/* Definitions of target machine for GCC for IA-32. Copyright (C) 1988-2013 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. Under Section 7 of GPL version 3, you are granted additional permissions described in the GCC Runtime Library Exception, version 3.1, as published by the Free Software Foundation. You should have received a copy of the GNU General Public License and a copy of the GCC Runtime Library Exception along with this program; see the files COPYING3 and COPYING.RUNTIME respectively. If not, see . */ /* The purpose of this file is to define the characteristics of the i386, independent of assembler syntax or operating system. Three other files build on this one to describe a specific assembler syntax: bsd386.h, att386.h, and sun386.h. The actual tm.h file for a particular system should include this file, and then the file for the appropriate assembler syntax. Many macros that specify assembler syntax are omitted entirely from this file because they really belong in the files for particular assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR, ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many that start with ASM_ or end in ASM_OP. */ /* Redefines for option macros. */ #define TARGET_64BIT TARGET_ISA_64BIT #define TARGET_64BIT_P(x) TARGET_ISA_64BIT_P(x) #define TARGET_MMX TARGET_ISA_MMX #define TARGET_MMX_P(x) TARGET_ISA_MMX_P(x) #define TARGET_3DNOW TARGET_ISA_3DNOW #define TARGET_3DNOW_P(x) TARGET_ISA_3DNOW_P(x) #define TARGET_3DNOW_A TARGET_ISA_3DNOW_A #define TARGET_3DNOW_A_P(x) TARGET_ISA_3DNOW_A_P(x) #define TARGET_SSE TARGET_ISA_SSE #define TARGET_SSE_P(x) TARGET_ISA_SSE_P(x) #define TARGET_SSE2 TARGET_ISA_SSE2 #define TARGET_SSE2_P(x) TARGET_ISA_SSE2_P(x) #define TARGET_SSE3 TARGET_ISA_SSE3 #define TARGET_SSE3_P(x) TARGET_ISA_SSE3_P(x) #define TARGET_SSSE3 TARGET_ISA_SSSE3 #define TARGET_SSSE3_P(x) TARGET_ISA_SSSE3_P(x) #define TARGET_SSE4_1 TARGET_ISA_SSE4_1 #define TARGET_SSE4_1_P(x) TARGET_ISA_SSE4_1_P(x) #define TARGET_SSE4_2 TARGET_ISA_SSE4_2 #define TARGET_SSE4_2_P(x) TARGET_ISA_SSE4_2_P(x) #define TARGET_AVX TARGET_ISA_AVX #define TARGET_AVX_P(x) TARGET_ISA_AVX_P(x) #define TARGET_AVX2 TARGET_ISA_AVX2 #define TARGET_AVX2_P(x) TARGET_ISA_AVX2_P(x) #define TARGET_AVX512F TARGET_ISA_AVX512F #define TARGET_AVX512F_P(x) TARGET_ISA_AVX512F_P(x) #define TARGET_AVX512PF TARGET_ISA_AVX512PF #define TARGET_AVX512PF_P(x) TARGET_ISA_AVX512PF_P(x) #define TARGET_AVX512ER TARGET_ISA_AVX512ER #define TARGET_AVX512ER_P(x) TARGET_ISA_AVX512ER_P(x) #define TARGET_AVX512CD TARGET_ISA_AVX512CD #define TARGET_AVX512CD_P(x) TARGET_ISA_AVX512CD_P(x) #define TARGET_FMA TARGET_ISA_FMA #define TARGET_FMA_P(x) TARGET_ISA_FMA_P(x) #define TARGET_SSE4A TARGET_ISA_SSE4A #define TARGET_SSE4A_P(x) TARGET_ISA_SSE4A_P(x) #define TARGET_FMA4 TARGET_ISA_FMA4 #define TARGET_FMA4_P(x) TARGET_ISA_FMA4_P(x) #define TARGET_XOP TARGET_ISA_XOP #define TARGET_XOP_P(x) TARGET_ISA_XOP_P(x) #define TARGET_LWP TARGET_ISA_LWP #define TARGET_LWP_P(x) TARGET_ISA_LWP_P(x) #define TARGET_ROUND TARGET_ISA_ROUND #define TARGET_ABM TARGET_ISA_ABM #define TARGET_ABM_P(x) TARGET_ISA_ABM_P(x) #define TARGET_BMI TARGET_ISA_BMI #define TARGET_BMI_P(x) TARGET_ISA_BMI_P(x) #define TARGET_BMI2 TARGET_ISA_BMI2 #define TARGET_BMI2_P(x) TARGET_ISA_BMI2_P(x) #define TARGET_LZCNT TARGET_ISA_LZCNT #define TARGET_LZCNT_P(x) TARGET_ISA_LZCNT_P(x) #define TARGET_TBM TARGET_ISA_TBM #define TARGET_TBM_P(x) TARGET_ISA_TBM_P(x) #define TARGET_POPCNT TARGET_ISA_POPCNT #define TARGET_POPCNT_P(x) TARGET_ISA_POPCNT_P(x) #define TARGET_SAHF TARGET_ISA_SAHF #define TARGET_SAHF_P(x) TARGET_ISA_SAHF_P(x) #define TARGET_MOVBE TARGET_ISA_MOVBE #define TARGET_MOVBE_P(x) TARGET_ISA_MOVBE_P(x) #define TARGET_CRC32 TARGET_ISA_CRC32 #define TARGET_CRC32_P(x) TARGET_ISA_CRC32_P(x) #define TARGET_AES TARGET_ISA_AES #define TARGET_AES_P(x) TARGET_ISA_AES_P(x) #define TARGET_PCLMUL TARGET_ISA_PCLMUL #define TARGET_PCLMUL_P(x) TARGET_ISA_PCLMUL_P(x) #define TARGET_CMPXCHG16B TARGET_ISA_CX16 #define TARGET_CMPXCHG16B_P(x) TARGET_ISA_CX16_P(x) #define TARGET_FSGSBASE TARGET_ISA_FSGSBASE #define TARGET_FSGSBASE_P(x) TARGET_ISA_FSGSBASE_P(x) #define TARGET_RDRND TARGET_ISA_RDRND #define TARGET_RDRND_P(x) TARGET_ISA_RDRND_P(x) #define TARGET_F16C TARGET_ISA_F16C #define TARGET_F16C_P(x) TARGET_ISA_F16C_P(x) #define TARGET_RTM TARGET_ISA_RTM #define TARGET_RTM_P(x) TARGET_ISA_RTM_P(x) #define TARGET_HLE TARGET_ISA_HLE #define TARGET_HLE_P(x) TARGET_ISA_HLE_P(x) #define TARGET_RDSEED TARGET_ISA_RDSEED #define TARGET_RDSEED_P(x) TARGET_ISA_RDSEED_P(x) #define TARGET_PRFCHW TARGET_ISA_PRFCHW #define TARGET_PRFCHW_P(x) TARGET_ISA_PRFCHW_P(x) #define TARGET_ADX TARGET_ISA_ADX #define TARGET_ADX_P(x) TARGET_ISA_ADX_P(x) #define TARGET_FXSR TARGET_ISA_FXSR #define TARGET_FXSR_P(x) TARGET_ISA_FXSR_P(x) #define TARGET_XSAVE TARGET_ISA_XSAVE #define TARGET_XSAVE_P(x) TARGET_ISA_XSAVE_P(x) #define TARGET_XSAVEOPT TARGET_ISA_XSAVEOPT #define TARGET_XSAVEOPT_P(x) TARGET_ISA_XSAVEOPT_P(x) #define TARGET_MPX TARGET_ISA_MPX #define TARGET_MPX_P(x) TARGET_ISA_MPX_P(x) #define TARGET_LP64 TARGET_ABI_64 #define TARGET_LP64_P(x) TARGET_ABI_64_P(x) #define TARGET_X32 TARGET_ABI_X32 #define TARGET_X32_P(x) TARGET_ABI_X32_P(x) /* SSE4.1 defines round instructions */ #define OPTION_MASK_ISA_ROUND OPTION_MASK_ISA_SSE4_1 #define TARGET_ISA_ROUND ((ix86_isa_flags & OPTION_MASK_ISA_ROUND) != 0) #include "config/vxworks-dummy.h" #include "config/i386/i386-opts.h" #define MAX_STRINGOP_ALGS 4 /* Specify what algorithm to use for stringops on known size. When size is unknown, the UNKNOWN_SIZE alg is used. When size is known at compile time or estimated via feedback, the SIZE array is walked in order until MAX is greater then the estimate (or -1 means infinity). Corresponding ALG is used then. When NOALIGN is true the code guaranting the alignment of the memory block is skipped. For example initializer: {{256, loop}, {-1, rep_prefix_4_byte}} will use loop for blocks smaller or equal to 256 bytes, rep prefix will be used otherwise. */ struct stringop_algs { const enum stringop_alg unknown_size; const struct stringop_strategy { const int max; const enum stringop_alg alg; int noalign; } size [MAX_STRINGOP_ALGS]; }; /* Define the specific costs for a given cpu */ struct processor_costs { const int add; /* cost of an add instruction */ const int lea; /* cost of a lea instruction */ const int shift_var; /* variable shift costs */ const int shift_const; /* constant shift costs */ const int mult_init[5]; /* cost of starting a multiply in QImode, HImode, SImode, DImode, TImode*/ const int mult_bit; /* cost of multiply per each bit set */ const int divide[5]; /* cost of a divide/mod in QImode, HImode, SImode, DImode, TImode*/ int movsx; /* The cost of movsx operation. */ int movzx; /* The cost of movzx operation. */ const int large_insn; /* insns larger than this cost more */ const int move_ratio; /* The threshold of number of scalar memory-to-memory move insns. */ const int movzbl_load; /* cost of loading using movzbl */ const int int_load[3]; /* cost of loading integer registers in QImode, HImode and SImode relative to reg-reg move (2). */ const int int_store[3]; /* cost of storing integer register in QImode, HImode and SImode */ const int fp_move; /* cost of reg,reg fld/fst */ const int fp_load[3]; /* cost of loading FP register in SFmode, DFmode and XFmode */ const int fp_store[3]; /* cost of storing FP register in SFmode, DFmode and XFmode */ const int mmx_move; /* cost of moving MMX register. */ const int mmx_load[2]; /* cost of loading MMX register in SImode and DImode */ const int mmx_store[2]; /* cost of storing MMX register in SImode and DImode */ const int sse_move; /* cost of moving SSE register. */ const int sse_load[3]; /* cost of loading SSE register in SImode, DImode and TImode*/ const int sse_store[3]; /* cost of storing SSE register in SImode, DImode and TImode*/ const int mmxsse_to_integer; /* cost of moving mmxsse register to integer and vice versa. */ const int l1_cache_size; /* size of l1 cache, in kilobytes. */ const int l2_cache_size; /* size of l2 cache, in kilobytes. */ const int prefetch_block; /* bytes moved to cache for prefetch. */ const int simultaneous_prefetches; /* number of parallel prefetch operations. */ const int branch_cost; /* Default value for BRANCH_COST. */ const int fadd; /* cost of FADD and FSUB instructions. */ const int fmul; /* cost of FMUL instruction. */ const int fdiv; /* cost of FDIV instruction. */ const int fabs; /* cost of FABS instruction. */ const int fchs; /* cost of FCHS instruction. */ const int fsqrt; /* cost of FSQRT instruction. */ /* Specify what algorithm to use for stringops on unknown size. */ struct stringop_algs *memcpy, *memset; const int scalar_stmt_cost; /* Cost of any scalar operation, excluding load and store. */ const int scalar_load_cost; /* Cost of scalar load. */ const int scalar_store_cost; /* Cost of scalar store. */ const int vec_stmt_cost; /* Cost of any vector operation, excluding load, store, vector-to-scalar and scalar-to-vector operation. */ const int vec_to_scalar_cost; /* Cost of vect-to-scalar operation. */ const int scalar_to_vec_cost; /* Cost of scalar-to-vector operation. */ const int vec_align_load_cost; /* Cost of aligned vector load. */ const int vec_unalign_load_cost; /* Cost of unaligned vector load. */ const int vec_store_cost; /* Cost of vector store. */ const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer cost model. */ const int cond_not_taken_branch_cost;/* Cost of not taken branch for vectorizer cost model. */ }; extern const struct processor_costs *ix86_cost; extern const struct processor_costs ix86_size_cost; #define ix86_cur_cost() \ (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost) /* Macros used in the machine description to test the flags. */ /* configure can arrange to make this 2, to force a 486. */ #ifndef TARGET_CPU_DEFAULT #define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_generic #endif #ifndef TARGET_FPMATH_DEFAULT #define TARGET_FPMATH_DEFAULT \ (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387) #endif #ifndef TARGET_FPMATH_DEFAULT_P #define TARGET_FPMATH_DEFAULT_P(x) \ (TARGET_64BIT_P(x) && TARGET_SSE_P(x) ? FPMATH_SSE : FPMATH_387) #endif #define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS #define TARGET_FLOAT_RETURNS_IN_80387_P(x) TARGET_FLOAT_RETURNS_P(x) /* 64bit Sledgehammer mode. For libgcc2 we make sure this is a compile-time constant. */ #ifdef IN_LIBGCC2 #undef TARGET_64BIT #ifdef __x86_64__ #define TARGET_64BIT 1 #else #define TARGET_64BIT 0 #endif #else #ifndef TARGET_BI_ARCH #undef TARGET_64BIT #if TARGET_64BIT_DEFAULT #define TARGET_64BIT 1 #else #define TARGET_64BIT 0 #endif #endif #endif #define HAS_LONG_COND_BRANCH 1 #define HAS_LONG_UNCOND_BRANCH 1 #define TARGET_386 (ix86_tune == PROCESSOR_I386) #define TARGET_486 (ix86_tune == PROCESSOR_I486) #define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM) #define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO) #define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE) #define TARGET_K6 (ix86_tune == PROCESSOR_K6) #define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON) #define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4) #define TARGET_K8 (ix86_tune == PROCESSOR_K8) #define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON) #define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA) #define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2) #define TARGET_COREI7 (ix86_tune == PROCESSOR_COREI7) #define TARGET_COREI7_AVX (ix86_tune == PROCESSOR_COREI7_AVX) #define TARGET_HASWELL (ix86_tune == PROCESSOR_HASWELL) #define TARGET_GENERIC (ix86_tune == PROCESSOR_GENERIC) #define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10) #define TARGET_BDVER1 (ix86_tune == PROCESSOR_BDVER1) #define TARGET_BDVER2 (ix86_tune == PROCESSOR_BDVER2) #define TARGET_BDVER3 (ix86_tune == PROCESSOR_BDVER3) #define TARGET_BDVER4 (ix86_tune == PROCESSOR_BDVER4) #define TARGET_BTVER1 (ix86_tune == PROCESSOR_BTVER1) #define TARGET_BTVER2 (ix86_tune == PROCESSOR_BTVER2) #define TARGET_ATOM (ix86_tune == PROCESSOR_ATOM) #define TARGET_SLM (ix86_tune == PROCESSOR_SLM) /* Feature tests against the various tunings. */ enum ix86_tune_indices { #undef DEF_TUNE #define DEF_TUNE(tune, name, selector) tune, #include "x86-tune.def" #undef DEF_TUNE X86_TUNE_LAST }; extern unsigned char ix86_tune_features[X86_TUNE_LAST]; #define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE] #define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY] #define TARGET_ZERO_EXTEND_WITH_AND \ ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND] #define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN] #define TARGET_BRANCH_PREDICTION_HINTS \ ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS] #define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD] #define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF] #define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX] #define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL] #define TARGET_PARTIAL_FLAG_REG_STALL \ ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL] #define TARGET_LCP_STALL \ ix86_tune_features[X86_TUNE_LCP_STALL] #define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP] #define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP] #define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0] #define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD] #define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB] #define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES] #define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE] #define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY] #define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE] #define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX] #define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP] #define TARGET_MISALIGNED_MOVE_STRING_PRO_EPILOGUES \ ix86_tune_features[X86_TUNE_MISALIGNED_MOVE_STRING_PRO_EPILOGUES] #define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH] #define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH] #define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS] #define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS] #define TARGET_SINGLE_POP ix86_tune_features[X86_TUNE_SINGLE_POP] #define TARGET_DOUBLE_POP ix86_tune_features[X86_TUNE_DOUBLE_POP] #define TARGET_SINGLE_PUSH ix86_tune_features[X86_TUNE_SINGLE_PUSH] #define TARGET_DOUBLE_PUSH ix86_tune_features[X86_TUNE_DOUBLE_PUSH] #define TARGET_INTEGER_DFMODE_MOVES \ ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES] #define TARGET_PARTIAL_REG_DEPENDENCY \ ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY] #define TARGET_SSE_PARTIAL_REG_DEPENDENCY \ ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY] #define TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \ ix86_tune_features[X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL] #define TARGET_SSE_UNALIGNED_STORE_OPTIMAL \ ix86_tune_features[X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL] #define TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL \ ix86_tune_features[X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL] #define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS] #define TARGET_SSE_TYPELESS_STORES \ ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES] #define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR] #define TARGET_MEMORY_MISMATCH_STALL \ ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL] #define TARGET_PROLOGUE_USING_MOVE \ ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE] #define TARGET_EPILOGUE_USING_MOVE \ ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE] #define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1] #define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP] #define TARGET_INTER_UNIT_MOVES_TO_VEC \ ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_TO_VEC] #define TARGET_INTER_UNIT_MOVES_FROM_VEC \ ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES_FROM_VEC] #define TARGET_INTER_UNIT_CONVERSIONS \ ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS] #define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT] #define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE] #define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT] #define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC] #define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS] #define TARGET_PAD_SHORT_FUNCTION \ ix86_tune_features[X86_TUNE_PAD_SHORT_FUNCTION] #define TARGET_EXT_80387_CONSTANTS \ ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS] #define TARGET_AVOID_VECTOR_DECODE \ ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE] #define TARGET_TUNE_PROMOTE_HIMODE_IMUL \ ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL] #define TARGET_SLOW_IMUL_IMM32_MEM \ ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM] #define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8] #define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR] #define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE] #define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE] #define TARGET_USE_VECTOR_FP_CONVERTS \ ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS] #define TARGET_USE_VECTOR_CONVERTS \ ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS] #define TARGET_FUSE_CMP_AND_BRANCH_32 \ ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_32] #define TARGET_FUSE_CMP_AND_BRANCH_64 \ ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_64] #define TARGET_FUSE_CMP_AND_BRANCH \ (TARGET_64BIT ? TARGET_FUSE_CMP_AND_BRANCH_64 \ : TARGET_FUSE_CMP_AND_BRANCH_32) #define TARGET_FUSE_CMP_AND_BRANCH_SOFLAGS \ ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH_SOFLAGS] #define TARGET_FUSE_ALU_AND_BRANCH \ ix86_tune_features[X86_TUNE_FUSE_ALU_AND_BRANCH] #define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU] #define TARGET_VECTORIZE_DOUBLE \ ix86_tune_features[X86_TUNE_VECTORIZE_DOUBLE] #define TARGET_SOFTWARE_PREFETCHING_BENEFICIAL \ ix86_tune_features[X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL] #define TARGET_AVX128_OPTIMAL \ ix86_tune_features[X86_TUNE_AVX128_OPTIMAL] #define TARGET_REASSOC_INT_TO_PARALLEL \ ix86_tune_features[X86_TUNE_REASSOC_INT_TO_PARALLEL] #define TARGET_REASSOC_FP_TO_PARALLEL \ ix86_tune_features[X86_TUNE_REASSOC_FP_TO_PARALLEL] #define TARGET_GENERAL_REGS_SSE_SPILL \ ix86_tune_features[X86_TUNE_GENERAL_REGS_SSE_SPILL] #define TARGET_AVOID_MEM_OPND_FOR_CMOVE \ ix86_tune_features[X86_TUNE_AVOID_MEM_OPND_FOR_CMOVE] #define TARGET_SPLIT_MEM_OPND_FOR_FP_CONVERTS \ ix86_tune_features[X86_TUNE_SPLIT_MEM_OPND_FOR_FP_CONVERTS] /* Feature tests against the various architecture variations. */ enum ix86_arch_indices { X86_ARCH_CMOV, X86_ARCH_CMPXCHG, X86_ARCH_CMPXCHG8B, X86_ARCH_XADD, X86_ARCH_BSWAP, X86_ARCH_LAST }; extern unsigned char ix86_arch_features[X86_ARCH_LAST]; #define TARGET_CMOV ix86_arch_features[X86_ARCH_CMOV] #define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG] #define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B] #define TARGET_XADD ix86_arch_features[X86_ARCH_XADD] #define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP] /* For sane SSE instruction set generation we need fcomi instruction. It is safe to enable all CMOVE instructions. Also, RDRAND intrinsic expands to a sequence that includes conditional move. */ #define TARGET_CMOVE (TARGET_CMOV || TARGET_SSE || TARGET_RDRND) #define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387) extern unsigned char x86_prefetch_sse; #define TARGET_PREFETCH_SSE x86_prefetch_sse #define ASSEMBLER_DIALECT (ix86_asm_dialect) #define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0) #define TARGET_MIX_SSE_I387 \ ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387)) #define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU) #define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2) #define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS) #define TARGET_SUN_TLS 0 #ifndef TARGET_64BIT_DEFAULT #define TARGET_64BIT_DEFAULT 0 #endif #ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT #define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0 #endif #define TARGET_SSP_GLOBAL_GUARD (ix86_stack_protector_guard == SSP_GLOBAL) #define TARGET_SSP_TLS_GUARD (ix86_stack_protector_guard == SSP_TLS) /* Fence to use after loop using storent. */ extern tree x86_mfence; #define FENCE_FOLLOWING_MOVNT x86_mfence /* Once GDB has been enhanced to deal with functions without frame pointers, we can change this to allow for elimination of the frame pointer in leaf functions. */ #define TARGET_DEFAULT 0 /* Extra bits to force. */ #define TARGET_SUBTARGET_DEFAULT 0 #define TARGET_SUBTARGET_ISA_DEFAULT 0 /* Extra bits to force on w/ 32-bit mode. */ #define TARGET_SUBTARGET32_DEFAULT 0 #define TARGET_SUBTARGET32_ISA_DEFAULT 0 /* Extra bits to force on w/ 64-bit mode. */ #define TARGET_SUBTARGET64_DEFAULT 0 #define TARGET_SUBTARGET64_ISA_DEFAULT 0 /* Replace MACH-O, ifdefs by in-line tests, where possible. (a) Macros defined in config/i386/darwin.h */ #define TARGET_MACHO 0 #define TARGET_MACHO_BRANCH_ISLANDS 0 #define MACHOPIC_ATT_STUB 0 /* (b) Macros defined in config/darwin.h */ #define MACHO_DYNAMIC_NO_PIC_P 0 #define MACHOPIC_INDIRECT 0 #define MACHOPIC_PURE 0 /* For the RDOS */ #define TARGET_RDOS 0 /* For the Windows 64-bit ABI. */ #define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI) /* For the Windows 32-bit ABI. */ #define TARGET_32BIT_MS_ABI (!TARGET_64BIT && ix86_cfun_abi () == MS_ABI) /* This is re-defined by cygming.h. */ #define TARGET_SEH 0 /* This is re-defined by cygming.h. */ #define TARGET_PECOFF 0 /* The default abi used by target. */ #define DEFAULT_ABI SYSV_ABI /* The default TLS segment register used by target. */ #define DEFAULT_TLS_SEG_REG (TARGET_64BIT ? SEG_FS : SEG_GS) /* Subtargets may reset this to 1 in order to enable 96-bit long double with the rounding mode forced to 53 bits. */ #define TARGET_96_ROUND_53_LONG_DOUBLE 0 /* -march=native handling only makes sense with compiler running on an x86 or x86_64 chip. If changing this condition, also change the condition in driver-i386.c. */ #if defined(__i386__) || defined(__x86_64__) /* In driver-i386.c. */ extern const char *host_detect_local_cpu (int argc, const char **argv); #define EXTRA_SPEC_FUNCTIONS \ { "local_cpu_detect", host_detect_local_cpu }, #define HAVE_LOCAL_CPU_DETECT #endif #if TARGET_64BIT_DEFAULT #define OPT_ARCH64 "!m32" #define OPT_ARCH32 "m32" #else #define OPT_ARCH64 "m64|mx32" #define OPT_ARCH32 "m64|mx32:;" #endif /* Support for configure-time defaults of some command line options. The order here is important so that -march doesn't squash the tune or cpu values. */ #define OPTION_DEFAULT_SPECS \ {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \ {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \ {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \ {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \ {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \ {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \ {"arch", "%{!march=*:-march=%(VALUE)}"}, \ {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"}, \ {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"}, /* Specs for the compiler proper */ #ifndef CC1_CPU_SPEC #define CC1_CPU_SPEC_1 "" #ifndef HAVE_LOCAL_CPU_DETECT #define CC1_CPU_SPEC CC1_CPU_SPEC_1 #else #define CC1_CPU_SPEC CC1_CPU_SPEC_1 \ "%{march=native:%>march=native %:local_cpu_detect(arch) \ %{!mtune=*:%>mtune=native %:local_cpu_detect(tune)}} \ %{mtune=native:%>mtune=native %:local_cpu_detect(tune)}" #endif #endif /* Target CPU builtins. */ #define TARGET_CPU_CPP_BUILTINS() ix86_target_macros () /* Target Pragmas. */ #define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas () enum target_cpu_default { TARGET_CPU_DEFAULT_generic = 0, TARGET_CPU_DEFAULT_i386, TARGET_CPU_DEFAULT_i486, TARGET_CPU_DEFAULT_pentium, TARGET_CPU_DEFAULT_pentium_mmx, TARGET_CPU_DEFAULT_pentiumpro, TARGET_CPU_DEFAULT_pentium2, TARGET_CPU_DEFAULT_pentium3, TARGET_CPU_DEFAULT_pentium4, TARGET_CPU_DEFAULT_pentium_m, TARGET_CPU_DEFAULT_prescott, TARGET_CPU_DEFAULT_nocona, TARGET_CPU_DEFAULT_core2, TARGET_CPU_DEFAULT_corei7, TARGET_CPU_DEFAULT_corei7_avx, TARGET_CPU_DEFAULT_haswell, TARGET_CPU_DEFAULT_atom, TARGET_CPU_DEFAULT_slm, TARGET_CPU_DEFAULT_geode, TARGET_CPU_DEFAULT_k6, TARGET_CPU_DEFAULT_k6_2, TARGET_CPU_DEFAULT_k6_3, TARGET_CPU_DEFAULT_athlon, TARGET_CPU_DEFAULT_athlon_sse, TARGET_CPU_DEFAULT_k8, TARGET_CPU_DEFAULT_amdfam10, TARGET_CPU_DEFAULT_bdver1, TARGET_CPU_DEFAULT_bdver2, TARGET_CPU_DEFAULT_bdver3, TARGET_CPU_DEFAULT_bdver4, TARGET_CPU_DEFAULT_btver1, TARGET_CPU_DEFAULT_btver2, TARGET_CPU_DEFAULT_max }; #ifndef CC1_SPEC #define CC1_SPEC "%(cc1_cpu) " #endif /* This macro defines names of additional specifications to put in the specs that can be used in various specifications like CC1_SPEC. Its definition is an initializer with a subgrouping for each command option. Each subgrouping contains a string constant, that defines the specification name, and a string constant that used by the GCC driver program. Do not define this macro if it does not need to do anything. */ #ifndef SUBTARGET_EXTRA_SPECS #define SUBTARGET_EXTRA_SPECS #endif #define EXTRA_SPECS \ { "cc1_cpu", CC1_CPU_SPEC }, \ SUBTARGET_EXTRA_SPECS /* Set the value of FLT_EVAL_METHOD in float.h. When using only the FPU, assume that the fpcw is set to extended precision; when using only SSE, rounding is correct; when using both SSE and the FPU, the rounding precision is indeterminate, since either may be chosen apparently at random. */ #define TARGET_FLT_EVAL_METHOD \ (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2) /* Whether to allow x87 floating-point arithmetic on MODE (one of SFmode, DFmode and XFmode) in the current excess precision configuration. */ #define X87_ENABLE_ARITH(MODE) \ (flag_excess_precision == EXCESS_PRECISION_FAST || (MODE) == XFmode) /* Likewise, whether to allow direct conversions from integer mode IMODE (HImode, SImode or DImode) to MODE. */ #define X87_ENABLE_FLOAT(MODE, IMODE) \ (flag_excess_precision == EXCESS_PRECISION_FAST \ || (MODE) == XFmode \ || ((MODE) == DFmode && (IMODE) == SImode) \ || (IMODE) == HImode) /* target machine storage layout */ #define SHORT_TYPE_SIZE 16 #define INT_TYPE_SIZE 32 #define LONG_TYPE_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD) #define POINTER_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD) #define LONG_LONG_TYPE_SIZE 64 #define FLOAT_TYPE_SIZE 32 #define DOUBLE_TYPE_SIZE 64 #define LONG_DOUBLE_TYPE_SIZE (TARGET_LONG_DOUBLE_64 ? 64 : 80) /* Define this to set long double type size to use in libgcc2.c, which can not depend on target_flags. */ #ifdef __LONG_DOUBLE_64__ #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64 #else #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 80 #endif #define WIDEST_HARDWARE_FP_SIZE 80 #if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT #define MAX_BITS_PER_WORD 64 #else #define MAX_BITS_PER_WORD 32 #endif /* Define this if most significant byte of a word is the lowest numbered. */ /* That is true on the 80386. */ #define BITS_BIG_ENDIAN 0 /* Define this if most significant byte of a word is the lowest numbered. */ /* That is not true on the 80386. */ #define BYTES_BIG_ENDIAN 0 /* Define this if most significant word of a multiword number is the lowest numbered. */ /* Not true for 80386 */ #define WORDS_BIG_ENDIAN 0 /* Width of a word, in units (bytes). */ #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4) #ifndef IN_LIBGCC2 #define MIN_UNITS_PER_WORD 4 #endif /* Allocation boundary (in *bits*) for storing arguments in argument list. */ #define PARM_BOUNDARY BITS_PER_WORD /* Boundary (in *bits*) on which stack pointer should be aligned. */ #define STACK_BOUNDARY \ (TARGET_64BIT && ix86_abi == MS_ABI ? 128 : BITS_PER_WORD) /* Stack boundary of the main function guaranteed by OS. */ #define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32) /* Minimum stack boundary. */ #define MIN_STACK_BOUNDARY (TARGET_64BIT ? (TARGET_SSE ? 128 : 64) : 32) /* Boundary (in *bits*) on which the stack pointer prefers to be aligned; the compiler cannot rely on having this alignment. */ #define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary /* It should be MIN_STACK_BOUNDARY. But we set it to 128 bits for both 32bit and 64bit, to support codes that need 128 bit stack alignment for SSE instructions, but can't realign the stack. */ #define PREFERRED_STACK_BOUNDARY_DEFAULT 128 /* 1 if -mstackrealign should be turned on by default. It will generate an alternate prologue and epilogue that realigns the runtime stack if nessary. This supports mixing codes that keep a 4-byte aligned stack, as specified by i386 psABI, with codes that need a 16-byte aligned stack, as required by SSE instructions. */ #define STACK_REALIGN_DEFAULT 0 /* Boundary (in *bits*) on which the incoming stack is aligned. */ #define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary /* According to Windows x64 software convention, the maximum stack allocatable in the prologue is 4G - 8 bytes. Furthermore, there is a limited set of instructions allowed to adjust the stack pointer in the epilog, forcing the use of frame pointer for frames larger than 2 GB. This theorical limit is reduced by 256, an over-estimated upper bound for the stack use by the prologue. We define only one threshold for both the prolog and the epilog. When the frame size is larger than this threshold, we allocate the area to save SSE regs, then save them, and then allocate the remaining. There is no SEH unwind info for this later allocation. */ #define SEH_MAX_FRAME_SIZE ((2U << 30) - 256) /* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is mandatory for the 64-bit ABI, and may or may not be true for other operating systems. */ #define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT /* Minimum allocation boundary for the code of a function. */ #define FUNCTION_BOUNDARY 8 /* C++ stores the virtual bit in the lowest bit of function pointers. */ #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn /* Minimum size in bits of the largest boundary to which any and all fundamental data types supported by the hardware might need to be aligned. No data type wants to be aligned rounder than this. Pentium+ prefers DFmode values to be aligned to 64 bit boundary and Pentium Pro XFmode values at 128 bit boundaries. */ #define BIGGEST_ALIGNMENT \ (TARGET_AVX512F ? 512 : (TARGET_AVX ? 256 : 128)) /* Maximum stack alignment. */ #define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT /* Alignment value for attribute ((aligned)). It is a constant since it is the part of the ABI. We shouldn't change it with -mavx. */ #define ATTRIBUTE_ALIGNED_VALUE 128 /* Decide whether a variable of mode MODE should be 128 bit aligned. */ #define ALIGN_MODE_128(MODE) \ ((MODE) == XFmode || SSE_REG_MODE_P (MODE)) /* The published ABIs say that doubles should be aligned on word boundaries, so lower the alignment for structure fields unless -malign-double is set. */ /* ??? Blah -- this macro is used directly by libobjc. Since it supports no vector modes, cut out the complexity and fall back on BIGGEST_FIELD_ALIGNMENT. */ #ifdef IN_TARGET_LIBS #ifdef __x86_64__ #define BIGGEST_FIELD_ALIGNMENT 128 #else #define BIGGEST_FIELD_ALIGNMENT 32 #endif #else #define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \ x86_field_alignment (FIELD, COMPUTED) #endif /* If defined, a C expression to compute the alignment given to a constant that is being placed in memory. EXP is the constant and ALIGN is the alignment that the object would ordinarily have. The value of this macro is used instead of that alignment to align the object. If this macro is not defined, then ALIGN is used. The typical use of this macro is to increase alignment for string constants to be word aligned so that `strcpy' calls that copy constants can be done inline. */ #define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN)) /* If defined, a C expression to compute the alignment for a static variable. TYPE is the data type, and ALIGN is the alignment that the object would ordinarily have. The value of this macro is used instead of that alignment to align the object. If this macro is not defined, then ALIGN is used. One use of this macro is to increase alignment of medium-size data to make it all fit in fewer cache lines. Another is to cause character arrays to be word-aligned so that `strcpy' calls that copy constants to character arrays can be done inline. */ #define DATA_ALIGNMENT(TYPE, ALIGN) \ ix86_data_alignment ((TYPE), (ALIGN), true) /* Similar to DATA_ALIGNMENT, but for the cases where the ABI mandates some alignment increase, instead of optimization only purposes. E.g. AMD x86-64 psABI says that variables with array type larger than 15 bytes must be aligned to 16 byte boundaries. If this macro is not defined, then ALIGN is used. */ #define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \ ix86_data_alignment ((TYPE), (ALIGN), false) /* If defined, a C expression to compute the alignment for a local variable. TYPE is the data type, and ALIGN is the alignment that the object would ordinarily have. The value of this macro is used instead of that alignment to align the object. If this macro is not defined, then ALIGN is used. One use of this macro is to increase alignment of medium-size data to make it all fit in fewer cache lines. */ #define LOCAL_ALIGNMENT(TYPE, ALIGN) \ ix86_local_alignment ((TYPE), VOIDmode, (ALIGN)) /* If defined, a C expression to compute the alignment for stack slot. TYPE is the data type, MODE is the widest mode available, and ALIGN is the alignment that the slot would ordinarily have. The value of this macro is used instead of that alignment to align the slot. If this macro is not defined, then ALIGN is used when TYPE is NULL, Otherwise, LOCAL_ALIGNMENT will be used. One use of this macro is to set alignment of stack slot to the maximum alignment of all possible modes which the slot may have. */ #define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \ ix86_local_alignment ((TYPE), (MODE), (ALIGN)) /* If defined, a C expression to compute the alignment for a local variable DECL. If this macro is not defined, then LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used. One use of this macro is to increase alignment of medium-size data to make it all fit in fewer cache lines. */ #define LOCAL_DECL_ALIGNMENT(DECL) \ ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL)) /* If defined, a C expression to compute the minimum required alignment for dynamic stack realignment purposes for EXP (a TYPE or DECL), MODE, assuming normal alignment ALIGN. If this macro is not defined, then (ALIGN) will be used. */ #define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \ ix86_minimum_alignment (EXP, MODE, ALIGN) /* Set this nonzero if move instructions will actually fail to work when given unaligned data. */ #define STRICT_ALIGNMENT 0 /* If bit field type is int, don't let it cross an int, and give entire struct the alignment of an int. */ /* Required on the 386 since it doesn't have bit-field insns. */ #define PCC_BITFIELD_TYPE_MATTERS 1 /* Standard register usage. */ /* This processor has special stack-like registers. See reg-stack.c for details. */ #define STACK_REGS #define IS_STACK_MODE(MODE) \ (((MODE) == SFmode && !(TARGET_SSE && TARGET_SSE_MATH)) \ || ((MODE) == DFmode && !(TARGET_SSE2 && TARGET_SSE_MATH)) \ || (MODE) == XFmode) /* Number of actual hardware registers. The hardware registers are assigned numbers for the compiler from 0 to just below FIRST_PSEUDO_REGISTER. All registers that the compiler knows about must be given numbers, even those that are not normally considered general registers. In the 80386 we give the 8 general purpose registers the numbers 0-7. We number the floating point registers 8-15. Note that registers 0-7 can be accessed as a short or int, while only 0-3 may be used with byte `mov' instructions. Reg 16 does not correspond to any hardware register, but instead appears in the RTL as an argument pointer prior to reload, and is eliminated during reloading in favor of either the stack or frame pointer. */ #define FIRST_PSEUDO_REGISTER 81 /* Number of hardware registers that go into the DWARF-2 unwind info. If not defined, equals FIRST_PSEUDO_REGISTER. */ #define DWARF_FRAME_REGISTERS 17 /* 1 for registers that have pervasive standard uses and are not available for the register allocator. On the 80386, the stack pointer is such, as is the arg pointer. REX registers are disabled for 32bit targets in TARGET_CONDITIONAL_REGISTER_USAGE. */ #define FIXED_REGISTERS \ /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \ { 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \ /*arg,flags,fpsr,fpcr,frame*/ \ 1, 1, 1, 1, 1, \ /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \ 0, 0, 0, 0, 0, 0, 0, 0, \ /* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \ 0, 0, 0, 0, 0, 0, 0, 0, \ /* r8, r9, r10, r11, r12, r13, r14, r15*/ \ 0, 0, 0, 0, 0, 0, 0, 0, \ /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \ 0, 0, 0, 0, 0, 0, 0, 0, \ /*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \ 0, 0, 0, 0, 0, 0, 0, 0, \ /*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \ 0, 0, 0, 0, 0, 0, 0, 0, \ /* k0, k1, k2, k3, k4, k5, k6, k7*/ \ 0, 0, 0, 0, 0, 0, 0, 0, \ /* b0, b1, b2, b3*/ \ 0, 0, 0, 0 } /* 1 for registers not available across function calls. These must include the FIXED_REGISTERS and also any registers that can be used without being saved. The latter must include the registers where values are returned and the register where structure-value addresses are passed. Aside from that, you can include as many other registers as you like. Value is set to 1 if the register is call used unconditionally. Bit one is set if the register is call used on TARGET_32BIT ABI. Bit two is set if the register is call used on TARGET_64BIT ABI. Bit three is set if the register is call used on TARGET_64BIT_MS_ABI. Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE. */ #define CALL_USED_REGISTERS \ /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \ { 1, 1, 1, 0, 4, 4, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \ /*arg,flags,fpsr,fpcr,frame*/ \ 1, 1, 1, 1, 1, \ /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \ 1, 1, 1, 1, 1, 1, 6, 6, \ /* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \ 1, 1, 1, 1, 1, 1, 1, 1, \ /* r8, r9, r10, r11, r12, r13, r14, r15*/ \ 1, 1, 1, 1, 2, 2, 2, 2, \ /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \ 6, 6, 6, 6, 6, 6, 6, 6, \ /*xmm16,xmm17,xmm18,xmm19,xmm20,xmm21,xmm22,xmm23*/ \ 6, 6, 6, 6, 6, 6, 6, 6, \ /*xmm24,xmm25,xmm26,xmm27,xmm28,xmm29,xmm30,xmm31*/ \ 6, 6, 6, 6, 6, 6, 6, 6, \ /* k0, k1, k2, k3, k4, k5, k6, k7*/ \ 1, 1, 1, 1, 1, 1, 1, 1, \ /* b0, b1, b2, b3*/ \ 1, 1, 1, 1 } /* Order in which to allocate registers. Each register must be listed once, even those in FIXED_REGISTERS. List frame pointer late and fixed registers last. Note that, in general, we prefer registers listed in CALL_USED_REGISTERS, keeping the others available for storage of persistent values. The ADJUST_REG_ALLOC_ORDER actually overwrite the order, so this is just empty initializer for array. */ #define REG_ALLOC_ORDER \ { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\ 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \ 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \ 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, \ 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, \ 78, 79, 80 } /* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order to be rearranged based on a particular function. When using sse math, we want to allocate SSE before x87 registers and vice versa. */ #define ADJUST_REG_ALLOC_ORDER x86_order_regs_for_local_alloc () #define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL) /* Return number of consecutive hard regs needed starting at reg REGNO to hold something of mode MODE. This is ordinarily the length in words of a value of mode MODE but can be less for certain modes in special long registers. Actually there are no two word move instructions for consecutive registers. And only registers 0-3 may have mov byte instructions applied to them. */ #define HARD_REGNO_NREGS(REGNO, MODE) \ (STACK_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \ || BND_REGNO_P (REGNO) \ ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \ : ((MODE) == XFmode \ ? (TARGET_64BIT ? 2 : 3) \ : (MODE) == XCmode \ ? (TARGET_64BIT ? 4 : 6) \ : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))) #define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \ ((TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT) \ ? (STACK_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \ ? 0 \ : ((MODE) == XFmode || (MODE) == XCmode)) \ : 0) #define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8) #define VALID_AVX256_REG_MODE(MODE) \ ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \ || (MODE) == V4DImode || (MODE) == V2TImode || (MODE) == V8SFmode \ || (MODE) == V4DFmode) #define VALID_AVX256_REG_OR_OI_MODE(MODE) \ (VALID_AVX256_REG_MODE (MODE) || (MODE) == OImode) #define VALID_AVX512F_SCALAR_MODE(MODE) \ ((MODE) == DImode || (MODE) == DFmode || (MODE) == SImode \ || (MODE) == SFmode) #define VALID_AVX512F_REG_MODE(MODE) \ ((MODE) == V8DImode || (MODE) == V8DFmode || (MODE) == V64QImode \ || (MODE) == V16SImode || (MODE) == V16SFmode || (MODE) == V32HImode) #define VALID_SSE2_REG_MODE(MODE) \ ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \ || (MODE) == V2DImode || (MODE) == DFmode) #define VALID_SSE_REG_MODE(MODE) \ ((MODE) == V1TImode || (MODE) == TImode \ || (MODE) == V4SFmode || (MODE) == V4SImode \ || (MODE) == SFmode || (MODE) == TFmode) #define VALID_MMX_REG_MODE_3DNOW(MODE) \ ((MODE) == V2SFmode || (MODE) == SFmode) #define VALID_MMX_REG_MODE(MODE) \ ((MODE == V1DImode) || (MODE) == DImode \ || (MODE) == V2SImode || (MODE) == SImode \ || (MODE) == V4HImode || (MODE) == V8QImode) #define VALID_BND_REG_MODE(MODE) \ (TARGET_64BIT ? (MODE) == BND64mode : (MODE) == BND32mode) #define VALID_DFP_MODE_P(MODE) \ ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode) #define VALID_FP_MODE_P(MODE) \ ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \ || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \ #define VALID_INT_MODE_P(MODE) \ ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \ || (MODE) == DImode \ || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \ || (MODE) == CDImode \ || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \ || (MODE) == TFmode || (MODE) == TCmode))) /* Return true for modes passed in SSE registers. */ #define SSE_REG_MODE_P(MODE) \ ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode \ || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode \ || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode \ || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \ || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode \ || (MODE) == V2TImode || (MODE) == V8DImode || (MODE) == V64QImode \ || (MODE) == V16SImode || (MODE) == V32HImode || (MODE) == V8DFmode \ || (MODE) == V16SFmode) #define VALID_MASK_REG_MODE(MODE) ((MODE) == HImode || (MODE) == QImode) /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */ #define HARD_REGNO_MODE_OK(REGNO, MODE) \ ix86_hard_regno_mode_ok ((REGNO), (MODE)) /* Value is 1 if it is a good idea to tie two pseudo registers when one has mode MODE1 and one has mode MODE2. If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2, for any hard reg, then this must be 0 for correct output. */ #define MODES_TIEABLE_P(MODE1, MODE2) ix86_modes_tieable_p (MODE1, MODE2) /* It is possible to write patterns to move flags; but until someone does it, */ #define AVOID_CCMODE_COPIES /* Specify the modes required to caller save a given hard regno. We do this on i386 to prevent flags from being saved at all. Kill any attempts to combine saving of modes. */ #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \ (CC_REGNO_P (REGNO) ? VOIDmode \ : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \ : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \ : (MODE) == HImode && !(TARGET_PARTIAL_REG_STALL \ || MASK_REGNO_P (REGNO)) ? SImode \ : (MODE) == QImode && !(TARGET_64BIT || QI_REGNO_P (REGNO) \ || MASK_REGNO_P (REGNO)) ? SImode \ : (MODE)) /* The only ABI that saves SSE registers across calls is Win64 (thus no need to check the current ABI here), and with AVX enabled Win64 only guarantees that the low 16 bytes are saved. */ #define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \ (SSE_REGNO_P (REGNO) && GET_MODE_SIZE (MODE) > 16) /* Specify the registers used for certain standard purposes. The values of these macros are register numbers. */ /* on the 386 the pc register is %eip, and is not usable as a general register. The ordinary mov instructions won't work */ /* #define PC_REGNUM */ /* Register to use for pushing function arguments. */ #define STACK_POINTER_REGNUM 7 /* Base register for access to local variables of the function. */ #define HARD_FRAME_POINTER_REGNUM 6 /* Base register for access to local variables of the function. */ #define FRAME_POINTER_REGNUM 20 /* First floating point reg */ #define FIRST_FLOAT_REG 8 /* First & last stack-like regs */ #define FIRST_STACK_REG FIRST_FLOAT_REG #define LAST_STACK_REG (FIRST_FLOAT_REG + 7) #define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1) #define LAST_SSE_REG (FIRST_SSE_REG + 7) #define FIRST_MMX_REG (LAST_SSE_REG + 1) /*29*/ #define LAST_MMX_REG (FIRST_MMX_REG + 7) #define FIRST_REX_INT_REG (LAST_MMX_REG + 1) /*37*/ #define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7) #define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1) /*45*/ #define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7) #define FIRST_EXT_REX_SSE_REG (LAST_REX_SSE_REG + 1) /*53*/ #define LAST_EXT_REX_SSE_REG (FIRST_EXT_REX_SSE_REG + 15) /*68*/ #define FIRST_MASK_REG (LAST_EXT_REX_SSE_REG + 1) /*69*/ #define LAST_MASK_REG (FIRST_MASK_REG + 7) /*76*/ #define FIRST_BND_REG (LAST_MASK_REG + 1) /*77*/ #define LAST_BND_REG (FIRST_BND_REG + 3) /*80*/ /* Override this in other tm.h files to cope with various OS lossage requiring a frame pointer. */ #ifndef SUBTARGET_FRAME_POINTER_REQUIRED #define SUBTARGET_FRAME_POINTER_REQUIRED 0 #endif /* Make sure we can access arbitrary call frames. */ #define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses () /* Base register for access to arguments of the function. */ #define ARG_POINTER_REGNUM 16 /* Register to hold the addressing base for position independent code access to data items. We don't use PIC pointer for 64bit mode. Define the regnum to dummy value to prevent gcc from pessimizing code dealing with EBX. To avoid clobbering a call-saved register unnecessarily, we renumber the pic register when possible. The change is visible after the prologue has been emitted. */ #define REAL_PIC_OFFSET_TABLE_REGNUM BX_REG #define PIC_OFFSET_TABLE_REGNUM \ ((TARGET_64BIT && (ix86_cmodel == CM_SMALL_PIC \ || TARGET_PECOFF)) \ || !flag_pic ? INVALID_REGNUM \ : reload_completed ? REGNO (pic_offset_table_rtx) \ : REAL_PIC_OFFSET_TABLE_REGNUM) #define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_" /* This is overridden by . */ #define MS_AGGREGATE_RETURN 0 #define KEEP_AGGREGATE_RETURN_POINTER 0 /* Define the classes of registers for register constraints in the machine description. Also define ranges of constants. One of the classes must always be named ALL_REGS and include all hard regs. If there is more than one class, another class must be named NO_REGS and contain no registers. The name GENERAL_REGS must be the name of a class (or an alias for another name such as ALL_REGS). This is the class of registers that is allowed by "g" or "r" in a register constraint. Also, registers outside this class are allocated only when instructions express preferences for them. The classes must be numbered in nondecreasing order; that is, a larger-numbered class must never be contained completely in a smaller-numbered class. For any two classes, it is very desirable that there be another class that represents their union. It might seem that class BREG is unnecessary, since no useful 386 opcode needs reg %ebx. But some systems pass args to the OS in ebx, and the "b" register constraint is useful in asms for syscalls. The flags, fpsr and fpcr registers are in no class. */ enum reg_class { NO_REGS, AREG, DREG, CREG, BREG, SIREG, DIREG, AD_REGS, /* %eax/%edx for DImode */ Q_REGS, /* %eax %ebx %ecx %edx */ NON_Q_REGS, /* %esi %edi %ebp %esp */ INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */ LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */ CLOBBERED_REGS, /* call-clobbered integer registers */ GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15 */ FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */ FLOAT_REGS, SSE_FIRST_REG, SSE_REGS, EVEX_SSE_REGS, BND_REGS, ALL_SSE_REGS, MMX_REGS, FP_TOP_SSE_REGS, FP_SECOND_SSE_REGS, FLOAT_SSE_REGS, FLOAT_INT_REGS, INT_SSE_REGS, FLOAT_INT_SSE_REGS, MASK_EVEX_REGS, MASK_REGS, ALL_REGS, LIM_REG_CLASSES }; #define N_REG_CLASSES ((int) LIM_REG_CLASSES) #define INTEGER_CLASS_P(CLASS) \ reg_class_subset_p ((CLASS), GENERAL_REGS) #define FLOAT_CLASS_P(CLASS) \ reg_class_subset_p ((CLASS), FLOAT_REGS) #define SSE_CLASS_P(CLASS) \ reg_class_subset_p ((CLASS), ALL_SSE_REGS) #define MMX_CLASS_P(CLASS) \ ((CLASS) == MMX_REGS) #define MAYBE_INTEGER_CLASS_P(CLASS) \ reg_classes_intersect_p ((CLASS), GENERAL_REGS) #define MAYBE_FLOAT_CLASS_P(CLASS) \ reg_classes_intersect_p ((CLASS), FLOAT_REGS) #define MAYBE_SSE_CLASS_P(CLASS) \ reg_classes_intersect_p ((CLASS), ALL_SSE_REGS) #define MAYBE_MMX_CLASS_P(CLASS) \ reg_classes_intersect_p ((CLASS), MMX_REGS) #define MAYBE_MASK_CLASS_P(CLASS) \ reg_classes_intersect_p ((CLASS), MASK_REGS) #define Q_CLASS_P(CLASS) \ reg_class_subset_p ((CLASS), Q_REGS) #define MAYBE_NON_Q_CLASS_P(CLASS) \ reg_classes_intersect_p ((CLASS), NON_Q_REGS) /* Give names of register classes as strings for dump file. */ #define REG_CLASS_NAMES \ { "NO_REGS", \ "AREG", "DREG", "CREG", "BREG", \ "SIREG", "DIREG", \ "AD_REGS", \ "Q_REGS", "NON_Q_REGS", \ "INDEX_REGS", \ "LEGACY_REGS", \ "CLOBBERED_REGS", \ "GENERAL_REGS", \ "FP_TOP_REG", "FP_SECOND_REG", \ "FLOAT_REGS", \ "SSE_FIRST_REG", \ "SSE_REGS", \ "EVEX_SSE_REGS", \ "BND_REGS", \ "ALL_SSE_REGS", \ "MMX_REGS", \ "FP_TOP_SSE_REGS", \ "FP_SECOND_SSE_REGS", \ "FLOAT_SSE_REGS", \ "FLOAT_INT_REGS", \ "INT_SSE_REGS", \ "FLOAT_INT_SSE_REGS", \ "MASK_EVEX_REGS", \ "MASK_REGS", \ "ALL_REGS" } /* Define which registers fit in which classes. This is an initializer for a vector of HARD_REG_SET of length N_REG_CLASSES. Note that CLOBBERED_REGS are calculated by TARGET_CONDITIONAL_REGISTER_USAGE. */ #define REG_CLASS_CONTENTS \ { { 0x00, 0x0, 0x0 }, \ { 0x01, 0x0, 0x0 }, /* AREG */ \ { 0x02, 0x0, 0x0 }, /* DREG */ \ { 0x04, 0x0, 0x0 }, /* CREG */ \ { 0x08, 0x0, 0x0 }, /* BREG */ \ { 0x10, 0x0, 0x0 }, /* SIREG */ \ { 0x20, 0x0, 0x0 }, /* DIREG */ \ { 0x03, 0x0, 0x0 }, /* AD_REGS */ \ { 0x0f, 0x0, 0x0 }, /* Q_REGS */ \ { 0x1100f0, 0x1fe0, 0x0 }, /* NON_Q_REGS */ \ { 0x7f, 0x1fe0, 0x0 }, /* INDEX_REGS */ \ { 0x1100ff, 0x0, 0x0 }, /* LEGACY_REGS */ \ { 0x07, 0x0, 0x0 }, /* CLOBBERED_REGS */ \ { 0x1100ff, 0x1fe0, 0x0 }, /* GENERAL_REGS */ \ { 0x100, 0x0, 0x0 }, /* FP_TOP_REG */ \ { 0x0200, 0x0, 0x0 }, /* FP_SECOND_REG */ \ { 0xff00, 0x0, 0x0 }, /* FLOAT_REGS */ \ { 0x200000, 0x0, 0x0 }, /* SSE_FIRST_REG */ \ { 0x1fe00000, 0x1fe000, 0x0 }, /* SSE_REGS */ \ { 0x0,0xffe00000, 0x1f }, /* EVEX_SSE_REGS */ \ { 0x0, 0x0,0x1e000 }, /* BND_REGS */ \ { 0x1fe00000,0xffffe000, 0x1f }, /* ALL_SSE_REGS */ \ { 0xe0000000, 0x1f, 0x0 }, /* MMX_REGS */ \ { 0x1fe00100,0xffffe000, 0x1f }, /* FP_TOP_SSE_REG */ \ { 0x1fe00200,0xffffe000, 0x1f }, /* FP_SECOND_SSE_REG */ \ { 0x1fe0ff00,0xffffe000, 0x1f }, /* FLOAT_SSE_REGS */ \ { 0x11ffff, 0x1fe0, 0x0 }, /* FLOAT_INT_REGS */ \ { 0x1ff100ff,0xffffffe0, 0x1f }, /* INT_SSE_REGS */ \ { 0x1ff1ffff,0xffffffe0, 0x1f }, /* FLOAT_INT_SSE_REGS */ \ { 0x0, 0x0, 0x1fc0 }, /* MASK_EVEX_REGS */ \ { 0x0, 0x0, 0x1fe0 }, /* MASK_REGS */ \ { 0xffffffff,0xffffffff, 0x1fff } \ } /* The same information, inverted: Return the class number of the smallest class containing reg number REGNO. This could be a conditional expression or could index an array. */ #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO]) /* When this hook returns true for MODE, the compiler allows registers explicitly used in the rtl to be used as spill registers but prevents the compiler from extending the lifetime of these registers. */ #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true #define QI_REG_P(X) (REG_P (X) && QI_REGNO_P (REGNO (X))) #define QI_REGNO_P(N) IN_RANGE ((N), AX_REG, BX_REG) #define GENERAL_REG_P(X) \ (REG_P (X) && GENERAL_REGNO_P (REGNO (X))) #define GENERAL_REGNO_P(N) \ (IN_RANGE ((N), AX_REG, SP_REG) || REX_INT_REGNO_P (N)) #define ANY_QI_REG_P(X) (REG_P (X) && ANY_QI_REGNO_P (REGNO (X))) #define ANY_QI_REGNO_P(N) \ (TARGET_64BIT ? GENERAL_REGNO_P (N) : QI_REGNO_P (N)) #define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X))) #define REX_INT_REGNO_P(N) \ IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG) #define STACK_REG_P(X) (REG_P (X) && STACK_REGNO_P (REGNO (X))) #define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG) #define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X))) #define ANY_FP_REGNO_P(N) (STACK_REGNO_P (N) || SSE_REGNO_P (N)) #define X87_FLOAT_MODE_P(MODE) \ (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode)) #define SSE_REG_P(X) (REG_P (X) && SSE_REGNO_P (REGNO (X))) #define SSE_REGNO_P(N) \ (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \ || REX_SSE_REGNO_P (N) \ || EXT_REX_SSE_REGNO_P (N)) #define REX_SSE_REGNO_P(N) \ IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG) #define EXT_REX_SSE_REGNO_P(N) \ IN_RANGE ((N), FIRST_EXT_REX_SSE_REG, LAST_EXT_REX_SSE_REG) #define SSE_REGNO(N) \ ((N) < 8 ? FIRST_SSE_REG + (N) \ : (N) <= LAST_REX_SSE_REG ? (FIRST_REX_SSE_REG + (N) - 8) \ : (FIRST_EXT_REX_SSE_REG + (N) - 16)) #define MASK_REGNO_P(N) IN_RANGE ((N), FIRST_MASK_REG, LAST_MASK_REG) #define ANY_MASK_REG_P(X) (REG_P (X) && MASK_REGNO_P (REGNO (X))) #define SSE_FLOAT_MODE_P(MODE) \ ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode)) #define FMA4_VEC_FLOAT_MODE_P(MODE) \ (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \ || (MODE) == V8SFmode || (MODE) == V4DFmode)) #define MMX_REG_P(X) (REG_P (X) && MMX_REGNO_P (REGNO (X))) #define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG) #define STACK_TOP_P(X) (REG_P (X) && REGNO (X) == FIRST_STACK_REG) #define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X))) #define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG) #define BND_REGNO_P(N) IN_RANGE ((N), FIRST_BND_REG, LAST_BND_REG) #define ANY_BND_REG_P(X) (REG_P (X) && BND_REGNO_P (REGNO (X))) /* The class value for index registers, and the one for base regs. */ #define INDEX_REG_CLASS INDEX_REGS #define BASE_REG_CLASS GENERAL_REGS /* Place additional restrictions on the register class to use when it is necessary to be able to hold a value of mode MODE in a reload register for which class CLASS would ordinarily be used. We avoid classes containing registers from multiple units due to the limitation in ix86_secondary_memory_needed. We limit these classes to their "natural mode" single unit register class, depending on the unit availability. Please note that reg_class_subset_p is not commutative, so these conditions mean "... if (CLASS) includes ALL registers from the register set." */ #define LIMIT_RELOAD_CLASS(MODE, CLASS) \ (((MODE) == QImode && !TARGET_64BIT \ && reg_class_subset_p (Q_REGS, (CLASS))) ? Q_REGS \ : (((MODE) == SImode || (MODE) == DImode) \ && reg_class_subset_p (GENERAL_REGS, (CLASS))) ? GENERAL_REGS \ : (SSE_FLOAT_MODE_P (MODE) && TARGET_SSE_MATH \ && reg_class_subset_p (SSE_REGS, (CLASS))) ? SSE_REGS \ : (X87_FLOAT_MODE_P (MODE) \ && reg_class_subset_p (FLOAT_REGS, (CLASS))) ? FLOAT_REGS \ : (CLASS)) /* If we are copying between general and FP registers, we need a memory location. The same is true for SSE and MMX registers. */ #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \ ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1) /* Get_secondary_mem widens integral modes to BITS_PER_WORD. There is no need to emit full 64 bit move on 64 bit targets for integral modes that can be moved using 32 bit move. */ #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \ (GET_MODE_BITSIZE (MODE) < 32 && INTEGRAL_MODE_P (MODE) \ ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \ : MODE) /* Return a class of registers that cannot change FROM mode to TO mode. */ #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \ ix86_cannot_change_mode_class (FROM, TO, CLASS) /* Stack layout; function entry, exit and calling. */ /* Define this if pushing a word on the stack makes the stack pointer a smaller address. */ #define STACK_GROWS_DOWNWARD /* Define this to nonzero if the nominal address of the stack frame is at the high-address end of the local variables; that is, each additional local variable allocated goes at a more negative offset in the frame. */ #define FRAME_GROWS_DOWNWARD 1 /* Offset within stack frame to start allocating local variables at. If FRAME_GROWS_DOWNWARD, this is the offset to the END of the first local allocated. Otherwise, it is the offset to the BEGINNING of the first local allocated. */ #define STARTING_FRAME_OFFSET 0 /* If we generate an insn to push BYTES bytes, this says how many the stack pointer really advances by. On 386, we have pushw instruction that decrements by exactly 2 no matter what the position was, there is no pushb. But as CIE data alignment factor on this arch is -4 for 32bit targets and -8 for 64bit targets, we need to make sure all stack pointer adjustments are in multiple of 4 for 32bit targets and 8 for 64bit targets. */ #define PUSH_ROUNDING(BYTES) \ (((BYTES) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD) /* If defined, the maximum amount of space required for outgoing arguments will be computed and placed into the variable `crtl->outgoing_args_size'. No space will be pushed onto the stack for each call; instead, the function prologue should increase the stack frame size by this amount. In 32bit mode enabling argument accumulation results in about 5% code size growth becuase move instructions are less compact than push. In 64bit mode the difference is less drastic but visible. FIXME: Unlike earlier implementations, the size of unwind info seems to actually grouw with accumulation. Is that because accumulated args unwind info became unnecesarily bloated? 64-bit MS ABI seem to require 16 byte alignment everywhere except for function prologue and epilogue. This is not possible without ACCUMULATE_OUTGOING_ARGS. If stack probes are required, the space used for large function arguments on the stack must also be probed, so enable -maccumulate-outgoing-args so this happens in the prologue. */ #define ACCUMULATE_OUTGOING_ARGS \ ((TARGET_ACCUMULATE_OUTGOING_ARGS && optimize_function_for_speed_p (cfun)) \ || TARGET_STACK_PROBE || TARGET_64BIT_MS_ABI) /* If defined, a C expression whose value is nonzero when we want to use PUSH instructions to pass outgoing arguments. */ #define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS) /* We want the stack and args grow in opposite directions, even if PUSH_ARGS is 0. */ #define PUSH_ARGS_REVERSED 1 /* Offset of first parameter from the argument pointer register value. */ #define FIRST_PARM_OFFSET(FNDECL) 0 /* Define this macro if functions should assume that stack space has been allocated for arguments even when their values are passed in registers. The value of this macro is the size, in bytes, of the area reserved for arguments passed in registers for the function represented by FNDECL. This space can be allocated by the caller, or be a part of the machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says which. */ #define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL) #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \ (TARGET_64BIT && ix86_function_type_abi (FNTYPE) == MS_ABI) /* Define how to find the value returned by a library function assuming the value has mode MODE. */ #define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE) /* Define the size of the result block used for communication between untyped_call and untyped_return. The block contains a DImode value followed by the block used by fnsave and frstor. */ #define APPLY_RESULT_SIZE (8+108) /* 1 if N is a possible register number for function argument passing. */ #define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N) /* Define a data type for recording info about an argument list during the scan of that argument list. This data type should hold all necessary information about the function itself and about the args processed so far, enough to enable macros such as FUNCTION_ARG to determine where the next arg should go. */ typedef struct ix86_args { int words; /* # words passed so far */ int nregs; /* # registers available for passing */ int regno; /* next available register number */ int fastcall; /* fastcall or thiscall calling convention is used */ int sse_words; /* # sse words passed so far */ int sse_nregs; /* # sse registers available for passing */ int warn_avx; /* True when we want to warn about AVX ABI. */ int warn_sse; /* True when we want to warn about SSE ABI. */ int warn_mmx; /* True when we want to warn about MMX ABI. */ int sse_regno; /* next available sse register number */ int mmx_words; /* # mmx words passed so far */ int mmx_nregs; /* # mmx registers available for passing */ int mmx_regno; /* next available mmx register number */ int maybe_vaarg; /* true for calls to possibly vardic fncts. */ int caller; /* true if it is caller. */ int float_in_sse; /* Set to 1 or 2 for 32bit targets if SFmode/DFmode arguments should be passed in SSE registers. Otherwise 0. */ enum calling_abi call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise MS_ABI for ms abi. */ } CUMULATIVE_ARGS; /* Initialize a variable CUM of type CUMULATIVE_ARGS for a call to a function whose data type is FNTYPE. For a library call, FNTYPE is 0. */ #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \ init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL), \ (N_NAMED_ARGS) != -1) /* Output assembler code to FILE to increment profiler label # LABELNO for profiling a function entry. */ #define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO) #define MCOUNT_NAME "_mcount" #define MCOUNT_NAME_BEFORE_PROLOGUE "__fentry__" #define PROFILE_COUNT_REGISTER "edx" /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function, the stack pointer does not matter. The value is tested only in functions that have frame pointers. No definition is equivalent to always zero. */ /* Note on the 386 it might be more efficient not to define this since we have to restore it ourselves from the frame pointer, in order to use pop */ #define EXIT_IGNORE_STACK 1 /* Output assembler code for a block containing the constant parts of a trampoline, leaving space for the variable parts. */ /* On the 386, the trampoline contains two instructions: mov #STATIC,ecx jmp FUNCTION The trampoline is generated entirely at runtime. The operand of JMP is the address of FUNCTION relative to the instruction following the JMP (which is 5 bytes long). */ /* Length in units of the trampoline for entering a nested function. */ #define TRAMPOLINE_SIZE (TARGET_64BIT ? 24 : 10) /* Definitions for register eliminations. This is an array of structures. Each structure initializes one pair of eliminable registers. The "from" register number is given first, followed by "to". Eliminations of the same "from" register are listed in order of preference. There are two registers that can always be eliminated on the i386. The frame pointer and the arg pointer can be replaced by either the hard frame pointer or to the stack pointer, depending upon the circumstances. The hard frame pointer is not used before reload and so it is not eligible for elimination. */ #define ELIMINABLE_REGS \ {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \ { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \ /* Define the offset between two registers, one to be eliminated, and the other its replacement, at the start of a routine. */ #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \ ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO))) /* Addressing modes, and classification of registers for them. */ /* Macros to check register numbers against specific register classes. */ /* These assume that REGNO is a hard or pseudo reg number. They give nonzero only if REGNO is a hard reg of the suitable class or a pseudo reg currently allocated to a suitable hard reg. Since they use reg_renumber, they are safe only once reg_renumber has been allocated, which happens in reginfo.c during register allocation. */ #define REGNO_OK_FOR_INDEX_P(REGNO) \ ((REGNO) < STACK_POINTER_REGNUM \ || REX_INT_REGNO_P (REGNO) \ || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \ || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)])) #define REGNO_OK_FOR_BASE_P(REGNO) \ (GENERAL_REGNO_P (REGNO) \ || (REGNO) == ARG_POINTER_REGNUM \ || (REGNO) == FRAME_POINTER_REGNUM \ || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)])) /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx and check its validity for a certain class. We have two alternate definitions for each of them. The usual definition accepts all pseudo regs; the other rejects them unless they have been allocated suitable hard regs. The symbol REG_OK_STRICT causes the latter definition to be used. Most source files want to accept pseudo regs in the hope that they will get allocated to the class that the insn wants them to be in. Source files for reload pass need to be strict. After reload, it makes no difference, since pseudo regs have been eliminated by then. */ /* Non strict versions, pseudos are ok. */ #define REG_OK_FOR_INDEX_NONSTRICT_P(X) \ (REGNO (X) < STACK_POINTER_REGNUM \ || REX_INT_REGNO_P (REGNO (X)) \ || REGNO (X) >= FIRST_PSEUDO_REGISTER) #define REG_OK_FOR_BASE_NONSTRICT_P(X) \ (GENERAL_REGNO_P (REGNO (X)) \ || REGNO (X) == ARG_POINTER_REGNUM \ || REGNO (X) == FRAME_POINTER_REGNUM \ || REGNO (X) >= FIRST_PSEUDO_REGISTER) /* Strict versions, hard registers only */ #define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X)) #define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X)) #ifndef REG_OK_STRICT #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X) #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X) #else #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X) #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X) #endif /* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression that is a valid memory address for an instruction. The MODE argument is the machine mode for the MEM expression that wants to use this address. The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P, except for CONSTANT_ADDRESS_P which is usually machine-independent. See legitimize_pic_address in i386.c for details as to what constitutes a legitimate address when -fpic is used. */ #define MAX_REGS_PER_ADDRESS 2 #define CONSTANT_ADDRESS_P(X) constant_address_p (X) /* Try a machine-dependent way of reloading an illegitimate address operand. If we find one, push the reload and jump to WIN. This macro is used in only one place: `find_reloads_address' in reload.c. */ #define LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, INDL, WIN) \ do { \ if (ix86_legitimize_reload_address ((X), (MODE), (OPNUM), \ (int)(TYPE), (INDL))) \ goto WIN; \ } while (0) /* If defined, a C expression to determine the base term of address X. This macro is used in only one place: `find_base_term' in alias.c. It is always safe for this macro to not be defined. It exists so that alias analysis can understand machine-dependent addresses. The typical use of this macro is to handle addresses containing a label_ref or symbol_ref within an UNSPEC. */ #define FIND_BASE_TERM(X) ix86_find_base_term (X) /* Nonzero if the constant value X is a legitimate general operand when generating PIC code. It is given that flag_pic is on and that X satisfies CONSTANT_P or is a CONST_DOUBLE. */ #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X) #define SYMBOLIC_CONST(X) \ (GET_CODE (X) == SYMBOL_REF \ || GET_CODE (X) == LABEL_REF \ || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X))) /* Max number of args passed in registers. If this is more than 3, we will have problems with ebx (register #4), since it is a caller save register and is also used as the pic register in ELF. So for now, don't allow more than 3 registers to be passed in registers. */ /* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */ #define X86_64_REGPARM_MAX 6 #define X86_64_MS_REGPARM_MAX 4 #define X86_32_REGPARM_MAX 3 #define REGPARM_MAX \ (TARGET_64BIT \ ? (TARGET_64BIT_MS_ABI \ ? X86_64_MS_REGPARM_MAX \ : X86_64_REGPARM_MAX) \ : X86_32_REGPARM_MAX) #define X86_64_SSE_REGPARM_MAX 8 #define X86_64_MS_SSE_REGPARM_MAX 4 #define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0) #define SSE_REGPARM_MAX \ (TARGET_64BIT \ ? (TARGET_64BIT_MS_ABI \ ? X86_64_MS_SSE_REGPARM_MAX \ : X86_64_SSE_REGPARM_MAX) \ : X86_32_SSE_REGPARM_MAX) #define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0)) /* Specify the machine mode that this machine uses for the index in the tablejump instruction. */ #define CASE_VECTOR_MODE \ (!TARGET_LP64 || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode) /* Define this as 1 if `char' should by default be signed; else as 0. */ #define DEFAULT_SIGNED_CHAR 1 /* Max number of bytes we can move from memory to memory in one reasonably fast instruction. */ #define MOVE_MAX 16 /* MOVE_MAX_PIECES is the number of bytes at a time which we can move efficiently, as opposed to MOVE_MAX which is the maximum number of bytes we can move with a single instruction. */ #define MOVE_MAX_PIECES UNITS_PER_WORD /* If a memory-to-memory move would take MOVE_RATIO or more simple move-instruction pairs, we will do a movmem or libcall instead. Increasing the value will always make code faster, but eventually incurs high cost in increased code size. If you don't define this, a reasonable default is used. */ #define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3) /* If a clear memory operation would take CLEAR_RATIO or more simple move-instruction sequences, we will do a clrmem or libcall instead. */ #define CLEAR_RATIO(speed) ((speed) ? MIN (6, ix86_cost->move_ratio) : 2) /* Define if shifts truncate the shift count which implies one can omit a sign-extension or zero-extension of a shift count. On i386, shifts do truncate the count. But bit test instructions take the modulo of the bit offset operand. */ /* #define SHIFT_COUNT_TRUNCATED */ /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits is done just by pretending it is already truncated. */ #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1 /* A macro to update M and UNSIGNEDP when an object whose type is TYPE and which has the specified mode and signedness is to be stored in a register. This macro is only called when TYPE is a scalar type. On i386 it is sometimes useful to promote HImode and QImode quantities to SImode. The choice depends on target type. */ #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \ do { \ if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \ || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \ (MODE) = SImode; \ } while (0) /* Specify the machine mode that pointers have. After generation of rtl, the compiler makes no further distinction between pointers and any other objects of this machine mode. */ #define Pmode (ix86_pmode == PMODE_DI ? DImode : SImode) /* Specify the machine mode that bounds have. */ #define BNDmode (ix86_pmode == PMODE_DI ? BND64mode : BND32mode) /* A C expression whose value is zero if pointers that need to be extended from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and greater then zero if they are zero-extended and less then zero if the ptr_extend instruction should be used. */ #define POINTERS_EXTEND_UNSIGNED 1 /* A function address in a call instruction is a byte address (for indexing purposes) so give the MEM rtx a byte's mode. */ #define FUNCTION_MODE QImode /* A C expression for the cost of a branch instruction. A value of 1 is the default; other values are interpreted relative to that. */ #define BRANCH_COST(speed_p, predictable_p) \ (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost) /* An integer expression for the size in bits of the largest integer machine mode that should actually be used. We allow pairs of registers. */ #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode) /* Define this macro as a C expression which is nonzero if accessing less than a word of memory (i.e. a `char' or a `short') is no faster than accessing a word of memory, i.e., if such access require more than one instruction or if there is no difference in cost between byte and (aligned) word loads. When this macro is not defined, the compiler will access a field by finding the smallest containing object; when it is defined, a fullword load will be used if alignment permits. Unless bytes accesses are faster than word accesses, using word accesses is preferable since it may eliminate subsequent memory access if subsequent accesses occur to other fields in the same word of the structure, but to different bytes. */ #define SLOW_BYTE_ACCESS 0 /* Nonzero if access to memory by shorts is slow and undesirable. */ #define SLOW_SHORT_ACCESS 0 /* Define this macro to be the value 1 if unaligned accesses have a cost many times greater than aligned accesses, for example if they are emulated in a trap handler. When this macro is nonzero, the compiler will act as if `STRICT_ALIGNMENT' were nonzero when generating code for block moves. This can cause significantly more instructions to be produced. Therefore, do not set this macro nonzero if unaligned accesses only add a cycle or two to the time for a memory access. If the value of this macro is always zero, it need not be defined. */ /* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */ /* Define this macro if it is as good or better to call a constant function address than to call an address kept in a register. Desirable on the 386 because a CALL with a constant address is faster than one with a register address. */ #define NO_FUNCTION_CSE /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE, return the mode to be used for the comparison. For floating-point equality comparisons, CCFPEQmode should be used. VOIDmode should be used in all other cases. For integer comparisons against zero, reduce to CCNOmode or CCZmode if possible, to allow for more combinations. */ #define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y)) /* Return nonzero if MODE implies a floating point inequality can be reversed. */ #define REVERSIBLE_CC_MODE(MODE) 1 /* A C expression whose value is reversed condition code of the CODE for comparison done in CC_MODE mode. */ #define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE)) /* Control the assembler format that we output, to the extent this does not vary between assemblers. */ /* How to refer to registers in assembler output. This sequence is indexed by compiler's hard-register-number (see above). */ /* In order to refer to the first 8 regs as 32-bit regs, prefix an "e". For non floating point regs, the following are the HImode names. For float regs, the stack top is sometimes referred to as "%st(0)" instead of just "%st". TARGET_PRINT_OPERAND handles this with the "y" code. */ #define HI_REGISTER_NAMES \ {"ax","dx","cx","bx","si","di","bp","sp", \ "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \ "argp", "flags", "fpsr", "fpcr", "frame", \ "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \ "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \ "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \ "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", \ "xmm16", "xmm17", "xmm18", "xmm19", \ "xmm20", "xmm21", "xmm22", "xmm23", \ "xmm24", "xmm25", "xmm26", "xmm27", \ "xmm28", "xmm29", "xmm30", "xmm31", \ "k0", "k1", "k2", "k3", "k4", "k5", "k6", "k7", \ "bnd0", "bnd1", "bnd2", "bnd3" } #define REGISTER_NAMES HI_REGISTER_NAMES /* Table of additional register names to use in user input. */ #define ADDITIONAL_REGISTER_NAMES \ { { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \ { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \ { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \ { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \ { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \ { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 } } /* Note we are omitting these since currently I don't know how to get gcc to use these, since they want the same but different number as al, and ax. */ #define QI_REGISTER_NAMES \ {"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",} /* These parallel the array above, and can be used to access bits 8:15 of regs 0 through 3. */ #define QI_HIGH_REGISTER_NAMES \ {"ah", "dh", "ch", "bh", } /* How to renumber registers for dbx and gdb. */ #define DBX_REGISTER_NUMBER(N) \ (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)]) extern int const dbx_register_map[FIRST_PSEUDO_REGISTER]; extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER]; extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER]; extern int const x86_64_ms_sysv_extra_clobbered_registers[12]; /* Before the prologue, RA is at 0(%esp). */ #define INCOMING_RETURN_ADDR_RTX \ gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM)) /* After the prologue, RA is at -4(AP) in the current frame. */ #define RETURN_ADDR_RTX(COUNT, FRAME) \ ((COUNT) == 0 \ ? gen_rtx_MEM (Pmode, plus_constant (Pmode, arg_pointer_rtx, \ -UNITS_PER_WORD)) \ : gen_rtx_MEM (Pmode, plus_constant (Pmode, FRAME, UNITS_PER_WORD))) /* PC is dbx register 8; let's use that column for RA. */ #define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8) /* Before the prologue, the top of the frame is at 4(%esp). */ #define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD /* Describe how we implement __builtin_eh_return. */ #define EH_RETURN_DATA_REGNO(N) ((N) <= DX_REG ? (N) : INVALID_REGNUM) #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, CX_REG) /* Select a format to encode pointers in exception handling data. CODE is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is true if the symbol may be affected by dynamic relocations. ??? All x86 object file formats are capable of representing this. After all, the relocation needed is the same as for the call insn. Whether or not a particular assembler allows us to enter such, I guess we'll have to see. */ #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \ asm_preferred_eh_data_format ((CODE), (GLOBAL)) /* This is how to output an insn to push a register on the stack. It need not be very fast code. */ #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \ do { \ if (TARGET_64BIT) \ asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \ reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \ else \ asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \ } while (0) /* This is how to output an insn to pop a register from the stack. It need not be very fast code. */ #define ASM_OUTPUT_REG_POP(FILE, REGNO) \ do { \ if (TARGET_64BIT) \ asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \ reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \ else \ asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \ } while (0) /* This is how to output an element of a case-vector that is absolute. */ #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \ ix86_output_addr_vec_elt ((FILE), (VALUE)) /* This is how to output an element of a case-vector that is relative. */ #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \ ix86_output_addr_diff_elt ((FILE), (VALUE), (REL)) /* When we see %v, we will print the 'v' prefix if TARGET_AVX is true. */ #define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR) \ { \ if ((PTR)[0] == '%' && (PTR)[1] == 'v') \ (PTR) += TARGET_AVX ? 1 : 2; \ } /* A C statement or statements which output an assembler instruction opcode to the stdio stream STREAM. The macro-operand PTR is a variable of type `char *' which points to the opcode name in its "internal" form--the form that is written in the machine description. */ #define ASM_OUTPUT_OPCODE(STREAM, PTR) \ ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR)) /* A C statement to output to the stdio stream FILE an assembler command to pad the location counter to a multiple of 1<machine->stack_locals) #define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size) #define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size) #define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching) #define ix86_current_function_needs_cld (cfun->machine->needs_cld) #define ix86_tls_descriptor_calls_expanded_in_cfun \ (cfun->machine->tls_descriptor_call_expanded_p) /* Since tls_descriptor_call_expanded is not cleared, even if all TLS calls are optimized away, we try to detect cases in which it was optimized away. Since such instructions (use (reg REG_SP)), we can verify whether there's any such instruction live by testing that REG_SP is live. */ #define ix86_current_function_calls_tls_descriptor \ (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG)) #define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack) /* Control behavior of x86_file_start. */ #define X86_FILE_START_VERSION_DIRECTIVE false #define X86_FILE_START_FLTUSED false /* Flag to mark data that is in the large address area. */ #define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0) #define SYMBOL_REF_FAR_ADDR_P(X) \ ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0) /* Flags to mark dllimport/dllexport. Used by PE ports, but handy to have defined always, to avoid ifdefing. */ #define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1) #define SYMBOL_REF_DLLIMPORT_P(X) \ ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0) #define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2) #define SYMBOL_REF_DLLEXPORT_P(X) \ ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0) #define SYMBOL_FLAG_STUBVAR (SYMBOL_FLAG_MACH_DEP << 4) #define SYMBOL_REF_STUBVAR_P(X) \ ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_STUBVAR) != 0) extern void debug_ready_dispatch (void); extern void debug_dispatch_window (int); /* The value at zero is only defined for the BMI instructions LZCNT and TZCNT, not the BSR/BSF insns in the original isa. */ #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \ ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_BMI) #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \ ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_LZCNT) /* Flags returned by ix86_get_callcvt (). */ #define IX86_CALLCVT_CDECL 0x1 #define IX86_CALLCVT_STDCALL 0x2 #define IX86_CALLCVT_FASTCALL 0x4 #define IX86_CALLCVT_THISCALL 0x8 #define IX86_CALLCVT_REGPARM 0x10 #define IX86_CALLCVT_SSEREGPARM 0x20 #define IX86_BASE_CALLCVT(FLAGS) \ ((FLAGS) & (IX86_CALLCVT_CDECL | IX86_CALLCVT_STDCALL \ | IX86_CALLCVT_FASTCALL | IX86_CALLCVT_THISCALL)) #define RECIP_MASK_NONE 0x00 #define RECIP_MASK_DIV 0x01 #define RECIP_MASK_SQRT 0x02 #define RECIP_MASK_VEC_DIV 0x04 #define RECIP_MASK_VEC_SQRT 0x08 #define RECIP_MASK_ALL (RECIP_MASK_DIV | RECIP_MASK_SQRT \ | RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT) #define RECIP_MASK_DEFAULT (RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT) #define TARGET_RECIP_DIV ((recip_mask & RECIP_MASK_DIV) != 0) #define TARGET_RECIP_SQRT ((recip_mask & RECIP_MASK_SQRT) != 0) #define TARGET_RECIP_VEC_DIV ((recip_mask & RECIP_MASK_VEC_DIV) != 0) #define TARGET_RECIP_VEC_SQRT ((recip_mask & RECIP_MASK_VEC_SQRT) != 0) #define IX86_HLE_ACQUIRE (1 << 16) #define IX86_HLE_RELEASE (1 << 17) /* Local variables: version-control: t End: */