countreg, GEN_INT (exact_log2 (GET_MODE_SIZE (mode)))); srcexp = gen_rtx_PLUS (Pmode, srcexp, srcptr); } else srcexp = gen_rtx_PLUS (Pmode, srcptr, countreg); if (CONST_INT_P (count)) { rounded_count = (INTVAL (count) & ~((HOST_WIDE_INT) GET_MODE_SIZE (mode) - 1)); srcmem = shallow_copy_rtx (srcmem); set_mem_size (srcmem, rounded_count); } else { if (MEM_SIZE_KNOWN_P (srcmem)) clear_mem_size (srcmem); } emit_insn (gen_rep_mov (destptr, destmem, srcptr, srcmem, countreg, destexp, srcexp)); } } /* This function emits moves to copy SIZE_TO_MOVE bytes from SRCMEM to DESTMEM. SRC is passed by pointer to be updated on return. Return value is updated DST. */ static rtx emit_memmov (rtx destmem, rtx *srcmem, rtx destptr, rtx srcptr, HOST_WIDE_INT size_to_move) { rtx dst = destmem, src = *srcmem, adjust, tempreg; enum insn_code code; enum machine_mode move_mode; int piece_size, i; /* Find the widest mode in which we could perform moves. Start with the biggest power of 2 less than SIZE_TO_MOVE and half it until move of such size is supported. */ piece_size = 1 << floor_log2 (size_to_move); move_mode = mode_for_size (piece_size * BITS_PER_UNIT, MODE_INT, 0); code = optab_handler (mov_optab, move_mode); while (code == CODE_FOR_nothing && piece_size > 1) { piece_size >>= 1; move_mode = mode_for_size (piece_size * BITS_PER_UNIT, MODE_INT, 0); code = optab_handler (mov_optab, move_mode); } /* Find the corresponding vector mode with the same size as MOVE_MODE. MOVE_MODE is an integer mode at the moment (SI, DI, TI, etc.). */ if (GET_MODE_SIZE (move_mode) > GET_MODE_SIZE (word_mode)) { int nunits = GET_MODE_SIZE (move_mode) / GET_MODE_SIZE (word_mode); move_mode = mode_for_vector (word_mode, nunits); code = optab_handler (mov_optab, move_mode); if (code == CODE_FOR_nothing) { move_mode = word_mode; piece_size = GET_MODE_SIZE (move_mode); code = optab_handler (mov_optab, move_mode); } } gcc_assert (code != CODE_FOR_nothing); dst = adjust_automodify_address_nv (dst, move_mode, destptr, 0); src = adjust_automodify_address_nv (src, move_mode, srcptr, 0); /* Emit moves. We'll need SIZE_TO_MOVE/PIECE_SIZES moves. */ gcc_assert (size_to_move % piece_size == 0); adjust = GEN_INT (piece_size); for (i = 0; i < size_to_move; i += piece_size) { /* We move from memory to memory, so we'll need to do it via a temporary register. */ tempreg = gen_reg_rtx (move_mode); emit_insn (GEN_FCN (code) (tempreg, src)); emit_insn (GEN_FCN (code) (dst, tempreg)); emit_move_insn (destptr, gen_rtx_PLUS (Pmode, copy_rtx (destptr), adjust)); emit_move_insn (srcptr, gen_rtx_PLUS (Pmode, copy_rtx (srcptr), adjust)); dst = adjust_automodify_address_nv (dst, move_mode, destptr, piece_size); src = adjust_automodify_address_nv (src, move_mode, srcptr, piece_size); } /* Update DST and SRC rtx. */ *srcmem = src; return dst; } /* Output code to copy at most count & (max_size - 1) bytes from SRC to DEST. */ static void expand_movmem_epilogue (rtx destmem, rtx srcmem, rtx destptr, rtx srcptr, rtx count, int max_size) { rtx src, dest; if (CONST_INT_P (count)) { HOST_WIDE_INT countval = INTVAL (count); HOST_WIDE_INT epilogue_size = countval % max_size; int i; /* For now MAX_SIZE should be a power of 2. This assert could be relaxed, but it'll require a bit more complicated epilogue expanding. */ gcc_assert ((max_size & (max_size - 1)) == 0); for (i = max_size; i >= 1; i >>= 1) { if (epilogue_size & i) destmem = emit_memmov (destmem, &srcmem, destptr, srcptr, i); } return; } if (max_size > 8) { count = expand_simple_binop (GET_MODE (count), AND, count, GEN_INT (max_size - 1), count, 1, OPTAB_DIRECT); expand_set_or_movmem_via_loop (destmem, srcmem, destptr, srcptr, NULL, count, QImode, 1, 4, false); return; } /* When there are stringops, we can cheaply increase dest and src pointers. Otherwise we save code size by maintaining offset (zero is readily available from preceding rep operation) and using x86 addressing modes. */ if (TARGET_SINGLE_STRINGOP) { if (max_size > 4) { rtx label = ix86_expand_aligntest (count, 4, true); src = change_address (srcmem, SImode, srcptr); dest = change_address (destmem, SImode, destptr); emit_insn (gen_strmov (destptr, dest, srcptr, src)); emit_label (label); LABEL_NUSES (label) = 1; } if (max_size > 2) { rtx label = ix86_expand_aligntest (count, 2, true); src = change_address (srcmem, HImode, srcptr); dest = change_address (destmem, HImode, destptr); emit_insn (gen_strmov (destptr, dest, srcptr, src)); emit_label (label); LABEL_NUSES (label) = 1; } if (max_size > 1) { rtx label = ix86_expand_aligntest (count, 1, true); src = change_address (srcmem, QImode, srcptr); dest = change_address (destmem, QImode, destptr); emit_insn (gen_strmov (destptr, dest, srcptr, src)); emit_label (label); LABEL_NUSES (label) = 1; } } else { rtx offset = force_reg (Pmode, const0_rtx); rtx tmp; if (max_size > 4) { rtx label = ix86_expand_aligntest (count, 4, true); src = change_address (srcmem, SImode, srcptr); dest = change_address (destmem, SImode, destptr); emit_move_insn (dest, src); tmp = expand_simple_binop (Pmode, PLUS, offset, GEN_INT (4), NULL, true, OPTAB_LIB_WIDEN); if (tmp != offset) emit_move_insn (offset, tmp); emit_label (label); LABEL_NUSES (label) = 1; } if (max_size > 2) { rtx label = ix86_expand_aligntest (count, 2, true); tmp = gen_rtx_PLUS (Pmode, srcptr, offset); src = change_address (srcmem, HImode, tmp); tmp = gen_rtx_PLUS (Pmode, destptr, offset); dest = change_address (destmem, HImode, tmp); emit_move_insn (dest, src); tmp = expand_simple_binop (Pmode, PLUS, offset, GEN_INT (2), tmp, true, OPTAB_LIB_WIDEN); if (tmp != offset) emit_move_insn (offset, tmp); emit_label (label); LABEL_NUSES (label) = 1; } if (max_size > 1) { rtx label = ix86_expand_aligntest (count, 1, true); tmp = gen_rtx_PLUS (Pmode, srcptr, offset); src = change_address (srcmem, QImode, tmp); tmp = gen_rtx_PLUS (Pmode, destptr, offset); dest = change_address (destmem, QImode, tmp); emit_move_insn (dest, src); emit_label (label); LABEL_NUSES (label) = 1; } } } /* This function emits moves to fill SIZE_TO_MOVE bytes starting from DESTMEM with value PROMOTED_VAL. SRC is passed by pointer to be updated on return. Return value is updated DST. */ static rtx emit_memset (rtx destmem, rtx destptr, rtx promoted_val, HOST_WIDE_INT size_to_move) { rtx dst = destmem, adjust; enum insn_code code; enum machine_mode move_mode; int piece_size, i; /* Find the widest mode in which we could perform moves. Start with the biggest power of 2 less than SIZE_TO_MOVE and half it until move of such size is supported. */ move_mode = GET_MODE (promoted_val); if (move_mode == VOIDmode) move_mode = QImode; if (size_to_move < GET_MODE_SIZE (move_mode)) { move_mode = mode_for_size (size_to_move * BITS_PER_UNIT, MODE_INT, 0); promoted_val = gen_lowpart (move_mode, promoted_val); } piece_size = GET_MODE_SIZE (move_mode); code = optab_handler (mov_optab, move_mode); gcc_assert (code != CODE_FOR_nothing && promoted_val != NULL_RTX); dst = adjust_automodify_address_nv (dst, move_mode, destptr, 0); /* Emit moves. We'll need SIZE_TO_MOVE/PIECE_SIZES moves. */ gcc_assert (size_to_move % piece_size == 0); adjust = GEN_INT (piece_size); for (i = 0; i < size_to_move; i += piece_size) { if (piece_size <= GET_MODE_SIZE (word_mode)) { emit_insn (gen_strset (destptr, dst, promoted_val)); continue; } emit_insn (GEN_FCN (code) (dst, promoted_val)); emit_move_insn (destptr, gen_rtx_PLUS (Pmode, copy_rtx (destptr), adjust)); dst = adjust_automodify_address_nv (dst, move_mode, destptr, piece_size); } /* Update DST rtx. */ return dst; } /* Output code to set at most count & (max_size - 1) bytes starting by DEST. */ static void expand_setmem_epilogue_via_loop (rtx destmem, rtx destptr, rtx value, rtx count, int max_size) { count = expand_simple_binop (counter_mode (count), AND, count, GEN_INT (max_size - 1), count, 1, OPTAB_DIRECT); expand_set_or_movmem_via_loop (destmem, NULL, destptr, NULL, gen_lowpart (QImode, value), count, QImode, 1, max_size / 2, true); } /* Output code to set at most count & (max_size - 1) bytes starting by DEST. */ static void expand_setmem_epilogue (rtx destmem, rtx destptr, rtx value, rtx vec_value, rtx count, int max_size) { rtx dest; if (CONST_INT_P (count)) { HOST_WIDE_INT countval = INTVAL (count); HOST_WIDE_INT epilogue_size = countval % max_size; int i; /* For now MAX_SIZE should be a power of 2. This assert could be relaxed, but it'll require a bit more complicated epilogue expanding. */ gcc_assert ((max_size & (max_size - 1)) == 0); for (i = max_size; i >= 1; i >>= 1) { if (epilogue_size & i) { if (vec_value && i > GET_MODE_SIZE (GET_MODE (value))) destmem = emit_memset (destmem, destptr, vec_value, i); else destmem = emit_memset (destmem, destptr, value, i); } } return; } if (max_size > 32) { expand_setmem_epilogue_via_loop (destmem, destptr, value, count, max_size); return; } if (max_size > 16) { rtx label = ix86_expand_aligntest (count, 16, true); if (TARGET_64BIT) { dest = change_address (destmem, DImode, destptr); emit_insn (gen_strset (destptr, dest, value)); emit_insn (gen_strset (destptr, dest, value)); } else { dest = change_address (destmem, SImode, destptr); emit_insn (gen_strset (destptr, dest, value)); emit_insn (gen_strset (destptr, dest, value)); emit_insn (gen_strset (destptr, dest, value)); emit_insn (gen_strset (destptr, dest, value)); } emit_label (label); LABEL_NUSES (label) = 1; } if (max_size > 8) { rtx label = ix86_expand_aligntest (count, 8, true); if (TARGET_64BIT) { dest = change_address (destmem, DImode, destptr); emit_insn (gen_strset (destptr, dest, value)); } else { dest = change_address (destmem, SImode, destptr); emit_insn (gen_strset (destptr, dest, value)); emit_insn (gen_strset (destptr, dest, value)); } emit_label (label); LABEL_NUSES (label) = 1; } if (max_size > 4) { rtx label = ix86_expand_aligntest (count, 4, true); dest = change_address (destmem, SImode, destptr); emit_insn (gen_strset (destptr, dest, gen_lowpart (SImode, value))); emit_label (label); LABEL_NUSES (label) = 1; } if (max_size > 2) { rtx label = ix86_expand_aligntest (count, 2, true); dest = change_address (destmem, HImode, destptr); emit_insn (gen_strset (destptr, dest, gen_lowpart (HImode, value))); emit_label (label); LABEL_NUSES (label) = 1; } if (max_size > 1) { rtx label = ix86_expand_aligntest (count, 1, true); dest = change_address (destmem, QImode, destptr); emit_insn (gen_strset (destptr, dest, gen_lowpart (QImode, value))); emit_label (label); LABEL_NUSES (label) = 1; } } /* Depending on ISSETMEM, copy enough from SRCMEM to DESTMEM or set enough to DESTMEM to align it to DESIRED_ALIGNMENT. Original alignment is ALIGN. Depending on ISSETMEM, either arguments SRCMEM/SRCPTR or VALUE/VEC_VALUE are ignored. Return value is updated DESTMEM. */ static rtx expand_set_or_movmem_prologue (rtx destmem, rtx srcmem, rtx destptr, rtx srcptr, rtx value, rtx vec_value, rtx count, int align, int desired_alignment, bool issetmem) { int i; for (i = 1; i < desired_alignment; i <<= 1) { if (align <= i) { rtx label = ix86_expand_aligntest (destptr, i, false); if (issetmem) { if (vec_value && i > GET_MODE_SIZE (GET_MODE (value))) destmem = emit_memset (destmem, destptr, vec_value, i); else destmem = emit_memset (destmem, destptr, value, i); } else destmem = emit_memmov (destmem, &srcmem, destptr, srcptr, i); ix86_adjust_counter (count, i); emit_label (label); LABEL_NUSES (label) = 1; set_mem_align (destmem, i * 2 * BITS_PER_UNIT); } } return destmem; } /* Test if COUNT&SIZE is nonzero and if so, expand movme or setmem sequence that is valid for SIZE..2*SIZE-1 bytes and jump to DONE_LABEL. */ static void expand_small_movmem_or_setmem (rtx destmem, rtx srcmem, rtx destptr, rtx srcptr, rtx value, rtx vec_value, rtx count, int size, rtx done_label, bool issetmem) { rtx label = ix86_expand_aligntest (count, size, false); enum machine_mode mode = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 1); rtx modesize; int n; /* If we do not have vector value to copy, we must reduce size. */ if (issetmem) { if (!vec_value) { if (GET_MODE (value) == VOIDmode && size > 8) mode = Pmode; else if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (value))) mode = GET_MODE (value); } else mode = GET_MODE (vec_value), value = vec_value; } else { /* Choose appropriate vector mode. */ if (size >= 32) mode = TARGET_AVX ? V32QImode : TARGET_SSE ? V16QImode : DImode; else if (size >= 16) mode = TARGET_SSE ? V16QImode : DImode; srcmem = change_address (srcmem, mode, srcptr); } destmem = change_address (destmem, mode, destptr); modesize = GEN_INT (GET_MODE_SIZE (mode)); gcc_assert (GET_MODE_SIZE (mode) <= size); for (n = 0; n * GET_MODE_SIZE (mode) < size; n++) { if (issetmem) emit_move_insn (destmem, gen_lowpart (mode, value)); else { emit_move_insn (destmem, srcmem); srcmem = offset_address (srcmem, modesize, GET_MODE_SIZE (mode)); } destmem = offset_address (destmem, modesize, GET_MODE_SIZE (mode)); } destmem = offset_address (destmem, count, 1); destmem = offset_address (destmem, GEN_INT (-size - GET_MODE_SIZE (mode)), GET_MODE_SIZE (mode)); if (issetmem) emit_move_insn (destmem, gen_lowpart (mode, value)); else { srcmem = offset_address (srcmem, count, 1); srcmem = offset_address (srcmem, GEN_INT (-size - GET_MODE_SIZE (mode)), GET_MODE_SIZE (mode)); emit_move_insn (destmem, srcmem); } emit_jump_insn (gen_jump (done_label)); emit_barrier (); emit_label (label); LABEL_NUSES (label) = 1; } /* Handle small memcpy (up to SIZE that is supposed to be small power of 2. and get ready for the main memcpy loop by copying iniital DESIRED_ALIGN-ALIGN bytes and last SIZE bytes adjusitng DESTPTR/SRCPTR/COUNT in a way we can proceed with an loop copying SIZE bytes at once. Do moves in MODE. DONE_LABEL is a label after the whole copying sequence. The label is created on demand if *DONE_LABEL is NULL. MIN_SIZE is minimal size of block copied. This value gets adjusted for new bounds after the initial copies. DESTMEM/SRCMEM are memory expressions pointing to the copies block, DESTPTR/SRCPTR are pointers to the block. DYNAMIC_CHECK indicate whether we will dispatch to a library call for large blocks. In pseudocode we do: if (COUNT < SIZE) { Assume that SIZE is 4. Bigger sizes are handled analogously if (COUNT & 4) { copy 4 bytes from SRCPTR to DESTPTR copy 4 bytes from SRCPTR + COUNT - 4 to DESTPTR + COUNT - 4 goto done_label } if (!COUNT) goto done_label; copy 1 byte from SRCPTR to DESTPTR if (COUNT & 2) { copy 2 bytes from SRCPTR to DESTPTR copy 2 bytes from SRCPTR + COUNT - 2 to DESTPTR + COUNT - 2 } } else { copy at least DESIRED_ALIGN-ALIGN bytes from SRCPTR to DESTPTR copy SIZE bytes from SRCPTR + COUNT - SIZE to DESTPTR + COUNT -SIZE OLD_DESPTR = DESTPTR; Align DESTPTR up to DESIRED_ALIGN SRCPTR += DESTPTR - OLD_DESTPTR COUNT -= DEST_PTR - OLD_DESTPTR if (DYNAMIC_CHECK) Round COUNT down to multiple of SIZE << optional caller supplied zero size guard is here >> << optional caller suppplied dynamic check is here >> << caller supplied main copy loop is here >> } done_label: */ static void expand_set_or_movmem_prologue_epilogue_by_misaligned_moves (rtx destmem, rtx srcmem, rtx *destptr, rtx *srcptr, enum machine_mode mode, rtx value, rtx vec_value, rtx *count, rtx *done_label, int size, int desired_align, int align, unsigned HOST_WIDE_INT *min_size, bool dynamic_check, bool issetmem) { rtx loop_label = NULL, label; int n; rtx modesize; int prolog_size = 0; rtx mode_value; /* Chose proper value to copy. */ if (issetmem && VECTOR_MODE_P (mode)) mode_value = vec_value; else mode_value = value; gcc_assert (GET_MODE_SIZE (mode) <= size); /* See if block is big or small, handle small blocks. */ if (!CONST_INT_P (*count) && *min_size < (unsigned HOST_WIDE_INT)size) { int size2 = size; loop_label = gen_label_rtx (); if (!*done_label) *done_label = gen_label_rtx (); emit_cmp_and_jump_insns (*count, GEN_INT (size2), GE, 0, GET_MODE (*count), 1, loop_label); size2 >>= 1; /* Handle sizes > 3. */ for (;size2 > 2; size2 >>= 1) expand_small_movmem_or_setmem (destmem, srcmem, *destptr, *srcptr, value, vec_value, *count, size2, *done_label, issetmem); /* Nothing to copy? Jump to DONE_LABEL if so */ emit_cmp_and_jump_insns (*count, const0_rtx, EQ, 0, GET_MODE (*count), 1, *done_label); /* Do a byte copy. */ destmem = change_address (destmem, QImode, *destptr); if (issetmem) emit_move_insn (destmem, gen_lowpart (QImode, value)); else { srcmem = change_address (srcmem, QImode, *srcptr); emit_move_insn (destmem, srcmem); } /* Handle sizes 2 and 3. */ label = ix86_expand_aligntest (*count, 2, false); destmem = change_address (destmem, HImode, *destptr); destmem = offset_address (destmem, *count, 1); destmem = offset_address (destmem, GEN_INT (-2), 2); if (issetmem) emit_move_insn (destmem, gen_lowpart (HImode, value)); else { srcmem = change_address (srcmem, HImode, *srcptr); srcmem = offset_address (srcmem, *count, 1); srcmem = offset_address (srcmem, GEN_INT (-2), 2); emit_move_insn (destmem, srcmem); } emit_label (label); LABEL_NUSES (label) = 1; emit_jump_insn (gen_jump (*done_label)); emit_barrier (); } else gcc_assert (*min_size >= (unsigned HOST_WIDE_INT)size || UINTVAL (*count) >= (unsigned HOST_WIDE_INT)size); /* Start memcpy for COUNT >= SIZE. */ if (loop_label) { emit_label (loop_label); LABEL_NUSES (loop_label) = 1; } /* Copy first desired_align bytes. */ if (!issetmem) srcmem = change_address (srcmem, mode, *srcptr); destmem = change_address (destmem, mode, *destptr); modesize = GEN_INT (GET_MODE_SIZE (mode)); for (n = 0; prolog_size < desired_align - align; n++) { if (issetmem) emit_move_insn (destmem, mode_value); else { emit_move_insn (destmem, srcmem); srcmem = offset_address (srcmem, modesize, GET_MODE_SIZE (mode)); } destmem = offset_address (destmem, modesize, GET_MODE_SIZE (mode)); prolog_size += GET_MODE_SIZE (mode); } /* Copy last SIZE bytes. */ destmem = offset_address (destmem, *count, 1); destmem = offset_address (destmem, GEN_INT (-size - prolog_size), 1); if (issetmem) emit_move_insn (destmem, mode_value); else { srcmem = offset_address (srcmem, *count, 1); srcmem = offset_address (srcmem, GEN_INT (-size - prolog_size), 1); emit_move_insn (destmem, srcmem); } for (n = 1; n * GET_MODE_SIZE (mode) < size; n++) { destmem = offset_address (destmem, modesize, 1); if (issetmem) emit_move_insn (destmem, mode_value); else { srcmem = offset_address (srcmem, modesize, 1); emit_move_insn (destmem, srcmem); } } /* Align destination. */ if (desired_align > 1 && desired_align > align) { rtx saveddest = *destptr; gcc_assert (desired_align <= size); /* Align destptr up, place it to new register. */ *destptr = expand_simple_binop (GET_MODE (*destptr), PLUS, *destptr, GEN_INT (prolog_size), NULL_RTX, 1, OPTAB_DIRECT); *destptr = expand_simple_binop (GET_MODE (*destptr), AND, *destptr, GEN_INT (-desired_align), *destptr, 1, OPTAB_DIRECT); /* See how many bytes we skipped. */ saveddest = expand_simple_binop (GET_MODE (*destptr), MINUS, saveddest, *destptr, saveddest, 1, OPTAB_DIRECT); /* Adjust srcptr and count. */ if (!issetmem) *srcptr = expand_simple_binop (GET_MODE (*srcptr), MINUS, *srcptr, saveddest, *srcptr, 1, OPTAB_DIRECT); *count = expand_simple_binop (GET_MODE (*count), PLUS, *count, saveddest, *count, 1, OPTAB_DIRECT); /* We copied at most size + prolog_size. */ if (*min_size > (unsigned HOST_WIDE_INT)(size + prolog_size)) *min_size = (*min_size - size) & ~(unsigned HOST_WIDE_INT)(size - 1); else *min_size = 0; /* Our loops always round down the bock size, but for dispatch to library we need precise value. */ if (dynamic_check) *count = expand_simple_binop (GET_MODE (*count), AND, *count, GEN_INT (-size), *count, 1, OPTAB_DIRECT); } else { gcc_assert (prolog_size == 0); /* Decrease count, so we won't end up copying last word twice. */ if (!CONST_INT_P (*count)) *count = expand_simple_binop (GET_MODE (*count), PLUS, *count, constm1_rtx, *count, 1, OPTAB_DIRECT); else *count = GEN_INT ((UINTVAL (*count) - 1) & ~(unsigned HOST_WIDE_INT)(size - 1)); if (*min_size) *min_size = (*min_size - 1) & ~(unsigned HOST_WIDE_INT)(size - 1); } } /* This function is like the previous one, except here we know how many bytes need to be copied. That allows us to update alignment not only of DST, which is returned, but also of SRC, which is passed as a pointer for that reason. */ static rtx expand_set_or_movmem_constant_prologue (rtx dst, rtx *srcp, rtx destreg, rtx srcreg, rtx value, rtx vec_value, int desired_align, int align_bytes, bool issetmem) { rtx src = NULL; rtx orig_dst = dst; rtx orig_src = NULL; int piece_size = 1; int copied_bytes = 0; if (!issetmem) { gcc_assert (srcp != NULL); src = *srcp; orig_src = src; } for (piece_size = 1; piece_size <= desired_align && copied_bytes < align_bytes; piece_size <<= 1) { if (align_bytes & piece_size) { if (issetmem) { if (vec_value && piece_size > GET_MODE_SIZE (GET_MODE (value))) dst = emit_memset (dst, destreg, vec_value, piece_size); else dst = emit_memset (dst, destreg, value, piece_size); } else dst = emit_memmov (dst, &src, destreg, srcreg, piece_size); copied_bytes += piece_size; } } if (MEM_ALIGN (dst) < (unsigned int) desired_align * BITS_PER_UNIT) set_mem_align (dst, desired_align * BITS_PER_UNIT); if (MEM_SIZE_KNOWN_P (orig_dst)) set_mem_size (dst, MEM_SIZE (orig_dst) - align_bytes); if (!issetmem) { int src_align_bytes = get_mem_align_offset (src, desired_align * BITS_PER_UNIT); if (src_align_bytes >= 0) src_align_bytes = desired_align - src_align_bytes; if (src_align_bytes >= 0) { unsigned int src_align; for (src_align = desired_align; src_align >= 2; src_align >>= 1) { if ((src_align_bytes & (src_align - 1)) == (align_bytes & (src_align - 1))) break; } if (src_align > (unsigned int) desired_align) src_align = desired_align; if (MEM_ALIGN (src) < src_align * BITS_PER_UNIT) set_mem_align (src, src_align * BITS_PER_UNIT); } if (MEM_SIZE_KNOWN_P (orig_src)) set_mem_size (src, MEM_SIZE (orig_src) - align_bytes); *srcp = src; } return dst; } /* Return true if ALG can be used in current context. Assume we expand memset if MEMSET is true. */ static bool alg_usable_p (enum stringop_alg alg, bool memset) { if (alg == no_stringop) return false; if (alg == vector_loop) return TARGET_SSE || TARGET_AVX; /* Algorithms using the rep prefix want at least edi and ecx; additionally, memset wants eax and memcpy wants esi. Don't consider such algorithms if the user has appropriated those registers for their own purposes. */ if (alg == rep_prefix_1_byte || alg == rep_prefix_4_byte || alg == rep_prefix_8_byte) return !(fixed_regs[CX_REG] || fixed_regs[DI_REG] || (memset ? fixed_regs[AX_REG] : fixed_regs[SI_REG])); return true; } /* Given COUNT and EXPECTED_SIZE, decide on codegen of string operation. */ static enum stringop_alg decide_alg (HOST_WIDE_INT count, HOST_WIDE_INT expected_size, unsigned HOST_WIDE_INT min_size, unsigned HOST_WIDE_INT max_size, bool memset, bool zero_memset, int *dynamic_check, bool *noalign) { const struct stringop_algs * algs; bool optimize_for_speed; int max = -1; const struct processor_costs *cost; int i; bool any_alg_usable_p = false; *noalign = false; *dynamic_check = -1; /* Even if the string operation call is cold, we still might spend a lot of time processing large blocks. */ if (optimize_function_for_size_p (cfun) || (optimize_insn_for_size_p () && (max_size < 256 || (expected_size != -1 && expected_size < 256)))) optimize_for_speed = false; else optimize_for_speed = true; cost = optimize_for_speed ? ix86_cost : &ix86_size_cost; if (memset) algs = &cost->memset[TARGET_64BIT != 0]; else algs = &cost->memcpy[TARGET_64BIT != 0]; /* See maximal size for user defined algorithm. */ for (i = 0; i < MAX_STRINGOP_ALGS; i++) { enum stringop_alg candidate = algs->size[i].alg; bool usable = alg_usable_p (candidate, memset); any_alg_usable_p |= usable; if (candidate != libcall && candidate && usable) max = algs->size[i].max; } /* If expected size is not known but max size is small enough so inline version is a win, set expected size into the range. */ if (max > 1 && (unsigned HOST_WIDE_INT)max >= max_size && expected_size == -1) expected_size = min_size / 2 + max_size / 2; /* If user specified the algorithm, honnor it if possible. */ if (ix86_stringop_alg != no_stringop && alg_usable_p (ix86_stringop_alg, memset)) return ix86_stringop_alg; /* rep; movq or rep; movl is the smallest variant. */ else if (!optimize_for_speed) { *noalign = true; if (!count || (count & 3) || (memset && !zero_memset)) return alg_usable_p (rep_prefix_1_byte, memset) ? rep_prefix_1_byte : loop_1_byte; else return alg_usable_p (rep_prefix_4_byte, memset) ? rep_prefix_4_byte : loop; } /* Very tiny blocks are best handled via the loop, REP is expensive to setup. */ else if (expected_size != -1 && expected_size < 4) return loop_1_byte; else if (expected_size != -1) { enum stringop_alg alg = libcall; bool alg_noalign = false; for (i = 0; i < MAX_STRINGOP_ALGS; i++) { /* We get here if the algorithms that were not libcall-based were rep-prefix based and we are unable to use rep prefixes based on global register usage. Break out of the loop and use the heuristic below. */ if (algs->size[i].max == 0) break; if (algs->size[i].max >= expected_size || algs->size[i].max == -1) { enum stringop_alg candidate = algs->size[i].alg; if (candidate != libcall && alg_usable_p (candidate, memset)) { alg = candidate; alg_noalign = algs->size[i].noalign; } /* Honor TARGET_INLINE_ALL_STRINGOPS by picking last non-libcall inline algorithm. */ if (TARGET_INLINE_ALL_STRINGOPS) { /* When the current size is best to be copied by a libcall, but we are still forced to inline, run the heuristic below that will pick code for medium sized blocks. */ if (alg != libcall) { *noalign = alg_noalign; return alg; } break; } else if (alg_usable_p (candidate, memset)) { *noalign = algs->size[i].noalign; return candidate; } } } } /* When asked to inline the call anyway, try to pick meaningful choice. We look for maximal size of block that is faster to copy by hand and take blocks of at most of that size guessing that average size will be roughly half of the block. If this turns out to be bad, we might simply specify the preferred choice in ix86_costs. */ if ((TARGET_INLINE_ALL_STRINGOPS || TARGET_INLINE_STRINGOPS_DYNAMICALLY) && (algs->unknown_size == libcall || !alg_usable_p (algs->unknown_size, memset))) { enum stringop_alg alg; /* If there aren't any usable algorithms, then recursing on smaller sizes isn't going to find anything. Just return the simple byte-at-a-time copy loop. */ if (!any_alg_usable_p) { /* Pick something reasonable. */ if (TARGET_INLINE_STRINGOPS_DYNAMICALLY) *dynamic_check = 128; return loop_1_byte; } if (max == -1) max = 4096; alg = decide_alg (count, max / 2, min_size, max_size, memset, zero_memset, dynamic_check, noalign); gcc_assert (*dynamic_check == -1); gcc_assert (alg != libcall); if (TARGET_INLINE_STRINGOPS_DYNAMICALLY) *dynamic_check = max; return alg; } return (alg_usable_p (algs->unknown_size, memset) ? algs->unknown_size : libcall); } /* Decide on alignment. We know that the operand is already aligned to ALIGN (ALIGN can be based on profile feedback and thus it is not 100% guaranteed). */ static int decide_alignment (int align, enum stringop_alg alg, int expected_size, enum machine_mode move_mode) { int desired_align = 0; gcc_assert (alg != no_stringop); if (alg == libcall) return 0; if (move_mode == VOIDmode) return 0; desired_align = GET_MODE_SIZE (move_mode); /* PentiumPro has special logic triggering for 8 byte aligned blocks. copying whole cacheline at once. */ if (TARGET_PENTIUMPRO && (alg == rep_prefix_4_byte || alg == rep_prefix_1_byte)) desired_align = 8; if (optimize_size) desired_align = 1; if (desired_align < align) desired_align = align; if (expected_size != -1 && expected_size < 4) desired_align = align; return desired_align; } /* Helper function for memcpy. For QImode value 0xXY produce 0xXYXYXYXY of wide specified by MODE. This is essentially a * 0x10101010, but we can do slightly better than synth_mult by unwinding the sequence by hand on CPUs with slow multiply. */ static rtx promote_duplicated_reg (enum machine_mode mode, rtx val) { enum machine_mode valmode = GET_MODE (val); rtx tmp; int nops = mode == DImode ? 3 : 2; gcc_assert (mode == SImode || mode == DImode || val == const0_rtx); if (val == const0_rtx) return copy_to_mode_reg (mode, CONST0_RTX (mode)); if (CONST_INT_P (val)) { HOST_WIDE_INT v = INTVAL (val) & 255; v |= v << 8; v |= v << 16; if (mode == DImode) v |= (v << 16) << 16; return copy_to_mode_reg (mode, gen_int_mode (v, mode)); } if (valmode == VOIDmode) valmode = QImode; if (valmode != QImode) val = gen_lowpart (QImode, val); if (mode == QImode) return val; if (!TARGET_PARTIAL_REG_STALL) nops--; if (ix86_cost->mult_init[mode == DImode ? 3 : 2] + ix86_cost->mult_bit * (mode == DImode ? 8 : 4) <= (ix86_cost->shift_const + ix86_cost->add) * nops + (COSTS_N_INSNS (TARGET_PARTIAL_REG_STALL == 0))) { rtx reg = convert_modes (mode, QImode, val, true); tmp = promote_duplicated_reg (mode, const1_rtx); return expand_simple_binop (mode, MULT, reg, tmp, NULL, 1, OPTAB_DIRECT); } else { rtx reg = convert_modes (mode, QImode, val, true); if (!TARGET_PARTIAL_REG_STALL) if (mode == SImode) emit_insn (gen_movsi_insv_1 (reg, reg)); else emit_insn (gen_movdi_insv_1 (reg, reg)); else { tmp = expand_simple_binop (mode, ASHIFT, reg, GEN_INT (8), NULL, 1, OPTAB_DIRECT); reg = expand_simple_binop (mode, IOR, reg, tmp, reg, 1, OPTAB_DIRECT); } tmp = expand_simple_binop (mode, ASHIFT, reg, GEN_INT (16), NULL, 1, OPTAB_DIRECT); reg = expand_simple_binop (mode, IOR, reg, tmp, reg, 1, OPTAB_DIRECT); if (mode == SImode) return reg; tmp = expand_simple_binop (mode, ASHIFT, reg, GEN_INT (32), NULL, 1, OPTAB_DIRECT); reg = expand_simple_binop (mode, IOR, reg, tmp, reg, 1, OPTAB_DIRECT); return reg; } } /* Duplicate value VAL using promote_duplicated_reg into maximal size that will be needed by main loop copying SIZE_NEEDED chunks and prologue getting alignment from ALIGN to DESIRED_ALIGN. */ static rtx promote_duplicated_reg_to_size (rtx val, int size_needed, int desired_align, int align) { rtx promoted_val; if (TARGET_64BIT && (size_needed > 4 || (desired_align > align && desired_align > 4))) promoted_val = promote_duplicated_reg (DImode, val); else if (size_needed > 2 || (desired_align > align && desired_align > 2)) promoted_val = promote_duplicated_reg (SImode, val); else if (size_needed > 1 || (desired_align > align && desired_align > 1)) promoted_val = promote_duplicated_reg (HImode, val); else promoted_val = val; return promoted_val; } /* Expand string move (memcpy) ot store (memset) operation. Use i386 string operations when profitable. The code depends upon architecture, block size and alignment, but always has one of the following overall structures: Aligned move sequence: 1) Prologue guard: Conditional that jumps up to epilogues for small blocks that can be handled by epilogue alone. This is faster but also needed for correctness, since prologue assume the block is larger than the desired alignment. Optional dynamic check for size and libcall for large blocks is emitted here too, with -minline-stringops-dynamically. 2) Prologue: copy first few bytes in order to get destination aligned to DESIRED_ALIGN. It is emitted only when ALIGN is less than DESIRED_ALIGN and up to DESIRED_ALIGN - ALIGN bytes can be copied. We emit either a jump tree on power of two sized blocks, or a byte loop. 3) Main body: the copying loop itself, copying in SIZE_NEEDED chunks with specified algorithm. 4) Epilogue: code copying tail of the block that is too small to be handled by main body (or up to size guarded by prologue guard). Misaligned move sequence 1) missaligned move prologue/epilogue containing: a) Prologue handling small memory blocks and jumping to done_label (skipped if blocks are known to be large enough) b) Signle move copying first DESIRED_ALIGN-ALIGN bytes if alignment is needed by single possibly misaligned move (skipped if alignment is not needed) c) Copy of last SIZE_NEEDED bytes by possibly misaligned moves 2) Zero size guard dispatching to done_label, if needed 3) dispatch to library call, if needed, 3) Main body: the copying loop itself, copying in SIZE_NEEDED chunks with specified algorithm. */ bool ix86_expand_set_or_movmem (rtx dst, rtx src, rtx count_exp, rtx val_exp, rtx align_exp, rtx expected_align_exp, rtx expected_size_exp, rtx min_size_exp, rtx max_size_exp, rtx probable_max_size_exp, bool issetmem) { rtx destreg; rtx srcreg = NULL; rtx label = NULL; rtx tmp; rtx jump_around_label = NULL; HOST_WIDE_INT align = 1; unsigned HOST_WIDE_INT count = 0; HOST_WIDE_INT expected_size = -1; int size_needed = 0, epilogue_size_needed; int desired_align = 0, align_bytes = 0; enum stringop_alg alg; rtx promoted_val = NULL; rtx vec_promoted_val = NULL; bool force_loopy_epilogue = false; int dynamic_check; bool need_zero_guard = false; bool noalign; enum machine_mode move_mode = VOIDmode; int unroll_factor = 1; /* TODO: Once vlaue ranges are available, fill in proper data. */ unsigned HOST_WIDE_INT min_size = 0; unsigned HOST_WIDE_INT max_size = -1; unsigned HOST_WIDE_INT probable_max_size = -1; bool misaligned_prologue_used = false; if (CONST_INT_P (align_exp)) align = INTVAL (align_exp); /* i386 can do misaligned access on reasonably increased cost. */ if (CONST_INT_P (expected_align_exp) && INTVAL (expected_align_exp) > align) align = INTVAL (expected_align_exp); /* ALIGN is the minimum of destination and source alignment, but we care here just about destination alignment. */ else if (!issetmem && MEM_ALIGN (dst) > (unsigned HOST_WIDE_INT) align * BITS_PER_UNIT) align = MEM_ALIGN (dst) / BITS_PER_UNIT; if (CONST_INT_P (count_exp)) min_size = max_size = probable_max_size = count = expected_size = INTVAL (count_exp); else { if (min_size_exp) min_size = INTVAL (min_size_exp); if (max_size_exp) max_size = INTVAL (max_size_exp); if (probable_max_size_exp) probable_max_size = INTVAL (probable_max_size_exp); if (CONST_INT_P (expected_size_exp) && count == 0) expected_size = INTVAL (expected_size_exp); } /* Make sure we don't need to care about overflow later on. */ if (count > ((unsigned HOST_WIDE_INT) 1 << 30)) return false; /* Step 0: Decide on preferred algorithm, desired alignment and size of chunks to be copied by main loop. */ alg = decide_alg (count, expected_size, min_size, probable_max_size, issetmem, issetmem && val_exp == const0_rtx, &dynamic_check, &noalign); if (alg == libcall) return false; gcc_assert (alg != no_stringop); /* For now vector-version of memset is generated only for memory zeroing, as creating of promoted vector value is very cheap in this case. */ if (issetmem && alg == vector_loop && val_exp != const0_rtx) alg = unrolled_loop; if (!count) count_exp = copy_to_mode_reg (GET_MODE (count_exp), count_exp); destreg = ix86_copy_addr_to_reg (XEXP (dst, 0)); if (!issetmem) srcreg = ix86_copy_addr_to_reg (XEXP (src, 0)); unroll_factor = 1; move_mode = word_mode; switch (alg) { case libcall: case no_stringop: case last_alg: gcc_unreachable (); case loop_1_byte: need_zero_guard = true; move_mode = QImode; break; case loop: need_zero_guard = true; break; case unrolled_loop: need_zero_guard = true; unroll_factor = (TARGET_64BIT ? 4 : 2); break; case vector_loop: need_zero_guard = true; unroll_factor = 4; /* Find the widest supported mode. */ move_mode = word_mode; while (optab_handler (mov_optab, GET_MODE_WIDER_MODE (move_mode)) != CODE_FOR_nothing) move_mode = GET_MODE_WIDER_MODE (move_mode); /* Find the corresponding vector mode with the same size as MOVE_MODE. MOVE_MODE is an integer mode at the moment (SI, DI, TI, etc.). */ if (GET_MODE_SIZE (move_mode) > GET_MODE_SIZE (word_mode)) { int nunits = GET_MODE_SIZE (move_mode) / GET_MODE_SIZE (word_mode); move_mode = mode_for_vector (word_mode, nunits); if (optab_handler (mov_optab, move_mode) == CODE_FOR_nothing) move_mode = word_mode; } gcc_assert (optab_handler (mov_optab, move_mode) != CODE_FOR_nothing); break; case rep_prefix_8_byte: move_mode = DImode; break; case rep_prefix_4_byte: move_mode = SImode; break; case rep_prefix_1_byte: move_mode = QImode; break; } size_needed = GET_MODE_SIZE (move_mode) * unroll_factor; epilogue_size_needed = size_needed; desired_align = decide_alignment (align, alg, expected_size, move_mode); if (!TARGET_ALIGN_STRINGOPS || noalign) align = desired_align; /* Step 1: Prologue guard. */ /* Alignment code needs count to be in register. */ if (CONST_INT_P (count_exp) && desired_align > align) { if (INTVAL (count_exp) > desired_align && INTVAL (count_exp) > size_needed) { align_bytes = get_mem_align_offset (dst, desired_align * BITS_PER_UNIT); if (align_bytes <= 0) align_bytes = 0; else align_bytes = desired_align - align_bytes; } if (align_bytes == 0) count_exp = force_reg (counter_mode (count_exp), count_exp); } gcc_assert (desired_align >= 1 && align >= 1); /* Misaligned move sequences handle both prologue and epilogue at once. Default code generation results in a smaller code for large alignments and also avoids redundant job when sizes are known precisely. */ misaligned_prologue_used = (TARGET_MISALIGNED_MOVE_STRING_PRO_EPILOGUES && MAX (desired_align, epilogue_size_needed) <= 32 && desired_align <= epilogue_size_needed && ((desired_align > align && !align_bytes) || (!count && epilogue_size_needed > 1))); /* Do the cheap promotion to allow better CSE across the main loop and epilogue (ie one load of the big constant in the front of all code. For now the misaligned move sequences do not have fast path without broadcasting. */ if (issetmem && ((CONST_INT_P (val_exp) || misaligned_prologue_used))) { if (alg == vector_loop) { gcc_assert (val_exp == const0_rtx); vec_promoted_val = promote_duplicated_reg (move_mode, val_exp); promoted_val = promote_duplicated_reg_to_size (val_exp, GET_MODE_SIZE (word_mode), desired_align, align); } else { promoted_val = promote_duplicated_reg_to_size (val_exp, size_needed, desired_align, align); } } /* Misaligned move sequences handles both prologues and epilogues at once. Default code generation results in smaller code for large alignments and also avoids redundant job when sizes are known precisely. */ if (misaligned_prologue_used) { /* Misaligned move prologue handled small blocks by itself. */ expand_set_or_movmem_prologue_epilogue_by_misaligned_moves (dst, src, &destreg, &srcreg, move_mode, promoted_val, vec_promoted_val, &count_exp, &jump_around_label, desired_align < align ? MAX (desired_align, epilogue_size_needed) : epilogue_size_needed, desired_align, align, &min_size, dynamic_check, issetmem); if (!issetmem) src = change_address (src, BLKmode, srcreg); dst = change_address (dst, BLKmode, destreg); set_mem_align (dst, desired_align * BITS_PER_UNIT); epilogue_size_needed = 0; if (need_zero_guard && !min_size) { /* It is possible that we copied enough so the main loop will not execute. */ gcc_assert (size_needed > 1); if (jump_around_label == NULL_RTX) jump_around_label = gen_label_rtx (); emit_cmp_and_jump_insns (count_exp, GEN_INT (size_needed), LTU, 0, counter_mode (count_exp), 1, jump_around_label); if (expected_size == -1 || expected_size < (desired_align - align) / 2 + size_needed) predict_jump (REG_BR_PROB_BASE * 20 / 100); else predict_jump (REG_BR_PROB_BASE * 60 / 100); } } /* Ensure that alignment prologue won't copy past end of block. */ else if (size_needed > 1 || (desired_align > 1 && desired_align > align)) { epilogue_size_needed = MAX (size_needed - 1, desired_align - align); /* Epilogue always copies COUNT_EXP & EPILOGUE_SIZE_NEEDED bytes. Make sure it is power of 2. */ epilogue_size_needed = 1 << (floor_log2 (epilogue_size_needed) + 1); /* To improve performance of small blocks, we jump around the VAL promoting mode. This mean that if the promoted VAL is not constant, we might not use it in the epilogue and have to use byte loop variant. */ if (issetmem && epilogue_size_needed > 2 && !promoted_val) force_loopy_epilogue = true; if (count) { if (count < (unsigned HOST_WIDE_INT)epilogue_size_needed) { /* If main algorithm works on QImode, no epilogue is needed. For small sizes just don't align anything. */ if (size_needed == 1) desired_align = align; else goto epilogue; } } else if (min_size < (unsigned HOST_WIDE_INT)epilogue_size_needed) { gcc_assert (max_size >= (unsigned HOST_WIDE_INT)epilogue_size_needed); label = gen_label_rtx (); emit_cmp_and_jump_insns (count_exp, GEN_INT (epilogue_size_needed), LTU, 0, counter_mode (count_exp), 1, label); if (expected_size == -1 || expected_size < epilogue_size_needed) predict_jump (REG_BR_PROB_BASE * 60 / 100); else predict_jump (REG_BR_PROB_BASE * 20 / 100); } } /* Emit code to decide on runtime whether library call or inline should be used. */ if (dynamic_check != -1) { if (!issetmem && CONST_INT_P (count_exp)) { if (UINTVAL (count_exp) >= (unsigned HOST_WIDE_INT)dynamic_check) { emit_block_move_via_libcall (dst, src, count_exp, false); count_exp = const0_rtx; goto epilogue; } } else { rtx hot_label = gen_label_rtx (); jump_around_label = gen_label_rtx (); emit_cmp_and_jump_insns (count_exp, GEN_INT (dynamic_check - 1), LEU, 0, GET_MODE (count_exp), 1, hot_label); predict_jump (REG_BR_PROB_BASE * 90 / 100); if (issetmem) set_storage_via_libcall (dst, count_exp, val_exp, false); else emit_block_move_via_libcall (dst, src, count_exp, false); emit_jump (jump_around_label); emit_label (hot_label); } } /* Step 2: Alignment prologue. */ /* Do the expensive promotion once we branched off the small blocks. */ if (issetmem && !promoted_val) promoted_val = promote_duplicated_reg_to_size (val_exp, size_needed, desired_align, align); if (desired_align > align && !misaligned_prologue_used) { if (align_bytes == 0) { /* Except for the first move in prologue, we no longer know constant offset in aliasing info. It don't seems to worth the pain to maintain it for the first move, so throw away the info early. */ dst = change_address (dst, BLKmode, destreg); if (!issetmem) src = change_address (src, BLKmode, srcreg); dst = expand_set_or_movmem_prologue (dst, src, destreg, srcreg, promoted_val, vec_promoted_val, count_exp, align, desired_align, issetmem); /* At most desired_align - align bytes are copied. */ if (min_size < (unsigned)(desired_align - align)) min_size = 0; else min_size -= desired_align - align; } else { /* If we know how many bytes need to be stored before dst is sufficiently aligned, maintain aliasing info accurately. */ dst = expand_set_or_movmem_constant_prologue (dst, &src, destreg, srcreg, promoted_val, vec_promoted_val, desired_align, align_bytes, issetmem); count_exp = plus_constant (counter_mode (count_exp), count_exp, -align_bytes); count -= align_bytes; min_size -= align_bytes; max_size -= align_bytes; } if (need_zero_guard && !min_size && (count < (unsigned HOST_WIDE_INT) size_needed || (align_bytes == 0 && count < ((unsigned HOST_WIDE_INT) size_needed + desired_align - align)))) { /* It is possible that we copied enough so the main loop will not execute. */ gcc_assert (size_needed > 1); if (label == NULL_RTX) label = gen_label_rtx (); emit_cmp_and_jump_insns (count_exp, GEN_INT (size_needed), LTU, 0, counter_mode (count_exp), 1, label); if (expected_size == -1 || expected_size < (desired_align - align) / 2 + size_needed) predict_jump (REG_BR_PROB_BASE * 20 / 100); else predict_jump (REG_BR_PROB_BASE * 60 / 100); } } if (label && size_needed == 1) { emit_label (label); LABEL_NUSES (label) = 1; label = NULL; epilogue_size_needed = 1; if (issetmem) promoted_val = val_exp; } else if (label == NULL_RTX && !misaligned_prologue_used) epilogue_size_needed = size_needed; /* Step 3: Main loop. */ switch (alg) { case libcall: case no_stringop: case last_alg: gcc_unreachable (); case loop_1_byte: case loop: case unrolled_loop: expand_set_or_movmem_via_loop (dst, src, destreg, srcreg, promoted_val, count_exp, move_mode, unroll_factor, expected_size, issetmem); break; case vector_loop: expand_set_or_movmem_via_loop (dst, src, destreg, srcreg, vec_promoted_val, count_exp, move_mode, unroll_factor, expected_size, issetmem); break; case rep_prefix_8_byte: case rep_prefix_4_byte: case rep_prefix_1_byte: expand_set_or_movmem_via_rep (dst, src, destreg, srcreg, promoted_val, val_exp, count_exp, move_mode, issetmem); break; } /* Adjust properly the offset of src and dest memory for aliasing. */ if (CONST_INT_P (count_exp)) { if (!issetmem) src = adjust_automodify_address_nv (src, BLKmode, srcreg, (count / size_needed) * size_needed); dst = adjust_automodify_address_nv (dst, BLKmode, destreg, (count / size_needed) * size_needed); } else { if (!issetmem) src = change_address (src, BLKmode, srcreg); dst = change_address (dst, BLKmode, destreg); } /* Step 4: Epilogue to copy the remaining bytes. */ epilogue: if (label) { /* When the main loop is done, COUNT_EXP might hold original count, while we want to copy only COUNT_EXP & SIZE_NEEDED bytes. Epilogue code will actually copy COUNT_EXP & EPILOGUE_SIZE_NEEDED bytes. Compensate if needed. */ if (size_needed < epilogue_size_needed) { tmp = expand_simple_binop (counter_mode (count_exp), AND, count_exp, GEN_INT (size_needed - 1), count_exp, 1, OPTAB_DIRECT); if (tmp != count_exp) emit_move_insn (count_exp, tmp); } emit_label (label); LABEL_NUSES (label) = 1; } if (count_exp != const0_rtx && epilogue_size_needed > 1) { if (force_loopy_epilogue) expand_setmem_epilogue_via_loop (dst, destreg, val_exp, count_exp, epilogue_size_needed); else { if (issetmem) expand_setmem_epilogue (dst, destreg, promoted_val, vec_promoted_val, count_exp, epilogue_size_needed); else expand_movmem_epilogue (dst, src, destreg, srcreg, count_exp, epilogue_size_needed); } } if (jump_around_label) emit_label (jump_around_label); return true; } /* Expand the appropriate insns for doing strlen if not just doing repnz; scasb out = result, initialized with the start address align_rtx = alignment of the address. scratch = scratch register, initialized with the startaddress when not aligned, otherwise undefined This is just the body. It needs the initializations mentioned above and some address computing at the end. These things are done in i386.md. */ static void ix86_expand_strlensi_unroll_1 (rtx out, rtx src, rtx align_rtx) { int align; rtx tmp; rtx align_2_label = NULL_RTX; rtx align_3_label = NULL_RTX; rtx align_4_label = gen_label_rtx (); rtx end_0_label = gen_label_rtx (); rtx mem; rtx tmpreg = gen_reg_rtx (SImode); rtx scratch = gen_reg_rtx (SImode); rtx cmp; align = 0; if (CONST_INT_P (align_rtx)) align = INTVAL (align_rtx); /* Loop to check 1..3 bytes for null to get an aligned pointer. */ /* Is there a known alignment and is it less than 4? */ if (align < 4) { rtx scratch1 = gen_reg_rtx (Pmode); emit_move_insn (scratch1, out); /* Is there a known alignment and is it not 2? */ if (align != 2) { align_3_label = gen_label_rtx (); /* Label when aligned to 3-byte */ align_2_label = gen_label_rtx (); /* Label when aligned to 2-byte */ /* Leave just the 3 lower bits. */ align_rtx = expand_binop (Pmode, and_optab, scratch1, GEN_INT (3), NULL_RTX, 0, OPTAB_WIDEN); emit_cmp_and_jump_insns (align_rtx, const0_rtx, EQ, NULL, Pmode, 1, align_4_label); emit_cmp_and_jump_insns (align_rtx, const2_rtx, EQ, NULL, Pmode, 1, align_2_label); emit_cmp_and_jump_insns (align_rtx, const2_rtx, GTU, NULL, Pmode, 1, align_3_label); } else { /* Since the alignment is 2, we have to check 2 or 0 bytes; check if is aligned to 4 - byte. */ align_rtx = expand_binop (Pmode, and_optab, scratch1, const2_rtx, NULL_RTX, 0, OPTAB_WIDEN); emit_cmp_and_jump_insns (align_rtx, const0_rtx, EQ, NULL, Pmode, 1, align_4_label); } mem = change_address (src, QImode, out); /* Now compare the bytes. */ /* Compare the first n unaligned byte on a byte per byte basis. */ emit_cmp_and_jump_insns (mem, const0_rtx, EQ, NULL, QImode, 1, end_0_label); /* Increment the address. */ emit_insn (ix86_gen_add3 (out, out, const1_rtx)); /* Not needed with an alignment of 2 */ if (align != 2) { emit_label (align_2_label); emit_cmp_and_jump_insns (mem, const0_rtx, EQ, NULL, QImode, 1, end_0_label); emit_insn (ix86_gen_add3 (out, out, const1_rtx)); emit_label (align_3_label); } emit_cmp_and_jump_insns (mem, const0_rtx, EQ, NULL, QImode, 1, end_0_label); emit_insn (ix86_gen_add3 (out, out, const1_rtx)); } /* Generate loop to check 4 bytes at a time. It is not a good idea to align this loop. It gives only huge programs, but does not help to speed up. */ emit_label (align_4_label); mem = change_address (src, SImode, out); emit_move_insn (scratch, mem); emit_insn (ix86_gen_add3 (out, out, GEN_INT (4))); /* This formula yields a nonzero result iff one of the bytes is zero. This saves three branches inside loop and many cycles. */ emit_insn (gen_addsi3 (tmpreg, scratch, GEN_INT (-0x01010101))); emit_insn (gen_one_cmplsi2 (scratch, scratch)); emit_insn (gen_andsi3 (tmpreg, tmpreg, scratch)); emit_insn (gen_andsi3 (tmpreg, tmpreg, gen_int_mode (0x80808080, SImode))); emit_cmp_and_jump_insns (tmpreg, const0_rtx, EQ, 0, SImode, 1, align_4_label); if (TARGET_CMOVE) { rtx reg = gen_reg_rtx (SImode); rtx reg2 = gen_reg_rtx (Pmode); emit_move_insn (reg, tmpreg); emit_insn (gen_lshrsi3 (reg, reg, GEN_INT (16))); /* If zero is not in the first two bytes, move two bytes forward. */ emit_insn (gen_testsi_ccno_1 (tmpreg, GEN_INT (0x8080))); tmp = gen_rtx_REG (CCNOmode, FLAGS_REG); tmp = gen_rtx_EQ (VOIDmode, tmp, const0_rtx); emit_insn (gen_rtx_SET (VOIDmode, tmpreg, gen_rtx_IF_THEN_ELSE (SImode, tmp, reg, tmpreg))); /* Emit lea manually to avoid clobbering of flags. */ emit_insn (gen_rtx_SET (SImode, reg2, gen_rtx_PLUS (Pmode, out, const2_rtx))); tmp = gen_rtx_REG (CCNOmode, FLAGS_REG); tmp = gen_rtx_EQ (VOIDmode, tmp, const0_rtx); emit_insn (gen_rtx_SET (VOIDmode, out, gen_rtx_IF_THEN_ELSE (Pmode, tmp, reg2, out))); } else { rtx end_2_label = gen_label_rtx (); /* Is zero in the first two bytes? */ emit_insn (gen_testsi_ccno_1 (tmpreg, GEN_INT (0x8080))); tmp = gen_rtx_REG (CCNOmode, FLAGS_REG); tmp = gen_rtx_NE (VOIDmode, tmp, const0_rtx); tmp = gen_rtx_IF_THEN_ELSE (VOIDmode, tmp, gen_rtx_LABEL_REF (VOIDmode, end_2_label), pc_rtx); tmp = emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx, tmp)); JUMP_LABEL (tmp) = end_2_label; /* Not in the first two. Move two bytes forward. */ emit_insn (gen_lshrsi3 (tmpreg, tmpreg, GEN_INT (16))); emit_insn (ix86_gen_add3 (out, out, const2_rtx)); emit_label (end_2_label); } /* Avoid branch in fixing the byte. */ tmpreg = gen_lowpart (QImode, tmpreg); emit_insn (gen_addqi3_cc (tmpreg, tmpreg, tmpreg)); tmp = gen_rtx_REG (CCmode, FLAGS_REG); cmp = gen_rtx_LTU (VOIDmode, tmp, const0_rtx); emit_insn (ix86_gen_sub3_carry (out, out, GEN_INT (3), tmp, cmp)); emit_label (end_0_label); } /* Expand strlen. */ bool ix86_expand_strlen (rtx out, rtx src, rtx eoschar, rtx align) { rtx addr, scratch1, scratch2, scratch3, scratch4; /* The generic case of strlen expander is long. Avoid it's expanding unless TARGET_INLINE_ALL_STRINGOPS. */ if (TARGET_UNROLL_STRLEN && eoschar == const0_rtx && optimize > 1 && !TARGET_INLINE_ALL_STRINGOPS && !optimize_insn_for_size_p () && (!CONST_INT_P (align) || INTVAL (align) < 4)) return false; addr = force_reg (Pmode, XEXP (src, 0)); scratch1 = gen_reg_rtx (Pmode); if (TARGET_UNROLL_STRLEN && eoschar == const0_rtx && optimize > 1 && !optimize_insn_for_size_p ()) { /* Well it seems that some optimizer does not combine a call like foo(strlen(bar), strlen(bar)); when the move and the subtraction is done here. It does calculate the length just once when these instructions are done inside of output_strlen_unroll(). But I think since &bar[strlen(bar)] is often used and I use one fewer register for the lifetime of output_strlen_unroll() this is better. */ emit_move_insn (out, addr); ix86_expand_strlensi_unroll_1 (out, src, align); /* strlensi_unroll_1 returns the address of the zero at the end of the string, like memchr(), so compute the length by subtracting the start address. */ emit_insn (ix86_gen_sub3 (out, out, addr)); } else { rtx unspec; /* Can't use this if the user has appropriated eax, ecx, or edi. */ if (fixed_regs[AX_REG] || fixed_regs[CX_REG] || fixed_regs[DI_REG]) return false; scratch2 = gen_reg_rtx (Pmode); scratch3 = gen_reg_rtx (Pmode); scratch4 = force_reg (Pmode, constm1_rtx); emit_move_insn (scratch3, addr); eoschar = force_reg (QImode, eoschar); src = replace_equiv_address_nv (src, scratch3); /* If .md starts supporting :P, this can be done in .md. */ unspec = gen_rtx_UNSPEC (Pmode, gen_rtvec (4, src, eoschar, align, scratch4), UNSPEC_SCAS); emit_insn (gen_strlenqi_1 (scratch1, scratch3, unspec)); emit_insn (ix86_gen_one_cmpl2 (scratch2, scratch1)); emit_insn (ix86_gen_add3 (out, scratch2, constm1_rtx)); } return true; } /* For given symbol (function) construct code to compute address of it's PLT entry in large x86-64 PIC model. */ static rtx construct_plt_address (rtx symbol) { rtx tmp, unspec; gcc_assert (GET_CODE (symbol) == SYMBOL_REF); gcc_assert (ix86_cmodel == CM_LARGE_PIC && !TARGET_PECOFF); gcc_assert (Pmode == DImode); tmp = gen_reg_rtx (Pmode); unspec = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, symbol), UNSPEC_PLTOFF); emit_move_insn (tmp, gen_rtx_CONST (Pmode, unspec)); emit_insn (ix86_gen_add3 (tmp, tmp, pic_offset_table_rtx)); return tmp; } rtx ix86_expand_call (rtx retval, rtx fnaddr, rtx callarg1, rtx callarg2, rtx pop, bool sibcall) { unsigned int const cregs_size = ARRAY_SIZE (x86_64_ms_sysv_extra_clobbered_registers); rtx vec[3 + cregs_size]; rtx use = NULL, call; unsigned int vec_len = 0; if (pop == const0_rtx) pop = NULL; gcc_assert (!TARGET_64BIT || !pop); if (TARGET_MACHO && !TARGET_64BIT) { #if TARGET_MACHO if (flag_pic && GET_CODE (XEXP (fnaddr, 0)) == SYMBOL_REF) fnaddr = machopic_indirect_call_target (fnaddr); #endif } else { /* Static functions and indirect calls don't need the pic register. */ if (flag_pic && (!TARGET_64BIT || (ix86_cmodel == CM_LARGE_PIC && DEFAULT_ABI != MS_ABI)) && GET_CODE (XEXP (fnaddr, 0)) == SYMBOL_REF && ! SYMBOL_REF_LOCAL_P (XEXP (fnaddr, 0))) use_reg (&use, pic_offset_table_rtx); } if (TARGET_64BIT && INTVAL (callarg2) >= 0) { rtx al = gen_rtx_REG (QImode, AX_REG); emit_move_insn (al, callarg2); use_reg (&use, al); } if (ix86_cmodel == CM_LARGE_PIC && !TARGET_PECOFF && MEM_P (fnaddr) && GET_CODE (XEXP (fnaddr, 0)) == SYMBOL_REF && !local_symbolic_operand (XEXP (fnaddr, 0), VOIDmode)) fnaddr = gen_rtx_MEM (QImode, construct_plt_address (XEXP (fnaddr, 0))); else if (sibcall ? !sibcall_insn_operand (XEXP (fnaddr, 0), word_mode) : !call_insn_operand (XEXP (fnaddr, 0), word_mode)) { fnaddr = convert_to_mode (word_mode, XEXP (fnaddr, 0), 1); fnaddr = gen_rtx_MEM (QImode, copy_to_mode_reg (word_mode, fnaddr)); } call = gen_rtx_CALL (VOIDmode, fnaddr, callarg1); if (retval) call = gen_rtx_SET (VOIDmode, retval, call); vec[vec_len++] = call; if (pop) { pop = gen_rtx_PLUS (Pmode, stack_pointer_rtx, pop); pop = gen_rtx_SET (VOIDmode, stack_pointer_rtx, pop); vec[vec_len++] = pop; } if (TARGET_64BIT_MS_ABI && (!callarg2 || INTVAL (callarg2) != -2)) { unsigned i; vec[vec_len++] = gen_rtx_UNSPEC (VOIDmode, gen_rtvec (1, const0_rtx), UNSPEC_MS_TO_SYSV_CALL); for (i = 0; i < cregs_size; i++) { int regno = x86_64_ms_sysv_extra_clobbered_registers[i]; enum machine_mode mode = SSE_REGNO_P (regno) ? TImode : DImode; vec[vec_len++] = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)); } } if (vec_len > 1) call = gen_rtx_PARALLEL (VOIDmode, gen_rtvec_v (vec_len, vec)); call = emit_call_insn (call); if (use) CALL_INSN_FUNCTION_USAGE (call) = use; return call; } /* Output the assembly for a call instruction. */ const char * ix86_output_call_insn (rtx insn, rtx call_op) { bool direct_p = constant_call_address_operand (call_op, VOIDmode); bool seh_nop_p = false; const char *xasm; if (SIBLING_CALL_P (insn)) { if (direct_p) xasm = "%!jmp\t%P0"; /* SEH epilogue detection requires the indirect branch case to include REX.W. */ else if (TARGET_SEH) xasm = "%!rex.W jmp %A0"; else xasm = "%!jmp\t%A0"; output_asm_insn (xasm, &call_op); return ""; } /* SEH unwinding can require an extra nop to be emitted in several circumstances. Determine if we have one of those. */ if (TARGET_SEH) { rtx i; for (i = NEXT_INSN (insn); i ; i = NEXT_INSN (i)) { /* If we get to another real insn, we don't need the nop. */ if (INSN_P (i)) break; /* If we get to the epilogue note, prevent a catch region from being adjacent to the standard epilogue sequence. If non- call-exceptions, we'll have done this during epilogue emission. */ if (NOTE_P (i) && NOTE_KIND (i) == NOTE_INSN_EPILOGUE_BEG && !flag_non_call_exceptions && !can_throw_internal (insn)) { seh_nop_p = true; break; } } /* If we didn't find a real insn following the call, prevent the unwinder from looking into the next function. */ if (i == NULL) seh_nop_p = true; } if (direct_p) xasm = "%!call\t%P0"; else xasm = "%!call\t%A0"; output_asm_insn (xasm, &call_op); if (seh_nop_p) return "nop"; return ""; } /* Clear stack slot assignments remembered from previous functions. This is called from INIT_EXPANDERS once before RTL is emitted for each function. */ static struct machine_function * ix86_init_machine_status (void) { struct machine_function *f; f = ggc_alloc_cleared_machine_function (); f->use_fast_prologue_epilogue_nregs = -1; f->call_abi = ix86_abi; return f; } /* Return a MEM corresponding to a stack slot with mode MODE. Allocate a new slot if necessary. The RTL for a function can have several slots available: N is which slot to use. */ rtx assign_386_stack_local (enum machine_mode mode, enum ix86_stack_slot n) { struct stack_local_entry *s; gcc_assert (n < MAX_386_STACK_LOCALS); for (s = ix86_stack_locals; s; s = s->next) if (s->mode == mode && s->n == n) return validize_mem (copy_rtx (s->rtl)); s = ggc_alloc_stack_local_entry (); s->n = n; s->mode = mode; s->rtl = assign_stack_local (mode, GET_MODE_SIZE (mode), 0); s->next = ix86_stack_locals; ix86_stack_locals = s; return validize_mem (s->rtl); } static void ix86_instantiate_decls (void) { struct stack_local_entry *s; for (s = ix86_stack_locals; s; s = s->next) if (s->rtl != NULL_RTX) instantiate_decl_rtl (s->rtl); } /* Check whether x86 address PARTS is a pc-relative address. */ static bool rip_relative_addr_p (struct ix86_address *parts) { rtx base, index, disp; base = parts->base; index = parts->index; disp = parts->disp; if (disp && !base && !index) { if (TARGET_64BIT) { rtx symbol = disp; if (GET_CODE (disp) == CONST) symbol = XEXP (disp, 0); if (GET_CODE (symbol) == PLUS && CONST_INT_P (XEXP (symbol, 1))) symbol = XEXP (symbol, 0); if (GET_CODE (symbol) == LABEL_REF || (GET_CODE (symbol) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (symbol) == 0) || (GET_CODE (symbol) == UNSPEC && (XINT (symbol, 1) == UNSPEC_GOTPCREL || XINT (symbol, 1) == UNSPEC_PCREL || XINT (symbol, 1) == UNSPEC_GOTNTPOFF))) return true; } } return false; } /* Calculate the length of the memory address in the instruction encoding. Includes addr32 prefix, does not include the one-byte modrm, opcode, or other prefixes. We never generate addr32 prefix for LEA insn. */ int memory_address_length (rtx addr, bool lea) { struct ix86_address parts; rtx base, index, disp; int len; int ok; if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == POST_INC || GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY) return 0; ok = ix86_decompose_address (addr, &parts); gcc_assert (ok); len = (parts.seg == SEG_DEFAULT) ? 0 : 1; /* If this is not LEA instruction, add the length of addr32 prefix. */ if (TARGET_64BIT && !lea && (SImode_address_operand (addr, VOIDmode) || (parts.base && GET_MODE (parts.base) == SImode) || (parts.index && GET_MODE (parts.index) == SImode))) len++; base = parts.base; index = parts.index; disp = parts.disp; if (base && GET_CODE (base) == SUBREG) base = SUBREG_REG (base); if (index && GET_CODE (index) == SUBREG) index = SUBREG_REG (index); gcc_assert (base == NULL_RTX || REG_P (base)); gcc_assert (index == NULL_RTX || REG_P (index)); /* Rule of thumb: - esp as the base always wants an index, - ebp as the base always wants a displacement, - r12 as the base always wants an index, - r13 as the base always wants a displacement. */ /* Register Indirect. */ if (base && !index && !disp) { /* esp (for its index) and ebp (for its displacement) need the two-byte modrm form. Similarly for r12 and r13 in 64-bit code. */ if (base == arg_pointer_rtx || base == frame_pointer_rtx || REGNO (base) == SP_REG || REGNO (base) == BP_REG || REGNO (base) == R12_REG || REGNO (base) == R13_REG) len++; } /* Direct Addressing. In 64-bit mode mod 00 r/m 5 is not disp32, but disp32(%rip), so for disp32 SIB byte is needed, unless print_operand_address optimizes it into disp32(%rip) or (%rip) is implied by UNSPEC. */ else if (disp && !base && !index) { len += 4; if (rip_relative_addr_p (&parts)) len++; } else { /* Find the length of the displacement constant. */ if (disp) { if (base && satisfies_constraint_K (disp)) len += 1; else len += 4; } /* ebp always wants a displacement. Similarly r13. */ else if (base && (REGNO (base) == BP_REG || REGNO (base) == R13_REG)) len++; /* An index requires the two-byte modrm form.... */ if (index /* ...like esp (or r12), which always wants an index. */ || base == arg_pointer_rtx || base == frame_pointer_rtx || (base && (REGNO (base) == SP_REG || REGNO (base) == R12_REG))) len++; } return len; } /* Compute default value for "length_immediate" attribute. When SHORTFORM is set, expect that insn have 8bit immediate alternative. */ int ix86_attr_length_immediate_default (rtx insn, bool shortform) { int len = 0; int i; extract_insn_cached (insn); for (i = recog_data.n_operands - 1; i >= 0; --i) if (CONSTANT_P (recog_data.operand[i])) { enum attr_mode mode = get_attr_mode (insn); gcc_assert (!len); if (shortform && CONST_INT_P (recog_data.operand[i])) { HOST_WIDE_INT ival = INTVAL (recog_data.operand[i]); switch (mode) { case MODE_QI: len = 1; continue; case MODE_HI: ival = trunc_int_for_mode (ival, HImode); break; case MODE_SI: ival = trunc_int_for_mode (ival, SImode); break; default: break; } if (IN_RANGE (ival, -128, 127)) { len = 1; continue; } } switch (mode) { case MODE_QI: len = 1; break; case MODE_HI: len = 2; break; case MODE_SI: len = 4; break; /* Immediates for DImode instructions are encoded as 32bit sign extended values. */ case MODE_DI: len = 4; break; default: fatal_insn ("unknown insn mode", insn); } } return len; } /* Compute default value for "length_address" attribute. */ int ix86_attr_length_address_default (rtx insn) { int i; if (get_attr_type (insn) == TYPE_LEA) { rtx set = PATTERN (insn), addr; if (GET_CODE (set) == PARALLEL) set = XVECEXP (set, 0, 0); gcc_assert (GET_CODE (set) == SET); addr = SET_SRC (set); return memory_address_length (addr, true); } extract_insn_cached (insn); for (i = recog_data.n_operands - 1; i >= 0; --i) if (MEM_P (recog_data.operand[i])) { constrain_operands_cached (reload_completed); if (which_alternative != -1) { const char *constraints = recog_data.constraints[i]; int alt = which_alternative; while (*constraints == '=' || *constraints == '+') constraints++; while (alt-- > 0) while (*constraints++ != ',') ; /* Skip ignored operands. */ if (*constraints == 'X') continue; } return memory_address_length (XEXP (recog_data.operand[i], 0), false); } return 0; } /* Compute default value for "length_vex" attribute. It includes 2 or 3 byte VEX prefix and 1 opcode byte. */ int ix86_attr_length_vex_default (rtx insn, bool has_0f_opcode, bool has_vex_w) { int i; /* Only 0f opcode can use 2 byte VEX prefix and VEX W bit uses 3 byte VEX prefix. */ if (!has_0f_opcode || has_vex_w) return 3 + 1; /* We can always use 2 byte VEX prefix in 32bit. */ if (!TARGET_64BIT) return 2 + 1; extract_insn_cached (insn); for (i = recog_data.n_operands - 1; i >= 0; --i) if (REG_P (recog_data.operand[i])) { /* REX.W bit uses 3 byte VEX prefix. */ if (GET_MODE (recog_data.operand[i]) == DImode && GENERAL_REG_P (recog_data.operand[i])) return 3 + 1; } else { /* REX.X or REX.B bits use 3 byte VEX prefix. */ if (MEM_P (recog_data.operand[i]) && x86_extended_reg_mentioned_p (recog_data.operand[i])) return 3 + 1; } return 2 + 1; } /* Return the maximum number of instructions a cpu can issue. */ static int ix86_issue_rate (void) { switch (ix86_tune) { case PROCESSOR_PENTIUM: case PROCESSOR_ATOM: case PROCESSOR_SLM: case PROCESSOR_K6: case PROCESSOR_BTVER2: case PROCESSOR_PENTIUM4: case PROCESSOR_NOCONA: return 2; case PROCESSOR_PENTIUMPRO: case PROCESSOR_ATHLON: case PROCESSOR_K8: case PROCESSOR_AMDFAM10: case PROCESSOR_GENERIC: case PROCESSOR_BTVER1: return 3; case PROCESSOR_BDVER1: case PROCESSOR_BDVER2: case PROCESSOR_BDVER3: case PROCESSOR_BDVER4: case PROCESSOR_CORE2: case PROCESSOR_COREI7: case PROCESSOR_COREI7_AVX: case PROCESSOR_HASWELL: return 4; default: return 1; } } /* A subroutine of ix86_adjust_cost -- return TRUE iff INSN reads flags set by DEP_INSN and nothing set by DEP_INSN. */ static bool ix86_flags_dependent (rtx insn, rtx dep_insn, enum attr_type insn_type) { rtx set, set2; /* Simplify the test for uninteresting insns. */ if (insn_type != TYPE_SETCC && insn_type != TYPE_ICMOV && insn_type != TYPE_FCMOV && insn_type != TYPE_IBR) return false; if ((set = single_set (dep_insn)) != 0) { set = SET_DEST (set); set2 = NULL_RTX; } else if (GET_CODE (PATTERN (dep_insn)) == PARALLEL && XVECLEN (PATTERN (dep_insn), 0) == 2 && GET_CODE (XVECEXP (PATTERN (dep_insn), 0, 0)) == SET && GET_CODE (XVECEXP (PATTERN (dep_insn), 0, 1)) == SET) { set = SET_DEST (XVECEXP (PATTERN (dep_insn), 0, 0)); set2 = SET_DEST (XVECEXP (PATTERN (dep_insn), 0, 0)); } else return false; if (!REG_P (set) || REGNO (set) != FLAGS_REG) return false; /* This test is true if the dependent insn reads the flags but not any other potentially set register. */ if (!reg_overlap_mentioned_p (set, PATTERN (insn))) return false; if (set2 && reg_overlap_mentioned_p (set2, PATTERN (insn))) return false; return true; } /* Return true iff USE_INSN has a memory address with operands set by SET_INSN. */ bool ix86_agi_dependent (rtx set_insn, rtx use_insn) { int i; extract_insn_cached (use_insn); for (i = recog_data.n_operands - 1; i >= 0; --i) if (MEM_P (recog_data.operand[i])) { rtx addr = XEXP (recog_data.operand[i], 0); return modified_in_p (addr, set_insn) != 0; } return false; } /* Helper function for exact_store_load_dependency. Return true if addr is found in insn. */ static bool exact_dependency_1 (rtx addr, rtx insn) { enum rtx_code code; const char *format_ptr; int i, j; code = GET_CODE (insn); switch (code) { case MEM: if (rtx_equal_p (addr, insn)) return true; break; case REG: CASE_CONST_ANY: case SYMBOL_REF: case CODE_LABEL: case PC: case CC0: case EXPR_LIST: return false; default: break; } format_ptr = GET_RTX_FORMAT (code); for (i = 0; i < GET_RTX_LENGTH (code); i++) { switch (*format_ptr++) { case 'e': if (exact_dependency_1 (addr, XEXP (insn, i))) return true; break; case 'E': for (j = 0; j < XVECLEN (insn, i); j++) if (exact_dependency_1 (addr, XVECEXP (insn, i, j))) return true; break; } } return false; } /* Return true if there exists exact dependency for store & load, i.e. the same memory address is used in them. */ static bool exact_store_load_dependency (rtx store, rtx load) { rtx set1, set2; set1 = single_set (store); if (!set1) return false; if (!MEM_P (SET_DEST (set1))) return false; set2 = single_set (load); if (!set2) return false; if (exact_dependency_1 (SET_DEST (set1), SET_SRC (set2))) return true; return false; } static int ix86_adjust_cost (rtx insn, rtx link, rtx dep_insn, int cost) { enum attr_type insn_type, dep_insn_type; enum attr_memory memory; rtx set, set2; int dep_insn_code_number; /* Anti and output dependencies have zero cost on all CPUs. */ if (REG_NOTE_KIND (link) != 0) return 0; dep_insn_code_number = recog_memoized (dep_insn); /* If we can't recognize the insns, we can't really do anything. */ if (dep_insn_code_number < 0 || recog_memoized (insn) < 0) return cost; insn_type = get_attr_type (insn); dep_insn_type = get_attr_type (dep_insn); switch (ix86_tune) { case PROCESSOR_PENTIUM: /* Address Generation Interlock adds a cycle of latency. */ if (insn_type == TYPE_LEA) { rtx addr = PATTERN (insn); if (GET_CODE (addr) == PARALLEL) addr = XVECEXP (addr, 0, 0); gcc_assert (GET_CODE (addr) == SET); addr = SET_SRC (addr); if (modified_in_p (addr, dep_insn)) cost += 1; } else if (ix86_agi_dependent (dep_insn, insn)) cost += 1; /* ??? Compares pair with jump/setcc. */ if (ix86_flags_dependent (insn, dep_insn, insn_type)) cost = 0; /* Floating point stores require value to be ready one cycle earlier. */ if (insn_type == TYPE_FMOV && get_attr_memory (insn) == MEMORY_STORE && !ix86_agi_dependent (dep_insn, insn)) cost += 1; break; case PROCESSOR_PENTIUMPRO: memory = get_attr_memory (insn); /* INT->FP conversion is expensive. */ if (get_attr_fp_int_src (dep_insn)) cost += 5; /* There is one cycle extra latency between an FP op and a store. */ if (insn_type == TYPE_FMOV && (set = single_set (dep_insn)) != NULL_RTX && (set2 = single_set (insn)) != NULL_RTX && rtx_equal_p (SET_DEST (set), SET_SRC (set2)) && MEM_P (SET_DEST (set2))) cost += 1; /* Show ability of reorder buffer to hide latency of load by executing in parallel with previous instruction in case previous instruction is not needed to compute the address. */ if ((memory == MEMORY_LOAD || memory == MEMORY_BOTH) && !ix86_agi_dependent (dep_insn, insn)) { /* Claim moves to take one cycle, as core can issue one load at time and the next load can start cycle later. */ if (dep_insn_type == TYPE_IMOV || dep_insn_type == TYPE_FMOV) cost = 1; else if (cost > 1) cost--; } break; case PROCESSOR_K6: memory = get_attr_memory (insn); /* The esp dependency is resolved before the instruction is really finished. */ if ((insn_type == TYPE_PUSH || insn_type == TYPE_POP) && (dep_insn_type == TYPE_PUSH || dep_insn_type == TYPE_POP)) return 1; /* INT->FP conversion is expensive. */ if (get_attr_fp_int_src (dep_insn)) cost += 5; /* Show ability of reorder buffer to hide latency of load by executing in parallel with previous instruction in case previous instruction is not needed to compute the address. */ if ((memory == MEMORY_LOAD || memory == MEMORY_BOTH) && !ix86_agi_dependent (dep_insn, insn)) { /* Claim moves to take one cycle, as core can issue one load at time and the next load can start cycle later. */ if (dep_insn_type == TYPE_IMOV || dep_insn_type == TYPE_FMOV) cost = 1; else if (cost > 2) cost -= 2; else cost = 1; } break; case PROCESSOR_ATHLON: case PROCESSOR_K8: case PROCESSOR_AMDFAM10: case PROCESSOR_BDVER1: case PROCESSOR_BDVER2: case PROCESSOR_BDVER3: case PROCESSOR_BDVER4: case PROCESSOR_BTVER1: case PROCESSOR_BTVER2: case PROCESSOR_GENERIC: memory = get_attr_memory (insn); /* Stack engine allows to execute push&pop instructions in parall. */ if (((insn_type == TYPE_PUSH || insn_type == TYPE_POP) && (dep_insn_type == TYPE_PUSH || dep_insn_type == TYPE_POP)) && (ix86_tune != PROCESSOR_ATHLON && ix86_tune != PROCESSOR_K8)) return 0; /* Show ability of reorder buffer to hide latency of load by executing in parallel with previous instruction in case previous instruction is not needed to compute the address. */ if ((memory == MEMORY_LOAD || memory == MEMORY_BOTH) && !ix86_agi_dependent (dep_insn, insn)) { enum attr_unit unit = get_attr_unit (insn); int loadcost = 3; /* Because of the difference between the length of integer and floating unit pipeline preparation stages, the memory operands for floating point are cheaper. ??? For Athlon it the difference is most probably 2. */ if (unit == UNIT_INTEGER || unit == UNIT_UNKNOWN) loadcost = 3; else loadcost = TARGET_ATHLON ? 2 : 0; if (cost >= loadcost) cost -= loadcost; else cost = 0; } break; case PROCESSOR_CORE2: case PROCESSOR_COREI7: case PROCESSOR_COREI7_AVX: case PROCESSOR_HASWELL: memory = get_attr_memory (insn); /* Stack engine allows to execute push&pop instructions in parall. */ if ((insn_type == TYPE_PUSH || insn_type == TYPE_POP) && (dep_insn_type == TYPE_PUSH || dep_insn_type == TYPE_POP)) return 0; /* Show ability of reorder buffer to hide latency of load by executing in parallel with previous instruction in case previous instruction is not needed to compute the address. */ if ((memory == MEMORY_LOAD || memory == MEMORY_BOTH) && !ix86_agi_dependent (dep_insn, insn)) { if (cost >= 4) cost -= 4; else cost = 0; } break; case PROCESSOR_SLM: if (!reload_completed) return cost; /* Increase cost of integer loads. */ memory = get_attr_memory (dep_insn); if (memory == MEMORY_LOAD || memory == MEMORY_BOTH) { enum attr_unit unit = get_attr_unit (dep_insn); if (unit == UNIT_INTEGER && cost == 1) { if (memory == MEMORY_LOAD) cost = 3; else { /* Increase cost of ld/st for short int types only because of store forwarding issue. */ rtx set = single_set (dep_insn); if (set && (GET_MODE (SET_DEST (set)) == QImode || GET_MODE (SET_DEST (set)) == HImode)) { /* Increase cost of store/load insn if exact dependence exists and it is load insn. */ enum attr_memory insn_memory = get_attr_memory (insn); if (insn_memory == MEMORY_LOAD && exact_store_load_dependency (dep_insn, insn)) cost = 3; } } } } default: break; } return cost; } /* How many alternative schedules to try. This should be as wide as the scheduling freedom in the DFA, but no wider. Making this value too large results extra work for the scheduler. */ static int ia32_multipass_dfa_lookahead (void) { switch (ix86_tune) { case PROCESSOR_PENTIUM: return 2; case PROCESSOR_PENTIUMPRO: case PROCESSOR_K6: return 1; case PROCESSOR_BDVER1: case PROCESSOR_BDVER2: case PROCESSOR_BDVER3: case PROCESSOR_BDVER4: /* We use lookahead value 4 for BD both before and after reload schedules. Plan is to have value 8 included for O3. */ return 4; case PROCESSOR_CORE2: case PROCESSOR_COREI7: case PROCESSOR_COREI7_AVX: case PROCESSOR_HASWELL: case PROCESSOR_ATOM: case PROCESSOR_SLM: /* Generally, we want haifa-sched:max_issue() to look ahead as far as many instructions can be executed on a cycle, i.e., issue_rate. I wonder why tuning for many CPUs does not do this. */ if (reload_completed) return ix86_issue_rate (); /* Don't use lookahead for pre-reload schedule to save compile time. */ return 0; default: return 0; } } /* Return true if target platform supports macro-fusion. */ static bool ix86_macro_fusion_p () { return TARGET_FUSE_CMP_AND_BRANCH; } /* Check whether current microarchitecture support macro fusion for insn pair "CONDGEN + CONDJMP". Refer to "Intel Architectures Optimization Reference Manual". */ static bool ix86_macro_fusion_pair_p (rtx condgen, rtx condjmp) { rtx src, dest; rtx single_set = single_set (condgen); enum rtx_code ccode; rtx compare_set = NULL_RTX, test_if, cond; rtx alu_set = NULL_RTX, addr = NULL_RTX; if (get_attr_type (condgen) != TYPE_TEST && get_attr_type (condgen) != TYPE_ICMP && get_attr_type (condgen) != TYPE_INCDEC && get_attr_type (condgen) != TYPE_ALU) return false; if (single_set == NULL_RTX && !TARGET_FUSE_ALU_AND_BRANCH) return false; if (single_set != NULL_RTX) compare_set = single_set; else { int i; rtx pat = PATTERN (condgen); for (i = 0; i < XVECLEN (pat, 0); i++) if (GET_CODE (XVECEXP (pat, 0, i)) == SET) { rtx set_src = SET_SRC (XVECEXP (pat, 0, i)); if (GET_CODE (set_src) == COMPARE) compare_set = XVECEXP (pat, 0, i); else alu_set = XVECEXP (pat, 0, i); } } if (compare_set == NULL_RTX) return false; src = SET_SRC (compare_set); if (GET_CODE (src) != COMPARE) return false; /* Macro-fusion for cmp/test MEM-IMM + conditional jmp is not supported. */ if ((MEM_P (XEXP (src, 0)) && CONST_INT_P (XEXP (src, 1))) || (MEM_P (XEXP (src, 1)) && CONST_INT_P (XEXP (src, 0)))) return false; /* No fusion for RIP-relative address. */ if (MEM_P (XEXP (src, 0))) addr = XEXP (XEXP (src, 0), 0); else if (MEM_P (XEXP (src, 1))) addr = XEXP (XEXP (src, 1), 0); if (addr) { ix86_address parts; int ok = ix86_decompose_address (addr, &parts); gcc_assert (ok); if (rip_relative_addr_p (&parts)) return false; } test_if = SET_SRC (pc_set (condjmp)); cond = XEXP (test_if, 0); ccode = GET_CODE (cond); /* Check whether conditional jump use Sign or Overflow Flags. */ if (!TARGET_FUSE_CMP_AND_BRANCH_SOFLAGS && (ccode == GE || ccode == GT || ccode == LE || ccode == LT)) return false; /* Return true for TYPE_TEST and TYPE_ICMP. */ if (get_attr_type (condgen) == TYPE_TEST || get_attr_type (condgen) == TYPE_ICMP) return true; /* The following is the case that macro-fusion for alu + jmp. */ if (!TARGET_FUSE_ALU_AND_BRANCH || !alu_set) return false; /* No fusion for alu op with memory destination operand. */ dest = SET_DEST (alu_set); if (MEM_P (dest)) return false; /* Macro-fusion for inc/dec + unsigned conditional jump is not supported. */ if (get_attr_type (condgen) == TYPE_INCDEC && (ccode == GEU || ccode == GTU || ccode == LEU || ccode == LTU)) return false; return true; } /* Try to reorder ready list to take advantage of Atom pipelined IMUL execution. It is applied if (1) IMUL instruction is on the top of list; (2) There exists the only producer of independent IMUL instruction in ready list. Return index of IMUL producer if it was found and -1 otherwise. */ static int do_reorder_for_imul (rtx *ready, int n_ready) { rtx insn, set, insn1, insn2; sd_iterator_def sd_it; dep_t dep; int index = -1; int i; if (ix86_tune != PROCESSOR_ATOM) return index; /* Check that IMUL instruction is on the top of ready list. */ insn = ready[n_ready - 1]; set = single_set (insn); if (!set) return index; if (!(GET_CODE (SET_SRC (set)) == MULT && GET_MODE (SET_SRC (set)) == SImode)) return index; /* Search for producer of independent IMUL instruction. */ for (i = n_ready - 2; i >= 0; i--) { insn = ready[i]; if (!NONDEBUG_INSN_P (insn)) continue; /* Skip IMUL instruction. */ insn2 = PATTERN (insn); if (GET_CODE (insn2) == PARALLEL) insn2 = XVECEXP (insn2, 0, 0); if (GET_CODE (insn2) == SET && GET_CODE (SET_SRC (insn2)) == MULT && GET_MODE (SET_SRC (insn2)) == SImode) continue; FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep) { rtx con; con = DEP_CON (dep); if (!NONDEBUG_INSN_P (con)) continue; insn1 = PATTERN (con); if (GET_CODE (insn1) == PARALLEL) insn1 = XVECEXP (insn1, 0, 0); if (GET_CODE (insn1) == SET && GET_CODE (SET_SRC (insn1)) == MULT && GET_MODE (SET_SRC (insn1)) == SImode) { sd_iterator_def sd_it1; dep_t dep1; /* Check if there is no other dependee for IMUL. */ index = i; FOR_EACH_DEP (con, SD_LIST_BACK, sd_it1, dep1) { rtx pro; pro = DEP_PRO (dep1); if (!NONDEBUG_INSN_P (pro)) continue; if (pro != insn) index = -1; } if (index >= 0) break; } } if (index >= 0) break; } return index; } /* Try to find the best candidate on the top of ready list if two insns have the same priority - candidate is best if its dependees were scheduled earlier. Applied for Silvermont only. Return true if top 2 insns must be interchanged. */ static bool swap_top_of_ready_list (rtx *ready, int n_ready) { rtx top = ready[n_ready - 1]; rtx next = ready[n_ready - 2]; rtx set; sd_iterator_def sd_it; dep_t dep; int clock1 = -1; int clock2 = -1; #define INSN_TICK(INSN) (HID (INSN)->tick) if (ix86_tune != PROCESSOR_SLM) return false; if (!NONDEBUG_INSN_P (top)) return false; if (!NONJUMP_INSN_P (top)) return false; if (!NONDEBUG_INSN_P (next)) return false; if (!NONJUMP_INSN_P (next)) return false; set = single_set (top); if (!set) return false; set = single_set (next); if (!set) return false; if (INSN_PRIORITY_KNOWN (top) && INSN_PRIORITY_KNOWN (next)) { if (INSN_PRIORITY (top) != INSN_PRIORITY (next)) return false; /* Determine winner more precise. */ FOR_EACH_DEP (top, SD_LIST_RES_BACK, sd_it, dep) { rtx pro; pro = DEP_PRO (dep); if (!NONDEBUG_INSN_P (pro)) continue; if (INSN_TICK (pro) > clock1) clock1 = INSN_TICK (pro); } FOR_EACH_DEP (next, SD_LIST_RES_BACK, sd_it, dep) { rtx pro; pro = DEP_PRO (dep); if (!NONDEBUG_INSN_P (pro)) continue; if (INSN_TICK (pro) > clock2) clock2 = INSN_TICK (pro); } if (clock1 == clock2) { /* Determine winner - load must win. */ enum attr_memory memory1, memory2; memory1 = get_attr_memory (top); memory2 = get_attr_memory (next); if (memory2 == MEMORY_LOAD && memory1 != MEMORY_LOAD) return true; } return (bool) (clock2 < clock1); } return false; #undef INSN_TICK } /* Perform possible reodering of ready list for Atom/Silvermont only. Return issue rate. */ static int ix86_sched_reorder (FILE *dump, int sched_verbose, rtx *ready, int *pn_ready, int clock_var) { int issue_rate = -1; int n_ready = *pn_ready; int i; rtx insn; int index = -1; /* Set up issue rate. */ issue_rate = ix86_issue_rate (); /* Do reodering for Atom/SLM only. */ if (ix86_tune != PROCESSOR_ATOM && ix86_tune != PROCESSOR_SLM) return issue_rate; /* Nothing to do if ready list contains only 1 instruction. */ if (n_ready <= 1) return issue_rate; /* Do reodering for post-reload scheduler only. */ if (!reload_completed) return issue_rate; if ((index = do_reorder_for_imul (ready, n_ready)) >= 0) { if (sched_verbose > 1) fprintf (dump, ";;\tatom sched_reorder: put %d insn on top\n", INSN_UID (ready[index])); /* Put IMUL producer (ready[index]) at the top of ready list. */ insn = ready[index]; for (i = index; i < n_ready - 1; i++) ready[i] = ready[i + 1]; ready[n_ready - 1] = insn; return issue_rate; } if (clock_var != 0 && swap_top_of_ready_list (ready, n_ready)) { if (sched_verbose > 1) fprintf (dump, ";;\tslm sched_reorder: swap %d and %d insns\n", INSN_UID (ready[n_ready - 1]), INSN_UID (ready[n_ready - 2])); /* Swap 2 top elements of ready list. */ insn = ready[n_ready - 1]; ready[n_ready - 1] = ready[n_ready - 2]; ready[n_ready - 2] = insn; } return issue_rate; } static bool ix86_class_likely_spilled_p (reg_class_t); /* Returns true if lhs of insn is HW function argument register and set up is_spilled to true if it is likely spilled HW register. */ static bool insn_is_function_arg (rtx insn, bool* is_spilled) { rtx dst; if (!NONDEBUG_INSN_P (insn)) return false; /* Call instructions are not movable, ignore it. */ if (CALL_P (insn)) return false; insn = PATTERN (insn); if (GET_CODE (insn) == PARALLEL) insn = XVECEXP (insn, 0, 0); if (GET_CODE (insn) != SET) return false; dst = SET_DEST (insn); if (REG_P (dst) && HARD_REGISTER_P (dst) && ix86_function_arg_regno_p (REGNO (dst))) { /* Is it likely spilled HW register? */ if (!TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dst)) && ix86_class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dst)))) *is_spilled = true; return true; } return false; } /* Add output dependencies for chain of function adjacent arguments if only there is a move to likely spilled HW register. Return first argument if at least one dependence was added or NULL otherwise. */ static rtx add_parameter_dependencies (rtx call, rtx head) { rtx insn; rtx last = call; rtx first_arg = NULL; bool is_spilled = false; head = PREV_INSN (head); /* Find nearest to call argument passing instruction. */ while (true) { last = PREV_INSN (last); if (last == head) return NULL; if (!NONDEBUG_INSN_P (last)) continue; if (insn_is_function_arg (last, &is_spilled)) break; return NULL; } first_arg = last; while (true) { insn = PREV_INSN (last); if (!INSN_P (insn)) break; if (insn == head) break; if (!NONDEBUG_INSN_P (insn)) { last = insn; continue; } if (insn_is_function_arg (insn, &is_spilled)) { /* Add output depdendence between two function arguments if chain of output arguments contains likely spilled HW registers. */ if (is_spilled) add_dependence (first_arg, insn, REG_DEP_OUTPUT); first_arg = last = insn; } else break; } if (!is_spilled) return NULL; return first_arg; } /* Add output or anti dependency from insn to first_arg to restrict its code motion. */ static void avoid_func_arg_motion (rtx first_arg, rtx insn) { rtx set; rtx tmp; set = single_set (insn); if (!set) return; tmp = SET_DEST (set); if (REG_P (tmp)) { /* Add output dependency to the first function argument. */ add_dependence (first_arg, insn, REG_DEP_OUTPUT); return; } /* Add anti dependency. */ add_dependence (first_arg, insn, REG_DEP_ANTI); } /* Avoid cross block motion of function argument through adding dependency from the first non-jump instruction in bb. */ static void add_dependee_for_func_arg (rtx arg, basic_block bb) { rtx insn = BB_END (bb); while (insn) { if (NONDEBUG_INSN_P (insn) && NONJUMP_INSN_P (insn)) { rtx set = single_set (insn); if (set) { avoid_func_arg_motion (arg, insn); return; } } if (insn == BB_HEAD (bb)) return; insn = PREV_INSN (insn); } } /* Hook for pre-reload schedule - avoid motion of function arguments passed in likely spilled HW registers. */ static void ix86_dependencies_evaluation_hook (rtx head, rtx tail) { rtx insn; rtx first_arg = NULL; if (reload_completed) return; while (head != tail && DEBUG_INSN_P (head)) head = NEXT_INSN (head); for (insn = tail; insn != head; insn = PREV_INSN (insn)) if (INSN_P (insn) && CALL_P (insn)) { first_arg = add_parameter_dependencies (insn, head); if (first_arg) { /* Add dependee for first argument to predecessors if only region contains more than one block. */ basic_block bb = BLOCK_FOR_INSN (insn); int rgn = CONTAINING_RGN (bb->index); int nr_blks = RGN_NR_BLOCKS (rgn); /* Skip trivial regions and region head blocks that can have predecessors outside of region. */ if (nr_blks > 1 && BLOCK_TO_BB (bb->index) != 0) { edge e; edge_iterator ei; /* Assume that region is SCC, i.e. all immediate predecessors of non-head block are in the same region. */ FOR_EACH_EDGE (e, ei, bb->preds) { /* Avoid creating of loop-carried dependencies through using topological odering in region. */ if (BLOCK_TO_BB (bb->index) > BLOCK_TO_BB (e->src->index)) add_dependee_for_func_arg (first_arg, e->src); } } insn = first_arg; if (insn == head) break; } } else if (first_arg) avoid_func_arg_motion (first_arg, insn); } /* Hook for pre-reload schedule - set priority of moves from likely spilled HW registers to maximum, to schedule them at soon as possible. These are moves from function argument registers at the top of the function entry and moves from function return value registers after call. */ static int ix86_adjust_priority (rtx insn, int priority) { rtx set; if (reload_completed) return priority; if (!NONDEBUG_INSN_P (insn)) return priority; set = single_set (insn); if (set) { rtx tmp = SET_SRC (set); if (REG_P (tmp) && HARD_REGISTER_P (tmp) && !TEST_HARD_REG_BIT (fixed_reg_set, REGNO (tmp)) && ix86_class_likely_spilled_p (REGNO_REG_CLASS (REGNO (tmp)))) return current_sched_info->sched_max_insns_priority; } return priority; } /* Model decoder of Core 2/i7. Below hooks for multipass scheduling (see haifa-sched.c:max_issue) track the instruction fetch block boundaries and make sure that long (9+ bytes) instructions are assigned to D0. */ /* Maximum length of an insn that can be handled by a secondary decoder unit. '8' for Core 2/i7. */ static int core2i7_secondary_decoder_max_insn_size; /* Ifetch block size, i.e., number of bytes decoder reads per cycle. '16' for Core 2/i7. */ static int core2i7_ifetch_block_size; /* Maximum number of instructions decoder can handle per cycle. '6' for Core 2/i7. */ static int core2i7_ifetch_block_max_insns; typedef struct ix86_first_cycle_multipass_data_ * ix86_first_cycle_multipass_data_t; typedef const struct ix86_first_cycle_multipass_data_ * const_ix86_first_cycle_multipass_data_t; /* A variable to store target state across calls to max_issue within one cycle. */ static struct ix86_first_cycle_multipass_data_ _ix86_first_cycle_multipass_data, *ix86_first_cycle_multipass_data = &_ix86_first_cycle_multipass_data; /* Initialize DATA. */ static void core2i7_first_cycle_multipass_init (void *_data) { ix86_first_cycle_multipass_data_t data = (ix86_first_cycle_multipass_data_t) _data; data->ifetch_block_len = 0; data->ifetch_block_n_insns = 0; data->ready_try_change = NULL; data->ready_try_change_size = 0; } /* Advancing the cycle; reset ifetch block counts. */ static void core2i7_dfa_post_advance_cycle (void) { ix86_first_cycle_multipass_data_t data = ix86_first_cycle_multipass_data; gcc_assert (data->ifetch_block_n_insns <= core2i7_ifetch_block_max_insns); data->ifetch_block_len = 0; data->ifetch_block_n_insns = 0; } static int min_insn_size (rtx); /* Filter out insns from ready_try that the core will not be able to issue on current cycle due to decoder. */ static void core2i7_first_cycle_multipass_filter_ready_try (const_ix86_first_cycle_multipass_data_t data, char *ready_try, int n_ready, bool first_cycle_insn_p) { while (n_ready--) { rtx insn; int insn_size; if (ready_try[n_ready]) continue; insn = get_ready_element (n_ready); insn_size = min_insn_size (insn); if (/* If this is a too long an insn for a secondary decoder ... */ (!first_cycle_insn_p && insn_size > core2i7_secondary_decoder_max_insn_size) /* ... or it would not fit into the ifetch block ... */ || data->ifetch_block_len + insn_size > core2i7_ifetch_block_size /* ... or the decoder is full already ... */ || data->ifetch_block_n_insns + 1 > core2i7_ifetch_block_max_insns) /* ... mask the insn out. */ { ready_try[n_ready] = 1; if (data->ready_try_change) bitmap_set_bit (data->ready_try_change, n_ready); } } } /* Prepare for a new round of multipass lookahead scheduling. */ static void core2i7_first_cycle_multipass_begin (void *_data, char *ready_try, int n_ready, bool first_cycle_insn_p) { ix86_first_cycle_multipass_data_t data = (ix86_first_cycle_multipass_data_t) _data; const_ix86_first_cycle_multipass_data_t prev_data = ix86_first_cycle_multipass_data; /* Restore the state from the end of the previous round. */ data->ifetch_block_len = prev_data->ifetch_block_len; data->ifetch_block_n_insns = prev_data->ifetch_block_n_insns; /* Filter instructions that cannot be issued on current cycle due to decoder restrictions. */ core2i7_first_cycle_multipass_filter_ready_try (data, ready_try, n_ready, first_cycle_insn_p); } /* INSN is being issued in current solution. Account for its impact on the decoder model. */ static void core2i7_first_cycle_multipass_issue (void *_data, char *ready_try, int n_ready, rtx insn, const void *_prev_data) { ix86_first_cycle_multipass_data_t data = (ix86_first_cycle_multipass_data_t) _data; const_ix86_first_cycle_multipass_data_t prev_data = (const_ix86_first_cycle_multipass_data_t) _prev_data; int insn_size = min_insn_size (insn); data->ifetch_block_len = prev_data->ifetch_block_len + insn_size; data->ifetch_block_n_insns = prev_data->ifetch_block_n_insns + 1; gcc_assert (data->ifetch_block_len <= core2i7_ifetch_block_size && data->ifetch_block_n_insns <= core2i7_ifetch_block_max_insns); /* Allocate or resize the bitmap for storing INSN's effect on ready_try. */ if (!data->ready_try_change) { data->ready_try_change = sbitmap_alloc (n_ready); data->ready_try_change_size = n_ready; } else if (data->ready_try_change_size < n_ready) { data->ready_try_change = sbitmap_resize (data->ready_try_change, n_ready, 0); data->ready_try_change_size = n_ready; } bitmap_clear (data->ready_try_change); /* Filter out insns from ready_try that the core will not be able to issue on current cycle due to decoder. */ core2i7_first_cycle_multipass_filter_ready_try (data, ready_try, n_ready, false); } /* Revert the effect on ready_try. */ static void core2i7_first_cycle_multipass_backtrack (const void *_data, char *ready_try, int n_ready ATTRIBUTE_UNUSED) { const_ix86_first_cycle_multipass_data_t data = (const_ix86_first_cycle_multipass_data_t) _data; unsigned int i = 0; sbitmap_iterator sbi; gcc_assert (bitmap_last_set_bit (data->ready_try_change) < n_ready); EXECUTE_IF_SET_IN_BITMAP (data->ready_try_change, 0, i, sbi) { ready_try[i] = 0; } } /* Save the result of multipass lookahead scheduling for the next round. */ static void core2i7_first_cycle_multipass_end (const void *_data) { const_ix86_first_cycle_multipass_data_t data = (const_ix86_first_cycle_multipass_data_t) _data; ix86_first_cycle_multipass_data_t next_data = ix86_first_cycle_multipass_data; if (data != NULL) { next_data->ifetch_block_len = data->ifetch_block_len; next_data->ifetch_block_n_insns = data->ifetch_block_n_insns; } } /* Deallocate target data. */ static void core2i7_first_cycle_multipass_fini (void *_data) { ix86_first_cycle_multipass_data_t data = (ix86_first_cycle_multipass_data_t) _data; if (data->ready_try_change) { sbitmap_free (data->ready_try_change); data->ready_try_change = NULL; data->ready_try_change_size = 0; } } /* Prepare for scheduling pass. */ static void ix86_sched_init_global (FILE *dump ATTRIBUTE_UNUSED, int verbose ATTRIBUTE_UNUSED, int max_uid ATTRIBUTE_UNUSED) { /* Install scheduling hooks for current CPU. Some of these hooks are used in time-critical parts of the scheduler, so we only set them up when they are actually used. */ switch (ix86_tune) { case PROCESSOR_CORE2: case PROCESSOR_COREI7: case PROCESSOR_COREI7_AVX: case PROCESSOR_HASWELL: /* Do not perform multipass scheduling for pre-reload schedule to save compile time. */ if (reload_completed) { targetm.sched.dfa_post_advance_cycle = core2i7_dfa_post_advance_cycle; targetm.sched.first_cycle_multipass_init = core2i7_first_cycle_multipass_init; targetm.sched.first_cycle_multipass_begin = core2i7_first_cycle_multipass_begin; targetm.sched.first_cycle_multipass_issue = core2i7_first_cycle_multipass_issue; targetm.sched.first_cycle_multipass_backtrack = core2i7_first_cycle_multipass_backtrack; targetm.sched.first_cycle_multipass_end = core2i7_first_cycle_multipass_end; targetm.sched.first_cycle_multipass_fini = core2i7_first_cycle_multipass_fini; /* Set decoder parameters. */ core2i7_secondary_decoder_max_insn_size = 8; core2i7_ifetch_block_size = 16; core2i7_ifetch_block_max_insns = 6; break; } /* ... Fall through ... */ default: targetm.sched.dfa_post_advance_cycle = NULL; targetm.sched.first_cycle_multipass_init = NULL; targetm.sched.first_cycle_multipass_begin = NULL; targetm.sched.first_cycle_multipass_issue = NULL; targetm.sched.first_cycle_multipass_backtrack = NULL; targetm.sched.first_cycle_multipass_end = NULL; targetm.sched.first_cycle_multipass_fini = NULL; break; } } /* Compute the alignment given to a constant that is being placed in memory. EXP is the constant and ALIGN is the alignment that the object would ordinarily have. The value of this function is used instead of that alignment to align the object. */ int ix86_constant_alignment (tree exp, int align) { if (TREE_CODE (exp) == REAL_CST || TREE_CODE (exp) == VECTOR_CST || TREE_CODE (exp) == INTEGER_CST) { if (TYPE_MODE (TREE_TYPE (exp)) == DFmode && align < 64) return 64; else if (ALIGN_MODE_128 (TYPE_MODE (TREE_TYPE (exp))) && align < 128) return 128; } else if (!optimize_size && TREE_CODE (exp) == STRING_CST && TREE_STRING_LENGTH (exp) >= 31 && align < BITS_PER_WORD) return BITS_PER_WORD; return align; } /* Compute the alignment for a static variable. TYPE is the data type, and ALIGN is the alignment that the object would ordinarily have. The value of this function is used instead of that alignment to align the object. */ int ix86_data_alignment (tree type, int align, bool opt) { int max_align = optimize_size ? BITS_PER_WORD : MIN (256, MAX_OFILE_ALIGNMENT); if (opt && AGGREGATE_TYPE_P (type) && TYPE_SIZE (type) && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST && (TREE_INT_CST_LOW (TYPE_SIZE (type)) >= (unsigned) max_align || TREE_INT_CST_HIGH (TYPE_SIZE (type))) && align < max_align) align = max_align; /* x86-64 ABI requires arrays greater than 16 bytes to be aligned to 16byte boundary. */ if (TARGET_64BIT) { if ((opt ? AGGREGATE_TYPE_P (type) : TREE_CODE (type) == ARRAY_TYPE) && TYPE_SIZE (type) && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST && (TREE_INT_CST_LOW (TYPE_SIZE (type)) >= 128 || TREE_INT_CST_HIGH (TYPE_SIZE (type))) && align < 128) return 128; } if (!opt) return align; if (TREE_CODE (type) == ARRAY_TYPE) { if (TYPE_MODE (TREE_TYPE (type)) == DFmode && align < 64) return 64; if (ALIGN_MODE_128 (TYPE_MODE (TREE_TYPE (type))) && align < 128) return 128; } else if (TREE_CODE (type) == COMPLEX_TYPE) { if (TYPE_MODE (type) == DCmode && align < 64) return 64; if ((TYPE_MODE (type) == XCmode || TYPE_MODE (type) == TCmode) && align < 128) return 128; } else if ((TREE_CODE (type) == RECORD_TYPE || TREE_CODE (type) == UNION_TYPE || TREE_CODE (type) == QUAL_UNION_TYPE) && TYPE_FIELDS (type)) { if (DECL_MODE (TYPE_FIELDS (type)) == DFmode && align < 64) return 64; if (ALIGN_MODE_128 (DECL_MODE (TYPE_FIELDS (type))) && align < 128) return 128; } else if (TREE_CODE (type) == REAL_TYPE || TREE_CODE (type) == VECTOR_TYPE || TREE_CODE (type) == INTEGER_TYPE) { if (TYPE_MODE (type) == DFmode && align < 64) return 64; if (ALIGN_MODE_128 (TYPE_MODE (type)) && align < 128) return 128; } return align; } /* Compute the alignment for a local variable or a stack slot. EXP is the data type or decl itself, MODE is the widest mode available and ALIGN is the alignment that the object would ordinarily have. The value of this macro is used instead of that alignment to align the object. */ unsigned int ix86_local_alignment (tree exp, enum machine_mode mode, unsigned int align) { tree type, decl; if (exp && DECL_P (exp)) { type = TREE_TYPE (exp); decl = exp; } else { type = exp; decl = NULL; } /* Don't do dynamic stack realignment for long long objects with -mpreferred-stack-boundary=2. */ if (!TARGET_64BIT && align == 64 && ix86_preferred_stack_boundary < 64 && (mode == DImode || (type && TYPE_MODE (type) == DImode)) && (!type || !TYPE_USER_ALIGN (type)) && (!decl || !DECL_USER_ALIGN (decl))) align = 32; /* If TYPE is NULL, we are allocating a stack slot for caller-save register in MODE. We will return the largest alignment of XF and DF. */ if (!type) { if (mode == XFmode && align < GET_MODE_ALIGNMENT (DFmode)) align = GET_MODE_ALIGNMENT (DFmode); return align; } /* x86-64 ABI requires arrays greater than 16 bytes to be aligned to 16byte boundary. Exact wording is: An array uses the same alignment as its elements, except that a local or global array variable of length at least 16 bytes or a C99 variable-length array variable always has alignment of at least 16 bytes. This was added to allow use of aligned SSE instructions at arrays. This rule is meant for static storage (where compiler can not do the analysis by itself). We follow it for automatic variables only when convenient. We fully control everything in the function compiled and functions from other unit can not rely on the alignment. Exclude va_list type. It is the common case of local array where we can not benefit from the alignment. TODO: Probably one should optimize for size only when var is not escaping. */ if (TARGET_64BIT && optimize_function_for_speed_p (cfun) && TARGET_SSE) { if (AGGREGATE_TYPE_P (type) && (va_list_type_node == NULL_TREE || (TYPE_MAIN_VARIANT (type) != TYPE_MAIN_VARIANT (va_list_type_node))) && TYPE_SIZE (type) && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST && (TREE_INT_CST_LOW (TYPE_SIZE (type)) >= 16 || TREE_INT_CST_HIGH (TYPE_SIZE (type))) && align < 128) return 128; } if (TREE_CODE (type) == ARRAY_TYPE) { if (TYPE_MODE (TREE_TYPE (type)) == DFmode && align < 64) return 64; if (ALIGN_MODE_128 (TYPE_MODE (TREE_TYPE (type))) && align < 128) return 128; } else if (TREE_CODE (type) == COMPLEX_TYPE) { if (TYPE_MODE (type) == DCmode && align < 64) return 64; if ((TYPE_MODE (type) == XCmode || TYPE_MODE (type) == TCmode) && align < 128) return 128; } else if ((TREE_CODE (type) == RECORD_TYPE || TREE_CODE (type) == UNION_TYPE || TREE_CODE (type) == QUAL_UNION_TYPE) && TYPE_FIELDS (type)) { if (DECL_MODE (TYPE_FIELDS (type)) == DFmode && align < 64) return 64; if (ALIGN_MODE_128 (DECL_MODE (TYPE_FIELDS (type))) && align < 128) return 128; } else if (TREE_CODE (type) == REAL_TYPE || TREE_CODE (type) == VECTOR_TYPE || TREE_CODE (type) == INTEGER_TYPE) { if (TYPE_MODE (type) == DFmode && align < 64) return 64; if (ALIGN_MODE_128 (TYPE_MODE (type)) && align < 128) return 128; } return align; } /* Compute the minimum required alignment for dynamic stack realignment purposes for a local variable, parameter or a stack slot. EXP is the data type or decl itself, MODE is its mode and ALIGN is the alignment that the object would ordinarily have. */ unsigned int ix86_minimum_alignment (tree exp, enum machine_mode mode, unsigned int align) { tree type, decl; if (exp && DECL_P (exp)) { type = TREE_TYPE (exp); decl = exp; } else { type = exp; decl = NULL; } if (TARGET_64BIT || align != 64 || ix86_preferred_stack_boundary >= 64) return align; /* Don't do dynamic stack realignment for long long objects with -mpreferred-stack-boundary=2. */ if ((mode == DImode || (type && TYPE_MODE (type) == DImode)) && (!type || !TYPE_USER_ALIGN (type)) && (!decl || !DECL_USER_ALIGN (decl))) return 32; return align; } /* Find a location for the static chain incoming to a nested function. This is a register, unless all free registers are used by arguments. */ static rtx ix86_static_chain (const_tree fndecl, bool incoming_p) { unsigned regno; if (!DECL_STATIC_CHAIN (fndecl)) return NULL; if (TARGET_64BIT) { /* We always use R10 in 64-bit mode. */ regno = R10_REG; } else { tree fntype; unsigned int ccvt; /* By default in 32-bit mode we use ECX to pass the static chain. */ regno = CX_REG; fntype = TREE_TYPE (fndecl); ccvt = ix86_get_callcvt (fntype); if ((ccvt & IX86_CALLCVT_FASTCALL) != 0) { /* Fastcall functions use ecx/edx for arguments, which leaves us with EAX for the static chain. Thiscall functions use ecx for arguments, which also leaves us with EAX for the static chain. */ regno = AX_REG; } else if ((ccvt & IX86_CALLCVT_THISCALL) != 0) { /* Thiscall functions use ecx for arguments, which leaves us with EAX and EDX for the static chain. We are using for abi-compatibility EAX. */ regno = AX_REG; } else if (ix86_function_regparm (fntype, fndecl) == 3) { /* For regparm 3, we have no free call-clobbered registers in which to store the static chain. In order to implement this, we have the trampoline push the static chain to the stack. However, we can't push a value below the return address when we call the nested function directly, so we have to use an alternate entry point. For this we use ESI, and have the alternate entry point push ESI, so that things appear the same once we're executing the nested function. */ if (incoming_p) { if (fndecl == current_function_decl) ix86_static_chain_on_stack = true; return gen_frame_mem (SImode, plus_constant (Pmode, arg_pointer_rtx, -8)); } regno = SI_REG; } } return gen_rtx_REG (Pmode, regno); } /* Emit RTL insns to initialize the variable parts of a trampoline. FNDECL is the decl of the target address; M_TRAMP is a MEM for the trampoline, and CHAIN_VALUE is an RTX for the static chain to be passed to the target function. */ static void ix86_trampoline_init (rtx m_tramp, tree fndecl, rtx chain_value) { rtx mem, fnaddr; int opcode; int offset = 0; fnaddr = XEXP (DECL_RTL (fndecl), 0); if (TARGET_64BIT) { int size; /* Load the function address to r11. Try to load address using the shorter movl instead of movabs. We may want to support movq for kernel mode, but kernel does not use trampolines at the moment. FNADDR is a 32bit address and may not be in DImode when ptr_mode == SImode. Always use movl in this case. */ if (ptr_mode == SImode || x86_64_zext_immediate_operand (fnaddr, VOIDmode)) { fnaddr = copy_addr_to_reg (fnaddr); mem = adjust_address (m_tramp, HImode, offset); emit_move_insn (mem, gen_int_mode (0xbb41, HImode)); mem = adjust_address (m_tramp, SImode, offset + 2); emit_move_insn (mem, gen_lowpart (SImode, fnaddr)); offset += 6; } else { mem = adjust_address (m_tramp, HImode, offset); emit_move_insn (mem, gen_int_mode (0xbb49, HImode)); mem = adjust_address (m_tramp, DImode, offset + 2); emit_move_insn (mem, fnaddr); offset += 10; } /* Load static chain using movabs to r10. Use the shorter movl instead of movabs when ptr_mode == SImode. */ if (ptr_mode == SImode) { opcode = 0xba41; size = 6; } else { opcode = 0xba49; size = 10; } mem = adjust_address (m_tramp, HImode, offset); emit_move_insn (mem, gen_int_mode (opcode, HImode)); mem = adjust_address (m_tramp, ptr_mode, offset + 2); emit_move_insn (mem, chain_value); offset += size; /* Jump to r11; the last (unused) byte is a nop, only there to pad the write out to a single 32-bit store. */ mem = adjust_address (m_tramp, SImode, offset); emit_move_insn (mem, gen_int_mode (0x90e3ff49, SImode)); offset += 4; } else { rtx disp, chain; /* Depending on the static chain location, either load a register with a constant, or push the constant to the stack. All of the instructions are the same size. */ chain = ix86_static_chain (fndecl, true); if (REG_P (chain)) { switch (REGNO (chain)) { case AX_REG: opcode = 0xb8; break; case CX_REG: opcode = 0xb9; break; default: gcc_unreachable (); } } else opcode = 0x68; mem = adjust_address (m_tramp, QImode, offset); emit_move_insn (mem, gen_int_mode (opcode, QImode)); mem = adjust_address (m_tramp, SImode, offset + 1); emit_move_insn (mem, chain_value); offset += 5; mem = adjust_address (m_tramp, QImode, offset); emit_move_insn (mem, gen_int_mode (0xe9, QImode)); mem = adjust_address (m_tramp, SImode, offset + 1); /* Compute offset from the end of the jmp to the target function. In the case in which the trampoline stores the static chain on the stack, we need to skip the first insn which pushes the (call-saved) register static chain; this push is 1 byte. */ offset += 5; disp = expand_binop (SImode, sub_optab, fnaddr, plus_constant (Pmode, XEXP (m_tramp, 0), offset - (MEM_P (chain) ? 1 : 0)), NULL_RTX, 1, OPTAB_DIRECT); emit_move_insn (mem, disp); } gcc_assert (offset <= TRAMPOLINE_SIZE); #ifdef HAVE_ENABLE_EXECUTE_STACK #ifdef CHECK_EXECUTE_STACK_ENABLED if (CHECK_EXECUTE_STACK_ENABLED) #endif emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__enable_execute_stack"), LCT_NORMAL, VOIDmode, 1, XEXP (m_tramp, 0), Pmode); #endif } /* The following file contains several enumerations and data structures built from the definitions in i386-builtin-types.def. */ #include "i386-builtin-types.inc" /* Table for the ix86 builtin non-function types. */ static GTY(()) tree ix86_builtin_type_tab[(int) IX86_BT_LAST_CPTR + 1]; /* Retrieve an element from the above table, building some of the types lazily. */ static tree ix86_get_builtin_type (enum ix86_builtin_type tcode) { unsigned int index; tree type, itype; gcc_assert ((unsigned)tcode < ARRAY_SIZE(ix86_builtin_type_tab)); type = ix86_builtin_type_tab[(int) tcode]; if (type != NULL) return type; gcc_assert (tcode > IX86_BT_LAST_PRIM); if (tcode <= IX86_BT_LAST_VECT) { enum machine_mode mode; index = tcode - IX86_BT_LAST_PRIM - 1; itype = ix86_get_builtin_type (ix86_builtin_type_vect_base[index]); mode = ix86_builtin_type_vect_mode[index]; type = build_vector_type_for_mode (itype, mode); } else { int quals; index = tcode - IX86_BT_LAST_VECT - 1; if (tcode <= IX86_BT_LAST_PTR) quals = TYPE_UNQUALIFIED; else quals = TYPE_QUAL_CONST; itype = ix86_get_builtin_type (ix86_builtin_type_ptr_base[index]); if (quals != TYPE_UNQUALIFIED) itype = build_qualified_type (itype, quals); type = build_pointer_type (itype); } ix86_builtin_type_tab[(int) tcode] = type; return type; } /* Table for the ix86 builtin function types. */ static GTY(()) tree ix86_builtin_func_type_tab[(int) IX86_BT_LAST_ALIAS + 1]; /* Retrieve an element from the above table, building some of the types lazily. */ static tree ix86_get_builtin_func_type (enum ix86_builtin_func_type tcode) { tree type; gcc_assert ((unsigned)tcode < ARRAY_SIZE (ix86_builtin_func_type_tab)); type = ix86_builtin_func_type_tab[(int) tcode]; if (type != NULL) return type; if (tcode <= IX86_BT_LAST_FUNC) { unsigned start = ix86_builtin_func_start[(int) tcode]; unsigned after = ix86_builtin_func_start[(int) tcode + 1]; tree rtype, atype, args = void_list_node; unsigned i; rtype = ix86_get_builtin_type (ix86_builtin_func_args[start]); for (i = after - 1; i > start; --i) { atype = ix86_get_builtin_type (ix86_builtin_func_args[i]); args = tree_cons (NULL, atype, args); } type = build_function_type (rtype, args); } else { unsigned index = tcode - IX86_BT_LAST_FUNC - 1; enum ix86_builtin_func_type icode; icode = ix86_builtin_func_alias_base[index]; type = ix86_get_builtin_func_type (icode); } ix86_builtin_func_type_tab[(int) tcode] = type; return type; } /* Codes for all the SSE/MMX builtins. */ enum ix86_builtins { IX86_BUILTIN_ADDPS, IX86_BUILTIN_ADDSS, IX86_BUILTIN_DIVPS, IX86_BUILTIN_DIVSS, IX86_BUILTIN_MULPS, IX86_BUILTIN_MULSS, IX86_BUILTIN_SUBPS, IX86_BUILTIN_SUBSS, IX86_BUILTIN_CMPEQPS, IX86_BUILTIN_CMPLTPS, IX86_BUILTIN_CMPLEPS, IX86_BUILTIN_CMPGTPS, IX86_BUILTIN_CMPGEPS, IX86_BUILTIN_CMPNEQPS, IX86_BUILTIN_CMPNLTPS, IX86_BUILTIN_CMPNLEPS, IX86_BUILTIN_CMPNGTPS, IX86_BUILTIN_CMPNGEPS, IX86_BUILTIN_CMPORDPS, IX86_BUILTIN_CMPUNORDPS, IX86_BUILTIN_CMPEQSS, IX86_BUILTIN_CMPLTSS, IX86_BUILTIN_CMPLESS, IX86_BUILTIN_CMPNEQSS, IX86_BUILTIN_CMPNLTSS, IX86_BUILTIN_CMPNLESS, IX86_BUILTIN_CMPORDSS, IX86_BUILTIN_CMPUNORDSS, IX86_BUILTIN_COMIEQSS, IX86_BUILTIN_COMILTSS, IX86_BUILTIN_COMILESS, IX86_BUILTIN_COMIGTSS, IX86_BUILTIN_COMIGESS, IX86_BUILTIN_COMINEQSS, IX86_BUILTIN_UCOMIEQSS, IX86_BUILTIN_UCOMILTSS, IX86_BUILTIN_UCOMILESS, IX86_BUILTIN_UCOMIGTSS, IX86_BUILTIN_UCOMIGESS, IX86_BUILTIN_UCOMINEQSS, IX86_BUILTIN_CVTPI2PS, IX86_BUILTIN_CVTPS2PI, IX86_BUILTIN_CVTSI2SS, IX86_BUILTIN_CVTSI642SS, IX86_BUILTIN_CVTSS2SI, IX86_BUILTIN_CVTSS2SI64, IX86_BUILTIN_CVTTPS2PI, IX86_BUILTIN_CVTTSS2SI, IX86_BUILTIN_CVTTSS2SI64, IX86_BUILTIN_MAXPS, IX86_BUILTIN_MAXSS, IX86_BUILTIN_MINPS, IX86_BUILTIN_MINSS, IX86_BUILTIN_LOADUPS, IX86_BUILTIN_STOREUPS, IX86_BUILTIN_MOVSS, IX86_BUILTIN_MOVHLPS, IX86_BUILTIN_MOVLHPS, IX86_BUILTIN_LOADHPS, IX86_BUILTIN_LOADLPS, IX86_BUILTIN_STOREHPS, IX86_BUILTIN_STORELPS, IX86_BUILTIN_MASKMOVQ, IX86_BUILTIN_MOVMSKPS, IX86_BUILTIN_PMOVMSKB, IX86_BUILTIN_MOVNTPS, IX86_BUILTIN_MOVNTQ, IX86_BUILTIN_LOADDQU, IX86_BUILTIN_STOREDQU, IX86_BUILTIN_PACKSSWB, IX86_BUILTIN_PACKSSDW, IX86_BUILTIN_PACKUSWB, IX86_BUILTIN_PADDB, IX86_BUILTIN_PADDW, IX86_BUILTIN_PADDD, IX86_BUILTIN_PADDQ, IX86_BUILTIN_PADDSB, IX86_BUILTIN_PADDSW, IX86_BUILTIN_PADDUSB, IX86_BUILTIN_PADDUSW, IX86_BUILTIN_PSUBB, IX86_BUILTIN_PSUBW, IX86_BUILTIN_PSUBD, IX86_BUILTIN_PSUBQ, IX86_BUILTIN_PSUBSB, IX86_BUILTIN_PSUBSW, IX86_BUILTIN_PSUBUSB, IX86_BUILTIN_PSUBUSW, IX86_BUILTIN_PAND, IX86_BUILTIN_PANDN, IX86_BUILTIN_POR, IX86_BUILTIN_PXOR, IX86_BUILTIN_PAVGB, IX86_BUILTIN_PAVGW, IX86_BUILTIN_PCMPEQB, IX86_BUILTIN_PCMPEQW, IX86_BUILTIN_PCMPEQD, IX86_BUILTIN_PCMPGTB, IX86_BUILTIN_PCMPGTW, IX86_BUILTIN_PCMPGTD, IX86_BUILTIN_PMADDWD, IX86_BUILTIN_PMAXSW, IX86_BUILTIN_PMAXUB, IX86_BUILTIN_PMINSW, IX86_BUILTIN_PMINUB, IX86_BUILTIN_PMULHUW, IX86_BUILTIN_PMULHW, IX86_BUILTIN_PMULLW, IX86_BUILTIN_PSADBW, IX86_BUILTIN_PSHUFW, IX86_BUILTIN_PSLLW, IX86_BUILTIN_PSLLD, IX86_BUILTIN_PSLLQ, IX86_BUILTIN_PSRAW, IX86_BUILTIN_PSRAD, IX86_BUILTIN_PSRLW, IX86_BUILTIN_PSRLD, IX86_BUILTIN_PSRLQ, IX86_BUILTIN_PSLLWI, IX86_BUILTIN_PSLLDI, IX86_BUILTIN_PSLLQI, IX86_BUILTIN_PSRAWI, IX86_BUILTIN_PSRADI, IX86_BUILTIN_PSRLWI, IX86_BUILTIN_PSRLDI, IX86_BUILTIN_PSRLQI, IX86_BUILTIN_PUNPCKHBW, IX86_BUILTIN_PUNPCKHWD, IX86_BUILTIN_PUNPCKHDQ, IX86_BUILTIN_PUNPCKLBW, IX86_BUILTIN_PUNPCKLWD, IX86_BUILTIN_PUNPCKLDQ, IX86_BUILTIN_SHUFPS, IX86_BUILTIN_RCPPS, IX86_BUILTIN_RCPSS, IX86_BUILTIN_RSQRTPS, IX86_BUILTIN_RSQRTPS_NR, IX86_BUILTIN_RSQRTSS, IX86_BUILTIN_RSQRTF, IX86_BUILTIN_SQRTPS, IX86_BUILTIN_SQRTPS_NR, IX86_BUILTIN_SQRTSS, IX86_BUILTIN_UNPCKHPS, IX86_BUILTIN_UNPCKLPS, IX86_BUILTIN_ANDPS, IX86_BUILTIN_ANDNPS, IX86_BUILTIN_ORPS, IX86_BUILTIN_XORPS, IX86_BUILTIN_EMMS, IX86_BUILTIN_LDMXCSR, IX86_BUILTIN_STMXCSR, IX86_BUILTIN_SFENCE, IX86_BUILTIN_FXSAVE, IX86_BUILTIN_FXRSTOR, IX86_BUILTIN_FXSAVE64, IX86_BUILTIN_FXRSTOR64, IX86_BUILTIN_XSAVE, IX86_BUILTIN_XRSTOR, IX86_BUILTIN_XSAVE64, IX86_BUILTIN_XRSTOR64, IX86_BUILTIN_XSAVEOPT, IX86_BUILTIN_XSAVEOPT64, /* 3DNow! Original */ IX86_BUILTIN_FEMMS, IX86_BUILTIN_PAVGUSB, IX86_BUILTIN_PF2ID, IX86_BUILTIN_PFACC, IX86_BUILTIN_PFADD, IX86_BUILTIN_PFCMPEQ, IX86_BUILTIN_PFCMPGE, IX86_BUILTIN_PFCMPGT, IX86_BUILTIN_PFMAX, IX86_BUILTIN_PFMIN, IX86_BUILTIN_PFMUL, IX86_BUILTIN_PFRCP, IX86_BUILTIN_PFRCPIT1, IX86_BUILTIN_PFRCPIT2, IX86_BUILTIN_PFRSQIT1, IX86_BUILTIN_PFRSQRT, IX86_BUILTIN_PFSUB, IX86_BUILTIN_PFSUBR, IX86_BUILTIN_PI2FD, IX86_BUILTIN_PMULHRW, /* 3DNow! Athlon Extensions */ IX86_BUILTIN_PF2IW, IX86_BUILTIN_PFNACC, IX86_BUILTIN_PFPNACC, IX86_BUILTIN_PI2FW, IX86_BUILTIN_PSWAPDSI, IX86_BUILTIN_PSWAPDSF, /* SSE2 */ IX86_BUILTIN_ADDPD, IX86_BUILTIN_ADDSD, IX86_BUILTIN_DIVPD, IX86_BUILTIN_DIVSD, IX86_BUILTIN_MULPD, IX86_BUILTIN_MULSD, IX86_BUILTIN_SUBPD, IX86_BUILTIN_SUBSD, IX86_BUILTIN_CMPEQPD, IX86_BUILTIN_CMPLTPD, IX86_BUILTIN_CMPLEPD, IX86_BUILTIN_CMPGTPD, IX86_BUILTIN_CMPGEPD, IX86_BUILTIN_CMPNEQPD, IX86_BUILTIN_CMPNLTPD, IX86_BUILTIN_CMPNLEPD, IX86_BUILTIN_CMPNGTPD, IX86_BUILTIN_CMPNGEPD, IX86_BUILTIN_CMPORDPD, IX86_BUILTIN_CMPUNORDPD, IX86_BUILTIN_CMPEQSD, IX86_BUILTIN_CMPLTSD, IX86_BUILTIN_CMPLESD, IX86_BUILTIN_CMPNEQSD, IX86_BUILTIN_CMPNLTSD, IX86_BUILTIN_CMPNLESD, IX86_BUILTIN_CMPORDSD, IX86_BUILTIN_CMPUNORDSD, IX86_BUILTIN_COMIEQSD, IX86_BUILTIN_COMILTSD, IX86_BUILTIN_COMILESD, IX86_BUILTIN_COMIGTSD, IX86_BUILTIN_COMIGESD, IX86_BUILTIN_COMINEQSD, IX86_BUILTIN_UCOMIEQSD, IX86_BUILTIN_UCOMILTSD, IX86_BUILTIN_UCOMILESD, IX86_BUILTIN_UCOMIGTSD, IX86_BUILTIN_UCOMIGESD, IX86_BUILTIN_UCOMINEQSD, IX86_BUILTIN_MAXPD, IX86_BUILTIN_MAXSD, IX86_BUILTIN_MINPD, IX86_BUILTIN_MINSD, IX86_BUILTIN_ANDPD, IX86_BUILTIN_ANDNPD, IX86_BUILTIN_ORPD, IX86_BUILTIN_XORPD, IX86_BUILTIN_SQRTPD, IX86_BUILTIN_SQRTSD, IX86_BUILTIN_UNPCKHPD, IX86_BUILTIN_UNPCKLPD, IX86_BUILTIN_SHUFPD, IX86_BUILTIN_LOADUPD, IX86_BUILTIN_STOREUPD, IX86_BUILTIN_MOVSD, IX86_BUILTIN_LOADHPD, IX86_BUILTIN_LOADLPD, IX86_BUILTIN_CVTDQ2PD, IX86_BUILTIN_CVTDQ2PS, IX86_BUILTIN_CVTPD2DQ, IX86_BUILTIN_CVTPD2PI, IX86_BUILTIN_CVTPD2PS, IX86_BUILTIN_CVTTPD2DQ, IX86_BUILTIN_CVTTPD2PI, IX86_BUILTIN_CVTPI2PD, IX86_BUILTIN_CVTSI2SD, IX86_BUILTIN_CVTSI642SD, IX86_BUILTIN_CVTSD2SI, IX86_BUILTIN_CVTSD2SI64, IX86_BUILTIN_CVTSD2SS, IX86_BUILTIN_CVTSS2SD, IX86_BUILTIN_CVTTSD2SI, IX86_BUILTIN_CVTTSD2SI64, IX86_BUILTIN_CVTPS2DQ, IX86_BUILTIN_CVTPS2PD, IX86_BUILTIN_CVTTPS2DQ, IX86_BUILTIN_MOVNTI, IX86_BUILTIN_MOVNTI64, IX86_BUILTIN_MOVNTPD, IX86_BUILTIN_MOVNTDQ, IX86_BUILTIN_MOVQ128, /* SSE2 MMX */ IX86_BUILTIN_MASKMOVDQU, IX86_BUILTIN_MOVMSKPD, IX86_BUILTIN_PMOVMSKB128, IX86_BUILTIN_PACKSSWB128, IX86_BUILTIN_PACKSSDW128, IX86_BUILTIN_PACKUSWB128, IX86_BUILTIN_PADDB128, IX86_BUILTIN_PADDW128, IX86_BUILTIN_PADDD128, IX86_BUILTIN_PADDQ128, IX86_BUILTIN_PADDSB128, IX86_BUILTIN_PADDSW128, IX86_BUILTIN_PADDUSB128, IX86_BUILTIN_PADDUSW128, IX86_BUILTIN_PSUBB128, IX86_BUILTIN_PSUBW128, IX86_BUILTIN_PSUBD128, IX86_BUILTIN_PSUBQ128, IX86_BUILTIN_PSUBSB128, IX86_BUILTIN_PSUBSW128, IX86_BUILTIN_PSUBUSB128, IX86_BUILTIN_PSUBUSW128, IX86_BUILTIN_PAND128, IX86_BUILTIN_PANDN128, IX86_BUILTIN_POR128, IX86_BUILTIN_PXOR128, IX86_BUILTIN_PAVGB128, IX86_BUILTIN_PAVGW128, IX86_BUILTIN_PCMPEQB128, IX86_BUILTIN_PCMPEQW128, IX86_BUILTIN_PCMPEQD128, IX86_BUILTIN_PCMPGTB128, IX86_BUILTIN_PCMPGTW128, IX86_BUILTIN_PCMPGTD128, IX86_BUILTIN_PMADDWD128, IX86_BUILTIN_PMAXSW128, IX86_BUILTIN_PMAXUB128, IX86_BUILTIN_PMINSW128, IX86_BUILTIN_PMINUB128, IX86_BUILTIN_PMULUDQ, IX86_BUILTIN_PMULUDQ128, IX86_BUILTIN_PMULHUW128, IX86_BUILTIN_PMULHW128, IX86_BUILTIN_PMULLW128, IX86_BUILTIN_PSADBW128, IX86_BUILTIN_PSHUFHW, IX86_BUILTIN_PSHUFLW, IX86_BUILTIN_PSHUFD, IX86_BUILTIN_PSLLDQI128, IX86_BUILTIN_PSLLWI128, IX86_BUILTIN_PSLLDI128, IX86_BUILTIN_PSLLQI128, IX86_BUILTIN_PSRAWI128, IX86_BUILTIN_PSRADI128, IX86_BUILTIN_PSRLDQI128, IX86_BUILTIN_PSRLWI128, IX86_BUILTIN_PSRLDI128, IX86_BUILTIN_PSRLQI128, IX86_BUILTIN_PSLLDQ128, IX86_BUILTIN_PSLLW128, IX86_BUILTIN_PSLLD128, IX86_BUILTIN_PSLLQ128, IX86_BUILTIN_PSRAW128, IX86_BUILTIN_PSRAD128, IX86_BUILTIN_PSRLW128, IX86_BUILTIN_PSRLD128, IX86_BUILTIN_PSRLQ128, IX86_BUILTIN_PUNPCKHBW128, IX86_BUILTIN_PUNPCKHWD128, IX86_BUILTIN_PUNPCKHDQ128, IX86_BUILTIN_PUNPCKHQDQ128, IX86_BUILTIN_PUNPCKLBW128, IX86_BUILTIN_PUNPCKLWD128, IX86_BUILTIN_PUNPCKLDQ128, IX86_BUILTIN_PUNPCKLQDQ128, IX86_BUILTIN_CLFLUSH, IX86_BUILTIN_MFENCE, IX86_BUILTIN_LFENCE, IX86_BUILTIN_PAUSE, IX86_BUILTIN_FNSTENV, IX86_BUILTIN_FLDENV, IX86_BUILTIN_FNSTSW, IX86_BUILTIN_FNCLEX, IX86_BUILTIN_BSRSI, IX86_BUILTIN_BSRDI, IX86_BUILTIN_RDPMC, IX86_BUILTIN_RDTSC, IX86_BUILTIN_RDTSCP, IX86_BUILTIN_ROLQI, IX86_BUILTIN_ROLHI, IX86_BUILTIN_RORQI, IX86_BUILTIN_RORHI, /* SSE3. */ IX86_BUILTIN_ADDSUBPS, IX86_BUILTIN_HADDPS, IX86_BUILTIN_HSUBPS, IX86_BUILTIN_MOVSHDUP, IX86_BUILTIN_MOVSLDUP, IX86_BUILTIN_ADDSUBPD, IX86_BUILTIN_HADDPD, IX86_BUILTIN_HSUBPD, IX86_BUILTIN_LDDQU, IX86_BUILTIN_MONITOR, IX86_BUILTIN_MWAIT, /* SSSE3. */ IX86_BUILTIN_PHADDW, IX86_BUILTIN_PHADDD, IX86_BUILTIN_PHADDSW, IX86_BUILTIN_PHSUBW, IX86_BUILTIN_PHSUBD, IX86_BUILTIN_PHSUBSW, IX86_BUILTIN_PMADDUBSW, IX86_BUILTIN_PMULHRSW, IX86_BUILTIN_PSHUFB, IX86_BUILTIN_PSIGNB, IX86_BUILTIN_PSIGNW, IX86_BUILTIN_PSIGND, IX86_BUILTIN_PALIGNR, IX86_BUILTIN_PABSB, IX86_BUILTIN_PABSW, IX86_BUILTIN_PABSD, IX86_BUILTIN_PHADDW128, IX86_BUILTIN_PHADDD128, IX86_BUILTIN_PHADDSW128, IX86_BUILTIN_PHSUBW128, IX86_BUILTIN_PHSUBD128, IX86_BUILTIN_PHSUBSW128, IX86_BUILTIN_PMADDUBSW128, IX86_BUILTIN_PMULHRSW128, IX86_BUILTIN_PSHUFB128, IX86_BUILTIN_PSIGNB128, IX86_BUILTIN_PSIGNW128, IX86_BUILTIN_PSIGND128, IX86_BUILTIN_PALIGNR128, IX86_BUILTIN_PABSB128, IX86_BUILTIN_PABSW128, IX86_BUILTIN_PABSD128, /* AMDFAM10 - SSE4A New Instructions. */ IX86_BUILTIN_MOVNTSD, IX86_BUILTIN_MOVNTSS, IX86_BUILTIN_EXTRQI, IX86_BUILTIN_EXTRQ, IX86_BUILTIN_INSERTQI, IX86_BUILTIN_INSERTQ, /* SSE4.1. */ IX86_BUILTIN_BLENDPD, IX86_BUILTIN_BLENDPS, IX86_BUILTIN_BLENDVPD, IX86_BUILTIN_BLENDVPS, IX86_BUILTIN_PBLENDVB128, IX86_BUILTIN_PBLENDW128, IX86_BUILTIN_DPPD, IX86_BUILTIN_DPPS, IX86_BUILTIN_INSERTPS128, IX86_BUILTIN_MOVNTDQA, IX86_BUILTIN_MPSADBW128, IX86_BUILTIN_PACKUSDW128, IX86_BUILTIN_PCMPEQQ, IX86_BUILTIN_PHMINPOSUW128, IX86_BUILTIN_PMAXSB128, IX86_BUILTIN_PMAXSD128, IX86_BUILTIN_PMAXUD128, IX86_BUILTIN_PMAXUW128, IX86_BUILTIN_PMINSB128, IX86_BUILTIN_PMINSD128, IX86_BUILTIN_PMINUD128, IX86_BUILTIN_PMINUW128, IX86_BUILTIN_PMOVSXBW128, IX86_BUILTIN_PMOVSXBD128, IX86_BUILTIN_PMOVSXBQ128, IX86_BUILTIN_PMOVSXWD128, IX86_BUILTIN_PMOVSXWQ128, IX86_BUILTIN_PMOVSXDQ128, IX86_BUILTIN_PMOVZXBW128, IX86_BUILTIN_PMOVZXBD128, IX86_BUILTIN_PMOVZXBQ128, IX86_BUILTIN_PMOVZXWD128, IX86_BUILTIN_PMOVZXWQ128, IX86_BUILTIN_PMOVZXDQ128, IX86_BUILTIN_PMULDQ128, IX86_BUILTIN_PMULLD128, IX86_BUILTIN_ROUNDSD, IX86_BUILTIN_ROUNDSS, IX86_BUILTIN_ROUNDPD, IX86_BUILTIN_ROUNDPS, IX86_BUILTIN_FLOORPD, IX86_BUILTIN_CEILPD, IX86_BUILTIN_TRUNCPD, IX86_BUILTIN_RINTPD, IX86_BUILTIN_ROUNDPD_AZ, IX86_BUILTIN_FLOORPD_VEC_PACK_SFIX, IX86_BUILTIN_CEILPD_VEC_PACK_SFIX, IX86_BUILTIN_ROUNDPD_AZ_VEC_PACK_SFIX, IX86_BUILTIN_FLOORPS, IX86_BUILTIN_CEILPS, IX86_BUILTIN_TRUNCPS, IX86_BUILTIN_RINTPS, IX86_BUILTIN_ROUNDPS_AZ, IX86_BUILTIN_FLOORPS_SFIX, IX86_BUILTIN_CEILPS_SFIX, IX86_BUILTIN_ROUNDPS_AZ_SFIX, IX86_BUILTIN_PTESTZ, IX86_BUILTIN_PTESTC, IX86_BUILTIN_PTESTNZC, IX86_BUILTIN_VEC_INIT_V2SI, IX86_BUILTIN_VEC_INIT_V4HI, IX86_BUILTIN_VEC_INIT_V8QI, IX86_BUILTIN_VEC_EXT_V2DF, IX86_BUILTIN_VEC_EXT_V2DI, IX86_BUILTIN_VEC_EXT_V4SF, IX86_BUILTIN_VEC_EXT_V4SI, IX86_BUILTIN_VEC_EXT_V8HI, IX86_BUILTIN_VEC_EXT_V2SI, IX86_BUILTIN_VEC_EXT_V4HI, IX86_BUILTIN_VEC_EXT_V16QI, IX86_BUILTIN_VEC_SET_V2DI, IX86_BUILTIN_VEC_SET_V4SF, IX86_BUILTIN_VEC_SET_V4SI, IX86_BUILTIN_VEC_SET_V8HI, IX86_BUILTIN_VEC_SET_V4HI, IX86_BUILTIN_VEC_SET_V16QI, IX86_BUILTIN_VEC_PACK_SFIX, IX86_BUILTIN_VEC_PACK_SFIX256, /* SSE4.2. */ IX86_BUILTIN_CRC32QI, IX86_BUILTIN_CRC32HI, IX86_BUILTIN_CRC32SI, IX86_BUILTIN_CRC32DI, IX86_BUILTIN_PCMPESTRI128, IX86_BUILTIN_PCMPESTRM128, IX86_BUILTIN_PCMPESTRA128, IX86_BUILTIN_PCMPESTRC128, IX86_BUILTIN_PCMPESTRO128, IX86_BUILTIN_PCMPESTRS128, IX86_BUILTIN_PCMPESTRZ128, IX86_BUILTIN_PCMPISTRI128, IX86_BUILTIN_PCMPISTRM128, IX86_BUILTIN_PCMPISTRA128, IX86_BUILTIN_PCMPISTRC128, IX86_BUILTIN_PCMPISTRO128, IX86_BUILTIN_PCMPISTRS128, IX86_BUILTIN_PCMPISTRZ128, IX86_BUILTIN_PCMPGTQ, /* AES instructions */ IX86_BUILTIN_AESENC128, IX86_BUILTIN_AESENCLAST128, IX86_BUILTIN_AESDEC128, IX86_BUILTIN_AESDECLAST128, IX86_BUILTIN_AESIMC128, IX86_BUILTIN_AESKEYGENASSIST128, /* PCLMUL instruction */ IX86_BUILTIN_PCLMULQDQ128, /* AVX */ IX86_BUILTIN_ADDPD256, IX86_BUILTIN_ADDPS256, IX86_BUILTIN_ADDSUBPD256, IX86_BUILTIN_ADDSUBPS256, IX86_BUILTIN_ANDPD256, IX86_BUILTIN_ANDPS256, IX86_BUILTIN_ANDNPD256, IX86_BUILTIN_ANDNPS256, IX86_BUILTIN_BLENDPD256, IX86_BUILTIN_BLENDPS256, IX86_BUILTIN_BLENDVPD256, IX86_BUILTIN_BLENDVPS256, IX86_BUILTIN_DIVPD256, IX86_BUILTIN_DIVPS256, IX86_BUILTIN_DPPS256, IX86_BUILTIN_HADDPD256, IX86_BUILTIN_HADDPS256, IX86_BUILTIN_HSUBPD256, IX86_BUILTIN_HSUBPS256, IX86_BUILTIN_MAXPD256, IX86_BUILTIN_MAXPS256, IX86_BUILTIN_MINPD256, IX86_BUILTIN_MINPS256, IX86_BUILTIN_MULPD256, IX86_BUILTIN_MULPS256, IX86_BUILTIN_ORPD256, IX86_BUILTIN_ORPS256, IX86_BUILTIN_SHUFPD256, IX86_BUILTIN_SHUFPS256, IX86_BUILTIN_SUBPD256, IX86_BUILTIN_SUBPS256, IX86_BUILTIN_XORPD256, IX86_BUILTIN_XORPS256, IX86_BUILTIN_CMPSD, IX86_BUILTIN_CMPSS, IX86_BUILTIN_CMPPD, IX86_BUILTIN_CMPPS, IX86_BUILTIN_CMPPD256, IX86_BUILTIN_CMPPS256, IX86_BUILTIN_CVTDQ2PD256, IX86_BUILTIN_CVTDQ2PS256, IX86_BUILTIN_CVTPD2PS256, IX86_BUILTIN_CVTPS2DQ256, IX86_BUILTIN_CVTPS2PD256, IX86_BUILTIN_CVTTPD2DQ256, IX86_BUILTIN_CVTPD2DQ256, IX86_BUILTIN_CVTTPS2DQ256, IX86_BUILTIN_EXTRACTF128PD256, IX86_BUILTIN_EXTRACTF128PS256, IX86_BUILTIN_EXTRACTF128SI256, IX86_BUILTIN_VZEROALL, IX86_BUILTIN_VZEROUPPER, IX86_BUILTIN_VPERMILVARPD, IX86_BUILTIN_VPERMILVARPS, IX86_BUILTIN_VPERMILVARPD256, IX86_BUILTIN_VPERMILVARPS256, IX86_BUILTIN_VPERMILPD, IX86_BUILTIN_VPERMILPS, IX86_BUILTIN_VPERMILPD256, IX86_BUILTIN_VPERMILPS256, IX86_BUILTIN_VPERMIL2PD, IX86_BUILTIN_VPERMIL2PS, IX86_BUILTIN_VPERMIL2PD256, IX86_BUILTIN_VPERMIL2PS256, IX86_BUILTIN_VPERM2F128PD256, IX86_BUILTIN_VPERM2F128PS256, IX86_BUILTIN_VPERM2F128SI256, IX86_BUILTIN_VBROADCASTSS, IX86_BUILTIN_VBROADCASTSD256, IX86_BUILTIN_VBROADCASTSS256, IX86_BUILTIN_VBROADCASTPD256, IX86_BUILTIN_VBROADCASTPS256, IX86_BUILTIN_VINSERTF128PD256, IX86_BUILTIN_VINSERTF128PS256, IX86_BUILTIN_VINSERTF128SI256, IX86_BUILTIN_LOADUPD256, IX86_BUILTIN_LOADUPS256, IX86_BUILTIN_STOREUPD256, IX86_BUILTIN_STOREUPS256, IX86_BUILTIN_LDDQU256, IX86_BUILTIN_MOVNTDQ256, IX86_BUILTIN_MOVNTPD256, IX86_BUILTIN_MOVNTPS256, IX86_BUILTIN_LOADDQU256, IX86_BUILTIN_STOREDQU256, IX86_BUILTIN_MASKLOADPD, IX86_BUILTIN_MASKLOADPS, IX86_BUILTIN_MASKSTOREPD, IX86_BUILTIN_MASKSTOREPS, IX86_BUILTIN_MASKLOADPD256, IX86_BUILTIN_MASKLOADPS256, IX86_BUILTIN_MASKSTOREPD256, IX86_BUILTIN_MASKSTOREPS256, IX86_BUILTIN_MOVSHDUP256, IX86_BUILTIN_MOVSLDUP256, IX86_BUILTIN_MOVDDUP256, IX86_BUILTIN_SQRTPD256, IX86_BUILTIN_SQRTPS256, IX86_BUILTIN_SQRTPS_NR256, IX86_BUILTIN_RSQRTPS256, IX86_BUILTIN_RSQRTPS_NR256, IX86_BUILTIN_RCPPS256, IX86_BUILTIN_ROUNDPD256, IX86_BUILTIN_ROUNDPS256, IX86_BUILTIN_FLOORPD256, IX86_BUILTIN_CEILPD256, IX86_BUILTIN_TRUNCPD256, IX86_BUILTIN_RINTPD256, IX86_BUILTIN_ROUNDPD_AZ256, IX86_BUILTIN_FLOORPD_VEC_PACK_SFIX256, IX86_BUILTIN_CEILPD_VEC_PACK_SFIX256, IX86_BUILTIN_ROUNDPD_AZ_VEC_PACK_SFIX256, IX86_BUILTIN_FLOORPS256, IX86_BUILTIN_CEILPS256, IX86_BUILTIN_TRUNCPS256, IX86_BUILTIN_RINTPS256, IX86_BUILTIN_ROUNDPS_AZ256, IX86_BUILTIN_FLOORPS_SFIX256, IX86_BUILTIN_CEILPS_SFIX256, IX86_BUILTIN_ROUNDPS_AZ_SFIX256, IX86_BUILTIN_UNPCKHPD256, IX86_BUILTIN_UNPCKLPD256, IX86_BUILTIN_UNPCKHPS256, IX86_BUILTIN_UNPCKLPS256, IX86_BUILTIN_SI256_SI, IX86_BUILTIN_PS256_PS, IX86_BUILTIN_PD256_PD, IX86_BUILTIN_SI_SI256, IX86_BUILTIN_PS_PS256, IX86_BUILTIN_PD_PD256, IX86_BUILTIN_VTESTZPD, IX86_BUILTIN_VTESTCPD, IX86_BUILTIN_VTESTNZCPD, IX86_BUILTIN_VTESTZPS, IX86_BUILTIN_VTESTCPS, IX86_BUILTIN_VTESTNZCPS, IX86_BUILTIN_VTESTZPD256, IX86_BUILTIN_VTESTCPD256, IX86_BUILTIN_VTESTNZCPD256, IX86_BUILTIN_VTESTZPS256, IX86_BUILTIN_VTESTCPS256, IX86_BUILTIN_VTESTNZCPS256, IX86_BUILTIN_PTESTZ256, IX86_BUILTIN_PTESTC256, IX86_BUILTIN_PTESTNZC256, IX86_BUILTIN_MOVMSKPD256, IX86_BUILTIN_MOVMSKPS256, /* AVX2 */ IX86_BUILTIN_MPSADBW256, IX86_BUILTIN_PABSB256, IX86_BUILTIN_PABSW256, IX86_BUILTIN_PABSD256, IX86_BUILTIN_PACKSSDW256, IX86_BUILTIN_PACKSSWB256, IX86_BUILTIN_PACKUSDW256, IX86_BUILTIN_PACKUSWB256, IX86_BUILTIN_PADDB256, IX86_BUILTIN_PADDW256, IX86_BUILTIN_PADDD256, IX86_BUILTIN_PADDQ256, IX86_BUILTIN_PADDSB256, IX86_BUILTIN_PADDSW256, IX86_BUILTIN_PADDUSB256, IX86_BUILTIN_PADDUSW256, IX86_BUILTIN_PALIGNR256, IX86_BUILTIN_AND256I, IX86_BUILTIN_ANDNOT256I, IX86_BUILTIN_PAVGB256, IX86_BUILTIN_PAVGW256, IX86_BUILTIN_PBLENDVB256, IX86_BUILTIN_PBLENDVW256, IX86_BUILTIN_PCMPEQB256, IX86_BUILTIN_PCMPEQW256, IX86_BUILTIN_PCMPEQD256, IX86_BUILTIN_PCMPEQQ256, IX86_BUILTIN_PCMPGTB256, IX86_BUILTIN_PCMPGTW256, IX86_BUILTIN_PCMPGTD256, IX86_BUILTIN_PCMPGTQ256, IX86_BUILTIN_PHADDW256, IX86_BUILTIN_PHADDD256, IX86_BUILTIN_PHADDSW256, IX86_BUILTIN_PHSUBW256, IX86_BUILTIN_PHSUBD256, IX86_BUILTIN_PHSUBSW256, IX86_BUILTIN_PMADDUBSW256, IX86_BUILTIN_PMADDWD256, IX86_BUILTIN_PMAXSB256, IX86_BUILTIN_PMAXSW256, IX86_BUILTIN_PMAXSD256, IX86_BUILTIN_PMAXUB256, IX86_BUILTIN_PMAXUW256, IX86_BUILTIN_PMAXUD256, IX86_BUILTIN_PMINSB256, IX86_BUILTIN_PMINSW256, IX86_BUILTIN_PMINSD256, IX86_BUILTIN_PMINUB256, IX86_BUILTIN_PMINUW256, IX86_BUILTIN_PMINUD256, IX86_BUILTIN_PMOVMSKB256, IX86_BUILTIN_PMOVSXBW256, IX86_BUILTIN_PMOVSXBD256, IX86_BUILTIN_PMOVSXBQ256, IX86_BUILTIN_PMOVSXWD256, IX86_BUILTIN_PMOVSXWQ256, IX86_BUILTIN_PMOVSXDQ256, IX86_BUILTIN_PMOVZXBW256, IX86_BUILTIN_PMOVZXBD256, IX86_BUILTIN_PMOVZXBQ256, IX86_BUILTIN_PMOVZXWD256, IX86_BUILTIN_PMOVZXWQ256, IX86_BUILTIN_PMOVZXDQ256, IX86_BUILTIN_PMULDQ256, IX86_BUILTIN_PMULHRSW256, IX86_BUILTIN_PMULHUW256, IX86_BUILTIN_PMULHW256, IX86_BUILTIN_PMULLW256, IX86_BUILTIN_PMULLD256, IX86_BUILTIN_PMULUDQ256, IX86_BUILTIN_POR256, IX86_BUILTIN_PSADBW256, IX86_BUILTIN_PSHUFB256, IX86_BUILTIN_PSHUFD256, IX86_BUILTIN_PSHUFHW256, IX86_BUILTIN_PSHUFLW256, IX86_BUILTIN_PSIGNB256, IX86_BUILTIN_PSIGNW256, IX86_BUILTIN_PSIGND256, IX86_BUILTIN_PSLLDQI256, IX86_BUILTIN_PSLLWI256, IX86_BUILTIN_PSLLW256, IX86_BUILTIN_PSLLDI256, IX86_BUILTIN_PSLLD256, IX86_BUILTIN_PSLLQI256, IX86_BUILTIN_PSLLQ256, IX86_BUILTIN_PSRAWI256, IX86_BUILTIN_PSRAW256, IX86_BUILTIN_PSRADI256, IX86_BUILTIN_PSRAD256, IX86_BUILTIN_PSRLDQI256, IX86_BUILTIN_PSRLWI256, IX86_BUILTIN_PSRLW256, IX86_BUILTIN_PSRLDI256, IX86_BUILTIN_PSRLD256, IX86_BUILTIN_PSRLQI256, IX86_BUILTIN_PSRLQ256, IX86_BUILTIN_PSUBB256, IX86_BUILTIN_PSUBW256, IX86_BUILTIN_PSUBD256, IX86_BUILTIN_PSUBQ256, IX86_BUILTIN_PSUBSB256, IX86_BUILTIN_PSUBSW256, IX86_BUILTIN_PSUBUSB256, IX86_BUILTIN_PSUBUSW256, IX86_BUILTIN_PUNPCKHBW256, IX86_BUILTIN_PUNPCKHWD256, IX86_BUILTIN_PUNPCKHDQ256, IX86_BUILTIN_PUNPCKHQDQ256, IX86_BUILTIN_PUNPCKLBW256, IX86_BUILTIN_PUNPCKLWD256, IX86_BUILTIN_PUNPCKLDQ256, IX86_BUILTIN_PUNPCKLQDQ256, IX86_BUILTIN_PXOR256, IX86_BUILTIN_MOVNTDQA256, IX86_BUILTIN_VBROADCASTSS_PS, IX86_BUILTIN_VBROADCASTSS_PS256, IX86_BUILTIN_VBROADCASTSD_PD256, IX86_BUILTIN_VBROADCASTSI256, IX86_BUILTIN_PBLENDD256, IX86_BUILTIN_PBLENDD128, IX86_BUILTIN_PBROADCASTB256, IX86_BUILTIN_PBROADCASTW256, IX86_BUILTIN_PBROADCASTD256, IX86_BUILTIN_PBROADCASTQ256, IX86_BUILTIN_PBROADCASTB128, IX86_BUILTIN_PBROADCASTW128, IX86_BUILTIN_PBROADCASTD128, IX86_BUILTIN_PBROADCASTQ128, IX86_BUILTIN_VPERMVARSI256, IX86_BUILTIN_VPERMDF256, IX86_BUILTIN_VPERMVARSF256, IX86_BUILTIN_VPERMDI256, IX86_BUILTIN_VPERMTI256, IX86_BUILTIN_VEXTRACT128I256, IX86_BUILTIN_VINSERT128I256, IX86_BUILTIN_MASKLOADD, IX86_BUILTIN_MASKLOADQ, IX86_BUILTIN_MASKLOADD256, IX86_BUILTIN_MASKLOADQ256, IX86_BUILTIN_MASKSTORED, IX86_BUILTIN_MASKSTOREQ, IX86_BUILTIN_MASKSTORED256, IX86_BUILTIN_MASKSTOREQ256, IX86_BUILTIN_PSLLVV4DI, IX86_BUILTIN_PSLLVV2DI, IX86_BUILTIN_PSLLVV8SI, IX86_BUILTIN_PSLLVV4SI, IX86_BUILTIN_PSRAVV8SI, IX86_BUILTIN_PSRAVV4SI, IX86_BUILTIN_PSRLVV4DI, IX86_BUILTIN_PSRLVV2DI, IX86_BUILTIN_PSRLVV8SI, IX86_BUILTIN_PSRLVV4SI, IX86_BUILTIN_GATHERSIV2DF, IX86_BUILTIN_GATHERSIV4DF, IX86_BUILTIN_GATHERDIV2DF, IX86_BUILTIN_GATHERDIV4DF, IX86_BUILTIN_GATHERSIV4SF, IX86_BUILTIN_GATHERSIV8SF, IX86_BUILTIN_GATHERDIV4SF, IX86_BUILTIN_GATHERDIV8SF, IX86_BUILTIN_GATHERSIV2DI, IX86_BUILTIN_GATHERSIV4DI, IX86_BUILTIN_GATHERDIV2DI, IX86_BUILTIN_GATHERDIV4DI, IX86_BUILTIN_GATHERSIV4SI, IX86_BUILTIN_GATHERSIV8SI, IX86_BUILTIN_GATHERDIV4SI, IX86_BUILTIN_GATHERDIV8SI, /* Alternate 4 element gather for the vectorizer where all operands are 32-byte wide. */ IX86_BUILTIN_GATHERALTSIV4DF, IX86_BUILTIN_GATHERALTDIV8SF, IX86_BUILTIN_GATHERALTSIV4DI, IX86_BUILTIN_GATHERALTDIV8SI, /* TFmode support builtins. */ IX86_BUILTIN_INFQ, IX86_BUILTIN_HUGE_VALQ, IX86_BUILTIN_FABSQ, IX86_BUILTIN_COPYSIGNQ, /* Vectorizer support builtins. */ IX86_BUILTIN_CPYSGNPS, IX86_BUILTIN_CPYSGNPD, IX86_BUILTIN_CPYSGNPS256, IX86_BUILTIN_CPYSGNPD256, /* FMA4 instructions. */ IX86_BUILTIN_VFMADDSS, IX86_BUILTIN_VFMADDSD, IX86_BUILTIN_VFMADDPS, IX86_BUILTIN_VFMADDPD, IX86_BUILTIN_VFMADDPS256, IX86_BUILTIN_VFMADDPD256, IX86_BUILTIN_VFMADDSUBPS, IX86_BUILTIN_VFMADDSUBPD, IX86_BUILTIN_VFMADDSUBPS256, IX86_BUILTIN_VFMADDSUBPD256, /* FMA3 instructions. */ IX86_BUILTIN_VFMADDSS3, IX86_BUILTIN_VFMADDSD3, /* XOP instructions. */ IX86_BUILTIN_VPCMOV, IX86_BUILTIN_VPCMOV_V2DI, IX86_BUILTIN_VPCMOV_V4SI, IX86_BUILTIN_VPCMOV_V8HI, IX86_BUILTIN_VPCMOV_V16QI, IX86_BUILTIN_VPCMOV_V4SF, IX86_BUILTIN_VPCMOV_V2DF, IX86_BUILTIN_VPCMOV256, IX86_BUILTIN_VPCMOV_V4DI256, IX86_BUILTIN_VPCMOV_V8SI256, IX86_BUILTIN_VPCMOV_V16HI256, IX86_BUILTIN_VPCMOV_V32QI256, IX86_BUILTIN_VPCMOV_V8SF256, IX86_BUILTIN_VPCMOV_V4DF256, IX86_BUILTIN_VPPERM, IX86_BUILTIN_VPMACSSWW, IX86_BUILTIN_VPMACSWW, IX86_BUILTIN_VPMACSSWD, IX86_BUILTIN_VPMACSWD, IX86_BUILTIN_VPMACSSDD, IX86_BUILTIN_VPMACSDD, IX86_BUILTIN_VPMACSSDQL, IX86_BUILTIN_VPMACSSDQH, IX86_BUILTIN_VPMACSDQL, IX86_BUILTIN_VPMACSDQH, IX86_BUILTIN_VPMADCSSWD, IX86_BUILTIN_VPMADCSWD, IX86_BUILTIN_VPHADDBW, IX86_BUILTIN_VPHADDBD, IX86_BUILTIN_VPHADDBQ, IX86_BUILTIN_VPHADDWD, IX86_BUILTIN_VPHADDWQ, IX86_BUILTIN_VPHADDDQ, IX86_BUILTIN_VPHADDUBW, IX86_BUILTIN_VPHADDUBD, IX86_BUILTIN_VPHADDUBQ, IX86_BUILTIN_VPHADDUWD, IX86_BUILTIN_VPHADDUWQ, IX86_BUILTIN_VPHADDUDQ, IX86_BUILTIN_VPHSUBBW, IX86_BUILTIN_VPHSUBWD, IX86_BUILTIN_VPHSUBDQ, IX86_BUILTIN_VPROTB, IX86_BUILTIN_VPROTW, IX86_BUILTIN_VPROTD, IX86_BUILTIN_VPROTQ, IX86_BUILTIN_VPROTB_IMM, IX86_BUILTIN_VPROTW_IMM, IX86_BUILTIN_VPROTD_IMM, IX86_BUILTIN_VPROTQ_IMM, IX86_BUILTIN_VPSHLB, IX86_BUILTIN_VPSHLW, IX86_BUILTIN_VPSHLD, IX86_BUILTIN_VPSHLQ, IX86_BUILTIN_VPSHAB, IX86_BUILTIN_VPSHAW, IX86_BUILTIN_VPSHAD, IX86_BUILTIN_VPSHAQ, IX86_BUILTIN_VFRCZSS, IX86_BUILTIN_VFRCZSD, IX86_BUILTIN_VFRCZPS, IX86_BUILTIN_VFRCZPD, IX86_BUILTIN_VFRCZPS256, IX86_BUILTIN_VFRCZPD256, IX86_BUILTIN_VPCOMEQUB, IX86_BUILTIN_VPCOMNEUB, IX86_BUILTIN_VPCOMLTUB, IX86_BUILTIN_VPCOMLEUB, IX86_BUILTIN_VPCOMGTUB, IX86_BUILTIN_VPCOMGEUB, IX86_BUILTIN_VPCOMFALSEUB, IX86_BUILTIN_VPCOMTRUEUB, IX86_BUILTIN_VPCOMEQUW, IX86_BUILTIN_VPCOMNEUW, IX86_BUILTIN_VPCOMLTUW, IX86_BUILTIN_VPCOMLEUW, IX86_BUILTIN_VPCOMGTUW, IX86_BUILTIN_VPCOMGEUW, IX86_BUILTIN_VPCOMFALSEUW, IX86_BUILTIN_VPCOMTRUEUW, IX86_BUILTIN_VPCOMEQUD, IX86_BUILTIN_VPCOMNEUD, IX86_BUILTIN_VPCOMLTUD, IX86_BUILTIN_VPCOMLEUD, IX86_BUILTIN_VPCOMGTUD, IX86_BUILTIN_VPCOMGEUD, IX86_BUILTIN_VPCOMFALSEUD, IX86_BUILTIN_VPCOMTRUEUD, IX86_BUILTIN_VPCOMEQUQ, IX86_BUILTIN_VPCOMNEUQ, IX86_BUILTIN_VPCOMLTUQ, IX86_BUILTIN_VPCOMLEUQ, IX86_BUILTIN_VPCOMGTUQ, IX86_BUILTIN_VPCOMGEUQ, IX86_BUILTIN_VPCOMFALSEUQ, IX86_BUILTIN_VPCOMTRUEUQ, IX86_BUILTIN_VPCOMEQB, IX86_BUILTIN_VPCOMNEB, IX86_BUILTIN_VPCOMLTB, IX86_BUILTIN_VPCOMLEB, IX86_BUILTIN_VPCOMGTB, IX86_BUILTIN_VPCOMGEB, IX86_BUILTIN_VPCOMFALSEB, IX86_BUILTIN_VPCOMTRUEB, IX86_BUILTIN_VPCOMEQW, IX86_BUILTIN_VPCOMNEW, IX86_BUILTIN_VPCOMLTW, IX86_BUILTIN_VPCOMLEW, IX86_BUILTIN_VPCOMGTW, IX86_BUILTIN_VPCOMGEW, IX86_BUILTIN_VPCOMFALSEW, IX86_BUILTIN_VPCOMTRUEW, IX86_BUILTIN_VPCOMEQD, IX86_BUILTIN_VPCOMNED, IX86_BUILTIN_VPCOMLTD, IX86_BUILTIN_VPCOMLED, IX86_BUILTIN_VPCOMGTD, IX86_BUILTIN_VPCOMGED, IX86_BUILTIN_VPCOMFALSED, IX86_BUILTIN_VPCOMTRUED, IX86_BUILTIN_VPCOMEQQ, IX86_BUILTIN_VPCOMNEQ, IX86_BUILTIN_VPCOMLTQ, IX86_BUILTIN_VPCOMLEQ, IX86_BUILTIN_VPCOMGTQ, IX86_BUILTIN_VPCOMGEQ, IX86_BUILTIN_VPCOMFALSEQ, IX86_BUILTIN_VPCOMTRUEQ, /* LWP instructions. */ IX86_BUILTIN_LLWPCB, IX86_BUILTIN_SLWPCB, IX86_BUILTIN_LWPVAL32, IX86_BUILTIN_LWPVAL64, IX86_BUILTIN_LWPINS32, IX86_BUILTIN_LWPINS64, IX86_BUILTIN_CLZS, /* RTM */ IX86_BUILTIN_XBEGIN, IX86_BUILTIN_XEND, IX86_BUILTIN_XABORT, IX86_BUILTIN_XTEST, /* BMI instructions. */ IX86_BUILTIN_BEXTR32, IX86_BUILTIN_BEXTR64, IX86_BUILTIN_CTZS, /* TBM instructions. */ IX86_BUILTIN_BEXTRI32, IX86_BUILTIN_BEXTRI64, /* BMI2 instructions. */ IX86_BUILTIN_BZHI32, IX86_BUILTIN_BZHI64, IX86_BUILTIN_PDEP32, IX86_BUILTIN_PDEP64, IX86_BUILTIN_PEXT32, IX86_BUILTIN_PEXT64, /* ADX instructions. */ IX86_BUILTIN_ADDCARRYX32, IX86_BUILTIN_ADDCARRYX64, /* FSGSBASE instructions. */ IX86_BUILTIN_RDFSBASE32, IX86_BUILTIN_RDFSBASE64, IX86_BUILTIN_RDGSBASE32, IX86_BUILTIN_RDGSBASE64, IX86_BUILTIN_WRFSBASE32, IX86_BUILTIN_WRFSBASE64, IX86_BUILTIN_WRGSBASE32, IX86_BUILTIN_WRGSBASE64, /* RDRND instructions. */ IX86_BUILTIN_RDRAND16_STEP, IX86_BUILTIN_RDRAND32_STEP, IX86_BUILTIN_RDRAND64_STEP, /* RDSEED instructions. */ IX86_BUILTIN_RDSEED16_STEP, IX86_BUILTIN_RDSEED32_STEP, IX86_BUILTIN_RDSEED64_STEP, /* F16C instructions. */ IX86_BUILTIN_CVTPH2PS, IX86_BUILTIN_CVTPH2PS256, IX86_BUILTIN_CVTPS2PH, IX86_BUILTIN_CVTPS2PH256, /* CFString built-in for darwin */ IX86_BUILTIN_CFSTRING, /* Builtins to get CPU type and supported features. */ IX86_BUILTIN_CPU_INIT, IX86_BUILTIN_CPU_IS, IX86_BUILTIN_CPU_SUPPORTS, IX86_BUILTIN_MAX }; /* Table for the ix86 builtin decls. */ static GTY(()) tree ix86_builtins[(int) IX86_BUILTIN_MAX]; /* Table of all of the builtin functions that are possible with different ISA's but are waiting to be built until a function is declared to use that ISA. */ struct builtin_isa { const char *name; /* function name */ enum ix86_builtin_func_type tcode; /* type to use in the declaration */ HOST_WIDE_INT isa; /* isa_flags this builtin is defined for */ bool const_p; /* true if the declaration is constant */ bool set_and_not_built_p; }; static struct builtin_isa ix86_builtins_isa[(int) IX86_BUILTIN_MAX]; /* Add an ix86 target builtin function with CODE, NAME and TYPE. Save the MASK of which isa_flags to use in the ix86_builtins_isa array. Stores the function decl in the ix86_builtins array. Returns the function decl or NULL_TREE, if the builtin was not added. If the front end has a special hook for builtin functions, delay adding builtin functions that aren't in the current ISA until the ISA is changed with function specific optimization. Doing so, can save about 300K for the default compiler. When the builtin is expanded, check at that time whether it is valid. If the front end doesn't have a special hook, record all builtins, even if it isn't an instruction set in the current ISA in case the user uses function specific options for a different ISA, so that we don't get scope errors if a builtin is added in the middle of a function scope. */ static inline tree def_builtin (HOST_WIDE_INT mask, const char *name, enum ix86_builtin_func_type tcode, enum ix86_builtins code) { tree decl = NULL_TREE; if (!(mask & OPTION_MASK_ISA_64BIT) || TARGET_64BIT) { ix86_builtins_isa[(int) code].isa = mask; mask &= ~OPTION_MASK_ISA_64BIT; if (mask == 0 || (mask & ix86_isa_flags) != 0 || (lang_hooks.builtin_function == lang_hooks.builtin_function_ext_scope)) { tree type = ix86_get_builtin_func_type (tcode); decl = add_builtin_function (name, type, code, BUILT_IN_MD, NULL, NULL_TREE); ix86_builtins[(int) code] = decl; ix86_builtins_isa[(int) code].set_and_not_built_p = false; } else { ix86_builtins[(int) code] = NULL_TREE; ix86_builtins_isa[(int) code].tcode = tcode; ix86_builtins_isa[(int) code].name = name; ix86_builtins_isa[(int) code].const_p = false; ix86_builtins_isa[(int) code].set_and_not_built_p = true; } } return decl; } /* Like def_builtin, but also marks the function decl "const". */ static inline tree def_builtin_const (HOST_WIDE_INT mask, const char *name, enum ix86_builtin_func_type tcode, enum ix86_builtins code) { tree decl = def_builtin (mask, name, tcode, code); if (decl) TREE_READONLY (decl) = 1; else ix86_builtins_isa[(int) code].const_p = true; return decl; } /* Add any new builtin functions for a given ISA that may not have been declared. This saves a bit of space compared to adding all of the declarations to the tree, even if we didn't use them. */ static void ix86_add_new_builtins (HOST_WIDE_INT isa) { int i; for (i = 0; i < (int)IX86_BUILTIN_MAX; i++) { if ((ix86_builtins_isa[i].isa & isa) != 0 && ix86_builtins_isa[i].set_and_not_built_p) { tree decl, type; /* Don't define the builtin again. */ ix86_builtins_isa[i].set_and_not_built_p = false; type = ix86_get_builtin_func_type (ix86_builtins_isa[i].tcode); decl = add_builtin_function_ext_scope (ix86_builtins_isa[i].name, type, i, BUILT_IN_MD, NULL, NULL_TREE); ix86_builtins[i] = decl; if (ix86_builtins_isa[i].const_p) TREE_READONLY (decl) = 1; } } } /* Bits for builtin_description.flag. */ /* Set when we don't support the comparison natively, and should swap_comparison in order to support it. */ #define BUILTIN_DESC_SWAP_OPERANDS 1 struct builtin_description { const HOST_WIDE_INT mask; const enum insn_code icode; const char *const name; const enum ix86_builtins code; const enum rtx_code comparison; const int flag; }; static const struct builtin_description bdesc_comi[] = { { OPTION_MASK_ISA_SSE, CODE_FOR_sse_comi, "__builtin_ia32_comieq", IX86_BUILTIN_COMIEQSS, UNEQ, 0 }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_comi, "__builtin_ia32_comilt", IX86_BUILTIN_COMILTSS, UNLT, 0 }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_comi, "__builtin_ia32_comile", IX86_BUILTIN_COMILESS, UNLE, 0 }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_comi, "__builtin_ia32_comigt", IX86_BUILTIN_COMIGTSS, GT, 0 }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_comi, "__builtin_ia32_comige", IX86_BUILTIN_COMIGESS, GE, 0 }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_comi, "__builtin_ia32_comineq", IX86_BUILTIN_COMINEQSS, LTGT, 0 }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_ucomi, "__builtin_ia32_ucomieq", IX86_BUILTIN_UCOMIEQSS, UNEQ, 0 }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_ucomi, "__builtin_ia32_ucomilt", IX86_BUILTIN_UCOMILTSS, UNLT, 0 }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_ucomi, "__builtin_ia32_ucomile", IX86_BUILTIN_UCOMILESS, UNLE, 0 }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_ucomi, "__builtin_ia32_ucomigt", IX86_BUILTIN_UCOMIGTSS, GT, 0 }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_ucomi, "__builtin_ia32_ucomige", IX86_BUILTIN_UCOMIGESS, GE, 0 }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_ucomi, "__builtin_ia32_ucomineq", IX86_BUILTIN_UCOMINEQSS, LTGT, 0 }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_comi, "__builtin_ia32_comisdeq", IX86_BUILTIN_COMIEQSD, UNEQ, 0 }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_comi, "__builtin_ia32_comisdlt", IX86_BUILTIN_COMILTSD, UNLT, 0 }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_comi, "__builtin_ia32_comisdle", IX86_BUILTIN_COMILESD, UNLE, 0 }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_comi, "__builtin_ia32_comisdgt", IX86_BUILTIN_COMIGTSD, GT, 0 }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_comi, "__builtin_ia32_comisdge", IX86_BUILTIN_COMIGESD, GE, 0 }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_comi, "__builtin_ia32_comisdneq", IX86_BUILTIN_COMINEQSD, LTGT, 0 }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_ucomi, "__builtin_ia32_ucomisdeq", IX86_BUILTIN_UCOMIEQSD, UNEQ, 0 }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_ucomi, "__builtin_ia32_ucomisdlt", IX86_BUILTIN_UCOMILTSD, UNLT, 0 }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_ucomi, "__builtin_ia32_ucomisdle", IX86_BUILTIN_UCOMILESD, UNLE, 0 }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_ucomi, "__builtin_ia32_ucomisdgt", IX86_BUILTIN_UCOMIGTSD, GT, 0 }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_ucomi, "__builtin_ia32_ucomisdge", IX86_BUILTIN_UCOMIGESD, GE, 0 }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_ucomi, "__builtin_ia32_ucomisdneq", IX86_BUILTIN_UCOMINEQSD, LTGT, 0 }, }; static const struct builtin_description bdesc_pcmpestr[] = { /* SSE4.2 */ { OPTION_MASK_ISA_SSE4_2, CODE_FOR_sse4_2_pcmpestr, "__builtin_ia32_pcmpestri128", IX86_BUILTIN_PCMPESTRI128, UNKNOWN, 0 }, { OPTION_MASK_ISA_SSE4_2, CODE_FOR_sse4_2_pcmpestr, "__builtin_ia32_pcmpestrm128", IX86_BUILTIN_PCMPESTRM128, UNKNOWN, 0 }, { OPTION_MASK_ISA_SSE4_2, CODE_FOR_sse4_2_pcmpestr, "__builtin_ia32_pcmpestria128", IX86_BUILTIN_PCMPESTRA128, UNKNOWN, (int) CCAmode }, { OPTION_MASK_ISA_SSE4_2, CODE_FOR_sse4_2_pcmpestr, "__builtin_ia32_pcmpestric128", IX86_BUILTIN_PCMPESTRC128, UNKNOWN, (int) CCCmode }, { OPTION_MASK_ISA_SSE4_2, CODE_FOR_sse4_2_pcmpestr, "__builtin_ia32_pcmpestrio128", IX86_BUILTIN_PCMPESTRO128, UNKNOWN, (int) CCOmode }, { OPTION_MASK_ISA_SSE4_2, CODE_FOR_sse4_2_pcmpestr, "__builtin_ia32_pcmpestris128", IX86_BUILTIN_PCMPESTRS128, UNKNOWN, (int) CCSmode }, { OPTION_MASK_ISA_SSE4_2, CODE_FOR_sse4_2_pcmpestr, "__builtin_ia32_pcmpestriz128", IX86_BUILTIN_PCMPESTRZ128, UNKNOWN, (int) CCZmode }, }; static const struct builtin_description bdesc_pcmpistr[] = { /* SSE4.2 */ { OPTION_MASK_ISA_SSE4_2, CODE_FOR_sse4_2_pcmpistr, "__builtin_ia32_pcmpistri128", IX86_BUILTIN_PCMPISTRI128, UNKNOWN, 0 }, { OPTION_MASK_ISA_SSE4_2, CODE_FOR_sse4_2_pcmpistr, "__builtin_ia32_pcmpistrm128", IX86_BUILTIN_PCMPISTRM128, UNKNOWN, 0 }, { OPTION_MASK_ISA_SSE4_2, CODE_FOR_sse4_2_pcmpistr, "__builtin_ia32_pcmpistria128", IX86_BUILTIN_PCMPISTRA128, UNKNOWN, (int) CCAmode }, { OPTION_MASK_ISA_SSE4_2, CODE_FOR_sse4_2_pcmpistr, "__builtin_ia32_pcmpistric128", IX86_BUILTIN_PCMPISTRC128, UNKNOWN, (int) CCCmode }, { OPTION_MASK_ISA_SSE4_2, CODE_FOR_sse4_2_pcmpistr, "__builtin_ia32_pcmpistrio128", IX86_BUILTIN_PCMPISTRO128, UNKNOWN, (int) CCOmode }, { OPTION_MASK_ISA_SSE4_2, CODE_FOR_sse4_2_pcmpistr, "__builtin_ia32_pcmpistris128", IX86_BUILTIN_PCMPISTRS128, UNKNOWN, (int) CCSmode }, { OPTION_MASK_ISA_SSE4_2, CODE_FOR_sse4_2_pcmpistr, "__builtin_ia32_pcmpistriz128", IX86_BUILTIN_PCMPISTRZ128, UNKNOWN, (int) CCZmode }, }; /* Special builtins with variable number of arguments. */ static const struct builtin_description bdesc_special_args[] = { { ~OPTION_MASK_ISA_64BIT, CODE_FOR_nothing, "__builtin_ia32_rdtsc", IX86_BUILTIN_RDTSC, UNKNOWN, (int) UINT64_FTYPE_VOID }, { ~OPTION_MASK_ISA_64BIT, CODE_FOR_nothing, "__builtin_ia32_rdtscp", IX86_BUILTIN_RDTSCP, UNKNOWN, (int) UINT64_FTYPE_PUNSIGNED }, { ~OPTION_MASK_ISA_64BIT, CODE_FOR_pause, "__builtin_ia32_pause", IX86_BUILTIN_PAUSE, UNKNOWN, (int) VOID_FTYPE_VOID }, /* 80387 (for use internally for atomic compound assignment). */ { 0, CODE_FOR_fnstenv, "__builtin_ia32_fnstenv", IX86_BUILTIN_FNSTENV, UNKNOWN, (int) VOID_FTYPE_PVOID }, { 0, CODE_FOR_fldenv, "__builtin_ia32_fldenv", IX86_BUILTIN_FLDENV, UNKNOWN, (int) VOID_FTYPE_PCVOID }, { 0, CODE_FOR_fnstsw, "__builtin_ia32_fnstsw", IX86_BUILTIN_FNSTSW, UNKNOWN, (int) VOID_FTYPE_PUSHORT }, { 0, CODE_FOR_fnclex, "__builtin_ia32_fnclex", IX86_BUILTIN_FNCLEX, UNKNOWN, (int) VOID_FTYPE_VOID }, /* MMX */ { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_emms, "__builtin_ia32_emms", IX86_BUILTIN_EMMS, UNKNOWN, (int) VOID_FTYPE_VOID }, /* 3DNow! */ { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_femms, "__builtin_ia32_femms", IX86_BUILTIN_FEMMS, UNKNOWN, (int) VOID_FTYPE_VOID }, /* FXSR, XSAVE and XSAVEOPT */ { OPTION_MASK_ISA_FXSR, CODE_FOR_nothing, "__builtin_ia32_fxsave", IX86_BUILTIN_FXSAVE, UNKNOWN, (int) VOID_FTYPE_PVOID }, { OPTION_MASK_ISA_FXSR, CODE_FOR_nothing, "__builtin_ia32_fxrstor", IX86_BUILTIN_FXRSTOR, UNKNOWN, (int) VOID_FTYPE_PVOID }, { OPTION_MASK_ISA_XSAVE, CODE_FOR_nothing, "__builtin_ia32_xsave", IX86_BUILTIN_XSAVE, UNKNOWN, (int) VOID_FTYPE_PVOID_INT64 }, { OPTION_MASK_ISA_XSAVE, CODE_FOR_nothing, "__builtin_ia32_xrstor", IX86_BUILTIN_XRSTOR, UNKNOWN, (int) VOID_FTYPE_PVOID_INT64 }, { OPTION_MASK_ISA_XSAVEOPT, CODE_FOR_nothing, "__builtin_ia32_xsaveopt", IX86_BUILTIN_XSAVEOPT, UNKNOWN, (int) VOID_FTYPE_PVOID_INT64 }, { OPTION_MASK_ISA_FXSR | OPTION_MASK_ISA_64BIT, CODE_FOR_nothing, "__builtin_ia32_fxsave64", IX86_BUILTIN_FXSAVE64, UNKNOWN, (int) VOID_FTYPE_PVOID }, { OPTION_MASK_ISA_FXSR | OPTION_MASK_ISA_64BIT, CODE_FOR_nothing, "__builtin_ia32_fxrstor64", IX86_BUILTIN_FXRSTOR64, UNKNOWN, (int) VOID_FTYPE_PVOID }, { OPTION_MASK_ISA_XSAVE | OPTION_MASK_ISA_64BIT, CODE_FOR_nothing, "__builtin_ia32_xsave64", IX86_BUILTIN_XSAVE64, UNKNOWN, (int) VOID_FTYPE_PVOID_INT64 }, { OPTION_MASK_ISA_XSAVE | OPTION_MASK_ISA_64BIT, CODE_FOR_nothing, "__builtin_ia32_xrstor64", IX86_BUILTIN_XRSTOR64, UNKNOWN, (int) VOID_FTYPE_PVOID_INT64 }, { OPTION_MASK_ISA_XSAVEOPT | OPTION_MASK_ISA_64BIT, CODE_FOR_nothing, "__builtin_ia32_xsaveopt64", IX86_BUILTIN_XSAVEOPT64, UNKNOWN, (int) VOID_FTYPE_PVOID_INT64 }, /* SSE */ { OPTION_MASK_ISA_SSE, CODE_FOR_sse_storeups, "__builtin_ia32_storeups", IX86_BUILTIN_STOREUPS, UNKNOWN, (int) VOID_FTYPE_PFLOAT_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_movntv4sf, "__builtin_ia32_movntps", IX86_BUILTIN_MOVNTPS, UNKNOWN, (int) VOID_FTYPE_PFLOAT_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_loadups, "__builtin_ia32_loadups", IX86_BUILTIN_LOADUPS, UNKNOWN, (int) V4SF_FTYPE_PCFLOAT }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_loadhps_exp, "__builtin_ia32_loadhps", IX86_BUILTIN_LOADHPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_PCV2SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_loadlps_exp, "__builtin_ia32_loadlps", IX86_BUILTIN_LOADLPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_PCV2SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_storehps, "__builtin_ia32_storehps", IX86_BUILTIN_STOREHPS, UNKNOWN, (int) VOID_FTYPE_PV2SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_storelps, "__builtin_ia32_storelps", IX86_BUILTIN_STORELPS, UNKNOWN, (int) VOID_FTYPE_PV2SF_V4SF }, /* SSE or 3DNow!A */ { OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_3DNOW_A, CODE_FOR_sse_sfence, "__builtin_ia32_sfence", IX86_BUILTIN_SFENCE, UNKNOWN, (int) VOID_FTYPE_VOID }, { OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_3DNOW_A, CODE_FOR_sse_movntq, "__builtin_ia32_movntq", IX86_BUILTIN_MOVNTQ, UNKNOWN, (int) VOID_FTYPE_PULONGLONG_ULONGLONG }, /* SSE2 */ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_lfence, "__builtin_ia32_lfence", IX86_BUILTIN_LFENCE, UNKNOWN, (int) VOID_FTYPE_VOID }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_mfence, 0, IX86_BUILTIN_MFENCE, UNKNOWN, (int) VOID_FTYPE_VOID }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_storeupd, "__builtin_ia32_storeupd", IX86_BUILTIN_STOREUPD, UNKNOWN, (int) VOID_FTYPE_PDOUBLE_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_storedquv16qi, "__builtin_ia32_storedqu", IX86_BUILTIN_STOREDQU, UNKNOWN, (int) VOID_FTYPE_PCHAR_V16QI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_movntv2df, "__builtin_ia32_movntpd", IX86_BUILTIN_MOVNTPD, UNKNOWN, (int) VOID_FTYPE_PDOUBLE_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_movntv2di, "__builtin_ia32_movntdq", IX86_BUILTIN_MOVNTDQ, UNKNOWN, (int) VOID_FTYPE_PV2DI_V2DI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_movntisi, "__builtin_ia32_movnti", IX86_BUILTIN_MOVNTI, UNKNOWN, (int) VOID_FTYPE_PINT_INT }, { OPTION_MASK_ISA_SSE2 | OPTION_MASK_ISA_64BIT, CODE_FOR_sse2_movntidi, "__builtin_ia32_movnti64", IX86_BUILTIN_MOVNTI64, UNKNOWN, (int) VOID_FTYPE_PLONGLONG_LONGLONG }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_loadupd, "__builtin_ia32_loadupd", IX86_BUILTIN_LOADUPD, UNKNOWN, (int) V2DF_FTYPE_PCDOUBLE }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_loaddquv16qi, "__builtin_ia32_loaddqu", IX86_BUILTIN_LOADDQU, UNKNOWN, (int) V16QI_FTYPE_PCCHAR }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_loadhpd_exp, "__builtin_ia32_loadhpd", IX86_BUILTIN_LOADHPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_PCDOUBLE }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_loadlpd_exp, "__builtin_ia32_loadlpd", IX86_BUILTIN_LOADLPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_PCDOUBLE }, /* SSE3 */ { OPTION_MASK_ISA_SSE3, CODE_FOR_sse3_lddqu, "__builtin_ia32_lddqu", IX86_BUILTIN_LDDQU, UNKNOWN, (int) V16QI_FTYPE_PCCHAR }, /* SSE4.1 */ { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_movntdqa, "__builtin_ia32_movntdqa", IX86_BUILTIN_MOVNTDQA, UNKNOWN, (int) V2DI_FTYPE_PV2DI }, /* SSE4A */ { OPTION_MASK_ISA_SSE4A, CODE_FOR_sse4a_vmmovntv2df, "__builtin_ia32_movntsd", IX86_BUILTIN_MOVNTSD, UNKNOWN, (int) VOID_FTYPE_PDOUBLE_V2DF }, { OPTION_MASK_ISA_SSE4A, CODE_FOR_sse4a_vmmovntv4sf, "__builtin_ia32_movntss", IX86_BUILTIN_MOVNTSS, UNKNOWN, (int) VOID_FTYPE_PFLOAT_V4SF }, /* AVX */ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vzeroall, "__builtin_ia32_vzeroall", IX86_BUILTIN_VZEROALL, UNKNOWN, (int) VOID_FTYPE_VOID }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vzeroupper, "__builtin_ia32_vzeroupper", IX86_BUILTIN_VZEROUPPER, UNKNOWN, (int) VOID_FTYPE_VOID }, { OPTION_MASK_ISA_AVX, CODE_FOR_vec_dupv4sf, "__builtin_ia32_vbroadcastss", IX86_BUILTIN_VBROADCASTSS, UNKNOWN, (int) V4SF_FTYPE_PCFLOAT }, { OPTION_MASK_ISA_AVX, CODE_FOR_vec_dupv4df, "__builtin_ia32_vbroadcastsd256", IX86_BUILTIN_VBROADCASTSD256, UNKNOWN, (int) V4DF_FTYPE_PCDOUBLE }, { OPTION_MASK_ISA_AVX, CODE_FOR_vec_dupv8sf, "__builtin_ia32_vbroadcastss256", IX86_BUILTIN_VBROADCASTSS256, UNKNOWN, (int) V8SF_FTYPE_PCFLOAT }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vbroadcastf128_v4df, "__builtin_ia32_vbroadcastf128_pd256", IX86_BUILTIN_VBROADCASTPD256, UNKNOWN, (int) V4DF_FTYPE_PCV2DF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vbroadcastf128_v8sf, "__builtin_ia32_vbroadcastf128_ps256", IX86_BUILTIN_VBROADCASTPS256, UNKNOWN, (int) V8SF_FTYPE_PCV4SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_loadupd256, "__builtin_ia32_loadupd256", IX86_BUILTIN_LOADUPD256, UNKNOWN, (int) V4DF_FTYPE_PCDOUBLE }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_loadups256, "__builtin_ia32_loadups256", IX86_BUILTIN_LOADUPS256, UNKNOWN, (int) V8SF_FTYPE_PCFLOAT }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_storeupd256, "__builtin_ia32_storeupd256", IX86_BUILTIN_STOREUPD256, UNKNOWN, (int) VOID_FTYPE_PDOUBLE_V4DF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_storeups256, "__builtin_ia32_storeups256", IX86_BUILTIN_STOREUPS256, UNKNOWN, (int) VOID_FTYPE_PFLOAT_V8SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_loaddquv32qi, "__builtin_ia32_loaddqu256", IX86_BUILTIN_LOADDQU256, UNKNOWN, (int) V32QI_FTYPE_PCCHAR }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_storedquv32qi, "__builtin_ia32_storedqu256", IX86_BUILTIN_STOREDQU256, UNKNOWN, (int) VOID_FTYPE_PCHAR_V32QI }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_lddqu256, "__builtin_ia32_lddqu256", IX86_BUILTIN_LDDQU256, UNKNOWN, (int) V32QI_FTYPE_PCCHAR }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_movntv4di, "__builtin_ia32_movntdq256", IX86_BUILTIN_MOVNTDQ256, UNKNOWN, (int) VOID_FTYPE_PV4DI_V4DI }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_movntv4df, "__builtin_ia32_movntpd256", IX86_BUILTIN_MOVNTPD256, UNKNOWN, (int) VOID_FTYPE_PDOUBLE_V4DF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_movntv8sf, "__builtin_ia32_movntps256", IX86_BUILTIN_MOVNTPS256, UNKNOWN, (int) VOID_FTYPE_PFLOAT_V8SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_maskloadpd, "__builtin_ia32_maskloadpd", IX86_BUILTIN_MASKLOADPD, UNKNOWN, (int) V2DF_FTYPE_PCV2DF_V2DI }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_maskloadps, "__builtin_ia32_maskloadps", IX86_BUILTIN_MASKLOADPS, UNKNOWN, (int) V4SF_FTYPE_PCV4SF_V4SI }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_maskloadpd256, "__builtin_ia32_maskloadpd256", IX86_BUILTIN_MASKLOADPD256, UNKNOWN, (int) V4DF_FTYPE_PCV4DF_V4DI }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_maskloadps256, "__builtin_ia32_maskloadps256", IX86_BUILTIN_MASKLOADPS256, UNKNOWN, (int) V8SF_FTYPE_PCV8SF_V8SI }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_maskstorepd, "__builtin_ia32_maskstorepd", IX86_BUILTIN_MASKSTOREPD, UNKNOWN, (int) VOID_FTYPE_PV2DF_V2DI_V2DF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_maskstoreps, "__builtin_ia32_maskstoreps", IX86_BUILTIN_MASKSTOREPS, UNKNOWN, (int) VOID_FTYPE_PV4SF_V4SI_V4SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_maskstorepd256, "__builtin_ia32_maskstorepd256", IX86_BUILTIN_MASKSTOREPD256, UNKNOWN, (int) VOID_FTYPE_PV4DF_V4DI_V4DF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_maskstoreps256, "__builtin_ia32_maskstoreps256", IX86_BUILTIN_MASKSTOREPS256, UNKNOWN, (int) VOID_FTYPE_PV8SF_V8SI_V8SF }, /* AVX2 */ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_movntdqa, "__builtin_ia32_movntdqa256", IX86_BUILTIN_MOVNTDQA256, UNKNOWN, (int) V4DI_FTYPE_PV4DI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_maskloadd, "__builtin_ia32_maskloadd", IX86_BUILTIN_MASKLOADD, UNKNOWN, (int) V4SI_FTYPE_PCV4SI_V4SI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_maskloadq, "__builtin_ia32_maskloadq", IX86_BUILTIN_MASKLOADQ, UNKNOWN, (int) V2DI_FTYPE_PCV2DI_V2DI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_maskloadd256, "__builtin_ia32_maskloadd256", IX86_BUILTIN_MASKLOADD256, UNKNOWN, (int) V8SI_FTYPE_PCV8SI_V8SI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_maskloadq256, "__builtin_ia32_maskloadq256", IX86_BUILTIN_MASKLOADQ256, UNKNOWN, (int) V4DI_FTYPE_PCV4DI_V4DI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_maskstored, "__builtin_ia32_maskstored", IX86_BUILTIN_MASKSTORED, UNKNOWN, (int) VOID_FTYPE_PV4SI_V4SI_V4SI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_maskstoreq, "__builtin_ia32_maskstoreq", IX86_BUILTIN_MASKSTOREQ, UNKNOWN, (int) VOID_FTYPE_PV2DI_V2DI_V2DI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_maskstored256, "__builtin_ia32_maskstored256", IX86_BUILTIN_MASKSTORED256, UNKNOWN, (int) VOID_FTYPE_PV8SI_V8SI_V8SI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_maskstoreq256, "__builtin_ia32_maskstoreq256", IX86_BUILTIN_MASKSTOREQ256, UNKNOWN, (int) VOID_FTYPE_PV4DI_V4DI_V4DI }, { OPTION_MASK_ISA_LWP, CODE_FOR_lwp_llwpcb, "__builtin_ia32_llwpcb", IX86_BUILTIN_LLWPCB, UNKNOWN, (int) VOID_FTYPE_PVOID }, { OPTION_MASK_ISA_LWP, CODE_FOR_lwp_slwpcb, "__builtin_ia32_slwpcb", IX86_BUILTIN_SLWPCB, UNKNOWN, (int) PVOID_FTYPE_VOID }, { OPTION_MASK_ISA_LWP, CODE_FOR_lwp_lwpvalsi3, "__builtin_ia32_lwpval32", IX86_BUILTIN_LWPVAL32, UNKNOWN, (int) VOID_FTYPE_UINT_UINT_UINT }, { OPTION_MASK_ISA_LWP, CODE_FOR_lwp_lwpvaldi3, "__builtin_ia32_lwpval64", IX86_BUILTIN_LWPVAL64, UNKNOWN, (int) VOID_FTYPE_UINT64_UINT_UINT }, { OPTION_MASK_ISA_LWP, CODE_FOR_lwp_lwpinssi3, "__builtin_ia32_lwpins32", IX86_BUILTIN_LWPINS32, UNKNOWN, (int) UCHAR_FTYPE_UINT_UINT_UINT }, { OPTION_MASK_ISA_LWP, CODE_FOR_lwp_lwpinsdi3, "__builtin_ia32_lwpins64", IX86_BUILTIN_LWPINS64, UNKNOWN, (int) UCHAR_FTYPE_UINT64_UINT_UINT }, /* FSGSBASE */ { OPTION_MASK_ISA_FSGSBASE | OPTION_MASK_ISA_64BIT, CODE_FOR_rdfsbasesi, "__builtin_ia32_rdfsbase32", IX86_BUILTIN_RDFSBASE32, UNKNOWN, (int) UNSIGNED_FTYPE_VOID }, { OPTION_MASK_ISA_FSGSBASE | OPTION_MASK_ISA_64BIT, CODE_FOR_rdfsbasedi, "__builtin_ia32_rdfsbase64", IX86_BUILTIN_RDFSBASE64, UNKNOWN, (int) UINT64_FTYPE_VOID }, { OPTION_MASK_ISA_FSGSBASE | OPTION_MASK_ISA_64BIT, CODE_FOR_rdgsbasesi, "__builtin_ia32_rdgsbase32", IX86_BUILTIN_RDGSBASE32, UNKNOWN, (int) UNSIGNED_FTYPE_VOID }, { OPTION_MASK_ISA_FSGSBASE | OPTION_MASK_ISA_64BIT, CODE_FOR_rdgsbasedi, "__builtin_ia32_rdgsbase64", IX86_BUILTIN_RDGSBASE64, UNKNOWN, (int) UINT64_FTYPE_VOID }, { OPTION_MASK_ISA_FSGSBASE | OPTION_MASK_ISA_64BIT, CODE_FOR_wrfsbasesi, "__builtin_ia32_wrfsbase32", IX86_BUILTIN_WRFSBASE32, UNKNOWN, (int) VOID_FTYPE_UNSIGNED }, { OPTION_MASK_ISA_FSGSBASE | OPTION_MASK_ISA_64BIT, CODE_FOR_wrfsbasedi, "__builtin_ia32_wrfsbase64", IX86_BUILTIN_WRFSBASE64, UNKNOWN, (int) VOID_FTYPE_UINT64 }, { OPTION_MASK_ISA_FSGSBASE | OPTION_MASK_ISA_64BIT, CODE_FOR_wrgsbasesi, "__builtin_ia32_wrgsbase32", IX86_BUILTIN_WRGSBASE32, UNKNOWN, (int) VOID_FTYPE_UNSIGNED }, { OPTION_MASK_ISA_FSGSBASE | OPTION_MASK_ISA_64BIT, CODE_FOR_wrgsbasedi, "__builtin_ia32_wrgsbase64", IX86_BUILTIN_WRGSBASE64, UNKNOWN, (int) VOID_FTYPE_UINT64 }, /* RTM */ { OPTION_MASK_ISA_RTM, CODE_FOR_xbegin, "__builtin_ia32_xbegin", IX86_BUILTIN_XBEGIN, UNKNOWN, (int) UNSIGNED_FTYPE_VOID }, { OPTION_MASK_ISA_RTM, CODE_FOR_xend, "__builtin_ia32_xend", IX86_BUILTIN_XEND, UNKNOWN, (int) VOID_FTYPE_VOID }, { OPTION_MASK_ISA_RTM, CODE_FOR_xtest, "__builtin_ia32_xtest", IX86_BUILTIN_XTEST, UNKNOWN, (int) INT_FTYPE_VOID }, }; /* Builtins with variable number of arguments. */ static const struct builtin_description bdesc_args[] = { { ~OPTION_MASK_ISA_64BIT, CODE_FOR_bsr, "__builtin_ia32_bsrsi", IX86_BUILTIN_BSRSI, UNKNOWN, (int) INT_FTYPE_INT }, { OPTION_MASK_ISA_64BIT, CODE_FOR_bsr_rex64, "__builtin_ia32_bsrdi", IX86_BUILTIN_BSRDI, UNKNOWN, (int) INT64_FTYPE_INT64 }, { ~OPTION_MASK_ISA_64BIT, CODE_FOR_nothing, "__builtin_ia32_rdpmc", IX86_BUILTIN_RDPMC, UNKNOWN, (int) UINT64_FTYPE_INT }, { ~OPTION_MASK_ISA_64BIT, CODE_FOR_rotlqi3, "__builtin_ia32_rolqi", IX86_BUILTIN_ROLQI, UNKNOWN, (int) UINT8_FTYPE_UINT8_INT }, { ~OPTION_MASK_ISA_64BIT, CODE_FOR_rotlhi3, "__builtin_ia32_rolhi", IX86_BUILTIN_ROLHI, UNKNOWN, (int) UINT16_FTYPE_UINT16_INT }, { ~OPTION_MASK_ISA_64BIT, CODE_FOR_rotrqi3, "__builtin_ia32_rorqi", IX86_BUILTIN_RORQI, UNKNOWN, (int) UINT8_FTYPE_UINT8_INT }, { ~OPTION_MASK_ISA_64BIT, CODE_FOR_rotrhi3, "__builtin_ia32_rorhi", IX86_BUILTIN_RORHI, UNKNOWN, (int) UINT16_FTYPE_UINT16_INT }, /* MMX */ { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_addv8qi3, "__builtin_ia32_paddb", IX86_BUILTIN_PADDB, UNKNOWN, (int) V8QI_FTYPE_V8QI_V8QI }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_addv4hi3, "__builtin_ia32_paddw", IX86_BUILTIN_PADDW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_addv2si3, "__builtin_ia32_paddd", IX86_BUILTIN_PADDD, UNKNOWN, (int) V2SI_FTYPE_V2SI_V2SI }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_subv8qi3, "__builtin_ia32_psubb", IX86_BUILTIN_PSUBB, UNKNOWN, (int) V8QI_FTYPE_V8QI_V8QI }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_subv4hi3, "__builtin_ia32_psubw", IX86_BUILTIN_PSUBW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_subv2si3, "__builtin_ia32_psubd", IX86_BUILTIN_PSUBD, UNKNOWN, (int) V2SI_FTYPE_V2SI_V2SI }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_ssaddv8qi3, "__builtin_ia32_paddsb", IX86_BUILTIN_PADDSB, UNKNOWN, (int) V8QI_FTYPE_V8QI_V8QI }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_ssaddv4hi3, "__builtin_ia32_paddsw", IX86_BUILTIN_PADDSW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_sssubv8qi3, "__builtin_ia32_psubsb", IX86_BUILTIN_PSUBSB, UNKNOWN, (int) V8QI_FTYPE_V8QI_V8QI }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_sssubv4hi3, "__builtin_ia32_psubsw", IX86_BUILTIN_PSUBSW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_usaddv8qi3, "__builtin_ia32_paddusb", IX86_BUILTIN_PADDUSB, UNKNOWN, (int) V8QI_FTYPE_V8QI_V8QI }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_usaddv4hi3, "__builtin_ia32_paddusw", IX86_BUILTIN_PADDUSW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_ussubv8qi3, "__builtin_ia32_psubusb", IX86_BUILTIN_PSUBUSB, UNKNOWN, (int) V8QI_FTYPE_V8QI_V8QI }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_ussubv4hi3, "__builtin_ia32_psubusw", IX86_BUILTIN_PSUBUSW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_mulv4hi3, "__builtin_ia32_pmullw", IX86_BUILTIN_PMULLW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_smulv4hi3_highpart, "__builtin_ia32_pmulhw", IX86_BUILTIN_PMULHW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_andv2si3, "__builtin_ia32_pand", IX86_BUILTIN_PAND, UNKNOWN, (int) V2SI_FTYPE_V2SI_V2SI }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_andnotv2si3, "__builtin_ia32_pandn", IX86_BUILTIN_PANDN, UNKNOWN, (int) V2SI_FTYPE_V2SI_V2SI }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_iorv2si3, "__builtin_ia32_por", IX86_BUILTIN_POR, UNKNOWN, (int) V2SI_FTYPE_V2SI_V2SI }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_xorv2si3, "__builtin_ia32_pxor", IX86_BUILTIN_PXOR, UNKNOWN, (int) V2SI_FTYPE_V2SI_V2SI }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_eqv8qi3, "__builtin_ia32_pcmpeqb", IX86_BUILTIN_PCMPEQB, UNKNOWN, (int) V8QI_FTYPE_V8QI_V8QI }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_eqv4hi3, "__builtin_ia32_pcmpeqw", IX86_BUILTIN_PCMPEQW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_eqv2si3, "__builtin_ia32_pcmpeqd", IX86_BUILTIN_PCMPEQD, UNKNOWN, (int) V2SI_FTYPE_V2SI_V2SI }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_gtv8qi3, "__builtin_ia32_pcmpgtb", IX86_BUILTIN_PCMPGTB, UNKNOWN, (int) V8QI_FTYPE_V8QI_V8QI }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_gtv4hi3, "__builtin_ia32_pcmpgtw", IX86_BUILTIN_PCMPGTW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_gtv2si3, "__builtin_ia32_pcmpgtd", IX86_BUILTIN_PCMPGTD, UNKNOWN, (int) V2SI_FTYPE_V2SI_V2SI }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_punpckhbw, "__builtin_ia32_punpckhbw", IX86_BUILTIN_PUNPCKHBW, UNKNOWN, (int) V8QI_FTYPE_V8QI_V8QI }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_punpckhwd, "__builtin_ia32_punpckhwd", IX86_BUILTIN_PUNPCKHWD, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_punpckhdq, "__builtin_ia32_punpckhdq", IX86_BUILTIN_PUNPCKHDQ, UNKNOWN, (int) V2SI_FTYPE_V2SI_V2SI }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_punpcklbw, "__builtin_ia32_punpcklbw", IX86_BUILTIN_PUNPCKLBW, UNKNOWN, (int) V8QI_FTYPE_V8QI_V8QI }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_punpcklwd, "__builtin_ia32_punpcklwd", IX86_BUILTIN_PUNPCKLWD, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI}, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_punpckldq, "__builtin_ia32_punpckldq", IX86_BUILTIN_PUNPCKLDQ, UNKNOWN, (int) V2SI_FTYPE_V2SI_V2SI}, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_packsswb, "__builtin_ia32_packsswb", IX86_BUILTIN_PACKSSWB, UNKNOWN, (int) V8QI_FTYPE_V4HI_V4HI }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_packssdw, "__builtin_ia32_packssdw", IX86_BUILTIN_PACKSSDW, UNKNOWN, (int) V4HI_FTYPE_V2SI_V2SI }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_packuswb, "__builtin_ia32_packuswb", IX86_BUILTIN_PACKUSWB, UNKNOWN, (int) V8QI_FTYPE_V4HI_V4HI }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_pmaddwd, "__builtin_ia32_pmaddwd", IX86_BUILTIN_PMADDWD, UNKNOWN, (int) V2SI_FTYPE_V4HI_V4HI }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_ashlv4hi3, "__builtin_ia32_psllwi", IX86_BUILTIN_PSLLWI, UNKNOWN, (int) V4HI_FTYPE_V4HI_SI_COUNT }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_ashlv2si3, "__builtin_ia32_pslldi", IX86_BUILTIN_PSLLDI, UNKNOWN, (int) V2SI_FTYPE_V2SI_SI_COUNT }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_ashlv1di3, "__builtin_ia32_psllqi", IX86_BUILTIN_PSLLQI, UNKNOWN, (int) V1DI_FTYPE_V1DI_SI_COUNT }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_ashlv4hi3, "__builtin_ia32_psllw", IX86_BUILTIN_PSLLW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI_COUNT }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_ashlv2si3, "__builtin_ia32_pslld", IX86_BUILTIN_PSLLD, UNKNOWN, (int) V2SI_FTYPE_V2SI_V2SI_COUNT }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_ashlv1di3, "__builtin_ia32_psllq", IX86_BUILTIN_PSLLQ, UNKNOWN, (int) V1DI_FTYPE_V1DI_V1DI_COUNT }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_lshrv4hi3, "__builtin_ia32_psrlwi", IX86_BUILTIN_PSRLWI, UNKNOWN, (int) V4HI_FTYPE_V4HI_SI_COUNT }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_lshrv2si3, "__builtin_ia32_psrldi", IX86_BUILTIN_PSRLDI, UNKNOWN, (int) V2SI_FTYPE_V2SI_SI_COUNT }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_lshrv1di3, "__builtin_ia32_psrlqi", IX86_BUILTIN_PSRLQI, UNKNOWN, (int) V1DI_FTYPE_V1DI_SI_COUNT }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_lshrv4hi3, "__builtin_ia32_psrlw", IX86_BUILTIN_PSRLW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI_COUNT }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_lshrv2si3, "__builtin_ia32_psrld", IX86_BUILTIN_PSRLD, UNKNOWN, (int) V2SI_FTYPE_V2SI_V2SI_COUNT }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_lshrv1di3, "__builtin_ia32_psrlq", IX86_BUILTIN_PSRLQ, UNKNOWN, (int) V1DI_FTYPE_V1DI_V1DI_COUNT }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_ashrv4hi3, "__builtin_ia32_psrawi", IX86_BUILTIN_PSRAWI, UNKNOWN, (int) V4HI_FTYPE_V4HI_SI_COUNT }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_ashrv2si3, "__builtin_ia32_psradi", IX86_BUILTIN_PSRADI, UNKNOWN, (int) V2SI_FTYPE_V2SI_SI_COUNT }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_ashrv4hi3, "__builtin_ia32_psraw", IX86_BUILTIN_PSRAW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI_COUNT }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_ashrv2si3, "__builtin_ia32_psrad", IX86_BUILTIN_PSRAD, UNKNOWN, (int) V2SI_FTYPE_V2SI_V2SI_COUNT }, /* 3DNow! */ { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_pf2id, "__builtin_ia32_pf2id", IX86_BUILTIN_PF2ID, UNKNOWN, (int) V2SI_FTYPE_V2SF }, { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_floatv2si2, "__builtin_ia32_pi2fd", IX86_BUILTIN_PI2FD, UNKNOWN, (int) V2SF_FTYPE_V2SI }, { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_rcpv2sf2, "__builtin_ia32_pfrcp", IX86_BUILTIN_PFRCP, UNKNOWN, (int) V2SF_FTYPE_V2SF }, { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_rsqrtv2sf2, "__builtin_ia32_pfrsqrt", IX86_BUILTIN_PFRSQRT, UNKNOWN, (int) V2SF_FTYPE_V2SF }, { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_uavgv8qi3, "__builtin_ia32_pavgusb", IX86_BUILTIN_PAVGUSB, UNKNOWN, (int) V8QI_FTYPE_V8QI_V8QI }, { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_haddv2sf3, "__builtin_ia32_pfacc", IX86_BUILTIN_PFACC, UNKNOWN, (int) V2SF_FTYPE_V2SF_V2SF }, { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_addv2sf3, "__builtin_ia32_pfadd", IX86_BUILTIN_PFADD, UNKNOWN, (int) V2SF_FTYPE_V2SF_V2SF }, { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_eqv2sf3, "__builtin_ia32_pfcmpeq", IX86_BUILTIN_PFCMPEQ, UNKNOWN, (int) V2SI_FTYPE_V2SF_V2SF }, { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_gev2sf3, "__builtin_ia32_pfcmpge", IX86_BUILTIN_PFCMPGE, UNKNOWN, (int) V2SI_FTYPE_V2SF_V2SF }, { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_gtv2sf3, "__builtin_ia32_pfcmpgt", IX86_BUILTIN_PFCMPGT, UNKNOWN, (int) V2SI_FTYPE_V2SF_V2SF }, { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_smaxv2sf3, "__builtin_ia32_pfmax", IX86_BUILTIN_PFMAX, UNKNOWN, (int) V2SF_FTYPE_V2SF_V2SF }, { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_sminv2sf3, "__builtin_ia32_pfmin", IX86_BUILTIN_PFMIN, UNKNOWN, (int) V2SF_FTYPE_V2SF_V2SF }, { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_mulv2sf3, "__builtin_ia32_pfmul", IX86_BUILTIN_PFMUL, UNKNOWN, (int) V2SF_FTYPE_V2SF_V2SF }, { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_rcpit1v2sf3, "__builtin_ia32_pfrcpit1", IX86_BUILTIN_PFRCPIT1, UNKNOWN, (int) V2SF_FTYPE_V2SF_V2SF }, { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_rcpit2v2sf3, "__builtin_ia32_pfrcpit2", IX86_BUILTIN_PFRCPIT2, UNKNOWN, (int) V2SF_FTYPE_V2SF_V2SF }, { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_rsqit1v2sf3, "__builtin_ia32_pfrsqit1", IX86_BUILTIN_PFRSQIT1, UNKNOWN, (int) V2SF_FTYPE_V2SF_V2SF }, { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_subv2sf3, "__builtin_ia32_pfsub", IX86_BUILTIN_PFSUB, UNKNOWN, (int) V2SF_FTYPE_V2SF_V2SF }, { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_subrv2sf3, "__builtin_ia32_pfsubr", IX86_BUILTIN_PFSUBR, UNKNOWN, (int) V2SF_FTYPE_V2SF_V2SF }, { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_pmulhrwv4hi3, "__builtin_ia32_pmulhrw", IX86_BUILTIN_PMULHRW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI }, /* 3DNow!A */ { OPTION_MASK_ISA_3DNOW_A, CODE_FOR_mmx_pf2iw, "__builtin_ia32_pf2iw", IX86_BUILTIN_PF2IW, UNKNOWN, (int) V2SI_FTYPE_V2SF }, { OPTION_MASK_ISA_3DNOW_A, CODE_FOR_mmx_pi2fw, "__builtin_ia32_pi2fw", IX86_BUILTIN_PI2FW, UNKNOWN, (int) V2SF_FTYPE_V2SI }, { OPTION_MASK_ISA_3DNOW_A, CODE_FOR_mmx_pswapdv2si2, "__builtin_ia32_pswapdsi", IX86_BUILTIN_PSWAPDSI, UNKNOWN, (int) V2SI_FTYPE_V2SI }, { OPTION_MASK_ISA_3DNOW_A, CODE_FOR_mmx_pswapdv2sf2, "__builtin_ia32_pswapdsf", IX86_BUILTIN_PSWAPDSF, UNKNOWN, (int) V2SF_FTYPE_V2SF }, { OPTION_MASK_ISA_3DNOW_A, CODE_FOR_mmx_hsubv2sf3, "__builtin_ia32_pfnacc", IX86_BUILTIN_PFNACC, UNKNOWN, (int) V2SF_FTYPE_V2SF_V2SF }, { OPTION_MASK_ISA_3DNOW_A, CODE_FOR_mmx_addsubv2sf3, "__builtin_ia32_pfpnacc", IX86_BUILTIN_PFPNACC, UNKNOWN, (int) V2SF_FTYPE_V2SF_V2SF }, /* SSE */ { OPTION_MASK_ISA_SSE, CODE_FOR_sse_movmskps, "__builtin_ia32_movmskps", IX86_BUILTIN_MOVMSKPS, UNKNOWN, (int) INT_FTYPE_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_sqrtv4sf2, "__builtin_ia32_sqrtps", IX86_BUILTIN_SQRTPS, UNKNOWN, (int) V4SF_FTYPE_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sqrtv4sf2, "__builtin_ia32_sqrtps_nr", IX86_BUILTIN_SQRTPS_NR, UNKNOWN, (int) V4SF_FTYPE_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_rsqrtv4sf2, "__builtin_ia32_rsqrtps", IX86_BUILTIN_RSQRTPS, UNKNOWN, (int) V4SF_FTYPE_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_rsqrtv4sf2, "__builtin_ia32_rsqrtps_nr", IX86_BUILTIN_RSQRTPS_NR, UNKNOWN, (int) V4SF_FTYPE_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_rcpv4sf2, "__builtin_ia32_rcpps", IX86_BUILTIN_RCPPS, UNKNOWN, (int) V4SF_FTYPE_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_cvtps2pi, "__builtin_ia32_cvtps2pi", IX86_BUILTIN_CVTPS2PI, UNKNOWN, (int) V2SI_FTYPE_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_cvtss2si, "__builtin_ia32_cvtss2si", IX86_BUILTIN_CVTSS2SI, UNKNOWN, (int) INT_FTYPE_V4SF }, { OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_64BIT, CODE_FOR_sse_cvtss2siq, "__builtin_ia32_cvtss2si64", IX86_BUILTIN_CVTSS2SI64, UNKNOWN, (int) INT64_FTYPE_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_cvttps2pi, "__builtin_ia32_cvttps2pi", IX86_BUILTIN_CVTTPS2PI, UNKNOWN, (int) V2SI_FTYPE_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_cvttss2si, "__builtin_ia32_cvttss2si", IX86_BUILTIN_CVTTSS2SI, UNKNOWN, (int) INT_FTYPE_V4SF }, { OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_64BIT, CODE_FOR_sse_cvttss2siq, "__builtin_ia32_cvttss2si64", IX86_BUILTIN_CVTTSS2SI64, UNKNOWN, (int) INT64_FTYPE_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_shufps, "__builtin_ia32_shufps", IX86_BUILTIN_SHUFPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF_INT }, { OPTION_MASK_ISA_SSE, CODE_FOR_addv4sf3, "__builtin_ia32_addps", IX86_BUILTIN_ADDPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_subv4sf3, "__builtin_ia32_subps", IX86_BUILTIN_SUBPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_mulv4sf3, "__builtin_ia32_mulps", IX86_BUILTIN_MULPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_divv4sf3, "__builtin_ia32_divps", IX86_BUILTIN_DIVPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_vmaddv4sf3, "__builtin_ia32_addss", IX86_BUILTIN_ADDSS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_vmsubv4sf3, "__builtin_ia32_subss", IX86_BUILTIN_SUBSS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_vmmulv4sf3, "__builtin_ia32_mulss", IX86_BUILTIN_MULSS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_vmdivv4sf3, "__builtin_ia32_divss", IX86_BUILTIN_DIVSS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_maskcmpv4sf3, "__builtin_ia32_cmpeqps", IX86_BUILTIN_CMPEQPS, EQ, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_maskcmpv4sf3, "__builtin_ia32_cmpltps", IX86_BUILTIN_CMPLTPS, LT, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_maskcmpv4sf3, "__builtin_ia32_cmpleps", IX86_BUILTIN_CMPLEPS, LE, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_maskcmpv4sf3, "__builtin_ia32_cmpgtps", IX86_BUILTIN_CMPGTPS, LT, (int) V4SF_FTYPE_V4SF_V4SF_SWAP }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_maskcmpv4sf3, "__builtin_ia32_cmpgeps", IX86_BUILTIN_CMPGEPS, LE, (int) V4SF_FTYPE_V4SF_V4SF_SWAP }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_maskcmpv4sf3, "__builtin_ia32_cmpunordps", IX86_BUILTIN_CMPUNORDPS, UNORDERED, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_maskcmpv4sf3, "__builtin_ia32_cmpneqps", IX86_BUILTIN_CMPNEQPS, NE, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_maskcmpv4sf3, "__builtin_ia32_cmpnltps", IX86_BUILTIN_CMPNLTPS, UNGE, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_maskcmpv4sf3, "__builtin_ia32_cmpnleps", IX86_BUILTIN_CMPNLEPS, UNGT, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_maskcmpv4sf3, "__builtin_ia32_cmpngtps", IX86_BUILTIN_CMPNGTPS, UNGE, (int) V4SF_FTYPE_V4SF_V4SF_SWAP }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_maskcmpv4sf3, "__builtin_ia32_cmpngeps", IX86_BUILTIN_CMPNGEPS, UNGT, (int) V4SF_FTYPE_V4SF_V4SF_SWAP}, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_maskcmpv4sf3, "__builtin_ia32_cmpordps", IX86_BUILTIN_CMPORDPS, ORDERED, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_vmmaskcmpv4sf3, "__builtin_ia32_cmpeqss", IX86_BUILTIN_CMPEQSS, EQ, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_vmmaskcmpv4sf3, "__builtin_ia32_cmpltss", IX86_BUILTIN_CMPLTSS, LT, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_vmmaskcmpv4sf3, "__builtin_ia32_cmpless", IX86_BUILTIN_CMPLESS, LE, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_vmmaskcmpv4sf3, "__builtin_ia32_cmpunordss", IX86_BUILTIN_CMPUNORDSS, UNORDERED, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_vmmaskcmpv4sf3, "__builtin_ia32_cmpneqss", IX86_BUILTIN_CMPNEQSS, NE, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_vmmaskcmpv4sf3, "__builtin_ia32_cmpnltss", IX86_BUILTIN_CMPNLTSS, UNGE, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_vmmaskcmpv4sf3, "__builtin_ia32_cmpnless", IX86_BUILTIN_CMPNLESS, UNGT, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_vmmaskcmpv4sf3, "__builtin_ia32_cmpordss", IX86_BUILTIN_CMPORDSS, ORDERED, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sminv4sf3, "__builtin_ia32_minps", IX86_BUILTIN_MINPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_smaxv4sf3, "__builtin_ia32_maxps", IX86_BUILTIN_MAXPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_vmsminv4sf3, "__builtin_ia32_minss", IX86_BUILTIN_MINSS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_vmsmaxv4sf3, "__builtin_ia32_maxss", IX86_BUILTIN_MAXSS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_andv4sf3, "__builtin_ia32_andps", IX86_BUILTIN_ANDPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_andnotv4sf3, "__builtin_ia32_andnps", IX86_BUILTIN_ANDNPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_iorv4sf3, "__builtin_ia32_orps", IX86_BUILTIN_ORPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_xorv4sf3, "__builtin_ia32_xorps", IX86_BUILTIN_XORPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_copysignv4sf3, "__builtin_ia32_copysignps", IX86_BUILTIN_CPYSGNPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_movss, "__builtin_ia32_movss", IX86_BUILTIN_MOVSS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_movhlps_exp, "__builtin_ia32_movhlps", IX86_BUILTIN_MOVHLPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_movlhps_exp, "__builtin_ia32_movlhps", IX86_BUILTIN_MOVLHPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_vec_interleave_highv4sf, "__builtin_ia32_unpckhps", IX86_BUILTIN_UNPCKHPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_vec_interleave_lowv4sf, "__builtin_ia32_unpcklps", IX86_BUILTIN_UNPCKLPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_cvtpi2ps, "__builtin_ia32_cvtpi2ps", IX86_BUILTIN_CVTPI2PS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V2SI }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_cvtsi2ss, "__builtin_ia32_cvtsi2ss", IX86_BUILTIN_CVTSI2SS, UNKNOWN, (int) V4SF_FTYPE_V4SF_SI }, { OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_64BIT, CODE_FOR_sse_cvtsi2ssq, "__builtin_ia32_cvtsi642ss", IX86_BUILTIN_CVTSI642SS, UNKNOWN, V4SF_FTYPE_V4SF_DI }, { OPTION_MASK_ISA_SSE, CODE_FOR_rsqrtsf2, "__builtin_ia32_rsqrtf", IX86_BUILTIN_RSQRTF, UNKNOWN, (int) FLOAT_FTYPE_FLOAT }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_vmsqrtv4sf2, "__builtin_ia32_sqrtss", IX86_BUILTIN_SQRTSS, UNKNOWN, (int) V4SF_FTYPE_V4SF_VEC_MERGE }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_vmrsqrtv4sf2, "__builtin_ia32_rsqrtss", IX86_BUILTIN_RSQRTSS, UNKNOWN, (int) V4SF_FTYPE_V4SF_VEC_MERGE }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_vmrcpv4sf2, "__builtin_ia32_rcpss", IX86_BUILTIN_RCPSS, UNKNOWN, (int) V4SF_FTYPE_V4SF_VEC_MERGE }, { OPTION_MASK_ISA_SSE, CODE_FOR_abstf2, 0, IX86_BUILTIN_FABSQ, UNKNOWN, (int) FLOAT128_FTYPE_FLOAT128 }, { OPTION_MASK_ISA_SSE, CODE_FOR_copysigntf3, 0, IX86_BUILTIN_COPYSIGNQ, UNKNOWN, (int) FLOAT128_FTYPE_FLOAT128_FLOAT128 }, /* SSE MMX or 3Dnow!A */ { OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_3DNOW_A, CODE_FOR_mmx_uavgv8qi3, "__builtin_ia32_pavgb", IX86_BUILTIN_PAVGB, UNKNOWN, (int) V8QI_FTYPE_V8QI_V8QI }, { OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_3DNOW_A, CODE_FOR_mmx_uavgv4hi3, "__builtin_ia32_pavgw", IX86_BUILTIN_PAVGW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI }, { OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_3DNOW_A, CODE_FOR_mmx_umulv4hi3_highpart, "__builtin_ia32_pmulhuw", IX86_BUILTIN_PMULHUW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI }, { OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_3DNOW_A, CODE_FOR_mmx_umaxv8qi3, "__builtin_ia32_pmaxub", IX86_BUILTIN_PMAXUB, UNKNOWN, (int) V8QI_FTYPE_V8QI_V8QI }, { OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_3DNOW_A, CODE_FOR_mmx_smaxv4hi3, "__builtin_ia32_pmaxsw", IX86_BUILTIN_PMAXSW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI }, { OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_3DNOW_A, CODE_FOR_mmx_uminv8qi3, "__builtin_ia32_pminub", IX86_BUILTIN_PMINUB, UNKNOWN, (int) V8QI_FTYPE_V8QI_V8QI }, { OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_3DNOW_A, CODE_FOR_mmx_sminv4hi3, "__builtin_ia32_pminsw", IX86_BUILTIN_PMINSW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI }, { OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_3DNOW_A, CODE_FOR_mmx_psadbw, "__builtin_ia32_psadbw", IX86_BUILTIN_PSADBW, UNKNOWN, (int) V1DI_FTYPE_V8QI_V8QI }, { OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_3DNOW_A, CODE_FOR_mmx_pmovmskb, "__builtin_ia32_pmovmskb", IX86_BUILTIN_PMOVMSKB, UNKNOWN, (int) INT_FTYPE_V8QI }, { OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_3DNOW_A, CODE_FOR_mmx_pshufw, "__builtin_ia32_pshufw", IX86_BUILTIN_PSHUFW, UNKNOWN, (int) V4HI_FTYPE_V4HI_INT }, /* SSE2 */ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_shufpd, "__builtin_ia32_shufpd", IX86_BUILTIN_SHUFPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF_INT }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_movmskpd, "__builtin_ia32_movmskpd", IX86_BUILTIN_MOVMSKPD, UNKNOWN, (int) INT_FTYPE_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_pmovmskb, "__builtin_ia32_pmovmskb128", IX86_BUILTIN_PMOVMSKB128, UNKNOWN, (int) INT_FTYPE_V16QI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sqrtv2df2, "__builtin_ia32_sqrtpd", IX86_BUILTIN_SQRTPD, UNKNOWN, (int) V2DF_FTYPE_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_cvtdq2pd, "__builtin_ia32_cvtdq2pd", IX86_BUILTIN_CVTDQ2PD, UNKNOWN, (int) V2DF_FTYPE_V4SI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_floatv4siv4sf2, "__builtin_ia32_cvtdq2ps", IX86_BUILTIN_CVTDQ2PS, UNKNOWN, (int) V4SF_FTYPE_V4SI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_cvtpd2dq, "__builtin_ia32_cvtpd2dq", IX86_BUILTIN_CVTPD2DQ, UNKNOWN, (int) V4SI_FTYPE_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_cvtpd2pi, "__builtin_ia32_cvtpd2pi", IX86_BUILTIN_CVTPD2PI, UNKNOWN, (int) V2SI_FTYPE_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_cvtpd2ps, "__builtin_ia32_cvtpd2ps", IX86_BUILTIN_CVTPD2PS, UNKNOWN, (int) V4SF_FTYPE_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_cvttpd2dq, "__builtin_ia32_cvttpd2dq", IX86_BUILTIN_CVTTPD2DQ, UNKNOWN, (int) V4SI_FTYPE_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_cvttpd2pi, "__builtin_ia32_cvttpd2pi", IX86_BUILTIN_CVTTPD2PI, UNKNOWN, (int) V2SI_FTYPE_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_cvtpi2pd, "__builtin_ia32_cvtpi2pd", IX86_BUILTIN_CVTPI2PD, UNKNOWN, (int) V2DF_FTYPE_V2SI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_cvtsd2si, "__builtin_ia32_cvtsd2si", IX86_BUILTIN_CVTSD2SI, UNKNOWN, (int) INT_FTYPE_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_cvttsd2si, "__builtin_ia32_cvttsd2si", IX86_BUILTIN_CVTTSD2SI, UNKNOWN, (int) INT_FTYPE_V2DF }, { OPTION_MASK_ISA_SSE2 | OPTION_MASK_ISA_64BIT, CODE_FOR_sse2_cvtsd2siq, "__builtin_ia32_cvtsd2si64", IX86_BUILTIN_CVTSD2SI64, UNKNOWN, (int) INT64_FTYPE_V2DF }, { OPTION_MASK_ISA_SSE2 | OPTION_MASK_ISA_64BIT, CODE_FOR_sse2_cvttsd2siq, "__builtin_ia32_cvttsd2si64", IX86_BUILTIN_CVTTSD2SI64, UNKNOWN, (int) INT64_FTYPE_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_fix_notruncv4sfv4si, "__builtin_ia32_cvtps2dq", IX86_BUILTIN_CVTPS2DQ, UNKNOWN, (int) V4SI_FTYPE_V4SF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_cvtps2pd, "__builtin_ia32_cvtps2pd", IX86_BUILTIN_CVTPS2PD, UNKNOWN, (int) V2DF_FTYPE_V4SF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_fix_truncv4sfv4si2, "__builtin_ia32_cvttps2dq", IX86_BUILTIN_CVTTPS2DQ, UNKNOWN, (int) V4SI_FTYPE_V4SF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_addv2df3, "__builtin_ia32_addpd", IX86_BUILTIN_ADDPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_subv2df3, "__builtin_ia32_subpd", IX86_BUILTIN_SUBPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_mulv2df3, "__builtin_ia32_mulpd", IX86_BUILTIN_MULPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_divv2df3, "__builtin_ia32_divpd", IX86_BUILTIN_DIVPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_vmaddv2df3, "__builtin_ia32_addsd", IX86_BUILTIN_ADDSD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_vmsubv2df3, "__builtin_ia32_subsd", IX86_BUILTIN_SUBSD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_vmmulv2df3, "__builtin_ia32_mulsd", IX86_BUILTIN_MULSD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_vmdivv2df3, "__builtin_ia32_divsd", IX86_BUILTIN_DIVSD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_maskcmpv2df3, "__builtin_ia32_cmpeqpd", IX86_BUILTIN_CMPEQPD, EQ, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_maskcmpv2df3, "__builtin_ia32_cmpltpd", IX86_BUILTIN_CMPLTPD, LT, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_maskcmpv2df3, "__builtin_ia32_cmplepd", IX86_BUILTIN_CMPLEPD, LE, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_maskcmpv2df3, "__builtin_ia32_cmpgtpd", IX86_BUILTIN_CMPGTPD, LT, (int) V2DF_FTYPE_V2DF_V2DF_SWAP }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_maskcmpv2df3, "__builtin_ia32_cmpgepd", IX86_BUILTIN_CMPGEPD, LE, (int) V2DF_FTYPE_V2DF_V2DF_SWAP}, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_maskcmpv2df3, "__builtin_ia32_cmpunordpd", IX86_BUILTIN_CMPUNORDPD, UNORDERED, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_maskcmpv2df3, "__builtin_ia32_cmpneqpd", IX86_BUILTIN_CMPNEQPD, NE, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_maskcmpv2df3, "__builtin_ia32_cmpnltpd", IX86_BUILTIN_CMPNLTPD, UNGE, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_maskcmpv2df3, "__builtin_ia32_cmpnlepd", IX86_BUILTIN_CMPNLEPD, UNGT, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_maskcmpv2df3, "__builtin_ia32_cmpngtpd", IX86_BUILTIN_CMPNGTPD, UNGE, (int) V2DF_FTYPE_V2DF_V2DF_SWAP }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_maskcmpv2df3, "__builtin_ia32_cmpngepd", IX86_BUILTIN_CMPNGEPD, UNGT, (int) V2DF_FTYPE_V2DF_V2DF_SWAP }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_maskcmpv2df3, "__builtin_ia32_cmpordpd", IX86_BUILTIN_CMPORDPD, ORDERED, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_vmmaskcmpv2df3, "__builtin_ia32_cmpeqsd", IX86_BUILTIN_CMPEQSD, EQ, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_vmmaskcmpv2df3, "__builtin_ia32_cmpltsd", IX86_BUILTIN_CMPLTSD, LT, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_vmmaskcmpv2df3, "__builtin_ia32_cmplesd", IX86_BUILTIN_CMPLESD, LE, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_vmmaskcmpv2df3, "__builtin_ia32_cmpunordsd", IX86_BUILTIN_CMPUNORDSD, UNORDERED, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_vmmaskcmpv2df3, "__builtin_ia32_cmpneqsd", IX86_BUILTIN_CMPNEQSD, NE, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_vmmaskcmpv2df3, "__builtin_ia32_cmpnltsd", IX86_BUILTIN_CMPNLTSD, UNGE, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_vmmaskcmpv2df3, "__builtin_ia32_cmpnlesd", IX86_BUILTIN_CMPNLESD, UNGT, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_vmmaskcmpv2df3, "__builtin_ia32_cmpordsd", IX86_BUILTIN_CMPORDSD, ORDERED, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sminv2df3, "__builtin_ia32_minpd", IX86_BUILTIN_MINPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_smaxv2df3, "__builtin_ia32_maxpd", IX86_BUILTIN_MAXPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_vmsminv2df3, "__builtin_ia32_minsd", IX86_BUILTIN_MINSD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_vmsmaxv2df3, "__builtin_ia32_maxsd", IX86_BUILTIN_MAXSD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_andv2df3, "__builtin_ia32_andpd", IX86_BUILTIN_ANDPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_andnotv2df3, "__builtin_ia32_andnpd", IX86_BUILTIN_ANDNPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_iorv2df3, "__builtin_ia32_orpd", IX86_BUILTIN_ORPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_xorv2df3, "__builtin_ia32_xorpd", IX86_BUILTIN_XORPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_copysignv2df3, "__builtin_ia32_copysignpd", IX86_BUILTIN_CPYSGNPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_movsd, "__builtin_ia32_movsd", IX86_BUILTIN_MOVSD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_vec_interleave_highv2df, "__builtin_ia32_unpckhpd", IX86_BUILTIN_UNPCKHPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_vec_interleave_lowv2df, "__builtin_ia32_unpcklpd", IX86_BUILTIN_UNPCKLPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_vec_pack_sfix_v2df, "__builtin_ia32_vec_pack_sfix", IX86_BUILTIN_VEC_PACK_SFIX, UNKNOWN, (int) V4SI_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_addv16qi3, "__builtin_ia32_paddb128", IX86_BUILTIN_PADDB128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_addv8hi3, "__builtin_ia32_paddw128", IX86_BUILTIN_PADDW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_addv4si3, "__builtin_ia32_paddd128", IX86_BUILTIN_PADDD128, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_addv2di3, "__builtin_ia32_paddq128", IX86_BUILTIN_PADDQ128, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_subv16qi3, "__builtin_ia32_psubb128", IX86_BUILTIN_PSUBB128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_subv8hi3, "__builtin_ia32_psubw128", IX86_BUILTIN_PSUBW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_subv4si3, "__builtin_ia32_psubd128", IX86_BUILTIN_PSUBD128, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_subv2di3, "__builtin_ia32_psubq128", IX86_BUILTIN_PSUBQ128, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_ssaddv16qi3, "__builtin_ia32_paddsb128", IX86_BUILTIN_PADDSB128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_ssaddv8hi3, "__builtin_ia32_paddsw128", IX86_BUILTIN_PADDSW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_sssubv16qi3, "__builtin_ia32_psubsb128", IX86_BUILTIN_PSUBSB128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_sssubv8hi3, "__builtin_ia32_psubsw128", IX86_BUILTIN_PSUBSW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_usaddv16qi3, "__builtin_ia32_paddusb128", IX86_BUILTIN_PADDUSB128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_usaddv8hi3, "__builtin_ia32_paddusw128", IX86_BUILTIN_PADDUSW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_ussubv16qi3, "__builtin_ia32_psubusb128", IX86_BUILTIN_PSUBUSB128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_ussubv8hi3, "__builtin_ia32_psubusw128", IX86_BUILTIN_PSUBUSW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_mulv8hi3, "__builtin_ia32_pmullw128", IX86_BUILTIN_PMULLW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_smulv8hi3_highpart, "__builtin_ia32_pmulhw128", IX86_BUILTIN_PMULHW128, UNKNOWN,(int) V8HI_FTYPE_V8HI_V8HI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_andv2di3, "__builtin_ia32_pand128", IX86_BUILTIN_PAND128, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_andnotv2di3, "__builtin_ia32_pandn128", IX86_BUILTIN_PANDN128, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_iorv2di3, "__builtin_ia32_por128", IX86_BUILTIN_POR128, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_xorv2di3, "__builtin_ia32_pxor128", IX86_BUILTIN_PXOR128, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_uavgv16qi3, "__builtin_ia32_pavgb128", IX86_BUILTIN_PAVGB128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_uavgv8hi3, "__builtin_ia32_pavgw128", IX86_BUILTIN_PAVGW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_eqv16qi3, "__builtin_ia32_pcmpeqb128", IX86_BUILTIN_PCMPEQB128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_eqv8hi3, "__builtin_ia32_pcmpeqw128", IX86_BUILTIN_PCMPEQW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_eqv4si3, "__builtin_ia32_pcmpeqd128", IX86_BUILTIN_PCMPEQD128, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_gtv16qi3, "__builtin_ia32_pcmpgtb128", IX86_BUILTIN_PCMPGTB128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_gtv8hi3, "__builtin_ia32_pcmpgtw128", IX86_BUILTIN_PCMPGTW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_gtv4si3, "__builtin_ia32_pcmpgtd128", IX86_BUILTIN_PCMPGTD128, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_umaxv16qi3, "__builtin_ia32_pmaxub128", IX86_BUILTIN_PMAXUB128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_smaxv8hi3, "__builtin_ia32_pmaxsw128", IX86_BUILTIN_PMAXSW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_uminv16qi3, "__builtin_ia32_pminub128", IX86_BUILTIN_PMINUB128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sminv8hi3, "__builtin_ia32_pminsw128", IX86_BUILTIN_PMINSW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_vec_interleave_highv16qi, "__builtin_ia32_punpckhbw128", IX86_BUILTIN_PUNPCKHBW128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_vec_interleave_highv8hi, "__builtin_ia32_punpckhwd128", IX86_BUILTIN_PUNPCKHWD128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_vec_interleave_highv4si, "__builtin_ia32_punpckhdq128", IX86_BUILTIN_PUNPCKHDQ128, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_vec_interleave_highv2di, "__builtin_ia32_punpckhqdq128", IX86_BUILTIN_PUNPCKHQDQ128, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_vec_interleave_lowv16qi, "__builtin_ia32_punpcklbw128", IX86_BUILTIN_PUNPCKLBW128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_vec_interleave_lowv8hi, "__builtin_ia32_punpcklwd128", IX86_BUILTIN_PUNPCKLWD128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_vec_interleave_lowv4si, "__builtin_ia32_punpckldq128", IX86_BUILTIN_PUNPCKLDQ128, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_vec_interleave_lowv2di, "__builtin_ia32_punpcklqdq128", IX86_BUILTIN_PUNPCKLQDQ128, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_packsswb, "__builtin_ia32_packsswb128", IX86_BUILTIN_PACKSSWB128, UNKNOWN, (int) V16QI_FTYPE_V8HI_V8HI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_packssdw, "__builtin_ia32_packssdw128", IX86_BUILTIN_PACKSSDW128, UNKNOWN, (int) V8HI_FTYPE_V4SI_V4SI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_packuswb, "__builtin_ia32_packuswb128", IX86_BUILTIN_PACKUSWB128, UNKNOWN, (int) V16QI_FTYPE_V8HI_V8HI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_umulv8hi3_highpart, "__builtin_ia32_pmulhuw128", IX86_BUILTIN_PMULHUW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_psadbw, "__builtin_ia32_psadbw128", IX86_BUILTIN_PSADBW128, UNKNOWN, (int) V2DI_FTYPE_V16QI_V16QI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_umulv1siv1di3, "__builtin_ia32_pmuludq", IX86_BUILTIN_PMULUDQ, UNKNOWN, (int) V1DI_FTYPE_V2SI_V2SI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_vec_widen_umult_even_v4si, "__builtin_ia32_pmuludq128", IX86_BUILTIN_PMULUDQ128, UNKNOWN, (int) V2DI_FTYPE_V4SI_V4SI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_pmaddwd, "__builtin_ia32_pmaddwd128", IX86_BUILTIN_PMADDWD128, UNKNOWN, (int) V4SI_FTYPE_V8HI_V8HI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_cvtsi2sd, "__builtin_ia32_cvtsi2sd", IX86_BUILTIN_CVTSI2SD, UNKNOWN, (int) V2DF_FTYPE_V2DF_SI }, { OPTION_MASK_ISA_SSE2 | OPTION_MASK_ISA_64BIT, CODE_FOR_sse2_cvtsi2sdq, "__builtin_ia32_cvtsi642sd", IX86_BUILTIN_CVTSI642SD, UNKNOWN, (int) V2DF_FTYPE_V2DF_DI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_cvtsd2ss, "__builtin_ia32_cvtsd2ss", IX86_BUILTIN_CVTSD2SS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_cvtss2sd, "__builtin_ia32_cvtss2sd", IX86_BUILTIN_CVTSS2SD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V4SF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_ashlv1ti3, "__builtin_ia32_pslldqi128", IX86_BUILTIN_PSLLDQI128, UNKNOWN, (int) V2DI_FTYPE_V2DI_INT_CONVERT }, { OPTION_MASK_ISA_SSE2, CODE_FOR_ashlv8hi3, "__builtin_ia32_psllwi128", IX86_BUILTIN_PSLLWI128, UNKNOWN, (int) V8HI_FTYPE_V8HI_SI_COUNT }, { OPTION_MASK_ISA_SSE2, CODE_FOR_ashlv4si3, "__builtin_ia32_pslldi128", IX86_BUILTIN_PSLLDI128, UNKNOWN, (int) V4SI_FTYPE_V4SI_SI_COUNT }, { OPTION_MASK_ISA_SSE2, CODE_FOR_ashlv2di3, "__builtin_ia32_psllqi128", IX86_BUILTIN_PSLLQI128, UNKNOWN, (int) V2DI_FTYPE_V2DI_SI_COUNT }, { OPTION_MASK_ISA_SSE2, CODE_FOR_ashlv8hi3, "__builtin_ia32_psllw128", IX86_BUILTIN_PSLLW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI_COUNT }, { OPTION_MASK_ISA_SSE2, CODE_FOR_ashlv4si3, "__builtin_ia32_pslld128", IX86_BUILTIN_PSLLD128, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI_COUNT }, { OPTION_MASK_ISA_SSE2, CODE_FOR_ashlv2di3, "__builtin_ia32_psllq128", IX86_BUILTIN_PSLLQ128, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI_COUNT }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_lshrv1ti3, "__builtin_ia32_psrldqi128", IX86_BUILTIN_PSRLDQI128, UNKNOWN, (int) V2DI_FTYPE_V2DI_INT_CONVERT }, { OPTION_MASK_ISA_SSE2, CODE_FOR_lshrv8hi3, "__builtin_ia32_psrlwi128", IX86_BUILTIN_PSRLWI128, UNKNOWN, (int) V8HI_FTYPE_V8HI_SI_COUNT }, { OPTION_MASK_ISA_SSE2, CODE_FOR_lshrv4si3, "__builtin_ia32_psrldi128", IX86_BUILTIN_PSRLDI128, UNKNOWN, (int) V4SI_FTYPE_V4SI_SI_COUNT }, { OPTION_MASK_ISA_SSE2, CODE_FOR_lshrv2di3, "__builtin_ia32_psrlqi128", IX86_BUILTIN_PSRLQI128, UNKNOWN, (int) V2DI_FTYPE_V2DI_SI_COUNT }, { OPTION_MASK_ISA_SSE2, CODE_FOR_lshrv8hi3, "__builtin_ia32_psrlw128", IX86_BUILTIN_PSRLW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI_COUNT }, { OPTION_MASK_ISA_SSE2, CODE_FOR_lshrv4si3, "__builtin_ia32_psrld128", IX86_BUILTIN_PSRLD128, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI_COUNT }, { OPTION_MASK_ISA_SSE2, CODE_FOR_lshrv2di3, "__builtin_ia32_psrlq128", IX86_BUILTIN_PSRLQ128, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI_COUNT }, { OPTION_MASK_ISA_SSE2, CODE_FOR_ashrv8hi3, "__builtin_ia32_psrawi128", IX86_BUILTIN_PSRAWI128, UNKNOWN, (int) V8HI_FTYPE_V8HI_SI_COUNT }, { OPTION_MASK_ISA_SSE2, CODE_FOR_ashrv4si3, "__builtin_ia32_psradi128", IX86_BUILTIN_PSRADI128, UNKNOWN, (int) V4SI_FTYPE_V4SI_SI_COUNT }, { OPTION_MASK_ISA_SSE2, CODE_FOR_ashrv8hi3, "__builtin_ia32_psraw128", IX86_BUILTIN_PSRAW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI_COUNT }, { OPTION_MASK_ISA_SSE2, CODE_FOR_ashrv4si3, "__builtin_ia32_psrad128", IX86_BUILTIN_PSRAD128, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI_COUNT }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_pshufd, "__builtin_ia32_pshufd", IX86_BUILTIN_PSHUFD, UNKNOWN, (int) V4SI_FTYPE_V4SI_INT }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_pshuflw, "__builtin_ia32_pshuflw", IX86_BUILTIN_PSHUFLW, UNKNOWN, (int) V8HI_FTYPE_V8HI_INT }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_pshufhw, "__builtin_ia32_pshufhw", IX86_BUILTIN_PSHUFHW, UNKNOWN, (int) V8HI_FTYPE_V8HI_INT }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_vmsqrtv2df2, "__builtin_ia32_sqrtsd", IX86_BUILTIN_SQRTSD, UNKNOWN, (int) V2DF_FTYPE_V2DF_VEC_MERGE }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse2_movq128, "__builtin_ia32_movq128", IX86_BUILTIN_MOVQ128, UNKNOWN, (int) V2DI_FTYPE_V2DI }, /* SSE2 MMX */ { OPTION_MASK_ISA_SSE2, CODE_FOR_mmx_addv1di3, "__builtin_ia32_paddq", IX86_BUILTIN_PADDQ, UNKNOWN, (int) V1DI_FTYPE_V1DI_V1DI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_mmx_subv1di3, "__builtin_ia32_psubq", IX86_BUILTIN_PSUBQ, UNKNOWN, (int) V1DI_FTYPE_V1DI_V1DI }, /* SSE3 */ { OPTION_MASK_ISA_SSE3, CODE_FOR_sse3_movshdup, "__builtin_ia32_movshdup", IX86_BUILTIN_MOVSHDUP, UNKNOWN, (int) V4SF_FTYPE_V4SF}, { OPTION_MASK_ISA_SSE3, CODE_FOR_sse3_movsldup, "__builtin_ia32_movsldup", IX86_BUILTIN_MOVSLDUP, UNKNOWN, (int) V4SF_FTYPE_V4SF }, { OPTION_MASK_ISA_SSE3, CODE_FOR_sse3_addsubv4sf3, "__builtin_ia32_addsubps", IX86_BUILTIN_ADDSUBPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE3, CODE_FOR_sse3_addsubv2df3, "__builtin_ia32_addsubpd", IX86_BUILTIN_ADDSUBPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE3, CODE_FOR_sse3_haddv4sf3, "__builtin_ia32_haddps", IX86_BUILTIN_HADDPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE3, CODE_FOR_sse3_haddv2df3, "__builtin_ia32_haddpd", IX86_BUILTIN_HADDPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE3, CODE_FOR_sse3_hsubv4sf3, "__builtin_ia32_hsubps", IX86_BUILTIN_HSUBPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE3, CODE_FOR_sse3_hsubv2df3, "__builtin_ia32_hsubpd", IX86_BUILTIN_HSUBPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF }, /* SSSE3 */ { OPTION_MASK_ISA_SSSE3, CODE_FOR_absv16qi2, "__builtin_ia32_pabsb128", IX86_BUILTIN_PABSB128, UNKNOWN, (int) V16QI_FTYPE_V16QI }, { OPTION_MASK_ISA_SSSE3, CODE_FOR_absv8qi2, "__builtin_ia32_pabsb", IX86_BUILTIN_PABSB, UNKNOWN, (int) V8QI_FTYPE_V8QI }, { OPTION_MASK_ISA_SSSE3, CODE_FOR_absv8hi2, "__builtin_ia32_pabsw128", IX86_BUILTIN_PABSW128, UNKNOWN, (int) V8HI_FTYPE_V8HI }, { OPTION_MASK_ISA_SSSE3, CODE_FOR_absv4hi2, "__builtin_ia32_pabsw", IX86_BUILTIN_PABSW, UNKNOWN, (int) V4HI_FTYPE_V4HI }, { OPTION_MASK_ISA_SSSE3, CODE_FOR_absv4si2, "__builtin_ia32_pabsd128", IX86_BUILTIN_PABSD128, UNKNOWN, (int) V4SI_FTYPE_V4SI }, { OPTION_MASK_ISA_SSSE3, CODE_FOR_absv2si2, "__builtin_ia32_pabsd", IX86_BUILTIN_PABSD, UNKNOWN, (int) V2SI_FTYPE_V2SI }, { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_phaddwv8hi3, "__builtin_ia32_phaddw128", IX86_BUILTIN_PHADDW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI }, { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_phaddwv4hi3, "__builtin_ia32_phaddw", IX86_BUILTIN_PHADDW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI }, { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_phadddv4si3, "__builtin_ia32_phaddd128", IX86_BUILTIN_PHADDD128, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI }, { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_phadddv2si3, "__builtin_ia32_phaddd", IX86_BUILTIN_PHADDD, UNKNOWN, (int) V2SI_FTYPE_V2SI_V2SI }, { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_phaddswv8hi3, "__builtin_ia32_phaddsw128", IX86_BUILTIN_PHADDSW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI }, { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_phaddswv4hi3, "__builtin_ia32_phaddsw", IX86_BUILTIN_PHADDSW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI }, { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_phsubwv8hi3, "__builtin_ia32_phsubw128", IX86_BUILTIN_PHSUBW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI }, { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_phsubwv4hi3, "__builtin_ia32_phsubw", IX86_BUILTIN_PHSUBW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI }, { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_phsubdv4si3, "__builtin_ia32_phsubd128", IX86_BUILTIN_PHSUBD128, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI }, { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_phsubdv2si3, "__builtin_ia32_phsubd", IX86_BUILTIN_PHSUBD, UNKNOWN, (int) V2SI_FTYPE_V2SI_V2SI }, { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_phsubswv8hi3, "__builtin_ia32_phsubsw128", IX86_BUILTIN_PHSUBSW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI }, { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_phsubswv4hi3, "__builtin_ia32_phsubsw", IX86_BUILTIN_PHSUBSW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI }, { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_pmaddubsw128, "__builtin_ia32_pmaddubsw128", IX86_BUILTIN_PMADDUBSW128, UNKNOWN, (int) V8HI_FTYPE_V16QI_V16QI }, { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_pmaddubsw, "__builtin_ia32_pmaddubsw", IX86_BUILTIN_PMADDUBSW, UNKNOWN, (int) V4HI_FTYPE_V8QI_V8QI }, { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_pmulhrswv8hi3, "__builtin_ia32_pmulhrsw128", IX86_BUILTIN_PMULHRSW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI }, { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_pmulhrswv4hi3, "__builtin_ia32_pmulhrsw", IX86_BUILTIN_PMULHRSW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI }, { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_pshufbv16qi3, "__builtin_ia32_pshufb128", IX86_BUILTIN_PSHUFB128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI }, { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_pshufbv8qi3, "__builtin_ia32_pshufb", IX86_BUILTIN_PSHUFB, UNKNOWN, (int) V8QI_FTYPE_V8QI_V8QI }, { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_psignv16qi3, "__builtin_ia32_psignb128", IX86_BUILTIN_PSIGNB128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI }, { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_psignv8qi3, "__builtin_ia32_psignb", IX86_BUILTIN_PSIGNB, UNKNOWN, (int) V8QI_FTYPE_V8QI_V8QI }, { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_psignv8hi3, "__builtin_ia32_psignw128", IX86_BUILTIN_PSIGNW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI }, { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_psignv4hi3, "__builtin_ia32_psignw", IX86_BUILTIN_PSIGNW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI }, { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_psignv4si3, "__builtin_ia32_psignd128", IX86_BUILTIN_PSIGND128, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI }, { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_psignv2si3, "__builtin_ia32_psignd", IX86_BUILTIN_PSIGND, UNKNOWN, (int) V2SI_FTYPE_V2SI_V2SI }, /* SSSE3. */ { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_palignrti, "__builtin_ia32_palignr128", IX86_BUILTIN_PALIGNR128, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI_INT_CONVERT }, { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_palignrdi, "__builtin_ia32_palignr", IX86_BUILTIN_PALIGNR, UNKNOWN, (int) V1DI_FTYPE_V1DI_V1DI_INT_CONVERT }, /* SSE4.1 */ { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_blendpd, "__builtin_ia32_blendpd", IX86_BUILTIN_BLENDPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF_INT }, { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_blendps, "__builtin_ia32_blendps", IX86_BUILTIN_BLENDPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF_INT }, { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_blendvpd, "__builtin_ia32_blendvpd", IX86_BUILTIN_BLENDVPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF_V2DF }, { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_blendvps, "__builtin_ia32_blendvps", IX86_BUILTIN_BLENDVPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF_V4SF }, { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_dppd, "__builtin_ia32_dppd", IX86_BUILTIN_DPPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF_INT }, { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_dpps, "__builtin_ia32_dpps", IX86_BUILTIN_DPPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF_INT }, { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_insertps, "__builtin_ia32_insertps128", IX86_BUILTIN_INSERTPS128, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF_INT }, { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_mpsadbw, "__builtin_ia32_mpsadbw128", IX86_BUILTIN_MPSADBW128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI_INT }, { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_pblendvb, "__builtin_ia32_pblendvb128", IX86_BUILTIN_PBLENDVB128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI_V16QI }, { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_pblendw, "__builtin_ia32_pblendw128", IX86_BUILTIN_PBLENDW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI_INT }, { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_sign_extendv8qiv8hi2, "__builtin_ia32_pmovsxbw128", IX86_BUILTIN_PMOVSXBW128, UNKNOWN, (int) V8HI_FTYPE_V16QI }, { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_sign_extendv4qiv4si2, "__builtin_ia32_pmovsxbd128", IX86_BUILTIN_PMOVSXBD128, UNKNOWN, (int) V4SI_FTYPE_V16QI }, { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_sign_extendv2qiv2di2, "__builtin_ia32_pmovsxbq128", IX86_BUILTIN_PMOVSXBQ128, UNKNOWN, (int) V2DI_FTYPE_V16QI }, { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_sign_extendv4hiv4si2, "__builtin_ia32_pmovsxwd128", IX86_BUILTIN_PMOVSXWD128, UNKNOWN, (int) V4SI_FTYPE_V8HI }, { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_sign_extendv2hiv2di2, "__builtin_ia32_pmovsxwq128", IX86_BUILTIN_PMOVSXWQ128, UNKNOWN, (int) V2DI_FTYPE_V8HI }, { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_sign_extendv2siv2di2, "__builtin_ia32_pmovsxdq128", IX86_BUILTIN_PMOVSXDQ128, UNKNOWN, (int) V2DI_FTYPE_V4SI }, { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_zero_extendv8qiv8hi2, "__builtin_ia32_pmovzxbw128", IX86_BUILTIN_PMOVZXBW128, UNKNOWN, (int) V8HI_FTYPE_V16QI }, { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_zero_extendv4qiv4si2, "__builtin_ia32_pmovzxbd128", IX86_BUILTIN_PMOVZXBD128, UNKNOWN, (int) V4SI_FTYPE_V16QI }, { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_zero_extendv2qiv2di2, "__builtin_ia32_pmovzxbq128", IX86_BUILTIN_PMOVZXBQ128, UNKNOWN, (int) V2DI_FTYPE_V16QI }, { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_zero_extendv4hiv4si2, "__builtin_ia32_pmovzxwd128", IX86_BUILTIN_PMOVZXWD128, UNKNOWN, (int) V4SI_FTYPE_V8HI }, { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_zero_extendv2hiv2di2, "__builtin_ia32_pmovzxwq128", IX86_BUILTIN_PMOVZXWQ128, UNKNOWN, (int) V2DI_FTYPE_V8HI }, { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_zero_extendv2siv2di2, "__builtin_ia32_pmovzxdq128", IX86_BUILTIN_PMOVZXDQ128, UNKNOWN, (int) V2DI_FTYPE_V4SI }, { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_phminposuw, "__builtin_ia32_phminposuw128", IX86_BUILTIN_PHMINPOSUW128, UNKNOWN, (int) V8HI_FTYPE_V8HI }, { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_packusdw, "__builtin_ia32_packusdw128", IX86_BUILTIN_PACKUSDW128, UNKNOWN, (int) V8HI_FTYPE_V4SI_V4SI }, { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_eqv2di3, "__builtin_ia32_pcmpeqq", IX86_BUILTIN_PCMPEQQ, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI }, { OPTION_MASK_ISA_SSE4_1, CODE_FOR_smaxv16qi3, "__builtin_ia32_pmaxsb128", IX86_BUILTIN_PMAXSB128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI }, { OPTION_MASK_ISA_SSE4_1, CODE_FOR_smaxv4si3, "__builtin_ia32_pmaxsd128", IX86_BUILTIN_PMAXSD128, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI }, { OPTION_MASK_ISA_SSE4_1, CODE_FOR_umaxv4si3, "__builtin_ia32_pmaxud128", IX86_BUILTIN_PMAXUD128, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI }, { OPTION_MASK_ISA_SSE4_1, CODE_FOR_umaxv8hi3, "__builtin_ia32_pmaxuw128", IX86_BUILTIN_PMAXUW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI }, { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sminv16qi3, "__builtin_ia32_pminsb128", IX86_BUILTIN_PMINSB128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI }, { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sminv4si3, "__builtin_ia32_pminsd128", IX86_BUILTIN_PMINSD128, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI }, { OPTION_MASK_ISA_SSE4_1, CODE_FOR_uminv4si3, "__builtin_ia32_pminud128", IX86_BUILTIN_PMINUD128, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI }, { OPTION_MASK_ISA_SSE4_1, CODE_FOR_uminv8hi3, "__builtin_ia32_pminuw128", IX86_BUILTIN_PMINUW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI }, { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_mulv2siv2di3, "__builtin_ia32_pmuldq128", IX86_BUILTIN_PMULDQ128, UNKNOWN, (int) V2DI_FTYPE_V4SI_V4SI }, { OPTION_MASK_ISA_SSE4_1, CODE_FOR_mulv4si3, "__builtin_ia32_pmulld128", IX86_BUILTIN_PMULLD128, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI }, /* SSE4.1 */ { OPTION_MASK_ISA_ROUND, CODE_FOR_sse4_1_roundpd, "__builtin_ia32_roundpd", IX86_BUILTIN_ROUNDPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_INT }, { OPTION_MASK_ISA_ROUND, CODE_FOR_sse4_1_roundps, "__builtin_ia32_roundps", IX86_BUILTIN_ROUNDPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_INT }, { OPTION_MASK_ISA_ROUND, CODE_FOR_sse4_1_roundsd, "__builtin_ia32_roundsd", IX86_BUILTIN_ROUNDSD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF_INT }, { OPTION_MASK_ISA_ROUND, CODE_FOR_sse4_1_roundss, "__builtin_ia32_roundss", IX86_BUILTIN_ROUNDSS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF_INT }, { OPTION_MASK_ISA_ROUND, CODE_FOR_sse4_1_roundpd, "__builtin_ia32_floorpd", IX86_BUILTIN_FLOORPD, (enum rtx_code) ROUND_FLOOR, (int) V2DF_FTYPE_V2DF_ROUND }, { OPTION_MASK_ISA_ROUND, CODE_FOR_sse4_1_roundpd, "__builtin_ia32_ceilpd", IX86_BUILTIN_CEILPD, (enum rtx_code) ROUND_CEIL, (int) V2DF_FTYPE_V2DF_ROUND }, { OPTION_MASK_ISA_ROUND, CODE_FOR_sse4_1_roundpd, "__builtin_ia32_truncpd", IX86_BUILTIN_TRUNCPD, (enum rtx_code) ROUND_TRUNC, (int) V2DF_FTYPE_V2DF_ROUND }, { OPTION_MASK_ISA_ROUND, CODE_FOR_sse4_1_roundpd, "__builtin_ia32_rintpd", IX86_BUILTIN_RINTPD, (enum rtx_code) ROUND_MXCSR, (int) V2DF_FTYPE_V2DF_ROUND }, { OPTION_MASK_ISA_ROUND, CODE_FOR_sse4_1_roundpd_vec_pack_sfix, "__builtin_ia32_floorpd_vec_pack_sfix", IX86_BUILTIN_FLOORPD_VEC_PACK_SFIX, (enum rtx_code) ROUND_FLOOR, (int) V4SI_FTYPE_V2DF_V2DF_ROUND }, { OPTION_MASK_ISA_ROUND, CODE_FOR_sse4_1_roundpd_vec_pack_sfix, "__builtin_ia32_ceilpd_vec_pack_sfix", IX86_BUILTIN_CEILPD_VEC_PACK_SFIX, (enum rtx_code) ROUND_CEIL, (int) V4SI_FTYPE_V2DF_V2DF_ROUND }, { OPTION_MASK_ISA_ROUND, CODE_FOR_roundv2df2, "__builtin_ia32_roundpd_az", IX86_BUILTIN_ROUNDPD_AZ, UNKNOWN, (int) V2DF_FTYPE_V2DF }, { OPTION_MASK_ISA_ROUND, CODE_FOR_roundv2df2_vec_pack_sfix, "__builtin_ia32_roundpd_az_vec_pack_sfix", IX86_BUILTIN_ROUNDPD_AZ_VEC_PACK_SFIX, UNKNOWN, (int) V4SI_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_ROUND, CODE_FOR_sse4_1_roundps, "__builtin_ia32_floorps", IX86_BUILTIN_FLOORPS, (enum rtx_code) ROUND_FLOOR, (int) V4SF_FTYPE_V4SF_ROUND }, { OPTION_MASK_ISA_ROUND, CODE_FOR_sse4_1_roundps, "__builtin_ia32_ceilps", IX86_BUILTIN_CEILPS, (enum rtx_code) ROUND_CEIL, (int) V4SF_FTYPE_V4SF_ROUND }, { OPTION_MASK_ISA_ROUND, CODE_FOR_sse4_1_roundps, "__builtin_ia32_truncps", IX86_BUILTIN_TRUNCPS, (enum rtx_code) ROUND_TRUNC, (int) V4SF_FTYPE_V4SF_ROUND }, { OPTION_MASK_ISA_ROUND, CODE_FOR_sse4_1_roundps, "__builtin_ia32_rintps", IX86_BUILTIN_RINTPS, (enum rtx_code) ROUND_MXCSR, (int) V4SF_FTYPE_V4SF_ROUND }, { OPTION_MASK_ISA_ROUND, CODE_FOR_sse4_1_roundps_sfix, "__builtin_ia32_floorps_sfix", IX86_BUILTIN_FLOORPS_SFIX, (enum rtx_code) ROUND_FLOOR, (int) V4SI_FTYPE_V4SF_ROUND }, { OPTION_MASK_ISA_ROUND, CODE_FOR_sse4_1_roundps_sfix, "__builtin_ia32_ceilps_sfix", IX86_BUILTIN_CEILPS_SFIX, (enum rtx_code) ROUND_CEIL, (int) V4SI_FTYPE_V4SF_ROUND }, { OPTION_MASK_ISA_ROUND, CODE_FOR_roundv4sf2, "__builtin_ia32_roundps_az", IX86_BUILTIN_ROUNDPS_AZ, UNKNOWN, (int) V4SF_FTYPE_V4SF }, { OPTION_MASK_ISA_ROUND, CODE_FOR_roundv4sf2_sfix, "__builtin_ia32_roundps_az_sfix", IX86_BUILTIN_ROUNDPS_AZ_SFIX, UNKNOWN, (int) V4SI_FTYPE_V4SF }, { OPTION_MASK_ISA_ROUND, CODE_FOR_sse4_1_ptest, "__builtin_ia32_ptestz128", IX86_BUILTIN_PTESTZ, EQ, (int) INT_FTYPE_V2DI_V2DI_PTEST }, { OPTION_MASK_ISA_ROUND, CODE_FOR_sse4_1_ptest, "__builtin_ia32_ptestc128", IX86_BUILTIN_PTESTC, LTU, (int) INT_FTYPE_V2DI_V2DI_PTEST }, { OPTION_MASK_ISA_ROUND, CODE_FOR_sse4_1_ptest, "__builtin_ia32_ptestnzc128", IX86_BUILTIN_PTESTNZC, GTU, (int) INT_FTYPE_V2DI_V2DI_PTEST }, /* SSE4.2 */ { OPTION_MASK_ISA_SSE4_2, CODE_FOR_sse4_2_gtv2di3, "__builtin_ia32_pcmpgtq", IX86_BUILTIN_PCMPGTQ, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI }, { OPTION_MASK_ISA_SSE4_2 | OPTION_MASK_ISA_CRC32, CODE_FOR_sse4_2_crc32qi, "__builtin_ia32_crc32qi", IX86_BUILTIN_CRC32QI, UNKNOWN, (int) UINT_FTYPE_UINT_UCHAR }, { OPTION_MASK_ISA_SSE4_2 | OPTION_MASK_ISA_CRC32, CODE_FOR_sse4_2_crc32hi, "__builtin_ia32_crc32hi", IX86_BUILTIN_CRC32HI, UNKNOWN, (int) UINT_FTYPE_UINT_USHORT }, { OPTION_MASK_ISA_SSE4_2 | OPTION_MASK_ISA_CRC32, CODE_FOR_sse4_2_crc32si, "__builtin_ia32_crc32si", IX86_BUILTIN_CRC32SI, UNKNOWN, (int) UINT_FTYPE_UINT_UINT }, { OPTION_MASK_ISA_SSE4_2 | OPTION_MASK_ISA_CRC32 | OPTION_MASK_ISA_64BIT, CODE_FOR_sse4_2_crc32di, "__builtin_ia32_crc32di", IX86_BUILTIN_CRC32DI, UNKNOWN, (int) UINT64_FTYPE_UINT64_UINT64 }, /* SSE4A */ { OPTION_MASK_ISA_SSE4A, CODE_FOR_sse4a_extrqi, "__builtin_ia32_extrqi", IX86_BUILTIN_EXTRQI, UNKNOWN, (int) V2DI_FTYPE_V2DI_UINT_UINT }, { OPTION_MASK_ISA_SSE4A, CODE_FOR_sse4a_extrq, "__builtin_ia32_extrq", IX86_BUILTIN_EXTRQ, UNKNOWN, (int) V2DI_FTYPE_V2DI_V16QI }, { OPTION_MASK_ISA_SSE4A, CODE_FOR_sse4a_insertqi, "__builtin_ia32_insertqi", IX86_BUILTIN_INSERTQI, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI_UINT_UINT }, { OPTION_MASK_ISA_SSE4A, CODE_FOR_sse4a_insertq, "__builtin_ia32_insertq", IX86_BUILTIN_INSERTQ, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI }, /* AES */ { OPTION_MASK_ISA_SSE2, CODE_FOR_aeskeygenassist, 0, IX86_BUILTIN_AESKEYGENASSIST128, UNKNOWN, (int) V2DI_FTYPE_V2DI_INT }, { OPTION_MASK_ISA_SSE2, CODE_FOR_aesimc, 0, IX86_BUILTIN_AESIMC128, UNKNOWN, (int) V2DI_FTYPE_V2DI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_aesenc, 0, IX86_BUILTIN_AESENC128, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_aesenclast, 0, IX86_BUILTIN_AESENCLAST128, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_aesdec, 0, IX86_BUILTIN_AESDEC128, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_aesdeclast, 0, IX86_BUILTIN_AESDECLAST128, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI }, /* PCLMUL */ { OPTION_MASK_ISA_SSE2, CODE_FOR_pclmulqdq, 0, IX86_BUILTIN_PCLMULQDQ128, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI_INT }, /* AVX */ { OPTION_MASK_ISA_AVX, CODE_FOR_addv4df3, "__builtin_ia32_addpd256", IX86_BUILTIN_ADDPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF }, { OPTION_MASK_ISA_AVX, CODE_FOR_addv8sf3, "__builtin_ia32_addps256", IX86_BUILTIN_ADDPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_addsubv4df3, "__builtin_ia32_addsubpd256", IX86_BUILTIN_ADDSUBPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_addsubv8sf3, "__builtin_ia32_addsubps256", IX86_BUILTIN_ADDSUBPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_andv4df3, "__builtin_ia32_andpd256", IX86_BUILTIN_ANDPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF }, { OPTION_MASK_ISA_AVX, CODE_FOR_andv8sf3, "__builtin_ia32_andps256", IX86_BUILTIN_ANDPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_andnotv4df3, "__builtin_ia32_andnpd256", IX86_BUILTIN_ANDNPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_andnotv8sf3, "__builtin_ia32_andnps256", IX86_BUILTIN_ANDNPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_divv4df3, "__builtin_ia32_divpd256", IX86_BUILTIN_DIVPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_divv8sf3, "__builtin_ia32_divps256", IX86_BUILTIN_DIVPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_haddv4df3, "__builtin_ia32_haddpd256", IX86_BUILTIN_HADDPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_hsubv8sf3, "__builtin_ia32_hsubps256", IX86_BUILTIN_HSUBPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_hsubv4df3, "__builtin_ia32_hsubpd256", IX86_BUILTIN_HSUBPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_haddv8sf3, "__builtin_ia32_haddps256", IX86_BUILTIN_HADDPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_smaxv4df3, "__builtin_ia32_maxpd256", IX86_BUILTIN_MAXPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF }, { OPTION_MASK_ISA_AVX, CODE_FOR_smaxv8sf3, "__builtin_ia32_maxps256", IX86_BUILTIN_MAXPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_sminv4df3, "__builtin_ia32_minpd256", IX86_BUILTIN_MINPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF }, { OPTION_MASK_ISA_AVX, CODE_FOR_sminv8sf3, "__builtin_ia32_minps256", IX86_BUILTIN_MINPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_mulv4df3, "__builtin_ia32_mulpd256", IX86_BUILTIN_MULPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF }, { OPTION_MASK_ISA_AVX, CODE_FOR_mulv8sf3, "__builtin_ia32_mulps256", IX86_BUILTIN_MULPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_iorv4df3, "__builtin_ia32_orpd256", IX86_BUILTIN_ORPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF }, { OPTION_MASK_ISA_AVX, CODE_FOR_iorv8sf3, "__builtin_ia32_orps256", IX86_BUILTIN_ORPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_subv4df3, "__builtin_ia32_subpd256", IX86_BUILTIN_SUBPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF }, { OPTION_MASK_ISA_AVX, CODE_FOR_subv8sf3, "__builtin_ia32_subps256", IX86_BUILTIN_SUBPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_xorv4df3, "__builtin_ia32_xorpd256", IX86_BUILTIN_XORPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF }, { OPTION_MASK_ISA_AVX, CODE_FOR_xorv8sf3, "__builtin_ia32_xorps256", IX86_BUILTIN_XORPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vpermilvarv2df3, "__builtin_ia32_vpermilvarpd", IX86_BUILTIN_VPERMILVARPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DI }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vpermilvarv4sf3, "__builtin_ia32_vpermilvarps", IX86_BUILTIN_VPERMILVARPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SI }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vpermilvarv4df3, "__builtin_ia32_vpermilvarpd256", IX86_BUILTIN_VPERMILVARPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DI }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vpermilvarv8sf3, "__builtin_ia32_vpermilvarps256", IX86_BUILTIN_VPERMILVARPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SI }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_blendpd256, "__builtin_ia32_blendpd256", IX86_BUILTIN_BLENDPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF_INT }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_blendps256, "__builtin_ia32_blendps256", IX86_BUILTIN_BLENDPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF_INT }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_blendvpd256, "__builtin_ia32_blendvpd256", IX86_BUILTIN_BLENDVPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF_V4DF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_blendvps256, "__builtin_ia32_blendvps256", IX86_BUILTIN_BLENDVPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF_V8SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_dpps256, "__builtin_ia32_dpps256", IX86_BUILTIN_DPPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF_INT }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_shufpd256, "__builtin_ia32_shufpd256", IX86_BUILTIN_SHUFPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF_INT }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_shufps256, "__builtin_ia32_shufps256", IX86_BUILTIN_SHUFPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF_INT }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vmcmpv2df3, "__builtin_ia32_cmpsd", IX86_BUILTIN_CMPSD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF_INT }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vmcmpv4sf3, "__builtin_ia32_cmpss", IX86_BUILTIN_CMPSS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF_INT }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_cmpv2df3, "__builtin_ia32_cmppd", IX86_BUILTIN_CMPPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF_INT }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_cmpv4sf3, "__builtin_ia32_cmpps", IX86_BUILTIN_CMPPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF_INT }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_cmpv4df3, "__builtin_ia32_cmppd256", IX86_BUILTIN_CMPPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF_INT }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_cmpv8sf3, "__builtin_ia32_cmpps256", IX86_BUILTIN_CMPPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF_INT }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vextractf128v4df, "__builtin_ia32_vextractf128_pd256", IX86_BUILTIN_EXTRACTF128PD256, UNKNOWN, (int) V2DF_FTYPE_V4DF_INT }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vextractf128v8sf, "__builtin_ia32_vextractf128_ps256", IX86_BUILTIN_EXTRACTF128PS256, UNKNOWN, (int) V4SF_FTYPE_V8SF_INT }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vextractf128v8si, "__builtin_ia32_vextractf128_si256", IX86_BUILTIN_EXTRACTF128SI256, UNKNOWN, (int) V4SI_FTYPE_V8SI_INT }, { OPTION_MASK_ISA_AVX, CODE_FOR_floatv4siv4df2, "__builtin_ia32_cvtdq2pd256", IX86_BUILTIN_CVTDQ2PD256, UNKNOWN, (int) V4DF_FTYPE_V4SI }, { OPTION_MASK_ISA_AVX, CODE_FOR_floatv8siv8sf2, "__builtin_ia32_cvtdq2ps256", IX86_BUILTIN_CVTDQ2PS256, UNKNOWN, (int) V8SF_FTYPE_V8SI }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_cvtpd2ps256, "__builtin_ia32_cvtpd2ps256", IX86_BUILTIN_CVTPD2PS256, UNKNOWN, (int) V4SF_FTYPE_V4DF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_fix_notruncv8sfv8si, "__builtin_ia32_cvtps2dq256", IX86_BUILTIN_CVTPS2DQ256, UNKNOWN, (int) V8SI_FTYPE_V8SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_cvtps2pd256, "__builtin_ia32_cvtps2pd256", IX86_BUILTIN_CVTPS2PD256, UNKNOWN, (int) V4DF_FTYPE_V4SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_fix_truncv4dfv4si2, "__builtin_ia32_cvttpd2dq256", IX86_BUILTIN_CVTTPD2DQ256, UNKNOWN, (int) V4SI_FTYPE_V4DF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_cvtpd2dq256, "__builtin_ia32_cvtpd2dq256", IX86_BUILTIN_CVTPD2DQ256, UNKNOWN, (int) V4SI_FTYPE_V4DF }, { OPTION_MASK_ISA_AVX, CODE_FOR_fix_truncv8sfv8si2, "__builtin_ia32_cvttps2dq256", IX86_BUILTIN_CVTTPS2DQ256, UNKNOWN, (int) V8SI_FTYPE_V8SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vperm2f128v4df3, "__builtin_ia32_vperm2f128_pd256", IX86_BUILTIN_VPERM2F128PD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF_INT }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vperm2f128v8sf3, "__builtin_ia32_vperm2f128_ps256", IX86_BUILTIN_VPERM2F128PS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF_INT }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vperm2f128v8si3, "__builtin_ia32_vperm2f128_si256", IX86_BUILTIN_VPERM2F128SI256, UNKNOWN, (int) V8SI_FTYPE_V8SI_V8SI_INT }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vpermilv2df, "__builtin_ia32_vpermilpd", IX86_BUILTIN_VPERMILPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_INT }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vpermilv4sf, "__builtin_ia32_vpermilps", IX86_BUILTIN_VPERMILPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_INT }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vpermilv4df, "__builtin_ia32_vpermilpd256", IX86_BUILTIN_VPERMILPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_INT }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vpermilv8sf, "__builtin_ia32_vpermilps256", IX86_BUILTIN_VPERMILPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_INT }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vinsertf128v4df, "__builtin_ia32_vinsertf128_pd256", IX86_BUILTIN_VINSERTF128PD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V2DF_INT }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vinsertf128v8sf, "__builtin_ia32_vinsertf128_ps256", IX86_BUILTIN_VINSERTF128PS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V4SF_INT }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vinsertf128v8si, "__builtin_ia32_vinsertf128_si256", IX86_BUILTIN_VINSERTF128SI256, UNKNOWN, (int) V8SI_FTYPE_V8SI_V4SI_INT }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_movshdup256, "__builtin_ia32_movshdup256", IX86_BUILTIN_MOVSHDUP256, UNKNOWN, (int) V8SF_FTYPE_V8SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_movsldup256, "__builtin_ia32_movsldup256", IX86_BUILTIN_MOVSLDUP256, UNKNOWN, (int) V8SF_FTYPE_V8SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_movddup256, "__builtin_ia32_movddup256", IX86_BUILTIN_MOVDDUP256, UNKNOWN, (int) V4DF_FTYPE_V4DF }, { OPTION_MASK_ISA_AVX, CODE_FOR_sqrtv4df2, "__builtin_ia32_sqrtpd256", IX86_BUILTIN_SQRTPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_sqrtv8sf2, "__builtin_ia32_sqrtps256", IX86_BUILTIN_SQRTPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_sqrtv8sf2, "__builtin_ia32_sqrtps_nr256", IX86_BUILTIN_SQRTPS_NR256, UNKNOWN, (int) V8SF_FTYPE_V8SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_rsqrtv8sf2, "__builtin_ia32_rsqrtps256", IX86_BUILTIN_RSQRTPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_rsqrtv8sf2, "__builtin_ia32_rsqrtps_nr256", IX86_BUILTIN_RSQRTPS_NR256, UNKNOWN, (int) V8SF_FTYPE_V8SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_rcpv8sf2, "__builtin_ia32_rcpps256", IX86_BUILTIN_RCPPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_roundpd256, "__builtin_ia32_roundpd256", IX86_BUILTIN_ROUNDPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_INT }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_roundps256, "__builtin_ia32_roundps256", IX86_BUILTIN_ROUNDPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_INT }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_roundpd256, "__builtin_ia32_floorpd256", IX86_BUILTIN_FLOORPD256, (enum rtx_code) ROUND_FLOOR, (int) V4DF_FTYPE_V4DF_ROUND }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_roundpd256, "__builtin_ia32_ceilpd256", IX86_BUILTIN_CEILPD256, (enum rtx_code) ROUND_CEIL, (int) V4DF_FTYPE_V4DF_ROUND }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_roundpd256, "__builtin_ia32_truncpd256", IX86_BUILTIN_TRUNCPD256, (enum rtx_code) ROUND_TRUNC, (int) V4DF_FTYPE_V4DF_ROUND }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_roundpd256, "__builtin_ia32_rintpd256", IX86_BUILTIN_RINTPD256, (enum rtx_code) ROUND_MXCSR, (int) V4DF_FTYPE_V4DF_ROUND }, { OPTION_MASK_ISA_AVX, CODE_FOR_roundv4df2, "__builtin_ia32_roundpd_az256", IX86_BUILTIN_ROUNDPD_AZ256, UNKNOWN, (int) V4DF_FTYPE_V4DF }, { OPTION_MASK_ISA_AVX, CODE_FOR_roundv4df2_vec_pack_sfix, "__builtin_ia32_roundpd_az_vec_pack_sfix256", IX86_BUILTIN_ROUNDPD_AZ_VEC_PACK_SFIX256, UNKNOWN, (int) V8SI_FTYPE_V4DF_V4DF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_roundpd_vec_pack_sfix256, "__builtin_ia32_floorpd_vec_pack_sfix256", IX86_BUILTIN_FLOORPD_VEC_PACK_SFIX256, (enum rtx_code) ROUND_FLOOR, (int) V8SI_FTYPE_V4DF_V4DF_ROUND }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_roundpd_vec_pack_sfix256, "__builtin_ia32_ceilpd_vec_pack_sfix256", IX86_BUILTIN_CEILPD_VEC_PACK_SFIX256, (enum rtx_code) ROUND_CEIL, (int) V8SI_FTYPE_V4DF_V4DF_ROUND }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_roundps256, "__builtin_ia32_floorps256", IX86_BUILTIN_FLOORPS256, (enum rtx_code) ROUND_FLOOR, (int) V8SF_FTYPE_V8SF_ROUND }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_roundps256, "__builtin_ia32_ceilps256", IX86_BUILTIN_CEILPS256, (enum rtx_code) ROUND_CEIL, (int) V8SF_FTYPE_V8SF_ROUND }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_roundps256, "__builtin_ia32_truncps256", IX86_BUILTIN_TRUNCPS256, (enum rtx_code) ROUND_TRUNC, (int) V8SF_FTYPE_V8SF_ROUND }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_roundps256, "__builtin_ia32_rintps256", IX86_BUILTIN_RINTPS256, (enum rtx_code) ROUND_MXCSR, (int) V8SF_FTYPE_V8SF_ROUND }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_roundps_sfix256, "__builtin_ia32_floorps_sfix256", IX86_BUILTIN_FLOORPS_SFIX256, (enum rtx_code) ROUND_FLOOR, (int) V8SI_FTYPE_V8SF_ROUND }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_roundps_sfix256, "__builtin_ia32_ceilps_sfix256", IX86_BUILTIN_CEILPS_SFIX256, (enum rtx_code) ROUND_CEIL, (int) V8SI_FTYPE_V8SF_ROUND }, { OPTION_MASK_ISA_AVX, CODE_FOR_roundv8sf2, "__builtin_ia32_roundps_az256", IX86_BUILTIN_ROUNDPS_AZ256, UNKNOWN, (int) V8SF_FTYPE_V8SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_roundv8sf2_sfix, "__builtin_ia32_roundps_az_sfix256", IX86_BUILTIN_ROUNDPS_AZ_SFIX256, UNKNOWN, (int) V8SI_FTYPE_V8SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_unpckhpd256, "__builtin_ia32_unpckhpd256", IX86_BUILTIN_UNPCKHPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_unpcklpd256, "__builtin_ia32_unpcklpd256", IX86_BUILTIN_UNPCKLPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_unpckhps256, "__builtin_ia32_unpckhps256", IX86_BUILTIN_UNPCKHPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_unpcklps256, "__builtin_ia32_unpcklps256", IX86_BUILTIN_UNPCKLPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_si256_si, "__builtin_ia32_si256_si", IX86_BUILTIN_SI256_SI, UNKNOWN, (int) V8SI_FTYPE_V4SI }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_ps256_ps, "__builtin_ia32_ps256_ps", IX86_BUILTIN_PS256_PS, UNKNOWN, (int) V8SF_FTYPE_V4SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_pd256_pd, "__builtin_ia32_pd256_pd", IX86_BUILTIN_PD256_PD, UNKNOWN, (int) V4DF_FTYPE_V2DF }, { OPTION_MASK_ISA_AVX, CODE_FOR_vec_extract_lo_v8si, "__builtin_ia32_si_si256", IX86_BUILTIN_SI_SI256, UNKNOWN, (int) V4SI_FTYPE_V8SI }, { OPTION_MASK_ISA_AVX, CODE_FOR_vec_extract_lo_v8sf, "__builtin_ia32_ps_ps256", IX86_BUILTIN_PS_PS256, UNKNOWN, (int) V4SF_FTYPE_V8SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_vec_extract_lo_v4df, "__builtin_ia32_pd_pd256", IX86_BUILTIN_PD_PD256, UNKNOWN, (int) V2DF_FTYPE_V4DF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vtestpd, "__builtin_ia32_vtestzpd", IX86_BUILTIN_VTESTZPD, EQ, (int) INT_FTYPE_V2DF_V2DF_PTEST }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vtestpd, "__builtin_ia32_vtestcpd", IX86_BUILTIN_VTESTCPD, LTU, (int) INT_FTYPE_V2DF_V2DF_PTEST }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vtestpd, "__builtin_ia32_vtestnzcpd", IX86_BUILTIN_VTESTNZCPD, GTU, (int) INT_FTYPE_V2DF_V2DF_PTEST }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vtestps, "__builtin_ia32_vtestzps", IX86_BUILTIN_VTESTZPS, EQ, (int) INT_FTYPE_V4SF_V4SF_PTEST }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vtestps, "__builtin_ia32_vtestcps", IX86_BUILTIN_VTESTCPS, LTU, (int) INT_FTYPE_V4SF_V4SF_PTEST }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vtestps, "__builtin_ia32_vtestnzcps", IX86_BUILTIN_VTESTNZCPS, GTU, (int) INT_FTYPE_V4SF_V4SF_PTEST }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vtestpd256, "__builtin_ia32_vtestzpd256", IX86_BUILTIN_VTESTZPD256, EQ, (int) INT_FTYPE_V4DF_V4DF_PTEST }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vtestpd256, "__builtin_ia32_vtestcpd256", IX86_BUILTIN_VTESTCPD256, LTU, (int) INT_FTYPE_V4DF_V4DF_PTEST }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vtestpd256, "__builtin_ia32_vtestnzcpd256", IX86_BUILTIN_VTESTNZCPD256, GTU, (int) INT_FTYPE_V4DF_V4DF_PTEST }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vtestps256, "__builtin_ia32_vtestzps256", IX86_BUILTIN_VTESTZPS256, EQ, (int) INT_FTYPE_V8SF_V8SF_PTEST }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vtestps256, "__builtin_ia32_vtestcps256", IX86_BUILTIN_VTESTCPS256, LTU, (int) INT_FTYPE_V8SF_V8SF_PTEST }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vtestps256, "__builtin_ia32_vtestnzcps256", IX86_BUILTIN_VTESTNZCPS256, GTU, (int) INT_FTYPE_V8SF_V8SF_PTEST }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_ptest256, "__builtin_ia32_ptestz256", IX86_BUILTIN_PTESTZ256, EQ, (int) INT_FTYPE_V4DI_V4DI_PTEST }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_ptest256, "__builtin_ia32_ptestc256", IX86_BUILTIN_PTESTC256, LTU, (int) INT_FTYPE_V4DI_V4DI_PTEST }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_ptest256, "__builtin_ia32_ptestnzc256", IX86_BUILTIN_PTESTNZC256, GTU, (int) INT_FTYPE_V4DI_V4DI_PTEST }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_movmskpd256, "__builtin_ia32_movmskpd256", IX86_BUILTIN_MOVMSKPD256, UNKNOWN, (int) INT_FTYPE_V4DF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_movmskps256, "__builtin_ia32_movmskps256", IX86_BUILTIN_MOVMSKPS256, UNKNOWN, (int) INT_FTYPE_V8SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_copysignv8sf3, "__builtin_ia32_copysignps256", IX86_BUILTIN_CPYSGNPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_copysignv4df3, "__builtin_ia32_copysignpd256", IX86_BUILTIN_CPYSGNPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF }, { OPTION_MASK_ISA_AVX, CODE_FOR_vec_pack_sfix_v4df, "__builtin_ia32_vec_pack_sfix256 ", IX86_BUILTIN_VEC_PACK_SFIX256, UNKNOWN, (int) V8SI_FTYPE_V4DF_V4DF }, /* AVX2 */ { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_mpsadbw, "__builtin_ia32_mpsadbw256", IX86_BUILTIN_MPSADBW256, UNKNOWN, (int) V32QI_FTYPE_V32QI_V32QI_INT }, { OPTION_MASK_ISA_AVX2, CODE_FOR_absv32qi2, "__builtin_ia32_pabsb256", IX86_BUILTIN_PABSB256, UNKNOWN, (int) V32QI_FTYPE_V32QI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_absv16hi2, "__builtin_ia32_pabsw256", IX86_BUILTIN_PABSW256, UNKNOWN, (int) V16HI_FTYPE_V16HI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_absv8si2, "__builtin_ia32_pabsd256", IX86_BUILTIN_PABSD256, UNKNOWN, (int) V8SI_FTYPE_V8SI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_packssdw, "__builtin_ia32_packssdw256", IX86_BUILTIN_PACKSSDW256, UNKNOWN, (int) V16HI_FTYPE_V8SI_V8SI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_packsswb, "__builtin_ia32_packsswb256", IX86_BUILTIN_PACKSSWB256, UNKNOWN, (int) V32QI_FTYPE_V16HI_V16HI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_packusdw, "__builtin_ia32_packusdw256", IX86_BUILTIN_PACKUSDW256, UNKNOWN, (int) V16HI_FTYPE_V8SI_V8SI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_packuswb, "__builtin_ia32_packuswb256", IX86_BUILTIN_PACKUSWB256, UNKNOWN, (int) V32QI_FTYPE_V16HI_V16HI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_addv32qi3, "__builtin_ia32_paddb256", IX86_BUILTIN_PADDB256, UNKNOWN, (int) V32QI_FTYPE_V32QI_V32QI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_addv16hi3, "__builtin_ia32_paddw256", IX86_BUILTIN_PADDW256, UNKNOWN, (int) V16HI_FTYPE_V16HI_V16HI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_addv8si3, "__builtin_ia32_paddd256", IX86_BUILTIN_PADDD256, UNKNOWN, (int) V8SI_FTYPE_V8SI_V8SI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_addv4di3, "__builtin_ia32_paddq256", IX86_BUILTIN_PADDQ256, UNKNOWN, (int) V4DI_FTYPE_V4DI_V4DI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_ssaddv32qi3, "__builtin_ia32_paddsb256", IX86_BUILTIN_PADDSB256, UNKNOWN, (int) V32QI_FTYPE_V32QI_V32QI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_ssaddv16hi3, "__builtin_ia32_paddsw256", IX86_BUILTIN_PADDSW256, UNKNOWN, (int) V16HI_FTYPE_V16HI_V16HI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_usaddv32qi3, "__builtin_ia32_paddusb256", IX86_BUILTIN_PADDUSB256, UNKNOWN, (int) V32QI_FTYPE_V32QI_V32QI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_usaddv16hi3, "__builtin_ia32_paddusw256", IX86_BUILTIN_PADDUSW256, UNKNOWN, (int) V16HI_FTYPE_V16HI_V16HI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_palignrv2ti, "__builtin_ia32_palignr256", IX86_BUILTIN_PALIGNR256, UNKNOWN, (int) V4DI_FTYPE_V4DI_V4DI_INT_CONVERT }, { OPTION_MASK_ISA_AVX2, CODE_FOR_andv4di3, "__builtin_ia32_andsi256", IX86_BUILTIN_AND256I, UNKNOWN, (int) V4DI_FTYPE_V4DI_V4DI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_andnotv4di3, "__builtin_ia32_andnotsi256", IX86_BUILTIN_ANDNOT256I, UNKNOWN, (int) V4DI_FTYPE_V4DI_V4DI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_uavgv32qi3, "__builtin_ia32_pavgb256", IX86_BUILTIN_PAVGB256, UNKNOWN, (int) V32QI_FTYPE_V32QI_V32QI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_uavgv16hi3, "__builtin_ia32_pavgw256", IX86_BUILTIN_PAVGW256, UNKNOWN, (int) V16HI_FTYPE_V16HI_V16HI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_pblendvb, "__builtin_ia32_pblendvb256", IX86_BUILTIN_PBLENDVB256, UNKNOWN, (int) V32QI_FTYPE_V32QI_V32QI_V32QI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_pblendw, "__builtin_ia32_pblendw256", IX86_BUILTIN_PBLENDVW256, UNKNOWN, (int) V16HI_FTYPE_V16HI_V16HI_INT }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_eqv32qi3, "__builtin_ia32_pcmpeqb256", IX86_BUILTIN_PCMPEQB256, UNKNOWN, (int) V32QI_FTYPE_V32QI_V32QI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_eqv16hi3, "__builtin_ia32_pcmpeqw256", IX86_BUILTIN_PCMPEQW256, UNKNOWN, (int) V16HI_FTYPE_V16HI_V16HI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_eqv8si3, "__builtin_ia32_pcmpeqd256", IX86_BUILTIN_PCMPEQD256, UNKNOWN, (int) V8SI_FTYPE_V8SI_V8SI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_eqv4di3, "__builtin_ia32_pcmpeqq256", IX86_BUILTIN_PCMPEQQ256, UNKNOWN, (int) V4DI_FTYPE_V4DI_V4DI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_gtv32qi3, "__builtin_ia32_pcmpgtb256", IX86_BUILTIN_PCMPGTB256, UNKNOWN, (int) V32QI_FTYPE_V32QI_V32QI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_gtv16hi3, "__builtin_ia32_pcmpgtw256", IX86_BUILTIN_PCMPGTW256, UNKNOWN, (int) V16HI_FTYPE_V16HI_V16HI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_gtv8si3, "__builtin_ia32_pcmpgtd256", IX86_BUILTIN_PCMPGTD256, UNKNOWN, (int) V8SI_FTYPE_V8SI_V8SI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_gtv4di3, "__builtin_ia32_pcmpgtq256", IX86_BUILTIN_PCMPGTQ256, UNKNOWN, (int) V4DI_FTYPE_V4DI_V4DI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_phaddwv16hi3, "__builtin_ia32_phaddw256", IX86_BUILTIN_PHADDW256, UNKNOWN, (int) V16HI_FTYPE_V16HI_V16HI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_phadddv8si3, "__builtin_ia32_phaddd256", IX86_BUILTIN_PHADDD256, UNKNOWN, (int) V8SI_FTYPE_V8SI_V8SI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_phaddswv16hi3, "__builtin_ia32_phaddsw256", IX86_BUILTIN_PHADDSW256, UNKNOWN, (int) V16HI_FTYPE_V16HI_V16HI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_phsubwv16hi3, "__builtin_ia32_phsubw256", IX86_BUILTIN_PHSUBW256, UNKNOWN, (int) V16HI_FTYPE_V16HI_V16HI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_phsubdv8si3, "__builtin_ia32_phsubd256", IX86_BUILTIN_PHSUBD256, UNKNOWN, (int) V8SI_FTYPE_V8SI_V8SI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_phsubswv16hi3, "__builtin_ia32_phsubsw256", IX86_BUILTIN_PHSUBSW256, UNKNOWN, (int) V16HI_FTYPE_V16HI_V16HI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_pmaddubsw256, "__builtin_ia32_pmaddubsw256", IX86_BUILTIN_PMADDUBSW256, UNKNOWN, (int) V16HI_FTYPE_V32QI_V32QI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_pmaddwd, "__builtin_ia32_pmaddwd256", IX86_BUILTIN_PMADDWD256, UNKNOWN, (int) V8SI_FTYPE_V16HI_V16HI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_smaxv32qi3, "__builtin_ia32_pmaxsb256", IX86_BUILTIN_PMAXSB256, UNKNOWN, (int) V32QI_FTYPE_V32QI_V32QI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_smaxv16hi3, "__builtin_ia32_pmaxsw256", IX86_BUILTIN_PMAXSW256, UNKNOWN, (int) V16HI_FTYPE_V16HI_V16HI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_smaxv8si3 , "__builtin_ia32_pmaxsd256", IX86_BUILTIN_PMAXSD256, UNKNOWN, (int) V8SI_FTYPE_V8SI_V8SI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_umaxv32qi3, "__builtin_ia32_pmaxub256", IX86_BUILTIN_PMAXUB256, UNKNOWN, (int) V32QI_FTYPE_V32QI_V32QI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_umaxv16hi3, "__builtin_ia32_pmaxuw256", IX86_BUILTIN_PMAXUW256, UNKNOWN, (int) V16HI_FTYPE_V16HI_V16HI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_umaxv8si3 , "__builtin_ia32_pmaxud256", IX86_BUILTIN_PMAXUD256, UNKNOWN, (int) V8SI_FTYPE_V8SI_V8SI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_sminv32qi3, "__builtin_ia32_pminsb256", IX86_BUILTIN_PMINSB256, UNKNOWN, (int) V32QI_FTYPE_V32QI_V32QI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_sminv16hi3, "__builtin_ia32_pminsw256", IX86_BUILTIN_PMINSW256, UNKNOWN, (int) V16HI_FTYPE_V16HI_V16HI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_sminv8si3 , "__builtin_ia32_pminsd256", IX86_BUILTIN_PMINSD256, UNKNOWN, (int) V8SI_FTYPE_V8SI_V8SI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_uminv32qi3, "__builtin_ia32_pminub256", IX86_BUILTIN_PMINUB256, UNKNOWN, (int) V32QI_FTYPE_V32QI_V32QI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_uminv16hi3, "__builtin_ia32_pminuw256", IX86_BUILTIN_PMINUW256, UNKNOWN, (int) V16HI_FTYPE_V16HI_V16HI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_uminv8si3 , "__builtin_ia32_pminud256", IX86_BUILTIN_PMINUD256, UNKNOWN, (int) V8SI_FTYPE_V8SI_V8SI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_pmovmskb, "__builtin_ia32_pmovmskb256", IX86_BUILTIN_PMOVMSKB256, UNKNOWN, (int) INT_FTYPE_V32QI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_sign_extendv16qiv16hi2, "__builtin_ia32_pmovsxbw256", IX86_BUILTIN_PMOVSXBW256, UNKNOWN, (int) V16HI_FTYPE_V16QI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_sign_extendv8qiv8si2 , "__builtin_ia32_pmovsxbd256", IX86_BUILTIN_PMOVSXBD256, UNKNOWN, (int) V8SI_FTYPE_V16QI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_sign_extendv4qiv4di2 , "__builtin_ia32_pmovsxbq256", IX86_BUILTIN_PMOVSXBQ256, UNKNOWN, (int) V4DI_FTYPE_V16QI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_sign_extendv8hiv8si2 , "__builtin_ia32_pmovsxwd256", IX86_BUILTIN_PMOVSXWD256, UNKNOWN, (int) V8SI_FTYPE_V8HI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_sign_extendv4hiv4di2 , "__builtin_ia32_pmovsxwq256", IX86_BUILTIN_PMOVSXWQ256, UNKNOWN, (int) V4DI_FTYPE_V8HI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_sign_extendv4siv4di2 , "__builtin_ia32_pmovsxdq256", IX86_BUILTIN_PMOVSXDQ256, UNKNOWN, (int) V4DI_FTYPE_V4SI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_zero_extendv16qiv16hi2, "__builtin_ia32_pmovzxbw256", IX86_BUILTIN_PMOVZXBW256, UNKNOWN, (int) V16HI_FTYPE_V16QI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_zero_extendv8qiv8si2 , "__builtin_ia32_pmovzxbd256", IX86_BUILTIN_PMOVZXBD256, UNKNOWN, (int) V8SI_FTYPE_V16QI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_zero_extendv4qiv4di2 , "__builtin_ia32_pmovzxbq256", IX86_BUILTIN_PMOVZXBQ256, UNKNOWN, (int) V4DI_FTYPE_V16QI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_zero_extendv8hiv8si2 , "__builtin_ia32_pmovzxwd256", IX86_BUILTIN_PMOVZXWD256, UNKNOWN, (int) V8SI_FTYPE_V8HI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_zero_extendv4hiv4di2 , "__builtin_ia32_pmovzxwq256", IX86_BUILTIN_PMOVZXWQ256, UNKNOWN, (int) V4DI_FTYPE_V8HI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_zero_extendv4siv4di2 , "__builtin_ia32_pmovzxdq256", IX86_BUILTIN_PMOVZXDQ256, UNKNOWN, (int) V4DI_FTYPE_V4SI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_vec_widen_smult_even_v8si, "__builtin_ia32_pmuldq256", IX86_BUILTIN_PMULDQ256, UNKNOWN, (int) V4DI_FTYPE_V8SI_V8SI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_pmulhrswv16hi3 , "__builtin_ia32_pmulhrsw256", IX86_BUILTIN_PMULHRSW256, UNKNOWN, (int) V16HI_FTYPE_V16HI_V16HI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_umulv16hi3_highpart, "__builtin_ia32_pmulhuw256" , IX86_BUILTIN_PMULHUW256 , UNKNOWN, (int) V16HI_FTYPE_V16HI_V16HI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_smulv16hi3_highpart, "__builtin_ia32_pmulhw256" , IX86_BUILTIN_PMULHW256 , UNKNOWN, (int) V16HI_FTYPE_V16HI_V16HI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_mulv16hi3, "__builtin_ia32_pmullw256" , IX86_BUILTIN_PMULLW256 , UNKNOWN, (int) V16HI_FTYPE_V16HI_V16HI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_mulv8si3, "__builtin_ia32_pmulld256" , IX86_BUILTIN_PMULLD256 , UNKNOWN, (int) V8SI_FTYPE_V8SI_V8SI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_vec_widen_umult_even_v8si, "__builtin_ia32_pmuludq256", IX86_BUILTIN_PMULUDQ256, UNKNOWN, (int) V4DI_FTYPE_V8SI_V8SI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_iorv4di3, "__builtin_ia32_por256", IX86_BUILTIN_POR256, UNKNOWN, (int) V4DI_FTYPE_V4DI_V4DI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_psadbw, "__builtin_ia32_psadbw256", IX86_BUILTIN_PSADBW256, UNKNOWN, (int) V16HI_FTYPE_V32QI_V32QI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_pshufbv32qi3, "__builtin_ia32_pshufb256", IX86_BUILTIN_PSHUFB256, UNKNOWN, (int) V32QI_FTYPE_V32QI_V32QI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_pshufdv3, "__builtin_ia32_pshufd256", IX86_BUILTIN_PSHUFD256, UNKNOWN, (int) V8SI_FTYPE_V8SI_INT }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_pshufhwv3, "__builtin_ia32_pshufhw256", IX86_BUILTIN_PSHUFHW256, UNKNOWN, (int) V16HI_FTYPE_V16HI_INT }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_pshuflwv3, "__builtin_ia32_pshuflw256", IX86_BUILTIN_PSHUFLW256, UNKNOWN, (int) V16HI_FTYPE_V16HI_INT }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_psignv32qi3, "__builtin_ia32_psignb256", IX86_BUILTIN_PSIGNB256, UNKNOWN, (int) V32QI_FTYPE_V32QI_V32QI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_psignv16hi3, "__builtin_ia32_psignw256", IX86_BUILTIN_PSIGNW256, UNKNOWN, (int) V16HI_FTYPE_V16HI_V16HI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_psignv8si3 , "__builtin_ia32_psignd256", IX86_BUILTIN_PSIGND256, UNKNOWN, (int) V8SI_FTYPE_V8SI_V8SI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_ashlv2ti3, "__builtin_ia32_pslldqi256", IX86_BUILTIN_PSLLDQI256, UNKNOWN, (int) V4DI_FTYPE_V4DI_INT_CONVERT }, { OPTION_MASK_ISA_AVX2, CODE_FOR_ashlv16hi3, "__builtin_ia32_psllwi256", IX86_BUILTIN_PSLLWI256 , UNKNOWN, (int) V16HI_FTYPE_V16HI_SI_COUNT }, { OPTION_MASK_ISA_AVX2, CODE_FOR_ashlv16hi3, "__builtin_ia32_psllw256", IX86_BUILTIN_PSLLW256, UNKNOWN, (int) V16HI_FTYPE_V16HI_V8HI_COUNT }, { OPTION_MASK_ISA_AVX2, CODE_FOR_ashlv8si3, "__builtin_ia32_pslldi256", IX86_BUILTIN_PSLLDI256, UNKNOWN, (int) V8SI_FTYPE_V8SI_SI_COUNT }, { OPTION_MASK_ISA_AVX2, CODE_FOR_ashlv8si3, "__builtin_ia32_pslld256", IX86_BUILTIN_PSLLD256, UNKNOWN, (int) V8SI_FTYPE_V8SI_V4SI_COUNT }, { OPTION_MASK_ISA_AVX2, CODE_FOR_ashlv4di3, "__builtin_ia32_psllqi256", IX86_BUILTIN_PSLLQI256, UNKNOWN, (int) V4DI_FTYPE_V4DI_INT_COUNT }, { OPTION_MASK_ISA_AVX2, CODE_FOR_ashlv4di3, "__builtin_ia32_psllq256", IX86_BUILTIN_PSLLQ256, UNKNOWN, (int) V4DI_FTYPE_V4DI_V2DI_COUNT }, { OPTION_MASK_ISA_AVX2, CODE_FOR_ashrv16hi3, "__builtin_ia32_psrawi256", IX86_BUILTIN_PSRAWI256, UNKNOWN, (int) V16HI_FTYPE_V16HI_SI_COUNT }, { OPTION_MASK_ISA_AVX2, CODE_FOR_ashrv16hi3, "__builtin_ia32_psraw256", IX86_BUILTIN_PSRAW256, UNKNOWN, (int) V16HI_FTYPE_V16HI_V8HI_COUNT }, { OPTION_MASK_ISA_AVX2, CODE_FOR_ashrv8si3, "__builtin_ia32_psradi256", IX86_BUILTIN_PSRADI256, UNKNOWN, (int) V8SI_FTYPE_V8SI_SI_COUNT }, { OPTION_MASK_ISA_AVX2, CODE_FOR_ashrv8si3, "__builtin_ia32_psrad256", IX86_BUILTIN_PSRAD256, UNKNOWN, (int) V8SI_FTYPE_V8SI_V4SI_COUNT }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_lshrv2ti3, "__builtin_ia32_psrldqi256", IX86_BUILTIN_PSRLDQI256, UNKNOWN, (int) V4DI_FTYPE_V4DI_INT_CONVERT }, { OPTION_MASK_ISA_AVX2, CODE_FOR_lshrv16hi3, "__builtin_ia32_psrlwi256", IX86_BUILTIN_PSRLWI256 , UNKNOWN, (int) V16HI_FTYPE_V16HI_SI_COUNT }, { OPTION_MASK_ISA_AVX2, CODE_FOR_lshrv16hi3, "__builtin_ia32_psrlw256", IX86_BUILTIN_PSRLW256, UNKNOWN, (int) V16HI_FTYPE_V16HI_V8HI_COUNT }, { OPTION_MASK_ISA_AVX2, CODE_FOR_lshrv8si3, "__builtin_ia32_psrldi256", IX86_BUILTIN_PSRLDI256, UNKNOWN, (int) V8SI_FTYPE_V8SI_SI_COUNT }, { OPTION_MASK_ISA_AVX2, CODE_FOR_lshrv8si3, "__builtin_ia32_psrld256", IX86_BUILTIN_PSRLD256, UNKNOWN, (int) V8SI_FTYPE_V8SI_V4SI_COUNT }, { OPTION_MASK_ISA_AVX2, CODE_FOR_lshrv4di3, "__builtin_ia32_psrlqi256", IX86_BUILTIN_PSRLQI256, UNKNOWN, (int) V4DI_FTYPE_V4DI_INT_COUNT }, { OPTION_MASK_ISA_AVX2, CODE_FOR_lshrv4di3, "__builtin_ia32_psrlq256", IX86_BUILTIN_PSRLQ256, UNKNOWN, (int) V4DI_FTYPE_V4DI_V2DI_COUNT }, { OPTION_MASK_ISA_AVX2, CODE_FOR_subv32qi3, "__builtin_ia32_psubb256", IX86_BUILTIN_PSUBB256, UNKNOWN, (int) V32QI_FTYPE_V32QI_V32QI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_subv16hi3, "__builtin_ia32_psubw256", IX86_BUILTIN_PSUBW256, UNKNOWN, (int) V16HI_FTYPE_V16HI_V16HI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_subv8si3, "__builtin_ia32_psubd256", IX86_BUILTIN_PSUBD256, UNKNOWN, (int) V8SI_FTYPE_V8SI_V8SI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_subv4di3, "__builtin_ia32_psubq256", IX86_BUILTIN_PSUBQ256, UNKNOWN, (int) V4DI_FTYPE_V4DI_V4DI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_sssubv32qi3, "__builtin_ia32_psubsb256", IX86_BUILTIN_PSUBSB256, UNKNOWN, (int) V32QI_FTYPE_V32QI_V32QI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_sssubv16hi3, "__builtin_ia32_psubsw256", IX86_BUILTIN_PSUBSW256, UNKNOWN, (int) V16HI_FTYPE_V16HI_V16HI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_ussubv32qi3, "__builtin_ia32_psubusb256", IX86_BUILTIN_PSUBUSB256, UNKNOWN, (int) V32QI_FTYPE_V32QI_V32QI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_ussubv16hi3, "__builtin_ia32_psubusw256", IX86_BUILTIN_PSUBUSW256, UNKNOWN, (int) V16HI_FTYPE_V16HI_V16HI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_interleave_highv32qi, "__builtin_ia32_punpckhbw256", IX86_BUILTIN_PUNPCKHBW256, UNKNOWN, (int) V32QI_FTYPE_V32QI_V32QI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_interleave_highv16hi, "__builtin_ia32_punpckhwd256", IX86_BUILTIN_PUNPCKHWD256, UNKNOWN, (int) V16HI_FTYPE_V16HI_V16HI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_interleave_highv8si, "__builtin_ia32_punpckhdq256", IX86_BUILTIN_PUNPCKHDQ256, UNKNOWN, (int) V8SI_FTYPE_V8SI_V8SI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_interleave_highv4di, "__builtin_ia32_punpckhqdq256", IX86_BUILTIN_PUNPCKHQDQ256, UNKNOWN, (int) V4DI_FTYPE_V4DI_V4DI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_interleave_lowv32qi, "__builtin_ia32_punpcklbw256", IX86_BUILTIN_PUNPCKLBW256, UNKNOWN, (int) V32QI_FTYPE_V32QI_V32QI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_interleave_lowv16hi, "__builtin_ia32_punpcklwd256", IX86_BUILTIN_PUNPCKLWD256, UNKNOWN, (int) V16HI_FTYPE_V16HI_V16HI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_interleave_lowv8si, "__builtin_ia32_punpckldq256", IX86_BUILTIN_PUNPCKLDQ256, UNKNOWN, (int) V8SI_FTYPE_V8SI_V8SI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_interleave_lowv4di, "__builtin_ia32_punpcklqdq256", IX86_BUILTIN_PUNPCKLQDQ256, UNKNOWN, (int) V4DI_FTYPE_V4DI_V4DI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_xorv4di3, "__builtin_ia32_pxor256", IX86_BUILTIN_PXOR256, UNKNOWN, (int) V4DI_FTYPE_V4DI_V4DI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_vec_dupv4sf, "__builtin_ia32_vbroadcastss_ps", IX86_BUILTIN_VBROADCASTSS_PS, UNKNOWN, (int) V4SF_FTYPE_V4SF }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_vec_dupv8sf, "__builtin_ia32_vbroadcastss_ps256", IX86_BUILTIN_VBROADCASTSS_PS256, UNKNOWN, (int) V8SF_FTYPE_V4SF }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_vec_dupv4df, "__builtin_ia32_vbroadcastsd_pd256", IX86_BUILTIN_VBROADCASTSD_PD256, UNKNOWN, (int) V4DF_FTYPE_V2DF }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_vbroadcasti128_v4di, "__builtin_ia32_vbroadcastsi256", IX86_BUILTIN_VBROADCASTSI256, UNKNOWN, (int) V4DI_FTYPE_V2DI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_pblenddv4si, "__builtin_ia32_pblendd128", IX86_BUILTIN_PBLENDD128, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI_INT }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_pblenddv8si, "__builtin_ia32_pblendd256", IX86_BUILTIN_PBLENDD256, UNKNOWN, (int) V8SI_FTYPE_V8SI_V8SI_INT }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_pbroadcastv32qi, "__builtin_ia32_pbroadcastb256", IX86_BUILTIN_PBROADCASTB256, UNKNOWN, (int) V32QI_FTYPE_V16QI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_pbroadcastv16hi, "__builtin_ia32_pbroadcastw256", IX86_BUILTIN_PBROADCASTW256, UNKNOWN, (int) V16HI_FTYPE_V8HI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_pbroadcastv8si, "__builtin_ia32_pbroadcastd256", IX86_BUILTIN_PBROADCASTD256, UNKNOWN, (int) V8SI_FTYPE_V4SI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_pbroadcastv4di, "__builtin_ia32_pbroadcastq256", IX86_BUILTIN_PBROADCASTQ256, UNKNOWN, (int) V4DI_FTYPE_V2DI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_pbroadcastv16qi, "__builtin_ia32_pbroadcastb128", IX86_BUILTIN_PBROADCASTB128, UNKNOWN, (int) V16QI_FTYPE_V16QI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_pbroadcastv8hi, "__builtin_ia32_pbroadcastw128", IX86_BUILTIN_PBROADCASTW128, UNKNOWN, (int) V8HI_FTYPE_V8HI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_pbroadcastv4si, "__builtin_ia32_pbroadcastd128", IX86_BUILTIN_PBROADCASTD128, UNKNOWN, (int) V4SI_FTYPE_V4SI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_pbroadcastv2di, "__builtin_ia32_pbroadcastq128", IX86_BUILTIN_PBROADCASTQ128, UNKNOWN, (int) V2DI_FTYPE_V2DI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_permvarv8si, "__builtin_ia32_permvarsi256", IX86_BUILTIN_VPERMVARSI256, UNKNOWN, (int) V8SI_FTYPE_V8SI_V8SI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_permvarv8sf, "__builtin_ia32_permvarsf256", IX86_BUILTIN_VPERMVARSF256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_permv4df, "__builtin_ia32_permdf256", IX86_BUILTIN_VPERMDF256, UNKNOWN, (int) V4DF_FTYPE_V4DF_INT }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_permv4di, "__builtin_ia32_permdi256", IX86_BUILTIN_VPERMDI256, UNKNOWN, (int) V4DI_FTYPE_V4DI_INT }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_permv2ti, "__builtin_ia32_permti256", IX86_BUILTIN_VPERMTI256, UNKNOWN, (int) V4DI_FTYPE_V4DI_V4DI_INT }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_extracti128, "__builtin_ia32_extract128i256", IX86_BUILTIN_VEXTRACT128I256, UNKNOWN, (int) V2DI_FTYPE_V4DI_INT }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_inserti128, "__builtin_ia32_insert128i256", IX86_BUILTIN_VINSERT128I256, UNKNOWN, (int) V4DI_FTYPE_V4DI_V2DI_INT }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_ashlvv4di, "__builtin_ia32_psllv4di", IX86_BUILTIN_PSLLVV4DI, UNKNOWN, (int) V4DI_FTYPE_V4DI_V4DI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_ashlvv2di, "__builtin_ia32_psllv2di", IX86_BUILTIN_PSLLVV2DI, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_ashlvv8si, "__builtin_ia32_psllv8si", IX86_BUILTIN_PSLLVV8SI, UNKNOWN, (int) V8SI_FTYPE_V8SI_V8SI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_ashlvv4si, "__builtin_ia32_psllv4si", IX86_BUILTIN_PSLLVV4SI, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_ashrvv8si, "__builtin_ia32_psrav8si", IX86_BUILTIN_PSRAVV8SI, UNKNOWN, (int) V8SI_FTYPE_V8SI_V8SI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_ashrvv4si, "__builtin_ia32_psrav4si", IX86_BUILTIN_PSRAVV4SI, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_lshrvv4di, "__builtin_ia32_psrlv4di", IX86_BUILTIN_PSRLVV4DI, UNKNOWN, (int) V4DI_FTYPE_V4DI_V4DI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_lshrvv2di, "__builtin_ia32_psrlv2di", IX86_BUILTIN_PSRLVV2DI, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_lshrvv8si, "__builtin_ia32_psrlv8si", IX86_BUILTIN_PSRLVV8SI, UNKNOWN, (int) V8SI_FTYPE_V8SI_V8SI }, { OPTION_MASK_ISA_AVX2, CODE_FOR_avx2_lshrvv4si, "__builtin_ia32_psrlv4si", IX86_BUILTIN_PSRLVV4SI, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI }, { OPTION_MASK_ISA_LZCNT, CODE_FOR_clzhi2_lzcnt, "__builtin_clzs", IX86_BUILTIN_CLZS, UNKNOWN, (int) UINT16_FTYPE_UINT16 }, /* BMI */ { OPTION_MASK_ISA_BMI, CODE_FOR_bmi_bextr_si, "__builtin_ia32_bextr_u32", IX86_BUILTIN_BEXTR32, UNKNOWN, (int) UINT_FTYPE_UINT_UINT }, { OPTION_MASK_ISA_BMI, CODE_FOR_bmi_bextr_di, "__builtin_ia32_bextr_u64", IX86_BUILTIN_BEXTR64, UNKNOWN, (int) UINT64_FTYPE_UINT64_UINT64 }, { OPTION_MASK_ISA_BMI, CODE_FOR_ctzhi2, "__builtin_ctzs", IX86_BUILTIN_CTZS, UNKNOWN, (int) UINT16_FTYPE_UINT16 }, /* TBM */ { OPTION_MASK_ISA_TBM, CODE_FOR_tbm_bextri_si, "__builtin_ia32_bextri_u32", IX86_BUILTIN_BEXTRI32, UNKNOWN, (int) UINT_FTYPE_UINT_UINT }, { OPTION_MASK_ISA_TBM, CODE_FOR_tbm_bextri_di, "__builtin_ia32_bextri_u64", IX86_BUILTIN_BEXTRI64, UNKNOWN, (int) UINT64_FTYPE_UINT64_UINT64 }, /* F16C */ { OPTION_MASK_ISA_F16C, CODE_FOR_vcvtph2ps, "__builtin_ia32_vcvtph2ps", IX86_BUILTIN_CVTPH2PS, UNKNOWN, (int) V4SF_FTYPE_V8HI }, { OPTION_MASK_ISA_F16C, CODE_FOR_vcvtph2ps256, "__builtin_ia32_vcvtph2ps256", IX86_BUILTIN_CVTPH2PS256, UNKNOWN, (int) V8SF_FTYPE_V8HI }, { OPTION_MASK_ISA_F16C, CODE_FOR_vcvtps2ph, "__builtin_ia32_vcvtps2ph", IX86_BUILTIN_CVTPS2PH, UNKNOWN, (int) V8HI_FTYPE_V4SF_INT }, { OPTION_MASK_ISA_F16C, CODE_FOR_vcvtps2ph256, "__builtin_ia32_vcvtps2ph256", IX86_BUILTIN_CVTPS2PH256, UNKNOWN, (int) V8HI_FTYPE_V8SF_INT }, /* BMI2 */ { OPTION_MASK_ISA_BMI2, CODE_FOR_bmi2_bzhi_si3, "__builtin_ia32_bzhi_si", IX86_BUILTIN_BZHI32, UNKNOWN, (int) UINT_FTYPE_UINT_UINT }, { OPTION_MASK_ISA_BMI2, CODE_FOR_bmi2_bzhi_di3, "__builtin_ia32_bzhi_di", IX86_BUILTIN_BZHI64, UNKNOWN, (int) UINT64_FTYPE_UINT64_UINT64 }, { OPTION_MASK_ISA_BMI2, CODE_FOR_bmi2_pdep_si3, "__builtin_ia32_pdep_si", IX86_BUILTIN_PDEP32, UNKNOWN, (int) UINT_FTYPE_UINT_UINT }, { OPTION_MASK_ISA_BMI2, CODE_FOR_bmi2_pdep_di3, "__builtin_ia32_pdep_di", IX86_BUILTIN_PDEP64, UNKNOWN, (int) UINT64_FTYPE_UINT64_UINT64 }, { OPTION_MASK_ISA_BMI2, CODE_FOR_bmi2_pext_si3, "__builtin_ia32_pext_si", IX86_BUILTIN_PEXT32, UNKNOWN, (int) UINT_FTYPE_UINT_UINT }, { OPTION_MASK_ISA_BMI2, CODE_FOR_bmi2_pext_di3, "__builtin_ia32_pext_di", IX86_BUILTIN_PEXT64, UNKNOWN, (int) UINT64_FTYPE_UINT64_UINT64 }, }; /* FMA4 and XOP. */ #define MULTI_ARG_4_DF2_DI_I V2DF_FTYPE_V2DF_V2DF_V2DI_INT #define MULTI_ARG_4_DF2_DI_I1 V4DF_FTYPE_V4DF_V4DF_V4DI_INT #define MULTI_ARG_4_SF2_SI_I V4SF_FTYPE_V4SF_V4SF_V4SI_INT #define MULTI_ARG_4_SF2_SI_I1 V8SF_FTYPE_V8SF_V8SF_V8SI_INT #define MULTI_ARG_3_SF V4SF_FTYPE_V4SF_V4SF_V4SF #define MULTI_ARG_3_DF V2DF_FTYPE_V2DF_V2DF_V2DF #define MULTI_ARG_3_SF2 V8SF_FTYPE_V8SF_V8SF_V8SF #define MULTI_ARG_3_DF2 V4DF_FTYPE_V4DF_V4DF_V4DF #define MULTI_ARG_3_DI V2DI_FTYPE_V2DI_V2DI_V2DI #define MULTI_ARG_3_SI V4SI_FTYPE_V4SI_V4SI_V4SI #define MULTI_ARG_3_SI_DI V4SI_FTYPE_V4SI_V4SI_V2DI #define MULTI_ARG_3_HI V8HI_FTYPE_V8HI_V8HI_V8HI #define MULTI_ARG_3_HI_SI V8HI_FTYPE_V8HI_V8HI_V4SI #define MULTI_ARG_3_QI V16QI_FTYPE_V16QI_V16QI_V16QI #define MULTI_ARG_3_DI2 V4DI_FTYPE_V4DI_V4DI_V4DI #define MULTI_ARG_3_SI2 V8SI_FTYPE_V8SI_V8SI_V8SI #define MULTI_ARG_3_HI2 V16HI_FTYPE_V16HI_V16HI_V16HI #define MULTI_ARG_3_QI2 V32QI_FTYPE_V32QI_V32QI_V32QI #define MULTI_ARG_2_SF V4SF_FTYPE_V4SF_V4SF #define MULTI_ARG_2_DF V2DF_FTYPE_V2DF_V2DF #define MULTI_ARG_2_DI V2DI_FTYPE_V2DI_V2DI #define MULTI_ARG_2_SI V4SI_FTYPE_V4SI_V4SI #define MULTI_ARG_2_HI V8HI_FTYPE_V8HI_V8HI #define MULTI_ARG_2_QI V16QI_FTYPE_V16QI_V16QI #define MULTI_ARG_2_DI_IMM V2DI_FTYPE_V2DI_SI #define MULTI_ARG_2_SI_IMM V4SI_FTYPE_V4SI_SI #define MULTI_ARG_2_HI_IMM V8HI_FTYPE_V8HI_SI #define MULTI_ARG_2_QI_IMM V16QI_FTYPE_V16QI_SI #define MULTI_ARG_2_DI_CMP V2DI_FTYPE_V2DI_V2DI_CMP #define MULTI_ARG_2_SI_CMP V4SI_FTYPE_V4SI_V4SI_CMP #define MULTI_ARG_2_HI_CMP V8HI_FTYPE_V8HI_V8HI_CMP #define MULTI_ARG_2_QI_CMP V16QI_FTYPE_V16QI_V16QI_CMP #define MULTI_ARG_2_SF_TF V4SF_FTYPE_V4SF_V4SF_TF #define MULTI_ARG_2_DF_TF V2DF_FTYPE_V2DF_V2DF_TF #define MULTI_ARG_2_DI_TF V2DI_FTYPE_V2DI_V2DI_TF #define MULTI_ARG_2_SI_TF V4SI_FTYPE_V4SI_V4SI_TF #define MULTI_ARG_2_HI_TF V8HI_FTYPE_V8HI_V8HI_TF #define MULTI_ARG_2_QI_TF V16QI_FTYPE_V16QI_V16QI_TF #define MULTI_ARG_1_SF V4SF_FTYPE_V4SF #define MULTI_ARG_1_DF V2DF_FTYPE_V2DF #define MULTI_ARG_1_SF2 V8SF_FTYPE_V8SF #define MULTI_ARG_1_DF2 V4DF_FTYPE_V4DF #define MULTI_ARG_1_DI V2DI_FTYPE_V2DI #define MULTI_ARG_1_SI V4SI_FTYPE_V4SI #define MULTI_ARG_1_HI V8HI_FTYPE_V8HI #define MULTI_ARG_1_QI V16QI_FTYPE_V16QI #define MULTI_ARG_1_SI_DI V2DI_FTYPE_V4SI #define MULTI_ARG_1_HI_DI V2DI_FTYPE_V8HI #define MULTI_ARG_1_HI_SI V4SI_FTYPE_V8HI #define MULTI_ARG_1_QI_DI V2DI_FTYPE_V16QI #define MULTI_ARG_1_QI_SI V4SI_FTYPE_V16QI #define MULTI_ARG_1_QI_HI V8HI_FTYPE_V16QI static const struct builtin_description bdesc_multi_arg[] = { { OPTION_MASK_ISA_FMA4, CODE_FOR_fma4i_vmfmadd_v4sf, "__builtin_ia32_vfmaddss", IX86_BUILTIN_VFMADDSS, UNKNOWN, (int)MULTI_ARG_3_SF }, { OPTION_MASK_ISA_FMA4, CODE_FOR_fma4i_vmfmadd_v2df, "__builtin_ia32_vfmaddsd", IX86_BUILTIN_VFMADDSD, UNKNOWN, (int)MULTI_ARG_3_DF }, { OPTION_MASK_ISA_FMA, CODE_FOR_fmai_vmfmadd_v4sf, "__builtin_ia32_vfmaddss3", IX86_BUILTIN_VFMADDSS3, UNKNOWN, (int)MULTI_ARG_3_SF }, { OPTION_MASK_ISA_FMA, CODE_FOR_fmai_vmfmadd_v2df, "__builtin_ia32_vfmaddsd3", IX86_BUILTIN_VFMADDSD3, UNKNOWN, (int)MULTI_ARG_3_DF }, { OPTION_MASK_ISA_FMA | OPTION_MASK_ISA_FMA4, CODE_FOR_fma4i_fmadd_v4sf, "__builtin_ia32_vfmaddps", IX86_BUILTIN_VFMADDPS, UNKNOWN, (int)MULTI_ARG_3_SF }, { OPTION_MASK_ISA_FMA | OPTION_MASK_ISA_FMA4, CODE_FOR_fma4i_fmadd_v2df, "__builtin_ia32_vfmaddpd", IX86_BUILTIN_VFMADDPD, UNKNOWN, (int)MULTI_ARG_3_DF }, { OPTION_MASK_ISA_FMA | OPTION_MASK_ISA_FMA4, CODE_FOR_fma4i_fmadd_v8sf, "__builtin_ia32_vfmaddps256", IX86_BUILTIN_VFMADDPS256, UNKNOWN, (int)MULTI_ARG_3_SF2 }, { OPTION_MASK_ISA_FMA | OPTION_MASK_ISA_FMA4, CODE_FOR_fma4i_fmadd_v4df, "__builtin_ia32_vfmaddpd256", IX86_BUILTIN_VFMADDPD256, UNKNOWN, (int)MULTI_ARG_3_DF2 }, { OPTION_MASK_ISA_FMA | OPTION_MASK_ISA_FMA4, CODE_FOR_fmaddsub_v4sf, "__builtin_ia32_vfmaddsubps", IX86_BUILTIN_VFMADDSUBPS, UNKNOWN, (int)MULTI_ARG_3_SF }, { OPTION_MASK_ISA_FMA | OPTION_MASK_ISA_FMA4, CODE_FOR_fmaddsub_v2df, "__builtin_ia32_vfmaddsubpd", IX86_BUILTIN_VFMADDSUBPD, UNKNOWN, (int)MULTI_ARG_3_DF }, { OPTION_MASK_ISA_FMA | OPTION_MASK_ISA_FMA4, CODE_FOR_fmaddsub_v8sf, "__builtin_ia32_vfmaddsubps256", IX86_BUILTIN_VFMADDSUBPS256, UNKNOWN, (int)MULTI_ARG_3_SF2 }, { OPTION_MASK_ISA_FMA | OPTION_MASK_ISA_FMA4, CODE_FOR_fmaddsub_v4df, "__builtin_ia32_vfmaddsubpd256", IX86_BUILTIN_VFMADDSUBPD256, UNKNOWN, (int)MULTI_ARG_3_DF2 }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcmov_v2di, "__builtin_ia32_vpcmov", IX86_BUILTIN_VPCMOV, UNKNOWN, (int)MULTI_ARG_3_DI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcmov_v2di, "__builtin_ia32_vpcmov_v2di", IX86_BUILTIN_VPCMOV_V2DI, UNKNOWN, (int)MULTI_ARG_3_DI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcmov_v4si, "__builtin_ia32_vpcmov_v4si", IX86_BUILTIN_VPCMOV_V4SI, UNKNOWN, (int)MULTI_ARG_3_SI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcmov_v8hi, "__builtin_ia32_vpcmov_v8hi", IX86_BUILTIN_VPCMOV_V8HI, UNKNOWN, (int)MULTI_ARG_3_HI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcmov_v16qi, "__builtin_ia32_vpcmov_v16qi",IX86_BUILTIN_VPCMOV_V16QI,UNKNOWN, (int)MULTI_ARG_3_QI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcmov_v2df, "__builtin_ia32_vpcmov_v2df", IX86_BUILTIN_VPCMOV_V2DF, UNKNOWN, (int)MULTI_ARG_3_DF }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcmov_v4sf, "__builtin_ia32_vpcmov_v4sf", IX86_BUILTIN_VPCMOV_V4SF, UNKNOWN, (int)MULTI_ARG_3_SF }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcmov_v4di256, "__builtin_ia32_vpcmov256", IX86_BUILTIN_VPCMOV256, UNKNOWN, (int)MULTI_ARG_3_DI2 }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcmov_v4di256, "__builtin_ia32_vpcmov_v4di256", IX86_BUILTIN_VPCMOV_V4DI256, UNKNOWN, (int)MULTI_ARG_3_DI2 }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcmov_v8si256, "__builtin_ia32_vpcmov_v8si256", IX86_BUILTIN_VPCMOV_V8SI256, UNKNOWN, (int)MULTI_ARG_3_SI2 }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcmov_v16hi256, "__builtin_ia32_vpcmov_v16hi256", IX86_BUILTIN_VPCMOV_V16HI256, UNKNOWN, (int)MULTI_ARG_3_HI2 }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcmov_v32qi256, "__builtin_ia32_vpcmov_v32qi256", IX86_BUILTIN_VPCMOV_V32QI256, UNKNOWN, (int)MULTI_ARG_3_QI2 }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcmov_v4df256, "__builtin_ia32_vpcmov_v4df256", IX86_BUILTIN_VPCMOV_V4DF256, UNKNOWN, (int)MULTI_ARG_3_DF2 }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcmov_v8sf256, "__builtin_ia32_vpcmov_v8sf256", IX86_BUILTIN_VPCMOV_V8SF256, UNKNOWN, (int)MULTI_ARG_3_SF2 }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pperm, "__builtin_ia32_vpperm", IX86_BUILTIN_VPPERM, UNKNOWN, (int)MULTI_ARG_3_QI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pmacssww, "__builtin_ia32_vpmacssww", IX86_BUILTIN_VPMACSSWW, UNKNOWN, (int)MULTI_ARG_3_HI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pmacsww, "__builtin_ia32_vpmacsww", IX86_BUILTIN_VPMACSWW, UNKNOWN, (int)MULTI_ARG_3_HI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pmacsswd, "__builtin_ia32_vpmacsswd", IX86_BUILTIN_VPMACSSWD, UNKNOWN, (int)MULTI_ARG_3_HI_SI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pmacswd, "__builtin_ia32_vpmacswd", IX86_BUILTIN_VPMACSWD, UNKNOWN, (int)MULTI_ARG_3_HI_SI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pmacssdd, "__builtin_ia32_vpmacssdd", IX86_BUILTIN_VPMACSSDD, UNKNOWN, (int)MULTI_ARG_3_SI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pmacsdd, "__builtin_ia32_vpmacsdd", IX86_BUILTIN_VPMACSDD, UNKNOWN, (int)MULTI_ARG_3_SI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pmacssdql, "__builtin_ia32_vpmacssdql", IX86_BUILTIN_VPMACSSDQL, UNKNOWN, (int)MULTI_ARG_3_SI_DI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pmacssdqh, "__builtin_ia32_vpmacssdqh", IX86_BUILTIN_VPMACSSDQH, UNKNOWN, (int)MULTI_ARG_3_SI_DI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pmacsdql, "__builtin_ia32_vpmacsdql", IX86_BUILTIN_VPMACSDQL, UNKNOWN, (int)MULTI_ARG_3_SI_DI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pmacsdqh, "__builtin_ia32_vpmacsdqh", IX86_BUILTIN_VPMACSDQH, UNKNOWN, (int)MULTI_ARG_3_SI_DI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pmadcsswd, "__builtin_ia32_vpmadcsswd", IX86_BUILTIN_VPMADCSSWD, UNKNOWN, (int)MULTI_ARG_3_HI_SI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pmadcswd, "__builtin_ia32_vpmadcswd", IX86_BUILTIN_VPMADCSWD, UNKNOWN, (int)MULTI_ARG_3_HI_SI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_vrotlv2di3, "__builtin_ia32_vprotq", IX86_BUILTIN_VPROTQ, UNKNOWN, (int)MULTI_ARG_2_DI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_vrotlv4si3, "__builtin_ia32_vprotd", IX86_BUILTIN_VPROTD, UNKNOWN, (int)MULTI_ARG_2_SI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_vrotlv8hi3, "__builtin_ia32_vprotw", IX86_BUILTIN_VPROTW, UNKNOWN, (int)MULTI_ARG_2_HI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_vrotlv16qi3, "__builtin_ia32_vprotb", IX86_BUILTIN_VPROTB, UNKNOWN, (int)MULTI_ARG_2_QI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_rotlv2di3, "__builtin_ia32_vprotqi", IX86_BUILTIN_VPROTQ_IMM, UNKNOWN, (int)MULTI_ARG_2_DI_IMM }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_rotlv4si3, "__builtin_ia32_vprotdi", IX86_BUILTIN_VPROTD_IMM, UNKNOWN, (int)MULTI_ARG_2_SI_IMM }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_rotlv8hi3, "__builtin_ia32_vprotwi", IX86_BUILTIN_VPROTW_IMM, UNKNOWN, (int)MULTI_ARG_2_HI_IMM }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_rotlv16qi3, "__builtin_ia32_vprotbi", IX86_BUILTIN_VPROTB_IMM, UNKNOWN, (int)MULTI_ARG_2_QI_IMM }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_shav2di3, "__builtin_ia32_vpshaq", IX86_BUILTIN_VPSHAQ, UNKNOWN, (int)MULTI_ARG_2_DI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_shav4si3, "__builtin_ia32_vpshad", IX86_BUILTIN_VPSHAD, UNKNOWN, (int)MULTI_ARG_2_SI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_shav8hi3, "__builtin_ia32_vpshaw", IX86_BUILTIN_VPSHAW, UNKNOWN, (int)MULTI_ARG_2_HI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_shav16qi3, "__builtin_ia32_vpshab", IX86_BUILTIN_VPSHAB, UNKNOWN, (int)MULTI_ARG_2_QI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_shlv2di3, "__builtin_ia32_vpshlq", IX86_BUILTIN_VPSHLQ, UNKNOWN, (int)MULTI_ARG_2_DI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_shlv4si3, "__builtin_ia32_vpshld", IX86_BUILTIN_VPSHLD, UNKNOWN, (int)MULTI_ARG_2_SI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_shlv8hi3, "__builtin_ia32_vpshlw", IX86_BUILTIN_VPSHLW, UNKNOWN, (int)MULTI_ARG_2_HI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_shlv16qi3, "__builtin_ia32_vpshlb", IX86_BUILTIN_VPSHLB, UNKNOWN, (int)MULTI_ARG_2_QI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_vmfrczv4sf2, "__builtin_ia32_vfrczss", IX86_BUILTIN_VFRCZSS, UNKNOWN, (int)MULTI_ARG_2_SF }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_vmfrczv2df2, "__builtin_ia32_vfrczsd", IX86_BUILTIN_VFRCZSD, UNKNOWN, (int)MULTI_ARG_2_DF }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_frczv4sf2, "__builtin_ia32_vfrczps", IX86_BUILTIN_VFRCZPS, UNKNOWN, (int)MULTI_ARG_1_SF }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_frczv2df2, "__builtin_ia32_vfrczpd", IX86_BUILTIN_VFRCZPD, UNKNOWN, (int)MULTI_ARG_1_DF }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_frczv8sf2, "__builtin_ia32_vfrczps256", IX86_BUILTIN_VFRCZPS256, UNKNOWN, (int)MULTI_ARG_1_SF2 }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_frczv4df2, "__builtin_ia32_vfrczpd256", IX86_BUILTIN_VFRCZPD256, UNKNOWN, (int)MULTI_ARG_1_DF2 }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_phaddbw, "__builtin_ia32_vphaddbw", IX86_BUILTIN_VPHADDBW, UNKNOWN, (int)MULTI_ARG_1_QI_HI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_phaddbd, "__builtin_ia32_vphaddbd", IX86_BUILTIN_VPHADDBD, UNKNOWN, (int)MULTI_ARG_1_QI_SI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_phaddbq, "__builtin_ia32_vphaddbq", IX86_BUILTIN_VPHADDBQ, UNKNOWN, (int)MULTI_ARG_1_QI_DI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_phaddwd, "__builtin_ia32_vphaddwd", IX86_BUILTIN_VPHADDWD, UNKNOWN, (int)MULTI_ARG_1_HI_SI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_phaddwq, "__builtin_ia32_vphaddwq", IX86_BUILTIN_VPHADDWQ, UNKNOWN, (int)MULTI_ARG_1_HI_DI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_phadddq, "__builtin_ia32_vphadddq", IX86_BUILTIN_VPHADDDQ, UNKNOWN, (int)MULTI_ARG_1_SI_DI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_phaddubw, "__builtin_ia32_vphaddubw", IX86_BUILTIN_VPHADDUBW, UNKNOWN, (int)MULTI_ARG_1_QI_HI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_phaddubd, "__builtin_ia32_vphaddubd", IX86_BUILTIN_VPHADDUBD, UNKNOWN, (int)MULTI_ARG_1_QI_SI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_phaddubq, "__builtin_ia32_vphaddubq", IX86_BUILTIN_VPHADDUBQ, UNKNOWN, (int)MULTI_ARG_1_QI_DI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_phadduwd, "__builtin_ia32_vphadduwd", IX86_BUILTIN_VPHADDUWD, UNKNOWN, (int)MULTI_ARG_1_HI_SI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_phadduwq, "__builtin_ia32_vphadduwq", IX86_BUILTIN_VPHADDUWQ, UNKNOWN, (int)MULTI_ARG_1_HI_DI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_phaddudq, "__builtin_ia32_vphaddudq", IX86_BUILTIN_VPHADDUDQ, UNKNOWN, (int)MULTI_ARG_1_SI_DI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_phsubbw, "__builtin_ia32_vphsubbw", IX86_BUILTIN_VPHSUBBW, UNKNOWN, (int)MULTI_ARG_1_QI_HI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_phsubwd, "__builtin_ia32_vphsubwd", IX86_BUILTIN_VPHSUBWD, UNKNOWN, (int)MULTI_ARG_1_HI_SI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_phsubdq, "__builtin_ia32_vphsubdq", IX86_BUILTIN_VPHSUBDQ, UNKNOWN, (int)MULTI_ARG_1_SI_DI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv16qi3, "__builtin_ia32_vpcomeqb", IX86_BUILTIN_VPCOMEQB, EQ, (int)MULTI_ARG_2_QI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv16qi3, "__builtin_ia32_vpcomneb", IX86_BUILTIN_VPCOMNEB, NE, (int)MULTI_ARG_2_QI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv16qi3, "__builtin_ia32_vpcomneqb", IX86_BUILTIN_VPCOMNEB, NE, (int)MULTI_ARG_2_QI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv16qi3, "__builtin_ia32_vpcomltb", IX86_BUILTIN_VPCOMLTB, LT, (int)MULTI_ARG_2_QI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv16qi3, "__builtin_ia32_vpcomleb", IX86_BUILTIN_VPCOMLEB, LE, (int)MULTI_ARG_2_QI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv16qi3, "__builtin_ia32_vpcomgtb", IX86_BUILTIN_VPCOMGTB, GT, (int)MULTI_ARG_2_QI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv16qi3, "__builtin_ia32_vpcomgeb", IX86_BUILTIN_VPCOMGEB, GE, (int)MULTI_ARG_2_QI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv8hi3, "__builtin_ia32_vpcomeqw", IX86_BUILTIN_VPCOMEQW, EQ, (int)MULTI_ARG_2_HI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv8hi3, "__builtin_ia32_vpcomnew", IX86_BUILTIN_VPCOMNEW, NE, (int)MULTI_ARG_2_HI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv8hi3, "__builtin_ia32_vpcomneqw", IX86_BUILTIN_VPCOMNEW, NE, (int)MULTI_ARG_2_HI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv8hi3, "__builtin_ia32_vpcomltw", IX86_BUILTIN_VPCOMLTW, LT, (int)MULTI_ARG_2_HI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv8hi3, "__builtin_ia32_vpcomlew", IX86_BUILTIN_VPCOMLEW, LE, (int)MULTI_ARG_2_HI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv8hi3, "__builtin_ia32_vpcomgtw", IX86_BUILTIN_VPCOMGTW, GT, (int)MULTI_ARG_2_HI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv8hi3, "__builtin_ia32_vpcomgew", IX86_BUILTIN_VPCOMGEW, GE, (int)MULTI_ARG_2_HI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv4si3, "__builtin_ia32_vpcomeqd", IX86_BUILTIN_VPCOMEQD, EQ, (int)MULTI_ARG_2_SI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv4si3, "__builtin_ia32_vpcomned", IX86_BUILTIN_VPCOMNED, NE, (int)MULTI_ARG_2_SI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv4si3, "__builtin_ia32_vpcomneqd", IX86_BUILTIN_VPCOMNED, NE, (int)MULTI_ARG_2_SI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv4si3, "__builtin_ia32_vpcomltd", IX86_BUILTIN_VPCOMLTD, LT, (int)MULTI_ARG_2_SI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv4si3, "__builtin_ia32_vpcomled", IX86_BUILTIN_VPCOMLED, LE, (int)MULTI_ARG_2_SI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv4si3, "__builtin_ia32_vpcomgtd", IX86_BUILTIN_VPCOMGTD, GT, (int)MULTI_ARG_2_SI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv4si3, "__builtin_ia32_vpcomged", IX86_BUILTIN_VPCOMGED, GE, (int)MULTI_ARG_2_SI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv2di3, "__builtin_ia32_vpcomeqq", IX86_BUILTIN_VPCOMEQQ, EQ, (int)MULTI_ARG_2_DI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv2di3, "__builtin_ia32_vpcomneq", IX86_BUILTIN_VPCOMNEQ, NE, (int)MULTI_ARG_2_DI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv2di3, "__builtin_ia32_vpcomneqq", IX86_BUILTIN_VPCOMNEQ, NE, (int)MULTI_ARG_2_DI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv2di3, "__builtin_ia32_vpcomltq", IX86_BUILTIN_VPCOMLTQ, LT, (int)MULTI_ARG_2_DI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv2di3, "__builtin_ia32_vpcomleq", IX86_BUILTIN_VPCOMLEQ, LE, (int)MULTI_ARG_2_DI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv2di3, "__builtin_ia32_vpcomgtq", IX86_BUILTIN_VPCOMGTQ, GT, (int)MULTI_ARG_2_DI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv2di3, "__builtin_ia32_vpcomgeq", IX86_BUILTIN_VPCOMGEQ, GE, (int)MULTI_ARG_2_DI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_uns2v16qi3,"__builtin_ia32_vpcomequb", IX86_BUILTIN_VPCOMEQUB, EQ, (int)MULTI_ARG_2_QI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_uns2v16qi3,"__builtin_ia32_vpcomneub", IX86_BUILTIN_VPCOMNEUB, NE, (int)MULTI_ARG_2_QI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_uns2v16qi3,"__builtin_ia32_vpcomnequb", IX86_BUILTIN_VPCOMNEUB, NE, (int)MULTI_ARG_2_QI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_unsv16qi3, "__builtin_ia32_vpcomltub", IX86_BUILTIN_VPCOMLTUB, LTU, (int)MULTI_ARG_2_QI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_unsv16qi3, "__builtin_ia32_vpcomleub", IX86_BUILTIN_VPCOMLEUB, LEU, (int)MULTI_ARG_2_QI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_unsv16qi3, "__builtin_ia32_vpcomgtub", IX86_BUILTIN_VPCOMGTUB, GTU, (int)MULTI_ARG_2_QI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_unsv16qi3, "__builtin_ia32_vpcomgeub", IX86_BUILTIN_VPCOMGEUB, GEU, (int)MULTI_ARG_2_QI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_uns2v8hi3, "__builtin_ia32_vpcomequw", IX86_BUILTIN_VPCOMEQUW, EQ, (int)MULTI_ARG_2_HI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_uns2v8hi3, "__builtin_ia32_vpcomneuw", IX86_BUILTIN_VPCOMNEUW, NE, (int)MULTI_ARG_2_HI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_uns2v8hi3, "__builtin_ia32_vpcomnequw", IX86_BUILTIN_VPCOMNEUW, NE, (int)MULTI_ARG_2_HI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_unsv8hi3, "__builtin_ia32_vpcomltuw", IX86_BUILTIN_VPCOMLTUW, LTU, (int)MULTI_ARG_2_HI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_unsv8hi3, "__builtin_ia32_vpcomleuw", IX86_BUILTIN_VPCOMLEUW, LEU, (int)MULTI_ARG_2_HI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_unsv8hi3, "__builtin_ia32_vpcomgtuw", IX86_BUILTIN_VPCOMGTUW, GTU, (int)MULTI_ARG_2_HI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_unsv8hi3, "__builtin_ia32_vpcomgeuw", IX86_BUILTIN_VPCOMGEUW, GEU, (int)MULTI_ARG_2_HI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_uns2v4si3, "__builtin_ia32_vpcomequd", IX86_BUILTIN_VPCOMEQUD, EQ, (int)MULTI_ARG_2_SI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_uns2v4si3, "__builtin_ia32_vpcomneud", IX86_BUILTIN_VPCOMNEUD, NE, (int)MULTI_ARG_2_SI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_uns2v4si3, "__builtin_ia32_vpcomnequd", IX86_BUILTIN_VPCOMNEUD, NE, (int)MULTI_ARG_2_SI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_unsv4si3, "__builtin_ia32_vpcomltud", IX86_BUILTIN_VPCOMLTUD, LTU, (int)MULTI_ARG_2_SI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_unsv4si3, "__builtin_ia32_vpcomleud", IX86_BUILTIN_VPCOMLEUD, LEU, (int)MULTI_ARG_2_SI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_unsv4si3, "__builtin_ia32_vpcomgtud", IX86_BUILTIN_VPCOMGTUD, GTU, (int)MULTI_ARG_2_SI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_unsv4si3, "__builtin_ia32_vpcomgeud", IX86_BUILTIN_VPCOMGEUD, GEU, (int)MULTI_ARG_2_SI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_uns2v2di3, "__builtin_ia32_vpcomequq", IX86_BUILTIN_VPCOMEQUQ, EQ, (int)MULTI_ARG_2_DI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_uns2v2di3, "__builtin_ia32_vpcomneuq", IX86_BUILTIN_VPCOMNEUQ, NE, (int)MULTI_ARG_2_DI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_uns2v2di3, "__builtin_ia32_vpcomnequq", IX86_BUILTIN_VPCOMNEUQ, NE, (int)MULTI_ARG_2_DI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_unsv2di3, "__builtin_ia32_vpcomltuq", IX86_BUILTIN_VPCOMLTUQ, LTU, (int)MULTI_ARG_2_DI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_unsv2di3, "__builtin_ia32_vpcomleuq", IX86_BUILTIN_VPCOMLEUQ, LEU, (int)MULTI_ARG_2_DI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_unsv2di3, "__builtin_ia32_vpcomgtuq", IX86_BUILTIN_VPCOMGTUQ, GTU, (int)MULTI_ARG_2_DI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_unsv2di3, "__builtin_ia32_vpcomgeuq", IX86_BUILTIN_VPCOMGEUQ, GEU, (int)MULTI_ARG_2_DI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcom_tfv16qi3, "__builtin_ia32_vpcomfalseb", IX86_BUILTIN_VPCOMFALSEB, (enum rtx_code) PCOM_FALSE, (int)MULTI_ARG_2_QI_TF }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcom_tfv8hi3, "__builtin_ia32_vpcomfalsew", IX86_BUILTIN_VPCOMFALSEW, (enum rtx_code) PCOM_FALSE, (int)MULTI_ARG_2_HI_TF }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcom_tfv4si3, "__builtin_ia32_vpcomfalsed", IX86_BUILTIN_VPCOMFALSED, (enum rtx_code) PCOM_FALSE, (int)MULTI_ARG_2_SI_TF }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcom_tfv2di3, "__builtin_ia32_vpcomfalseq", IX86_BUILTIN_VPCOMFALSEQ, (enum rtx_code) PCOM_FALSE, (int)MULTI_ARG_2_DI_TF }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcom_tfv16qi3, "__builtin_ia32_vpcomfalseub",IX86_BUILTIN_VPCOMFALSEUB,(enum rtx_code) PCOM_FALSE, (int)MULTI_ARG_2_QI_TF }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcom_tfv8hi3, "__builtin_ia32_vpcomfalseuw",IX86_BUILTIN_VPCOMFALSEUW,(enum rtx_code) PCOM_FALSE, (int)MULTI_ARG_2_HI_TF }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcom_tfv4si3, "__builtin_ia32_vpcomfalseud",IX86_BUILTIN_VPCOMFALSEUD,(enum rtx_code) PCOM_FALSE, (int)MULTI_ARG_2_SI_TF }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcom_tfv2di3, "__builtin_ia32_vpcomfalseuq",IX86_BUILTIN_VPCOMFALSEUQ,(enum rtx_code) PCOM_FALSE, (int)MULTI_ARG_2_DI_TF }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcom_tfv16qi3, "__builtin_ia32_vpcomtrueb", IX86_BUILTIN_VPCOMTRUEB, (enum rtx_code) PCOM_TRUE, (int)MULTI_ARG_2_QI_TF }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcom_tfv8hi3, "__builtin_ia32_vpcomtruew", IX86_BUILTIN_VPCOMTRUEW, (enum rtx_code) PCOM_TRUE, (int)MULTI_ARG_2_HI_TF }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcom_tfv4si3, "__builtin_ia32_vpcomtrued", IX86_BUILTIN_VPCOMTRUED, (enum rtx_code) PCOM_TRUE, (int)MULTI_ARG_2_SI_TF }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcom_tfv2di3, "__builtin_ia32_vpcomtrueq", IX86_BUILTIN_VPCOMTRUEQ, (enum rtx_code) PCOM_TRUE, (int)MULTI_ARG_2_DI_TF }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcom_tfv16qi3, "__builtin_ia32_vpcomtrueub", IX86_BUILTIN_VPCOMTRUEUB, (enum rtx_code) PCOM_TRUE, (int)MULTI_ARG_2_QI_TF }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcom_tfv8hi3, "__builtin_ia32_vpcomtrueuw", IX86_BUILTIN_VPCOMTRUEUW, (enum rtx_code) PCOM_TRUE, (int)MULTI_ARG_2_HI_TF }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcom_tfv4si3, "__builtin_ia32_vpcomtrueud", IX86_BUILTIN_VPCOMTRUEUD, (enum rtx_code) PCOM_TRUE, (int)MULTI_ARG_2_SI_TF }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcom_tfv2di3, "__builtin_ia32_vpcomtrueuq", IX86_BUILTIN_VPCOMTRUEUQ, (enum rtx_code) PCOM_TRUE, (int)MULTI_ARG_2_DI_TF }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_vpermil2v2df3, "__builtin_ia32_vpermil2pd", IX86_BUILTIN_VPERMIL2PD, UNKNOWN, (int)MULTI_ARG_4_DF2_DI_I }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_vpermil2v4sf3, "__builtin_ia32_vpermil2ps", IX86_BUILTIN_VPERMIL2PS, UNKNOWN, (int)MULTI_ARG_4_SF2_SI_I }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_vpermil2v4df3, "__builtin_ia32_vpermil2pd256", IX86_BUILTIN_VPERMIL2PD256, UNKNOWN, (int)MULTI_ARG_4_DF2_DI_I1 }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_vpermil2v8sf3, "__builtin_ia32_vpermil2ps256", IX86_BUILTIN_VPERMIL2PS256, UNKNOWN, (int)MULTI_ARG_4_SF2_SI_I1 }, }; /* TM vector builtins. */ /* Reuse the existing x86-specific `struct builtin_description' cause we're lazy. Add casts to make them fit. */ static const struct builtin_description bdesc_tm[] = { { OPTION_MASK_ISA_MMX, CODE_FOR_nothing, "__builtin__ITM_WM64", (enum ix86_builtins) BUILT_IN_TM_STORE_M64, UNKNOWN, VOID_FTYPE_PV2SI_V2SI }, { OPTION_MASK_ISA_MMX, CODE_FOR_nothing, "__builtin__ITM_WaRM64", (enum ix86_builtins) BUILT_IN_TM_STORE_WAR_M64, UNKNOWN, VOID_FTYPE_PV2SI_V2SI }, { OPTION_MASK_ISA_MMX, CODE_FOR_nothing, "__builtin__ITM_WaWM64", (enum ix86_builtins) BUILT_IN_TM_STORE_WAW_M64, UNKNOWN, VOID_FTYPE_PV2SI_V2SI }, { OPTION_MASK_ISA_MMX, CODE_FOR_nothing, "__builtin__ITM_RM64", (enum ix86_builtins) BUILT_IN_TM_LOAD_M64, UNKNOWN, V2SI_FTYPE_PCV2SI }, { OPTION_MASK_ISA_MMX, CODE_FOR_nothing, "__builtin__ITM_RaRM64", (enum ix86_builtins) BUILT_IN_TM_LOAD_RAR_M64, UNKNOWN, V2SI_FTYPE_PCV2SI }, { OPTION_MASK_ISA_MMX, CODE_FOR_nothing, "__builtin__ITM_RaWM64", (enum ix86_builtins) BUILT_IN_TM_LOAD_RAW_M64, UNKNOWN, V2SI_FTYPE_PCV2SI }, { OPTION_MASK_ISA_MMX, CODE_FOR_nothing, "__builtin__ITM_RfWM64", (enum ix86_builtins) BUILT_IN_TM_LOAD_RFW_M64, UNKNOWN, V2SI_FTYPE_PCV2SI }, { OPTION_MASK_ISA_SSE, CODE_FOR_nothing, "__builtin__ITM_WM128", (enum ix86_builtins) BUILT_IN_TM_STORE_M128, UNKNOWN, VOID_FTYPE_PV4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_nothing, "__builtin__ITM_WaRM128", (enum ix86_builtins) BUILT_IN_TM_STORE_WAR_M128, UNKNOWN, VOID_FTYPE_PV4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_nothing, "__builtin__ITM_WaWM128", (enum ix86_builtins) BUILT_IN_TM_STORE_WAW_M128, UNKNOWN, VOID_FTYPE_PV4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_nothing, "__builtin__ITM_RM128", (enum ix86_builtins) BUILT_IN_TM_LOAD_M128, UNKNOWN, V4SF_FTYPE_PCV4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_nothing, "__builtin__ITM_RaRM128", (enum ix86_builtins) BUILT_IN_TM_LOAD_RAR_M128, UNKNOWN, V4SF_FTYPE_PCV4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_nothing, "__builtin__ITM_RaWM128", (enum ix86_builtins) BUILT_IN_TM_LOAD_RAW_M128, UNKNOWN, V4SF_FTYPE_PCV4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_nothing, "__builtin__ITM_RfWM128", (enum ix86_builtins) BUILT_IN_TM_LOAD_RFW_M128, UNKNOWN, V4SF_FTYPE_PCV4SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_nothing, "__builtin__ITM_WM256", (enum ix86_builtins) BUILT_IN_TM_STORE_M256, UNKNOWN, VOID_FTYPE_PV8SF_V8SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_nothing, "__builtin__ITM_WaRM256", (enum ix86_builtins) BUILT_IN_TM_STORE_WAR_M256, UNKNOWN, VOID_FTYPE_PV8SF_V8SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_nothing, "__builtin__ITM_WaWM256", (enum ix86_builtins) BUILT_IN_TM_STORE_WAW_M256, UNKNOWN, VOID_FTYPE_PV8SF_V8SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_nothing, "__builtin__ITM_RM256", (enum ix86_builtins) BUILT_IN_TM_LOAD_M256, UNKNOWN, V8SF_FTYPE_PCV8SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_nothing, "__builtin__ITM_RaRM256", (enum ix86_builtins) BUILT_IN_TM_LOAD_RAR_M256, UNKNOWN, V8SF_FTYPE_PCV8SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_nothing, "__builtin__ITM_RaWM256", (enum ix86_builtins) BUILT_IN_TM_LOAD_RAW_M256, UNKNOWN, V8SF_FTYPE_PCV8SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_nothing, "__builtin__ITM_RfWM256", (enum ix86_builtins) BUILT_IN_TM_LOAD_RFW_M256, UNKNOWN, V8SF_FTYPE_PCV8SF }, { OPTION_MASK_ISA_MMX, CODE_FOR_nothing, "__builtin__ITM_LM64", (enum ix86_builtins) BUILT_IN_TM_LOG_M64, UNKNOWN, VOID_FTYPE_PCVOID }, { OPTION_MASK_ISA_SSE, CODE_FOR_nothing, "__builtin__ITM_LM128", (enum ix86_builtins) BUILT_IN_TM_LOG_M128, UNKNOWN, VOID_FTYPE_PCVOID }, { OPTION_MASK_ISA_AVX, CODE_FOR_nothing, "__builtin__ITM_LM256", (enum ix86_builtins) BUILT_IN_TM_LOG_M256, UNKNOWN, VOID_FTYPE_PCVOID }, }; /* TM callbacks. */ /* Return the builtin decl needed to load a vector of TYPE. */ static tree ix86_builtin_tm_load (tree type) { if (TREE_CODE (type) == VECTOR_TYPE) { switch (tree_to_uhwi (TYPE_SIZE (type))) { case 64: return builtin_decl_explicit (BUILT_IN_TM_LOAD_M64); case 128: return builtin_decl_explicit (BUILT_IN_TM_LOAD_M128); case 256: return builtin_decl_explicit (BUILT_IN_TM_LOAD_M256); } } return NULL_TREE; } /* Return the builtin decl needed to store a vector of TYPE. */ static tree ix86_builtin_tm_store (tree type) { if (TREE_CODE (type) == VECTOR_TYPE) { switch (tree_to_uhwi (TYPE_SIZE (type))) { case 64: return builtin_decl_explicit (BUILT_IN_TM_STORE_M64); case 128: return builtin_decl_explicit (BUILT_IN_TM_STORE_M128); case 256: return builtin_decl_explicit (BUILT_IN_TM_STORE_M256); } } return NULL_TREE; } /* Initialize the transactional memory vector load/store builtins. */ static void ix86_init_tm_builtins (void) { enum ix86_builtin_func_type ftype; const struct builtin_description *d; size_t i; tree decl; tree attrs_load, attrs_type_load, attrs_store, attrs_type_store; tree attrs_log, attrs_type_log; if (!flag_tm) return; /* If there are no builtins defined, we must be compiling in a language without trans-mem support. */ if (!builtin_decl_explicit_p (BUILT_IN_TM_LOAD_1)) return; /* Use whatever attributes a normal TM load has. */ decl = builtin_decl_explicit (BUILT_IN_TM_LOAD_1); attrs_load = DECL_ATTRIBUTES (decl); attrs_type_load = TYPE_ATTRIBUTES (TREE_TYPE (decl)); /* Use whatever attributes a normal TM store has. */ decl = builtin_decl_explicit (BUILT_IN_TM_STORE_1); attrs_store = DECL_ATTRIBUTES (decl); attrs_type_store = TYPE_ATTRIBUTES (TREE_TYPE (decl)); /* Use whatever attributes a normal TM log has. */ decl = builtin_decl_explicit (BUILT_IN_TM_LOG); attrs_log = DECL_ATTRIBUTES (decl); attrs_type_log = TYPE_ATTRIBUTES (TREE_TYPE (decl)); for (i = 0, d = bdesc_tm; i < ARRAY_SIZE (bdesc_tm); i++, d++) { if ((d->mask & ix86_isa_flags) != 0 || (lang_hooks.builtin_function == lang_hooks.builtin_function_ext_scope)) { tree type, attrs, attrs_type; enum built_in_function code = (enum built_in_function) d->code; ftype = (enum ix86_builtin_func_type) d->flag; type = ix86_get_builtin_func_type (ftype); if (BUILTIN_TM_LOAD_P (code)) { attrs = attrs_load; attrs_type = attrs_type_load; } else if (BUILTIN_TM_STORE_P (code)) { attrs = attrs_store; attrs_type = attrs_type_store; } else { attrs = attrs_log; attrs_type = attrs_type_log; } decl = add_builtin_function (d->name, type, code, BUILT_IN_NORMAL, /* The builtin without the prefix for calling it directly. */ d->name + strlen ("__builtin_"), attrs); /* add_builtin_function() will set the DECL_ATTRIBUTES, now set the TYPE_ATTRIBUTES. */ decl_attributes (&TREE_TYPE (decl), attrs_type, ATTR_FLAG_BUILT_IN); set_builtin_decl (code, decl, false); } } } /* Set up all the MMX/SSE builtins, even builtins for instructions that are not in the current target ISA to allow the user to compile particular modules with different target specific options that differ from the command line options. */ static void ix86_init_mmx_sse_builtins (void) { const struct builtin_description * d; enum ix86_builtin_func_type ftype; size_t i; /* Add all special builtins with variable number of operands. */ for (i = 0, d = bdesc_special_args; i < ARRAY_SIZE (bdesc_special_args); i++, d++) { if (d->name == 0) continue; ftype = (enum ix86_builtin_func_type) d->flag; def_builtin (d->mask, d->name, ftype, d->code); } /* Add all builtins with variable number of operands. */ for (i = 0, d = bdesc_args; i < ARRAY_SIZE (bdesc_args); i++, d++) { if (d->name == 0) continue; ftype = (enum ix86_builtin_func_type) d->flag; def_builtin_const (d->mask, d->name, ftype, d->code); } /* pcmpestr[im] insns. */ for (i = 0, d = bdesc_pcmpestr; i < ARRAY_SIZE (bdesc_pcmpestr); i++, d++) { if (d->code == IX86_BUILTIN_PCMPESTRM128) ftype = V16QI_FTYPE_V16QI_INT_V16QI_INT_INT; else ftype = INT_FTYPE_V16QI_INT_V16QI_INT_INT; def_builtin_const (d->mask, d->name, ftype, d->code); } /* pcmpistr[im] insns. */ for (i = 0, d = bdesc_pcmpistr; i < ARRAY_SIZE (bdesc_pcmpistr); i++, d++) { if (d->code == IX86_BUILTIN_PCMPISTRM128) ftype = V16QI_FTYPE_V16QI_V16QI_INT; else ftype = INT_FTYPE_V16QI_V16QI_INT; def_builtin_const (d->mask, d->name, ftype, d->code); } /* comi/ucomi insns. */ for (i = 0, d = bdesc_comi; i < ARRAY_SIZE (bdesc_comi); i++, d++) { if (d->mask == OPTION_MASK_ISA_SSE2) ftype = INT_FTYPE_V2DF_V2DF; else ftype = INT_FTYPE_V4SF_V4SF; def_builtin_const (d->mask, d->name, ftype, d->code); } /* SSE */ def_builtin (OPTION_MASK_ISA_SSE, "__builtin_ia32_ldmxcsr", VOID_FTYPE_UNSIGNED, IX86_BUILTIN_LDMXCSR); def_builtin (OPTION_MASK_ISA_SSE, "__builtin_ia32_stmxcsr", UNSIGNED_FTYPE_VOID, IX86_BUILTIN_STMXCSR); /* SSE or 3DNow!A */ def_builtin (OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_3DNOW_A, "__builtin_ia32_maskmovq", VOID_FTYPE_V8QI_V8QI_PCHAR, IX86_BUILTIN_MASKMOVQ); /* SSE2 */ def_builtin (OPTION_MASK_ISA_SSE2, "__builtin_ia32_maskmovdqu", VOID_FTYPE_V16QI_V16QI_PCHAR, IX86_BUILTIN_MASKMOVDQU); def_builtin (OPTION_MASK_ISA_SSE2, "__builtin_ia32_clflush", VOID_FTYPE_PCVOID, IX86_BUILTIN_CLFLUSH); x86_mfence = def_builtin (OPTION_MASK_ISA_SSE2, "__builtin_ia32_mfence", VOID_FTYPE_VOID, IX86_BUILTIN_MFENCE); /* SSE3. */ def_builtin (OPTION_MASK_ISA_SSE3, "__builtin_ia32_monitor", VOID_FTYPE_PCVOID_UNSIGNED_UNSIGNED, IX86_BUILTIN_MONITOR); def_builtin (OPTION_MASK_ISA_SSE3, "__builtin_ia32_mwait", VOID_FTYPE_UNSIGNED_UNSIGNED, IX86_BUILTIN_MWAIT); /* AES */ def_builtin_const (OPTION_MASK_ISA_AES, "__builtin_ia32_aesenc128", V2DI_FTYPE_V2DI_V2DI, IX86_BUILTIN_AESENC128); def_builtin_const (OPTION_MASK_ISA_AES, "__builtin_ia32_aesenclast128", V2DI_FTYPE_V2DI_V2DI, IX86_BUILTIN_AESENCLAST128); def_builtin_const (OPTION_MASK_ISA_AES, "__builtin_ia32_aesdec128", V2DI_FTYPE_V2DI_V2DI, IX86_BUILTIN_AESDEC128); def_builtin_const (OPTION_MASK_ISA_AES, "__builtin_ia32_aesdeclast128", V2DI_FTYPE_V2DI_V2DI, IX86_BUILTIN_AESDECLAST128); def_builtin_const (OPTION_MASK_ISA_AES, "__builtin_ia32_aesimc128", V2DI_FTYPE_V2DI, IX86_BUILTIN_AESIMC128); def_builtin_const (OPTION_MASK_ISA_AES, "__builtin_ia32_aeskeygenassist128", V2DI_FTYPE_V2DI_INT, IX86_BUILTIN_AESKEYGENASSIST128); /* PCLMUL */ def_builtin_const (OPTION_MASK_ISA_PCLMUL, "__builtin_ia32_pclmulqdq128", V2DI_FTYPE_V2DI_V2DI_INT, IX86_BUILTIN_PCLMULQDQ128); /* RDRND */ def_builtin (OPTION_MASK_ISA_RDRND, "__builtin_ia32_rdrand16_step", INT_FTYPE_PUSHORT, IX86_BUILTIN_RDRAND16_STEP); def_builtin (OPTION_MASK_ISA_RDRND, "__builtin_ia32_rdrand32_step", INT_FTYPE_PUNSIGNED, IX86_BUILTIN_RDRAND32_STEP); def_builtin (OPTION_MASK_ISA_RDRND | OPTION_MASK_ISA_64BIT, "__builtin_ia32_rdrand64_step", INT_FTYPE_PULONGLONG, IX86_BUILTIN_RDRAND64_STEP); /* AVX2 */ def_builtin (OPTION_MASK_ISA_AVX2, "__builtin_ia32_gathersiv2df", V2DF_FTYPE_V2DF_PCDOUBLE_V4SI_V2DF_INT, IX86_BUILTIN_GATHERSIV2DF); def_builtin (OPTION_MASK_ISA_AVX2, "__builtin_ia32_gathersiv4df", V4DF_FTYPE_V4DF_PCDOUBLE_V4SI_V4DF_INT, IX86_BUILTIN_GATHERSIV4DF); def_builtin (OPTION_MASK_ISA_AVX2, "__builtin_ia32_gatherdiv2df", V2DF_FTYPE_V2DF_PCDOUBLE_V2DI_V2DF_INT, IX86_BUILTIN_GATHERDIV2DF); def_builtin (OPTION_MASK_ISA_AVX2, "__builtin_ia32_gatherdiv4df", V4DF_FTYPE_V4DF_PCDOUBLE_V4DI_V4DF_INT, IX86_BUILTIN_GATHERDIV4DF); def_builtin (OPTION_MASK_ISA_AVX2, "__builtin_ia32_gathersiv4sf", V4SF_FTYPE_V4SF_PCFLOAT_V4SI_V4SF_INT, IX86_BUILTIN_GATHERSIV4SF); def_builtin (OPTION_MASK_ISA_AVX2, "__builtin_ia32_gathersiv8sf", V8SF_FTYPE_V8SF_PCFLOAT_V8SI_V8SF_INT, IX86_BUILTIN_GATHERSIV8SF); def_builtin (OPTION_MASK_ISA_AVX2, "__builtin_ia32_gatherdiv4sf", V4SF_FTYPE_V4SF_PCFLOAT_V2DI_V4SF_INT, IX86_BUILTIN_GATHERDIV4SF); def_builtin (OPTION_MASK_ISA_AVX2, "__builtin_ia32_gatherdiv4sf256", V4SF_FTYPE_V4SF_PCFLOAT_V4DI_V4SF_INT, IX86_BUILTIN_GATHERDIV8SF); def_builtin (OPTION_MASK_ISA_AVX2, "__builtin_ia32_gathersiv2di", V2DI_FTYPE_V2DI_PCINT64_V4SI_V2DI_INT, IX86_BUILTIN_GATHERSIV2DI); def_builtin (OPTION_MASK_ISA_AVX2, "__builtin_ia32_gathersiv4di", V4DI_FTYPE_V4DI_PCINT64_V4SI_V4DI_INT, IX86_BUILTIN_GATHERSIV4DI); def_builtin (OPTION_MASK_ISA_AVX2, "__builtin_ia32_gatherdiv2di", V2DI_FTYPE_V2DI_PCINT64_V2DI_V2DI_INT, IX86_BUILTIN_GATHERDIV2DI); def_builtin (OPTION_MASK_ISA_AVX2, "__builtin_ia32_gatherdiv4di", V4DI_FTYPE_V4DI_PCINT64_V4DI_V4DI_INT, IX86_BUILTIN_GATHERDIV4DI); def_builtin (OPTION_MASK_ISA_AVX2, "__builtin_ia32_gathersiv4si", V4SI_FTYPE_V4SI_PCINT_V4SI_V4SI_INT, IX86_BUILTIN_GATHERSIV4SI); def_builtin (OPTION_MASK_ISA_AVX2, "__builtin_ia32_gathersiv8si", V8SI_FTYPE_V8SI_PCINT_V8SI_V8SI_INT, IX86_BUILTIN_GATHERSIV8SI); def_builtin (OPTION_MASK_ISA_AVX2, "__builtin_ia32_gatherdiv4si", V4SI_FTYPE_V4SI_PCINT_V2DI_V4SI_INT, IX86_BUILTIN_GATHERDIV4SI); def_builtin (OPTION_MASK_ISA_AVX2, "__builtin_ia32_gatherdiv4si256", V4SI_FTYPE_V4SI_PCINT_V4DI_V4SI_INT, IX86_BUILTIN_GATHERDIV8SI); def_builtin (OPTION_MASK_ISA_AVX2, "__builtin_ia32_gatheraltsiv4df ", V4DF_FTYPE_V4DF_PCDOUBLE_V8SI_V4DF_INT, IX86_BUILTIN_GATHERALTSIV4DF); def_builtin (OPTION_MASK_ISA_AVX2, "__builtin_ia32_gatheraltdiv4sf256 ", V8SF_FTYPE_V8SF_PCFLOAT_V4DI_V8SF_INT, IX86_BUILTIN_GATHERALTDIV8SF); def_builtin (OPTION_MASK_ISA_AVX2, "__builtin_ia32_gatheraltsiv4di ", V4DI_FTYPE_V4DI_PCINT64_V8SI_V4DI_INT, IX86_BUILTIN_GATHERALTSIV4DI); def_builtin (OPTION_MASK_ISA_AVX2, "__builtin_ia32_gatheraltdiv4si256 ", V8SI_FTYPE_V8SI_PCINT_V4DI_V8SI_INT, IX86_BUILTIN_GATHERALTDIV8SI); /* RTM. */ def_builtin (OPTION_MASK_ISA_RTM, "__builtin_ia32_xabort", VOID_FTYPE_UNSIGNED, IX86_BUILTIN_XABORT); /* MMX access to the vec_init patterns. */ def_builtin_const (OPTION_MASK_ISA_MMX, "__builtin_ia32_vec_init_v2si", V2SI_FTYPE_INT_INT, IX86_BUILTIN_VEC_INIT_V2SI); def_builtin_const (OPTION_MASK_ISA_MMX, "__builtin_ia32_vec_init_v4hi", V4HI_FTYPE_HI_HI_HI_HI, IX86_BUILTIN_VEC_INIT_V4HI); def_builtin_const (OPTION_MASK_ISA_MMX, "__builtin_ia32_vec_init_v8qi", V8QI_FTYPE_QI_QI_QI_QI_QI_QI_QI_QI, IX86_BUILTIN_VEC_INIT_V8QI); /* Access to the vec_extract patterns. */ def_builtin_const (OPTION_MASK_ISA_SSE2, "__builtin_ia32_vec_ext_v2df", DOUBLE_FTYPE_V2DF_INT, IX86_BUILTIN_VEC_EXT_V2DF); def_builtin_const (OPTION_MASK_ISA_SSE2, "__builtin_ia32_vec_ext_v2di", DI_FTYPE_V2DI_INT, IX86_BUILTIN_VEC_EXT_V2DI); def_builtin_const (OPTION_MASK_ISA_SSE, "__builtin_ia32_vec_ext_v4sf", FLOAT_FTYPE_V4SF_INT, IX86_BUILTIN_VEC_EXT_V4SF); def_builtin_const (OPTION_MASK_ISA_SSE2, "__builtin_ia32_vec_ext_v4si", SI_FTYPE_V4SI_INT, IX86_BUILTIN_VEC_EXT_V4SI); def_builtin_const (OPTION_MASK_ISA_SSE2, "__builtin_ia32_vec_ext_v8hi", HI_FTYPE_V8HI_INT, IX86_BUILTIN_VEC_EXT_V8HI); def_builtin_const (OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_3DNOW_A, "__builtin_ia32_vec_ext_v4hi", HI_FTYPE_V4HI_INT, IX86_BUILTIN_VEC_EXT_V4HI); def_builtin_const (OPTION_MASK_ISA_MMX, "__builtin_ia32_vec_ext_v2si", SI_FTYPE_V2SI_INT, IX86_BUILTIN_VEC_EXT_V2SI); def_builtin_const (OPTION_MASK_ISA_SSE2, "__builtin_ia32_vec_ext_v16qi", QI_FTYPE_V16QI_INT, IX86_BUILTIN_VEC_EXT_V16QI); /* Access to the vec_set patterns. */ def_builtin_const (OPTION_MASK_ISA_SSE4_1 | OPTION_MASK_ISA_64BIT, "__builtin_ia32_vec_set_v2di", V2DI_FTYPE_V2DI_DI_INT, IX86_BUILTIN_VEC_SET_V2DI); def_builtin_const (OPTION_MASK_ISA_SSE4_1, "__builtin_ia32_vec_set_v4sf", V4SF_FTYPE_V4SF_FLOAT_INT, IX86_BUILTIN_VEC_SET_V4SF); def_builtin_const (OPTION_MASK_ISA_SSE4_1, "__builtin_ia32_vec_set_v4si", V4SI_FTYPE_V4SI_SI_INT, IX86_BUILTIN_VEC_SET_V4SI); def_builtin_const (OPTION_MASK_ISA_SSE2, "__builtin_ia32_vec_set_v8hi", V8HI_FTYPE_V8HI_HI_INT, IX86_BUILTIN_VEC_SET_V8HI); def_builtin_const (OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_3DNOW_A, "__builtin_ia32_vec_set_v4hi", V4HI_FTYPE_V4HI_HI_INT, IX86_BUILTIN_VEC_SET_V4HI); def_builtin_const (OPTION_MASK_ISA_SSE4_1, "__builtin_ia32_vec_set_v16qi", V16QI_FTYPE_V16QI_QI_INT, IX86_BUILTIN_VEC_SET_V16QI); /* RDSEED */ def_builtin (OPTION_MASK_ISA_RDSEED, "__builtin_ia32_rdseed_hi_step", INT_FTYPE_PUSHORT, IX86_BUILTIN_RDSEED16_STEP); def_builtin (OPTION_MASK_ISA_RDSEED, "__builtin_ia32_rdseed_si_step", INT_FTYPE_PUNSIGNED, IX86_BUILTIN_RDSEED32_STEP); def_builtin (OPTION_MASK_ISA_RDSEED | OPTION_MASK_ISA_64BIT, "__builtin_ia32_rdseed_di_step", INT_FTYPE_PULONGLONG, IX86_BUILTIN_RDSEED64_STEP); /* ADCX */ def_builtin (0, "__builtin_ia32_addcarryx_u32", UCHAR_FTYPE_UCHAR_UINT_UINT_PUNSIGNED, IX86_BUILTIN_ADDCARRYX32); def_builtin (OPTION_MASK_ISA_64BIT, "__builtin_ia32_addcarryx_u64", UCHAR_FTYPE_UCHAR_ULONGLONG_ULONGLONG_PULONGLONG, IX86_BUILTIN_ADDCARRYX64); /* Add FMA4 multi-arg argument instructions */ for (i = 0, d = bdesc_multi_arg; i < ARRAY_SIZE (bdesc_multi_arg); i++, d++) { if (d->name == 0) continue; ftype = (enum ix86_builtin_func_type) d->flag; def_builtin_const (d->mask, d->name, ftype, d->code); } } /* This adds a condition to the basic_block NEW_BB in function FUNCTION_DECL to return a pointer to VERSION_DECL if the outcome of the expression formed by PREDICATE_CHAIN is true. This function will be called during version dispatch to decide which function version to execute. It returns the basic block at the end, to which more conditions can be added. */ static basic_block add_condition_to_bb (tree function_decl, tree version_decl, tree predicate_chain, basic_block new_bb) { gimple return_stmt; tree convert_expr, result_var; gimple convert_stmt; gimple call_cond_stmt; gimple if_else_stmt; basic_block bb1, bb2, bb3; edge e12, e23; tree cond_var, and_expr_var = NULL_TREE; gimple_seq gseq; tree predicate_decl, predicate_arg; push_cfun (DECL_STRUCT_FUNCTION (function_decl)); gcc_assert (new_bb != NULL); gseq = bb_seq (new_bb); convert_expr = build1 (CONVERT_EXPR, ptr_type_node, build_fold_addr_expr (version_decl)); result_var = create_tmp_var (ptr_type_node, NULL); convert_stmt = gimple_build_assign (result_var, convert_expr); return_stmt = gimple_build_return (result_var); if (predicate_chain == NULL_TREE) { gimple_seq_add_stmt (&gseq, convert_stmt); gimple_seq_add_stmt (&gseq, return_stmt); set_bb_seq (new_bb, gseq); gimple_set_bb (convert_stmt, new_bb); gimple_set_bb (return_stmt, new_bb); pop_cfun (); return new_bb; } while (predicate_chain != NULL) { cond_var = create_tmp_var (integer_type_node, NULL); predicate_decl = TREE_PURPOSE (predicate_chain); predicate_arg = TREE_VALUE (predicate_chain); call_cond_stmt = gimple_build_call (predicate_decl, 1, predicate_arg); gimple_call_set_lhs (call_cond_stmt, cond_var); gimple_set_block (call_cond_stmt, DECL_INITIAL (function_decl)); gimple_set_bb (call_cond_stmt, new_bb); gimple_seq_add_stmt (&gseq, call_cond_stmt); predicate_chain = TREE_CHAIN (predicate_chain); if (and_expr_var == NULL) and_expr_var = cond_var; else { gimple assign_stmt; /* Use MIN_EXPR to check if any integer is zero?. and_expr_var = min_expr */ assign_stmt = gimple_build_assign (and_expr_var, build2 (MIN_EXPR, integer_type_node, cond_var, and_expr_var)); gimple_set_block (assign_stmt, DECL_INITIAL (function_decl)); gimple_set_bb (assign_stmt, new_bb); gimple_seq_add_stmt (&gseq, assign_stmt); } } if_else_stmt = gimple_build_cond (GT_EXPR, and_expr_var, integer_zero_node, NULL_TREE, NULL_TREE); gimple_set_block (if_else_stmt, DECL_INITIAL (function_decl)); gimple_set_bb (if_else_stmt, new_bb); gimple_seq_add_stmt (&gseq, if_else_stmt); gimple_seq_add_stmt (&gseq, convert_stmt); gimple_seq_add_stmt (&gseq, return_stmt); set_bb_seq (new_bb, gseq); bb1 = new_bb; e12 = split_block (bb1, if_else_stmt); bb2 = e12->dest; e12->flags &= ~EDGE_FALLTHRU; e12->flags |= EDGE_TRUE_VALUE; e23 = split_block (bb2, return_stmt); gimple_set_bb (convert_stmt, bb2); gimple_set_bb (return_stmt, bb2); bb3 = e23->dest; make_edge (bb1, bb3, EDGE_FALSE_VALUE); remove_edge (e23); make_edge (bb2, EXIT_BLOCK_PTR_FOR_FN (cfun), 0); pop_cfun (); return bb3; } /* This parses the attribute arguments to target in DECL and determines the right builtin to use to match the platform specification. It returns the priority value for this version decl. If PREDICATE_LIST is not NULL, it stores the list of cpu features that need to be checked before dispatching this function. */ static unsigned int get_builtin_code_for_version (tree decl, tree *predicate_list) { tree attrs; struct cl_target_option cur_target; tree target_node; struct cl_target_option *new_target; const char *arg_str = NULL; const char *attrs_str = NULL; char *tok_str = NULL; char *token; /* Priority of i386 features, greater value is higher priority. This is used to decide the order in which function dispatch must happen. For instance, a version specialized for SSE4.2 should be checked for dispatch before a version for SSE3, as SSE4.2 implies SSE3. */ enum feature_priority { P_ZERO = 0, P_MMX, P_SSE, P_SSE2, P_SSE3, P_SSSE3, P_PROC_SSSE3, P_SSE4_a, P_PROC_SSE4_a, P_SSE4_1, P_SSE4_2, P_PROC_SSE4_2, P_POPCNT, P_AVX, P_AVX2, P_FMA, P_PROC_FMA }; enum feature_priority priority = P_ZERO; /* These are the target attribute strings for which a dispatcher is available, from fold_builtin_cpu. */ static struct _feature_list { const char *const name; const enum feature_priority priority; } const feature_list[] = { {"mmx", P_MMX}, {"sse", P_SSE}, {"sse2", P_SSE2}, {"sse3", P_SSE3}, {"ssse3", P_SSSE3}, {"sse4.1", P_SSE4_1}, {"sse4.2", P_SSE4_2}, {"popcnt", P_POPCNT}, {"avx", P_AVX}, {"avx2", P_AVX2} }; static unsigned int NUM_FEATURES = sizeof (feature_list) / sizeof (struct _feature_list); unsigned int i; tree predicate_chain = NULL_TREE; tree predicate_decl, predicate_arg; attrs = lookup_attribute ("target", DECL_ATTRIBUTES (decl)); gcc_assert (attrs != NULL); attrs = TREE_VALUE (TREE_VALUE (attrs)); gcc_assert (TREE_CODE (attrs) == STRING_CST); attrs_str = TREE_STRING_POINTER (attrs); /* Return priority zero for default function. */ if (strcmp (attrs_str, "default") == 0) return 0; /* Handle arch= if specified. For priority, set it to be 1 more than the best instruction set the processor can handle. For instance, if there is a version for atom and a version for ssse3 (the highest ISA priority for atom), the atom version must be checked for dispatch before the ssse3 version. */ if (strstr (attrs_str, "arch=") != NULL) { cl_target_option_save (&cur_target, &global_options); target_node = ix86_valid_target_attribute_tree (attrs, &global_options, &global_options_set); gcc_assert (target_node); new_target = TREE_TARGET_OPTION (target_node); gcc_assert (new_target); if (new_target->arch_specified && new_target->arch > 0) { switch (new_target->arch) { case PROCESSOR_CORE2: arg_str = "core2"; priority = P_PROC_SSSE3; break; case PROCESSOR_COREI7: arg_str = "corei7"; priority = P_PROC_SSE4_2; break; case PROCESSOR_COREI7_AVX: arg_str = "corei7-avx"; priority = P_PROC_SSE4_2; break; case PROCESSOR_ATOM: arg_str = "atom"; priority = P_PROC_SSSE3; break; case PROCESSOR_AMDFAM10: arg_str = "amdfam10h"; priority = P_PROC_SSE4_a; break; case PROCESSOR_BDVER1: arg_str = "bdver1"; priority = P_PROC_FMA; break; case PROCESSOR_BDVER2: arg_str = "bdver2"; priority = P_PROC_FMA; break; } } cl_target_option_restore (&global_options, &cur_target); if (predicate_list && arg_str == NULL) { error_at (DECL_SOURCE_LOCATION (decl), "No dispatcher found for the versioning attributes"); return 0; } if (predicate_list) { predicate_decl = ix86_builtins [(int) IX86_BUILTIN_CPU_IS]; /* For a C string literal the length includes the trailing NULL. */ predicate_arg = build_string_literal (strlen (arg_str) + 1, arg_str); predicate_chain = tree_cons (predicate_decl, predicate_arg, predicate_chain); } } /* Process feature name. */ tok_str = (char *) xmalloc (strlen (attrs_str) + 1); strcpy (tok_str, attrs_str); token = strtok (tok_str, ","); predicate_decl = ix86_builtins [(int) IX86_BUILTIN_CPU_SUPPORTS]; while (token != NULL) { /* Do not process "arch=" */ if (strncmp (token, "arch=", 5) == 0) { token = strtok (NULL, ","); continue; } for (i = 0; i < NUM_FEATURES; ++i) { if (strcmp (token, feature_list[i].name) == 0) { if (predicate_list) { predicate_arg = build_string_literal ( strlen (feature_list[i].name) + 1, feature_list[i].name); predicate_chain = tree_cons (predicate_decl, predicate_arg, predicate_chain); } /* Find the maximum priority feature. */ if (feature_list[i].priority > priority) priority = feature_list[i].priority; break; } } if (predicate_list && i == NUM_FEATURES) { error_at (DECL_SOURCE_LOCATION (decl), "No dispatcher found for %s", token); return 0; } token = strtok (NULL, ","); } free (tok_str); if (predicate_list && predicate_chain == NULL_TREE) { error_at (DECL_SOURCE_LOCATION (decl), "No dispatcher found for the versioning attributes : %s", attrs_str); return 0; } else if (predicate_list) { predicate_chain = nreverse (predicate_chain); *predicate_list = predicate_chain; } return priority; } /* This compares the priority of target features in function DECL1 and DECL2. It returns positive value if DECL1 is higher priority, negative value if DECL2 is higher priority and 0 if they are the same. */ static int ix86_compare_version_priority (tree decl1, tree decl2) { unsigned int priority1 = get_builtin_code_for_version (decl1, NULL); unsigned int priority2 = get_builtin_code_for_version (decl2, NULL); return (int)priority1 - (int)priority2; } /* V1 and V2 point to function versions with different priorities based on the target ISA. This function compares their priorities. */ static int feature_compare (const void *v1, const void *v2) { typedef struct _function_version_info { tree version_decl; tree predicate_chain; unsigned int dispatch_priority; } function_version_info; const function_version_info c1 = *(const function_version_info *)v1; const function_version_info c2 = *(const function_version_info *)v2; return (c2.dispatch_priority - c1.dispatch_priority); } /* This function generates the dispatch function for multi-versioned functions. DISPATCH_DECL is the function which will contain the dispatch logic. FNDECLS are the function choices for dispatch, and is a tree chain. EMPTY_BB is the basic block pointer in DISPATCH_DECL in which the dispatch code is generated. */ static int dispatch_function_versions (tree dispatch_decl, void *fndecls_p, basic_block *empty_bb) { tree default_decl; gimple ifunc_cpu_init_stmt; gimple_seq gseq; int ix; tree ele; vec *fndecls; unsigned int num_versions = 0; unsigned int actual_versions = 0; unsigned int i; struct _function_version_info { tree version_decl; tree predicate_chain; unsigned int dispatch_priority; }*function_version_info; gcc_assert (dispatch_decl != NULL && fndecls_p != NULL && empty_bb != NULL); /*fndecls_p is actually a vector. */ fndecls = static_cast *> (fndecls_p); /* At least one more version other than the default. */ num_versions = fndecls->length (); gcc_assert (num_versions >= 2); function_version_info = (struct _function_version_info *) XNEWVEC (struct _function_version_info, (num_versions - 1)); /* The first version in the vector is the default decl. */ default_decl = (*fndecls)[0]; push_cfun (DECL_STRUCT_FUNCTION (dispatch_decl)); gseq = bb_seq (*empty_bb); /* Function version dispatch is via IFUNC. IFUNC resolvers fire before constructors, so explicity call __builtin_cpu_init here. */ ifunc_cpu_init_stmt = gimple_build_call_vec ( ix86_builtins [(int) IX86_BUILTIN_CPU_INIT], vNULL); gimple_seq_add_stmt (&gseq, ifunc_cpu_init_stmt); gimple_set_bb (ifunc_cpu_init_stmt, *empty_bb); set_bb_seq (*empty_bb, gseq); pop_cfun (); for (ix = 1; fndecls->iterate (ix, &ele); ++ix) { tree version_decl = ele; tree predicate_chain = NULL_TREE; unsigned int priority; /* Get attribute string, parse it and find the right predicate decl. The predicate function could be a lengthy combination of many features, like arch-type and various isa-variants. */ priority = get_builtin_code_for_version (version_decl, &predicate_chain); if (predicate_chain == NULL_TREE) continue; function_version_info [actual_versions].version_decl = version_decl; function_version_info [actual_versions].predicate_chain = predicate_chain; function_version_info [actual_versions].dispatch_priority = priority; actual_versions++; } /* Sort the versions according to descending order of dispatch priority. The priority is based on the ISA. This is not a perfect solution. There could still be ambiguity. If more than one function version is suitable to execute, which one should be dispatched? In future, allow the user to specify a dispatch priority next to the version. */ qsort (function_version_info, actual_versions, sizeof (struct _function_version_info), feature_compare); for (i = 0; i < actual_versions; ++i) *empty_bb = add_condition_to_bb (dispatch_decl, function_version_info[i].version_decl, function_version_info[i].predicate_chain, *empty_bb); /* dispatch default version at the end. */ *empty_bb = add_condition_to_bb (dispatch_decl, default_decl, NULL, *empty_bb); free (function_version_info); return 0; } /* Comparator function to be used in qsort routine to sort attribute specification strings to "target". */ static int attr_strcmp (const void *v1, const void *v2) { const char *c1 = *(char *const*)v1; const char *c2 = *(char *const*)v2; return strcmp (c1, c2); } /* ARGLIST is the argument to target attribute. This function tokenizes the comma separated arguments, sorts them and returns a string which is a unique identifier for the comma separated arguments. It also replaces non-identifier characters "=,-" with "_". */ static char * sorted_attr_string (tree arglist) { tree arg; size_t str_len_sum = 0; char **args = NULL; char *attr_str, *ret_str; char *attr = NULL; unsigned int argnum = 1; unsigned int i; for (arg = arglist; arg; arg = TREE_CHAIN (arg)) { const char *str = TREE_STRING_POINTER (TREE_VALUE (arg)); size_t len = strlen (str); str_len_sum += len + 1; if (arg != arglist) argnum++; for (i = 0; i < strlen (str); i++) if (str[i] == ',') argnum++; } attr_str = XNEWVEC (char, str_len_sum); str_len_sum = 0; for (arg = arglist; arg; arg = TREE_CHAIN (arg)) { const char *str = TREE_STRING_POINTER (TREE_VALUE (arg)); size_t len = strlen (str); memcpy (attr_str + str_len_sum, str, len); attr_str[str_len_sum + len] = TREE_CHAIN (arg) ? ',' : '\0'; str_len_sum += len + 1; } /* Replace "=,-" with "_". */ for (i = 0; i < strlen (attr_str); i++) if (attr_str[i] == '=' || attr_str[i]== '-') attr_str[i] = '_'; if (argnum == 1) return attr_str; args = XNEWVEC (char *, argnum); i = 0; attr = strtok (attr_str, ","); while (attr != NULL) { args[i] = attr; i++; attr = strtok (NULL, ","); } qsort (args, argnum, sizeof (char *), attr_strcmp); ret_str = XNEWVEC (char, str_len_sum); str_len_sum = 0; for (i = 0; i < argnum; i++) { size_t len = strlen (args[i]); memcpy (ret_str + str_len_sum, args[i], len); ret_str[str_len_sum + len] = i < argnum - 1 ? '_' : '\0'; str_len_sum += len + 1; } XDELETEVEC (args); XDELETEVEC (attr_str); return ret_str; } /* This function changes the assembler name for functions that are versions. If DECL is a function version and has a "target" attribute, it appends the attribute string to its assembler name. */ static tree ix86_mangle_function_version_assembler_name (tree decl, tree id) { tree version_attr; const char *orig_name, *version_string; char *attr_str, *assembler_name; if (DECL_DECLARED_INLINE_P (decl) && lookup_attribute ("gnu_inline", DECL_ATTRIBUTES (decl))) error_at (DECL_SOURCE_LOCATION (decl), "Function versions cannot be marked as gnu_inline," " bodies have to be generated"); if (DECL_VIRTUAL_P (decl) || DECL_VINDEX (decl)) sorry ("Virtual function multiversioning not supported"); version_attr = lookup_attribute ("target", DECL_ATTRIBUTES (decl)); /* target attribute string cannot be NULL. */ gcc_assert (version_attr != NULL_TREE); orig_name = IDENTIFIER_POINTER (id); version_string = TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (version_attr))); if (strcmp (version_string, "default") == 0) return id; attr_str = sorted_attr_string (TREE_VALUE (version_attr)); assembler_name = XNEWVEC (char, strlen (orig_name) + strlen (attr_str) + 2); sprintf (assembler_name, "%s.%s", orig_name, attr_str); /* Allow assembler name to be modified if already set. */ if (DECL_ASSEMBLER_NAME_SET_P (decl)) SET_DECL_RTL (decl, NULL); tree ret = get_identifier (assembler_name); XDELETEVEC (attr_str); XDELETEVEC (assembler_name); return ret; } /* This function returns true if FN1 and FN2 are versions of the same function, that is, the target strings of the function decls are different. This assumes that FN1 and FN2 have the same signature. */ static bool ix86_function_versions (tree fn1, tree fn2) { tree attr1, attr2; char *target1, *target2; bool result; if (TREE_CODE (fn1) != FUNCTION_DECL || TREE_CODE (fn2) != FUNCTION_DECL) return false; attr1 = lookup_attribute ("target", DECL_ATTRIBUTES (fn1)); attr2 = lookup_attribute ("target", DECL_ATTRIBUTES (fn2)); /* At least one function decl should have the target attribute specified. */ if (attr1 == NULL_TREE && attr2 == NULL_TREE) return false; /* Diagnose missing target attribute if one of the decls is already multi-versioned. */ if (attr1 == NULL_TREE || attr2 == NULL_TREE) { if (DECL_FUNCTION_VERSIONED (fn1) || DECL_FUNCTION_VERSIONED (fn2)) { if (attr2 != NULL_TREE) { tree tem = fn1; fn1 = fn2; fn2 = tem; attr1 = attr2; } error_at (DECL_SOURCE_LOCATION (fn2), "missing % attribute for multi-versioned %D", fn2); inform (DECL_SOURCE_LOCATION (fn1), "previous declaration of %D", fn1); /* Prevent diagnosing of the same error multiple times. */ DECL_ATTRIBUTES (fn2) = tree_cons (get_identifier ("target"), copy_node (TREE_VALUE (attr1)), DECL_ATTRIBUTES (fn2)); } return false; } target1 = sorted_attr_string (TREE_VALUE (attr1)); target2 = sorted_attr_string (TREE_VALUE (attr2)); /* The sorted target strings must be different for fn1 and fn2 to be versions. */ if (strcmp (target1, target2) == 0) result = false; else result = true; XDELETEVEC (target1); XDELETEVEC (target2); return result; } static tree ix86_mangle_decl_assembler_name (tree decl, tree id) { /* For function version, add the target suffix to the assembler name. */ if (TREE_CODE (decl) == FUNCTION_DECL && DECL_FUNCTION_VERSIONED (decl)) id = ix86_mangle_function_version_assembler_name (decl, id); #ifdef SUBTARGET_MANGLE_DECL_ASSEMBLER_NAME id = SUBTARGET_MANGLE_DECL_ASSEMBLER_NAME (decl, id); #endif return id; } /* Return a new name by appending SUFFIX to the DECL name. If make_unique is true, append the full path name of the source file. */ static char * make_name (tree decl, const char *suffix, bool make_unique) { char *global_var_name; int name_len; const char *name; const char *unique_name = NULL; name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)); /* Get a unique name that can be used globally without any chances of collision at link time. */ if (make_unique) unique_name = IDENTIFIER_POINTER (get_file_function_name ("\0")); name_len = strlen (name) + strlen (suffix) + 2; if (make_unique) name_len += strlen (unique_name) + 1; global_var_name = XNEWVEC (char, name_len); /* Use '.' to concatenate names as it is demangler friendly. */ if (make_unique) snprintf (global_var_name, name_len, "%s.%s.%s", name, unique_name, suffix); else snprintf (global_var_name, name_len, "%s.%s", name, suffix); return global_var_name; } #if defined (ASM_OUTPUT_TYPE_DIRECTIVE) /* Make a dispatcher declaration for the multi-versioned function DECL. Calls to DECL function will be replaced with calls to the dispatcher by the front-end. Return the decl created. */ static tree make_dispatcher_decl (const tree decl) { tree func_decl; char *func_name; tree fn_type, func_type; bool is_uniq = false; if (TREE_PUBLIC (decl) == 0) is_uniq = true; func_name = make_name (decl, "ifunc", is_uniq); fn_type = TREE_TYPE (decl); func_type = build_function_type (TREE_TYPE (fn_type), TYPE_ARG_TYPES (fn_type)); func_decl = build_fn_decl (func_name, func_type); XDELETEVEC (func_name); TREE_USED (func_decl) = 1; DECL_CONTEXT (func_decl) = NULL_TREE; DECL_INITIAL (func_decl) = error_mark_node; DECL_ARTIFICIAL (func_decl) = 1; /* Mark this func as external, the resolver will flip it again if it gets generated. */ DECL_EXTERNAL (func_decl) = 1; /* This will be of type IFUNCs have to be externally visible. */ TREE_PUBLIC (func_decl) = 1; return func_decl; } #endif /* Returns true if decl is multi-versioned and DECL is the default function, that is it is not tagged with target specific optimization. */ static bool is_function_default_version (const tree decl) { if (TREE_CODE (decl) != FUNCTION_DECL || !DECL_FUNCTION_VERSIONED (decl)) return false; tree attr = lookup_attribute ("target", DECL_ATTRIBUTES (decl)); gcc_assert (attr); attr = TREE_VALUE (TREE_VALUE (attr)); return (TREE_CODE (attr) == STRING_CST && strcmp (TREE_STRING_POINTER (attr), "default") == 0); } /* Make a dispatcher declaration for the multi-versioned function DECL. Calls to DECL function will be replaced with calls to the dispatcher by the front-end. Returns the decl of the dispatcher function. */ static tree ix86_get_function_versions_dispatcher (void *decl) { tree fn = (tree) decl; struct cgraph_node *node = NULL; struct cgraph_node *default_node = NULL; struct cgraph_function_version_info *node_v = NULL; struct cgraph_function_version_info *first_v = NULL; tree dispatch_decl = NULL; struct cgraph_function_version_info *default_version_info = NULL; gcc_assert (fn != NULL && DECL_FUNCTION_VERSIONED (fn)); node = cgraph_get_node (fn); gcc_assert (node != NULL); node_v = get_cgraph_node_version (node); gcc_assert (node_v != NULL); if (node_v->dispatcher_resolver != NULL) return node_v->dispatcher_resolver; /* Find the default version and make it the first node. */ first_v = node_v; /* Go to the beginning of the chain. */ while (first_v->prev != NULL) first_v = first_v->prev; default_version_info = first_v; while (default_version_info != NULL) { if (is_function_default_version (default_version_info->this_node->decl)) break; default_version_info = default_version_info->next; } /* If there is no default node, just return NULL. */ if (default_version_info == NULL) return NULL; /* Make default info the first node. */ if (first_v != default_version_info) { default_version_info->prev->next = default_version_info->next; if (default_version_info->next) default_version_info->next->prev = default_version_info->prev; first_v->prev = default_version_info; default_version_info->next = first_v; default_version_info->prev = NULL; } default_node = default_version_info->this_node; #if defined (ASM_OUTPUT_TYPE_DIRECTIVE) if (targetm.has_ifunc_p ()) { struct cgraph_function_version_info *it_v = NULL; struct cgraph_node *dispatcher_node = NULL; struct cgraph_function_version_info *dispatcher_version_info = NULL; /* Right now, the dispatching is done via ifunc. */ dispatch_decl = make_dispatcher_decl (default_node->decl); dispatcher_node = cgraph_get_create_node (dispatch_decl); gcc_assert (dispatcher_node != NULL); dispatcher_node->dispatcher_function = 1; dispatcher_version_info = insert_new_cgraph_node_version (dispatcher_node); dispatcher_version_info->next = default_version_info; dispatcher_node->definition = 1; /* Set the dispatcher for all the versions. */ it_v = default_version_info; while (it_v != NULL) { it_v->dispatcher_resolver = dispatch_decl; it_v = it_v->next; } } else #endif { error_at (DECL_SOURCE_LOCATION (default_node->decl), "multiversioning needs ifunc which is not supported " "on this target"); } return dispatch_decl; } /* Makes a function attribute of the form NAME(ARG_NAME) and chains it to CHAIN. */ static tree make_attribute (const char *name, const char *arg_name, tree chain) { tree attr_name; tree attr_arg_name; tree attr_args; tree attr; attr_name = get_identifier (name); attr_arg_name = build_string (strlen (arg_name), arg_name); attr_args = tree_cons (NULL_TREE, attr_arg_name, NULL_TREE); attr = tree_cons (attr_name, attr_args, chain); return attr; } /* Make the resolver function decl to dispatch the versions of a multi-versioned function, DEFAULT_DECL. Create an empty basic block in the resolver and store the pointer in EMPTY_BB. Return the decl of the resolver function. */ static tree make_resolver_func (const tree default_decl, const tree dispatch_decl, basic_block *empty_bb) { char *resolver_name; tree decl, type, decl_name, t; bool is_uniq = false; /* IFUNC's have to be globally visible. So, if the default_decl is not, then the name of the IFUNC should be made unique. */ if (TREE_PUBLIC (default_decl) == 0) is_uniq = true; /* Append the filename to the resolver function if the versions are not externally visible. This is because the resolver function has to be externally visible for the loader to find it. So, appending the filename will prevent conflicts with a resolver function from another module which is based on the same version name. */ resolver_name = make_name (default_decl, "resolver", is_uniq); /* The resolver function should return a (void *). */ type = build_function_type_list (ptr_type_node, NULL_TREE); decl = build_fn_decl (resolver_name, type); decl_name = get_identifier (resolver_name); SET_DECL_ASSEMBLER_NAME (decl, decl_name); DECL_NAME (decl) = decl_name; TREE_USED (decl) = 1; DECL_ARTIFICIAL (decl) = 1; DECL_IGNORED_P (decl) = 0; /* IFUNC resolvers have to be externally visible. */ TREE_PUBLIC (decl) = 1; DECL_UNINLINABLE (decl) = 1; /* Resolver is not external, body is generated. */ DECL_EXTERNAL (decl) = 0; DECL_EXTERNAL (dispatch_decl) = 0; DECL_CONTEXT (decl) = NULL_TREE; DECL_INITIAL (decl) = make_node (BLOCK); DECL_STATIC_CONSTRUCTOR (decl) = 0; if (DECL_COMDAT_GROUP (default_decl) || TREE_PUBLIC (default_decl)) { /* In this case, each translation unit with a call to this versioned function will put out a resolver. Ensure it is comdat to keep just one copy. */ DECL_COMDAT (decl) = 1; make_decl_one_only (decl, DECL_ASSEMBLER_NAME (decl)); } /* Build result decl and add to function_decl. */ t = build_decl (UNKNOWN_LOCATION, RESULT_DECL, NULL_TREE, ptr_type_node); DECL_ARTIFICIAL (t) = 1; DECL_IGNORED_P (t) = 1; DECL_RESULT (decl) = t; gimplify_function_tree (decl); push_cfun (DECL_STRUCT_FUNCTION (decl)); *empty_bb = init_lowered_empty_function (decl, false); cgraph_add_new_function (decl, true); cgraph_call_function_insertion_hooks (cgraph_get_create_node (decl)); pop_cfun (); gcc_assert (dispatch_decl != NULL); /* Mark dispatch_decl as "ifunc" with resolver as resolver_name. */ DECL_ATTRIBUTES (dispatch_decl) = make_attribute ("ifunc", resolver_name, DECL_ATTRIBUTES (dispatch_decl)); /* Create the alias for dispatch to resolver here. */ /*cgraph_create_function_alias (dispatch_decl, decl);*/ cgraph_same_body_alias (NULL, dispatch_decl, decl); XDELETEVEC (resolver_name); return decl; } /* Generate the dispatching code body to dispatch multi-versioned function DECL. The target hook is called to process the "target" attributes and provide the code to dispatch the right function at run-time. NODE points to the dispatcher decl whose body will be created. */ static tree ix86_generate_version_dispatcher_body (void *node_p) { tree resolver_decl; basic_block empty_bb; vec fn_ver_vec = vNULL; tree default_ver_decl; struct cgraph_node *versn; struct cgraph_node *node; struct cgraph_function_version_info *node_version_info = NULL; struct cgraph_function_version_info *versn_info = NULL; node = (cgraph_node *)node_p; node_version_info = get_cgraph_node_version (node); gcc_assert (node->dispatcher_function && node_version_info != NULL); if (node_version_info->dispatcher_resolver) return node_version_info->dispatcher_resolver; /* The first version in the chain corresponds to the default version. */ default_ver_decl = node_version_info->next->this_node->decl; /* node is going to be an alias, so remove the finalized bit. */ node->definition = false; resolver_decl = make_resolver_func (default_ver_decl, node->decl, &empty_bb); node_version_info->dispatcher_resolver = resolver_decl; push_cfun (DECL_STRUCT_FUNCTION (resolver_decl)); fn_ver_vec.create (2); for (versn_info = node_version_info->next; versn_info; versn_info = versn_info->next) { versn = versn_info->this_node; /* Check for virtual functions here again, as by this time it should have been determined if this function needs a vtable index or not. This happens for methods in derived classes that override virtual methods in base classes but are not explicitly marked as virtual. */ if (DECL_VINDEX (versn->decl)) sorry ("Virtual function multiversioning not supported"); fn_ver_vec.safe_push (versn->decl); } dispatch_function_versions (resolver_decl, &fn_ver_vec, &empty_bb); fn_ver_vec.release (); rebuild_cgraph_edges (); pop_cfun (); return resolver_decl; } /* This builds the processor_model struct type defined in libgcc/config/i386/cpuinfo.c */ static tree build_processor_model_struct (void) { const char *field_name[] = {"__cpu_vendor", "__cpu_type", "__cpu_subtype", "__cpu_features"}; tree field = NULL_TREE, field_chain = NULL_TREE; int i; tree type = make_node (RECORD_TYPE); /* The first 3 fields are unsigned int. */ for (i = 0; i < 3; ++i) { field = build_decl (UNKNOWN_LOCATION, FIELD_DECL, get_identifier (field_name[i]), unsigned_type_node); if (field_chain != NULL_TREE) DECL_CHAIN (field) = field_chain; field_chain = field; } /* The last field is an array of unsigned integers of size one. */ field = build_decl (UNKNOWN_LOCATION, FIELD_DECL, get_identifier (field_name[3]), build_array_type (unsigned_type_node, build_index_type (size_one_node))); if (field_chain != NULL_TREE) DECL_CHAIN (field) = field_chain; field_chain = field; finish_builtin_struct (type, "__processor_model", field_chain, NULL_TREE); return type; } /* Returns a extern, comdat VAR_DECL of type TYPE and name NAME. */ static tree make_var_decl (tree type, const char *name) { tree new_decl; new_decl = build_decl (UNKNOWN_LOCATION, VAR_DECL, get_identifier(name), type); DECL_EXTERNAL (new_decl) = 1; TREE_STATIC (new_decl) = 1; TREE_PUBLIC (new_decl) = 1; DECL_INITIAL (new_decl) = 0; DECL_ARTIFICIAL (new_decl) = 0; DECL_PRESERVE_P (new_decl) = 1; make_decl_one_only (new_decl, DECL_ASSEMBLER_NAME (new_decl)); assemble_variable (new_decl, 0, 0, 0); return new_decl; } /* FNDECL is a __builtin_cpu_is or a __builtin_cpu_supports call that is folded into an integer defined in libgcc/config/i386/cpuinfo.c */ static tree fold_builtin_cpu (tree fndecl, tree *args) { unsigned int i; enum ix86_builtins fn_code = (enum ix86_builtins) DECL_FUNCTION_CODE (fndecl); tree param_string_cst = NULL; /* This is the order of bit-fields in __processor_features in cpuinfo.c */ enum processor_features { F_CMOV = 0, F_MMX, F_POPCNT, F_SSE, F_SSE2, F_SSE3, F_SSSE3, F_SSE4_1, F_SSE4_2, F_AVX, F_AVX2, F_MAX }; /* These are the values for vendor types and cpu types and subtypes in cpuinfo.c. Cpu types and subtypes should be subtracted by the corresponding start value. */ enum processor_model { M_INTEL = 1, M_AMD, M_CPU_TYPE_START, M_INTEL_ATOM, M_INTEL_CORE2, M_INTEL_COREI7, M_AMDFAM10H, M_AMDFAM15H, M_INTEL_SLM, M_CPU_SUBTYPE_START, M_INTEL_COREI7_NEHALEM, M_INTEL_COREI7_WESTMERE, M_INTEL_COREI7_SANDYBRIDGE, M_AMDFAM10H_BARCELONA, M_AMDFAM10H_SHANGHAI, M_AMDFAM10H_ISTANBUL, M_AMDFAM15H_BDVER1, M_AMDFAM15H_BDVER2, M_AMDFAM15H_BDVER3, M_AMDFAM15H_BDVER4 }; static struct _arch_names_table { const char *const name; const enum processor_model model; } const arch_names_table[] = { {"amd", M_AMD}, {"intel", M_INTEL}, {"atom", M_INTEL_ATOM}, {"slm", M_INTEL_SLM}, {"core2", M_INTEL_CORE2}, {"corei7", M_INTEL_COREI7}, {"nehalem", M_INTEL_COREI7_NEHALEM}, {"westmere", M_INTEL_COREI7_WESTMERE}, {"sandybridge", M_INTEL_COREI7_SANDYBRIDGE}, {"amdfam10h", M_AMDFAM10H}, {"barcelona", M_AMDFAM10H_BARCELONA}, {"shanghai", M_AMDFAM10H_SHANGHAI}, {"istanbul", M_AMDFAM10H_ISTANBUL}, {"amdfam15h", M_AMDFAM15H}, {"bdver1", M_AMDFAM15H_BDVER1}, {"bdver2", M_AMDFAM15H_BDVER2}, {"bdver3", M_AMDFAM15H_BDVER3}, {"bdver4", M_AMDFAM15H_BDVER4}, }; static struct _isa_names_table { const char *const name; const enum processor_features feature; } const isa_names_table[] = { {"cmov", F_CMOV}, {"mmx", F_MMX}, {"popcnt", F_POPCNT}, {"sse", F_SSE}, {"sse2", F_SSE2}, {"sse3", F_SSE3}, {"ssse3", F_SSSE3}, {"sse4.1", F_SSE4_1}, {"sse4.2", F_SSE4_2}, {"avx", F_AVX}, {"avx2", F_AVX2} }; tree __processor_model_type = build_processor_model_struct (); tree __cpu_model_var = make_var_decl (__processor_model_type, "__cpu_model"); varpool_add_new_variable (__cpu_model_var); gcc_assert ((args != NULL) && (*args != NULL)); param_string_cst = *args; while (param_string_cst && TREE_CODE (param_string_cst) != STRING_CST) { /* *args must be a expr that can contain other EXPRS leading to a STRING_CST. */ if (!EXPR_P (param_string_cst)) { error ("Parameter to builtin must be a string constant or literal"); return integer_zero_node; } param_string_cst = TREE_OPERAND (EXPR_CHECK (param_string_cst), 0); } gcc_assert (param_string_cst); if (fn_code == IX86_BUILTIN_CPU_IS) { tree ref; tree field; tree final; unsigned int field_val = 0; unsigned int NUM_ARCH_NAMES = sizeof (arch_names_table) / sizeof (struct _arch_names_table); for (i = 0; i < NUM_ARCH_NAMES; i++) if (strcmp (arch_names_table[i].name, TREE_STRING_POINTER (param_string_cst)) == 0) break; if (i == NUM_ARCH_NAMES) { error ("Parameter to builtin not valid: %s", TREE_STRING_POINTER (param_string_cst)); return integer_zero_node; } field = TYPE_FIELDS (__processor_model_type); field_val = arch_names_table[i].model; /* CPU types are stored in the next field. */ if (field_val > M_CPU_TYPE_START && field_val < M_CPU_SUBTYPE_START) { field = DECL_CHAIN (field); field_val -= M_CPU_TYPE_START; } /* CPU subtypes are stored in the next field. */ if (field_val > M_CPU_SUBTYPE_START) { field = DECL_CHAIN ( DECL_CHAIN (field)); field_val -= M_CPU_SUBTYPE_START; } /* Get the appropriate field in __cpu_model. */ ref = build3 (COMPONENT_REF, TREE_TYPE (field), __cpu_model_var, field, NULL_TREE); /* Check the value. */ final = build2 (EQ_EXPR, unsigned_type_node, ref, build_int_cstu (unsigned_type_node, field_val)); return build1 (CONVERT_EXPR, integer_type_node, final); } else if (fn_code == IX86_BUILTIN_CPU_SUPPORTS) { tree ref; tree array_elt; tree field; tree final; unsigned int field_val = 0; unsigned int NUM_ISA_NAMES = sizeof (isa_names_table) / sizeof (struct _isa_names_table); for (i = 0; i < NUM_ISA_NAMES; i++) if (strcmp (isa_names_table[i].name, TREE_STRING_POINTER (param_string_cst)) == 0) break; if (i == NUM_ISA_NAMES) { error ("Parameter to builtin not valid: %s", TREE_STRING_POINTER (param_string_cst)); return integer_zero_node; } field = TYPE_FIELDS (__processor_model_type); /* Get the last field, which is __cpu_features. */ while (DECL_CHAIN (field)) field = DECL_CHAIN (field); /* Get the appropriate field: __cpu_model.__cpu_features */ ref = build3 (COMPONENT_REF, TREE_TYPE (field), __cpu_model_var, field, NULL_TREE); /* Access the 0th element of __cpu_features array. */ array_elt = build4 (ARRAY_REF, unsigned_type_node, ref, integer_zero_node, NULL_TREE, NULL_TREE); field_val = (1 << isa_names_table[i].feature); /* Return __cpu_model.__cpu_features[0] & field_val */ final = build2 (BIT_AND_EXPR, unsigned_type_node, array_elt, build_int_cstu (unsigned_type_node, field_val)); return build1 (CONVERT_EXPR, integer_type_node, final); } gcc_unreachable (); } static tree ix86_fold_builtin (tree fndecl, int n_args, tree *args, bool ignore ATTRIBUTE_UNUSED) { if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD) { enum ix86_builtins fn_code = (enum ix86_builtins) DECL_FUNCTION_CODE (fndecl); if (fn_code == IX86_BUILTIN_CPU_IS || fn_code == IX86_BUILTIN_CPU_SUPPORTS) { gcc_assert (n_args == 1); return fold_builtin_cpu (fndecl, args); } } #ifdef SUBTARGET_FOLD_BUILTIN return SUBTARGET_FOLD_BUILTIN (fndecl, n_args, args, ignore); #endif return NULL_TREE; } /* Make builtins to detect cpu type and features supported. NAME is the builtin name, CODE is the builtin code, and FTYPE is the function type of the builtin. */ static void make_cpu_type_builtin (const char* name, int code, enum ix86_builtin_func_type ftype, bool is_const) { tree decl; tree type; type = ix86_get_builtin_func_type (ftype); decl = add_builtin_function (name, type, code, BUILT_IN_MD, NULL, NULL_TREE); gcc_assert (decl != NULL_TREE); ix86_builtins[(int) code] = decl; TREE_READONLY (decl) = is_const; } /* Make builtins to get CPU type and features supported. The created builtins are : __builtin_cpu_init (), to detect cpu type and features, __builtin_cpu_is (""), to check if cpu is of type , __builtin_cpu_supports (""), to check if cpu supports */ static void ix86_init_platform_type_builtins (void) { make_cpu_type_builtin ("__builtin_cpu_init", IX86_BUILTIN_CPU_INIT, INT_FTYPE_VOID, false); make_cpu_type_builtin ("__builtin_cpu_is", IX86_BUILTIN_CPU_IS, INT_FTYPE_PCCHAR, true); make_cpu_type_builtin ("__builtin_cpu_supports", IX86_BUILTIN_CPU_SUPPORTS, INT_FTYPE_PCCHAR, true); } /* Internal method for ix86_init_builtins. */ static void ix86_init_builtins_va_builtins_abi (void) { tree ms_va_ref, sysv_va_ref; tree fnvoid_va_end_ms, fnvoid_va_end_sysv; tree fnvoid_va_start_ms, fnvoid_va_start_sysv; tree fnvoid_va_copy_ms, fnvoid_va_copy_sysv; tree fnattr_ms = NULL_TREE, fnattr_sysv = NULL_TREE; if (!TARGET_64BIT) return; fnattr_ms = build_tree_list (get_identifier ("ms_abi"), NULL_TREE); fnattr_sysv = build_tree_list (get_identifier ("sysv_abi"), NULL_TREE); ms_va_ref = build_reference_type (ms_va_list_type_node); sysv_va_ref = build_pointer_type (TREE_TYPE (sysv_va_list_type_node)); fnvoid_va_end_ms = build_function_type_list (void_type_node, ms_va_ref, NULL_TREE); fnvoid_va_start_ms = build_varargs_function_type_list (void_type_node, ms_va_ref, NULL_TREE); fnvoid_va_end_sysv = build_function_type_list (void_type_node, sysv_va_ref, NULL_TREE); fnvoid_va_start_sysv = build_varargs_function_type_list (void_type_node, sysv_va_ref, NULL_TREE); fnvoid_va_copy_ms = build_function_type_list (void_type_node, ms_va_ref, ms_va_list_type_node, NULL_TREE); fnvoid_va_copy_sysv = build_function_type_list (void_type_node, sysv_va_ref, sysv_va_ref, NULL_TREE); add_builtin_function ("__builtin_ms_va_start", fnvoid_va_start_ms, BUILT_IN_VA_START, BUILT_IN_NORMAL, NULL, fnattr_ms); add_builtin_function ("__builtin_ms_va_end", fnvoid_va_end_ms, BUILT_IN_VA_END, BUILT_IN_NORMAL, NULL, fnattr_ms); add_builtin_function ("__builtin_ms_va_copy", fnvoid_va_copy_ms, BUILT_IN_VA_COPY, BUILT_IN_NORMAL, NULL, fnattr_ms); add_builtin_function ("__builtin_sysv_va_start", fnvoid_va_start_sysv, BUILT_IN_VA_START, BUILT_IN_NORMAL, NULL, fnattr_sysv); add_builtin_function ("__builtin_sysv_va_end", fnvoid_va_end_sysv, BUILT_IN_VA_END, BUILT_IN_NORMAL, NULL, fnattr_sysv); add_builtin_function ("__builtin_sysv_va_copy", fnvoid_va_copy_sysv, BUILT_IN_VA_COPY, BUILT_IN_NORMAL, NULL, fnattr_sysv); } static void ix86_init_builtin_types (void) { tree float128_type_node, float80_type_node; /* The __float80 type. */ float80_type_node = long_double_type_node; if (TYPE_MODE (float80_type_node) != XFmode) { /* The __float80 type. */ float80_type_node = make_node (REAL_TYPE); TYPE_PRECISION (float80_type_node) = 80; layout_type (float80_type_node); } lang_hooks.types.register_builtin_type (float80_type_node, "__float80"); /* The __float128 type. */ float128_type_node = make_node (REAL_TYPE); TYPE_PRECISION (float128_type_node) = 128; layout_type (float128_type_node); lang_hooks.types.register_builtin_type (float128_type_node, "__float128"); /* This macro is built by i386-builtin-types.awk. */ DEFINE_BUILTIN_PRIMITIVE_TYPES; } static void ix86_init_builtins (void) { tree t; ix86_init_builtin_types (); /* Builtins to get CPU type and features. */ ix86_init_platform_type_builtins (); /* TFmode support builtins. */ def_builtin_const (0, "__builtin_infq", FLOAT128_FTYPE_VOID, IX86_BUILTIN_INFQ); def_builtin_const (0, "__builtin_huge_valq", FLOAT128_FTYPE_VOID, IX86_BUILTIN_HUGE_VALQ); /* We will expand them to normal call if SSE isn't available since they are used by libgcc. */ t = ix86_get_builtin_func_type (FLOAT128_FTYPE_FLOAT128); t = add_builtin_function ("__builtin_fabsq", t, IX86_BUILTIN_FABSQ, BUILT_IN_MD, "__fabstf2", NULL_TREE); TREE_READONLY (t) = 1; ix86_builtins[(int) IX86_BUILTIN_FABSQ] = t; t = ix86_get_builtin_func_type (FLOAT128_FTYPE_FLOAT128_FLOAT128); t = add_builtin_function ("__builtin_copysignq", t, IX86_BUILTIN_COPYSIGNQ, BUILT_IN_MD, "__copysigntf3", NULL_TREE); TREE_READONLY (t) = 1; ix86_builtins[(int) IX86_BUILTIN_COPYSIGNQ] = t; ix86_init_tm_builtins (); ix86_init_mmx_sse_builtins (); if (TARGET_LP64) ix86_init_builtins_va_builtins_abi (); #ifdef SUBTARGET_INIT_BUILTINS SUBTARGET_INIT_BUILTINS; #endif } /* Return the ix86 builtin for CODE. */ static tree ix86_builtin_decl (unsigned code, bool initialize_p ATTRIBUTE_UNUSED) { if (code >= IX86_BUILTIN_MAX) return error_mark_node; return ix86_builtins[code]; } /* Errors in the source file can cause expand_expr to return const0_rtx where we expect a vector. To avoid crashing, use one of the vector clear instructions. */ static rtx safe_vector_operand (rtx x, enum machine_mode mode) { if (x == const0_rtx) x = CONST0_RTX (mode); return x; } /* Subroutine of ix86_expand_builtin to take care of binop insns. */ static rtx ix86_expand_binop_builtin (enum insn_code icode, tree exp, rtx target) { rtx pat; tree arg0 = CALL_EXPR_ARG (exp, 0); tree arg1 = CALL_EXPR_ARG (exp, 1); rtx op0 = expand_normal (arg0); rtx op1 = expand_normal (arg1); enum machine_mode tmode = insn_data[icode].operand[0].mode; enum machine_mode mode0 = insn_data[icode].operand[1].mode; enum machine_mode mode1 = insn_data[icode].operand[2].mode; if (VECTOR_MODE_P (mode0)) op0 = safe_vector_operand (op0, mode0); if (VECTOR_MODE_P (mode1)) op1 = safe_vector_operand (op1, mode1); if (optimize || !target || GET_MODE (target) != tmode || !insn_data[icode].operand[0].predicate (target, tmode)) target = gen_reg_rtx (tmode); if (GET_MODE (op1) == SImode && mode1 == TImode) { rtx x = gen_reg_rtx (V4SImode); emit_insn (gen_sse2_loadd (x, op1)); op1 = gen_lowpart (TImode, x); } if (!insn_data[icode].operand[1].predicate (op0, mode0)) op0 = copy_to_mode_reg (mode0, op0); if (!insn_data[icode].operand[2].predicate (op1, mode1)) op1 = copy_to_mode_reg (mode1, op1); pat = GEN_FCN (icode) (target, op0, op1); if (! pat) return 0; emit_insn (pat); return target; } /* Subroutine of ix86_expand_builtin to take care of 2-4 argument insns. */ static rtx ix86_expand_multi_arg_builtin (enum insn_code icode, tree exp, rtx target, enum ix86_builtin_func_type m_type, enum rtx_code sub_code) { rtx pat; int i; int nargs; bool comparison_p = false; bool tf_p = false; bool last_arg_constant = false; int num_memory = 0; struct { rtx op; enum machine_mode mode; } args[4]; enum machine_mode tmode = insn_data[icode].operand[0].mode; switch (m_type) { case MULTI_ARG_4_DF2_DI_I: case MULTI_ARG_4_DF2_DI_I1: case MULTI_ARG_4_SF2_SI_I: case MULTI_ARG_4_SF2_SI_I1: nargs = 4; last_arg_constant = true; break; case MULTI_ARG_3_SF: case MULTI_ARG_3_DF: case MULTI_ARG_3_SF2: case MULTI_ARG_3_DF2: case MULTI_ARG_3_DI: case MULTI_ARG_3_SI: case MULTI_ARG_3_SI_DI: case MULTI_ARG_3_HI: case MULTI_ARG_3_HI_SI: case MULTI_ARG_3_QI: case MULTI_ARG_3_DI2: case MULTI_ARG_3_SI2: case MULTI_ARG_3_HI2: case MULTI_ARG_3_QI2: nargs = 3; break; case MULTI_ARG_2_SF: case MULTI_ARG_2_DF: case MULTI_ARG_2_DI: case MULTI_ARG_2_SI: case MULTI_ARG_2_HI: case MULTI_ARG_2_QI: nargs = 2; break; case MULTI_ARG_2_DI_IMM: case MULTI_ARG_2_SI_IMM: case MULTI_ARG_2_HI_IMM: case MULTI_ARG_2_QI_IMM: nargs = 2; last_arg_constant = true; break; case MULTI_ARG_1_SF: case MULTI_ARG_1_DF: case MULTI_ARG_1_SF2: case MULTI_ARG_1_DF2: case MULTI_ARG_1_DI: case MULTI_ARG_1_SI: case MULTI_ARG_1_HI: case MULTI_ARG_1_QI: case MULTI_ARG_1_SI_DI: case MULTI_ARG_1_HI_DI: case MULTI_ARG_1_HI_SI: case MULTI_ARG_1_QI_DI: case MULTI_ARG_1_QI_SI: case MULTI_ARG_1_QI_HI: nargs = 1; break; case MULTI_ARG_2_DI_CMP: case MULTI_ARG_2_SI_CMP: case MULTI_ARG_2_HI_CMP: case MULTI_ARG_2_QI_CMP: nargs = 2; comparison_p = true; break; case MULTI_ARG_2_SF_TF: case MULTI_ARG_2_DF_TF: case MULTI_ARG_2_DI_TF: case MULTI_ARG_2_SI_TF: case MULTI_ARG_2_HI_TF: case MULTI_ARG_2_QI_TF: nargs = 2; tf_p = true; break; default: gcc_unreachable (); } if (optimize || !target || GET_MODE (target) != tmode || !insn_data[icode].operand[0].predicate (target, tmode)) target = gen_reg_rtx (tmode); gcc_assert (nargs <= 4); for (i = 0; i < nargs; i++) { tree arg = CALL_EXPR_ARG (exp, i); rtx op = expand_normal (arg); int adjust = (comparison_p) ? 1 : 0; enum machine_mode mode = insn_data[icode].operand[i+adjust+1].mode; if (last_arg_constant && i == nargs - 1) { if (!insn_data[icode].operand[i + 1].predicate (op, mode)) { enum insn_code new_icode = icode; switch (icode) { case CODE_FOR_xop_vpermil2v2df3: case CODE_FOR_xop_vpermil2v4sf3: case CODE_FOR_xop_vpermil2v4df3: case CODE_FOR_xop_vpermil2v8sf3: error ("the last argument must be a 2-bit immediate"); return gen_reg_rtx (tmode); case CODE_FOR_xop_rotlv2di3: new_icode = CODE_FOR_rotlv2di3; goto xop_rotl; case CODE_FOR_xop_rotlv4si3: new_icode = CODE_FOR_rotlv4si3; goto xop_rotl; case CODE_FOR_xop_rotlv8hi3: new_icode = CODE_FOR_rotlv8hi3; goto xop_rotl; case CODE_FOR_xop_rotlv16qi3: new_icode = CODE_FOR_rotlv16qi3; xop_rotl: if (CONST_INT_P (op)) { int mask = GET_MODE_BITSIZE (GET_MODE_INNER (tmode)) - 1; op = GEN_INT (INTVAL (op) & mask); gcc_checking_assert (insn_data[icode].operand[i + 1].predicate (op, mode)); } else { gcc_checking_assert (nargs == 2 && insn_data[new_icode].operand[0].mode == tmode && insn_data[new_icode].operand[1].mode == tmode && insn_data[new_icode].operand[2].mode == mode && insn_data[new_icode].operand[0].predicate == insn_data[icode].operand[0].predicate && insn_data[new_icode].operand[1].predicate == insn_data[icode].operand[1].predicate); icode = new_icode; goto non_constant; } break; default: gcc_unreachable (); } } } else { non_constant: if (VECTOR_MODE_P (mode)) op = safe_vector_operand (op, mode); /* If we aren't optimizing, only allow one memory operand to be generated. */ if (memory_operand (op, mode)) num_memory++; gcc_assert (GET_MODE (op) == mode || GET_MODE (op) == VOIDmode); if (optimize || !insn_data[icode].operand[i+adjust+1].predicate (op, mode) || num_memory > 1) op = force_reg (mode, op); } args[i].op = op; args[i].mode = mode; } switch (nargs) { case 1: pat = GEN_FCN (icode) (target, args[0].op); break; case 2: if (tf_p) pat = GEN_FCN (icode) (target, args[0].op, args[1].op, GEN_INT ((int)sub_code)); else if (! comparison_p) pat = GEN_FCN (icode) (target, args[0].op, args[1].op); else { rtx cmp_op = gen_rtx_fmt_ee (sub_code, GET_MODE (target), args[0].op, args[1].op); pat = GEN_FCN (icode) (target, cmp_op, args[0].op, args[1].op); } break; case 3: pat = GEN_FCN (icode) (target, args[0].op, args[1].op, args[2].op); break; case 4: pat = GEN_FCN (icode) (target, args[0].op, args[1].op, args[2].op, args[3].op); break; default: gcc_unreachable (); } if (! pat) return 0; emit_insn (pat); return target; } /* Subroutine of ix86_expand_args_builtin to take care of scalar unop insns with vec_merge. */ static rtx ix86_expand_unop_vec_merge_builtin (enum insn_code icode, tree exp, rtx target) { rtx pat; tree arg0 = CALL_EXPR_ARG (exp, 0); rtx op1, op0 = expand_normal (arg0); enum machine_mode tmode = insn_data[icode].operand[0].mode; enum machine_mode mode0 = insn_data[icode].operand[1].mode; if (optimize || !target || GET_MODE (target) != tmode || !insn_data[icode].operand[0].predicate (target, tmode)) target = gen_reg_rtx (tmode); if (VECTOR_MODE_P (mode0)) op0 = safe_vector_operand (op0, mode0); if ((optimize && !register_operand (op0, mode0)) || !insn_data[icode].operand[1].predicate (op0, mode0)) op0 = copy_to_mode_reg (mode0, op0); op1 = op0; if (!insn_data[icode].operand[2].predicate (op1, mode0)) op1 = copy_to_mode_reg (mode0, op1); pat = GEN_FCN (icode) (target, op0, op1); if (! pat) return 0; emit_insn (pat); return target; } /* Subroutine of ix86_expand_builtin to take care of comparison insns. */ static rtx ix86_expand_sse_compare (const struct builtin_description *d, tree exp, rtx target, bool swap) { rtx pat; tree arg0 = CALL_EXPR_ARG (exp, 0); tree arg1 = CALL_EXPR_ARG (exp, 1); rtx op0 = expand_normal (arg0); rtx op1 = expand_normal (arg1); rtx op2; enum machine_mode tmode = insn_data[d->icode].operand[0].mode; enum machine_mode mode0 = insn_data[d->icode].operand[1].mode; enum machine_mode mode1 = insn_data[d->icode].operand[2].mode; enum rtx_code comparison = d->comparison; if (VECTOR_MODE_P (mode0)) op0 = safe_vector_operand (op0, mode0); if (VECTOR_MODE_P (mode1)) op1 = safe_vector_operand (op1, mode1); /* Swap operands if we have a comparison that isn't available in hardware. */ if (swap) { rtx tmp = gen_reg_rtx (mode1); emit_move_insn (tmp, op1); op1 = op0; op0 = tmp; } if (optimize || !target || GET_MODE (target) != tmode || !insn_data[d->icode].operand[0].predicate (target, tmode)) target = gen_reg_rtx (tmode); if ((optimize && !register_operand (op0, mode0)) || !insn_data[d->icode].operand[1].predicate (op0, mode0)) op0 = copy_to_mode_reg (mode0, op0); if ((optimize && !register_operand (op1, mode1)) || !insn_data[d->icode].operand[2].predicate (op1, mode1)) op1 = copy_to_mode_reg (mode1, op1); op2 = gen_rtx_fmt_ee (comparison, mode0, op0, op1); pat = GEN_FCN (d->icode) (target, op0, op1, op2); if (! pat) return 0; emit_insn (pat); return target; } /* Subroutine of ix86_expand_builtin to take care of comi insns. */ static rtx ix86_expand_sse_comi (const struct builtin_description *d, tree exp, rtx target) { rtx pat; tree arg0 = CALL_EXPR_ARG (exp, 0); tree arg1 = CALL_EXPR_ARG (exp, 1); rtx op0 = expand_normal (arg0); rtx op1 = expand_normal (arg1); enum machine_mode mode0 = insn_data[d->icode].operand[0].mode; enum machine_mode mode1 = insn_data[d->icode].operand[1].mode; enum rtx_code comparison = d->comparison; if (VECTOR_MODE_P (mode0)) op0 = safe_vector_operand (op0, mode0); if (VECTOR_MODE_P (mode1)) op1 = safe_vector_operand (op1, mode1); /* Swap operands if we have a comparison that isn't available in hardware. */ if (d->flag & BUILTIN_DESC_SWAP_OPERANDS) { rtx tmp = op1; op1 = op0; op0 = tmp; } target = gen_reg_rtx (SImode); emit_move_insn (target, const0_rtx); target = gen_rtx_SUBREG (QImode, target, 0); if ((optimize && !register_operand (op0, mode0)) || !insn_data[d->icode].operand[0].predicate (op0, mode0)) op0 = copy_to_mode_reg (mode0, op0); if ((optimize && !register_operand (op1, mode1)) || !insn_data[d->icode].operand[1].predicate (op1, mode1)) op1 = copy_to_mode_reg (mode1, op1); pat = GEN_FCN (d->icode) (op0, op1); if (! pat) return 0; emit_insn (pat); emit_insn (gen_rtx_SET (VOIDmode, gen_rtx_STRICT_LOW_PART (VOIDmode, target), gen_rtx_fmt_ee (comparison, QImode, SET_DEST (pat), const0_rtx))); return SUBREG_REG (target); } /* Subroutines of ix86_expand_args_builtin to take care of round insns. */ static rtx ix86_expand_sse_round (const struct builtin_description *d, tree exp, rtx target) { rtx pat; tree arg0 = CALL_EXPR_ARG (exp, 0); rtx op1, op0 = expand_normal (arg0); enum machine_mode tmode = insn_data[d->icode].operand[0].mode; enum machine_mode mode0 = insn_data[d->icode].operand[1].mode; if (optimize || target == 0 || GET_MODE (target) != tmode || !insn_data[d->icode].operand[0].predicate (target, tmode)) target = gen_reg_rtx (tmode); if (VECTOR_MODE_P (mode0)) op0 = safe_vector_operand (op0, mode0); if ((optimize && !register_operand (op0, mode0)) || !insn_data[d->icode].operand[0].predicate (op0, mode0)) op0 = copy_to_mode_reg (mode0, op0); op1 = GEN_INT (d->comparison); pat = GEN_FCN (d->icode) (target, op0, op1); if (! pat) return 0; emit_insn (pat); return target; } static rtx ix86_expand_sse_round_vec_pack_sfix (const struct builtin_description *d, tree exp, rtx target) { rtx pat; tree arg0 = CALL_EXPR_ARG (exp, 0); tree arg1 = CALL_EXPR_ARG (exp, 1); rtx op0 = expand_normal (arg0); rtx op1 = expand_normal (arg1); rtx op2; enum machine_mode tmode = insn_data[d->icode].operand[0].mode; enum machine_mode mode0 = insn_data[d->icode].operand[1].mode; enum machine_mode mode1 = insn_data[d->icode].operand[2].mode; if (optimize || target == 0 || GET_MODE (target) != tmode || !insn_data[d->icode].operand[0].predicate (target, tmode)) target = gen_reg_rtx (tmode); op0 = safe_vector_operand (op0, mode0); op1 = safe_vector_operand (op1, mode1); if ((optimize && !register_operand (op0, mode0)) || !insn_data[d->icode].operand[0].predicate (op0, mode0)) op0 = copy_to_mode_reg (mode0, op0); if ((optimize && !register_operand (op1, mode1)) || !insn_data[d->icode].operand[1].predicate (op1, mode1)) op1 = copy_to_mode_reg (mode1, op1); op2 = GEN_INT (d->comparison); pat = GEN_FCN (d->icode) (target, op0, op1, op2); if (! pat) return 0; emit_insn (pat); return target; } /* Subroutine of ix86_expand_builtin to take care of ptest insns. */ static rtx ix86_expand_sse_ptest (const struct builtin_description *d, tree exp, rtx target) { rtx pat; tree arg0 = CALL_EXPR_ARG (exp, 0); tree arg1 = CALL_EXPR_ARG (exp, 1); rtx op0 = expand_normal (arg0); rtx op1 = expand_normal (arg1); enum machine_mode mode0 = insn_data[d->icode].operand[0].mode; enum machine_mode mode1 = insn_data[d->icode].operand[1].mode; enum rtx_code comparison = d->comparison; if (VECTOR_MODE_P (mode0)) op0 = safe_vector_operand (op0, mode0); if (VECTOR_MODE_P (mode1)) op1 = safe_vector_operand (op1, mode1); target = gen_reg_rtx (SImode); emit_move_insn (target, const0_rtx); target = gen_rtx_SUBREG (QImode, target, 0); if ((optimize && !register_operand (op0, mode0)) || !insn_data[d->icode].operand[0].predicate (op0, mode0)) op0 = copy_to_mode_reg (mode0, op0); if ((optimize && !register_operand (op1, mode1)) || !insn_data[d->icode].operand[1].predicate (op1, mode1)) op1 = copy_to_mode_reg (mode1, op1); pat = GEN_FCN (d->icode) (op0, op1); if (! pat) return 0; emit_insn (pat); emit_insn (gen_rtx_SET (VOIDmode, gen_rtx_STRICT_LOW_PART (VOIDmode, target), gen_rtx_fmt_ee (comparison, QImode, SET_DEST (pat), const0_rtx))); return SUBREG_REG (target); } /* Subroutine of ix86_expand_builtin to take care of pcmpestr[im] insns. */ static rtx ix86_expand_sse_pcmpestr (const struct builtin_description *d, tree exp, rtx target) { rtx pat; tree arg0 = CALL_EXPR_ARG (exp, 0); tree arg1 = CALL_EXPR_ARG (exp, 1); tree arg2 = CALL_EXPR_ARG (exp, 2); tree arg3 = CALL_EXPR_ARG (exp, 3); tree arg4 = CALL_EXPR_ARG (exp, 4); rtx scratch0, scratch1; rtx op0 = expand_normal (arg0); rtx op1 = expand_normal (arg1); rtx op2 = expand_normal (arg2); rtx op3 = expand_normal (arg3); rtx op4 = expand_normal (arg4); enum machine_mode tmode0, tmode1, modev2, modei3, modev4, modei5, modeimm; tmode0 = insn_data[d->icode].operand[0].mode; tmode1 = insn_data[d->icode].operand[1].mode; modev2 = insn_data[d->icode].operand[2].mode; modei3 = insn_data[d->icode].operand[3].mode; modev4 = insn_data[d->icode].operand[4].mode; modei5 = insn_data[d->icode].operand[5].mode; modeimm = insn_data[d->icode].operand[6].mode; if (VECTOR_MODE_P (modev2)) op0 = safe_vector_operand (op0, modev2); if (VECTOR_MODE_P (modev4)) op2 = safe_vector_operand (op2, modev4); if (!insn_data[d->icode].operand[2].predicate (op0, modev2)) op0 = copy_to_mode_reg (modev2, op0); if (!insn_data[d->icode].operand[3].predicate (op1, modei3)) op1 = copy_to_mode_reg (modei3, op1); if ((optimize && !register_operand (op2, modev4)) || !insn_data[d->icode].operand[4].predicate (op2, modev4)) op2 = copy_to_mode_reg (modev4, op2); if (!insn_data[d->icode].operand[5].predicate (op3, modei5)) op3 = copy_to_mode_reg (modei5, op3); if (!insn_data[d->icode].operand[6].predicate (op4, modeimm)) { error ("the fifth argument must be an 8-bit immediate"); return const0_rtx; } if (d->code == IX86_BUILTIN_PCMPESTRI128) { if (optimize || !target || GET_MODE (target) != tmode0 || !insn_data[d->icode].operand[0].predicate (target, tmode0)) target = gen_reg_rtx (tmode0); scratch1 = gen_reg_rtx (tmode1); pat = GEN_FCN (d->icode) (target, scratch1, op0, op1, op2, op3, op4); } else if (d->code == IX86_BUILTIN_PCMPESTRM128) { if (optimize || !target || GET_MODE (target) != tmode1 || !insn_data[d->icode].operand[1].predicate (target, tmode1)) target = gen_reg_rtx (tmode1); scratch0 = gen_reg_rtx (tmode0); pat = GEN_FCN (d->icode) (scratch0, target, op0, op1, op2, op3, op4); } else { gcc_assert (d->flag); scratch0 = gen_reg_rtx (tmode0); scratch1 = gen_reg_rtx (tmode1); pat = GEN_FCN (d->icode) (scratch0, scratch1, op0, op1, op2, op3, op4); } if (! pat) return 0; emit_insn (pat); if (d->flag) { target = gen_reg_rtx (SImode); emit_move_insn (target, const0_rtx); target = gen_rtx_SUBREG (QImode, target, 0); emit_insn (gen_rtx_SET (VOIDmode, gen_rtx_STRICT_LOW_PART (VOIDmode, target), gen_rtx_fmt_ee (EQ, QImode, gen_rtx_REG ((enum machine_mode) d->flag, FLAGS_REG), const0_rtx))); return SUBREG_REG (target); } else return target; } /* Subroutine of ix86_expand_builtin to take care of pcmpistr[im] insns. */ static rtx ix86_expand_sse_pcmpistr (const struct builtin_description *d, tree exp, rtx target) { rtx pat; tree arg0 = CALL_EXPR_ARG (exp, 0); tree arg1 = CALL_EXPR_ARG (exp, 1); tree arg2 = CALL_EXPR_ARG (exp, 2); rtx scratch0, scratch1; rtx op0 = expand_normal (arg0); rtx op1 = expand_normal (arg1); rtx op2 = expand_normal (arg2); enum machine_mode tmode0, tmode1, modev2, modev3, modeimm; tmode0 = insn_data[d->icode].operand[0].mode; tmode1 = insn_data[d->icode].operand[1].mode; modev2 = insn_data[d->icode].operand[2].mode; modev3 = insn_data[d->icode].operand[3].mode; modeimm = insn_data[d->icode].operand[4].mode; if (VECTOR_MODE_P (modev2)) op0 = safe_vector_operand (op0, modev2); if (VECTOR_MODE_P (modev3)) op1 = safe_vector_operand (op1, modev3); if (!insn_data[d->icode].operand[2].predicate (op0, modev2)) op0 = copy_to_mode_reg (modev2, op0); if ((optimize && !register_operand (op1, modev3)) || !insn_data[d->icode].operand[3].predicate (op1, modev3)) op1 = copy_to_mode_reg (modev3, op1); if (!insn_data[d->icode].operand[4].predicate (op2, modeimm)) { error ("the third argument must be an 8-bit immediate"); return const0_rtx; } if (d->code == IX86_BUILTIN_PCMPISTRI128) { if (optimize || !target || GET_MODE (target) != tmode0 || !insn_data[d->icode].operand[0].predicate (target, tmode0)) target = gen_reg_rtx (tmode0); scratch1 = gen_reg_rtx (tmode1); pat = GEN_FCN (d->icode) (target, scratch1, op0, op1, op2); } else if (d->code == IX86_BUILTIN_PCMPISTRM128) { if (optimize || !target || GET_MODE (target) != tmode1 || !insn_data[d->icode].operand[1].predicate (target, tmode1)) target = gen_reg_rtx (tmode1); scratch0 = gen_reg_rtx (tmode0); pat = GEN_FCN (d->icode) (scratch0, target, op0, op1, op2); } else { gcc_assert (d->flag); scratch0 = gen_reg_rtx (tmode0); scratch1 = gen_reg_rtx (tmode1); pat = GEN_FCN (d->icode) (scratch0, scratch1, op0, op1, op2); } if (! pat) return 0; emit_insn (pat); if (d->flag) { target = gen_reg_rtx (SImode); emit_move_insn (target, const0_rtx); target = gen_rtx_SUBREG (QImode, target, 0); emit_insn (gen_rtx_SET (VOIDmode, gen_rtx_STRICT_LOW_PART (VOIDmode, target), gen_rtx_fmt_ee (EQ, QImode, gen_rtx_REG ((enum machine_mode) d->flag, FLAGS_REG), const0_rtx))); return SUBREG_REG (target); } else return target; } /* Subroutine of ix86_expand_builtin to take care of insns with variable number of operands. */ static rtx ix86_expand_args_builtin (const struct builtin_description *d, tree exp, rtx target) { rtx pat, real_target; unsigned int i, nargs; unsigned int nargs_constant = 0; int num_memory = 0; struct { rtx op; enum machine_mode mode; } args[4]; bool last_arg_count = false; enum insn_code icode = d->icode; const struct insn_data_d *insn_p = &insn_data[icode]; enum machine_mode tmode = insn_p->operand[0].mode; enum machine_mode rmode = VOIDmode; bool swap = false; enum rtx_code comparison = d->comparison; switch ((enum ix86_builtin_func_type) d->flag) { case V2DF_FTYPE_V2DF_ROUND: case V4DF_FTYPE_V4DF_ROUND: case V4SF_FTYPE_V4SF_ROUND: case V8SF_FTYPE_V8SF_ROUND: case V4SI_FTYPE_V4SF_ROUND: case V8SI_FTYPE_V8SF_ROUND: return ix86_expand_sse_round (d, exp, target); case V4SI_FTYPE_V2DF_V2DF_ROUND: case V8SI_FTYPE_V4DF_V4DF_ROUND: return ix86_expand_sse_round_vec_pack_sfix (d, exp, target); case INT_FTYPE_V8SF_V8SF_PTEST: case INT_FTYPE_V4DI_V4DI_PTEST: case INT_FTYPE_V4DF_V4DF_PTEST: case INT_FTYPE_V4SF_V4SF_PTEST: case INT_FTYPE_V2DI_V2DI_PTEST: case INT_FTYPE_V2DF_V2DF_PTEST: return ix86_expand_sse_ptest (d, exp, target); case FLOAT128_FTYPE_FLOAT128: case FLOAT_FTYPE_FLOAT: case INT_FTYPE_INT: case UINT64_FTYPE_INT: case UINT16_FTYPE_UINT16: case INT64_FTYPE_INT64: case INT64_FTYPE_V4SF: case INT64_FTYPE_V2DF: case INT_FTYPE_V16QI: case INT_FTYPE_V8QI: case INT_FTYPE_V8SF: case INT_FTYPE_V4DF: case INT_FTYPE_V4SF: case INT_FTYPE_V2DF: case INT_FTYPE_V32QI: case V16QI_FTYPE_V16QI: case V8SI_FTYPE_V8SF: case V8SI_FTYPE_V4SI: case V8HI_FTYPE_V8HI: case V8HI_FTYPE_V16QI: case V8QI_FTYPE_V8QI: case V8SF_FTYPE_V8SF: case V8SF_FTYPE_V8SI: case V8SF_FTYPE_V4SF: case V8SF_FTYPE_V8HI: case V4SI_FTYPE_V4SI: case V4SI_FTYPE_V16QI: case V4SI_FTYPE_V4SF: case V4SI_FTYPE_V8SI: case V4SI_FTYPE_V8HI: case V4SI_FTYPE_V4DF: case V4SI_FTYPE_V2DF: case V4HI_FTYPE_V4HI: case V4DF_FTYPE_V4DF: case V4DF_FTYPE_V4SI: case V4DF_FTYPE_V4SF: case V4DF_FTYPE_V2DF: case V4SF_FTYPE_V4SF: case V4SF_FTYPE_V4SI: case V4SF_FTYPE_V8SF: case V4SF_FTYPE_V4DF: case V4SF_FTYPE_V8HI: case V4SF_FTYPE_V2DF: case V2DI_FTYPE_V2DI: case V2DI_FTYPE_V16QI: case V2DI_FTYPE_V8HI: case V2DI_FTYPE_V4SI: case V2DF_FTYPE_V2DF: case V2DF_FTYPE_V4SI: case V2DF_FTYPE_V4DF: case V2DF_FTYPE_V4SF: case V2DF_FTYPE_V2SI: case V2SI_FTYPE_V2SI: case V2SI_FTYPE_V4SF: case V2SI_FTYPE_V2SF: case V2SI_FTYPE_V2DF: case V2SF_FTYPE_V2SF: case V2SF_FTYPE_V2SI: case V32QI_FTYPE_V32QI: case V32QI_FTYPE_V16QI: case V16HI_FTYPE_V16HI: case V16HI_FTYPE_V8HI: case V8SI_FTYPE_V8SI: case V16HI_FTYPE_V16QI: case V8SI_FTYPE_V16QI: case V4DI_FTYPE_V16QI: case V8SI_FTYPE_V8HI: case V4DI_FTYPE_V8HI: case V4DI_FTYPE_V4SI: case V4DI_FTYPE_V2DI: nargs = 1; break; case V4SF_FTYPE_V4SF_VEC_MERGE: case V2DF_FTYPE_V2DF_VEC_MERGE: return ix86_expand_unop_vec_merge_builtin (icode, exp, target); case FLOAT128_FTYPE_FLOAT128_FLOAT128: case V16QI_FTYPE_V16QI_V16QI: case V16QI_FTYPE_V8HI_V8HI: case V8QI_FTYPE_V8QI_V8QI: case V8QI_FTYPE_V4HI_V4HI: case V8HI_FTYPE_V8HI_V8HI: case V8HI_FTYPE_V16QI_V16QI: case V8HI_FTYPE_V4SI_V4SI: case V8SF_FTYPE_V8SF_V8SF: case V8SF_FTYPE_V8SF_V8SI: case V4SI_FTYPE_V4SI_V4SI: case V4SI_FTYPE_V8HI_V8HI: case V4SI_FTYPE_V4SF_V4SF: case V4SI_FTYPE_V2DF_V2DF: case V4HI_FTYPE_V4HI_V4HI: case V4HI_FTYPE_V8QI_V8QI: case V4HI_FTYPE_V2SI_V2SI: case V4DF_FTYPE_V4DF_V4DF: case V4DF_FTYPE_V4DF_V4DI: case V4SF_FTYPE_V4SF_V4SF: case V4SF_FTYPE_V4SF_V4SI: case V4SF_FTYPE_V4SF_V2SI: case V4SF_FTYPE_V4SF_V2DF: case V4SF_FTYPE_V4SF_DI: case V4SF_FTYPE_V4SF_SI: case V2DI_FTYPE_V2DI_V2DI: case V2DI_FTYPE_V16QI_V16QI: case V2DI_FTYPE_V4SI_V4SI: case V2UDI_FTYPE_V4USI_V4USI: case V2DI_FTYPE_V2DI_V16QI: case V2DI_FTYPE_V2DF_V2DF: case V2SI_FTYPE_V2SI_V2SI: case V2SI_FTYPE_V4HI_V4HI: case V2SI_FTYPE_V2SF_V2SF: case V2DF_FTYPE_V2DF_V2DF: case V2DF_FTYPE_V2DF_V4SF: case V2DF_FTYPE_V2DF_V2DI: case V2DF_FTYPE_V2DF_DI: case V2DF_FTYPE_V2DF_SI: case V2SF_FTYPE_V2SF_V2SF: case V1DI_FTYPE_V1DI_V1DI: case V1DI_FTYPE_V8QI_V8QI: case V1DI_FTYPE_V2SI_V2SI: case V32QI_FTYPE_V16HI_V16HI: case V16HI_FTYPE_V8SI_V8SI: case V32QI_FTYPE_V32QI_V32QI: case V16HI_FTYPE_V32QI_V32QI: case V16HI_FTYPE_V16HI_V16HI: case V8SI_FTYPE_V4DF_V4DF: case V8SI_FTYPE_V8SI_V8SI: case V8SI_FTYPE_V16HI_V16HI: case V4DI_FTYPE_V4DI_V4DI: case V4DI_FTYPE_V8SI_V8SI: case V4UDI_FTYPE_V8USI_V8USI: if (comparison == UNKNOWN) return ix86_expand_binop_builtin (icode, exp, target); nargs = 2; break; case V4SF_FTYPE_V4SF_V4SF_SWAP: case V2DF_FTYPE_V2DF_V2DF_SWAP: gcc_assert (comparison != UNKNOWN); nargs = 2; swap = true; break; case V16HI_FTYPE_V16HI_V8HI_COUNT: case V16HI_FTYPE_V16HI_SI_COUNT: case V8SI_FTYPE_V8SI_V4SI_COUNT: case V8SI_FTYPE_V8SI_SI_COUNT: case V4DI_FTYPE_V4DI_V2DI_COUNT: case V4DI_FTYPE_V4DI_INT_COUNT: case V8HI_FTYPE_V8HI_V8HI_COUNT: case V8HI_FTYPE_V8HI_SI_COUNT: case V4SI_FTYPE_V4SI_V4SI_COUNT: case V4SI_FTYPE_V4SI_SI_COUNT: case V4HI_FTYPE_V4HI_V4HI_COUNT: case V4HI_FTYPE_V4HI_SI_COUNT: case V2DI_FTYPE_V2DI_V2DI_COUNT: case V2DI_FTYPE_V2DI_SI_COUNT: case V2SI_FTYPE_V2SI_V2SI_COUNT: case V2SI_FTYPE_V2SI_SI_COUNT: case V1DI_FTYPE_V1DI_V1DI_COUNT: case V1DI_FTYPE_V1DI_SI_COUNT: nargs = 2; last_arg_count = true; break; case UINT64_FTYPE_UINT64_UINT64: case UINT_FTYPE_UINT_UINT: case UINT_FTYPE_UINT_USHORT: case UINT_FTYPE_UINT_UCHAR: case UINT16_FTYPE_UINT16_INT: case UINT8_FTYPE_UINT8_INT: nargs = 2; break; case V2DI_FTYPE_V2DI_INT_CONVERT: nargs = 2; rmode = V1TImode; nargs_constant = 1; break; case V4DI_FTYPE_V4DI_INT_CONVERT: nargs = 2; rmode = V2TImode; nargs_constant = 1; break; case V8HI_FTYPE_V8HI_INT: case V8HI_FTYPE_V8SF_INT: case V8HI_FTYPE_V4SF_INT: case V8SF_FTYPE_V8SF_INT: case V4SI_FTYPE_V4SI_INT: case V4SI_FTYPE_V8SI_INT: case V4HI_FTYPE_V4HI_INT: case V4DF_FTYPE_V4DF_INT: case V4SF_FTYPE_V4SF_INT: case V4SF_FTYPE_V8SF_INT: case V2DI_FTYPE_V2DI_INT: case V2DF_FTYPE_V2DF_INT: case V2DF_FTYPE_V4DF_INT: case V16HI_FTYPE_V16HI_INT: case V8SI_FTYPE_V8SI_INT: case V4DI_FTYPE_V4DI_INT: case V2DI_FTYPE_V4DI_INT: nargs = 2; nargs_constant = 1; break; case V16QI_FTYPE_V16QI_V16QI_V16QI: case V8SF_FTYPE_V8SF_V8SF_V8SF: case V4DF_FTYPE_V4DF_V4DF_V4DF: case V4SF_FTYPE_V4SF_V4SF_V4SF: case V2DF_FTYPE_V2DF_V2DF_V2DF: case V32QI_FTYPE_V32QI_V32QI_V32QI: nargs = 3; break; case V32QI_FTYPE_V32QI_V32QI_INT: case V16HI_FTYPE_V16HI_V16HI_INT: case V16QI_FTYPE_V16QI_V16QI_INT: case V4DI_FTYPE_V4DI_V4DI_INT: case V8HI_FTYPE_V8HI_V8HI_INT: case V8SI_FTYPE_V8SI_V8SI_INT: case V8SI_FTYPE_V8SI_V4SI_INT: case V8SF_FTYPE_V8SF_V8SF_INT: case V8SF_FTYPE_V8SF_V4SF_INT: case V4SI_FTYPE_V4SI_V4SI_INT: case V4DF_FTYPE_V4DF_V4DF_INT: case V4DF_FTYPE_V4DF_V2DF_INT: case V4SF_FTYPE_V4SF_V4SF_INT: case V2DI_FTYPE_V2DI_V2DI_INT: case V4DI_FTYPE_V4DI_V2DI_INT: case V2DF_FTYPE_V2DF_V2DF_INT: nargs = 3; nargs_constant = 1; break; case V4DI_FTYPE_V4DI_V4DI_INT_CONVERT: nargs = 3; rmode = V4DImode; nargs_constant = 1; break; case V2DI_FTYPE_V2DI_V2DI_INT_CONVERT: nargs = 3; rmode = V2DImode; nargs_constant = 1; break; case V1DI_FTYPE_V1DI_V1DI_INT_CONVERT: nargs = 3; rmode = DImode; nargs_constant = 1; break; case V2DI_FTYPE_V2DI_UINT_UINT: nargs = 3; nargs_constant = 2; break; case V2DF_FTYPE_V2DF_V2DF_V2DI_INT: case V4DF_FTYPE_V4DF_V4DF_V4DI_INT: case V4SF_FTYPE_V4SF_V4SF_V4SI_INT: case V8SF_FTYPE_V8SF_V8SF_V8SI_INT: nargs = 4; nargs_constant = 1; break; case V2DI_FTYPE_V2DI_V2DI_UINT_UINT: nargs = 4; nargs_constant = 2; break; case UCHAR_FTYPE_UCHAR_UINT_UINT_PUNSIGNED: case UCHAR_FTYPE_UCHAR_ULONGLONG_ULONGLONG_PULONGLONG: nargs = 4; break; default: gcc_unreachable (); } gcc_assert (nargs <= ARRAY_SIZE (args)); if (comparison != UNKNOWN) { gcc_assert (nargs == 2); return ix86_expand_sse_compare (d, exp, target, swap); } if (rmode == VOIDmode || rmode == tmode) { if (optimize || target == 0 || GET_MODE (target) != tmode || !insn_p->operand[0].predicate (target, tmode)) target = gen_reg_rtx (tmode); real_target = target; } else { real_target = gen_reg_rtx (tmode); target = simplify_gen_subreg (rmode, real_target, tmode, 0); } for (i = 0; i < nargs; i++) { tree arg = CALL_EXPR_ARG (exp, i); rtx op = expand_normal (arg); enum machine_mode mode = insn_p->operand[i + 1].mode; bool match = insn_p->operand[i + 1].predicate (op, mode); if (last_arg_count && (i + 1) == nargs) { /* SIMD shift insns take either an 8-bit immediate or register as count. But builtin functions take int as count. If count doesn't match, we put it in register. */ if (!match) { op = simplify_gen_subreg (SImode, op, GET_MODE (op), 0); if (!insn_p->operand[i + 1].predicate (op, mode)) op = copy_to_reg (op); } } else if ((nargs - i) <= nargs_constant) { if (!match) switch (icode) { case CODE_FOR_avx2_inserti128: case CODE_FOR_avx2_extracti128: error ("the last argument must be an 1-bit immediate"); return const0_rtx; case CODE_FOR_sse4_1_roundsd: case CODE_FOR_sse4_1_roundss: case CODE_FOR_sse4_1_roundpd: case CODE_FOR_sse4_1_roundps: case CODE_FOR_avx_roundpd256: case CODE_FOR_avx_roundps256: case CODE_FOR_sse4_1_roundpd_vec_pack_sfix: case CODE_FOR_sse4_1_roundps_sfix: case CODE_FOR_avx_roundpd_vec_pack_sfix256: case CODE_FOR_avx_roundps_sfix256: case CODE_FOR_sse4_1_blendps: case CODE_FOR_avx_blendpd256: case CODE_FOR_avx_vpermilv4df: error ("the last argument must be a 4-bit immediate"); return const0_rtx; case CODE_FOR_sse4_1_blendpd: case CODE_FOR_avx_vpermilv2df: case CODE_FOR_xop_vpermil2v2df3: case CODE_FOR_xop_vpermil2v4sf3: case CODE_FOR_xop_vpermil2v4df3: case CODE_FOR_xop_vpermil2v8sf3: error ("the last argument must be a 2-bit immediate"); return const0_rtx; case CODE_FOR_avx_vextractf128v4df: case CODE_FOR_avx_vextractf128v8sf: case CODE_FOR_avx_vextractf128v8si: case CODE_FOR_avx_vinsertf128v4df: case CODE_FOR_avx_vinsertf128v8sf: case CODE_FOR_avx_vinsertf128v8si: error ("the last argument must be a 1-bit immediate"); return const0_rtx; case CODE_FOR_avx_vmcmpv2df3: case CODE_FOR_avx_vmcmpv4sf3: case CODE_FOR_avx_cmpv2df3: case CODE_FOR_avx_cmpv4sf3: case CODE_FOR_avx_cmpv4df3: case CODE_FOR_avx_cmpv8sf3: error ("the last argument must be a 5-bit immediate"); return const0_rtx; default: switch (nargs_constant) { case 2: if ((nargs - i) == nargs_constant) { error ("the next to last argument must be an 8-bit immediate"); break; } case 1: error ("the last argument must be an 8-bit immediate"); break; default: gcc_unreachable (); } return const0_rtx; } } else { if (VECTOR_MODE_P (mode)) op = safe_vector_operand (op, mode); /* If we aren't optimizing, only allow one memory operand to be generated. */ if (memory_operand (op, mode)) num_memory++; if (GET_MODE (op) == mode || GET_MODE (op) == VOIDmode) { if (optimize || !match || num_memory > 1) op = copy_to_mode_reg (mode, op); } else { op = copy_to_reg (op); op = simplify_gen_subreg (mode, op, GET_MODE (op), 0); } } args[i].op = op; args[i].mode = mode; } switch (nargs) { case 1: pat = GEN_FCN (icode) (real_target, args[0].op); break; case 2: pat = GEN_FCN (icode) (real_target, args[0].op, args[1].op); break; case 3: pat = GEN_FCN (icode) (real_target, args[0].op, args[1].op, args[2].op); break; case 4: pat = GEN_FCN (icode) (real_target, args[0].op, args[1].op, args[2].op, args[3].op); break; default: gcc_unreachable (); } if (! pat) return 0; emit_insn (pat); return target; } /* Subroutine of ix86_expand_builtin to take care of special insns with variable number of operands. */ static rtx ix86_expand_special_args_builtin (const struct builtin_description *d, tree exp, rtx target) { tree arg; rtx pat, op; unsigned int i, nargs, arg_adjust, memory; struct { rtx op; enum machine_mode mode; } args[3]; enum insn_code icode = d->icode; bool last_arg_constant = false; const struct insn_data_d *insn_p = &insn_data[icode]; enum machine_mode tmode = insn_p->operand[0].mode; enum { load, store } klass; switch ((enum ix86_builtin_func_type) d->flag) { case VOID_FTYPE_VOID: emit_insn (GEN_FCN (icode) (target)); return 0; case VOID_FTYPE_UINT64: case VOID_FTYPE_UNSIGNED: nargs = 0; klass = store; memory = 0; break; case INT_FTYPE_VOID: case UINT64_FTYPE_VOID: case UNSIGNED_FTYPE_VOID: nargs = 0; klass = load; memory = 0; break; case UINT64_FTYPE_PUNSIGNED: case V2DI_FTYPE_PV2DI: case V4DI_FTYPE_PV4DI: case V32QI_FTYPE_PCCHAR: case V16QI_FTYPE_PCCHAR: case V8SF_FTYPE_PCV4SF: case V8SF_FTYPE_PCFLOAT: case V4SF_FTYPE_PCFLOAT: case V4DF_FTYPE_PCV2DF: case V4DF_FTYPE_PCDOUBLE: case V2DF_FTYPE_PCDOUBLE: case VOID_FTYPE_PVOID: nargs = 1; klass = load; memory = 0; break; case VOID_FTYPE_PV2SF_V4SF: case VOID_FTYPE_PV4DI_V4DI: case VOID_FTYPE_PV2DI_V2DI: case VOID_FTYPE_PCHAR_V32QI: case VOID_FTYPE_PCHAR_V16QI: case VOID_FTYPE_PFLOAT_V8SF: case VOID_FTYPE_PFLOAT_V4SF: case VOID_FTYPE_PDOUBLE_V4DF: case VOID_FTYPE_PDOUBLE_V2DF: case VOID_FTYPE_PLONGLONG_LONGLONG: case VOID_FTYPE_PULONGLONG_ULONGLONG: case VOID_FTYPE_PINT_INT: nargs = 1; klass = store; /* Reserve memory operand for target. */ memory = ARRAY_SIZE (args); break; case V4SF_FTYPE_V4SF_PCV2SF: case V2DF_FTYPE_V2DF_PCDOUBLE: nargs = 2; klass = load; memory = 1; break; case V8SF_FTYPE_PCV8SF_V8SI: case V4DF_FTYPE_PCV4DF_V4DI: case V4SF_FTYPE_PCV4SF_V4SI: case V2DF_FTYPE_PCV2DF_V2DI: case V8SI_FTYPE_PCV8SI_V8SI: case V4DI_FTYPE_PCV4DI_V4DI: case V4SI_FTYPE_PCV4SI_V4SI: case V2DI_FTYPE_PCV2DI_V2DI: nargs = 2; klass = load; memory = 0; break; case VOID_FTYPE_PV8SF_V8SI_V8SF: case VOID_FTYPE_PV4DF_V4DI_V4DF: case VOID_FTYPE_PV4SF_V4SI_V4SF: case VOID_FTYPE_PV2DF_V2DI_V2DF: case VOID_FTYPE_PV8SI_V8SI_V8SI: case VOID_FTYPE_PV4DI_V4DI_V4DI: case VOID_FTYPE_PV4SI_V4SI_V4SI: case VOID_FTYPE_PV2DI_V2DI_V2DI: nargs = 2; klass = store; /* Reserve memory operand for target. */ memory = ARRAY_SIZE (args); break; case VOID_FTYPE_UINT_UINT_UINT: case VOID_FTYPE_UINT64_UINT_UINT: case UCHAR_FTYPE_UINT_UINT_UINT: case UCHAR_FTYPE_UINT64_UINT_UINT: nargs = 3; klass = load; memory = ARRAY_SIZE (args); last_arg_constant = true; break; default: gcc_unreachable (); } gcc_assert (nargs <= ARRAY_SIZE (args)); if (klass == store) { arg = CALL_EXPR_ARG (exp, 0); op = expand_normal (arg); gcc_assert (target == 0); if (memory) { op = force_reg (Pmode, convert_to_mode (Pmode, op, 1)); target = gen_rtx_MEM (tmode, op); } else target = force_reg (tmode, op); arg_adjust = 1; } else { arg_adjust = 0; if (optimize || target == 0 || !register_operand (target, tmode) || GET_MODE (target) != tmode) target = gen_reg_rtx (tmode); } for (i = 0; i < nargs; i++) { enum machine_mode mode = insn_p->operand[i + 1].mode; bool match; arg = CALL_EXPR_ARG (exp, i + arg_adjust); op = expand_normal (arg); match = insn_p->operand[i + 1].predicate (op, mode); if (last_arg_constant && (i + 1) == nargs) { if (!match) { if (icode == CODE_FOR_lwp_lwpvalsi3 || icode == CODE_FOR_lwp_lwpinssi3 || icode == CODE_FOR_lwp_lwpvaldi3 || icode == CODE_FOR_lwp_lwpinsdi3) error ("the last argument must be a 32-bit immediate"); else error ("the last argument must be an 8-bit immediate"); return const0_rtx; } } else { if (i == memory) { /* This must be the memory operand. */ op = force_reg (Pmode, convert_to_mode (Pmode, op, 1)); op = gen_rtx_MEM (mode, op); gcc_assert (GET_MODE (op) == mode || GET_MODE (op) == VOIDmode); } else { /* This must be register. */ if (VECTOR_MODE_P (mode)) op = safe_vector_operand (op, mode); gcc_assert (GET_MODE (op) == mode || GET_MODE (op) == VOIDmode); op = copy_to_mode_reg (mode, op); } } args[i].op = op; args[i].mode = mode; } switch (nargs) { case 0: pat = GEN_FCN (icode) (target); break; case 1: pat = GEN_FCN (icode) (target, args[0].op); break; case 2: pat = GEN_FCN (icode) (target, args[0].op, args[1].op); break; case 3: pat = GEN_FCN (icode) (target, args[0].op, args[1].op, args[2].op); break; default: gcc_unreachable (); } if (! pat) return 0; emit_insn (pat); return klass == store ? 0 : target; } /* Return the integer constant in ARG. Constrain it to be in the range of the subparts of VEC_TYPE; issue an error if not. */ static int get_element_number (tree vec_type, tree arg) { unsigned HOST_WIDE_INT elt, max = TYPE_VECTOR_SUBPARTS (vec_type) - 1; if (!tree_fits_uhwi_p (arg) || (elt = tree_to_uhwi (arg), elt > max)) { error ("selector must be an integer constant in the range 0..%wi", max); return 0; } return elt; } /* A subroutine of ix86_expand_builtin. These builtins are a wrapper around ix86_expand_vector_init. We DO have language-level syntax for this, in the form of (type){ init-list }. Except that since we can't place emms instructions from inside the compiler, we can't allow the use of MMX registers unless the user explicitly asks for it. So we do *not* define vec_set/vec_extract/vec_init patterns for MMX modes in mmx.md. Instead we have builtins invoked by mmintrin.h that gives us license to emit these sorts of instructions. */ static rtx ix86_expand_vec_init_builtin (tree type, tree exp, rtx target) { enum machine_mode tmode = TYPE_MODE (type); enum machine_mode inner_mode = GET_MODE_INNER (tmode); int i, n_elt = GET_MODE_NUNITS (tmode); rtvec v = rtvec_alloc (n_elt); gcc_assert (VECTOR_MODE_P (tmode)); gcc_assert (call_expr_nargs (exp) == n_elt); for (i = 0; i < n_elt; ++i) { rtx x = expand_normal (CALL_EXPR_ARG (exp, i)); RTVEC_ELT (v, i) = gen_lowpart (inner_mode, x); } if (!target || !register_operand (target, tmode)) target = gen_reg_rtx (tmode); ix86_expand_vector_init (true, target, gen_rtx_PARALLEL (tmode, v)); return target; } /* A subroutine of ix86_expand_builtin. These builtins are a wrapper around ix86_expand_vector_extract. They would be redundant (for non-MMX) if we had a language-level syntax for referencing vector elements. */ static rtx ix86_expand_vec_ext_builtin (tree exp, rtx target) { enum machine_mode tmode, mode0; tree arg0, arg1; int elt; rtx op0; arg0 = CALL_EXPR_ARG (exp, 0); arg1 = CALL_EXPR_ARG (exp, 1); op0 = expand_normal (arg0); elt = get_element_number (TREE_TYPE (arg0), arg1); tmode = TYPE_MODE (TREE_TYPE (TREE_TYPE (arg0))); mode0 = TYPE_MODE (TREE_TYPE (arg0)); gcc_assert (VECTOR_MODE_P (mode0)); op0 = force_reg (mode0, op0); if (optimize || !target || !register_operand (target, tmode)) target = gen_reg_rtx (tmode); ix86_expand_vector_extract (true, target, op0, elt); return target; } /* A subroutine of ix86_expand_builtin. These builtins are a wrapper around ix86_expand_vector_set. They would be redundant (for non-MMX) if we had a language-level syntax for referencing vector elements. */ static rtx ix86_expand_vec_set_builtin (tree exp) { enum machine_mode tmode, mode1; tree arg0, arg1, arg2; int elt; rtx op0, op1, target; arg0 = CALL_EXPR_ARG (exp, 0); arg1 = CALL_EXPR_ARG (exp, 1); arg2 = CALL_EXPR_ARG (exp, 2); tmode = TYPE_MODE (TREE_TYPE (arg0)); mode1 = TYPE_MODE (TREE_TYPE (TREE_TYPE (arg0))); gcc_assert (VECTOR_MODE_P (tmode)); op0 = expand_expr (arg0, NULL_RTX, tmode, EXPAND_NORMAL); op1 = expand_expr (arg1, NULL_RTX, mode1, EXPAND_NORMAL); elt = get_element_number (TREE_TYPE (arg0), arg2); if (GET_MODE (op1) != mode1 && GET_MODE (op1) != VOIDmode) op1 = convert_modes (mode1, GET_MODE (op1), op1, true); op0 = force_reg (tmode, op0); op1 = force_reg (mode1, op1); /* OP0 is the source of these builtin functions and shouldn't be modified. Create a copy, use it and return it as target. */ target = gen_reg_rtx (tmode); emit_move_insn (target, op0); ix86_expand_vector_set (true, target, op1, elt); return target; } /* Expand an expression EXP that calls a built-in function, with result going to TARGET if that's convenient (and in mode MODE if that's convenient). SUBTARGET may be used as the target for computing one of EXP's operands. IGNORE is nonzero if the value is to be ignored. */ static rtx ix86_expand_builtin (tree exp, rtx target, rtx subtarget, enum machine_mode mode, int ignore) { const struct builtin_description *d; size_t i; enum insn_code icode; tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0); tree arg0, arg1, arg2, arg3, arg4; rtx op0, op1, op2, op3, op4, pat, insn; enum machine_mode mode0, mode1, mode2, mode3, mode4; unsigned int fcode = DECL_FUNCTION_CODE (fndecl); /* For CPU builtins that can be folded, fold first and expand the fold. */ switch (fcode) { case IX86_BUILTIN_CPU_INIT: { /* Make it call __cpu_indicator_init in libgcc. */ tree call_expr, fndecl, type; type = build_function_type_list (integer_type_node, NULL_TREE); fndecl = build_fn_decl ("__cpu_indicator_init", type); call_expr = build_call_expr (fndecl, 0); return expand_expr (call_expr, target, mode, EXPAND_NORMAL); } case IX86_BUILTIN_CPU_IS: case IX86_BUILTIN_CPU_SUPPORTS: { tree arg0 = CALL_EXPR_ARG (exp, 0); tree fold_expr = fold_builtin_cpu (fndecl, &arg0); gcc_assert (fold_expr != NULL_TREE); return expand_expr (fold_expr, target, mode, EXPAND_NORMAL); } } /* Determine whether the builtin function is available under the current ISA. Originally the builtin was not created if it wasn't applicable to the current ISA based on the command line switches. With function specific options, we need to check in the context of the function making the call whether it is supported. */ if (ix86_builtins_isa[fcode].isa && !(ix86_builtins_isa[fcode].isa & ix86_isa_flags)) { char *opts = ix86_target_string (ix86_builtins_isa[fcode].isa, 0, NULL, NULL, (enum fpmath_unit) 0, false); if (!opts) error ("%qE needs unknown isa option", fndecl); else { gcc_assert (opts != NULL); error ("%qE needs isa option %s", fndecl, opts); free (opts); } return const0_rtx; } switch (fcode) { case IX86_BUILTIN_MASKMOVQ: case IX86_BUILTIN_MASKMOVDQU: icode = (fcode == IX86_BUILTIN_MASKMOVQ ? CODE_FOR_mmx_maskmovq : CODE_FOR_sse2_maskmovdqu); /* Note the arg order is different from the operand order. */ arg1 = CALL_EXPR_ARG (exp, 0); arg2 = CALL_EXPR_ARG (exp, 1); arg0 = CALL_EXPR_ARG (exp, 2); op0 = expand_normal (arg0); op1 = expand_normal (arg1); op2 = expand_normal (arg2); mode0 = insn_data[icode].operand[0].mode; mode1 = insn_data[icode].operand[1].mode; mode2 = insn_data[icode].operand[2].mode; op0 = force_reg (Pmode, convert_to_mode (Pmode, op0, 1)); op0 = gen_rtx_MEM (mode1, op0); if (!insn_data[icode].operand[0].predicate (op0, mode0)) op0 = copy_to_mode_reg (mode0, op0); if (!insn_data[icode].operand[1].predicate (op1, mode1)) op1 = copy_to_mode_reg (mode1, op1); if (!insn_data[icode].operand[2].predicate (op2, mode2)) op2 = copy_to_mode_reg (mode2, op2); pat = GEN_FCN (icode) (op0, op1, op2); if (! pat) return 0; emit_insn (pat); return 0; case IX86_BUILTIN_LDMXCSR: op0 = expand_normal (CALL_EXPR_ARG (exp, 0)); target = assign_386_stack_local (SImode, SLOT_TEMP); emit_move_insn (target, op0); emit_insn (gen_sse_ldmxcsr (target)); return 0; case IX86_BUILTIN_STMXCSR: target = assign_386_stack_local (SImode, SLOT_TEMP); emit_insn (gen_sse_stmxcsr (target)); return copy_to_mode_reg (SImode, target); case IX86_BUILTIN_CLFLUSH: arg0 = CALL_EXPR_ARG (exp, 0); op0 = expand_normal (arg0); icode = CODE_FOR_sse2_clflush; if (!insn_data[icode].operand[0].predicate (op0, Pmode)) op0 = force_reg (Pmode, convert_to_mode (Pmode, op0, 1)); emit_insn (gen_sse2_clflush (op0)); return 0; case IX86_BUILTIN_MONITOR: arg0 = CALL_EXPR_ARG (exp, 0); arg1 = CALL_EXPR_ARG (exp, 1); arg2 = CALL_EXPR_ARG (exp, 2); op0 = expand_normal (arg0); op1 = expand_normal (arg1); op2 = expand_normal (arg2); if (!REG_P (op0)) op0 = force_reg (Pmode, convert_to_mode (Pmode, op0, 1)); if (!REG_P (op1)) op1 = copy_to_mode_reg (SImode, op1); if (!REG_P (op2)) op2 = copy_to_mode_reg (SImode, op2); emit_insn (ix86_gen_monitor (op0, op1, op2)); return 0; case IX86_BUILTIN_MWAIT: arg0 = CALL_EXPR_ARG (exp, 0); arg1 = CALL_EXPR_ARG (exp, 1); op0 = expand_normal (arg0); op1 = expand_normal (arg1); if (!REG_P (op0)) op0 = copy_to_mode_reg (SImode, op0); if (!REG_P (op1)) op1 = copy_to_mode_reg (SImode, op1); emit_insn (gen_sse3_mwait (op0, op1)); return 0; case IX86_BUILTIN_VEC_INIT_V2SI: case IX86_BUILTIN_VEC_INIT_V4HI: case IX86_BUILTIN_VEC_INIT_V8QI: return ix86_expand_vec_init_builtin (TREE_TYPE (exp), exp, target); case IX86_BUILTIN_VEC_EXT_V2DF: case IX86_BUILTIN_VEC_EXT_V2DI: case IX86_BUILTIN_VEC_EXT_V4SF: case IX86_BUILTIN_VEC_EXT_V4SI: case IX86_BUILTIN_VEC_EXT_V8HI: case IX86_BUILTIN_VEC_EXT_V2SI: case IX86_BUILTIN_VEC_EXT_V4HI: case IX86_BUILTIN_VEC_EXT_V16QI: return ix86_expand_vec_ext_builtin (exp, target); case IX86_BUILTIN_VEC_SET_V2DI: case IX86_BUILTIN_VEC_SET_V4SF: case IX86_BUILTIN_VEC_SET_V4SI: case IX86_BUILTIN_VEC_SET_V8HI: case IX86_BUILTIN_VEC_SET_V4HI: case IX86_BUILTIN_VEC_SET_V16QI: return ix86_expand_vec_set_builtin (exp); case IX86_BUILTIN_INFQ: case IX86_BUILTIN_HUGE_VALQ: { REAL_VALUE_TYPE inf; rtx tmp; real_inf (&inf); tmp = CONST_DOUBLE_FROM_REAL_VALUE (inf, mode); tmp = validize_mem (force_const_mem (mode, tmp)); if (target == 0) target = gen_reg_rtx (mode); emit_move_insn (target, tmp); return target; } case IX86_BUILTIN_RDPMC: case IX86_BUILTIN_RDTSC: case IX86_BUILTIN_RDTSCP: op0 = gen_reg_rtx (DImode); op1 = gen_reg_rtx (DImode); if (fcode == IX86_BUILTIN_RDPMC) { arg0 = CALL_EXPR_ARG (exp, 0); op2 = expand_normal (arg0); if (!register_operand (op2, SImode)) op2 = copy_to_mode_reg (SImode, op2); insn = (TARGET_64BIT ? gen_rdpmc_rex64 (op0, op1, op2) : gen_rdpmc (op0, op2)); emit_insn (insn); } else if (fcode == IX86_BUILTIN_RDTSC) { insn = (TARGET_64BIT ? gen_rdtsc_rex64 (op0, op1) : gen_rdtsc (op0)); emit_insn (insn); } else { op2 = gen_reg_rtx (SImode); insn = (TARGET_64BIT ? gen_rdtscp_rex64 (op0, op1, op2) : gen_rdtscp (op0, op2)); emit_insn (insn); arg0 = CALL_EXPR_ARG (exp, 0); op4 = expand_normal (arg0); if (!address_operand (op4, VOIDmode)) { op4 = convert_memory_address (Pmode, op4); op4 = copy_addr_to_reg (op4); } emit_move_insn (gen_rtx_MEM (SImode, op4), op2); } if (target == 0) { /* mode is VOIDmode if __builtin_rd* has been called without lhs. */ if (mode == VOIDmode) return target; target = gen_reg_rtx (mode); } if (TARGET_64BIT) { op1 = expand_simple_binop (DImode, ASHIFT, op1, GEN_INT (32), op1, 1, OPTAB_DIRECT); op0 = expand_simple_binop (DImode, IOR, op0, op1, op0, 1, OPTAB_DIRECT); } emit_move_insn (target, op0); return target; case IX86_BUILTIN_FXSAVE: case IX86_BUILTIN_FXRSTOR: case IX86_BUILTIN_FXSAVE64: case IX86_BUILTIN_FXRSTOR64: case IX86_BUILTIN_FNSTENV: case IX86_BUILTIN_FLDENV: case IX86_BUILTIN_FNSTSW: mode0 = BLKmode; switch (fcode) { case IX86_BUILTIN_FXSAVE: icode = CODE_FOR_fxsave; break; case IX86_BUILTIN_FXRSTOR: icode = CODE_FOR_fxrstor; break; case IX86_BUILTIN_FXSAVE64: icode = CODE_FOR_fxsave64; break; case IX86_BUILTIN_FXRSTOR64: icode = CODE_FOR_fxrstor64; break; case IX86_BUILTIN_FNSTENV: icode = CODE_FOR_fnstenv; break; case IX86_BUILTIN_FLDENV: icode = CODE_FOR_fldenv; break; case IX86_BUILTIN_FNSTSW: icode = CODE_FOR_fnstsw; mode0 = HImode; break; default: gcc_unreachable (); } arg0 = CALL_EXPR_ARG (exp, 0); op0 = expand_normal (arg0); if (!address_operand (op0, VOIDmode)) { op0 = convert_memory_address (Pmode, op0); op0 = copy_addr_to_reg (op0); } op0 = gen_rtx_MEM (mode0, op0); pat = GEN_FCN (icode) (op0); if (pat) emit_insn (pat); return 0; case IX86_BUILTIN_XSAVE: case IX86_BUILTIN_XRSTOR: case IX86_BUILTIN_XSAVE64: case IX86_BUILTIN_XRSTOR64: case IX86_BUILTIN_XSAVEOPT: case IX86_BUILTIN_XSAVEOPT64: arg0 = CALL_EXPR_ARG (exp, 0); arg1 = CALL_EXPR_ARG (exp, 1); op0 = expand_normal (arg0); op1 = expand_normal (arg1); if (!address_operand (op0, VOIDmode)) { op0 = convert_memory_address (Pmode, op0); op0 = copy_addr_to_reg (op0); } op0 = gen_rtx_MEM (BLKmode, op0); op1 = force_reg (DImode, op1); if (TARGET_64BIT) { op2 = expand_simple_binop (DImode, LSHIFTRT, op1, GEN_INT (32), NULL, 1, OPTAB_DIRECT); switch (fcode) { case IX86_BUILTIN_XSAVE: icode = CODE_FOR_xsave_rex64; break; case IX86_BUILTIN_XRSTOR: icode = CODE_FOR_xrstor_rex64; break; case IX86_BUILTIN_XSAVE64: icode = CODE_FOR_xsave64; break; case IX86_BUILTIN_XRSTOR64: icode = CODE_FOR_xrstor64; break; case IX86_BUILTIN_XSAVEOPT: icode = CODE_FOR_xsaveopt_rex64; break; case IX86_BUILTIN_XSAVEOPT64: icode = CODE_FOR_xsaveopt64; break; default: gcc_unreachable (); } op2 = gen_lowpart (SImode, op2); op1 = gen_lowpart (SImode, op1); pat = GEN_FCN (icode) (op0, op1, op2); } else { switch (fcode) { case IX86_BUILTIN_XSAVE: icode = CODE_FOR_xsave; break; case IX86_BUILTIN_XRSTOR: icode = CODE_FOR_xrstor; break; case IX86_BUILTIN_XSAVEOPT: icode = CODE_FOR_xsaveopt; break; default: gcc_unreachable (); } pat = GEN_FCN (icode) (op0, op1); } if (pat) emit_insn (pat); return 0; case IX86_BUILTIN_LLWPCB: arg0 = CALL_EXPR_ARG (exp, 0); op0 = expand_normal (arg0); icode = CODE_FOR_lwp_llwpcb; if (!insn_data[icode].operand[0].predicate (op0, Pmode)) op0 = force_reg (Pmode, convert_to_mode (Pmode, op0, 1)); emit_insn (gen_lwp_llwpcb (op0)); return 0; case IX86_BUILTIN_SLWPCB: icode = CODE_FOR_lwp_slwpcb; if (!target || !insn_data[icode].operand[0].predicate (target, Pmode)) target = gen_reg_rtx (Pmode); emit_insn (gen_lwp_slwpcb (target)); return target; case IX86_BUILTIN_BEXTRI32: case IX86_BUILTIN_BEXTRI64: arg0 = CALL_EXPR_ARG (exp, 0); arg1 = CALL_EXPR_ARG (exp, 1); op0 = expand_normal (arg0); op1 = expand_normal (arg1); icode = (fcode == IX86_BUILTIN_BEXTRI32 ? CODE_FOR_tbm_bextri_si : CODE_FOR_tbm_bextri_di); if (!CONST_INT_P (op1)) { error ("last argument must be an immediate"); return const0_rtx; } else { unsigned char length = (INTVAL (op1) >> 8) & 0xFF; unsigned char lsb_index = INTVAL (op1) & 0xFF; op1 = GEN_INT (length); op2 = GEN_INT (lsb_index); pat = GEN_FCN (icode) (target, op0, op1, op2); if (pat) emit_insn (pat); return target; } case IX86_BUILTIN_RDRAND16_STEP: icode = CODE_FOR_rdrandhi_1; mode0 = HImode; goto rdrand_step; case IX86_BUILTIN_RDRAND32_STEP: icode = CODE_FOR_rdrandsi_1; mode0 = SImode; goto rdrand_step; case IX86_BUILTIN_RDRAND64_STEP: icode = CODE_FOR_rdranddi_1; mode0 = DImode; rdrand_step: op0 = gen_reg_rtx (mode0); emit_insn (GEN_FCN (icode) (op0)); arg0 = CALL_EXPR_ARG (exp, 0); op1 = expand_normal (arg0); if (!address_operand (op1, VOIDmode)) { op1 = convert_memory_address (Pmode, op1); op1 = copy_addr_to_reg (op1); } emit_move_insn (gen_rtx_MEM (mode0, op1), op0); op1 = gen_reg_rtx (SImode); emit_move_insn (op1, CONST1_RTX (SImode)); /* Emit SImode conditional move. */ if (mode0 == HImode) { op2 = gen_reg_rtx (SImode); emit_insn (gen_zero_extendhisi2 (op2, op0)); } else if (mode0 == SImode) op2 = op0; else op2 = gen_rtx_SUBREG (SImode, op0, 0); if (target == 0) target = gen_reg_rtx (SImode); pat = gen_rtx_GEU (VOIDmode, gen_rtx_REG (CCCmode, FLAGS_REG), const0_rtx); emit_insn (gen_rtx_SET (VOIDmode, target, gen_rtx_IF_THEN_ELSE (SImode, pat, op2, op1))); return target; case IX86_BUILTIN_RDSEED16_STEP: icode = CODE_FOR_rdseedhi_1; mode0 = HImode; goto rdseed_step; case IX86_BUILTIN_RDSEED32_STEP: icode = CODE_FOR_rdseedsi_1; mode0 = SImode; goto rdseed_step; case IX86_BUILTIN_RDSEED64_STEP: icode = CODE_FOR_rdseeddi_1; mode0 = DImode; rdseed_step: op0 = gen_reg_rtx (mode0); emit_insn (GEN_FCN (icode) (op0)); arg0 = CALL_EXPR_ARG (exp, 0); op1 = expand_normal (arg0); if (!address_operand (op1, VOIDmode)) { op1 = convert_memory_address (Pmode, op1); op1 = copy_addr_to_reg (op1); } emit_move_insn (gen_rtx_MEM (mode0, op1), op0); op2 = gen_reg_rtx (QImode); pat = gen_rtx_LTU (QImode, gen_rtx_REG (CCCmode, FLAGS_REG), const0_rtx); emit_insn (gen_rtx_SET (VOIDmode, op2, pat)); if (target == 0) target = gen_reg_rtx (SImode); emit_insn (gen_zero_extendqisi2 (target, op2)); return target; case IX86_BUILTIN_ADDCARRYX32: icode = TARGET_ADX ? CODE_FOR_adcxsi3 : CODE_FOR_addsi3_carry; mode0 = SImode; goto addcarryx; case IX86_BUILTIN_ADDCARRYX64: icode = TARGET_ADX ? CODE_FOR_adcxdi3 : CODE_FOR_adddi3_carry; mode0 = DImode; addcarryx: arg0 = CALL_EXPR_ARG (exp, 0); /* unsigned char c_in. */ arg1 = CALL_EXPR_ARG (exp, 1); /* unsigned int src1. */ arg2 = CALL_EXPR_ARG (exp, 2); /* unsigned int src2. */ arg3 = CALL_EXPR_ARG (exp, 3); /* unsigned int *sum_out. */ op0 = gen_reg_rtx (QImode); /* Generate CF from input operand. */ op1 = expand_normal (arg0); op1 = copy_to_mode_reg (QImode, convert_to_mode (QImode, op1, 1)); emit_insn (gen_addqi3_cc (op0, op1, constm1_rtx)); /* Gen ADCX instruction to compute X+Y+CF. */ op2 = expand_normal (arg1); op3 = expand_normal (arg2); if (!REG_P (op2)) op2 = copy_to_mode_reg (mode0, op2); if (!REG_P (op3)) op3 = copy_to_mode_reg (mode0, op3); op0 = gen_reg_rtx (mode0); op4 = gen_rtx_REG (CCCmode, FLAGS_REG); pat = gen_rtx_LTU (VOIDmode, op4, const0_rtx); emit_insn (GEN_FCN (icode) (op0, op2, op3, op4, pat)); /* Store the result. */ op4 = expand_normal (arg3); if (!address_operand (op4, VOIDmode)) { op4 = convert_memory_address (Pmode, op4); op4 = copy_addr_to_reg (op4); } emit_move_insn (gen_rtx_MEM (mode0, op4), op0); /* Return current CF value. */ if (target == 0) target = gen_reg_rtx (QImode); PUT_MODE (pat, QImode); emit_insn (gen_rtx_SET (VOIDmode, target, pat)); return target; case IX86_BUILTIN_GATHERSIV2DF: icode = CODE_FOR_avx2_gathersiv2df; goto gather_gen; case IX86_BUILTIN_GATHERSIV4DF: icode = CODE_FOR_avx2_gathersiv4df; goto gather_gen; case IX86_BUILTIN_GATHERDIV2DF: icode = CODE_FOR_avx2_gatherdiv2df; goto gather_gen; case IX86_BUILTIN_GATHERDIV4DF: icode = CODE_FOR_avx2_gatherdiv4df; goto gather_gen; case IX86_BUILTIN_GATHERSIV4SF: icode = CODE_FOR_avx2_gathersiv4sf; goto gather_gen; case IX86_BUILTIN_GATHERSIV8SF: icode = CODE_FOR_avx2_gathersiv8sf; goto gather_gen; case IX86_BUILTIN_GATHERDIV4SF: icode = CODE_FOR_avx2_gatherdiv4sf; goto gather_gen; case IX86_BUILTIN_GATHERDIV8SF: icode = CODE_FOR_avx2_gatherdiv8sf; goto gather_gen; case IX86_BUILTIN_GATHERSIV2DI: icode = CODE_FOR_avx2_gathersiv2di; goto gather_gen; case IX86_BUILTIN_GATHERSIV4DI: icode = CODE_FOR_avx2_gathersiv4di; goto gather_gen; case IX86_BUILTIN_GATHERDIV2DI: icode = CODE_FOR_avx2_gatherdiv2di; goto gather_gen; case IX86_BUILTIN_GATHERDIV4DI: icode = CODE_FOR_avx2_gatherdiv4di; goto gather_gen; case IX86_BUILTIN_GATHERSIV4SI: icode = CODE_FOR_avx2_gathersiv4si; goto gather_gen; case IX86_BUILTIN_GATHERSIV8SI: icode = CODE_FOR_avx2_gathersiv8si; goto gather_gen; case IX86_BUILTIN_GATHERDIV4SI: icode = CODE_FOR_avx2_gatherdiv4si; goto gather_gen; case IX86_BUILTIN_GATHERDIV8SI: icode = CODE_FOR_avx2_gatherdiv8si; goto gather_gen; case IX86_BUILTIN_GATHERALTSIV4DF: icode = CODE_FOR_avx2_gathersiv4df; goto gather_gen; case IX86_BUILTIN_GATHERALTDIV8SF: icode = CODE_FOR_avx2_gatherdiv8sf; goto gather_gen; case IX86_BUILTIN_GATHERALTSIV4DI: icode = CODE_FOR_avx2_gathersiv4di; goto gather_gen; case IX86_BUILTIN_GATHERALTDIV8SI: icode = CODE_FOR_avx2_gatherdiv8si; goto gather_gen; gather_gen: arg0 = CALL_EXPR_ARG (exp, 0); arg1 = CALL_EXPR_ARG (exp, 1); arg2 = CALL_EXPR_ARG (exp, 2); arg3 = CALL_EXPR_ARG (exp, 3); arg4 = CALL_EXPR_ARG (exp, 4); op0 = expand_normal (arg0); op1 = expand_normal (arg1); op2 = expand_normal (arg2); op3 = expand_normal (arg3); op4 = expand_normal (arg4); /* Note the arg order is different from the operand order. */ mode0 = insn_data[icode].operand[1].mode; mode2 = insn_data[icode].operand[3].mode; mode3 = insn_data[icode].operand[4].mode; mode4 = insn_data[icode].operand[5].mode; if (target == NULL_RTX || GET_MODE (target) != insn_data[icode].operand[0].mode) subtarget = gen_reg_rtx (insn_data[icode].operand[0].mode); else subtarget = target; if (fcode == IX86_BUILTIN_GATHERALTSIV4DF || fcode == IX86_BUILTIN_GATHERALTSIV4DI) { rtx half = gen_reg_rtx (V4SImode); if (!nonimmediate_operand (op2, V8SImode)) op2 = copy_to_mode_reg (V8SImode, op2); emit_insn (gen_vec_extract_lo_v8si (half, op2)); op2 = half; } else if (fcode == IX86_BUILTIN_GATHERALTDIV8SF || fcode == IX86_BUILTIN_GATHERALTDIV8SI) { rtx (*gen) (rtx, rtx); rtx half = gen_reg_rtx (mode0); if (mode0 == V4SFmode) gen = gen_vec_extract_lo_v8sf; else gen = gen_vec_extract_lo_v8si; if (!nonimmediate_operand (op0, GET_MODE (op0))) op0 = copy_to_mode_reg (GET_MODE (op0), op0); emit_insn (gen (half, op0)); op0 = half; if (!nonimmediate_operand (op3, GET_MODE (op3))) op3 = copy_to_mode_reg (GET_MODE (op3), op3); emit_insn (gen (half, op3)); op3 = half; } /* Force memory operand only with base register here. But we don't want to do it on memory operand for other builtin functions. */ op1 = force_reg (Pmode, convert_to_mode (Pmode, op1, 1)); if (!insn_data[icode].operand[1].predicate (op0, mode0)) op0 = copy_to_mode_reg (mode0, op0); if (!insn_data[icode].operand[2].predicate (op1, Pmode)) op1 = copy_to_mode_reg (Pmode, op1); if (!insn_data[icode].operand[3].predicate (op2, mode2)) op2 = copy_to_mode_reg (mode2, op2); if (!insn_data[icode].operand[4].predicate (op3, mode3)) op3 = copy_to_mode_reg (mode3, op3); if (!insn_data[icode].operand[5].predicate (op4, mode4)) { error ("last argument must be scale 1, 2, 4, 8"); return const0_rtx; } /* Optimize. If mask is known to have all high bits set, replace op0 with pc_rtx to signal that the instruction overwrites the whole destination and doesn't use its previous contents. */ if (optimize) { if (TREE_CODE (arg3) == VECTOR_CST) { unsigned int negative = 0; for (i = 0; i < VECTOR_CST_NELTS (arg3); ++i) { tree cst = VECTOR_CST_ELT (arg3, i); if (TREE_CODE (cst) == INTEGER_CST && tree_int_cst_sign_bit (cst)) negative++; else if (TREE_CODE (cst) == REAL_CST && REAL_VALUE_NEGATIVE (TREE_REAL_CST (cst))) negative++; } if (negative == TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg3))) op0 = pc_rtx; } else if (TREE_CODE (arg3) == SSA_NAME) { /* Recognize also when mask is like: __v2df src = _mm_setzero_pd (); __v2df mask = _mm_cmpeq_pd (src, src); or __v8sf src = _mm256_setzero_ps (); __v8sf mask = _mm256_cmp_ps (src, src, _CMP_EQ_OQ); as that is a cheaper way to load all ones into a register than having to load a constant from memory. */ gimple def_stmt = SSA_NAME_DEF_STMT (arg3); if (is_gimple_call (def_stmt)) { tree fndecl = gimple_call_fndecl (def_stmt); if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD) switch ((unsigned int) DECL_FUNCTION_CODE (fndecl)) { case IX86_BUILTIN_CMPPD: case IX86_BUILTIN_CMPPS: case IX86_BUILTIN_CMPPD256: case IX86_BUILTIN_CMPPS256: if (!integer_zerop (gimple_call_arg (def_stmt, 2))) break; /* FALLTHRU */ case IX86_BUILTIN_CMPEQPD: case IX86_BUILTIN_CMPEQPS: if (initializer_zerop (gimple_call_arg (def_stmt, 0)) && initializer_zerop (gimple_call_arg (def_stmt, 1))) op0 = pc_rtx; break; default: break; } } } } pat = GEN_FCN (icode) (subtarget, op0, op1, op2, op3, op4); if (! pat) return const0_rtx; emit_insn (pat); if (fcode == IX86_BUILTIN_GATHERDIV8SF || fcode == IX86_BUILTIN_GATHERDIV8SI) { enum machine_mode tmode = GET_MODE (subtarget) == V8SFmode ? V4SFmode : V4SImode; if (target == NULL_RTX) target = gen_reg_rtx (tmode); if (tmode == V4SFmode) emit_insn (gen_vec_extract_lo_v8sf (target, subtarget)); else emit_insn (gen_vec_extract_lo_v8si (target, subtarget)); } else target = subtarget; return target; case IX86_BUILTIN_XABORT: icode = CODE_FOR_xabort; arg0 = CALL_EXPR_ARG (exp, 0); op0 = expand_normal (arg0); mode0 = insn_data[icode].operand[0].mode; if (!insn_data[icode].operand[0].predicate (op0, mode0)) { error ("the xabort's argument must be an 8-bit immediate"); return const0_rtx; } emit_insn (gen_xabort (op0)); return 0; default: break; } for (i = 0, d = bdesc_special_args; i < ARRAY_SIZE (bdesc_special_args); i++, d++) if (d->code == fcode) return ix86_expand_special_args_builtin (d, exp, target); for (i = 0, d = bdesc_args; i < ARRAY_SIZE (bdesc_args); i++, d++) if (d->code == fcode) switch (fcode) { case IX86_BUILTIN_FABSQ: case IX86_BUILTIN_COPYSIGNQ: if (!TARGET_SSE) /* Emit a normal call if SSE isn't available. */ return expand_call (exp, target, ignore); default: return ix86_expand_args_builtin (d, exp, target); } for (i = 0, d = bdesc_comi; i < ARRAY_SIZE (bdesc_comi); i++, d++) if (d->code == fcode) return ix86_expand_sse_comi (d, exp, target); for (i = 0, d = bdesc_pcmpestr; i < ARRAY_SIZE (bdesc_pcmpestr); i++, d++) if (d->code == fcode) return ix86_expand_sse_pcmpestr (d, exp, target); for (i = 0, d = bdesc_pcmpistr; i < ARRAY_SIZE (bdesc_pcmpistr); i++, d++) if (d->code == fcode) return ix86_expand_sse_pcmpistr (d, exp, target); for (i = 0, d = bdesc_multi_arg; i < ARRAY_SIZE (bdesc_multi_arg); i++, d++) if (d->code == fcode) return ix86_expand_multi_arg_builtin (d->icode, exp, target, (enum ix86_builtin_func_type) d->flag, d->comparison); gcc_unreachable (); } /* Returns a function decl for a vectorized version of the builtin function with builtin function code FN and the result vector type TYPE, or NULL_TREE if it is not available. */ static tree ix86_builtin_vectorized_function (tree fndecl, tree type_out, tree type_in) { enum machine_mode in_mode, out_mode; int in_n, out_n; enum built_in_function fn = DECL_FUNCTION_CODE (fndecl); if (TREE_CODE (type_out) != VECTOR_TYPE || TREE_CODE (type_in) != VECTOR_TYPE || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL) return NULL_TREE; out_mode = TYPE_MODE (TREE_TYPE (type_out)); out_n = TYPE_VECTOR_SUBPARTS (type_out); in_mode = TYPE_MODE (TREE_TYPE (type_in)); in_n = TYPE_VECTOR_SUBPARTS (type_in); switch (fn) { case BUILT_IN_SQRT: if (out_mode == DFmode && in_mode == DFmode) { if (out_n == 2 && in_n == 2) return ix86_builtins[IX86_BUILTIN_SQRTPD]; else if (out_n == 4 && in_n == 4) return ix86_builtins[IX86_BUILTIN_SQRTPD256]; } break; case BUILT_IN_SQRTF: if (out_mode == SFmode && in_mode == SFmode) { if (out_n == 4 && in_n == 4) return ix86_builtins[IX86_BUILTIN_SQRTPS_NR]; else if (out_n == 8 && in_n == 8) return ix86_builtins[IX86_BUILTIN_SQRTPS_NR256]; } break; case BUILT_IN_IFLOOR: case BUILT_IN_LFLOOR: case BUILT_IN_LLFLOOR: /* The round insn does not trap on denormals. */ if (flag_trapping_math || !TARGET_ROUND) break; if (out_mode == SImode && in_mode == DFmode) { if (out_n == 4 && in_n == 2) return ix86_builtins[IX86_BUILTIN_FLOORPD_VEC_PACK_SFIX]; else if (out_n == 8 && in_n == 4) return ix86_builtins[IX86_BUILTIN_FLOORPD_VEC_PACK_SFIX256]; } break; case BUILT_IN_IFLOORF: case BUILT_IN_LFLOORF: case BUILT_IN_LLFLOORF: /* The round insn does not trap on denormals. */ if (flag_trapping_math || !TARGET_ROUND) break; if (out_mode == SImode && in_mode == SFmode) { if (out_n == 4 && in_n == 4) return ix86_builtins[IX86_BUILTIN_FLOORPS_SFIX]; else if (out_n == 8 && in_n == 8) return ix86_builtins[IX86_BUILTIN_FLOORPS_SFIX256]; } break; case BUILT_IN_ICEIL: case BUILT_IN_LCEIL: case BUILT_IN_LLCEIL: /* The round insn does not trap on denormals. */ if (flag_trapping_math || !TARGET_ROUND) break; if (out_mode == SImode && in_mode == DFmode) { if (out_n == 4 && in_n == 2) return ix86_builtins[IX86_BUILTIN_CEILPD_VEC_PACK_SFIX]; else if (out_n == 8 && in_n == 4) return ix86_builtins[IX86_BUILTIN_CEILPD_VEC_PACK_SFIX256]; } break; case BUILT_IN_ICEILF: case BUILT_IN_LCEILF: case BUILT_IN_LLCEILF: /* The round insn does not trap on denormals. */ if (flag_trapping_math || !TARGET_ROUND) break; if (out_mode == SImode && in_mode == SFmode) { if (out_n == 4 && in_n == 4) return ix86_builtins[IX86_BUILTIN_CEILPS_SFIX]; else if (out_n == 8 && in_n == 8) return ix86_builtins[IX86_BUILTIN_CEILPS_SFIX256]; } break; case BUILT_IN_IRINT: case BUILT_IN_LRINT: case BUILT_IN_LLRINT: if (out_mode == SImode && in_mode == DFmode) { if (out_n == 4 && in_n == 2) return ix86_builtins[IX86_BUILTIN_VEC_PACK_SFIX]; else if (out_n == 8 && in_n == 4) return ix86_builtins[IX86_BUILTIN_VEC_PACK_SFIX256]; } break; case BUILT_IN_IRINTF: case BUILT_IN_LRINTF: case BUILT_IN_LLRINTF: if (out_mode == SImode && in_mode == SFmode) { if (out_n == 4 && in_n == 4) return ix86_builtins[IX86_BUILTIN_CVTPS2DQ]; else if (out_n == 8 && in_n == 8) return ix86_builtins[IX86_BUILTIN_CVTPS2DQ256]; } break; case BUILT_IN_IROUND: case BUILT_IN_LROUND: case BUILT_IN_LLROUND: /* The round insn does not trap on denormals. */ if (flag_trapping_math || !TARGET_ROUND) break; if (out_mode == SImode && in_mode == DFmode) { if (out_n == 4 && in_n == 2) return ix86_builtins[IX86_BUILTIN_ROUNDPD_AZ_VEC_PACK_SFIX]; else if (out_n == 8 && in_n == 4) return ix86_builtins[IX86_BUILTIN_ROUNDPD_AZ_VEC_PACK_SFIX256]; } break; case BUILT_IN_IROUNDF: case BUILT_IN_LROUNDF: case BUILT_IN_LLROUNDF: /* The round insn does not trap on denormals. */ if (flag_trapping_math || !TARGET_ROUND) break; if (out_mode == SImode && in_mode == SFmode) { if (out_n == 4 && in_n == 4) return ix86_builtins[IX86_BUILTIN_ROUNDPS_AZ_SFIX]; else if (out_n == 8 && in_n == 8) return ix86_builtins[IX86_BUILTIN_ROUNDPS_AZ_SFIX256]; } break; case BUILT_IN_COPYSIGN: if (out_mode == DFmode && in_mode == DFmode) { if (out_n == 2 && in_n == 2) return ix86_builtins[IX86_BUILTIN_CPYSGNPD]; else if (out_n == 4 && in_n == 4) return ix86_builtins[IX86_BUILTIN_CPYSGNPD256]; } break; case BUILT_IN_COPYSIGNF: if (out_mode == SFmode && in_mode == SFmode) { if (out_n == 4 && in_n == 4) return ix86_builtins[IX86_BUILTIN_CPYSGNPS]; else if (out_n == 8 && in_n == 8) return ix86_builtins[IX86_BUILTIN_CPYSGNPS256]; } break; case BUILT_IN_FLOOR: /* The round insn does not trap on denormals. */ if (flag_trapping_math || !TARGET_ROUND) break; if (out_mode == DFmode && in_mode == DFmode) { if (out_n == 2 && in_n == 2) return ix86_builtins[IX86_BUILTIN_FLOORPD]; else if (out_n == 4 && in_n == 4) return ix86_builtins[IX86_BUILTIN_FLOORPD256]; } break; case BUILT_IN_FLOORF: /* The round insn does not trap on denormals. */ if (flag_trapping_math || !TARGET_ROUND) break; if (out_mode == SFmode && in_mode == SFmode) { if (out_n == 4 && in_n == 4) return ix86_builtins[IX86_BUILTIN_FLOORPS]; else if (out_n == 8 && in_n == 8) return ix86_builtins[IX86_BUILTIN_FLOORPS256]; } break; case BUILT_IN_CEIL: /* The round insn does not trap on denormals. */ if (flag_trapping_math || !TARGET_ROUND) break; if (out_mode == DFmode && in_mode == DFmode) { if (out_n == 2 && in_n == 2) return ix86_builtins[IX86_BUILTIN_CEILPD]; else if (out_n == 4 && in_n == 4) return ix86_builtins[IX86_BUILTIN_CEILPD256]; } break; case BUILT_IN_CEILF: /* The round insn does not trap on denormals. */ if (flag_trapping_math || !TARGET_ROUND) break; if (out_mode == SFmode && in_mode == SFmode) { if (out_n == 4 && in_n == 4) return ix86_builtins[IX86_BUILTIN_CEILPS]; else if (out_n == 8 && in_n == 8) return ix86_builtins[IX86_BUILTIN_CEILPS256]; } break; case BUILT_IN_TRUNC: /* The round insn does not trap on denormals. */ if (flag_trapping_math || !TARGET_ROUND) break; if (out_mode == DFmode && in_mode == DFmode) { if (out_n == 2 && in_n == 2) return ix86_builtins[IX86_BUILTIN_TRUNCPD]; else if (out_n == 4 && in_n == 4) return ix86_builtins[IX86_BUILTIN_TRUNCPD256]; } break; case BUILT_IN_TRUNCF: /* The round insn does not trap on denormals. */ if (flag_trapping_math || !TARGET_ROUND) break; if (out_mode == SFmode && in_mode == SFmode) { if (out_n == 4 && in_n == 4) return ix86_builtins[IX86_BUILTIN_TRUNCPS]; else if (out_n == 8 && in_n == 8) return ix86_builtins[IX86_BUILTIN_TRUNCPS256]; } break; case BUILT_IN_RINT: /* The round insn does not trap on denormals. */ if (flag_trapping_math || !TARGET_ROUND) break; if (out_mode == DFmode && in_mode == DFmode) { if (out_n == 2 && in_n == 2) return ix86_builtins[IX86_BUILTIN_RINTPD]; else if (out_n == 4 && in_n == 4) return ix86_builtins[IX86_BUILTIN_RINTPD256]; } break; case BUILT_IN_RINTF: /* The round insn does not trap on denormals. */ if (flag_trapping_math || !TARGET_ROUND) break; if (out_mode == SFmode && in_mode == SFmode) { if (out_n == 4 && in_n == 4) return ix86_builtins[IX86_BUILTIN_RINTPS]; else if (out_n == 8 && in_n == 8) return ix86_builtins[IX86_BUILTIN_RINTPS256]; } break; case BUILT_IN_ROUND: /* The round insn does not trap on denormals. */ if (flag_trapping_math || !TARGET_ROUND) break; if (out_mode == DFmode && in_mode == DFmode) { if (out_n == 2 && in_n == 2) return ix86_builtins[IX86_BUILTIN_ROUNDPD_AZ]; else if (out_n == 4 && in_n == 4) return ix86_builtins[IX86_BUILTIN_ROUNDPD_AZ256]; } break; case BUILT_IN_ROUNDF: /* The round insn does not trap on denormals. */ if (flag_trapping_math || !TARGET_ROUND) break; if (out_mode == SFmode && in_mode == SFmode) { if (out_n == 4 && in_n == 4) return ix86_builtins[IX86_BUILTIN_ROUNDPS_AZ]; else if (out_n == 8 && in_n == 8) return ix86_builtins[IX86_BUILTIN_ROUNDPS_AZ256]; } break; case BUILT_IN_FMA: if (out_mode == DFmode && in_mode == DFmode) { if (out_n == 2 && in_n == 2) return ix86_builtins[IX86_BUILTIN_VFMADDPD]; if (out_n == 4 && in_n == 4) return ix86_builtins[IX86_BUILTIN_VFMADDPD256]; } break; case BUILT_IN_FMAF: if (out_mode == SFmode && in_mode == SFmode) { if (out_n == 4 && in_n == 4) return ix86_builtins[IX86_BUILTIN_VFMADDPS]; if (out_n == 8 && in_n == 8) return ix86_builtins[IX86_BUILTIN_VFMADDPS256]; } break; default: break; } /* Dispatch to a handler for a vectorization library. */ if (ix86_veclib_handler) return ix86_veclib_handler ((enum built_in_function) fn, type_out, type_in); return NULL_TREE; } /* Handler for an SVML-style interface to a library with vectorized intrinsics. */ static tree ix86_veclibabi_svml (enum built_in_function fn, tree type_out, tree type_in) { char name[20]; tree fntype, new_fndecl, args; unsigned arity; const char *bname; enum machine_mode el_mode, in_mode; int n, in_n; /* The SVML is suitable for unsafe math only. */ if (!flag_unsafe_math_optimizations) return NULL_TREE; el_mode = TYPE_MODE (TREE_TYPE (type_out)); n = TYPE_VECTOR_SUBPARTS (type_out); in_mode = TYPE_MODE (TREE_TYPE (type_in)); in_n = TYPE_VECTOR_SUBPARTS (type_in); if (el_mode != in_mode || n != in_n) return NULL_TREE; switch (fn) { case BUILT_IN_EXP: case BUILT_IN_LOG: case BUILT_IN_LOG10: case BUILT_IN_POW: case BUILT_IN_TANH: case BUILT_IN_TAN: case BUILT_IN_ATAN: case BUILT_IN_ATAN2: case BUILT_IN_ATANH: case BUILT_IN_CBRT: case BUILT_IN_SINH: case BUILT_IN_SIN: case BUILT_IN_ASINH: case BUILT_IN_ASIN: case BUILT_IN_COSH: case BUILT_IN_COS: case BUILT_IN_ACOSH: case BUILT_IN_ACOS: if (el_mode != DFmode || n != 2) return NULL_TREE; break; case BUILT_IN_EXPF: case BUILT_IN_LOGF: case BUILT_IN_LOG10F: case BUILT_IN_POWF: case BUILT_IN_TANHF: case BUILT_IN_TANF: case BUILT_IN_ATANF: case BUILT_IN_ATAN2F: case BUILT_IN_ATANHF: case BUILT_IN_CBRTF: case BUILT_IN_SINHF: case BUILT_IN_SINF: case BUILT_IN_ASINHF: case BUILT_IN_ASINF: case BUILT_IN_COSHF: case BUILT_IN_COSF: case BUILT_IN_ACOSHF: case BUILT_IN_ACOSF: if (el_mode != SFmode || n != 4) return NULL_TREE; break; default: return NULL_TREE; } bname = IDENTIFIER_POINTER (DECL_NAME (builtin_decl_implicit (fn))); if (fn == BUILT_IN_LOGF) strcpy (name, "vmlsLn4"); else if (fn == BUILT_IN_LOG) strcpy (name, "vmldLn2"); else if (n == 4) { sprintf (name, "vmls%s", bname+10); name[strlen (name)-1] = '4'; } else sprintf (name, "vmld%s2", bname+10); /* Convert to uppercase. */ name[4] &= ~0x20; arity = 0; for (args = DECL_ARGUMENTS (builtin_decl_implicit (fn)); args; args = TREE_CHAIN (args)) arity++; if (arity == 1) fntype = build_function_type_list (type_out, type_in, NULL); else fntype = build_function_type_list (type_out, type_in, type_in, NULL); /* Build a function declaration for the vectorized function. */ new_fndecl = build_decl (BUILTINS_LOCATION, FUNCTION_DECL, get_identifier (name), fntype); TREE_PUBLIC (new_fndecl) = 1; DECL_EXTERNAL (new_fndecl) = 1; DECL_IS_NOVOPS (new_fndecl) = 1; TREE_READONLY (new_fndecl) = 1; return new_fndecl; } /* Handler for an ACML-style interface to a library with vectorized intrinsics. */ static tree ix86_veclibabi_acml (enum built_in_function fn, tree type_out, tree type_in) { char name[20] = "__vr.._"; tree fntype, new_fndecl, args; unsigned arity; const char *bname; enum machine_mode el_mode, in_mode; int n, in_n; /* The ACML is 64bits only and suitable for unsafe math only as it does not correctly support parts of IEEE with the required precision such as denormals. */ if (!TARGET_64BIT || !flag_unsafe_math_optimizations) return NULL_TREE; el_mode = TYPE_MODE (TREE_TYPE (type_out)); n = TYPE_VECTOR_SUBPARTS (type_out); in_mode = TYPE_MODE (TREE_TYPE (type_in)); in_n = TYPE_VECTOR_SUBPARTS (type_in); if (el_mode != in_mode || n != in_n) return NULL_TREE; switch (fn) { case BUILT_IN_SIN: case BUILT_IN_COS: case BUILT_IN_EXP: case BUILT_IN_LOG: case BUILT_IN_LOG2: case BUILT_IN_LOG10: name[4] = 'd'; name[5] = '2'; if (el_mode != DFmode || n != 2) return NULL_TREE; break; case BUILT_IN_SINF: case BUILT_IN_COSF: case BUILT_IN_EXPF: case BUILT_IN_POWF: case BUILT_IN_LOGF: case BUILT_IN_LOG2F: case BUILT_IN_LOG10F: name[4] = 's'; name[5] = '4'; if (el_mode != SFmode || n != 4) return NULL_TREE; break; default: return NULL_TREE; } bname = IDENTIFIER_POINTER (DECL_NAME (builtin_decl_implicit (fn))); sprintf (name + 7, "%s", bname+10); arity = 0; for (args = DECL_ARGUMENTS (builtin_decl_implicit (fn)); args; args = TREE_CHAIN (args)) arity++; if (arity == 1) fntype = build_function_type_list (type_out, type_in, NULL); else fntype = build_function_type_list (type_out, type_in, type_in, NULL); /* Build a function declaration for the vectorized function. */ new_fndecl = build_decl (BUILTINS_LOCATION, FUNCTION_DECL, get_identifier (name), fntype); TREE_PUBLIC (new_fndecl) = 1; DECL_EXTERNAL (new_fndecl) = 1; DECL_IS_NOVOPS (new_fndecl) = 1; TREE_READONLY (new_fndecl) = 1; return new_fndecl; } /* Returns a decl of a function that implements gather load with memory type MEM_VECTYPE and index type INDEX_VECTYPE and SCALE. Return NULL_TREE if it is not available. */ static tree ix86_vectorize_builtin_gather (const_tree mem_vectype, const_tree index_type, int scale) { bool si; enum ix86_builtins code; if (! TARGET_AVX2) return NULL_TREE; if ((TREE_CODE (index_type) != INTEGER_TYPE && !POINTER_TYPE_P (index_type)) || (TYPE_MODE (index_type) != SImode && TYPE_MODE (index_type) != DImode)) return NULL_TREE; if (TYPE_PRECISION (index_type) > POINTER_SIZE) return NULL_TREE; /* v*gather* insn sign extends index to pointer mode. */ if (TYPE_PRECISION (index_type) < POINTER_SIZE && TYPE_UNSIGNED (index_type)) return NULL_TREE; if (scale <= 0 || scale > 8 || (scale & (scale - 1)) != 0) return NULL_TREE; si = TYPE_MODE (index_type) == SImode; switch (TYPE_MODE (mem_vectype)) { case V2DFmode: code = si ? IX86_BUILTIN_GATHERSIV2DF : IX86_BUILTIN_GATHERDIV2DF; break; case V4DFmode: code = si ? IX86_BUILTIN_GATHERALTSIV4DF : IX86_BUILTIN_GATHERDIV4DF; break; case V2DImode: code = si ? IX86_BUILTIN_GATHERSIV2DI : IX86_BUILTIN_GATHERDIV2DI; break; case V4DImode: code = si ? IX86_BUILTIN_GATHERALTSIV4DI : IX86_BUILTIN_GATHERDIV4DI; break; case V4SFmode: code = si ? IX86_BUILTIN_GATHERSIV4SF : IX86_BUILTIN_GATHERDIV4SF; break; case V8SFmode: code = si ? IX86_BUILTIN_GATHERSIV8SF : IX86_BUILTIN_GATHERALTDIV8SF; break; case V4SImode: code = si ? IX86_BUILTIN_GATHERSIV4SI : IX86_BUILTIN_GATHERDIV4SI; break; case V8SImode: code = si ? IX86_BUILTIN_GATHERSIV8SI : IX86_BUILTIN_GATHERALTDIV8SI; break; default: return NULL_TREE; } return ix86_builtins[code]; } /* Returns a code for a target-specific builtin that implements reciprocal of the function, or NULL_TREE if not available. */ static tree ix86_builtin_reciprocal (unsigned int fn, bool md_fn, bool sqrt ATTRIBUTE_UNUSED) { if (! (TARGET_SSE_MATH && !optimize_insn_for_size_p () && flag_finite_math_only && !flag_trapping_math && flag_unsafe_math_optimizations)) return NULL_TREE; if (md_fn) /* Machine dependent builtins. */ switch (fn) { /* Vectorized version of sqrt to rsqrt conversion. */ case IX86_BUILTIN_SQRTPS_NR: return ix86_builtins[IX86_BUILTIN_RSQRTPS_NR]; case IX86_BUILTIN_SQRTPS_NR256: return ix86_builtins[IX86_BUILTIN_RSQRTPS_NR256]; default: return NULL_TREE; } else /* Normal builtins. */ switch (fn) { /* Sqrt to rsqrt conversion. */ case BUILT_IN_SQRTF: return ix86_builtins[IX86_BUILTIN_RSQRTF]; default: return NULL_TREE; } } /* Helper for avx_vpermilps256_operand et al. This is also used by the expansion functions to turn the parallel back into a mask. The return value is 0 for no match and the imm8+1 for a match. */ int avx_vpermilp_parallel (rtx par, enum machine_mode mode) { unsigned i, nelt = GET_MODE_NUNITS (mode); unsigned mask = 0; unsigned char ipar[8] = {}; /* Silence -Wuninitialized warning. */ if (XVECLEN (par, 0) != (int) nelt) return 0; /* Validate that all of the elements are constants, and not totally out of range. Copy the data into an integral array to make the subsequent checks easier. */ for (i = 0; i < nelt; ++i) { rtx er = XVECEXP (par, 0, i); unsigned HOST_WIDE_INT ei; if (!CONST_INT_P (er)) return 0; ei = INTVAL (er); if (ei >= nelt) return 0; ipar[i] = ei; } switch (mode) { case V4DFmode: /* In the 256-bit DFmode case, we can only move elements within a 128-bit lane. */ for (i = 0; i < 2; ++i) { if (ipar[i] >= 2) return 0; mask |= ipar[i] << i; } for (i = 2; i < 4; ++i) { if (ipar[i] < 2) return 0; mask |= (ipar[i] - 2) << i; } break; case V8SFmode: /* In the 256-bit SFmode case, we have full freedom of movement within the low 128-bit lane, but the high 128-bit lane must mirror the exact same pattern. */ for (i = 0; i < 4; ++i) if (ipar[i] + 4 != ipar[i + 4]) return 0; nelt = 4; /* FALLTHRU */ case V2DFmode: case V4SFmode: /* In the 128-bit case, we've full freedom in the placement of the elements from the source operand. */ for (i = 0; i < nelt; ++i) mask |= ipar[i] << (i * (nelt / 2)); break; default: gcc_unreachable (); } /* Make sure success has a non-zero value by adding one. */ return mask + 1; } /* Helper for avx_vperm2f128_v4df_operand et al. This is also used by the expansion functions to turn the parallel back into a mask. The return value is 0 for no match and the imm8+1 for a match. */ int avx_vperm2f128_parallel (rtx par, enum machine_mode mode) { unsigned i, nelt = GET_MODE_NUNITS (mode), nelt2 = nelt / 2; unsigned mask = 0; unsigned char ipar[8] = {}; /* Silence -Wuninitialized warning. */ if (XVECLEN (par, 0) != (int) nelt) return 0; /* Validate that all of the elements are constants, and not totally out of range. Copy the data into an integral array to make the subsequent checks easier. */ for (i = 0; i < nelt; ++i) { rtx er = XVECEXP (par, 0, i); unsigned HOST_WIDE_INT ei; if (!CONST_INT_P (er)) return 0; ei = INTVAL (er); if (ei >= 2 * nelt) return 0; ipar[i] = ei; } /* Validate that the halves of the permute are halves. */ for (i = 0; i < nelt2 - 1; ++i) if (ipar[i] + 1 != ipar[i + 1]) return 0; for (i = nelt2; i < nelt - 1; ++i) if (ipar[i] + 1 != ipar[i + 1]) return 0; /* Reconstruct the mask. */ for (i = 0; i < 2; ++i) { unsigned e = ipar[i * nelt2]; if (e % nelt2) return 0; e /= nelt2; mask |= e << (i * 4); } /* Make sure success has a non-zero value by adding one. */ return mask + 1; } /* Store OPERAND to the memory after reload is completed. This means that we can't easily use assign_stack_local. */ rtx ix86_force_to_memory (enum machine_mode mode, rtx operand) { rtx result; gcc_assert (reload_completed); if (ix86_using_red_zone ()) { result = gen_rtx_MEM (mode, gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (-RED_ZONE_SIZE))); emit_move_insn (result, operand); } else if (TARGET_64BIT) { switch (mode) { case HImode: case SImode: operand = gen_lowpart (DImode, operand); /* FALLTHRU */ case DImode: emit_insn ( gen_rtx_SET (VOIDmode, gen_rtx_MEM (DImode, gen_rtx_PRE_DEC (DImode, stack_pointer_rtx)), operand)); break; default: gcc_unreachable (); } result = gen_rtx_MEM (mode, stack_pointer_rtx); } else { switch (mode) { case DImode: { rtx operands[2]; split_double_mode (mode, &operand, 1, operands, operands + 1); emit_insn ( gen_rtx_SET (VOIDmode, gen_rtx_MEM (SImode, gen_rtx_PRE_DEC (Pmode, stack_pointer_rtx)), operands[1])); emit_insn ( gen_rtx_SET (VOIDmode, gen_rtx_MEM (SImode, gen_rtx_PRE_DEC (Pmode, stack_pointer_rtx)), operands[0])); } break; case HImode: /* Store HImodes as SImodes. */ operand = gen_lowpart (SImode, operand); /* FALLTHRU */ case SImode: emit_insn ( gen_rtx_SET (VOIDmode, gen_rtx_MEM (GET_MODE (operand), gen_rtx_PRE_DEC (SImode, stack_pointer_rtx)), operand)); break; default: gcc_unreachable (); } result = gen_rtx_MEM (mode, stack_pointer_rtx); } return result; } /* Free operand from the memory. */ void ix86_free_from_memory (enum machine_mode mode) { if (!ix86_using_red_zone ()) { int size; if (mode == DImode || TARGET_64BIT) size = 8; else size = 4; /* Use LEA to deallocate stack space. In peephole2 it will be converted to pop or add instruction if registers are available. */ emit_insn (gen_rtx_SET (VOIDmode, stack_pointer_rtx, gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (size)))); } } /* Return a register priority for hard reg REGNO. */ static int ix86_register_priority (int hard_regno) { /* ebp and r13 as the base always wants a displacement, r12 as the base always wants an index. So discourage their usage in an address. */ if (hard_regno == R12_REG || hard_regno == R13_REG) return 0; if (hard_regno == BP_REG) return 1; /* New x86-64 int registers result in bigger code size. Discourage them. */ if (FIRST_REX_INT_REG <= hard_regno && hard_regno <= LAST_REX_INT_REG) return 2; /* New x86-64 SSE registers result in bigger code size. Discourage them. */ if (FIRST_REX_SSE_REG <= hard_regno && hard_regno <= LAST_REX_SSE_REG) return 2; /* Usage of AX register results in smaller code. Prefer it. */ if (hard_regno == 0) return 4; return 3; } /* Implement TARGET_PREFERRED_RELOAD_CLASS. Put float CONST_DOUBLE in the constant pool instead of fp regs. QImode must go into class Q_REGS. Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and movdf to do mem-to-mem moves through integer regs. */ static reg_class_t ix86_preferred_reload_class (rtx x, reg_class_t regclass) { enum machine_mode mode = GET_MODE (x); /* We're only allowed to return a subclass of CLASS. Many of the following checks fail for NO_REGS, so eliminate that early. */ if (regclass == NO_REGS) return NO_REGS; /* All classes can load zeros. */ if (x == CONST0_RTX (mode)) return regclass; /* Force constants into memory if we are loading a (nonzero) constant into an MMX, SSE or MASK register. This is because there are no MMX/SSE/MASK instructions to load from a constant. */ if (CONSTANT_P (x) && (MAYBE_MMX_CLASS_P (regclass) || MAYBE_SSE_CLASS_P (regclass) || MAYBE_MASK_CLASS_P (regclass))) return NO_REGS; /* Prefer SSE regs only, if we can use them for math. */ if (TARGET_SSE_MATH && !TARGET_MIX_SSE_I387 && SSE_FLOAT_MODE_P (mode)) return SSE_CLASS_P (regclass) ? regclass : NO_REGS; /* Floating-point constants need more complex checks. */ if (GET_CODE (x) == CONST_DOUBLE && GET_MODE (x) != VOIDmode) { /* General regs can load everything. */ if (reg_class_subset_p (regclass, GENERAL_REGS)) return regclass; /* Floats can load 0 and 1 plus some others. Note that we eliminated zero above. We only want to wind up preferring 80387 registers if we plan on doing computation with them. */ if (TARGET_80387 && standard_80387_constant_p (x) > 0) { /* Limit class to non-sse. */ if (regclass == FLOAT_SSE_REGS) return FLOAT_REGS; if (regclass == FP_TOP_SSE_REGS) return FP_TOP_REG; if (regclass == FP_SECOND_SSE_REGS) return FP_SECOND_REG; if (regclass == FLOAT_INT_REGS || regclass == FLOAT_REGS) return regclass; } return NO_REGS; } /* Generally when we see PLUS here, it's the function invariant (plus soft-fp const_int). Which can only be computed into general regs. */ if (GET_CODE (x) == PLUS) return reg_class_subset_p (regclass, GENERAL_REGS) ? regclass : NO_REGS; /* QImode constants are easy to load, but non-constant QImode data must go into Q_REGS. */ if (GET_MODE (x) == QImode && !CONSTANT_P (x)) { if (reg_class_subset_p (regclass, Q_REGS)) return regclass; if (reg_class_subset_p (Q_REGS, regclass)) return Q_REGS; return NO_REGS; } return regclass; } /* Discourage putting floating-point values in SSE registers unless SSE math is being used, and likewise for the 387 registers. */ static reg_class_t ix86_preferred_output_reload_class (rtx x, reg_class_t regclass) { enum machine_mode mode = GET_MODE (x); /* Restrict the output reload class to the register bank that we are doing math on. If we would like not to return a subset of CLASS, reject this alternative: if reload cannot do this, it will still use its choice. */ mode = GET_MODE (x); if (TARGET_SSE_MATH && SSE_FLOAT_MODE_P (mode)) return MAYBE_SSE_CLASS_P (regclass) ? ALL_SSE_REGS : NO_REGS; if (X87_FLOAT_MODE_P (mode)) { if (regclass == FP_TOP_SSE_REGS) return FP_TOP_REG; else if (regclass == FP_SECOND_SSE_REGS) return FP_SECOND_REG; else return FLOAT_CLASS_P (regclass) ? regclass : NO_REGS; } return regclass; } static reg_class_t ix86_secondary_reload (bool in_p, rtx x, reg_class_t rclass, enum machine_mode mode, secondary_reload_info *sri) { /* Double-word spills from general registers to non-offsettable memory references (zero-extended addresses) require special handling. */ if (TARGET_64BIT && MEM_P (x) && GET_MODE_SIZE (mode) > UNITS_PER_WORD && INTEGER_CLASS_P (rclass) && !offsettable_memref_p (x)) { sri->icode = (in_p ? CODE_FOR_reload_noff_load : CODE_FOR_reload_noff_store); /* Add the cost of moving address to a temporary. */ sri->extra_cost = 1; return NO_REGS; } /* QImode spills from non-QI registers require intermediate register on 32bit targets. */ if (mode == QImode && (MAYBE_MASK_CLASS_P (rclass) || (!TARGET_64BIT && !in_p && INTEGER_CLASS_P (rclass) && MAYBE_NON_Q_CLASS_P (rclass)))) { int regno; if (REG_P (x)) regno = REGNO (x); else regno = -1; if (regno >= FIRST_PSEUDO_REGISTER || GET_CODE (x) == SUBREG) regno = true_regnum (x); /* Return Q_REGS if the operand is in memory. */ if (regno == -1) return Q_REGS; } /* This condition handles corner case where an expression involving pointers gets vectorized. We're trying to use the address of a stack slot as a vector initializer. (set (reg:V2DI 74 [ vect_cst_.2 ]) (vec_duplicate:V2DI (reg/f:DI 20 frame))) Eventually frame gets turned into sp+offset like this: (set (reg:V2DI 21 xmm0 [orig:74 vect_cst_.2 ] [74]) (vec_duplicate:V2DI (plus:DI (reg/f:DI 7 sp) (const_int 392 [0x188])))) That later gets turned into: (set (reg:V2DI 21 xmm0 [orig:74 vect_cst_.2 ] [74]) (vec_duplicate:V2DI (plus:DI (reg/f:DI 7 sp) (mem/u/c/i:DI (symbol_ref/u:DI ("*.LC0") [flags 0x2]) [0 S8 A64])))) We'll have the following reload recorded: Reload 0: reload_in (DI) = (plus:DI (reg/f:DI 7 sp) (mem/u/c/i:DI (symbol_ref/u:DI ("*.LC0") [flags 0x2]) [0 S8 A64])) reload_out (V2DI) = (reg:V2DI 21 xmm0 [orig:74 vect_cst_.2 ] [74]) SSE_REGS, RELOAD_OTHER (opnum = 0), can't combine reload_in_reg: (plus:DI (reg/f:DI 7 sp) (const_int 392 [0x188])) reload_out_reg: (reg:V2DI 21 xmm0 [orig:74 vect_cst_.2 ] [74]) reload_reg_rtx: (reg:V2DI 22 xmm1) Which isn't going to work since SSE instructions can't handle scalar additions. Returning GENERAL_REGS forces the addition into integer register and reload can handle subsequent reloads without problems. */ if (in_p && GET_CODE (x) == PLUS && SSE_CLASS_P (rclass) && SCALAR_INT_MODE_P (mode)) return GENERAL_REGS; return NO_REGS; } /* Implement TARGET_CLASS_LIKELY_SPILLED_P. */ static bool ix86_class_likely_spilled_p (reg_class_t rclass) { switch (rclass) { case AREG: case DREG: case CREG: case BREG: case AD_REGS: case SIREG: case DIREG: case SSE_FIRST_REG: case FP_TOP_REG: case FP_SECOND_REG: case BND_REGS: return true; default: break; } return false; } /* If we are copying between general and FP registers, we need a memory location. The same is true for SSE and MMX registers. To optimize register_move_cost performance, allow inline variant. The macro can't work reliably when one of the CLASSES is class containing registers from multiple units (SSE, MMX, integer). We avoid this by never combining those units in single alternative in the machine description. Ensure that this constraint holds to avoid unexpected surprises. When STRICT is false, we are being called from REGISTER_MOVE_COST, so do not enforce these sanity checks. */ static inline bool inline_secondary_memory_needed (enum reg_class class1, enum reg_class class2, enum machine_mode mode, int strict) { if (lra_in_progress && (class1 == NO_REGS || class2 == NO_REGS)) return false; if (MAYBE_FLOAT_CLASS_P (class1) != FLOAT_CLASS_P (class1) || MAYBE_FLOAT_CLASS_P (class2) != FLOAT_CLASS_P (class2) || MAYBE_SSE_CLASS_P (class1) != SSE_CLASS_P (class1) || MAYBE_SSE_CLASS_P (class2) != SSE_CLASS_P (class2) || MAYBE_MMX_CLASS_P (class1) != MMX_CLASS_P (class1) || MAYBE_MMX_CLASS_P (class2) != MMX_CLASS_P (class2)) { gcc_assert (!strict || lra_in_progress); return true; } if (FLOAT_CLASS_P (class1) != FLOAT_CLASS_P (class2)) return true; /* ??? This is a lie. We do have moves between mmx/general, and for mmx/sse2. But by saying we need secondary memory we discourage the register allocator from using the mmx registers unless needed. */ if (MMX_CLASS_P (class1) != MMX_CLASS_P (class2)) return true; if (SSE_CLASS_P (class1) != SSE_CLASS_P (class2)) { /* SSE1 doesn't have any direct moves from other classes. */ if (!TARGET_SSE2) return true; /* If the target says that inter-unit moves are more expensive than moving through memory, then don't generate them. */ if ((SSE_CLASS_P (class1) && !TARGET_INTER_UNIT_MOVES_FROM_VEC) || (SSE_CLASS_P (class2) && !TARGET_INTER_UNIT_MOVES_TO_VEC)) return true; /* Between SSE and general, we have moves no larger than word size. */ if (GET_MODE_SIZE (mode) > UNITS_PER_WORD) return true; } return false; } bool ix86_secondary_memory_needed (enum reg_class class1, enum reg_class class2, enum machine_mode mode, int strict) { return inline_secondary_memory_needed (class1, class2, mode, strict); } /* Implement the TARGET_CLASS_MAX_NREGS hook. On the 80386, this is the size of MODE in words, except in the FP regs, where a single reg is always enough. */ static unsigned char ix86_class_max_nregs (reg_class_t rclass, enum machine_mode mode) { if (MAYBE_INTEGER_CLASS_P (rclass)) { if (mode == XFmode) return (TARGET_64BIT ? 2 : 3); else if (mode == XCmode) return (TARGET_64BIT ? 4 : 6); else return ((GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD); } else { if (COMPLEX_MODE_P (mode)) return 2; else return 1; } } /* Return true if the registers in CLASS cannot represent the change from modes FROM to TO. */ bool ix86_cannot_change_mode_class (enum machine_mode from, enum machine_mode to, enum reg_class regclass) { if (from == to) return false; /* x87 registers can't do subreg at all, as all values are reformatted to extended precision. */ if (MAYBE_FLOAT_CLASS_P (regclass)) return true; if (MAYBE_SSE_CLASS_P (regclass) || MAYBE_MMX_CLASS_P (regclass)) { /* Vector registers do not support QI or HImode loads. If we don't disallow a change to these modes, reload will assume it's ok to drop the subreg from (subreg:SI (reg:HI 100) 0). This affects the vec_dupv4hi pattern. */ if (GET_MODE_SIZE (from) < 4) return true; /* Vector registers do not support subreg with nonzero offsets, which are otherwise valid for integer registers. Since we can't see whether we have a nonzero offset from here, prohibit all nonparadoxical subregs changing size. */ if (GET_MODE_SIZE (to) < GET_MODE_SIZE (from)) return true; } return false; } /* Return the cost of moving data of mode M between a register and memory. A value of 2 is the default; this cost is relative to those in `REGISTER_MOVE_COST'. This function is used extensively by register_move_cost that is used to build tables at startup. Make it inline in this case. When IN is 2, return maximum of in and out move cost. If moving between registers and memory is more expensive than between two registers, you should define this macro to express the relative cost. Model also increased moving costs of QImode registers in non Q_REGS classes. */ static inline int inline_memory_move_cost (enum machine_mode mode, enum reg_class regclass, int in) { int cost; if (FLOAT_CLASS_P (regclass)) { int index; switch (mode) { case SFmode: index = 0; break; case DFmode: index = 1; break; case XFmode: index = 2; break; default: return 100; } if (in == 2) return MAX (ix86_cost->fp_load [index], ix86_cost->fp_store [index]); return in ? ix86_cost->fp_load [index] : ix86_cost->fp_store [index]; } if (SSE_CLASS_P (regclass)) { int index; switch (GET_MODE_SIZE (mode)) { case 4: index = 0; break; case 8: index = 1; break; case 16: index = 2; break; default: return 100; } if (in == 2) return MAX (ix86_cost->sse_load [index], ix86_cost->sse_store [index]); return in ? ix86_cost->sse_load [index] : ix86_cost->sse_store [index]; } if (MMX_CLASS_P (regclass)) { int index; switch (GET_MODE_SIZE (mode)) { case 4: index = 0; break; case 8: index = 1; break; default: return 100; } if (in) return MAX (ix86_cost->mmx_load [index], ix86_cost->mmx_store [index]); return in ? ix86_cost->mmx_load [index] : ix86_cost->mmx_store [index]; } switch (GET_MODE_SIZE (mode)) { case 1: if (Q_CLASS_P (regclass) || TARGET_64BIT) { if (!in) return ix86_cost->int_store[0]; if (TARGET_PARTIAL_REG_DEPENDENCY && optimize_function_for_speed_p (cfun)) cost = ix86_cost->movzbl_load; else cost = ix86_cost->int_load[0]; if (in == 2) return MAX (cost, ix86_cost->int_store[0]); return cost; } else { if (in == 2) return MAX (ix86_cost->movzbl_load, ix86_cost->int_store[0] + 4); if (in) return ix86_cost->movzbl_load; else return ix86_cost->int_store[0] + 4; } break; case 2: if (in == 2) return MAX (ix86_cost->int_load[1], ix86_cost->int_store[1]); return in ? ix86_cost->int_load[1] : ix86_cost->int_store[1]; default: /* Compute number of 32bit moves needed. TFmode is moved as XFmode. */ if (mode == TFmode) mode = XFmode; if (in == 2) cost = MAX (ix86_cost->int_load[2] , ix86_cost->int_store[2]); else if (in) cost = ix86_cost->int_load[2]; else cost = ix86_cost->int_store[2]; return (cost * (((int) GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)); } } static int ix86_memory_move_cost (enum machine_mode mode, reg_class_t regclass, bool in) { return inline_memory_move_cost (mode, (enum reg_class) regclass, in ? 1 : 0); } /* Return the cost of moving data from a register in class CLASS1 to one in class CLASS2. It is not required that the cost always equal 2 when FROM is the same as TO; on some machines it is expensive to move between registers if they are not general registers. */ static int ix86_register_move_cost (enum machine_mode mode, reg_class_t class1_i, reg_class_t class2_i) { enum reg_class class1 = (enum reg_class) class1_i; enum reg_class class2 = (enum reg_class) class2_i; /* In case we require secondary memory, compute cost of the store followed by load. In order to avoid bad register allocation choices, we need for this to be *at least* as high as the symmetric MEMORY_MOVE_COST. */ if (inline_secondary_memory_needed (class1, class2, mode, 0)) { int cost = 1; cost += inline_memory_move_cost (mode, class1, 2); cost += inline_memory_move_cost (mode, class2, 2); /* In case of copying from general_purpose_register we may emit multiple stores followed by single load causing memory size mismatch stall. Count this as arbitrarily high cost of 20. */ if (targetm.class_max_nregs (class1, mode) > targetm.class_max_nregs (class2, mode)) cost += 20; /* In the case of FP/MMX moves, the registers actually overlap, and we have to switch modes in order to treat them differently. */ if ((MMX_CLASS_P (class1) && MAYBE_FLOAT_CLASS_P (class2)) || (MMX_CLASS_P (class2) && MAYBE_FLOAT_CLASS_P (class1))) cost += 20; return cost; } /* Moves between SSE/MMX and integer unit are expensive. */ if (MMX_CLASS_P (class1) != MMX_CLASS_P (class2) || SSE_CLASS_P (class1) != SSE_CLASS_P (class2)) /* ??? By keeping returned value relatively high, we limit the number of moves between integer and MMX/SSE registers for all targets. Additionally, high value prevents problem with x86_modes_tieable_p(), where integer modes in MMX/SSE registers are not tieable because of missing QImode and HImode moves to, from or between MMX/SSE registers. */ return MAX (8, ix86_cost->mmxsse_to_integer); if (MAYBE_FLOAT_CLASS_P (class1)) return ix86_cost->fp_move; if (MAYBE_SSE_CLASS_P (class1)) return ix86_cost->sse_move; if (MAYBE_MMX_CLASS_P (class1)) return ix86_cost->mmx_move; return 2; } /* Return TRUE if hard register REGNO can hold a value of machine-mode MODE. */ bool ix86_hard_regno_mode_ok (int regno, enum machine_mode mode) { /* Flags and only flags can only hold CCmode values. */ if (CC_REGNO_P (regno)) return GET_MODE_CLASS (mode) == MODE_CC; if (GET_MODE_CLASS (mode) == MODE_CC || GET_MODE_CLASS (mode) == MODE_RANDOM || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT) return false; if (STACK_REGNO_P (regno)) return VALID_FP_MODE_P (mode); if (MASK_REGNO_P (regno)) return VALID_MASK_REG_MODE (mode); if (BND_REGNO_P (regno)) return VALID_BND_REG_MODE (mode); if (SSE_REGNO_P (regno)) { /* We implement the move patterns for all vector modes into and out of SSE registers, even when no operation instructions are available. */ /* For AVX-512 we allow, regardless of regno: - XI mode - any of 512-bit wide vector mode - any scalar mode. */ if (TARGET_AVX512F && (mode == XImode || VALID_AVX512F_REG_MODE (mode) || VALID_AVX512F_SCALAR_MODE (mode))) return true; /* xmm16-xmm31 are only available for AVX-512. */ if (EXT_REX_SSE_REGNO_P (regno)) return false; /* OImode move is available only when AVX is enabled. */ return ((TARGET_AVX && mode == OImode) || (TARGET_AVX && VALID_AVX256_REG_MODE (mode)) || VALID_SSE_REG_MODE (mode) || VALID_SSE2_REG_MODE (mode) || VALID_MMX_REG_MODE (mode) || VALID_MMX_REG_MODE_3DNOW (mode)); } if (MMX_REGNO_P (regno)) { /* We implement the move patterns for 3DNOW modes even in MMX mode, so if the register is available at all, then we can move data of the given mode into or out of it. */ return (VALID_MMX_REG_MODE (mode) || VALID_MMX_REG_MODE_3DNOW (mode)); } if (mode == QImode) { /* Take care for QImode values - they can be in non-QI regs, but then they do cause partial register stalls. */ if (ANY_QI_REGNO_P (regno)) return true; if (!TARGET_PARTIAL_REG_STALL) return true; /* LRA checks if the hard register is OK for the given mode. QImode values can live in non-QI regs, so we allow all registers here. */ if (lra_in_progress) return true; return !can_create_pseudo_p (); } /* We handle both integer and floats in the general purpose registers. */ else if (VALID_INT_MODE_P (mode)) return true; else if (VALID_FP_MODE_P (mode)) return true; else if (VALID_DFP_MODE_P (mode)) return true; /* Lots of MMX code casts 8 byte vector modes to DImode. If we then go on to use that value in smaller contexts, this can easily force a pseudo to be allocated to GENERAL_REGS. Since this is no worse than supporting DImode, allow it. */ else if (VALID_MMX_REG_MODE_3DNOW (mode) || VALID_MMX_REG_MODE (mode)) return true; return false; } /* A subroutine of ix86_modes_tieable_p. Return true if MODE is a tieable integer mode. */ static bool ix86_tieable_integer_mode_p (enum machine_mode mode) { switch (mode) { case HImode: case SImode: return true; case QImode: return TARGET_64BIT || !TARGET_PARTIAL_REG_STALL; case DImode: return TARGET_64BIT; default: return false; } } /* Return true if MODE1 is accessible in a register that can hold MODE2 without copying. That is, all register classes that can hold MODE2 can also hold MODE1. */ bool ix86_modes_tieable_p (enum machine_mode mode1, enum machine_mode mode2) { if (mode1 == mode2) return true; if (ix86_tieable_integer_mode_p (mode1) && ix86_tieable_integer_mode_p (mode2)) return true; /* MODE2 being XFmode implies fp stack or general regs, which means we can tie any smaller floating point modes to it. Note that we do not tie this with TFmode. */ if (mode2 == XFmode) return mode1 == SFmode || mode1 == DFmode; /* MODE2 being DFmode implies fp stack, general or sse regs, which means that we can tie it with SFmode. */ if (mode2 == DFmode) return mode1 == SFmode; /* If MODE2 is only appropriate for an SSE register, then tie with any other mode acceptable to SSE registers. */ if (GET_MODE_SIZE (mode2) == 32 && ix86_hard_regno_mode_ok (FIRST_SSE_REG, mode2)) return (GET_MODE_SIZE (mode1) == 32 && ix86_hard_regno_mode_ok (FIRST_SSE_REG, mode1)); if (GET_MODE_SIZE (mode2) == 16 && ix86_hard_regno_mode_ok (FIRST_SSE_REG, mode2)) return (GET_MODE_SIZE (mode1) == 16 && ix86_hard_regno_mode_ok (FIRST_SSE_REG, mode1)); /* If MODE2 is appropriate for an MMX register, then tie with any other mode acceptable to MMX registers. */ if (GET_MODE_SIZE (mode2) == 8 && ix86_hard_regno_mode_ok (FIRST_MMX_REG, mode2)) return (GET_MODE_SIZE (mode1) == 8 && ix86_hard_regno_mode_ok (FIRST_MMX_REG, mode1)); return false; } /* Return the cost of moving between two registers of mode MODE. */ static int ix86_set_reg_reg_cost (enum machine_mode mode) { unsigned int units = UNITS_PER_WORD; switch (GET_MODE_CLASS (mode)) { default: break; case MODE_CC: units = GET_MODE_SIZE (CCmode); break; case MODE_FLOAT: if ((TARGET_SSE && mode == TFmode) || (TARGET_80387 && mode == XFmode) || ((TARGET_80387 || TARGET_SSE2) && mode == DFmode) || ((TARGET_80387 || TARGET_SSE) && mode == SFmode)) units = GET_MODE_SIZE (mode); break; case MODE_COMPLEX_FLOAT: if ((TARGET_SSE && mode == TCmode) || (TARGET_80387 && mode == XCmode) || ((TARGET_80387 || TARGET_SSE2) && mode == DCmode) || ((TARGET_80387 || TARGET_SSE) && mode == SCmode)) units = GET_MODE_SIZE (mode); break; case MODE_VECTOR_INT: case MODE_VECTOR_FLOAT: if ((TARGET_AVX512F && VALID_AVX512F_REG_MODE (mode)) || (TARGET_AVX && VALID_AVX256_REG_MODE (mode)) || (TARGET_SSE2 && VALID_SSE2_REG_MODE (mode)) || (TARGET_SSE && VALID_SSE_REG_MODE (mode)) || (TARGET_MMX && VALID_MMX_REG_MODE (mode))) units = GET_MODE_SIZE (mode); } /* Return the cost of moving between two registers of mode MODE, assuming that the move will be in pieces of at most UNITS bytes. */ return COSTS_N_INSNS ((GET_MODE_SIZE (mode) + units - 1) / units); } /* Compute a (partial) cost for rtx X. Return true if the complete cost has been computed, and false if subexpressions should be scanned. In either case, *TOTAL contains the cost result. */ static bool ix86_rtx_costs (rtx x, int code_i, int outer_code_i, int opno, int *total, bool speed) { enum rtx_code code = (enum rtx_code) code_i; enum rtx_code outer_code = (enum rtx_code) outer_code_i; enum machine_mode mode = GET_MODE (x); const struct processor_costs *cost = speed ? ix86_cost : &ix86_size_cost; switch (code) { case SET: if (register_operand (SET_DEST (x), VOIDmode) && reg_or_0_operand (SET_SRC (x), VOIDmode)) { *total = ix86_set_reg_reg_cost (GET_MODE (SET_DEST (x))); return true; } return false; case CONST_INT: case CONST: case LABEL_REF: case SYMBOL_REF: if (TARGET_64BIT && !x86_64_immediate_operand (x, VOIDmode)) *total = 3; else if (TARGET_64BIT && !x86_64_zext_immediate_operand (x, VOIDmode)) *total = 2; else if (flag_pic && SYMBOLIC_CONST (x) && (!TARGET_64BIT || (!GET_CODE (x) != LABEL_REF && (GET_CODE (x) != SYMBOL_REF || !SYMBOL_REF_LOCAL_P (x))))) *total = 1; else *total = 0; return true; case CONST_DOUBLE: if (mode == VOIDmode) { *total = 0; return true; } switch (standard_80387_constant_p (x)) { case 1: /* 0.0 */ *total = 1; return true; default: /* Other constants */ *total = 2; return true; case 0: case -1: break; } if (SSE_FLOAT_MODE_P (mode)) { case CONST_VECTOR: switch (standard_sse_constant_p (x)) { case 0: break; case 1: /* 0: xor eliminates false dependency */ *total = 0; return true; default: /* -1: cmp contains false dependency */ *total = 1; return true; } } /* Fall back to (MEM (SYMBOL_REF)), since that's where it'll probably end up. Add a penalty for size. */ *total = (COSTS_N_INSNS (1) + (flag_pic != 0 && !TARGET_64BIT) + (mode == SFmode ? 0 : mode == DFmode ? 1 : 2)); return true; case ZERO_EXTEND: /* The zero extensions is often completely free on x86_64, so make it as cheap as possible. */ if (TARGET_64BIT && mode == DImode && GET_MODE (XEXP (x, 0)) == SImode) *total = 1; else if (TARGET_ZERO_EXTEND_WITH_AND) *total = cost->add; else *total = cost->movzx; return false; case SIGN_EXTEND: *total = cost->movsx; return false; case ASHIFT: if (SCALAR_INT_MODE_P (mode) && GET_MODE_SIZE (mode) < UNITS_PER_WORD && CONST_INT_P (XEXP (x, 1))) { HOST_WIDE_INT value = INTVAL (XEXP (x, 1)); if (value == 1) { *total = cost->add; return false; } if ((value == 2 || value == 3) && cost->lea <= cost->shift_const) { *total = cost->lea; return false; } } /* FALLTHRU */ case ROTATE: case ASHIFTRT: case LSHIFTRT: case ROTATERT: if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT) { /* ??? Should be SSE vector operation cost. */ /* At least for published AMD latencies, this really is the same as the latency for a simple fpu operation like fabs. */ /* V*QImode is emulated with 1-11 insns. */ if (mode == V16QImode || mode == V32QImode) { int count = 11; if (TARGET_XOP && mode == V16QImode) { /* For XOP we use vpshab, which requires a broadcast of the value to the variable shift insn. For constants this means a V16Q const in mem; even when we can perform the shift with one insn set the cost to prefer paddb. */ if (CONSTANT_P (XEXP (x, 1))) { *total = (cost->fabs + rtx_cost (XEXP (x, 0), code, 0, speed) + (speed ? 2 : COSTS_N_BYTES (16))); return true; } count = 3; } else if (TARGET_SSSE3) count = 7; *total = cost->fabs * count; } else *total = cost->fabs; } else if (GET_MODE_SIZE (mode) > UNITS_PER_WORD) { if (CONST_INT_P (XEXP (x, 1))) { if (INTVAL (XEXP (x, 1)) > 32) *total = cost->shift_const + COSTS_N_INSNS (2); else *total = cost->shift_const * 2; } else { if (GET_CODE (XEXP (x, 1)) == AND) *total = cost->shift_var * 2; else *total = cost->shift_var * 6 + COSTS_N_INSNS (2); } } else { if (CONST_INT_P (XEXP (x, 1))) *total = cost->shift_const; else if (GET_CODE (XEXP (x, 1)) == SUBREG && GET_CODE (XEXP (XEXP (x, 1), 0)) == AND) { /* Return the cost after shift-and truncation. */ *total = cost->shift_var; return true; } else *total = cost->shift_var; } return false; case FMA: { rtx sub; gcc_assert (FLOAT_MODE_P (mode)); gcc_assert (TARGET_FMA || TARGET_FMA4 || TARGET_AVX512F); /* ??? SSE scalar/vector cost should be used here. */ /* ??? Bald assumption that fma has the same cost as fmul. */ *total = cost->fmul; *total += rtx_cost (XEXP (x, 1), FMA, 1, speed); /* Negate in op0 or op2 is free: FMS, FNMA, FNMS. */ sub = XEXP (x, 0); if (GET_CODE (sub) == NEG) sub = XEXP (sub, 0); *total += rtx_cost (sub, FMA, 0, speed); sub = XEXP (x, 2); if (GET_CODE (sub) == NEG) sub = XEXP (sub, 0); *total += rtx_cost (sub, FMA, 2, speed); return true; } case MULT: if (SSE_FLOAT_MODE_P (mode) && TARGET_SSE_MATH) { /* ??? SSE scalar cost should be used here. */ *total = cost->fmul; return false; } else if (X87_FLOAT_MODE_P (mode)) { *total = cost->fmul; return false; } else if (FLOAT_MODE_P (mode)) { /* ??? SSE vector cost should be used here. */ *total = cost->fmul; return false; } else if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT) { /* V*QImode is emulated with 7-13 insns. */ if (mode == V16QImode || mode == V32QImode) { int extra = 11; if (TARGET_XOP && mode == V16QImode) extra = 5; else if (TARGET_SSSE3) extra = 6; *total = cost->fmul * 2 + cost->fabs * extra; } /* V*DImode is emulated with 5-8 insns. */ else if (mode == V2DImode || mode == V4DImode) { if (TARGET_XOP && mode == V2DImode) *total = cost->fmul * 2 + cost->fabs * 3; else *total = cost->fmul * 3 + cost->fabs * 5; } /* Without sse4.1, we don't have PMULLD; it's emulated with 7 insns, including two PMULUDQ. */ else if (mode == V4SImode && !(TARGET_SSE4_1 || TARGET_AVX)) *total = cost->fmul * 2 + cost->fabs * 5; else *total = cost->fmul; return false; } else { rtx op0 = XEXP (x, 0); rtx op1 = XEXP (x, 1); int nbits; if (CONST_INT_P (XEXP (x, 1))) { unsigned HOST_WIDE_INT value = INTVAL (XEXP (x, 1)); for (nbits = 0; value != 0; value &= value - 1) nbits++; } else /* This is arbitrary. */ nbits = 7; /* Compute costs correctly for widening multiplication. */ if ((GET_CODE (op0) == SIGN_EXTEND || GET_CODE (op0) == ZERO_EXTEND) && GET_MODE_SIZE (GET_MODE (XEXP (op0, 0))) * 2 == GET_MODE_SIZE (mode)) { int is_mulwiden = 0; enum machine_mode inner_mode = GET_MODE (op0); if (GET_CODE (op0) == GET_CODE (op1)) is_mulwiden = 1, op1 = XEXP (op1, 0); else if (CONST_INT_P (op1)) { if (GET_CODE (op0) == SIGN_EXTEND) is_mulwiden = trunc_int_for_mode (INTVAL (op1), inner_mode) == INTVAL (op1); else is_mulwiden = !(INTVAL (op1) & ~GET_MODE_MASK (inner_mode)); } if (is_mulwiden) op0 = XEXP (op0, 0), mode = GET_MODE (op0); } *total = (cost->mult_init[MODE_INDEX (mode)] + nbits * cost->mult_bit + rtx_cost (op0, outer_code, opno, speed) + rtx_cost (op1, outer_code, opno, speed)); return true; } case DIV: case UDIV: case MOD: case UMOD: if (SSE_FLOAT_MODE_P (mode) && TARGET_SSE_MATH) /* ??? SSE cost should be used here. */ *total = cost->fdiv; else if (X87_FLOAT_MODE_P (mode)) *total = cost->fdiv; else if (FLOAT_MODE_P (mode)) /* ??? SSE vector cost should be used here. */ *total = cost->fdiv; else *total = cost->divide[MODE_INDEX (mode)]; return false; case PLUS: if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) <= UNITS_PER_WORD) { if (GET_CODE (XEXP (x, 0)) == PLUS && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1)) && CONSTANT_P (XEXP (x, 1))) { HOST_WIDE_INT val = INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1)); if (val == 2 || val == 4 || val == 8) { *total = cost->lea; *total += rtx_cost (XEXP (XEXP (x, 0), 1), outer_code, opno, speed); *total += rtx_cost (XEXP (XEXP (XEXP (x, 0), 0), 0), outer_code, opno, speed); *total += rtx_cost (XEXP (x, 1), outer_code, opno, speed); return true; } } else if (GET_CODE (XEXP (x, 0)) == MULT && CONST_INT_P (XEXP (XEXP (x, 0), 1))) { HOST_WIDE_INT val = INTVAL (XEXP (XEXP (x, 0), 1)); if (val == 2 || val == 4 || val == 8) { *total = cost->lea; *total += rtx_cost (XEXP (XEXP (x, 0), 0), outer_code, opno, speed); *total += rtx_cost (XEXP (x, 1), outer_code, opno, speed); return true; } } else if (GET_CODE (XEXP (x, 0)) == PLUS) { *total = cost->lea; *total += rtx_cost (XEXP (XEXP (x, 0), 0), outer_code, opno, speed); *total += rtx_cost (XEXP (XEXP (x, 0), 1), outer_code, opno, speed); *total += rtx_cost (XEXP (x, 1), outer_code, opno, speed); return true; } } /* FALLTHRU */ case MINUS: if (SSE_FLOAT_MODE_P (mode) && TARGET_SSE_MATH) { /* ??? SSE cost should be used here. */ *total = cost->fadd; return false; } else if (X87_FLOAT_MODE_P (mode)) { *total = cost->fadd; return false; } else if (FLOAT_MODE_P (mode)) { /* ??? SSE vector cost should be used here. */ *total = cost->fadd; return false; } /* FALLTHRU */ case AND: case IOR: case XOR: if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) > UNITS_PER_WORD) { *total = (cost->add * 2 + (rtx_cost (XEXP (x, 0), outer_code, opno, speed) << (GET_MODE (XEXP (x, 0)) != DImode)) + (rtx_cost (XEXP (x, 1), outer_code, opno, speed) << (GET_MODE (XEXP (x, 1)) != DImode))); return true; } /* FALLTHRU */ case NEG: if (SSE_FLOAT_MODE_P (mode) && TARGET_SSE_MATH) { /* ??? SSE cost should be used here. */ *total = cost->fchs; return false; } else if (X87_FLOAT_MODE_P (mode)) { *total = cost->fchs; return false; } else if (FLOAT_MODE_P (mode)) { /* ??? SSE vector cost should be used here. */ *total = cost->fchs; return false; } /* FALLTHRU */ case NOT: if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT) { /* ??? Should be SSE vector operation cost. */ /* At least for published AMD latencies, this really is the same as the latency for a simple fpu operation like fabs. */ *total = cost->fabs; } else if (GET_MODE_SIZE (mode) > UNITS_PER_WORD) *total = cost->add * 2; else *total = cost->add; return false; case COMPARE: if (GET_CODE (XEXP (x, 0)) == ZERO_EXTRACT && XEXP (XEXP (x, 0), 1) == const1_rtx && CONST_INT_P (XEXP (XEXP (x, 0), 2)) && XEXP (x, 1) == const0_rtx) { /* This kind of construct is implemented using test[bwl]. Treat it as if we had an AND. */ *total = (cost->add + rtx_cost (XEXP (XEXP (x, 0), 0), outer_code, opno, speed) + rtx_cost (const1_rtx, outer_code, opno, speed)); return true; } return false; case FLOAT_EXTEND: if (!(SSE_FLOAT_MODE_P (mode) && TARGET_SSE_MATH)) *total = 0; return false; case ABS: if (SSE_FLOAT_MODE_P (mode) && TARGET_SSE_MATH) /* ??? SSE cost should be used here. */ *total = cost->fabs; else if (X87_FLOAT_MODE_P (mode)) *total = cost->fabs; else if (FLOAT_MODE_P (mode)) /* ??? SSE vector cost should be used here. */ *total = cost->fabs; return false; case SQRT: if (SSE_FLOAT_MODE_P (mode) && TARGET_SSE_MATH) /* ??? SSE cost should be used here. */ *total = cost->fsqrt; else if (X87_FLOAT_MODE_P (mode)) *total = cost->fsqrt; else if (FLOAT_MODE_P (mode)) /* ??? SSE vector cost should be used here. */ *total = cost->fsqrt; return false; case UNSPEC: if (XINT (x, 1) == UNSPEC_TP) *total = 0; return false; case VEC_SELECT: case VEC_CONCAT: case VEC_MERGE: case VEC_DUPLICATE: /* ??? Assume all of these vector manipulation patterns are recognizable. In which case they all pretty much have the same cost. */ *total = cost->fabs; return true; default: return false; } } #if TARGET_MACHO static int current_machopic_label_num; /* Given a symbol name and its associated stub, write out the definition of the stub. */ void machopic_output_stub (FILE *file, const char *symb, const char *stub) { unsigned int length; char *binder_name, *symbol_name, lazy_ptr_name[32]; int label = ++current_machopic_label_num; /* For 64-bit we shouldn't get here. */ gcc_assert (!TARGET_64BIT); /* Lose our funky encoding stuff so it doesn't contaminate the stub. */ symb = targetm.strip_name_encoding (symb); length = strlen (stub); binder_name = XALLOCAVEC (char, length + 32); GEN_BINDER_NAME_FOR_STUB (binder_name, stub, length); length = strlen (symb); symbol_name = XALLOCAVEC (char, length + 32); GEN_SYMBOL_NAME_FOR_SYMBOL (symbol_name, symb, length); sprintf (lazy_ptr_name, "L%d$lz", label); if (MACHOPIC_ATT_STUB) switch_to_section (darwin_sections[machopic_picsymbol_stub3_section]); else if (MACHOPIC_PURE) switch_to_section (darwin_sections[machopic_picsymbol_stub2_section]); else switch_to_section (darwin_sections[machopic_symbol_stub_section]); fprintf (file, "%s:\n", stub); fprintf (file, "\t.indirect_symbol %s\n", symbol_name); if (MACHOPIC_ATT_STUB) { fprintf (file, "\thlt ; hlt ; hlt ; hlt ; hlt\n"); } else if (MACHOPIC_PURE) { /* PIC stub. */ /* 25-byte PIC stub using "CALL get_pc_thunk". */ rtx tmp = gen_rtx_REG (SImode, 2 /* ECX */); output_set_got (tmp, NULL_RTX); /* "CALL ___.get_pc_thunk.cx". */ fprintf (file, "LPC$%d:\tmovl\t%s-LPC$%d(%%ecx),%%ecx\n", label, lazy_ptr_name, label); fprintf (file, "\tjmp\t*%%ecx\n"); } else fprintf (file, "\tjmp\t*%s\n", lazy_ptr_name); /* The AT&T-style ("self-modifying") stub is not lazily bound, thus it needs no stub-binding-helper. */ if (MACHOPIC_ATT_STUB) return; fprintf (file, "%s:\n", binder_name); if (MACHOPIC_PURE) { fprintf (file, "\tlea\t%s-%s(%%ecx),%%ecx\n", lazy_ptr_name, binder_name); fprintf (file, "\tpushl\t%%ecx\n"); } else fprintf (file, "\tpushl\t$%s\n", lazy_ptr_name); fputs ("\tjmp\tdyld_stub_binding_helper\n", file); /* N.B. Keep the correspondence of these 'symbol_ptr/symbol_ptr2/symbol_ptr3' sections consistent with the old-pic/new-pic/non-pic stubs; altering this will break compatibility with existing dylibs. */ if (MACHOPIC_PURE) { /* 25-byte PIC stub using "CALL get_pc_thunk". */ switch_to_section (darwin_sections[machopic_lazy_symbol_ptr2_section]); } else /* 16-byte -mdynamic-no-pic stub. */ switch_to_section(darwin_sections[machopic_lazy_symbol_ptr3_section]); fprintf (file, "%s:\n", lazy_ptr_name); fprintf (file, "\t.indirect_symbol %s\n", symbol_name); fprintf (file, ASM_LONG "%s\n", binder_name); } #endif /* TARGET_MACHO */ /* Order the registers for register allocator. */ void x86_order_regs_for_local_alloc (void) { int pos = 0; int i; /* First allocate the local general purpose registers. */ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) if (GENERAL_REGNO_P (i) && call_used_regs[i]) reg_alloc_order [pos++] = i; /* Global general purpose registers. */ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) if (GENERAL_REGNO_P (i) && !call_used_regs[i]) reg_alloc_order [pos++] = i; /* x87 registers come first in case we are doing FP math using them. */ if (!TARGET_SSE_MATH) for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++) reg_alloc_order [pos++] = i; /* SSE registers. */ for (i = FIRST_SSE_REG; i <= LAST_SSE_REG; i++) reg_alloc_order [pos++] = i; for (i = FIRST_REX_SSE_REG; i <= LAST_REX_SSE_REG; i++) reg_alloc_order [pos++] = i; /* Extended REX SSE registers. */ for (i = FIRST_EXT_REX_SSE_REG; i <= LAST_EXT_REX_SSE_REG; i++) reg_alloc_order [pos++] = i; /* Mask register. */ for (i = FIRST_MASK_REG; i <= LAST_MASK_REG; i++) reg_alloc_order [pos++] = i; /* MPX bound registers. */ for (i = FIRST_BND_REG; i <= LAST_BND_REG; i++) reg_alloc_order [pos++] = i; /* x87 registers. */ if (TARGET_SSE_MATH) for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++) reg_alloc_order [pos++] = i; for (i = FIRST_MMX_REG; i <= LAST_MMX_REG; i++) reg_alloc_order [pos++] = i; /* Initialize the rest of array as we do not allocate some registers at all. */ while (pos < FIRST_PSEUDO_REGISTER) reg_alloc_order [pos++] = 0; } /* Handle a "callee_pop_aggregate_return" attribute; arguments as in struct attribute_spec handler. */ static tree ix86_handle_callee_pop_aggregate_return (tree *node, tree name, tree args, int flags ATTRIBUTE_UNUSED, bool *no_add_attrs) { if (TREE_CODE (*node) != FUNCTION_TYPE && TREE_CODE (*node) != METHOD_TYPE && TREE_CODE (*node) != FIELD_DECL && TREE_CODE (*node) != TYPE_DECL) { warning (OPT_Wattributes, "%qE attribute only applies to functions", name); *no_add_attrs = true; return NULL_TREE; } if (TARGET_64BIT) { warning (OPT_Wattributes, "%qE attribute only available for 32-bit", name); *no_add_attrs = true; return NULL_TREE; } if (is_attribute_p ("callee_pop_aggregate_return", name)) { tree cst; cst = TREE_VALUE (args); if (TREE_CODE (cst) != INTEGER_CST) { warning (OPT_Wattributes, "%qE attribute requires an integer constant argument", name); *no_add_attrs = true; } else if (compare_tree_int (cst, 0) != 0 && compare_tree_int (cst, 1) != 0) { warning (OPT_Wattributes, "argument to %qE attribute is neither zero, nor one", name); *no_add_attrs = true; } return NULL_TREE; } return NULL_TREE; } /* Handle a "ms_abi" or "sysv" attribute; arguments as in struct attribute_spec.handler. */ static tree ix86_handle_abi_attribute (tree *node, tree name, tree args ATTRIBUTE_UNUSED, int flags ATTRIBUTE_UNUSED, bool *no_add_attrs) { if (TREE_CODE (*node) != FUNCTION_TYPE && TREE_CODE (*node) != METHOD_TYPE && TREE_CODE (*node) != FIELD_DECL && TREE_CODE (*node) != TYPE_DECL) { warning (OPT_Wattributes, "%qE attribute only applies to functions", name); *no_add_attrs = true; return NULL_TREE; } /* Can combine regparm with all attributes but fastcall. */ if (is_attribute_p ("ms_abi", name)) { if (lookup_attribute ("sysv_abi", TYPE_ATTRIBUTES (*node))) { error ("ms_abi and sysv_abi attributes are not compatible"); } return NULL_TREE; } else if (is_attribute_p ("sysv_abi", name)) { if (lookup_attribute ("ms_abi", TYPE_ATTRIBUTES (*node))) { error ("ms_abi and sysv_abi attributes are not compatible"); } return NULL_TREE; } return NULL_TREE; } /* Handle a "ms_struct" or "gcc_struct" attribute; arguments as in struct attribute_spec.handler. */ static tree ix86_handle_struct_attribute (tree *node, tree name, tree args ATTRIBUTE_UNUSED, int flags ATTRIBUTE_UNUSED, bool *no_add_attrs) { tree *type = NULL; if (DECL_P (*node)) { if (TREE_CODE (*node) == TYPE_DECL) type = &TREE_TYPE (*node); } else type = node; if (!(type && RECORD_OR_UNION_TYPE_P (*type))) { warning (OPT_Wattributes, "%qE attribute ignored", name); *no_add_attrs = true; } else if ((is_attribute_p ("ms_struct", name) && lookup_attribute ("gcc_struct", TYPE_ATTRIBUTES (*type))) || ((is_attribute_p ("gcc_struct", name) && lookup_attribute ("ms_struct", TYPE_ATTRIBUTES (*type))))) { warning (OPT_Wattributes, "%qE incompatible attribute ignored", name); *no_add_attrs = true; } return NULL_TREE; } static tree ix86_handle_fndecl_attribute (tree *node, tree name, tree args ATTRIBUTE_UNUSED, int flags ATTRIBUTE_UNUSED, bool *no_add_attrs) { if (TREE_CODE (*node) != FUNCTION_DECL) { warning (OPT_Wattributes, "%qE attribute only applies to functions", name); *no_add_attrs = true; } return NULL_TREE; } static bool ix86_ms_bitfield_layout_p (const_tree record_type) { return ((TARGET_MS_BITFIELD_LAYOUT && !lookup_attribute ("gcc_struct", TYPE_ATTRIBUTES (record_type))) || lookup_attribute ("ms_struct", TYPE_ATTRIBUTES (record_type))); } /* Returns an expression indicating where the this parameter is located on entry to the FUNCTION. */ static rtx x86_this_parameter (tree function) { tree type = TREE_TYPE (function); bool aggr = aggregate_value_p (TREE_TYPE (type), type) != 0; int nregs; if (TARGET_64BIT) { const int *parm_regs; if (ix86_function_type_abi (type) == MS_ABI) parm_regs = x86_64_ms_abi_int_parameter_registers; else parm_regs = x86_64_int_parameter_registers; return gen_rtx_REG (Pmode, parm_regs[aggr]); } nregs = ix86_function_regparm (type, function); if (nregs > 0 && !stdarg_p (type)) { int regno; unsigned int ccvt = ix86_get_callcvt (type); if ((ccvt & IX86_CALLCVT_FASTCALL) != 0) regno = aggr ? DX_REG : CX_REG; else if ((ccvt & IX86_CALLCVT_THISCALL) != 0) { regno = CX_REG; if (aggr) return gen_rtx_MEM (SImode, plus_constant (Pmode, stack_pointer_rtx, 4)); } else { regno = AX_REG; if (aggr) { regno = DX_REG; if (nregs == 1) return gen_rtx_MEM (SImode, plus_constant (Pmode, stack_pointer_rtx, 4)); } } return gen_rtx_REG (SImode, regno); } return gen_rtx_MEM (SImode, plus_constant (Pmode, stack_pointer_rtx, aggr ? 8 : 4)); } /* Determine whether x86_output_mi_thunk can succeed. */ static bool x86_can_output_mi_thunk (const_tree thunk ATTRIBUTE_UNUSED, HOST_WIDE_INT delta ATTRIBUTE_UNUSED, HOST_WIDE_INT vcall_offset, const_tree function) { /* 64-bit can handle anything. */ if (TARGET_64BIT) return true; /* For 32-bit, everything's fine if we have one free register. */ if (ix86_function_regparm (TREE_TYPE (function), function) < 3) return true; /* Need a free register for vcall_offset. */ if (vcall_offset) return false; /* Need a free register for GOT references. */ if (flag_pic && !targetm.binds_local_p (function)) return false; /* Otherwise ok. */ return true; } /* Output the assembler code for a thunk function. THUNK_DECL is the declaration for the thunk function itself, FUNCTION is the decl for the target function. DELTA is an immediate constant offset to be added to THIS. If VCALL_OFFSET is nonzero, the word at *(*this + vcall_offset) should be added to THIS. */ static void x86_output_mi_thunk (FILE *file, tree thunk ATTRIBUTE_UNUSED, HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset, tree function) { rtx this_param = x86_this_parameter (function); rtx this_reg, tmp, fnaddr; unsigned int tmp_regno; if (TARGET_64BIT) tmp_regno = R10_REG; else { unsigned int ccvt = ix86_get_callcvt (TREE_TYPE (function)); if ((ccvt & IX86_CALLCVT_FASTCALL) != 0) tmp_regno = AX_REG; else if ((ccvt & IX86_CALLCVT_THISCALL) != 0) tmp_regno = DX_REG; else tmp_regno = CX_REG; } emit_note (NOTE_INSN_PROLOGUE_END); /* If VCALL_OFFSET, we'll need THIS in a register. Might as well pull it in now and let DELTA benefit. */ if (REG_P (this_param)) this_reg = this_param; else if (vcall_offset) { /* Put the this parameter into %eax. */ this_reg = gen_rtx_REG (Pmode, AX_REG); emit_move_insn (this_reg, this_param); } else this_reg = NULL_RTX; /* Adjust the this parameter by a fixed constant. */ if (delta) { rtx delta_rtx = GEN_INT (delta); rtx delta_dst = this_reg ? this_reg : this_param; if (TARGET_64BIT) { if (!x86_64_general_operand (delta_rtx, Pmode)) { tmp = gen_rtx_REG (Pmode, tmp_regno); emit_move_insn (tmp, delta_rtx); delta_rtx = tmp; } } ix86_emit_binop (PLUS, Pmode, delta_dst, delta_rtx); } /* Adjust the this parameter by a value stored in the vtable. */ if (vcall_offset) { rtx vcall_addr, vcall_mem, this_mem; tmp = gen_rtx_REG (Pmode, tmp_regno); this_mem = gen_rtx_MEM (ptr_mode, this_reg); if (Pmode != ptr_mode) this_mem = gen_rtx_ZERO_EXTEND (Pmode, this_mem); emit_move_insn (tmp, this_mem); /* Adjust the this parameter. */ vcall_addr = plus_constant (Pmode, tmp, vcall_offset); if (TARGET_64BIT && !ix86_legitimate_address_p (ptr_mode, vcall_addr, true)) { rtx tmp2 = gen_rtx_REG (Pmode, R11_REG); emit_move_insn (tmp2, GEN_INT (vcall_offset)); vcall_addr = gen_rtx_PLUS (Pmode, tmp, tmp2); } vcall_mem = gen_rtx_MEM (ptr_mode, vcall_addr); if (Pmode != ptr_mode) emit_insn (gen_addsi_1_zext (this_reg, gen_rtx_REG (ptr_mode, REGNO (this_reg)), vcall_mem)); else ix86_emit_binop (PLUS, Pmode, this_reg, vcall_mem); } /* If necessary, drop THIS back to its stack slot. */ if (this_reg && this_reg != this_param) emit_move_insn (this_param, this_reg); fnaddr = XEXP (DECL_RTL (function), 0); if (TARGET_64BIT) { if (!flag_pic || targetm.binds_local_p (function) || TARGET_PECOFF) ; else { tmp = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, fnaddr), UNSPEC_GOTPCREL); tmp = gen_rtx_CONST (Pmode, tmp); fnaddr = gen_rtx_MEM (Pmode, tmp); } } else { if (!flag_pic || targetm.binds_local_p (function)) ; #if TARGET_MACHO else if (TARGET_MACHO) { fnaddr = machopic_indirect_call_target (DECL_RTL (function)); fnaddr = XEXP (fnaddr, 0); } #endif /* TARGET_MACHO */ else { tmp = gen_rtx_REG (Pmode, CX_REG); output_set_got (tmp, NULL_RTX); fnaddr = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, fnaddr), UNSPEC_GOT); fnaddr = gen_rtx_PLUS (Pmode, fnaddr, tmp); fnaddr = gen_rtx_MEM (Pmode, fnaddr); } } /* Our sibling call patterns do not allow memories, because we have no predicate that can distinguish between frame and non-frame memory. For our purposes here, we can get away with (ab)using a jump pattern, because we're going to do no optimization. */ if (MEM_P (fnaddr)) emit_jump_insn (gen_indirect_jump (fnaddr)); else { if (ix86_cmodel == CM_LARGE_PIC && SYMBOLIC_CONST (fnaddr)) fnaddr = legitimize_pic_address (fnaddr, gen_rtx_REG (Pmode, tmp_regno)); if (!sibcall_insn_operand (fnaddr, word_mode)) { tmp = gen_rtx_REG (word_mode, tmp_regno); if (GET_MODE (fnaddr) != word_mode) fnaddr = gen_rtx_ZERO_EXTEND (word_mode, fnaddr); emit_move_insn (tmp, fnaddr); fnaddr = tmp; } tmp = gen_rtx_MEM (QImode, fnaddr); tmp = gen_rtx_CALL (VOIDmode, tmp, const0_rtx); tmp = emit_call_insn (tmp); SIBLING_CALL_P (tmp) = 1; } emit_barrier (); /* Emit just enough of rest_of_compilation to get the insns emitted. Note that use_thunk calls assemble_start_function et al. */ tmp = get_insns (); shorten_branches (tmp); final_start_function (tmp, file, 1); final (tmp, file, 1); final_end_function (); } static void x86_file_start (void) { default_file_start (); #if TARGET_MACHO darwin_file_start (); #endif if (X86_FILE_START_VERSION_DIRECTIVE) fputs ("\t.version\t\"01.01\"\n", asm_out_file); if (X86_FILE_START_FLTUSED) fputs ("\t.global\t__fltused\n", asm_out_file); if (ix86_asm_dialect == ASM_INTEL) fputs ("\t.intel_syntax noprefix\n", asm_out_file); } int x86_field_alignment (tree field, int computed) { enum machine_mode mode; tree type = TREE_TYPE (field); if (TARGET_64BIT || TARGET_ALIGN_DOUBLE) return computed; mode = TYPE_MODE (strip_array_types (type)); if (mode == DFmode || mode == DCmode || GET_MODE_CLASS (mode) == MODE_INT || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT) return MIN (32, computed); return computed; } /* Output assembler code to FILE to increment profiler label # LABELNO for profiling a function entry. */ void x86_function_profiler (FILE *file, int labelno ATTRIBUTE_UNUSED) { const char *mcount_name = (flag_fentry ? MCOUNT_NAME_BEFORE_PROLOGUE : MCOUNT_NAME); if (TARGET_64BIT) { #ifndef NO_PROFILE_COUNTERS fprintf (file, "\tleaq\t%sP%d(%%rip),%%r11\n", LPREFIX, labelno); #endif if (!TARGET_PECOFF && flag_pic) fprintf (file, "\tcall\t*%s@GOTPCREL(%%rip)\n", mcount_name); else fprintf (file, "\tcall\t%s\n", mcount_name); } else if (flag_pic) { #ifndef NO_PROFILE_COUNTERS fprintf (file, "\tleal\t%sP%d@GOTOFF(%%ebx),%%" PROFILE_COUNT_REGISTER "\n", LPREFIX, labelno); #endif fprintf (file, "\tcall\t*%s@GOT(%%ebx)\n", mcount_name); } else { #ifndef NO_PROFILE_COUNTERS fprintf (file, "\tmovl\t$%sP%d,%%" PROFILE_COUNT_REGISTER "\n", LPREFIX, labelno); #endif fprintf (file, "\tcall\t%s\n", mcount_name); } } /* We don't have exact information about the insn sizes, but we may assume quite safely that we are informed about all 1 byte insns and memory address sizes. This is enough to eliminate unnecessary padding in 99% of cases. */ static int min_insn_size (rtx insn) { int l = 0, len; if (!INSN_P (insn) || !active_insn_p (insn)) return 0; /* Discard alignments we've emit and jump instructions. */ if (GET_CODE (PATTERN (insn)) == UNSPEC_VOLATILE && XINT (PATTERN (insn), 1) == UNSPECV_ALIGN) return 0; /* Important case - calls are always 5 bytes. It is common to have many calls in the row. */ if (CALL_P (insn) && symbolic_reference_mentioned_p (PATTERN (insn)) && !SIBLING_CALL_P (insn)) return 5; len = get_attr_length (insn); if (len <= 1) return 1; /* For normal instructions we rely on get_attr_length being exact, with a few exceptions. */ if (!JUMP_P (insn)) { enum attr_type type = get_attr_type (insn); switch (type) { case TYPE_MULTI: if (GET_CODE (PATTERN (insn)) == ASM_INPUT || asm_noperands (PATTERN (insn)) >= 0) return 0; break; case TYPE_OTHER: case TYPE_FCMP: break; default: /* Otherwise trust get_attr_length. */ return len; } l = get_attr_length_address (insn); if (l < 4 && symbolic_reference_mentioned_p (PATTERN (insn))) l = 4; } if (l) return 1+l; else return 2; } #ifdef ASM_OUTPUT_MAX_SKIP_PAD /* AMD K8 core mispredicts jumps when there are more than 3 jumps in 16 byte window. */ static void ix86_avoid_jump_mispredicts (void) { rtx insn, start = get_insns (); int nbytes = 0, njumps = 0; int isjump = 0; /* Look for all minimal intervals of instructions containing 4 jumps. The intervals are bounded by START and INSN. NBYTES is the total size of instructions in the interval including INSN and not including START. When the NBYTES is smaller than 16 bytes, it is possible that the end of START and INSN ends up in the same 16byte page. The smallest offset in the page INSN can start is the case where START ends on the offset 0. Offset of INSN is then NBYTES - sizeof (INSN). We add p2align to 16byte window with maxskip 15 - NBYTES + sizeof (INSN). */ for (insn = start; insn; insn = NEXT_INSN (insn)) { int min_size; if (LABEL_P (insn)) { int align = label_to_alignment (insn); int max_skip = label_to_max_skip (insn); if (max_skip > 15) max_skip = 15; /* If align > 3, only up to 16 - max_skip - 1 bytes can be already in the current 16 byte page, because otherwise ASM_OUTPUT_MAX_SKIP_ALIGN could skip max_skip or fewer bytes to reach 16 byte boundary. */ if (align <= 0 || (align <= 3 && max_skip != (1 << align) - 1)) max_skip = 0; if (dump_file) fprintf (dump_file, "Label %i with max_skip %i\n", INSN_UID (insn), max_skip); if (max_skip) { while (nbytes + max_skip >= 16) { start = NEXT_INSN (start); if (JUMP_P (start) || CALL_P (start)) njumps--, isjump = 1; else isjump = 0; nbytes -= min_insn_size (start); } } continue; } min_size = min_insn_size (insn); nbytes += min_size; if (dump_file) fprintf (dump_file, "Insn %i estimated to %i bytes\n", INSN_UID (insn), min_size); if (JUMP_P (insn) || CALL_P (insn)) njumps++; else continue; while (njumps > 3) { start = NEXT_INSN (start); if (JUMP_P (start) || CALL_P (start)) njumps--, isjump = 1; else isjump = 0; nbytes -= min_insn_size (start); } gcc_assert (njumps >= 0); if (dump_file) fprintf (dump_file, "Interval %i to %i has %i bytes\n", INSN_UID (start), INSN_UID (insn), nbytes); if (njumps == 3 && isjump && nbytes < 16) { int padsize = 15 - nbytes + min_insn_size (insn); if (dump_file) fprintf (dump_file, "Padding insn %i by %i bytes!\n", INSN_UID (insn), padsize); emit_insn_before (gen_pad (GEN_INT (padsize)), insn); } } } #endif /* AMD Athlon works faster when RET is not destination of conditional jump or directly preceded by other jump instruction. We avoid the penalty by inserting NOP just before the RET instructions in such cases. */ static void ix86_pad_returns (void) { edge e; edge_iterator ei; FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) { basic_block bb = e->src; rtx ret = BB_END (bb); rtx prev; bool replace = false; if (!JUMP_P (ret) || !ANY_RETURN_P (PATTERN (ret)) || optimize_bb_for_size_p (bb)) continue; for (prev = PREV_INSN (ret); prev; prev = PREV_INSN (prev)) if (active_insn_p (prev) || LABEL_P (prev)) break; if (prev && LABEL_P (prev)) { edge e; edge_iterator ei; FOR_EACH_EDGE (e, ei, bb->preds) if (EDGE_FREQUENCY (e) && e->src->index >= 0 && !(e->flags & EDGE_FALLTHRU)) { replace = true; break; } } if (!replace) { prev = prev_active_insn (ret); if (prev && ((JUMP_P (prev) && any_condjump_p (prev)) || CALL_P (prev))) replace = true; /* Empty functions get branch mispredict even when the jump destination is not visible to us. */ if (!prev && !optimize_function_for_size_p (cfun)) replace = true; } if (replace) { emit_jump_insn_before (gen_simple_return_internal_long (), ret); delete_insn (ret); } } } /* Count the minimum number of instructions in BB. Return 4 if the number of instructions >= 4. */ static int ix86_count_insn_bb (basic_block bb) { rtx insn; int insn_count = 0; /* Count number of instructions in this block. Return 4 if the number of instructions >= 4. */ FOR_BB_INSNS (bb, insn) { /* Only happen in exit blocks. */ if (JUMP_P (insn) && ANY_RETURN_P (PATTERN (insn))) break; if (NONDEBUG_INSN_P (insn) && GET_CODE (PATTERN (insn)) != USE && GET_CODE (PATTERN (insn)) != CLOBBER) { insn_count++; if (insn_count >= 4) return insn_count; } } return insn_count; } /* Count the minimum number of instructions in code path in BB. Return 4 if the number of instructions >= 4. */ static int ix86_count_insn (basic_block bb) { edge e; edge_iterator ei; int min_prev_count; /* Only bother counting instructions along paths with no more than 2 basic blocks between entry and exit. Given that BB has an edge to exit, determine if a predecessor of BB has an edge from entry. If so, compute the number of instructions in the predecessor block. If there happen to be multiple such blocks, compute the minimum. */ min_prev_count = 4; FOR_EACH_EDGE (e, ei, bb->preds) { edge prev_e; edge_iterator prev_ei; if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)) { min_prev_count = 0; break; } FOR_EACH_EDGE (prev_e, prev_ei, e->src->preds) { if (prev_e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)) { int count = ix86_count_insn_bb (e->src); if (count < min_prev_count) min_prev_count = count; break; } } } if (min_prev_count < 4) min_prev_count += ix86_count_insn_bb (bb); return min_prev_count; } /* Pad short function to 4 instructions. */ static void ix86_pad_short_function (void) { edge e; edge_iterator ei; FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) { rtx ret = BB_END (e->src); if (JUMP_P (ret) && ANY_RETURN_P (PATTERN (ret))) { int insn_count = ix86_count_insn (e->src); /* Pad short function. */ if (insn_count < 4) { rtx insn = ret; /* Find epilogue. */ while (insn && (!NOTE_P (insn) || NOTE_KIND (insn) != NOTE_INSN_EPILOGUE_BEG)) insn = PREV_INSN (insn); if (!insn) insn = ret; /* Two NOPs count as one instruction. */ insn_count = 2 * (4 - insn_count); emit_insn_before (gen_nops (GEN_INT (insn_count)), insn); } } } } /* Fix up a Windows system unwinder issue. If an EH region falls through into the epilogue, the Windows system unwinder will apply epilogue logic and produce incorrect offsets. This can be avoided by adding a nop between the last insn that can throw and the first insn of the epilogue. */ static void ix86_seh_fixup_eh_fallthru (void) { edge e; edge_iterator ei; FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) { rtx insn, next; /* Find the beginning of the epilogue. */ for (insn = BB_END (e->src); insn != NULL; insn = PREV_INSN (insn)) if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG) break; if (insn == NULL) continue; /* We only care about preceding insns that can throw. */ insn = prev_active_insn (insn); if (insn == NULL || !can_throw_internal (insn)) continue; /* Do not separate calls from their debug information. */ for (next = NEXT_INSN (insn); next != NULL; next = NEXT_INSN (next)) if (NOTE_P (next) && (NOTE_KIND (next) == NOTE_INSN_VAR_LOCATION || NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION)) insn = next; else break; emit_insn_after (gen_nops (const1_rtx), insn); } } /* Implement machine specific optimizations. We implement padding of returns for K8 CPUs and pass to avoid 4 jumps in the single 16 byte window. */ static void ix86_reorg (void) { /* We are freeing block_for_insn in the toplev to keep compatibility with old MDEP_REORGS that are not CFG based. Recompute it now. */ compute_bb_for_insn (); if (TARGET_SEH && current_function_has_exception_handlers ()) ix86_seh_fixup_eh_fallthru (); if (optimize && optimize_function_for_speed_p (cfun)) { if (TARGET_PAD_SHORT_FUNCTION) ix86_pad_short_function (); else if (TARGET_PAD_RETURNS) ix86_pad_returns (); #ifdef ASM_OUTPUT_MAX_SKIP_PAD if (TARGET_FOUR_JUMP_LIMIT) ix86_avoid_jump_mispredicts (); #endif } } /* Return nonzero when QImode register that must be represented via REX prefix is used. */ bool x86_extended_QIreg_mentioned_p (rtx insn) { int i; extract_insn_cached (insn); for (i = 0; i < recog_data.n_operands; i++) if (GENERAL_REG_P (recog_data.operand[i]) && !QI_REGNO_P (REGNO (recog_data.operand[i]))) return true; return false; } /* Return nonzero when P points to register encoded via REX prefix. Called via for_each_rtx. */ static int extended_reg_mentioned_1 (rtx *p, void *data ATTRIBUTE_UNUSED) { unsigned int regno; if (!REG_P (*p)) return 0; regno = REGNO (*p); return REX_INT_REGNO_P (regno) || REX_SSE_REGNO_P (regno); } /* Return true when INSN mentions register that must be encoded using REX prefix. */ bool x86_extended_reg_mentioned_p (rtx insn) { return for_each_rtx (INSN_P (insn) ? &PATTERN (insn) : &insn, extended_reg_mentioned_1, NULL); } /* If profitable, negate (without causing overflow) integer constant of mode MODE at location LOC. Return true in this case. */ bool x86_maybe_negate_const_int (rtx *loc, enum machine_mode mode) { HOST_WIDE_INT val; if (!CONST_INT_P (*loc)) return false; switch (mode) { case DImode: /* DImode x86_64 constants must fit in 32 bits. */ gcc_assert (x86_64_immediate_operand (*loc, mode)); mode = SImode; break; case SImode: case HImode: case QImode: break; default: gcc_unreachable (); } /* Avoid overflows. */ if (mode_signbit_p (mode, *loc)) return false; val = INTVAL (*loc); /* Make things pretty and `subl $4,%eax' rather than `addl $-4,%eax'. Exceptions: -128 encodes smaller than 128, so swap sign and op. */ if ((val < 0 && val != -128) || val == 128) { *loc = GEN_INT (-val); return true; } return false; } /* Generate an unsigned DImode/SImode to FP conversion. This is the same code optabs would emit if we didn't have TFmode patterns. */ void x86_emit_floatuns (rtx operands[2]) { rtx neglab, donelab, i0, i1, f0, in, out; enum machine_mode mode, inmode; inmode = GET_MODE (operands[1]); gcc_assert (inmode == SImode || inmode == DImode); out = operands[0]; in = force_reg (inmode, operands[1]); mode = GET_MODE (out); neglab = gen_label_rtx (); donelab = gen_label_rtx (); f0 = gen_reg_rtx (mode); emit_cmp_and_jump_insns (in, const0_rtx, LT, const0_rtx, inmode, 0, neglab); expand_float (out, in, 0); emit_jump_insn (gen_jump (donelab)); emit_barrier (); emit_label (neglab); i0 = expand_simple_binop (inmode, LSHIFTRT, in, const1_rtx, NULL, 1, OPTAB_DIRECT); i1 = expand_simple_binop (inmode, AND, in, const1_rtx, NULL, 1, OPTAB_DIRECT); i0 = expand_simple_binop (inmode, IOR, i0, i1, i0, 1, OPTAB_DIRECT); expand_float (f0, i0, 0); emit_insn (gen_rtx_SET (VOIDmode, out, gen_rtx_PLUS (mode, f0, f0))); emit_label (donelab); } /* AVX512F does support 64-byte integer vector operations, thus the longest vector we are faced with is V64QImode. */ #define MAX_VECT_LEN 64 struct expand_vec_perm_d { rtx target, op0, op1; unsigned char perm[MAX_VECT_LEN]; enum machine_mode vmode; unsigned char nelt; bool one_operand_p; bool testing_p; }; static bool canonicalize_perm (struct expand_vec_perm_d *d); static bool expand_vec_perm_1 (struct expand_vec_perm_d *d); static bool expand_vec_perm_broadcast_1 (struct expand_vec_perm_d *d); /* Get a vector mode of the same size as the original but with elements twice as wide. This is only guaranteed to apply to integral vectors. */ static inline enum machine_mode get_mode_wider_vector (enum machine_mode o) { /* ??? Rely on the ordering that genmodes.c gives to vectors. */ enum machine_mode n = GET_MODE_WIDER_MODE (o); gcc_assert (GET_MODE_NUNITS (o) == GET_MODE_NUNITS (n) * 2); gcc_assert (GET_MODE_SIZE (o) == GET_MODE_SIZE (n)); return n; } /* A subroutine of ix86_expand_vector_init. Store into TARGET a vector with all elements equal to VAR. Return true if successful. */ static bool ix86_expand_vector_init_duplicate (bool mmx_ok, enum machine_mode mode, rtx target, rtx val) { bool ok; switch (mode) { case V2SImode: case V2SFmode: if (!mmx_ok) return false; /* FALLTHRU */ case V4DFmode: case V4DImode: case V8SFmode: case V8SImode: case V2DFmode: case V2DImode: case V4SFmode: case V4SImode: { rtx insn, dup; /* First attempt to recognize VAL as-is. */ dup = gen_rtx_VEC_DUPLICATE (mode, val); insn = emit_insn (gen_rtx_SET (VOIDmode, target, dup)); if (recog_memoized (insn) < 0) { rtx seq; /* If that fails, force VAL into a register. */ start_sequence (); XEXP (dup, 0) = force_reg (GET_MODE_INNER (mode), val); seq = get_insns (); end_sequence (); if (seq) emit_insn_before (seq, insn); ok = recog_memoized (insn) >= 0; gcc_assert (ok); } } return true; case V4HImode: if (!mmx_ok) return false; if (TARGET_SSE || TARGET_3DNOW_A) { rtx x; val = gen_lowpart (SImode, val); x = gen_rtx_TRUNCATE (HImode, val); x = gen_rtx_VEC_DUPLICATE (mode, x); emit_insn (gen_rtx_SET (VOIDmode, target, x)); return true; } goto widen; case V8QImode: if (!mmx_ok) return false; goto widen; case V8HImode: if (TARGET_SSE2) { struct expand_vec_perm_d dperm; rtx tmp1, tmp2; permute: memset (&dperm, 0, sizeof (dperm)); dperm.target = target; dperm.vmode = mode; dperm.nelt = GET_MODE_NUNITS (mode); dperm.op0 = dperm.op1 = gen_reg_rtx (mode); dperm.one_operand_p = true; /* Extend to SImode using a paradoxical SUBREG. */ tmp1 = gen_reg_rtx (SImode); emit_move_insn (tmp1, gen_lowpart (SImode, val)); /* Insert the SImode value as low element of a V4SImode vector. */ tmp2 = gen_reg_rtx (V4SImode); emit_insn (gen_vec_setv4si_0 (tmp2, CONST0_RTX (V4SImode), tmp1)); emit_move_insn (dperm.op0, gen_lowpart (mode, tmp2)); ok = (expand_vec_perm_1 (&dperm) || expand_vec_perm_broadcast_1 (&dperm)); gcc_assert (ok); return ok; } goto widen; case V16QImode: if (TARGET_SSE2) goto permute; goto widen; widen: /* Replicate the value once into the next wider mode and recurse. */ { enum machine_mode smode, wsmode, wvmode; rtx x; smode = GET_MODE_INNER (mode); wvmode = get_mode_wider_vector (mode); wsmode = GET_MODE_INNER (wvmode); val = convert_modes (wsmode, smode, val, true); x = expand_simple_binop (wsmode, ASHIFT, val, GEN_INT (GET_MODE_BITSIZE (smode)), NULL_RTX, 1, OPTAB_LIB_WIDEN); val = expand_simple_binop (wsmode, IOR, val, x, x, 1, OPTAB_LIB_WIDEN); x = gen_reg_rtx (wvmode); ok = ix86_expand_vector_init_duplicate (mmx_ok, wvmode, x, val); gcc_assert (ok); emit_move_insn (target, gen_lowpart (GET_MODE (target), x)); return ok; } case V16HImode: case V32QImode: { enum machine_mode hvmode = (mode == V16HImode ? V8HImode : V16QImode); rtx x = gen_reg_rtx (hvmode); ok = ix86_expand_vector_init_duplicate (false, hvmode, x, val); gcc_assert (ok); x = gen_rtx_VEC_CONCAT (mode, x, x); emit_insn (gen_rtx_SET (VOIDmode, target, x)); } return true; default: return false; } } /* A subroutine of ix86_expand_vector_init. Store into TARGET a vector whose ONE_VAR element is VAR, and other elements are zero. Return true if successful. */ static bool ix86_expand_vector_init_one_nonzero (bool mmx_ok, enum machine_mode mode, rtx target, rtx var, int one_var) { enum machine_mode vsimode; rtx new_target; rtx x, tmp; bool use_vector_set = false; switch (mode) { case V2DImode: /* For SSE4.1, we normally use vector set. But if the second element is zero and inter-unit moves are OK, we use movq instead. */ use_vector_set = (TARGET_64BIT && TARGET_SSE4_1 && !(TARGET_INTER_UNIT_MOVES_TO_VEC && one_var == 0)); break; case V16QImode: case V4SImode: case V4SFmode: use_vector_set = TARGET_SSE4_1; break; case V8HImode: use_vector_set = TARGET_SSE2; break; case V4HImode: use_vector_set = TARGET_SSE || TARGET_3DNOW_A; break; case V32QImode: case V16HImode: case V8SImode: case V8SFmode: case V4DFmode: use_vector_set = TARGET_AVX; break; case V4DImode: /* Use ix86_expand_vector_set in 64bit mode only. */ use_vector_set = TARGET_AVX && TARGET_64BIT; break; default: break; } if (use_vector_set) { emit_insn (gen_rtx_SET (VOIDmode, target, CONST0_RTX (mode))); var = force_reg (GET_MODE_INNER (mode), var); ix86_expand_vector_set (mmx_ok, target, var, one_var); return true; } switch (mode) { case V2SFmode: case V2SImode: if (!mmx_ok) return false; /* FALLTHRU */ case V2DFmode: case V2DImode: if (one_var != 0) return false; var = force_reg (GET_MODE_INNER (mode), var); x = gen_rtx_VEC_CONCAT (mode, var, CONST0_RTX (GET_MODE_INNER (mode))); emit_insn (gen_rtx_SET (VOIDmode, target, x)); return true; case V4SFmode: case V4SImode: if (!REG_P (target) || REGNO (target) < FIRST_PSEUDO_REGISTER) new_target = gen_reg_rtx (mode); else new_target = target; var = force_reg (GET_MODE_INNER (mode), var); x = gen_rtx_VEC_DUPLICATE (mode, var); x = gen_rtx_VEC_MERGE (mode, x, CONST0_RTX (mode), const1_rtx); emit_insn (gen_rtx_SET (VOIDmode, new_target, x)); if (one_var != 0) { /* We need to shuffle the value to the correct position, so create a new pseudo to store the intermediate result. */ /* With SSE2, we can use the integer shuffle insns. */ if (mode != V4SFmode && TARGET_SSE2) { emit_insn (gen_sse2_pshufd_1 (new_target, new_target, const1_rtx, GEN_INT (one_var == 1 ? 0 : 1), GEN_INT (one_var == 2 ? 0 : 1), GEN_INT (one_var == 3 ? 0 : 1))); if (target != new_target) emit_move_insn (target, new_target); return true; } /* Otherwise convert the intermediate result to V4SFmode and use the SSE1 shuffle instructions. */ if (mode != V4SFmode) { tmp = gen_reg_rtx (V4SFmode); emit_move_insn (tmp, gen_lowpart (V4SFmode, new_target)); } else tmp = new_target; emit_insn (gen_sse_shufps_v4sf (tmp, tmp, tmp, const1_rtx, GEN_INT (one_var == 1 ? 0 : 1), GEN_INT (one_var == 2 ? 0+4 : 1+4), GEN_INT (one_var == 3 ? 0+4 : 1+4))); if (mode != V4SFmode) emit_move_insn (target, gen_lowpart (V4SImode, tmp)); else if (tmp != target) emit_move_insn (target, tmp); } else if (target != new_target) emit_move_insn (target, new_target); return true; case V8HImode: case V16QImode: vsimode = V4SImode; goto widen; case V4HImode: case V8QImode: if (!mmx_ok) return false; vsimode = V2SImode; goto widen; widen: if (one_var != 0) return false; /* Zero extend the variable element to SImode and recurse. */ var = convert_modes (SImode, GET_MODE_INNER (mode), var, true); x = gen_reg_rtx (vsimode); if (!ix86_expand_vector_init_one_nonzero (mmx_ok, vsimode, x, var, one_var)) gcc_unreachable (); emit_move_insn (target, gen_lowpart (mode, x)); return true; default: return false; } } /* A subroutine of ix86_expand_vector_init. Store into TARGET a vector consisting of the values in VALS. It is known that all elements except ONE_VAR are constants. Return true if successful. */ static bool ix86_expand_vector_init_one_var (bool mmx_ok, enum machine_mode mode, rtx target, rtx vals, int one_var) { rtx var = XVECEXP (vals, 0, one_var); enum machine_mode wmode; rtx const_vec, x; const_vec = copy_rtx (vals); XVECEXP (const_vec, 0, one_var) = CONST0_RTX (GET_MODE_INNER (mode)); const_vec = gen_rtx_CONST_VECTOR (mode, XVEC (const_vec, 0)); switch (mode) { case V2DFmode: case V2DImode: case V2SFmode: case V2SImode: /* For the two element vectors, it's just as easy to use the general case. */ return false; case V4DImode: /* Use ix86_expand_vector_set in 64bit mode only. */ if (!TARGET_64BIT) return false; case V4DFmode: case V8SFmode: case V8SImode: case V16HImode: case V32QImode: case V4SFmode: case V4SImode: case V8HImode: case V4HImode: break; case V16QImode: if (TARGET_SSE4_1) break; wmode = V8HImode; goto widen; case V8QImode: wmode = V4HImode; goto widen; widen: /* There's no way to set one QImode entry easily. Combine the variable value with its adjacent constant value, and promote to an HImode set. */ x = XVECEXP (vals, 0, one_var ^ 1); if (one_var & 1) { var = convert_modes (HImode, QImode, var, true); var = expand_simple_binop (HImode, ASHIFT, var, GEN_INT (8), NULL_RTX, 1, OPTAB_LIB_WIDEN); x = GEN_INT (INTVAL (x) & 0xff); } else { var = convert_modes (HImode, QImode, var, true); x = gen_int_mode (INTVAL (x) << 8, HImode); } if (x != const0_rtx) var = expand_simple_binop (HImode, IOR, var, x, var, 1, OPTAB_LIB_WIDEN); x = gen_reg_rtx (wmode); emit_move_insn (x, gen_lowpart (wmode, const_vec)); ix86_expand_vector_set (mmx_ok, x, var, one_var >> 1); emit_move_insn (target, gen_lowpart (mode, x)); return true; default: return false; } emit_move_insn (target, const_vec); ix86_expand_vector_set (mmx_ok, target, var, one_var); return true; } /* A subroutine of ix86_expand_vector_init_general. Use vector concatenate to handle the most general case: all values variable, and none identical. */ static void ix86_expand_vector_init_concat (enum machine_mode mode, rtx target, rtx *ops, int n) { enum machine_mode cmode, hmode = VOIDmode; rtx first[8], second[4]; rtvec v; int i, j; switch (n) { case 2: switch (mode) { case V8SImode: cmode = V4SImode; break; case V8SFmode: cmode = V4SFmode; break; case V4DImode: cmode = V2DImode; break; case V4DFmode: cmode = V2DFmode; break; case V4SImode: cmode = V2SImode; break; case V4SFmode: cmode = V2SFmode; break; case V2DImode: cmode = DImode; break; case V2SImode: cmode = SImode; break; case V2DFmode: cmode = DFmode; break; case V2SFmode: cmode = SFmode; break; default: gcc_unreachable (); } if (!register_operand (ops[1], cmode)) ops[1] = force_reg (cmode, ops[1]); if (!register_operand (ops[0], cmode)) ops[0] = force_reg (cmode, ops[0]); emit_insn (gen_rtx_SET (VOIDmode, target, gen_rtx_VEC_CONCAT (mode, ops[0], ops[1]))); break; case 4: switch (mode) { case V4DImode: cmode = V2DImode; break; case V4DFmode: cmode = V2DFmode; break; case V4SImode: cmode = V2SImode; break; case V4SFmode: cmode = V2SFmode; break; default: gcc_unreachable (); } goto half; case 8: switch (mode) { case V8SImode: cmode = V2SImode; hmode = V4SImode; break; case V8SFmode: cmode = V2SFmode; hmode = V4SFmode; break; default: gcc_unreachable (); } goto half; half: /* FIXME: We process inputs backward to help RA. PR 36222. */ i = n - 1; j = (n >> 1) - 1; for (; i > 0; i -= 2, j--) { first[j] = gen_reg_rtx (cmode); v = gen_rtvec (2, ops[i - 1], ops[i]); ix86_expand_vector_init (false, first[j], gen_rtx_PARALLEL (cmode, v)); } n >>= 1; if (n > 2) { gcc_assert (hmode != VOIDmode); for (i = j = 0; i < n; i += 2, j++) { second[j] = gen_reg_rtx (hmode); ix86_expand_vector_init_concat (hmode, second [j], &first [i], 2); } n >>= 1; ix86_expand_vector_init_concat (mode, target, second, n); } else ix86_expand_vector_init_concat (mode, target, first, n); break; default: gcc_unreachable (); } } /* A subroutine of ix86_expand_vector_init_general. Use vector interleave to handle the most general case: all values variable, and none identical. */ static void ix86_expand_vector_init_interleave (enum machine_mode mode, rtx target, rtx *ops, int n) { enum machine_mode first_imode, second_imode, third_imode, inner_mode; int i, j; rtx op0, op1; rtx (*gen_load_even) (rtx, rtx, rtx); rtx (*gen_interleave_first_low) (rtx, rtx, rtx); rtx (*gen_interleave_second_low) (rtx, rtx, rtx); switch (mode) { case V8HImode: gen_load_even = gen_vec_setv8hi; gen_interleave_first_low = gen_vec_interleave_lowv4si; gen_interleave_second_low = gen_vec_interleave_lowv2di; inner_mode = HImode; first_imode = V4SImode; second_imode = V2DImode; third_imode = VOIDmode; break; case V16QImode: gen_load_even = gen_vec_setv16qi; gen_interleave_first_low = gen_vec_interleave_lowv8hi; gen_interleave_second_low = gen_vec_interleave_lowv4si; inner_mode = QImode; first_imode = V8HImode; second_imode = V4SImode; third_imode = V2DImode; break; default: gcc_unreachable (); } for (i = 0; i < n; i++) { /* Extend the odd elment to SImode using a paradoxical SUBREG. */ op0 = gen_reg_rtx (SImode); emit_move_insn (op0, gen_lowpart (SImode, ops [i + i])); /* Insert the SImode value as low element of V4SImode vector. */ op1 = gen_reg_rtx (V4SImode); op0 = gen_rtx_VEC_MERGE (V4SImode, gen_rtx_VEC_DUPLICATE (V4SImode, op0), CONST0_RTX (V4SImode), const1_rtx); emit_insn (gen_rtx_SET (VOIDmode, op1, op0)); /* Cast the V4SImode vector back to a vector in orignal mode. */ op0 = gen_reg_rtx (mode); emit_move_insn (op0, gen_lowpart (mode, op1)); /* Load even elements into the second position. */ emit_insn (gen_load_even (op0, force_reg (inner_mode, ops [i + i + 1]), const1_rtx)); /* Cast vector to FIRST_IMODE vector. */ ops[i] = gen_reg_rtx (first_imode); emit_move_insn (ops[i], gen_lowpart (first_imode, op0)); } /* Interleave low FIRST_IMODE vectors. */ for (i = j = 0; i < n; i += 2, j++) { op0 = gen_reg_rtx (first_imode); emit_insn (gen_interleave_first_low (op0, ops[i], ops[i + 1])); /* Cast FIRST_IMODE vector to SECOND_IMODE vector. */ ops[j] = gen_reg_rtx (second_imode); emit_move_insn (ops[j], gen_lowpart (second_imode, op0)); } /* Interleave low SECOND_IMODE vectors. */ switch (second_imode) { case V4SImode: for (i = j = 0; i < n / 2; i += 2, j++) { op0 = gen_reg_rtx (second_imode); emit_insn (gen_interleave_second_low (op0, ops[i], ops[i + 1])); /* Cast the SECOND_IMODE vector to the THIRD_IMODE vector. */ ops[j] = gen_reg_rtx (third_imode); emit_move_insn (ops[j], gen_lowpart (third_imode, op0)); } second_imode = V2DImode; gen_interleave_second_low = gen_vec_interleave_lowv2di; /* FALLTHRU */ case V2DImode: op0 = gen_reg_rtx (second_imode); emit_insn (gen_interleave_second_low (op0, ops[0], ops[1])); /* Cast the SECOND_IMODE vector back to a vector on original mode. */ emit_insn (gen_rtx_SET (VOIDmode, target, gen_lowpart (mode, op0))); break; default: gcc_unreachable (); } } /* A subroutine of ix86_expand_vector_init. Handle the most general case: all values variable, and none identical. */ static void ix86_expand_vector_init_general (bool mmx_ok, enum machine_mode mode, rtx target, rtx vals) { rtx ops[32], op0, op1; enum machine_mode half_mode = VOIDmode; int n, i; switch (mode) { case V2SFmode: case V2SImode: if (!mmx_ok && !TARGET_SSE) break; /* FALLTHRU */ case V8SFmode: case V8SImode: case V4DFmode: case V4DImode: case V4SFmode: case V4SImode: case V2DFmode: case V2DImode: n = GET_MODE_NUNITS (mode); for (i = 0; i < n; i++) ops[i] = XVECEXP (vals, 0, i); ix86_expand_vector_init_concat (mode, target, ops, n); return; case V32QImode: half_mode = V16QImode; goto half; case V16HImode: half_mode = V8HImode; goto half; half: n = GET_MODE_NUNITS (mode); for (i = 0; i < n; i++) ops[i] = XVECEXP (vals, 0, i); op0 = gen_reg_rtx (half_mode); op1 = gen_reg_rtx (half_mode); ix86_expand_vector_init_interleave (half_mode, op0, ops, n >> 2); ix86_expand_vector_init_interleave (half_mode, op1, &ops [n >> 1], n >> 2); emit_insn (gen_rtx_SET (VOIDmode, target, gen_rtx_VEC_CONCAT (mode, op0, op1))); return; case V16QImode: if (!TARGET_SSE4_1) break; /* FALLTHRU */ case V8HImode: if (!TARGET_SSE2) break; /* Don't use ix86_expand_vector_init_interleave if we can't move from GPR to SSE register directly. */ if (!TARGET_INTER_UNIT_MOVES_TO_VEC) break; n = GET_MODE_NUNITS (mode); for (i = 0; i < n; i++) ops[i] = XVECEXP (vals, 0, i); ix86_expand_vector_init_interleave (mode, target, ops, n >> 1); return; case V4HImode: case V8QImode: break; default: gcc_unreachable (); } { int i, j, n_elts, n_words, n_elt_per_word; enum machine_mode inner_mode; rtx words[4], shift; inner_mode = GET_MODE_INNER (mode); n_elts = GET_MODE_NUNITS (mode); n_words = GET_MODE_SIZE (mode) / UNITS_PER_WORD; n_elt_per_word = n_elts / n_words; shift = GEN_INT (GET_MODE_BITSIZE (inner_mode)); for (i = 0; i < n_words; ++i) { rtx word = NULL_RTX; for (j = 0; j < n_elt_per_word; ++j) { rtx elt = XVECEXP (vals, 0, (i+1)*n_elt_per_word - j - 1); elt = convert_modes (word_mode, inner_mode, elt, true); if (j == 0) word = elt; else { word = expand_simple_binop (word_mode, ASHIFT, word, shift, word, 1, OPTAB_LIB_WIDEN); word = expand_simple_binop (word_mode, IOR, word, elt, word, 1, OPTAB_LIB_WIDEN); } } words[i] = word; } if (n_words == 1) emit_move_insn (target, gen_lowpart (mode, words[0])); else if (n_words == 2) { rtx tmp = gen_reg_rtx (mode); emit_clobber (tmp); emit_move_insn (gen_lowpart (word_mode, tmp), words[0]); emit_move_insn (gen_highpart (word_mode, tmp), words[1]); emit_move_insn (target, tmp); } else if (n_words == 4) { rtx tmp = gen_reg_rtx (V4SImode); gcc_assert (word_mode == SImode); vals = gen_rtx_PARALLEL (V4SImode, gen_rtvec_v (4, words)); ix86_expand_vector_init_general (false, V4SImode, tmp, vals); emit_move_insn (target, gen_lowpart (mode, tmp)); } else gcc_unreachable (); } } /* Initialize vector TARGET via VALS. Suppress the use of MMX instructions unless MMX_OK is true. */ void ix86_expand_vector_init (bool mmx_ok, rtx target, rtx vals) { enum machine_mode mode = GET_MODE (target); enum machine_mode inner_mode = GET_MODE_INNER (mode); int n_elts = GET_MODE_NUNITS (mode); int n_var = 0, one_var = -1; bool all_same = true, all_const_zero = true; int i; rtx x; for (i = 0; i < n_elts; ++i) { x = XVECEXP (vals, 0, i); if (!(CONST_INT_P (x) || GET_CODE (x) == CONST_DOUBLE || GET_CODE (x) == CONST_FIXED)) n_var++, one_var = i; else if (x != CONST0_RTX (inner_mode)) all_const_zero = false; if (i > 0 && !rtx_equal_p (x, XVECEXP (vals, 0, 0))) all_same = false; } /* Constants are best loaded from the constant pool. */ if (n_var == 0) { emit_move_insn (target, gen_rtx_CONST_VECTOR (mode, XVEC (vals, 0))); return; } /* If all values are identical, broadcast the value. */ if (all_same && ix86_expand_vector_init_duplicate (mmx_ok, mode, target, XVECEXP (vals, 0, 0))) return; /* Values where only one field is non-constant are best loaded from the pool and overwritten via move later. */ if (n_var == 1) { if (all_const_zero && ix86_expand_vector_init_one_nonzero (mmx_ok, mode, target, XVECEXP (vals, 0, one_var), one_var)) return; if (ix86_expand_vector_init_one_var (mmx_ok, mode, target, vals, one_var)) return; } ix86_expand_vector_init_general (mmx_ok, mode, target, vals); } void ix86_expand_vector_set (bool mmx_ok, rtx target, rtx val, int elt) { enum machine_mode mode = GET_MODE (target); enum machine_mode inner_mode = GET_MODE_INNER (mode); enum machine_mode half_mode; bool use_vec_merge = false; rtx tmp; static rtx (*gen_extract[6][2]) (rtx, rtx) = { { gen_vec_extract_lo_v32qi, gen_vec_extract_hi_v32qi }, { gen_vec_extract_lo_v16hi, gen_vec_extract_hi_v16hi }, { gen_vec_extract_lo_v8si, gen_vec_extract_hi_v8si }, { gen_vec_extract_lo_v4di, gen_vec_extract_hi_v4di }, { gen_vec_extract_lo_v8sf, gen_vec_extract_hi_v8sf }, { gen_vec_extract_lo_v4df, gen_vec_extract_hi_v4df } }; static rtx (*gen_insert[6][2]) (rtx, rtx, rtx) = { { gen_vec_set_lo_v32qi, gen_vec_set_hi_v32qi }, { gen_vec_set_lo_v16hi, gen_vec_set_hi_v16hi }, { gen_vec_set_lo_v8si, gen_vec_set_hi_v8si }, { gen_vec_set_lo_v4di, gen_vec_set_hi_v4di }, { gen_vec_set_lo_v8sf, gen_vec_set_hi_v8sf }, { gen_vec_set_lo_v4df, gen_vec_set_hi_v4df } }; int i, j, n; switch (mode) { case V2SFmode: case V2SImode: if (mmx_ok) { tmp = gen_reg_rtx (GET_MODE_INNER (mode)); ix86_expand_vector_extract (true, tmp, target, 1 - elt); if (elt == 0) tmp = gen_rtx_VEC_CONCAT (mode, val, tmp); else tmp = gen_rtx_VEC_CONCAT (mode, tmp, val); emit_insn (gen_rtx_SET (VOIDmode, target, tmp)); return; } break; case V2DImode: use_vec_merge = TARGET_SSE4_1 && TARGET_64BIT; if (use_vec_merge) break; tmp = gen_reg_rtx (GET_MODE_INNER (mode)); ix86_expand_vector_extract (false, tmp, target, 1 - elt); if (elt == 0) tmp = gen_rtx_VEC_CONCAT (mode, val, tmp); else tmp = gen_rtx_VEC_CONCAT (mode, tmp, val); emit_insn (gen_rtx_SET (VOIDmode, target, tmp)); return; case V2DFmode: { rtx op0, op1; /* For the two element vectors, we implement a VEC_CONCAT with the extraction of the other element. */ tmp = gen_rtx_PARALLEL (VOIDmode, gen_rtvec (1, GEN_INT (1 - elt))); tmp = gen_rtx_VEC_SELECT (inner_mode, target, tmp); if (elt == 0) op0 = val, op1 = tmp; else op0 = tmp, op1 = val; tmp = gen_rtx_VEC_CONCAT (mode, op0, op1); emit_insn (gen_rtx_SET (VOIDmode, target, tmp)); } return; case V4SFmode: use_vec_merge = TARGET_SSE4_1; if (use_vec_merge) break; switch (elt) { case 0: use_vec_merge = true; break; case 1: /* tmp = target = A B C D */ tmp = copy_to_reg (target); /* target = A A B B */ emit_insn (gen_vec_interleave_lowv4sf (target, target, target)); /* target = X A B B */ ix86_expand_vector_set (false, target, val, 0); /* target = A X C D */ emit_insn (gen_sse_shufps_v4sf (target, target, tmp, const1_rtx, const0_rtx, GEN_INT (2+4), GEN_INT (3+4))); return; case 2: /* tmp = target = A B C D */ tmp = copy_to_reg (target); /* tmp = X B C D */ ix86_expand_vector_set (false, tmp, val, 0); /* target = A B X D */ emit_insn (gen_sse_shufps_v4sf (target, target, tmp, const0_rtx, const1_rtx, GEN_INT (0+4), GEN_INT (3+4))); return; case 3: /* tmp = target = A B C D */ tmp = copy_to_reg (target); /* tmp = X B C D */ ix86_expand_vector_set (false, tmp, val, 0); /* target = A B X D */ emit_insn (gen_sse_shufps_v4sf (target, target, tmp, const0_rtx, const1_rtx, GEN_INT (2+4), GEN_INT (0+4))); return; default: gcc_unreachable (); } break; case V4SImode: use_vec_merge = TARGET_SSE4_1; if (use_vec_merge) break; /* Element 0 handled by vec_merge below. */ if (elt == 0) { use_vec_merge = true; break; } if (TARGET_SSE2) { /* With SSE2, use integer shuffles to swap element 0 and ELT, store into element 0, then shuffle them back. */ rtx order[4]; order[0] = GEN_INT (elt); order[1] = const1_rtx; order[2] = const2_rtx; order[3] = GEN_INT (3); order[elt] = const0_rtx; emit_insn (gen_sse2_pshufd_1 (target, target, order[0], order[1], order[2], order[3])); ix86_expand_vector_set (false, target, val, 0); emit_insn (gen_sse2_pshufd_1 (target, target, order[0], order[1], order[2], order[3])); } else { /* For SSE1, we have to reuse the V4SF code. */ rtx t = gen_reg_rtx (V4SFmode); ix86_expand_vector_set (false, t, gen_lowpart (SFmode, val), elt); emit_move_insn (target, gen_lowpart (mode, t)); } return; case V8HImode: use_vec_merge = TARGET_SSE2; break; case V4HImode: use_vec_merge = mmx_ok && (TARGET_SSE || TARGET_3DNOW_A); break; case V16QImode: use_vec_merge = TARGET_SSE4_1; break; case V8QImode: break; case V32QImode: half_mode = V16QImode; j = 0; n = 16; goto half; case V16HImode: half_mode = V8HImode; j = 1; n = 8; goto half; case V8SImode: half_mode = V4SImode; j = 2; n = 4; goto half; case V4DImode: half_mode = V2DImode; j = 3; n = 2; goto half; case V8SFmode: half_mode = V4SFmode; j = 4; n = 4; goto half; case V4DFmode: half_mode = V2DFmode; j = 5; n = 2; goto half; half: /* Compute offset. */ i = elt / n; elt %= n; gcc_assert (i <= 1); /* Extract the half. */ tmp = gen_reg_rtx (half_mode); emit_insn (gen_extract[j][i] (tmp, target)); /* Put val in tmp at elt. */ ix86_expand_vector_set (false, tmp, val, elt); /* Put it back. */ emit_insn (gen_insert[j][i] (target, target, tmp)); return; default: break; } if (use_vec_merge) { tmp = gen_rtx_VEC_DUPLICATE (mode, val); tmp = gen_rtx_VEC_MERGE (mode, tmp, target, GEN_INT (1 << elt)); emit_insn (gen_rtx_SET (VOIDmode, target, tmp)); } else { rtx mem = assign_stack_temp (mode, GET_MODE_SIZE (mode)); emit_move_insn (mem, target); tmp = adjust_address (mem, inner_mode, elt*GET_MODE_SIZE (inner_mode)); emit_move_insn (tmp, val); emit_move_insn (target, mem); } } void ix86_expand_vector_extract (bool mmx_ok, rtx target, rtx vec, int elt) { enum machine_mode mode = GET_MODE (vec); enum machine_mode inner_mode = GET_MODE_INNER (mode); bool use_vec_extr = false; rtx tmp; switch (mode) { case V2SImode: case V2SFmode: if (!mmx_ok) break; /* FALLTHRU */ case V2DFmode: case V2DImode: use_vec_extr = true; break; case V4SFmode: use_vec_extr = TARGET_SSE4_1; if (use_vec_extr) break; switch (elt) { case 0: tmp = vec; break; case 1: case 3: tmp = gen_reg_rtx (mode); emit_insn (gen_sse_shufps_v4sf (tmp, vec, vec, GEN_INT (elt), GEN_INT (elt), GEN_INT (elt+4), GEN_INT (elt+4))); break; case 2: tmp = gen_reg_rtx (mode); emit_insn (gen_vec_interleave_highv4sf (tmp, vec, vec)); break; default: gcc_unreachable (); } vec = tmp; use_vec_extr = true; elt = 0; break; case V4SImode: use_vec_extr = TARGET_SSE4_1; if (use_vec_extr) break; if (TARGET_SSE2) { switch (elt) { case 0: tmp = vec; break; case 1: case 3: tmp = gen_reg_rtx (mode); emit_insn (gen_sse2_pshufd_1 (tmp, vec, GEN_INT (elt), GEN_INT (elt), GEN_INT (elt), GEN_INT (elt))); break; case 2: tmp = gen_reg_rtx (mode); emit_insn (gen_vec_interleave_highv4si (tmp, vec, vec)); break; default: gcc_unreachable (); } vec = tmp; use_vec_extr = true; elt = 0; } else { /* For SSE1, we have to reuse the V4SF code. */ ix86_expand_vector_extract (false, gen_lowpart (SFmode, target), gen_lowpart (V4SFmode, vec), elt); return; } break; case V8HImode: use_vec_extr = TARGET_SSE2; break; case V4HImode: use_vec_extr = mmx_ok && (TARGET_SSE || TARGET_3DNOW_A); break; case V16QImode: use_vec_extr = TARGET_SSE4_1; break; case V8SFmode: if (TARGET_AVX) { tmp = gen_reg_rtx (V4SFmode); if (elt < 4) emit_insn (gen_vec_extract_lo_v8sf (tmp, vec)); else emit_insn (gen_vec_extract_hi_v8sf (tmp, vec)); ix86_expand_vector_extract (false, target, tmp, elt & 3); return; } break; case V4DFmode: if (TARGET_AVX) { tmp = gen_reg_rtx (V2DFmode); if (elt < 2) emit_insn (gen_vec_extract_lo_v4df (tmp, vec)); else emit_insn (gen_vec_extract_hi_v4df (tmp, vec)); ix86_expand_vector_extract (false, target, tmp, elt & 1); return; } break; case V32QImode: if (TARGET_AVX) { tmp = gen_reg_rtx (V16QImode); if (elt < 16) emit_insn (gen_vec_extract_lo_v32qi (tmp, vec)); else emit_insn (gen_vec_extract_hi_v32qi (tmp, vec)); ix86_expand_vector_extract (false, target, tmp, elt & 15); return; } break; case V16HImode: if (TARGET_AVX) { tmp = gen_reg_rtx (V8HImode); if (elt < 8) emit_insn (gen_vec_extract_lo_v16hi (tmp, vec)); else emit_insn (gen_vec_extract_hi_v16hi (tmp, vec)); ix86_expand_vector_extract (false, target, tmp, elt & 7); return; } break; case V8SImode: if (TARGET_AVX) { tmp = gen_reg_rtx (V4SImode); if (elt < 4) emit_insn (gen_vec_extract_lo_v8si (tmp, vec)); else emit_insn (gen_vec_extract_hi_v8si (tmp, vec)); ix86_expand_vector_extract (false, target, tmp, elt & 3); return; } break; case V4DImode: if (TARGET_AVX) { tmp = gen_reg_rtx (V2DImode); if (elt < 2) emit_insn (gen_vec_extract_lo_v4di (tmp, vec)); else emit_insn (gen_vec_extract_hi_v4di (tmp, vec)); ix86_expand_vector_extract (false, target, tmp, elt & 1); return; } break; case V8QImode: /* ??? Could extract the appropriate HImode element and shift. */ default: break; } if (use_vec_extr) { tmp = gen_rtx_PARALLEL (VOIDmode, gen_rtvec (1, GEN_INT (elt))); tmp = gen_rtx_VEC_SELECT (inner_mode, vec, tmp); /* Let the rtl optimizers know about the zero extension performed. */ if (inner_mode == QImode || inner_mode == HImode) { tmp = gen_rtx_ZERO_EXTEND (SImode, tmp); target = gen_lowpart (SImode, target); } emit_insn (gen_rtx_SET (VOIDmode, target, tmp)); } else { rtx mem = assign_stack_temp (mode, GET_MODE_SIZE (mode)); emit_move_insn (mem, vec); tmp = adjust_address (mem, inner_mode, elt*GET_MODE_SIZE (inner_mode)); emit_move_insn (target, tmp); } } /* Generate code to copy vector bits i / 2 ... i - 1 from vector SRC to bits 0 ... i / 2 - 1 of vector DEST, which has the same mode. The upper bits of DEST are undefined, though they shouldn't cause exceptions (some bits from src or all zeros are ok). */ static void emit_reduc_half (rtx dest, rtx src, int i) { rtx tem, d = dest; switch (GET_MODE (src)) { case V4SFmode: if (i == 128) tem = gen_sse_movhlps (dest, src, src); else tem = gen_sse_shufps_v4sf (dest, src, src, const1_rtx, const1_rtx, GEN_INT (1 + 4), GEN_INT (1 + 4)); break; case V2DFmode: tem = gen_vec_interleave_highv2df (dest, src, src); break; case V16QImode: case V8HImode: case V4SImode: case V2DImode: d = gen_reg_rtx (V1TImode); tem = gen_sse2_lshrv1ti3 (d, gen_lowpart (V1TImode, src), GEN_INT (i / 2)); break; case V8SFmode: if (i == 256) tem = gen_avx_vperm2f128v8sf3 (dest, src, src, const1_rtx); else tem = gen_avx_shufps256 (dest, src, src, GEN_INT (i == 128 ? 2 + (3 << 2) : 1)); break; case V4DFmode: if (i == 256) tem = gen_avx_vperm2f128v4df3 (dest, src, src, const1_rtx); else tem = gen_avx_shufpd256 (dest, src, src, const1_rtx); break; case V32QImode: case V16HImode: case V8SImode: case V4DImode: if (i == 256) { if (GET_MODE (dest) != V4DImode) d = gen_reg_rtx (V4DImode); tem = gen_avx2_permv2ti (d, gen_lowpart (V4DImode, src), gen_lowpart (V4DImode, src), const1_rtx); } else { d = gen_reg_rtx (V2TImode); tem = gen_avx2_lshrv2ti3 (d, gen_lowpart (V2TImode, src), GEN_INT (i / 2)); } break; default: gcc_unreachable (); } emit_insn (tem); if (d != dest) emit_move_insn (dest, gen_lowpart (GET_MODE (dest), d)); } /* Expand a vector reduction. FN is the binary pattern to reduce; DEST is the destination; IN is the input vector. */ void ix86_expand_reduc (rtx (*fn) (rtx, rtx, rtx), rtx dest, rtx in) { rtx half, dst, vec = in; enum machine_mode mode = GET_MODE (in); int i; /* SSE4 has a special instruction for V8HImode UMIN reduction. */ if (TARGET_SSE4_1 && mode == V8HImode && fn == gen_uminv8hi3) { emit_insn (gen_sse4_1_phminposuw (dest, in)); return; } for (i = GET_MODE_BITSIZE (mode); i > GET_MODE_BITSIZE (GET_MODE_INNER (mode)); i >>= 1) { half = gen_reg_rtx (mode); emit_reduc_half (half, vec, i); if (i == GET_MODE_BITSIZE (GET_MODE_INNER (mode)) * 2) dst = dest; else dst = gen_reg_rtx (mode); emit_insn (fn (dst, half, vec)); vec = dst; } } /* Target hook for scalar_mode_supported_p. */ static bool ix86_scalar_mode_supported_p (enum machine_mode mode) { if (DECIMAL_FLOAT_MODE_P (mode)) return default_decimal_float_supported_p (); else if (mode == TFmode) return true; else return default_scalar_mode_supported_p (mode); } /* Implements target hook vector_mode_supported_p. */ static bool ix86_vector_mode_supported_p (enum machine_mode mode) { if (TARGET_SSE && VALID_SSE_REG_MODE (mode)) return true; if (TARGET_SSE2 && VALID_SSE2_REG_MODE (mode)) return true; if (TARGET_AVX && VALID_AVX256_REG_MODE (mode)) return true; if (TARGET_MMX && VALID_MMX_REG_MODE (mode)) return true; if (TARGET_3DNOW && VALID_MMX_REG_MODE_3DNOW (mode)) return true; return false; } /* Target hook for c_mode_for_suffix. */ static enum machine_mode ix86_c_mode_for_suffix (char suffix) { if (suffix == 'q') return TFmode; if (suffix == 'w') return XFmode; return VOIDmode; } /* Worker function for TARGET_MD_ASM_CLOBBERS. We do this in the new i386 backend to maintain source compatibility with the old cc0-based compiler. */ static tree ix86_md_asm_clobbers (tree outputs ATTRIBUTE_UNUSED, tree inputs ATTRIBUTE_UNUSED, tree clobbers) { clobbers = tree_cons (NULL_TREE, build_string (5, "flags"), clobbers); clobbers = tree_cons (NULL_TREE, build_string (4, "fpsr"), clobbers); return clobbers; } /* Implements target vector targetm.asm.encode_section_info. */ static void ATTRIBUTE_UNUSED ix86_encode_section_info (tree decl, rtx rtl, int first) { default_encode_section_info (decl, rtl, first); if (TREE_CODE (decl) == VAR_DECL && (TREE_STATIC (decl) || DECL_EXTERNAL (decl)) && ix86_in_large_data_p (decl)) SYMBOL_REF_FLAGS (XEXP (rtl, 0)) |= SYMBOL_FLAG_FAR_ADDR; } /* Worker function for REVERSE_CONDITION. */ enum rtx_code ix86_reverse_condition (enum rtx_code code, enum machine_mode mode) { return (mode != CCFPmode && mode != CCFPUmode ? reverse_condition (code) : reverse_condition_maybe_unordered (code)); } /* Output code to perform an x87 FP register move, from OPERANDS[1] to OPERANDS[0]. */ const char * output_387_reg_move (rtx insn, rtx *operands) { if (REG_P (operands[0])) { if (REG_P (operands[1]) && find_regno_note (insn, REG_DEAD, REGNO (operands[1]))) { if (REGNO (operands[0]) == FIRST_STACK_REG) return output_387_ffreep (operands, 0); return "fstp\t%y0"; } if (STACK_TOP_P (operands[0])) return "fld%Z1\t%y1"; return "fst\t%y0"; } else if (MEM_P (operands[0])) { gcc_assert (REG_P (operands[1])); if (find_regno_note (insn, REG_DEAD, REGNO (operands[1]))) return "fstp%Z0\t%y0"; else { /* There is no non-popping store to memory for XFmode. So if we need one, follow the store with a load. */ if (GET_MODE (operands[0]) == XFmode) return "fstp%Z0\t%y0\n\tfld%Z0\t%y0"; else return "fst%Z0\t%y0"; } } else gcc_unreachable(); } /* Output code to perform a conditional jump to LABEL, if C2 flag in FP status register is set. */ void ix86_emit_fp_unordered_jump (rtx label) { rtx reg = gen_reg_rtx (HImode); rtx temp; emit_insn (gen_x86_fnstsw_1 (reg)); if (TARGET_SAHF && (TARGET_USE_SAHF || optimize_insn_for_size_p ())) { emit_insn (gen_x86_sahf_1 (reg)); temp = gen_rtx_REG (CCmode, FLAGS_REG); temp = gen_rtx_UNORDERED (VOIDmode, temp, const0_rtx); } else { emit_insn (gen_testqi_ext_ccno_0 (reg, GEN_INT (0x04))); temp = gen_rtx_REG (CCNOmode, FLAGS_REG); temp = gen_rtx_NE (VOIDmode, temp, const0_rtx); } temp = gen_rtx_IF_THEN_ELSE (VOIDmode, temp, gen_rtx_LABEL_REF (VOIDmode, label), pc_rtx); temp = gen_rtx_SET (VOIDmode, pc_rtx, temp); emit_jump_insn (temp); predict_jump (REG_BR_PROB_BASE * 10 / 100); } /* Output code to perform a log1p XFmode calculation. */ void ix86_emit_i387_log1p (rtx op0, rtx op1) { rtx label1 = gen_label_rtx (); rtx label2 = gen_label_rtx (); rtx tmp = gen_reg_rtx (XFmode); rtx tmp2 = gen_reg_rtx (XFmode); rtx test; emit_insn (gen_absxf2 (tmp, op1)); test = gen_rtx_GE (VOIDmode, tmp, CONST_DOUBLE_FROM_REAL_VALUE ( REAL_VALUE_ATOF ("0.29289321881345247561810596348408353", XFmode), XFmode)); emit_jump_insn (gen_cbranchxf4 (test, XEXP (test, 0), XEXP (test, 1), label1)); emit_move_insn (tmp2, standard_80387_constant_rtx (4)); /* fldln2 */ emit_insn (gen_fyl2xp1xf3_i387 (op0, op1, tmp2)); emit_jump (label2); emit_label (label1); emit_move_insn (tmp, CONST1_RTX (XFmode)); emit_insn (gen_addxf3 (tmp, op1, tmp)); emit_move_insn (tmp2, standard_80387_constant_rtx (4)); /* fldln2 */ emit_insn (gen_fyl2xxf3_i387 (op0, tmp, tmp2)); emit_label (label2); } /* Emit code for round calculation. */ void ix86_emit_i387_round (rtx op0, rtx op1) { enum machine_mode inmode = GET_MODE (op1); enum machine_mode outmode = GET_MODE (op0); rtx e1, e2, res, tmp, tmp1, half; rtx scratch = gen_reg_rtx (HImode); rtx flags = gen_rtx_REG (CCNOmode, FLAGS_REG); rtx jump_label = gen_label_rtx (); rtx insn; rtx (*gen_abs) (rtx, rtx); rtx (*gen_neg) (rtx, rtx); switch (inmode) { case SFmode: gen_abs = gen_abssf2; break; case DFmode: gen_abs = gen_absdf2; break; case XFmode: gen_abs = gen_absxf2; break; default: gcc_unreachable (); } switch (outmode) { case SFmode: gen_neg = gen_negsf2; break; case DFmode: gen_neg = gen_negdf2; break; case XFmode: gen_neg = gen_negxf2; break; case HImode: gen_neg = gen_neghi2; break; case SImode: gen_neg = gen_negsi2; break; case DImode: gen_neg = gen_negdi2; break; default: gcc_unreachable (); } e1 = gen_reg_rtx (inmode); e2 = gen_reg_rtx (inmode); res = gen_reg_rtx (outmode); half = CONST_DOUBLE_FROM_REAL_VALUE (dconsthalf, inmode); /* round(a) = sgn(a) * floor(fabs(a) + 0.5) */ /* scratch = fxam(op1) */ emit_insn (gen_rtx_SET (VOIDmode, scratch, gen_rtx_UNSPEC (HImode, gen_rtvec (1, op1), UNSPEC_FXAM))); /* e1 = fabs(op1) */ emit_insn (gen_abs (e1, op1)); /* e2 = e1 + 0.5 */ half = force_reg (inmode, half); emit_insn (gen_rtx_SET (VOIDmode, e2, gen_rtx_PLUS (inmode, e1, half))); /* res = floor(e2) */ if (inmode != XFmode) { tmp1 = gen_reg_rtx (XFmode); emit_insn (gen_rtx_SET (VOIDmode, tmp1, gen_rtx_FLOAT_EXTEND (XFmode, e2))); } else tmp1 = e2; switch (outmode) { case SFmode: case DFmode: { rtx tmp0 = gen_reg_rtx (XFmode); emit_insn (gen_frndintxf2_floor (tmp0, tmp1)); emit_insn (gen_rtx_SET (VOIDmode, res, gen_rtx_UNSPEC (outmode, gen_rtvec (1, tmp0), UNSPEC_TRUNC_NOOP))); } break; case XFmode: emit_insn (gen_frndintxf2_floor (res, tmp1)); break; case HImode: emit_insn (gen_lfloorxfhi2 (res, tmp1)); break; case SImode: emit_insn (gen_lfloorxfsi2 (res, tmp1)); break; case DImode: emit_insn (gen_lfloorxfdi2 (res, tmp1)); break; default: gcc_unreachable (); } /* flags = signbit(a) */ emit_insn (gen_testqi_ext_ccno_0 (scratch, GEN_INT (0x02))); /* if (flags) then res = -res */ tmp = gen_rtx_IF_THEN_ELSE (VOIDmode, gen_rtx_EQ (VOIDmode, flags, const0_rtx), gen_rtx_LABEL_REF (VOIDmode, jump_label), pc_rtx); insn = emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx, tmp)); predict_jump (REG_BR_PROB_BASE * 50 / 100); JUMP_LABEL (insn) = jump_label; emit_insn (gen_neg (res, res)); emit_label (jump_label); LABEL_NUSES (jump_label) = 1; emit_move_insn (op0, res); } /* Output code to perform a Newton-Rhapson approximation of a single precision floating point divide [http://en.wikipedia.org/wiki/N-th_root_algorithm]. */ void ix86_emit_swdivsf (rtx res, rtx a, rtx b, enum machine_mode mode) { rtx x0, x1, e0, e1; x0 = gen_reg_rtx (mode); e0 = gen_reg_rtx (mode); e1 = gen_reg_rtx (mode); x1 = gen_reg_rtx (mode); /* a / b = a * ((rcp(b) + rcp(b)) - (b * rcp(b) * rcp (b))) */ b = force_reg (mode, b); /* x0 = rcp(b) estimate */ emit_insn (gen_rtx_SET (VOIDmode, x0, gen_rtx_UNSPEC (mode, gen_rtvec (1, b), UNSPEC_RCP))); /* e0 = x0 * b */ emit_insn (gen_rtx_SET (VOIDmode, e0, gen_rtx_MULT (mode, x0, b))); /* e0 = x0 * e0 */ emit_insn (gen_rtx_SET (VOIDmode, e0, gen_rtx_MULT (mode, x0, e0))); /* e1 = x0 + x0 */ emit_insn (gen_rtx_SET (VOIDmode, e1, gen_rtx_PLUS (mode, x0, x0))); /* x1 = e1 - e0 */ emit_insn (gen_rtx_SET (VOIDmode, x1, gen_rtx_MINUS (mode, e1, e0))); /* res = a * x1 */ emit_insn (gen_rtx_SET (VOIDmode, res, gen_rtx_MULT (mode, a, x1))); } /* Output code to perform a Newton-Rhapson approximation of a single precision floating point [reciprocal] square root. */ void ix86_emit_swsqrtsf (rtx res, rtx a, enum machine_mode mode, bool recip) { rtx x0, e0, e1, e2, e3, mthree, mhalf; REAL_VALUE_TYPE r; x0 = gen_reg_rtx (mode); e0 = gen_reg_rtx (mode); e1 = gen_reg_rtx (mode); e2 = gen_reg_rtx (mode); e3 = gen_reg_rtx (mode); real_from_integer (&r, VOIDmode, -3, -1, 0); mthree = CONST_DOUBLE_FROM_REAL_VALUE (r, SFmode); real_arithmetic (&r, NEGATE_EXPR, &dconsthalf, NULL); mhalf = CONST_DOUBLE_FROM_REAL_VALUE (r, SFmode); if (VECTOR_MODE_P (mode)) { mthree = ix86_build_const_vector (mode, true, mthree); mhalf = ix86_build_const_vector (mode, true, mhalf); } /* sqrt(a) = -0.5 * a * rsqrtss(a) * (a * rsqrtss(a) * rsqrtss(a) - 3.0) rsqrt(a) = -0.5 * rsqrtss(a) * (a * rsqrtss(a) * rsqrtss(a) - 3.0) */ a = force_reg (mode, a); /* x0 = rsqrt(a) estimate */ emit_insn (gen_rtx_SET (VOIDmode, x0, gen_rtx_UNSPEC (mode, gen_rtvec (1, a), UNSPEC_RSQRT))); /* If (a == 0.0) Filter out infinity to prevent NaN for sqrt(0.0). */ if (!recip) { rtx zero, mask; zero = gen_reg_rtx (mode); mask = gen_reg_rtx (mode); zero = force_reg (mode, CONST0_RTX(mode)); emit_insn (gen_rtx_SET (VOIDmode, mask, gen_rtx_NE (mode, zero, a))); emit_insn (gen_rtx_SET (VOIDmode, x0, gen_rtx_AND (mode, x0, mask))); } /* e0 = x0 * a */ emit_insn (gen_rtx_SET (VOIDmode, e0, gen_rtx_MULT (mode, x0, a))); /* e1 = e0 * x0 */ emit_insn (gen_rtx_SET (VOIDmode, e1, gen_rtx_MULT (mode, e0, x0))); /* e2 = e1 - 3. */ mthree = force_reg (mode, mthree); emit_insn (gen_rtx_SET (VOIDmode, e2, gen_rtx_PLUS (mode, e1, mthree))); mhalf = force_reg (mode, mhalf); if (recip) /* e3 = -.5 * x0 */ emit_insn (gen_rtx_SET (VOIDmode, e3, gen_rtx_MULT (mode, x0, mhalf))); else /* e3 = -.5 * e0 */ emit_insn (gen_rtx_SET (VOIDmode, e3, gen_rtx_MULT (mode, e0, mhalf))); /* ret = e2 * e3 */ emit_insn (gen_rtx_SET (VOIDmode, res, gen_rtx_MULT (mode, e2, e3))); } #ifdef TARGET_SOLARIS /* Solaris implementation of TARGET_ASM_NAMED_SECTION. */ static void i386_solaris_elf_named_section (const char *name, unsigned int flags, tree decl) { /* With Binutils 2.15, the "@unwind" marker must be specified on every occurrence of the ".eh_frame" section, not just the first one. */ if (TARGET_64BIT && strcmp (name, ".eh_frame") == 0) { fprintf (asm_out_file, "\t.section\t%s,\"%s\",@unwind\n", name, flags & SECTION_WRITE ? "aw" : "a"); return; } #ifndef USE_GAS if (HAVE_COMDAT_GROUP && flags & SECTION_LINKONCE) { solaris_elf_asm_comdat_section (name, flags, decl); return; } #endif default_elf_asm_named_section (name, flags, decl); } #endif /* TARGET_SOLARIS */ /* Return the mangling of TYPE if it is an extended fundamental type. */ static const char * ix86_mangle_type (const_tree type) { type = TYPE_MAIN_VARIANT (type); if (TREE_CODE (type) != VOID_TYPE && TREE_CODE (type) != BOOLEAN_TYPE && TREE_CODE (type) != INTEGER_TYPE && TREE_CODE (type) != REAL_TYPE) return NULL; switch (TYPE_MODE (type)) { case TFmode: /* __float128 is "g". */ return "g"; case XFmode: /* "long double" or __float80 is "e". */ return "e"; default: return NULL; } } /* For 32-bit code we can save PIC register setup by using __stack_chk_fail_local hidden function instead of calling __stack_chk_fail directly. 64-bit code doesn't need to setup any PIC register, so it is better to call __stack_chk_fail directly. */ static tree ATTRIBUTE_UNUSED ix86_stack_protect_fail (void) { return TARGET_64BIT ? default_external_stack_protect_fail () : default_hidden_stack_protect_fail (); } /* Select a format to encode pointers in exception handling data. CODE is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is true if the symbol may be affected by dynamic relocations. ??? All x86 object file formats are capable of representing this. After all, the relocation needed is the same as for the call insn. Whether or not a particular assembler allows us to enter such, I guess we'll have to see. */ int asm_preferred_eh_data_format (int code, int global) { if (flag_pic) { int type = DW_EH_PE_sdata8; if (!TARGET_64BIT || ix86_cmodel == CM_SMALL_PIC || (ix86_cmodel == CM_MEDIUM_PIC && (global || code))) type = DW_EH_PE_sdata4; return (global ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | type; } if (ix86_cmodel == CM_SMALL || (ix86_cmodel == CM_MEDIUM && code)) return DW_EH_PE_udata4; return DW_EH_PE_absptr; } /* Expand copysign from SIGN to the positive value ABS_VALUE storing in RESULT. If MASK is non-null, it shall be a mask to mask out the sign-bit. */ static void ix86_sse_copysign_to_positive (rtx result, rtx abs_value, rtx sign, rtx mask) { enum machine_mode mode = GET_MODE (sign); rtx sgn = gen_reg_rtx (mode); if (mask == NULL_RTX) { enum machine_mode vmode; if (mode == SFmode) vmode = V4SFmode; else if (mode == DFmode) vmode = V2DFmode; else vmode = mode; mask = ix86_build_signbit_mask (vmode, VECTOR_MODE_P (mode), false); if (!VECTOR_MODE_P (mode)) { /* We need to generate a scalar mode mask in this case. */ rtx tmp = gen_rtx_PARALLEL (VOIDmode, gen_rtvec (1, const0_rtx)); tmp = gen_rtx_VEC_SELECT (mode, mask, tmp); mask = gen_reg_rtx (mode); emit_insn (gen_rtx_SET (VOIDmode, mask, tmp)); } } else mask = gen_rtx_NOT (mode, mask); emit_insn (gen_rtx_SET (VOIDmode, sgn, gen_rtx_AND (mode, mask, sign))); emit_insn (gen_rtx_SET (VOIDmode, result, gen_rtx_IOR (mode, abs_value, sgn))); } /* Expand fabs (OP0) and return a new rtx that holds the result. The mask for masking out the sign-bit is stored in *SMASK, if that is non-null. */ static rtx ix86_expand_sse_fabs (rtx op0, rtx *smask) { enum machine_mode vmode, mode = GET_MODE (op0); rtx xa, mask; xa = gen_reg_rtx (mode); if (mode == SFmode) vmode = V4SFmode; else if (mode == DFmode) vmode = V2DFmode; else vmode = mode; mask = ix86_build_signbit_mask (vmode, VECTOR_MODE_P (mode), true); if (!VECTOR_MODE_P (mode)) { /* We need to generate a scalar mode mask in this case. */ rtx tmp = gen_rtx_PARALLEL (VOIDmode, gen_rtvec (1, const0_rtx)); tmp = gen_rtx_VEC_SELECT (mode, mask, tmp); mask = gen_reg_rtx (mode); emit_insn (gen_rtx_SET (VOIDmode, mask, tmp)); } emit_insn (gen_rtx_SET (VOIDmode, xa, gen_rtx_AND (mode, op0, mask))); if (smask) *smask = mask; return xa; } /* Expands a comparison of OP0 with OP1 using comparison code CODE, swapping the operands if SWAP_OPERANDS is true. The expanded code is a forward jump to a newly created label in case the comparison is true. The generated label rtx is returned. */ static rtx ix86_expand_sse_compare_and_jump (enum rtx_code code, rtx op0, rtx op1, bool swap_operands) { enum machine_mode fpcmp_mode = ix86_fp_compare_mode (code); rtx label, tmp; if (swap_operands) { tmp = op0; op0 = op1; op1 = tmp; } label = gen_label_rtx (); tmp = gen_rtx_REG (fpcmp_mode, FLAGS_REG); emit_insn (gen_rtx_SET (VOIDmode, tmp, gen_rtx_COMPARE (fpcmp_mode, op0, op1))); tmp = gen_rtx_fmt_ee (code, VOIDmode, tmp, const0_rtx); tmp = gen_rtx_IF_THEN_ELSE (VOIDmode, tmp, gen_rtx_LABEL_REF (VOIDmode, label), pc_rtx); tmp = emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx, tmp)); JUMP_LABEL (tmp) = label; return label; } /* Expand a mask generating SSE comparison instruction comparing OP0 with OP1 using comparison code CODE. Operands are swapped for the comparison if SWAP_OPERANDS is true. Returns a rtx for the generated mask. */ static rtx ix86_expand_sse_compare_mask (enum rtx_code code, rtx op0, rtx op1, bool swap_operands) { rtx (*insn)(rtx, rtx, rtx, rtx); enum machine_mode mode = GET_MODE (op0); rtx mask = gen_reg_rtx (mode); if (swap_operands) { rtx tmp = op0; op0 = op1; op1 = tmp; } insn = mode == DFmode ? gen_setcc_df_sse : gen_setcc_sf_sse; emit_insn (insn (mask, op0, op1, gen_rtx_fmt_ee (code, mode, op0, op1))); return mask; } /* Generate and return a rtx of mode MODE for 2**n where n is the number of bits of the mantissa of MODE, which must be one of DFmode or SFmode. */ static rtx ix86_gen_TWO52 (enum machine_mode mode) { REAL_VALUE_TYPE TWO52r; rtx TWO52; real_ldexp (&TWO52r, &dconst1, mode == DFmode ? 52 : 23); TWO52 = const_double_from_real_value (TWO52r, mode); TWO52 = force_reg (mode, TWO52); return TWO52; } /* Expand SSE sequence for computing lround from OP1 storing into OP0. */ void ix86_expand_lround (rtx op0, rtx op1) { /* C code for the stuff we're doing below: tmp = op1 + copysign (nextafter (0.5, 0.0), op1) return (long)tmp; */ enum machine_mode mode = GET_MODE (op1); const struct real_format *fmt; REAL_VALUE_TYPE pred_half, half_minus_pred_half; rtx adj; /* load nextafter (0.5, 0.0) */ fmt = REAL_MODE_FORMAT (mode); real_2expN (&half_minus_pred_half, -(fmt->p) - 1, mode); REAL_ARITHMETIC (pred_half, MINUS_EXPR, dconsthalf, half_minus_pred_half); /* adj = copysign (0.5, op1) */ adj = force_reg (mode, const_double_from_real_value (pred_half, mode)); ix86_sse_copysign_to_positive (adj, adj, force_reg (mode, op1), NULL_RTX); /* adj = op1 + adj */ adj = expand_simple_binop (mode, PLUS, adj, op1, NULL_RTX, 0, OPTAB_DIRECT); /* op0 = (imode)adj */ expand_fix (op0, adj, 0); } /* Expand SSE2 sequence for computing lround from OPERAND1 storing into OPERAND0. */ void ix86_expand_lfloorceil (rtx op0, rtx op1, bool do_floor) { /* C code for the stuff we're doing below (for do_floor): xi = (long)op1; xi -= (double)xi > op1 ? 1 : 0; return xi; */ enum machine_mode fmode = GET_MODE (op1); enum machine_mode imode = GET_MODE (op0); rtx ireg, freg, label, tmp; /* reg = (long)op1 */ ireg = gen_reg_rtx (imode); expand_fix (ireg, op1, 0); /* freg = (double)reg */ freg = gen_reg_rtx (fmode); expand_float (freg, ireg, 0); /* ireg = (freg > op1) ? ireg - 1 : ireg */ label = ix86_expand_sse_compare_and_jump (UNLE, freg, op1, !do_floor); tmp = expand_simple_binop (imode, do_floor ? MINUS : PLUS, ireg, const1_rtx, NULL_RTX, 0, OPTAB_DIRECT); emit_move_insn (ireg, tmp); emit_label (label); LABEL_NUSES (label) = 1; emit_move_insn (op0, ireg); } /* Expand rint (IEEE round to nearest) rounding OPERAND1 and storing the result in OPERAND0. */ void ix86_expand_rint (rtx operand0, rtx operand1) { /* C code for the stuff we're doing below: xa = fabs (operand1); if (!isless (xa, 2**52)) return operand1; xa = xa + 2**52 - 2**52; return copysign (xa, operand1); */ enum machine_mode mode = GET_MODE (operand0); rtx res, xa, label, TWO52, mask; res = gen_reg_rtx (mode); emit_move_insn (res, operand1); /* xa = abs (operand1) */ xa = ix86_expand_sse_fabs (res, &mask); /* if (!isless (xa, TWO52)) goto label; */ TWO52 = ix86_gen_TWO52 (mode); label = ix86_expand_sse_compare_and_jump (UNLE, TWO52, xa, false); xa = expand_simple_binop (mode, PLUS, xa, TWO52, NULL_RTX, 0, OPTAB_DIRECT); xa = expand_simple_binop (mode, MINUS, xa, TWO52, xa, 0, OPTAB_DIRECT); ix86_sse_copysign_to_positive (res, xa, res, mask); emit_label (label); LABEL_NUSES (label) = 1; emit_move_insn (operand0, res); } /* Expand SSE2 sequence for computing floor or ceil from OPERAND1 storing into OPERAND0. */ void ix86_expand_floorceildf_32 (rtx operand0, rtx operand1, bool do_floor) { /* C code for the stuff we expand below. double xa = fabs (x), x2; if (!isless (xa, TWO52)) return x; xa = xa + TWO52 - TWO52; x2 = copysign (xa, x); Compensate. Floor: if (x2 > x) x2 -= 1; Compensate. Ceil: if (x2 < x) x2 -= -1; return x2; */ enum machine_mode mode = GET_MODE (operand0); rtx xa, TWO52, tmp, label, one, res, mask; TWO52 = ix86_gen_TWO52 (mode); /* Temporary for holding the result, initialized to the input operand to ease control flow. */ res = gen_reg_rtx (mode); emit_move_insn (res, operand1); /* xa = abs (operand1) */ xa = ix86_expand_sse_fabs (res, &mask); /* if (!isless (xa, TWO52)) goto label; */ label = ix86_expand_sse_compare_and_jump (UNLE, TWO52, xa, false); /* xa = xa + TWO52 - TWO52; */ xa = expand_simple_binop (mode, PLUS, xa, TWO52, NULL_RTX, 0, OPTAB_DIRECT); xa = expand_simple_binop (mode, MINUS, xa, TWO52, xa, 0, OPTAB_DIRECT); /* xa = copysign (xa, operand1) */ ix86_sse_copysign_to_positive (xa, xa, res, mask); /* generate 1.0 or -1.0 */ one = force_reg (mode, const_double_from_real_value (do_floor ? dconst1 : dconstm1, mode)); /* Compensate: xa = xa - (xa > operand1 ? 1 : 0) */ tmp = ix86_expand_sse_compare_mask (UNGT, xa, res, !do_floor); emit_insn (gen_rtx_SET (VOIDmode, tmp, gen_rtx_AND (mode, one, tmp))); /* We always need to subtract here to preserve signed zero. */ tmp = expand_simple_binop (mode, MINUS, xa, tmp, NULL_RTX, 0, OPTAB_DIRECT); emit_move_insn (res, tmp); emit_label (label); LABEL_NUSES (label) = 1; emit_move_insn (operand0, res); } /* Expand SSE2 sequence for computing floor or ceil from OPERAND1 storing into OPERAND0. */ void ix86_expand_floorceil (rtx operand0, rtx operand1, bool do_floor) { /* C code for the stuff we expand below. double xa = fabs (x), x2; if (!isless (xa, TWO52)) return x; x2 = (double)(long)x; Compensate. Floor: if (x2 > x) x2 -= 1; Compensate. Ceil: if (x2 < x) x2 += 1; if (HONOR_SIGNED_ZEROS (mode)) return copysign (x2, x); return x2; */ enum machine_mode mode = GET_MODE (operand0); rtx xa, xi, TWO52, tmp, label, one, res, mask; TWO52 = ix86_gen_TWO52 (mode); /* Temporary for holding the result, initialized to the input operand to ease control flow. */ res = gen_reg_rtx (mode); emit_move_insn (res, operand1); /* xa = abs (operand1) */ xa = ix86_expand_sse_fabs (res, &mask); /* if (!isless (xa, TWO52)) goto label; */ label = ix86_expand_sse_compare_and_jump (UNLE, TWO52, xa, false); /* xa = (double)(long)x */ xi = gen_reg_rtx (mode == DFmode ? DImode : SImode); expand_fix (xi, res, 0); expand_float (xa, xi, 0); /* generate 1.0 */ one = force_reg (mode, const_double_from_real_value (dconst1, mode)); /* Compensate: xa = xa - (xa > operand1 ? 1 : 0) */ tmp = ix86_expand_sse_compare_mask (UNGT, xa, res, !do_floor); emit_insn (gen_rtx_SET (VOIDmode, tmp, gen_rtx_AND (mode, one, tmp))); tmp = expand_simple_binop (mode, do_floor ? MINUS : PLUS, xa, tmp, NULL_RTX, 0, OPTAB_DIRECT); emit_move_insn (res, tmp); if (HONOR_SIGNED_ZEROS (mode)) ix86_sse_copysign_to_positive (res, res, force_reg (mode, operand1), mask); emit_label (label); LABEL_NUSES (label) = 1; emit_move_insn (operand0, res); } /* Expand SSE sequence for computing round from OPERAND1 storing into OPERAND0. Sequence that works without relying on DImode truncation via cvttsd2siq that is only available on 64bit targets. */ void ix86_expand_rounddf_32 (rtx operand0, rtx operand1) { /* C code for the stuff we expand below. double xa = fabs (x), xa2, x2; if (!isless (xa, TWO52)) return x; Using the absolute value and copying back sign makes -0.0 -> -0.0 correct. xa2 = xa + TWO52 - TWO52; Compensate. dxa = xa2 - xa; if (dxa <= -0.5) xa2 += 1; else if (dxa > 0.5) xa2 -= 1; x2 = copysign (xa2, x); return x2; */ enum machine_mode mode = GET_MODE (operand0); rtx xa, xa2, dxa, TWO52, tmp, label, half, mhalf, one, res, mask; TWO52 = ix86_gen_TWO52 (mode); /* Temporary for holding the result, initialized to the input operand to ease control flow. */ res = gen_reg_rtx (mode); emit_move_insn (res, operand1); /* xa = abs (operand1) */ xa = ix86_expand_sse_fabs (res, &mask); /* if (!isless (xa, TWO52)) goto label; */ label = ix86_expand_sse_compare_and_jump (UNLE, TWO52, xa, false); /* xa2 = xa + TWO52 - TWO52; */ xa2 = expand_simple_binop (mode, PLUS, xa, TWO52, NULL_RTX, 0, OPTAB_DIRECT); xa2 = expand_simple_binop (mode, MINUS, xa2, TWO52, xa2, 0, OPTAB_DIRECT); /* dxa = xa2 - xa; */ dxa = expand_simple_binop (mode, MINUS, xa2, xa, NULL_RTX, 0, OPTAB_DIRECT); /* generate 0.5, 1.0 and -0.5 */ half = force_reg (mode, const_double_from_real_value (dconsthalf, mode)); one = expand_simple_binop (mode, PLUS, half, half, NULL_RTX, 0, OPTAB_DIRECT); mhalf = expand_simple_binop (mode, MINUS, half, one, NULL_RTX, 0, OPTAB_DIRECT); /* Compensate. */ tmp = gen_reg_rtx (mode); /* xa2 = xa2 - (dxa > 0.5 ? 1 : 0) */ tmp = ix86_expand_sse_compare_mask (UNGT, dxa, half, false); emit_insn (gen_rtx_SET (VOIDmode, tmp, gen_rtx_AND (mode, one, tmp))); xa2 = expand_simple_binop (mode, MINUS, xa2, tmp, NULL_RTX, 0, OPTAB_DIRECT); /* xa2 = xa2 + (dxa <= -0.5 ? 1 : 0) */ tmp = ix86_expand_sse_compare_mask (UNGE, mhalf, dxa, false); emit_insn (gen_rtx_SET (VOIDmode, tmp, gen_rtx_AND (mode, one, tmp))); xa2 = expand_simple_binop (mode, PLUS, xa2, tmp, NULL_RTX, 0, OPTAB_DIRECT); /* res = copysign (xa2, operand1) */ ix86_sse_copysign_to_positive (res, xa2, force_reg (mode, operand1), mask); emit_label (label); LABEL_NUSES (label) = 1; emit_move_insn (operand0, res); } /* Expand SSE sequence for computing trunc from OPERAND1 storing into OPERAND0. */ void ix86_expand_trunc (rtx operand0, rtx operand1) { /* C code for SSE variant we expand below. double xa = fabs (x), x2; if (!isless (xa, TWO52)) return x; x2 = (double)(long)x; if (HONOR_SIGNED_ZEROS (mode)) return copysign (x2, x); return x2; */ enum machine_mode mode = GET_MODE (operand0); rtx xa, xi, TWO52, label, res, mask; TWO52 = ix86_gen_TWO52 (mode); /* Temporary for holding the result, initialized to the input operand to ease control flow. */ res = gen_reg_rtx (mode); emit_move_insn (res, operand1); /* xa = abs (operand1) */ xa = ix86_expand_sse_fabs (res, &mask); /* if (!isless (xa, TWO52)) goto label; */ label = ix86_expand_sse_compare_and_jump (UNLE, TWO52, xa, false); /* x = (double)(long)x */ xi = gen_reg_rtx (mode == DFmode ? DImode : SImode); expand_fix (xi, res, 0); expand_float (res, xi, 0); if (HONOR_SIGNED_ZEROS (mode)) ix86_sse_copysign_to_positive (res, res, force_reg (mode, operand1), mask); emit_label (label); LABEL_NUSES (label) = 1; emit_move_insn (operand0, res); } /* Expand SSE sequence for computing trunc from OPERAND1 storing into OPERAND0. */ void ix86_expand_truncdf_32 (rtx operand0, rtx operand1) { enum machine_mode mode = GET_MODE (operand0); rtx xa, mask, TWO52, label, one, res, smask, tmp; /* C code for SSE variant we expand below. double xa = fabs (x), x2; if (!isless (xa, TWO52)) return x; xa2 = xa + TWO52 - TWO52; Compensate: if (xa2 > xa) xa2 -= 1.0; x2 = copysign (xa2, x); return x2; */ TWO52 = ix86_gen_TWO52 (mode); /* Temporary for holding the result, initialized to the input operand to ease control flow. */ res = gen_reg_rtx (mode); emit_move_insn (res, operand1); /* xa = abs (operand1) */ xa = ix86_expand_sse_fabs (res, &smask); /* if (!isless (xa, TWO52)) goto label; */ label = ix86_expand_sse_compare_and_jump (UNLE, TWO52, xa, false); /* res = xa + TWO52 - TWO52; */ tmp = expand_simple_binop (mode, PLUS, xa, TWO52, NULL_RTX, 0, OPTAB_DIRECT); tmp = expand_simple_binop (mode, MINUS, tmp, TWO52, tmp, 0, OPTAB_DIRECT); emit_move_insn (res, tmp); /* generate 1.0 */ one = force_reg (mode, const_double_from_real_value (dconst1, mode)); /* Compensate: res = xa2 - (res > xa ? 1 : 0) */ mask = ix86_expand_sse_compare_mask (UNGT, res, xa, false); emit_insn (gen_rtx_SET (VOIDmode, mask, gen_rtx_AND (mode, mask, one))); tmp = expand_simple_binop (mode, MINUS, res, mask, NULL_RTX, 0, OPTAB_DIRECT); emit_move_insn (res, tmp); /* res = copysign (res, operand1) */ ix86_sse_copysign_to_positive (res, res, force_reg (mode, operand1), smask); emit_label (label); LABEL_NUSES (label) = 1; emit_move_insn (operand0, res); } /* Expand SSE sequence for computing round from OPERAND1 storing into OPERAND0. */ void ix86_expand_round (rtx operand0, rtx operand1) { /* C code for the stuff we're doing below: double xa = fabs (x); if (!isless (xa, TWO52)) return x; xa = (double)(long)(xa + nextafter (0.5, 0.0)); return copysign (xa, x); */ enum machine_mode mode = GET_MODE (operand0); rtx res, TWO52, xa, label, xi, half, mask; const struct real_format *fmt; REAL_VALUE_TYPE pred_half, half_minus_pred_half; /* Temporary for holding the result, initialized to the input operand to ease control flow. */ res = gen_reg_rtx (mode); emit_move_insn (res, operand1); TWO52 = ix86_gen_TWO52 (mode); xa = ix86_expand_sse_fabs (res, &mask); label = ix86_expand_sse_compare_and_jump (UNLE, TWO52, xa, false); /* load nextafter (0.5, 0.0) */ fmt = REAL_MODE_FORMAT (mode); real_2expN (&half_minus_pred_half, -(fmt->p) - 1, mode); REAL_ARITHMETIC (pred_half, MINUS_EXPR, dconsthalf, half_minus_pred_half); /* xa = xa + 0.5 */ half = force_reg (mode, const_double_from_real_value (pred_half, mode)); xa = expand_simple_binop (mode, PLUS, xa, half, NULL_RTX, 0, OPTAB_DIRECT); /* xa = (double)(int64_t)xa */ xi = gen_reg_rtx (mode == DFmode ? DImode : SImode); expand_fix (xi, xa, 0); expand_float (xa, xi, 0); /* res = copysign (xa, operand1) */ ix86_sse_copysign_to_positive (res, xa, force_reg (mode, operand1), mask); emit_label (label); LABEL_NUSES (label) = 1; emit_move_insn (operand0, res); } /* Expand SSE sequence for computing round from OP1 storing into OP0 using sse4 round insn. */ void ix86_expand_round_sse4 (rtx op0, rtx op1) { enum machine_mode mode = GET_MODE (op0); rtx e1, e2, res, half; const struct real_format *fmt; REAL_VALUE_TYPE pred_half, half_minus_pred_half; rtx (*gen_copysign) (rtx, rtx, rtx); rtx (*gen_round) (rtx, rtx, rtx); switch (mode) { case SFmode: gen_copysign = gen_copysignsf3; gen_round = gen_sse4_1_roundsf2; break; case DFmode: gen_copysign = gen_copysigndf3; gen_round = gen_sse4_1_rounddf2; break; default: gcc_unreachable (); } /* round (a) = trunc (a + copysign (0.5, a)) */ /* load nextafter (0.5, 0.0) */ fmt = REAL_MODE_FORMAT (mode); real_2expN (&half_minus_pred_half, -(fmt->p) - 1, mode); REAL_ARITHMETIC (pred_half, MINUS_EXPR, dconsthalf, half_minus_pred_half); half = const_double_from_real_value (pred_half, mode); /* e1 = copysign (0.5, op1) */ e1 = gen_reg_rtx (mode); emit_insn (gen_copysign (e1, half, op1)); /* e2 = op1 + e1 */ e2 = expand_simple_binop (mode, PLUS, op1, e1, NULL_RTX, 0, OPTAB_DIRECT); /* res = trunc (e2) */ res = gen_reg_rtx (mode); emit_insn (gen_round (res, e2, GEN_INT (ROUND_TRUNC))); emit_move_insn (op0, res); } /* Table of valid machine attributes. */ static const struct attribute_spec ix86_attribute_table[] = { /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler, affects_type_identity } */ /* Stdcall attribute says callee is responsible for popping arguments if they are not variable. */ { "stdcall", 0, 0, false, true, true, ix86_handle_cconv_attribute, true }, /* Fastcall attribute says callee is responsible for popping arguments if they are not variable. */ { "fastcall", 0, 0, false, true, true, ix86_handle_cconv_attribute, true }, /* Thiscall attribute says callee is responsible for popping arguments if they are not variable. */ { "thiscall", 0, 0, false, true, true, ix86_handle_cconv_attribute, true }, /* Cdecl attribute says the callee is a normal C declaration */ { "cdecl", 0, 0, false, true, true, ix86_handle_cconv_attribute, true }, /* Regparm attribute specifies how many integer arguments are to be passed in registers. */ { "regparm", 1, 1, false, true, true, ix86_handle_cconv_attribute, true }, /* Sseregparm attribute says we are using x86_64 calling conventions for FP arguments. */ { "sseregparm", 0, 0, false, true, true, ix86_handle_cconv_attribute, true }, /* The transactional memory builtins are implicitly regparm or fastcall depending on the ABI. Override the generic do-nothing attribute that these builtins were declared with. */ { "*tm regparm", 0, 0, false, true, true, ix86_handle_tm_regparm_attribute, true }, /* force_align_arg_pointer says this function realigns the stack at entry. */ { (const char *)&ix86_force_align_arg_pointer_string, 0, 0, false, true, true, ix86_handle_cconv_attribute, false }, #if TARGET_DLLIMPORT_DECL_ATTRIBUTES { "dllimport", 0, 0, false, false, false, handle_dll_attribute, false }, { "dllexport", 0, 0, false, false, false, handle_dll_attribute, false }, { "shared", 0, 0, true, false, false, ix86_handle_shared_attribute, false }, #endif { "ms_struct", 0, 0, false, false, false, ix86_handle_struct_attribute, false }, { "gcc_struct", 0, 0, false, false, false, ix86_handle_struct_attribute, false }, #ifdef SUBTARGET_ATTRIBUTE_TABLE SUBTARGET_ATTRIBUTE_TABLE, #endif /* ms_abi and sysv_abi calling convention function attributes. */ { "ms_abi", 0, 0, false, true, true, ix86_handle_abi_attribute, true }, { "sysv_abi", 0, 0, false, true, true, ix86_handle_abi_attribute, true }, { "ms_hook_prologue", 0, 0, true, false, false, ix86_handle_fndecl_attribute, false }, { "callee_pop_aggregate_return", 1, 1, false, true, true, ix86_handle_callee_pop_aggregate_return, true }, /* End element. */ { NULL, 0, 0, false, false, false, NULL, false } }; /* Implement targetm.vectorize.builtin_vectorization_cost. */ static int ix86_builtin_vectorization_cost (enum vect_cost_for_stmt type_of_cost, tree vectype, int misalign ATTRIBUTE_UNUSED) { unsigned elements; switch (type_of_cost) { case scalar_stmt: return ix86_cost->scalar_stmt_cost; case scalar_load: return ix86_cost->scalar_load_cost; case scalar_store: return ix86_cost->scalar_store_cost; case vector_stmt: return ix86_cost->vec_stmt_cost; case vector_load: return ix86_cost->vec_align_load_cost; case vector_store: return ix86_cost->vec_store_cost; case vec_to_scalar: return ix86_cost->vec_to_scalar_cost; case scalar_to_vec: return ix86_cost->scalar_to_vec_cost; case unaligned_load: case unaligned_store: return ix86_cost->vec_unalign_load_cost; case cond_branch_taken: return ix86_cost->cond_taken_branch_cost; case cond_branch_not_taken: return ix86_cost->cond_not_taken_branch_cost; case vec_perm: case vec_promote_demote: return ix86_cost->vec_stmt_cost; case vec_construct: elements = TYPE_VECTOR_SUBPARTS (vectype); return elements / 2 + 1; default: gcc_unreachable (); } } /* A cached (set (nil) (vselect (vconcat (nil) (nil)) (parallel []))) insn, so that expand_vselect{,_vconcat} doesn't have to create a fresh insn every time. */ static GTY(()) rtx vselect_insn; /* Initialize vselect_insn. */ static void init_vselect_insn (void) { unsigned i; rtx x; x = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (MAX_VECT_LEN)); for (i = 0; i < MAX_VECT_LEN; ++i) XVECEXP (x, 0, i) = const0_rtx; x = gen_rtx_VEC_SELECT (V2DFmode, gen_rtx_VEC_CONCAT (V4DFmode, const0_rtx, const0_rtx), x); x = gen_rtx_SET (VOIDmode, const0_rtx, x); start_sequence (); vselect_insn = emit_insn (x); end_sequence (); } /* Construct (set target (vec_select op0 (parallel perm))) and return true if that's a valid instruction in the active ISA. */ static bool expand_vselect (rtx target, rtx op0, const unsigned char *perm, unsigned nelt, bool testing_p) { unsigned int i; rtx x, save_vconcat; int icode; if (vselect_insn == NULL_RTX) init_vselect_insn (); x = XEXP (SET_SRC (PATTERN (vselect_insn)), 1); PUT_NUM_ELEM (XVEC (x, 0), nelt); for (i = 0; i < nelt; ++i) XVECEXP (x, 0, i) = GEN_INT (perm[i]); save_vconcat = XEXP (SET_SRC (PATTERN (vselect_insn)), 0); XEXP (SET_SRC (PATTERN (vselect_insn)), 0) = op0; PUT_MODE (SET_SRC (PATTERN (vselect_insn)), GET_MODE (target)); SET_DEST (PATTERN (vselect_insn)) = target; icode = recog_memoized (vselect_insn); if (icode >= 0 && !testing_p) emit_insn (copy_rtx (PATTERN (vselect_insn))); SET_DEST (PATTERN (vselect_insn)) = const0_rtx; XEXP (SET_SRC (PATTERN (vselect_insn)), 0) = save_vconcat; INSN_CODE (vselect_insn) = -1; return icode >= 0; } /* Similar, but generate a vec_concat from op0 and op1 as well. */ static bool expand_vselect_vconcat (rtx target, rtx op0, rtx op1, const unsigned char *perm, unsigned nelt, bool testing_p) { enum machine_mode v2mode; rtx x; bool ok; if (vselect_insn == NULL_RTX) init_vselect_insn (); v2mode = GET_MODE_2XWIDER_MODE (GET_MODE (op0)); x = XEXP (SET_SRC (PATTERN (vselect_insn)), 0); PUT_MODE (x, v2mode); XEXP (x, 0) = op0; XEXP (x, 1) = op1; ok = expand_vselect (target, x, perm, nelt, testing_p); XEXP (x, 0) = const0_rtx; XEXP (x, 1) = const0_rtx; return ok; } /* A subroutine of ix86_expand_vec_perm_builtin_1. Try to implement D in terms of blendp[sd] / pblendw / pblendvb / vpblendd. */ static bool expand_vec_perm_blend (struct expand_vec_perm_d *d) { enum machine_mode vmode = d->vmode; unsigned i, mask, nelt = d->nelt; rtx target, op0, op1, x; rtx rperm[32], vperm; if (d->one_operand_p) return false; if (TARGET_AVX2 && GET_MODE_SIZE (vmode) == 32) ; else if (TARGET_AVX && (vmode == V4DFmode || vmode == V8SFmode)) ; else if (TARGET_SSE4_1 && GET_MODE_SIZE (vmode) == 16) ; else return false; /* This is a blend, not a permute. Elements must stay in their respective lanes. */ for (i = 0; i < nelt; ++i) { unsigned e = d->perm[i]; if (!(e == i || e == i + nelt)) return false; } if (d->testing_p) return true; /* ??? Without SSE4.1, we could implement this with and/andn/or. This decision should be extracted elsewhere, so that we only try that sequence once all budget==3 options have been tried. */ target = d->target; op0 = d->op0; op1 = d->op1; mask = 0; switch (vmode) { case V4DFmode: case V8SFmode: case V2DFmode: case V4SFmode: case V8HImode: case V8SImode: for (i = 0; i < nelt; ++i) mask |= (d->perm[i] >= nelt) << i; break; case V2DImode: for (i = 0; i < 2; ++i) mask |= (d->perm[i] >= 2 ? 15 : 0) << (i * 4); vmode = V8HImode; goto do_subreg; case V4SImode: for (i = 0; i < 4; ++i) mask |= (d->perm[i] >= 4 ? 3 : 0) << (i * 2); vmode = V8HImode; goto do_subreg; case V16QImode: /* See if bytes move in pairs so we can use pblendw with an immediate argument, rather than pblendvb with a vector argument. */ for (i = 0; i < 16; i += 2) if (d->perm[i] + 1 != d->perm[i + 1]) { use_pblendvb: for (i = 0; i < nelt; ++i) rperm[i] = (d->perm[i] < nelt ? const0_rtx : constm1_rtx); finish_pblendvb: vperm = gen_rtx_CONST_VECTOR (vmode, gen_rtvec_v (nelt, rperm)); vperm = force_reg (vmode, vperm); if (GET_MODE_SIZE (vmode) == 16) emit_insn (gen_sse4_1_pblendvb (target, op0, op1, vperm)); else emit_insn (gen_avx2_pblendvb (target, op0, op1, vperm)); if (target != d->target) emit_move_insn (d->target, gen_lowpart (d->vmode, target)); return true; } for (i = 0; i < 8; ++i) mask |= (d->perm[i * 2] >= 16) << i; vmode = V8HImode; /* FALLTHRU */ do_subreg: target = gen_reg_rtx (vmode); op0 = gen_lowpart (vmode, op0); op1 = gen_lowpart (vmode, op1); break; case V32QImode: /* See if bytes move in pairs. If not, vpblendvb must be used. */ for (i = 0; i < 32; i += 2) if (d->perm[i] + 1 != d->perm[i + 1]) goto use_pblendvb; /* See if bytes move in quadruplets. If yes, vpblendd with immediate can be used. */ for (i = 0; i < 32; i += 4) if (d->perm[i] + 2 != d->perm[i + 2]) break; if (i < 32) { /* See if bytes move the same in both lanes. If yes, vpblendw with immediate can be used. */ for (i = 0; i < 16; i += 2) if (d->perm[i] + 16 != d->perm[i + 16]) goto use_pblendvb; /* Use vpblendw. */ for (i = 0; i < 16; ++i) mask |= (d->perm[i * 2] >= 32) << i; vmode = V16HImode; goto do_subreg; } /* Use vpblendd. */ for (i = 0; i < 8; ++i) mask |= (d->perm[i * 4] >= 32) << i; vmode = V8SImode; goto do_subreg; case V16HImode: /* See if words move in pairs. If yes, vpblendd can be used. */ for (i = 0; i < 16; i += 2) if (d->perm[i] + 1 != d->perm[i + 1]) break; if (i < 16) { /* See if words move the same in both lanes. If not, vpblendvb must be used. */ for (i = 0; i < 8; i++) if (d->perm[i] + 8 != d->perm[i + 8]) { /* Use vpblendvb. */ for (i = 0; i < 32; ++i) rperm[i] = (d->perm[i / 2] < 16 ? const0_rtx : constm1_rtx); vmode = V32QImode; nelt = 32; target = gen_reg_rtx (vmode); op0 = gen_lowpart (vmode, op0); op1 = gen_lowpart (vmode, op1); goto finish_pblendvb; } /* Use vpblendw. */ for (i = 0; i < 16; ++i) mask |= (d->perm[i] >= 16) << i; break; } /* Use vpblendd. */ for (i = 0; i < 8; ++i) mask |= (d->perm[i * 2] >= 16) << i; vmode = V8SImode; goto do_subreg; case V4DImode: /* Use vpblendd. */ for (i = 0; i < 4; ++i) mask |= (d->perm[i] >= 4 ? 3 : 0) << (i * 2); vmode = V8SImode; goto do_subreg; default: gcc_unreachable (); } /* This matches five different patterns with the different modes. */ x = gen_rtx_VEC_MERGE (vmode, op1, op0, GEN_INT (mask)); x = gen_rtx_SET (VOIDmode, target, x); emit_insn (x); if (target != d->target) emit_move_insn (d->target, gen_lowpart (d->vmode, target)); return true; } /* A subroutine of ix86_expand_vec_perm_builtin_1. Try to implement D in terms of the variable form of vpermilps. Note that we will have already failed the immediate input vpermilps, which requires that the high and low part shuffle be identical; the variable form doesn't require that. */ static bool expand_vec_perm_vpermil (struct expand_vec_perm_d *d) { rtx rperm[8], vperm; unsigned i; if (!TARGET_AVX || d->vmode != V8SFmode || !d->one_operand_p) return false; /* We can only permute within the 128-bit lane. */ for (i = 0; i < 8; ++i) { unsigned e = d->perm[i]; if (i < 4 ? e >= 4 : e < 4) return false; } if (d->testing_p) return true; for (i = 0; i < 8; ++i) { unsigned e = d->perm[i]; /* Within each 128-bit lane, the elements of op0 are numbered from 0 and the elements of op1 are numbered from 4. */ if (e >= 8 + 4) e -= 8; else if (e >= 4) e -= 4; rperm[i] = GEN_INT (e); } vperm = gen_rtx_CONST_VECTOR (V8SImode, gen_rtvec_v (8, rperm)); vperm = force_reg (V8SImode, vperm); emit_insn (gen_avx_vpermilvarv8sf3 (d->target, d->op0, vperm)); return true; } /* Return true if permutation D can be performed as VMODE permutation instead. */ static bool valid_perm_using_mode_p (enum machine_mode vmode, struct expand_vec_perm_d *d) { unsigned int i, j, chunk; if (GET_MODE_CLASS (vmode) != MODE_VECTOR_INT || GET_MODE_CLASS (d->vmode) != MODE_VECTOR_INT || GET_MODE_SIZE (vmode) != GET_MODE_SIZE (d->vmode)) return false; if (GET_MODE_NUNITS (vmode) >= d->nelt) return true; chunk = d->nelt / GET_MODE_NUNITS (vmode); for (i = 0; i < d->nelt; i += chunk) if (d->perm[i] & (chunk - 1)) return false; else for (j = 1; j < chunk; ++j) if (d->perm[i] + j != d->perm[i + j]) return false; return true; } /* A subroutine of ix86_expand_vec_perm_builtin_1. Try to implement D in terms of pshufb, vpperm, vpermq, vpermd, vpermps or vperm2i128. */ static bool expand_vec_perm_pshufb (struct expand_vec_perm_d *d) { unsigned i, nelt, eltsz, mask; unsigned char perm[32]; enum machine_mode vmode = V16QImode; rtx rperm[32], vperm, target, op0, op1; nelt = d->nelt; if (!d->one_operand_p) { if (!TARGET_XOP || GET_MODE_SIZE (d->vmode) != 16) { if (TARGET_AVX2 && valid_perm_using_mode_p (V2TImode, d)) { if (d->testing_p) return true; /* Use vperm2i128 insn. The pattern uses V4DImode instead of V2TImode. */ target = d->target; if (d->vmode != V4DImode) target = gen_reg_rtx (V4DImode); op0 = gen_lowpart (V4DImode, d->op0); op1 = gen_lowpart (V4DImode, d->op1); rperm[0] = GEN_INT (((d->perm[0] & (nelt / 2)) ? 1 : 0) || ((d->perm[nelt / 2] & (nelt / 2)) ? 2 : 0)); emit_insn (gen_avx2_permv2ti (target, op0, op1, rperm[0])); if (target != d->target) emit_move_insn (d->target, gen_lowpart (d->vmode, target)); return true; } return false; } } else { if (GET_MODE_SIZE (d->vmode) == 16) { if (!TARGET_SSSE3) return false; } else if (GET_MODE_SIZE (d->vmode) == 32) { if (!TARGET_AVX2) return false; /* V4DImode should be already handled through expand_vselect by vpermq instruction. */ gcc_assert (d->vmode != V4DImode); vmode = V32QImode; if (d->vmode == V8SImode || d->vmode == V16HImode || d->vmode == V32QImode) { /* First see if vpermq can be used for V8SImode/V16HImode/V32QImode. */ if (valid_perm_using_mode_p (V4DImode, d)) { for (i = 0; i < 4; i++) perm[i] = (d->perm[i * nelt / 4] * 4 / nelt) & 3; if (d->testing_p) return true; target = gen_reg_rtx (V4DImode); if (expand_vselect (target, gen_lowpart (V4DImode, d->op0), perm, 4, false)) { emit_move_insn (d->target, gen_lowpart (d->vmode, target)); return true; } return false; } /* Next see if vpermd can be used. */ if (valid_perm_using_mode_p (V8SImode, d)) vmode = V8SImode; } /* Or if vpermps can be used. */ else if (d->vmode == V8SFmode) vmode = V8SImode; if (vmode == V32QImode) { /* vpshufb only works intra lanes, it is not possible to shuffle bytes in between the lanes. */ for (i = 0; i < nelt; ++i) if ((d->perm[i] ^ i) & (nelt / 2)) return false; } } else return false; } if (d->testing_p) return true; if (vmode == V8SImode) for (i = 0; i < 8; ++i) rperm[i] = GEN_INT ((d->perm[i * nelt / 8] * 8 / nelt) & 7); else { eltsz = GET_MODE_SIZE (GET_MODE_INNER (d->vmode)); if (!d->one_operand_p) mask = 2 * nelt - 1; else if (vmode == V16QImode) mask = nelt - 1; else mask = nelt / 2 - 1; for (i = 0; i < nelt; ++i) { unsigned j, e = d->perm[i] & mask; for (j = 0; j < eltsz; ++j) rperm[i * eltsz + j] = GEN_INT (e * eltsz + j); } } vperm = gen_rtx_CONST_VECTOR (vmode, gen_rtvec_v (GET_MODE_NUNITS (vmode), rperm)); vperm = force_reg (vmode, vperm); target = d->target; if (d->vmode != vmode) target = gen_reg_rtx (vmode); op0 = gen_lowpart (vmode, d->op0); if (d->one_operand_p) { if (vmode == V16QImode) emit_insn (gen_ssse3_pshufbv16qi3 (target, op0, vperm)); else if (vmode == V32QImode) emit_insn (gen_avx2_pshufbv32qi3 (target, op0, vperm)); else if (vmode == V8SFmode) emit_insn (gen_avx2_permvarv8sf (target, op0, vperm)); else emit_insn (gen_avx2_permvarv8si (target, op0, vperm)); } else { op1 = gen_lowpart (vmode, d->op1); emit_insn (gen_xop_pperm (target, op0, op1, vperm)); } if (target != d->target) emit_move_insn (d->target, gen_lowpart (d->vmode, target)); return true; } /* A subroutine of ix86_expand_vec_perm_builtin_1. Try to instantiate D in a single instruction. */ static bool expand_vec_perm_1 (struct expand_vec_perm_d *d) { unsigned i, nelt = d->nelt; unsigned char perm2[MAX_VECT_LEN]; /* Check plain VEC_SELECT first, because AVX has instructions that could match both SEL and SEL+CONCAT, but the plain SEL will allow a memory input where SEL+CONCAT may not. */ if (d->one_operand_p) { int mask = nelt - 1; bool identity_perm = true; bool broadcast_perm = true; for (i = 0; i < nelt; i++) { perm2[i] = d->perm[i] & mask; if (perm2[i] != i) identity_perm = false; if (perm2[i]) broadcast_perm = false; } if (identity_perm) { if (!d->testing_p) emit_move_insn (d->target, d->op0); return true; } else if (broadcast_perm && TARGET_AVX2) { /* Use vpbroadcast{b,w,d}. */ rtx (*gen) (rtx, rtx) = NULL; switch (d->vmode) { case V32QImode: gen = gen_avx2_pbroadcastv32qi_1; break; case V16HImode: gen = gen_avx2_pbroadcastv16hi_1; break; case V8SImode: gen = gen_avx2_pbroadcastv8si_1; break; case V16QImode: gen = gen_avx2_pbroadcastv16qi; break; case V8HImode: gen = gen_avx2_pbroadcastv8hi; break; case V8SFmode: gen = gen_avx2_vec_dupv8sf_1; break; /* For other modes prefer other shuffles this function creates. */ default: break; } if (gen != NULL) { if (!d->testing_p) emit_insn (gen (d->target, d->op0)); return true; } } if (expand_vselect (d->target, d->op0, perm2, nelt, d->testing_p)) return true; /* There are plenty of patterns in sse.md that are written for SEL+CONCAT and are not replicated for a single op. Perhaps that should be changed, to avoid the nastiness here. */ /* Recognize interleave style patterns, which means incrementing every other permutation operand. */ for (i = 0; i < nelt; i += 2) { perm2[i] = d->perm[i] & mask; perm2[i + 1] = (d->perm[i + 1] & mask) + nelt; } if (expand_vselect_vconcat (d->target, d->op0, d->op0, perm2, nelt, d->testing_p)) return true; /* Recognize shufps, which means adding {0, 0, nelt, nelt}. */ if (nelt >= 4) { for (i = 0; i < nelt; i += 4) { perm2[i + 0] = d->perm[i + 0] & mask; perm2[i + 1] = d->perm[i + 1] & mask; perm2[i + 2] = (d->perm[i + 2] & mask) + nelt; perm2[i + 3] = (d->perm[i + 3] & mask) + nelt; } if (expand_vselect_vconcat (d->target, d->op0, d->op0, perm2, nelt, d->testing_p)) return true; } } /* Finally, try the fully general two operand permute. */ if (expand_vselect_vconcat (d->target, d->op0, d->op1, d->perm, nelt, d->testing_p)) return true; /* Recognize interleave style patterns with reversed operands. */ if (!d->one_operand_p) { for (i = 0; i < nelt; ++i) { unsigned e = d->perm[i]; if (e >= nelt) e -= nelt; else e += nelt; perm2[i] = e; } if (expand_vselect_vconcat (d->target, d->op1, d->op0, perm2, nelt, d->testing_p)) return true; } /* Try the SSE4.1 blend variable merge instructions. */ if (expand_vec_perm_blend (d)) return true; /* Try one of the AVX vpermil variable permutations. */ if (expand_vec_perm_vpermil (d)) return true; /* Try the SSSE3 pshufb or XOP vpperm or AVX2 vperm2i128, vpshufb, vpermd, vpermps or vpermq variable permutation. */ if (expand_vec_perm_pshufb (d)) return true; return false; } /* A subroutine of ix86_expand_vec_perm_builtin_1. Try to implement D in terms of a pair of pshuflw + pshufhw instructions. */ static bool expand_vec_perm_pshuflw_pshufhw (struct expand_vec_perm_d *d) { unsigned char perm2[MAX_VECT_LEN]; unsigned i; bool ok; if (d->vmode != V8HImode || !d->one_operand_p) return false; /* The two permutations only operate in 64-bit lanes. */ for (i = 0; i < 4; ++i) if (d->perm[i] >= 4) return false; for (i = 4; i < 8; ++i) if (d->perm[i] < 4) return false; if (d->testing_p) return true; /* Emit the pshuflw. */ memcpy (perm2, d->perm, 4); for (i = 4; i < 8; ++i) perm2[i] = i; ok = expand_vselect (d->target, d->op0, perm2, 8, d->testing_p); gcc_assert (ok); /* Emit the pshufhw. */ memcpy (perm2 + 4, d->perm + 4, 4); for (i = 0; i < 4; ++i) perm2[i] = i; ok = expand_vselect (d->target, d->target, perm2, 8, d->testing_p); gcc_assert (ok); return true; } /* A subroutine of ix86_expand_vec_perm_builtin_1. Try to simplify the permutation using the SSSE3 palignr instruction. This succeeds when all of the elements in PERM fit within one vector and we merely need to shift them down so that a single vector permutation has a chance to succeed. */ static bool expand_vec_perm_palignr (struct expand_vec_perm_d *d) { unsigned i, nelt = d->nelt; unsigned min, max; bool in_order, ok; rtx shift, target; struct expand_vec_perm_d dcopy; /* Even with AVX, palignr only operates on 128-bit vectors. */ if (!TARGET_SSSE3 || GET_MODE_SIZE (d->vmode) != 16) return false; min = nelt, max = 0; for (i = 0; i < nelt; ++i) { unsigned e = d->perm[i]; if (e < min) min = e; if (e > max) max = e; } if (min == 0 || max - min >= nelt) return false; /* Given that we have SSSE3, we know we'll be able to implement the single operand permutation after the palignr with pshufb. */ if (d->testing_p) return true; dcopy = *d; shift = GEN_INT (min * GET_MODE_BITSIZE (GET_MODE_INNER (d->vmode))); target = gen_reg_rtx (TImode); emit_insn (gen_ssse3_palignrti (target, gen_lowpart (TImode, d->op1), gen_lowpart (TImode, d->op0), shift)); dcopy.op0 = dcopy.op1 = gen_lowpart (d->vmode, target); dcopy.one_operand_p = true; in_order = true; for (i = 0; i < nelt; ++i) { unsigned e = dcopy.perm[i] - min; if (e != i) in_order = false; dcopy.perm[i] = e; } /* Test for the degenerate case where the alignment by itself produces the desired permutation. */ if (in_order) { emit_move_insn (d->target, dcopy.op0); return true; } ok = expand_vec_perm_1 (&dcopy); gcc_assert (ok); return ok; } static bool expand_vec_perm_interleave3 (struct expand_vec_perm_d *d); /* A subroutine of ix86_expand_vec_perm_builtin_1. Try to simplify a two vector permutation into a single vector permutation by using an interleave operation to merge the vectors. */ static bool expand_vec_perm_interleave2 (struct expand_vec_perm_d *d) { struct expand_vec_perm_d dremap, dfinal; unsigned i, nelt = d->nelt, nelt2 = nelt / 2; unsigned HOST_WIDE_INT contents; unsigned char remap[2 * MAX_VECT_LEN]; rtx seq; bool ok, same_halves = false; if (GET_MODE_SIZE (d->vmode) == 16) { if (d->one_operand_p) return false; } else if (GET_MODE_SIZE (d->vmode) == 32) { if (!TARGET_AVX) return false; /* For 32-byte modes allow even d->one_operand_p. The lack of cross-lane shuffling in some instructions might prevent a single insn shuffle. */ dfinal = *d; dfinal.testing_p = true; /* If expand_vec_perm_interleave3 can expand this into a 3 insn sequence, give up and let it be expanded as 3 insn sequence. While that is one insn longer, it doesn't need a memory operand and in the common case that both interleave low and high permutations with the same operands are adjacent needs 4 insns for both after CSE. */ if (expand_vec_perm_interleave3 (&dfinal)) return false; } else return false; /* Examine from whence the elements come. */ contents = 0; for (i = 0; i < nelt; ++i) contents |= ((unsigned HOST_WIDE_INT) 1) << d->perm[i]; memset (remap, 0xff, sizeof (remap)); dremap = *d; if (GET_MODE_SIZE (d->vmode) == 16) { unsigned HOST_WIDE_INT h1, h2, h3, h4; /* Split the two input vectors into 4 halves. */ h1 = (((unsigned HOST_WIDE_INT) 1) << nelt2) - 1; h2 = h1 << nelt2; h3 = h2 << nelt2; h4 = h3 << nelt2; /* If the elements from the low halves use interleave low, and similarly for interleave high. If the elements are from mis-matched halves, we can use shufps for V4SF/V4SI or do a DImode shuffle. */ if ((contents & (h1 | h3)) == contents) { /* punpckl* */ for (i = 0; i < nelt2; ++i) { remap[i] = i * 2; remap[i + nelt] = i * 2 + 1; dremap.perm[i * 2] = i; dremap.perm[i * 2 + 1] = i + nelt; } if (!TARGET_SSE2 && d->vmode == V4SImode) dremap.vmode = V4SFmode; } else if ((contents & (h2 | h4)) == contents) { /* punpckh* */ for (i = 0; i < nelt2; ++i) { remap[i + nelt2] = i * 2; remap[i + nelt + nelt2] = i * 2 + 1; dremap.perm[i * 2] = i + nelt2; dremap.perm[i * 2 + 1] = i + nelt + nelt2; } if (!TARGET_SSE2 && d->vmode == V4SImode) dremap.vmode = V4SFmode; } else if ((contents & (h1 | h4)) == contents) { /* shufps */ for (i = 0; i < nelt2; ++i) { remap[i] = i; remap[i + nelt + nelt2] = i + nelt2; dremap.perm[i] = i; dremap.perm[i + nelt2] = i + nelt + nelt2; } if (nelt != 4) { /* shufpd */ dremap.vmode = V2DImode; dremap.nelt = 2; dremap.perm[0] = 0; dremap.perm[1] = 3; } } else if ((contents & (h2 | h3)) == contents) { /* shufps */ for (i = 0; i < nelt2; ++i) { remap[i + nelt2] = i; remap[i + nelt] = i + nelt2; dremap.perm[i] = i + nelt2; dremap.perm[i + nelt2] = i + nelt; } if (nelt != 4) { /* shufpd */ dremap.vmode = V2DImode; dremap.nelt = 2; dremap.perm[0] = 1; dremap.perm[1] = 2; } } else return false; } else { unsigned int nelt4 = nelt / 4, nzcnt = 0; unsigned HOST_WIDE_INT q[8]; unsigned int nonzero_halves[4]; /* Split the two input vectors into 8 quarters. */ q[0] = (((unsigned HOST_WIDE_INT) 1) << nelt4) - 1; for (i = 1; i < 8; ++i) q[i] = q[0] << (nelt4 * i); for (i = 0; i < 4; ++i) if (((q[2 * i] | q[2 * i + 1]) & contents) != 0) { nonzero_halves[nzcnt] = i; ++nzcnt; } if (nzcnt == 1) { gcc_assert (d->one_operand_p); nonzero_halves[1] = nonzero_halves[0]; same_halves = true; } else if (d->one_operand_p) { gcc_assert (nonzero_halves[0] == 0); gcc_assert (nonzero_halves[1] == 1); } if (nzcnt <= 2) { if (d->perm[0] / nelt2 == nonzero_halves[1]) { /* Attempt to increase the likelihood that dfinal shuffle will be intra-lane. */ char tmph = nonzero_halves[0]; nonzero_halves[0] = nonzero_halves[1]; nonzero_halves[1] = tmph; } /* vperm2f128 or vperm2i128. */ for (i = 0; i < nelt2; ++i) { remap[i + nonzero_halves[1] * nelt2] = i + nelt2; remap[i + nonzero_halves[0] * nelt2] = i; dremap.perm[i + nelt2] = i + nonzero_halves[1] * nelt2; dremap.perm[i] = i + nonzero_halves[0] * nelt2; } if (d->vmode != V8SFmode && d->vmode != V4DFmode && d->vmode != V8SImode) { dremap.vmode = V8SImode; dremap.nelt = 8; for (i = 0; i < 4; ++i) { dremap.perm[i] = i + nonzero_halves[0] * 4; dremap.perm[i + 4] = i + nonzero_halves[1] * 4; } } } else if (d->one_operand_p) return false; else if (TARGET_AVX2 && (contents & (q[0] | q[2] | q[4] | q[6])) == contents) { /* vpunpckl* */ for (i = 0; i < nelt4; ++i) { remap[i] = i * 2; remap[i + nelt] = i * 2 + 1; remap[i + nelt2] = i * 2 + nelt2; remap[i + nelt + nelt2] = i * 2 + nelt2 + 1; dremap.perm[i * 2] = i; dremap.perm[i * 2 + 1] = i + nelt; dremap.perm[i * 2 + nelt2] = i + nelt2; dremap.perm[i * 2 + nelt2 + 1] = i + nelt + nelt2; } } else if (TARGET_AVX2 && (contents & (q[1] | q[3] | q[5] | q[7])) == contents) { /* vpunpckh* */ for (i = 0; i < nelt4; ++i) { remap[i + nelt4] = i * 2; remap[i + nelt + nelt4] = i * 2 + 1; remap[i + nelt2 + nelt4] = i * 2 + nelt2; remap[i + nelt + nelt2 + nelt4] = i * 2 + nelt2 + 1; dremap.perm[i * 2] = i + nelt4; dremap.perm[i * 2 + 1] = i + nelt + nelt4; dremap.perm[i * 2 + nelt2] = i + nelt2 + nelt4; dremap.perm[i * 2 + nelt2 + 1] = i + nelt + nelt2 + nelt4; } } else return false; } /* Use the remapping array set up above to move the elements from their swizzled locations into their final destinations. */ dfinal = *d; for (i = 0; i < nelt; ++i) { unsigned e = remap[d->perm[i]]; gcc_assert (e < nelt); /* If same_halves is true, both halves of the remapped vector are the same. Avoid cross-lane accesses if possible. */ if (same_halves && i >= nelt2) { gcc_assert (e < nelt2); dfinal.perm[i] = e + nelt2; } else dfinal.perm[i] = e; } dremap.target = gen_reg_rtx (dremap.vmode); dfinal.op0 = gen_lowpart (dfinal.vmode, dremap.target); dfinal.op1 = dfinal.op0; dfinal.one_operand_p = true; /* Test if the final remap can be done with a single insn. For V4SFmode or V4SImode this *will* succeed. For V8HImode or V16QImode it may not. */ start_sequence (); ok = expand_vec_perm_1 (&dfinal); seq = get_insns (); end_sequence (); if (!ok) return false; if (d->testing_p) return true; if (dremap.vmode != dfinal.vmode) { dremap.op0 = gen_lowpart (dremap.vmode, dremap.op0); dremap.op1 = gen_lowpart (dremap.vmode, dremap.op1); } ok = expand_vec_perm_1 (&dremap); gcc_assert (ok); emit_insn (seq); return true; } /* A subroutine of ix86_expand_vec_perm_builtin_1. Try to simplify a single vector cross-lane permutation into vpermq followed by any of the single insn permutations. */ static bool expand_vec_perm_vpermq_perm_1 (struct expand_vec_perm_d *d) { struct expand_vec_perm_d dremap, dfinal; unsigned i, j, nelt = d->nelt, nelt2 = nelt / 2, nelt4 = nelt / 4; unsigned contents[2]; bool ok; if (!(TARGET_AVX2 && (d->vmode == V32QImode || d->vmode == V16HImode) && d->one_operand_p)) return false; contents[0] = 0; contents[1] = 0; for (i = 0; i < nelt2; ++i) { contents[0] |= 1u << (d->perm[i] / nelt4); contents[1] |= 1u << (d->perm[i + nelt2] / nelt4); } for (i = 0; i < 2; ++i) { unsigned int cnt = 0; for (j = 0; j < 4; ++j) if ((contents[i] & (1u << j)) != 0 && ++cnt > 2) return false; } if (d->testing_p) return true; dremap = *d; dremap.vmode = V4DImode; dremap.nelt = 4; dremap.target = gen_reg_rtx (V4DImode); dremap.op0 = gen_lowpart (V4DImode, d->op0); dremap.op1 = dremap.op0; dremap.one_operand_p = true; for (i = 0; i < 2; ++i) { unsigned int cnt = 0; for (j = 0; j < 4; ++j) if ((contents[i] & (1u << j)) != 0) dremap.perm[2 * i + cnt++] = j; for (; cnt < 2; ++cnt) dremap.perm[2 * i + cnt] = 0; } dfinal = *d; dfinal.op0 = gen_lowpart (dfinal.vmode, dremap.target); dfinal.op1 = dfinal.op0; dfinal.one_operand_p = true; for (i = 0, j = 0; i < nelt; ++i) { if (i == nelt2) j = 2; dfinal.perm[i] = (d->perm[i] & (nelt4 - 1)) | (j ? nelt2 : 0); if ((d->perm[i] / nelt4) == dremap.perm[j]) ; else if ((d->perm[i] / nelt4) == dremap.perm[j + 1]) dfinal.perm[i] |= nelt4; else gcc_unreachable (); } ok = expand_vec_perm_1 (&dremap); gcc_assert (ok); ok = expand_vec_perm_1 (&dfinal); gcc_assert (ok); return true; } /* A subroutine of ix86_expand_vec_perm_builtin_1. Try to expand a vector permutation using two instructions, vperm2f128 resp. vperm2i128 followed by any single in-lane permutation. */ static bool expand_vec_perm_vperm2f128 (struct expand_vec_perm_d *d) { struct expand_vec_perm_d dfirst, dsecond; unsigned i, j, nelt = d->nelt, nelt2 = nelt / 2, perm; bool ok; if (!TARGET_AVX || GET_MODE_SIZE (d->vmode) != 32 || (d->vmode != V8SFmode && d->vmode != V4DFmode && !TARGET_AVX2)) return false; dsecond = *d; dsecond.one_operand_p = false; dsecond.testing_p = true; /* ((perm << 2)|perm) & 0x33 is the vperm2[fi]128 immediate. For perm < 16 the second permutation uses d->op0 as first operand, for perm >= 16 it uses d->op1 as first operand. The second operand is the result of vperm2[fi]128. */ for (perm = 0; perm < 32; perm++) { /* Ignore permutations which do not move anything cross-lane. */ if (perm < 16) { /* The second shuffle for e.g. V4DFmode has 0123 and ABCD operands. Ignore AB23, as 23 is already in the second lane of the first operand. */ if ((perm & 0xc) == (1 << 2)) continue; /* And 01CD, as 01 is in the first lane of the first operand. */ if ((perm & 3) == 0) continue; /* And 4567, as then the vperm2[fi]128 doesn't change anything on the original 4567 second operand. */ if ((perm & 0xf) == ((3 << 2) | 2)) continue; } else { /* The second shuffle for e.g. V4DFmode has 4567 and ABCD operands. Ignore AB67, as 67 is already in the second lane of the first operand. */ if ((perm & 0xc) == (3 << 2)) continue; /* And 45CD, as 45 is in the first lane of the first operand. */ if ((perm & 3) == 2) continue; /* And 0123, as then the vperm2[fi]128 doesn't change anything on the original 0123 first operand. */ if ((perm & 0xf) == (1 << 2)) continue; } for (i = 0; i < nelt; i++) { j = d->perm[i] / nelt2; if (j == ((perm >> (2 * (i >= nelt2))) & 3)) dsecond.perm[i] = nelt + (i & nelt2) + (d->perm[i] & (nelt2 - 1)); else if (j == (unsigned) (i >= nelt2) + 2 * (perm >= 16)) dsecond.perm[i] = d->perm[i] & (nelt - 1); else break; } if (i == nelt) { start_sequence (); ok = expand_vec_perm_1 (&dsecond); end_sequence (); } else ok = false; if (ok) { if (d->testing_p) return true; /* Found a usable second shuffle. dfirst will be vperm2f128 on d->op0 and d->op1. */ dsecond.testing_p = false; dfirst = *d; dfirst.target = gen_reg_rtx (d->vmode); for (i = 0; i < nelt; i++) dfirst.perm[i] = (i & (nelt2 - 1)) + ((perm >> (2 * (i >= nelt2))) & 3) * nelt2; ok = expand_vec_perm_1 (&dfirst); gcc_assert (ok); /* And dsecond is some single insn shuffle, taking d->op0 and result of vperm2f128 (if perm < 16) or d->op1 and result of vperm2f128 (otherwise). */ dsecond.op1 = dfirst.target; if (perm >= 16) dsecond.op0 = dfirst.op1; ok = expand_vec_perm_1 (&dsecond); gcc_assert (ok); return true; } /* For one operand, the only useful vperm2f128 permutation is 0x10. */ if (d->one_operand_p) return false; } return false; } /* A subroutine of ix86_expand_vec_perm_builtin_1. Try to simplify a two vector permutation using 2 intra-lane interleave insns and cross-lane shuffle for 32-byte vectors. */ static bool expand_vec_perm_interleave3 (struct expand_vec_perm_d *d) { unsigned i, nelt; rtx (*gen) (rtx, rtx, rtx); if (d->one_operand_p) return false; if (TARGET_AVX2 && GET_MODE_SIZE (d->vmode) == 32) ; else if (TARGET_AVX && (d->vmode == V8SFmode || d->vmode == V4DFmode)) ; else return false; nelt = d->nelt; if (d->perm[0] != 0 && d->perm[0] != nelt / 2) return false; for (i = 0; i < nelt; i += 2) if (d->perm[i] != d->perm[0] + i / 2 || d->perm[i + 1] != d->perm[0] + i / 2 + nelt) return false; if (d->testing_p) return true; switch (d->vmode) { case V32QImode: if (d->perm[0]) gen = gen_vec_interleave_highv32qi; else gen = gen_vec_interleave_lowv32qi; break; case V16HImode: if (d->perm[0]) gen = gen_vec_interleave_highv16hi; else gen = gen_vec_interleave_lowv16hi; break; case V8SImode: if (d->perm[0]) gen = gen_vec_interleave_highv8si; else gen = gen_vec_interleave_lowv8si; break; case V4DImode: if (d->perm[0]) gen = gen_vec_interleave_highv4di; else gen = gen_vec_interleave_lowv4di; break; case V8SFmode: if (d->perm[0]) gen = gen_vec_interleave_highv8sf; else gen = gen_vec_interleave_lowv8sf; break; case V4DFmode: if (d->perm[0]) gen = gen_vec_interleave_highv4df; else gen = gen_vec_interleave_lowv4df; break; default: gcc_unreachable (); } emit_insn (gen (d->target, d->op0, d->op1)); return true; } /* A subroutine of ix86_expand_vec_perm_builtin_1. Try to implement a single vector permutation using a single intra-lane vector permutation, vperm2f128 swapping the lanes and vblend* insn blending the non-swapped and swapped vectors together. */ static bool expand_vec_perm_vperm2f128_vblend (struct expand_vec_perm_d *d) { struct expand_vec_perm_d dfirst, dsecond; unsigned i, j, msk, nelt = d->nelt, nelt2 = nelt / 2; rtx seq; bool ok; rtx (*blend) (rtx, rtx, rtx, rtx) = NULL; if (!TARGET_AVX || TARGET_AVX2 || (d->vmode != V8SFmode && d->vmode != V4DFmode) || !d->one_operand_p) return false; dfirst = *d; for (i = 0; i < nelt; i++) dfirst.perm[i] = 0xff; for (i = 0, msk = 0; i < nelt; i++) { j = (d->perm[i] & nelt2) ? i | nelt2 : i & ~nelt2; if (dfirst.perm[j] != 0xff && dfirst.perm[j] != d->perm[i]) return false; dfirst.perm[j] = d->perm[i]; if (j != i) msk |= (1 << i); } for (i = 0; i < nelt; i++) if (dfirst.perm[i] == 0xff) dfirst.perm[i] = i; if (!d->testing_p) dfirst.target = gen_reg_rtx (dfirst.vmode); start_sequence (); ok = expand_vec_perm_1 (&dfirst); seq = get_insns (); end_sequence (); if (!ok) return false; if (d->testing_p) return true; emit_insn (seq); dsecond = *d; dsecond.op0 = dfirst.target; dsecond.op1 = dfirst.target; dsecond.one_operand_p = true; dsecond.target = gen_reg_rtx (dsecond.vmode); for (i = 0; i < nelt; i++) dsecond.perm[i] = i ^ nelt2; ok = expand_vec_perm_1 (&dsecond); gcc_assert (ok); blend = d->vmode == V8SFmode ? gen_avx_blendps256 : gen_avx_blendpd256; emit_insn (blend (d->target, dfirst.target, dsecond.target, GEN_INT (msk))); return true; } /* A subroutine of ix86_expand_vec_perm_builtin_1. Implement a V4DF permutation using two vperm2f128, followed by a vshufpd insn blending the two vectors together. */ static bool expand_vec_perm_2vperm2f128_vshuf (struct expand_vec_perm_d *d) { struct expand_vec_perm_d dfirst, dsecond, dthird; bool ok; if (!TARGET_AVX || (d->vmode != V4DFmode)) return false; if (d->testing_p) return true; dfirst = *d; dsecond = *d; dthird = *d; dfirst.perm[0] = (d->perm[0] & ~1); dfirst.perm[1] = (d->perm[0] & ~1) + 1; dfirst.perm[2] = (d->perm[2] & ~1); dfirst.perm[3] = (d->perm[2] & ~1) + 1; dsecond.perm[0] = (d->perm[1] & ~1); dsecond.perm[1] = (d->perm[1] & ~1) + 1; dsecond.perm[2] = (d->perm[3] & ~1); dsecond.perm[3] = (d->perm[3] & ~1) + 1; dthird.perm[0] = (d->perm[0] % 2); dthird.perm[1] = (d->perm[1] % 2) + 4; dthird.perm[2] = (d->perm[2] % 2) + 2; dthird.perm[3] = (d->perm[3] % 2) + 6; dfirst.target = gen_reg_rtx (dfirst.vmode); dsecond.target = gen_reg_rtx (dsecond.vmode); dthird.op0 = dfirst.target; dthird.op1 = dsecond.target; dthird.one_operand_p = false; canonicalize_perm (&dfirst); canonicalize_perm (&dsecond); ok = expand_vec_perm_1 (&dfirst) && expand_vec_perm_1 (&dsecond) && expand_vec_perm_1 (&dthird); gcc_assert (ok); return true; } /* A subroutine of expand_vec_perm_even_odd_1. Implement the double-word permutation with two pshufb insns and an ior. We should have already failed all two instruction sequences. */ static bool expand_vec_perm_pshufb2 (struct expand_vec_perm_d *d) { rtx rperm[2][16], vperm, l, h, op, m128; unsigned int i, nelt, eltsz; if (!TARGET_SSSE3 || GET_MODE_SIZE (d->vmode) != 16) return false; gcc_assert (!d->one_operand_p); nelt = d->nelt; eltsz = GET_MODE_SIZE (GET_MODE_INNER (d->vmode)); /* Generate two permutation masks. If the required element is within the given vector it is shuffled into the proper lane. If the required element is in the other vector, force a zero into the lane by setting bit 7 in the permutation mask. */ m128 = GEN_INT (-128); for (i = 0; i < nelt; ++i) { unsigned j, e = d->perm[i]; unsigned which = (e >= nelt); if (e >= nelt) e -= nelt; for (j = 0; j < eltsz; ++j) { rperm[which][i*eltsz + j] = GEN_INT (e*eltsz + j); rperm[1-which][i*eltsz + j] = m128; } } vperm = gen_rtx_CONST_VECTOR (V16QImode, gen_rtvec_v (16, rperm[0])); vperm = force_reg (V16QImode, vperm); l = gen_reg_rtx (V16QImode); op = gen_lowpart (V16QImode, d->op0); emit_insn (gen_ssse3_pshufbv16qi3 (l, op, vperm)); vperm = gen_rtx_CONST_VECTOR (V16QImode, gen_rtvec_v (16, rperm[1])); vperm = force_reg (V16QImode, vperm); h = gen_reg_rtx (V16QImode); op = gen_lowpart (V16QImode, d->op1); emit_insn (gen_ssse3_pshufbv16qi3 (h, op, vperm)); op = d->target; if (d->vmode != V16QImode) op = gen_reg_rtx (V16QImode); emit_insn (gen_iorv16qi3 (op, l, h)); if (op != d->target) emit_move_insn (d->target, gen_lowpart (d->vmode, op)); return true; } /* Implement arbitrary permutation of one V32QImode and V16QImode operand with two vpshufb insns, vpermq and vpor. We should have already failed all two or three instruction sequences. */ static bool expand_vec_perm_vpshufb2_vpermq (struct expand_vec_perm_d *d) { rtx rperm[2][32], vperm, l, h, hp, op, m128; unsigned int i, nelt, eltsz; if (!TARGET_AVX2 || !d->one_operand_p || (d->vmode != V32QImode && d->vmode != V16HImode)) return false; if (d->testing_p) return true; nelt = d->nelt; eltsz = GET_MODE_SIZE (GET_MODE_INNER (d->vmode)); /* Generate two permutation masks. If the required element is within the same lane, it is shuffled in. If the required element from the other lane, force a zero by setting bit 7 in the permutation mask. In the other mask the mask has non-negative elements if element is requested from the other lane, but also moved to the other lane, so that the result of vpshufb can have the two V2TImode halves swapped. */ m128 = GEN_INT (-128); for (i = 0; i < nelt; ++i) { unsigned j, e = d->perm[i] & (nelt / 2 - 1); unsigned which = ((d->perm[i] ^ i) & (nelt / 2)) * eltsz; for (j = 0; j < eltsz; ++j) { rperm[!!which][(i * eltsz + j) ^ which] = GEN_INT (e * eltsz + j); rperm[!which][(i * eltsz + j) ^ (which ^ 16)] = m128; } } vperm = gen_rtx_CONST_VECTOR (V32QImode, gen_rtvec_v (32, rperm[1])); vperm = force_reg (V32QImode, vperm); h = gen_reg_rtx (V32QImode); op = gen_lowpart (V32QImode, d->op0); emit_insn (gen_avx2_pshufbv32qi3 (h, op, vperm)); /* Swap the 128-byte lanes of h into hp. */ hp = gen_reg_rtx (V4DImode); op = gen_lowpart (V4DImode, h); emit_insn (gen_avx2_permv4di_1 (hp, op, const2_rtx, GEN_INT (3), const0_rtx, const1_rtx)); vperm = gen_rtx_CONST_VECTOR (V32QImode, gen_rtvec_v (32, rperm[0])); vperm = force_reg (V32QImode, vperm); l = gen_reg_rtx (V32QImode); op = gen_lowpart (V32QImode, d->op0); emit_insn (gen_avx2_pshufbv32qi3 (l, op, vperm)); op = d->target; if (d->vmode != V32QImode) op = gen_reg_rtx (V32QImode); emit_insn (gen_iorv32qi3 (op, l, gen_lowpart (V32QImode, hp))); if (op != d->target) emit_move_insn (d->target, gen_lowpart (d->vmode, op)); return true; } /* A subroutine of expand_vec_perm_even_odd_1. Implement extract-even and extract-odd permutations of two V32QImode and V16QImode operand with two vpshufb insns, vpor and vpermq. We should have already failed all two or three instruction sequences. */ static bool expand_vec_perm_vpshufb2_vpermq_even_odd (struct expand_vec_perm_d *d) { rtx rperm[2][32], vperm, l, h, ior, op, m128; unsigned int i, nelt, eltsz; if (!TARGET_AVX2 || d->one_operand_p || (d->vmode != V32QImode && d->vmode != V16HImode)) return false; for (i = 0; i < d->nelt; ++i) if ((d->perm[i] ^ (i * 2)) & (3 * d->nelt / 2)) return false; if (d->testing_p) return true; nelt = d->nelt; eltsz = GET_MODE_SIZE (GET_MODE_INNER (d->vmode)); /* Generate two permutation masks. In the first permutation mask the first quarter will contain indexes for the first half of the op0, the second quarter will contain bit 7 set, third quarter will contain indexes for the second half of the op0 and the last quarter bit 7 set. In the second permutation mask the first quarter will contain bit 7 set, the second quarter indexes for the first half of the op1, the third quarter bit 7 set and last quarter indexes for the second half of the op1. I.e. the first mask e.g. for V32QImode extract even will be: 0, 2, ..., 0xe, -128, ..., -128, 0, 2, ..., 0xe, -128, ..., -128 (all values masked with 0xf except for -128) and second mask for extract even will be -128, ..., -128, 0, 2, ..., 0xe, -128, ..., -128, 0, 2, ..., 0xe. */ m128 = GEN_INT (-128); for (i = 0; i < nelt; ++i) { unsigned j, e = d->perm[i] & (nelt / 2 - 1); unsigned which = d->perm[i] >= nelt; unsigned xorv = (i >= nelt / 4 && i < 3 * nelt / 4) ? 24 : 0; for (j = 0; j < eltsz; ++j) { rperm[which][(i * eltsz + j) ^ xorv] = GEN_INT (e * eltsz + j); rperm[1 - which][(i * eltsz + j) ^ xorv] = m128; } } vperm = gen_rtx_CONST_VECTOR (V32QImode, gen_rtvec_v (32, rperm[0])); vperm = force_reg (V32QImode, vperm); l = gen_reg_rtx (V32QImode); op = gen_lowpart (V32QImode, d->op0); emit_insn (gen_avx2_pshufbv32qi3 (l, op, vperm)); vperm = gen_rtx_CONST_VECTOR (V32QImode, gen_rtvec_v (32, rperm[1])); vperm = force_reg (V32QImode, vperm); h = gen_reg_rtx (V32QImode); op = gen_lowpart (V32QImode, d->op1); emit_insn (gen_avx2_pshufbv32qi3 (h, op, vperm)); ior = gen_reg_rtx (V32QImode); emit_insn (gen_iorv32qi3 (ior, l, h)); /* Permute the V4DImode quarters using { 0, 2, 1, 3 } permutation. */ op = gen_reg_rtx (V4DImode); ior = gen_lowpart (V4DImode, ior); emit_insn (gen_avx2_permv4di_1 (op, ior, const0_rtx, const2_rtx, const1_rtx, GEN_INT (3))); emit_move_insn (d->target, gen_lowpart (d->vmode, op)); return true; } /* A subroutine of ix86_expand_vec_perm_builtin_1. Implement extract-even and extract-odd permutations. */ static bool expand_vec_perm_even_odd_1 (struct expand_vec_perm_d *d, unsigned odd) { rtx t1, t2, t3, t4, t5; switch (d->vmode) { case V4DFmode: t1 = gen_reg_rtx (V4DFmode); t2 = gen_reg_rtx (V4DFmode); /* Shuffle the lanes around into { 0 1 4 5 } and { 2 3 6 7 }. */ emit_insn (gen_avx_vperm2f128v4df3 (t1, d->op0, d->op1, GEN_INT (0x20))); emit_insn (gen_avx_vperm2f128v4df3 (t2, d->op0, d->op1, GEN_INT (0x31))); /* Now an unpck[lh]pd will produce the result required. */ if (odd) t3 = gen_avx_unpckhpd256 (d->target, t1, t2); else t3 = gen_avx_unpcklpd256 (d->target, t1, t2); emit_insn (t3); break; case V8SFmode: { int mask = odd ? 0xdd : 0x88; t1 = gen_reg_rtx (V8SFmode); t2 = gen_reg_rtx (V8SFmode); t3 = gen_reg_rtx (V8SFmode); /* Shuffle within the 128-bit lanes to produce: { 0 2 8 a 4 6 c e } | { 1 3 9 b 5 7 d f }. */ emit_insn (gen_avx_shufps256 (t1, d->op0, d->op1, GEN_INT (mask))); /* Shuffle the lanes around to produce: { 4 6 c e 0 2 8 a } and { 5 7 d f 1 3 9 b }. */ emit_insn (gen_avx_vperm2f128v8sf3 (t2, t1, t1, GEN_INT (0x3))); /* Shuffle within the 128-bit lanes to produce: { 0 2 4 6 4 6 0 2 } | { 1 3 5 7 5 7 1 3 }. */ emit_insn (gen_avx_shufps256 (t3, t1, t2, GEN_INT (0x44))); /* Shuffle within the 128-bit lanes to produce: { 8 a c e c e 8 a } | { 9 b d f d f 9 b }. */ emit_insn (gen_avx_shufps256 (t2, t1, t2, GEN_INT (0xee))); /* Shuffle the lanes around to produce: { 0 2 4 6 8 a c e } | { 1 3 5 7 9 b d f }. */ emit_insn (gen_avx_vperm2f128v8sf3 (d->target, t3, t2, GEN_INT (0x20))); } break; case V2DFmode: case V4SFmode: case V2DImode: case V4SImode: /* These are always directly implementable by expand_vec_perm_1. */ gcc_unreachable (); case V8HImode: if (TARGET_SSSE3) return expand_vec_perm_pshufb2 (d); else { /* We need 2*log2(N)-1 operations to achieve odd/even with interleave. */ t1 = gen_reg_rtx (V8HImode); t2 = gen_reg_rtx (V8HImode); emit_insn (gen_vec_interleave_highv8hi (t1, d->op0, d->op1)); emit_insn (gen_vec_interleave_lowv8hi (d->target, d->op0, d->op1)); emit_insn (gen_vec_interleave_highv8hi (t2, d->target, t1)); emit_insn (gen_vec_interleave_lowv8hi (d->target, d->target, t1)); if (odd) t3 = gen_vec_interleave_highv8hi (d->target, d->target, t2); else t3 = gen_vec_interleave_lowv8hi (d->target, d->target, t2); emit_insn (t3); } break; case V16QImode: if (TARGET_SSSE3) return expand_vec_perm_pshufb2 (d); else { t1 = gen_reg_rtx (V16QImode); t2 = gen_reg_rtx (V16QImode); t3 = gen_reg_rtx (V16QImode); emit_insn (gen_vec_interleave_highv16qi (t1, d->op0, d->op1)); emit_insn (gen_vec_interleave_lowv16qi (d->target, d->op0, d->op1)); emit_insn (gen_vec_interleave_highv16qi (t2, d->target, t1)); emit_insn (gen_vec_interleave_lowv16qi (d->target, d->target, t1)); emit_insn (gen_vec_interleave_highv16qi (t3, d->target, t2)); emit_insn (gen_vec_interleave_lowv16qi (d->target, d->target, t2)); if (odd) t3 = gen_vec_interleave_highv16qi (d->target, d->target, t3); else t3 = gen_vec_interleave_lowv16qi (d->target, d->target, t3); emit_insn (t3); } break; case V16HImode: case V32QImode: return expand_vec_perm_vpshufb2_vpermq_even_odd (d); case V4DImode: if (!TARGET_AVX2) { struct expand_vec_perm_d d_copy = *d; d_copy.vmode = V4DFmode; d_copy.target = gen_reg_rtx (V4DFmode); d_copy.op0 = gen_lowpart (V4DFmode, d->op0); d_copy.op1 = gen_lowpart (V4DFmode, d->op1); if (expand_vec_perm_even_odd_1 (&d_copy, odd)) { if (!d->testing_p) emit_move_insn (d->target, gen_lowpart (V4DImode, d_copy.target)); return true; } return false; } t1 = gen_reg_rtx (V4DImode); t2 = gen_reg_rtx (V4DImode); /* Shuffle the lanes around into { 0 1 4 5 } and { 2 3 6 7 }. */ emit_insn (gen_avx2_permv2ti (t1, d->op0, d->op1, GEN_INT (0x20))); emit_insn (gen_avx2_permv2ti (t2, d->op0, d->op1, GEN_INT (0x31))); /* Now an vpunpck[lh]qdq will produce the result required. */ if (odd) t3 = gen_avx2_interleave_highv4di (d->target, t1, t2); else t3 = gen_avx2_interleave_lowv4di (d->target, t1, t2); emit_insn (t3); break; case V8SImode: if (!TARGET_AVX2) { struct expand_vec_perm_d d_copy = *d; d_copy.vmode = V8SFmode; d_copy.target = gen_reg_rtx (V8SFmode); d_copy.op0 = gen_lowpart (V8SFmode, d->op0); d_copy.op1 = gen_lowpart (V8SFmode, d->op1); if (expand_vec_perm_even_odd_1 (&d_copy, odd)) { if (!d->testing_p) emit_move_insn (d->target, gen_lowpart (V8SImode, d_copy.target)); return true; } return false; } t1 = gen_reg_rtx (V8SImode); t2 = gen_reg_rtx (V8SImode); t3 = gen_reg_rtx (V4DImode); t4 = gen_reg_rtx (V4DImode); t5 = gen_reg_rtx (V4DImode); /* Shuffle the lanes around into { 0 1 2 3 8 9 a b } and { 4 5 6 7 c d e f }. */ emit_insn (gen_avx2_permv2ti (t3, gen_lowpart (V4DImode, d->op0), gen_lowpart (V4DImode, d->op1), GEN_INT (0x20))); emit_insn (gen_avx2_permv2ti (t4, gen_lowpart (V4DImode, d->op0), gen_lowpart (V4DImode, d->op1), GEN_INT (0x31))); /* Swap the 2nd and 3rd position in each lane into { 0 2 1 3 8 a 9 b } and { 4 6 5 7 c e d f }. */ emit_insn (gen_avx2_pshufdv3 (t1, gen_lowpart (V8SImode, t3), GEN_INT (2 * 4 + 1 * 16 + 3 * 64))); emit_insn (gen_avx2_pshufdv3 (t2, gen_lowpart (V8SImode, t4), GEN_INT (2 * 4 + 1 * 16 + 3 * 64))); /* Now an vpunpck[lh]qdq will produce { 0 2 4 6 8 a c e } resp. { 1 3 5 7 9 b d f }. */ if (odd) t3 = gen_avx2_interleave_highv4di (t5, gen_lowpart (V4DImode, t1), gen_lowpart (V4DImode, t2)); else t3 = gen_avx2_interleave_lowv4di (t5, gen_lowpart (V4DImode, t1), gen_lowpart (V4DImode, t2)); emit_insn (t3); emit_move_insn (d->target, gen_lowpart (V8SImode, t5)); break; default: gcc_unreachable (); } return true; } /* A subroutine of ix86_expand_vec_perm_builtin_1. Pattern match extract-even and extract-odd permutations. */ static bool expand_vec_perm_even_odd (struct expand_vec_perm_d *d) { unsigned i, odd, nelt = d->nelt; odd = d->perm[0]; if (odd != 0 && odd != 1) return false; for (i = 1; i < nelt; ++i) if (d->perm[i] != 2 * i + odd) return false; return expand_vec_perm_even_odd_1 (d, odd); } /* A subroutine of ix86_expand_vec_perm_builtin_1. Implement broadcast permutations. We assume that expand_vec_perm_1 has already failed. */ static bool expand_vec_perm_broadcast_1 (struct expand_vec_perm_d *d) { unsigned elt = d->perm[0], nelt2 = d->nelt / 2; enum machine_mode vmode = d->vmode; unsigned char perm2[4]; rtx op0 = d->op0, dest; bool ok; switch (vmode) { case V4DFmode: case V8SFmode: /* These are special-cased in sse.md so that we can optionally use the vbroadcast instruction. They expand to two insns if the input happens to be in a register. */ gcc_unreachable (); case V2DFmode: case V2DImode: case V4SFmode: case V4SImode: /* These are always implementable using standard shuffle patterns. */ gcc_unreachable (); case V8HImode: case V16QImode: /* These can be implemented via interleave. We save one insn by stopping once we have promoted to V4SImode and then use pshufd. */ do { rtx dest; rtx (*gen) (rtx, rtx, rtx) = vmode == V16QImode ? gen_vec_interleave_lowv16qi : gen_vec_interleave_lowv8hi; if (elt >= nelt2) { gen = vmode == V16QImode ? gen_vec_interleave_highv16qi : gen_vec_interleave_highv8hi; elt -= nelt2; } nelt2 /= 2; dest = gen_reg_rtx (vmode); emit_insn (gen (dest, op0, op0)); vmode = get_mode_wider_vector (vmode); op0 = gen_lowpart (vmode, dest); } while (vmode != V4SImode); memset (perm2, elt, 4); dest = gen_reg_rtx (V4SImode); ok = expand_vselect (dest, op0, perm2, 4, d->testing_p); gcc_assert (ok); if (!d->testing_p) emit_move_insn (d->target, gen_lowpart (d->vmode, dest)); return true; case V32QImode: case V16HImode: case V8SImode: case V4DImode: /* For AVX2 broadcasts of the first element vpbroadcast* or vpermq should be used by expand_vec_perm_1. */ gcc_assert (!TARGET_AVX2 || d->perm[0]); return false; default: gcc_unreachable (); } } /* A subroutine of ix86_expand_vec_perm_builtin_1. Pattern match broadcast permutations. */ static bool expand_vec_perm_broadcast (struct expand_vec_perm_d *d) { unsigned i, elt, nelt = d->nelt; if (!d->one_operand_p) return false; elt = d->perm[0]; for (i = 1; i < nelt; ++i) if (d->perm[i] != elt) return false; return expand_vec_perm_broadcast_1 (d); } /* Implement arbitrary permutation of two V32QImode and V16QImode operands with 4 vpshufb insns, 2 vpermq and 3 vpor. We should have already failed all the shorter instruction sequences. */ static bool expand_vec_perm_vpshufb4_vpermq2 (struct expand_vec_perm_d *d) { rtx rperm[4][32], vperm, l[2], h[2], op, m128; unsigned int i, nelt, eltsz; bool used[4]; if (!TARGET_AVX2 || d->one_operand_p || (d->vmode != V32QImode && d->vmode != V16HImode)) return false; if (d->testing_p) return true; nelt = d->nelt; eltsz = GET_MODE_SIZE (GET_MODE_INNER (d->vmode)); /* Generate 4 permutation masks. If the required element is within the same lane, it is shuffled in. If the required element from the other lane, force a zero by setting bit 7 in the permutation mask. In the other mask the mask has non-negative elements if element is requested from the other lane, but also moved to the other lane, so that the result of vpshufb can have the two V2TImode halves swapped. */ m128 = GEN_INT (-128); for (i = 0; i < 32; ++i) { rperm[0][i] = m128; rperm[1][i] = m128; rperm[2][i] = m128; rperm[3][i] = m128; } used[0] = false; used[1] = false; used[2] = false; used[3] = false; for (i = 0; i < nelt; ++i) { unsigned j, e = d->perm[i] & (nelt / 2 - 1); unsigned xlane = ((d->perm[i] ^ i) & (nelt / 2)) * eltsz; unsigned int which = ((d->perm[i] & nelt) ? 2 : 0) + (xlane ? 1 : 0); for (j = 0; j < eltsz; ++j) rperm[which][(i * eltsz + j) ^ xlane] = GEN_INT (e * eltsz + j); used[which] = true; } for (i = 0; i < 2; ++i) { if (!used[2 * i + 1]) { h[i] = NULL_RTX; continue; } vperm = gen_rtx_CONST_VECTOR (V32QImode, gen_rtvec_v (32, rperm[2 * i + 1])); vperm = force_reg (V32QImode, vperm); h[i] = gen_reg_rtx (V32QImode); op = gen_lowpart (V32QImode, i ? d->op1 : d->op0); emit_insn (gen_avx2_pshufbv32qi3 (h[i], op, vperm)); } /* Swap the 128-byte lanes of h[X]. */ for (i = 0; i < 2; ++i) { if (h[i] == NULL_RTX) continue; op = gen_reg_rtx (V4DImode); emit_insn (gen_avx2_permv4di_1 (op, gen_lowpart (V4DImode, h[i]), const2_rtx, GEN_INT (3), const0_rtx, const1_rtx)); h[i] = gen_lowpart (V32QImode, op); } for (i = 0; i < 2; ++i) { if (!used[2 * i]) { l[i] = NULL_RTX; continue; } vperm = gen_rtx_CONST_VECTOR (V32QImode, gen_rtvec_v (32, rperm[2 * i])); vperm = force_reg (V32QImode, vperm); l[i] = gen_reg_rtx (V32QImode); op = gen_lowpart (V32QImode, i ? d->op1 : d->op0); emit_insn (gen_avx2_pshufbv32qi3 (l[i], op, vperm)); } for (i = 0; i < 2; ++i) { if (h[i] && l[i]) { op = gen_reg_rtx (V32QImode); emit_insn (gen_iorv32qi3 (op, l[i], h[i])); l[i] = op; } else if (h[i]) l[i] = h[i]; } gcc_assert (l[0] && l[1]); op = d->target; if (d->vmode != V32QImode) op = gen_reg_rtx (V32QImode); emit_insn (gen_iorv32qi3 (op, l[0], l[1])); if (op != d->target) emit_move_insn (d->target, gen_lowpart (d->vmode, op)); return true; } /* The guts of ix86_expand_vec_perm_const, also used by the ok hook. With all of the interface bits taken care of, perform the expansion in D and return true on success. */ static bool ix86_expand_vec_perm_const_1 (struct expand_vec_perm_d *d) { /* Try a single instruction expansion. */ if (expand_vec_perm_1 (d)) return true; /* Try sequences of two instructions. */ if (expand_vec_perm_pshuflw_pshufhw (d)) return true; if (expand_vec_perm_palignr (d)) return true; if (expand_vec_perm_interleave2 (d)) return true; if (expand_vec_perm_broadcast (d)) return true; if (expand_vec_perm_vpermq_perm_1 (d)) return true; if (expand_vec_perm_vperm2f128 (d)) return true; /* Try sequences of three instructions. */ if (expand_vec_perm_2vperm2f128_vshuf (d)) return true; if (expand_vec_perm_pshufb2 (d)) return true; if (expand_vec_perm_interleave3 (d)) return true; if (expand_vec_perm_vperm2f128_vblend (d)) return true; /* Try sequences of four instructions. */ if (expand_vec_perm_vpshufb2_vpermq (d)) return true; if (expand_vec_perm_vpshufb2_vpermq_even_odd (d)) return true; /* ??? Look for narrow permutations whose element orderings would allow the promotion to a wider mode. */ /* ??? Look for sequences of interleave or a wider permute that place the data into the correct lanes for a half-vector shuffle like pshuf[lh]w or vpermilps. */ /* ??? Look for sequences of interleave that produce the desired results. The combinatorics of punpck[lh] get pretty ugly... */ if (expand_vec_perm_even_odd (d)) return true; /* Even longer sequences. */ if (expand_vec_perm_vpshufb4_vpermq2 (d)) return true; return false; } /* If a permutation only uses one operand, make it clear. Returns true if the permutation references both operands. */ static bool canonicalize_perm (struct expand_vec_perm_d *d) { int i, which, nelt = d->nelt; for (i = which = 0; i < nelt; ++i) which |= (d->perm[i] < nelt ? 1 : 2); d->one_operand_p = true; switch (which) { default: gcc_unreachable(); case 3: if (!rtx_equal_p (d->op0, d->op1)) { d->one_operand_p = false; break; } /* The elements of PERM do not suggest that only the first operand is used, but both operands are identical. Allow easier matching of the permutation by folding the permutation into the single input vector. */ /* FALLTHRU */ case 2: for (i = 0; i < nelt; ++i) d->perm[i] &= nelt - 1; d->op0 = d->op1; break; case 1: d->op1 = d->op0; break; } return (which == 3); } bool ix86_expand_vec_perm_const (rtx operands[4]) { struct expand_vec_perm_d d; unsigned char perm[MAX_VECT_LEN]; int i, nelt; bool two_args; rtx sel; d.target = operands[0]; d.op0 = operands[1]; d.op1 = operands[2]; sel = operands[3]; d.vmode = GET_MODE (d.target); gcc_assert (VECTOR_MODE_P (d.vmode)); d.nelt = nelt = GET_MODE_NUNITS (d.vmode); d.testing_p = false; gcc_assert (GET_CODE (sel) == CONST_VECTOR); gcc_assert (XVECLEN (sel, 0) == nelt); gcc_checking_assert (sizeof (d.perm) == sizeof (perm)); for (i = 0; i < nelt; ++i) { rtx e = XVECEXP (sel, 0, i); int ei = INTVAL (e) & (2 * nelt - 1); d.perm[i] = ei; perm[i] = ei; } two_args = canonicalize_perm (&d); if (ix86_expand_vec_perm_const_1 (&d)) return true; /* If the selector says both arguments are needed, but the operands are the same, the above tried to expand with one_operand_p and flattened selector. If that didn't work, retry without one_operand_p; we succeeded with that during testing. */ if (two_args && d.one_operand_p) { d.one_operand_p = false; memcpy (d.perm, perm, sizeof (perm)); return ix86_expand_vec_perm_const_1 (&d); } return false; } /* Implement targetm.vectorize.vec_perm_const_ok. */ static bool ix86_vectorize_vec_perm_const_ok (enum machine_mode vmode, const unsigned char *sel) { struct expand_vec_perm_d d; unsigned int i, nelt, which; bool ret; d.vmode = vmode; d.nelt = nelt = GET_MODE_NUNITS (d.vmode); d.testing_p = true; /* Given sufficient ISA support we can just return true here for selected vector modes. */ if (GET_MODE_SIZE (d.vmode) == 16) { /* All implementable with a single vpperm insn. */ if (TARGET_XOP) return true; /* All implementable with 2 pshufb + 1 ior. */ if (TARGET_SSSE3) return true; /* All implementable with shufpd or unpck[lh]pd. */ if (d.nelt == 2) return true; } /* Extract the values from the vector CST into the permutation array in D. */ memcpy (d.perm, sel, nelt); for (i = which = 0; i < nelt; ++i) { unsigned char e = d.perm[i]; gcc_assert (e < 2 * nelt); which |= (e < nelt ? 1 : 2); } /* For all elements from second vector, fold the elements to first. */ if (which == 2) for (i = 0; i < nelt; ++i) d.perm[i] -= nelt; /* Check whether the mask can be applied to the vector type. */ d.one_operand_p = (which != 3); /* Implementable with shufps or pshufd. */ if (d.one_operand_p && (d.vmode == V4SFmode || d.vmode == V4SImode)) return true; /* Otherwise we have to go through the motions and see if we can figure out how to generate the requested permutation. */ d.target = gen_raw_REG (d.vmode, LAST_VIRTUAL_REGISTER + 1); d.op1 = d.op0 = gen_raw_REG (d.vmode, LAST_VIRTUAL_REGISTER + 2); if (!d.one_operand_p) d.op1 = gen_raw_REG (d.vmode, LAST_VIRTUAL_REGISTER + 3); start_sequence (); ret = ix86_expand_vec_perm_const_1 (&d); end_sequence (); return ret; } void ix86_expand_vec_extract_even_odd (rtx targ, rtx op0, rtx op1, unsigned odd) { struct expand_vec_perm_d d; unsigned i, nelt; d.target = targ; d.op0 = op0; d.op1 = op1; d.vmode = GET_MODE (targ); d.nelt = nelt = GET_MODE_NUNITS (d.vmode); d.one_operand_p = false; d.testing_p = false; for (i = 0; i < nelt; ++i) d.perm[i] = i * 2 + odd; /* We'll either be able to implement the permutation directly... */ if (expand_vec_perm_1 (&d)) return; /* ... or we use the special-case patterns. */ expand_vec_perm_even_odd_1 (&d, odd); } static void ix86_expand_vec_interleave (rtx targ, rtx op0, rtx op1, bool high_p) { struct expand_vec_perm_d d; unsigned i, nelt, base; bool ok; d.target = targ; d.op0 = op0; d.op1 = op1; d.vmode = GET_MODE (targ); d.nelt = nelt = GET_MODE_NUNITS (d.vmode); d.one_operand_p = false; d.testing_p = false; base = high_p ? nelt / 2 : 0; for (i = 0; i < nelt / 2; ++i) { d.perm[i * 2] = i + base; d.perm[i * 2 + 1] = i + base + nelt; } /* Note that for AVX this isn't one instruction. */ ok = ix86_expand_vec_perm_const_1 (&d); gcc_assert (ok); } /* Expand a vector operation CODE for a V*QImode in terms of the same operation on V*HImode. */ void ix86_expand_vecop_qihi (enum rtx_code code, rtx dest, rtx op1, rtx op2) { enum machine_mode qimode = GET_MODE (dest); enum machine_mode himode; rtx (*gen_il) (rtx, rtx, rtx); rtx (*gen_ih) (rtx, rtx, rtx); rtx op1_l, op1_h, op2_l, op2_h, res_l, res_h; struct expand_vec_perm_d d; bool ok, full_interleave; bool uns_p = false; int i; switch (qimode) { case V16QImode: himode = V8HImode; gen_il = gen_vec_interleave_lowv16qi; gen_ih = gen_vec_interleave_highv16qi; break; case V32QImode: himode = V16HImode; gen_il = gen_avx2_interleave_lowv32qi; gen_ih = gen_avx2_interleave_highv32qi; break; default: gcc_unreachable (); } op2_l = op2_h = op2; switch (code) { case MULT: /* Unpack data such that we've got a source byte in each low byte of each word. We don't care what goes into the high byte of each word. Rather than trying to get zero in there, most convenient is to let it be a copy of the low byte. */ op2_l = gen_reg_rtx (qimode); op2_h = gen_reg_rtx (qimode); emit_insn (gen_il (op2_l, op2, op2)); emit_insn (gen_ih (op2_h, op2, op2)); /* FALLTHRU */ op1_l = gen_reg_rtx (qimode); op1_h = gen_reg_rtx (qimode); emit_insn (gen_il (op1_l, op1, op1)); emit_insn (gen_ih (op1_h, op1, op1)); full_interleave = qimode == V16QImode; break; case ASHIFT: case LSHIFTRT: uns_p = true; /* FALLTHRU */ case ASHIFTRT: op1_l = gen_reg_rtx (himode); op1_h = gen_reg_rtx (himode); ix86_expand_sse_unpack (op1_l, op1, uns_p, false); ix86_expand_sse_unpack (op1_h, op1, uns_p, true); full_interleave = true; break; default: gcc_unreachable (); } /* Perform the operation. */ res_l = expand_simple_binop (himode, code, op1_l, op2_l, NULL_RTX, 1, OPTAB_DIRECT); res_h = expand_simple_binop (himode, code, op1_h, op2_h, NULL_RTX, 1, OPTAB_DIRECT); gcc_assert (res_l && res_h); /* Merge the data back into the right place. */ d.target = dest; d.op0 = gen_lowpart (qimode, res_l); d.op1 = gen_lowpart (qimode, res_h); d.vmode = qimode; d.nelt = GET_MODE_NUNITS (qimode); d.one_operand_p = false; d.testing_p = false; if (full_interleave) { /* For SSE2, we used an full interleave, so the desired results are in the even elements. */ for (i = 0; i < 32; ++i) d.perm[i] = i * 2; } else { /* For AVX, the interleave used above was not cross-lane. So the extraction is evens but with the second and third quarter swapped. Happily, that is even one insn shorter than even extraction. */ for (i = 0; i < 32; ++i) d.perm[i] = i * 2 + ((i & 24) == 8 ? 16 : (i & 24) == 16 ? -16 : 0); } ok = ix86_expand_vec_perm_const_1 (&d); gcc_assert (ok); set_unique_reg_note (get_last_insn (), REG_EQUAL, gen_rtx_fmt_ee (code, qimode, op1, op2)); } /* Helper function of ix86_expand_mul_widen_evenodd. Return true if op is CONST_VECTOR with all odd elements equal to their preceding element. */ static bool const_vector_equal_evenodd_p (rtx op) { enum machine_mode mode = GET_MODE (op); int i, nunits = GET_MODE_NUNITS (mode); if (GET_CODE (op) != CONST_VECTOR || nunits != CONST_VECTOR_NUNITS (op)) return false; for (i = 0; i < nunits; i += 2) if (CONST_VECTOR_ELT (op, i) != CONST_VECTOR_ELT (op, i + 1)) return false; return true; } void ix86_expand_mul_widen_evenodd (rtx dest, rtx op1, rtx op2, bool uns_p, bool odd_p) { enum machine_mode mode = GET_MODE (op1); enum machine_mode wmode = GET_MODE (dest); rtx x; rtx orig_op1 = op1, orig_op2 = op2; if (!nonimmediate_operand (op1, mode)) op1 = force_reg (mode, op1); if (!nonimmediate_operand (op2, mode)) op2 = force_reg (mode, op2); /* We only play even/odd games with vectors of SImode. */ gcc_assert (mode == V4SImode || mode == V8SImode); /* If we're looking for the odd results, shift those members down to the even slots. For some cpus this is faster than a PSHUFD. */ if (odd_p) { /* For XOP use vpmacsdqh, but only for smult, as it is only signed. */ if (TARGET_XOP && mode == V4SImode && !uns_p) { x = force_reg (wmode, CONST0_RTX (wmode)); emit_insn (gen_xop_pmacsdqh (dest, op1, op2, x)); return; } x = GEN_INT (GET_MODE_UNIT_BITSIZE (mode)); if (!const_vector_equal_evenodd_p (orig_op1)) op1 = expand_binop (wmode, lshr_optab, gen_lowpart (wmode, op1), x, NULL, 1, OPTAB_DIRECT); if (!const_vector_equal_evenodd_p (orig_op2)) op2 = expand_binop (wmode, lshr_optab, gen_lowpart (wmode, op2), x, NULL, 1, OPTAB_DIRECT); op1 = gen_lowpart (mode, op1); op2 = gen_lowpart (mode, op2); } if (mode == V8SImode) { if (uns_p) x = gen_vec_widen_umult_even_v8si (dest, op1, op2); else x = gen_vec_widen_smult_even_v8si (dest, op1, op2); } else if (uns_p) x = gen_vec_widen_umult_even_v4si (dest, op1, op2); else if (TARGET_SSE4_1) x = gen_sse4_1_mulv2siv2di3 (dest, op1, op2); else { rtx s1, s2, t0, t1, t2; /* The easiest way to implement this without PMULDQ is to go through the motions as if we are performing a full 64-bit multiply. With the exception that we need to do less shuffling of the elements. */ /* Compute the sign-extension, aka highparts, of the two operands. */ s1 = ix86_expand_sse_cmp (gen_reg_rtx (mode), GT, CONST0_RTX (mode), op1, pc_rtx, pc_rtx); s2 = ix86_expand_sse_cmp (gen_reg_rtx (mode), GT, CONST0_RTX (mode), op2, pc_rtx, pc_rtx); /* Multiply LO(A) * HI(B), and vice-versa. */ t1 = gen_reg_rtx (wmode); t2 = gen_reg_rtx (wmode); emit_insn (gen_vec_widen_umult_even_v4si (t1, s1, op2)); emit_insn (gen_vec_widen_umult_even_v4si (t2, s2, op1)); /* Multiply LO(A) * LO(B). */ t0 = gen_reg_rtx (wmode); emit_insn (gen_vec_widen_umult_even_v4si (t0, op1, op2)); /* Combine and shift the highparts into place. */ t1 = expand_binop (wmode, add_optab, t1, t2, t1, 1, OPTAB_DIRECT); t1 = expand_binop (wmode, ashl_optab, t1, GEN_INT (32), t1, 1, OPTAB_DIRECT); /* Combine high and low parts. */ force_expand_binop (wmode, add_optab, t0, t1, dest, 1, OPTAB_DIRECT); return; } emit_insn (x); } void ix86_expand_mul_widen_hilo (rtx dest, rtx op1, rtx op2, bool uns_p, bool high_p) { enum machine_mode wmode = GET_MODE (dest); enum machine_mode mode = GET_MODE (op1); rtx t1, t2, t3, t4, mask; switch (mode) { case V4SImode: t1 = gen_reg_rtx (mode); t2 = gen_reg_rtx (mode); if (TARGET_XOP && !uns_p) { /* With XOP, we have pmacsdqh, aka mul_widen_odd. In this case, shuffle the elements once so that all elements are in the right place for immediate use: { A C B D }. */ emit_insn (gen_sse2_pshufd_1 (t1, op1, const0_rtx, const2_rtx, const1_rtx, GEN_INT (3))); emit_insn (gen_sse2_pshufd_1 (t2, op2, const0_rtx, const2_rtx, const1_rtx, GEN_INT (3))); } else { /* Put the elements into place for the multiply. */ ix86_expand_vec_interleave (t1, op1, op1, high_p); ix86_expand_vec_interleave (t2, op2, op2, high_p); high_p = false; } ix86_expand_mul_widen_evenodd (dest, t1, t2, uns_p, high_p); break; case V8SImode: /* Shuffle the elements between the lanes. After this we have { A B E F | C D G H } for each operand. */ t1 = gen_reg_rtx (V4DImode); t2 = gen_reg_rtx (V4DImode); emit_insn (gen_avx2_permv4di_1 (t1, gen_lowpart (V4DImode, op1), const0_rtx, const2_rtx, const1_rtx, GEN_INT (3))); emit_insn (gen_avx2_permv4di_1 (t2, gen_lowpart (V4DImode, op2), const0_rtx, const2_rtx, const1_rtx, GEN_INT (3))); /* Shuffle the elements within the lanes. After this we have { A A B B | C C D D } or { E E F F | G G H H }. */ t3 = gen_reg_rtx (V8SImode); t4 = gen_reg_rtx (V8SImode); mask = GEN_INT (high_p ? 2 + (2 << 2) + (3 << 4) + (3 << 6) : 0 + (0 << 2) + (1 << 4) + (1 << 6)); emit_insn (gen_avx2_pshufdv3 (t3, gen_lowpart (V8SImode, t1), mask)); emit_insn (gen_avx2_pshufdv3 (t4, gen_lowpart (V8SImode, t2), mask)); ix86_expand_mul_widen_evenodd (dest, t3, t4, uns_p, false); break; case V8HImode: case V16HImode: t1 = expand_binop (mode, smul_optab, op1, op2, NULL_RTX, uns_p, OPTAB_DIRECT); t2 = expand_binop (mode, uns_p ? umul_highpart_optab : smul_highpart_optab, op1, op2, NULL_RTX, uns_p, OPTAB_DIRECT); gcc_assert (t1 && t2); t3 = gen_reg_rtx (mode); ix86_expand_vec_interleave (t3, t1, t2, high_p); emit_move_insn (dest, gen_lowpart (wmode, t3)); break; case V16QImode: case V32QImode: t1 = gen_reg_rtx (wmode); t2 = gen_reg_rtx (wmode); ix86_expand_sse_unpack (t1, op1, uns_p, high_p); ix86_expand_sse_unpack (t2, op2, uns_p, high_p); emit_insn (gen_rtx_SET (VOIDmode, dest, gen_rtx_MULT (wmode, t1, t2))); break; default: gcc_unreachable (); } } void ix86_expand_sse2_mulv4si3 (rtx op0, rtx op1, rtx op2) { rtx res_1, res_2, res_3, res_4; res_1 = gen_reg_rtx (V4SImode); res_2 = gen_reg_rtx (V4SImode); res_3 = gen_reg_rtx (V2DImode); res_4 = gen_reg_rtx (V2DImode); ix86_expand_mul_widen_evenodd (res_3, op1, op2, true, false); ix86_expand_mul_widen_evenodd (res_4, op1, op2, true, true); /* Move the results in element 2 down to element 1; we don't care what goes in elements 2 and 3. Then we can merge the parts back together with an interleave. Note that two other sequences were tried: (1) Use interleaves at the start instead of psrldq, which allows us to use a single shufps to merge things back at the end. (2) Use shufps here to combine the two vectors, then pshufd to put the elements in the correct order. In both cases the cost of the reformatting stall was too high and the overall sequence slower. */ emit_insn (gen_sse2_pshufd_1 (res_1, gen_lowpart (V4SImode, res_3), const0_rtx, const2_rtx, const0_rtx, const0_rtx)); emit_insn (gen_sse2_pshufd_1 (res_2, gen_lowpart (V4SImode, res_4), const0_rtx, const2_rtx, const0_rtx, const0_rtx)); res_1 = emit_insn (gen_vec_interleave_lowv4si (op0, res_1, res_2)); set_unique_reg_note (res_1, REG_EQUAL, gen_rtx_MULT (V4SImode, op1, op2)); } void ix86_expand_sse2_mulvxdi3 (rtx op0, rtx op1, rtx op2) { enum machine_mode mode = GET_MODE (op0); rtx t1, t2, t3, t4, t5, t6; if (TARGET_XOP && mode == V2DImode) { /* op1: A,B,C,D, op2: E,F,G,H */ op1 = gen_lowpart (V4SImode, op1); op2 = gen_lowpart (V4SImode, op2); t1 = gen_reg_rtx (V4SImode); t2 = gen_reg_rtx (V4SImode); t3 = gen_reg_rtx (V2DImode); t4 = gen_reg_rtx (V2DImode); /* t1: B,A,D,C */ emit_insn (gen_sse2_pshufd_1 (t1, op1, GEN_INT (1), GEN_INT (0), GEN_INT (3), GEN_INT (2))); /* t2: (B*E),(A*F),(D*G),(C*H) */ emit_insn (gen_mulv4si3 (t2, t1, op2)); /* t3: (B*E)+(A*F), (D*G)+(C*H) */ emit_insn (gen_xop_phadddq (t3, t2)); /* t4: ((B*E)+(A*F))<<32, ((D*G)+(C*H))<<32 */ emit_insn (gen_ashlv2di3 (t4, t3, GEN_INT (32))); /* op0: (((B*E)+(A*F))<<32)+(B*F), (((D*G)+(C*H))<<32)+(D*H) */ emit_insn (gen_xop_pmacsdql (op0, op1, op2, t4)); } else { enum machine_mode nmode; rtx (*umul) (rtx, rtx, rtx); if (mode == V2DImode) { umul = gen_vec_widen_umult_even_v4si; nmode = V4SImode; } else if (mode == V4DImode) { umul = gen_vec_widen_umult_even_v8si; nmode = V8SImode; } else gcc_unreachable (); /* Multiply low parts. */ t1 = gen_reg_rtx (mode); emit_insn (umul (t1, gen_lowpart (nmode, op1), gen_lowpart (nmode, op2))); /* Shift input vectors right 32 bits so we can multiply high parts. */ t6 = GEN_INT (32); t2 = expand_binop (mode, lshr_optab, op1, t6, NULL, 1, OPTAB_DIRECT); t3 = expand_binop (mode, lshr_optab, op2, t6, NULL, 1, OPTAB_DIRECT); /* Multiply high parts by low parts. */ t4 = gen_reg_rtx (mode); t5 = gen_reg_rtx (mode); emit_insn (umul (t4, gen_lowpart (nmode, t2), gen_lowpart (nmode, op2))); emit_insn (umul (t5, gen_lowpart (nmode, t3), gen_lowpart (nmode, op1))); /* Combine and shift the highparts back. */ t4 = expand_binop (mode, add_optab, t4, t5, t4, 1, OPTAB_DIRECT); t4 = expand_binop (mode, ashl_optab, t4, t6, t4, 1, OPTAB_DIRECT); /* Combine high and low parts. */ force_expand_binop (mode, add_optab, t1, t4, op0, 1, OPTAB_DIRECT); } set_unique_reg_note (get_last_insn (), REG_EQUAL, gen_rtx_MULT (mode, op1, op2)); } /* Return 1 if control tansfer instruction INSN should be encoded with bnd prefix. If insn is NULL then return 1 when control transfer instructions should be prefixed with bnd by default for current function. */ bool ix86_bnd_prefixed_insn_p (rtx insn ATTRIBUTE_UNUSED) { return false; } /* Calculate integer abs() using only SSE2 instructions. */ void ix86_expand_sse2_abs (rtx target, rtx input) { enum machine_mode mode = GET_MODE (target); rtx tmp0, tmp1, x; switch (mode) { /* For 32-bit signed integer X, the best way to calculate the absolute value of X is (((signed) X >> (W-1)) ^ X) - ((signed) X >> (W-1)). */ case V4SImode: tmp0 = expand_simple_binop (mode, ASHIFTRT, input, GEN_INT (GET_MODE_BITSIZE (GET_MODE_INNER (mode)) - 1), NULL, 0, OPTAB_DIRECT); tmp1 = expand_simple_binop (mode, XOR, tmp0, input, NULL, 0, OPTAB_DIRECT); x = expand_simple_binop (mode, MINUS, tmp1, tmp0, target, 0, OPTAB_DIRECT); break; /* For 16-bit signed integer X, the best way to calculate the absolute value of X is max (X, -X), as SSE2 provides the PMAXSW insn. */ case V8HImode: tmp0 = expand_unop (mode, neg_optab, input, NULL_RTX, 0); x = expand_simple_binop (mode, SMAX, tmp0, input, target, 0, OPTAB_DIRECT); break; /* For 8-bit signed integer X, the best way to calculate the absolute value of X is min ((unsigned char) X, (unsigned char) (-X)), as SSE2 provides the PMINUB insn. */ case V16QImode: tmp0 = expand_unop (mode, neg_optab, input, NULL_RTX, 0); x = expand_simple_binop (V16QImode, UMIN, tmp0, input, target, 0, OPTAB_DIRECT); break; default: gcc_unreachable (); } if (x != target) emit_move_insn (target, x); } /* Expand an insert into a vector register through pinsr insn. Return true if successful. */ bool ix86_expand_pinsr (rtx *operands) { rtx dst = operands[0]; rtx src = operands[3]; unsigned int size = INTVAL (operands[1]); unsigned int pos = INTVAL (operands[2]); if (GET_CODE (dst) == SUBREG) { pos += SUBREG_BYTE (dst) * BITS_PER_UNIT; dst = SUBREG_REG (dst); } if (GET_CODE (src) == SUBREG) src = SUBREG_REG (src); switch (GET_MODE (dst)) { case V16QImode: case V8HImode: case V4SImode: case V2DImode: { enum machine_mode srcmode, dstmode; rtx (*pinsr)(rtx, rtx, rtx, rtx); srcmode = mode_for_size (size, MODE_INT, 0); switch (srcmode) { case QImode: if (!TARGET_SSE4_1) return false; dstmode = V16QImode; pinsr = gen_sse4_1_pinsrb; break; case HImode: if (!TARGET_SSE2) return false; dstmode = V8HImode; pinsr = gen_sse2_pinsrw; break; case SImode: if (!TARGET_SSE4_1) return false; dstmode = V4SImode; pinsr = gen_sse4_1_pinsrd; break; case DImode: gcc_assert (TARGET_64BIT); if (!TARGET_SSE4_1) return false; dstmode = V2DImode; pinsr = gen_sse4_1_pinsrq; break; default: return false; } rtx d = dst; if (GET_MODE (dst) != dstmode) d = gen_reg_rtx (dstmode); src = gen_lowpart (srcmode, src); pos /= size; emit_insn (pinsr (d, gen_lowpart (dstmode, dst), src, GEN_INT (1 << pos))); if (d != dst) emit_move_insn (dst, gen_lowpart (GET_MODE (dst), d)); return true; } default: return false; } } /* This function returns the calling abi specific va_list type node. It returns the FNDECL specific va_list type. */ static tree ix86_fn_abi_va_list (tree fndecl) { if (!TARGET_64BIT) return va_list_type_node; gcc_assert (fndecl != NULL_TREE); if (ix86_function_abi ((const_tree) fndecl) == MS_ABI) return ms_va_list_type_node; else return sysv_va_list_type_node; } /* Returns the canonical va_list type specified by TYPE. If there is no valid TYPE provided, it return NULL_TREE. */ static tree ix86_canonical_va_list_type (tree type) { tree wtype, htype; /* Resolve references and pointers to va_list type. */ if (TREE_CODE (type) == MEM_REF) type = TREE_TYPE (type); else if (POINTER_TYPE_P (type) && POINTER_TYPE_P (TREE_TYPE(type))) type = TREE_TYPE (type); else if (POINTER_TYPE_P (type) && TREE_CODE (TREE_TYPE (type)) == ARRAY_TYPE) type = TREE_TYPE (type); if (TARGET_64BIT && va_list_type_node != NULL_TREE) { wtype = va_list_type_node; gcc_assert (wtype != NULL_TREE); htype = type; if (TREE_CODE (wtype) == ARRAY_TYPE) { /* If va_list is an array type, the argument may have decayed to a pointer type, e.g. by being passed to another function. In that case, unwrap both types so that we can compare the underlying records. */ if (TREE_CODE (htype) == ARRAY_TYPE || POINTER_TYPE_P (htype)) { wtype = TREE_TYPE (wtype); htype = TREE_TYPE (htype); } } if (TYPE_MAIN_VARIANT (wtype) == TYPE_MAIN_VARIANT (htype)) return va_list_type_node; wtype = sysv_va_list_type_node; gcc_assert (wtype != NULL_TREE); htype = type; if (TREE_CODE (wtype) == ARRAY_TYPE) { /* If va_list is an array type, the argument may have decayed to a pointer type, e.g. by being passed to another function. In that case, unwrap both types so that we can compare the underlying records. */ if (TREE_CODE (htype) == ARRAY_TYPE || POINTER_TYPE_P (htype)) { wtype = TREE_TYPE (wtype); htype = TREE_TYPE (htype); } } if (TYPE_MAIN_VARIANT (wtype) == TYPE_MAIN_VARIANT (htype)) return sysv_va_list_type_node; wtype = ms_va_list_type_node; gcc_assert (wtype != NULL_TREE); htype = type; if (TREE_CODE (wtype) == ARRAY_TYPE) { /* If va_list is an array type, the argument may have decayed to a pointer type, e.g. by being passed to another function. In that case, unwrap both types so that we can compare the underlying records. */ if (TREE_CODE (htype) == ARRAY_TYPE || POINTER_TYPE_P (htype)) { wtype = TREE_TYPE (wtype); htype = TREE_TYPE (htype); } } if (TYPE_MAIN_VARIANT (wtype) == TYPE_MAIN_VARIANT (htype)) return ms_va_list_type_node; return NULL_TREE; } return std_canonical_va_list_type (type); } /* Iterate through the target-specific builtin types for va_list. IDX denotes the iterator, *PTREE is set to the result type of the va_list builtin, and *PNAME to its internal type. Returns zero if there is no element for this index, otherwise IDX should be increased upon the next call. Note, do not iterate a base builtin's name like __builtin_va_list. Used from c_common_nodes_and_builtins. */ static int ix86_enum_va_list (int idx, const char **pname, tree *ptree) { if (TARGET_64BIT) { switch (idx) { default: break; case 0: *ptree = ms_va_list_type_node; *pname = "__builtin_ms_va_list"; return 1; case 1: *ptree = sysv_va_list_type_node; *pname = "__builtin_sysv_va_list"; return 1; } } return 0; } #undef TARGET_SCHED_DISPATCH #define TARGET_SCHED_DISPATCH has_dispatch #undef TARGET_SCHED_DISPATCH_DO #define TARGET_SCHED_DISPATCH_DO do_dispatch #undef TARGET_SCHED_REASSOCIATION_WIDTH #define TARGET_SCHED_REASSOCIATION_WIDTH ix86_reassociation_width #undef TARGET_SCHED_REORDER #define TARGET_SCHED_REORDER ix86_sched_reorder #undef TARGET_SCHED_ADJUST_PRIORITY #define TARGET_SCHED_ADJUST_PRIORITY ix86_adjust_priority #undef TARGET_SCHED_DEPENDENCIES_EVALUATION_HOOK #define TARGET_SCHED_DEPENDENCIES_EVALUATION_HOOK \ ix86_dependencies_evaluation_hook /* The size of the dispatch window is the total number of bytes of object code allowed in a window. */ #define DISPATCH_WINDOW_SIZE 16 /* Number of dispatch windows considered for scheduling. */ #define MAX_DISPATCH_WINDOWS 3 /* Maximum number of instructions in a window. */ #define MAX_INSN 4 /* Maximum number of immediate operands in a window. */ #define MAX_IMM 4 /* Maximum number of immediate bits allowed in a window. */ #define MAX_IMM_SIZE 128 /* Maximum number of 32 bit immediates allowed in a window. */ #define MAX_IMM_32 4 /* Maximum number of 64 bit immediates allowed in a window. */ #define MAX_IMM_64 2 /* Maximum total of loads or prefetches allowed in a window. */ #define MAX_LOAD 2 /* Maximum total of stores allowed in a window. */ #define MAX_STORE 1 #undef BIG #define BIG 100 /* Dispatch groups. Istructions that affect the mix in a dispatch window. */ enum dispatch_group { disp_no_group = 0, disp_load, disp_store, disp_load_store, disp_prefetch, disp_imm, disp_imm_32, disp_imm_64, disp_branch, disp_cmp, disp_jcc, disp_last }; /* Number of allowable groups in a dispatch window. It is an array indexed by dispatch_group enum. 100 is used as a big number, because the number of these kind of operations does not have any effect in dispatch window, but we need them for other reasons in the table. */ static unsigned int num_allowable_groups[disp_last] = { 0, 2, 1, 1, 2, 4, 4, 2, 1, BIG, BIG }; char group_name[disp_last + 1][16] = { "disp_no_group", "disp_load", "disp_store", "disp_load_store", "disp_prefetch", "disp_imm", "disp_imm_32", "disp_imm_64", "disp_branch", "disp_cmp", "disp_jcc", "disp_last" }; /* Instruction path. */ enum insn_path { no_path = 0, path_single, /* Single micro op. */ path_double, /* Double micro op. */ path_multi, /* Instructions with more than 2 micro op.. */ last_path }; /* sched_insn_info defines a window to the instructions scheduled in the basic block. It contains a pointer to the insn_info table and the instruction scheduled. Windows are allocated for each basic block and are linked together. */ typedef struct sched_insn_info_s { rtx insn; enum dispatch_group group; enum insn_path path; int byte_len; int imm_bytes; } sched_insn_info; /* Linked list of dispatch windows. This is a two way list of dispatch windows of a basic block. It contains information about the number of uops in the window and the total number of instructions and of bytes in the object code for this dispatch window. */ typedef struct dispatch_windows_s { int num_insn; /* Number of insn in the window. */ int num_uops; /* Number of uops in the window. */ int window_size; /* Number of bytes in the window. */ int window_num; /* Window number between 0 or 1. */ int num_imm; /* Number of immediates in an insn. */ int num_imm_32; /* Number of 32 bit immediates in an insn. */ int num_imm_64; /* Number of 64 bit immediates in an insn. */ int imm_size; /* Total immediates in the window. */ int num_loads; /* Total memory loads in the window. */ int num_stores; /* Total memory stores in the window. */ int violation; /* Violation exists in window. */ sched_insn_info *window; /* Pointer to the window. */ struct dispatch_windows_s *next; struct dispatch_windows_s *prev; } dispatch_windows; /* Immediate valuse used in an insn. */ typedef struct imm_info_s { int imm; int imm32; int imm64; } imm_info; static dispatch_windows *dispatch_window_list; static dispatch_windows *dispatch_window_list1; /* Get dispatch group of insn. */ static enum dispatch_group get_mem_group (rtx insn) { enum attr_memory memory; if (INSN_CODE (insn) < 0) return disp_no_group; memory = get_attr_memory (insn); if (memory == MEMORY_STORE) return disp_store; if (memory == MEMORY_LOAD) return disp_load; if (memory == MEMORY_BOTH) return disp_load_store; return disp_no_group; } /* Return true if insn is a compare instruction. */ static bool is_cmp (rtx insn) { enum attr_type type; type = get_attr_type (insn); return (type == TYPE_TEST || type == TYPE_ICMP || type == TYPE_FCMP || GET_CODE (PATTERN (insn)) == COMPARE); } /* Return true if a dispatch violation encountered. */ static bool dispatch_violation (void) { if (dispatch_window_list->next) return dispatch_window_list->next->violation; return dispatch_window_list->violation; } /* Return true if insn is a branch instruction. */ static bool is_branch (rtx insn) { return (CALL_P (insn) || JUMP_P (insn)); } /* Return true if insn is a prefetch instruction. */ static bool is_prefetch (rtx insn) { return NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == PREFETCH; } /* This function initializes a dispatch window and the list container holding a pointer to the window. */ static void init_window (int window_num) { int i; dispatch_windows *new_list; if (window_num == 0) new_list = dispatch_window_list; else new_list = dispatch_window_list1; new_list->num_insn = 0; new_list->num_uops = 0; new_list->window_size = 0; new_list->next = NULL; new_list->prev = NULL; new_list->window_num = window_num; new_list->num_imm = 0; new_list->num_imm_32 = 0; new_list->num_imm_64 = 0; new_list->imm_size = 0; new_list->num_loads = 0; new_list->num_stores = 0; new_list->violation = false; for (i = 0; i < MAX_INSN; i++) { new_list->window[i].insn = NULL; new_list->window[i].group = disp_no_group; new_list->window[i].path = no_path; new_list->window[i].byte_len = 0; new_list->window[i].imm_bytes = 0; } return; } /* This function allocates and initializes a dispatch window and the list container holding a pointer to the window. */ static dispatch_windows * allocate_window (void) { dispatch_windows *new_list = XNEW (struct dispatch_windows_s); new_list->window = XNEWVEC (struct sched_insn_info_s, MAX_INSN + 1); return new_list; } /* This routine initializes the dispatch scheduling information. It initiates building dispatch scheduler tables and constructs the first dispatch window. */ static void init_dispatch_sched (void) { /* Allocate a dispatch list and a window. */ dispatch_window_list = allocate_window (); dispatch_window_list1 = allocate_window (); init_window (0); init_window (1); } /* This function returns true if a branch is detected. End of a basic block does not have to be a branch, but here we assume only branches end a window. */ static bool is_end_basic_block (enum dispatch_group group) { return group == disp_branch; } /* This function is called when the end of a window processing is reached. */ static void process_end_window (void) { gcc_assert (dispatch_window_list->num_insn <= MAX_INSN); if (dispatch_window_list->next) { gcc_assert (dispatch_window_list1->num_insn <= MAX_INSN); gcc_assert (dispatch_window_list->window_size + dispatch_window_list1->window_size <= 48); init_window (1); } init_window (0); } /* Allocates a new dispatch window and adds it to WINDOW_LIST. WINDOW_NUM is either 0 or 1. A maximum of two windows are generated for 48 bytes of instructions. Note that these windows are not dispatch windows that their sizes are DISPATCH_WINDOW_SIZE. */ static dispatch_windows * allocate_next_window (int window_num) { if (window_num == 0) { if (dispatch_window_list->next) init_window (1); init_window (0); return dispatch_window_list; } dispatch_window_list->next = dispatch_window_list1; dispatch_window_list1->prev = dispatch_window_list; return dispatch_window_list1; } /* Increment the number of immediate operands of an instruction. */ static int find_constant_1 (rtx *in_rtx, imm_info *imm_values) { if (*in_rtx == 0) return 0; switch ( GET_CODE (*in_rtx)) { case CONST: case SYMBOL_REF: case CONST_INT: (imm_values->imm)++; if (x86_64_immediate_operand (*in_rtx, SImode)) (imm_values->imm32)++; else (imm_values->imm64)++; break; case CONST_DOUBLE: (imm_values->imm)++; (imm_values->imm64)++; break; case CODE_LABEL: if (LABEL_KIND (*in_rtx) == LABEL_NORMAL) { (imm_values->imm)++; (imm_values->imm32)++; } break; default: break; } return 0; } /* Compute number of immediate operands of an instruction. */ static void find_constant (rtx in_rtx, imm_info *imm_values) { for_each_rtx (INSN_P (in_rtx) ? &PATTERN (in_rtx) : &in_rtx, (rtx_function) find_constant_1, (void *) imm_values); } /* Return total size of immediate operands of an instruction along with number of corresponding immediate-operands. It initializes its parameters to zero befor calling FIND_CONSTANT. INSN is the input instruction. IMM is the total of immediates. IMM32 is the number of 32 bit immediates. IMM64 is the number of 64 bit immediates. */ static int get_num_immediates (rtx insn, int *imm, int *imm32, int *imm64) { imm_info imm_values = {0, 0, 0}; find_constant (insn, &imm_values); *imm = imm_values.imm; *imm32 = imm_values.imm32; *imm64 = imm_values.imm64; return imm_values.imm32 * 4 + imm_values.imm64 * 8; } /* This function indicates if an operand of an instruction is an immediate. */ static bool has_immediate (rtx insn) { int num_imm_operand; int num_imm32_operand; int num_imm64_operand; if (insn) return get_num_immediates (insn, &num_imm_operand, &num_imm32_operand, &num_imm64_operand); return false; } /* Return single or double path for instructions. */ static enum insn_path get_insn_path (rtx insn) { enum attr_amdfam10_decode path = get_attr_amdfam10_decode (insn); if ((int)path == 0) return path_single; if ((int)path == 1) return path_double; return path_multi; } /* Return insn dispatch group. */ static enum dispatch_group get_insn_group (rtx insn) { enum dispatch_group group = get_mem_group (insn); if (group) return group; if (is_branch (insn)) return disp_branch; if (is_cmp (insn)) return disp_cmp; if (has_immediate (insn)) return disp_imm; if (is_prefetch (insn)) return disp_prefetch; return disp_no_group; } /* Count number of GROUP restricted instructions in a dispatch window WINDOW_LIST. */ static int count_num_restricted (rtx insn, dispatch_windows *window_list) { enum dispatch_group group = get_insn_group (insn); int imm_size; int num_imm_operand; int num_imm32_operand; int num_imm64_operand; if (group == disp_no_group) return 0; if (group == disp_imm) { imm_size = get_num_immediates (insn, &num_imm_operand, &num_imm32_operand, &num_imm64_operand); if (window_list->imm_size + imm_size > MAX_IMM_SIZE || num_imm_operand + window_list->num_imm > MAX_IMM || (num_imm32_operand > 0 && (window_list->num_imm_32 + num_imm32_operand > MAX_IMM_32 || window_list->num_imm_64 * 2 + num_imm32_operand > MAX_IMM_32)) || (num_imm64_operand > 0 && (window_list->num_imm_64 + num_imm64_operand > MAX_IMM_64 || window_list->num_imm_32 + num_imm64_operand * 2 > MAX_IMM_32)) || (window_list->imm_size + imm_size == MAX_IMM_SIZE && num_imm64_operand > 0 && ((window_list->num_imm_64 > 0 && window_list->num_insn >= 2) || window_list->num_insn >= 3))) return BIG; return 1; } if ((group == disp_load_store && (window_list->num_loads >= MAX_LOAD || window_list->num_stores >= MAX_STORE)) || ((group == disp_load || group == disp_prefetch) && window_list->num_loads >= MAX_LOAD) || (group == disp_store && window_list->num_stores >= MAX_STORE)) return BIG; return 1; } /* This function returns true if insn satisfies dispatch rules on the last window scheduled. */ static bool fits_dispatch_window (rtx insn) { dispatch_windows *window_list = dispatch_window_list; dispatch_windows *window_list_next = dispatch_window_list->next; unsigned int num_restrict; enum dispatch_group group = get_insn_group (insn); enum insn_path path = get_insn_path (insn); int sum; /* Make disp_cmp and disp_jcc get scheduled at the latest. These instructions should be given the lowest priority in the scheduling process in Haifa scheduler to make sure they will be scheduled in the same dispatch window as the reference to them. */ if (group == disp_jcc || group == disp_cmp) return false; /* Check nonrestricted. */ if (group == disp_no_group || group == disp_branch) return true; /* Get last dispatch window. */ if (window_list_next) window_list = window_list_next; if (window_list->window_num == 1) { sum = window_list->prev->window_size + window_list->window_size; if (sum == 32 || (min_insn_size (insn) + sum) >= 48) /* Window 1 is full. Go for next window. */ return true; } num_restrict = count_num_restricted (insn, window_list); if (num_restrict > num_allowable_groups[group]) return false; /* See if it fits in the first window. */ if (window_list->window_num == 0) { /* The first widow should have only single and double path uops. */ if (path == path_double && (window_list->num_uops + 2) > MAX_INSN) return false; else if (path != path_single) return false; } return true; } /* Add an instruction INSN with NUM_UOPS micro-operations to the dispatch window WINDOW_LIST. */ static void add_insn_window (rtx insn, dispatch_windows *window_list, int num_uops) { int byte_len = min_insn_size (insn); int num_insn = window_list->num_insn; int imm_size; sched_insn_info *window = window_list->window; enum dispatch_group group = get_insn_group (insn); enum insn_path path = get_insn_path (insn); int num_imm_operand; int num_imm32_operand; int num_imm64_operand; if (!window_list->violation && group != disp_cmp && !fits_dispatch_window (insn)) window_list->violation = true; imm_size = get_num_immediates (insn, &num_imm_operand, &num_imm32_operand, &num_imm64_operand); /* Initialize window with new instruction. */ window[num_insn].insn = insn; window[num_insn].byte_len = byte_len; window[num_insn].group = group; window[num_insn].path = path; window[num_insn].imm_bytes = imm_size; window_list->window_size += byte_len; window_list->num_insn = num_insn + 1; window_list->num_uops = window_list->num_uops + num_uops; window_list->imm_size += imm_size; window_list->num_imm += num_imm_operand; window_list->num_imm_32 += num_imm32_operand; window_list->num_imm_64 += num_imm64_operand; if (group == disp_store) window_list->num_stores += 1; else if (group == disp_load || group == disp_prefetch) window_list->num_loads += 1; else if (group == disp_load_store) { window_list->num_stores += 1; window_list->num_loads += 1; } } /* Adds a scheduled instruction, INSN, to the current dispatch window. If the total bytes of instructions or the number of instructions in the window exceed allowable, it allocates a new window. */ static void add_to_dispatch_window (rtx insn) { int byte_len; dispatch_windows *window_list; dispatch_windows *next_list; dispatch_windows *window0_list; enum insn_path path; enum dispatch_group insn_group; bool insn_fits; int num_insn; int num_uops; int window_num; int insn_num_uops; int sum; if (INSN_CODE (insn) < 0) return; byte_len = min_insn_size (insn); window_list = dispatch_window_list; next_list = window_list->next; path = get_insn_path (insn); insn_group = get_insn_group (insn); /* Get the last dispatch window. */ if (next_list) window_list = dispatch_window_list->next; if (path == path_single) insn_num_uops = 1; else if (path == path_double) insn_num_uops = 2; else insn_num_uops = (int) path; /* If current window is full, get a new window. Window number zero is full, if MAX_INSN uops are scheduled in it. Window number one is full, if window zero's bytes plus window one's bytes is 32, or if the bytes of the new instruction added to the total makes it greater than 48, or it has already MAX_INSN instructions in it. */ num_insn = window_list->num_insn; num_uops = window_list->num_uops; window_num = window_list->window_num; insn_fits = fits_dispatch_window (insn); if (num_insn >= MAX_INSN || num_uops + insn_num_uops > MAX_INSN || !(insn_fits)) { window_num = ~window_num & 1; window_list = allocate_next_window (window_num); } if (window_num == 0) { add_insn_window (insn, window_list, insn_num_uops); if (window_list->num_insn >= MAX_INSN && insn_group == disp_branch) { process_end_window (); return; } } else if (window_num == 1) { window0_list = window_list->prev; sum = window0_list->window_size + window_list->window_size; if (sum == 32 || (byte_len + sum) >= 48) { process_end_window (); window_list = dispatch_window_list; } add_insn_window (insn, window_list, insn_num_uops); } else gcc_unreachable (); if (is_end_basic_block (insn_group)) { /* End of basic block is reached do end-basic-block process. */ process_end_window (); return; } } /* Print the dispatch window, WINDOW_NUM, to FILE. */ DEBUG_FUNCTION static void debug_dispatch_window_file (FILE *file, int window_num) { dispatch_windows *list; int i; if (window_num == 0) list = dispatch_window_list; else list = dispatch_window_list1; fprintf (file, "Window #%d:\n", list->window_num); fprintf (file, " num_insn = %d, num_uops = %d, window_size = %d\n", list->num_insn, list->num_uops, list->window_size); fprintf (file, " num_imm = %d, num_imm_32 = %d, num_imm_64 = %d, imm_size = %d\n", list->num_imm, list->num_imm_32, list->num_imm_64, list->imm_size); fprintf (file, " num_loads = %d, num_stores = %d\n", list->num_loads, list->num_stores); fprintf (file, " insn info:\n"); for (i = 0; i < MAX_INSN; i++) { if (!list->window[i].insn) break; fprintf (file, " group[%d] = %s, insn[%d] = %p, path[%d] = %d byte_len[%d] = %d, imm_bytes[%d] = %d\n", i, group_name[list->window[i].group], i, (void *)list->window[i].insn, i, list->window[i].path, i, list->window[i].byte_len, i, list->window[i].imm_bytes); } } /* Print to stdout a dispatch window. */ DEBUG_FUNCTION void debug_dispatch_window (int window_num) { debug_dispatch_window_file (stdout, window_num); } /* Print INSN dispatch information to FILE. */ DEBUG_FUNCTION static void debug_insn_dispatch_info_file (FILE *file, rtx insn) { int byte_len; enum insn_path path; enum dispatch_group group; int imm_size; int num_imm_operand; int num_imm32_operand; int num_imm64_operand; if (INSN_CODE (insn) < 0) return; byte_len = min_insn_size (insn); path = get_insn_path (insn); group = get_insn_group (insn); imm_size = get_num_immediates (insn, &num_imm_operand, &num_imm32_operand, &num_imm64_operand); fprintf (file, " insn info:\n"); fprintf (file, " group = %s, path = %d, byte_len = %d\n", group_name[group], path, byte_len); fprintf (file, " num_imm = %d, num_imm_32 = %d, num_imm_64 = %d, imm_size = %d\n", num_imm_operand, num_imm32_operand, num_imm64_operand, imm_size); } /* Print to STDERR the status of the ready list with respect to dispatch windows. */ DEBUG_FUNCTION void debug_ready_dispatch (void) { int i; int no_ready = number_in_ready (); fprintf (stdout, "Number of ready: %d\n", no_ready); for (i = 0; i < no_ready; i++) debug_insn_dispatch_info_file (stdout, get_ready_element (i)); } /* This routine is the driver of the dispatch scheduler. */ static void do_dispatch (rtx insn, int mode) { if (mode == DISPATCH_INIT) init_dispatch_sched (); else if (mode == ADD_TO_DISPATCH_WINDOW) add_to_dispatch_window (insn); } /* Return TRUE if Dispatch Scheduling is supported. */ static bool has_dispatch (rtx insn, int action) { if ((TARGET_BDVER1 || TARGET_BDVER2 || TARGET_BDVER3 || TARGET_BDVER4) && flag_dispatch_scheduler) switch (action) { default: return false; case IS_DISPATCH_ON: return true; break; case IS_CMP: return is_cmp (insn); case DISPATCH_VIOLATION: return dispatch_violation (); case FITS_DISPATCH_WINDOW: return fits_dispatch_window (insn); } return false; } /* Implementation of reassociation_width target hook used by reassoc phase to identify parallelism level in reassociated tree. Statements tree_code is passed in OPC. Arguments type is passed in MODE. Currently parallel reassociation is enabled for Atom processors only and we set reassociation width to be 2 because Atom may issue up to 2 instructions per cycle. Return value should be fixed if parallel reassociation is enabled for other processors. */ static int ix86_reassociation_width (unsigned int opc ATTRIBUTE_UNUSED, enum machine_mode mode) { int res = 1; if (INTEGRAL_MODE_P (mode) && TARGET_REASSOC_INT_TO_PARALLEL) res = 2; else if (FLOAT_MODE_P (mode) && TARGET_REASSOC_FP_TO_PARALLEL) res = 2; return res; } /* ??? No autovectorization into MMX or 3DNOW until we can reliably place emms and femms instructions. */ static enum machine_mode ix86_preferred_simd_mode (enum machine_mode mode) { if (!TARGET_SSE) return word_mode; switch (mode) { case QImode: return (TARGET_AVX && !TARGET_PREFER_AVX128) ? V32QImode : V16QImode; case HImode: return (TARGET_AVX && !TARGET_PREFER_AVX128) ? V16HImode : V8HImode; case SImode: return (TARGET_AVX && !TARGET_PREFER_AVX128) ? V8SImode : V4SImode; case DImode: return (TARGET_AVX && !TARGET_PREFER_AVX128) ? V4DImode : V2DImode; case SFmode: if (TARGET_AVX && !TARGET_PREFER_AVX128) return V8SFmode; else return V4SFmode; case DFmode: if (!TARGET_VECTORIZE_DOUBLE) return word_mode; else if (TARGET_AVX && !TARGET_PREFER_AVX128) return V4DFmode; else if (TARGET_SSE2) return V2DFmode; /* FALLTHRU */ default: return word_mode; } } /* If AVX is enabled then try vectorizing with both 256bit and 128bit vectors. */ static unsigned int ix86_autovectorize_vector_sizes (void) { return (TARGET_AVX && !TARGET_PREFER_AVX128) ? 32 | 16 : 0; } /* Return class of registers which could be used for pseudo of MODE and of class RCLASS for spilling instead of memory. Return NO_REGS if it is not possible or non-profitable. */ static reg_class_t ix86_spill_class (reg_class_t rclass, enum machine_mode mode) { if (TARGET_SSE && TARGET_GENERAL_REGS_SSE_SPILL && ! TARGET_MMX && (mode == SImode || (TARGET_64BIT && mode == DImode)) && INTEGER_CLASS_P (rclass)) return ALL_SSE_REGS; return NO_REGS; } /* Implement targetm.vectorize.init_cost. */ static void * ix86_init_cost (struct loop *loop_info ATTRIBUTE_UNUSED) { unsigned *cost = XNEWVEC (unsigned, 3); cost[vect_prologue] = cost[vect_body] = cost[vect_epilogue] = 0; return cost; } /* Implement targetm.vectorize.add_stmt_cost. */ static unsigned ix86_add_stmt_cost (void *data, int count, enum vect_cost_for_stmt kind, struct _stmt_vec_info *stmt_info, int misalign, enum vect_cost_model_location where) { unsigned *cost = (unsigned *) data; unsigned retval = 0; tree vectype = stmt_info ? stmt_vectype (stmt_info) : NULL_TREE; int stmt_cost = ix86_builtin_vectorization_cost (kind, vectype, misalign); /* Statements in an inner loop relative to the loop being vectorized are weighted more heavily. The value here is arbitrary and could potentially be improved with analysis. */ if (where == vect_body && stmt_info && stmt_in_inner_loop_p (stmt_info)) count *= 50; /* FIXME. */ retval = (unsigned) (count * stmt_cost); cost[where] += retval; return retval; } /* Implement targetm.vectorize.finish_cost. */ static void ix86_finish_cost (void *data, unsigned *prologue_cost, unsigned *body_cost, unsigned *epilogue_cost) { unsigned *cost = (unsigned *) data; *prologue_cost = cost[vect_prologue]; *body_cost = cost[vect_body]; *epilogue_cost = cost[vect_epilogue]; } /* Implement targetm.vectorize.destroy_cost_data. */ static void ix86_destroy_cost_data (void *data) { free (data); } /* Validate target specific memory model bits in VAL. */ static unsigned HOST_WIDE_INT ix86_memmodel_check (unsigned HOST_WIDE_INT val) { unsigned HOST_WIDE_INT model = val & MEMMODEL_MASK; bool strong; if (val & ~(unsigned HOST_WIDE_INT)(IX86_HLE_ACQUIRE|IX86_HLE_RELEASE |MEMMODEL_MASK) || ((val & IX86_HLE_ACQUIRE) && (val & IX86_HLE_RELEASE))) { warning (OPT_Winvalid_memory_model, "Unknown architecture specific memory model"); return MEMMODEL_SEQ_CST; } strong = (model == MEMMODEL_ACQ_REL || model == MEMMODEL_SEQ_CST); if (val & IX86_HLE_ACQUIRE && !(model == MEMMODEL_ACQUIRE || strong)) { warning (OPT_Winvalid_memory_model, "HLE_ACQUIRE not used with ACQUIRE or stronger memory model"); return MEMMODEL_SEQ_CST | IX86_HLE_ACQUIRE; } if (val & IX86_HLE_RELEASE && !(model == MEMMODEL_RELEASE || strong)) { warning (OPT_Winvalid_memory_model, "HLE_RELEASE not used with RELEASE or stronger memory model"); return MEMMODEL_SEQ_CST | IX86_HLE_RELEASE; } return val; } /* Implement TARGET_FLOAT_EXCEPTIONS_ROUNDING_SUPPORTED_P. */ static bool ix86_float_exceptions_rounding_supported_p (void) { /* For x87 floating point with standard excess precision handling, there is no adddf3 pattern (since x87 floating point only has XFmode operations) so the default hook implementation gets this wrong. */ return TARGET_80387 || TARGET_SSE_MATH; } /* Implement TARGET_ATOMIC_ASSIGN_EXPAND_FENV. */ static void ix86_atomic_assign_expand_fenv (tree *hold, tree *clear, tree *update) { if (!TARGET_80387 && !TARGET_SSE_MATH) return; tree exceptions_var = create_tmp_var (integer_type_node, NULL); if (TARGET_80387) { tree fenv_index_type = build_index_type (size_int (6)); tree fenv_type = build_array_type (unsigned_type_node, fenv_index_type); tree fenv_var = create_tmp_var (fenv_type, NULL); mark_addressable (fenv_var); tree fenv_ptr = build_pointer_type (fenv_type); tree fenv_addr = build1 (ADDR_EXPR, fenv_ptr, fenv_var); fenv_addr = fold_convert (ptr_type_node, fenv_addr); tree fnstenv = ix86_builtins[IX86_BUILTIN_FNSTENV]; tree fldenv = ix86_builtins[IX86_BUILTIN_FLDENV]; tree fnstsw = ix86_builtins[IX86_BUILTIN_FNSTSW]; tree fnclex = ix86_builtins[IX86_BUILTIN_FNCLEX]; tree hold_fnstenv = build_call_expr (fnstenv, 1, fenv_addr); tree hold_fnclex = build_call_expr (fnclex, 0); *hold = build2 (COMPOUND_EXPR, void_type_node, hold_fnstenv, hold_fnclex); *clear = build_call_expr (fnclex, 0); tree sw_var = create_tmp_var (short_unsigned_type_node, NULL); mark_addressable (sw_var); tree su_ptr = build_pointer_type (short_unsigned_type_node); tree sw_addr = build1 (ADDR_EXPR, su_ptr, sw_var); tree fnstsw_call = build_call_expr (fnstsw, 1, sw_addr); tree exceptions_x87 = fold_convert (integer_type_node, sw_var); tree update_mod = build2 (MODIFY_EXPR, integer_type_node, exceptions_var, exceptions_x87); *update = build2 (COMPOUND_EXPR, integer_type_node, fnstsw_call, update_mod); tree update_fldenv = build_call_expr (fldenv, 1, fenv_addr); *update = build2 (COMPOUND_EXPR, void_type_node, *update, update_fldenv); } if (TARGET_SSE_MATH) { tree mxcsr_orig_var = create_tmp_var (unsigned_type_node, NULL); tree mxcsr_mod_var = create_tmp_var (unsigned_type_node, NULL); tree stmxcsr = ix86_builtins[IX86_BUILTIN_STMXCSR]; tree ldmxcsr = ix86_builtins[IX86_BUILTIN_LDMXCSR]; tree stmxcsr_hold_call = build_call_expr (stmxcsr, 0); tree hold_assign_orig = build2 (MODIFY_EXPR, unsigned_type_node, mxcsr_orig_var, stmxcsr_hold_call); tree hold_mod_val = build2 (BIT_IOR_EXPR, unsigned_type_node, mxcsr_orig_var, build_int_cst (unsigned_type_node, 0x1f80)); hold_mod_val = build2 (BIT_AND_EXPR, unsigned_type_node, hold_mod_val, build_int_cst (unsigned_type_node, 0xffffffc0)); tree hold_assign_mod = build2 (MODIFY_EXPR, unsigned_type_node, mxcsr_mod_var, hold_mod_val); tree ldmxcsr_hold_call = build_call_expr (ldmxcsr, 1, mxcsr_mod_var); tree hold_all = build2 (COMPOUND_EXPR, unsigned_type_node, hold_assign_orig, hold_assign_mod); hold_all = build2 (COMPOUND_EXPR, void_type_node, hold_all, ldmxcsr_hold_call); if (*hold) *hold = build2 (COMPOUND_EXPR, void_type_node, *hold, hold_all); else *hold = hold_all; tree ldmxcsr_clear_call = build_call_expr (ldmxcsr, 1, mxcsr_mod_var); if (*clear) *clear = build2 (COMPOUND_EXPR, void_type_node, *clear, ldmxcsr_clear_call); else *clear = ldmxcsr_clear_call; tree stxmcsr_update_call = build_call_expr (stmxcsr, 0); tree exceptions_sse = fold_convert (integer_type_node, stxmcsr_update_call); if (*update) { tree exceptions_mod = build2 (BIT_IOR_EXPR, integer_type_node, exceptions_var, exceptions_sse); tree exceptions_assign = build2 (MODIFY_EXPR, integer_type_node, exceptions_var, exceptions_mod); *update = build2 (COMPOUND_EXPR, integer_type_node, *update, exceptions_assign); } else *update = build2 (MODIFY_EXPR, integer_type_node, exceptions_var, exceptions_sse); tree ldmxcsr_update_call = build_call_expr (ldmxcsr, 1, mxcsr_orig_var); *update = build2 (COMPOUND_EXPR, void_type_node, *update, ldmxcsr_update_call); } tree atomic_feraiseexcept = builtin_decl_implicit (BUILT_IN_ATOMIC_FERAISEEXCEPT); tree atomic_feraiseexcept_call = build_call_expr (atomic_feraiseexcept, 1, exceptions_var); *update = build2 (COMPOUND_EXPR, void_type_node, *update, atomic_feraiseexcept_call); } /* Initialize the GCC target structure. */ #undef TARGET_RETURN_IN_MEMORY #define TARGET_RETURN_IN_MEMORY ix86_return_in_memory #undef TARGET_LEGITIMIZE_ADDRESS #define TARGET_LEGITIMIZE_ADDRESS ix86_legitimize_address #undef TARGET_ATTRIBUTE_TABLE #define TARGET_ATTRIBUTE_TABLE ix86_attribute_table #undef TARGET_FUNCTION_ATTRIBUTE_INLINABLE_P #define TARGET_FUNCTION_ATTRIBUTE_INLINABLE_P hook_bool_const_tree_true #if TARGET_DLLIMPORT_DECL_ATTRIBUTES # undef TARGET_MERGE_DECL_ATTRIBUTES # define TARGET_MERGE_DECL_ATTRIBUTES merge_dllimport_decl_attributes #endif #undef TARGET_COMP_TYPE_ATTRIBUTES #define TARGET_COMP_TYPE_ATTRIBUTES ix86_comp_type_attributes #undef TARGET_INIT_BUILTINS #define TARGET_INIT_BUILTINS ix86_init_builtins #undef TARGET_BUILTIN_DECL #define TARGET_BUILTIN_DECL ix86_builtin_decl #undef TARGET_EXPAND_BUILTIN #define TARGET_EXPAND_BUILTIN ix86_expand_builtin #undef TARGET_VECTORIZE_BUILTIN_VECTORIZED_FUNCTION #define TARGET_VECTORIZE_BUILTIN_VECTORIZED_FUNCTION \ ix86_builtin_vectorized_function #undef TARGET_VECTORIZE_BUILTIN_TM_LOAD #define TARGET_VECTORIZE_BUILTIN_TM_LOAD ix86_builtin_tm_load #undef TARGET_VECTORIZE_BUILTIN_TM_STORE #define TARGET_VECTORIZE_BUILTIN_TM_STORE ix86_builtin_tm_store #undef TARGET_VECTORIZE_BUILTIN_GATHER #define TARGET_VECTORIZE_BUILTIN_GATHER ix86_vectorize_builtin_gather #undef TARGET_BUILTIN_RECIPROCAL #define TARGET_BUILTIN_RECIPROCAL ix86_builtin_reciprocal #undef TARGET_ASM_FUNCTION_EPILOGUE #define TARGET_ASM_FUNCTION_EPILOGUE ix86_output_function_epilogue #undef TARGET_ENCODE_SECTION_INFO #ifndef SUBTARGET_ENCODE_SECTION_INFO #define TARGET_ENCODE_SECTION_INFO ix86_encode_section_info #else #define TARGET_ENCODE_SECTION_INFO SUBTARGET_ENCODE_SECTION_INFO #endif #undef TARGET_ASM_OPEN_PAREN #define TARGET_ASM_OPEN_PAREN "" #undef TARGET_ASM_CLOSE_PAREN #define TARGET_ASM_CLOSE_PAREN "" #undef TARGET_ASM_BYTE_OP #define TARGET_ASM_BYTE_OP ASM_BYTE #undef TARGET_ASM_ALIGNED_HI_OP #define TARGET_ASM_ALIGNED_HI_OP ASM_SHORT #undef TARGET_ASM_ALIGNED_SI_OP #define TARGET_ASM_ALIGNED_SI_OP ASM_LONG #ifdef ASM_QUAD #undef TARGET_ASM_ALIGNED_DI_OP #define TARGET_ASM_ALIGNED_DI_OP ASM_QUAD #endif #undef TARGET_PROFILE_BEFORE_PROLOGUE #define TARGET_PROFILE_BEFORE_PROLOGUE ix86_profile_before_prologue #undef TARGET_MANGLE_DECL_ASSEMBLER_NAME #define TARGET_MANGLE_DECL_ASSEMBLER_NAME ix86_mangle_decl_assembler_name #undef TARGET_ASM_UNALIGNED_HI_OP #define TARGET_ASM_UNALIGNED_HI_OP TARGET_ASM_ALIGNED_HI_OP #undef TARGET_ASM_UNALIGNED_SI_OP #define TARGET_ASM_UNALIGNED_SI_OP TARGET_ASM_ALIGNED_SI_OP #undef TARGET_ASM_UNALIGNED_DI_OP #define TARGET_ASM_UNALIGNED_DI_OP TARGET_ASM_ALIGNED_DI_OP #undef TARGET_PRINT_OPERAND #define TARGET_PRINT_OPERAND ix86_print_operand #undef TARGET_PRINT_OPERAND_ADDRESS #define TARGET_PRINT_OPERAND_ADDRESS ix86_print_operand_address #undef TARGET_PRINT_OPERAND_PUNCT_VALID_P #define TARGET_PRINT_OPERAND_PUNCT_VALID_P ix86_print_operand_punct_valid_p #undef TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA #define TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA i386_asm_output_addr_const_extra #undef TARGET_SCHED_INIT_GLOBAL #define TARGET_SCHED_INIT_GLOBAL ix86_sched_init_global #undef TARGET_SCHED_ADJUST_COST #define TARGET_SCHED_ADJUST_COST ix86_adjust_cost #undef TARGET_SCHED_ISSUE_RATE #define TARGET_SCHED_ISSUE_RATE ix86_issue_rate #undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD #define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD \ ia32_multipass_dfa_lookahead #undef TARGET_SCHED_MACRO_FUSION_P #define TARGET_SCHED_MACRO_FUSION_P ix86_macro_fusion_p #undef TARGET_SCHED_MACRO_FUSION_PAIR_P #define TARGET_SCHED_MACRO_FUSION_PAIR_P ix86_macro_fusion_pair_p #undef TARGET_FUNCTION_OK_FOR_SIBCALL #define TARGET_FUNCTION_OK_FOR_SIBCALL ix86_function_ok_for_sibcall #undef TARGET_MEMMODEL_CHECK #define TARGET_MEMMODEL_CHECK ix86_memmodel_check #undef TARGET_ATOMIC_ASSIGN_EXPAND_FENV #define TARGET_ATOMIC_ASSIGN_EXPAND_FENV ix86_atomic_assign_expand_fenv #ifdef HAVE_AS_TLS #undef TARGET_HAVE_TLS #define TARGET_HAVE_TLS true #endif #undef TARGET_CANNOT_FORCE_CONST_MEM #define TARGET_CANNOT_FORCE_CONST_MEM ix86_cannot_force_const_mem #undef TARGET_USE_BLOCKS_FOR_CONSTANT_P #define TARGET_USE_BLOCKS_FOR_CONSTANT_P hook_bool_mode_const_rtx_true #undef TARGET_DELEGITIMIZE_ADDRESS #define TARGET_DELEGITIMIZE_ADDRESS ix86_delegitimize_address #undef TARGET_MS_BITFIELD_LAYOUT_P #define TARGET_MS_BITFIELD_LAYOUT_P ix86_ms_bitfield_layout_p #if TARGET_MACHO #undef TARGET_BINDS_LOCAL_P #define TARGET_BINDS_LOCAL_P darwin_binds_local_p #endif #if TARGET_DLLIMPORT_DECL_ATTRIBUTES #undef TARGET_BINDS_LOCAL_P #define TARGET_BINDS_LOCAL_P i386_pe_binds_local_p #endif #undef TARGET_ASM_OUTPUT_MI_THUNK #define TARGET_ASM_OUTPUT_MI_THUNK x86_output_mi_thunk #undef TARGET_ASM_CAN_OUTPUT_MI_THUNK #define TARGET_ASM_CAN_OUTPUT_MI_THUNK x86_can_output_mi_thunk #undef TARGET_ASM_FILE_START #define TARGET_ASM_FILE_START x86_file_start #undef TARGET_OPTION_OVERRIDE #define TARGET_OPTION_OVERRIDE ix86_option_override #undef TARGET_REGISTER_MOVE_COST #define TARGET_REGISTER_MOVE_COST ix86_register_move_cost #undef TARGET_MEMORY_MOVE_COST #define TARGET_MEMORY_MOVE_COST ix86_memory_move_cost #undef TARGET_RTX_COSTS #define TARGET_RTX_COSTS ix86_rtx_costs #undef TARGET_ADDRESS_COST #define TARGET_ADDRESS_COST ix86_address_cost #undef TARGET_FIXED_CONDITION_CODE_REGS #define TARGET_FIXED_CONDITION_CODE_REGS ix86_fixed_condition_code_regs #undef TARGET_CC_MODES_COMPATIBLE #define TARGET_CC_MODES_COMPATIBLE ix86_cc_modes_compatible #undef TARGET_MACHINE_DEPENDENT_REORG #define TARGET_MACHINE_DEPENDENT_REORG ix86_reorg #undef TARGET_BUILTIN_SETJMP_FRAME_VALUE #define TARGET_BUILTIN_SETJMP_FRAME_VALUE ix86_builtin_setjmp_frame_value #undef TARGET_BUILD_BUILTIN_VA_LIST #define TARGET_BUILD_BUILTIN_VA_LIST ix86_build_builtin_va_list #undef TARGET_FOLD_BUILTIN #define TARGET_FOLD_BUILTIN ix86_fold_builtin #undef TARGET_COMPARE_VERSION_PRIORITY #define TARGET_COMPARE_VERSION_PRIORITY ix86_compare_version_priority #undef TARGET_GENERATE_VERSION_DISPATCHER_BODY #define TARGET_GENERATE_VERSION_DISPATCHER_BODY \ ix86_generate_version_dispatcher_body #undef TARGET_GET_FUNCTION_VERSIONS_DISPATCHER #define TARGET_GET_FUNCTION_VERSIONS_DISPATCHER \ ix86_get_function_versions_dispatcher #undef TARGET_ENUM_VA_LIST_P #define TARGET_ENUM_VA_LIST_P ix86_enum_va_list #undef TARGET_FN_ABI_VA_LIST #define TARGET_FN_ABI_VA_LIST ix86_fn_abi_va_list #undef TARGET_CANONICAL_VA_LIST_TYPE #define TARGET_CANONICAL_VA_LIST_TYPE ix86_canonical_va_list_type #undef TARGET_EXPAND_BUILTIN_VA_START #define TARGET_EXPAND_BUILTIN_VA_START ix86_va_start #undef TARGET_MD_ASM_CLOBBERS #define TARGET_MD_ASM_CLOBBERS ix86_md_asm_clobbers #undef TARGET_PROMOTE_PROTOTYPES #define TARGET_PROMOTE_PROTOTYPES hook_bool_const_tree_true #undef TARGET_STRUCT_VALUE_RTX #define TARGET_STRUCT_VALUE_RTX ix86_struct_value_rtx #undef TARGET_SETUP_INCOMING_VARARGS #define TARGET_SETUP_INCOMING_VARARGS ix86_setup_incoming_varargs #undef TARGET_MUST_PASS_IN_STACK #define TARGET_MUST_PASS_IN_STACK ix86_must_pass_in_stack #undef TARGET_FUNCTION_ARG_ADVANCE #define TARGET_FUNCTION_ARG_ADVANCE ix86_function_arg_advance #undef TARGET_FUNCTION_ARG #define TARGET_FUNCTION_ARG ix86_function_arg #undef TARGET_FUNCTION_ARG_BOUNDARY #define TARGET_FUNCTION_ARG_BOUNDARY ix86_function_arg_boundary #undef TARGET_PASS_BY_REFERENCE #define TARGET_PASS_BY_REFERENCE ix86_pass_by_reference #undef TARGET_INTERNAL_ARG_POINTER #define TARGET_INTERNAL_ARG_POINTER ix86_internal_arg_pointer #undef TARGET_UPDATE_STACK_BOUNDARY #define TARGET_UPDATE_STACK_BOUNDARY ix86_update_stack_boundary #undef TARGET_GET_DRAP_RTX #define TARGET_GET_DRAP_RTX ix86_get_drap_rtx #undef TARGET_STRICT_ARGUMENT_NAMING #define TARGET_STRICT_ARGUMENT_NAMING hook_bool_CUMULATIVE_ARGS_true #undef TARGET_STATIC_CHAIN #define TARGET_STATIC_CHAIN ix86_static_chain #undef TARGET_TRAMPOLINE_INIT #define TARGET_TRAMPOLINE_INIT ix86_trampoline_init #undef TARGET_RETURN_POPS_ARGS #define TARGET_RETURN_POPS_ARGS ix86_return_pops_args #undef TARGET_LEGITIMATE_COMBINED_INSN #define TARGET_LEGITIMATE_COMBINED_INSN ix86_legitimate_combined_insn #undef TARGET_ASAN_SHADOW_OFFSET #define TARGET_ASAN_SHADOW_OFFSET ix86_asan_shadow_offset #undef TARGET_GIMPLIFY_VA_ARG_EXPR #define TARGET_GIMPLIFY_VA_ARG_EXPR ix86_gimplify_va_arg #undef TARGET_SCALAR_MODE_SUPPORTED_P #define TARGET_SCALAR_MODE_SUPPORTED_P ix86_scalar_mode_supported_p #undef TARGET_VECTOR_MODE_SUPPORTED_P #define TARGET_VECTOR_MODE_SUPPORTED_P ix86_vector_mode_supported_p #undef TARGET_C_MODE_FOR_SUFFIX #define TARGET_C_MODE_FOR_SUFFIX ix86_c_mode_for_suffix #ifdef HAVE_AS_TLS #undef TARGET_ASM_OUTPUT_DWARF_DTPREL #define TARGET_ASM_OUTPUT_DWARF_DTPREL i386_output_dwarf_dtprel #endif #ifdef SUBTARGET_INSERT_ATTRIBUTES #undef TARGET_INSERT_ATTRIBUTES #define TARGET_INSERT_ATTRIBUTES SUBTARGET_INSERT_ATTRIBUTES #endif #undef TARGET_MANGLE_TYPE #define TARGET_MANGLE_TYPE ix86_mangle_type #if !TARGET_MACHO #undef TARGET_STACK_PROTECT_FAIL #define TARGET_STACK_PROTECT_FAIL ix86_stack_protect_fail #endif #undef TARGET_FUNCTION_VALUE #define TARGET_FUNCTION_VALUE ix86_function_value #undef TARGET_FUNCTION_VALUE_REGNO_P #define TARGET_FUNCTION_VALUE_REGNO_P ix86_function_value_regno_p #undef TARGET_PROMOTE_FUNCTION_MODE #define TARGET_PROMOTE_FUNCTION_MODE ix86_promote_function_mode #undef TARGET_MEMBER_TYPE_FORCES_BLK #define TARGET_MEMBER_TYPE_FORCES_BLK ix86_member_type_forces_blk #undef TARGET_INSTANTIATE_DECLS #define TARGET_INSTANTIATE_DECLS ix86_instantiate_decls #undef TARGET_SECONDARY_RELOAD #define TARGET_SECONDARY_RELOAD ix86_secondary_reload #undef TARGET_CLASS_MAX_NREGS #define TARGET_CLASS_MAX_NREGS ix86_class_max_nregs #undef TARGET_PREFERRED_RELOAD_CLASS #define TARGET_PREFERRED_RELOAD_CLASS ix86_preferred_reload_class #undef TARGET_PREFERRED_OUTPUT_RELOAD_CLASS #define TARGET_PREFERRED_OUTPUT_RELOAD_CLASS ix86_preferred_output_reload_class #undef TARGET_CLASS_LIKELY_SPILLED_P #define TARGET_CLASS_LIKELY_SPILLED_P ix86_class_likely_spilled_p #undef TARGET_VECTORIZE_BUILTIN_VECTORIZATION_COST #define TARGET_VECTORIZE_BUILTIN_VECTORIZATION_COST \ ix86_builtin_vectorization_cost #undef TARGET_VECTORIZE_VEC_PERM_CONST_OK #define TARGET_VECTORIZE_VEC_PERM_CONST_OK \ ix86_vectorize_vec_perm_const_ok #undef TARGET_VECTORIZE_PREFERRED_SIMD_MODE #define TARGET_VECTORIZE_PREFERRED_SIMD_MODE \ ix86_preferred_simd_mode #undef TARGET_VECTORIZE_AUTOVECTORIZE_VECTOR_SIZES #define TARGET_VECTORIZE_AUTOVECTORIZE_VECTOR_SIZES \ ix86_autovectorize_vector_sizes #undef TARGET_VECTORIZE_INIT_COST #define TARGET_VECTORIZE_INIT_COST ix86_init_cost #undef TARGET_VECTORIZE_ADD_STMT_COST #define TARGET_VECTORIZE_ADD_STMT_COST ix86_add_stmt_cost #undef TARGET_VECTORIZE_FINISH_COST #define TARGET_VECTORIZE_FINISH_COST ix86_finish_cost #undef TARGET_VECTORIZE_DESTROY_COST_DATA #define TARGET_VECTORIZE_DESTROY_COST_DATA ix86_destroy_cost_data #undef TARGET_SET_CURRENT_FUNCTION #define TARGET_SET_CURRENT_FUNCTION ix86_set_current_function #undef TARGET_OPTION_VALID_ATTRIBUTE_P #define TARGET_OPTION_VALID_ATTRIBUTE_P ix86_valid_target_attribute_p #undef TARGET_OPTION_SAVE #define TARGET_OPTION_SAVE ix86_function_specific_save #undef TARGET_OPTION_RESTORE #define TARGET_OPTION_RESTORE ix86_function_specific_restore #undef TARGET_OPTION_PRINT #define TARGET_OPTION_PRINT ix86_function_specific_print #undef TARGET_OPTION_FUNCTION_VERSIONS #define TARGET_OPTION_FUNCTION_VERSIONS ix86_function_versions #undef TARGET_CAN_INLINE_P #define TARGET_CAN_INLINE_P ix86_can_inline_p #undef TARGET_EXPAND_TO_RTL_HOOK #define TARGET_EXPAND_TO_RTL_HOOK ix86_maybe_switch_abi #undef TARGET_LEGITIMATE_ADDRESS_P #define TARGET_LEGITIMATE_ADDRESS_P ix86_legitimate_address_p #undef TARGET_LRA_P #define TARGET_LRA_P hook_bool_void_true #undef TARGET_REGISTER_PRIORITY #define TARGET_REGISTER_PRIORITY ix86_register_priority #undef TARGET_REGISTER_USAGE_LEVELING_P #define TARGET_REGISTER_USAGE_LEVELING_P hook_bool_void_true #undef TARGET_LEGITIMATE_CONSTANT_P #define TARGET_LEGITIMATE_CONSTANT_P ix86_legitimate_constant_p #undef TARGET_FRAME_POINTER_REQUIRED #define TARGET_FRAME_POINTER_REQUIRED ix86_frame_pointer_required #undef TARGET_CAN_ELIMINATE #define TARGET_CAN_ELIMINATE ix86_can_eliminate #undef TARGET_EXTRA_LIVE_ON_ENTRY #define TARGET_EXTRA_LIVE_ON_ENTRY ix86_live_on_entry #undef TARGET_ASM_CODE_END #define TARGET_ASM_CODE_END ix86_code_end #undef TARGET_CONDITIONAL_REGISTER_USAGE #define TARGET_CONDITIONAL_REGISTER_USAGE ix86_conditional_register_usage #if TARGET_MACHO #undef TARGET_INIT_LIBFUNCS #define TARGET_INIT_LIBFUNCS darwin_rename_builtins #endif #undef TARGET_SPILL_CLASS #define TARGET_SPILL_CLASS ix86_spill_class #undef TARGET_FLOAT_EXCEPTIONS_ROUNDING_SUPPORTED_P #define TARGET_FLOAT_EXCEPTIONS_ROUNDING_SUPPORTED_P \ ix86_float_exceptions_rounding_supported_p struct gcc_target targetm = TARGET_INITIALIZER; #include "gt-i386.h"